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About This Book

Warning: In this document, what applies to DPX/20 also applies to the following Unix
systems: ESCALA and ESTRELLA.

This book, the AIX Performance Tuning Guide, provides information on concepts, tools, and
techniques for assessing and tuning the performance of AIX on ESCALA systems. Topics
covered include efficient system and application design and implementation, as well as
post–implementation tuning of CPU use, memory use, disk I/O, and communications I/O.
Most of the tuning recommendations were developed or validated on Version 3.2.5. Some
information on AIX Version 4.1 is also provided. Information that applies only to AIX Version
4.1 is so identified in the text.

The material in this guide is designed for programmers, system managers, and end users
concerned with performance tuning of AIX systems. You should be familiar with the AIX
operating environment. Introductory sections are included to assist the less experienced
and to acquaint experienced users with AIX performance–tuning terminology.

This is a major revision of the AIX Version 3.2 Performance Monitoring and Tuning Guide,
including both changes in organization and new tuning recommendations. Of particular
interest to the performance analyst are the changes in the packaging and content of the AIX
performance tools in AIX Version 4.1.

AIX Performance Management Structure
There are appropriate tools for each phase of AIX system performance management. Some
of the tools are available from Bull; others are the products of third parties. The figure
illustrates the phases of performance management in a simple LAN environment and some
of the tools packages that apply in each phase. This tuning guide also provides information
about each phase.
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Performance Tools Packages and Their Documentation
The packaging of the performance tools lets the performance analyst install on any given
system only those tools that are required to monitor and tune that system. The packages
and their main functions are described in the following sections.

BEST/1
BEST/1 is a capacity–planning tool that uses queuing models to predict the performance of
a given configuration when processing a specific workload. The prediction can be based on:

• workload descriptions derived from an application design, or

• workload data acquired by monitoring existing systems.

BEST/1 has three main components:

Collect Collects detailed information about the processing of a workload by an
existing system.

Analyze Transforms the detailed information into reports and a queuing model of
the workload–processing activity.

Predict Uses the queuing model to estimate the performance effects of changes
in the workload or the configuration.

BEST/1 for UNIX is a product of BGS Systems, Inc. BGS Systems can be reached at
1–800–891–0000 (in the US).

AIX Performance Diagnostic Tool (PDT)
The Performance Diagnostic Tool, which is an optionally installable component of AIX
Version 4.1, assesses the configuration of the system and tracks trends in resource use. If
PDT detects an actual or potential performance problem, it reports the situation to the
system administrator. This book contains the primary, detailed documentation of the
functions of PDT.

AIX Base Operating System (BOS)
The AIX Base Operating System contains a number of monitoring and tuning tools that have
historically been part of UNIX systems or are required to manage the
implementation–specific features of AIX. The BOS functions and commands that are most
important to performance analysts are:

iostat Reports CPU and I/O statistics.

lsattr Displays the attributes of devices.

lslv Displays information about a logical volume or the logical
volume allocations of a physical volume.

netstat Displays the contents of network–related data structures.

nfsstat Displays statistics about Network File System (NFS) and
Remote Procedure Call (RPC) activity.

nice Runs a command at higher– or lower–than–normal priority.

no Displays or sets network options.

ps Displays the status of processes.

renice Changes the priority of one or more processes.

reorgvg Reorganizes the physical–partition allocation within a
volume group.

sar Collects and reports or records system–activity information.

time Prints the elapsed execution time and the user and system
processing time attributed to a command.
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trace Records and reports selected system events.

vmstat Reports virtual–memory activity and other system statistics.

The documentation of the AIX BOS commands is in the AIX commands reference manuals.

Performance Toolbox (PTX)
The Performance Toolbox for AIX (PTX) contains tools for local and remote system–activity
monitoring and tuning. This licensed product consists of two main components: the PTX
Manager and the PTX Agent. The PTX Agent is available as a separate licensed product
called the Performance Aide for AIX. The figure shows a simplified LAN configuration in
which the PTX Manager is being used to monitor the activity of several systems.
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The main purpose of the PTX Manager is to collect and display data from the various
systems in the configuration. The primary program for this purpose is xmperf. The primary
program used by the Agent to collect and transmit data to the Manager is xmservd.

In addition to the main PTX components, in AIX Version 4.1 both the Performance Toolbox
for AIX and the Performance Aide for AIX licensed products include a set of separate
monitoring and tuning tools, most of which are part of the Version 3.2.5 Base Operating
System:

fdpr Optimizes an executable program for a particular workload.

filemon Uses the trace facility to monitor and report the activity of
the AIX file system.

fileplace Displays the placement of a file’s blocks within logical or
physical volumes.

lockstat Displays statistics about contention for kernel locks.

netpmon Uses the trace facility to report on network I/O and
network–related CPU usage.

rmss Simulates systems with various sizes of memory for
performance testing.

svmon Captures and analyzes information about virtual–memory
usage.

syscalls Records and counts system calls.

tprof Uses the trace facility to report CPU usage at module and
source–code–statement levels.

bf Reports memory access patterns of processes (AIX Version
4.1 only).

stem Permits subroutine–level entry/exit instrumentation of
existing executables (AIX Version 4.1 only).
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The primary documentation of the commands and functions of PTX is the Performance
Toolbox 1.2 and 2.1 for AIX: User’s Guide, although the syntax descriptions of the tools
listed above are documented in the AIX Commands Reference. Use of the listed commands
is incorporated in various diagnosis and tuning scenarios in this book.

AIX Performance PMR Data Collection Tool (PerfPMR)
The AIX Performance PMR Data Collection Tool (PerfPMR) package is used to collect
configuration and performance information to accompany a report of a suspected AIX
performance defect. This book contains the primary, detailed documentation of the functions
and use of PerfPMR.

Tools That Are Not Supported in AIX Version 4.1
The rmap trace data reduction and reporting program is not supported in AIX Version 4.1

How to Use This Book

Overview of Contents
This book contains the following chapters and appendixes:

• Chapter 1, ’Performance Concepts,’ gives an introduction to the basic considerations of
performance analysis. For those who are already experienced in performance tuning, this
chapter will be of interest mainly as a guide to AIX terminology.

• Chapter 2, ’AIX Resource Management Overview,’ describes the structures and principal
algorithms of the main resource–management components of AIX.

• Chapter 3, ’An Introduction to Multiprocessing,’ provides an overview of the performance
aspects of multiprocessor systems.

• Chapter 4, ’Performance–Conscious Planning, Design, and Implementation,’ describes
the performance considerations that should be taken into account in preparation for an
application.

• Chapter 5, ’System Monitoring and Initial Performance Diagnosis,’ explains how to
prepare for the detection of performance problems and the preliminary steps to take
when such a problem is encountered.

• Chapter 6, ’Monitoring and Tuning CPU Use,’ describes techniques for ensuring that the
CPU resource is being used efficiently.

• Chapter 7, ’Monitoring and Tuning Memory Use,’ shows how to determine how much real
and virtual storage is being used and how to avoid or detect some common inefficiencies.

• Chapter 8, ’Monitoring and Tuning Disk I/O,’ explains the dynamics of disk I/O in AIX and
how those dynamics can be affected by user choices.

• Chapter 9, ’Monitoring and Tuning Communications I/O,’ gives tuning techniques for
various forms of communications I/O.

• Chapter 10, ’DFS Performance Tuning,’ describes various parameters of DFS operation
that can affect performance.

• Chapter 11, ’Performance Analysis with the Trace Facility,’ gives an extended explanation
of the use of the trace facility, which is a powerful tool for detailed performance tuning
and also is the base of a number of other tools discussed in this book.

• Chapter 12, ’Performance Diagnostic Tool (PDT),’ describes an AIX Version 4.1 tool that
assesses configurations for balance and maintains historical performance data to identify
performance trends.

• Chapter 13, ’Handling a Possible AIX Performance Bug,’ explains the process of
reporting, and providing data about, a possible performance bug in AIX.

• Appendix A, ’AIX Performance Monitoring and Tuning Commands,’ lists the AIX
commands that are most helpful in carrying out performance monitoring and tuning tasks
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and provides detailed documentation of the syntax and functions of the schedtune,
vmtune, pdt_config, and pdt_report commands.

• Appendix B, ’Performance–Related Subroutines,’ describes several subroutines with
performance–related uses.

• Appendix C, ’Cache and Addressing Considerations,’ provides a conceptual discussion of
the ways in which caches can affect the performance of programs.

• Appendix D, ’Efficient Use of the ld Command,’ describes techniques for using the AIX
binder.

• Appendix E, ’Performance of the Performance Tools,’ documents the resource
consumption and response time of the performance tools.

• Appendix F, ’Application Memory Management,’ describes the distinction between the
original and the current versions of the malloc and realloc subroutines.

• Appendix G, ’Performance Effects of Shared Libraries,’ describes the performance
advantages and disadvantages of shared libraries versus nonshared libraries.

• Appendix H, ’Accessing the Processor Timer,’ describes methods of using the processor
timer to compute elapsed–time values.

• Appendix I, ’National Language Support––Locale versus Speed,’ explains the effect that
use of the AIX National Language Support facility can have on performance.

• Appendix J, ’Summary of Tunable Performance Parameters in AIX,’ documents the AIX
operational parameters that can be changed by the user and that have a direct or indirect
effect on performance.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures,
directories, and other items whose names are predefined by the
system. Also identifies graphical objects such as buttons, labels, and
icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied
by the user.

Monospace Identifies examples of specific data values, examples of text similar to
what you might see displayed, examples of portions of program code
similar to what you might write as a programmer, messages from the
system, or information you should actually type.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of
this product.

Related Publications
The following books contain information about or related to performance monitoring:

• AIX and Related Products Documentation Overview, order number 86 A2 71WE.

• AIX 4.3 System User’s Guide: Operating System and Devices,
order number 86 A2 97HX.
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• AIX 4.3 System Management Guide: Communications and Networks,
order number 86 A2 31JX.



xvi AIX 4.3 Performance Tuning Guide

• AIX Commands Reference, order number 86 A2 38JX to 86 A2 43JX.

• AIX General Programming Concepts: Writing and Debugging Programs, 
order number 86 A2 34JX.

• AIX Technical Reference, Volume 1: Base Operating System and Extensions, 
order number 86 A2 81AP.
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order number 86 A2 82AP.

• Performance Toolbox 1.2 and 2.1 for AIX: User’s Guide, order number 86 A2 10AQ.

• Optimization and Tuning Guide for XL Fortran, XL C and XL C++,
order number 86 A2 99WG

• Comer, D., Internetworking with TCP/IP Vol I, 2nd ed., Englewood Cliffs: Prentice–Hall,
1991.

• Ferrari, D., Serazzi, G., and Zeigner, A., Measurement and Tuning of Computer Systems,
New York: Prentice–Hall,1983.

• Lazowska, D., Zahorjan, J., Graham, G., and Sevchik, K., Quantitative System
Performance, New York: Prentice–Hall,1984.
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1990.

• Stern, H., Managing NFS and NIS, Sebastopol, CA: O’Reilly & Associates, Inc., 1992.
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You can order publications from your sales representative.

Use AIX and Related Products Documentation Overview for information on related
publications and how to obtain them.
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Chapter 1. Performance Concepts

 
Everyone who uses a computer has an opinion about its performance. Unfortunately, those
opinions are often based on oversimplified ideas about the dynamics of program execution.
Uninformed intuition can lead to expensive wrong guesses about the capacity of a system
and the solutions to the perceived performance problems.

This chapter describes the dynamics of program execution and provides a conceptual
framework for evaluating system performance. It contains the following major sections:

• How Fast is that Computer in the Window? is a brief discussion of the meaning of
performance measurement.

• First, Understand the Workload discusses setting performance objectives.

• Program Execution Dynamics identifies the sources of delay during program execution.

• System Dynamics describes the interaction of programs running in a system.

How Fast Is That Computer in the Window?
Using words like ”speed” and ”fast” to describe contemporary computers, while condoned
by precedent, is extreme oversimplification. There was a time when one could read a
program, calculate the sum of the instruction times, and confidently predict how long it
would take the computer to run that program. Thousands of programmers and engineers
have spent the last 30 years making such straightforward calculations impossible, or at least
meaningless.

Today’s computers are more powerful than their ancestors, not just because they use
integrated circuits instead of vacuum tubes and have far shorter cycle times, but because of
innumerable hardware and software architectural inventions. Each advance in
integrated–circuit density brings an advance in computer performance, not just because it
allows the same logic to work in a smaller space with a faster system clock, but because it
gives engineers more space in which to implement clever ideas. In short, computers have
gained capacity by becoming more complex as well as quicker.

The complexity of modern computers and their operating systems is matched by the
complexity of the environment in which they operate. In addition to the execution of
individual programs, today’s computer has to deal with varying numbers of unpredictably
timed interrupts from I/O and communications devices. To the extent that the engineers’
clever ideas were based on an assumption of a single program running in a standalone
machine, they may be partly defeated by the randomness of the real world. To the extent
that those ideas were intended to deal with randomness, they may win back some of the
loss. The wins and losses change from program to program and from moment to moment.

The net of all these hardware and software wins and losses is the performance of the
system. The ”speed” of the system is the rate at which it can handle a specific sequence of
demands. If the demands mesh well with the system’s hardware and software architectures,
we can say, ”The system runs this workload fast.” We can’t say, ”The system is fast”––or at
least we shouldn’t.

First, Understand the Workload
As you can see, an accurate and complete definition of the system’s workload is critical to
predicting or understanding its performance. A difference in workload can cause far more
variation in the measured performance of a system than differences in CPU clock speed or
RAM size. The workload definition must include not only the type and rate of requests to the
system but also the exact software packages and in–house application programs to be
executed.
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Whenever possible, current users of existing applications should be observed to get
authentic, real–world measurements of the rates at which users interact with their
workstations or terminals.

Make sure that you include the work that your system is doing ”under the covers.” For
example, if your system contains file systems that are NFS–mounted and frequently
accessed by other systems, handling those accesses is probably a significant fraction of the
overall workload, even though your system is not officially a ”server.”

A Risky Shortcut: Industry–Standard Benchmarks
 A benchmark is a workload that has been standardized to allow comparisons among
dissimilar systems. Any benchmark that has been in existence long enough to become
”industry–standard” has been studied exhaustively by systems developers. Operating
systems, compilers, and in some cases hardware, have been tuned to run the benchmark
with lightning speed. 

Unfortunately, few real workloads duplicate the exact algorithms and environment of a
benchmark. Even those industry–standard benchmarks that were originally derived from
real applications may have been simplified and homogenized to make them portable to a
wide variety of hardware platforms. The environment in which they run has been
constrained in the interests of reproducible measurements.

Bluntly, reasoning of the form ”System A is rated at 50% more MegaThings than System B,
so System A should run my program 50% faster than System B” may be a tempting
shortcut, but it is wrong. There is no benchmark with such universal applicability. The only
valid use for industry–standard benchmarks is to narrow the field of candidate systems that
will be subjected to a serious evaluation. There is no substitute for developing a clear
understanding of your workload and its performance in systems under consideration.

Performance Objectives
After defining the workload that the system will have to process, you can choose
performance criteria and set performance objectives based on those criteria. The main
overall performance criteria of computer systems are response time  and throughput. 
Response time is the time from the initiation of an operation until the initiator has enough
information to resume work, while throughput is the number of workload operations that can
be accomplished per unit of time. The relationship between these metrics is complex. In
some cases you may have to trade off one against the other. In other situations, a single
change can improve both. 

In planning for or tuning any system, you should have clear objectives for both response
time and throughput when processing the specified workload. Otherwise you risk spending
analysis time and resource dollars improving an aspect of system performance that is of
secondary importance.

Program Execution Dynamics
Normally, an application programmer thinks of the running program as an uninterrupted
sequence of instructions that perform a specified function. Great amounts of inventiveness
and effort have been expended on the operating system and hardware to ensure that
programmers are not distracted from this idealized view by ”irrelevant” space, speed, and
multiprogramming/multiprocessing considerations. If the programmer is seduced by this
comfortable illusion, the resulting program may be unnecessarily expensive to run––and
may not meet its performance objectives.

To think clearly about the performance characteristics of a workload, we need a dynamic,
rather than a static, model of program execution, as shown in the figure ”Program Execution
Hierarchy.”
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Program Execution Hierarchy

To run, a program must make its way up both the hardware and operating–system
hierarchies, more or less in parallel. Each element in the hardware hierarchy is scarcer and
more expensive than the element below it. Not only does the program have to contend with
other programs for each resource, the transition from one level to the next takes time. To
understand the dynamics of program execution, we need to have a basic understanding of
each of the levels.

Hardware Hierarchy
Usually, the time required to move from one hardware level to another consists primarily of
the latency  of the lower level––the time from the issuing of a request to the receipt of the
first data. 

Fixed Disks

By far the slowest operation for a running program (other than waiting on a human
keystroke) is obtaining code or data from a disk:

• The disk controller must be directed to access the specified blocks (queuing delay).

• The disk arm must seek  to the correct cylinder (seek latency ). 

• The read/write heads must wait until the correct block rotates  under them (rotational
latency ). 

• The data must be transmitted to the controller (transmission time) and then conveyed to
the application program (interrupt handling time).

Disk operations can have many causes besides explicit read or write requests in the
program. System tuning activities frequently turn out to be hunts for unnecessary disk I/O.

Real Memory

RAM is fast compared to disk, but much more expensive per byte. Operating systems try to
keep in RAM the code and data that are currently in use, spilling any excess onto disk (or
never bringing them into RAM in the first place).

RAM is not necessarily fast compared to the processor. In the ESCALA, a RAM latency of
several processor cycles occurs between the time the hardware recognizes the need for a
RAM access and the time the data or instruction is available to the processor.

If the access is to a page of virtual memory that has been spilled to disk (or has not been
brought in yet), a page fault  occurs, and the execution of the program is suspended until
the page has been read in from disk. 
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Translation Lookaside Buffers (TLBs)

One of the ways programmers are insulated from the physical limitations of the system is
the implementation of virtual memory. The programmer designs and codes the program as
though the memory were very large, and the system takes responsibility for translating the
program’s virtual addresses for instructions and data into the real addresses that are
needed to get the instructions and data from RAM. Since this address–translation process is
time–consuming, the system keeps the real addresses of recently accessed virtual–memory
pages in a cache called the translation lookaside buffer (TLB). As long as the running
program continues to access a small set of program and data pages, the full virtual–to–real
page–address translation does not need to be redone for each RAM access. When the
program tries to access a virtual–memory page that does not have a  TLB entry (a TLB miss
), dozens of processor cycles (the TLB–miss latency) are usually required to perform the
address translation. 

Caches

To minimize the number of times the program has to experience the RAM  latency, the
ESCALA incorporates caches for instructions and data. If the required instruction or data is
already in the cache (a cache hit ), it is available to the processor on the next cycle (that is,
no delay occurs); otherwise (a cache miss ), the RAM latency occurs. 

In some systems there are two levels of cache, usually called L1 and L2. If a particular
storage reference results in an L1 miss, L2 is checked. If L2 generates a miss, then the
reference goes to RAM.

In the ESCALA, the cache sizes and structures vary by model, but the principles of using
them efficiently are identical. Appendix C, Cache and Addressing Considerations, contains a
more detailed discussion of cache and TLB architectures for the benefit of the curious and
those who envision very low–level program tuning.

Pipeline and Registers

The ESCALA’s pipelined, superscalar architecture makes possible, under certain
circumstances, the simultaneous processing of multiple instructions. Large sets of
general–purpose registers and floating–point registers make it possible to keep
considerable amounts of the program’s data in registers, rather than continually storing and
reloading.

The ESCALA optimizing compilers are designed to take maximum advantage of these
capabilities. The compilers’ optimization functions should always be used when generating
production programs, however small. The Optimization and Tuning Guide for XL Fortran, XL
C and XL C++ describes the ways in which programs can be tuned for maximum
performance.

Software Hierarchy
To run, a program must also progress through a series of steps in the software hierarchy.

Executable Programs

When a user requests the execution of a program, AIX performs a number of operations to
transform the executable program on disk to a running program. First, the directories in the
user’s current PATH environment variable must be scanned to find the correct copy of the
program. Then, the system loader  (not to be confused with ld, the binder) must resolve any
external references from the program to shared libraries. 

To represent the user’s request, the operating system creates a process, which is a set of
resources, such as a private virtual address segment, required by any running program.

In AIX Version 4.1, the operating system also automatically creates a single thread within
that process. A thread is the current execution state of a single instance of a program. In
AIX Version 4.1, access to the processor and other resources is allocated on a thread basis,
rather than a process basis. Multiple threads can be created within a process by the
application program. Those threads share the resources owned by the process within which
they are running.
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Finally, the system branches to the entry point of the program. If the program page that
contains the entry point is not already in memory (as it might be if the program had been
recently compiled, executed, or copied), the resulting page–fault interrupt causes the page
to be read.

Interrupt Handlers

The mechanism for notifying the operating system that an external event has taken place is
to interrupt the currently running thread and transfer control to an interrupt handler. Before
the interrupt handler can run, enough of the hardware state must be saved to ensure that
the system can restore the context of the thread after interrupt handling is complete. Newly
invoked interrupt handlers experience all of the delays of moving up the hardware hierarchy
(except page faults). Unless the interrupt handler was run very recently (or the intervening
programs were very economical), it is unlikely that any of its code or data remains in the
TLBs or the caches.

When the interrupted thread is dispatched again, its execution context (such as register
contents) is logically restored, so that it functions correctly. However, the contents of the
TLBs and caches must be reconstructed on the basis of the program’s subsequent
demands. Thus, both the interrupt handler and the interrupted thread can experience
significant cache–miss and TLB–miss delays as a result of the interrupt.

Waiting Threads

Whenever an executing program makes a request that cannot be satisfied immediately,
such as an I/O operation (either explicit or as the result of a page fault), that thread is put in
a Wait state until the request is complete. Normally, this results in another set of TLB and
cache latencies, in addition to the time required for the request itself.

Dispatchable Threads

When a thread is dispatchable but not actually running, it is accomplishing nothing useful.
Worse, other threads that are running may cause the thread’s cache lines (the areas of the
cache that contain the instructions and/or data of this thread––see Appendix C, Cache and
Addressing Considerations) to be re–used and real memory pages to be reclaimed,
resulting in even more delays when the thread is finally dispatched.

Currently Dispatched Thread

The scheduler chooses the thread that has the strongest claim to the use of the processor.
(The considerations that affect that choice are discussed in Performance Overview of the
AIX CPU Scheduler, on page 2-2 .) When the thread is dispatched, the logical state of the
processor is restored to that in effect when the thread was interrupted.

Current Instructions

Most of the machine instructions in a ESCALA are capable of executing in a single
processor cycle, if no TLB or cache miss occurs. In contrast, if a program branches rapidly
to different areas of the executable and/or accesses data from a large number of different
areas, causing high TLB and cache miss rates, the average number of processor cycles per
instruction  executed might be much greater than one. The program is said to exhibit poor
”locality of  reference.” It might be using the minimum number of instructions necessary to
do its job, but consuming an unnecessarily large number of cycles. In part because of this
poor correlation between number of instructions and number of cycles, sitting down with a
program listing to calculate ”path length”  no longer yields a time value directly. While a
shorter path is usually faster than a longer path, the speed ratio can be very different from
the path–length ratio. 

The XL compilers rearrange code in very sophisticated ways to minimize the number of
cycles required for the execution of the program. The programmer seeking maximum
performance should be primarily concerned with ensuring that the compiler has all the
information necessary to optimize effectively, rather than trying to second–guess the
compiler’s optimization techniques. (See Effective Use of Preprocessors and the XL
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Compilers, on page 4-13 .) The real measure of optimization effectiveness is the
performance of an authentic workload.

System Dynamics
It’s not enough to create the most efficient possible individual programs. In many cases, the
actual programs being run were created outside of the control of the person who is
responsible for meeting the organization’s performance objectives. Further, most of the
levels of the hierarchy we have just described are managed by one or more parts of AIX. In
any case, once the application programs have been acquired, or implemented as efficiently
as possible, further improvement in the overall performance of the system becomes a
matter of system tuning. The main components that are subject to system–level tuning are:

Fixed Disk The Logical Volume Manager  (LVM) controls the
placement of file systems and paging spaces on the disk,
which can significantly affect the amount of seek latency the
system experiences. 

The disk device drivers control the order in which I/O
requests are acted on.

Real Memory The Virtual Memory Manager  (VMM) controls the pool of
free real–memory frames and determines when and from
whom to steal frames to replenish the pool. 

Running Thread The scheduler determines which dispatchable entity should
receive control next. (In AIX Version 4.1, the dispatchable
entity changes from a process to a thread. See AIX Version
4.1 Thread Support, on page 2-2 .)

Communications I/O Depending on the type of workload and the type of
communications link, it may be necessary to tune one or
more of the communications device drivers, TCP/IP, or
NFS.

Classes of Workload
Workloads tend to fall naturally into a small number of classes. The types that follow are
sometimes used to categorize systems. However, since a single system often is called upon
to process multiple classes, ”workload” seems more apt in the context of performance.

Workstation A workload that consists  of a single user submitting work
through the native keyboard and receiving results on the
native display of the system. Typically, the highest–priority
performance objective of such a workload is minimum
response time to the user’s requests. 

Multiuser  A workload  that  consists of a number of users submitting
work through individual terminals. Typically, the
performance objectives of such a workload are either to
maximize system throughput while preserving a specified
worst–case response time or to obtain the best possible
response time for a fairly constant workload. 

Server A workload  that  consists of requests from other systems.
For example, a file–server workload is mostly disk
read/write requests. In essence, it is the disk–I/O
component of a multiuser workload (plus NFS or DFS
activity), so the same objective of maximum throughput
within a given response–time limit applies. Other server
workloads consist of compute–intensive programs,
database transactions, print jobs, etc. 
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When a single system is processing workloads of more than one type, there must be a clear
understanding between the users and the performance analyst as to the relative priorities of
the possibly conflicting performance objectives of the different workloads.
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An Introduction to the Performance–Tuning Process
Performance tuning is  primarily a matter of resource management and proper system
parameter setting. Tuning the workload and the system for efficient resource use consists of
the following steps: 

1. Identifying the workloads on the system

2. Setting objectives:

a. Determining how the results will be measured

b. Quantifying and prioritizing the objectives

3. Identifying the ”critical resources” that limit the system’s performance

4. Minimizing the workload’s critical–resource requirements:

a. Using the most appropriate resource, if there is a choice

b. Reducing the critical–resource requirements of individual programs or system
functions

c. Structuring for parallel resource use

5. Modifying the allocation of resources to reflect priorities

a. Changing the priority or resource limits of individual programs

b. Changing the settings of system resource–management parameters

6. Repeating steps 3 through 5 until objectives are met (or resources are saturated)

7. Applying additional resources, if necessary

Identifying the Workloads
It is  essential that all of the work performed by the system be identified. Especially in
LAN–connected systems, a complex set of cross–mounted file systems can easily develop
with only informal agreement among the users of the systems. These must be identified and
taken into account as part of any tuning activity. 

With multiuser workloads, the analyst must quantify both the typical and peak request rates.
It’s also important to be realistic about the proportion of the time that a user is actually
interacting with the terminal.

An important element of this stage is determining whether the measurement and tuning
activity has to be done on the production system or can be accomplished on another system
(or off–shift) with a simulated version of the actual workload. The analyst must weigh the
greater authenticity of results from a production environment against the flexibility of the
nonproduction environment, where the analyst can perform experiments that risk
performance degradation or worse.

Setting Objectives
Objectives must be set in terms of measurable quantities, yet the actual desired result is
often subjective, such as ”satisfactory” response time. Further, the analyst must resist the
temptation to tune what is measurable rather than what is important. If no system–provided
measurement corresponds to the desired improvement, one must be devised.

The most valuable aspect of quantifying the objectives is not selecting numbers to be
achieved, but making a public decision about the relative importance of (usually) multiple
objectives. Unless these priorities are set in advance, and understood by all concerned, the
analyst cannot make trade–off decisions without incessant consultation and is apt to be
surprised by the reaction of users or management to aspects of performance that have
been ignored. If the support and use of the system crosses organizational boundaries, a
written service–level agreement between the providers and the users may be needed to
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ensure that there is a clear common understanding of the performance objectives and
priorities.

Identifying the Critical Resources
In general, the performance of  a given workload is determined by the availability and speed
of one or two critical system resources. The analyst must identify those resources correctly
or risk falling into an endless trial–and–error operation. 

Systems have both real  and logical  resources. Critical real resources are generally easier
to identify, since more system performance tools are available to assess the utilization of
real resources. The real resources that most often affect performance are: 

• CPU cycles

• Memory

• I/O bus

• Various adapters

• Disk arms

• Disk space

• Network access

Logical resources are less readily identified. Logical resources are generally programming
abstractions that partition real resources. The partitioning is done to share and manage the
real resource.

Some examples of real resources and the logical resources built on them are:

CPU

• Processor time slice

Memory

• Page frames

• Stacks

• Buffers

• Queues

• Tables

• Locks and semaphores

Disk Space

• Logical volumes

• File systems

• Files

• Partitions

Network Access

• Packets

• Channels

It is important to be aware of logical resources as well as real resources. Threads can be
blocked by lack of logical resources just as for lack of real resources, and expanding the
underlying real resource does not necessarily ensure that additional logical resources will
be created. For example, consider the NFS block I/O daemon (biod, see NFS Tuning, on
page 9-34 ). A biod on the client is required to handle each pending NFS remote I/O
request. The number of biods therefore limits the number of NFS I/O operations that can be
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in progress simultaneously. When a shortage of biods exists, system instrumentation may
indicate that the CPU and communications links are only slightly utilized. You may have the
false impression that your system is underutilized (and slow), when in fact you have a
shortage of biods that is constraining the rest of the resources. A biod uses processor
cycles and memory, but you cannot fix this problem simply by adding real memory or
converting to a faster CPU. The solution is to create more of the logical resource (biods).

Logical resources and bottlenecks can be created inadvertently during application
development. A method of passing data or controlling a device may, in effect, create a
logical resource. When such resources are created by accident, there are generally no tools
to monitor their use and no interface to control their allocation. Their existence may not be
appreciated until a specific performance problem highlights their importance.

Minimizing Critical–Resource Requirements

Using the Appropriate Resource
The decision to use one resource over another should be done consciously and with
specific goals in mind. An example of a resource choice during application development
would be a trade–off of increased memory consumption for reduced CPU consumption. A
common system configuration decision that demonstrates resource choice is whether to
place files locally on an individual workstation or remotely on a server.

Reducing the Requirement for the Critical Resource
For locally developed applications, the programs can be reviewed for ways to perform the
same function more efficiently or to remove unnecessary function. At a
system–management level, low–priority workloads that are contending for the critical
resource can be moved to other systems or run at other times.

Structuring for Parallel Use of Resources
Since workloads require multiple system resources to run, take advantage of the fact that
the resources are separate and can be consumed in parallel. For example, the AIX system
read–ahead algorithm detects the fact that a program is accessing a file sequentially and
schedules additional sequential reads to be done in parallel with the application’s
processing of the previous data. Parallelism applies to system management as well. For
example, if an application accesses two or more files at the same time, adding a disk drive
may improve the disk–I/O rate if the files that are accessed at the same time are placed on
different drives.

Reflecting Priorities in Resource Allocation
AIX provides a number of ways of prioritizing activities. Some, such as disk pacing, are set
at the system level. Others, such as process priority, can be set by individual users to reflect
the importance they attach to a specific task.

Repeating the Tuning Steps
A truism of performance analysis is that ”there is always a next bottleneck.” Reducing the
use of one resource means that another resource limits throughput or response time.
Suppose, for example, we have a system in which the utilization levels are:

CPU: 90%        Disk: 70%        Memory 60%

This workload is CPU–bound. If we successfully tune the workload so that the CPU load is
reduced from 90 to 45%, we might expect a two–fold improvement in performance.
Unfortunately, the workload is now I/O–limited, with utilizations of about:

CPU: 45%        Disk: 90%        Memory 60%
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The improved CPU utilization allows the programs to submit disk requests sooner, but then
we hit the ceiling imposed by the disk drive’s capacity. The performance improvement is
perhaps 30% instead of the 100% we had envisioned.

There is always a new critical resource. The important question is whether we have met the
performance objectives with the resources at hand.

Applying Additional Resources
If,  after all of the preceding approaches have been exhausted, the performance of the
system still does not meet its objectives, the critical resource must be enhanced or
expanded. If the critical resource is logical and the underlying real resource is adequate, the
logical resource can be expanded for no additional cost. If the critical resource is real, the
analyst must investigate some additional questions: 

• How much must the critical resource be enhanced or expanded so that it ceases to be a
bottleneck?

• Will the performance of the system then meet its objectives, or will another resource
become saturated first?

• If there will be a succession of critical resources, is it more cost effective to enhance or
expand all of them, or to divide the current workload with another system?



1-12 AIX 4.3 Performance Tuning Guide

Performance Benchmarking–the Inevitable Dirtiness of
Performance Data

When we attempt to compare the performance of a given piece of software in different
environments, we are subject to a number of possible errors––some technical, some
conceptual. The following section is mostly cautionary. Other sections of this book discuss
the various ways in which elapsed and process–specific times can be measured.

When we measure the elapsed (”wall–clock”) time required to process a system call, we get
a number that consists of:

• The actual time during which the instructions to perform the service were executing

• Varying amounts of time during which the processor was stalled while waiting for
instructions or data from memory (i.e., the cost of cache and/or TLB misses)

• The time required to access the ”clock” at the beginning and end of the call

• Time consumed by periodic events such as system timer interrupts

• Time consumed by more or less random events such as I/O interrupts

To avoid reporting an inaccurate number, we normally measure the workload a number of
times. Since all of the extraneous factors add to the actual processing time, the typical set of
measurements has a curve of the form:

“Actual” value Mean of measured values

Distribution of 
measured values

The extreme low end may represent a low–probability optimum caching situation or may be
a rounding effect.

A regularly recurring extraneous event might give the curve a bimodal form (two maxima),
such as:

“Actual” value Mean

One or two time–consuming interrupts might skew the curve even further:
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“Actual” value Mean

The distribution of the measurements about the ”actual” value is not random, and the classic
tests of inferential statistics can be applied only with great caution (or chutspah). Also,
depending on the purpose of the measurement, it may be that neither the mean nor the
”actual” value is an appropriate characterization of performance.

Related Information

CPU
• AIX’s management of the CPU resource is described in Performance Overview of the AIX

CPU Scheduler.

• Tools and techniques for managing CPU use are documented in Monitoring and Tuning
CPU Use.

Memory
• The architecture of AIX memory management is described in Performance Overview of

the Virtual Memory Manager (VMM).

• Tools and techniques for managing memory use are documented in Monitoring and
Tuning Memory Use.

Disks
• A description of the structure of AIX fixed–disk support appears in Performance Overview

of AIX Management of Fixed–Disk Storage.

• Planning information about the relative performance of ESCALA fixed disks appears in
Disk Pre–Installation Guidelines.

• An extensive discussion of monitoring, reorganizing, and expanding disk storage appears
in Monitoring and Tuning Disk I/O.



1-14 AIX 4.3 Performance Tuning Guide



2-1AIX Resource Management Overview

Chapter 2. AIX Resource Management Overview

 AIX Resource Management Overview 
This chapter describes the components of AIX that manage the resources that have the
most effect on system performance, and the ways in which these components can be tuned.
Specific tuning recommendations appear in the chapters on tuning individual resources.

• Performance Overview of the AIX CPU Scheduler

• Performance Overview of the Virtual Memory Manager (VMM)

• Performance Overview of AIX Management of Fixed–Disk Storage

Specific tuning recommendations appear in:

• Monitoring and Tuning CPU Use

• Monitoring and Tuning Memory Use

• Monitoring and Tuning Disk I/O
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Performance Overview of the AIX CPU Scheduler
 The addition of thread support to AIX Version 4.1 has resulted in extensive changes to the
CPU scheduler. Conceptually, the scheduling algorithm and priority scheme are similar to
those of Version 3.2.5, but the addition of thread support required many detail–level
changes. Although the net behavioral change for unchanged applications running on
uniprocessors may be small, anyone concerned with performance tuning should understand
the changes and the opportunities. 

AIX Version 4.1 Thread Support
A thread  can be thought of as a low–overhead process. It is a dispatchable entity that
requires fewer resources to create than an AIX process. The fundamental dispatchable
entity of the AIX Version 4.1 scheduler is the thread. 

This does not mean that processes have ceased to exist. In fact, workloads migrated
directly from earlier releases of AIX will create and manage processes as before. Each new
process will be created with a single thread that has its parent process’s priority and
contends for the CPU with the threads of other processes. The process owns the resources
used in execution; the thread owns only its current state.

When new or modified applications take advantage of AIX thread support to create
additional threads, those threads are created within the context of the process. They share
the process’s private segment and other resources.

A user thread within a process has specified contention scope.  If the contention scope is
global,  the thread contends for CPU time with all other threads in the system. (The thread
that is created when a process is created has global contention scope.) If the contention
scope is local,  the thread contends with the other threads within the process to be the
recipient of the process’s share of CPU time. 

The algorithm for determining which thread should be run next is called a scheduling policy.

Scheduling Policy for Threads with Local or Global Contention Scope
In AIX Version 4.1 there are three possible values for thread scheduling policy  : 

FIFO Once a thread with this policy is scheduled, it runs to completion unless it is
blocked, it voluntarily yields control of the CPU, or a higher–priority thread
becomes dispatchable. Only fixed–priority threads can have a FIFO
scheduling policy.

RR This is similar to the AIX Version 3 scheduler round–robin scheme based on
10ms time slices. When a RR thread has control at the end of the time slice, it
moves to the tail of the queue of dispatchable threads of its priority. Only
fixed–priority threads can have a RR scheduling policy.

OTHER This policy is defined by POSIX1003.4a as implementation–defined. In AIX
Version 4.1, this policy is defined to be equivalent to RR, except that it applies
to threads with non–fixed priority. The recalculation of the running thread’s
priority value at each clock interrupt means that a thread may lose control
because its priority value has risen above that of another dispatchable thread.
This is the AIX Version 3 behavior.

Threads are primarily of interest for applications that currently consist of several
asynchronous processes. These applications might impose a lighter load on the system if
converted to a multithread structure.

Process and Thread Priority
The priority management tools in Version 3.2.5 manipulate process priority. In AIX Version
4.1, process priority is simply a precursor to thread priority. When fork() is called, a process
and a thread to run in it are created. The thread has the priority that would have been
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attributed to the process in Version 3.2.5. The following general discussion applies to both
versions.

The kernel maintains a priority value  (sometimes termed the scheduling priority) for each
thread. The priority value is a positive integer and varies inversely with the importance of the
associated thread. That is, a smaller priority value indicates a more important thread. When
the scheduler is looking for a thread to dispatch, it chooses the dispatchable thread with the
smallest priority value. 

A thread can be fixed–priority  or nonfixed priority.  The priority value of a fixed–priority
thread is constant, while the priority value of a nonfixed priority thread is the sum of the
minimum priority level for user threads  (a constant 40), the thread’s nice  value (20 by
default, optionally set by the nice or renice command), and its CPU–usage penalty. The
figure ”How the Priority Value is Determined” illustrates some of the ways in which the
priority value can change.
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How the Priority Value is Determined

The nice value of a thread is set when the thread is created and is constant over the life of
the thread, unless explicitly changed by the user via the renice command or the setpri ,
setpriority, or nice system calls. 

The CPU penalty  is an integer that is calculated from the recent CPU usage of a thread.
The recent CPU usage increases by 1 each time the thread is in control of the CPU at the
end of a 10ms clock tick, up to a maximum value of 120. Once per second, the recent CPU
usage values for all threads are reduced. The result is that: 

• The priority of a nonfixed–priority thread decreases as its recent CPU usage increases
and vice versa. This implies that, on average, the more time slices a thread has been
allocated recently, the less likely it is that the thread will be allocated the next time slice.

• The priority of a nonfixed–priority thread decreases as its nice value increases, and vice
versa.

The priority of a thread can be fixed at a certain value via the setpri subroutine. The priority
value, nice value, and short–term CPU–usage values for a process can be displayed with
the ps command.

See Controlling Contention for the CPU, on page 6-21 for a more detailed discussion of the
use of the nice and renice commands.

See Tuning the Process–Priority–Value Calculation with schedtune for the details of the
calculation of the CPU penalty and the decay of the recent CPU usage values.

AIX Scheduler Run Queue
The scheduler maintains a run queue of all of the threads that are ready to be dispatched.
The figure ”Run Queue” depicts the run queue symbolically.
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Run Queue

Priority Value n

Priority Value n+1

Priority Value n+2

Thread aaa Thread bbb Thread ccc

Thread iii Thread jjj

Thread xxx Thread yyy

All the dispatchable threads of a given priority occupy consecutive positions in the run
queue.

When a thread is moved to the ”end of the run queue” (for example, when the thread has
control at the end of a time slice), it is moved to a position after the last thread in the queue
that has the same priority value.

Scheduler CPU Time Slice
 The CPU time slice  is the period between recalculations of the priority value. Normally,
recalculation is done at each tick of the system clock, that is, every 10 milliseconds. The –t
option of the schedtune command , on page A-5 can be used to increase the number of
clock ticks between recalculations, increasing the length of the time slice by 10 millisecond
increments. Keep in mind that the time slice is not a guaranteed amount of processor time.
It is the longest time that a thread can be in control before it faces the possibility of being
replaced by another thread. There are many ways in which a thread can lose control of the
CPU before it has had control for a full time slice. 

Related Information
AIX Resource Management Overview

Monitoring and Tuning CPU Use

The nice command, ps command, renice command.

The setpri subroutine.

The getpriority, setpriority, or nice subroutines.



2-5AIX Resource Management Overview

Performance Overview of the Virtual Memory Manager (VMM)
The ESCALA Virtual Address  space is partitioned into segments (see Appendix C, Cache
and Addressing Considerations, for an extensive discussion of the virtual–addressing
structure). A segment is a 256MB, contiguous portion of the virtual–memory address space
into which a data object can be mapped. Process addressability to data is managed at the
segment (or object) level so that a segment can be shared between processes or
maintained as private. For example, processes can share code segments yet have separate
and private data segments. 

The following sections describe various aspects of the Virtual Memory Manager (VMM):

• Real–Memory Management

• VMM Memory Load Control Facility

• Allocation and Reclamation of Paging–Space Slots

Real–Memory Management
Virtual–memory segments are partitioned into fixed–size units called pages.  In AIX, the
page size is 4096 bytes. Each page in a segment can be in real memory (RAM), or stored
on disk until it is needed. Similarly, real memory is divided into 4096–byte page frames. The
role of the VMM is to manage the allocation of real–memory page frames and to resolve
references by the program to virtual–memory pages that are not currently in real memory or
do not yet exist (for example, when a process makes the first reference to a page of its data
segment). 

Since the amount of virtual memory that is in use at any given instant may be larger than
real memory, the VMM must store the surplus on disk. From the performance standpoint,
the VMM has two, somewhat opposed, objectives:

• Minimize the overall processor–time and disk–bandwidth cost of the use of virtual
memory.

• Minimize the response–time cost of page faults.

In pursuit of these objectives, the VMM maintains a free list of page frames that are
available to satisfy a page fault. The VMM uses a page–replacement algorithm to determine
which virtual–memory pages currently in memory will have their page frames reassigned to
the free list. The page–replacement algorithm uses several mechanisms:

• Virtual–memory segments are classified into persistent segments or working segments.

• Virtual–memory segments are classified as containing computational or file memory.

• Virtual–memory pages whose access causes a page fault are tracked.

• Page faults are classified as new–page faults or as repage faults.

• Statistics are maintained on the rate of repage faults in each virtual–memory segment.

• User–tunable thresholds influence the page–replacement algorithm’s decisions.

The following sections describe the free list and the page–replacement mechanisms in more
detail.

Free List
The VMM maintains a list of free page frames that it uses to accommodate page faults. In
most environments, the VMM must occasionally add to the free list  by reassigning some
page frames owned by running processes. The virtual–memory pages whose page frames
are to be reassigned are selected by the VMM’s page–replacement algorithm. The number
of frames reassigned is determined by the VMM thresholds. 

In AIX Version 3, the contents of page frames are not lost when the page frames are
reassigned to the free list. If a virtual–memory page is referenced before the frame it
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occupies is actually used to satisfy a page fault, the frame is removed from the free list and
reassigned to the faulting process. This is phenomenon is termed a reclaim. Reclaiming is
not supported in AIX Version 4.1.

Persistent vs Working Segments
The pages of a persistent segment  have permanent storage locations on disk. Files
containing data or executable programs are mapped to persistent segments. Since each
page of a persistent segment has a permanent disk storage location, the VMM writes the
page back to that location when the page has been changed and can no longer be kept in
real memory. If the page has not changed, its frame is simply reassigned to the free list. If
the page is referenced again later, a new copy is read in from its permanent disk–storage
location. 

Working segments are transitory, exist only during their use by a process, and have no
permanent disk–storage location. Process stack and data regions are mapped to working
segments, as are the kernel text segment, the kernel–extension text segments and the
shared–library text and data segments. Pages of working segments must also have
disk–storage locations to occupy when they cannot be kept in real memory. The disk paging
space  is used for this purpose. 

The figure ”Persistent and Working Storage Segments” illustrates the relationship between
some of the types of segment and the locations of their pages on disk. It also shows the
actual (arbitrary) locations of the pages when they are in real memory.
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There are further classifications of the persistent–segment types. Client segments are used
to map remote files (for example, files that are being accessed via NFS), including remote
executables. Pages from client segments are saved and restored over the network to their
permanent file location, not on the local–disk paging space. Journaled  and deferred 
segments are persistent segments that must be atomically updated. If a page from a
journaled or deferred segment is selected to be removed from real memory (paged  out), it
must be written to disk paging space unless it is in a state that allows it to be committed
(written to its permanent file location). 

Computational vs File Memory
Computational memory  consists of the pages that belong to working–storage segments or
program text segments. (A segment is considered to be a program text segment if an
instruction cache miss occurs on any of its pages.) File memory consists of the remaining
pages. 

Repaging
A page fault is considered to be either a new page fault  or a repage fault.  A new page fault
occurs when there is no record of the page having been referenced recently. A repage  fault
occurs when a page that is known to have been referenced recently is referenced again,
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and is not found in memory because the page has been replaced (and perhaps written to
disk) since it was last accessed. A perfect (clairvoyant) page–replacement policy would
eliminate repage faults entirely (assuming adequate real memory) by always stealing
frames from pages that are not going to be referenced again. Thus, the number of repage
faults is an inverse measure of the effectiveness of the page–replacement algorithm in
keeping frequently reused pages in memory, thereby reducing overall I/O demand and
potentially improving system performance. 

In order to classify a page fault as new or repage, the VMM maintains a repage history
buffer  that contains the page IDs of the N most recent page faults, where N is the number
of frames that the memory can hold. For example, a 16MB memory requires a 4096–entry
repage history buffer. At page in, if the page’s ID is found in the repage history buffer, it is
counted as a repage. Also, the VMM estimates the computational–memory repaging rate
and the file–memory repaging rate separately by maintaining counts of repage faults for
each type of memory. The repaging rates are multiplied by 0.9 each time the
page–replacement algorithm runs, so that they reflect recent repaging activity more strongly
than historical repaging activity. 

VMM Thresholds
Several numerical thresholds define the objectives of the VMM. When one of these
thresholds is breached, the VMM takes appropriate action to bring the state of memory back
within bounds. This section discusses the thresholds that can be altered by the system
administrator via the vmtune command. 

The number of page frames on the free list is controlled by:

minfree Minimum acceptable number of real–memory page frames in the free list.
When the size of the free list falls below this number, the VMM begins
stealing pages. It continues stealing pages until the size of the free list
reaches maxfree.

maxfree Maximum size to which the free list will grow by VMM page stealing. The
size of the free list may exceed this number as a result of processes
terminating and freeing their working–segment pages or the deletion of
files that have pages in memory.

The VMM attempts to keep the size of the free list greater than or equal to minfree. When
page faults and/or system demands cause the free list size to fall below minfree, the
page–replacement algorithm is run. The size of the free list must be kept above a certain
level (the default value of minfree) for several reasons. For example, the AIX
sequential–prefetch algorithm requires several frames at a time for each process that is
doing sequential reads. Also, the VMM must avoid deadlocks within the operating system
itself, which could occur if there were not enough space to read in a page that was required
in order to free a page frame.

The following thresholds are expressed as percentages. They represent the fraction of the
total real memory of the machine that is occupied by file pages––pages of
noncomputational segments.

minperm If the percentage of real memory occupied by file pages falls below this
level, the page–replacement algorithm steals both file and computational
pages, regardless of repage rates.

maxperm If the percentage of real memory occupied by file pages rises above this
level, the page–replacement algorithm steals only file pages.

When the percentage of real memory occupied by file pages is between minperm and
maxperm, the VMM normally steals only file pages, but if the repaging rate for file pages is
higher than the repaging rate for computational pages, computational pages are stolen as
well.
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 The main intent of the page–replacement algorithm is to ensure that computational pages
are given fair treatment; for example, the sequential reading of a long data file into memory
should not cause the loss of program text pages that are likely to be used again soon. The
page–replacement algorithm’s use of the thresholds and repaging rates ensures that both
types of pages get treated fairly, with a slight bias in favor of computational pages. 

VMM Memory Load Control Facility
 When a process references a virtual–memory page that is on disk, because it either has
been paged out or has never been read, the referenced page must be paged in and, on
average, one or more pages must be paged out, creating I/O traffic and delaying the
progress of the process. 

AIX attempts to steal real memory from pages that are unlikely to be referenced in the near
future, via the page–replacement algorithm. A successful page–replacement algorithm
allows the operating system to keep enough processes active in memory to keep the CPU
busy. But at some level of competition for memory––depending on the total amount of
memory in the system, the number of processes, the time–varying memory requirements of
each process, and the page–replacement algorithm––no pages are good candidates for
paging out to disk because they will all be reused in the near future by the active set of
processes.

When this happens, continuous paging in and paging out occurs. This condition is called
thrashing. Thrashing results in incessant I/O to the paging disk and causes each process to
encounter a page fault almost as soon as it is dispatched, with the result that none of the
processes make any significant progress. The most pernicious aspect of thrashing is that,
although thrashing may have been triggered by a brief, random peak in workload (such as
all of the users of a system happening to hit the Enter key in the same second), the system
may continue thrashing for an indefinitely long time.

AIX has a memory load control algorithm that detects when the system is starting to thrash
and then suspends active processes and delays the initiation of new processes for a period
of time. Five parameters set rates and bounds for the algorithm. The default values of these
parameters have been chosen to ”fail safe” across a wide range of workloads. For special
situations, a mechanism for tuning (or disabling) load control is available (see Tuning VMM
Memory Load Control, on page 7-15 ).

Memory Load Control Algorithm
The memory load control mechanism assesses, once a second, whether sufficient memory
is available for the set of active processes. When a memory overcommitment condition is
detected, some processes are suspended, decreasing the number of active processes and
thereby decreasing the level of memory overcommitment. When a process is suspended, all
of its threads are suspended when they reach a suspendable state. The pages of the
suspended processes quickly become stale and are paged out via the page replacement
algorithm, releasing enough page frames to allow the remaining active processes to
progress. During the interval in which existing processes are suspended, newly created
processes are also suspended, preventing new work from entering the system. Suspended
processes are not reactivated until a subsequent interval passes during which no potential
thrashing condition exists. Once this safe interval  has passed, the threads of the
suspended processes are gradually reactivated. 

Memory load control parameters specify: the system memory overcommitment threshold;
the number of seconds required to make a safe interval; the individual process’s memory
overcommitment threshold by which an individual process is qualified as a suspension
candidate; the minimum number of active processes when processes are being suspended;
and the minimum number of elapsed seconds of activity for a process after reactivation.

These parameters and their default values (shown in parentheses) are:

h High memory–overcommitment threshold (6)

w Wait to reactivate suspended processes (1 second)
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p Process memory–overcommitment threshold (4)

m Minimum degree of multiprogramming (2)

e Elapsed time exempt from suspension (2 seconds)

All parameters are positive integer values.

The h Parameter

The h parameter controls the threshold defining memory overcommitment. Memory load
control attempts to suspend processes when this threshold is exceeded during any
one–second period. The threshold is a relationship between two direct measures: the
number of pages written to paging space in the last second, and the number of page steals
occurring in the last second. The number of page writes is usually much less than the
number of page steals. Memory is considered overcommitted when:

number of page writes in last second

number of page steals in last second h
>

1

As this fraction increases, thrashing becomes more likely. The default value of 6 for h
means that the system is considered to be likely to thrash when the fraction of page writes
to page steals exceeds 17%. A lower value of h (which can be as low as zero––the test is
made without an actual division) raises the thrashing detection threshold; that is, the system
is allowed to come closer to thrashing before processes are suspended. The above fraction
was chosen as a thrashing threshold because it is comparatively
configuration–independent. Regardless of the disk paging capacity and the number of
megabytes of memory installed in the system, when the above fraction is low, thrashing is
unlikely. For values near 1.0, thrashing is certain. Any period of time in which memory is not
overcommitted we define as a safe period.

The w Parameter

The w parameter controls the number of one–second intervals during which the above
fraction must remain below 1/h before suspended processes are reactivated. The default
value of one second is close to the minimum value allowed, zero. A value of one second
aggressively attempts to reactivate processes as soon as a one–second safe period has
occurred. Large values of w run the risk of unnecessarily poor response times for
suspended processes, while the processor is idle for lack of active processes to run.

The p Parameter

The p parameter determines whether a process is eligible for suspension. Analogous to the
h parameter, the p parameter is used to set a threshold for the ratio of two measures that
are maintained for every process. The two measures are the number of repages (defined in
the earlier section on page replacement) that the process has accumulated in the last
second and the number of page faults that the process has accumulated in the last second.
A high ratio of repages to page faults means the individual process is thrashing. A process
is considered eligible for suspension (it is thrashing or contributing to overall thrashing)
when:

number of repages in last second

number of page faults in last second
>

1

p

The default value of p is 4, meaning that a process is considered to be thrashing (and a
candidate for suspension) when the fraction of repages to page faults over the last second
is greater than 25%. A low value of p (which can be as low as zero––the test is made
without an actual division) results in a higher degree of individual process thrashing being
allowed before a process is eligible for suspension. A value of zero means that no process
can be suspended by memory load control.



2-10 Performance Tuning Guide

The m Parameter

The m parameter determines a lower limit for the degree of multiprogramming. The degree
of multiprogramming is defined as the number of active (not suspended) processes. (Each
process is counted as one, regardless of the number of threads running in it.) Excluded from
the count are the kernel process and processes with (1) fixed priorities with priority values
less than 60, (2) pinned memory or (3) awaiting events, since no process in these
categories is ever eligible for suspension. The default value of 2 ensures that at least two
user processes are always able to be active.

Lower values of m, while allowed, mean that at times as few as one user process may be
active. High values of m effectively defeat the ability of memory load control to suspend
processes. This parameter is very sensitive to configuration and workload. Too small a
value of m in a large configuration results in overly aggressive suspension; too large a value
of m for a small–memory configuration does not allow memory load control to be aggressive
enough. The default value of 2 is a fail–safe value for small–memory configurations; it is
likely to be suboptimal for large configurations in which many tens of processes can and
should be active to exploit available resources.

For example, if one knows that for a particular configuration and a particular workload,
approximately 25 concurrent processes can successfully progress, while more than 25
concurrent processes run the risk of thrashing, then setting m to 25 may be a worthwhile
experiment.

The e Parameter

Each time a suspended process is reactivated, it is exempt from suspension for a period of
e elapsed seconds. This is to ensure that the high cost (in disk I/O) of paging in a
suspended process’s pages results in a reasonable opportunity for progress. The default
value of e is 2 seconds.

Once per second, the scheduler (process 0) examines the values of all the above measures
that have been collected over the preceding one–second interval, and determines if
processes are to be suspended or activated. If processes are to be suspended, every
process eligible for suspension by the p and e parameter test is marked for suspension.
When that process next receives the CPU in user mode, it is suspended (unless doing so
would reduce the number of active processes below m). The user–mode criterion is applied
so that a process is ineligible for suspension during critical system activities performed on its
behalf. If, during subsequent one–second intervals, the thrashing criterion is still being met,
additional process candidates meeting the criteria set by p and e are marked for
suspension. When the scheduler subsequently determines that the safe–interval criterion
has been met and processes are to be reactivated, some number of suspended processes
are put on the run queue (made active) every second.

Suspended processes are reactivated (1) by priority and (2) by the order in which they were
suspended. The suspended processes are not all reactivated at once. A value for the
number of processes reactivated is selected by a formula that recognizes the number of
then–active processes and reactivates either one–fifth of the number of then–active
processes or a monotonically increasing lower bound, whichever is greater. This cautious
strategy results in increasing the degree of multiprogramming roughly 20% per second. The
intent of this strategy is to make the rate of reactivation relatively slow during the first
second after the safe interval has expired, while steadily increasing the reintroduction rate in
subsequent seconds. If the memory–overcommitment condition recurs during the course of
reactivating processes, reactivation is halted; the ”marked to be reactivated” processes are
again marked suspended; and additional processes are suspended in accordance with the
above rules.

The six parameters of the memory–load–control facility can be set by the system
administrator via the schedtune command. Techniques for tuning the memory–load–control
facility are described in Chapter 7, ”Monitoring and Tuning Memory Use.”
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Allocation and Reclamation of Paging Space Slots
AIX supports two schemes for allocation of paging–space slots. Under the normal,
late–allocation  algorithm, a paging slot is allocated to a page of virtual memory only when
that page is first read from or written into. That is the first time that the page’s content is of
interest to the executing program. 

Many programs exploit late allocation by allocating virtual–memory address ranges for
maximum–sized structures and then only using as much of the structure as the situation
requires. The pages of the virtual–memory address range that are never accessed never
require real–memory frames or paging–space slots.

This technique does involve some degree of risk. If all of the programs running in a machine
happened to encounter maximum–size situations simultaneously, paging space might be
exhausted. Some programs might not be able to continue to completion.

The second AIX paging–space–slot–allocation scheme is intended for use in installations
where this situation is likely, or where the cost of failure to complete is intolerably high. Aptly
called early allocation , this algorithm causes the appropriate number of paging–space slots
to be allocated at the time the virtual–memory address range is allocated, for example, with
malloc . If there are not enough paging–space slots to support the malloc, an error code is
set. The early–allocation algorithm is invoked with: 

export PSALLOC=early

This causes all future programs execed in the environment to use early allocation. It does
not affect the currently executing shell.

Early allocation is of interest to the performance analyst mainly because of its paging–space
size implications. Many existing programs make use of the ”malloc a lot, use what you
need” technique. If early allocation is turned on for those programs, paging–space
requirements can increase many fold. Whereas the normal recommendation for
paging–space size is at least twice the size of the system’s real memory, the
recommendation for systems that use PSALLOC=early is at least four times real memory
size. Actually, this is just a starting point. You really need to analyze the virtual storage
requirements of your workload and allocate paging spaces to accommodate them. As an
example, at one time the AIXwindows server required 250MB of paging space when run
with early allocation.

You should remember, too, that paging–space slots are only released by process (not
thread) termination or by the disclaim system call. They are not released by free.

See Placement and Sizes of Paging Spaces, on page 4-24 for more information on paging
space allocation and monitoring.
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Performance Overview of AIX Management of Fixed–Disk
Storage

The figure ”Organization of Fixed–Disk Data (Unmirrored)” illustrates  the hierarchy of
structures used by AIX to manage fixed–disk storage. Each individual disk drive, called a 
physical volume  (PV), has a name, such as /dev/hdisk0 . If the physical volume is in
use, it  belongs  to a volume group (VG). All of the physical volumes in a volume group are
divided into  physical partitions  or PPs of the same size (by default, 2MB in volume groups
that include physical volumes smaller than 300MB; 4MB otherwise). For space–allocation
purposes, each physical volume is divided into five regions (outer_edge, outer_middle,
center, inner_middle, and inner_edge). The number of physical partitions in each region
varies, depending on the total capacity of the disk drive. 

rootvgothervg

o om m im i o om m im i o om m im i
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hd2hd11
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Organization of Fixed-Disk Data (Unmirrored)

Within each volume group, one or  more  logical volumes (LVs) are defined. Each logical
volume consists of one or more  logical  partitions. Each logical partition corresponds to at
least one physical partition. If mirroring is specified for the logical volume, additional physical
partitions are allocated to store the additional copies of each logical partition. Although the
logical partitions are numbered consecutively, the underlying physical partitions are not
necessarily consecutive or contiguous. 
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Logical volumes can serve a number of system purposes, such as paging, but each logical
volume that holds ordinary system or user data or programs contains a single  journaled file
system (JFS).  Each JFS consists of a pool  of page–size (4096–byte) blocks. When data is
to be written to a file, one or more additional blocks are allocated to that file. These blocks
may or may not be contiguous with one another and/or with other blocks previously
allocated to the file. 

In AIX Version 4.1, a given file system can be defined as having a fragment size of less than
4096 bytes. Fragment size can be 512, 1024, or 2048 bytes. This allows small files to be
stored more efficiently.

For purposes of illustration, the figure ”Organization of Fixed–Disk Data (Unmirrored)”
shows a bad (but not the worst possible) situation that might arise in a file system that had
been in use for a long period without reorganization. The file /op/filename is physically
recorded on a large number of blocks that are physically distant from one another. Reading
the file sequentially would result in many time–consuming seek operations.

While an AIX file is conceptually a sequential and contiguous string of bytes, the physical
reality may be very different. Fragmentation  may arise from multiple extensions to logical
volumes as well as allocation/release/reallocation activity within a file system. We say a file
system is fragmented when its available space consists of large numbers of small chunks of
space, making it impossible to write out a new file in contiguous blocks. 

Access to files in a highly fragmented file system may result in a large number of seeks and
longer I/O response times (seek latency dominates I/O response time). For example, if the
file is accessed sequentially, a file placement that consists of many, widely separated
chunks requires more seeks than a placement that consists of one or a few large
contiguous chunks. If the file is accessed randomly, a placement that is widely dispersed
requires longer seeks than a placement in which the file’s blocks are close together.

The effect of a file’s placement on I/O performance diminishes when the file is buffered in
memory. When a file is opened in AIX, it is mapped to a persistent data  segment in virtual
memory. The segment represents a virtual buffer for the file; the file’s blocks map directly to
segment pages. The VMM manages the segment pages, reading file blocks into segment
pages upon demand (as they are accessed). There are several circumstances that cause
the VMM to write a page back to its corresponding block in the file on disk; but, in general,
the VMM keeps a page in memory if it has been accessed recently. Thus, frequently
accessed pages tend to stay in memory longer, and logical file accesses to the
corresponding blocks can be satisfied without physical disk accesses. 

At some point, the user or system administrator may choose to reorganize the placement of
files within logical volumes and the placement of logical volumes within physical volumes to
reduce fragmentation and to more evenly distribute the total I/O load. Monitoring and Tuning
Disk I/O, on page 8-1 contains an extensive discussion of detecting and correcting disk
placement and fragmentation problems.

Sequential–Access Read Ahead
 The VMM tries to anticipate the future need for pages of a sequential file by observing the
pattern in which a program is accessing the file. When the program accesses two
successive pages of the file, the VMM assumes that the program will continue to access the
file sequentially, and the VMM schedules additional sequential reads of the file. These reads
are overlapped with the program processing, and will make the data available to the
program sooner than if the VMM had waited for the program to access the next page before
initiating the I/O. The number of pages to be read ahead is determined by two VMM
thresholds: 
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minpgahead Number of pages read ahead when the VMM first detects the
sequential access pattern. If the program continues to access the file
sequentially, the next read ahead will be for 2 times minpgahead,
the next for 4 times minpgahead, and so on until the number of
pages reaches maxpgahead.

maxpgahead Maximum number of pages the VMM will read ahead in a sequential
file.

If the program deviates from the sequential–access pattern and accesses a page of the file
out of order, sequential read ahead is terminated. It will be resumed with minpgahead
pages if the VMM detects a resumption of sequential access by the program. The values of
minpgahead and maxpgahead can be set with the vmtune command. Tuning Sequential
Read Ahead, on page 8-12 contains a more extensive discussion of read ahead and the
groundrules for changing the thresholds.

Write Behind
 To increase write performance, limit the number of dirty file pages in memory, reduce
system overhead, and minimize disk fragmentation, the file system divides each file into
16KB partitions. The pages of a given partition are not written to disk until the program
writes the first byte of the next 16KB partition. At that point, the file system forces the four
dirty pages of the first partition to be written to disk. The pages of data remain in memory
until their frames are re–used, at which point no additional I/O is required. If a program
accesses any of the pages before their frames are re–used, no I/O is required. 

If a large number of dirty file pages remain in memory and do not get re–used, the sync
daemon writes them to disk, which might result in abnormal disk utilization. To distribute the
I/O activity more efficiently across the workload, random write–behind can be turned on to
tell the system how many pages to keep in memory before writing them to disk. The random
write–behind threshold is on a per file basis. This causes pages to be written to disk before
the sync daemon runs; thus, the I/O is spread more evenly throughout the workload.

The size of the write–behind partitions and the random write–behind threshold can be
changed with the vmtune command.

Memory Mapped Files and Write Behind
 Normal AIX files are automatically mapped to segments to provide mapped files. This
means that normal file access bypasses traditional kernel buffers and block I/O routines,
allowing files to use more memory when the extra memory is available (file caching is not
limited to the declared kernel buffer area). 

Files can be mapped explicitly with shmat or mmap, but this provides no additional memory
space for their caching. Applications that shmat or mmap a file explicitly and access it by
address rather than by read and write may avoid some path length of the system–call
overhead, but they lose the benefit of the system write–behind feature. When applications
do not use the write subroutine, modified pages tend to accumulate in memory and be
written randomly when purged by the VMM page–replacement algorithm or the sync
daemon. This results in many small writes to the disk that cause inefficiencies in CPU and
disk utilization, as well as fragmentation that may slow future reads of the file.

Disk–I/O Pacing
 Prior to Version 3.2, users of AIX occasionally encountered long interactive–application
response times when another application in the system was doing large writes to disk.
Because most writes are asynchronous, FIFO I/O queues of several megabytes could build
up, which could take several seconds to complete. The performance of an interactive
process is severely impacted if every disk read spends several seconds working its way
through the queue. In response to this problem, the VMM has an option called I/O pacing to
control writes. 
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I/O pacing does not change the interface or processing logic of I/O. It simply limits the
number of I/Os that can be outstanding against a file. When a process tries to exceed that
limit, it is suspended until enough outstanding requests have been processed to reach a
lower threshold. Use of Disk–I/O Pacing, on page 8-14 describes I/O pacing in more detail.

Disk Array
A  disk array is a set of disk drives that are managed as a group. Different management
algorithms yield different levels of performance and/or data integrity. These management
algorithms are identified by different RAID  levels. (RAID stands for redundant array of
independent disks.) The RAID levels supported in Version 3.2.5 and 4 that are
architecturally defined are: 

RAID0 Data is written on consecutive physical drives, with a fixed number of
512–byte blocks per write. This is analogous to the technique known as
striping. It has the same data–integrity characteristics as ordinary
independent disk drives. That is, data integrity is entirely dependent on the
frequency and validity of backups. This level of function is analogous to the
disk striping function described in Logical Volume Striping, on page 8-16 .

RAID1 Data is striped, as in RAID0, but half of the drives are used to mirror the
other drives. RAID1 resolves some of the data integrity and availability
concerns with RAID0 if a single drive fails, but becomes equivalent to
RAID0 when operating with one or more failed drives. Conscientious
backup is still desirable. This level of function is analogous to the logical
volume mirroring function of the logical volume manager

RAID3 Data is striped on a byte–by–byte basis across a set of data drives, while a
separate parity drive contains a parity byte for each corresponding byte
position on the data drives. If any single drive fails, its contents can be
inferred from the parity byte and the surviving data bytes. The parity drive
becomes the performance bottleneck in this technique, since it must be
written on each time a write occurs to any of the other disks.

RAID5 Data is striped block by (512–byte) block, but portions of several (not
necessarily all) of the drives are set aside to hold parity information. This
spreads the load of writing parity information more evenly.

RAID devices should be considered primarily a data–integrity and data–availability solution,
rather than a performance solution. Large RAID configurations tend to be limited by the fact
that each RAID is attached to a single SCSI adapter. If performance is a concern, a given
number of disk drives would be better supported by using multiple RAID devices attached to
multiple SCSI adapters, rather than a single, maximum–sized RAID.
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Chapter 3. An Introduction to Multiprocessing

 
The old saying, ”Many hands make light work,” expresses the premise that leads to the
development of multiple–processor systems. At any given time, there is a technological limit
on the speed with which a single processor chip can operate. If a system’s workload cannot
be handled satisfactorily by a single processor, one response is to apply multiple processors
to the problem.

The success of this response depends not only on the skill of the system designers but also
on whether the workload is amenable to multiprocessing. In terms of human tasks, adding
”hands” may be a good idea if the task is answering calls to an ”800” number, but is dubious
if the task is driving a car.

If improved performance is the objective of a proposed migration from a uniprocessor to a
multiprocessor system, the following should all be true:

• The workload is processor–limited and has saturated its uniprocessor system.

• The workload contains multiple processor–intensive elements, such as transactions or
complex calculations, that can be performed simultaneously and independently.

• The existing uniprocessor cannot be upgraded or replaced with another uniprocessor of
adequate power.

• One or more considerations, such as a centralized database, preclude dividing the
workload among multiple uniprocessor systems.

In general, a uniprocessor solution is preferable when possible, because the presence of
multiple processors gives rise to performance concerns that are minimal or nonexistent in
uniprocessor systems. In particular, if point 2 is not true, the performance of a
multiprocessor can sometimes actually be worse than that of a comparable uniprocessor.

Although unchanged single–thread applications normally function correctly in a
multiprocessor environment, their performance often changes in unexpected ways.
Migration to a multiprocessor can improve the throughput of a system, and sometimes can
improve the execution time of complex, multithread applications, but seldom improves the
response time of individual, single–thread commands.

Getting the best possible performance from a multiprocessor system requires an
understanding of the operating–system and hardware–execution dynamics that are unique
to the multiprocessor environment.
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Symmetrical Multiprocessor (SMP) Concepts and Architecture
As with any change that increases the complexity of the system, the use of multiple
processors generates design considerations that must be addressed for satisfactory
operation and performance. The additional complexity gives more scope for
hardware/software tradeoffs and requires closer hardware/software design coordination
than in uniprocessor systems. The different combinations of design responses and tradeoffs
give rise to a wide variety of multiprocessor system architectures.

This section describes the main design considerations of multiprocessor systems and the
responses of AIX and the ESCALA to those considerations.

Perhaps the most fundamental decision in designing a multiprocessor system is whether the
system will be symmetrical or asymmetrical.

The major design considerations are:

• Symmetrical vs Asymmetrical Multiprocessors

• Data Serialization

• Lock Granularity

• Locking Overhead

• Cache Coherency

• Processor Affinity

• Memory and Bus Contention

Symmetrical vs Asymmetrical Multiprocessors
In an asymmetrical multiprocessor system, the processors are assigned different roles. One
processor may handle I/O, while others execute user programs, and so forth. Some of the
advantages and disadvantages of this approach are:

• By restricting certain operations to a single processor, some forms of data serialization
and cache coherency problems (see below) can be reduced or avoided. Some parts of
the software may be able to operate as though they were running in a uniprocessor.

• In some situations, I/O–operation or application–program processing may be faster
because it does not have to contend with other parts of the operating system or the
workload for access to a processor.

• In other situations, I/O–operation or application–program processing can be slowed
because not all of the processors are available to handle peak loads.

• The existence of a single processor handling specific work creates a unique point of
failure for the system as a whole.

In a symmetrical multiprocessor system, all of the processors are essentially identical and
perform identical functions:

• All of the processors work with the same virtual and real address spaces.

• Any processor is capable of running any thread in the system.

• Any processor can handle any external interrupt. (Each processor handles the internal
interrupts generated by the instruction stream it is executing.)

• Any processor can initiate an I/O operation.

This interchangeability means that all of the processors are potentially available to handle
whatever needs to be done next. The cost of this flexibility is primarily borne by the
hardware and software designers, although symmetry also makes the limits on the
multiprocessability of the workload more noticeable, as we shall see.
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The ESCALA family contains, and AIX Version 4.1 supports, only symmetrical
multiprocessors, one form of which is shown in the figure Symmetrical Multiprocessor
System. Different systems may have different cache configurations.

Processor 1
On-Chip
L1 Cache L2 Cache 1

Processor 2 L2 Cache 2

Processor 3 L2 Cache 3

Processor 4 L2 Cache 4

Real
Memory

On-Chip
L1 Cache

On-Chip
L1 Cache

On-Chip
L1 Cache

I/O
Devices

Symmetrical Multiprocessor System

Although ESCALA multiprocessor systems are technically symmetrical, a minimal amount of
asymmetry is introduced by the software. A single processor is initially in control during the
boot process. This first processor to be started is designated as the ”master processor.” To
ensure that user–written software continues to run correctly during the transition from
uniprocessor to multiprocessor environments, device drivers and kernel extensions that do
not explicitly describe themselves as able to run safely on multiple processors are forced to
run only on the master processor. This constraint is called ”funnelling.”

Data Serialization
Any storage element that can be read or written by more than one thread may change while
the program is running. This is generally true of multiprogramming environments as well as
multiprocessing environments, but the advent of multiprocessors adds to the scope and
importance of this consideration in two ways:

• Multiprocessors and thread support make it attractive and easier to write applications that
share data among threads.

• The kernel can no longer solve the serialization problem simply by disabling interrupts.

To avoid disaster, programs that share data must arrange to access that data serially, rather
than in parallel. Before a program touches a shared data item, it must ensure that no other
program (including another copy of itself running on another thread) will change the item.

The primary mechanism that is used to keep programs from interfering with one another is
the lock. A lock is an abstraction that represents permission to access one or more data
items. Lock and unlock requests are atomic; that is, they are implemented in such a way
that neither interrupts nor multiprocessor access affect the outcome. All programs that
access a shared data item must obtain the lock that corresponds to that data item before
manipulating it. If the lock is already held by another program (or another thread running the
same program), the requesting program must defer its access until the lock becomes
available.

Besides the time spent waiting for the lock, serialization adds to the number of times a
thread becomes nondispatchable. While the thread is nondispatchable, other threads are
probably causing the nondispatchable thread’s cache lines to be replaced, which will result
in increased memory–latency costs when the thread finally gets the lock and is dispatched.

The AIX kernel contains many shared data items, so it must perform serialization internally.
This means that serialization delays can occur even in an application program that does not
share data with other programs, because the kernel services used by the program have to
serialize on shared kernel data.
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Lock Granularity
A programmer working in a multiprocessor environment must decide how many separate
locks should be created for shared data. If there is a single lock to serialize the entire set of
shared data items, lock contention is comparatively likely. If each distinct data item has its
own lock, the probability of two threads contending for that lock is comparatively low. Each
additional lock and unlock call costs processor time, however, and the existence of multiple
locks makes a deadlock possible. At its simplest, deadlock is the situation shown in the
figure ”Deadlock,” in which Thread 1 owns Lock A and is waiting for Lock B, while Thread 2
owns Lock B and is waiting for Lock A. Neither program will ever reach the unlock call that
would break the deadlock. The usual preventive for deadlock is to establish a protocol by
which all of the programs that use a given set of locks must always acquire them in exactly
the same sequence.

lock A

lock B

lock B

lock A

.

.

.
.
.
.

Kernel Thread 2Thread 1

lock

grant

lock

grant

lock

wait

unlock A

lock

wait unlock B

Deadlock

Locking Overhead
Requesting locks, waiting for locks, and releasing locks add processing overhead in several
ways:

• A program that supports multiprocessing always does the same lock and unlock
processing, even though it is running in a uniprocessor or is the only user in a
multiprocessor system of the locks in question.

• When one thread requests a lock held by another thread, the requesting thread may spin
for a while or be put to sleep and, if possible, another thread dispatched. This consumes
processor time.

• The existence of widely used locks places an upper bound on the throughput of the
system. For example, if a given program spends 20% of its execution time holding a
mutual–exclusion lock, at most 5 instances of that program can run simultaneously,
regardless of the number of processors in the system. In fact, even 5 instances would
probably never be so nicely synchronized as to avoid waiting on one another (see
Multiprocessor Throughput Scalability, on page 3-8).

Cache Coherency
In designing a multiprocessor, engineers give considerable attention to ensuring cache
coherency. They succeed; but their success is not free. To understand why cache
coherency has a performance cost, we need to understand the problem being attacked:

If each processor has a cache (see figure ”Symmetrical Multiprocessor System”) , which
reflects the state of various parts of memory, it is possible that two or more caches may
have copies of the same line. It is also possible that a given line may contain more than one
lockable data item. If two threads make appropriately serialized changes to those data
items, the result could be that both caches end up with different, incorrect versions of the
line of memory; that is, the system’s state is no longer coherent –– the system contains two
different versions of what is supposed to be the content of a specific area of memory.
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The solutions to the cache coherency problem usually include invalidating all but one of the
duplicate lines. Although the invalidation is done by the hardware, without any software
intervention, any processor whose cache line has been invalidated will have a cache miss,
with its attendant delay, the next time that line is addressed.

For a detailed background discussion of ESCALA addressing architecture and cache
operation, see Appendix C. Cache and Addressing Considerations.

Processor Affinity
If a thread is interrupted and later redispatched to the same processor, there may still be
lines in that processor’s cache that belong to the thread. If the thread is dispatched to a
different processor, it will probably experience a series of cache misses until its cache
working set has been retrieved from RAM. On the other hand, if a dispatchable thread has
to wait until the processor it was previously running on is available, the thread may
experience an even longer delay.

Processor affinity is the dispatching of a thread to the processor that was previously
executing it. The degree of emphasis on processor affinity should vary directly with the size
of the thread’s cache working set and inversely with the length of time since it was last
dispatched.

In AIX Version 4.1, processor affinity can be achieved by binding a thread to a processor. A
thread that is bound to a processor can run only on that processor, regardless of the status
of the other processors in the system.

Memory and Bus Contention
In a uniprocessor, contention for some internal resources, such as banks of memory and I/O
or memory buses, is usually a minor component processing time. In a multiprocessor these
effects can become more significant, particularly if cache–coherency algorithms add to the
number of accesses to RAM.
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SMP Performance Issues

Workload Concurrency
The primary performance issue that is unique to SMP systems is workload concurrency,
which can be expressed as, ”Now that we’ve got n processors, how do we keep them all
usefully employed?” If only one processor in a four–way multiprocessor system is doing
useful work at any given time, it is no better than a uniprocessor–– possibly worse, because
of the extra code to avoid interprocessor interference.

Workload concurrency is the complement of serialization. To the extent that the system
software or the application workload––or the interaction of the two––require serialization,
workload concurrency suffers.

Workload concurrency may also be decreased, more desirably, by increased processor
affinity. The improved cache efficiency gained from processor affinity may result in quicker
completion of the program. Workload concurrency is reduced (unless there are more
dispatchable threads available), but response time is improved.

A component of workload concurrency, process concurrency, is the degree to which a
multithread process has multiple dispatchable threads at all times.

Throughput
The throughput of an SMP system is mainly dependent on:

• A consistently high level of workload concurrency. More dispatchable threads than
processors at some times cannot compensate for idle processors at other times.

• The amount of lock contention.

• The degree of processor affinity.

Response Time
The response time of a particular program in an SMP system is dependent on:

• The process–concurrency level of the program. If the program consistently has two or
more dispatchable threads, its response time will probably improve in an SMP
environment. If the program consists of a single thread, its response time will be, at best,
comparable to that in a uniprocessor of the same speed.

• The amount of lock contention of other instances of the program or with other programs
that use the same locks.

• The degree of processor affinity of the program. If each dispatch of the program is to a
different processor that has none of the program’s cache lines, the program may run
more slowly than in a comparable uniprocessor.
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Adapting Programs to an SMP Environment
The following terms are used to describe the extent to which an existing program has been
modified, or a new program designed, to operate in an SMP environment:

SMP safe Avoidance in a program of any action, such as unserialized access to
shared data, that would cause functional problems in an SMP
environment. This term, when used alone, usually refers to a
program that has undergone only the minimum changes necessary
for correct functioning in an SMP environment.

SMP efficient Avoidance in a program of any action that would cause functional or
performance problems in an SMP environment. A program that is
described as SMP efficient is generally assumed to be SMP safe as
well. An SMP–efficient program has usually undergone additional
changes to minimize incipient bottlenecks.

SMP exploiting Adding features to a program that are specifically intended to make
effective use of an SMP environment, such as multithreading. A
program that is described as SMP exploiting is generally assumed to
be SMP safe and SMP efficient as well.
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SMP Workloads
The effect of additional processors on performance is dominated by certain characteristics
of the specific workload being handled. The following sections discuss those critical
characteristics and their effects.

• Workload Multiprocessability

• Multiprocessor Throughput Scalability

• Multiprocessor Response Time

Workload Multiprocessability
Multiprogramming operating systems like AIX running heavy workloads on fast computers
like the ESCALA give our human senses the impression that several things are happening
simultaneously. In fact, many demanding workloads do not have large numbers of
dispatchable threads at any given instant, even when running on a single–processor system
where serialization is less of a problem. Unless there are always at least as many
dispatchable threads as there are processors, one or more processors will be idle part of
the time.

The number of dispatchable threads is:

The total number of threads in the system,

 minus the number of threads that are waiting for I/O, 

 minus the number of threads that are waiting for a shared

 resource, 

 minus the number of threads that are waiting for the results of

 another thread,

 minus the number of threads that are sleeping at their own

 request.

A workload can be said to be multiprocessable to the extent that it presents at all times as
many dispatchable threads as there are processors in the system. Note that this does not
mean simply an average number of dispatchable threads equal to the processor count. If
the number of dispatchable threads is zero half the time and twice the processor count the
rest of the time, the average number of dispatchable threads will equal the processor count,
but any given processor in the system will be working only half the time.

Increasing the multiprocessability of a workload involves one or both of:

• Identifying and resolving any bottlenecks that cause threads to wait

• Increasing the total number of threads in the system

These solutions are not independent. If there is a single, major system bottleneck,
increasing the number of threads of the existing workload that pass through the bottleneck
will simply increase the proportion of threads waiting. If there is not currently a bottleneck,
increasing the number of threads may create one.

Multiprocessor Throughput Scalability
All of these factors contribute to what is called the scalability of a workload. Scalability is the
degree to which workload throughput benefits from the availability of additional processors.
It is usually expressed as the quotient of the throughput of the workload on a multiprocessor
divided by the throughput on a comparable uniprocessor. For example, if a uniprocessor
achieved 20 requests per second on a given workload and a four–processor system
achieved 58 requests per second, the scaling factor would be 2.9. That workload is highly
scalable. A workload that consisted exclusively of long–running, compute–intensive
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programs with negligible I/O or other kernel activity and no shared data might approach that
level. Most real–world workloads would not. Scalability is very difficult to estimate.
Whenever possible, scalability assumptions should be based on measurements of authentic
workloads.

The figure ”Multiprocessor Scaling” illustrates the problems of scaling. The workload
consists of a series of commands. Each command is about one–third normal processing,
one–third I/O wait, and one–third processing with a lock held. On the uniprocessor, only one
command can actually be processing at a time, regardless of whether or not the lock is held.
In the time interval shown (five times the standalone execution time of the command), the
uniprocessor handles 7.67 of the commands.
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On the multiprocessor, there are two processors to handle program execution, but there is
still only one lock. For simplicity, all of the lock contention is shown affecting processor B. In
the period shown, the multiprocessor handles 14 commands. The scaling factor is thus
1.83. We stop at two processors because more would not change the situation. The lock is
now in use 100% of the time. In a four–way multiprocessor, the scaling factor would be 1.83
or less.

Real programs are seldom as symmetrical as the commands in the illustration. Remember,
too, that we have only taken into account one dimension of contention––locking. If we had
included cache–coherency and processor–affinity effects, the scaling factor would almost
certainly be lower yet.

The point of this example is that workloads often cannot be made to run faster simply by
adding processors. It is also necessary to identify and minimize the sources of contention
among the threads.

Some published benchmark results imply that high levels of scalability are easy to achieve.
Most such benchmarks are constructed by running combinations of small, CPU–intensive
programs that use almost no kernel services. These benchmark results represent an upper
bound on scalability, not a realistic expectation.

Multiprocessor Response Time
A multiprocessor can only improve the execution time of an individual program to the extent
that the program can run multithreaded. There are several ways to achieve parallel
execution of parts of a single program:

• Making explicit calls to libpthreads subroutines (or, in older programs, to fork()) to create
multiple threads that run simultaneously.
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• Processing the program with a parallelizing compiler or preprocessor that detects
sequences of code that can be executed simultaneously and generates multiple threads
to run them in parallel.

• Making use of a software package that is itself multithreaded.

Unless one or more of these techniques is used, the program will run no faster in a
multiprocessor system than in a comparable uniprocessor. In fact, since it may experience
more locking overhead and delays due to being dispatched to different processors at
different times, it may be significantly slower.

Even if all of the applicable techniques are exploited, the maximum improvement is limited
by a rule that has been called Amdahl’s Law:

If a fraction x of a program’s uniprocessor execution time, t, can only be processed
sequentially, the improvement in execution time in an n–way multiprocessor over execution
time in a comparable uniprocessor (the speed–up) is given by the equation:

speed-up =
t

xt + (x–1)t
=

1

x + x

n

uniprocessor time

seq time + mp time
=

n

lim speed-up
n��

=
1

x

As an example, if 50% of a program’s processing must be done sequentially, and 50% can
be done in parallel, the maximum response–time improvement is less than a factor of 2 (in
an otherwise–idle 4–way multiprocessor, at most 1.6).
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SMP Scheduling
Thread support, added to AIX Version 4.1, divides program–execution control into two
elements:

• A process is a collection of physical resources required to run the program, such as
memory and access to files.

• A thread is the execution state of an instance of the program, such as the current
contents of the instruction–address register and the general–purpose registers. Each
thread runs within the context of a given process, and uses that process’s resources.
Multiple threads can run within a single process, sharing its resources.

In previous versions of AIX, the CPU scheduler dispatched processes. In AIX Version 4.1,
the scheduler dispatches threads.

In the SMP environment, the availability of thread support makes it easier and less
expensive to implement SMP–exploiting applications. Forking multiple processes to create
multiple flows of control is cumbersome and expensive, since each process has its own set
of memory resources and requires considerable system processing to set up. Creating
multiple threads within a single process requires less processing and uses less memory.

Thread support exists at two levels:

• libpthreads.a support in the application program environment

• kernel thread support.

Default Scheduler Processing of Migrated Workloads
The new division between processes and threads is invisible to existing programs. In fact,
workloads migrated directly from earlier releases of AIX create processes as before. Each
new process is created with a single thread (the initial thread ) that contends for the CPU
with the threads of other processes. The default attributes of the initial thread, in conjunction
with the new scheduler algorithms, minimize changes in system dynamics for unchanged
workloads. 

Priorities can be manipulated with the nice and renice commands and the setpri and
setpriority system calls, as before. The scheduler allows a given thread to run for at most
one time slice (normally 10ms) before forcing it to yield to the next dispatchable thread of
the same or higher priority.

Scheduling Algorithm Variables
Several variables affect the scheduling of threads. Some are unique to thread support;
others are elaborations of process–scheduling considerations:

Priority A thread’s priority value is the basic indicator of its
precedence in the contention for processor time.

Scheduler run queue
position

A thread’s position in the scheduler’s queue of dispatchable
threads reflects a number of preceding conditions.

Scheduling policy This thread attribute determines what happens to a running
thread at the end of the time slice.
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Contention scope A thread’s contention scope determines whether it
competes only with the other threads within its process or
with all threads in the system. A pthread created with
process contention scope is scheduled by the library, while
those created with system scope are scheduled by the
kernel. The library scheduler utilizes a pool of kernels
threads to schedule pthreads with process scope.
Generally, pthreads should be created with system scope, if
they are performing I/O. Process scope is useful, when
there is a lot of intra–process synchronizations. Contention
scope is a libpthreads.a concept.

Processor affinity The degree to which affinity is enforced affects performance

The combinations of these considerations can seem complex, but there are essentially
three distinct approaches from which to choose in managing a given process:

Default The process has one thread, whose priority varies with
CPU consumption and whose scheduling policy,
SCHED_OTHER, is comparable to the AIX Version 3
algorithm.

Process–level control The process can have one or more threads, but the
scheduling policy of those threads is left as the default
SCHED_OTHER, which permits the use of the existing AIX
Version 3 methods of controlling nice values and fixed
priorities. All of these methods affect all of the threads in the
process identically. If setpri() is used, the scheduling policy
of all of the threads in the process is set to SCHED_RR

Thread–level control The process can have one or more threads. The scheduling
policy of these threads is set to SCHED_RR or
SCHED_FIFO, as appropriate. The priority of each thread is
fixed, and is manipulated with thread–level subroutines.

Scheduling Environment Variables
Within the libpthreads.a framework, a series of tuning knobs have been provided that may
impact the performance of the application. These environment variables are:

• SPINLOOPTIME=n, where n is the number of times to retry a busy lock before yielding to
another processor. n must be a positive value.

• YIELDLOOPTIME=n, where n is the number of times to yield the processor before
blocking on a busy lock. n must be a positive value. The processor is yielded to another
kernel thread, assuming there is another runnable one with sufficient priority.

• AIXTHREAD_SCOPE={P|S}, where P signifies process based contention scope and S
signifies system based contention scope. Either ”P” or ”S” should be specified. The
braces are provided for syntactic reasons only. The use of this environment variable
impacts only those threads created with the default attribute. The default attribute is
employed, when the attr parameter to pthread_createis NULL.

The following environment variables impact the scheduling of pthreads created with process
based contention scope.

• AIXTHREAD_MNRATIO=p:k, where k is the number of kernel threads that should be
employed to handle p runnable pthreads. This environment variable controls the scaling
factor of the library. This ratio is used when creating and terminating pthreads.

• AIXTHREAD_SLPRATIO=k:p, where k is the number of kernel threads that should be
held in reserve for p sleeping pthreads. In general, fewer kernel threads are required to
support sleeping pthreads, since they are generally woken one at a time when
processing locks and/or events. This conserves kernel resources.



3-13An Introduction to Multiprocessing

• AIXTHREAD_MINKTHREADS=n, where n is the minimum number of kernel threads that
should be used. The library scheduler will not reclaim kernel threads below this figure. A
kernel thread may be reclaimed at virtually any point. Generally, a kernel thread is
targeted as a result of a pthread terminating.
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Processor Affinity and Binding
Other things being equal, it is desirable to dispatch a thread on the processor it last used.
This dispatching criterion is called processor affinity. The level of emphasis on processor
affinity can vary.

The highest possible degree of processor affinity is to bind a thread to a specific processor.
Binding means that the thread will be dispatched to that processor only, regardless of the
availability of other processors. The bindprocessor command and subroutine bind the
thread (or threads) of a specified process to a particular processor.

This technique can be useful for CPU–intensive programs that experience few interrupts. It
can sometimes be counterproductive for ordinary programs, because it may delay the
redispatch of a thread after an I/O until the processor to which the thread is bound becomes
available. If the thread has been blocked for the duration of an I/O operation, it is unlikely
that much of its processing context remains in the caches of the processor to which it is
bound. It would probably be better served if it were dispatched to the next available
processor.
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Chapter 4. Performance–Conscious Planning, Design,
and Implementation

 
A program that does not perform acceptably is not functional.

Every program has to satisfy a set of users––admittedly, sometimes a large and diverse set.
If the performance of the program is truly unacceptable to a significant group of those users,
it will not be used. A program that is not being used is not performing its intended function.

This is true of licensed software packages as well as user–written applications, although
most developers of software packages are aware of the effects of poor performance and
take pains to make their programs run as fast as possible. Unfortunately, they can’t
anticipate all of the environments and uses that their programs will experience. Final
responsibility for acceptable performance falls on the people who select or write, plan for,
and install software packages.

This chapter attempts to describe the stages by which a programmer or system
administrator can ensure that a newly written or purchased program has acceptable
performance. (Wherever the word programmer appears alone, the term includes system
administrators and anyone else who is responsible for the ultimate success of a program.)

The way to achieve acceptable performance in a program is to identify and quantify
acceptability at the start of the project and never lose sight of the measures and resources
needed to achieve it. This prescription borders on banal, but some programming projects
consciously reject it. They adopt a policy that might be fairly described as ”design, code,
debug, maybe document, and if we have time, fix up the performance.”

The only way that programs can predictably be made to function in time, not just in logic, is
by integrating performance considerations in the software planning and development
process. Advance planning is perhaps more critical when existing software is being
installed, because the installer has fewer degrees of freedom than the developer.

Although the detail of this process may seem burdensome for a small program, remember
that we have a second agenda. Not only must the new program have satisfactory
performance; we must also ensure that the addition of that program to an existing system
does not cause the performance of other programs run on that system to become
unsatisfactory.

This topic includes the following major sections:

• Identifying the Components of the Workload

• Documenting Performance Requirements

• Estimating the Resource Requirements of the Workload

• Estimating the Resources Required by a New Program

• Transforming Program–Level Estimates to Workload Estimates

Related sections are:

• Design and Implementation of Efficient Programs

• Performance–Related Installation Guidelines

Identifying the Components of the Workload
Whether the program is new or purchased, small or large, the developers, the installers, and
the prospective users have assumptions about the use of the program, such as:

• Who will be using the program
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• Situations in which the program will be run

• How often those situations will arise and at what times of the hour, day, month, year

• Whether those situations will also require additional uses of existing programs

• Which systems the program will run on

• How much data will be handled, and from where

• Whether data created by or for the program will be used in other ways

Unless these ideas are elicited as part of the design process, they will probably be vague,
and the programmers will almost certainly have different assumptions than the prospective
users. Even in the apparently trivial case in which the programmer is also the user, leaving
the assumptions unarticulated makes it impossible to compare design to assumptions in any
rigorous way. Worse, it is impossible to identify performance requirements without a
complete understanding of the work being performed.

Documenting Performance Requirements
In  identifying and quantifying performance requirements, it is important to identify the
reasoning behind a particular requirement. Users may be basing their statements of
requirements on assumptions about the logic of the program that do not match the
programmer’s assumptions. At a minimum, a set of performance requirements should
document: 

• The maximum satisfactory response time that will be experienced most of the time for
each distinct type of user–computer interaction, along with a definition of ”most of the
time.” Remember that response time is measured from the time that the user performs
the action that says ”Go” until the user receives enough feedback from the computer to
continue the task. It is the user’s subjective wait time. It is not ”from entry to my
subroutine until the first write statement.”

If the user denies interest in response time and indicates that only the answer is of
interest, you can ask whether (ten times your current estimate of stand–alone execution
time) would be acceptable. If the answer is ”yes,” you can proceed to discuss
throughput. Otherwise, you can continue the discussion of response time with the user’s
full attention.

• The response time that is just barely tolerable the rest of the time. Anything longer and
people start thinking the system is down––or at least blaming the computer for a loss of
productivity and becoming averse to using it. You also need to specify ”rest of the time;”
the peak minute of a day, 1% of interactions, etc. This should also be in user–subjective
terms at first. For example, response time degradations may be more costly or painful at
a particular time of the day.

• The typical throughput required and the times it will be taking place. Again, this should
not be shrugged aside. For example, the requirement for one program might be: ”This
program only runs twice a day––at 10:00 a.m. and 3:15 p.m.” If this is a CPU–limited
program that runs for 15 minutes and is planned to run on a multiuser system, some
negotiation is in order.

• The size and timing of maximum–throughput periods.

• The mix of requests expected and how the mix varies with time.

• The number of users per machine and total number of users, if this is a multiuser
application. This description should include the times these users log on and off, as well
as their assumed rates of keystrokes, completed requests, and think times. You may
want to investigate whether think times vary systematically with the preceding and/or
following request.

• Any assumptions the user is making about the machines the workload will run on. If the
user has a specific existing machine in mind, you should know that now. Similarly, if the
user is assuming a particular type, size, cost, location, interconnection, or any other
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variable that will constrain your ability to satisfy the preceding requirements, that
assumption becomes part of the requirements as well. Satisfaction will probably not be
assessed on the system where the program is developed, tested, or first installed.

Estimating the Resource Requirements of the Workload
Unless  you are purchasing a software package that comes with detailed
resource–requirement documentation, resource estimation can be the most difficult task in
the performance–planning process. The difficulty has several causes: 

• In AIX there are several ways to do anything. One can write a C (or other HLL) program,
a shell script, an awk script, a sed script, an AIXwindows dialog, etc. Some techniques
that may seem particularly suitable for the algorithm and for programmer productivity are
extraordinarily expensive from the performance perspective.

A useful guideline is that, the higher the level of abstraction, the more caution is needed
to ensure that one doesn’t receive a performance surprise. One must think very carefully
about the data volumes and number of iterations implied by some apparently harmless
constructs.

• In AIX it is difficult to define the precise cost of a single process. This difficulty is not
merely technical; it is philosophical. If multiple instances of a given program run by
multiple users are sharing pages of program text, which process should be charged with
those pages of memory? The operating system leaves recently used file pages in
memory to provide a caching effect for programs that reaccess that data. Should
programs that reaccess data be charged for the space that was used to keep the data
around? The granularity of some measurements such as the system clock can cause
variations in the CPU time attributed to successive instances of the same program.

There are two approaches to dealing with resource–report ambiguity and variability. The
first is to ignore the ambiguity and to keep eliminating sources of variability until the
measurements become acceptably consistent. The second approach is to try to make
the measurements as realistic as possible and describe the results statistically. We
prefer the latter, since it yields results that have some correlation with production
situations.

• AIX systems are rarely dedicated to the execution of a single instance of a single
program. There are almost always daemons running, frequently communications activity,
often workload from multiple users. These activities seldom combine additively. For
example, increasing the number of instances of a given program may result in few new
program text pages being used, because most of the program was already in memory.
However, the additional process may result in more contention for the processor’s
caches, so that not only do the other processes have to share processor time with the
newcomer, but all processes may experience more cycles per instruction––in effect, a
slowdown of the processor––as a result of more frequent cache misses.

Our recommendation is to keep your estimate as close to reality as the specific situation
allows:

– If the program exists, measure the existing installation that most closely resembles
your own requirements.

– If no suitable installation is available, do a trial installation and measure a synthetic
workload.

– If it is impractical to generate a synthetic workload that matches the requirements,
measure individual interactions and use the results as input to a simulation.

– If the program doesn’t exist yet, find a comparable program that uses the same
language and general structure, and measure it. Again, the more abstract the
language, the more care is needed in determining comparability.

– If no comparable program exists, prototype the main algorithms in the planned
language, measure the prototype, and model the workload.
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– If, and only if, measurement of any kind is impossible or infeasible should you make an
educated guess. If it is necessary to guess at resource requirements during the
planning stage, it is even more important than usual that the actual program be
measured at the earliest possible stage of its development.

In resource estimation, we are primarily interested in four dimensions (in no particular
order):

CPU time Processor cost of the workload

Disk accesses Rate at which the workload generates disk reads or writes

Real memory Amount of RAM the workload requires

LAN traffic Number of packets the workload generates and the number of bytes
of data exchanged

The following sections describe, or refer you to descriptions of, the techniques for
determining these values in the various situations just described.

Measuring Workload Resources
If  the real program, a comparable program, or a prototype is available for measurement,
the choice of technique depends on: 

• Whether or not the system is processing other work in addition to the workload we want
to measure.

• Whether or not we have permission to use tools that may degrade performance (for
example, is this system in production or is it dedicated to our use for the duration of the
measurement?).

• The degree to which we can simulate or observe an authentic workload.

Measuring a Complete Workload on a Dedicated System

This is the ideal situation because it allows us to use measurements that include system
overhead as well as the cost of individual processes.

To measure CPU and disk activity, we can use iostat. The command

$ iostat 5 >iostat.output

gives us a picture of the state of the system every 5 seconds during the measurement run.
Remember that the first set of iostat output contains the cumulative data from the last boot
to the start of the iostat command. The remaining sets are the results for the preceding
interval, in this case 5 seconds. A typical set of iostat output on a large system looks like
this:
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tty:      tin         tout      cpu:   % user    % sys     % idle  % iowait

          1.2          1.6              60.2     10.8       23.4       5.6

Disks:        % tm_act     Kbps      tps    Kb_read   Kb_wrtn

hdisk1           0.0       0.0       0.0          0         0

hdisk2           0.0       0.0       0.0          0         0

hdisk3           0.0       0.0       0.0          0         0

hdisk4           0.0       0.0       0.0          0         0

hdisk11          0.0       0.0       0.0          0         0

hdisk5           0.0       0.0       0.0          0         0

hdisk6           0.0       0.0       0.0          0         0

hdisk7           3.0      11.2       0.8          8        48

hdisk8           1.8       4.8       1.2          0        24

hdisk9           0.0       0.0       0.0          0         0

hdisk0           2.0       4.8       1.2         24         0

hdisk10          0.0       0.0       0.0          0         0

To measure memory, we would use svmon. The command svmon –G gives a picture of
overall memory use. The statistics are in terms of 4KB pages:

$ svmon –G

       m e m o r y          i n  u s e          p i n        p g  s p a c e

 size  inuse  free  pin   work  pers  clnt   work  pers  clnt   size  inuse

24576  24366   210 2209  15659  6863  1844   2209    0     0   40960  26270

This machine’s 96MB memory is fully used. About 64% of RAM is in use for working
segments––the read/write memory of running programs. If there are long–running
processes that we are interested in, we can review their memory requirements in detail. The
following example determines the memory used by one of user xxxxxx’s processes.

$ ps –fu xxxxxx

   USER   PID  PPID   C    STIME    TTY   TIME   CMD

  xxxxxx 28031 51445  15 14:01:56  pts/9   0:00   ps –fu xxxxxx 

  xxxxxx 51445 54772   1 07:57:47  pts/9   0:00   –ksh 

  xxxxxx 54772  6864   0 07:57:47      –   0:02   rlogind 

  

$ svmon –P 51445  

  Pid                         Command        Inuse        Pin      Pgspace

51445                             ksh         1668          2         4077

 

Pid:  51445

Command:  ksh

        

Segid  Type  Description         Inuse   Pin  Pgspace   Address Range

 8270  pers  /dev/fslv00:86079       1     0       0    0..0

 4809  work  shared library       1558     0    4039    0..4673 :

60123..65535

 9213  work  private                37     2      38    0..31 :

65406..65535

  8a1  pers  code,/dev/hd2:14400    72     0       0    0..91

The working segment (9213), with 37 pages in use, is the cost of this instance of ksh. The
1558–page cost of the shared library and the 72–page cost of the ksh executable are
spread across all of the running programs and all instances of ksh, respectively.

If we believe that our 96MB system is larger than necessary, we can use the rmss
command to reduce the effective size of the machine and remeasure the workload. If paging
increases significantly or response time deteriorates, we have reduced memory too far. This
technique can be continued until we find a size that just runs our workload without
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degradation. See Assessing Memory Requirements via the rmss Command, on page 7-6 for
more information on this technique.

The primary command for measuring network usage is netstat. The following example
shows the activity of a specific Token–Ring interface:

$ netstat –I tr0 5 

   input    (tr0)     output            input   (Total)    output

 packets  errs  packets  errs colls   packets  errs  packets  errs colls 

35552822 213488 30283693     0     0  35608011 213488 30338882     0     0

     300     0      426     0     0       300     0      426     0     0

     272     2      190     0     0       272     2      190     0     0

     231     0      192     0     0       231     0      192     0     0

     143     0      113     0     0       143     0      113     0     0

     408     1      176     0     0       408     1      176     0     0

The first line of the report shows the cumulative network traffic since the last boot. Each
subsequent line shows the activity for the preceding 5–second interval.

Measuring a Complete Workload on a Production System

The techniques of measurement on production systems are similar to those on dedicated
systems, but we must take pains to avoid degrading system performance. For example, the
svmon –G command is very expensive to run. Estimates of the resource costs of the most
frequently used performance tools are shown in Appendix E, Performance of the
Performance Tools.

Probably the most cost–effective tool is vmstat, which supplies data on memory, I/O, and
CPU usage in a single report. If the vmstat intervals are kept reasonably long, say 10
seconds, the average cost is low. See Identifying the Performance–Limiting Resource, on
page 12-23 for more information on the use of vmstat.

Measuring a Partial Workload on a Production System

By partial workload we mean measuring a part of the production system’s workload for
possible transfer to or duplication on a different system. Because this is a production
system, we must be as unobtrusive as possible. At the same time, we have to analyze the
workload in more detail to distinguish between the parts we are interested in and those we
aren’t. To do a partial measurement we need to discover what the workload elements of
interest have in common. Are they:

• The same program or a small set of related programs?

• Work performed by one or more specific users of the system?

• Work that comes from one or more specific terminals?

Depending on the commonality, we could use one of the following:

ps –ef | grep pgmname

ps –fuusername, . . .

ps –ftttyname, . . .

to identify the processes of interest and report the cumulative CPU time consumption of
those processes. We can then use svmon (judiciously!) to assess the memory use of the
processes.

Measuring an Individual Program

There are many tools for measuring the resource consumption of individual programs.
Some of these programs are capable of more comprehensive workload measurements as
well, but are too intrusive for use on production systems. Most of these tools are discussed
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in depth in the chapters that discuss tuning for minimum consumption of specific resources.
Some of the more prominent are:

time measures the elapsed execution time and CPU consumption of an
individual program. Discussed in Using the time Command to Measure
CPU Use, on page 6-3 .

tprof measures the relative CPU consumption of programs, subroutine libraries,
and the AIX kernel. Discussed in Using tprof to Analyze Programs for CPU
Use, on page 6-10 .

svmon measures the real memory used by a process. Discussed in How Much
Memory is Really Being Used?, on page 7-2 .

vmstat –s can be used to measure the I/O load generated by a program. Discussed
in Measuring Overall Disk I/O with vmstat, on page 8-8 .

Estimating the Resources Required by a New Program
It  is impossible to make precise estimates of unwritten programs. The invention and
redesign that take place during the coding phase defy prediction, but the following rules of
thumb may help you to get a general sense of the requirements. As a starting point, a
minimal program would need: 

• CPU time

– About 50 milliseconds, mostly system time.

• Real Memory

– One page for program text

– About 15 pages (of which 2 are pinned) for the working (data) segment

– Access to libc.a. Normally this is shared with all other programs and is considered part
of the base cost of the operating system.

• Disk I/O

– About 12 page–in operations, if the program has not been compiled, copied, or used
recently; 0 otherwise.

Add to that basic cost allowances for demands implied by the design (the CPU times given
are for a Model 660):

• CPU time

– The CPU consumption of an ordinary program that does not contain high levels of
iteration or costly subroutine calls is almost unmeasurably small.

– If the proposed program contains a computationally expensive algorithm, the algorithm
should be prototyped and measured.

– If the proposed program uses computationally expensive library subroutines, such as
X or Motif constructs or printf, measure their CPU consumption with otherwise trivial
programs.

• Real Memory

– Allow (very approximately) 350 lines of code per page of program text. That is about
12 bytes per line. Keep in mind that coding style and compiler options can make a
factor of two difference in either direction. This allowance is for pages that are touched
in your typical scenario. If your design places infrequently executed subroutines at the
end of the executable, those pages will not normally take up real memory.

– References to shared libraries other than libc.a will increase the memory requirement
only to the extent that those libraries are not shared with other programs or instances
of the program being estimated. To measure the size of these libraries, write a trivial,
long–running program that references them and use svmon –P against the process.



4-8 Performance Tuning Guide

– Estimate the amount of storage that will be required by the data structures identified in
the design. Round up to the nearest page.

– In the short run, each disk I/O operation will use one page of memory. Assume that the
page has to be available already. Don’t assume that the program will wait for another
program’s page to be freed.

• Disk I/O

– For sequential I/O, each 4096 bytes read or written causes one I/O operation, unless
the file has been accessed recently enough that some of its pages are still in memory.

– For random I/O, each access, however small, to a different 4096–byte page causes
one I/O operation, unless the file has been accessed recently enough that some of its
pages are still in memory.

– Under laboratory conditions, each sequential read or write of a 4KB page in a large file
takes about 140+/–20 microseconds of CPU time. Each random read or write of a 4KB
page takes about 350+/–40 microseconds of CPU time. Remember that real files are
not necessarily stored sequentially on disk, even though they are written and read
sequentially by the program. Consequently, the typical CPU cost of an actual disk
access will be closer to the random–access cost than to the sequential–access cost.

• Communications I/O

– If disk I/O is actually to AFS or NFS remote–mounted file systems, the disk I/O is
performed on the server, but the client experiences higher CPU and memory
demands.

– RPCs of any kind contribute substantially to the CPU load. The proposed RPCs in the
design should be minimized, batched, prototyped, and measured in advance.

– Under laboratory conditions, each sequential NFS read or write of an 4KB page takes
about 670+/–30 microseconds of client CPU time. Each random NFS read or write of a
4KB page takes about 1000+/–200 microseconds of client CPU time.

Transforming Program–Level Estimates to Workload Estimates
The best method for estimating peak and typical resource requirements is to use a queuing
model such as BEST/1. Static models can be used, but you run the risk of overestimating or
underestimating the peak resource. In either case, you need to understand how multiple
programs in a workload interact from the standpoint of resource requirements.

If you are building a static model, use a time interval that is the specified worst–acceptable
response time for the most frequent or demanding program (usually they are the same).
Determine, based on your projected number of users, their think time, their key entry rate,
and the anticipated mix of operations, which programs will typically be running during each
interval.

• CPU time

– Add together the CPU requirements for the all of the programs that are running during
the interval. Include the CPU requirements of the disk and communications I/O the
programs will be doing.

– If this number is greater than 75% of the available CPU time during the interval,
consider fewer users or more CPU.

• Real Memory

– Start with 6 to 8MB for the operating system itself. The lower figure is for a standalone
system. The latter for a system that is LAN–connected and uses TCP/IP and NFS.

– Add together the working segment requirements of all of the instances of the programs
that will be running during the interval, including the space estimated for the program’s
data structures.
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– Add to that total the memory requirement of the text segment of each distinct program
that will be running (one copy of the program text serves all instances of that program).
Remember that any (and only) subroutines that are from unshared libraries will be part
of the executable, but the libraries themselves will not be in memory.

– Add to the total the amount of space consumed by each of the shared libraries that will
be used by any program in the workload. Again, one copy serves all.

– To allow adequate space for some file caching and the free list, your total memory
projection should not exceed 80% of the size of the machine to be used.

• Disk I/O

– Add the number of I/Os implied by each instance of each program. Keep separate
totals for I/Os to small files or randomly to large files versus purely sequential reading
or writing of large files (more than 32KB)

– Subtract those I/Os that you believe will be satisfied from memory. Any record that was
read or written in the previous interval is probably still available in the current interval.
Beyond that, you need to look at the size of the proposed machine versus the total
RAM requirements of the machine’s workload. Any space left over after the operating
system’s requirement and the workload’s requirements probably contains the most
recently read or written file pages. If your application’s design is such that there is a
high probability of reuse of recently accessed data, you can calculate an allowance for
the caching effect. Remember that the reuse is at the page level, not at the record
level. If the probability of reuse of a given record is low, but there are a lot of records
per page, it is likely that some of the records needed in any given interval will fall in the
same page as other, recently used, records.

– Compare the net I/O requirements to the table showing the approximate capabilities of
current disk drives. If the random or sequential requirement is greater than 75% of the
total corresponding capability of the disks that will hold application data, tuning and
possibly expansion will be needed when the application is in production.

• Communications I/O

– Calculate the bandwidth consumption of the workload. If the total bandwidth
consumption of all of the nodes on the LAN is greater than 70% of nominal bandwidth
(50% for Ethernet) there is cause for concern.

– You should carry out a similar analysis of CPU, memory, and I/O requirements of the
added load that will be placed on the server.

Remember that these guidelines for a ”back of an envelope” estimate are intended for use
only when no extensive measurement is possible. Any application–specific measurement
that can be used in place of a guideline will improve the accuracy of the estimate
considerably.
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Design and Implementation of Efficient Programs
If you are sure that you know which resource will limit the speed of your program, you can
go directly to the section that discusses appropriate techniques for minimizing the use of
that resource. Otherwise, you should assume that the program will be balanced and that all
of the recommendations in this chapter may apply. Once the program is implemented, you
will want to proceed to Identifying the Performance–Limiting Resource, on page 12-23 .

This topic includes the following major sections:

• CPU–Limited Programs

• Design and Coding for Effective Use of Caches

• Effective Use of Preprocessors and the XL Compilers

• Memory–Limited Programs

CPU–Limited Programs
The maximum speed of a truly processor–limited program is determined by:

• The algorithm used

• The source code and data structures created by the programmer

• The sequence of machine–language instructions generated by the compiler

• The sizes and structures of the processor’s caches

• The architecture and clock rate of the processor itself

If the program is CPU–limited simply because it consists almost entirely of numerical
computation, obviously the algorithm that has been chosen will have a major effect on the
performance of the program. A discussion of alternative algorithms is beyond the scope of
this book. It is assumed that computational efficiency has been considered in choosing the
algorithm.

Given an algorithm, the only items in the preceding list that the programmer can affect are
the source code, the compiler options used, and possibly the data structures. The following
sections deal with techniques that can be used to improve the efficiency of an individual
program for which the user has the source code. If the source code is not available, tuning
or workload–management techniques should be tried.

Design and Coding for Effective Use of Caches
In  Performance Concepts, we indicated that the ESCALA processors have a multilevel
hierarchy of memory: 

1. The instruction pipeline and the CPU registers

2. The instruction and data cache(s) and the corresponding translation lookaside buffers

3. RAM

4. Disk

As instructions and data move up the hierarchy, they move into storage that is faster than
the level below it, but also smaller and more expensive. To obtain the maximum possible
performance from a given machine, therefore, the programmer’s objective must be to make
the most effective use of the available storage at each level.

Effective use of storage means keeping it full of instructions and data that are likely to be
used. An obstacle to achieving this objective is the fact that storage is allocated in
fixed–length blocks such as cache lines and real memory pages that usually do not
correspond to boundaries within programs or data structures. Programs and data structures
that are designed without regard to the storage hierarchy often make inefficient use of the
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storage allocated to them, with adverse performance effects in small or heavily loaded
systems.

Taking the storage hierarchy into account does not mean programming for a particular page
or cache–line size. It means understanding and adapting to the general principles of efficient
programming in a cached or virtual–memory environment. There are repackaging
techniques that can yield significant improvements without recoding, and, of course, any
new code should be designed with efficient storage use in mind.

Two terms are essential to any discussion of the efficient use of hierarchical storage:
”locality of reference”  and ”working set.  ” The locality of reference of a program is the
degree to which its instruction–execution addresses and data references are clustered in a
small area of storage during a given time interval. The working set of a program during that
same interval is the set of storage blocks that are in use, or, more precisely, the code or
data that occupy those blocks. A program with good locality of reference will have a minimal
working set, since the blocks that are in use are tightly packed with executing code or data.
A functionally equivalent program with poor locality of reference will have a larger working
set, since more blocks are needed to accommodate the wider range of addresses being
accessed. 

Since each block takes a significant amount of time to load into a given level of the
hierarchy, the objective of efficient programming for a hierarchical–storage system is to
design and package code in such a way that the working set remains as small as practical.

The figure ”Locality of Reference” illustrates good and bad practice at a subroutine level.
The first version of the program is packaged in the sequence in which it was probably
written––a sort of programming ”stream of consciousness.” The first subroutine PriSub1
contains the entry point of the program. It always uses primary subroutines PriSub2 and
PriSub3. Some infrequently used functions of the program require secondary subroutines
SecSub1 and 2. On very rare occasions, the error subroutines ErrSub1 and 2 are needed.
This version of the program has poor locality of reference because it takes three pages of
memory to run in the normal case. The secondary and error subroutines separate the main
path of the program into three, physically distant sections.

Locality of Reference

PriSub1 ErrSub1SecSub1 PriSub2 SecSub2 ErrSub2 PriSub3

Page 1 Page 2 Page 3

PriSub1 ErrSub1SecSub1PriSub2 SecSub2 ErrSub2PriSub3

Page 1 Page 2 Page 3

Poor Locality of Reference, Large Working Set

Good Locality of Reference, Small Working Set

The improved version of the program moves the primary subroutines to be adjacent to one
another, puts the low–frequency function next, and leaves the necessary but practically
never–used error subroutines to the end of the executable. The most common functions of
the program can now be handled with only one disk read and one page of memory instead
of the three that were required before.

Remember that locality of reference and working set are defined with respect to time. If a
program works in stages, each of which takes a significant time and uses a different set of
subroutines, one should try to minimize the working set of each stage.
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Registers and Pipeline
In general, the allocation and optimization of register space and keeping the pipeline full are
the responsibilities of the compilers. The main obligation of the programmer is to avoid
structures that defeat compiler–optimization techniques. For example, if you use one of your
subroutines in one of the critical loops of your program, it may be appropriate for the
compiler to inline that subroutine to minimize execution time. If the subroutine has been
packaged in a different .c module, however, it cannot be inlined by the compiler.

Cache and TLBs
Depending on the architecture (POWER, POWER 2, or PowerPC) and model, ESCALA
processors have from one to several caches to hold:

• Parts of executing programs.

• Data used by executing programs.

• Translation lookaside buffers (TLBs), which contain the mapping from virtual address to
real address of recently used pages of instruction text or data.

If a cache miss occurs, loading a complete cache line can take a dozen or more processor
cycles. If a TLB miss occurs, calculating the virtual–to–real mapping of a page can take
several dozen cycles. The exact cost is implementation–dependent. See Appendix C for a
more detailed discussion of cache architectures.

Even if a program and its data fit in the caches, the more lines or TLB entries used (that is,
the lower the locality of reference), the more CPU cycles it takes to get everything loaded in.
Unless the instructions and data are reused many times, the overhead of loading them is a
significant fraction of total program execution time, resulting in degraded system
performance.

In cached machines, a good style of programming is to keep the main–line, typical–case
flow of the program as compact as possible. The main procedure and all of the subroutines
it calls frequently should be contiguous. Low–probability conditions, such as obscure errors,
should only be tested for in the main line. If the condition actually occurs, its processing
should take place in a separate subroutine. All such subroutines should be grouped
together at the end of the module. This reduces the probability that low–usage code will
take up space in a high–usage cache line. In large modules it is even possible that some or
all of the low–usage subroutines may occupy a page that almost never has to be read into
memory.

The analogous principle applies to data structures, although it is sometimes necessary to
change the code to compensate for the compiler’s rules about data layout. An example of
this kind of problem was detected during the development of AIX Version 3. Some matrix
operations, such as matrix multiplication, involve algorithms that, if coded simplistically, have
very poor locality of reference. Matrix operations  generally involve accessing the matrix
data sequentially, such as row elements acting on column elements. Each compiler has
specific rules about the storage layout of matrices. The XL FORTRAN compiler lays out
matrices in column–major format (that is, all of the elements of column 1, followed by all the
elements of column 2, and so forth) The XL C compiler lays out matrices in row–major
format. If the matrices are small, the row and column elements can be contained in the data
cache, and the processor and floating–point unit can run at full speed. However, as the size
of the matrices increases, the locality of reference of such row/column operations
deteriorates to a point where the data can no longer be maintained in the cache. In fact, the
natural access pattern of the row/column operations generates a thrashing pattern for the
cache where a string of elements accessed is larger than the cache, forcing the initially
accessed elements out and then repeating the access pattern again for the same data. The
general solution to such matrix access patterns is to partition the operation into blocks, so
that multiple operations on the same elements can be performed while they remain in the
cache. This general technique is given the name strip mining.  A group experienced in
numerical analysis was asked to code versions of the matrix–manipulation algorithms that
made use of strip mining and other optimization techniques. The result was a 30–fold
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improvement in matrix–multiplication performance. The tuned routines are in the AIX Basic
Linear Algebra Subroutines (BLAS) library, /usr/lib/libblas.a. A larger set of
performance–tuned subroutines is the Engineering and Scientific Subroutine Library (ESSL)
licensed program, which is documented in the IBM Engineering and Scientific Subroutine
Library Guide and Reference. 

The functions and interfaces of the Basic Linear Algebra Subroutines are documented in
AIX Technical Reference, Volume 2: Base Operating System and Extensions. The
FORTRAN run–time environment must be installed to use the library. Users should
generally use this library for their matrix and vector operations because its subroutines are
tuned to a degree that non–numerical–analyst users are unlikely to achieve by themselves.

If the data structures are under the control of the programmer, other efficiencies are
possible. The general principle is to pack frequently used data together whenever possible.
If a structure contains frequently accessed control information and occasionally accessed
detailed data, make sure that the control information is allocated in consecutive bytes. This
will increase the probability that the control information will all be loaded into the cache with
a single, or at least with the minimum number of, cache misses.

Effective Use of Preprocessors and the XL Compilers
The  programmer who wants to obtain the highest possible performance from a given
program running on a given machine must deal with several considerations: 

• There are preprocessors that can rearrange some source code structures to form a
functionally equivalent source module that can be compiled into more efficient executable
code.

• Just as there are several variants of the POWER architecture, there are several compiler
options to allow optimal compilation for a specific variant or set of variants.

• The programmer can use the #pragma feature to inform the XL C compiler of certain
aspects of the program that will allow the compiler to generate more efficient code by
relaxing some of its worst–case assumptions.

• There are several levels of optimization that give the compiler different degrees of
freedom in instruction rearrangement.

For programmers who lack the time or interest for experiment, there is a simple
rule––always optimize. The difference in performance between optimized and unoptimized
code is almost always so large that at least basic optimization (the –O option of the cc or
xlc or xlf command) should be used as a matter of course. The only exceptions are testing
situations in which there is a specific need for straightforward code generation, such as
statement–level performance analysis using the tprof tool.

The other techniques yield additional performance improvement for some programs, but the
determination of which combination yields the very best performance for a specific program
may require considerable recompilation and measurement.

The following sections summarize the techniques for efficient use of the compilers. A much
more extensive discussion appears in Optimization and Tuning Guide for XL Fortran, XL C
and XL C++.

Source Code Preprocessors
There are several source–code preprocessors available for the ESCALA. Three with which
there is some experience at this time are:

• KAP/C (from Kuck and Associates)

• KAP/FORTRAN (from Kuck and Associates)

• VAST (from PSR)

Among the techniques used by these preprocessors is recognition of code that is
mathematically equivalent to one of the subroutines in the ESSL or BLAS libraries,
mentioned earlier. The preprocessor replaces the original computational code with a call to
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the corresponding performance–tuned subroutine. Preprocessors also attempt to modify
data structures in ways that work more efficiently in ESCALA machines.

Architecture–Specific Compilation
The  –qarch compiler option allows you to specify which of the three POWER architectures
(POWER, POWER 2, PowerPC) the executable program will be run on. The possible values
are: 

–qarch=COM Compile for the common subset of the three instruction sets.
Programs compiled with this option will run correctly on all three
architectures. This is the default.

–qarch=PWR Compile for the POWER architecture of the original ESCALA.
Programs compiled with this option will run correctly on all three
architectures, but some instructions may be simulated on
PowerPC systems, to the detriment of performance.

–qarch=PWRX Compile specifically for the POWER2 architecture. Programs that
use double–precision floating point or floating–point square root
extensively may show performance improvement. The executable
should be run only on POWER2 systems.

–qarch=PPC Compile specifically for the PowerPC architecture. Programs that
use single–precision floating point extensively may show
performance improvement. The executable should be run only on
PowerPC systems.

The –qtune compiler option allows you to give the compiler a hint as to the architecture that
should be favored by the compilation. Unlike the –qarch option, –qtune does not result in
the generation of architecture–specific instructions. It simply tells the compiler, when there is
a choice of techniques, to choose the technique most appropriate for the specified
architecture. The possible values for –qtune are:

–qtune=PWR Assume that the program will run predominantly on a POWER
system.

–qtune=PWRX Assume that the program will run predominantly on a POWER2
system.

–qtune=601 Assume that the program will run predominantly on a PowerPC
601 system.

The figure ”Combinations of –qarch and –qtune” shows the valid combinations of values of
these options and the default values of –qtune for specified values of –qarch. If neither
option is specified, the default is –qarch=COM –qtune=PWR.

–qarch=COM

–qarch=PWR

–qarch=PWRX

–qarch=PPC

Combinations of –qarch and –qtune

–qtune=PWR –qtune=PWRX –qtune=601 –qtune default

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

ValidInvalid

Invalid

PWR

PWR

PWRX

601

Use of the #pragma Directive
In  some situations, the optimizer can be inhibited by the need to generate code that is
correct in the worst–case situation. The #pragma directive can be used to indicate to the
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compiler that some constraints can be relaxed, thus permitting more efficient code to be
generated. 

A pragma is an implementation–defined instruction to the compiler. Pragmas have the
general form:

#pragma character_sequence ...

The following pragmas in XL C may have a significant effect on the performance of a
program whose source code is otherwise unchanged:

• disjoint 

• isolated_call 

#pragma disjoint

The #pragma disjoint directive lists the identifiers that are not aliases to each other within
the scope of their use. 

#pragma disjoint ( { identifier | *identifier } 

                 [,{ identifier | *identifier } ] ... )

The directive informs the compiler that none of the identifiers listed shares the same
physical storage, which provides more opportunity for optimizations. If any of the identifiers
listed do actually share physical storage, the program might produce incorrect results.

The pragma can appear anywhere in the source program. An identifier in the directive must
be visible at the point in the program where the pragma appears. The identifiers listed
cannot refer to:

• A member of a structure or union

• A structure or union tag

• An enumeration constant

• A label

The identifiers must be declared before they are used in the pragma. A pointer in the
identifier list must not have been used as a function argument before appearing in the
directive.

The following example shows the use of the #pragma disjoint directive. Because external
pointer ptr_a  does not share storage with and never points to the external variable b ,
the compiler can assume that the assignment of 7 to the object that ptr_a  points to will
not change the value of b . Likewise, external pointer ptr_b  does not share storage with
and never points to the external variable  a . The compiler can then assume that the
argument to another_function  has the value 6.
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int a, b, *ptr_a, *ptr_b; 

#pragma disjoint(*ptr_a, b)      /* ptr_a never points to b */

#pragma disjoint(*ptr_b, a)      /* ptr_b never points to a */

one_function()

{

    b = 6;

    *ptr_a = 7; /* Assignment will not change the value of b */

    another_function(b);     /* Argument ”b” has the value 6 */

}

#pragma isolated_call

The #pragma isolated_call directive lists functions that do not alter data objects visible at
the time of the function call. 

#pragma isolated_call ( identifier [ , identifier ] ... )

The pragma must appear before any calls to the functions in the identifier list. The identifiers
listed must be declared before they are used in the pragma. Any functions in the identifier
list that are called before the pragma is used are not treated as isolated calls. The identifiers
must be of type function or a typedef of function.

The pragma informs the compiler that none of the functions listed has side effects. For
example, accessing a volatile object, modifying an external object, modifying a file, or calling
a function that does any of these can be considered side effects. Essentially, any change in
the state of the run–time environment is considered a side effect. Passing function
arguments by reference is one side effect that is allowed, but in general, functions with side
effects can give incorrect results when listed in #pragma isolated_call directives.

Marking a function as isolated indicates to the optimizer that external and static variables
cannot be changed by the called function and that references to storage can be deleted
from the calling function where appropriate. Instructions can be reordered with more
freedom, which results in fewer pipeline delays and faster execution. Note that instruction
reordering might, however, result in code that requires more values of general purpose
and/or floating–point registers to be maintained across the isolated call. When the isolated
call is not located in a loop, the overhead of saving and restoring extra registers might not
be worth the savings that result from deleting the storage references.

Functions specified in the identifier list are permitted to examine external objects and return
results that depend on the state of the run–time environment. The functions can also modify
the storage pointed to by any pointer arguments passed to the function; that is, calls by
reference. Do not specify a function that calls itself or relies on local static storage. Listing
such functions in the #pragma isolated_call directive can give unpredictable results.

The following example shows the use of the #pragma isolated_call directive. Because the
function this_function  does not have side effects, the compiler can assume that a call
to it will not change the value of the external variable a . The compiler can then assume
that the argument to other_function  has the value 6.

int a, this_function(int);  /* Assumed to have no side effects */

#pragma isolated_call(this_function)

that_function()

{

   a = 6;

   this_function(7);    /* Call does not change the value of a */

   other_function(a);          /* Argument ”a” has the value 6 */

}
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Levels of Optimization
The  levels of optimization in the XL compilers have changed from earlier versions. The new
levels are: 

No Optimization
In the absence of any version of the –O flag, the compiler generates straightforward code
with no instruction reordering or other attempt at performance improvement.

–O or –O2
These (equivalent) flags cause the compiler to optimize on the basis of conservative
assumptions about code reordering. Only explicit relaxations such as the #pragma
directives just discussed are used. This level no longer performs software pipelining, loop
unrolling, or simple predictive commoning. It also constrains the amount of memory the
compiler can use.

The result of these changes is that large or complex routines may have poorer performance
when compiled with the –O option than they achieved on earlier versions of the compilers.

–O3
Directs the compiler to be aggressive about the optimization techniques used and to use as
much memory as necessary for maximum optimization.

This level of optimization may result in functional changes to the program if the program is
sensitive to:

• Floating–point exceptions

• The sign of zero

• Precision effects of reordering calculations

These side–effects can be avoided, at some performance cost, by using the –qstrict option
in combination with –O3.

The –qhot option, in combination with –O3, enables predictive commoning and some
unrolling.

The result of these changes is that large or complex routines should have the same or
better performance with the –O3 option (possibly in conjunction with –qstrict or –qhot) that
they had with the –O option in earlier versions of the compiler.

XL C Options for string.h Subroutine Performance
AIX  provides the ability to embed the string subroutines in the application program rather
than using them from libc.a. This saves the Call/Return linkage time. To have the string
subroutines embedded, the source code of the application must have the statement: 

#include <string.h>

prior to the use of the subroutine(s). In Version 3.1, the only subroutines that would be
embedded via this technique were:

• strcpy()

• strcmp()

Currently, the additional routines are:

• strlen()

• strchr()

• strrchr()

• strcat()
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• strncat()

• strncpy()

• strncmp()

• index()

• rindex()

• memchr()

• memcpy()

• memccpy()

• memmove()

• memcmp()

• memset()

If you want to return to the Version 3.1 level of embedding, you should precede the
#include <string.h> statement with:

#define __STR31__

C and C++ Coding Style for Best Performance
In  many cases, the performance cost of a C construct is not obvious, and sometimes is
even counter–intuitive. The following paragraphs document some of these situations. 

• Whenever possible, use int  instead of char  or short .

In most cases, char  and short  data items take more instructions to manipulate. The
extra instructions cost time, and, except in large arrays, any space that is saved by using
the smaller data types is more than offset by the increased size of the executable.

• If you have to use a char , make it unsigned , if possible.

A signed char  takes another two instructions more than an unsigned char  each
time the variable is loaded into a register.

• Use local (automatic) variables rather than global variables whenever possible.

Global variables take more instructions to access than local variables. Also, in the
absence of information to the contrary, the compiler assumes that any global variable
may have been changed by a subroutine call. This has an adverse effect on optimization
because the value of any global variable used after a subroutine call will have to be
reloaded.

• When it is necessary to access a global variable (that is not shared with other threads),
copy the value into a local variable and use the copy.

Unless the global variable is accessed only once, it is more efficient to use the local
copy.

• Use binary codes rather than strings to record and test for situations.

Strings use up both data and instruction space. For example, the sequence:

#define situation_1 1

#define situation_2 2

#define situation_3 3

int situation_val;

situation_val = situation_2;

. . .

if (situation_val == situation_1)

        . . .
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is much more efficient than:

char situation_val[20];

 strcpy(situation_val,”situation_2”);

. . .

if ((strcmp(situation_val,”situation_1”))==0)

. . . 

• When strings are really necessary, use fixed–length strings rather than null–terminated
variable–length strings wherever possible.

The mem*() family of routines, such as memcpy(), are faster than the corresponding
str*() routines, such as strcpy(), because the str*() routines have to check each byte for
null and the mem*() routines don’t.

Compiler Execution Time
In  AIX, the C compiler can be invoked by two different commands: cc  and xlc . The cc
command, which has historically been used to invoke the system’s C compiler, causes the
XL C compiler to run in langlevel=extended  mode. This allows the compilation of
existing C programs that are not ANSI–compliant. It also consumes processor time. 

If the program being compiled is, in fact, ANSI–compliant, it is more efficient to invoke the
XL C compiler via the xlc command.

Use of the –O3 flag implicitly includes the –qmaxmem option. This allows the compiler to
use as much memory as necessary for maximum optimization. This can have two effects:

• On a multiuser system, a large –O3 compilation may take up enough memory to have an
adverse effect on the performance experienced by other users.

• On a system with small real memory, a large –O3 compilation may take up enough
memory to cause high paging rates, making compilation very slow.

Memory–Limited Programs
To programmers accustomed to struggling with the addressing limitations of, for instance,
the DOS environment, the 256MB virtual memory segments in the ESCALA environment
seem effectively infinite. The programmer is tempted to ignore storage constraints and code
for minimum path length and maximum simplicity. Unfortunately, there is a drawback to this
attitude. Virtual memory is large, but it is variable–speed. The more memory used, the
slower it becomes, and the relationship is not linear. As long as the total amount of virtual
storage actually being touched by all programs (that is, the sum of the working sets) is
slightly less than the amount of unpinned real memory in the machine, virtual memory
performs at about the speed of real memory. As the sum of the working sets of all executing
programs passes the number of available page frames, memory performance degrades
very rapidly (if VMM memory load control is turned off) by up to two orders of magnitude.
When the system reaches this point, it is said to be thrashing. It is spending almost all of its
time paging, and no useful work is being done because each process is trying to steal back
from other processes the storage necessary to accommodate its working set. If VMM
memory load control is active, it can avoid this self–perpetuating thrashing, but at the cost of
significantly increased response times.

The degradation caused by inefficient use of memory is much greater than that from
inefficient use of the caches because the difference in speed between memory and disk is
so much higher than the difference between cache and memory. Where a cache miss can
take a few dozen CPU cycles, a page fault  typically takes 20 milliseconds or more, which is
at least 400,000 CPU cycles.

Although the presence of VMM memory load control in AIX ensures that incipient thrashing
situations do not become self–perpetuating, unnecessary page faults still exact a cost in
degraded response time and/or reduced throughput.
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Structuring of Pageable Code
To  minimize the code working set of a program, the general objective is to pack code that is
frequently executed into a small area, separating it from infrequently executed code.
Specifically: 

• Do not put long blocks of error–handling code in line. Put them in separate subroutines,
preferably in separate source–code modules. This applies not only to error paths, but to
any functional option that is infrequently used.

• Do not structure load modules arbitrarily. Try to ensure that frequently called object
modules are located as close to their callers as possible. Object modules consisting
(ideally) of infrequently called subroutines should be concentrated at the end of the load
module. The pages they inhabit will seldom be read in.

Structuring of Pageable Data
To minimize the data working set, try to concentrate the frequently used data and avoid
unnecessary references to virtual–storage pages. Specifically:

• Only malloc or calloc as much space as you really need. Never malloc and then
initialize a maximum–sized array when the typical real–world situation uses only a
fraction of it. When you touch a new page to initialize the array elements, you effectively
force the VMM to steal a page of real memory from someone. Later, this results in a page
fault when the process that owned that page tries to access it again. Remember that the
difference between malloc and calloc is not just in the interface. Because calloc zeroes
the allocated storage, it touches every page that is allocated, whereas malloc touches
only the first page. If you calloc a large area and then use only a small portion at the
beginning, you put a large, unnecessary load on the system. Not only do the pages have
to be initialized; if their real–memory frames are reclaimed, the initialized and
never–to–be–used pages must be written out to paging space. This wastes both I/O and
paging–space slots.

• Linked lists of large structures (such as buffers) can result in similar problems. If your
program does a lot of chain following looking for a particular key, consider maintaining the
links and keys separately from the data or using a hash–table approach instead.

• Locality of reference means locality in time, not just in address space. Data structures
should be initialized just before they are used (if at all). In a heavily loaded system, data
structures that are resident for a long time between initialization and use risk having their
frames stolen. Your program would then experience an unnecessary page fault when it
began to use the data structure.

• Similarly, if a large structure is used early and then left untouched for the remainder of the
program, it should be released. It is not sufficient to free the space that was malloced or
calloced. free releases only the address range that the structure occupied. In order to
release the real memory and paging space, you must disclaim the space as well.

Misuse of Pinned Storage
To avoid circularities and time–outs, a small fraction of the system has to be  pinned in real
memory. For this code and data, the concept of working set is meaningless, since all of the
pinned information is in real storage all the time, whether it is used or not. Any program
(such as a user–written device driver) that pins code or data must be carefully designed (or
scrutinized, if ported) to ensure that only minimal amounts of pinned storage are used.
Some cautionary examples are: 

• Code is pinned on a load–module (executable file) basis. If a component has some object
modules that must be pinned and others that can be pageable, the pinned object
modules should be packaged in a separate load module.

• Pinning a module or a data structure just in case there might be a problem is
irresponsible. The designer should understand the conditions under which the information
could be required and whether a page fault could be tolerated at that point.
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• Pinned structures whose required size is load–dependent, such as buffer pools, should
be tunable by the system administrator.
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Performance–Related Installation Guidelines
This  topic provides recommendations for actions you should take (or not take) before and
during the installation process. 

The topic includes the following major sections:

• AIX Pre–Installation Guidelines

• CPU Pre–Installation Guidelines

• Memory Pre–Installation Guidelines

• Disk Pre–Installation Guidelines

• Communications Pre–Installation Guidelines are summarized in UDP, TCP/IP, and mbuf
Tuning Parameters Summary.

AIX Pre–Installation Guidelines

Installing AIX on a New System
Before you begin the installation process, be sure that you have made decisions about the
size and location of disk file systems and paging spaces, and that you understand how to
communicate those decisions to AIX.

Installing a New Level of AIX on an Existing System
If you are upgrading to a new level of AIX, you should:

• Identify all uses in your present environment of the release–specific performance tools
schedtune and vmtune. Since these tools can only be run by root , their use should
not be widespread.

• If these programs are used during system boot, such as from /etc/inittab, they should be
temporarily removed or bypassed until you are convinced by documentation or
experiment that your use of these tools works correctly in the new release.

CPU Pre–Installation Guidelines
We do not recommend any a priori changes from the default CPU scheduling parameters,
such as the time–slice duration. Unless you have extensive monitoring and tuning
experience with the same workload on a nearly identical configuration, you should leave
these parameters unchanged at installation time.

See Monitoring and Tuning CPU Use for post–installation recommendations.

Memory Pre–Installation Guidelines
If the system you are installing is larger than 32MB and is expected to support more than
five active users at one time, you may want to consider raising the minimum level of
multiprogramming of the VMM memory–load–control mechanism. As an example, if your
conservative estimate is that four of your most memory–intensive applications should be
able to run simultaneously, leaving at least 16MB for the operating system and 25% of real
memory for file pages, you could increase the minimum multiprogramming level from the
default of 2 to 4 with the command:

# schedtune –m 4

All other memory threshold changes should wait until you have had experience with the
response of the system to the real workload.

See Monitoring and Tuning Memory Use for post–installation recommendations.
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Disk Pre–Installation Guidelines

General Recommendations
Although  the mechanisms for defining and expanding logical volumes attempt to make the
best possible default choices, satisfactory disk–I/O performance is much more likely if the
installer of the system tailors the size and placement of the logical volumes to the expected
data storage and workload requirements. Our recommendations are: 

• If possible, the default volume group, rootvg, should consist only of the physical volume
on which the system is initially installed. One or more other volume groups should be
defined to control the other physical volumes in the system. This recommendation has
system management as well as performance advantages.

• If a volume group consists of more than one physical volume, you may gain performance
by:

– Initially defining the volume group with a single physical volume.

– Defining a logical volume within the new volume group. This causes the allocation of
the volume group’s journal logical volume on the first physical volume.

– Adding the remaining physical volumes to the volume group.

– Defining the high–activity file systems on the newly added physical volumes.

– Defining only very–low–activity file systems, if any, on the physical volume containing
the journal logical volume.

This approach separates journaling I/O activity from the high–activity data I/O, increasing
the probability of overlap. This technique can have an especially significant effect on
NFS server  performance, because both data and journal writes must be complete
before NFS signals I/O complete for a write operation, 

• At the earliest opportunity, define or expand the logical volumes to their maximum
expected sizes. To maximize the probability that performance–critical logical volumes will
be contiguous and in the desired location, define or expand them first.

• High–usage logical volumes should occupy parts of multiple disk drives. If the ”RANGE of
physical volumes” option on smit’s Add a Logical Volume screen (fast path smit mklv) is
set to maximum, the new logical volume will be divided among the physical volumes of
the volume group (or the set of physical volumes explicitly listed).

• If the system has drives of different types (or you are trying to decide which drives to
order), consider the following guidelines:

– Large files that are normally accessed sequentially should be on the fastest available
disk drive. At this writing, the sequential and random performance ranking of the disk
drives we have measured (from slowest to fastest) is: 

  Drive     SCSI                 Random Pages   Sequential Pages

  Capacity  Adapter              per Second     per Second

  ––––––––  –––––––––––––––––––  –––––––––––––  –––––––––––––––––

  200MB     Model 250 Integrated approx. 40     approx. 250

  400MB     SCSI II              approx. 50     approx. 375

  857MB     SCSI II              approx. 60     approx. 550

  2.4GB     SCSI II              approx. 65*    approx. 525

  1.37GB    SCSI II              approx. 70     approx. 800

  540MB     SCSI II              approx. 85     approx. 975

  1.0GB**   SCSI II              approx. 85     approx. 1075

  2.0GB     SCSI II              approx. 85     approx. 950

  

  * per accessor (there are two)

 ** This 1.0GB drive (part number 45G9464) replaced an earlier

1.0GB drive (part number 55F5206) in late 1993.
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Note: These numbers are derived from the results of laboratory measurements under
ideal conditions. They represent a synthesis of a number of different measurements, not
the results of a single benchmark. They are provided to give you a general sense of the
relative speeds of the disk drives. They will change with time due to improvements in the
drives, adapters, and software.

– If you expect frequent sequential accesses to large files on the fastest disk drives, you
should limit the number of disk drivers per disk adapter. Our recommendation for the
540MB, 1.0GB, and 2.0GB drives described above is:

                                       Disk Drives

  Disk Adapter                         per Adapter

  ––––––––––––                         –––––––––––––

  Original ESCALA SCSI adapter              1

  SCSI–2 High Performance Controller        2

  SCSI–2 Fast Adapter (8–bit)               2

  SCSI–2 Fast/Wide Adapter (16–bit)         3 

– When possible, attach drives with critical, high–volume performance requirements to a
SCSI–2 adapter. These adapters have features, such as back–to–back write capability,
that are not available on other ESCALA disk adapters.

– On the 200MB, 540MB, and 1.0GB disk drives, logical volumes that will hold large,
frequently accessed sequential files should be allocated in the outer_edge of the
physical volume. These disks have more blocks per track in their outer sections, which
improves sequential performance.

– On a SCSI bus, the highest–numbered drives (those with the numerically largest SCSI
addresses, as set on the physical drives) have the highest priority. In most situations
this effect is not noticeable, but large sequential file operations have been known to
exclude low–numbered drives from access to the bus. You should probably configure
the disk drives holding the most response–time–critical data at the highest addresses
on each SCSI bus. The command lsdev –Cs scsi reports on the current address
assignments on each SCSI bus. For the original SCSI adapter, the SCSI address is
the first number in the fourth pair of numbers in the output. In the following output
example, the 400MB disk is at SCSI address 0, the 320MB disk at address 1, and the
8mm tape drive at address 5.

     hdisk0   Available 00–01–00–00 400 MB SCSI Disk Drive

     hdisk1   Available 00–01–00–10 320 MB SCSI Disk Drive

     rmt0     Defined   00–01–00–50 2.3 GB 8mm Tape Drive

– Large files that are heavily used and are normally accessed randomly, such as data
bases, should be spread across two or more physical volumes.

See Monitoring and Tuning Disk I/O, on page 8-1 for post–installation recommendations.

Placement and Sizes of Paging Spaces
The  general recommendation is that the sum of the sizes of the paging spaces should be
equal to at least twice the size of the real memory of the machine, up to a memory size of
256MB (512MB of paging space). For memories larger than 256MB, we recommend: 
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   total paging space = 512MB + (memory size – 256MB) * 1.25

Ideally, there should be several paging spaces of roughly equal size, each on a different
physical disk drive. If you decide to create additional paging spaces, create them on
physical volumes that are more lightly loaded than the physical volume in rootvg. When
allocating paging space blocks, the VMM allocates four blocks, in round–robin fashion, from
each of the active paging spaces that has space available. While the system is booting, only
the primary paging space (hd6) is active. Consequently, all paging–space blocks allocated
during boot are on the primary paging space. This means that the primary paging space
should be somewhat larger than the secondary paging spaces. The secondary paging
spaces should all be of the same size to ensure that the round–robin algorithm can work
effectively.

The lsps –a command gives a snapshot of the current utilization level of all the paging
spaces on a system. The psdanger() subroutine can also be used to determine how closely
paging–space utilization is approaching dangerous levels. As an example, the following
program uses psdanger() to provide a warning message when a threshold is exceeded: 

/* psmonitor.c

  Monitors system for paging space low conditions. When the

condition is

  detected, writes a message to stderr.

  

  Usage:    psmonitor [Interval [Count]]

  

  Default:  psmonitor 1 1000000

*/

#include <stdio.h>

#include <signal.h>

main(int argc,char **argv)

{

  int interval = 1;        /* seconds */

  int count = 1000000;     /* intervals */

  int current;             /* interval */

  int last;                /* check */

  int kill_offset;         /* returned by psdanger() */

  int danger_offset;       /* returned by psdanger() */

  

  /* are there any parameters at all? */

  if (argc > 1) {

    if ( (interval = atoi(argv[1])) < 1 ) {

      fprintf(stderr,”Usage: psmonitor [ interval [ count ]

]\n”);

      exit(1);

    }

    if (argc > 2) {

      if ( (count = atoi( argv[2])) < 1 ) {

         fprintf(stderr,”Usage: psmonitor [ interval [ count ]

]\n”);

         exit(1);

      }

    }

  }

  last = count –1;

  for(current = 0; current < count; current++) {

    kill_offset = psdanger(SIGKILL); /* check for out of paging

space */

    if (kill_offset < 0)

      fprintf(stderr,
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        ”OUT OF PAGING SPACE! %d blocks beyond SIGKILL

threshold.\n”,

        kill_offset*(–1));

    else {

      danger_offset = psdanger(SIGDANGER); /* check for paging

space low */

      if (danger_offset < 0) {

        fprintf(stderr,

          ”WARNING: paging space low. %d blocks beyond SIGDANGER

threshold.\n”,

          danger_offset*(–1));

        fprintf(stderr,

          ”                           %d blocks below SIGKILL

threshold.\n”,

          kill_offset);

      }

    }

      if (current < last)

        sleep(interval);

  }

}

Performance Implications of Disk Mirroring
If mirroring is being used and Mirror Write Consistency  is on (as it is by default), you may
want to locate the copies in the outer region of the disk, since the Mirror Write Consistency
information is always written in Cylinder 0. From a performance standpoint, mirroring is
costly, mirroring with Write Verify  is costlier still (extra disk rotation per write), and mirroring
with both Write Verify and Mirror Write Consistency is costliest of all (disk rotation plus a
seek to Cylinder 0). To avoid confusion, we should point out that although an lslv command
will usually show Mirror Write Consistency to be on for non–mirrored logical volumes, no
actual processing is incurred unless the COPIES value is greater than one. Write Verify, on
the other hand, defaults to off, since it does have meaning (and cost) for nonmirrored logical
volumes. 

Communications Pre–Installation Guidelines
See the summary of communications tuning recommendations in UDP, TCP/IP, and mbuf
Tuning Parameters Summary, on page 9-29 .
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Chapter 5. System Monitoring and Initial Performance
Diagnosis

 
This chapter describes tools and techniques for monitoring performance–related system
activity and diagnosing performance problems. The major sections are:

• The Case for Continuous Performance Monitoring

• Performance Monitoring Using iostat, netstat, vmstat

• Performance Diagnostic Tool (PDT)

• Inference from the Kind of Performance Problem Reported

• Using PerfPMR for Performance Diagnosis

• Identifying the Performance–Limiting Resource

• Workload Management
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The Case for Continuous Performance Monitoring
In  some installations, monitoring of performance activity is done on a demand basis. When
a performance problem is reported, the performance analyst runs one or more commands in
an attempt to determine why the problem occurred. In some cases, explicit recreation of the
problem is needed in order to collect analysis data. The result is that users experience
every performance problem twice. 

It is usually more effective to monitor performance continuously, preferably with automatic
collection of additional data if performance deteriorates. The costs of continuous monitoring
are outweighed by the advantages, such as:

• Monitoring can sometimes detect incipient problems before they have an adverse effect.

• Monitoring can detect problems that happen to users who are reluctant to complain and
problems that are not quite severe enough to complain about––but are affecting
productivity and morale.

• Monitoring can collect data when a problem occurs for the first time.

Successful monitoring involves the following main activities:

• Periodically obtaining performance–related information from the operating system

• Storing the information for future use in problem diagnosis

• Displaying the information for the benefit of the system administrator

• Detecting situations that require additional data collection or responding to directions
from the system administrator to collect such data, or both

• Collecting and storing the necessary detail data

The following sections discuss several approaches to continuous monitoring. These
approaches are not mutually exclusive, but use of more than one may involve some
redundancy.

• Performance Monitoring Using iostat, netstat, vmstat

• Performance Diagnostic Tool (PDT)
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Performance Monitoring Using iostat, netstat, vmstat
The  iostat, netstat, and vmstat commands have functional characteristics that make them
useful for continuous monitoring of system performance: 

• They can produce reports at a fixed interval indefinitely.

• They report on activity that varies with different types of load.

• They report on activity since the last previous report, so changes in activity are easy to
detect.

The following example shows samples of the periodic reports produced by these programs.

$ iostat 5 2 

tty:      tin         tout      cpu:   % user    % sys     % idle    %

iowait

          0.0          0.0               0.0      0.2       99.6       0.1

Disks:        % tm_act     Kbps      tps    Kb_read   Kb_wrtn

hdisk0           0.1       0.3       0.0      18129     56842

cd0              0.0       0.0       0.0          0         0

     

tty:      tin         tout      cpu:   % user    % sys     % idle    %

iowait

          0.0          0.0              23.1      9.0       65.9       2.0 

     

Disks:        % tm_act     Kbps      tps    Kb_read   Kb_wrtn

hdisk0           2.4       6.4       1.6          0        32

cd0              0.0       0.0       0.0          0         0     

        

$ vmstat 5 2 

procs    memory             page              faults        cpu     

––––– ––––––––––– –––––––––––––––––––––––– –––––––––––– –––––––––––

 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa 

 0  0  2610  1128   0   0   0   0    0   0 112    1  19  0  0 99  0

 0  0  2505  1247   0   0   0   0    0   0 125 1056  37 22  9 67  2

          

$ netstat –I tr0 5

   input    (tr0)     output            input   (Total)    output

 packets  errs  packets  errs colls   packets  errs  packets  errs colls 

  532099  1664      985     0     0    532111  1664      997     0     0

      45     0        6     0     0        45     0        6     0     0

      44     1        5     0     0        44     1        5     0     0

Remember that the first report from each of these programs is for cumulative activity since
the last system boot. The second report shows activity for the first 5–second interval. Even
this small sample shows that the activity in the first interval was significantly higher than the
average.
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These commands are the basic foundation on which a performance–monitoring mechanism
can be constructed. Shell scripts can be written to perform data reduction on *stat
command output and warn of performance problems or record data on the status of the
system when a problem is occurring. For example, a shell script could test the CPU idle
percentage for zero and execute another shell script when that CPU–saturated condition
occurred. A script such as:

$ ps –ef | egrep –v ”STIME|$LOGNAME” | sort +3 –r | head –n 15

would record the 15 active processes that had consumed the most CPU time recently (other
than the processes owned by the user of the script).

Depending on the required level of sophistication, creating such a family of shell scripts can
be a substantial project. Fortunately, there are packages available that require less
development and setup and have considerably more function than the typical installation
would want to implement locally.
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Chapter 6. Monitoring and Tuning CPU Use

 
The  processing unit in a ESCALA is one of the fastest components of the system. It is
comparatively rare for a single program to keep the CPU 100% busy for more than a few
seconds at a time. Even in heavily loaded multiuser systems, there are occasional 10ms
periods that end with everything in a wait state. If a monitor shows the CPU 100% busy (that
is, 0% idle and 0% wait) for an extended period, there is a good chance that some program
is in an infinite loop. Even if the program is ”merely” expensive, rather than broken, it needs
to be identified and dealt with. 

This chapter deals with techniques for detecting runaway or CPU–intensive programs and
minimizing their adverse effect on performance.

Readers who are not familiar with AIX CPU scheduling may want to look at Performance
Overview of the AIX CPU Scheduler, on page 2-2 before continuing.

The following sections cover the different aspects of CPU tuning:

• Using vmstat to Monitor CPU Use

• Using the time Command to Measure CPU Use

• Using ps to Identify CPU–Intensive Programs

• Using tprof to Analyze Programs for CPU Use

• Detailed Control Flow Analysis with stem

• Restructuring Executables with fdpr

• Controlling Contention for the CPU

• Modifying the Scheduler Time Slice

• CPU–Efficient User ID Administration

The xmperf tool is also valuable in monitoring CPU use.
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Using vmstat to Monitor CPU Use
As  a CPU monitor, vmstat is superior to iostat in that its one–line–per–report output is
easier to scan as it scrolls. vmstat also gives you general information about memory use,
paging, and ordinary disk I/O at a glance. The following example can help you identify
situations in which a program has run away or is too CPU intensive to run in a multiuser
environment. 

$ vmstat 2

procs    memory             page              faults        cpu     

––––– ––––––––––– –––––––––––––––––––––––– –––––––––––– –––––––––––

 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa 

 1  0 22478  1677   0   0   0   0    0   0 188 1380 157 57 32  0 10

 1  0 22506  1609   0   0   0   0    0   0 214 1476 186 48 37  0 16

 0  0 22498  1582   0   0   0   0    0   0 248 1470 226 55 36  0  9

 

 2  0 22534  1465   0   0   0   0    0   0 238  903 239 77 23  0  0

 2  0 22534  1445   0   0   0   0    0   0 209 1142 205 72 28  0  0

 2  0 22534  1426   0   0   0   0    0   0 189 1220 212 74 26  0  0

 3  0 22534  1410   0   0   0   0    0   0 255 1704 268 70 30  0  0

 2  1 22557  1365   0   0   0   0    0   0 383  977 216 72 28  0  0

 

 2  0 22541  1356   0   0   0   0    0   0 237 1418 209 63 33  0  4

 1  0 22524  1350   0   0   0   0    0   0 241 1348 179 52 32  0 16

 1  0 22546  1293   0   0   0   0    0   0 217 1473 180 51 35  0 14

This output shows the effect of introducing a program in a tight loop to a busy multiuser
system. The first three reports (the summary has been removed) show the system balanced
at 50–55% user, 30–35% system, and 10–15% I/O wait. When the looping program begins,
all available CPU cycles are consumed. Since the looping program does no I/O, it can
absorb all of the cycles previously unused because of I/O wait. Worse, it represents a
process that is always ready to take over the CPU when a useful process relinquishes it.
Since the looping program has a priority equal to that of all other foreground processes, it
will not necessarily have to give up the CPU when another process becomes dispatchable.
The program runs for about 10 seconds (five reports), and then the activity reported by
vmstat returns to a more normal pattern.
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Using the time Command to Measure CPU Use
The  time command is a simple but useful tool for understanding the performance
characteristics of a single program. time reports the elapsed time from beginning to end of
the program, the real  time. It also reports the amount of CPU time used by the program.
The CPU time is divided into user  and sys . The user  value is the time used by the
program itself and any library subroutines it calls. The sys  value is the time used by
system calls invoked by the program (directly or indirectly). 

The sum of user  + sys  is total direct CPU cost of executing the program. This does not
include the CPU costs of parts of the kernel that can be said to run on behalf of the
program, but which do not actually run on its thread. For example, the cost of stealing page
frames to replace the page frames taken from the free list when the program started is not
reported as part of the program’s CPU consumption.

The difference between the real  time and the total CPU time, that is:

real – (user + sys)

is the sum of all of the factors that can delay the program, plus the program’s own
unattributed costs. In roughly the order of diminishing size, these factors may be:

• I/O required to bring in the program’s text and data

• I/O required to acquire real memory for the program’s use

• CPU time consumed by other programs

• CPU time consumed by the operating system

In the following example, the program used in the preceding section has been compiled with
–O3 to make it quicker. There is very little difference between the real (wall–clock) time
required to run the program and the sum of its user and system CPU times. The program is
getting all the time it wants––probably at the expense of other programs in the system.

$ time looper

real    0m3.58s

user    0m3.16s

sys     0m0.04s

In the next example, we run the program at a lower priority by adding 10 to its nice value. It
takes almost twice as long to run, but other programs are getting a chance to do their work
too:

$ time nice –10 looper

real    0m6.54s

user    0m3.17s

sys     0m0.03s

Note that we placed the nice command within the time command, rather that the reverse. If
we had entered

$ nice –10 time looper

we would have gotten a different time command (/usr/bin/time) with a lower–precision
report, rather than the version of time we have been using, which is built into ksh. If the
time command comes first, you will get the built–in version, unless you specify the fully
qualified name of /usr/bin/time. If time is invoked from another command, you will get
/usr/bin/time.
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time and timex Cautions
There are several considerations that you should take into account when using time or its
variant timex:

• The use of the /usr/bin/time and /usr/bin/timex commands is not recommended. When
possible, use the time subcommand of the Korn or C shell. In Version 3.2.5,
/usr/bin/time incorrectly reports the CPU time used by a shell script containing a
sequence of commands connected by pipes (the CPU time of all but the last command in
the sequence is lost). This is because /usr/bin/time uses the system default shell. In
Version 3.2.5, the system default is the Bourne shell, which execs the commands in the
sequence in such a way that only the CPU consumption of the last can be measured. In
AIX Version 4.1, the system default shell is the Korn shell, which does not exhibit this
phenomenon.

• The timex –s command uses sar to acquire additional statistics. Since sar is intrusive,
timex –s is too. Especially for brief runs, the data reported by timex –s may not precisely
reflect the behavior of a program in an unmonitored system.

• Because of the length of the system clock tick (10 milliseconds) and the rules used by the
scheduler in attributing CPU time use to threads, the results of the time command are not
completely deterministic. There is a certain amount of unavoidable variation between
successive runs. This variation is in terms of clock ticks. Obviously, the shorter the run
time of the program, the larger the variation will loom as a percentage of the reported
result.

• Use of the time or timex command, whether from /usr/bin or via the built–in shell time
function, to measure the user or system time of a sequence of commands connected by
pipes, entered on the command line, is not recommended. One potential problem is that
syntax oversights can cause time to measure only one of the commands, without any
indication of a user error. The syntax is technically correct; it just doesn’t produce the
answer the user intended.
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Using xmperf to Monitor CPU Use
Using xmperf to display CPU use in the system is even more attention–grabbing. If you
display CPU as a moving skyline chart and display User CPU in bright red, a runaway
program is immediately obvious from across a room. xmperf is described in detail in the
Performance Toolbox 1.2 and 2.1 for AIX: User’s Guide.
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Using ps to Identify CPU–Intensive Programs
Three of the possible ps output columns report CPU use, each in a different way.

Column Value Is:

C Recently used CPU time for the process.

TIME Total CPU time used by the process since it started.

%CPU Total CPU time used by the process since it started divided by the elapsed
time since the process started. This is a measure of the CPU dependence
of the program.

The shell script:

$ps –ef | egrep –v ’STIME|$LOGNAME’ | sort +3 –r | head –n 15

is a tool for focusing on the most CPU–intensive user processes in the system. If we had
used that script in the situation described in Using vmstat to Monitor CPU Use, its output
would have appeared as follows (the header line has been reinserted for clarity):

  USER   PID  PPID   C    STIME    TTY  TIME CMD

waters 45742 54701 120 15:19:05 pts/29  0:02 ./looper 

  root 52121     1  11 15:32:33 pts/31 58:39 xhogger

  root  4250     1   3 15:32:33 pts/31 26:03 xmconsole allcon 

  root 38812  4250   1 15:32:34 pts/31  8:58 xmconstats 0 3 30 

  root 27036  6864   1 15:18:35      –  0:00 rlogind 

  root 47418 25925   0 17:04:26      –  0:00 coelogin <d29dbms:0>

  bick 37651 43538   0 16:58:40  pts/4  0:00 /bin/ksh 

  bick 43538     1   0 16:58:38      –  0:07 aixterm 

   luc 60061 27036   0 15:18:35 pts/18  0:00 –ksh

Recent CPU use is the fourth column (’C’). The looping program’s process easily heads the
list. Observe that the C value may understate the looping process’s CPU usage, since the
scheduler stops counting at 120.

The ps command is a very flexible tool for identifying the programs that are running in the
system and the resources they are using. The individual options and columns are described
in the formal documentation of ps in the AIX Commands Reference.

Most of the flags of ps belong to one of two groups:

1. Flags that specify which processes are to be included in the output

2. Flags that specify what information is to be displayed about each process

The following two tables are intended to simplify the task of choosing ps flags by
summarizing the effects of the flags. In each table, the flags specified with a minus sign are
on the left side of the table; the flags specified without a minus sign are on the right side.
You cannot mix types. If the first flag is specified with a minus sign, all other flags in that ps
command must be from the minus–sign group.
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Process–Specifying Flags:

–G –U

Process Listed
Are:

–A –a –d –e –g –k –p –t –u a g t x

All processes Y – – – – – – – – – Y – –

Not process group
leaders and not
associated with a
terminal

– Y – – – – – – – – – – –

Not process group
leaders

– – Y – – – – – – – – – –

Not kernel
processes

– – – Y – – – – – – – – –

Members of
specified
processgroups

– – – – Y – – – – – – – –

Kernel processes – – – – – Y – – – – – – –

Those specified in
process number list

– – – – – – Y – – – – – –

Those associated 
with TTY(s) in the
list

– – – – – – – Y (n
TTYs)

– – – (1
TTY)

Y –

Specified user’s
processes

– – – – – – – – Y – – – –

Processes with
terminals

– – – – – – – – – Y – – –

Not associated with
a TTY

– – – – – – – – – – – – Y

If the ps command is issued without a process–specifying flag, the processes owned by the
user issuing the ps command are displayed.

Column–Selecting Flags:

–U

Column: Default1 –f –l –u Default2 e l s u v

PID Y Y Y Y Y Y Y Y Y Y

TTY Y Y Y Y Y Y Y Y Y Y

TIME Y Y Y Y Y Y Y Y Y Y

CMD Y Y Y Y Y Y Y Y Y Y

USER – Y – – – – – – Y –

UID – – Y Y – – Y – – –

PPID – Y Y – – – Y – – –

C – Y Y – – – Y – – –

STIME – Y – – – – – – Y –
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F – – Y – – – – – – –

S/STAT – – Y – Y Y Y Y Y Y

PRI – – Y – – – Y – – –

NI/NICE – – Y – – – Y – – –

ADDR – – Y – – – Y – – –

SZ/SIZE – – Y – – – Y – Y Y

WCHAN – – Y – – – Y – – –

RSS – – – – – – Y – Y Y

SSIZ – – – – – – – Y – –

%CPU – – – – – – – – Y Y

%MEM – – – – – – – – Y Y

PGIN – – – – – – – – – Y

LIM – – – – – – – – – Y

TSIZ – – – – – – – – – Y

TRS – – – – – – – – – Y

environment –
(following the
command; has no
column heading)

– – – – Y – – – –

If ps is given with no flags or with a process–specifying flag that begins with a minus sign,
the columns displayed are those shown for Default1. If the command is given with a
process–specifying flag that does not begin with minus, Default2 columns are displayed.
The –u or –U flag is both a process–specifying and column–selecting flag.

The following are brief descriptions of the contents of the columns:

PID Process ID.

TTY Terminal or pseudo–terminal associated with the process.

TIME Cumulative CPU time consumed, in minutes and seconds.

CMD Command the process is running.

USER Login name of the user to whom the process belongs.

UID Numeric user ID of the user to whom the process belongs.

PPID ID of this process’s parent process.

C Recently used CPU time.

STIME Time the process started, if today. Otherwise the date the process started.

F Eight–character hexadecimal value describing the flags associated with
the process (see the detailed description of the ps command).

S/STAT Status of the process (see the detailed description of the ps command).

PRI Current priority value of the process.

NI/NICE Nice value for the process.

ADDR Segment number of the process stack.

SZ/SIZE Number of working–segment pages that have been touched, times 4.

WCHAN Event on which the process is waiting.

RSS Sum of the numbers of working–segment and code–segment pages in
memory, times 4.
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SSIZ Size of the kernel stack.

%CPU Percentage of time since the process started that it was using the CPU.

%MEM RSS value divided by the machine size in KB, times 100, rounded to the
nearest full percentage point.

PGIN Number of page–ins caused by page faults. Since all AIX I/O is classified
as page faults, this is basically a measure of I/O volume.

LIM Limit on RSS size. Displayed as ’xx’ if not set.

TSIZ Size of the text section of the executable file.

TRS Number of code–segment pages, times 4.

environment Value of all the environment variables for the process.
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Using tprof to Analyze Programs for CPU Use
The  typical program execution is a variable mixture of application code, library subroutines,
and kernel services. Frequently, a program that has not yet been tuned is found to expend
most of its CPU cycles in a few statements or subroutines. Quite often, these ”hot spots  ”
are a surprise to the implementor––they can be considered performance bugs. Our tool of
choice for pinpointing the hot spots in a program is the trace–driven profiler––tprof. tprof
can profile any program produced by one of the XL compilers: XL C, XL C++, and XL
FORTRAN. 

In AIX Version 4.1, the tprof program is packaged as part of the Performance Toolbox for
AIX. To determine whether tprof is available, use:

lslpp –lI perfagent.tools

If this package has been installed, tprof is available.

The raw data for tprof is obtained via the Trace facility (see Performance Analysis with the
Trace Facility). When a program is profiled, the Trace facility is activated and instructed to
collect data from the trace hook (hook ID 234) that records the contents of the Instruction
Address Register when a system–clock interrupt occurs––100 times a second. Several
other trace hooks are also activated to allow tprof to track process and dispatch activity.
The trace records are not written to a disk file; they are written to a pipe that is read by a
program that builds a table of the unique program addresses that have been encountered
and the number of times each one occurred. When the workload being profiled is complete,
the table of addresses and their occurrence counts is written to disk. The data–reduction
component of tprof then correlates the instruction addresses that were encountered with
the ranges of addresses occupied by the various programs and reports the distribution of
address occurrences (”ticks”) across the programs involved in the workload.

The distribution of ticks is roughly proportional to the CPU time spent in each program (10
milliseconds per tick). Once the high–use programs have been identified, the programmer
can take action to restructure their hot spots or minimize their use.

A (Synthetic) Cautionary Example
The  following C program initializes each byte of a large array of integers to 0x01,
increments each int  by a random constant, and prints out a randomly selected int . The
program does nothing useful, but it is representative of programs that process large arrays. 
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/*  Array Incrementer –– Version 1  */

#include <stdlib.h>

#define Asize 1024

#define RowDim InnerIndex

#define ColDim OuterIndex

main()

{

  int Increment;

  int OuterIndex;

  int InnerIndex;

  int big [Asize][Asize];

  /* initialize every byte of the array to 0x01 */

  for(OuterIndex=0; OuterIndex<Asize; OuterIndex++)

  {

    for (InnerIndex=0; InnerIndex<Asize; InnerIndex++)

      big[RowDim][ColDim] = 0x01010101;

  }

  Increment = rand();

  /* increment every element in the array */

  for(OuterIndex=0; OuterIndex<Asize; OuterIndex++)

  {

    for (InnerIndex=0; InnerIndex<Asize; InnerIndex++)

    {

      big[RowDim][ColDim] += Increment;

      if (big[RowDim][ColDim] < 0)

       printf(”Negative number. %d\n”,big[RowDim][ColDim]);

    }

  }

  printf(”Version 1 Check Num: %d\n”,

        big[rand()%Asize][rand()%Asize]);

  return(0);

}

The program was compiled with the command:

$ xlc –g version1.c –o version1

The –g  parameter causes the XL C compiler to generate the object module with symbolic
debugging information for use by tprof. Although tprof can profile optimized modules, we
have omitted the –O  parameter to make the line numbers that tprof uses more precise.
When the XL C compiler is optimizing, it often does enough rearrangement of code to make
tprof’s output harder to interpret. On the test system, this program runs in about 5.97
seconds of elapsed time, of which more than 5.9 seconds is user CPU time. Clearly the
program meets its objective of being CPU–limited.

If we tprof the program with the following command:

$ tprof –p version1 –x version1

we get a file called __version1.all  (shown below) that reports how many CPU ticks
each of the programs involved in the execution consumed.
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          Process      PID    Total   Kernel     User   Shared    Other

          =======      ===    =====   ======     ====   ======    =====

         version1 33570480      793       30      763        0        0

              bsh 33566383        8        8        0        0        0

        /etc/init        1        6        0        6        0        0

       /etc/syncd     3059        5        5        0        0        0

            tprof     5038        4        2        2        0        0

          rlogind    11345        2        2        0        0        0

          PID.771      771        1        1        0        0        0

            tprof    11940        1        1        0        0        0

            tprof    11951        1        1        0        0        0

            tprof    13987        1        1        0        0        0

              bsh    16048        1        1        0        0        0

          =======      ===    =====   ======     ====   ======    =====

            Total               823       52      771        0        0

          Process     FREQ    Total   Kernel     User   Shared    Other

          =======      ===    =====   ======     ====   ======    =====

         version1        1      793       30      763        0        0

              bsh        2        9        9        0        0        0

        /etc/init        1        6        0        6        0        0

       /etc/syncd        1        5        5        0        0        0

            tprof        4        7        5        2        0        0

          rlogind        1        2        2        0        0        0

          PID.771        1        1        1        0        0        0

          =======      ===    =====   ======     ====   ======    =====

            Total       11      823       52      771        0        0

   Total Ticks For version1(    USER) =    763

           Subroutine   Ticks     %            Source   Address  Bytes

        =============  ======  ======         =======   =======  =====

                .main     763    92.7      version1.c       632    560

The first section of the report shows the number of ticks consumed by, or on behalf of, each
process. version1  used 763 ticks itself, and 30 ticks occurred in the kernel on behalf of
version1 ’s process. Two processes running the Bourne shell were involved in the
execution of version1 . Four processes were running tprof–related code. The init
process, the sync daemon, an rlogin process, and one other process accounted for 14
ticks.

Remember that the program associated with a given numerical process ID changes with
each exec call. If one application program execs another, both program names will appear
in the tprof output associated with the same process ID.

The second section of the report summarizes the results by program, regardless of process
ID. It shows the number ( FREQ ) of different processes that ran each program at some
point.

The third section breaks down the user ticks associated with the executable program being
profiled. It reports the number of ticks used by each function in the executable, and the
percentage of the total run’s CPU ticks ( 823 ) that each function’s ticks represent.

Up to this point, none of the tprof processing has required access to the specially compiled
version of the program. We could have done the preceding analysis on a program for which
we did not have access to the source code.

It is clear from this report that the preponderance (92.7%) of CPU consumption is in the
program itself, not in the kernel nor in library subroutines that the program uses. We have to
look at the program itself more closely.

Since we compiled version1.c  with the –g option, the object file contains information
that relates offsets in the program text to lines of source code. Consequently, tprof created
an annotated version of the source file version1.c , called __t.version1.c , based
on the offsets and line number information in the object module. The first column is simply
the line number. The second column is the number of times the trace hook reported that the
Timer interrupt occurred while the system was executing one of the instructions associated
with that line.
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Ticks Profile for main in version1.c

     

   Line   Ticks   Source

      

    14     34       for(OuterIndex=0; OuterIndex<Asize; OuterIndex++)

    15      –       {

    16     40         for (InnerIndex=0; InnerIndex<Asize; InnerIndex++)

    17    261           big[RowDim][ColDim] = 0x01010101;

    18      –       }

    19      –       Increment = rand();

    20      –

    21      –       /* increment every element in the array */

    22     70       for(OuterIndex=0; OuterIndex<Asize; OuterIndex++)

    23      –       {

    24      –         for (InnerIndex=0; InnerIndex<Asize; InnerIndex++)

    25      –         {

    26     69           big[RowDim][ColDim] += Increment;

    27     50           if (big[RowDim][ColDim] < 0)

    28    239            printf(”Negative number.%d\n”,

                                 big[RowDim][ColDim]);

    29      –         }

    30      –       }

    31      –       printf(”Version 1 Check Num: %d\n”,

    32      –             big[rand()%Asize][rand()%Asize]);

    33      –       return(0);

    34      –     }

       

 763 Total Ticks for main in version1.c

This shows clearly that the largest numbers of ticks are associated with accessing elements
of the array big , so we should be able to improve performance significantly by
concentrating on the inner for  loops. The first (initialization) for  loop is a case of
brute–force programming. It is very inefficient to initialize arrays one element at a time. If we
were setting the array to 0, we should have used bzero. Since we are setting each byte to a
specific character, we will use memset to replace the first for  loop. (The very efficient
bzero and memset functions, like the str functions, are written in assembler language and
use hardware instructions that have no direct equivalent in the C language.)

We have to access the array one element at a time to increment the values, but we should
ensure that the pattern of memory reference is to consecutive addresses, to maximize
cache use. In this case, we have the row dimension changing faster than the column
dimension. Since C arrays  are arranged in row–major order, we are skipping over a
complete row with each successive memory reference. Since the rows are 1024 int s long
(4096 bytes), we are changing pages on every reference. The size of the array greatly
exceeds both the data cache and data TLB capacities, so we have written a program for
maximum cache and TLB thrashing. To fix this problem, we simply transpose the #define
s to reverse the values of RowDim  and ColDim . 

The unoptimized form of the resulting program ( version2.c ) consumes about 2.7 CPU
seconds, compared with 7.9 CPU seconds for version1 .

The following file, __t.version2.c , is the result of a tprof run against the unoptimized
form:
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Ticks Profile for main in version2.c

    

   Line   Ticks   Source

     

    15      –       memset(big,0x01,sizeof(big));

    16      –       Increment = rand();

    17      –

    18      –       /* increment in memory order */

    19     60       for(OuterIndex=0; OuterIndex<Asize; OuterIndex++)

    20      –       {

    21      –         for (InnerIndex=0; InnerIndex<Asize; InnerIndex++)

    22      –         {

    23     67          big[RowDim][ColDim] += Increment;

    24     60          if (big[RowDim][ColDim] < 0)

    25     43          printf(”Negative number.

%d\n”,big[RowDim][ColDim]);

    26      –         }

    27      –       }

    28      –       printf(”Version 2 Check Num: %d\n”,

    29      –                   big[rand()%Asize][rand()%Asize]);

    30      –       return(0);

    31      –     }

     

 230 Total Ticks for main in version2.c

By being aware of its CPU use pattern, we have improved the CPU speed of this program
by a factor of almost three––for the unoptimized case. When we compile version1.c 
and version2.c  with optimization and compare their performance, the ”before and after”
improvement due to our changes is a factor of 7.

In many cases, most of a program’s CPU use will occur in the library subroutines it uses
rather than in the program itself. If we take version2.c  and remove the conditional test
on line 24 and the printf  entry on line 28, to create a version3.c  that reads as
follows:

#include <string.h>

#include <stdlib.h>

#define Asize 256

#define RowDim OuterIndex

#define ColDim InnerIndex

main()

{ 

  int Increment;

  int OuterIndex;

  int InnerIndex;

  int big [Asize][Asize];

    

  /* Initialize every byte to 0x01 */

  memset(big,0x01,sizeof(big));

  Increment = rand();

  /* increment in memory order */

  for(OuterIndex=0; OuterIndex<Asize; OuterIndex++)

  {

    for (InnerIndex=0; InnerIndex<Asize; InnerIndex++)

    {

      big[RowDim][ColDim] += Increment;

      printf(”RowDim=%d, ColDim=%d, Number=%d\n”,

              RowDim, ColDim, big[RowDim][ColDim]);

    }

  }

  return(0);

}

the execution time becomes dominated by the printf statement. The command:
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$ tprof –v –s –k –p version3 –x version3 >/dev/null

produces a __version3.all  that includes profiling  data for the kernel and the shared
subroutine library  libc.a  (the only shared library this program uses): 
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          Process      PID    Total   Kernel     User   Shared    Other

          =======      ===    =====   ======     ====   ======    =====

         version3 33568373      818       30       19      769        0

              bsh 33567348        5        5        0        0        0

            tprof    15987        3        1        2        0        0

            tprof     7784        1        1        0        0        0

            tprof    12905        1        1        0        0        0

              bsh    13941        1        1        0        0        0

          =======      ===    =====   ======     ====   ======    =====

            Total               829       39       21      769        0

    

          Process     FREQ    Total   Kernel     User   Shared    Other

          =======      ===    =====   ======     ====   ======    =====

         version3        1      818       30       19      769        0

              bsh        2        6        6        0        0        0

            tprof        3        5        3        2        0        0

          =======      ===    =====   ======     ====   ======    =====

            Total        6      829       39       21      769        0

     

   Total Ticks For version3(    USER) =     19

     

           Subroutine   Ticks     %            Source   Address  Bytes

        =============  ======  ======         =======   =======  =====

                .main      11     1.3      version3.c       632    320

              .printf       8     1.0         glink.s      1112     36

     

   Total Ticks For version3(  KERNEL) =     30

           Subroutine   Ticks     %            Source   Address  Bytes

        =============  ======  ======         =======   =======  =====

             .sc_flih       7     0.8           low.s     13832   1244

            .i_enable       5     0.6           low.s     21760    256

            .vmcopyin       3     0.4        vmmove.c    414280    668

         .xix_setattr       2     0.2     xix_sattr.c    819368    672

          .isreadonly       2     0.2        disubs.c    689016     60

               .lockl       2     0.2         lockl.s     29300    208

            .v_pagein       1     0.1    v_getsubs1.c    372288   1044

             .curtime       1     0.1         clock.s     27656     76

             .trchook       1     0.1          noname     48168    856

               .vmvcs       1     0.1         vmvcs.s     29744   2304

           .spec_rdwr       1     0.1    spec_vnops.c    629596    240

                .rdwr       1     0.1          rdwr.c    658460    492

               .imark       1     0.1         isubs.c    672024    184

               .nodev       1     0.1     devsw_pin.c    135864     32

           .ld_findfp       1     0.1      ld_libld.c    736084    240

    

   Total Ticks For version3( SH–LIBs) =    769

    

        Shared Object   Ticks     %            Source   Address  Bytes

        =============  ======  ======         =======   =======  =====

         libc.a/shr.o     769    92.0        /usr/lib    794624 724772

     

   Profile: /usr/lib/libc.a  shr.o

      

   Total Ticks For version3(/usr/lib/libc.a) =    769

      

           Subroutine   Ticks     %            Source   Address  Bytes

        =============  ======  ======         =======   =======  =====

             ._doprnt     476    56.9        doprnt.c     36616   7052

              .fwrite     205    24.5        fwrite.c     50748    744

              .strchr      41     4.9        strchr.s     31896    196

              .printf      18     2.2        printf.c    313796    144

             ._moveeq      16     1.9        memcmp.s     36192    184

              .strlen      10     1.2      strerror.c     46800    124

              .isatty       1     0.1        isatty.c     62932    112

             ._xwrite       1     0.1        flsbuf.c      4240    280

             .__ioctl       1     0.1         ioctl.c     57576    240
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This confirms that most of the ticks are being used by the shared libraries–– libc.a , in
this case. The profile of libc.a  shows that most of those ticks are being consumed by the
_doprnt subroutine.

_doprnt is the processing module for printf, sprintf,  etc. With a simple change, we have
increased the run time from 2.7 seconds to 8.6 seconds, and our formatted printing now
consumes about 60% of the CPU time. This makes it clear why formatting should be used
judiciously. _doprnt performance is also affected by the locale. See Appendix I, National
Language Support––Locale vs Speed. These tests were run in the C locale––the most
efficient. 
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Detailed Control Flow Analysis with stem
The stem instrumentation package can trace the flow of control through a wide range of
software. It is available on AIX Version 4.1 systems as part of the Performance Toolbox for
AIX. To determine whether stem is available on your system, use: 

lslpp –lI perfagent.tools

If this package has been installed, stem is available.

Some of the most significant advantages of stem are:

• stem can instrument application programs that are:

– stripped

– optimized

– running in multiple processes

– in unstripped shared libraries

• stem entry and exit instrumentation subroutines can be:

– stem–provided

– user–provided

stem builds instrumented versions of the requested programs and libraries, and stores them
in a directory called /tmp/EXE. When the user runs the instrumented program, stem creates
a corresponding file called stem_out.

Basic stem Analysis
If we want to analyze the control flow of a simple application program, we would use:

stem –p stem_test_pgm

The output of that command would be:

**********************************************************

Make.Stem does not exist, issuing make for stem_samples.o

make stem_samples.o

Target stem_samples.o is up to date.

******************************************************

The instrumented stem_test_pgm is at /tmp/EXE/stem_test_pgm

Assuming Version 3.2.5 or later, SVC_string=.sc_flih

The instrumentation of stem_test_pgm  was successful, even though the program had
been stripped. The instrumented form of the program has been placed in the directory
/tmp/EXE. We then enter:

/tmp/EXE/stem_test_pgm

We get a file called stem_out in the current working directory. In this case, stem_out
contains:
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Seconds.usecs      TID  Routine Names & Seconds.usecs since

entering routine.

767549539.847704   1 –>main

767549539.880523   1           –>setPI

767549539.880958   1           <–setPI  0.000435

767549539.881244   1           –>squareit

767549539.881515   1           <–squareit  0.000271

767549539.881793   1           –>printf

767549539.883316   1           <–printf  0.001523

767549539.883671   1           –>setPI

767549539.883944   1           <–setPI  0.000273

767549539.884221   1           –>squareit

767549539.884494   1           <–squareit  0.000273

767549539.884772   1           –>printf

767549539.885981   1           <–printf  0.001209

767549539.886330   1 <–main  0.038626

767549539.886647   1 –>exit

The call graph captures both calls to functions within the module (setPI and squareit) and
calls to the printf subroutine in libc.a. The numbers to the right of the subroutine names
represent the elapsed seconds and microseconds between the call and the return.

If we perform the same process on the wc command (/usr/bin/wc), the stem_out file (for a
wc of a two–word file) contains:

Seconds.usecs      TID  Routine Names & Seconds.usecs since

entering routine.

767548812.962031   1 –>main

767548812.993952   1           –>setlocale

767548812.995065   1           <–setlocale  0.001113

767548812.995337   1           –>catopen

767548812.995554   1           <–catopen  0.000217

767548812.995762   1           –>getopt

767548812.996101   1           <–getopt  0.000339

767548812.996345   1           –>open

767548812.996709   1           <–open  0.000364

767548812.996953   1           –>read

767548812.997209   1           <–read  0.000256

767548812.997417   1           –>read

767548812.997654   1           <–read  0.000237

767548812.997859   1           –>wcp

767548812.998113   1                        –>printf

767548812.998586   1                        <–printf  0.000473

767548812.998834   1           <–wcp  0.000975

767548812.999041   1           –>printf

767548813.000439   1           <–printf  0.001398

767548813.000720   1           –>close

767548813.000993   1           <–close  0.000273

767548813.001284   1           –>exit

This call graph, obtained almost effortlessly, shows the structure of an AIX command. The
calls to setlocale and catopen ensure that the command process is running in the same
National Language Support (NLS) locale and with the same message catalog as its parent
process.

Although stem–instrumented programs can run in multiple processes, the call graph shows
only the flow of control within the primary process.
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Restructuring Executables with fdpr
The fdpr (feedback–directed program restructuring) program optimizes executable modules
for faster execution and more efficient use of real memory. It is available on AIX Version 4.1
systems as part of the Performance Toolbox for AIX. To determine whether fdpr is available
on your system, use:

lslpp –lI perfagent.tools

If this package has been installed, fdpr is available.

fdpr processing takes place in three stages:

• The executable module to be optimized is instrumented to allow detailed
performance–data collection.

• The instrumented executable is run in a workload provided by the user, and performance
data from that run is recorded.

• The performance data is used to drive a performance–optimization process that results in
a restructured executable module that should perform the workload that exercised the
instrumented executable more efficiently. It is critically important that the workload used
to drive fdpr closely match the actual use of the program. The performance of the
restructured executable with workloads that differ substantially from that used to drive
fdpr is unpredictable, but can be worse than that of the original executable.

As an example, the command:

fdpr –p ProgramName –R3 –x test.sh

would use the testcase test.sh  to run an instrumented form of program ProgramName .
The output of that run would be used to perform the most aggressive optimization (R3) of
the program to form a new module called, by default, ProgramName.fdpr . The degree to
which the optimized executable performed better in production than its unoptimized
predecessor would depend largely on the degree to which test.sh  successfully imitated
the production workload.

Attention: The fdpr program incorporates advanced optimization algorithms that
sometimes result in optimized executables that do not function in the same way as the
original executable module. It is absolutely essential that any optimized executable be
exhaustively tested before being used in any production situation; that is, before its
output is trusted.

In summary, users of fdpr should:

• Take pains to use a workload to drive fdpr that is representative of the intended use.

• Exhaustively test the functioning of the resulting restructured executable.

• Use the restructured executable only on the workload for which it has been tuned.
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Controlling Contention for the CPU

Controlling the Priority of User Processes
User–process  priorities can be manipulated using the nice or renice command or the
setpri subroutine and displayed with ps. An overview of priority is given in Process and
Thread Priority, on page 2-2 . 

Running a Command at a Nonstandard Priority with nice
Any user can run a command at a lower than normal priority by using nice . Only root 
can use nice to run commands at higher than normal priority. 

With nice, the user specifies a value to be added to or subtracted from the standard nice
value. The modified nice value is used for the process that runs the specified command.
The priority of the process is still non–fixed.  That is, the priority value is still recalculated
periodically based on the CPU usage, nice value, and minimum user–process–priority
value. 

The standard nice value of a foreground process is 20; the standard nice value of a
background process is 24. The nice value is added to the minimum user–process–priority
level (40) to obtain the initial priority value of the process. For example, the command:

$ nice –5 vmstat 10 3 >vmstat.out

causes the vmstat command to be run with a nice value of 25 (instead of 20), resulting in a
base priority value of 65 (before any additions for recent CPU use)

If we were root , we could have run the vmstat at a higher priority with:

# nice ––5 vmstat 10 3 >vmstat.out

If we were not root  and issued that nice, the vmstat command would still be run, but at
the standard nice value of 20, and nice would not issue any error message.

Setting a Fixed Priority with the setpri Subroutine
An application that runs under the root  userid can use the setpri  subroutine to set its
own priority or that of another process. For example: 

retcode = setpri(0,59);

would give the current process a fixed priority of 59. If setpri fails, it returns –1.

The following program accepts a priority value and a list of process IDs and sets the priority
of all of the processes to the specified value.
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/*

   fixprocpri.c

   Usage: fixprocpri priority PID . . . 

*/

    

#include <sys/sched.h>

#include <stdio.h>

#include <sys/errno.h>

    

main(int argc,char **argv)

{

   pid_t ProcessID;

   int Priority,ReturnP;

    

   if( argc < 3 ) {

      printf(” usage – setpri priority pid(s) \n”);

      exit(1);

   }

    

   argv++;

   Priority=atoi(*argv++);

   if ( Priority < 50 ) {

      printf(” Priority must be >= 50 \n”);

      exit(1);

   }

    

   while (*argv) {

      ProcessID=atoi(*argv++);

      ReturnP = setpri(ProcessID, Priority);

      if ( ReturnP > 0 ) 

          printf(”pid=%d new pri=%d  old pri=%d\n”,

            (int)ProcessID,Priority,ReturnP);

      else {

          perror(” setpri failed ”);

            exit(1);

      }

   }

}

Displaying Process Priority with ps
The  –l (lower–case L) flag of the ps command displays the nice values and current priority
values of the specified processes. For example, we can display the priorities of all of the
processes owned by a given user with: 

# ps –lu waters

       F S UID  PID PPID   C PRI NI ADDR    SZ    WCHAN    TTY  TIME CMD

  241801 S 200 7032 7287   0  60 20 1b4c   108           pts/2  0:00 ksh

  200801 S 200 7569 7032   0  65 25 2310    88  5910a58  pts/2  0:00 vmstat

  241801 S 200 8544 6495   0  60 20 154b   108           pts/0  0:00 ksh

The output shows the result of the nice –5 command described earlier. Process 7569 has
an effective priority of 65. (The ps command was run by a separate session in superuser
mode, hence the presence of two TTYs.)

If one of the processes had used the setpri subroutine to give itself a fixed priority,  the ps
–l output format would be: 

       F S UID   PID  PPID   C PRI NI ADDR    SZ    WCHAN    TTY  TIME CMD

200903 S   0 10759 10500   0  59 –– 3438    40  4f91f98  pts/0  0:00 fixpri
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Modifying the Priority of a Running Process with renice
Note: In the following discussion, the AIX Version 3 renice syntax is used. The next
section discusses AIX Version 3 and 4 nice and renice syntax.

renice alters the nice value, and thus the priority, of one or more processes that are already
running. The processes are identified either by process ID, process group ID, or the name
of the user who owns the processes. renice cannot be used on fixed–priority processes. 

To continue our example, we will renice the vmstat process that we started with nice.

# renice –5 7569

7569: old priority 5, new priority –5

# ps –lu waters

       F S UID  PID PPID   C PRI NI ADDR    SZ    WCHAN    TTY  TIME CMD

  241801 S 200 7032 7287   0  60 20 1b4c   108           pts/2  0:00 ksh

  200801 S 200 7569 7032   0  55 15 2310    92  5910a58  pts/2  0:00 vmstat

  241801 S 200 8544 6495   0  60 20 154b   108           pts/0  0:00 ksh

Now the process is running at a higher priority than the other foreground processes.
Observe that renice does not add or subtract the specified amount from the old nice value.
It replaces the old nice value with a new one. To undo the effects of all this playing around,
we could issue:

# renice –0 7569

7569: old priority –5, new priority 0

# ps –lu waters

       F S UID  PID PPID   C PRI NI ADDR    SZ    WCHAN    TTY  TIME CMD

  241801 S 200 7032 7287   0  60 20 1b4c   108           pts/2  0:00 ksh

  200801 S 200 7569 7032   1  60 20 2310    92  5910a58  pts/2  0:00 vmstat

  241801 S 200 8544 6495   0  60 20 154b   108           pts/0  0:00 ksh

In these examples, renice was run by root . When run by an ordinary userid, there are
two major limitations to the use of renice:

• Only processes owned by that userid can be specified.

• The priority of the process cannot be increased, not even to return the process to the
default priority after lowering its priority with renice.

Clarification of nice/renice Syntax

AIX Version 3
The  nice and renice commands have different ways of specifying the amount that is to be
added to the standard nice value of 20. 

With nice, the initial minus sign is required to identify the value, which is assumed to be
positive. Specifying a negative value requires a second minus sign (with no intervening
space).

With renice, the parameter following the command name is assumed to be the value, and it
can be a signed or unsigned (positive) number. Thus the following pairs of commands are
equivalent:

                       Resulting    Resulting

                       nice Value   Priority Value

nice –5    renice 5    25           65

nice –5    renice +5   25           65

nice – –5  renice –5   15           55
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AIX Version 4.1
For AIX Version 4.1, the syntax of renice has been changed to complement the alternative
syntax of nice, which uses the –n flag to identify the nice–value increment. The following
table is the AIX Version 4.1 equivalent of the table in the preceding section:

                           Resulting    Resulting

                           nice Value   Priority Value

nice –n 5    renice –n 5   25           65

nice –n +5   renice –n +5  25           65

nice –n –5   renice –n –5  15           55

Tuning the Process–Priority–Value Calculation with schedtune
A recent enhancement of schedtune and the AIX CPU scheduler permits changes to the
parameters used to calculate the priority value for each process. This enhancement is part
of AIX Version 4.1 and is available in a PTF for Version 3.2.5. See Process and Thread
Priority, on page 2-2 for background information on priority.

Briefly, the formula for calculating the priority value is:

priority value = base priority + nice value + (CPU penalty based

on recent CPU usage)

The recent CPU usage value of a given process is incremented by 1 each time that process
is in control of the CPU when the timer interrupt occurs (every 10 milliseconds). The recent
CPU usage value is displayed as the ”C” column in ps command output. The maximum
value of recent CPU usage is 120.

The current algorithm calculates the CPU penalty by dividing recent CPU usage by 2. The
CPU–penalty–to–recent–CPU–usage ratio is therefore .5. We will call this value R.

Once a second, the current algorithm divides the recent CPU usage value of every process
by 2. The recent–CPU–usage–decay factor is therefore .5. We will call this value D.

For some users, the existing algorithm does not allow enough distinction between
foreground and background processes. For example––ignoring other activity––if a system
were running two compute–intensive user processes, one foreground (nice value = 20), one
background (nice value = 24) that started at the same time, the following sequence would
occur:

• The foreground process would be dispatched first. At the end of 8 time slices (80ms), its
CPU penalty would be 4, which would make its priority value equal to that of the
background process. The round–robin scheduling algorithm would cause the background
process to be dispatched.

• After 2 further time slices, the background process’s CPU penalty would be 1, making its
priority value one greater than that of the foreground process. The foreground process
would be dispatched.

• Another 2 time slices and the priority values of the processes would be equal again. The
processes would continue to alternate every 2 time slices until the end of the second.

• At the end of the second, the foreground process would have had 54 time slices and the
background would have had 46. After the decay factor was applied, the recent CPU
usage values would be 27 and 23. In the second of their competition, the foreground
process would get only 4 more time slices than the background process.

Even if the background process had been started with nice –20, the distinction between
foreground and background would be only slightly clearer. Although the scheduler stops
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counting time slices used after 120, this permits the CPU penalty to level off at 60––more
than enough to offset the maximum nice value difference of 40.

To allow greater flexibility in prioritizing processes, the new feature permits user tuning of
the ratio of CPU penalty to recent CPU usage (R) and the recent–CPU–usage–decay rate
(D). The tuning is accomplished through two new options of the schedtune command: –r
and –d. Each option specifies a parameter that is an integer from 0 through 32. The
parameters are applied by multiplying the recent CPU usage value by the parameter value
and then dividing by 32 (shift right 5). The default r and d values are 16, which yields the
same behavior as the original algorithm (D=R=16/32=.5). The new range of values permits
a far wider spectrum of behaviors. For example:

# schedtune –r 0

(R=0, D=.5) would mean that the CPU penalty was always 0, making priority absolute. No
background process would get any CPU time unless there were no dispatchable foreground
processes at all. The priority values of the processes would effectively be constant, although
they would not technically be fixed–priority processes.

# schedtune –r 5

(R=.15625, D=.5) would mean that a foreground process would never have to compete with
a background process started with nice –20. The limit of 120 CPU time slices accumulated
would mean that the maximum CPU penalty for the foreground process would be 18.

# schedtune –r 6 –d 16

(R=.1875, D=.5) would mean that, if the background process were started with nice –20, it
would be at least one second before the background process began to receive any CPU
time. Foreground processes, however, would still be distinguishable on the basis of CPU
usage. Long–running foreground processes that should probably be in the background
would ultimately accumulate enough CPU usage to keep them from interfering with the true
foreground.

# schedtune –r 32 –d 32

(R=1, D=1) would mean that long–running processes would reach a C value of 120 and stay
there, contending on the basis of their nice values. New processes would have priority,
regardless of their nice value, until they had accumulated enough time slices to bring them
within the priority value range of the existing processes.

If you conclude that one or both parameters need to be modified to accommodate your
workload, you can enter the schedtune command while logged on as root . The changed
values will persist until the next schedtune that modifies them or until the next system boot.
Values can be reset to their defaults with schedtune –D, but remember that all schedtune
parameters are reset by that command, including VMM memory load control parameters. To
make a change to the parameters that will persist across boots, you need to add an
appropriate line at the end of the /etc/inittab file.



6-26 Performance Tuning Guide

Modifying the Scheduler Time Slice
The  length of the scheduler time slice can be modified with the schedtune command , on
page A-5 . The syntax for this function is: 

schedtune –t increase

where increase is the number of 10ms clock ticks by which the standard time slice (one
10ms tick) is to be increased. Thus, schedtune –t 2 would set the time slice length to 30ms.
schedtune –t 0 would return the time slice length to the default.

In an environment in which the length of the time slice has been increased, some
applications may not need or should not have the full time slice. These applications can give
up the processor explicitly with the yield system call (as can programs in an unmodified
environment). After a yield call, the calling thread is moved to the end of the dispatch queue
for its priority level.
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CPU–Efficient User ID Administration
To improve login response time and conserve CPU time in systems with many users, AIX
can use a hashed version of the /etc/passwd file to look up userids. When this facility is
used, the /etc/passwd file still exists, but is not used in normal processing. The hashed
versions of the file (/etc/passwd.dir and /etc/passwd.pag) are built by the mkpasswd
command. If the hashed versions are not current, login processing reverts to a slow,
CPU–intensive sequential search through /etc/passwd.

Once the hashed password files have been built, if the passwd, mkuser, chuser, rmuser
commands (or the smit equivalents, with fast paths of the same name) are used to
administer user IDs, the hashed files are kept up to date automatically. If the /etc/passwd
file is changed with an editor or with the pwdadm command, the hashed files must be
rebuilt with the command:

# mkpasswd /etc/passwd
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Chapter 7. Monitoring and Tuning Memory Use

 
The  memory of a ESCALA is almost always full of something. If the currently executing
programs don’t take up all of memory, AIX retains in memory the text pages of programs
that ran earlier and the files they used. It doesn’t cost anything, because the memory would
be unused anyway. In many cases, the program or file pages will be used again, which
reduces disk I/O. 

This caching technique improves the efficiency of the system but can make it harder to
determine the actual memory requirement of a workload.

This chapter describes the ways in which memory use can be measured and modified. It
contains the following major sections:

• How Much Memory Is Really Being Used? lists the commands that report memory use
and gives their advantages and disadvantages.

• Memory–Leaking Programs describes one of the most common causes of memory
overcommitment.

• Analyzing Patterns of Memory Use with BigFoot describes the features and use of the
BigFoot tool, which reports patterns of memory reference.

• Assessing Memory Requirements via the rmss Command documents the techniques for
using the Reduced–Memory System Simulator tool.

• Tuning VMM Memory Load Control describes the situations in which such tuning might
be appropriate and the methods of tuning VMM memory load control with the schedtune
command.

• Tuning VMM Page Replacement explains the methods and effects of changing the VMM
page–replacement thresholds.

Readers who are not familiar with AIX virtual–memory management may want to look at
Performance Overview of the Virtual Memory Manager (VMM), on page 2-5 before
continuing.
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How Much Memory Is Really Being Used?
Several performance tools provide reports of memory usage. The reports of most interest
are from vmstat, ps, and svmon.

vmstat
vmstat summarizes the total ”active” virtual memory used by all of the processes in the
system, as well as the number of real–memory page frames on the free list. Active virtual
memory is defined as the number of virtual–memory working–segment pages that have
actually been touched. It is usually equal to the number of paging–space slots that have
been assigned. This number can be larger than the number of real page frames in the
machine, since some of the active virtual–memory pages may have been written out to
paging space. 

ps
ps provides several different reports of memory use, depending on the flag used. The most
comprehensive comes with ps v, which displays the following memory–related columns: 

SIZE Virtual size in kilobytes of the data section of the process. (Displayed as SZ
by other flags.) This number is equal to the number of working–segment
pages of the process that have been touched (that is, the number of
paging–space slots that have been allocated) times 4. If some
working–segment pages are currently paged out, this number is larger than
the amount of real memory being used.

RSS Real–memory (resident set) size in kilobytes of the process. This number is
equal to the sum of the number of working–segment and code–segment
pages in memory times 4. Remember that code–segment pages are shared
among all of the currently running instances of the program. If 26 ksh
processes are running, only one copy of any given page of the ksh
executable would be in memory, but ps would report that code–segment size
as part of the RSS of each instance of ksh.

TSIZ Size of text (shared–program) image. This is the size of the text section of
the executable file. Pages of the text section of the executable are only
brought into memory when they are touched, i.e., branched to or loaded
from. This number represents only an upper bound on the amount of text
that could be loaded.

TRS Size of the resident set (real memory) of text. This is the number of
code–segment pages times 4. As was noted earlier, this number
exaggerates memory use for programs of which multiple instances are
running.

%MEM Calculated as the sum of the number of working–segment and
code–segment pages in memory times 4 (that is, the RSS value), divided by
the size of the real memory of the machine in KB, times 100, rounded to the
nearest full percentage point. This value attempts to convey the percentage
of real memory being used by the process. Unfortunately, like RSS, it tends
the exaggerate the cost of a process that is sharing program text with other
processes. Further, the rounding to the nearest percentage point causes all
of the processes in the system that have RSS values under .005 times real
memory size to have a %MEM of 0.0.

As you can see, reporting memory statistics in a format that was designed for earlier,
simpler systems sometimes results in distorted data.
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svmon
svmon provides both global, process–level, and segment–level reporting of memory use.
For tuning purposes, the –G and –P options are most interesting. 

–G Summarizes the memory use for the entire system.

–P Shows the memory use for one or more processes.

In AIX Version 4.1, the svmon command is packaged as part of the Performance Toolbox
for AIX. To determine whether svmon is available, use:

lslpp –lI perfagent.tools

If this package has been installed, svmon is available.

Example of vmstat, ps, and svmon Output
The following example shows the output of these commands on a large system. vmstat
was run in a separate window while ps and svmon were running consecutively. The vmstat
summary (first) line has been removed:

$ vmstat 5

procs    memory             page              faults        cpu     

––––– ––––––––––– –––––––––––––––––––––––– –––––––––––– –––––––––––

 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa 

 0  0 25270  2691   0   0   0   0    0   0 142 2012  41  4 11 86  0

 1  0 25244  2722   0   0   0   0    0   0 138 6752  39 20 70 10  0

 0  0 25244  2722   0   0   0   0    0   0 128   61  34  0  1 99  0

 0  0 25244  2722   0   0   0   0    0   0 137  163  41  1  4 95  0

The global svmon report below shows related numbers. The number that vmstat reports as
Active Virtual Memory (avm) is reported by svmon as page–space slots in use (25270). The
number of page frames on the free list (2691) is identical in both reports. The number of
pages pinned (2157) is a separate report, since the pinned pages are included in the pages
in use.

$ svmon –G      

m e m o r y            i n  u s e            p i n        p g  s p a c e

size inuse  free   pin   work  pers  clnt   work  pers  clnt     size inuse

24576 21885 2691  2157  13172  7899   814   2157     0     0    40960 25270

Singling out a particular, long–running process on this machine, we can compare the ps v
and svmon –P reports. The actual program has been renamed anon.

$ ps v 35851    

 PID    TTY STAT  TIME PGIN  SIZE   RSS   LIM  TSIZ   TRS %CPU %MEM COMMAND

 35851      – S     0:03  494  1192  2696    xx  1147  1380  0.2  3.0 anon

The SIZE value (1192) is the svmon Pgspace number (298) times four. The RSS value
(2696) is equal to the number of pages in the process private segment (329) plus the
number of pages in the code segment (345) times four. The TSIZE number is not related to
real–memory use. The TRS value (1380) is equal to the number of pages in use in the code
segment (345) times four. The %MEM is the RSS value, divided by the size of real memory
in KB, times 100, rounded to the nearest full percentage point.
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$ svmon –P 35851

  Pid                         Command        Inuse        Pin      Pgspace

35851                         anon            2410          2         4624

Pid:  35851

Command:  anon

Segid  Type  Description         Inuse   Pin  Pgspace   Address Range

 18a3  pers  /dev/hd2:5150           1     0       0    0..0

 9873  pers  /dev/hd2:66256          1     0       0    0..0

 4809  work  shared library       1734     0    4326    0..4668 :

60123..65535

 748e  work  private               329     2     298    0..423 :

65402..65535

 2105  pers  code,/dev/hd2:4492    345     0       0    0..402

As we analyze various processes in the environment, we observe that the shared library is
indeed shared among almost all of the processes in the system, so its memory requirement
is part of overall system overhead. Segment 9873 is also widely used, so we can include its
memory in overhead. If one were estimating the memory requirement for program anon, the
formula would be:

The total memory requirement for anon is equal to 345*4KB for program text (shared
among all users) plus the estimated number of simultaneous users of anon times the sum
of the working–segment size (329*4KB) and 4KB for the mapped segment (segment ID
18a3 in this example).

Memory–Leaking Programs
A memory leak is a program bug that consists of repeatedly allocating memory, using it, and
then neglecting to free it. A memory leak in a long–running program, such as an interactive
application, is a serious problem, because it can result in memory fragmentation and the
accumulation of large numbers of mostly garbage–filled pages in real memory and page
space. Systems have been known to run out of page space because of a memory leak in a
single program.

A memory leak can be detected with svmon, by looking for processes whose working
segment continually grows. Identifying the offending subroutine or line of code is more
difficult, especially in AIXwindows applications, which generate large numbers of malloc 
and free  calls. Some third–party programs exist for analyzing memory leaks, but they
require access to the program source code. 

Some uses of realloc, while not actually programming errors, can have the same effect as a
memory leak. If a program frequently uses realloc  to increase the size of a data area, the
process’s working segment can become increasingly fragmented if the storage released by
realloc cannot be re–used for anything else. (Appendix F, Application Memory
Management–malloc and realloc, contains background information on malloc and realloc.) 

In general, memory that is no longer required should be released with free, if the memory
will probably be re–used by the program. On the other hand, it is a waste of CPU time to
free  memory after the last malloc. When the program terminates, its working segment is
destroyed and the real–memory page frames that contained working–segment data are
added to the free list. 

Related Information
The vmstat, ps, and svmon commands.
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Analyzing Patterns of Memory Use with BigFoot
Note: This section applies only to Version 4.1 (and later) of AIX.

The BigFoot tool is packaged as part of the Performance Toolbox for AIX. To determine
whether BigFoot is available, use:

lslpp –lI perfagent.tools

If this package has been installed, BigFoot is available.

The  BigFoot tool collects the memory footprint of a running program. It reports the
virtual–memory pages touched by the process. BigFoot consists of two commands: 

bf collects information about pages touched during the execution of a
program. It generates the complete data from the run in a file named
__bfrpt.

bfrpt filters the __bfrpt file to extract the storage references made by a given
process.
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Assessing Memory Requirements via the rmss Command
rmss is an acronym for Reduced–Memory System Simulator. rmss provides you with a
means to simulate ESCALAs with different sizes of real memories that are smaller than your
actual machine, without having to extract and replace memory boards. Moreover, rmss
provides a facility to run an application over a range of memory sizes, displaying, for each
memory size, performance statistics such as the response time of the application and the
amount of paging. In short, rmss is designed to help you answer the question: ”How many
megabytes of real memory does a ESCALA need to run AIX and a given application with an
acceptable level of performance?”––or in the multiuser context––”How many users can run
this application simultaneously in a machine with X megabytes of real memory?” 

In AIX Version 4.1, the rmss command is packaged as part of the Performance Toolbox for
AIX. To determine whether rmss is available, use:

lslpp –lI perfagent.tools

If this package has been installed, rmss is available.

It is important to keep in mind that the memory size simulated by rmss is the total size of
the machine’s real memory, including the memory used by AIX and any other programs that
may be running. It is not the amount of memory used specifically by the application itself.
Because of the performance degradation it can cause, rmss can be used only by root  or
a member of the system group.

The following sections describe rmss in further detail:

• Two Styles of Using rmss

• Using rmss to Change the Memory Size and Exit

• Using rmss to Run a Command over a Range of Memory Sizes

• Important Rules to Consider When Running rmss

Two Styles of Using rmss
rmss can be invoked in two ways: (1) to change the memory size and exit; or (2) as a driver
program, which executes a specified application multiple times over a range of memory
sizes and displays important statistics that describe the application’s performance at each
memory size. The first invocation technique is useful when you want to get the look and feel
of how your application performs at a given system memory size, when your application is
too complex to be expressed as a single command, or when you want to run multiple
instances of the application. The second invocation technique is appropriate when you have
an application that can be invoked as an executable or shell script file.

Note: Before using rmss, it is a good idea to use the command schedtune –h 0 , on
page 7-15 to turn off VMM memory–load control. Otherwise, VMM memory–load control
may interfere with your measurements at small memory sizes. When your experiments
are complete, reset the memory–load–control parameters to the values that are normally
in effect on your system (if you normally use the default parameters, use schedtune
–D).

Using rmss to Change the Memory Size and Exit
To  change the memory size and exit, use the –c flag: 

# rmss –c memsize

For example, to change the memory size to 12MB, use:
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# rmss –c 12

memsize  is an integer or decimal fraction number of megabytes (for example, 12.25).
Additionally, memsize  must be between 4MB and the amount of physical real memory in
your machine. Depending on the hardware and software configuration, rmss may not be
able to change the memory size to less than 8MB, because of the size of inherent system
structures such as the kernel. When rmss is unable to change to a given memory size, it
displays an informative error message.

rmss reduces the effective memory size of a ESCALA by stealing free page frames from
the list of free frames that is maintained by the VMM. The stolen frames are kept in a pool of
unusable frames and are returned to the free frame list when the effective memory size is to
be increased. Also, rmss dynamically adjusts certain system variables and data structures
that must be kept proportional to the effective size of memory.

It may take a short while (up to 15 to 20 seconds) to change the memory size. In general,
the more you wish to reduce the memory size, the longer rmss takes to complete. When
successful, rmss responds with the following message:

Simulated memory size changed to  12.00 Mb.

To display the current memory size, use the –p flag:

# rmss –p

To this, rmss responds:

Simulated memory size is  12.00 Mb.

Finally, if you wish to reset the memory size to the actual memory size of the machine, use
the –r flag:

# rmss –r

No matter what the current simulated memory size, using the –r flag sets the memory size
to be the physical real memory size of the machine. Since this example was run on a 16MB
machine, rmss responded:

Simulated memory size changed to  16.00 Mb.

Note: The rmss command reports usable real memory. On machines that contain bad
memory or memory that is in use, rmss reports the amount of real memory as the
amount of physical real memory minus the memory that is bad or in use by the system.
For example, the rmss –r command might report:

Simulated memory size changed to 79.9062 Mb.

This could be a result of some pages being marked bad or a result of a device that is
reserving some pages for its own use (and thus not available to the user).
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Using the –c, –p, and –r Flags

The –c, –p and –r flags of rmss have an advantage over the other options in that they allow
you to experiment with complex applications that cannot be expressed as a single
executable or shell script file. On the other hand, the –c, –p, and –r options have a
disadvantage in that they force you to do your own performance measurements.
Fortunately, there is an easy way to do this. You can use vmstat –s to measure the
paging–space activity that occurred while your application ran.

By running vmstat –s, running your application, then running vmstat –s again, and
subtracting the number of paging–space page ins before from the number of paging–space
page ins after, you can determine the number of paging–space page ins that occurred while
your program ran. Furthermore, by timing your program, and dividing the number of
paging–space page ins by the program’s elapsed run time, you can obtain the average
paging–space page–in rate.

It is also important to run the application multiple times at each memory size. There are two
good reasons for doing so. First, when changing memory size, rmss often clears out a lot of
memory. Thus, the first time you run your application after changing memory sizes it is
possible that a substantial part of the run time may be due to your application reading files
into real memory. But, since the files may remain in memory after your application
terminates, subsequent executions of your application may result in substantially shorter
elapsed times. Another reason to run multiple executions at each memory size is to get a
feel for the average performance of the application at that memory size. The ESCALA and
AIX are complex systems, and it is impossible to duplicate the system state each time your
application runs. Because of this, the performance of your application may vary significantly
from run to run.

To summarize, you might consider the following set of steps as a desirable way to use this
style of rmss invocation:

while there are interesting memory sizes to investigate:

  {

  change to an interesting memory size using rmss –c;

  run the application once as a warm–up;

  for a couple of iterations:

    {

    use vmstat –s to get the ”before” value of paging–space page ins;

    run the application, while timing it;

    use vmstat –s to get the ”after” value of paging–space page ins;

    subtract the ”before” value from the ”after” value to get the

       number of page ins that occurred while the application ran;

    divide the number of paging–space page ins by the response time

       to get the paging–space page–in rate;

    }

  }

run rmss –r to restore the system to normal memory size (or reboot)

The calculation of the (after – before) paging I/O numbers can be automated by using the
vmstat.sh script that is part of the PerfPMR package.

Using rmss to Run a Command over a Range of Memory Sizes
The  –s, –f, –d, –n, and –o flags are used in combination to invoke rmss as a driver
program. As a driver program, rmss executes a specified application over a range of
memory sizes and displays statistics describing the application’s performance at each
memory size. The syntax for this invocation style of rmss is given below: 

rmss [ –s smemsize ] [ –f fmemsize ] [ –d memdelta ]
     [ –n numiterations ] [ –o outputfile ] command
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The –n flag is used to specify the number of times to run and measure the command at
each memory size. The –o flag is used to specify the file into which to write the rmss report,
while command is the application that you wish to run and measure at each memory size.
Each of these flags is discussed in detail below.

The –s, –f, and –d flags are used to specify the range of memory sizes. The –s flag
specifies the starting size, the –f flag specifies the final size, and the –d flag specifies the
difference between sizes. All values are in integer or decimal fractions of megabytes. For
example, if you wanted to run and measure a command at sizes 24, 20, 16, 12 and 8MB,
you would use the following combination:

–s 24 –f 8 –d 4

Likewise, if you wanted to run and measure a command at 16, 24, 32, 40, and 48MB, you
would use the following combination:

–s 16 –f 48 –d 8

If the –s flag is omitted, rmss starts at the actual memory size of the machine. If the –f flag
is omitted, rmss finishes at 8MB. If the –d flag is omitted, there is a default of 8MB between
memory sizes.

What values should you choose for the –s, –f, and –d flags? A simple choice would be to
cover the memory sizes of ESCALAs that are being considered to run the application you
are measuring. However, increments of less than 8MB can be useful, because you can get
an idea of how much ”breathing room” you’ll have when you settle on a given size. For
instance, if a given application thrashes at 8MB but runs without page ins at 16MB, it would
be useful to know where within the 8 to 16MB range the application starts thrashing. If it
starts at 15MB, you may want to consider configuring the system with more than 16MB of
memory, or you may want to try to modify the application so that there is more breathing
room. On the other hand, if the thrashing starts at 9MB, you know that you have plenty of
breathing room with a 16MB machine.

The –n flag is used to specify how many times to run and measure the command at each
memory size. After running and measuring the command the specified number of times,
rmss displays statistics describing the average performance of the application at that
memory size. To run the command 3 times at each memory size, you would use the
following:

–n 3

If the –n flag is omitted, rmss determines during initialization how many times your
application must be run in order to accumulate a total run time of 10 seconds. rmss does
this to ensure that the performance statistics for short–running programs will not be
significantly skewed by transient outside influences, such as daemons.

Note: If you are measuring a very brief program, the number of iterations required to
accumulate 10 seconds of CPU time can be very large. Since each execution of the
program takes a minimum of about 2 elapsed seconds of rmss overhead, you should
probably specify the –n parameter explicitly for short programs.

What are good values to use for the –n flag? If you know that your application takes much
more than 10 seconds to run, then you can specify –n 1  so that the command is run and
measured only once at each memory size. The advantage of using the –n flag is that rmss
will finish sooner because it will not have to spend time during initialization to determine how
many times to run your program. This can be particularly valuable when the command being
measured is long–running and interactive.
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It is important to note that rmss always runs the command once at each memory size as a
warm–up before running and measuring the command. The warm–up is needed to avoid
the I/O that occurs when the application is not already in memory. Although such I/O does
affect performance, it is not necessarily due to a lack of real memory. The warm–up run is
not included in the number of iterations specified by the –n flag.

The –o flag is used to specify a file into which to write the rmss report. If the –o flag is
omitted, the report is written into the file rmss.out .

Finally, command is used to specify the application to be measured. command can be an
executable or shell script, with or without command–line arguments. There are some
limitations on the form of the command however. First, it cannot contain the redirection of
input or output (for example, foo > output , foo < input ). This is because rmss
treats everything to the right of the command name as an argument to the command. If you
wish to redirect, you must place the command in a shell script file.

Normally, if you want to store the rmss output in a specific file, you would use the –o option.
If you want to redirect the stdout  output of rmss (for example, to concatenate it to the
end of an existing file) then, with the Korn shell, you need to enclose the rmss invocation in
parentheses, as follows:

# (rmss –s 24 –f 8 foo) >> output

Interpreting rmss Results

This section gives suggestions on how to interpret performance statistics produced by
rmss. Let’s start out with some typical results.

The Report Generated for the foo Program example , on page 7-10 was produced by
running rmss on a real–life application program, although the name of the program has
been changed to foo  for anonymity. The specific command that would have been used to
generate the report is:

# rmss –s 16 –f 8 –d 1 –n 1 –o rmss.out foo

Report Generated for the foo Program

Hostname:  widgeon.austin.ibm.com

Real memory size:   16.00 Mb

Time of day:  Thu Jan  8 19:04:04 1990

Command:  foo

   

Simulated memory size initialized to  16.00 Mb.

    

Number of iterations per memory size = 1 warm–up + 1 measured = 2.

   

Memory size  Avg. Pageins  Avg. Response Time    Avg. Pagein Rate

(megabytes)                     (sec.)           (pageins / sec.)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

16.00            115.0           123.9                 0.9

15.00            112.0           125.1                 0.9

14.00            179.0           126.2                 1.4

13.00             81.0           125.7                 0.6

12.00            403.0           132.0                 3.1

11.00            855.0           141.5                 6.0

10.00           1161.0           146.8                 7.9

9.00            1529.0           161.3                 9.5

8.00            2931.0           202.5                 14.5

The report consists of four columns. The leftmost column gives the memory size, while the
Avg. Pageins  column gives the average number of page ins that occurred when the
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application was run at that memory size. It is important to note that the Avg. Pageins 
column refers to all page in operations, including code, data, and file reads, from all
programs, that completed while the application ran. The Avg. Response Time  column
gives the average amount of time it took the application to complete, while the Avg.
Pagein Rate  column gives the average rate of page ins.

First, concentrate on the Avg. Pagein Rate  column. From 16MB to 13MB, the page–in
rate is relatively small (< 1.5 page ins/sec). However, from 13MB to 8MB, the page–in rate
grows gradually at first, and then rapidly as 8MB is reached. The Avg. Response Time 
column has a similar shape: relatively flat at first, then increasing gradually, and finally
increasing rapidly as the memory size is decreased to 8MB.

Here, the page–in rate actually decreases when the memory size changes from 14MB (1.4
page ins/sec.) to 13MB (0.6 page ins/sec.). This should not be viewed with alarm. In a
real–life system it is impossible to expect the results to be perfectly smooth. The important
point is that the page–in rate is relatively low at both 14MB and 13MB.

Finally, there are a couple of deductions that we can make from the report. First of all, if the
performance of the application is deemed unacceptable at 8MB (as it probably would be),
then adding memory would improve performance significantly. Note that the response time
rises from approximately 124 seconds at 16MB to 202 seconds at 8MB, an increase of 63%.
On the other hand, if the performance is deemed unacceptable at 16MB, adding memory
will not improve performance much, because page ins do not slow the program appreciably
at 16MB.

Examples of Using the –s, –f, –d, –n, and –o Flags

To investigate the performance of a shell script named ccfoo  that contains the command
cc –O –c foo.c  in memory sizes 16, 14, 12, 10, 8 and 6MB; run and measure the
command twice at each memory size; and write the report to the file cc.rmss.out , enter:

# rmss –s 16 –f 6 –d 2 –n 2 –o cc.rmss.out ccfoo

Report for cc

The output is:

Hostname:  terran

Real memory size:   32.00 Mb

Time of day:  Mon Apr 20 16:23:03 1992

Command:  ccfoo

Simulated memory size initialized to  16.00 Mb.

   

Number of iterations per memory size = 1 warm–up + 2 measured = 3.

   

Memory size   Avg. Pageins     Avg. Response Time   Avg. Pagein Rate

(megabytes)                         (sec.)          (pageins / sec.)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

16.00               0.0              0.4                    0.0  

14.00               0.0              0.4                    0.0  

12.00               0.0              0.4                    0.0  

10.00               0.0              0.4                    0.0  

8.00                0.5              0.4                    1.2  

6.00                786.0           13.5                   58.4 

  

Simulated final memory size.

This shows that we were too conservative. Clearly the performance degrades badly in a
6MB machine, but it is essentially unchanged for all of the larger sizes. We can redo the
measurement with a narrower range of sizes and a smaller delta with:
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rmss –s 11 –f 5 –d 1 –n 2 ccfoo

This gives us a clearer picture of the response–time curve of the compiler for this program:

Hostname:  terran

Real memory size:   32.00 Mb

Time of day:  Mon Apr 20 16:11:38 1992

Command:  ccfoo 

   

Simulated memory size initialized to  11.00 Mb.

   

Number of iterations per memory size = 1 warm–up + 2 measured = 3.

Memory size   Avg. Pageins     Avg. Response Time   Avg. Pagein Rate

(megabytes)                       (sec.)            (pageins / sec.)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

11.00               0.0            0.4                    0.0  

10.00               0.0            0.4                    0.0  

9.00                0.5            0.4                    1.1  

8.00                0.0            0.4                    0.0  

7.00                207.0          3.7                    56.1 

6.00                898.0         16.1                    55.9 

5.00                1038.0        19.5                    53.1

Simulated final memory size.

Report for a 16MB Remote Copy

The following example illustrates a report that was generated (on a client machine) by
running rmss on a command that copied a 16MB file from a remote (server) machine via
NFS.

Hostname:  xray.austin.ibm.com

Real memory size:   48.00 Mb

Time of day:  Mon Aug 13 18:16:42 1990

Command:  cp /mnt/a16Mfile /dev/null

    

Simulated memory size initialized to  48.00 Mb.

    

Number of iterations per memory size = 1 warm–up + 4 measured = 5.

   

Memory size   Avg. Pageins   Avg. Response Time  Avg. Pagein Rate

(megabytes)                     (sec.)           (pageins / sec.)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

48.00              0.0            2.7                   0.0

40.00              0.0            2.7                   0.0

32.00              0.0            2.7                   0.0

24.00              1520.8        26.9                  56.6

16.00              4104.2        67.5                  60.8

8.00               4106.8        66.9                  61.4

Note that the response time and page–in rate in this report start relatively low, rapidly
increase at a memory size of 24MB, and then reach a plateau at 16 and 8MB. This report
shows the importance of choosing a wide range of memory sizes when you use rmss. If this
user had only looked at memory sizes from 24MB to 8MB, he or she might have missed an
opportunity to configure the system with enough memory to accommodate the application
without page ins.
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Report for find / –ls >/dev/null

The next example is a report that was generated by running rmss on the shell script file
findbench.sh , which contained the command find / –ls > /dev/null , which
does an ls of every file in the system. The command that produced the report was:

# rmss –s 48 –d 8 –f 4.5 –n 1 –o find.out findbench.sh

A final memory size of 4.5MB was chosen because it happened to be the smallest memory
size that was attainable by using rmss on this machine.

Hostname:  xray.austin.ibm.com

Real memory size:   48.00 Mb

Time of day:  Mon Aug 13 14:38:23 1990

Command:  findbench.sh

    

Simulated memory size initialized to  48.00 Mb.

    

Number of iterations per memory size = 1 warm–up + 1 measured = 2.

    

Memory size    Avg. Pageins    Avg. Response Time   Avg. Pagein Rate

(megabytes)                        (sec.)           (pageins / sec.)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

48.00               373.0            25.5                  14.6

40.00               377.0            27.3                  13.8

32.00               376.0            27.5                  13.7

24.00               370.0            27.6                  13.4

16.00               376.0            27.3                  13.8

8.00                370.0            27.1                  13.6

4.50                1329.0           57.6                  23.1

As in the first example, the average response times and page–in rate values remain fairly
stable as the memory size decreases until we approach 4.5MB, where both the response
time and page–in rate increase dramatically. However, the page–in rate is relatively high
(approximately 14 page ins/sec.) from 48MB through 8MB. The lesson to be learned here is
that with some applications, no practical amount of memory would be enough to eliminate
page ins, because the programs themselves are naturally I/O–intensive. Common examples
of I/O–intensive programs are programs that scan or randomly access many of the pages in
very large files.

Hints for Using the –s, –f, –d, –n, and –o Flags

One helpful feature of rmss, when used in this way, is that it can be terminated (by the
interrupt key, Ctrl–C  by default) without destroying the report that has been written to the
output file. In addition to writing the report to the output file, this causes rmss to reset the
memory size to the physical memory size of the machine.

You can run rmss in the background, even after you have logged out, by using the nohup
command. To do this, precede the rmss command by nohup , and follow the entire
command with an & (ampersand) : 

# nohup rmss –s 48 –f 8 –o foo.out foo &

Important Rules to Consider When Running rmss
No matter which rmss invocation style you are using, it is important to recreate the
end–user environment as closely as possible. For instance, are you using the same model
CPU? same model disks? same network? Will the users have application files mounted
from a remote node via NFS or some other distributed file system? This last point is
particularly important, as pages from remote files are treated differently by the VMM than
pages from local files.
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Likewise, it is best to eliminate any system activity that is not related to the desired system
configuration or the application you are measuring. For instance, you don’t want to have
people working on the same machine as rmss unless they are running part of the workload
you are measuring.

Note: You cannot run multiple invocations of rmss simultaneously.

When you have completed all runs of rmss, it is best to shutdown and reboot the system.
This will remove all changes that rmss has made to the system and will restore the VMM
memory–load–control parameters to their normal settings.
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Tuning VMM Memory Load Control
The  VMM memory load control facility, on page 2-8 protects an overloaded system from
thrashing––a self–perpetuating paralysis in which the processes in the system are spending
all their time stealing memory frames from one another and reading/writing pages on the
paging device. 

Memory–Load–Control Tuning––Possible, but Usually Inadvisable
Memory load control is intended to smooth out infrequent peaks in load that might otherwise
cause the system to thrash. It is not intended to act continuously in a configuration that has
too little RAM to handle its normal workload. It is a safety net, not a trampoline. The correct
solution to a fundamental, persistent RAM shortage is to add RAM, not to experiment with
memory load control in an attempt to trade off response time for memory. The situations in
which the memory–load–control facility may really need to be tuned are those in which there
is more RAM than the defaults were chosen for, not less––configurations in which the
defaults are too conservative.

You should not change the memory–load–control parameter settings unless your workload
is consistent and you believe the default parameters are ill–suited to your workload.

The default parameter settings shipped with the system are always in force unless changed;
and changed parameters last only until the next system boot. All memory–load–control
tuning activities must be done by root . The system administrator may change the
parameters to ”tune” the algorithm to a particular workload or to disable it entirely. This is
done by running the schedtune command. The source and object code of schedtune are
in /usr/samples/kernel.

Attention: schedtune is in the samples directory because it is very
VMM–implementation dependent. The schedtune code that accompanies each release
of AIXwas tailored specifically to the VMM in that release. Running the schedtune
executable from one release on a different release might well result in an
operating–system failure. It is also possible that the functions of schedtune may change
from release to release. You should not propagate shell scripts or inittab entries that
include schedtune to a new release without checking the schedtune documentation for
the new release to make sure that the scripts will still have the desired effect. schedtune
is not supported under SMIT, nor has it been tested with all possible combinations of
parameters. 

schedtune –? obtains a terse description of the flags and options. schedtune with no flags
displays the current parameter settings, as follows:

     THRASH           SUSP       FORK      SCHED

–h    –p    –m      –w    –e      –f        –t

SYS  PROC  MULTI   WAIT  GRACE   TICKS  TIME_SLICE

 6   4     2        1      2      10    0

(The –f and –t flags are not part of the memory–load–control mechanism. They are
documented in the full syntax description of schedtune. The –t flag is also discussed in
Modifying the Scheduler Time Slice, on page 6-26 .) After a tuning experiment, memory load
control can be reset to its default characteristics by executing schedtune –D.

Memory load control is disabled by setting a parameter value such that processes are never
suspended. schedtune –h 0 effectively disables memory load control by setting to an
impossibly high value the threshold that the algorithm uses to recognize thrashing.

In some specialized situations, it may be appropriate to disable memory load control from
the outset. For example, if you are using a terminal emulator with a time–out feature to
simulate a multiuser workload, memory–load–control intervention may result in some
responses being delayed long enough for the process to be killed by the time–out feature. If
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you are using rmss to investigate the effects of reduced memory sizes, you will want to
disable memory load control to avoid interference with your measurement.

If disabling memory load control results in more, rather than fewer, thrashing situations (with
correspondingly poorer responsiveness), then memory load control is playing an active and
supportive role in your system. Tuning the memory–load–control parameters then may
result in improved performance––or you may need to add RAM.

Setting the minimum multiprogramming level, m, effectively keeps m processes from being
suspended. Suppose a system administrator knew that at least ten processes must always
be resident and active in RAM for successful performance, and suspected that memory load
control was too vigorously suspending processes. If schedtune –m 10 were issued, the
system would never suspend so many processes that fewer than ten were competing for
memory. The parameter m does not count the kernel, processes that have been pinned in
RAM with the plock system call, fixed–priority processes with priority values less than 60,
and processes awaiting events. The system default of m=2 ensures that the kernel, all
pinned processes, and two user processes will always be in the set of processes competing
for RAM.

While m=2 is appropriate for a desktop, single–user configuration, it is frequently too small
for larger, multiuser or server configurations with large amounts of RAM. On those systems,
setting m to 4 or 6 may result in the best performance.

When  you have determined the number of processes that ought to be able to run in your
system during periods of peak activity, you can add a schedtune  at the end of the
/etc/inittab file, which ensures that it will be run each time the system is booted, overriding
the defaults that would otherwise take effect with a reboot. For example, an appropriate
/etc/inittab line for raising the minimum level of multiprogramming to 4 on an AIX Version
4.1 system would be: 

schedtune:2:wait:/usr/samples/kernel/schedtune –m 4

An equivalent /etc/inittab line for an Version 3.2.5 system would be:

schedtune:2:wait:/usr/lpp/bos/samples/schedtune –m 4

Remember, this line should not be propagated to a new release of AIX without a check of
the documentation.

While it is possible to vary other parameters that control the suspension rate of processes
and the criteria by which individual processes are selected for suspension, it is impossible to
predict with any confidence the effect of such changes on a particular configuration and
workload. Deciding on the default parameters was a difficult task, requiring sophisticated
measurement tools and patient observation of repeating workloads. Great caution should be
exercised if memory–load–control parameter adjustments other than those just discussed
are considered.
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Tuning VMM Page Replacement
The  memory–management algorithm, on page 2-5 tries to keep the size of the free list and
the percentage of real memory occupied by persistent–segment pages within specified
bounds. These bounds can be altered with the vmtune command, which can only be run by
root . 

Attention:  vmtune is in the samples directory because it is very VMM–implementation
dependent. The vmtune code that accompanies each release of AIX was tailored
specifically to the VMM in that release. Running the vmtune executable from one
release on a different release might well result in an operating–system failure. It is also
possible that the functions of vmtune may change from release to release. You should
not propagate shell scripts or inittab entries that include vmtune to a new release
without checking the vmtune documentation for the new release to make sure that the
scripts will still have the desired effect. 

Choosing minfree and maxfree Settings
The purpose of the free list  is to keep track of real–memory page frames released by
terminating processes and to supply page frames to requestors immediately, without forcing
them to wait for page steals and the accompanying I/O to complete. The minfree limit
specifies the free–list size below which page stealing to replenish the free list is to be
started. maxfree is the size above which stealing will end. 

The objectives in tuning these limits are:

• to ensure that any activity that has critical response–time objectives can always get the
page frames it needs from the free list

• to ensure that the system does not experience unnecessarily high levels of I/O because
of premature stealing of pages to expand the free list

If you have a short list of the programs you want to run fast, you could investigate their
memory requirements with svmon (see How Much Memory Is Really Being Used, on page
7-2 ), and set minfree to the size of the largest. This technique risks being too conservative
because not all of the pages that a process uses are acquired in one burst. At the same
time, you may be missing dynamic demands that come from programs not on your list that
may lower the average size of the free list when your critical programs run.

A less precise but more comprehensive tool for investigating an appropriate size for
minfree is vmstat. The following is a portion of the vmstat 1 output obtained while running
an XLC compilation on an otherwise idle system. The first line has not been
removed––observe that the first line contains summary CPU and other activity measures,
but current memory statistics.

procs    memory             page              faults        cpu     

––––– ––––––––––– –––––––––––––––––––––––– –––––––––––– –––––––––––

 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa 

 0  0  3085   118   0   0   0   0    0   0 115    2  19  0  0 99  0

 0  0  3086   117   0   0   0   0    0   0 119  134  24  1  3 96  0

 2  0  3141    55   2   0   6  24   98   0 175  223  60  3  9 54 34

 0  1  3254    57   0   0   6 176  814   0 205  219 110 22 14  0 64

 0  1  3342    59   0   0  42 104  249   0 163  314  57 43 16  0 42

 1  0  3411    78   0   0  49 104  169   0 176  306  51 30 15  0 55

 1  0  3528   160   1   0  10 216  487   0 143  387  54 50 22  0 27

 1  0  3627    94   0   0   0  72  160   0 148  292  79 57  9  0 34

 1  0  3444   327   0   0   0  64  102   0 132  150  41 82  8  0 11

 1  0  3505   251   0   0   0   0    0   0 128  189  50 79 11  0 11

 1  0  3550   206   0   0   0   0    0   0 124  150  22 94  6  0  0

 1  0  3576   180   0   0   0   0    0   0 121  145  30 96  4  0  0

 0  1  3654   100   0   0   0   0    0   0 124  145  28 91  8  0  1

 1  0  3586   208   0   0   0  40   68   0 123  139  24 91  9  0  0
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Because the compiler has not been run recently, the code of the compiler itself has to be
read in. All told, the compiler acquires about 2MB in about 6 seconds. On this 32MB system
maxfree is 64 and minfree is 56. The compiler almost instantly drives the free list size
below minfree, and several seconds of frantic page–stealing activity take place. Some of
the steals require that dirty working–segment pages be written to paging space, which
shows up in the po  column. If the steals cause the writing of dirty permanent–segment
pages, that I/O does not appear in the vmstat report (unless you have directed vmstat to
report on the I/O activity of the physical volume(s) to which the permanent pages are being
written).

This example is not intended to suggest that you set minfree to 500 to accommodate large
compiles. It points out how one can use vmstat to identify situations in which the free list
has to be replenished while a program is waiting for space. In this case, about 2 seconds
were added to the compiler execution time because there weren’t enough page frames
immediately available. If you observe the page frame consumption of your program, either
during initialization or during normal processing, you will soon have an idea of the number
page frames that need to be in the free list to keep the program from waiting for memory.

When you determine the appropriate size for the free list for your interactive workload, you
can set minfree appropriately with vmtune. maxfree should be greater than minfree by at
least 8 (or by maxpgahead, whichever is greater). If we concluded from the example above
that minfree needed to be 128, and we had set maxpgahead to 16 to improve sequential
performance, we would use the following vmtune command and receive the output shown:

# /usr/lpp/bos/samples/vmtune –f 128 –F 144

   

 minperm  maxperm  minpgahead  maxpgahead  minfree  maxfree  numperm

   1392     5734        2          16          56       64     3106

number of memory frames = 8192   number of bad memory pages = 0

maxperm=70.0% of real memory

minperm=17.0% of real memory

    

 minperm  maxperm  minpgahead  maxpgahead  minfree  maxfree  numperm

   1392     5734        2          16         128      144     3106

number of memory frames = 8192   number of bad memory pages = 0

maxperm=70.0% of real memory

minperm=17.0% of real memory

Choosing minperm and maxperm Settings
AIX  takes advantage of the varying requirements for real memory by leaving in memory
pages of files that have been read or written. If the file pages are requested again before
their page frames are reassigned, this technique saves an I/O operation. (Even if a file
page’s page frame has been stolen and placed on the free list, if that file page is requested
before the page frame is actually used for another purpose, it will be reclaimed from the free
list.) These file pages may be from local or remote (for example, NFS) file systems. 

The ratio of page frames used for files versus those used for computational (working or
program text) segments is loosely controlled by the minperm and maxperm values.

In a particular workload, it may be worthwhile to emphasize the avoidance of file I/O. In
another workload, keeping computational segment pages in memory may be more
important. To understand what the ratio is in the untuned state, we use the vmtune
command with no arguments.

# vmtune

   

 minperm  maxperm  minpgahead  maxpgahead  minfree  maxfree  numperm

   1433     5734        2          16         128      144     3497

number of memory frames = 8192   number of bad memory pages = 0

maxperm=70.0% of real memory

minperm=17.5% of real memory
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The default values are calculated by the following algorithm:

minperm (in pages) =   ((number of memory frames) – 1024) * .2

maxperm (in pages) =   ((number of memory frames) – 1024) * .8

The numperm column gives the number of file pages in memory, 3497. This is 42.7% of
real memory. If we know that our workload makes little use of recently read or written files,
we may want to constrain the amount of memory used for that purpose. The command:

# vmtune –p 15 –P 40

would set minperm to 15% and maxperm to 40% of real memory. This would ensure that
the VMM would steal page frames only from file pages when the ratio of file pages to total
memory pages exceeded 40%. On the other hand, if our application frequently references a
small set of existing files (especially if those files are in an NFS–mounted file system), we
might want to allow more space for local caching of the file pages with:

# vmtune –p 30 –P 60

Related Topics
The schedtune and vmtune commands.



7-20 Performance Tuning Guide



8-1Monitoring and Tuning Disk I/O

Chapter 8. Monitoring and Tuning Disk I/O

 
This  chapter focuses on the performance of locally attached disk drives. 

If you are not familiar with AIX’s concepts of volume groups, logical and physical volumes,
and logical and physical partitions, you may want to read Performance Overview of AIX
Management of Fixed–Disk Storage, on page 2-12 .

Other sections of interest are:

• Tuning Sequential Read Ahead

• Use of Disk–I/O Pacing

• Performance Implications of Logical Volume Striping

• Performance Implications of File–System Fragment Size

• Performance Implications of Compression

• Performance Implications of Asynchronous Disk I/O

• Performance Implications of Using Raw Disk I/O

• Performance Implications of sync/fsync

• Modifying the SCSI Device Driver max_coalesce Parameter

• Setting SCSI–Adapter and Disk–Device Queue Limits

• Controlling the Number of System pbufs

This section contains the following major subsections:

• Pre–Installation Planning

• Building a Pre–Tuning Baseline

• Assessing Disk Performance after Installation

• Assessing Physical Placement of Data on Disk

• Reorganizing a Logical Volume or Volume Group

• Reorganizing a File System

• Performance Considerations of Paging Spaces

• Measuring Overall Disk I/O with vmstat

• Using filemon for Detailed I/O Analysis

• Disk–Limited Programs

• Expanding the Configuration

Pre–Installation Planning
File–system configuration has a large effect on overall system performance and is
time–consuming to change after installation. Deciding on the number and types of hard
disks, and the sizes and placements of paging spaces and logical volumes on those hard
disks, is therefore a critical pre–installation process.

An extensive discussion of the considerations for pre–installation disk configuration planning
appears in Disk Pre–Installation Guidelines, on page 4-23 .
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Building a Pre–Tuning Baseline
Before making significant changes in your disk configuration or tuning parameters, it is a
good idea to build a baseline of measurements that record the current configuration and
performance. In addition to your own measurements, you may want to create a
comprehensive baseline with the PerfPMR package. See Check before You Change, on
page 12-22 .

Assessing Disk Performance after Installation
Begin the assessment by running iostat with an interval parameter during your system’s
peak workload period or while running a critical application for which you need to minimize
I/O delays. The following shell  script runs iostat in the background while a cp of a large file
runs in the foreground so that there is some I/O to measure: 

$ iostat 5 3 >io.out &

$ cp big1 /dev/null

This would leave the following three reports in  io.out :

tty:     tin      tout    cpu:   % user   % sys   % idle  %

iowait

         0.0       3.2            0.2      0.6    98.9       0.3

    

Disks:     % tm_act     Kbps      tps    msps   Kb_read   Kb_wrtn

hdisk0        0.0       0.3       0.0             29753     48076

hdisk1        0.1       0.1       0.0             11971     26460

hdisk2        0.2       0.8       0.1             91200    108355

cd0           0.0       0.0       0.0                 0         0

The first, summary, report shows the overall balance (or, in this case, imbalance) in the I/O
to each of the hard disks. 
hdisk1

 is almost idle and 
hdisk2

 receives about 63% of the total I/O.

The second report shows the 5–second interval during which cp ran. The data must be
viewed with care. The elapsed time for this cp was about 2.6 seconds. Thus, 2.5 seconds of
high I/O dependency are being averaged with 2.5 seconds of idle time to yield the 39.5% 
iowait

 reported. A shorter interval would have given a more accurate characterization of the
command itself, but this example demonstrates the considerations one must take into
account in looking at reports that show average activity across intervals.

Assessing Physical Placement of Data on Disk
If

 the workload shows a significant degree of I/O dependency, you can investigate the
physical placement

 of the files on the disk to determine if reorganization at some level would yield an
improvement. To see the placement of the partitions of logical volume 



8-3Monitoring and Tuning Disk I/O

hd11

 within physical volume 
hdisk0

, use:

$ lslv –p hdisk0 hd11

lslv then reports:

hdisk0:hd11:/home/op

USED  USED  USED  USED  USED  USED  USED  USED  USED  USED     1–10

USED  USED  USED  USED  USED  USED  USED                      11–17

USED  USED  USED  USED  USED  USED  USED  USED  USED  USED    18–27

USED  USED  USED  USED  USED  USED  USED                      28–34

USED  USED  USED  USED  USED  USED  USED  USED  USED  USED    35–44

USED  USED  USED  USED  USED  USED                            45–50

USED  USED  USED  USED  USED  USED  USED  USED  USED  USED    51–60

0052  0053  0054  0055  0056  0057  0058                      61–67

0059  0060  0061  0062  0063  0064  0065  0066  0067  0068    68–77

0069  0070  0071  0072  0073  0074  0075                      78–84

The word USED  means that the physical partition is in use by a logical volume other than
hd11 . The numbers indicate the logical partition of hd11  that is assigned to that physical
partition.

We look for the rest of hd11  on hdisk1  with:

$ lslv –p hdisk1 hd11

which produces:

hdisk1:hd11:/home/op

0035  0036  0037  0038  0039  0040  0041  0042  0043  0044    1–10

0045  0046  0047  0048  0049  0050  0051                     11–17

   

USED  USED  USED  USED  USED  USED  USED  USED  USED  USED   18–27

USED  USED  USED  USED  USED  USED  USED                     28–34

   

USED  USED  USED  USED  USED  USED  USED  USED  USED  USED   35–44

USED  USED  USED  USED  USED  USED                           45–50

   

0001  0002  0003  0004  0005  0006  0007  0008  0009  0010   51–60

0011  0012  0013  0014  0015  0016  0017                     61–67

   

0018  0019  0020  0021  0022  0023  0024  0025  0026  0027   68–77

0028  0029  0030  0031  0032  0033  0034                     78–84

We see that logical volume hd11  is fragmented within physical volume hdisk1 , with its
first logical partitions in the inner–middle and inner regions of hdisk1 , while logical
partitions 35–51 are in the outer region. A workload that accessed hd11 randomly would
experience unnecessary I/O wait time as the disk’s accessor moved back and forth between
the parts of hd11. These reports also show us that there are no free physical partitions in
either  hdisk0  or hdisk1 .
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If we look at hd2  (the logical volume containing the /usr file system) on hdisk2  with:

$ lslv –p hdisk2 hd2

we find some physical partitions that are FREE :

hdisk2:hd2:/usr

USED  USED  USED  USED  FREE  FREE  FREE  FREE  FREE  FREE     1–10

FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE    11–20

FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE    21–30

FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE    31–40

FREE                                                          41–41

   

USED  USED  USED  USED  USED  USED  USED  USED  USED  USED    42–51

USED  USED  USED  USED  USED  USED  FREE  FREE  FREE  FREE    52–61

FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE    62–71

FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE    72–81

FREE                                                          82–82

   

USED  USED  0001  0002  0003  0004  0005  0006  0007  0008    83–92

0009  0010  0011  0012  0013  0014  0015  USED  USED  USED   93–102

USED  0016  0017  0018  0019  0020  0021  0022  0023  0024  103–112

0025  0026  0027  0028  0029  0030  0031  0032  0033  0034  113–122

   

0035  0036  0037  0038  0039  0040  0041  0042  0043  0044  123–132

0045  0046  0047  0048  0049  0050  0051  0052  0053  0054  133–142

0055  0056  0057  0058  0059  0060  0061  0062  0063  0064  143–152

0065  0066  0067  0068  0069  0070  0071  0072  0073  0074  153–162

0075                                                        163–163

   

0076  0077  0078  0079  0080  0081  0082  0083  0084  0085  164–173

0086  0087  0088  0089  0090  0091  0092  0093  0094  0095  174–183

0096  0097  0098  0099  0100  FREE  FREE  FREE  FREE  FREE  184–193

FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  194–203

FREE                                                        204–204

There are several interesting differences from the previous reports. The hd2  logical
volume is contiguous, except for four physical partitions (100–103). Other lslvs (not shown)
tell us that these partitions are used for hd1 , hd3 , and hd9var  (/home, /tmp, and /var,
respectively).

If we want to see how the file  copied earlier, big1 , is stored on the disk, we can use the
fileplace command: 

$ fileplace –pv big1

The resulting report is:

File: big1  Size: 3554273 bytes  Vol: /dev/hd10 (4096 byte blks)

Inode: 19  Mode: –rwxr–xr–x  Owner: frankw  Group: system 

   

Physical blocks (mirror copy 1)                    Logical blocks

–––––––––––––––––––––––––––––––                   ––––––––––––––

01584–01591  hdisk0       8 blks,    32 KB,   0.9%    01040–01047

01624–01671  hdisk0      48 blks,   192 KB,   5.5%    01080–01127

01728–02539  hdisk0     812 blks,  3248 KB,  93.5%    01184–01995

    

  868 blocks over space of 956:  space efficiency = 90.8%

  3 fragments out of 868 possible:  sequentiality = 99.8%
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This shows that there is very little fragmentation within the file, and those are small gaps.
We can therefore infer that the disk arrangement of big1  is not affecting its sequential
read time significantly. Further, given that a (recently created) 3.5MB file encounters this
little fragmentation, it appears that the file system in general has not become particularly
fragmented.

Note: If a file has been created by seeking to various locations and writing widely
dispersed records, only the pages that contain records will take up space on disk and
appear on a fileplace report. The file system does not fill in the intervening pages
automatically when the file is created. However, if such a file is read sequentially, by the
cp or tar commands, for example, the space between records is read as binary zeroes.
Thus, the output of such a cp command can be much larger than the input file, although
the data is the same.

In AIX Version 4.1, the fileplace command is packaged as part of the Performance Toolbox
for AIX. To determine whether fileplace is available, use:

lslpp –lI perfagent.tools

If this package has been installed, fileplace is available.

Reorganizing a Logical Volume or Volume Group
If  we found that a volume was sufficiently fragmented to require reorganization, we could
use smit to run the reorgvg command (smit –> Physical & Logical Storage –> Logical
Volume Manager –> Volume Groups –> Set Characteristics of a Volume Group –>
Reorganize a Volume Group). The fast path is: 

# smit reorgvg

Use of this command against rootvg  on the test system, with no particular logical
volumes specified, resulted in migration of all of the logical volumes on hdisk2 . After the
reorganization, the output of an

$ lslv –p hdisk2 hd2

was:
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hdisk2:hd2:/usr

USED  USED  USED  USED  USED  USED  USED  USED  FREE  FREE      1–10

FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE     11–20

FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE     21–30

FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE     31–40

FREE                                                           41–41

   

USED  USED  USED  USED  USED  USED  USED  USED  USED  USED     42–51

USED  USED  USED  USED  USED  USED  FREE  FREE  FREE  FREE     52–61

FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE     62–71

FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE     72–81

FREE                                                           82–82

   

USED  USED  0001  0002  0003  0004  0005  0006  0007  0008     83–92

0009  0010  0011  0012  0013  0014  0015  0016  0017  0018    93–102

0019  0020  0021  0022  0023  0024  0025  0026  0027  0028   103–112

0029  0030  0031  0032  0033  0034  0035  0036  0037  0038   113–122

   

0039  0040  0041  0042  0043  0044  0045  0046  0047  0048   123–132

0049  0050  0051  0052  0053  0054  0055  0056  0057  0058   133–142

0059  0060  0061  0062  0063  0064  0065  0066  0067  0068   143–152

0069  0070  0071  0072  0073  0074  0075  0076  0077  0078   153–162

0079                                                         163–163

   

0080  0081  0082  0083  0084  0085  0086  0087  0088  0089   164–173

0090  0091  0092  0093  0094  0095  0096  0097  0098  0099   174–183

0100  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE   184–193

FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE  FREE   194–203

FREE                                                         204–204

The physical–partition fragmentation within hd2  that was seen in the previous report has
disappeared. However, we have not affected any fragmentation at the physical–block level
that may exist within the /usr file system. Since most of the files in /usr are written once,
during system installation, and are not updated thereafter, /usr is unlikely to experience
much internal fragmentation. User data in the /home file system is another matter.

Reorganizing a File System
The  test system has a separate logical volume and file system hd11  (mount point:
/home/op ) for potentially destructive testing. If we decide that hd11  needs to be
reorganized, we start by backing up the data with: 

# cd /home/op

# find . –print | pax –wf/home/waters/test_bucket/backuptestfile

which creates a backup file (in a different file system) containing all of the files in the file
system to be reorganized. If the disk space on the system is limited, this backup could be
done to tape.

Before the file system can be rebuilt, you must run unmount, as follows:

# unmount /home/op

If any processes are using /home/op  or any of its subdirectories, they must be killed
before the unmount can succeed.

To remake the file system on /home/op ’s logical volume, enter:

# mkfs /dev/hd11
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You are prompted for confirmation before the old file system is destroyed. The name of the
file system does not change. To restore the original situation (except that /home/op  is
empty), enter:

# mount /dev/hd11 /home/op

# cd /home/op

Now put the data back with:

# pax –rf/home/frankw/tuning.io/backuptestfile >/dev/null

Standard out is redirected to /dev/null  to avoid displaying the name of each of the files
restored, which can be very time–consuming.

If we look again at the large file inspected earlier, with:

# fileplace –piv big1

we see that it is now (nearly) contiguous:

File: big1  Size: 3554273 bytes  Vol: /dev/hd11 (4096 byte blks)

Inode: 8290  Mode: –rwxr–xr–x  Owner: frankw  Group: system  

   

INDIRECT BLOCK: 60307

   

Physical blocks (mirror copy 1)                   Logical blocks

–––––––––––––––––––––––––––––––                   ––––––––––––––

60299–60306  hdisk1     8 blks,    32 KB,   0.9%    08555–08562

60308–61167  hdisk1   860 blks,  3440 KB,  99.1%    08564–09423

   

  868 blocks over space of 869:  space efficiency = 99.9%

  2 fragments out of 868 possible:  sequentiality = 99.9%

The –i option that we added to the fileplace command shows us that the one–block gap
between the first eight blocks of the file and the remainder contains the indirect block, which
is required to supplement the i–node information when the length of the file exceeds eight
blocks.

Performance Considerations of Paging Spaces
I/O to and from paging spaces is random, mostly one page at a time. vmstat reports
indicate the amount of paging–space I/O taking place. Both of the following examples show
the paging activity that occurs during a C compilation in a machine that has been artificially
shrunk using rmss. The pi and po (paging–space page ins and paging–space page outs)
columns show the amount of paging–space I/O (in terms of 4096–byte pages) during each
5–second interval. The first, summary, report has been removed. Notice that the paging
activity occurs in bursts.
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$ vmstat 5

procs    memory             page              faults        cpu     

––––– ––––––––––– –––––––––––––––––––––––– –––––––––––– –––––––––––

 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa 

 0  0  2502   432   0   0   0   0    0   0 134   26  20  0  1 99  0

 0  0  2904   201   4   0   7  43 1524   0 129  227  38 64 12 15 10

 1  0  3043   136   0   0   0  17  136   0 117   46  24 92  6  0  2

 1  0  3019    90   3   0   0   0    0   0 126   74  34 84  6  0 10

 0  0  3049   178   2   0  15  28  876   0 148   32  32 85  6  0  9

 1  0  3057   216   0   1   6  11   77   0 121   39  25 93  5  0  2

 0  0  2502   599   2  15   0   0    0   0 142 1195  69 47  9 11 34

 0  0  2502   596   0   0   0   0    0   0 135   30  22  1  1 98  1

The following before and after vmstat –s reports show the accumulation of paging activity.
Remember that it is the ” paging space page ins ” and ” . . .outs ” that represent
true paging–space I/O. The (unqualified) ” page ins ” and ” page outs ” report total
I/O––both paging–space I/O and the ordinary file I/O that is also performed by the paging
mechanism. (The reports have been edited to remove lines that are irrelevant to this
discussion.)

$ vmstat –s

        .

     6602 page ins

     3948 page outs

      544 paging space page ins

     1923 paging space page outs

       71 total reclaims

         .

         .

$ vmstat –s

        .

     7022 page ins

     4146 page outs

      689 paging space page ins

     2032 paging space page outs

       84 total reclaims

         .

         .

The fact that more paging–space page ins than page outs occurred during the compilation
suggests that we had shrunk the system to the point of incipient thrashing. Some pages
were being repaged because their frames were stolen before their use was complete (that
is, before any change had been made).

Measuring Overall Disk I/O with vmstat
The technique just discussed can also be used to assess the disk I/O load generated by a
program. If the system is otherwise idle, the sequence:

$ vmstat –s >statout

$ testpgm

$ sync

$ vmstat –s >> statout

$ egrep ”ins|outs” statout

will yield a before and after picture of the cumulative disk activity counts, such as:

     5698 page ins

     5012 page outs

        0 paging space page ins

       32 paging space page outs

     6671 page ins

     5268 page outs

        8 paging space page ins

      225 paging space page outs

During the period when this command (a large C compile) was running, the system read a
total of 981 pages (8 from paging space) and wrote a total of 449 pages (193 to paging
space).
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Using filemon for Detailed I/O Analysis
The  filemon command uses the trace facility to obtain a detailed picture of I/O activity
during a time interval. Since it uses the trace facility, filemon can be run only by root  or
by a member of the system  group. 

In AIX Version 4.1, the  filemon command is packaged as part of the Performance Toolbox
for AIX. To determine whether filemon is available, use: 

lslpp –lI perfagent.tools

If this package has been installed, filemon is available.

Tracing is started by the filemon command, optionally suspended with trcoff and resumed
with trcon, and terminated with trcstop. As soon as tracing is terminated, filemon writes its
report to stdout. The following sequence of commands gives a simple example of filemon
use:

# filemon –o fm.test.out ; cp smit.log /dev/null ; trcstop

The report produced by this sequence, in an otherwise–idle system, was:

Wed Jan 12 11:28:25 1994

System: AIX alborz Node: 3 Machine: 000249573100

    

0.303 secs in measured interval

Cpu utilization:  55.3%

    

Most Active Segments

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

  #MBs  #rpgs  #wpgs  segid  segtype              volume:inode

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

   0.1     26      0   0984  persistent           /dev/hd1:25

   0.0      1      0   34ba  .indirect            /dev/hd1:4

    

Most Active Logical Volumes

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

  util  #rblk  #wblk   KB/s  volume               description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

  0.66    216      0  357.0  /dev/hd1             /home

    

Most Active Physical Volumes

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

  util  #rblk  #wblk   KB/s  volume               description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

  0.65    216      0  357.0  /dev/hdisk1          320  MB SCSI

    

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Detailed VM Segment Stats   (4096 byte pages)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

    

SEGMENT: 0984  segtype: persistent  volume: /dev/hd1  inode: 25

segment flags:          pers 

reads:                  26      (0 errs)

  read times (msec):    avg  45.644 min   9.115 max 101.388 sdev  33.045

  read sequences:       3

  read seq. lengths:    avg     8.7 min       1 max      22 sdev     9.5

SEGMENT: 34ba  segtype: .indirect  volume: /dev/hd1  inode: 4

segment flags:          pers jnld sys 

reads:                  1       (0 errs)

  read times (msec):    avg  16.375 min  16.375 max  16.375 sdev   0.000

  read sequences:       1

  read seq. lengths:    avg     1.0 min       1 max       1 sdev     0.0

    

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Detailed Logical Volume Stats   (512 byte blocks)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

    

VOLUME: /dev/hd1  description: /home

reads:                  27      (0 errs)

  read sizes (blks):    avg     8.0 min       8 max       8 sdev     0.0

  read times (msec):    avg  44.316 min   8.907 max 101.112 sdev  32.893

  read sequences:       12

  read seq. lengths:    avg    18.0 min       8 max      64 sdev    15.4

seeks:                  12      (44.4%)

  seek dist (blks):     init    512

                        avg   312.0 min       8 max    1760 sdev   494.9

time to next req(msec): avg   8.085 min   0.012 max  64.877 sdev  17.383

throughput:             357.0 KB/sec

utilization:            0.66

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Detailed Physical Volume Stats   (512 byte blocks)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

    

VOLUME: /dev/hdisk1  description: 320  MB SCSI

reads:                  14      (0 errs)

  read sizes (blks):    avg    15.4 min       8 max      32 sdev     8.3

  read times (msec):    avg  13.989 min   5.667 max  25.369 sdev   5.608

  read sequences:       12

  read seq. lengths:    avg    18.0 min       8 max      64 sdev    15.4

seeks:                  12      (85.7%)

  seek dist (blks):     init 263168,

                        avg   312.0 min       8 max    1760 sdev   494.9

  seek dist (cyls):     init    399

                        avg     0.5 min       0 max       2 sdev     0.8

time to next req(msec): avg  27.302 min   3.313 max  64.856 sdev  22.295

throughput:             357.0 KB/sec

utilization:            0.65

The Most Active Segments  report lists the most active files. To identify unknown files,
you could translate the logical volume name, /dev/hd1, to the mount point of the file system,
/home, and use the find command:

# find /home –inum 25 –print

which returns:

/home/waters/smit.log

Using filemon in systems with real workloads would result in much larger reports and might
require more trace buffer space. filemon’s space and CPU time consumption can degrade
system performance to some extent. You should experiment with filemon on a
nonproduction system before starting it in a production environment.

Note: Although filemon reports average, minimum, maximum, and standard deviation in
its detailed–statistics sections, the results should not be used to develop confidence
intervals or other formal statistical inferences. In general, the distribution of data points is
neither random nor symmetrical.

Disk–Limited Programs
Disk sensitivity can come in a number of forms, with different resolutions:

• If large, I/O–intensive background jobs are interfering with interactive response time, you
may want to activate I/O pacing.
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• If it appears that a small number of files are being read over and over again, you should
consider whether additional real memory would allow those files to be buffered more
effectively.

• If iostat indicates that your workload I/O activity is not evenly distributed among the
system disk drives, and the utilization of one or more disk drives is often 70–80% or
more, consider reorganizing file systems.

• If the workload’s access pattern is predominantly random, you may want to consider
adding disks and distributing the randomly accessed files across more drives.

• If the workload’s access pattern is predominantly sequential and involves multiple disk
drives, you may want to consider adding one or more disk adapters. It may also be
appropriate to consider building a striped logical volume to accommodate large,
performance–critical sequential files.

Information on the appropriate ratio of disk drives to disk adapters is given in the following
section.

Expanding the Configuration
Unfortunately,  every performance–tuning effort ultimately does reach a point of diminishing
returns.  The question then becomes, ”What hardware do I need, how much of it, and how
do I make the best use of it?” That question is especially tricky with disk–limited workloads
because of the large number of variables. Changes that might improve the performance of a
disk–limited workload include: 

• Adding disk drives and spreading the existing data across them. This divides the I/O load
among more accessors

• Acquiring faster disk drives to supplement or replace existing ones for high–usage data

• Adding one or more disk SCSI adapters to attach the current and/or new disk drives

• Adding RAM to the system and increasing the VMM’s minperm and maxperm
parameters to improve the in–memory caching of high–usage data

Precisely because this question is complex and highly dependent on the workload and
configuration, and because the absolute and relative speeds of disks, adapters, and
processors are changing so rapidly, this guide can’t give a prescription, only some ”rules of
thumb.”

• If you are seeking maximum sequential–access performance:

– Attach no more than three 1.0GB (new) drives to a given SCSI–2 disk adapter.

The maximum sustained sequential performance per SCSI–2 disk adapter, under ideal
conditions, is approximately 6.8MB/sec.

• If you are seeking maximum random–access performance:

– Attach no more than six 1.0GB (new) drives to a given SCSI–2 disk adapter.

The maximum sustained random performance (on 4KB pages) per SCSI–2 disk adapter,
under ideal conditions, is approximately 435 pages/sec.

For more guidance more closely focused on your configuration and workload, you could use
a measurement–driven simulator, such as BEST/1.

Related Information
The backup, fileplace, lslv, lsps, lspv, reorgvg, smit, and unmount commands.

Performance Overview of the Virtual Memory Manager (VMM).

Memory–Limited Programs.

Placement and Sizes of Paging Spaces.
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Tuning Sequential Read Ahead
The  VMM’s sequential read–ahead feature, described in  Sequential–Access Read Ahead,
can improve the performance of programs that access large files sequentially. 

Occasions when tuning the sequential read–ahead feature (or turning it off) will improve
performance are rare. Nevertheless, the performance analyst should understand how this
feature interacts with the application and with other disk–I/O tuning parameters. The figure
”Sequential Read Ahead Example” illustrates a typical situation.

Sequential Read Ahead Example

Page # 0 1 2 3 4 7 8 15 16 23

A B C D E F
Data
Refs:

. . .

In this example, minpgahead is 2 and maxpgahead is 8––the defaults. The program is
processing the file sequentially. Only the data references that have significance to the
read–ahead mechanism are shown, designated by A through F. The sequence of steps is:

A The first access to the file causes the first page (page 0) of the file to be read. At
this point the VMM makes no assumptions about random or sequential access.

B When the program accesses the first byte of the next page (page 1), with no
intervening accesses to other pages of the file, the VMM concludes that the
program is accessing sequentially. It schedules minpgahead (2) additional pages
(pages 2 and 3) to be read. Thus access B causes a total of 3 pages to be read.

C When the program accesses the first byte of the first page that has been read
ahead (page 2), the VMM doubles the page–ahead value to 4 and schedules
pages 4 through 7 to be read.

D When the program accesses the first byte of the first page that has been read
ahead (page 4), the VMM doubles the page–ahead value to 8 and schedules
pages 8 through 15 to be read.

E When the program accesses the first byte of the first page that has been read
ahead (page 8), the VMM determines that the page–ahead value is equal to
maxpgahead and schedules pages 16 through 23 to be read.

F The VMM continues reading maxpgahead pages when the program accesses the
first byte of the previous group of read–ahead pages until the file ends.

(If the program were to deviate from the sequential–access pattern and access a
page of the file out of order, sequential read ahead would be terminated. It would
be resumed with minpgahead pages if the VMM detected a resumption of
sequential access by the program.)

The minpgahead and maxpgahead values can be changed with the vmtune command. If
you are contemplating changing these values, keep in mind:

• The values should be from the set: 0, 1, 2, 4, 8, 16. The use of other values may have
adverse performance or functional effects.

– Values should be powers of 2 because of the doubling algorithm of the VMM.

– Values of maxpgahead greater than 16 (reads ahead of more then 64KB) exceed the
capabilities of some disk device drivers.

– Higher values of maxpgahead can be used in systems where the sequential
performance of striped logical volumes is of paramount importance.
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• A minpgahead value of 0 effectively defeats the mechanism. This may have serious
adverse consequences for performance.

• The default maxpgahead value of 8 yields the maximum possible sequential I/O
performance for currently supported disk drives.

• The ramp–up of the read–ahead value from minpgahead to maxpgahead is quick
enough that for most file sizes there would be no advantage to increasing minpgahead.
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Use of Disk–I/O Pacing
Disk–I/O  pacing is intended to prevent programs that generate very large amounts of
output from saturating the system’s I/O facilities and causing the response times of
less–demanding programs to deteriorate. Disk–I/O pacing enforces per–segment (which
effectively means per–file) high– and low–water marks on the sum of all pending I/Os. When
a process tries to write to a file that already has ”high–water mark” pending writes, the
process is put to sleep until enough I/Os have completed to make the number of pending
writes less than or equal to ”low–water mark.” The logic of I/O–request handling does not
change. The output from high–volume processes is just slowed down somewhat. The high–
and low–water marks are set with smit by  selecting System Environments –> Change /
Show Characteristics of Operating System and then entering the number of pages for
the high– and low–water marks. The default value for the high– and low–water marks is 0,
which disables pacing. New I/O pacing parameters normally take effect immediately and last
until they are explicitly changed. 

Example
The effect of pacing on performance can be demonstrated with an experiment that consists
of starting a vi session on a new file while another process is cping a 64MB file. The file is
copied from disk1  to disk0  and  the vi executable is located on disk0.  For the vi
session to start, it must page itself in as well as perform a few other I/Os, which it does
randomly one page at a time. This takes about 50 physical I/Os, which can be completed in
.71 seconds when there is no contention for the disk. With the high–water mark set to the
default of 0, the logical writes from cp run ahead of the physical writes, and a large queue
builds up. Each I/O started by vi must wait its turn in the queue before the next I/O can be
issued, and thus vi is not able to complete its needed I/O until after cp finishes. The figure
”I/O Pacing Test Results” shows the elapsed times for cp execution and vi initialization with
different pacing parameters. This experiment was run on a Model 530 with two 857MB disks
and 32MB of RAM.

High-Water Low-Water
Mark Mark cp (sec) vi (sec)

0 0 50.0 vi not done
0 0 50.2 vi finished after cp

 had finished
9 6 76.8 2.7
17 12 57.9 3.6
17 8 63.9 3.4
33 24 52.0 9.0
33 16 55.1 4.9

I/O-Pacing-Test Results

It is important to notice that the cp duration is always longer when pacing is set. Pacing
sacrifices some throughput on I/O–intensive programs to improve the response time of
other programs. The challenge for a system administrator is to choose settings that result in
a throughput/response–time trade–off that is consistent with the organization’s priorities.

The high– and low–water marks were chosen by trial and error, based on our knowledge of
the I/O path. Choosing them is not straightforward because of the combination of
write–behind and asynchronous writes. High–water marks of 4x + 1 work particularly well,
because of the following interaction:

• The write–behind feature sends the previous four pages to disk when a logical write
occurs to the first byte of the fifth page.
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• If the pacing high–water mark were a multiple of 4 (say, 8), a process would hit the
high–water mark when it requested a write that extended into the 9th page. It would then
be put to sleep––before the write–behind algorithm had a chance to detect that the fourth
dirty page is complete and the four pages were ready to be written.

• The process would then sleep with four full pages of output until its outstanding writes fell
below the pacing low–water mark.

• If, on the other hand, the high–water mark had been set to 9, write–behind would get to
schedule the four pages for output before the process was suspended.

One limitation of pacing is that it does not offer as much control when a process writes
buffers larger than 4KB. If, when a write is sent to the VMM, the high–water mark has not
been met, the VMM performs Start I/Os on all pages in the buffer, even if that results in
exceeding the high–water mark. Pacing works well on cp because cp writes 4KB at a time;
but if cp wrote larger buffers, the times in the figure ”I/O Pacing Test Results” for starting vi
would increase.

High-Water Low-Water
Mark Mark cp (sec) vi (sec)

0 0 50.0 vi not done
0 0 50.2 vi finished after cp

 had finished
9 6 76.8 2.7
17 12 57.9 3.6
17 8 63.9 3.4
33 24 52.0 9.0
33 16 55.1 4.9

I/O-Pacing-Test Results

Disk–I/O pacing is a tuning parameter that can improve interactive response time in some
situations where foreground or background programs that write large volumes of data are
interfering with foreground requests. If not used properly, however, it can reduce throughput
excessively. The settings in the figure I/O Pacing Test Results are a good place to start, but
some experimenting will be needed to find the best settings for your workload.

Programs whose presence in a workload may make imposition of disk–I/O pacing
necessary include:

• Programs that generate large amounts of output algorithmically, and thus are not
constrained by the time required to read input. Some such programs may need pacing on
comparatively fast processors and not need it on comparatively slow processors.

• Programs that write large, possibly somewhat modified, files that have been read in their
entirety shortly before writing begins––by a previous command, for example.

• Filters, such as the tar command, that read a file and write it out again with little
processing. The need for pacing can be exacerbated if the input is being read from a
faster disk drive than the output is being written to.
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Logical Volume Striping 
Striping is a technique for spreading the data in a logical volume across several disk drives
in such a way that the I/O capacity of the disk drives can be used in parallel to access data
on the logical volume. (The ability to create striped logical volumes is not available on
Version 3.2.5.) The primary objective of striping is very high–performance reading and
writing of large sequential files. The figure ”Striped Logical Volume /dev/lvs0” gives a simple
example.

Striped Logical Volume /dev/lvs0

Stripe Unit 1

Stripe Unit 4

First Logical
Partition

Second Logical
Partition

. . .

Disk Adapter

Stripe Unit n

Stripe Unit n+3

Stripe Unit 2

Stripe Unit 5
. . .

Stripe Unit n+1

Stripe Unit n+4

Stripe Unit 3

Stripe Unit 6
. . .

Stripe Unit n+2

Stripe Unit n+5

First Stripe

Second Stripe

.

.

.

First
Physical 
Volume

Second
Physical 
Volume

Third
Physical 
Volume

In an ordinary logical volume, the data addresses correspond to the sequence of blocks in
the underlying physical partitions. In a striped logical volume, the data addresses follow the
sequence of stripe units. A complete stripe consists of one stripe unit on each of the
physical devices that contains part of the striped logical volume. The LVM determines which
physical blocks on which physical drives correspond to a block being read or written. If more
than one drive is involved, the necessary I/O operations are scheduled for all drives
simultaneously.

As an example, suppose that the hypothetical lvs0 has a stripe–unit size of 64KB, consists
of six 2MB partitions, and contains a journaled file system (JFS). If an application is reading
a large sequential file and read–ahead has reached a steady state, each read will result in
two or three I/Os being scheduled to each of the disk drives to read a total of eight pages
(assuming that the file is on consecutive blocks in the logical volume). The read operations
are performed in the order determined by the disk device driver. The requested data is
assembled from the various pieces of input and returned to the application.

Although each disk device will have a different initial latency, depending on where its
accessor was at the beginning of the operation, once the process reaches a steady state, all
three disks should be reading at close to their maximum speed.

Designing a Striped Logical Volume
When a striped logical volume is defined, you specify:
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drives Obviously, at least two physical drives are required. The drives used
should have little other activity when the performance–critical
sequential I/O is taking place.

Some combinations of disk adapter and disk drive will require dividing
the workload of a striped logical volume between two or more adapters.

stripe unit size Although this can be any power of 2 from 4KB through 128KB, you
should take sequential read ahead into account, since that will be the
mechanism that issues most of the reads. The objective is to have each
read–ahead operation result in at least one I/O, ideally an equal
number, to each disk drive.

size The number of physical partitions allocated to the logical volume must
be an integral multiple of the number of disk drives used.

attributes Cannot be mirrored; that is, copies = 1.

Tuning for Striped Logical Volume I/O
In benchmarking situations, the following techniques have yielded the highest levels of
sequential I/O throughput:

• Stripe unit size of 64KB.

• max_coalesce of 64KB (the default). Equal to the stripe unit size.

• minpgahead of 2.

• maxpgahead of (16 times the number of disk drives). This causes page ahead to be
done in units of the stripe unit size (64KB) times the number of disk drives, resulting in
the reading of one stripe unit from each disk drive for each read ahead operation.

• I/O requests for (64KB times the number of disk drives). This is equal to the
maxpgahead value.

• Modify maxfree to accommodate the change in maxpgahead. See Choosing minfree
and maxfree Settings, on page 7-17.

• 64–byte aligned I/O buffers. If the logical volume will occupy physical drives that are
connected to two or more disk adapters, the I/O buffers used should be allocated on
64–byte boundaries. This avoids having the LVM serialize the I/Os to the different disks.
The following code would yield a 64–byte–aligned buffer pointer:

char *buffer;

buffer = malloc(MAXBLKSIZE+64);

buffer = ((int)buffer + 64) & ~0x3f;

If the striped logical volumes are on raw logical volumes and writes larger than 1.125 MB
are being done to these striped raw logical volumes, increasing the lvm_bufcnt parameter
of vmtune might increase throughput of the write activity.
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File–System Fragment Size
The  fragments feature (in AIX Version 4.1 only) allows the space in a file system to be
allocated in less than 4KB chunks. When a file system is created, the system administrator
can specify the size of the fragments in the file system. The allowable sizes are 512, 1024,
2048, and 4096 bytes (the default). Files smaller than a fragment are stored in a single
fragment, conserving disk space, which is the primary objective. 

Files smaller than 4096 bytes are stored in the minimum necessary number of contiguous
fragments. Files whose size is between 4096 bytes and 32KB (inclusive) are stored in one
or more (4KB) full blocks and in as many fragments as are required to hold the remainder.
Files that contain more than 32KB of data are stored entirely in full blocks.

Whatever the fragment size, a full block is still considered to be 4096 bytes. In a file system
with a fragment size less than 4096, however, a need for a full block can be satisfied by any
contiguous sequence of fragments totalling 4096 bytes. It doesn’t have to begin on a
multiple–of–4096–byte boundary.

The file system tries to allocate space for files in contiguous fragments whenever possible.
In pursuit of that objective, it spreads the files themselves across the logical volume to
minimize inter–file allocation interference and fragmentation.

The primary performance hazard for file systems with small fragment sizes is space
fragmentation. The existence of small files scattered across the logical volume can make it
impossible to allocate contiguous or closely spaced blocks for a large file. The performance
of accessing the large file suffers. Carried to an extreme, space fragmentation can make it
impossible to allocate space for a file, even though there are many individual free
fragments.

Part of a decision to create a small–fragment file system should be a policy for
defragmenting the space in that file system with the defragfs command. This policy also
has to take into account the performance cost of running defragfs.
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Compression
When a file is written into a file system for which compression is specified, the compression 
algorithm compresses the data 4096 bytes (a page) at a time, and the compressed data is
then written in the minimum necessary number of contiguous fragments. Obviously, if the
fragment size of the file system is 4KB, there is no disk–space payback for the effort of
compressing the data. (Compression and fragments smaller than 4KB are new in AIX
Version 4.1.) 

Although compression should result in conserving space overall, there are at least two
reasons for leaving some space in the file system unused:

• Since the degree to which each 4096–byte block of data will compress is not known in
advance, the file system initially reserves a full block of space. The unneeded fragments
are released after compression, but the conservative initial allocation policy may lead to
premature ”out of space” indications.

• Some free space is necessary to allow the defragfs command to operate.



8-20 Performance Tuning Guide

Asynchronous Disk I/O
Applications can use the aio_read and aio_write subroutines to perform asynchronous disk
I/O. Control returns to the application from the subroutine as soon as the request has been
queued. The application can then continue processing while the disk operation is being
performed.

Although the application can continue processing, a kernel process (kproc) called a server
is in charge of each request from the time it is taken off the queue until it completes. The
number of servers limits the number of asynchronous disk I/O operations that can be in
progress in the system simultaneously. The number of servers can be set with smit
(smit–>Devices–>Asynchronous I/O–>Change/Show Characteristics of Asynchronous
I/O–>{MINIMUM|MAXIMUM} number of servers or smit aio) or with chdev. The minimum
number of servers is the number to be started at system boot. The maximum limits the
number that can be started in response to large numbers of simultaneous requests.

The default values are minservers=1 and maxservers=10. In systems that seldom run
applications that use asynchronous I/O, this is usually adequate. For environments with
many disk drives and key applications that use asynchronous I/O, the default is far too low.
The result of a deficiency of servers is that disk I/O seems much slower than it should be.
Not only do requests spend inordinate lengths of time in the queue, the low ratio of servers
to disk drives means that the seek–optimization algorithms have too few requests to work
with for each drive.

For environments in which the performance of asynchronous disk I/O is critical and the
volume of requests is high, we recommend that:

• maxservers should be set to at least 10*(number of disks accessed asynchronously)

• minservers should be set to maxservers/2.

This could be achieved for a system with 3 asynchronously accessed disks with:

# chdev –l aio0 –a minservers=’15’ –a maxservers=’30’

Note:  AIO actions performed against a RAW Logical Volume do not use kproc server
processes. The setting of ”maxservers” and ”minservers” have no effect in this case.
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Using Raw Disk I/O 
There are three ways in which a program might access disk in raw mode:

• Block raw–disk–device special files have names of the form /dev/hdiskn, and are used
by some subsystems. These devices should not be used by application programs.

• Character raw–disk–device special files have names of the form /dev/rhdiskn. Use of
these devices by application programs is not recommended. If you decide to use this
technique, make sure that no AIX logical volumes occupy any part of the physical disk
drive being accessed. The performance effect of interaction between raw access and
file–system access to the same physical drive is unpredictable. Make sure you do not
overwrite the first 512 bytes of the disk since that is where the physical volume ID is
stored.

• A logical volume on which no file system has been created can be accessed in raw
mode. All writes, reads, lseeks, etc. must be in multiples of 512 bytes. The least
important consequence of violating this rule is serious performance degradation.
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Using Performance Implications of sync/fsync
Forced  synchronization of the contents of real memory and disk takes place in several
ways: 

• An application program makes an fsync() call for a specified file. This causes all of the
pages that contain modified data for that file to be written to disk. The writing is complete
when the fsync() call returns to the program.

• An application program makes a sync() call. This causes all of the file pages in memory
that contain modified data to be scheduled for writing to disk. The writing is not
necessarily complete when the sync() call returns to the program.

• A user can enter the sync command, which in turn issues a sync() call. Again, some of
the writes may not be complete when the user is prompted for input (or the next
command in a shell script is processed).

• The sync daemon, /usr/sbin/syncd, issues a sync() call at regular intervals––usually
every 60 seconds. This ensures that the system does not accumulate large amounts of
data that exists only in volatile RAM.

A sync operation has several effects, aside from its small CPU consumption:

• It causes writes to be clumped, rather than spread out.

• It causes at least 28KB of system data to be written, even if there has been no I/O activity
since the previous sync.

• It accelerates the writing of data to disk, defeating the write–behind algorithm. This effect
is significant mainly in programs that issue an fsync() after every write.
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Modifying the SCSI Device Driver max_coalesce Parameter
When there are multiple disk–I/O requests in the SCSI device driver’s queue, it attempts to
coalesce those requests into a smaller number of large requests. The largest request (in
terms of data transmitted) that the SCSI device driver will build is limited by the
max_coalesce parameter. Normally, max_coalesce has a value of 64KB.

To make maximum use of striped logical volumes and disk arrays, it may be desirable to
increase the size of max_coalesce. To do so, it is necessary to have a stanza in the PdAt
ODM database that specifies the new max_coalesce value. If you have already added
such a stanza, you can obtain the current version with:

# odmget –q \

”uniquetype=disk/scsi/osdisk AND attribute=max_coalesce” \

PdAt > foo

If there is no such stanza already, use an editor to create the file foo  with the following
content:

PdAt:

        uniquetype = ”disk/scsi/osdisk”

        attribute = ”max_coalesce”

        deflt = ”0x20000”

        values = ”0x20000”

        width = ””

        type = ”R”

        generic = ””

        rep = ”n”

        nls_index = 0

Note that max_coalesce, in bytes, is expressed as a hexadecimal number. The deflt 
and values  field values of 0x20000 will set max_coalesce to 128KB. Then replace the
old stanza in PdAt, if any, with foo , using:

# odmdelete –o PdAt \

–q ”uniquetype=/disk/scsi/osdisk AND attribute=max_coalesce”

# odmadd < foo

To put the change into effect, you must rebuild the kernel and reboot, with:

# bosboot –a –d hdisk0

# shutdown –rF
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Setting SCSI–Adapter and Disk–Device Queue Limits
AIX has the ability to enforce limits on the number of I/O requests that can be outstanding
from the SCSI adapter to a given SCSI bus or disk drive. These limits are intended to exploit
the hardware’s ability to handle multiple requests while ensuring that the seek–optimization
algorithms in the device drivers are able to operate effectively.

For non–BULL devices, it is sometimes appropriate to modify AIX default queue–limit values
that have been chosen to handle the worst possible case. The following sections describe
situations in which the defaults should be changed and the recommended new values.

Non–BULL Disk Drive
For BULL disk drives, the default number of requests that can be outstanding at any given
time is 3. This value is based on complex performance considerations, and no direct
interface is provided for changing it. The default hardware queue depth for non–BULL disk
drives is 1. If a specific non–BULL disk drive does have the ability to buffer multiple
requests, the system’s description of that device should be changed accordingly.

As an example, the default characteristics of a non–BULL disk drive are displayed with the
lsattr command:

$ lsattr –D –c disk –s scsi –t osdisk 

pvid          none Physical volume identifier      False

clr_q         no   Device CLEARS its Queue on error

q_err         yes  Use QERR bit

q_type        none Queuing TYPE

queue_depth   1    Queue DEPTH

reassign_to   120  REASSIGN time out value

rw_timeout    30   READ/WRITE time out value

start_timeout 60   START unit time out value

The ability to change these parameters is provided through smit (the fast path is chgdsk)
and via the chdev command. For example, if your system contained a non–BULL SCSI disk
drive hdisk5, the command:

# chdev –l hdisk5 –a q_type=simple –a queue_depth=3

would enable queuing for that device and set its queue depth to 3.

Non–BULL Disk Array
A disk array appears to AIX as a single, rather large, disk drive. A non–BULL disk array, like
a non–BULL disk drive, is of class disk, subclass scsi, type osdisk (which stands for
”Other SCSI Disk Drive”). Since a disk array actually contains a number of physical disk
drives, each of which can handle multiple requests, the queue depth for the disk array
device has to be set to a value high enough to allow efficient use of all of the physical
devices. For example, if hdisk7 were an eight–disk non–BULL disk array, an appropriate
change would be:

# chdev –l hdisk7 –a q_type=simple –a queue_depth=24

If the disk array is attached via a SCSI–2 Fast/Wide SCSI adapter bus, it may also be
necessary to change the outstanding–request limit for that bus.
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Disk Adapter Outstanding–Request Limits
The SCSI–2 Fast/Wide Adapter supports two SCSI buses; one for internal devices and one
for external devices. A limit on the total number of outstanding requests is defined for each
bus. The default value of that limit is 40 and the maximum is 128. If an BULL disk array is
attached to a SCSI–2 Fast/Wide Adapter bus, the outstanding–request limit for the bus is
increased to accommodate the queue depth of the disk array. For a non–BULL disk array,
this change must be performed manually. For example, to set the outstanding–request limit
of adapter scsi3 to 70, you would use:

# chdev –l scsi3 –a num_cmd_elems=70

In the SCSI–2 High Performance Controller, the maximum number of queued requests is
30. That limit cannot be changed. For that reason, you should ensure that the sum of the
queue depths of the devices attached to a SCSI–2 High Performance Controller does not
exceed 30.

The original ESCALA SCSI adapter does not support queueing. It is inappropriate to attach
a disk array device to such an adapter.
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Controlling the Number of System pbufs
The Logical Volume Manager (LVM) uses a construct called a ”pbuf” to control a pending
disk I/O. In AIX Version 3, one pbuf is required for each page being read or written. In
systems that do large amounts of sequential I/O, this can result in depletion of the pool of
pbufs. The vmtune command can be used to increase the number of pbufs to compensate
for this effect.

In AIX Version 4.1, a single pbuf is used for each sequential I/O request, regardless of the
number of pages involved. This greatly decreases the probability of running out of pbufs.
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Chapter 9. Monitoring and Tuning Communications I/O

 
This  chapter discusses several different communications protocols and ways to monitor
and tune them. It contains the following major sections: 

• UDP/TCP/IP Performance Overview

• TCP and UDP Performance Tuning

• UDP, TCP/IP, and mbuf Tuning Parameters Summary

• NFS Tuning

• Serving Diskless Workstations

• Tuning Asynchronous Connections for High–Speed Transfers

• Using netpmon to Evaluate Network Performance

• Using iptrace to Analyze Performance Problems
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UDP/TCP/IP Performance Overview
To understand the performance characteristics of UDP and TCP/IP, you must first
understand some of the underlying architecture. The figure ”UDP/TCP/IP Data Flow”
illustrates the structure that will be discussed in this chapter. 

Application

Socket
Layer or
Subsystem
(e.g., NFS,
DFS)

TCP or
UDP
Layer

IP Layer

IF Layer

Device
Driver

Adapter

Media

Read
Buffer

copy

Socket Receive
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IP Input Queue
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DMA DMA

UDP/TCP/IP Data Flow

TCP
UDP

copy

Send
Buffer

Socket Send
Buffer

TCP UDP

MTU Enforcement

MTU Compliance

(MTU Compliance)

Stream Datagrams

System space

User space

mbuf mbuf

mbufs

The figure shows the path of data from an application in one system to another application
in a remote system. The processing at each of the layers will be discussed in detail later, but
briefly (ignoring error handling and buffer limits):

• The application’s write request causes the data to be copied from the application’s
working segment to the socket send buffer.

• The socket layer or subsystem gives the data to UDP or TCP.

• If the size of the data is larger than the maximum transfer unit (MTU) of the LAN,

– TCP breaks the output into segments that comply with the MTU limit.

– UDP leaves the breaking up of the output to the IP layer.
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• If necessary, IP fragments the output into pieces that comply with the MTU.

• The Interface layer ensures that no outgoing packet exceeds the MTU limit.

• The packets are put on the device output queue and transmitted by the LAN adapter to
the receiving system.

• Arriving packets are placed on the device driver’s receive queue, and pass through the
Interface layer to IP.

• If IP in the receiving system determines that IP in the sending system had fragmented a
block of data, it coalesces the fragments into their original form and passes the data to
TCP or UDP.

– TCP reassembles the original segments and places the input in the socket receive
buffer.

– UDP simply passes the input on to the socket receive buffer.

• When the application makes a read request, the appropriate data is copied from the
socket receive buffer in kernel memory into the buffer in the application’s working
segment.

Communication Subsystem Memory (mbuf) Management
To  avoid fragmentation of kernel memory and the overhead of numerous calls to xmalloc(),
common buffer pools are shared by the various layers of the communication subsystem.
The mbuf management facility controls two pools of buffers: a pool of small buffers (256
bytes each), which are simply called mbufs, and a pool of large buffers (4096 bytes each),
which are usually called mbuf clusters  or just clusters.  These pools are usually referred to
collectively as ”mbufs.” The pools consist of pinned pieces of kernel virtual memory; this
means that they always reside in physical memory and are never paged out. The result is
that the real memory available for paging in application programs and data has been
decreased by the amount that the mbuf pools have been increased. 

In addition to avoiding duplication, sharing the mbuf and cluster pools allows the various
layers to pass pointers to one another, reducing mbuf management calls and copying of
data.

Socket Layer
Sockets  provide the application program interface (API) to the communication subsystem.
There are several types of sockets that provide various levels of service by using different
communication protocols. Sockets of type SOCK_DGRAM use the UDP protocol. Sockets
of type SOCK_STREAM use the TCP protocol. 

The semantics of opening, reading, and writing to sockets are similar to those for
manipulating files.

The sizes of the buffers in system virtual memory (that is, the total number of bytes from the
mbuf pools) that are used by the input and output sides of each socket are limited by
system–wide default values (which can be overridden for a given socket by a call to the
setsockopt() subroutine):

udp_sendspace and
udp_recvspace

The buffer sizes for datagram sockets. The defaults are
9216 and 41600, respectively.

tcp_sendspace and
tcp_recvspace

The buffer sizes for stream sockets. The defaults for both
values are 16384.

These values can be displayed with

$ no –a
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and set (by root ) with, for example:

# no –o udp_sendspace=NewValue

The NewValue parameter must be less than or equal to the sb_max parameter, which
controls the maximum amount of space that can be used by a socket’s send or receive
buffer. sb_max is displayed with no –a and set (before attempting to exceed its current
value) with the no command:

# no –o sb_max=NewLimit

Note: Socket send or receive buffer sizes are limited to no more than sb_max bytes,
because sb_max is a ceiling on buffer space consumption. The two quantities are not
measured in the same way, however. The socket buffer size limits the amount of data
that can be held in the socket buffers. sb_max limits the number of bytes of mbufs that
can be in the socket buffer at any given time. In an Ethernet environment, for example,
each 4096–byte mbuf cluster might hold just 1500 bytes of data. In that case, sb_max
would have to be 2.73 times larger than the specified socket buffer size to allow the
buffer to reach its specified capacity. Our rule of thumb is that sb_max should be set to
at least twice the size of the largest socket buffer.

Send Flow
As  an application writes to a socket, the data is copied from user space into the socket
send buffer in kernel space. Depending on the amount of data being copied into the socket
send buffer, the socket puts the data into either mbufs or clusters. Once the data is copied
into the socket send buffer, the socket layer calls the transport layer (either TCP or UDP),
passing it a pointer to the linked list of mbufs (an mbuf chain). 

Receive Flow
On  the receive side, an application opens a socket and attempts to read data from it. If
there is no data in the socket receive buffer, the socket layer causes the application thread
to go to the sleep state (blocking) until data arrives. When data arrives, it is put on the
receive socket buffer queue and the application thread is made dispatchable. The data is
then copied into the application’s buffer in user space, the mbuf chain is freed, and control is
returned to the application. 

Socket Creation
 In AIX Version 4.3.1 and later, the sockthresh value determines how much of the system’s
network memory can be used before socket creation is disallowed. The value of
sockthresh is given as a percentage of thewall. It has a default of 85% and can be set to
any value from 1 to 100. However, sockthresh cannot be set to a value lower than the
amount of memory currently in use. 

The sockthresh option is intended to prevent the case where many connections are
opened until all the network memory on the machine is used. This leaves no memory for
other operations, and the machine hangs and must be rebooted to recover. Use
sockthresh to set the point at which new sockets should not be allowed. Calls to socket()
and socketpair() will fail with an error of ENOBUFS, and incoming connection requests will
be silently discarded. This allows the remaining network memory to be used by existing
connections and prevents the machine from hanging.

The netstat –m statistic sockets not created because sockthresh was
reached  is incremented each time a socket creation fails because the amount of network
memory already in use is over the sockthresh.
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sockthresh can be displayed with

$ no –o sockthresh

and set (by root) with

# no –o sockthresh=NewValue

sockthresh can be set to its default value with

# no –d sockthresh

Relative Level of Function in UDP and TCP
The following two sections contain descriptions of the function of UDP and TCP. To facilitate
comparison of UDP and TCP, both descriptions are divided into subsections on: connection,
error detection, error recovery, flow control, data size, and MTU handling.

UDP Layer
UDP  provides a low–cost protocol for applications that have the facilities to deal with
communication failures. UDP is most suitable for ”request–response” applications. Since
such an application has to handle a failure to respond anyway, it is little additional effort to
handle communication error as one of the causes of failure to respond. For this reason, and
because of its low overhead, subsystems such as NFS, ONC RPC, DCE RPC, and DFS
use UDP. 

Connection None. UDP is essentially a stateless protocol. Each request received
from the caller is handled independent of those that precede or follow
it. (If the connect() subroutine is called for a datagram socket, the
information about the destination is considered a hint to cache the
resolved address for future use. It does not actually bind the socket
to that address or affect UDP on the receiving system.)

Error detection Checksum creation and verification. The sending UDP builds the
checksum and the receiving UDP checks it. If the check fails, the
packet is dropped.

Error recovery None. UDP does not acknowledge receipt of packets, nor does it
detect their loss in transmission or through buffer–pool overflow.
Consequently, UDP never retransmits a packet. Recovery must be
performed by the application.

Flow control None. When UDP is asked to send, it sends the packet to IP. When a
packet arrives from IP, it is placed in the socket–receive buffer. If
either the device driver/adapter buffer queue or the socket–receive
buffer is full when the packet arrives there, the packet is dropped
without an error indication. The application or subsystem that sent
the packet must detect the failure by timeout and retry the
transmission.
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Data size Must fit in one buffer. This means that the buffer pools on both sides
of UDP must have buffer sizes that are adequate for the applications’
requirements. The maximum size of a UDP packet is 64KB. Of
course, an application that builds large blocks can break them into
multiple datagrams itself––DCE is an example––but it is simpler to
use TCP.

MTU handling None. Dealing with data larger than the maximum transfer unit (MTU)
size for the interface is left to IP. If IP has to fragment the data to
make it fit the MTU, loss of one of the fragments becomes an error
that the application or subsystem must deal with.

Send Flow
If  udp_sendspace is large enough to hold the datagram, the application’s data is copied
into mbufs in kernel memory. If the datagram is larger than udp_sendspace, an error is
returned to the application. 

If the datagram is larger than or equal to 936 bytes, it is copied into one or more 4KB
clusters. The remainder (and any complete datagram) of less than 936 bytes is copied into
1–4 mbufs. For example, a write of 8704 bytes is copied into two clusters and the remainder
into three mbufs. UDP adds the UDP header (in the same mbuf, if possible), checksums the
data, and calls the IP ip_output routine.

Receive Flow
UDP  verifies the checksum and queues the data onto the proper socket. If the
udp_recvspace limit is exceeded, the packet is discarded. (A count of these discards is
reported by netstat –s under ” udp: ” as ” socket buffer overflows .”) If the
application is waiting on a receive or read on the socket, it is put on the run queue. This
causes the receive to copy the datagram into the user’s address space and release the
mbufs, and the receive is complete. Normally, the receiver will respond to the sender to
acknowledge the receipt and also return a response message. 

TCP Layer
TCP  provides a reliable–transmission protocol. TCP is most suitable for applications that, at
least for periods of time, are mostly output or mostly input. With TCP ensuring that packets
reach their destination, the application is freed from error detection and recovery
responsibilities. Applications that use TCP transport include ftp, rcp, and telnet. DCE can
use TCP if it is configured to use a connection–oriented protocol. 

Connection Explicit. The instance of TCP that receives the connection request
from an application (we will call it the initiator) establishes a session
with its counterpart on the other system, which we will call the
listener. All exchanges of data and control packets are within the
context of that session.

Error detection Checksum creation and verification. The sending TCP builds the
checksum and the receiving TCP checks it. If checksum verification
fails, the receiver does not acknowledge receipt of the packet.

Error recovery Full. TCP detects checksum failures and loss of a packet or fragment
through timeout. In error situations TCP retransmits the data until it is
received correctly (or notifies the application of an unrecoverable
error).

Flow control Enforced. TCP uses a discipline called a sliding window to ensure
delivery to the receiving application. The sliding window concept is
illustrated in the figure ”TCP Sliding Window.”  (The records shown in
the figure are for clarity only. TCP processes data as a stream of
bytes and does not keep track of record boundaries, which are
application–defined.) 
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In the figure, the sending application is sleeping because it has
attempted to write data that would cause TCP to exceed the send
socket buffer space (i.e., tcp_sendspace). The sending TCP still
has the last part of rec5, all of rec6 and rec7, and the beginning of
rec8. The receiving TCP has not yet received the last part of rec7 or
any of rec8. The receiving application got rec4 and the beginning of
rec5 when it last read the socket, and it is now processing that data.
When the receiving application next reads the socket, it will receive
(assuming a large enough read), the rest of rec5, rec6, and as much
of rec7 and rec8 as has arrived by that time.

Once the next read occurs, the receiving TCP will be able to
acknowledge that data, the sending TCP will be able to discard the
data, the pending write will complete, and the sending application will
wake up. (To avoid excessive LAN traffic when the application is
reading in tiny amounts, TCP delays acknowledgement until the
receiving application has read a total amount of data that is at least
half the receive window size or twice the maximum segment size.)

In the course of establishing a session, the initiator and the listener
converse to determine their respective capacities for buffering input
and output data. The smaller of the two sizes defines the size of the
window. As data is written to the socket, it is moved into the sender’s
buffer. When the receiver indicates that it has space available, the
sender transmits enough data to fill that space (assuming that it has
that much data). When the receiving application reads from the
socket, the receiving TCP returns as much data as it has in its buffer.
It then informs the sender that the data has been successfully
delivered. Only then does the sender discard the data from its own
buffer, effectively moving the window to the right by the amount of
data delivered. If the window is full because the receiving application
has fallen behind, the sending thread will be blocked (or receive a
specific errno) when it tries to write to the socket.

The figure ”TCP Window Sizes” shows the relationship between the
socket buffer sizes and the window size.
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tcp_recvspace in both of these systems is smaller than
tcp_sendspace to illustrate a point: since the moving–window
technique requires that the two systems be able to buffer the same
amount of data, the window size is set to the lesser value in both
directions. The nominally available extra space for buffering output
shown in the figure is never used. If the rfc1323 parameter is 1, the
maximum TCP window size is 4GB (instead of 64KB).

Data size Indefinite. TCP does not process records or blocks, it processes a
stream of bytes. If a send buffer is larger than the receiver can
handle, it is segmented into MTU–size packets. Because it handles
shortages of buffer space under the covers, TCP does not guarantee
that the number and size of data receives will be the same as the
number and size of sends. It is the responsibility of the two sides of
the application to identify record or block boundaries, if any, within
the stream of data.

Note: When using TCP to exchange request/response messages,
the application must use setsockopt to turn on the TCP_NODELAY
option. This causes TCP to send the message immediately (within
the constraints of the sliding window), even though it is less than
MTU–size. Otherwise, TCP would wait for up to 200 milliseconds for
more data to send before transmitting the message. The
consequences for performance are obvious.

MTU handling Handled by segmentation in TCP. When the connection is
established, the initiator and the listener negotiate a maximum
segment size (MSS) to be used. The MSS is normally smaller than
the MTU (see Tuning TCP Maximum Segment Size (MSS), on page
9-19 ). If the output packet size exceeds the MSS, TCP does the
segmentation, thus making fragmentation in IP unnecessary. The
receiving TCP normally puts the segments on the socket receive
queue as they arrive. If the receiving TCP detects the loss of a
segment, it withholds acknowledgement and holds back the
succeeding segments until the missing segment has been received
successfully.

There is, of course, no such thing as free function. The additional operations performed by
TCP to ensure a reliable connection result in about 7 to 12% higher processor cost than in
UDP.

Send Flow
When  the TCP layer receives a write request from the socket layer, it allocates a new mbuf
for its header information and copies the data in the socket–send buffer either into the
TCP–header mbuf, if there is room, or into a newly allocated mbuf chain. If the data being
copied is in clusters, the data is not actually copied into new clusters. Instead, a pointer field
in the new mbuf header (this header is part of the mbuf structure and is unrelated to the
TCP header) is set to point to the clusters containing the data, thereby avoiding the
overhead of one or more 4KB copies. TCP then checksums the data, updates its various
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state variables, which are used for flow control and other services, and finally calls the IP
layer with the header mbuf now linked to the new mbuf chain. 

Receive Flow
When  the TCP input routine receives input data from IP, it checksums the TCP header and
data for corruption detection, determines which connection this data is for, removes its
header information, links the mbuf chain onto the socket–receive buffer associated with this
connection, and uses a socket service to wake up the application (if it is sleeping as
described earlier). 

IP Layer
The  Internet Protocol provides a basic datagram service to the higher layers. If it is given a
packet larger than the MTU of the interface, it fragments the packet and sends the
fragments to the receiving system, which reassembles them into the original packet. If one
of the fragments is lost in transmission, the incomplete packet is ultimately discarded by the
receiver. The length of time IP waits for a missing fragment is controlled by the ipfragttl
parameter, which is set and displayed with no. 

The maximum size of IP’s queue of packets received from the network interface is
controlled by the ipqmaxlen parameter, which is set and displayed with no. If the size of the
input queue reaches this number, subsequent packets are dropped.

Send Flow
When  the IP output routine receives a packet from UDP or TCP, it identifies the interface to
which the mbuf chain should be sent, updates and checksums the IP part of the header, and
passes the packet to the interface (IF) layer. 

IP determines the proper device driver and adapter to use, based on the network number.
The driver interface table defines the maximum MTU for this network. If the datagram is less
than the MTU size, IP adds the IP header in the existing mbuf, checksums the IP header
and calls the driver to send the frame. If the driver send queue is full, an EAGAIN error is
returned to IP which simply returns it to UDP which returns it to the sending application. The
sender should delay and try again.

If the datagram is larger than the MTU size (which only happens in UDP) IP fragments the
datagram into MTU–size fragments, appends a IP header (in an mbuf) to each, and calls
the driver once for each fragment frame. If the driver’s send queue is full, an EAGAIN error
is returned to IP. IP discards all remaining unsent fragments associated with this datagram
and returns EAGAIN to UDP. UDP returns EAGAIN the sending application. Since IP and
UDP do not queue messages, it is up to the application to delay and try the send again.

Receive Flow
In AIX Version 3, when  the IP input routine receives control as the result of an
IF–scheduled off–level interrupt, it dequeues the mbuf chain, checks the IP header
checksum to make sure the header was not corrupted, and determines if the packet is for
this system. If so, and the frame is not a fragment, IP passes the mbuf chain to the TCP or
UDP input routine. 

In AIX Version 4.1, the demux layer (called the IF layer in Version 3) calls IP on the interrupt
thread. There is no longer any scheduling or queuing/dequeuing activity. IP checks the IP
header checksum to make sure the header was not corrupted and determines if the packet
is for this system. If so, and the frame is not a fragment, IP passes the mbuf chain to the
TCP or UDP input routine.

If the received frame is a fragment of a larger datagram (which only happens in UDP), IP
holds onto the frame. When the other fragments arrive, they are merged into a logical
datagram and given to UDP when the datagram is complete. IP holds the fragments of an
incomplete datagram until the ipfragttl time (as specified by no) expires. The default
ipfragttl time is 30 seconds (an ipfragttl value of 60). If any fragments are lost due to
problems such as network errors, lack of mbufs, or transmit queue overruns, IP never
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receives them. When ipfragttl expires, IP discards the fragments it did receive. This is
reported by netstat –s under ” ip: ” as ” fragments dropped after timeout .”

IF Layer (Demux Layer in AIX Version 4.1)

Send Flow
When  the IF layer receives a packet from IP, it attaches the link–layer header information to
the beginning of the packet, checks the format of the mbufs to make sure they conform to
the device driver’s input specifications, and then calls the device driver write routine. 

Receive Flow
In AIXVersion 3, when  the IF layer receives a packet from the device driver, it removes the
link header and enqueues the mbuf chain (done with pointers, not copying) on the IP input
queue and schedules an off–level interrupt to do the IP input processing. 

In AIX Version 4.1, when the demux layer receives a packet from the device driver, it calls IP
on the interrupt thread to perform IP input processing.

LAN Adapters and Device Drivers
Many different kinds of LAN adapters are supported in the AIX environment. These adapters
differ, not only in the communications protocol and transmission medium they support, but
also in their interface to the the I/O bus and the processor. Similarly, the device drivers vary
in the technique used to convey the data between memory and the adapter. The following
high–level description applies to most adapters and device drivers, but details vary.

Send Flow
At  the device–driver layer, the mbuf chain containing the packet is enqueued on the
transmit queue. The maximum total number of output buffers that can be queued is
controlled by the system parameter xmt_que_size. In some cases, the data is copied into
driver–owned DMA buffers. The adapter is then signaled to start DMA operations. 

At this point, control returns back up the path to the TCP or UDP output routine, which
continues sending as long as it has more to send. When all data has been sent, control
returns to the application, which then runs asynchronously while the adapter transmits data.
When the adapter has completed transmission, it interrupts the system, and the device
interrupt routines are called to adjust the transmit queues and free the mbufs that held the
transmitted data.

Receive Flow
When  frames are received by an adapter, they are transferred from the adapter into a
driver–managed receive queue. The receive queue may consist of mbufs or the device
driver may manage a separate pool of buffers for the device; in either case, the data is in an
mbuf chain when it is passed from the device driver to the IF layer. 

Some drivers receive frames via DMA into a pinned area of memory and then allocate
mbufs and copy the data into them. Drivers/adapters that receive large–MTU frames may
have the frames DMA’d directly into cluster mbufs. The driver hands off the frame to the
proper network protocol (IP in this example) by calling a demultiplexing function that
identifies the packet type and puts the mbuf containing the buffer on the input queue for that
network protocol. If no mbufs are available or if the higher–level input queue is full, the
incoming frames are discarded.
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TCP and UDP Performance Tuning 
The optimal settings of the tunable communications parameters vary with the type of LAN
as well as with the communications–I/O characteristics of the predominant system and
application programs. The following sections describe the global principles of
communications tuning, followed by specific recommendations for the different types of
LAN.

Overall Recommendations
You can choose to tune primarily either for maximum throughput or for minimum memory
use. Some recommendations apply to one or the other; some apply to both.

Maximizing Throughput

Request–Response Protocols

• For maximum number of transactions per second, use the smallest feasible messages.

• For maximum bytes per second, use messages that are at least 1000 bytes and equal to
or just less than a multiple of 4096 bytes.

• If the requests and responses are fixed–size and fit into one datagram, use UDP.

– If possible, make the write sizes equal to (a multiple of the MTU size minus 28 bytes to
allow for standard IP and UDP headers).

– In general, it is more efficient for the application to write large messages and have
them fragmented and reassembled by IP, than to have the application write multiple
times.

– Whenever possible, use the connect subroutine to associate an address with the UDP
socket. This may not be possible on a server that is communicating with a number of
clients via a single socket.

• If the requests or responses are variable–size, use TCP with the TCP_NODELAY option.
Our measurements indicate that the overhead of TCP compared with UDP is negligible,
especially if optimum write sizes are used.

– To avoid data copies in the kernel, make write sizes greater than 936 bytes.

– Make writes equal to or slightly less than, a multiple of MTU size. This will avoid the
sending of a segment (packet) with just a few bytes in it.

Streaming

• TCP provides higher throughput than UDP and ensures reliable delivery.

• Writes should be in multiples of 4096 bytes. If possible, writes should be the size of the
MSS (see Tuning TCP Maximum Segment Size (MSS)).

Minimizing Memory
• If your traffic is predominantly local, use the largest MTU size that is supported by your

LAN type. This minimizes the fragmentation of packets exchanged by local systems. The
offsetting cost is fragmentation in gateways that connect your LAN to other LANS with
smaller MTUs (see Tuning TCP Maximum Segment Size (MSS)

• Whenever possible, application programs should read and write in quantities of either:

– Less than or equal to 935 bytes, or

– Slightly less than or equal to 4096 bytes (or multiples thereof)

The former will be placed in one to four mbufs; the latter will make efficient use of the
4096–byte clusters that are used for writes larger than 935 bytes. Writing 936 bytes
would result in 3160 bytes of wasted space per write. The application could hit the
udp_recvspace default value of 65536 with just 16 writes totaling 14976 bytes of data.
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If the application were using TCP, this would waste time as well as memory. TCP tries to
form outbound data into MTU–sized packets. If the MTU of the LAN were larger than
14976 bytes, TCP would put the sending thread to sleep when the tcp_sendspace limit
was reached. It would take a timeout ACK from the receiver to force the data to be
written.

Note: When the no command is used to change parameters, the change is in effect only
until the next system boot. At that point all parameters are initially reset to their defaults.
To make the change permanent, you should put the appropriate no command in the
/etc/rc.net file.

Adapter Transmit and Receive Queue Tuning 
Most communication drivers provide a set of tunable parameters to control transmit and
receive resources. These parameters typically control the transmit queue and receive queue
limits, but may also control the number and size of buffers or other resouces. These
parameters limit the number of buffers or packets that may be queued for transmit or limit
the number of receive buffers that are available for receiving packets. These parameters
can be tuned to ensure enough queueing at the adapter level to handle the peak loads
generated by the system or the network.

Transmit queues 
For transmit, the device drivers may provide a ”transmit queue” limit. There may be both
hardware queue and software queue limits, depending on the driver and adapter. Some
drivers have only a hardware queue, some have both hardware and software queue’s.
Some drivers internally control the hardware queue and only allow the software queue limits
to be modified. Generally, the device driver will queue a transmit packet directly to the
adapter hardware queue. If the system CPU is fast relative to the speed of the network, or
on a SMP system, the system may produce transmit packets faster than they can be
transmitted on the network. This will cause the hardware queue to fill. Once the hardware
queue is full, some drivers provide a software queue and they will then queue to the
software queue. If the software transmit queue limit is reached, then the transmit packets
are discarded. This can affect performance because the upper level protocols must then
retransmit the packet.

Prior to AIX release 4.2.1, the upper limits on the transmit queue’s were in the range of 150
to 250, depending on the specific adapter. The system default values were quite low,
typically 30. With AIX release 4.2.1 and later, the transmit queue limits were increased on
most of the device drivers to 2048 buffers. The default values were also increased to 512 for
most of these drivers. The default values were increased because of the faster CPU’s and
SMP systems can overrun the smaller queue limits.

For adapters that provide hardware queue limits, changing these values will cause more
real memory to be consumed because of the associated control blocks and buffers
associated with them. Therefore these limits should only be raised if needed or for larger
systems where the increase in memory use is neglegable. For the software transmit queue
limits, increasing these does not increase memory usage. It only allows packets to be
queued that were already allocated by the higher layer protocols.

Receive Queues 
Some adapters allow you to configure the number of resources used for receiving packets
from the network. This might include the number of receive buffers (and even their size) or
may simply be a receive queue parameter (which indirectly controls the number of receive
buffers.

The receive resources may need to be increased to handle peak bursts on the network.

AIX 3.2.x verses AIX 4.x releases 
In AIX 3.2.x versions, the drivers allowd special applications to read received packets
directly from the device driver. The device driver maintained a ’receive queue’ where these
packets were queued. To limit the number of packets that would be queued for these
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applications, a receive queue size parameter was provided. In AIX Version 4.1, this interface
is not supported, except for old MicroChannel adapters when the bos.compat LPP is
installed. See parameter table for specific adapters.

For all the newer Microchannel adapters and the PCI adapters, receive queue parameters
typically control the number of receive buffers that are provide to the adapter for receiving
input packets.

Device Specific Buffers 
AIX release 4.1.4 and later support Device Specific Mbuf’s. This allows a driver to allocate
its own private set of buffers and have them pre–setup for DMA. This can provide additional
performance because the overhead to set up the DMA mapping is done one time. Also, the
adapter can allocate buffer sizes that are best suited to its MTU size. For example, ATM,
HIPPI and the SP2 switch support a 64K MTU (packet) size. The maximum system mbuf
size is 16K bytes. By allowing the adapter to have 64K byte buffers, large 64K writes from
applications can be copied directly into the 64KB buffers owned by the adapter, instead of
copying them into multiple 16K buffers (which has more overhead to allocate and free the
extra buffers).

The adapters that support Device Specific Mbuf’s are MCA ATM, MCA HIPPI, and the
various SP2 high speed switch adapters.

Device specific buffers add an extra layer of complexity for the system administrator
however. The system administrator must use device specific commands to view the
statistics relating to the adapters buffers and then change the adapers parameters as
necessary. If the statistics indicate that packets were discarded due to not enough buffer
resources, then those buffer sizes need to be increased.

Due to difference between drivers and the utilities used to alter these parameters, they are
not fully described here. The MCA ATM parameters are listed in the table below. The
statistics for ATM can be viewed using the atmstat –d atm0  command (substitute your
ATM interface number as needed).

When you may need to increase these parameters?
• When the CPU is much faster than the network and multiple applications may be using

the same network. This would be common on a larger multi–processor system (SMP).

• When running with large values for tcp_sendspace  or tcp_recvspace  as set in
the ”no” options or running applications that might use system calls to increase the TCP
send and receive socket buffer space. These large values can cause the CPU to send
down large numbers of packets to the adapter, which will need to be queued. Procedures
are similar for udp_sendspace  and udp_recvspace  for UDP applications.

• When there is very bursty traffic.

• A high traffic load of small packets may consume more resources than a high traffic load
of large buffers. This is due to the fact that the large buffers take more time to send on
the network so the packet rate will be slower for larger packets.

How do you know if you need to increase these parameters?
There several status utilities that can be used. For AIX 4.1.0 and later, the adapter statistics
show the transmit queue high water limits and number of queue overflows. You can use
netstat –v , or go directly to the adapter statistics utilities (entstat for Ethernet, tokstat
for Token Ring, fddistat for FDDI, atmstat for ATM, etc.)

For example, entstat –d en0  output is below. This shows the statistics from en0 . The
–d options will list any extended statistics for this adapter and should be used to ensure all
statistics are displayed. The ”Max Packets on S/W Transmit Queue:” field will show the high
water mark on the transmit queue. The ”S/W Transmit Queue Overflow:” field will show the
number of software queue overflows.
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Note: These values may represent the ”hardware queue” if the adapter does not support
a software transmit queue”. If there are Transmit Queue Overflows, then the hardware or
software queue limits for the driver should be increased.

If there are not enough receive resources, this would be indicated by ”Packets Dropped:”
and depending on the adapter type, would be indicated by ”Out of Rcv Buffers” or ”No
Resource Errors:” or some similar counter.

ETHERNET STATISTICS (en1) :

Device Type: IBM 10/100 Mbps Ethernet PCI Adapter (23100020)

Hardware Address: 00:20:35:b5:02:4f

Elapsed Time: 0 days 0 hours 7 minutes 22 seconds

Transmit Statistics:                          Receive Statistics:

––––––––––––––––––––                          –––––––––––––––––––

Packets: 1869143                              Packets: 1299293

Bytes: 2309523868                             Bytes: 643101124

Interrupts: 0                                 Interrupts: 823040

Transmit Errors: 0                            Receive Errors: 0

Packets Dropped: 0                            Packets Dropped: 0

                                              Bad Packets: 0

Max Packets on S/W Transmit Queue: 41

S/W Transmit Queue Overflow: 0

Current S/W+H/W Transmit Queue Length: 1

Broadcast Packets: 1                          Broadcast Packets:

0

Multicast Packets: 0                          Multicast Packets:

0

No Carrier Sense: 0                           CRC Errors: 0

DMA Underrun: 0                               DMA Overrun: 0

Lost CTS Errors: 0                            Alignment Errors: 0

Max Collision Errors: 0                       No Resource Errors:

0

Late Collision Errors: 0                      Receive Collision

Errors: 0

Deferred: 3778                                Packet Too Short

Errors: 0

SQE Test: 0                                   Packet Too Long

Errors: 0

Timeout Errors: 0                             Packets Discarded

by Adapter: 0

Single Collision Count: 96588                 Receiver Start

Count: 0

Multiple Collision Count: 56661

Current HW Transmit Queue Length: 1

General Statistics:

–––––––––––––––––––

No mbuf Errors: 0

Adapter Reset Count: 0

Driver Flags: Up Broadcast Running

        Simplex 64BitSupport

 Another method is to use the ’netstat –i’ utility. If it shows non–zero counts in the ”Oerrs”
column for an interface, then typically this is the result of output queue overflows. This
works for all version of AIX.
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How to see what the settings are:
You can use the list attributes command lsattr –E –l [adapter–name]  or you can
use SMIT to show the adapter configuration.

Different adapters have different names for these variables. For example, they may be
named ”sw_txq_size”, ”tx_que_size”, ”xmt_que_size” to name a few for the transmit queue
parameter. The receive queue size and or receive buffer pool parameters may be named
”rec_que_size”, rx_que_size”, or ”rv_buf4k_min” for example.

Below is the output of a lsattr –E –l atm0  command on a PCI 155 Mbs ATM adapter.
This shows the sw_txq_size  is set to 250  and the rv_buf4K_min  receive buffers set
to x30 .

==== lsattr –E ========

dma_mem        0x400000    N/A                                          False

regmem         0x1ff88000  Bus Memory address of Adapter Registers      False

virtmem        0x1ff90000  Bus Memory address of Adapter Virtual Memory False

busintr        3           Bus Interrupt Level                          False

intr_priority  3           Interrupt Priority                           False

use_alt_addr   no          Enable ALTERNATE ATM MAC address             True

alt_addr       0x0           ALTERNATE ATM MAC address (12 hex digits)  True

sw_txq_size    250         Software Transmit Queue size                 True

max_vc         1024        Maximum Number of VCs Needed                 True

min_vc         32          Minimum Guaranteed VCs Supported             True

rv_buf4k_min   0x30        Minimum 4K–byte pre–mapped receive buffers   True

interface_type 0           Sonet or SDH interface                       True

adapter_clock  1           Provide SONET Clock                          True

uni_vers       auto_detect N/A                                          True

Here is an example of a Microchannel 10/100 Ethernet settings using the lsattr –E –l
ent0 . This shows the tx_que_size and rx_que_size  both set to 256 .

bus_intr_lvl  11              Bus interrupt level                False

intr_priority 3               Interrupt priority                 False

dma_bus_mem   0x7a0000        Address of bus memory used for DMA False

bus_io_addr   0x2000          Bus I/O address                    False

dma_lvl       7               DMA arbitration level              False

tx_que_size   256             TRANSMIT queue size                True

rx_que_size   256             RECEIVE queue size                 True

use_alt_addr  no              Enable ALTERNATE ETHERNET address  True

alt_addr      0x              ALTERNATE ETHERNET address         True

media_speed   100_Full_Duplex Media Speed                        True

ip_gap        96              Inter–Packet Gap                   True

How to change the parameters:
The easiest way is to detach the interface (ifconfig en0 detach, for example) and then use
SMIT –> devices –> communicaitons –> [adapter type] –> change/show... to show the
adapter settings. After you show the settings, move the cursor to the field you would like to
change and press F4 to see the minimum and maximum range for the field or the specific
set of sizes supported. You can select one of these sizes and then press enter to enter the
request and update the ODM database. Bring the adaper back on line (ifconfig en0
[hosthame], for example).

The other method to change these parameters is to use the chdev command.

chdev –l [ifname] –a [attribute–name]=newvalue
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For example, to change the above tx_que_size  on en0  down to 128 use the following
sequence of commands. Note that this driver only supports four different sizes, so it is better
to use SMIT to see these values.

  

ifconfig en0 detach

chdev –l ent0 –a tx_que_size=128

ifconfig en0 [hostname] up

The following information is provided to document the various adapter tuning parameters.
These parameters and values are for AIX 4.3.1 and are subject to change. They are
provided to aid in understanding the various tuning parameters, or when a system is not
available to view the parameters.

This parameter names, defaults, and range values were obtained from the ODM database.
The comment field was obtained from the lsattr –E –l interface–name  command.

The Notes field is provided as additional comments.

MicroChannel Adapter (MCA)

Feature Code:  2980     (codename can’t say)

Ethernet High–Performance LAN Adapter (8ef5)

Parameter      Default  Range    Comment                     Notes

––––––––––––– –––––––– ––––––––  –––––––––––––––––––––––––––––––––––––––

xmt_que_size   512     20–2048   TRANSMIT queue size        SW TX queue

rec_que_size   30      20–150    RECEIVE queue size         See Note 1

rec_pool_size  37      16–64     RECEIVE buffer pool size   On Adapter

Notes:

1. This is a software receive queue that is provided only for compatability with AIX 3.2.x
applications that use the network device driver interface to read packets directly from the
driver. This queue limits how many input packets are queued for these applications to
receive. This parameter is defined only if bos.compat is installed.

This queue is not use by the normal TCP/IP stack.

Feature Code: 2992      (codename Durandoak)

Ethernet High–Performance LAN Adapter (8f95)

Parameter      Default   Range   Comment              Notes

––––––––––––– ––––––––– –––––––– –––––––––––––––––––  ––––––––––

xmt_que_size   512      20–2048  TRANSMIT queue size  SW queue

Feature Code: 2994      (codename SanRemo)

IBM 10/100 Mbps Ethernet TX MCA Adapter (8f62) 

Parameter   Default  Range             Comment               Notes

––––––––––– –––––––– ––––––––––––––––  –––––––––––––––––––– ––––––––––

tx_que_size   64     16,32,64,128,256  TRANSMIT queue size    HW queue

rx_que_size   32     16,32,64,128,256  RECEIVE queue size     HW queue

Feature Code: 2970      (codename Monterey)

Token–Ring High–Performance Adapter (8fc8)     

 

Parameter      Default  Range    Comment                 Notes

––––––––––––– –––––––– ––––––––  –––––––––––––––––––––  ––––––––––––

xmt_que_size  99       32–2048   TRANSMIT queue size     SW queue 

rec_que_size  30       20–150    RECEIVE queue size      See Note 1
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Feature Code: 2972      (codename Wildwood)

Token–Ring High–Performance Adapter (8fa2)  

Parameter      Default  Range    Comment                      Notes

––––––––––––– –––––––– –––––––– ––––––––––––––––––––––––––––  ––––––––––

xmt_que_size  512      32–2048  TRANSMIT queue size           SW queue

rx_que_size   32       32–160   HARDWARE RECEIVE queue size   HW queue

Feature Code: 2727      (codename Scarborgh)          

FDDI Primary Card, Single Ring Fiber 

Parameter      Default  Range    Comment                        Notes

––––––––––––– –––––––– ––––––––  ––––––––––––––––––––––––––––– –––––––––––

tx_que_size   512      3–2048    Transmit Queue Size (in mbufs) 

rcv_que_size  30       20–150    Receive Queue                  See Note 1

Feature Code: 2984      (codename Bumelia)

100 Mbps ATM Fiber Adapter (8f7f)              

Parameter      Default   Range       Comment                  Notes

––––––––––––––– –––––––  –––––––––– –––––––––––––––––––––––––––––– –––––

sw_queue         512     0–2048  Software transmit queue len. SW Queue

dma_bus_width   0x1000000 0x800000–0x40000000,0x100000

                                 Amount of memory  to map for DMA See Note 3

max_sml_bufs    50     40–400    Maximum Small ATM mbufs   Max 256 byte buffers

max_med_bufs    100    40–1000   Maximum Medium ATM mbufs  Max 4KB buffers

max_lrg_bufs    300    75–1000   Maximum Large ATM mbufs   Max 8KB buffers,

                                                                 See note 2

max_hug_bufs    50     0–400     Maximum Huge ATM mbufs    Max 16KB buffers

max_spec_bufs   4      0–400     Maximum ATM MTB mbufs    Max of max_spec_bufsize

spec_buf_size   64     32–1024   Max Transmit Block (MTB)  size kbytes)

sml_highwater   20     10–200    Minimum Small ATM mbufs   Min 256 byte buffers

med_highwater   30     20–300    Minimum Medium ATM mbufs  Min 4KB buffers

lrg_highwater   70     65–400    Minimum Large ATM mbufs   Min 8KB buffers

hug_highwater   10     4–300     Minimum Huge ATM mbufs    Min 16KB buffers

spec_highwater  20     0–300     Minimum ATM MTB mbufs     Min 64KB buffers

best_peak_rate  1500   1–155000  Virtual Circuit Peak Segmentation Rate

2. MCA ATM, the rcv side also uses the Large (8K) buffers. The receive logic only uses the
8K buffers so if this size runs low it will affect receive performance.

The other buffers sizes are only for Transmit buffers.

3. MCA ATM, If you need to increase the total number of buffers, you may need to change
the dma_bus_width = 0x1000000  parm. DMA bus memory width controls the total
amount of memory used for ATM buffers. Increase this parameter if you get an error
while increasing the maximum buffers, or highwater limits.

Feature Code: 2989        (codename Clawhammer)

155 Mbps ATM Fiber Adapter (8f67)              

Parameter      Default   Range     Comment    Notes

––––––––––––– ––––––––  ––––––––  –––––––––– –––––––

(same as ATM 100 adapter above)
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PCI Adapters

Feature Code 2985        (codename Klickitat)

IBM PCI Ethernet Adapter (22100020)        

Parameter      Default  Range            Comment             Notes

––––––––––––– –––––––– ––––––––––––––––– ––––––––––––––––––– –––––––––

tx_que_size   64       16,32,64,128,256  TRANSMIT queue size HW Queues

rx_que_size   32       16,32,64,128,256  RECEIVE queue size  HW Queues

Featue Code 2968         (codename Phoenix)

IBM 10/100 Mbps Ethernet PCI Adapter (23100020)

Parameter        Default Range            Comment               Notes

–––––––––––––––– ––––––– –––––––––––––––– ––––––––––––––––– ––––––––––––––––––––

tx_que_size      256     16,32,64,128,256 TRANSMIT queue size   HW Queue Note 1

rx_que_size      256     16,32,64,128,256 RECEIVE queue size    HW Queue Note 2

rxbuf_pool_size  384     16–2048     # buffers in receive  Dedicated receive

                                   buffer pool           buffers Note 3

Notes on Phoenix:

1. Prior to AIX 4.3.2, default tx_queue_size was 64

2. Prior to AIX 4.3.2, default rx_que_size was 32

3. AIX 4.3.2 the driver added a new parameter to control the number of buffers dedicated to
receiving packets.

Feature Code: 2969       (codename Galaxy)

Gigabit Ethernet–SX PCI Adapter (14100401)

Parameter     Default Range    Comment                             Notes

––––––––––––– ––––––– –––––––– –––––––––––––––––––––––––––––––––– –––––––––

tx_que_size   512  512–2048    Software Transmit Queueu size      SW Queue

rx_que_size   512     512      Receive queue size                 HW Queue

receive_proc  6       0–128    Minimum Receive Buffer descriptors

Feature Code: 2986       (codename Candlestick)

3Com 3C905–TX–IBM Fast EtherLink XL NIC

 

Parameter      Default  Range  Comment                        Notes

–––––––––––––– –––––––– –––––– ––––––––––––––––––––––––––––   ––––––––––

tx_wait_q_size   32     4–128  Driver TX Waiting Queue Size   HW Queues 

rx_wait_q_size   32     4–128  Driver RX Waiting Queue Size   HW Queues
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Feature Code: 2742       (codename Honeycomb)

SysKonnect PCI FDDI Adapter (48110040)

Parameter     Default  Range    Comment               Notes

––––––––––––– –––––––– –––––––– ––––––––––––––––––– –––––––––––––––

tx_queue_size   30     3–250    Transmit Queue Size   SW Queue

RX_buffer_cnt   42     1–128    Receive frame count Rcv buffer pool

Feature Code: 2979       (codename Skyline)

IBM PCI Tokenring Adapter (14101800)     

Parameter     Default  Range   Comment                     Notes

––––––––––––– –––––––– ––––––– ––––––––––––––––––––––––––– ––––––––

xmt_que_size  96       32–2048 TRANSMIT queue size         SW Queue 

rx_que_size   32       32–160  HARDWARE RECEIVE queue size HW queue

Feature Code: 2979       (codename Cricketstick)

IBM PCI Tokenring Adapter (14103e00)          

Parameter     Default  Range    Comment              Notes

––––––––––––– –––––––– –––––––– –––––––––––––––––––– ––––––––

xmt_que_size  512      32–2048  TRANSMIT queue size  SW Queue

rx_que_size   64       32–512   RECEIVE queue size   HW Queue

Feature Code: 2988       (codename Lumbee)

IBM PCI 155 Mbps ATM Adapter (14107c00)       

Parameter     Default   Range      Comment                         Notes

––––––––––––– ––––––––– –––––––––– –––––––––––––––––––––––––––––– –––––––

sw_txq_size   100       0–4096     Software Transmit Queue size    SW Queue

rv_buf4k_min  48(0x30) 0–512(x200) Minimum 4K–byte pre–mapped receive Buffers

 

Tuning TCP Maximum Segment Size (MSS)
The TCP protocol includes a mechanism for both ends of a connection to negotiate the
maximum segment size (MSS) to be used over the connection. Each end uses the
OPTIONS field in the TCP header to advertise a proposed MSS. The MSS that is chosen is
the smaller of the values provided by the two ends.

The purpose of this negotiation is to avoid the delays and throughput reductions caused by
fragmentation of the packets when they pass through routers or gateways and reassembly
at the destination host.

The value of MSS advertised by the TCP software during connection setup depends on
whether the other end is a local system on the same physical network (that is, the systems
have the same network number) or whether it is on a different, remote, network.

Local Network
If the other end is local, the MSS advertised by TCP is based on the MTU (maximum
transfer unit) of the local network interface:

TCP MSS = MTU – TCP header size – IP header size.

Since this is the largest possible MSS that can be accommodated without IP fragmentation,
this value is inherently optimal, so no MSS tuning is required for local networks.
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Remote Network
When the other end is on a remote network, TCP in AIX defaults to advertising an MSS of
512 bytes. This conservative value is based on a requirement that all IP routers support an
MTU of at least 576 bytes.

The optimal MSS for remote networks is based on the smallest MTU of the intervening
networks in the route between source and destination. In general, this is a dynamic quantity
and could only be ascertained by some form of path MTU discovery. The TCP protocol does
not provide any mechanism for doing this, which is why a conservative value is the default.
However, it is possible to enable the TCP PMTU discovery by using the command:

no –o tcp_pmtu_discover=1”

A normal side effect of this setting is to see the routing table increasing (one more entry per
each active TCP connection). The no option ”route_expire” should be set to a non null
value, in order to have any non used cached route entry removed from the table, after
”route_expire” time of inactivity

While the conservative default is appropriate in the general Internet, it can be unnecessarily
restrictive for private internets within an administrative domain. In such an environment,
MTU sizes of the component physical networks are known and the minimum MTU and
optimal MSS can be determined by the administrator. AIX provides several ways in which
TCP can be persuaded to use this optimal MSS. Both source and destination hosts must
support these features. In a heterogeneous, multi–vendor environment, the availability of
the feature on both systems may determine the choice of solution.

Static Routes

The default MSS of 512 can be overridden by specifying a static route to a specific remote
network and using the –mtu option of the route command to specify the MTU to that
network. In this case, you would specify the actual minimum MTU of the route, rather than
calculating an MSS value.

In a small, stable environment, this method allows precise control of MSS on a
network–by–network basis. The disadvantages of this approach are:

• It does not work with dynamic routing.

• It becomes impractical when the number of remote networks increases.

• Static routes must be set at both ends to ensure that both ends negotiate with a
larger–than–default MSS.

Use the tcp_mssdflt Option of the no Command

The default value of 512 that TCP uses for remote networks can be changed via the no
command by changing the tcp_mssdflt parameter. This change is a systemwide change.

The value specified to override the MSS default should be the minimum MTU value less 40
to allow for the normal length of the TCP and IP headers.

In an environment with a larger–than–default MTU, this method has the advantage that the
MSS does not need to be set on a per–network basis. The disadvantages are:

• Increasing the default can lead to IP router fragmentation if the destination is on a
network that is truly remote and the MTUs of the intervening networks are not known.

• The tcp_mssdflt parameter must be set to the same value on the destination host.

Subnetting and the subnetsarelocal Option of the no Command

Several physical networks can be made to share the same network number by subnetting
(see ”TCP/IP Addressing”). The no option subnetsarelocal specifies, on a system–wide
basis, whether subnets are to be considered local or remote networks. With
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subnetsarelocal=1 (the default), Host A on subnet 1 considers Host B on subnet 2 to be on
the same physical network.

The consequence of this is that when Host A and Host B establish a connection, they
negotiate the MSS assuming they are on the same network. Each host advertises an MSS
based on the MTU of its network interface. This usually leads to an optimal MSS being
chosen.

This approach has several advantages:

• It does not require any static bindings; MSS is automatically negotiated.

• It does not disable or override the TCP MSS negotiation, so that small differences in the
MTU between adjacent subnets can be handled appropriately.

The disadvantages are:

• Potential IP router fragmentation when two high–MTU networks are linked through a
lower–MTU network. The figure ”Inter–Subnet Fragmentation” illustrates this problem.

FDDIEthernetRouter 1
Host
  A

Router 2

MTU=4352 MTU=1500 MTU=4352

FDDI Host
  B

Inter-Subnet Fragmentation

In this scenario, Hosts A and B would establish a connection based on a common MTU
of 4352. A packet going from A to B would fragmented by Router 1 and defragmented by
Router 2, and the reverse would occur going from B to A.

• Source and destination must both consider subnets to be local.

IP Protocol Performance Tuning Recommendations 
At the IP layer, the only tunable parameter is ipqmaxlen, which controls the length of the IP
input queue discussed earlier (which exists only in AIX Version 3). Packets may arrive very
quickly and overrun the IP input queue. In the AIX operating system, there is no simple way
to determine if this is happening. However an overflow counter can be viewed using the
crash command. To check this value, start the crash command and when the prompt
appears, type knlist ipintrq . This command returns a hexadecimal value, which may
vary from system to system. Next, add 10  (hex) to this value, and then use it as an
argument for the od subcommand. For example:

# crash

> knlist ipintrq

 ipintrq: 0x0149ba68 

> od 0149ba78 1

0149ba78: 00000000 <––    This is the value of the IP input queue

                          overflow counter

>quit

If the number returned is greater than 0, overflows have occurred. The maximum length of
this queue is set using the no command. For example:
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no –o ipqmaxlen=100

allows 100 packets to be queued up. The exact value to use is determined by the maximum
burst rate received. If this cannot be determined, using the number of overflows can help
determine what the increase should be. No additional memory is used by increasing the
queue length. However, an increase may result in more time spent in the off–level interrupt
handler, since IP will have more packets to process on its input queue. This could adversely
affect processes needing CPU time. The tradeoff is reduced packet dropping versus CPU
availability for other processing. It is best to increase ipqmaxlen by moderate increments if
the tradeoff is a concern.

Ethernet Performance Tuning Recommendations 
Ethernet is one of the contributors to the ”least common denominator” algorithm of MTU
choice. If a configuration includes Ethernets and other LANs, and there is extensive traffic
among them, the MTUs of all of the LANs may need to be set to 1500 bytes to avoid
fragmentation when data enters an Ethernet.

• The default (and maximum) MTU of 1500 bytes should not be changed.

• Application block size should be in multiples of 4096 bytes.

• Socket space settings can be left at the default values.

• If the workload includes extensive use of services that use UDP, such as NFS or RPC,
sb_max should be increased to allow for the fact that each 1500–byte MTU uses a
4096–byte buffer.

Token Ring (4Mb) Performance Tuning Recommendations 
The default MTU of 1492 bytes is appropriate for Token Rings that interconnect to Ethernets
or to heterogeneous networks in which the minimum MTU is not known.

• Unless the LAN has extensive traffic to outside networks, the MTU should be raised to
the maximum of 3900 bytes.

• Application block size should be in multiples of 4096 bytes.

• Socket space settings can be left at the default values.

• If the workload includes extensive use of services that use UDP, such as NFS or RPC,
sb_max should be increased to allow for the fact that each 1492–byte MTU uses a
4096–byte buffer.

Token Ring (16Mb) Performance Tuning Recommendations 
The default MTU of 1492 bytes is appropriate for Token Rings that interconnect to Ethernets
or to heterogeneous networks in which the minimum MTU is not known.

• Unless the LAN has extensive traffic to outside networks, the MTU should be increased
to 8500 bytes. This allows NFS 8KB packets to fit in one MTU. Further increasing the
MTU to the maximum of 17000 bytes seldom results in corresponding throughput
improvement.

• Application block size should be in multiples of 4096 bytes.

• Socket space settings can be left at the default values.

• If the workload includes extensive use of services that use UDP, such as NFS or RPC,
and the MTU must be left at the default because of interconnections, sb_max should be
increased to allow for the fact that each 1492–byte MTU uses a 4096–byte buffer.
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FDDI Performance Tuning Recommendations 
Despite the comparatively low MTU, this high–speed medium benefits from substantial
increases in socket buffer size.

• Unless the LAN has extensive traffic to outside networks, the default MTU of 4352 bytes
should be retained.

• Where possible, an application using TCP should write multiples of 4096 bytes at a time
(preferably 8KB or 16KB) for maximum throughput.

• Use no –o sb_max=(2*NewSize) to raise the ceiling on socket buffer space.

• Use no –o *_*space=NewSize to set the TCP and UDP socket send and receive space
defaults to NewSpace bytes. NewSpace should be at least 57344 bytes (56KB).

• For ESCALA Model *90 or faster, use no –o rfc1323=1 to allow socket buffer sizes to be
set to more than 64KB. Then use the previous procedure with NewSize of at least
128KB.

ATM Performance Tuning Recommendations 
• Unless the LAN has extensive traffic to outside networks, the default MTU of 9180 bytes

should be retained.

• Where possible, an application using TCP should write multiples of 4096 bytes at a time
(preferably 8KB or 16KB) for maximum throughput.

• Use no –o sb_max=(2*NewSize) to raise the ceiling on socket buffer space.

• Use no –o *_*space=NewSize to set the TCP and UDP socket send and receive space
defaults to NewSpace bytes. NewSpace should be at least 57344 bytes (56KB).

• For ESCALA Model *90 or faster, use no –o rfc1323=1 to allow socket buffer sizes to be
set to more than 64KB. Then use the previous procedure with NewSize of at least
128KB.

SOCC Performance Tuning Recommendations 
• The default MTU 61428 bytes should not be changed.

• Where possible, an application using TCP should write 28672 bytes (28KB) at a time for
maximum throughput.

• TCP and UDP socket send and receive space defaults should be set to 57344 bytes.

HIPPI Performance Tuning Recommendations 
• The default MTU of 65536 bytes should not be changed.

• Where possible, an application using TCP should write 65536 bytes at a time for
maximum throughput.

• Set sb_max to a value greater than 2*655360.

• TCP and UDP socket send and receive space defaults should be set to 655360 bytes.
Use no –o rfc1323=1 to allow socket buffer sizes to be set to more than 64KB.
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mbuf Pool Performance Tuning
Note: This section applies primarily to Version 3.2.5. The mbuf allocation mechanism in
AIX Version 4.1 is substantially different. In AIX Version 4.1, you can set the maximum
amount of memory that will be used by the network allocator in the same way you set
this in Version 3.2.5––with the no command and thewall parameter. All other tuning
options that were available in Version 3.2.5 have been removed from AIX Version 4.1
because the AIX Version 4.1 mbuf allocation mechanism is much more self–tuning.

The network subsystem uses a memory management facility that revolves around a data
structure called an mbuf. Mbufs  are mostly used to store data for incoming and outbound
network traffic. Having mbuf pools of the right size can have a very positive effect on
network performance. If the mbuf pools are configured improperly, both network and system
performance can suffer. The AIX operating system offers the capability for run–time mbuf
pool configuration. With this convenience comes the responsibility for knowing when the
pools need adjusting and how much they should be adjusted. 

The following sections contain more information on mbuf pools:

• Overview of the mbuf Management Facility

• When to Tune the mbuf Pools

• How to Tune the mbuf Pools

Overview of the mbuf Management Facility
The mbuf management facility controls two pools of buffers: a pool of small buffers (256
bytes each), which are simply called mbufs, and a pool of large buffers (4096 bytes each),
which are usually called mbuf clusters  or just clusters.  The pools are created from system
memory by making an allocation request to the Virtual Memory Manager (VMM). The pools
consist of pinned pieces of virtual memory; this means that they always reside in physical
memory and are never paged out. The result is that the real memory available for paging in
application programs and data has been decreased by the amount that the mbuf pools have
been increased. This is a nontrivial cost that must always be taken into account when
considering an increase in the size of the mbuf pools. 

The initial size of the mbuf pools is system–dependent. There is a minimum number of
(small) mbufs and clusters allocated for each system, but these minimums are increased by
an amount that depends on the specific system configuration. One factor affecting how
much they are increased is the number of communications adapters in the system. The
default pool sizes are initially configured to handle small– to medium–size network loads
(network traffic of 100–500 packets/second). The pool sizes dynamically increase as
network loads increase. The cluster pool shrinks if network loads decrease (the mbuf pool is
never reduced). To optimize network performance, the administrator should balance mbuf
pool sizes with network loads (packets/second). If the network load is particularly oriented
towards UDP traffic (as it would be on an NFS server, for example) the size of the mbuf pool
should be two times the packet/second rate. This is due to UDP traffic consuming an extra
small mbuf.

To provide an efficient mbuf allocation service, an attempt is made to maintain a minimum
number of free buffers in the pools at all times. The lowmbuf  and lowclust  network
parameters (which can be manipulated using the no command) are used to define these
lower limits. 

The lowmbuf parameter controls the minimum number of free buffers for the mbuf pool.
The lowclust parameter controls the minimum number of free buffers for the cluster pool.
When the number of buffers in the pools drops below the lowmbuf or lowclust thresholds
the pools are expanded by some amount. The expansion of the mbuf pools is not done
immediately, but is scheduled to be done by a kernel service named netm. When the netm
kernel service is dispatched, the pools are expanded to meet the minimum requirements of
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lowclust and lowmbuf. Having a kernel process do this work is required by the structure of
the VMM.

An additional function that the netm kernel service provides is to limit the growth of the
cluster pool. The mb_cl_hiwat  network parameter defines this maximum value. 

The mb_cl_hiwat parameter controls the maximum number of free buffers the cluster pool
can contain. When the number of free clusters in the pool exceeds mb_cl_hiwat, netm is
scheduled to release some of the clusters back to the VMM.

The netm kernel system runs at a very favored priority (fixed 37). Because of this,
excessive netm kernel system dispatching can cause not only poor network performance
but also poor system performance because of contention with other system and user
processes. Improperly configured pools can result in netm ”thrashing” due to conflicting
network traffic needs and improperly tuned thresholds. The netm kernel system dispatching
can be minimized by properly configuring the mbuf pools to match system and networking
needs.

The last network parameter that is used by the mbuf management facility is thewall. 

The thewall parameter controls the maximum amount of RAM (in kilobytes) that the mbuf
management facility can allocate from the VMM. This parameter is used to prevent
unbalanced VMM resources which result in poor system performance.

When to Tune the mbuf Pools
When and how much to tune the mbuf pools is directly related to the network load to which
a given machine is being subjected. A server machine that is supporting many clients is a
good candidate for having the mbuf pools tuned to optimize network performance. It is
important for the system administrator to understand the networking load for a given
system.

By using the netstat command you can get a rough idea of the network load in
packets/second. For example:

netstat –I tr0 5

reports the  input and output traffic both for the tr0  adapter and for all LAN adapters on
the system. The output below shows the activity caused by a large ftp command operation: 

$ netstat –I tr0 2

   input    (tr0)     output            input   (Total)    output

 packets  errs  packets  errs colls   packets  errs  packets  errs colls 

   20615   227     3345     0     0     20905   227     3635     0     0

      17     0        1     0     0        17     0        1     0     0

     174     0      320     0     0       174     0      320     0     0

     248     0      443     0     0       248     0      443     0     0

     210     0      404     0     0       210     0      404     0     0

     239     0      461     0     0       239     0      461     0     0

     253     1      454     0     0       253     1      454     0     0

     246     0      467     0     0       246     0      467     0     0

      99     1      145     0     0        99     1      145     0     0

      13     0        1     0     0        13     0        1     0     0

The netstat command also has a  flag, –m, that gives detailed information about the use
and availability of the mbufs and clusters: 
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253 mbufs in use:

        50 mbufs allocated to data

        1 mbufs allocated to packet headers

        76 mbufs allocated to socket structures

        100 mbufs allocated to protocol control blocks

        10 mbufs allocated to routing table entries

        14 mbufs allocated to socket names and addresses

        2 mbufs allocated to interface addresses

16/64 mapped pages in use

319 Kbytes allocated to network (39% in use)

0 requests for memory denied

0 requests for memory delayed

0 calls to protocol drain routines

The line 16/64 mapped pages in use  indicates that there are 64 pinned clusters, of
which 16 are currently in use.

This report can be compared to the existing system parameters by issuing a no –a
command. The following lines from the report are of interest:

   lowclust = 29

    lowmbuf = 88

    thewall = 2048

mb_cl_hiwat = 58

It is clear that on the test system, the 319 Kbytes allocated to network  is
considerably short of thewall value of 2048KB and the (64 – 16 = 48) free clusters are short
of the mb_cl_hiwat limit of 58.

The requests for memory denied  counter is maintained by the mbuf management
facility and is incremented each time a request for an mbuf allocation cannot be satisfied.
Normally the requests for memory denied  value will be 0. If a system experiences a
high burst of network traffic, the default configured mbuf pools may not be sufficient to meet
the demand of the incoming burst, causing the error counter to be incremented once for
each mbuf allocation request that fails. Usually this is in the thousands due to the large
number of packets arriving in a short interval. The requests for memory denied 
statistic will correspond to dropped packets on the network. Dropped network packets mean
retransmissions, resulting in degraded network performance. If the requests for
memory denied  value is greater than zero, it may be appropriate to tune the mbuf
parameters––see How to Tune the mbuf Pools.

The Kbytes allocated to the network  statistic is maintained by the mbuf
management facility and represents the current amount of system memory that has been
allocated to both mbuf pools. The upper bound of this statistic set by thewall is used to
prevent the mbuf management facility from consuming too much of a system’s physical
memory. The default value for thewall limits the mbuf management facility to 2048KB (as
shown in the report generated by the no –a command). If the Kbytes allocated to
the network  value approaches thewall, it may be appropriate to tune the mbuf
parameters. See How to Tune the mbuf Pools.

There are cases where the above indicators suggest that the mbuf pools may need to be
expanded, when in fact there is a system problem that should be corrected first. For
example:

• mbuf memory leak

• Queued data not being read from socket or other internal queuing structure

An mbuf memory leak is a situation in which some kernel or kernel–extension code has
neglected to release an mbuf resource and has destroyed the pointer to its memory



9-27Monitoring and Tuning Communications I/O

location, thereby losing the address of the mbuf forever. If this occurs repeatedly, eventually
all the mbuf resources will be used up. If the netstat mbuf statistics show a gradual
increase in usage that never decreases or high mbuf usage on a relatively idle system,
there may be an mbuf memory leak. Developers of kernel extensions that use mbufs should
always include checks for memory leaks in their testing.

It is also possible to have a large number of mbufs queued at the socket layer because of
an application defect. Normally an application program would read data from the socket,
causing the mbufs to be returned to the mbuf management facility. An administrator can
monitor the statistics generated by the netstat –m command and look for high mbuf usage
while there is no expected network traffic. The administrator can also view the current list of
running processes (by entering ps –ef ) and scan for those that use the network
subsystem with large amounts of CPU time being used. If this behavior is observed, the
suspected application defect should be isolated and fixed.

How to Tune the mbuf Pools 
With an understanding of how the mbuf pools are organized and managed, tuning the mbuf
pools is simple in the AIX operating system and can be done at run time. The no command
can be used by the root user to modify the mbuf pool parameters. Some guidelines are:

• When adjusting the lowclust and lowmbuf attributes, thewall may need to be increased
first to prevent pool expansions from hitting thewall.

• The value of the mb_cl_hiwat attribute should be at least two times greater than the
lowclust attribute at all times. This will prevent the netm thrashing discussed earlier.

• When adjusting lowclust, lowmbuf should be adjusted by at least the same amount. For
every cluster there will exist an mbuf that points to that cluster.

• After expanding the pools, use the vmstat command to ensure that paging rates have
not increased. If you cannot expand the pools to the necessary levels without adversely
affecting the paging rates, additional memory may be required.

The following is an example shell script that might be run at the end of /etc/rc.net to tune
the mbuf pools for an NFS server that experiences a network traffic load of approximately
1500 packets/sec.
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#!/bin/ksh

# echo ”Tuning mbuf pools...”

# set maximum amount of memory to allow for allocation (10MB)

no –o thewall=10240

   

# set minimum number of small mbufs

no –o lowmbuf=3000

   

# generate network traffic to force small mbuf pool expansion

ping 127.0.0.1  1000 1 >/dev/null

   

# set minimum number of small mbufs back to default to prevent

netm from

# running unnecessarily

no –d lowmbuf

   

# set maximum number of free clusters before expanding pool

# (about 6MB)

no –o mb_cl_hiwat=1500

   

# gradually expand cluster pool

N=10

while [ $N –lt 1500 ]

do

  no –o lowclust=$N

  ping 127.0.0.1 1000 1 >/dev/null

  let N=N+10

done

   

# set minimum number of clusters back to default to prevent netm 

# from running unnecessarily

no –d lowclust

You can use netstat –m  following the above script to verify the size of the pool of
clusters (which the netstat command calls mapped pages). To verify the size of the pool of
mbufs, you can use the crash command to examine a kernel  data structure, mbstat (see
the /usr/include/sys/mbuf.h file). The kernel address of mbstat can be displayed while in
crash using the od mbstat command. You will then need to enter od <kernel address>
to dump the first word in the mbstat structure, which contains the size of the mbuf pool. If
you are using AIX Version 4.1 or AIX Version 3.2 with PTF U437500 installed, the dialog
would be similar to the following: 

$ crash

> od mbstat

001f7008: 00000180

> quit

The size of the mbuf pool is therefore 18016 (38410).

If you are using AIX Version 3.2 without PTF U437500 installed, the dialog would be similar
to the following:

$ crash

> od mbstat

000e2be0: 001f7008

> od 1f7008

001f7008: 00000180

> quit

The size of the mbuf pool is therefore 18016 (38410).
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UDP, TCP/IP, and mbuf Tuning Parameters Summary
The  following paragraphs summarize the attributes and tuning techniques for each of the
communications tuning parameters. 

thewall

Purpose: Provide  an absolute upper bound on the amount of real memory that can
be used by the communication subsystem. 

Values: AIX 4.2.1 and earlier: Default: 1/8 of real memory. Range: up to 1/2 of real
memory or 65536 (64 megabytes), whichever is smaller.

AIX 4.3.0: Default: 1/8 of real memory. Range: up to 1/2 of real memory or
131072 (128 megabytes), whichever is smaller.

AIX 4.3.1: Default: 1/2 of real memory. Range: up to 1/2 of real memory or
131072 (128 megabytes), whichever is smaller.

AIX 4.3.2: Default: 1/2 of real memory. Range: up to 1/2 of real memory or
1048576 (1 gigabyte), whichever is smaller.

Display: no –a or no –o thewall

Change: no –o thewall=newvalue

newvalue is in KB, not bytes

Change takes effect immediately for new connections.

Change is effective until the next system boot.

Diagnosis: None.

Tuning: Increase size, preferably to multiple of 4(KB).

Refer to: mbuf Pool Performance Tuning, on page 9-24 .

sockthresh

Purpose: In AIX Version 4.3.1 or later, provide  a way to prevent new sockets from
being created when almost all the network memory is in use. 

Values: Default: 85% of thewall. Range: 1–100

Display: no –a or no –o sockthresh

Change: no –o sockthresh=newvalue

newvalue is a percentage of thewall.

Change takes effect immediately.

Change is effective until the next system boot.

Note: Change will fail if the user attempts to set a new value that is less
than the amount of memory currently in use.

Diagnosis: None.

Tuning: Decrease percentage.

Refer to: Socket Layer, on page 9-3 .
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sb_max

Purpose: Provide  an absolute upper bound on the size of TCP and UDP socket
buffers. Limits setsockopt(), udp_sendspace, udp_recvspace,
tcp_sendspace, and tcp_recvspace. 

Values: Default: 65536 Range: N/A

Display: no –a or no –o sb_max

Change: no –o sb_max=newvalue

Change takes effect immediately for new connections.

Change is effective until the next system boot.

Diagnosis: None.

Tuning: Increase size, preferably to multiple of 4096. Should be about twice the
largest socket buffer limit.

Refer to: Socket Layer, on page 9-3 .

rfc1323

Purpose: Value  of 1 indicates that tcp_sendspace and tcp_recvspace can exceed
64KB. 

Values: Default: 0 Range: 0 or 1

Display: no –a or no –o rfc1323

Change: no –o rfc1323=newvalue

Change takes effect immediately.

Change is effective until the next system boot.

Diagnosis: None.

Tuning: Change before attempting to set tcp_sendspace and tcp_recvspace to
more than 64KB.

Refer to: TCP Layer, on page 9-6 .

udp_sendspace

Purpose: Provide  the default value for the size of the UDP socket send buffer. 

Values: Default: 9216 Range: 0 to 65536

Must be less than or equal to sb_max.

Display: no –a or no –o udp_sendspace

Change: no –o udp_sendspace=newvalue

Change takes effect immediately for new connections.

Change is effective until the next system boot.

Diagnosis: None.

Tuning: Increase size, preferably to multiple of 4096.

Refer to: Socket Layer, on page 9-3 .

udp_recvspace

Purpose: Provide  the default value of the size of the UDP socket receive buffer. 

Values: Default: 41600 Range: N/A

Must be less than or equal to sb_max.
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Display: no –a or no –o udp_recvspace

Change: no –o udp_recvspace=newvalue

Change takes effect immediately for new connections.

Change is effective until the next system boot.

Diagnosis: Nonzero n in netstat –s report of udp: n socket buffer overflows

Tuning: Increase size, preferably to multiple of 4096.

Refer to: Socket Layer, on page 9-3 .

tcp_sendspace

Purpose: Provide  the default value of the size of the TCP socket send buffer. 

Values: Default: 16384 Range: 0 to 64KB if rfc1323=0,

Range: 0 to 4GB if rfc1323=1.

Must be less than or equal to sb_max.

Should be equal to tcp_recvspace and uniform on all frequently accessed
AIX systems.

Display: no –a or no –o tcp_sendspace

Change: no –o tcp_sendspace=newvalue

Change takes effect immediately for new connections.

Change is effective until the next system boot.

Diagnosis: Poor throughput.

Tuning: Increase size, preferably to multiple of 4096.

Refer to: Socket Layer, on page 9-3 .

tcp_recvspace

Purpose: Provide  the default value of the size of the TCP socket receive buffer. 

Values: Default: 16384 Range: 0 to 64KB if rfc1323=0,

Range: 0 to 4GB if rfc1323=1.

Must be less than or equal to sb_max.

Should be equal to tcp_sendspace and uniform on all frequently
accessed AIX systems.

Display: no –a or no –o tcp_recvspace

Change: no –o tcp_recvspace=newvalue

Change takes effect immediately for new connections.

Change is effective until the next system boot.

Diagnosis: Poor throughput.

Tuning: Increase size, preferably to multiple of 4096.

Refer to: Socket Layer, on page 9-3 .

ipqmaxlen

Purpose: Specify  the maximum number of entries on the IP input queue. 

Values: Default: 50 Range: N/A

Display: no –a or no –o ipqmaxlen
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Change: no –o ipqmaxlen=newvalue

Change takes effect immediately.

Change is effective until the next system boot.

Diagnosis: Use crash to access IP input queue overflow counter.

Tuning: Increase size.

Refer to: IP Protocol Performance Tuning Recommendations, on page 9-21 .

xmt_que_size

Purpose: Specifies  the maximum number of send buffers that can be queued up for
the device. 

Values: Default: 30 Range: 20 to 150

Display: lsattr –E –l tok0 –a xmt_que_size

Change: ifconfig tr0 detach

chdev –I tok0 –a xmt_que_size=newvalue

ifconfig tr0 hostname up

Change is effective across system boots.

Diagnosis: netstat –i

Oerr > 0 

Tuning: Increase size. Should be set to 150 as a matter of course on
network–oriented systems, especially servers.

Refer to: LAN Adapters and Device Drivers, on page 9-10 .

rec_que_size

Purpose: (Tunable only in AIX Version 3.) Specifies  the maximum number of receive
buffers that can be queued up for the interface. 

Values: Default: 30 Range: 20 to 150

Display: lsattr –E –l tokn –a rec_que_size 

Change: ifconfig tr0 detach

chdev –I tokn –a rec_que_size=newvalue

ifconfig tr0 hostname up

Change is effective across system boots.

Diagnosis: None.

Tuning: Increase size. Should be set to 150 as a matter of course on
network–oriented systems, especially servers.

Refer to: LAN Adapters and Device Drivers, on page 9-10 .
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MTU 

Purpose: Limits the size of packets that are transmitted on the network.

Values: trn (4Mb): Default: 1492, Range: 60 to 3900

trn (16Mb): Default: 1492, Range: 60 to 17960

enn: Default: 1500, Range: 60 to 1500

fin: Default: 4352, Range: 60 to 4352

hin: Default: 65536, Range: 60 to 65536

son: Default: 61428, Range: 60 to 61428

lon: Default: 1500 (Version 3.2.5), 16896 (AIX Version 4.1), Range: 60 to
65536

Display: lsattr –E –l trn

Change: chdev –l trn –a mtu=NewValue

Cannot be changed while the interface is in use. Because all systems on a
LAN must have the same MTU, they must all change simultaneously.
Change is effective across boots.

Diagnosis: Packet fragmentation stats

Tuning: Increase MTU size for the Token–Ring interfaces:

trn (4Mb): 4056

trn (16Mb): 8500

For the loopback interface lon in Version 3.2.5, increase to 16896

For other interfaces, the default should be kept.

Refer to: LAN Adapters and Device Drivers, on page 9-10 .

Related Information
The crash command, ifconfig command, lsattr command, netstat command, no
command.

The setsockopt subroutine.
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NFS Tuning
NFS  allows programs on one system to access files on another system transparently by
mounting the remote directory. Normally, when the server is booted, directories are made
available by the exportfs command, and the daemons to handle remote access (nfsds) are
started. Similarly, the mounts of the remote directories and the initiation of the appropriate
numbers of biods to handle remote access are performed during client system boot. 

The figure ”NFS Client–Server Interaction” illustrates the structure of the dialog between
NFS clients and a server. When a thread in a client system attempts to read or write a file in
an NFS–mounted directory, the request is redirected from the normal I/O mechanism to one
of the client’s NFS block I/O daemons (biods). The biod sends the request to the
appropriate server, where it is assigned to one of the server’s NFS daemons (nfsds). While
that request is being processed, neither the biod nor the nfsd involved do any other work.

Client A

Thread m

biod i

biod j

biod k

Client B

Thread n

biod a

biod b

biod c

Server Z

nfsd a

nfsd b

nfsd c

nfsd x

nfsd y

nfsd z

LAN
.
.

NFS Client-Server Interaction

How Many biods and nfsds Are Needed for Good Performance?
 Because  biods and nfsds handle one request at a time, and because NFS response time
is often the largest component of overall response time, it is undesirable to have threads
blocked for lack of a biod or nfsd. The general considerations for configuring NFS daemons
are: 

• Increasing the number of daemons cannot compensate for inadequate client or server
processor power or memory, or inadequate server disk bandwidth. Before changing the
number of daemons, you should check server and client resource–utilization levels with
iostat and vmstat.

• NFS daemons are comparatively cheap. A biod costs 36KB of memory (9 pages total, 4
of them pinned), while an nfsd costs 28KB (7 pages total, 2 of them pinned). Of course,
the unpinned pages are only in real memory if the nfsd or biod has been active recently.
Further, idle AIX nfsds do not consume CPU time.

• All NFS requests go through an nfsd; only reads and writes go through a biod.

Choosing Initial Numbers of nfsds and biods
Determining the best numbers of nfsds and biods is an iterative process. Rules of thumb
can give you no more than a reasonable starting point.

By default there are six biods on a client and eight nfsds on a server. The defaults are a
good starting point for small systems, but should probably be increased for client systems
with more than two users or servers with more than 2 clients. A few guidelines are:

• In each client, estimate the maximum number of files that will be written simultaneously.
Configure at least two biods per file. If the files are large (more than 32KB), you may
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want to start with four biods per file to support read–ahead or write–behind activity. It is
common for up to five biods to be busy writing to a single large file.

• In each server, start by configuring as many nfsds as the sum of the numbers of biods
that you have configured on the clients to handle files from that server. Add 20% to allow
for non–read/write NFS requests.

• If you have fast client workstations connected to a slower server, you may have to
constrain the rate at which the clients generate NFS requests. The best solution is to
reduce the number of biods on the clients, with due attention to the relative importance of
each client’s workload and response time.

Tuning the Numbers of nfsds and biods
After you have arrived at an initial number of biods and nfsds, or have changed one or the
other:

• First, recheck the affected systems for CPU or I/O saturation with vmstat and iostat. If
the server is now saturated, you need to reduce its load or increase its power, or both.

• Use netstat –s to determine if any system is experiencing UDP socket buffer overflows.
If so, use no –a to verify that the recommendations in Tuning Other Layers to Improve
NFS Performance, on page 9-37 have been implemented. If so, and the system is not
saturated, you should increase the number of biods or nfsds.

The numbers of nfsds and biods are changed with the chnfs command. To change the
number of nfsds on a server to 10, both immediately and at each subsequent system boot,
you would use:

# chnfs –n 10

To change the number of biods on a client to 8 temporarily, with no permanent change (that
is, the change happens now but is lost at the next system boot), you would use:

# chnfs –N –b 8

To change both the number of biods and the number of nfsds on a system to 9, with the
change delayed until the next system boot (that is, the next IPL), you would use:

# chnfs –I –b 9 –n 9

In extreme cases of a client overrunning the server, it may be necessary to reduce the client
to one biod. This can be done with:

# stopsrc –s biod

This leaves the client with the kproc biod still running.

Performance Implications of Hard or Soft NFS Mounts
One  of the choices you make when configuring NFS–mounted directories is whether the
mounts will be hard or soft. When, after a successful mount, an access to a soft–mounted
directory encounters an error (typically, a timeout), the error is immediately reported to the
program that requested the remote access. When an access to a hard–mounted directory
encounters an error, NFS retries the operation. 

A persistent error accessing a hard–mounted directory can escalate into a perceived
performance problem because the default number of retries (1000) and the default timeout



9-36 Performance Tuning Guide

value (.7 second), combined with an algorithm that increases the timeout value for
successive retries, mean that NFS will try practically forever (subjectively) to complete the
operation.

It is technically possible to reduce the number of retries, or increase the timeout value, or
both, using options of the mount command. Unfortunately, changing these values
sufficiently to remove the perceived performance problem might lead to unnecessary
reported hard errors. Instead, hard–mounted directories should be mounted with the intr
option, which allows the user to interrupt from the keyboard a process that is in a retry loop.

Although soft–mounting the directories would cause the error to be detected sooner, it runs
a serious risk of data corruption. In general, read/write directories should be hard mounted.

Tuning to Avoid Retransmits
Related  to the hard–versus–soft mount question is the question of the appropriate timeout
duration for a given network configuration. If the server is heavily loaded, is separated from
the client by one or more bridges or gateways, or is connected to the client by a WAN, the
default timeout criterion may be unrealistic. If so, both server and client will be burdened
with unnecessary retransmits. For example, if 

$ nfsstat –cr

reports a significant number (> 5% of the total) of both timeout s and badxid s, you
could increase the timeo parameter with:

# smit chnfsmnt

Identify the directory you want to change, and enter a new value on the line ”NFS
TIMEOUT. In tenths of a second.” For LAN–to–LAN traffic via a bridge, try 50 (tenths of
seconds). For WAN connections, try 200. Check the NFS statistics again after at least one
day. If they still indicate excessive retransmits, increase timeo by 50% and try again. You
will also want to look at the server workload and the loads on the intervening bridges and
gateways to see if any element is being saturated by other traffic.

Tuning the NFS File–Attribute Cache
NFS  maintains a cache on each client system of the attributes of recently accessed
directories and files. Five parameters that can be set in the /etc/filesystems file control how
long a given entry is kept in the cache. They are: 

actimeo Absolute time for which file and directory entries are kept in the
file–attribute cache after an update. If specified, this value overrides the
following *min and *max values, effectively setting them all to the actimeo
value.

acregmin Minimum time after an update that file entries will be retained. The default
is 3 seconds.

acregmax Maximum time after an update that file entries will be retained. The default
is 60 seconds.

acdirmin Minimum time after an update that directory entries will be retained. The
default is 30 seconds.

acdirmax Maximum time after an update that directory entries will be retained. The
default is 60 seconds.

Each time the file or directory is updated, its removal is postponed for at least acregmin or
acdirmin seconds. If this is the second or subsequent update, the entry is kept at least as



9-37Monitoring and Tuning Communications I/O

long as the interval between the last two updates, but not more than acregmax or
acdirmax seconds.

Disabling Unused NFS ACL Support
If  your workload does not use the NFS ACL support on a mounted file system, you can
reduce the workload on both client and server to some extent by specifying: 

options = noacl

as part of the client’s /etc/filesystems stanza for that file system.

Tuning for Maximum Caching of NFS Data
NFS  does not have a data caching function, but the AIX Virtual Memory Manager caches
pages of NFS data just as it caches pages of disk data. If a system is essentially a
dedicated NFS server, it may be appropriate to permit the VMM to use as much memory as
necessary for data caching. This is accomplished by setting the maxperm parameter, which
controls the maximum percentage of memory occupied by file pages, to 100% with: 

# vmtune –P 100

The same technique could be used on NFS clients, but would only be appropriate if the
clients were running workloads that had very little need for working–segment pages.

Tuning Other Layers to Improve NFS Performance
NFS  uses UDP to perform its network I/O. You should be sure that the tuning techniques
described in TCP and UDP Performance Tuning, on page 9-11 and mbuf Pool Performance
Tuning , on page 9-24 have been applied. In particular, you should: 

• Ensure that the LAN adapter transmit and receive queues are set to the maximum (150).

• Increase the maximum socket buffer size (sb_max) to at least 131072. If the MTU size is
not 4096 bytes or larger, set sb_max to at least 262144. Set the UDP socket buffer sizes
(udp_sendspace and udp_recvspace) to 131072 also.

• If possible, increase the MTU size on the LAN. On a 16Mb Token Ring, for example, an
increase in MTU size from the default 1492 bytes to 8500 bytes allows a complete 8KB
NFS read or write request to be transmitted without fragmentation. It also makes much
more efficient use of mbuf space, reducing the probability of overruns.

Increasing NFS Socket Buffer Size
In  the course of tuning UDP, you may find that the command: 

$ netstat –s

shows a significant number of UDP socket buffer overflows. As with ordinary UDP tuning,
you should increase the sb_max value. You also need to increase the value of nfs_chars,
which specifies the size of the NFS socket buffer. The sequence:

# no –o sb_max=131072

# nfso –o nfs_chars=130000

# stopsrc –s nfsd

# startsrc –s nfsd
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sets sb_max to a value at least 100 bytes larger than the desired value of nfs_chars, sets
nfs_chars to 130972, then stops and restarts the nfsds to put the new values into effect. If
you determine that this change improves performance, you should put the no and nfso
commands in /etc/rc.nfs, just before the startsrc command that starts the nfsds.

NFS Server Disk Configuration
NFS servers that experience high levels of write activity can benefit from configuring the
journal logical volume on a separate physical volume from the data volumes. This technique
is discussed in Disk Pre–Installation Guidelines, on page 4-23 .

Hardware Accelerators

Prestoserve
The  objective of the Prestoserve product is to reduce NFS write latency by providing a
faster method than disk I/O of satisfying the NFS requirement for synchronous writes. It
provides nonvolatile RAM into which NFS can write data. The data is then considered
”safe,” and NFS can allow the client to proceed. The data is later written to disk as device
availability allows. Ultimately, it is impossible to exceed the long–term bandwidth of the disk,
but since much NFS traffic is in bursts, Prestoserve is able to smooth out the workload on
the disk with sometimes dramatic performance effects. 

Interphase Network Coprocessor
This  product handles NFS protocol processing on Ethernets, reducing the load on the CPU.
NFS protocol processing is particularly onerous on Ethernets because NFS blocks must be
broken down to fit within Ethernet’s maximum MTU size of 1500 bytes. 

Misuses of NFS That Affect Performance
Many of the misuses of NFS occur because people don’t realize that the files they are
accessing are at the other end of an expensive communication path. A few examples we
have seen are:

• A COBOL application running on one AIX system doing random updates of an
NFS–mounted inventory file––supporting a real–time retail cash register application.

• A development environment in which a source code directory on each system was
NFS–mounted on all of the other systems in the environment, with developers logging
onto arbitrary systems to do editing and compiles. This practically guaranteed that all of
the compiles would be obtaining their source code from, and writing their output to,
remote systems.

• Running the ld command on one system to transform .o files in an NFS–mounted
directory into an a.out file in the same directory.

It can be argued that these are valid uses of the transparency provided by NFS. Perhaps
so, but these uses cost processor time and LAN bandwidth and degrade response time.
When a system configuration involves NFS access as part of the standard pattern of
operation, the configuration designers should be prepared to defend the consequent costs
with offsetting technical or business advantages, such as:

• Placing all of the data or source code on a server, rather than on individual workstations,
will improve source–code control and simplify centralized backups.

• A number of different systems access the same data, making a dedicated server more
efficient than one or more systems combining client and server roles.
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Serving Diskless Workstations
Diskless systems  potentially offer excellent processor power coupled with low cost, low
noise and space requirements, and centralized data management. As tantalizing as these
advantages seem, diskless workstations are not the best solution for every desktop. This
section sheds some light on the workings of AIX diskless workstations, the kinds of loads
they present to their servers, and the resulting performance of different kinds of programs.
Much of the NFS background in this section also applies to serving requests from
workstations with disks. 

The following subsections provide more information on diskless systems:

• How a Diskless System Is Different

• NFS Considerations

• When a Program Runs on a Diskless Workstation

• Paging

• Resource Requirements of Diskless Workstations

• Tuning for Performance

• Commands Performance

• Case Study 1––An Office Workload

• Case Study 2––A Software–Development Workload

How a Diskless System Is Different
In a system with local disks (also referred to as a diskful system), the operating system and
the programs needed to do the most basic functions are contained on one or more local
disks. When the system is started, the operating system is loaded from local disk. When the
system is fully operational, the files accessible to users are usually on local disk. The
software that manages the local disks is the journaled file system (JFS).

In a diskless system, the operating system must be booted from a server using bootstrap
code that is in the diskless machine’s read–only storage. The loading takes place over a
local area network: an Ethernet or a Token Ring. When the system is fully operational, the
files accessible to users are located on disks on one or more server systems.

The primary mechanism used by diskless workstations to access files is the Network File
System (NFS). NFS makes remote files seem to be located on the diskless system. NFS is
not exclusive to diskless systems. Diskful systems can also mount remote file systems.
Diskless systems, or diskful systems that depend on servers for files, are usually called
clients.

Normally, several diskless clients are attached to each server, so they contend for the
server’s resources. The difference in performance between otherwise identical diskless and
diskful systems is a function of file systems (NFS versus JFS), the network speed, and the
server resources.

NFS Considerations
The Network File System lets multiple clients access remotely mounted data in a consistent
manner. It provides primitives for basic file–system functions such as create, read, write,
and remove. NFS also provides support for directory operations such as making a directory,
removing a directory, reading and setting attributes, and path–name lookup.

The protocol used by NFS is stateless, that is, no request to the server depends on any
previous request. This adds to the robustness of the protocol. It also introduces
performance problems. Consider the case of writing a file. As the file is written, the modified
data is either in the client memory or on the server. The NFS protocol requires that data
written from the client to the server must be committed to nonvolatile storage, normally disk,
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before the write operation is considered complete. That way, if the server crashes, the data
the client had written can be recovered after system restart. Data that was being written and
was not committed to the disk would be rewritten by the client to the server until the write
was successful. Because NFS does not allow write buffering in the server, each NFS write
requires one or more synchronous disk writes. For example, if a new file of 1 byte is written
by the client, the completion of that write would entail three disk I/Os on the server. The first
would be the data itself. The second would be the journal record, a feature of JFS to
maintain file–system integrity. The third is a flush of the file–allocation data. Because disks
can only write 50 to 100 times a second, total write throughput is limited by the number of
and type of disks on the server system.

Read and write requests used by AIX clients are 4096 bytes or 8192 bytes in length. These
requests generally require more server resources to process than other request types.

Because remote files and file attributes may be cached in the memory of the client, the NFS
protocol provides mechanisms for ensuring that the client version of file–system information
is current. For example, if a 1–byte file is read, the file data will be cached as long as the
space it occupies in the client is not needed for another activity. If a program in the client
reads the file again later, the client ensures that the data in the local copy of the file is
current. This is accomplished by a Get Attribute call to the server to find out if the file has
been modified since it was last read.

Path–name resolution is the process  of following the directory tree to a file. For example,
opening the file  /u/x/y/z  normally requires examining  /u, x, y,  and z  in that
order. If any component of the path does not exist, the file cannot exist as named. One of
NFS’s caches is used to cache frequently used names, reducing the number of requests
actually going to the server. 

Obviously, the server receives some mix of read or write and smaller requests during any
time interval. This mix is hard to predict. Workloads that move large files frequently will be
dominated by read/write requests. Support of multiple diskless workstations will tend to
generate a larger proportion of small NFS requests, although it depends greatly on the
workload.

When a Program Runs on a Diskless Workstation
To better understand the flow of NFS requests in a diskless client, let’s look at the Korn shell
execution of the trivial C program:

#include <stdio.h>

main()

{

printf(”This is a test program\n”);

}

The program is compiled, yielding an executable named a.out . Now if the PATH
environment variable is /usr/bin:/usr/bin/X11:.  (the period representing the
current working directory is at the end of the path) and  the command a.out  is entered at
the command line, the following sequence of operations occurs: 

Request type Component Bytes Sent and Received

1 NFS_LOOKUP usr (called by statx) (send 178, rcv 70)

2 NFS_LOOKUP bin

3 NFS_LOOKUP a.out (Not found)

4 NFS_LOOKUP usr (called by statx)
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5 NFS_LOOKUP bin

6 NFS_LOOKUP X11 (send 174, rcv 156)

7 NFS_LOOKUP a.out (Not found) (send 174, rcv 70)

8 NFS_LOOKUP . (called by statx) (send 174, rcv 156)

9 NFS_LOOKUP .
 

10 NFS_LOOKUP a.out (send 178, rcv 156)

11 NFS_LOOKUP . (called by accessx)
 

12 NFS_LOOKUP a.out
 

13 NFS_GETATTR a.out
 

14 NFS_LOOKUP .
 

15 NFS_LOOKUP a.out (send 170, rcv 104, send 190,
rcv 168)

16 fork
  

17 exec
  

18 NFS_LOOKUP usr
 

19 NFS_LOOKUP bin
 

20 NFS_LOOKUP a.out (Not found) (send 178, rcv 70)

21 NFS_LOOKUP usr
 

22 NFS_LOOKUP bin
 

23 NFS_LOOKUP X11
 

24 NFS_LOOKUP a.out (Not found) (send 178, rcv 70)

25 NFS_LOOKUP .
 

26 NFS_LOOKUP a.out
 

27 NFS_OPEN
 

(send 166, rcv 138)

28 NFS_GETATTR a.out
 

29 NFS_ACCESS
 

(send 170, rcv 104, send 190,
rcv 182)

30 NFS_GETATTR a.out
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31 FS_GETATTR a.out
 

32 NFS_READ a.out (Read executable) (send 178, rcv 1514, rcv
1514, rcv 84)

33 NFS_GETATTR a.out
 

34 NFS_LOOKUP usr (Access library)
 

35 NFS_LOOKUP lib
 

36 NFS_LOOKUP libc.a
 

37 NFS_READLINK libc.a (send 166, rcv 80)

38 NFS_LOOKUP usr
 

39 NFS_LOOKUP ccs
 

40 NFS_LOOKUP lib
 

41 NFS_LOOKUP libc.a
 

42 NFS_OPEN libc.a (send 166, rcv 124)

43 NFS_GETATTR libc.a
 

44 NFS_ACCESS libc.a (send 170, rcv 104, send 190,
rcv 178)

45 NFS_GETATTR libc.a
 

46 NFS_GETATTR libc.a
 

47 NFS_CLOSE libc.a
 

48 _exit
 

If the PATH  were different, the series of NFS operations would be different. For example, a
PATH of .:/usr/bin:/usr/bin/X11:  would allow the program a.out  to be found
much sooner. The negative side of this PATH would be that most commands would be
slower to execute since most of them are in /usr/bin . Another fast way to execute the
program would be by entering ./a.out , since no lookup is needed on the executable
(although library resolution still is needed). Adding a lot of seldom–used directories to the
PATH will slow down command execution. This applies to all environments, but is
particularly significant in diskless environments. 

Another factor to consider in program development is minimizing the number of libraries
referenced. Obviously, the more libraries that need to be loaded, the slower the program
execution becomes. Also the LIBPATH environment variable can affect the speed of
program loading, so use it carefully if at all.

National Language Support can also be a factor in program execution. The above example
was run in the ”C” locale, the most efficient. Running in other locales can cause additional
overhead to access message catalogs.
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At first look, the NFS activity for a small program seems intimidating. Actually, the
performance of the above example is quite acceptable. Remember that the path resolution
for file accesses also takes place in JFS file systems, so the total number of operations is
similar. The NFS cache ensures that not all NFS operations result in network traffic. Finally,
the latency for network operations is usually small, so the aggregate increase in elapsed
time for the command is not great––unless the server itself is overloaded.

Paging
AIX diskless systems  perform paging via the NFS protocol. Paging is the process by which
working storage such as program variables may be written to and read from disk. Paging
occurs when the sum of the memory requirements of the processes running in a system is
larger than the system memory. (See Performance Overview of the Virtual Memory
Manager (VMM), on page 2-5 .) 

Paging is a mixed blessing in any system. It does allow memory to be overcommitted, but
performance usually suffers. In fact, there is a narrow range of paging that will allow
acceptable response time in a workstation environment.

In the diskless environment, paging is particularly slow. This is a result of the NFS protocol
forcing writes to disk. In fact, one can expect each page out (write) operation to be at best
two to three times slower than on a diskful system. Because of paging performance, it is
important that diskless systems contain enough memory that the application mix being
executed does not normally page. (See Memory–Limited Programs .)

AIXwindows–based desktop products encourage behavior that can lead to periods of
intense paging in systems with inadequate memory. For example, a user may have two
programs running in different windows: a large spreadsheet and a database. The user
recalculates a spreadsheet, waits for the calculation to complete, then switches windows to
the database and begins a query. Although the spreadsheet is not currently running, it
occupies a substantial amount of storage. Running the database query also requires lots of
storage. Unless real memory is large enough to hold both of these programs, the
virtual–memory pages of the spreadsheet are paged out, and the database is paged in. The
next time the user interacts with the spreadsheet, memory occupied by the database must
be paged out, and the spreadsheet must be paged back in. Clearly user tolerance of this
situation will be determined by how often windows are switched and how loaded the server
becomes.

Resource Requirements of Diskless Workstations
Several  AIX services can be used to measure client–server workloads. The number of NFS
requests processed by a system is available via nfsstat. This command details the
NFS–request counts by category. The netstat command allows analysis of total packet
counts and bytes transferred to a network device. The iostat command details processor
utilization and disk utilization, which are useful for measuring server systems. Finally, the
AIX trace facility allows the collection of very detailed performance data. 

Capacity planning for diskless networks is often complicated by the ”burstiness” of client I/O
requests––the characteristic pattern of short periods of high request rates interspersed with
longer periods of low request rates. This phenomenon is common in systems where people
act as the primary drivers of applications.

The capacity, or number of clients supported by a server and network for a particular
workload, is determined by request statistics and end–user requirements. Several questions
should be asked.

• How often do users really execute this workload? Normally, a user spends a large
percentage of his or her day on things other than compiling and linking programs.
Assuming that all of the users will spend all of their time interacting with their workstations
at top speed can lead to over–conservative estimates of the number of users that can be
supported.
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• What is the acceptable average network utilization? For Ethernets, it is usually 30% to
60%, depending on site concerns.

• What is the probability that a large number of clients will encounter a period in which their
network utilizations peak simultaneously? During these periods, response time will suffer.
How often do concurrent peaks occur, and how long do they last?

Sometimes remote execution is more appropriate for running large applications. By running
the application on the server, via a remote window, the client is able to take advantage of
the memory of the server system and the fact that multiple instances of the application from
different clients could share pages of code and document files. If the application is run in the
client, swapping behavior as described previously would dramatically affect response time.
Other uses, such as large, disk–intensive make or cp operations, can also benefit by
moving the application closer to the hard disks.

When configuring networks and servers for diskless clients, application measurement
should be performed whenever possible. Don’t forget to measure server processor
utilization and disk utilization. They are more likely to present bottlenecks than either
Ethernet or 16Mb Token–Ring networks.

Tuning for Performance
The capacity  of a client/server configuration may be thought of in terms of supply and
demand. The supply of resources is constrained by the type of network and the server
configuration. The demand is the sum of all client requirements on the server. When a
configuration produces unacceptable performance, improvement can be obtained by
changing the client demand or by increasing the server supply of resource. 

Utilization is the percentage of time a device is in use. Devices with utilizations greater than
70% will see rapidly increasing response times because incoming requests have to wait for
previous requests to complete. Maximum acceptable utilizations are a trade–off of response
time for throughput. In interactive systems, utilizations of devices should generally not
exceed 70–80% for acceptable response times. Batch systems, where throughput on
multiple job streams is important, can run close to 100% utilization. Obviously, with mixtures
of batch and interactive users, care must be taken to keep interactive response time
acceptable.

Client Tuning
Client tuning can involve any combination of:

• Adding client memory

• Increasing the number of client NFS biod daemons

• Changing client network configuration

• Adding a disk to the client configuration

If a client contains insufficient memory, the end result is working–storage paging. This can
be detected by looking at the output of vmstat –s. If a client experiences continual
working–storage paging, adding memory to the client will almost always improve the client’s
performance.

The number of block I/O daemons ( biods) configured on a client limits the number of
outstanding NFS read and write requests. In a diskless system without NFS explicitly
activated, only a few biods are available. If NFS is activated, the number increases.
Normally, the default number of biods available with NFS activated is sufficient for a
diskless workstation.

Both the Ethernet and Token Ring device drivers have parameters defining the transmit
queue size and receive queue size for the device. These parameters can have performance
implications in the client. See the section on Tuning Other Layers to Improve NFS
Performance, on page 9-37 .



9-45Monitoring and Tuning Communications I/O

Adding a disk to a diskless machine should not be considered heresy. In fact, marketing
studies indicate that diskless systems are usually upgraded to having a disk within a year of
purchase. Adding a disk does not necessarily nullify the chief advantage of diskless
systems––centralized file maintenance. A disk may be added for paging only. This is usually
called a dataless system. Other combinations exist. For example a disk may contain both
paging space and temporary file space.

Network Tuning
The network bandwidth of Ethernet is nominally 10 megabits/second. In practice, contention
among the users of the Ethernet makes it impossible to use the full nominal bandwidth.
Considering that an SCSI disk can provide up to 32 megabits/second, it is alarming to
consider a number of clients sharing about one–fourth the bandwidth of a disk. This
comparison is only valid, however, for applications that do sequential disk I/O. Most
workloads are dominated by random I/O, which is seek and rotational–latency limited. Since
most SCSI disks have sustainable throughputs of 50 – 85 random I/O operations per
second, the effective random I/O rate of a disk is 2 – 3 megabits/second. Therefore, an
Ethernet bandwidth is roughly equivalent to about two disks doing random I/O. There is a
lesson here. Applications that do sequential I/O on large files should be run on the system
to which the disks are attached, not on a diskless workstation.

Although the maximum transfer unit (MTU) of a LAN can be changed using SMIT, diskless
workstations are limited to using the default sizes.

Server Tuning
Server configuration involves:

• Server CPU

• Server disk configuration

• Server NFS configuration

• Server memory configuration

• Server network configuration

The server CPU processing power is significant because all server requests require CPU
service. Generally, the CPU processing required for read and write requests is significantly
more than for other requests.

Server disk configuration is usually the first bottleneck encountered. One obvious tuning hint
is to balance the disk I/O, so that no one disk’s utilization is much greater than the others.
Another is to maximize the number of disks. For example, two 400MB disks will provide
almost twice the random I/Os per second of a single 857MB disk. Additionally, with AIX it is
possible to place a journal log on another device. By doing this, the multiple–write NFS
sequence is improved as follows:

• Write data on file disk

• Write journal log on log disk (no disk seek)

• Write file allocation data on file disk (small seek)

By not having the journal on the file disk, one or two potentially long disk–seek operations
are avoided. (If the file and the journal log were on the same lightly loaded disk, the
accessor would be continually seeking back–and–forth between file area and journal log.)

The number of instances of the NFS daemon (nfsd) running on the server limits the number
of NFS requests that the server can be executing concurrently. The default number of nfsds
is only 8, which is probably insufficient for all but low–end servers. The number of nfsds
started at each boot can be changed via smit nfs  (Network File System (NFS) –>
Configure NFS on This System). 

The server memory size is significant only for NFS read operations. Since writes cannot be
cached, memory size has no effect on write performance. On the other hand, assuming that
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some files are used repetitively, the larger the server memory, the higher the probability that
a read can be satisfied from memory, avoiding disk I/O. Avoiding disk I/O has the threefold
benefit of reducing disk utilization, improving response time for the read, and decreasing
server CPU utilization. You can observe server disk activity using iostat. The following cues
may indicate that additional memory could improve the performance of the server:

• One or more of the disk drives is operating close to its limit (40 to 85 random I/Os per
second, see Disk Pre–Installation Guidelines, on page 4-23).

• Over a period of minutes or longer, the number of bytes read is significantly greater than
the number of bytes written.

As in the client, both the Ethernet and Token–Ring device drivers have limits on the number
of buffers available for sending data. See Tuning Other Layers to Improve NFS
Performance, on page 9-37 .

Commands Performance
AIX commands experience the same kinds of behavior we observed when running a trivial
program (see When a Program Runs on a Diskless Workstation, on page 9-40 ). The
behavior of commands can be predicted based on the type and number of file–system
operations required in their execution. Commands that do numerous file lookup operations,
such as find, or lots of read and/or write operations, such as a large cp, will run much
slower on a diskless system. The figure ”Test Results” should give you a sense of the
diskless performance of some frequently used commands.

Relative Normal
Duration on
Diskful System

Short

Long

Minimal Moderate Large

awkcat

cmp

cp

diff find

grep ld

ls

makesort

tar

echo

mkdir

pwd

rm

rmdir

vi

cut

diff3join

pack

cc

more

ps

bc

dc

ar

Increase in Duration When
Run on a Diskless System

Test Results

wc

The penalty experienced by a command on a diskless client is expressed as a ratio of
elapsed time diskful to elapsed time diskless. This ratio is interesting, but not always
important. For example, if a command executes in 0.05 seconds diskful and 0.2 seconds
diskless, the diskless penalty is four. But does an end user care? The 0.2 second response
is well within human tolerance. On the other hand, if the command is used in a shell script
and executed 100 times, the shell script response time might increase from 5 seconds to 20
seconds. For this reason, a good rule  of thumb is to avoid diskless workstations for users
who have complex, frequently executed shell scripts. 

Case Study 1–An Office Workload
As an example of client I/O characteristics, we measured a workload that is representative
of a single–user–per–client office environment on a 16MB diskless ESCALA Model 220. The
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workload creates a file, using the vi editor, at a typing rate of 6 characters per second.
nroff, spell, and cat utilities are run against the document. The document is tftped to the
server. Additional commands include cal, calendar, rm, mail, and a small program to do
telephone number lookup. Simulated ”think time” is included between commands.

The figure ”Office Server CPU Utilization” and the
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figure ”Office
Server Disk Utilization” show server–CPU and server–disk resource utilization for the office
workload. The server is a Model 530H with a single 857MB hard disk. The client running the
office workload is a single Model 220. The workload is ”bursty”––the peaks of utilization are
much higher than the average utilization.
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The figure ”Office Ethernet Packets/Second” shows the I/O–request pattern on the Ethernet
over the period of the workload execution. The average NFS request count is 9.5
requests/second, with a peak of 249 requests/second. The
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f
igure ”Office Ethernet Bytes/second” shows the total bytes transferred per second, including
protocol overhead. The average transfer rate is 4000 bytes/second, with a peak of 114,341
bytes/second. This workload consumes an average of 1/300th of the nominal bandwidth of
an Ethernet, with a peak of 1/11 utilization.
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Since the average per–client server–CPU utilization is 2%, the average server–disk
utilization per client is 2.8%, and the average Ethernet utilization is 0.3%, the disk will
probably be the critical resource when a number of copies of this workload are using a
single server.

Case Study 2–A Software–Development Workload
As another example of client–I/O characteristics, we measured a compile/link/execute
workload on a 16MB diskless ESCALA Model 220. This is a very heavy workload compared
with the office case just described. The workload combines a number of AIX services
commonly used in software development in a single–user–per–client environment.
Simulated ”think time” is included to mimic typing delays.

The figure ”Software Development Server CPU Utilization” and the
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figure
”Software Development Server Disk Utilization” show the server–resource utilization for this
workload. The same configuration as the previous case study was used.
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The figure ”Software Development Ethernet Packets/Second” shows the I/O request pattern
on the Ethernet over the period of the workload execution. The average NFS request count
is 82 requests/second, with a peak of 364 requests/second. The
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f
igure ”Software Development Ethernet Bytes/Second” shows the total bytes transferred per
second, including protocol overhead. The average transfer rate is 67,540 bytes/second, with
a peak of 314,750 bytes/second. This workload consumes an average of 1/18th of the
nominal bandwidth of an Ethernet, with a peak of 1/4 utilization.
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Since the average per–client server–CPU utilization is 4.2%, the average server–disk
utilization per client is 8.9%, and the average Ethernet utilization is 5.3%, the disk will
probably be the critical resource when a number of copies of this workload are using a
single server. However, if a second disk were added to the server configuration, the
Ethernet would probably be the next resource to saturate. There’s always a ”next
bottleneck.”

Given that the disk bottleneck occurs at a small number of clients for this workload, it is
easily measured. The figure ”Average Server Utilization” shows the average CPU utilization
and average disk utilization (one–disk server) of the server as clients are added. The
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igure ”NFS Request Response Time” shows the measured response time for NFS requests
as the number of clients is increased.
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Tuning Asynchronous Connections for High–Speed Transfers
Async  ports permit the connection to a computer of optional devices such as terminals,
printers, fax machines, and modems. Async ports are provided by adapter devices such as
the 8–, 16–, or 64–port BULL adapters or the 128–port Digiboard adapter, which reside on
the Micro Channel and provide multiple asynchronous connections, typically RS232 or
RS422. Many adapters, such as the three BULL async adapters mentioned above, were
originally designed for servicing terminals and printers, and so are optimized for output
(sends). Input processing (receives) is not as well optimized, perhaps because the
assumption was once made that users could not type very fast. This is not a great concern
when data transmission is slow and irregular, as with keyboard input. It becomes a problem
with raw–mode applications, where massive chunks of input are transmitted by other
computers and by devices such as fax machines. 

This section discusses the performance of the various adapters when receiving and sending
raw–mode file transfers. While some adapters have inherent limitations, we provide some
guidelines and methods that can squeeze out better performance from those adapters for
raw–mode transfers.

Measurement Objectives and Configurations
Our measurements had two objectives: to evaluate throughput, effective baud rate, and
CPU utilization at various baud rates for the adapters and to determine the maximum
number of ports that could be supported by each device at each baud rate.

Note: Our throughput measurements were made using raw–mode file–transfer
workloads and are mainly useful for estimating performance of raw–mode devices, like
fax machines and modems. These measurements do not apply to commercial multiuser
configurations, which may incur significant CPU overhead for database accesses or
screen control and are often gated by disk–I/O limitations.

In raw–mode processing, data is treated as a continuous stream; input bytes are not
assembled into lines, and erase and kill processing are disabled. A minimum data–block
size and a read timer are used to determine how the operating system processes the bytes
received before passing them to the application.

Measurements were performed on the native, 8–, 16–, and 64–port adapters at 2400–,
9600–, 19,200– and 38,400–baud line speeds. (Because ESCALA native async ports, the
8–port adapter, and the 16–port adapter are all serviced by the same device driver and have
similar performance, they are referred to as one, the 8/16–port adapter.) The 128–port
adapter was measured only at 19,200 and 38,400 baud.

All ports tested were configured and optimized as fast ports for raw–mode transfers (see the
fastport.s  shell script , on page 9-55 ). A 128,000–character file was written on each
TTY line by the driver, a ESCALA Model 530, and simultaneously read by the system under
test, another 530. Each 530 was configured with 32MB of RAM and a single 857MB disk
drive.

The AIX performance–monitoring command, iostat (or sar, in the case of the 128–port
adapter), was run in the background at a predetermined frequency to monitor system
performance. Measurements were taken upon reaching steady state for a fixed interval of
time in the flat portion of the throughput curve. In each test, the system load was gradually
increased by adding active ports up to some maximum or until 100% CPU utilization was
reached.

Three metrics that best describe peak performance characteristics––aggregate character
throughput per second (char/sec) averaged over the measured interval, effective per–line
baud rate, and CPU utilization––were measured for half–duplex receive and half–duplex
send.

XON/XOFF pacing (async handshaking, no relation to AIX disk–I/O pacing), RTS/CTS
pacing, and no pacing were tested. Pacing and handshaking refer to hardware or software
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mechanisms used in data communication to turn off transmission when the receiving device
is unable to store the data it is receiving. We found that XON/XOFF pacing was appropriate
for the 8/16–port adapters when receiving and for the 128–port adapter both sending and
receiving. RTS/CTS was better for the 64–port adapter when receiving. No pacing was
better for the 8/16– and 64–port adapters when sending.

Character throughput is the aggregate number of characters transmitted per second across
all the lines. Line speeds (or baud rates) of 2400, 9600, 19,200, and 38,400, which are set
through the software, are the optimum speed settings for transfer of data over TTY lines.
While the baud rate is the peak line speed, measured in bits/second, the effective baud rate
is always less, and is calculated as 10 times the character throughput divided by the
number of lines. (The factor 10X is used because it takes 10 bits to transfer one 8–bit
character.)

Results
The following table summarizes our results. ”Max ports:” is the number of ports that can be
supported by the adapter when the effective baud rate most closely approaches the line
speed.

Line Speed     8/16–port:      64–port:        128–port:
               Send    Receive Send    Receive Send     Receive

2400 baud
 Max ports:    32      16      64      64      N/A      N/A

 Char/sec      7700    3800    15200   14720

 Eff. Kb/sec:  2.4     2.4     2.3     2.3

 CPU util. %:  5       32      9       76

9600 baud
 Max ports:    32      12      56      20      128      128

 Char/sec      30700   11500   53200   19200   122200   122700

 Eff. Kb/sec:  9.6     9.6     9.5     9.6     9,6      9.6

 CPU util. %:  17      96      25      99      21       27

19200 baud
 Max ports:    32      6       32      10      128      128

 Char/sec      48900   11090   51200   18000   245400   245900

 Eff. Kb/sec:  15.3    18.5    16      18      19.2     19.2

 CPU util. %:  35      93      23      92      39       39

38400 baud
 Max ports:    32      4       24      7       75       75

 Char/sec      78400   10550   50400   15750   255200   255600

 Eff. Kb/sec:  24.5    26.4    21      22.5    34       34

 CPU util. %:  68      98      23      81      40       37

The 8/16 Async Port Adapter

8/16 Half–Duplex Send
The 8/16 half–duplex send measurements were made with no pacing, allowing the
unimpeded outbound transmission of data. For the 8/16–port adapter, the ESCALA
processes approximately 1400 char/sec per 1% CPU utilization. The peak throughput of a
single 16–port adapter is 48,000 char/sec.

8/16 Half–Duplex Receive
In this configuration, using XON/XOFF pacing, the ESCALA processes about 120 char/sec
per 1% CPU. The peak bandwidth is 11,000 char/sec at 100% CPU utilization for the
16–port async adapter.

The 64–Port Async Adapter
The limiting device in 64–port async adapter systems is typically the 16–port concentrator
box, of which there can be up to four. Concentrator saturation is a concern because as the
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concentrator box approaches overload, no additional throughput is accepted. The effective
baud rate is lowered, and there is a noticeable slowdown in work. For the following
measurements, four 16–port concentrators were connected to the 64 RS232 ports.

64 Half–Duplex Receive
The 64–port half–duplex receive measurements used RTS/CTS hardware pacing. In this
configuration, the ESCALA processes about 195 char/sec per 1% CPU. The peak
bandwidth is 19,500 char/sec at 100% CPU utilization.

For half–duplex receive, a single 16–port concentrator box saturates at 8450 char/sec with
44% CPU. Once the concentrator is saturated, no additional throughput is possible until
another concentrator is added. At 38,400 baud, the single–concentrator saturation point is
four active ports with an effective rate of 22.5 Kbaud. At 19,200 baud the saturation point is
five ports with an effective baud rate of 17 Kbaud. At 9600 baud saturation is at nine ports
with an effective baud rate of 9.6 Kbaud. At 2400 baud the system supports all 64 ports with
an effective baud rate of 2.3 Kbaud with no saturation point. Peak throughput is 14,800
chars/sec.

64 Half–Duplex Send
The 64–port half–duplex send measurements were made with no pacing, allowing the
unimpeded outbound transmission of data with no flow–control restrictions. For the 64–port
adapter, the ESCALA processes approximately 2200 char/sec per 1% CPU utilization. The
peak throughput of the 64–port adapter using all four concentrators is 54,500 char/sec.

A single concentrator box saturates at 13300 char/sec with 6% CPU. At 38,400 baud it
supports six ports with an effective baud rate of approximately 22 Kbaud. At 19,200 baud it
supports eight ports with an effective baud rate of approximately 16.3 Kbaud.

The 128–Port Async Adapter
Up to seven 128–port Digiboard async adapters can be connected to a given ESCALA, for a
total of 896 ports.

There are two synchronous–data–link–control (SDLC) links per adapter, with a combined
capacity of 2.4 Mbaud. (The 64–port adapter has a four–channel SDLC with a combined
capacity of 768 Kbaud.)

Other 128–port features that favorably affect data transmission speed and reduce CPU
utilization are:

• The polling algorithm piggybacks the clock interrupt, so there are no additional host
interrupts. Polling rates can be changed by the application on a per–port basis.

• The device driver detects raw–mode I/O and moves data from adapter memory to user
space, bypassing the host line discipline.

• The concentrator processes most line–discipline options. An exception is cooked mode,
in which all processing is done by the host.

• Adapter microcode reallocates memory buffers based on the number of concentrators
and the available memory.

No concentrator saturation occurs in the 128–port async adapters, giving this adapter the
advantage over the 64–port async–adapter systems.

For the measurements, eight 16–port concentrator boxes were connected to the 128 RS232
ports.

128 Half–Duplex Receive
Using XON/XOFF software pacing, this configuration processes about 6908 char/sec per
1% CPU. The peak throughput is 255,600 char/sec at 37% CPU utilization.
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128 Half–Duplex Send
With no pacing the maximum rate at which this configuration can send data to a TTY device
is approximately 5800 char/sec per 1% CPU utilization. The peak throughput of the
128–port adapter is 255,200 char/sec.

Async Port Tuning Techniques
The test configurations in this study used a number of hardware and software flow–control
mechanisms and additional software techniques to optimize character–transmission rates.
The guidelines below discuss these techniques. (A shell script containing appropriate stty
commands to implement most of the techniques is given at the end of the section.)

• Increase the value of the vmin variable for each TTY from the default of 4. The vmin
variable value is the minimum number of bytes that should be received when the read is
successful. The value chosen for the vmin variable should be the lesser of the application
data–block size or 255 (the maximum allowed). If the application block size is variable or
unknown, vmin should be set to 255. Setting the vmin variable to 255 will result in fewer
read executions and will reduce CPU utilization by 15–20% for file–transfer programs.

• Except on the 128–port adapter, set vtime > 0 to prevent an indefinite block on read. If
the vtime variable is set to zero on the 128–port adapter, POSIX line–discipline
processing will be offloaded to the adapter hardware, reducing CPU processing
significantly.

• For raw–mode sends where output translations are not needed, turn off the opost option
in the POSIX line discipline. This will help the CPU performance by reducing the output
path length. For file–transfer applications, which move large amounts of data on TTY
lines, this can reduce CPU utilization by 3X. Example:

# stty –opost < /dev/ttyn

• Because the 64–port adapter is prone to unpredictable data overruns at higher baud
rates when XON/XOFF is used for pacing, use RTS/CTS hardware pacing instead. This
avoids the risk of losing data.

• Since the 64–port–adapter concentrator boxes have a limited bandwidth and saturate at
higher baud rates, adding more ports to a saturated concentrator will decrease the
performance of all ports connected. Instead, add another concentrator and keep going
until it is saturated or you have run out of CPU.

• For input processing, using the echo option is expensive, as it increases the time per
character. Character echo is useful for canonical user input but is probably not necessary
for most raw–mode applications. Example:

# stty –echo < /dev/ttyn

fastport for Fast File Transfers
The fastport.s  script is intended to condition a TTY port for fast file transfers in raw
mode; for example, when a FAX machine is to be connected. Using the script may improve
CPU performance by a factor of 3 at 38,400 baud. fastport.s  is not intended for the
canonical processing that is used when interacting with a user at an async terminal,
because canonical processing cannot be easily buffered. The bandwidth of the canonical
read is too small for the fast–port settings to make a perceptible difference.

Any TTY port can be configured as a fast port. The improved performance is the result of
reducing the number of interrupts to the CPU during the read cycle on a given TTY line.

1. Create a TTY for the port using SMIT  (Devices –> TTY –> Add a TTY), with Enable
LOGIN=disable and BAUD rate=38,400. 
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2. Create the Korn shell script named fastport.s , as follows:

#****************************************************************

#

#            Configures a fastport for ”raw” async I/O.

# 

#****************************************************************

set –x

sync;sync

i=$1

if [ $i –le 100 ]

then 

# for the native async ports and the 8–, 16–, and 64–port

adapters

# set vmin=255 and vtime=0.5 secs with the following stty

 stty –g </dev/tty$i |awk ’ BEGIN { FS=”:”;OFS=”:” } 

  { $5=”ff”;$6=5;print $0 } ’ >foo

# for a 128–port adapter, remove the preceding stty, then

# uncomment and use the 

# following stty instead to

# set vmin=255 and vtime=0 to offload line discipline processing

# stty –g </dev/tty$i |awk ’ BEGIN { FS=”:”;OFS=”:” } 

#  { $5=”ff”;$6=0;print $0 } ’ >foo

 stty ‘cat foo ‘ </dev/tty$i

 sleep 2

# set raw mode with minimal input and output processing

 stty –opost –icanon –isig –icrnl –echo –onlcr</dev/tty$i

   rm foo

 sync;sync

else 

   echo ”Usage is fastport.s < TTY number >”

fi

3. Invoke the script for TTY number with the command:

fastport.s number
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Using netpmon to Evaluate Network Performance
The  netpmon command uses the trace facility to obtain a detailed picture of network
activity during a time interval. Since it uses the trace facility, netpmon can be run only by
root  or by a member of the system  group. The netpmon command is not designed to
work with NFS3(ONC+). 

In AIX Version 4.1, the  netpmon command is packaged as part of the Performance
Toolbox for AIX. To determine whether netpmon is available, use: 

lslpp –lI perfagent.tools

If this package has been installed, netpmon is available.

Tracing is started by the netpmon command, optionally suspended with trcoff and resumed
with trcon, and terminated with trcstop. As soon as tracing is terminated, netpmon writes
its report to stdout. The following sequence of commands gives a simple example of
netpmon use:

# netpmon –o nm.test.out ; ping xactive 256 5 ; trcstop

The report (somewhat condensed) produced by this sequence, in an otherwise idle system,
was:

Wed Jan 12 14:33:25 1994

System: AIX alborz Node: 3 Machine: 000249573100

4.155 secs in measured interval

========================================================================

Process CPU Usage Statistics:

–––––––––––––––––––––––––––––

                                                   Network

Process (top 20)             PID  CPU Time   CPU %   CPU %

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ping                       12699    0.0573   1.380   0.033

trcstop                    12700    0.0150   0.360   0.000

ksh                        13457    0.0150   0.360   0.000

rlogind                     6321    0.0127   0.306   0.088

netpmon                    12690    0.0064   0.153   0.000

netw                         771    0.0047   0.113   0.113

netpmon                    10650    0.0037   0.090   0.000

trace                      10643    0.0023   0.055   0.000

swapper                        0    0.0022   0.053   0.000

writesrv                    1632    0.0009   0.021   0.000

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Total (all processes)               0.1201   2.891   0.234

Idle time                           3.8904  93.639

========================================================================

First Level Interrupt Handler CPU Usage Statistics:

–––––––––––––––––––––––––––––––––––––––––––––––––––

                                                   Network

FLIH                              CPU Time   CPU %   CPU %

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

external device                     0.0573   1.379   0.890

data page fault                     0.0368   0.887   0.000

floating point                      0.0001   0.003   0.000

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Total (all FLIHs)                   0.0943   2.269   0.890

========================================================================

Second Level Interrupt Handler CPU Usage Statistics:

––––––––––––––––––––––––––––––––––––––––––––––––––––

                                                   Network

SLIH                              CPU Time   CPU %   CPU %
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––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

clock                               0.0415   0.998   0.000

tokdd                               0.0064   0.154   0.154

<addr=0x00022140>                   0.0008   0.019   0.000

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Total (all SLIHs)                   0.0486   1.171   0.154

========================================================================

Network Device–Driver Statistics (by Device):

–––––––––––––––––––––––––––––––––––––––––––––

                 ––––––––––– Xmit ––––––––––   ––––– Recv ––––

Device           Pkts/s  Bytes/s  Util  QLen   Pkts/s  Bytes/s

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

/dev/tok0          3.37      629 0.005 0.005    16.85     1900

========================================================================

Network Device–Driver Transmit Statistics (by Destination Host):

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Host                     Pkts/s  Bytes/s

––––––––––––––––––––––––––––––––––––––––

xactive.austin.ibm.com     1.44      390

========================================================================

Detailed Second Level Interrupt Handler CPU Usage Statistics:

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

SLIH: tokdd

count:                  84

  cpu time (msec):      avg 0.076   min 0.058   max 0.097   sdev 0.009  

========================================================================

Detailed Network Device–Driver Statistics:

––––––––––––––––––––––––––––––––––––––––––

DEVICE: /dev/tok0

recv packets:           70

  recv sizes (bytes):   avg 112.8   min 68      max 324     sdev 75.2   

  recv times (msec):    avg 0.226   min 0.158   max 0.449   sdev 0.056  

xmit packets:           14

  xmit sizes (bytes):   avg 186.6   min 52      max 314     sdev 100.0  

  xmit times (msec):    avg 1.552   min 1.127   max 2.532   sdev 0.380  

========================================================================

Detailed Network Device–Driver Transmit Statistics (by Host):

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

HOST: xactive.austin.ibm.com

xmit packets:           6

  xmit sizes (bytes):   avg 270.3   min 52      max 314     sdev 97.6   

  xmit times (msec):    avg 1.772   min 1.516   max 2.532   sdev 0.346
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Using iptrace to Analyze Performance Problems
There  are many tools for observing the activity, both normal and pathological, on the
network. Some run under AIX, others run on dedicated hardware. One tool that can be used
to obtain a detailed, packet–by–packet description of the LAN activity generated by a
workload is the combination of the iptrace daemon and the ipreport command. The iptrace
daemon can only be started by root . 

By default, iptrace traces all packets. An option (–a) allows exclusion of address resolution
protocol (ARP) packets. Other options can narrow the scope of tracing to a particular source
host (–s), destination host (–d), or protocol (–p). See AIX Commands Reference. Because
iptrace can consume significant amounts of processor time, you should be as specific as
possible in describing the packets you want traced.

Since iptrace is a daemon, it should be started with a startsrc command rather that directly
from the command line. This makes it easier to control and shut down cleanly. A typical
invocation would be: 

# startsrc –s iptrace –a ”–i tr0 /home/user/iptrace/log1”

This command starts the iptrace daemon with directions to trace all activity on the
Token–Ring interface, tr0 , and place the trace data in /home/user/iptrace/log1 .
To stop the daemon, use:

# stopsrc –s iptrace

If you hadn’t started it with startsrc, you would have to find its process ID with ps and kill it.

The ipreport command is a formatter for the log file. Its output is written to stdout .
Options allow recognition and formatting of RPC packets (–r), identifying each packet with a
number (–n), and prefixing each line with a 3–character string that identifies the protocol
(–s). A typical ipreport  command to format the log1  file just created (which is owned by
root ) would be: 

# ipreport –ns log1 >log1_formatted

This would result in a sequence of packet reports similar to the following examples. The first
packet is the first half of a ping. The fields of most interest are: the source (SRC) and
destination (DST) host address, both in dotted decimal and in ASCII; the IP packet length
(ip_len); and the indication of the higher–level protocol in use (ip_p).
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Packet Number 131

TOK: =====( packet transmitted on interface tr0 )=====Fri Dec 10 08:42:07

1993

TOK: 802.5 packet

TOK: 802.5 MAC header:

TOK: access control field = 0, frame control field = 40

TOK: [ src = 90:00:5a:a8:88:81, dst = 10:00:5a:4f:35:82]

TOK: routing control field = 0830,  3 routing segments

TOK: routing segments [ ef31 ce61 ba30  ]

TOK: 802.2 LLC header:

TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)

IP:     < SRC =  129.35.145.140 >  (alborz.austin.ibm.com)

IP:     < DST =  129.35.145.135 >  (xactive.austin.ibm.com)

IP:     ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=38892, ip_off=0

IP:     ip_ttl=255, ip_sum=fe61, ip_p = 1 (ICMP)

ICMP:   icmp_type=8 (ECHO_REQUEST)  icmp_id=5923  icmp_seq=0

ICMP: 00000000     2d088abf 00054599 08090a0b 0c0d0e0f     |–.....E.........|

ICMP: 00000010     10111213 14151617 18191a1b 1c1d1e1f     |................|

ICMP: 00000020     20212223 24252627 28292a2b 2c2d2e2f     | !”#$%&’()*+,–./|

ICMP: 00000030     30313233 34353637                       |01234567        |

The next example is a frame from an ftp operation. Note that the IP packet is the size of the
MTU for this LAN––1492 bytes.

Packet Number 501

TOK: =====( packet received on interface tr0 )=====Fri Dec 10 08:42:51 1993

TOK: 802.5 packet

TOK: 802.5 MAC header:

TOK: access control field = 18, frame control field = 40

TOK: [ src = 90:00:5a:4f:35:82, dst = 10:00:5a:a8:88:81]

TOK: routing control field = 08b0,  3 routing segments

TOK: routing segments [ ef31 ce61 ba30  ]

TOK: 802.2 LLC header:

TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)

IP:     < SRC =  129.35.145.135 >  (xactive.austin.ibm.com)

IP:     < DST =  129.35.145.140 >  (alborz.austin.ibm.com)

IP:     ip_v=4, ip_hl=20, ip_tos=0, ip_len=1492, ip_id=34233, ip_off=0

IP:     ip_ttl=60, ip_sum=5ac, ip_p = 6 (TCP)

TCP:    <source port=20(ftp–data), destination port=1032 >

TCP:    th_seq=445e4e02, th_ack=ed8aae02

TCP:    th_off=5, flags<ACK |>

TCP:    th_win=15972, th_sum=0, th_urp=0

TCP: 00000000     01df0007 2cd6c07c 00004635 000002c2     |....,..|..F5....|

TCP: 00000010     00481002 010b0001 000021b4 00000d60     |.H........!....‘|

             ––––––––– Lots of uninteresting data omitted –––––––––––

TCP: 00000590     63e40000 3860000f 4800177d 80410014     |c...8‘..H..}.A..|

TCP: 000005a0     82220008 30610038 30910020              |.”..0a.80..     |
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Chapter 10. DFS Performance Tuning

 
Note: The following recommendations are based on performance experiments using AIX
Version 4.1. At the time this book was written, the degree to which these
recommendations would apply to AIX Version 4.1 was not known.

From the performance standpoint, the most important difference between DCE Distributed
File Service (DFS)  and NFS is the client data–caching capability of DFS, so it is not
surprising that the most important performance–tuning techniques for DFS involve choosing
the attributes of the client cache. The client and server parameter choices discussed in this
section are: 

• DFS Caching on Disk or Memory?

• DFS Cache Size

• DFS Cache Chunk Size

• Number of DFS Cache Chunks

• Location of DFS Disk Cache

• Cache Status Buffer Size

• Effect of Application Read/Write Size

• Communications Parameter Settings for DFS

• DFS File Server Tuning

• DCE LFS Tuning for DFS Performance

DFS Caching on Disk or Memory?
To assess the disk versus memory trade–off in your environment, consider the following
points:

• If the system being tuned, or another system with similar workload, is already running
DFS with a disk cache, you can estimate the required size of a memory cache by issuing
the following command toward the end of a period of peak workload:

cm getcachesize

Divide the number of 1KB blocks being used by .9 to determine the memory cache size
needed to accommodate the same amount of data. (About 10% of the blocks in the
cache are used for DFS record keeping.)

• If the data being handled is frequently reaccessed, the greater potential capacity of a disk
cache is probably appropriate.

• If the data being handled is so extensive that it would overflow the largest feasible disk
cache, or if the data is frequently changed by another client, a memory cache is probably
more appropriate because of its greater effect on RPC performance.

• The size of a memory cache should not exceed 10% of the real memory size of the
machine. The recommended size is about 5% of real memory. Because DFS exploits the
memory caching capability of the AIX VMM, most of a DFS memory cache is used to hold
directory and mount–point information.
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• If your system shows any sign of being memory–bound, as evidenced by nonzero values
in the pi  or po  columns of a vmstat report, you should not use a memory cache for
DFS.

• As a feasibility check, you could temporarily reduce, using rmss, the effective memory
size of the machine by the amount of memory you are considering using for a memory
cache. If you observe paging activity, or diminished performance, or both, you should not
use a memory cache. See Assessing Memory Requirements via the rmss Command, on
page 7-6.

DFS Cache Size
Determining the appropriate DFS cache size for a particular system will take some
experimentation. You might begin by estimating the sum of:

• The sizes of the set of DFS–resident data files that are read at least once a day.

• The amount of DFS–resident data that is generated by the users of the system each day.

• The sizes of the DFS–resident programs that are executed more than once a day.

If the users’ home directories are in DFS, you will want to make an allowance for the
frequency with which the home directory is accessed, and the effect on perceived
responsiveness of the system.

The size of the client cache is specified in the CacheInfo file and can be overridden with the
dfsd –blocks n option, where n is the number of KB in the cache. This parameter applies to
both memory and disk caches.

DFS Cache Chunk Size
The DFS cache chunk size can range from 8KB to 256KB. For large files (several MB),
sequential read and write performance increases as chunk size increases, up to about
64KB. For very large files (100MB or more) a chunk size of 256KB yields the best read
performance.

The chunk size is specified with the dfsd –chunksize n option, where n is an integer from
13 to 18, inclusive. The cache size is 2**n bytes, and so ranges from 8KB (2**13) to
256KB(2**18). This parameter applies to both memory and disk caches. The default size is
8KB for memory caches and 64KB for disk caches.

Number of DFS Cache Chunks
This parameter only applies to disk caches. For memory caches, the number of chunks is
already specified by the combination of cache size and chunk size. For disk caches, the
default number of chunks is computed as the number of cache blocks divided by 8. If a du
of the cache directory indicates that the space is less than 90% full, increase the number of
cache chunks with the dfsd –files n option, where n is the number of chunks to be
accommodated. This allows better utilization of the available cache space in applications
that use many small files. Since multiple files cannot share a chunk, the number of chunks
determines the maximum number of files the cache can accommodate.

Location of DFS Disk Cache
The disk cache should be in a logical volume that is:

• In the outer_edge  area, if it is on a 200MB, 540MB, or 1.0GB disk drive.

• In the center  area, if it is on any other disk drive.
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• Not in the rootvg  volume group.

• Not on the same physical volume as a paging space.

• Primarily or exclusively for use by the disk cache.

• Large enough to hold the specified disk cache without encroachment by other contents.

Cache Status–Buffer Size
The status–buffer size limits the maximum number of files that can be in the cache at one
time. One entry is required for each file. If the status buffer is full, new files will displace old
files in the cache, even though there is enough disk space to hold them. If your workload
consists mostly of files that are equal to or smaller than the chunk size, the status buffer
should have as many entries as there are chunks in the cache.

The status–buffer size is specified with the dfsd –stat n option, where n is the number of
entries in the status buffer. The default value of n is 300.

Effect of Application Read/Write Size
Sequential read and write performance are affected by the size of the records being read or
written by the application. In general, read throughput increases with record size up to 4KB,
above which it levels off. Write throughput increases with record size up to 2KB, above
which it levels off or decreases slightly.

Communications Parameter Settings for DFS
DFS uses UDP as its communications protocol. The recommendations for tuning DFS
communications for servers and multiuser client systems parallel those for tuning
communications in general (see UDP, TCP/IP, and mbuf Tuning Parameters Summary, on
page 9-29 ):

• Set the network adapter transmit and receive queue sizes to 150 ( the maximum). This
can be done with smit commodev –> (adapter type) –> Adapter –> Change / Show
Characteristics of a (adapter type) Adapter. These parameters cannot be changed while
the adapter is in operation. SMIT allows you to specify the change to take effect when the
system is next restarted.

You can also use chdev to set these parameters, if you take the adapter offline first. For
example, for a Token–Ring adapter, the sequence of commands would be:

# ifconfig tr0 detach

# chdev –l tok0 –a xmt_que_size=150 –a rec_que_size=150

# ifconfig tr0 hostname up

You can observe the effect of the change with:

$ lsattr –E –l tok0

• If a netstat –s command reports a nonzero number in udp: n socket buffer
overflows , increasing the sb_max and udp_recvspace parameters with the no
command will only solve the problem if an application other than DFS is experiencing the
overflows. DFS sets its own values (176KB) for sb_max and udp_recvspace. These
values are not displayed or changed by the no command.
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DFS File Server Tuning
On high–speed servers, it may be desirable to increase the number of –mainprocs and
–tokenprocs (in the fxd command), to ensure that all of the available CPU capacity can be
used effectively.

• A good level to start with is –mainprocs 10 –tokenprocs 4.

• Run vmstat during periods of heavy load. If a considerable level of CPU I/O wait is being
experienced, try increasing the –mainprocs and –tokenprocs values further.

DCE LFS Tuning for DFS Performance
The following should be considered when setting up a DCE LFS aggregate (using the
newaggr command) on a DFS server:

• If most of the files will be large, set the –blocksize parameter to the largest permitted
value that is less than the typical file size. The –blocksize parameter can any power of 2
in the range from 4KB to 64KB.

• If most of the files will be several times larger than the –blocksize parameter, set the
–fragsize parameter equal to the –blocksize parameter. This may use some additional
disk space, but will streamline processing.

• If the aggregate is smaller than 100MB, use the –logsize parameter to ensure that the
log is larger than the default (1% of the aggregate size). In general, logsize should never
be less than 1000 blocks.
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Chapter 11. Performance Analysis with the Trace
Facility

 
The  AIX trace facility is a powerful system observation tool. The trace facility captures a
sequential flow of time–stamped system events, providing a fine level of detail on system
activity. Events are shown in time sequence and in the context of other events. Trace is a
valuable tool for observing system and application execution. Where other tools provide
high–level statistics, such as CPU utilization or I/O–wait time, the trace facility is useful in
expanding the information to understand who, when, how, and why. 

The operating system is instrumented to provide general visibility to system execution.
Users can extend visibility into their applications by inserting additional events and providing
formatting rules.

Care was taken in the design and implementation of this facility to make the collection of
trace data efficient, so that system performance and flow would be minimally altered by
activating trace. Because of this, the facility is extremely useful as a performance–analysis
tool and as a problem–determination tool.

The following sections provide more information on the trace facility:

• Understanding the Trace Facility

• An Example of Trace Facility Use

• Starting and Controlling Trace from the Command Line

• Starting and Controlling Trace from a Program

• Adding New Trace Events

• Syntax for Stanzas in the Trace Format File
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Understanding the Trace Facility
The trace facility is more flexible than traditional system–monitor services that access and
present statistics maintained by the system. With traditional monitor services, data reduction
(conversion of system events to statistics) is largely coupled to the system instrumentation.
For example, many systems maintain the minimum, maximum, and average elapsed time
observed for executions of task A and permit this information to be extracted.

The AIX trace facility does not strongly couple data reduction to instrumentation, but
provides a stream of trace event records (usually abbreviated to events). It is not necessary
to decide in advance what statistics will be needed; data reduction is to a large degree
separated from the instrumentation. The user may choose to determine the minimum,
maximum and average time for task A from the flow of events. But it is also possible to
extract the average time for task A when called by process B; or the average time for task A
when conditions XYZ are met; or calculate the standard deviation of run time for task A; or
even decide that some other task, recognized by a stream of events, is more meaningful to
summarize. This flexibility is invaluable for diagnosing performance or functional problems.

In addition to providing detailed information about system activity, the trace facility allows
application programs to be instrumented and their trace events collected in addition to
system events. The trace file then contains a complete record of the application and system
activity, in the correct sequence and with precise time stamps.

Limiting the Amount of Trace Data Collected
The trace facility generates large volumes of data. This data cannot be captured for
extended periods of time without overflowing the storage device. There are two ways that
the trace facility can be used efficiently:

• The trace facility can be turned on and off in multiple ways to capture snippets of system
activity. It is practical to capture in this way seconds to minutes of system activity for post
processing. This is enough time to characterize major application transactions or
interesting sections of a long task.

• The trace facility can be configured to direct the event stream to standard output. This
allows a real–time process to connect to the event stream and provide data reduction as
the events are recorded, thereby creating long–term monitoring capability. A logical
extension for specialized instrumentation is to direct the data stream to an auxiliary
device that can either store massive amounts of data or provide dynamic data reduction.
This technique is used by the performance tools tprof, netpmon, and filemon.

Starting and Controlling Trace
The trace facility provides three distinct modes of use:

• Subcommand Mode. Trace is started with a shell command (trace) and carries on a
dialog with the user via subcommands. The workload being traced must be provided by
other processes, because the original shell process is in use.

• Command Mode. Trace is started with a shell command (trace –a) that includes a flag
which specifies that the trace facility is to run asynchronously. The original shell process
is free to run ordinary commands, interspersed with trace–control commands.

• Application–Controlled Mode. Trace is started (with trcstart()) and controlled by
subroutine calls (such as trcon(), trcoff()) from an application program.

Formatting Trace Data
A general–purpose trace report facility is provided by the trcrpt command. The report
facility provides little data reduction, but converts the raw binary event stream to a readable
ASCII listing. Data can be visually extracted by a reader, or tools can be developed to
further reduce the data.



11-3Performance Analysis with the Trace Facility

The report facility displays text and data for each event according to rules provided in the
trace format file. The default trace format file is /etc/trcfmt. It contains a stanza for each
event ID. The stanza for the event provides the report facility with formatting rules for that
event. This technique allows users to add their own events to programs and insert
corresponding event stanzas in the format file to specify how the new events should be
formatted.

Viewing Trace Data
When trace data is formatted, all data for a given event is usually placed on a single line.
Additional lines may contain explanatory information. Depending on the fields included, the
formatted lines can easily exceed 80 characters. It is best to view the reports on an output
device that supports 132 columns.
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An Example of Trace Facility Use

Obtaining a Sample Trace File
Trace data accumulates rapidly. We want to bracket the data collection as closely around
the area of interest as possible. One technique for doing this is to issue several commands
on the same command line. For example:

$ trace –a –k ”20e,20f” –o ./trc_raw ; cp ../bin/track /tmp/junk

; trcstop

captures the execution of the cp command. We have used two features of the trace
command. The –k ”20e,20f” option suppresses the collection of events from the lockl
and unlockl functions. These calls are numerous and add volume to the report without
adding understanding at the level we’re interested in. The –o ./trc_raw  option causes
the raw trace output file to be written in our local directory.

Note: This example is more educational if the input file is not already cached in system
memory. Choose as the source file any file that is about 50KB and has not been touched
recently.

Formatting the Sample Trace
We use the following form of the trcrpt command for our report:

$ trcrpt –O ”exec=on,pid=on” trc_raw > cp.rpt

This reports both the fully qualified name of the file that is execed and the process ID that is
assigned to it.

A quick look at the report file shows us that there are numerous VMM page assign and
delete events in the trace, like the following sequence:

1B1 ksh     8525    0.003109888    0.162816    VMM page delete:      V.S=00

00.150E ppage=1F7F

 

                                                         delete_in_progress

process_private working_storage

1B0 ksh     8525    0.003141376    0.031488    VMM page assign:      V.S=00

00.2F33 ppage=1F7F

 

                                                         delete_in_progress

process_private working_storage

We are not interested in this level of VMM activity detail at the moment, so we reformat the
trace with:

$ trcrpt –k ”1b0,1b1” –O ”exec=on,pid=on” trc_raw > cp.rpt2

The –k ”1b0,1b1”  option suppresses the unwanted VMM events in the formatted
output. It saves us from having to retrace the workload to suppress unwanted events. We
could have used the –k function of trcrpt instead of that of the trace command to suppress
the lockl and unlockl events, if we had believed that we might need to look at the lock
activity at some point. If we had been interested in only a small set of events, we could have
specified –d ”hookid1,hookid2” to produce a report with only those events. Since the hook
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ID is the left–most column of the report, you can quickly compile a list of hooks to include or
exclude.

A comprehensive list of Trace hook IDs is defined in /usr/include/sys/trchkid.h.

Reading a Trace Report
The header of the trace report tells you when and where the trace was taken, as well as the
command that was used to produce it:

Fri Nov 19 12:12:49 1993

System: AIX ptool Node: 3

Machine: 000168281000

Internet Address: 00000000 0.0.0.0

trace –ak 20e 20f –o –o ./trc_raw

The body of the report, if displayed in a small enough font, looks as follows:

ID PROCESS NAME  PID   ELAPSED_SEC  DELTA_MSEC  APPL SYSCALL KERNEL INTERRUPT

101 ksh          8525  0.005833472   0.107008         kfork

101 ksh          7214  0.012820224   0.031744         execve

134 cp           7214  0.014451456   0.030464         execcp../bin/trk/junk

 

In cp.rpt  you can see the following phenomena:

• The fork, exec, and page fault activities of the cp process

• The opening of the input file for reading and the creation of the /tmp/junk  file

• The successive read/write system calls to accomplish the copy

• The process cp becoming blocked while waiting for I/O completion, and the wait process
being dispatched

• How logical–volume requests are translated to physical–volume requests

• The files are mapped rather than buffered in traditional kernel buffers, and the read
accesses cause page faults that must be resolved by the Virtual Memory Manager.

• The Virtual Memory Manager senses sequential access and begins to prefetch the file
pages.

• The size of the prefetch becomes larger as sequential access continues.

• When possible, the disk device driver coalesces multiple file requests into one I/O
request to the drive.

The trace output looks a little overwhelming at first. This is a good example to use as a
learning aid. If you can discern the activities described, you are well on your way to being
able to use the trace facility to diagnose system–performance problems.

Filtering of the Trace Report
The full detail of the trace data may not be required. You can choose specific events of
interest to be shown. For example, it is sometimes useful to find the number of times a
certain event occurred. To answer the question ”How many opens occurred in the copy
example?” first find the event ID for the open system call. This can be done as follows:

$ trcrpt –j | grep –i open
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You should be able to see that event ID 15b is the open event. Now, process the data from
the copy example as follows:

$ trcrpt –d 15b –O ”exec=on” trc_raw

The report is written to standard output, and you can determine the number of open
subroutines that occurred. If you want to see only the open subroutines that were
performed by the cp process, run the report command again using the following:

$ trcrpt –d 15b –p cp –O ”exec=on” trc_raw
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Starting and Controlling Trace from the Command Line
The trace facility is configured and data collection optionally started by the trace command,
the detailed syntax of which is described in AIX Commands Reference.

After trace is configured by the trace command, there are controls to turn data collection on
and off and to stop the trace facility (stop deconfigures trace and unpins buffers). There are
several ways to invoke the controls: subcommands, commands, subroutines, and ioctl
calls. The subroutine and ioctl interfaces are described in Starting and Controlling Trace
from a Program, on page 11-8 .

Controlling Trace in Subcommand Mode
If  the trace routine is configured without the –a option, it runs in subcommand mode.
Instead of the normal shell prompt, a prompt of ”>” is given. In this mode the following
subcommands are recognized: 

trcon Starts or resumes collection of event data.

trcoff Suspends collection of event data.

q or quit Stops collection of event data and terminates the trace
routine.

!command Runs the specified shell command.

Controlling Trace by Commands
If  the trace routine is configured to run asynchronously (trace –a), trace can be controlled
by the following commands: 

trcon Starts or resumes collection of event data.

trcoff Suspends collection of event data.

trcstop Stops collection of event data and terminates the trace
routine.
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Starting and Controlling Trace from a Program
The AIX trace facility can be started from a program, via a subroutine call. The subroutine is
trcstart and is in the librts.a library. The syntax of the trcstart subroutine is:

int trcstart(char *args)

where args is simply the options list that you would have entered for the trace command. By
default, the system trace (channel 0) is started. If you want to start a generic trace, you
should include a –g option in the args string. On successful completion, the trcstart
subroutine returns the channel ID. For generic tracing this channel ID can be used to record
to the private generic channel.

When compiling a program using this subroutine, the link to the librts.a library must be
specifically requested (use –l rts as a compile option).

Controlling Trace with Trace Subroutine Calls
The  controls for the trace routine are available as subroutines from the librts.a library. The
subroutines return zero on successful completion. The subroutines are: 

inttrcon() Begins or resumes collection of trace data.

inttrcoff() Suspends collection of trace data.

inttrcstop() Stops collection of trace data and terminates the trace
routine.

Controlling Trace with ioctl Calls
Each  of the above subroutines for controlling trace: 

• opens the trace control device (/dev/systrctl)

• Issues the appropriate ioctl

• closes the control device

• Returns to the calling program

To turn tracing on and off around individual sections of code, it may be more efficient for a
program to issue the ioctl controls directly. This avoids the repetitive opening and closing of
the trace control device. To use the ioctl interface in a program, include <sys/trcctl.h> to
define the ioctl commands. The syntax of the ioctl is as follows:

ioctl (fd, CMD,Channel)

where:

fd File descriptor returned from opening /dev/systrctl

CMD One of: TRCON, TRCOFF, or TRCSTOP

Channel Trace channel (0 for system trace)

The following code example shows how to start a trace from a program and only trace
around a specified section of code:
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#include <fcntl.h>

#include <sys/trcctl.h>

extern int trcstart(char *arg);

char *ctl_dev =”/dev/systrctl”;

int ctl_fd;

main()

{

     printf(”configuring trace collection \n”);

     if (trcstart(”–ad”)){

         perror(”trcstart”);

         exit(1);

     }

   

     printf(”opening the trace device \n”);

     if((ctl_fd =open (ctl_dev,O_RDWR))<0){

         perror(”open ctl_dev”);

         exit(1);

     }

    

     printf(”turning data collection on \n”);

     if(ioctl(ctl_fd,TRCON,0)){

         perror(”TRCON”);

         exit(1);

     }

   

     /* *** code here will be traced *** */

     printf(”The code to print this line will be traced.”);

   

     printf(”turning data collection off\n”);

     if (ioctl(ctl_fd,TRCOFF,0)){

         perror(”TRCOFF”);

         exit(1);

     }

   

     printf(”stopping the trace daemon \n”);

     if (trcstop(0)){

         perror(”trcstop”);

         exit(1);

     }

   

     exit(0);

}

Since no output file was specified in the parameter to the trcstart() subroutine, the output of
the trace will be in /var/adm/ras/trcfile, which is also the default input file of the trcrpt
command.
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Adding New Trace Events
The  operating system is shipped instrumented with key events. The user need only activate
trace to capture the flow of events from the operating system. Application developers may
want to instrument their application code during development for tuning purposes. This
provides them with insight into how their applications are interacting with the system. 

To add a trace event you have to design the trace records generated by your program in
accordance with trace interface conventions. You then add trace–hook macros to the
program at the appropriate locations. Traces can then be taken via any of the standard
ways of invoking and controlling trace (commands, subcommands, or subroutine calls). To
use the trcrpt program to format your traces, you need to add stanzas describing each new
trace record and its formatting requirements to the trace format file.

Possible Forms of a Trace Event Record
A trace event can take several forms. An event consists of a hook word, optional data
words, and an optional time stamp, as shown in the figure ”Format of a Trace Event Record”
. A four–bit type is defined for each form the event record can take. The type field is
imposed by the recording routine so that the report facility can always skip from event to
event when processing the data, even if the formatting rules in the trace format file are
incorrect or missing for that event. 

12-bit
Hook ID

Hook Word
(required)

D1
(optional)

D2
(optional)

D3
(optional)

D4
(optional)

D5
(optional)

T
(optional)

4-bit
Type

16-bit
Data Field

Data Word 1

Data Word 2

Data Word 3

Data Word 4

Data Word 5

32-bit Time Stamp

Format of a Trace Event Record

An event record should be as short as possible. Many system events use only the hook
word and time stamp. There is another event type that is mentioned but should seldom be
used because it is less efficient and is intrusive. It is a long format that allows the user to
record a variable length of data. In this long form, the 16–bit data field of the hook word is
converted to a length field that describes the length of the event record.

Trace Channels
The  trace facility can accommodate up to eight simultaneous channels of trace–hook
activity, which are numbered 0–7. Channel 0 is always used for system events, but
application events can also use it. The other seven channels, called generic channels, can
be used for tracing application–program activity. 

When trace is started, channel 0 is used by default. A trace –n command (where n is the
channel number) starts trace to a generic channel. Use of the generic channels has some
limitations.
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• The interface to the generic channels costs more CPU time than the interface to channel
0 because of the need to distinguish between channels and because generic channels
record variable–length records.

• Events recorded on channel 0 and on the generic channels can be correlated only by
time stamp, not by sequence, so there may be situations in which it is not possible to
determine which event occurred first.

Macros for Recording Trace Events
There  is a macro to record each possible type of event record. The macros are defined in
/usr/include/sys/trcmacros.h. The event IDs are defined in /usr/include/sys/trchkid.h.
These two files should be included by any program that is recording trace events. 

The macros to record events on channel 0 with a time stamp are:

TRCHKL0T(hw)

TRCHKL1T(hw,D1)

TRCHKL2T(hw,D1,D2)

TRCHKL3T(hw,D1,D2,D3)

TRCHKL4T(hw,D1,D2,D3,D4)

TRCHKL5T(hw,D1,D2,D3,D4,D5)

Similarly, to record events on channel 0 without a time stamp, use:

TRCHKL0(hw)

TRCHKL1(hw,D1)

TRCHKL2(hw,D1,D2)

TRCHKL3(hw,D1,D2,D3)

TRCHKL4(hw,D1,D2,D3,D4)

TRCHKL5(hw,D1,D2,D3,D4,D5)

The type field of the trace event record is set to the value that corresponds to the macro
used, regardless of the value of those 4 bits in the hw parameter.

There are only two macros to record events to one of the generic channels (1–7). These are
as follows:

TRCGEN(ch,hw,D1,len,buf)

TRCGENT(ch,hw,D1,len,buf)

These macros record in the event stream specified by the channel parameter (ch) a hook
word (hw), a data word (D1) and len bytes from the user’s data segment beginning at the
location specified by buf.

Use of Event IDs
The  event ID in a trace record identifies that record as belonging to a particular class of
records. The event ID is the basis on which the trace mechanism records or ignores trace
hooks, as well as the basis on which the trcrpt command includes or excludes trace records
in the formatted report. 

Event IDs are 12 bits (three hexadecimal digits) for a possible 4096 IDs. Event IDs that are
permanently left in and shipped with code are permanently assigned by BULL to avoid
duplication. To allow users to define events in their environments or during development, the
range of event IDs from hex 010 through hex 0FF has been set aside for temporary use.
Users can freely use IDs in this range in their own environment (that is, any set of systems
within which the users are prepared to ensure that the same event ID is not used
ambiguously).
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Attention: It is important that users who make use of this event range do not let the
code leave their environment. If you ship code instrumented with temporary hook IDs to
an environment in which you do not control the use of IDs, you risk collision with other
programs that already use the same IDs in that environment.

Event IDs should be conserved because there are so few of them, but they can be extended
by using the 16–bit Data Field. This yields a possible 65536 distinguishable events for every
formal hook ID. The only reason to have a unique ID is that an ID is the level at which
collection and report filtering are available in the trace facility.

A user–added event can be formatted by the trcrpt command if there is a stanza for the
event in the specified trace format file. The trace format file is an editable ASCII file––see
Syntax for Stanzas in the Trace Format File, on page 11-13 .

Examples of Coding and Formatting Events
The  following example shows the use of trace events to time the execution of a program
loop: 

#include <sys/trcctl.h>

#include <sys/trcmacros.h>

#include <sys/trchkid.h>

char *ctl_file = ”/dev/systrctl”;

int ctlfd;

int i;

main()

{

  printf(”configuring trace collection \n”);

  if (trcstart(”–ad”)){

    perror(”trcstart”);

    exit(1);

  }

  printf(”opening the trace device  \n”);

  if((ctlfd = open(ctl_file,0))<0){

    perror(ctl_file);

    exit(1);

  }

  printf(”turning  trace on \n”);

  if(ioctl(ctlfd,TRCON,0)){

    perror(”TRCON”);

    exit(1);

  }

  for(i=1;i<11;i++){

    TRCHKL1T(HKWD_USER1,i);

   

    /* The code being measured goes here. The interval */

    /* between occurrences of HKWD_USER1 in the trace  */

    /* file is the total time for one iteration.       */

  }
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  printf(”turning trace off\n”);

  if(ioctl(ctlfd,TRCSTOP,0)){

    perror(”TRCOFF”);

    exit(1);

  }

   

  printf(”stopping the trace daemon \n”);

  if (trcstop(0)){

    perror(”trcstop”);

    exit(1);

  }

   

  exit(0);

}

When you compile the sample program, you need to link to the librts.a library as follows:

$ xlc –O3 sample.c –o sample –l rts

HKWD_USER1 is event ID 010 hexadecimal (you can verify this by looking at
/usr/include/sys/trchkid.h). The report facility does not know how to format the
HKWD_USER1 event, unless rules are provided in the trace format file. The following
example of a stanza for HKWD_USER1 could be used.

# User event HKWD_USER1 Formatting Rules Stanza

# An example that will format the event usage of the sample

program

010 1.0 L=APPL ”USER EVENT – HKWD_USER1” O2.0      \n \

               ”The # of loop iterations =” U4     \n \ 

               ”The elapsed time of the last loop = ” \

                endtimer(0x010,0x010) starttimer(0x010,0x010)

When entering the example stanza, do not modify the master format file /etc/trcfmt, but
instead make a copy and keep it in your own directory (assume you name it mytrcfmt ).
When you run the sample program, the raw event data is captured in the default log file
since no other log file was specified to the trcstart subroutine. You probably want to filter
the output report to get only your events. To do this, run the trcrpt command as follows:

trcrpt –d 010 –t mytrcfmt –O ”exec=on” > sample.rpt

You can browse sample.rpt  to see the result.

Syntax for Stanzas in the Trace Format File
The  intent of the trace format file is to provide rules for presentation and display of the
expected data for each event ID. This allows new events to be formatted without changing
the report facility. Rules for new events are simply added to the format file. The syntax of the
rules provides flexibility in the presentation of the data. 

The figure ”Syntax of a Stanza in a Trace Format File” illustrates the syntax for a given
event. A trace format stanza can be as long as required to describe the rules for any
particular event. The stanza can be continued to the next line by terminating the present line
with a ’\’ character. The fields are:
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Event_Id V.R L=
APPL
SVC
KERN
INT

Event_Label
starttimer(#,#)
endtimer(#,#)

where a Data_Descriptor has the syntax:

Data_Label

Format

,Match_Val

Data Descriptor

Match_Label
Data Descriptor

Data_Descriptor

Syntax of a Stanza in a Trace Format File

  n
  t

event_id Each stanza begins with the three–digit hexadecimal event ID
that the stanza describes, followed by a space.

V.R Describes the version (V) and release (R) in which the event
was first assigned. Any integers will work for V and R, and users
may want to keep their own tracking mechanism.

L= Specifies text indentation level. The text description of an event
can begin at various indentation levels. This improves the
readability of the report output. The indentation levels
correspond to the level at which the system is executing. The
recognized levels are application level (APPL), a transitioning
system call (SVC), kernel level (KERN), and interrupt (INT).

event_label Specifies an ASCII text string that describes the overall use of
the event ID. This is used by the –j option of the trcrpt
command to provide a listing of events and their first–level
description. The event_label also appears in the formatted
output for the event unless the event_label starts with an @
character.

\n The event stanza describes how to parse, label, and present the
data contained in an event record. The \n (newline) function can
be imbedded in the event stanza to force presentation of the
data to a new line. This allows the presentation of the data for
an event to be several lines long.

\t  Inserts a tab at the point where it is encountered in parsing the
description. This is similar to the way the \n function inserts new
lines. Spacing can also be inserted by spaces in the data_label
or match_label fields.
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starttimer(timerID),
 endtimer(timerID)

The timerID is a unique identifier that associates a particular
starttimer with a later endtimer that has the same identifier. By
(unenforced) convention, the timerID is of the form:

ID of starting event, ID of ending event

When the report facility encounters a starttimer directive while
parsing an event, it associates the starting event’s time with the
specified timerID. When an endtimer with the same timerID is
encountered, the report facility shows the delta time (in
brackets) that elapsed between the starting event and ending
event. The begin– and end–system–call events make use of
this capability. On the return from a system–call event, a delta
time indicates how long the system call took.

data_descriptor

Describes how the data should be consumed, labeled, and
presented by the report facility. The syntax of the
data_descriptor field is expanded in the second part of the
figure ”Syntax of a Stanza in a Trace Format File” . The various
fields of the data_descriptor are described as follows:

format The user can think of the report facility as
having a pointer into the data portion of an
event. This data pointer is initialized to point to
the beginning of the event data (the 16–bit data
field in the hook word). The format field
describes how much data the report facility
should consume from this point and how the
data should be considered. For example, a
format field of Bm.n tells the report facility to
consume m bytes and n bits of data and to
consider it as binary data. (The possible format
fields are described in following sections.) If the
format field is not followed by a comma, the
report facility outputs the consumed data in the
format specified. If, however, the format field is
followed by a comma, it signifies that the data is
not to be displayed but instead compared
against the following match_values. The data
descriptor associated with the matching
match_value is then applied to the remainder of
the data.

data_label The data_label is an ASCII string that can
optionally precede the output of data consumed
by the format field.

match_value The match_value is data of the same format
described by the preceding format fields.
Several match_values typically follow a format
field that is being matched. The successive
match fields are separated by commas. The
last match value is not followed by a comma. A
\* is used as a pattern–matching character to
match anything. A pattern–matching character
is frequently used as the last match_value field
to specify default rules if the preceding
match_values field did not occur.

match_label The match_label is an ASCII string that will be
output for the corresponding match.
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All of the possible format fields are described in the comments of the /etc/trcfmt file. A brief
introduction to the possibilities is provided here:

Format Field Descriptions

Am.n Specifies that m bytes of data should be consumed as ASCII text and that
the text should be displayed in an output field that is n characters wide.
The data pointer is moved m bytes.

S1, S2, S4 Specifies left–justified string. The length of the field is defined as 1 byte
(S1), 2 bytes (S2), or 4 bytes (S4). The data pointer is moved accordingly.

Bm.n Specifies binary data of m bytes and n bits. The data pointer is moved
accordingly.

Xm Specifies hexadecimal data of m bytes. The data pointer is moved
accordingly.

D2, D4 Specifies signed decimal format. Data length of 2 (D2) bytes or 4 (D4)
bytes is consumed.

U2, U4 Specifies unsigned decimal format. Data length of 2 or 4 bytes is
consumed.

F4, F8 Specifies floating point of 4 or 8 bytes.

Gm.n Specifies that the data pointer should be positioned m bytes and n bits into
the data.

Om.n Omits, from the current location of the data pointer, the next m bytes and n
bits.

Rm Reverses the data pointer m bytes.

Some macros are provided that can be used as format fields to quickly access data. For
example:

$HD, $D1, $D2, $D3, $D4, $D5

Access the 16–bit data field of the hook word and data words 1 through 5
of the event record, respectively. The data pointer is not moved. The data
accessed by a macro is hexadecimal by default. A macro can be cast to a
different data type (X, D, U, B) by using a ”%” character followed by the
new format code. For example:

$D1%B2.3

This macro causes data word 1 to be accessed but to be considered as 2
bytes and 3 bits of binary data.

The comments in the /etc/trcfmt file describe other format and macro possibilities and
describe how a user can define additional macros.
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Chapter 12. Performance Diagnostic Tool (PDT)

 
PDT assesses the current state of a system and tracks changes in workload and
performance. It attempts to identify incipient problems and suggest solutions before the
problems become critical. PDT became available at AIX Version 4.1.

For the most part, PDT functions with no required user input. PDT data collection and
reporting are easily enabled, and then no further administrator activity is required.
Periodically, data is collected and recorded for historical analysis, and a report is produced
and mailed to the adm  userid. Normally, only the most significant apparent problems are
recorded on the report. If there are no significant problems, that fact is reported. PDT can be
customized to direct its report to a different user or to report apparent problems of a lower
severity level.

The main sections in this topic are:

• Structure of PDT

• Scope of PDT Analysis

• Sample PDT Report

• Installing and Enabling PDT

• Customizing PDT

• Responding to PDT–Report Messages

Structure of PDT
As shown in the figure ”PDT Component Structure,” the PDT application consists of three
components:

• The collection component comprises a set of programs that periodically collect and
record data.

• The retention component periodically reviews the collected data and discards data that is
obsolete.

• The reporting component periodically produces a diagnostic report from the current set of
historical data.
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PDT considers various aspects of a system’s configuration, availability, and delivered
performance in making its assessment. In particular, areas of configuration imbalance are
sought out (such as I/O–configuration balance, paging–configuration balance) as well as
other configuration problems (for example, disks not allocated to volume groups). A wide
variety of trending assessments is made, including file sizes, file–system sizes, paging–area
usage, network delays and workload–related delays.

Scope of PDT Analysis
PDT collects configuration, availability, workload, and performance data on a daily basis.
This data is maintained in a historical record. Approximately a month’s worth of data is kept
in this way. Also on a daily basis, PDT generates a diagnostic report. The report is mailed to
user adm .

In addition to mailing the report, PDT stores a copy in /var/perf/tmp/PDT_REPORT. Before
the new report is written, the previous report is renamed /var/perf/tmp/PDT_REPORT.last. 

While many common system performance problems are of a specific nature––a system may
have too little memory––PDT also attempts to apply some general concepts of
well–performing systems to its search for problems. Some of these concepts, together with
examples of their application to AIX, are:

Balanced Use of Resources

In general, if there are several resources of the same type, then a balanced use of those
resources produces better performance.

• Comparable numbers of physical volumes (disks) on each disk adapter

• Paging space distributed across multiple physical volumes

• Roughly equal measured load on different physical volumes

Operation within Bounds

Resources have limits to their use. Trends that would attempt to exceed those limits should
be detected and reported.

• A disk drive cannot be utilized more than 100% of the time.

• File and file–system sizes cannot exceed the allocated space.

Identify Workload Trends

Trends can indicate a change in the nature of the workload as well as increases in the
amount of resource used:

• Number of users logged on.

• Total number of processes

• CPU–idle percentage

Error–Free Operation

Hardware or software errors often produce performance problems.

• Check the hardware and software error logs.

• Report bad VMM pages.

Changes Should be Investigated

New workloads or processes that start to consume resources may be the first sign of a
problem.

• Appearance of new processes that consume lots of CPU or memory resources.

Appropriate Setting of System Parameters

There are many parameters in a system. Are all of them set appropriately?
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• Is maxuproc set too low?

• How about the memory–load–control–parameter settings?

The PDT report consists of several sections (see the example, below). After the header
information, the Alerts section contains identified violations of the concepts noted above. If
no alerts are found, the section is not present in the report. The next two sections are for
upward trends and downward trends. These two sections focus on problem anticipation,
rather than on the identification of existing problems. In general, the same concepts are
applied––but with a view toward projecting when violations will occur. If no upward or
downward trends are detected, these sections are not present in the report.

Sample PDT Report

______________________________________________________________________________

 Performance Diagnostic Facility 1.0

   

 Report printed: Tue Aug 3 10:00:01 1993

 Host name: test.austin.ibm.com

 Range of analysis is from:  Hour 16 on Monday, July 5th, 1993

 to: Hour 9 on Tuesday, August 3rd, 1993.

   

[To disable/modify/enable collection or reporting, execute the pdt_config

script]

   

––––––––––––––––––––– Alerts –––––––––––––––––––––

  I/O BALANCE        

   –  Phys. vol. hdisk0 is significantly busier than others

      volume cd0, mean util. = 0.00

      volume hdisk0, mean util. = 11.75

      volume hdisk1, mean util. = 0.00

  PAGE SPACE AND MEMORY

   –  Mean page space used = 46.85 MB

      System has 32MB memory; may be inadequate.

      Consider further investigations to determine if memory is a bottleneck

   

––––––––––––––––––– Upward Trends ––––––––––––––––

  FILE SYSTEMS       

   –  File system hd2 (/usr) PERCENTAGE FULL

      now, 45.00 % full, and growing an avg. of 2.0 %/day

      At this rate, hd2 will be full in about 15 days

  PAGE SPACE         

   –  Page space hd6 USE

      now, 44.80 MB and growing an avg. of 1.81 MB/day

      At this rate, hd6 will be full in about 30 days

  WORKLOAD TRACKING

   – Workload nusers indicator is increasing;

     now 23, and growing an avg. of 1.2 per day

    

––––––––––––––––––––––– System Health –––––––––––––––

  SYSTEM HEALTH

   –  Current process state breakdown:

      2.00 [ 3.0 %] : waiting for the cpu

      64.00 [ 97.0 %] : sleeping

      66.00 = TOTAL

      [based on 1 measurement consisting of 10 2–second samples]

   

–––––––––––––––––– Summary ––––––––––––––––––––––––

  This is a severity level 2 report

  Further details are available at severity levels > 2

______________________________________________________________________________

In the preceding example, the header section indicates the release number of PDT, the date
the report was printed, the host from which the data was collected, and the range of dates of
the data that fed the analysis.
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The next section, Alerts, indicates suspicious configuration and load conditions. In the
example, it appears that, of the three disks on the system, one is getting essentially all of
the I/O activity. Clearly, I/O load is not distributed in such a way as to best make use of the
available resources. The next message, PAGE SPACE AND MEMORY, suggests that the
system may be underconfigured in memory.

The Upward Trends section in the example identifies two possible trends. The first is that
the file system on logical volume hd2 (the /usr file system) is growing at an average rate of
2% per day. An estimated date at which the file system will be full is provided, based on an
assumption of continued linear growth.

The second trend is the apparent systematic growth in the utilization level of one of the
paging areas. Information about its rate of increase and expected fill–date is given.
Knowledge of growing file systems and paging spaces approaching their limits is potentially
very important (especially if the rate is high or the expected fill–date is imminent), since a
full file system or paging space can cause system or application failure.

The third trend is a change in one of the workload indicators. The following indicators are
tracked by PDT for trends:

Keyword Indicator

nusers Total number of logged–on users.

loadavg 15–minute load average.

nprocesses Total number of processes.

STAT_A Number of active processes.

STAT_W Number of swapped processes.

STAT_Z Number of zombie processes.

STAT_I Number of idle processes.

STAT_T Number of processes stopped after receiving a signal.

STAT_x Number of processes reported by the ps command as being in state
x, where x is a state not listed above.

cp Time to copy a 40KB file.

idle_pct_cpu0 CPU–idle percentage.

idle_pct_avg  CPU–idle percentage.

The next section, System Health, uses a number of the workload indicators to assess how
processes are spending their time.

The final section of the report (Summary) indicates the selected severity level, and whether
or not additional detail can be obtained by changing that level. (The highest severity level
is 1, which is the default level reported. The lowest level is 3.)

Any message (excluding header and summary information) occurring in the PDT report
should be investigated. The indicated problem should be corrected or an explanation for the
condition obtained. Possible responses to specific messages are covered in Responding to
PDT–Report Messages, on page 12-10 .

Installing and Enabling PDT
PDT is installed through installp as the bos.perf.diag_tool option of the AIX Version 4.1
BOS licensed program.

PDT must be enabled in order to begin data collection and report writing. PDT is enabled by
executing the script /usr/sbin/perf/diag_tool/pdt_config. Only the root  userid is
permitted to run this script. When executed, the following message is displayed:
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# /usr/sbin/perf/diag_tool/pdt_config

 ________________PDT customization menu__________________

   

1) show current  PDT report recipient and severity level

2) modify/enable PDT reporting

3) disable       PDT reporting

4) modify/enable PDT collection

5) disable       PDT collection

6) de–install    PDT

7) exit pdt_config

Please enter a number:

When you respond with 4, default PDT collection and reporting is enabled. The crontab
entry for user adm  is updated to add the PDT entries. Actual collection occurs when the
cron jobs are run by cron. Respond with 7 to terminate the pdt_config program.

Option 5 should be selected to disable collection.

Customizing PDT
Certain aspects of PDT can be customized. For example, any user can be designated as
the regular recipient of PDT reports, and the retention period for data in PDT’s historical
record can be modified. All customization is performed either by modifying one of the PDT
files in /var/perf/cfg/diag_tool/ or by executing the /usr/sbin/perf/diag_tool/pdt_config
script.

We recommend that no changes be made until after PDT has produced several reports, and
a certain familiarity with PDT has been acquired.

Changing the PDT Report Recipient and Severity Level
By default, PDT reports are generated with severity level 1. This means that only the most
serious problems are identified. There are other severity levels (2,3) at which more detailed
information is frequently available. Further, whenever a PDT report is produced, it is mailed
to userid adm . It might be desirable to have the report mailed elsewhere or not mailed at
all.

Both of these parameters are controlled with the pdt_config script. The following dialog
changes the user and the severity level :

#/usr/sbin/perf/diag_tool/pdt_config

________________PDT customization menu__________________

   

1) show current  PDT report recipient and severity level

2) modify/enable PDT reporting

3) disable       PDT reporting

4) modify/enable PDT collection

5) disable       PDT collection

6) de–install    PDT

7) exit pdt_config

Please enter a number: 1
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current PDT report recipient and severity level 

adm 1

________________PDT customization menu__________________

   

1) show current  PDT report recipient and severity level

2) modify/enable PDT reporting

3) disable       PDT reporting

4) modify/enable PDT collection

5) disable       PDT collection

6) de–install    PDT

7) exit pdt_config

Please enter a number: 2

enter id@host for recipient of report : rsmith

enter severity level for report (1–3): 2

report recipient and severity level

rsmith 2

________________PDT customization menu__________________

   

1) show current  PDT report recipient and severity level

2) modify/enable PDT reporting

3) disable       PDT reporting

4) modify/enable PDT collection

5) disable       PDT collection

6) de–install    PDT

7) exit pdt_config

Please enter a number: 1

current PDT report recipient and severity level

rsmith 2

________________PDT customization menu__________________

   

1) show current  PDT report recipient and severity level

2) modify/enable PDT reporting

3) disable       PDT reporting

4) modify/enable PDT collection

5) disable       PDT collection

6) de–install    PDT

7) exit pdt_config

Please enter a number: 7

#

In the preceding example, the recipient is changed to user rsmith , and the severity is
changed to 2. This means that user rsmith  will receive the PDT report, and that both
severity 1 and 2 messages will be included. Note the use of option 1 to determine the
current PDT report recipient and report severity level.

To terminate reporting (but allow collection to continue), option 3 is selected, for example:
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#/usr/sbin/perf/diag_tool 

________________PDT customization menu__________________

   

1) show current  PDT report recipient and severity level

2) modify/enable PDT reporting

3) disable       PDT reporting

4) modify/enable PDT collection

5) disable       PDT collection

6) de–install    PDT

7) exit pdt_config

Please enter a number: 3

disable PDT reporting done

________________PDT customization menu__________________

   

1) show current  PDT report recipient and severity level

2) modify/enable PDT reporting

3) disable       PDT reporting

4) modify/enable PDT collection

5) disable       PDT collection

6) de–install    PDT

7) exit pdt_config

Please enter a number: 1

reporting has been disabled (file .reporting.list not found).

________________PDT customization menu__________________

   

1) show current  PDT report recipient and severity level

2) modify/enable PDT reporting

3) disable       PDT reporting

4) modify/enable PDT collection

5) disable       PDT collection

6) de–install    PDT

7) exit pdt_config

Please enter a number: 7

#

PDT Severity Levels
The following lists indicate the possible problems associated with each severity level.
Remember that selecting Severity n results in the reporting of all problems of severity less
than or equal to n.

Severity 1 Problems

• JFS file system becomes unavailable

• JFS file system nearly full

• Physical volume not allocated to a volume group

• All paging spaces defined on one physical volume

• System appears to have too little memory for current workload.

• Page space nearly full

• Possible problems in the settings of load control parameters

• VMM–detected bad memory frames

• Any host in .nodes becomes unreachable
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Severity 2 Problems

• Imbalance in the I/O configuration (e.g., disks per adapter)

• Imbalance in allocation of paging space on physical volumes with paging space

• Fragmentation of a paging space in a volume group

• Significant imbalance in measured I/O load to physical volumes

• New process is identified as a heavy memory or CPU consumer

• A file in .files exhibits systematic growth (or decline) in size

• A file system or page space exhibits systematic growth (or decline) in space utilization

• A host in .nodes exhibits degradation in ping delays or packet loss percentage

• A getty process consumes too much CPU time

• A process with high CPU or memory consumption exhibits systematic growth (or decline)
in resource use

Severity 3 Messages:

• Severity 3 messages provide additional detail about problems identified at severity levels
1 and 2. This includes the data–collection characteristics, such as number of samples, for
severity 1 and 2 messages.

Obtaining a PDT Report on Demand
As an alternative to using the periodic report, any user can request a current report from the
existing data by executing /usr/sbin/perf/diag_tool/pdt_report [SeverityNum]. The report
is produced with the given severity (if none is provided, SeverityNum defaults to 1) and
written to stdout. Generating a report in this way does not cause any change to the
/var/perf/tmp/PDT_REPORT or /var/perf/tmp/PDT_REPORT.last files.

PDT Error Reporting
Errors can occur within each of the different PDT components. In general, an error does not
terminate PDT. Instead, a message is output to PDT’s standard error file:
/var/perf/tmp/.stderr, and that phase of processing terminates.

Users experiencing unexpected behavior, such as the PDT report not being produced as
expected, should examine /var/perf/tmp/.stderr.

De–Installing PDT
It is not possible to de–install PDT directly using pdt_config, but if option 6 is requested, a
message describes the steps necessary to remove PDT from the system:
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#/usr/sbin/perf/diag_tool/pdt_config 

________________PDT customization menu__________________

   

1) show current  PDT report recipient and severity level

2) modify/enable PDT reporting

3) disable       PDT reporting

4) modify/enable PDT collection

5) disable       PDT collection

6) de–install    PDT

7) exit pdt_config

Please enter a number: 6

  PDT is installed as package bos.perf.diag_tool in the bos lpp.

  Use the installp facility to remove the package

________________PDT customization menu__________________

   

1) show current  PDT report recipient and severity level

2) modify/enable PDT reporting

3) disable       PDT reporting

4) modify/enable PDT collection

5) disable       PDT collection

6) de–install    PDT

7) exit pdt_config

Please enter a number: 7

#

Modifying the List of Files Monitored by PDT
PDT analyzes files and directories for systematic growth in size. It examines only those files
and directories listed in the file /var/perf/cfg/diag_tool/.files. The format of the .files file is
one file/directory name per line. The default content is:

/usr/adm/wtmp

/var/spool/qdaemon/

/var/adm/ras/

/tmp/

You can modify this file with an editor to track files and directories that are important to your
system.

Modifying the List of Hosts That PDT Monitors
PDT tracks the average ping delay to hosts whose names are listed in
/var/perf/cfg/diag_tool/.nodes. This file is not shipped with PDT (which means that no host
analysis is performed by default), but may be created by the administrator. The format of the
.nodes file is one host name per line in the file.

Changing the Historical–Record Retention Period
Periodically, a retention shell script is run that discards entries in PDT’s historical record that
are older than the designated retention period. The retention of all data is governed by the
same retention policy. This policy is described in the /var/perf/cfg/diag_tool/.retention.list
file. The default .retention.list content is:

* * * 35

which causes all data to be retained no more than 35 days. The number 35 can be replaced
by any unsigned integer.

PDT uses the historical record to assess trends and identify system changes. Extending the
retention period increases the scope of this analysis at the cost of additional disk storage
and PDT processing time.
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PDT’s historical record is maintained in /var/perf/tmp/.SM. The retention script creates a
copy of this file in /var/perf/tmp/.SM.last prior to performing the retention operation. In
addition, historical data that is discarded is appended to /var/perf/tmp/.SM.discards.

The existence of /var/perf/tmp/.SM.last provides limited backup, but the administrator
should ensure that the /var/perf/tmp/.SM file is regularly backed up. If the file is lost, PDT
continues to function, but without the historical information. Over time, the historical record
will grow again as new data is collected.

Modifying the Collection, Retention, and Reporting Times
Collection, reporting and retention are driven by three entries in user adm ’s cron table.
Collection occurs on every weekday at 9 a.m. Reporting occurs every weekday at 10 a.m.
The retention analysis is performed once a week, on Saturday evening at 9 p.m. The cron
entries (created by executing the /usr/sbin/perf/diag_tool/pdt_config script and selecting
option 2) are shown below:

0  9 * * 1–5   /usr/sbin/perf/diag_tool/Driver_ daily

0 10 * * 1–5   /usr/sbin/perf/diag_tool/Driver_ daily2

0 21 * * 6     /usr/sbin/perf/diag_tool/Driver_ offweekly

While it is possible to modify these times by editing adm ’s cron table, this is not
recommended.

Responding to PDT–Report Messages
PDT identifies many types of problems. Responses to these indications depends on the
individual organization’s available resources and set of priorities. The following samples
suggest some possibilities:

Problem: JFS file system becomes unavailable

Response: Investigate why file system is unavailable.

Useful cmds: lsfs (to determine file system status)

Problem: JFS file system nearly full

Response: Look for large files in the file system, possibly caused by a runaway
process. Has this file system exhibited long term growth trend (look
at the rest of the PDT report––or past PDT reports––to check this)?

Useful cmds: du, ls

Problem: Physical volume not allocated to a volume group

Response: Volume should be defined in a volume group; otherwise, it is
inaccessible to AIX and is being wasted.

Useful cmds: lspv (to confirm that the volume is not allocated)

smit (to manipulate volume groups)

Problem: All paging spaces defined on one physical volume

Response: The system has more than one physical volume, yet all paging space
is defined on a single volume. If the system experiences paging, this
configuration will result in reduced performance.

Useful cmds: smit (to modify paging spaces)

Problem: Apparently too little memory for current workload

Response: If the system is paging heavily, more memory may be required on the
system for good performance.

Useful cmds: lsps –a, vmstat
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Problem: JFS file system nearly full

Problem: Physical volume not allocated to a volume group

Problem: All paging spaces defined on one physical volume

Problem: Apparently too little memory for current workload

Problem: Page space nearly full

Response: The system’s paging space may need to be enlarged, unless the
problem is due to a process with a memory leak, in which case that
process should be identified and the application fixed.

Useful cmds: ps aucg (to examine process activity)

smit (to modify page space characteristics)

Problem: Possible problems in the settings of load control parameters

Response: The memory–load–control parameters are evaluated in relation to
current paging activity. For example, if thrashing is occurring and
load control is not enabled, it may be appropriate to enable load
control.

Useful cmds: schedtune

Problem: VMM–detected bad memory frames

Response: It may be necessary to have the memory analyzed. Compare the
amount of installed memory with the memory actually accessible; if
the latter is less than the former, then bad memory has been
identified.

You can use /usr/sbin/perf/diag_tool/getvmparms and look at the
value of numframes  to determine the actual number of 4KB
memory frames.

Useful cmds: lscfg | grep mem (to obtain installed memory size in MB)

Problem: Any host in .nodes becomes unreachable

Response: Determine if problem is with current host (has a change in the
/etc/hosts file been made?), with the remote host (is it down?), or
with the network (is the nameserver down?).

Useful cmds: ping

Problem: Imbalance in the I/O configuration (number of disks per adapter)

Response: Consider moving disks around so that an individual SCSI adapter is
not overloaded.

Useful cmds: lscfg (to examine the current configuration)

iostat (to determine if the actual load on the adapters is out of
balance)

Problem: Imbalance in allocation of paging space on physical volumes with
paging space

Response: Consider making paging spaces the same size, except for a few
extra megabytes (say, 4) on the primary paging space (hd6). A
substantial imbalance in the sizes of paging spaces can cause
performance problems.

Useful cmds: smit

Problem: Fragmentation of a paging space in a volume group

Response: Paging performance is better if paging areas are contiguous on a
physical volume. However, when paging areas are enlarged, it is
possible to create fragments that are scattered across the disk
surface.
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Problem: JFS file system nearly full

Problem: Physical volume not allocated to a volume group

Problem: All paging spaces defined on one physical volume

Problem: Apparently too little memory for current workload

Problem: Page space nearly full

Problem: Possible problems in the settings of load control parameters

Problem: VMM–detected bad memory frames

Problem: Any host in .nodes becomes unreachable

Problem: Imbalance in the I/O configuration (number of disks per adapter)

Problem: Imbalance in allocation of paging space on physical volumes with
paging space

Problem: Fragmentation of a paging space in a volume group

Useful cmds: lspv –p hdiskn for each physical volume in the volume group. Look
for more than one PP Range with the same LVNAME and a TYPE of
”paging.”

Problem: Significant imbalance in measured I/O load to physical volumes

Response: If one physical volume seems to be getting little I/O activity, consider
moving data from busier physical volumes onto less busy volumes.
In general, the more evenly the I/O is distributed, the better the
performance.

Useful cmds: iostat –d 2 20 (to view the current distribution of I/O across physical
volumes)

Problem: New process is a heavy consumer of memory or CPU

Response: Top CPU and memory consumers are regularly identified by PDT. If
any of these processes haven’t been seen before, they are
highlighted in a problem report. These processes should be
examined for unusual behavior. Note that PDT simply looks at the
process ID. If a known heavy user terminates, then is resumed (with
a different process id), it will be identified here as a NEW heavy user.

Useful cmds: ps aucg (To view all processes and their activity)

Problem: Any file in .files exhibits systematic growth (or decline) in size

Response: Look at the current size. Consider the projected growth rate. What
user or application is generating the data? For example, the
/var/adm/wtmp file is liable to grow unbounded. If it gets too large,
login times can increase. In some cases, the solution is to delete the
file. In most cases, it is important to identify the user causing the
growth and work with that user to correct the problem.

Useful cmds: ls –al (to view file/directory sizes)

Problem: Any file system or paging space exhibits systematic growth (or
decline) in space used

Response: Consider the projected growth rate and expected time to fill. It may
be necessary to enlarge the file system (or page space). On the
other hand, the growth may be an undesirable effect (for example, a
process having a memory leak).

Useful cmds: smit (to manipulate file systems/page spaces)

ps aucg, svmon (to view process virtual memory activity)

filemon (to view file system activity)

Problem: Degradation in ping response time or packet loss percentage for any
host in .nodes
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Problem: JFS file system nearly full

Problem: Physical volume not allocated to a volume group

Problem: All paging spaces defined on one physical volume

Problem: Apparently too little memory for current workload

Problem: Page space nearly full

Problem: Possible problems in the settings of load control parameters

Problem: VMM–detected bad memory frames

Problem: Any host in .nodes becomes unreachable

Problem: Imbalance in the I/O configuration (number of disks per adapter)

Problem: Imbalance in allocation of paging space on physical volumes with
paging space

Problem: Fragmentation of a paging space in a volume group

Problem: Significant imbalance in measured I/O load to physical volumes

Problem: New process is a heavy consumer of memory or CPU

Problem: Any file in .files exhibits systematic growth (or decline) in size

Problem: Any file system or paging space exhibits systematic growth (or
decline) in space used

Problem: Degradation in ping response time or packet loss percentage for any
host in .nodes

Response: Is the host in question experiencing performance problems? Is the
network having performance problems?

Useful cmds: ping, rlogin, rsh (to time known workloads on remote host)

Problem: A getty process that consumes too much CPU time

Response: Getty processes that use more than just a few percent of the CPU
may be in error. It is possible in certain situations for these processes
to consume system CPU, even though no users are actually logged
on. In general, the solution is to terminate the process.

Useful cmds: ps aucg (to see how much CPU is being used)

Problem: A process that is a top consumer of CPU or memory resources
exhibits systematic growth or decline in consumption

Response: Known large consumers of CPU and memory resources are tracked
over time to see if their demands grow. As major consumers, a
steady growth in their demand is of interest from several
perspectives. If the growth is normal, this represents useful capacity
planning information. If the growth is unexpected, then the workload
should be evaluated for a change (or a chronic problem, such as a
memory leak).

Useful cmds: ps aucg

Problem: maxuproc indicated as being possibly too low for a particular userid

Response: it is likely that this user is hitting the maxuproc threshold.

maxuproc is a system–wide parameter that limits the number of
processes that nonroot users are allowed to have simultaneously
active. If the limit is too low, the user’s work can be delayed or
terminated. On the other hand, the user might be accidentally
creating more processes than needed or appropriate. Further
investigation is warranted in either case. The user should be
consulted in order to understand more clearly what is happening.
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Problem: JFS file system nearly full

Problem: Physical volume not allocated to a volume group

Problem: All paging spaces defined on one physical volume

Problem: Apparently too little memory for current workload

Problem: Page space nearly full

Problem: Possible problems in the settings of load control parameters

Problem: VMM–detected bad memory frames

Problem: Any host in .nodes becomes unreachable

Problem: Imbalance in the I/O configuration (number of disks per adapter)

Problem: Imbalance in allocation of paging space on physical volumes with
paging space

Problem: Fragmentation of a paging space in a volume group

Problem: Significant imbalance in measured I/O load to physical volumes

Problem: New process is a heavy consumer of memory or CPU

Problem: Any file in .files exhibits systematic growth (or decline) in size

Problem: Any file system or paging space exhibits systematic growth (or
decline) in space used

Problem: Degradation in ping response time or packet loss percentage for any
host in .nodes

Problem: A getty process that consumes too much CPU time

Problem: A process that is a top consumer of CPU or memory resources
exhibits systematic growth or decline in consumption

Problem: maxuproc indicated as being possibly too low for a particular userid

Useful cmds: lsattr –E –l sys0 | grep maxuproc

to determine the current value of maxuproc (although it is also
reported directly in the PDT message).

chdev –l sys0 –a maxuproc=100

to change maxuproc to 100 (for example). Root authority is
required.

Problem: A WORKLOAD TRACKING indicator shows an upward trend.
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Response: The response depends on which workload indicator shows the trend:

loadavg – 15–minute load average

In general, the level of contention in the system is growing. Examine
the rest of the PDT report for indicators of system bottlenecks (for
example, substantial page space use may indicate a memory
shortage; I/O imbalances may indicate that the I/O subsystem
requires attention).

nusers – total number of logged users

The number of users on the system is growing. This is important
from a capacity planning perspective. Is the growth expected? Can it
be explained?

nprocesses – total number of processes

The total number of processes on the system is growing. Are there
users bumping up against the maxuproc limitation? Perhaps there
are ”runaway” applications forking too many processes.

STAT_A – number of active processes

A trend here indicates processes are spending more time waiting for
the CPU.

STAT_W – number of swapped processes

A trend here indicates that processes are contending excessively for
memory.

STAT_Z – number of zombie processes

Zombies should not stay around for a long time. If the number of
zombies on a system is growing, this may be cause for concern.

STAT_I – number of idle processes

This might not be of much concern.

STAT_T – number of processes stopped after receiving a signal

A trend here might indicate a programming error.

STAT_x – (where x is any valid character in the ps command output
indicating a process state that has not been listed above)

The interpretation of a trend here depends on the meaning of the
character x.

cp – time required to copy a 40KB file

A trend in the time to do a file copy suggests that degradation in the
I/O subsystem is evident.

idle_pct_cpu0 – idle percentage for processor 0

An upward trend in the idle percentage might indicate increased
contention in non–CPU resources such as paging or I/O. Such an
increase is of interest because it suggests the CPU resource is not
being well–utilized.

idle_pct_avg – average idle percentage for all processors

An upward trend in the idle percentage might indicate increased
contention in non–CPU resources such as paging or I/O. Such an
increase is of interest because it suggests the CPU resource is not
being well–utilized.
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The AIX Performance Toolbox
The  Performance Toolbox for AIX (PTX) is a licensed product that allows graphic display of
a variety of performance–related metrics. Among the advantages of PTX over ASCII
reporting programs is that it is much easier to check current performance with a glance at
the graphic monitor than by looking at a screen full of numbers. PTX also facilitates the
combination of information from multiple performance–related AIX commands. 

PTX is described in detail in the Performance Toolbox 1.2 and 2.1 for AIX: User’s Guide.
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Inference from the Kind of Performance Problem Reported
When  a performance problem is reported, the kind of performance problem will often help
the performance analyst to narrow the list of possible culprits. 

This topic includes the following major sections:

• A Particular Program Runs Slowly

• Everything Runs Slowly at a Particular Time of Day

• Everything Runs Slowly at Unpredictable Times

• Everything an Individual User Runs is Slow

• A Number of LAN–Connected Systems Slow Down Simultaneously

If everything that uses a particular device or service slows down at times, refer to the topic
that covers that device or service:

• Monitoring and Tuning Disk I/O

• Monitoring and Tuning Memory Use

• Monitoring and Tuning CPU Use

• Monitoring and Tuning Communications I/O

A Particular Program Runs Slowly
This may seem to be the trivial case, but there are still questions to be asked:

• Has the program always run slowly?

If the program has just started running slowly, a recent change may be the cause.

• Has the source code been changed or a new version installed?

If so, check with the programmer or vendor.

• Has something in the environment changed?

If a file used by the program (including its own executable) has been moved, it may now
be experiencing LAN delays that weren’t there before; or files may be contending for a
single disk accessor that were on different disks before.

If the system administrator has changed system–tuning parameters, the program may be
subject to constraints that it didn’t experience before. For example, if the schedtune –r
command has been used to change the way priority is calculated, programs that used to
run rather quickly in the background may now be slowed down, while foreground
programs have speeded up.

• Is the program written in the awk, csh, or some other interpretive language?

While they allow programs to be written quickly, interpretive languages have the problem
that they are not optimized by a compiler. Also, it is easy in a language like awk to
request an extremely compute– or I/O–intensive operation with a few characters. It is
often worthwhile to perform a desk check or informal peer review of such programs with
the emphasis on the number of iterations implied by each operation.

• Does the program always run at the same speed, or is it sometimes faster?

The AIX file system uses some of system memory to hold pages of files for future
reference. If a disk–limited program is run twice in quick succession, it will normally run
faster the second time than the first. Similar phenomena may be observed with programs
that use NFS and DFS. This can also occur with large programs, such as compilers. The
program’s algorithm may not be disk–limited, but the time needed to load a large
executable may make the first execution of the program much longer than subsequent
ones.
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• If the program has always run slowly, or has slowed down without any obvious change in
its environment, we need to look at its dependency on resources.

Identifying the Performance–Limiting Resource, on page 12-23 describes techniques for
finding the bottleneck.

Everything Runs Slowly at a Particular Time of Day
Most people have experienced the rush–hour slowdown that occurs because a large
number of people in the organization habitually use the system at one or more particular
times each day. This phenomenon is not always simply due to a concentration of load.
Sometimes it is an indication of an imbalance that is (at present) only a problem when the
load is high. There are also other sources of periodicity in the system that should be
considered.

• If you run iostat and netstat for a period that spans the time of the slowdown (or have
previously captured data from your monitoring mechanism), are some disks much more
heavily used than others? Is the CPU Idle percentage consistently near zero? Is the
number of packets sent or received unusually high?

If the disks are unbalanced, look at Monitoring and Tuning Disk I/O, on page 8-1.

If the CPU is saturated, use ps to identify the programs being run during this period. The
script given in Performance Monitoring Using iostat, netstat, vmstat simplifies the search
for the CPU hogs.

If the slowdown is counter–intuitive, such as paralysis during lunch time, look for a
pathological program such as a graphic Xlock or game program. Some versions of Xlock
are known to use huge amounts of CPU time to display graphic patterns on an idle
display. It is also possible that someone is running a program that is a known CPU
burner and is trying to run it at the least intrusive time.

• Unless your /var/adm/cron/cron.allow file is null, you may want to check the contents of
the /var/adm/cron/crontab directory for expensive operations. For example, users have
been known to request an hourly copy of all of their home directory files to an
NFS–mounted backup directory.

If you find that the problem stems from conflict between foreground activity and
long–running, CPU–intensive programs that are, or should be, run in the background, you
should consider using schedtune –r –d to give the foreground higher priority. See Tuning
the Process–Priority–Value Calculation with schedtune, on page 6-24 .

Everything Runs Slowly at Unpredictable Times
The best tool for this situation is an overload detector, such as xmperf’s filtd program (a
component of PTX). filtd can be set up to execute shell scripts or collect specific
information when a particular condition is detected. You can construct a similar, but more
specialized, mechanism using shell scripts containing vmstat, netstat, and ps.

If the problem is local to a single system in a distributed environment, there is probably a
pathological program at work, or perhaps two that intersect randomly.

Everything an Individual User Runs Is Slow
Sometimes a system seems to ”pick on” an individual.

• Quantify the problem. Ask the user which commands are used frequently, and run them
with the time command, as in the following example:

$ time cp .profile testjunk

real    0m0.08s

user    0m0.00s

sys     0m0.01s
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Then run them under a satisfactory userid. Is there a difference in the reported real 
time?

• A program should not show much CPU time ( user+sys ) difference from run to run, but
may show a real  time difference because of more or slower I/O. Are the user’s files on
an NFS–mounted directory? On a disk that has high activity for other reasons?

• Check the user’s .profile  file for strange $PATH  specifications. For example, if you
always search a couple of NFS–mounted directories (fruitlessly) before searching
/usr/bin , everything will take longer.

A Number of LAN–Connected Systems Slow Down Simultaneously
There are some common problems that arise in the transition from independent systems to
distributed systems. They usually result from the need to get a new configuration running as
soon as possible, or from a lack of awareness of the cost of certain functions. In addition to
tuning the LAN configuration in terms of MTUs and mbufs (see the Monitoring and Tuning
Communications I/O chapter), we should look for LAN–specific pathologies or nonoptimal
situations that may have evolved through a sequence of individually reasonable decisions.

• Some types of software or firmware bugs can sporadically saturate the LAN with
broadcast or other packets.

When a broadcast storm occurs, even systems that are not actively using the network
can be slowed by the incessant interrupts and by the CPU resource consumed in
receiving and processing the packets. These bugs are better detected and localized with
LAN analysis devices than with normal AIX performance tools.

• Do you have two LANs connected via an AIX system?

Using an AIX system as a router consumes large amounts of CPU time to process and
copy packets. It is also subject to interference from other work being processed by the
AIX system. Dedicated hardware routers and bridges are usually a more cost–effective
and robust solution to the need to connect LANs.

• Is there a clearly defensible purpose for each NFS mount?

At some stages in the development of distributed configurations, NFS mounts are used
to give users on new systems access to their home directories on their original systems.
This simplifies the initial transition, but imposes a continuing data communication cost. It
is not unknown to have users on system A interacting primarily with data on system B
and vice versa.

Access to files via NFS imposes a considerable cost in LAN traffic, client and server
CPU time, and end–user response time. The general principle should be that user and
data should normally be on the same system. The exceptions are those situations in
which there is an overriding concern that justifies the extra expense and time of remote
data. Some examples are a need to centralize data for more reliable backup and control,
or a need to ensure that all users are working with the most current version of a
program.

If these and other needs dictate a significant level of NFS client–server interchange, it is
better to dedicate a system to the role of server than to have a number of systems that
are part–server, part–client.

• Have programs been ported correctly (and justifiably) to use remote procedure calls
(RPCs)?

The simplest method of porting a program into a distributed environment is to replace
program calls with RPCs on a 1:1 basis. Unfortunately, the disparity in performance
between local program calls and RPCs is even greater than the disparity between local
disk I/O and NFS I/O. Assuming that the RPCs are really necessary, they should be
batched whenever possible.
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Everything That Uses a Particular Service or Device Slows Down at
Times

Make sure you have followed the configuration recommendations in the appropriate
subsystem manual and/or the recommendations in the appropriate ”Monitoring and Tuning”
chapter of this book.
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Using PerfPMR for Performance Diagnosis
The  PerfPMR package was developed to ensure that reports of suspected performance
problems in AIXwere accompanied by enough data to permit problem diagnosis by BULL.
This makes the shell scripts in PerfPMR useful to other performance analysts as well.
PerfPMR is an optionally installable part of the AIX Version 4.1 Base Operating System. It is
located in /usr/sbin/perf/pmr. See the discussion in Installing AIX Version 4.1 PerfPMR. A
version of PerfPMR is also available for Version 3.2.5. See Obtaining and Installing Version
3.2.5 PerfPMR. 

The script perfpmr is the highest–level script of the package, but it collects data, such as
configuration information, that a local performance analyst probably knows already. The
lower–level script monitor collects a coordinated set of performance information for a
specified number of seconds and summarizes the data. The syntax of monitor is:

monitor seconds [–n] [–p]

The seconds parameter must be at least 60. If seconds is 600 or less, the interval for the
periodic reports is 10 seconds; otherwise, the interval is 60 seconds. The –n flag
suppresses collection of netstat and nfsstat data. The –p flag suppresses collection of
process–profile data (see below). The monitor script should not be run at the same time as
any other operation that uses the system trace facility.

A single monitor request creates:

• A monitor.int file containing:

– Combined output of ps –elk and ps gv commands run at the beginning and end of the
monitoring period.

– Output of a sar –A command with the appropriate interval.

– Output of an iostat command with the appropriate interval. The initial, cumulative
report is omitted.

– Output of a vmstat command with the appropriate interval. The initial, cumulative
report is omitted.

• A monitor.sum file containing:

– For those processes that were active at both the beginning and end of the monitor run,
the differences between end and start values of various resource–use statistics.

– The ” Average ” lines from the sar –A command output.

– Averages of the iostat interval statistics.

– Averages of the vmstat interval statistics.

– The ”after – before” differences of the statistics produced by the vmstat –s command.

• If the –n option was not specified, a netstat.int file containing:

– The output at the beginning of the monitor run of the following commands:

netstat –v

netstat –m

netstat –rs

netstat –s

– The output of a netstat command with the appropriate interval.

– The output at the end of the monitor run of the following commands:

netstat –v

netstat –m
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netstat –rs

netstat –s

• If the –n option was not specified, an nfsstat.int file containing:

– The output at the beginning and end of the monitor run of a nfsstat –csnr command.

• If the –p option was not specified, a pair of files named Pprof.stt and Pprof.flow.
Pprof.stt contains the starting and ending times of the run. Pprof.flow contains
process–profile data. The columns in the Pprof.flow file are:

a. Process name

b. Process ID

c. Time of first occurrence of the process within the measurement period

d. Time of last occurrence of the process

e. Total process execution time

f. Begin/end flag (sum of Begin + End, below). Describes the beginning and ending
state of the process.

Begin:

  execed:          0

  forked:          1

  Alive at Start:  2

End:

  Alive at end:    0

  execed away:     4

  Exited:          8

g. Parent process ID

Check before You Change
One  particularly important use of the PerfPMR package is the creation of a configuration
and performance baseline prior to a significant change in system hardware or software. Just
as you probably back up critical files before such a change, you should make a record of the
configurations and the performance they were providing. If a performance degradation
should occur after the change, you will have detailed data that will let you perform a rigorous
before–and–after analysis of the system. 

To get the most complete data possible, you should run:

$ perfpmr 3600

during the busiest hour of the day. The output files from this measurement run will appear in
directory /var/perf/tmp. (If you are running on a pre–Version 4 system, the output files will
appear in the current working directory.) Be sure to move these files to a safe haven before
beginning the configuration change.
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Identifying the Performance–Limiting Resource
This  topic includes the following major sections: 

• Starting with an Overview of System Performance

• Determining the Limiting Factor for a Single Program

• Disk or Memory?

Starting with an Overview of System Performance
Perhaps the best tool for an overall look at resource utilization while running a multiuser
workload is the vmstat command. The vmstat command reports CPU and disk–I/O activity
as well as memory utilization data. The command 

$ vmstat 5

causes the vmstat command to begin writing a one–line summary report of system activity
every 5 seconds. Since no count was specified following the interval, reporting continues
until the command is canceled.

The following vmstat report was made on a system running AIXwindows and several
synthetic applications (some low–activity intervals have been removed):

procs    memory             page              faults        cpu     

––––– ––––––––––– –––––––––––––––––––––––– –––––––––––– –––––––––––

 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa 

 0  0  8793    81   0   0   0   1    7   0 125   42  30  1  2 95  2

 0  0  8793    80   0   0   0   0    0   0 155  113  79 14  8 78  0

 0  0  8793    57   0   3   0   0    0   0 178   28  69  1 12 81  6

 0  0  9192    66   0   0  16  81  167   0 151   32  34  1  6 77 16

 0  0  9193    65   0   0   0   0    0   0 117   29  26  1  3 96  0

 0  0  9193    65   0   0   0   0    0   0 120   30  31  1  3 95  0

 0  0  9693    69   0   0  53 100  216   0 168   27  57  1  4 63 33

 0  0  9693    69   0   0   0   0    0   0 134   96  60 12  4 84  0

 0  0 10193    57   0   0   0   0    0   0 124   29  32  1  3 94  2

 0  0 11194    64   0   0  38 201 1080   0 168   29  57  2  8 62 29

 0  0 11194    63   0   0   0   0    0   0 141  111  65 12  7 81  0

 0  0  5480   755   3   1   0   0    0   0 154  107  71 13  8 78  2

 0  0  5467  5747   0   3   0   0    0   0 167   39  68  1 16 79  5

 0  1  4797  5821   0  21   0   0    0   0 191  192 125 20  5 42 33

 0  1  3778  6119   0  24   0   0    0   0 188  170  98  5  8 41 46

 0  0  3751  6139   0   0   0   0    0   0 145   24  54  1 10 89  0

The columns of interest for this initial assessment are pi  and po  in the page  category
and the four columns in the cpu  category.

• Entries pi  and po  are the paging–space page ins and page outs, respectively. If any
paging–space I/O is taking place, the workload is approaching (or is beyond) the
system’s memory limits.

• If the sum of us  and sy  (user and system) CPU–utilization percentages is greater than
80% in a given 5–second interval, the workload was approaching the CPU limits of the
system during that interval.

• If the wa  (I/O wait) percentage is nonzero (and pi  and po  are zero), a significant
amount of time is being spent waiting on nonoverlapped file I/O, and some part of the
workload is I/O–limited.
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By ”approaching its limits,” we mean that some parts of the workload are already
experiencing a slowdown due to the critical resource. The longer response times may not
be subjectively significant yet, but an increase in that element of the workload will cause a
rapid deterioration of performance.

If vmstat indicates a significant amount of I/O wait time, an iostat will give more detailed
information. The command 

$ iostat 5 3

causes iostat to begin writing summary reports of I/O activity and CPU utilization every 5
seconds. Since a count of 3 was specified following the interval, reporting will stop after the
third report.

The following iostat report was made on a system running the same workload as the
vmstat reports above, but at a different time. The first report is for the cumulative activity
since the preceding boot, while subsequent reports are for activity during the preceding
5–second interval:

tty:    tin      tout     cpu:   % user    % sys    % idle   %iowait

        0.0       4.3            0.2       0.6       98.8      0.4

     

Disks:        % tm_act     Kbps      tps    msps   Kb_read   Kb_wrtn

hdisk0           0.0       0.2       0.0              7993      4408

hdisk1           0.0       0.0       0.0              2179      1692

hdisk2           0.4       1.5       0.3             67548     59151

cd0              0.0       0.0       0.0                 0         0

     

tty:    tin      tout     cpu:   % user    % sys     % idle  %iowait

        0.0      30.3               8.8      7.2       83.9     0.2 

     

Disks:        % tm_act     Kbps      tps    msps   Kb_read   Kb_wrtn

hdisk0           0.2       0.8       0.2                 4         0

hdisk1           0.0       0.0       0.0                 0         0

hdisk2           0.0       0.0       0.0                 0         0

cd0              0.0       0.0       0.0                 0         0

     

tty:   tin      tout      cpu:   % user    % sys     % idle  %iowait

       0.0       8.4               0.2      5.8        0.0      93.8 

     

Disks:        % tm_act     Kbps      tps    msps   Kb_read   Kb_wrtn

hdisk0           0.0       0.0       0.0                 0         0

hdisk1           0.0       0.0       0.0                 0         0

hdisk2          98.4     575.6      61.9               396      2488

cd0              0.0       0.0       0.0                 0         0

The first report, which displays cumulative activity since the last boot, shows that the I/O on
this system is unbalanced. Most of the I/O (86.9% of kilobytes read and 90.7% of kilobytes
written) is to hdisk2  , which contains both the operating system and the paging space.
The cumulative CPU utilization since boot statistic is usually meaningless, unless the
system is used consistently 24 hours a day.

The second report shows a small amount of disk activity reading from hdisk0 , which
contains a separate file system for the system’s primary user. The CPU activity arises from
two application programs and iostat itself. Although iostat’s output is redirected to a file, the
output is not voluminous, and the system is not sufficiently memory–constrained to force
any output during this interval.

In the third report, we have artificially created a near–thrashing condition by running a
program that allocates, and stores into, a large amount of memory (about 26MB in this
example). hdisk2  is active 98.4% of the time, which results in 93.8% I/O wait. The fact
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that a single program that uses more than three–fourths of the system’s memory (32MB)
can cause the system to thrash reminds us of the limits of VMM memory load control , on
page 2-10 . Even with a more homogeneous workload, we need to understand the memory
requirements of the components.

If vmstat indicates that there is a significant amount of CPU idle time when the system
seems subjectively to be running slowly, you may be experiencing delays due to kernel lock
contention. In AIX Version 4.1, this possibility can be investigated with the lockstat
command if the Performance Toolbox is installed on your system. 

Determining the Limiting Factor for a Single Program
If you are the sole user of a system, you can get a general idea of whether a program is I/O
or CPU dependent by using the time command as follows:

$ time cp foo.in foo.out

real    0m0.13s

user    0m0.01s

sys     0m0.02s

Note: Examples of the time command here and elsewhere in this guide use the version
that is built into the Korn shell. The official time command (/usr/bin/time) reports with a
lower precision and has other disadvantages.

In this example, the fact that the real, elapsed time for the execution of the cp (.13 seconds)
is significantly greater than the sum (.03 seconds) of the user and system CPU times
indicates that the program is I/O bound. This occurs primarily because  foo.in has not
been read recently. Running the same command  a few seconds later against the same file
gives: 

real    0m0.06s

user    0m0.01s

sys     0m0.03s

Most or all of the pages of foo.in  are still in memory because there has been no
intervening process to cause them to be reclaimed and because the file is small compared
with the amount of RAM on the system. A small foo.out  would also be buffered in
memory, and a program using it as input would show little disk dependency.

If you are trying to determine the disk dependency of a program, you have to be sure that its
input is in an authentic state. That is, if the program will normally be run against a file that
has not been accessed recently, you must make sure that the file used in measuring the
program is not in memory. If, on the other hand, a program is usually run as part of a
standard sequence in which it gets its input from the output of the preceding program, you
should prime memory to ensure that the measurement is authentic. For example,

$ cp foo.in /dev/null

would have the effect of priming memory with the pages of foo.in .

The situation is more complex if the file is large compared to RAM. If the output of one
program is the input of the next and the entire file won’t fit in RAM, the second program will
end up reading pages at the head of the file, which displace pages at the end. Although this
situation is very hard to simulate authentically, it is nearly equivalent to one in which no disk
caching takes place.
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The case of a file that is (perhaps just slightly) larger than RAM is a special case of the RAM
versus disk analysis discussed in the next section.

Disk or Memory?
Just  as a large fraction of real memory is available for buffering files, the system’s page
space is available as temporary storage for program working data that has been forced out
of RAM. Suppose that you have a program that reads little or no data and yet shows the
symptoms of being I/O dependent. Worse, the ratio of real time to user + system time does
not improve with successive runs. The program is probably memory–limited, and its I/O is
to, and possibly from, the paging space. A way to check on this possibility is shown in the
following vmstatit  shell script. The vmstatit  script summarizes the voluminous
vmstat –s report, which gives cumulative counts for a number of system activities since the
system was started: 

vmstat –s >temp.file   # cumulative counts before the command

time $1                # command under test

vmstat –s >>temp.file  # cumulative counts after execution

grep ”pagi.*ins” temp.file >>results   # extract only the data

grep ”pagi.*outs” temp.file >>results  # of interest

If the shell script is run as follows:

$ vmstatit ”cp file1 file2”  2>results

the result in results  is:

real    0m0.03s

user    0m0.01s

sys     0m0.02s

     2323 paging space page ins

     2323 paging space page ins

     4850 paging space page outs

     4850 paging space page outs

The fact that the before–and–after paging statistics  are identical confirms our belief that the
cp command is not paging bound. An extended variant of the vmstatit  shell script can
be used to show the true situation: 

vmstat –s >temp.file

time $1             

vmstat –s >>temp.file

echo ”Ordinary Input:”               >>results

grep ”^[ 0–9]*page ins”    temp.file >>results

echo ”Ordinary Output:”              >>results

grep ”^[ 0–9]*page outs”   temp.file >>results

echo ”True Paging Output:”           >>results

grep ”pagi.*outs”          temp.file >>results

echo ”True Paging Input:”            >>results

grep ”pagi.*ins”           temp.file >>results

Because all ordinary I/O in the AIX operating system is processed via the VMM, the vmstat
–s command reports ordinary program I/O as page ins and page outs. When the above
version of the vmstatit  shell script was run against the cp command of a large file that
had not been read recently, the result was:



12-27Performance Diagnostic Tool (PDT)

real    0m2.09s

user    0m0.03s

sys     0m0.74s

Ordinary Input:

    46416 page ins

    47132 page ins

Ordinary Output:

   146483 page outs

   147012 page outs

True Paging Output:

     4854 paging space page outs

     4854 paging space page outs

True Paging Input:

     2527 paging space page ins

     2527 paging space page ins

The time command output confirms the existence of an I/O dependency. The increase in
page ins shows the I/O necessary to satisfy the cp command. The increase in page outs
indicates that the file is large enough to force the writing of dirty pages (not necessarily its
own) from memory. The fact that there is no change in the cumulative paging–space–I/O
counts confirms that the cp command does not build data structures large enough to
overload the memory of the test machine.

The order in which this version of the vmstatit  script reports I/O is intentional. Typical
programs read file input and then write file output. Paging activity, on the other hand,
typically begins with the writing out of a working–segment page that does not fit. The page
is read back in only if the program tries to access it. The fact that the test system has
experienced almost twice as many paging space page outs  as paging space
page ins  since it was booted indicates that at least some of the programs that have been
run on this system have stored data in memory that was not accessed again before the end
of the program. Memory–Limited Programs, on page 4-19 provides more information. See
also Monitoring and Tuning Memory Use, on page 7-1 .

To show the effects of memory limitation on these statistics, the following example observes
a given command in an environment of adequate memory (32MB) and then artificially
shrinks the system using the rmss command (see Assessing Memory Requirements via the
rmss Command, on page 7-6 ). The command sequence

$ cc –c ed.c

$ vmstatit ”cc –c ed.c” 2>results

first primes memory with the 7944–line source file and the executable file of the C compiler,
then measures the I/O activity of the second execution:
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real    0m7.76s

user    0m7.44s

sys     0m0.15s

Ordinary Input:

    57192 page ins

    57192 page ins

Ordinary Output:

   165516 page outs

   165553 page outs

True Paging Output:

    10846 paging space page outs

    10846 paging space page outs

True Paging Input:

     6409 paging space page ins

     6409 paging space page ins

Clearly, this is not I/O limited. There is not even any I/O necessary to read the source code.
If we then issue the command:

# rmss –c 8

to change  the effective size of the machine to 8MB, and perform the same sequence of
commands, we get: 

real    0m9.87s

user    0m7.70s

sys     0m0.18s

Ordinary Input:

    57625 page ins

    57809 page ins

Ordinary Output:

   165811 page outs

   165882 page outs

True Paging Output:

    11010 paging space page outs

    11061 paging space page outs

True Paging Input:

     6623 paging space page ins

     6701 paging space page ins

The symptoms of I/O dependency are present:

• Elapsed time longer than total CPU time

• Significant amounts of ordinary I/O on the nth execution of the command

The fact that the elapsed time is longer than in the memory–unconstrained situation, and
the existence of significant amounts of paging–space I/O, make it clear that the compiler is
being hampered by insufficient memory.

Note: This example illustrates the effects of memory constraint. No effort was made to
minimize the use of memory by other processes, so the absolute size at which the
compiler was forced to page in this environment does not constitute a meaningful
measurement.

To avoid working with an artificially shrunken machine until the next restart, run

# rmss –r
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to release back to the operating system the memory that the rmss command had
sequestered, thus restoring the system to its normal capacity.
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Workload Management
When  you have exhausted the program performance–improvement and system–tuning
possibilities, and performance is still unsatisfactory at times, you have three choices: 

• Live with the situation.

• Upgrade the performance–limiting resource.

• Adopt workload–management techniques.

If you adopt the first approach, some of your less stoic users will experience increasing
frustration and decreasing productivity. If you choose to upgrade, you have to justify the
expenditure to someone. That someone will undoubtedly want to know if you have
exhausted all possibilities with the current system, which means you need to investigate the
possibilities of workload management.

Workload management simply means assessing the components of the workload to
determine whether they are all needed as soon as possible. Usually, there is work that can
wait for a while; for example, a report that is needed first thing in the morning. That report is
equally useful when run at 3 a.m. as at 4 p.m. on the preceding day. The difference is that at
3 a.m. it uses CPU cycles and other resources that would otherwise be idle. The at
command or crontab command can be used to request the running of a program at a
specific time or at regular intervals.

Similarly, some programs that do have to be run during the day can be run at reduced
priority. They will take longer to complete, but they will be less in competition with really
time–critical processes.

A related technique is moving work from one machine to another; for example, running a
compilation on the machine where the source code resides. This kind of workload balancing
requires more planning and monitoring, because reducing the load on the network and
increasing the CPU load on a server may result in a net loss.
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Chapter 13. Handling a Possible AIX Performance Bug

 
If you believe that you have found a possible performance problem in AIX, there are tools
and procedures for reporting the problem and supplying problem–analysis data. They are
intended to ensure that you get a prompt and accurate response with a minimum of effort
and time on your part.

The main sections in this topic are:

• Measuring the Baseline

• Reporting the Problem

• Obtaining and Installing Version 3.2.5 PerfPMR

• Installing PerfPMR from the Web (includes Version 4)

• Problem–Analysis Data

Measuring the Baseline
Performance problems are often reported right after some change to the system’s hardware
or software. Unless there is a pre–change baseline measurement with which to compare
post–change performance, quantification of the problem is impossible. Still better would be
collection of a full set of performance and configuration information using the PerfPMR
package, as recommended in Check Before You Change .

Having the Performance Diagnostic Tool (PDT) installed and operational also provides a
baseline of overall system performance.

Reporting the Problem
You  should report suspected AIX performance problems to the BULL Software Service
organization. Use your normal software problem–reporting channel. If you are not familiar
with the correct problem–reporting channel for your organization, check with your BULL
representative. 

When you report the problem, you should supply the following basic information:

• A description of the problem that can be used to search the problem–history database to
see if a similar problem has already been reported.

• What aspect of your analysis led you to conclude that the problem is due to a defect in
AIX?

• What is the hardware/software configuration in which the problem is occurring?

– Is the problem confined to a single system, or does it affect multiple systems?

– What are the models, memory sizes, and number and size of disks on the affected
system(s)?

– What kinds of LAN and other communications media are connected to the system(s)?

– Does the overall configuration include non–AIX systems? Non–UNIX systems?

• What are the characteristics of the program or workload that is experiencing the
problem?

– Does an analysis with time, iostat, and vmstat indicate that it CPU–limited or
I/O–limited?
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– Are the workloads being run on the affected system(s): workstation, server, multiuser,
or a mixture?

• What are the performance objectives that are not being met?

– Is the primary objective in terms of console or terminal response time, throughput, or
real–time responsiveness?

– Were the objectives derived from measurements on another AIX system? If so, what
was its configuration?

If this is the first report of the problem, you will receive a PMR number for use in identifying
any additional data you supply and for future reference.

You will probably be asked to provide data to help BULL analyze the problem. An
BULL–provided tools package called PerfPMR can collect the necessary data. On Version
3.2.5, PerfPMR is an informal tool available from your BULL representative. On AIX Version
4.1, PerfPMR is an optionally installable package on the AIX Base Operating System
distribution medium.

Obtaining and Installing Version 3.2.5 PerfPMR
Your  BULL representative can obtain a copy of Version 3.2.5 PerfPMR on suitable media. 

To install PerfPMR, you:

1. Log in as root  or use the su command to obtain root authority.

2. Create the perfpmr directory and move to that directory (this example assumes the
directory built is under /tmp).

# cd /tmp

# mkdir perfpmr

# cd perfpmr

3. Copy the compressed tar file from diskette (this example assumes the diskette drive
used is fd0):

# tar –xvf/dev/fd0 perfpmr.tarbinz

4. Rename the compressed tar file:

# mv perfpmr.tarbinz perfpmr.tarbin.Z

5. Uncompress the tar file with:

# uncompress perfpmr.tarbin.Z

6. Extract the shell scripts from the tar file with:

# tar –xvf perfpmr.tarbin

7. Install the shell scripts with:

# ./Install
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Installing PerfPMR from the Web (includes Version 4)
To acquire the correct version of perfpmr, visit the web site: www.ibm.com. Enter perfpmr
 in the search box, and search All IBM . The result of the query is a window entitled ”AIX
Performance PMR Data Collection Scripts – perfpmr.” Click the download button to transfer
to the perfpmr ftp site. Several different versions of perfpmr are listed (for example, perf32,
perf41, perf42, and perf43).

Each folder contains the following:

perfxx.tar.Z file Compressed tar file containing perfpmr

message Description of the contents

license.agreement BULL International Program License Agreement

readme Instructions on obtaining and installing perfpmr, collecting
data, and sending the data to BULL

To install PerfPMR from the Web, you:

1. Download the correct version of perfpmr into /tmp:

2. Log in as root or use the su command to obtain root authority

3. Create the perf41 directory (for example) and move to that directory

# mkdir /tmp/perf41

# cd /tmp/perf41

4. Extract the shell scripts out of the compressed tar file:

# zcat /tmp/perf41.tar.Z | tar –xvf –

5. Install the shell scripts

# sh ./Install

The installation process places the PerfPMR package in a directory called
/usr/sbin/perf/pmr. The package takes approximately 200KB of disk space.

Problem–Analysis Data
All of the following items should be included when the supporting information for the PMR is
first gathered:

• A means of reproducing the problem

– If possible, a program or shell script that demonstrates the problem should be
included.

– At a minimum, a detailed description of the conditions under which the problem occurs
is needed.

• Data collected by the PerfPMR tools

– On each system involved

– At the same time

– While the performance problem is occurring
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• The application experiencing the problem

– If the application is, or depends on, a software product, the exact version and release
of that product should be identified, even if the software is not an BULL product.

– If the source code of a user–written application cannot be released, the exact set of
compiler parameters used to create the executable should be documented.

Capturing the Data
To  capture and package the data in usable form, perform the following steps on each of the
systems involved with the problem. If possible, step 6 should be performed on all of the
systems at (approximately) the same time. 

1. Log in as root or use the su command to obtain root authority.

2. PerfPMR captures more information if the tprof, filemon, and netpmon performance
tools are available. In AIX Version 4.1, these tools are packaged as part of the
Performance Toolbox for AIX. To determine whether the performance tools have been
installed on the system, check with:

$ lslpp –lI perfagent.tools

If this package has been installed, the tools are available.

3. Make sure that your PATH variable includes the directory that contains the PerfPMR
executables.

In AIX Version 4.1, add /usr/sbin/perf/pmr to the PATH. For example:

# echo $PATH

/usr/bin:/etc:/usr/local/bin:/usr/ucb:.:

# PATH=$PATH:/usr/sbin/perf/pmr:

# export PATH

In Version 3, add to the PATH the directory in which you installed PerfPMR (in place of
/usr/sbin/perf/pmr) and the directory for the performance tools, /usr/lpp/bosperf.

4. In Version 4, the output of perfpmr will be written to /var/perf/tmp. In Version 3, you
should:

a. cd to a suitable directory, such as /tmp, in a file system that has at least 5MB of free
space.

b. Create a subdirectory to hold the data and switch to it, with:

# mkdir perfdata

# cd perfdata

5. Track system activity for 1 hour with:

# perfpmr 3600

(in Version 3, perfpmr is named perfpmr.sh.)

6. Combine the files into one compressed tar file with:

# cd ..

# tar –cvf pmrnumber.tarbin perfdata

# compress pmrnumber.tarbin

Where pmrnumber is the number assigned to the PMR by Software Service.

7. Put the file on a diskette (or other portable volume) with, for example:
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# tar –cvf /dev/fd0 pmrnumber.tarbin.Z

8. Label the portable volume with:

– PMR number

– Date the information was gathered

– Command and flags that should be used to remove the data from the portable volume,
for example:

# tar –xvf /dev/fd0

Send the data to your Software Service organization.
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Appendix A. AIX Performance Monitoring and Tuning
Commands

 AIX Performance Monitoring and Tuning Commands 
Performance tools for the AIX environment fall into two general categories: those that tell
you what is going on and those that let you do something about it. A few do both. This
appendix lists these performance–related commands. Many of them are discussed in the
chapters on tuning specific aspects of the system. The details of the syntax and functions of
most of these commands are documented in the AIX Commands Reference. The
schedtune, pdt_config, pdt_report, and vmtune commands are documented later in this
appendix.

Some of the performance–related commands are packaged as part of the Performance
Toolbox for AIX  (PTX), rather than the AIX Base Operating System. Those commands are
identified with (PTX). You can determine whether the PTX tools have been installed with: 

$ lslpp –lI perfagent.tools

If this package is listed as AVAILABLE , the PTX tools can be used.

The following lists summarize the performance–related commands:

• Performance Reporting and Analysis Commands

• Performance Tuning Commands, on page A-3

Performance Reporting and Analysis Commands
These  tools give you information on the performance of one or more aspects of the system
or on one or more of the parameters that affect performance. 

Command Function

bf,bfrpt Provides detailed reports of the memory–access patterns of
applications.

emstat Reports emulation instruction counts.

filemon Uses the trace facility to report on the I/O activity of physical
volumes, logical volumes, individual files, and the Virtual
Memory Manager.

fileplace Displays the physical or logical placement of the blocks that
constitute a file within the physical or logical volume on which
they reside.

gprof Reports the flow of control among the subroutines of a program
and the amount of CPU time consumed by each subroutine.

iostat Displays utilization data for:

• Terminals

• CPU

• Disks

lockstat Displays information about kernel lock contention.



A-2 Performance Tuning Guide

Command Function

lsattr Displays attributes of the system that affect performance, such
as:

• Size of the caches

• Size of real memory

• Maximum number of pages in the block I/O buffer cache

• Maximum number of kilobytes of memory allowed for mbufs

• High– and low–water marks for disk–I/O pacing

lslv Displays information about a logical volume.

netpmon Uses the trace facility to report on network activity, including:

• CPU consumption

• Data rates

• Response time

netstat Displays a wide variety of configuration information and
statistics on communications activity, such as:

• Current status of the mbuf pool

• Routing tables

• Cumulative statistics on network activity

nfso Displays (or changes) the values of NFS options

nfsstat Displays statistics on Network File System (NFS) and Remote
Procedure Call (RPC) server and client activity

no Displays (or changes) the values of network options, such as:

• Default send and receive socket buffer sizes

• Maximum total amount of memory used in mbuf and cluster
pools

pdt_config Starts, stops, or changes the parameters of the Performance
Diagnostic Tool.

pdt_report Generates a PDT report based on the current historical data.

ps Displays statistics and status information about the processes in
the system, such as:

• Process ID

• I/O activity

• CPU utilization

sar Displays statistics on operating–system activity such as:

• Directory accesses

• Read and write system calls

• Forks and execs

• Paging activity

schedtune Displays (or changes) the values of VMM memory–load–control
parameters, the CPU–time–slice duration, and the
paging–space–low retry interval.

smit Displays (or changes) system–management parameters.
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Command Function

stem Supports the entry and exit instrumentation of executable
programs without requiring access to the source code of the
executable.

svmon Reports on the status of memory at system, process, and
segment levels

syscalls Records and counts system calls

time Prints the elapsed and CPU time used by the execution of a
command

tprof Uses the trace facility to report the CPU consumption of kernel
services, library subroutines, application–program modules, and
individual lines of source code in the application program

trace Writes a file that records the exact sequence of activities within
the system

vmstat Displays VMM data, such as:

• Number of processes that are dispatchable or waiting

• Page–frame free–list size

• Page–fault activity

• CPU utilization

vmtune Displays (or changes) the Virtual Memory Manager
page–replacement algorithm parameters.

Performance Tuning Commands
The  following tools allow you to change one or more performance–related aspects of the
system. 

Command Function

fdpr Optimizes executable files for a specific workload.

nfso Changes (or displays) the values of NFS options

nice Executes a command at a specified priority

no Changes (or displays) the values of network options

renice Changes the priority of running processes

reorgvg Reorganizes elements of a volume group.

rmss Temporarily reduces the effective RAM size of a system to
assess the probable performance of a workload on a
smaller machine or to ascertain the memory requirement of
one element of a workload.

schedtune Changes (or displays) the values of VMM memory load
control parameters, the CPU–time–slice duration, and the
paging–space–low retry interval.

smit Changes (or displays) system–management parameters.

vmtune Changes (or displays) the Virtual Memory Manager
page–replacement algorithm parameters.

Related Information
Commands Overview in AIX 4.3 System User’s Guide: Operating System and Devices
describes how to read syntax diagrams.
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emstat Command

Purpose
Reports emulated instruction counts.

Syntax

emstat [ Interval ] [ Count ]

Description
The emstat command reports statistics about how many instructions the system must
emulate. The emulated instruction count should be used to determine whether an
application needs to be recompiled to eliminate instructions that must be emulated on 601
PowerPC or 604 PowerPC processors. If an instruction has to be emulated, more CPU
cycles are required to execute this instruction than an instruction that does not have to be
emulated.

If an application was compiled on AIX Version 3, the application may contain instructions
that are not available on 601 or 604 processors. The 601 has most of the POWER
instructions; it lacks about five instructions that are rarely executed, so problems are rarely
seen. The 604 processor lacks about 35 of the POWER instructions, so the chances for
emulation are higher.

This emulated instruction phenomenon occurs with applications that were not compiled in
common mode on AIX Version 3 and that are now running on a 601 or 604 processor
without being recompiled. If the application was compiled on AIX Version 4.1, the default
compilation option is common, so only instructions that are common to all the processors
would be included in the executable. Emulated instructions could also occur on a 601 or a
604 processor if an application was compiled for a specific architecture, such as POWER or
POWER2.

The resolution is to recompile the application, either on AIX Version 4.1 or on Version 3.2.5
using the qarch=com option. For compiling in common mode on Version 3.2.5, an APAR
that introduces this common code is required.

The Interval parameter specificies the amount of time in seconds between each report. The
first report contains statistics for the time since system startup. Subsequent reports contain
statistics collected during the interval since the previous report. If the Interval parameter is
not specified, the emstat command generates a single report and then exits.

The Count parameter can only be specified with the Interval parameter. If the Count
parameter is specified, its value determines the number of reports generated. If the Interval
parameter is specified without the Count parameter, reports are continuously generated. A
Count parameter of 0 is not allowed.

Output
The first column is the total number of emulated instructions since the last system reboot.
The second column is the number of emulated instructions during the interval.
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schedtune Command

Purpose
Sets  parameters for CPU scheduler and Virtual Memory Manager processing. 

Syntax

schedtune

–d n
–e n
–f n
–h n
–m n
–p n
–r n
–t n
–w n

–D

schedtune [ –D | { [ –d n ] [ –e n ] [ –f n ] [ –h n ] [ –m n ] [ –p n ] [ –r n ] [ –t  n ] [ –w n ] } ]

Description

Priority–Calculation Parameters
The priority of most user processes varies with the amount of CPU time the process has
used recently. The CPU scheduler’s priority calculations are based on two parameters that
are set with schedtune: –r and –d. The r and d values are in thirty–seconds (1/32); that is,
the formula used by the scheduler to calculate the amount to be added to a process’s
priority value as a penalty for recent CPU use is:

CPU penalty = (recently used CPU value of the process) * (r/32)

and the once–per–second recalculation of the recently used CPU value of each process is:

new recently used CPU value = (old recently used CPU value of the

process) * (d/32)

Both r and d have default values of 16. This maintains the CPU scheduling behavior of
previous versions of AIX. Before experimenting with these values, you should be familiar
with Tuning the Process–Priority–Value Calculation with schedtune, on page 6-24 .

Memory–Load–Control Parameters
The AIX scheduler performs memory load control by suspending processes when memory
is overcommitted. The system does not swap out processes; instead pages are ”stolen” as
they are needed to fulfill the current memory requirements. Typically, pages are stolen from
suspended processes. Memory is considered overcommitted when the following condition is
met:

p * h s where p is the number of pages written to paging space in the last second,
h is an integer specified by the –h flag, and s is the number of page steals
that have occurred in the last second.

A process is suspended when memory is overcommitted and the following condition is met:
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r * p f where r is the number of repages that the process has accumulated in the
last second, p is an integer specified by the –p flag, and f is the number of
page faults that the process has experienced in the last second.

In addition, fixed–priority processes and kernel processes are exempt from being
suspended.

The term ”repages” refers to the number of pages belonging to the process, which were
reclaimed and are soon after referenced again by the process.

The user also can specify a minimum multiprogramming level with the –m flag. Doing so
ensures that a minimum number of processes remain active throughout the
process–suspension period. Active processes are those that are runnable and waiting for
page I/O. Processes that are waiting for events and processes that are suspended are not
considered active, nor is the wait process considered active.

Suspended processes can be added back into the mix when the system has stayed below
the overcommitted threshold for n seconds, where n is specified by the –w flag. Processes
are added back into the system based, first, on their priority and, second, on the length of
their suspension period.

Before experimenting with these values, you should be thoroughly familiar with Tuning VMM
Memory Load Control, on page 7-15 .

Time–Slice–Increment Parameter
The schedtune command can also be used to change the amount of time the operating
system allows a given process to run before the dispatcher is called to choose another
process to run (the time slice). The default value for this interval is a single clock tick (10
milliseconds). The –t flag of the schedtune command allows the user to specify the number
of clock ticks by which the time slice length is to be increased.

In AIX Version 4.1, this parameter only applies to threads with the SCHED_RR scheduling
policy. See Scheduling Policy for Threads with Local or Global Contention Scope, on page
2-2 .

fork() Retry Interval Parameter
If a fork() subroutine call fails because there is not enough paging space available to create
a new process, the system retries the call after waiting for a specified period of time. That
interval is set with the schedtune –f flag.

schedtune Limitations
schedtune can only be executed by root . Changes made by the schedtune command
last until the next reboot of the system. If a permanent change in VMM or time–slice
parameters is needed, an appropriate schedtune command should be put in /etc/inittab.

Attention: Misuse of this command can cause performance degradation or
operating–system failure. Be sure that you have studied the appropriate tuning sections
before using schedtune to change system parameters.

Flags
If no flags are specified, the current values are printed.

–D Restores the default values (d=16, e=2, f=10, h=6, m=2, p=4, r=16, t=0, w=1).

–d n Each process’s recently used CPU value is multiplied by d/32 once a second.

–e n Specifies that a recently resumed suspended process is eligible to be suspended
again when it has been active for at least n seconds.

–f n Specifies the number of (10–millisecond) clock ticks to delay before retrying a
fork call that has failed because of insufficient paging space. The system retries
the fork call up to five times. 
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–h n Specifies the systemwide criterion for determining when process suspension
begins and ends. A value of zero effectively turns off memory load control.

–m n Sets the minimum multiprogramming level.

–p n Specifies the per–process criterion for determining which processes to suspend.

–r n A process’s recently used CPU value is multiplied by r/32 when the process’s
priority value is recalculated.

–t n Increases the duration of the time slice––the maximum amount of time before
another process is scheduled to run. The default time–slice duration is 10
milliseconds. The parameter n is in units of 10 milliseconds each. If n=0, the
time–slice duration is 10 milliseconds. If n=2, the time–slice duration is 30
milliseconds. In AIX Version 4.1, this parameter only applies to threads with the
SCHED_RR scheduling policy

–w n Specifies the number of seconds to wait, after thrashing ends, before reactivating
any suspended processes.

–? Displays a brief description of the command and its parameters.

Related Information
The fork subroutine.

Real–Memory management.

Tuning the Process–Priority–Value Calculation with schedtune, on page 6-24 .

Tuning VMM Memory Load Control, on page 7-15 .
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vmtune Command

Purpose
Changes  operational parameters of the Virtual Memory Manager and other AIX
components. 

Syntax

vmtune [ –b numfsbuf ] [ –B numpbuf ] [ –c numclust ] [ –f minfree ] [ –F maxfree ] [ –k
npskill ] [ –l  lrubucket ] [ –M maxpin ] [ –N pd_npages ] [ –p minperm ] [ –P maxperm ] [ –r
minpgahead ] [ –R maxpgahead ] [–u lvm_budcnt] [ –w npswarn ] [–W maxrandwrt]

Description
The Virtual Memory Manager (VMM) maintains a list of free real–memory page frames.
These page frames are available to hold virtual–memory pages needed to satisfy a page
fault. When the number of pages on the free list falls below that specified by the minfree
parameter, the VMM begins to steal pages to add to the free list. The VMM continues to
steal pages until the free list has at least the number of pages specified by the maxfree
parameter.

If the number of file pages (permanent pages) in memory is less than the number specified
by the minperm parameter, the VMM steals frames from either computational or file pages,
regardless of repage rates. If the number of file pages is greater than the number specified
by the maxperm parameter, the VMM steals frames only from file pages. Between the two,
the VMM normally steals only file pages, but if the repage rate for file pages is higher than
the repage rate for computational pages, computational pages are stolen as well.

If a process appears to be reading sequentially from a file, the values specified by the
minpgahead parameter determine the number of pages to be read ahead when the
condition is first detected. The value specified by the maxpgahead parameter sets the
maximum number of pages that will be read ahead, regardless of the number of preceding
sequential reads.

In Version 3.2.5, no more than 80% of real memory can be pinned. In AIX Version 4.1, the
maxpin parameter allows you to specify the upper limit on the percentage of memory that is
pinned.

AIX Version 4.1 allows tuning of the number of file system bufstruct s (numfsbuf) and
the amount of data processed by the write–behind algorithm (numclust).

In AIX Version 4.1, you can also modify the thresholds that are used to decide when the
system is running out of paging space. The npswarn parameter specifies the number of
paging–space pages available at which the system begins warning processes that paging
space is low. The npskill parameter specifies the number of paging–space pages available
at which the system begins killing processes to release paging space.
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vmtune can only be executed by root . Changes made by the vmtune command last until
the next reboot of the system. If a permanent change in VMM parameters is needed, an
appropriate vmtune command should be put in inittab.

Attention: Misuse of this command can cause performance degradation or
operating–system failure. Before experimenting with vmtune, you should be thoroughly
familiar with both Performance Overview of the Virtual Memory Manager (VMM) , on
page 2-5 and Tuning VMM Page Replacement, on page 7-17 .

Flags

–b numfsbuf Specifies the number of file system bufstruct s. The default value
is 64.

–B numpbuf Specifies the number of pbufs used by the LVM. The maximum value
is 128. In AIX Version 3, the number of pbufs may need to be
increased in systems doing many large, sequential I/O operations.

–c numclust Specifies the number of 16KB clusters processed by write behind.
The default value is 1.

–f minfree Specifies the minimum number of frames on the free list. This
number can range from 8 to 204800.

–F maxfree Specifies the number of frames on the free list at which page stealing
is to stop. This number can range from 16 to 204800 but must be
greater than the number specified by the minfree parameter by at
least the value of maxpgahead.

–k npskill Specifies the number of free paging–space pages at which AIX
begins killing processes. The default value is 128.

–l lrubucket Specifies the size (in 4K pages) of the least recently used (lru)
page–replacement bucket size. This is the number of page frames
which will be examined at one time for possible pageouts when a
free frame is needed. A lower number will result in lower latency
when looking for a free frame, but will also result in behavior that is
not as much like a true lru alogorithm. The default value is 512MB
and the minimum is 256MB. Tuning this option is not recommended.

–M maxpin Specifies the maximum percentage of real memory that can be
pinned. The default value is 80. If this value is changed, the new
value should ensure that at least 4MB of real memory will be left
unpinned for use by the kernel.

–N pd_npages Specifies the number of pages that should be deleted in one chunk
from RAM when a file is deleted. The default value is the largest
possible file size divided by the page size (currently 4096). If the
largest possible file size is 2GB, then pd_npages is by default
524288. Tuning this option is really only useful for real–time
applications.

–p minperm Specifies the point below which file pages are protected from the
repage algorithm. This value is a percentage of the total
real–memory page frames in the system. The specified value must
be greater than or equal to 5.

–P maxperm Specifies the point above which the page stealing algorithm steals
only file pages. This value is expressed as a percentage of the total
real–memory page frames in the system. The specified value must
be greater than or equal to 5.

–r minpgahead Specifies the number of pages with which sequential read–ahead
starts. This value can range from 0 through 4096. It should be a
power of 2.
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–R maxpgahead Specifies the maximum number of pages to be read ahead. This
value can range from 0 through 4096. It should be a power of 2 and
should be greater than or equal to minpgahead.

–u lvm_bufcnt Specifies the number of LVM buffers for raw physical I/Os. The
default value is 9. The possible values can range between 1 and 64.
This option is only available in AIX Version 4.1.

–w npswarn Specifies the number of free paging–space pages at which AIX
begins sending the SIGDANGER signal to processes. The default
value is 512.

–W maxrandwrt Specifies a threshold (in 4KB pages) for random writes to
accumulate in RAM before these pages are sync’d to disk via a
write–behind algorithm. This threshold is on a per file basis.

The –W maxrandwrt option is only available in AIX Version 4.1.3 and
later. The default value of maxrandwrt is 0, which disables random
write–behind.

Related Information
Performance Overview of the Virtual Memory Manager (VMM), on page 2-5 .
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pdt_config Script 

Purpose
Controls the operation of the Performance Diagnostic Tool (PDT).

Syntax
pdt_config

Description
The pdt_config script is interactive. When invoked, it displays the following menu:

# /usr/sbin/perf/diag_tool/pdt_config

 ________________PDT customization menu__________________

 

1) show current  PDT report recipient and severity level

2) modify/enable PDT reporting

3) disable       PDT reporting

4) modify/enable PDT collection

5) disable       PDT collection

6) de–install    PDT

7) exit pdt_config

Please enter a number:

Menu items are selected by typing the corresponding number and pressing Enter.

The directory /usr/sbin/perf/diag_tool must be in the search path, or the script can be
invoked with /usr/sbin/perf/diag_tool/pdt_config.

The pdt_config script can only be run by root .

Flags
None

Related Information
Chapter 12, Performance Diagnostic Tool (PDT).
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pdt_report Script 

Purpose
Generates a Performance Diagnostic Tool (PDT) report based on the current historical
information.

Syntax

pdt_report

severity

pdt_report [ severity ]

Description
PDT periodically samples the performance of the system and adds the data to a historical
database. Normally, PDT generates a report daily at a set time. The pdt_report script
creates such a report on demand. The report is written to stdout. Error messages are
directed to stderr.

Messages from PDT can range in severity from 1 to 3 (with 1 being the most severe). By
default, only messages of severity 1 are included in the report. Optionally, pdt_report can
be instructed to include messages of lower severity.

The directory /usr/sbin/perf/diag_tool must be in the search path, or the script can be
invoked with /usr/sbin/perf/diag_tool/pdt_report.

Flags

severity The lowest severity messages to be included in the report. Can range from
1 to 3.

Related Information
Chapter 12, Performance Diagnostic Tool (PDT).
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Appendix B. Performance–Related Subroutines

 
The following subroutines can be used in monitoring and tuning performance:

Subroutines Function

getpri Determines the scheduling priority of a running process.

getpriority Determines the nice value of a running process

getrusage Retrieves information about the use of system resources.

nice Increments the nice value of the current process.

psdanger Retrieves information about paging space use.

setpri Changes the priority of a running process to a fixed priority.

setpriority Sets the nice value of a running process.

Related Information
AIX Performance Monitoring and Tuning Commands



B-2 Performance Tuning Guide



C-1Cache and Addressing Considerations

Appendix C. Cache and Addressing Considerations

 
Because  efficient use of caches is a major factor in achieving high processor performance,
software developers should understand what constitutes appropriate and inappropriate
coding technique from the standpoint of cache use. Achieving that understanding requires
some knowledge of the ESCALA cache architectures. 

Disclaimer
The following discussion is for the benefit of programmers who are interested in the effect of
caches and virtual addressing on the performance of their programs. Engineers who are
interested in the details of the electronic logic and packaging of the ESCALA will find it
oversimplified, and the distinctions among the POWER, PowerPC, and POWER2
architectures blurred.

Addressing
The  figure ”Successive Transformations of a Memory Address” in the section ”Cache
Lookup” shows the stages by which a 32–bit data virtual–memory address generated by a
program is transformed into a real–memory address. The exact bit numbers vary by model.
Models differ in detail but not in principle.



C-2 Performance Tuning Guide

4 bits

28 bits
(offset
within
segment)

.

.

.

.
(segment reg. num.)

Segment Register 15

24 bits

(segment ID)
Segment Register 0

8 bits
52-Bit Virtual Address

32-Bit Program-Generated Address

7 bits8 bits37 bits

Tag Line # Line Off.
Data
Cache
Lookup

Real
Memory
Access

Offset in Page

12 bits

TLB Tag

52-Bit Virtual Address

32 bits

Real Address of Page

20 bits

Offset in Page

12 bits

32-Bit Real Address

TLB #

8 bits

TLB
Lookup

40 bits In

20 bits Out

D Cache Miss

Address Translation

Successive Transformations of a Memory Address

52-Bit Virtual Address

7 bits13 bits32 bits

Tag Line #
L2 Cache
Lookup

L2 Cache Miss

Line Off.

When the program requests that a register be loaded with the contents of a portion of
memory, the memory location is specified by a 32–bit virtual address. The high–order 4 bits
of this address are used to index into the bank of 16 segment registers. The segment
registers are maintained by the operating system, and at any given time contain the 24–bit
segment IDs that have been assigned to the currently executing process. Those segment
IDs are unique, unless the process is sharing a segment with one or more other processes.
The 24–bit segment ID from the selected segment register is combined with the 28
low–order bits of the data address to form the 52–bit virtual address of the data item to be
loaded. Since the offset within the segment is 28 bits, each segment  is 256MB long. 

Cache Lookup
The 52–bit virtual address is used for the data cache lookup, as shown in the figure ”Data
Cache Lookup” . Since the lines in the cache are 128 bytes long, the low–order 7 bits of the
address represent the offset within the cache line. The data cache contains 128KB of space,
and is four–way set associative. Thus each bank of the cache contains 256 128–byte lines
(128KB/(128*4) = 256), and so the next higher–order 8 bits represent the line number
(0–255). Each bank of the cache has a line with that number, and the four lines with the
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same number form the congruence class, that is, the four possible locations for the data
being sought. This is a four–way set–associative cache.  If the congruence class had two
members, we would speak of the cache as two–way set–associative. If there were exactly
one cache line corresponding to a given address, the cache would be direct–mapped. 
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Associated with each line of the cache is a 37–bit tag, which is the high–order part of the
52–bit address from which the cache line was originally loaded. If one of the tags of the four
lines in the congruence set matches the high–order 37 bits of the 52–bit virtual address just
generated, we have a cache hit.  The data from the cache line is loaded into the register,
and no access to the RAM (and so no real address) is required. 

If none of the four tags in the congruence set matches the tag of the data to be loaded,
there is a data cache miss.  In this machine there is an L2 cache, so a cache lookup similar
to the one in the data cache is performed. The primary difference between the data cache
lookup and the L2 cache lookup is that the L2 is direct mapped. The lines are 128 bytes
long, and the cache can hold 1MB. There are therefore 8192 lines. The low–order 7 bits of
the 52–bit address are still the offset within the line. The next 13 bits constitute the cache
line number. Each line is associated with a single 32–bit tag. If that tag matches the
high–order 32 bits of the 52–bit address, there is an L2 cache hit. If not, the real address of
the data must be determined and the data obtained from RAM.

Different implementations of the POWER architectures have different sizes and geometries
of caches; some have no L2 cache, some have combined instruction and data caches,
some have different line lengths. The precise size and position of the fields in the 52–bit
address may differ, but the principles of cache lookup are the same.

TLB Lookup
The data translation lookaside buffer (TLB) is a cache of addresses. The TLB tag is the
high–order 32 bits of the 52–bit virtual address. The next 8 bits of the 52–bit virtual address
are the line number in the TLB, which has 512 entries and is two–way set–associative (so
each bank has 256 entries). The low–order 12 bits of the 52–bit address are the offset within
the 4096–byte page. The data portion of each TLB line is the 20 high–order bits of the
32–bit real address of the page (see the figure ”Data TLB Lookup”). If there is a TLB hit  ,
the 20 high–order bits from the TLB entry are combined with the low–order 12 bits of offset
within the page to form the 32–bit real address of the data. 
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If there is a TLB miss,  the hardware determines the real address of the data using the page
tables via an algorithm that is beyond the scope of this book. Obtaining the real address
from the page tables takes several dozen processor cycles. When the 32–bit real address
has been calculated, its 20–bit page–address portion is cached in the appropriate TLB entry,
and the tag for that entry is updated appropriately. 

RAM Access
However derived, the 32–bit real address of the data is used to issue a request to RAM.
Normally, there is a latency of at least eight processor cycles between the issuing of the
RAM request and the return of the first 16–byte (128 bits––the width of the memory bus)
section of data, which includes the data being loaded. At this point the processor can
resume operation. The RAM  access continues for a further seven processor cycles to load
the appropriate data cache line with its full 128 bytes, 16 bytes at a time. Thus, a cache
miss entails at least 16 processor cycles from beginning to end. The tag of the cache line is
updated with the high–order 37 bits of the data address. The previous content of the cache
line is lost.

Implications
Several kinds of pathological addressing patterns can cause incessant cache or TLB
misses, greatly slowing the effective rate of execution. For example, if the program
accesses an array larger than the cache with a stride of exactly 128 bytes, it will incur a
cache miss for each access. If the program presents the processor with a series of requests
for the same cache line number but in different pages, a series of congruence–set collisions
will occur, resulting in numerous cache misses even though the full capacity of the cache is
not being used. The fact that the cache is four–way set–associative makes it unlikely that
this will happen by chance, but a particularly unfortunate choice of offsets for data items
could make a specific program particularly slow.

Large arrays  can also cause problems. The figure ”Array Layout in Memory” shows the
storage layout of arrays in C and in FORTRAN. C arrays are row–major, while FORTRAN
arrays are column–major. If the innermost loop of a C program indexes by column, or a
FORTRAN program by row, a sufficiently large array (for example, 512x512
double–precision floating point) can cause a TLB miss on every access. For a further
discussion of these phenomena, see A (Synthetic) Cautionary Example, on page 6-10 .
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Appendix D. Efficient Use of the ld Command

 
The  AIX binder (invoked as the final stage of a compile or directly via the ld command) has
functions that are not found in the typical UNIX linker. This can result in longer linking times
if the additional power of the AIXbinder is not exploited. This section describes some
techniques for more efficient use of the binder. 

Rebindable Executables
The  formal documentation of the binder refers to the ability of the binder to take an
executable (a load module) as input. Exploitation of this function can significantly improve
the overall performance of the system with software–development workloads, as well as the
response time of individual lds. 

In most typical UNIX systems, the ld command always takes as input a set of files
containing object code, either from individual .o files or from archived libraries of .o files.
The ld command then resolves the external references among these files and writes an
executable with the default name of a.out. The a.out file can only be executed. If a bug is
found in one of the modules that was included in the a.out file, the defective source code is
changed and recompiled, and then the entire ld process must be repeated, starting from the
full set of .o files.

In the AIX operating system, however, the binder can accept both .o and a.out files as
input, because the binder includes resolved External Symbol Dictionary (ESD) and
Relocation Dictionary (RLD) information in the executable file. This means that the user has
the ability to rebind an existing executable to replace a single modified .o file, rather than
build a new executable from the beginning. Since the binding process consumes storage
and processor cycles partly in proportion to the number of different files being accessed and
the number of different references to symbols that have to be resolved, rebinding an
executable with a new version of one module is much quicker than binding it from scratch.

Prebound Subroutine Libraries
Equally  important in some environments is the ability to bind an entire subroutine library in
advance of its use. The system subroutine libraries such as libc.a are, in effect, shipped in
binder–output format, rather than as an archive file of .o files. This saves the user
considerable processing time when binding an application with the required system libraries,
since only the references from the application to the library subroutines have to be resolved.
References among the system library routines themselves have already been resolved
during the system–build process. 

Many third–party subroutine libraries, however, are routinely shipped in archive form as raw
.o files. When users bind applications with such libraries, the binder has to do symbol
resolution for the entire library each time the application is bound. This results in long bind
times in environments where applications are being bound with large libraries on small
machines.

The performance difference between bound and unbound libraries is dramatic, especially in
minimum configurations. When the subroutine library was prebound, the time required to
bind the FORTRAN program fell to approximately 1.7 minutes. When the resulting a.out file
was rebound with a new FORTRAN .o file, simulating the handling of a trivial bug fix, the
bind time fell to approximately 4 seconds.



D-2 Performance Tuning Guide

Examples
1. To prebind a library, use the following command on the archive file:

ld –r libfoo.a –o libfooa.o

2. The compile and bind of the FORTRAN program something.f is then:

xlf something.f libfooa.o

Notice that the prebound library is treated as another ordinary input file, not with the
usual library identification syntax (–lfoo).

3. To recompile the module and rebind the executable after fixing a bug, use:

xlf something.f a.out

4. However, if the bug fix had resulted in a call to a different subroutine in the library, the
bind would fail. The following Korn shell script tests for a failure return code and
recovers:

# !/usr/bin/ksh

# Shell script for source file replacement bind

#

xlf something.f a.out

rc=$?

if [ ”$rc” != 0 ]

then

   echo ”New function added ... using libfooa.o”

   xlf something.o libfooa.o

fi

Related Information
The ld command.

The XCOFF Object (a.out) File Format.



E-1Performance of the Performance Tools

Appendix E. Performance of the Performance Tools

 
Occasionally, the AIX Performance Group is asked about the ”overhead” of the performance
tools. This is certainly a meaningful question, because some of the tools can add
significantly to system workload. It is also a difficult question to answer, because the cost of
running the tools is often proportional to some aspect of the workload. The  following
sections contain brief, informal discussions of the speed and resource use of the main
performance monitoring and tuning facilities. These discussions are intended to give a
general sense of the relative cost of various tools––not to constitute a rigorous description
of tool performance.

filemon Most of filemon’s load on the system is its CPU–time consumption. In a
CPU–saturated environment with little I/O, filemon slowed a large compile
by about 1%. In a CPU–saturated environment with a high disk–output
rate, filemon slowed the writing program by about 5%.

fileplace Most variations of this command use less than .3 seconds of CPU time.

iostat This command uses about 20 milliseconds of CPU time for each periodic
report generated.

lsattr This command is I/O–limited. The first time it is run, it may take 2 to 4
seconds to read the necessary data. Subsequent executions on a lightly
loaded system will use about .5 seconds of CPU time.

lslv This command is CPU–limited. As an example, the command:

lslv –p hdisk0 hd1

consumes about .5 seconds of CPU time.

netpmon With a moderate, network–oriented workload, netpmon increases overall
CPU utilization by 3–5%. In a CPU–saturated environment with little I/O of
any kind, netpmon slowed a large compile by about 3.5%.

netstat Most of the variations of this command use less than .2 seconds of CPU
time.

nfsstat Most of the variations of this command use less than .1 seconds of CPU
time.

PDT Daily data collection takes several elapsed minutes, but most of that time is
spent sleeping. Total CPU consumption is normally less than 30 seconds.

ps The CPU time consumed by this command varies with the number of
processes to be displayed, but usually does not exceed .3 seconds.

svmon The svmon –G command uses about 3.2 seconds of CPU time. An
svmon command for a single process (svmon –P processid), takes about
.7 seconds of CPU time.

tprof Since tprof uses trace, it causes some system overhead. tprof only
enables one trace hook, however, so its overhead is less than that of a full
trace. For example, tprof degraded the performance of a large compile by
less than 2%.
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trace The overhead added by trace varies widely, depending on the workload
and the number of hook IDs being collected. As an extreme case, a
long–running, CPU–intensive job in an otherwise idle system took 3.2%
longer when trace was running with all hooks enabled.

vmstat This command uses about 40 milliseconds of CPU time for each report
generated. The vmstat –s command requires about 90 milliseconds of
CPU time.
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Appendix F. Application Memory Management–malloc
and realloc

 
AIX acquired a new memory–management algorithm in Version 3.2, which is retained in
Version 4. The previous algorithm, which is widely used in UNIX systems, rounded up the
size of all malloc requests to the next power of 2. The result was considerable virtual– and
real–memory fragmentation and poor locality of reference. The Version 3.2 algorithm
allocates exactly the amount of space requested and is more efficient about reclaiming
previously used blocks of memory. 

Unfortunately, a certain number of existing application programs depended inadvertently on
the previous algorithm for acceptable performance or even for correct functioning. For
example, if a program depends on the additional space provided by the rounding–up
process because it actually overruns the end of an array, it will probably fail when used with
the Version 3.2 malloc.

As another example, because of the inefficient space reclamation of the Version 3.1 routine,
the application program almost always receives space that has been set to zeros (when a
process touches a given page in its working segment for the first time, that page is set to
zeros). Applications may depend on this side effect for correct execution. In fact, zeroing out
of the allocated space is not a specified function of malloc and would result in an
unnecessary performance penalty for programs that initialize only as required and possibly
not to zeros. Because the Version 3.2 malloc is more aggressive about reusing space,
programs that are dependent on receiving zeroed storage from malloc will probably fail in
Version 3.2 or later systems.

Similarly, if a program continually reallocs a structure to a slightly greater size, in Version
3.1 realloc may not need to move the structure very often. In many cases realloc can make
use of the extra space provided by the rounding. In Version 3.2, realloc will usually have to
move the structure to a slightly larger area because something else has been malloced just
above it. This has the appearance of a deterioration in realloc performance, when in fact it
is the surfacing of a cost that is implicit in the application program’s structure. 

The possibility that existing AIX programs, and programs ported from other UNIX systems,
might depend on side effects of the Version 3.1 malloc subroutine was foreseen. The
Version 3.1 algorithm can be reinvoked by entering:

MALLOCTYPE=3.1; export MALLOCTYPE

Thereafter, all programs run by the shell will use the previous version of the malloc
subroutine. Setting MALLOCTYPE  to anything other than 3.1  causes the shell to revert to
Version 3.2 behavior.

Related Information
The malloc subroutine, realloc subroutine.
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Appendix G. Performance Effects of Shared Libraries

 
The  shared–library capability sometimes provides an opportunity to make time and memory
trade–offs. 

Advantages and Disadvantages of Shared Libraries
The idea behind shared libraries is to have only one copy of commonly used routines and to
maintain this common copy in a unique shared–library segment. This can significantly
reduce the size of executables, thereby saving disk space. In addition, since these common
routines are used by many processes in a multiuser environment, the routine may already
be in real memory when you first reference it. In that case, the time it takes to page fault the
subroutine into real memory and the page frame it would occupy are saved. Another
advantage to shared libraries is that the routines are not statically bound to the application
but are dynamically bound when the application is loaded. This permits applications to
automatically inherit changes to the shared libraries, without recompiling or rebinding.

There are, however, possible disadvantages to the use of shared libraries. From a
performance viewpoint, there is ”glue code” that is required in the executable to access the
shared segment. This code adds a number of cycles per call to a shared–library segment. A
more subtle effect is a reduction in ”locality of reference.” You may be interested in only a
few of the routines in a library, and these routines may be scattered widely in the virtual
address space of the library. Thus, the total number of pages you need to touch in order to
access all of your routines is significantly higher than if these routines were all bound
directly into your executable. One impact of this is that, if you are the only user of these
routines, you experience more page faults to get them all into real memory. In addition,
since more pages are touched, there is a greater likelihood of causing an instruction
translation lookaside buffer (TLB) miss.

How to Build Executables Shared or Nonshared
The cc command defaults to the shared–library option. To override the default, use the
–bnso option as follows:

cc xxx.c –o xxx.noshr –O –bnso –bI:/lib/syscalls.exp

How to Determine If Nonshared Will Help
The obvious method of determining whether your application is sensitive to the
shared–library approach is to recompile your executable using the nonshare option. If the
performance is significantly better, you may want to consider trading off the other
advantages of shared libraries for the performance gain. Be sure to measure performance
in an authentic environment, however. A program that had been bound nonshared might run
faster as a single instance in a lightly loaded machine. That same program, when used by a
number of users simultaneously, might increase real memory usage enough to slow down
the whole workload.
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Related Information
Shared Libraries and Shared Memory in AIX General Programming Concepts: Writing and
Debugging Programs.
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Appendix H. Accessing the Processor Timer

 
Attempts  to measure very small time intervals in AIX are often frustrated by the intermittent
background activity that is part of the operating system and by the processing time
consumed by the system time routines. One approach to solving this problem is to access
the processor timer directly to determine the beginning and ending times of measurement
intervals, run the measurements repeatedly, and then filter the results to remove periods
when an interrupt intervened. 

The POWER and POWER2 architectures implement the processor timer as a pair of
special–purpose registers. The PowerPC architecture defines a 64–bit register called the
Time Base. These registers can only be accessed by assembler–language programs.

Attention: The time measured by the processor timer is the absolute wall–clock time. If
an interrupt occurs between accesses to the timer, the calculated duration will include
the processing of the interrupt and possibly other processes being dispatched before
control is returned to the code being timed. The time from the processor timer is the raw
time and should never be used in situations in which it will not be subjected to a
reasonableness test.

In AIX Version 4.1, a pair of library subroutines has been added to the system to make
accessing of these registers easier and architecture–independent. The subroutines are
read_real_time and time_base_to_time. The read_real_time subroutine obtains the
current time from the appropriate source and stores it as two 32–bit values. The
time_base_to_time subroutine ensures that the time values are in seconds and
nanoseconds, performing any necessary conversion from the TimeBase format. The reason
for the separation of the time–acquisition and time–conversion functions is to minimize the
overhead of time acquisition.

The following example shows how these new subroutines could be used to measure the
elapsed time for a specific piece of code:
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#include <stdio.h> 

#include <sys/time.h>    

    

int main(void) {   

   timebasestruct_t start, finish;    

   int val = 3;    

   int w1, w2;      

   double time;     

    

   /* get the time before the operation begins */

   read_real_time(&start, TIMEBASE_SZ);     

  

   /* begin code to be timed */

   printf(”This is a sample line %d \n”, val);    

   /* end code to be timed   */

  

   /* get the time after the operation is complete

   read_real_time(&finish, TIMEBASE_SZ);    

  

   /* call the conversion routines unconditionally, to ensure

*/

   /* that both values are in seconds and nanoseconds regardless

*/

   /* of the hardware platform.

*/

   time_base_to_time(&start, TIMEBASE_SZ);     

   time_base_to_time(&finish, TIMEBASE_SZ);    

    

   /* subtract the starting time from the ending time */

   w1 = finish.tb_high – start.tb_high; /* probably zero */ 

   w2 = finish.tb_low – start.tb_low; 

    

   /* if there was a carry from low–order to high–order during

*/

   /* the measurement, we may have to undo it.

*/

   if (w2 < 0) {    

      w1––;   

      w2 += 1000000000;   

   }    

   

   /* convert the net elapsed time to floating point microseconds

*/

   time = ((double) w2)/1000.0;     

   if (w1 > 0)      

      time += ((double) w1)*1000000.0;      

    

   printf(”Time was %9.3f microseconds \n”, time);     

   exit(0);   

}

To minimize the overhead of calling and returning from the timer routines, the analyst may
want to experiment with binding the benchmark nonshared (see Appendix G).

If this were a real performance benchmark, we would perform the code to be measured
repeatedly. If we timed a number of consecutive repetitions collectively, we could calculate
an average time for the operation, but it might include interrupt handling or other extraneous
activity. If we timed a number of repetitions individually, we could inspect the individual times
for reasonableness, but the overhead of the timing routines would be included in each
measurement. It may be desirable to use both techniques and compare the results. In any
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case, the analyst will want to consider the purpose of the measurements in choosing the
method.

POWER–Architecture–Unique Timer Access
Attention: The following discussion applies only to the POWER and POWER2
architectures (and the 601 processor chip). The code examples will function correctly in
a PowerPC system(that is, they won’t blow up), but some of the instructions will be
simulated. Since the purpose of accessing the processor timer is to obtain
high–precision times with low overhead, simulation makes the results much less useful.

The POWER and POWER2 processor architectures include two special–purpose registers
(an upper register and a lower register) that contain a high–resolution timer. The upper
register contains time in seconds, and the lower register contains a count of fractional
seconds in nanoseconds. The actual precision of the time in the lower register depends on
its update frequency, which is model–specific.

Assembler Routines to Access the POWER Timer Registers
The following assembler–language module (timer.s) provides routines ( rtc_upper  and
rtc_lower ) to access the upper and lower registers of the timer.

           .globl  .rtc_upper

.rtc_upper: mfspr   3,4         # copy RTCU to return register

            br

  

           .globl  .rtc_lower

.rtc_lower: mfspr   3,5         # copy RTCL to return register

            br

C Subroutine to Supply the Time in Seconds
The following module (second.c) contains a C routine that calls the timer.s routines to
access the upper and lower register contents and returns a double–precision real value of
time in seconds.

double second()

{

  int ts, tl, tu;

   

  ts = rtc_upper();     /* seconds                          */

  tl = rtc_lower();     /* nanoseconds                      */

  tu = rtc_upper();     /* Check for a carry from           */

  if (ts != tu)         /* the lower reg to the upper.      */

    tl = rtc_lower();   /* Recover from the race condition. */

  return ( tu + (double)tl/1000000000 );

}

The subroutine second, can be called from either a C routine or a FORTRAN routine.

Note: Depending on the length of time since the last system reset, second.c may yield a
varying amount of precision. The longer the time since reset, the larger the number of
bits of precision consumed by the (probably uninteresting) whole–seconds part of the
number. The technique shown in the first part of this Appendix avoids this problem by
performing the subtraction required to obtain an elapsed time before converting to
floating point.
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Accessing Timer Registers in PowerPC–Architecture Systems
The PowerPC processor architecture includes a 64–bit Time Base register, which is logically
divided into 32–bit upper and lower fields (TBU and TBL). The Time Base register is
incremented at a frequency that is hardware and software implementation dependent and
may vary from time to time. Transforming the values from Time Base into seconds is a more
complex task than in the POWER architecture. We strongly recommend using the
read_real_time and time_base_to_time interfaces to obtain time values in PowerPC
systems.

Example Use of the second Routine
An example (main.c) of a C program using the second subroutine is:

#include <stdio.h>

double second();

main()

{

      double t1,t2;

  

      t1 = second();

      my_favorite_function();

      t2 = second();

  

     printf(”my_favorite_function time: %7.9f\n”,t2 – t1);

      exit();

}

An example (main.f) of a FORTRAN program using the second subroutine is:

      double precision t1

      double precision t2

        

      t1 = second()

      my_favorite_subroutine()

      t2 = second()

      write(6,11) (t2 – t1)

11    format(f20.12)

      end

To compile and use either main.c or main.f, use the following:

xlc –O3 –c second.c timer.s

xlf –O3 –o mainF main.f second.o timer.o

xlc –O3 –o mainC main.c second.o timer.o
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Appendix I. National Language Support–Locale vs
Speed

 
AIX  National Language Support (NLS) facilitates the use of AIX in various language
environments. Because informed use of NLS is increasingly important in obtaining optimum
performance from the system, a brief review of NLS is in order. 

NLS allows AIX to be tailored to the individual user’s language and cultural expectations. A
locale  is a specific combination of language and geographic or cultural requirements that is
identified by a compound name, such as en_US (English as used in the United States). For
each supported locale, there is a set of message catalogs, collation value tables, and other
information that defines the requirements of that locale. When AIX is installed, the system
administrator can choose what locale information should be installed. Thereafter, the
individual users can control the locale of each shell by changing the LANG and LC_ALL
variables. 

The one locale that does not conform to the structure just described is the C (or POSIX)
locale. The C locale is the system default locale unless the user explicitly chooses another.
It is also the locale in which each newly forked process starts. Running in the C locale is the
nearest equivalent in AIX to running in the original, unilingual form of UNIX. There are no C
message catalogs. Instead, programs that attempt to get a message from the catalog are
given back the default message that is compiled into the program. Some commands, such
as the sort command, revert to their original, character–set–specific algorithms.

Our measurements show that the performance of NLS falls into three bands. The C locale is
generally the fastest for the execution of commands, followed by the single–byte (Latin
alphabet) locales such as en_US, with the multibyte locales resulting in the slowest
command execution.

Programming Considerations
Historically,  the C language has displayed a certain amount of provinciality in its
interchangeable use of the words byte and character. Thus, an array declared char
foo[10]  is an array of 10 bytes. But not all of the languages in the world are written with
characters that can be expressed in a single byte. Japanese and Chinese, for example,
require two or more bytes to identify a particular graphic to be displayed. Therefore, in AIX
we distinguish between a byte, which is 8 bits of data, and a character, which is the amount
of information needed to represent a single graphic. 

Two characteristics of each locale are the maximum number of bytes required to express a
character in that locale and the maximum number of output display positions a single
character can occupy. These values can be obtained with the MB_CUR_MAX and
MAX_DISP_WIDTH macros. If both values are 1, the locale is one in which the equivalence
of byte and character still holds. If either value is greater than 1, programs that do
character–by–character processing, or that keep track of the number of display positions
used, will need to use internationalization functions to do so.

Since the multibyte encodings consist of variable numbers of bytes per character, they
cannot be processed as arrays of characters. To allow efficient coding in situations where
each character has to receive extensive processing, a fixed–byte–width data type, wchar_t,
has been defined. A wchar_t is wide enough to contain a translated form of any supported
character encoding. Programmers can therefore declare arrays of wchar_t and process
them with (roughly) the same logic they would have used on an array of char, using the
wide–character analogs of the traditional libc functions. Unfortunately, the translation from
the multibyte form in which text is entered, stored on disk, or written to the display, to the
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wchar_t form, is computationally quite expensive. It should only be performed in situations
in which the processing efficiency of the wchar_t form will more than compensate for the
cost of translation to and from the wchar_t form.

Some Simplifying Rules
It  is possible to write a slow, multilingual application program if the programmer is unaware
of some constraints on the design of multibyte character sets that allow many programs to
run efficiently in a multibyte locale with little use of internationalization functions. For
example: 

• In all code sets supported by BULL, the character codes 0x00 through 0x3F are unique
and encode the ASCII standard characters. Being unique means that these bit
combinations never appear as one of the bytes of a multibyte character. Since the null
character is part of this set, the strlen, strcpy, and strcat functions work on multibyte as
well as single–byte strings. The programmer must remember that the value returned by
strlen is the number of bytes in the string, not the number of characters.

• Similarly, the standard string function strchr(foostr, ’/’)  works correctly in all
locales, since the / (slash) is part of the unique code–point range. In fact, most of the
standard delimiters are in the 0x00 to 0x3F range, so most parsing can be accomplished
without recourse to internationalization functions or translation to wchar_t form.

• Comparisons between strings fall into two classes: equal and unequal. Comparisons for
equality can and should be done with the standard strcmp function. When we write

if (strcmp(foostr,”a rose”) == 0)

 we are not looking for ”a rose”  by any other name; we are looking for that set of bits
only. If foostr  contains ”a rosE”  we are not interested.

• Unequal comparisons occur when we are attempting to arrange strings in the
locale–defined collation sequence. In that case, we would use

if (strcoll(foostr,barstr) > 0)

 and pay the performance cost of obtaining the collation information about each
character.

• When a program is execed, it always starts in the C locale. If it will use one or more
internationalization functions, including accessing message catalogs, it must execute:

setlocale(LC_ALL, ””);

 to switch to the locale of its parent process before calling any internationalization
function.

Controlling Locale
The command sequence:

LANG=C

export LANG

sets the default locale to C (that is, C is used unless a given variable, such as
LC_COLLATE, is explicitly set to something else).

The sequence:

LC_ALL=C

export LC_ALL
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forcibly sets all the locale variables to C, regardless of previous settings.

For a report on the current settings of the locale variables, type  locale .

Related Information
AIX Resource Management Overview.

sort command.



I-4 Performance Tuning Guide



J-1Summary of Tunable AIX Parameters

Appendix J. Summary of Tunable AIX Parameters

 
Each  of the following sections describes one of the AIX parameters that can affect
performance. The parameters are described in alphabetical order. 

arpt_killc 

Purpose: Time before an inactive, complete ARP entry is deleted.

Values: Default: 20 (minutes), Range: N/A

Display: no –a or no –o arpt_killc

Change: no –o arpt_killc=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: N/A

Tuning: To reduce ARP activity in a stable network, arpt_killc can
be increased. This is not a large effect.

Refer to: N/A

biod Count 

Purpose: Number of biod processes available to handle NFS
requests on a client.

Values: Default: 6, Range: 1 to any positive integer

Display: ps –ef | grep biod

Change: chnfs –b NewValue

Change normally takes effect immediately and is
permanent. The –N flag causes an immediate, temporary
change. The –I flag causes a change that takes effect at the
next boot.

Diagnosis: netstat –s to look for UDP socket buffer overflows.

Tuning: Increase number until socket buffer overflows cease.

Refer to: How Many biods and nfsds Are Needed for Good
Performance?, on page 9-34

Disk Adapter Outstanding–Requests Limit 

Purpose: Maximum number of requests that can be outstanding on a
SCSI bus. (Applies only to the SCSI–2 Fast/Wide Adapter.)

Values: Default: 40, Range: 40 to 128

Display: lsattr –E –l scsin –a num_cmd_elems
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Change: chdev –l scsin –a num_cmd_elems=NewValue

Change is effective immediately and is permanent. If the –T
flag is used, the change is immediate and lasts until the
next boot. If the –P flag is used, the change is deferred until
the next boot, and is permanent.

Diagnosis: N/A

Tuning: Value should equal the number of physical drives (including
those in disk arrays) on the SCSI bus, times the queue
depth of the individual drives.

Refer to: Setting SCSI–Adapter and Disk–Device Queue Limits, on
page 8-24 .

Disk Drive Queue Depth 

Purpose: Maximum number of requests the disk device can hold in its
queue.

Values: Default: BULL disks=3, Range: N/A

Default: Non–BULL disks=0, Range: specified by
manufacturer.

Display: lsattr –E –l hdiskn

Change: chdev –l hdiskn –a q_type=simple –a
queue_depth=NewValue

Change is effective immediately and is permanent. If the –T
flag is used, the change is immediate and lasts until the
next boot. If the –P flag is used, the change is deferred until
the next boot, and is permanent.

Diagnosis: N/A

Tuning: If the non–BULL disk drive is capable of request queuing,
this change should be made to ensure that the operating
system takes advantage of the capability.

Refer to: Setting SCSI–Adapter and Disk–Device Queue Limits, on
page 8-24 .

dog_ticks 

Purpose: Timer granularity for IfWatchdog routines. This value is not
used in AIX.

Values: Default: 60

Display: N/A

Change: N/A

Diagnosis: N/A

Tuning: N/A

Refer to: N/A
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fork() Retry Interval 

Purpose: Specify the amount of time to wait to retry a fork that has
failed for lack of paging space.

Values: Default: 10 (10–millisecond clock ticks), Range: 10 to n
clock ticks

Display: schedtune

Change: schedtune –f NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding
schedtune command to /etc/inittab.

Diagnosis: If processes have been killed for lack of paging space,
monitor the situation with the sigdanger() subroutine.

Tuning: If the paging–space–low condition is only due to brief,
sporadic workload peaks, increasing the retry interval may
allow processes to delay long enough for paging space to
be released. Otherwise, make the paging spaces larger.

Refer to: N/A

ipforwarding 

Purpose: Specifies whether the kernel forwards IP packets.

Values: Default: 0 (no), Range: 0 to 1

Display: no –a or no –o ipforwarding

Change: no –o ipforwarding=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: N/A

Tuning: This is a configuration decision with performance
consequences.

Refer to: N/A

ipfragttl 

Purpose: Time to live for IP packet fragments.

Values: Default: 60 (half–seconds), Range: 60 to n

Display: no –a or no –o ipfragttl

Change: no –o ipfragttl=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: netstat –s 
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Tuning: If value of IP: fragments dropped after timeout 
is nonzero, increasing ipfragttl may reduce
retransmissions.

Refer to: N/A

ipqmaxlen 

Purpose: Specify the maximum number of entries on the IP input
queue.

Values: Default: 50, Range: 50 to n

Display: no –a or no –o ipqmaxlen

Change: no –o ipqmaxlen=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: Use crash to access IP input queue overflow counter.

Tuning: Increase size.

Refer to: IP Protocol Performance Tuning Recommendations, on
page 9-21 .

ipsendredirects 

Purpose: Specifies whether the kernel sends redirect signals.

Values: Default: 1 (yes), Range: 0 to 1

Display: no –a or no –o ipsendredirects

Change: no –o ipsendredirects=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: N/A

Tuning: N/A. This is a configuration decision with performance
consequences.

Refer to: N/A

loop_check_sum  (Version 3.2.5 only) 

Purpose: Specifies whether checksums are built and verified on a
loopback interface. (This function does not exist in AIX
Version 4.1.)

Values: Default: 1 (yes), Range: 0 to 1

Display: no –a or no –o loop_check_sum

Change: no –o loop_check_sum=0

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: N/A
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Tuning: Turning checksum verification off (loop_check_sum=0) is
recommended.

Refer to: N/A

lowclust  (Version 3.2.5 only) 

Purpose: Specifies the low–water mark for the mbuf cluster pool.

Values: Default: configuration–dependent, Range: 5 to n

Display: no –a or no –o lowclust

Change: no –o lowclust=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: netstat –m

Tuning: If ”requests for memory denied” is nonzero, increase
lowclust.

Refer to: Version 3.2.5 mbuf Pool Performance Tuning, on page 9-24
.

lowmbuf  (Version 3.2.5 only) 

Purpose: Specifies the low–water mark for the mbuf pool

Values: Default: configuration–dependent, Range: 64 to n

Display: no –a or no –o lowmbuf

Change: no –o lowmbuf=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: netstat –m

Tuning: If ”requests for memory denied” is nonzero, increase
lowmbuf.

Refer to: Version 3.2.5 mbuf Pool Performance Tuning, on page 9-24
.

lvm_bufcnt (AIX Version 4.1 only)

Purpose: The number of LVM buffers for raw physical I/Os.

Values: Default: 9, Range: 1 to 64

Display: vmtune

Change: vmtune –u NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding vmtune
command to /etc/inittab.

Diagnosis: Applications doing large writes to striped raw logical
volumes are not getting the desired throughput rate.
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Tuning: If a system is configured to have striped raw logical
volumes and is doing writes greater than 1.125 MB,
increasing this value may help throughput of the
application.

Refer to: vmtune command , on page A-8 .

maxrandwrt (AIX Version 4.1.3 and above)

Purpose: The number of dirty file pages to accumulate in RAM before
these pages are sync’d to disk via a write–behind algorithm.
The random write–behind threshold is on a per file basis.

Values: Default: 0, Range: 0 to 128 (4KB pages)

Display: vmtune

Change: vmtune –W NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding vmtune
command to /etc/inittab.

Diagnosis: vmstat n shows page out and I/O wait spikes on regular
intervals (usually when the sync daemon is writing pages to
disk).

Tuning: If vmstat n shows page out and I/O wait spikes on regular
intervals (usually when the sync daemon is writing pages to
disk), adjusting the maxrandwrt value helps spread the I/O
more efficiently. A value of 0 disables random write–behind.

Refer to: Performance Overview of AIX Management of Fixed–Disk
Storage, on page 2-12 and the vmtune command , on
page A-8 .

maxbuf 

Purpose: Number of (4KB) pages in the block–I/O buffer cache.

Values: Default: 20, Range: x to y

Display: lsattr –E –l sys0 –a maxbuf

Change: chdev –l sys0 –a maxbuf=NewValue

Change is effective immediately and is permanent. If the –T
flag is used, the change is immediate and lasts until the
next boot. If the –P flag is used, the change is deferred until
the next boot and is permanent.

Diagnosis: N/A

Tuning: This parameter normally has little performance effect on an
AIX system, since ordinary I/O does not use the block–I/O
buffer cache.

Refer to: N/A
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max_coalesce

Purpose: Specifies the maximum size, in bytes, of requests that the
SCSI device driver will coalesce from the requests in its
queue.

Values: Default: 64KB, Range: 64KB to 2GB

Display: odmget

Change: odmdelete, odmadd, bosboot

Change takes effect at next boot and is permanent.

Diagnosis: N/A

Tuning: Increase if striped logical volumes or disk arrays are in use.

Refer to: Modifying the SCSI Device Driver max_coalesce
Parameter, on page 8-23 .

maxfree 

Purpose: The maximum size to which the VMM page–frame free list
will grow by page stealing.

Values: Default: configuration–dependent, Range: 16 to 204800
(4KB frames)

Display: vmtune

Change: vmtune –F NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding vmtune
command to /etc/inittab.

Diagnosis: Observe free–list–size changes with vmstat n.

Tuning: If vmstat n shows free–list size frequently driven below
minfree by application demands, increase maxfree to
reduce calls to replenish free list. Generally, keep maxfree
– minfree <= 100.

Refer to: Tuning VMM Page Replacement, on page 7-17 .

maxperm 

Purpose: The percentage of memory page frames occupied by
permanent pages above which only permanent pages will
have their frames stolen.

Values: Default: 80% of (memory size – 4MB), Range: 5 to 100

Display: vmtune

Change: vmtune –P NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding vmtune
command to /etc/inittab.

Diagnosis: Monitor disk I/O with iostat n.
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Tuning: If some files are known to be read repetitively, and I/O rates
do not decrease with time from startup, maxperm may be
too low.

Refer to: Tuning VMM Page Replacement, on page 7-17 .

maxpgahead 

Purpose: The upper limit on the number of pages the VMM will read
ahead when processing a sequentially accessed file.

Values: Default: 8, Range: 0 to 16

Display: vmtune

Change: vmtune –R NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding vmtune
command to /etc/inittab.

Diagnosis: Observe the elapsed execution time of critical
sequential–I/O–dependent applications with time
command.

Tuning: If execution time decreases with higher maxpgahead,
observe other applications to ensure that their performance
has not deteriorated.

Refer to: Tuning Sequential Read Ahead, on page 8-12 .

maxpin (AIX Version 4.1 only)

Purpose: The maximum percentage of real memory that can be
pinned.

Values: Default: 80 (% of RAM), Range: At least 4MB pinnable to at
least 4MB unpinnable.

Display: vmtune

Change: vmtune –M NewValue

Change takes effect immediately. Change is effective until
next boot.

Diagnosis: N/A

Tuning: Only change for extreme situations, such as maximum–load
benchmarking.

Refer to: vmtune command, on page A-8 .

maxpout 

Purpose: Specifies the maximum number of pending I/Os to a file.

Values: Default: 0 (no checking), Range: 0 to n (n should be a
multiple of 4, plus 1)

Display: lsattr –E –l sys0 –a maxpout
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Change: chdev –l sys0 –a maxpout=NewValue

Change is effective immediately and is permanent. If the –T
flag is used, the change is immediate and lasts until the
next boot. If the –P flag is used, the change is deferred until
the next boot and is permanent.

Diagnosis: If foreground response time sometimes deteriorates when
programs with large amounts of sequential disk output are
running, sequential output may need to be paced.

Tuning: Set maxpout to 33 and minpout to 16. If sequential
performance deteriorates unacceptably, increase one or
both. If foreground performance is still unacceptable,
decrease both.

Refer to: Use of Disk–I/O Pacing, on page 8-14 .

maxttl 

Purpose: Time to live for Routing Information Protocol (RIP) packets.

Values: Default: 255, Range: N/A

Display: no –a or no –o maxttl

Change: no –o maxttl=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: N/A

Tuning: N/A

Refer to: N/A

mb_cl_hiwat  (Version 3.2.5 only) 

Purpose: Specifies the high–water mark for the mbuf cluster pool

Values: Default: configuration–dependent, Range: N/A

Display: no –a or no –o mb_cl_hiwat

Change: no –o mb_cl_hiwat=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: netstat –m

Tuning: If the number of mbuf clusters (called ”mapped pages” by
netstat) is regularly greater than mb_cl_hiwat, increase
mb_cl_hiwat.

Refer to: Version 3.2.5 mbuf Pool Performance Tuning, on page 9-24
.
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Memory–Load–Control  Parameters 

Purpose:

Customize the VMM memory–load–control facility to
maximize use of the system while avoiding thrashing. The
most frequently used parameters are:

h High memory–overcommitment threshold

p Process memory–overcommitment
threshold

m Minimum level of multiprogramming

Values: h Default: 6, Range: 0 to any positive integer

p  Default: 4, Range: 0 to any positive integer

m Default: 2, Range: 0 to any positive integer

Display: schedtune

Change: schedtune [–h NewValue] [–p NewValue] [–m NewValue]

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding
schedtune command to /etc/inittab.

Diagnosis: Heavy memory loads cause wide variations in response
time.

Tuning: schedtune –h 0 turns off memory load control.

schedtune –p 2 requires a higher level of repaging by a
given process before it is a candidate for suspension by
memory load control.

schedtune –m 10 requires that memory load control
always leave at least 10 user processes running when it is
suspending processes.

Refer to: VMM Memory Load Control Facility, on page 2-8 and
Tuning VMM Memory Load Control, on page 7-15 .

minfree 

Purpose: The VMM page–frame free–list size at which the VMM
starts to steal pages to replenish the free list.

Values: Default: configuration–dependent, Range: x to any positive
integer

Display: vmtune

Change: vmtune –f NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding vmtune
command to /etc/inittab.

Diagnosis: vmstat n

Tuning: If processes are being delayed by page stealing, increase
minfree to improve response time. Increase maxfree by an
equal or greater amount.

Refer to: Tuning VMM Page Replacement, on page 7-17 .
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minperm 

Purpose: The percentage of page frames occupied by permanent
pages below which the VMM steals frames from both
permanent and working pages without regard to repage
rates.

Values: Default: 20% of (memory size – 4MB), Range: 5 to 100

Display: vmtune

Change: vmtune –P NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding vmtune
command to /etc/inittab.

Diagnosis: Monitor disk I/O with iostat n.

Tuning: If some files are known to be read repetitively, and I/O rates
do not decrease with time from startup, minperm may be
too low.

Refer to: Tuning VMM Page Replacement, on page 7-17 .

minpgahead 

Purpose: The number of pages the VMM reads ahead when it first
detects sequential access.

Values: Default: 2, Range: 0 to 16

Display: vmtune

Change: vmtune –r NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding vmtune
command to /etc/inittab.

Diagnosis: Observe the elapsed execution time of critical
sequential–I/O–dependent applications with time
command.

Tuning: If execution time decreases with higher minpgahead,
observe other applications to ensure that their performance
has not deteriorated.

Refer to: Tuning Sequential Read Ahead, on page 8-12 .

minpout 

Purpose: Specifies the point at which programs that have hit
maxpout can resume writing to the file.

Values: Default: 0 (no checking), Range: 0 to n (n should be a
multiple of 4 and should be at least 4 less than maxpout)

Display: lsattr –E –l sys0 –a minpout
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Change: chdev –l sys0 –a minpout=NewValue

Change is effective immediately and is permanent. If the –T
flag is used, the change is immediate and lasts until the
next boot. If the –P flag is used, the change is deferred until
the next boot and is permanent.

Diagnosis: If foreground response time sometimes deteriorates when
programs with large amounts of sequential disk output are
running, sequential output may need to be paced.

Tuning: Set maxpout to 33 and minpout to 16. If sequential
performance deteriorates unacceptably, increase one or
both. If foreground performance is still unacceptable,
decrease both.

Refer to: Use of Disk–I/O Pacing, on page 8-14 .

MTU 

Purpose: Limits the size of packets that are transmitted on the
network.

Values: trn (4Mb): Default: 1492, Range: 60 to 3900

trn (16Mb): Default: 1492, Range: 60 to 17960

enn: Default: 1500, Range: 60 to 1500

fin: Default: 4352, Range: 60 to 4352

hin: Default: 65536, Range: 60 to 65536

son: Default: 61428, Range: 60 to 61428

lon: Default: 1500 (Version 3.2.5) 16896 (AIX Version 4.1),
Range: 60 to 65536

Display: lsattr –E –l trn

Change: chdev –l trn –a mtu=NewValue

Cannot be changed while the interface is in use. Because
all systems on a LAN must have the same MTU, they must
all change simultaneously. Change is effective across
boots.

Diagnosis: Packet fragmentation stats

Tuning: Increase MTU size for the Token Ring interfaces:

trn (4Mb): 4056

trn (16Mb): 8500

For the loopback interface lon in Version 3.2.5, increase to
16896.

For other interfaces, the default should be kept.

Refer to: LAN Adapters and Device Drivers, on page 9-10 .

nfs_chars  (Version 3.2.5), nfs_socketsize (AIX Version 4.1) 

Purpose: The size of the NFS UDP socket buffer.

Values: Default: 60000, Range: 60000 to (sb_max –128)
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Display: nfso –a or nfso –o nfs_chars (In AIX Version 4.1, nfso –o
nfs_socketsize)

Change: nfso –o nfs_chars=NewValue

(In AIX Version 4.1, nfso –o nfs_socketsize=NewValue)

stopsrc –g nfs

startsrc –g nfs

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding nfso
command to /etc/rc.nfs or /etc/rc.net. sb_max must
change appropriately first.

Diagnosis: netstat –s

Tuning: If the ”UDP: socket buffer overflows” count is nonzero,
increase sb_max and nfs_chars.

Refer to: NFS Tuning, on page 9-34 .

nfsd  Count 

Purpose: Number of nfsd processes available to handle NFS
requests on a server.

Values: Default: 8, Range: 1 to n

Display: ps –ef | grep nfsd

Change: chnfs –n NewValue

Change normally takes effect immediately and is
permanent. The –N flag causes an immediate, temporary
change. The –I flag causes a change that takes effect at the
next boot.

Diagnosis: netstat –s to look for UDP socket buffer overflows.

Tuning: Increase number until socket buffer overflows cease.

Refer to: How Many biods and nfsds Are Needed for Good
Performance?, on page 9-34

nfs_gather_threshold  (AIX Version 4.1 only) 

Purpose: Minimum size of a write that sleeps before syncing. Used to
disable scatter/gather of writes to the same vnode.

Values: Default: 4096, Range: x to y

Display: nfso –a or nfso –o nfs_gather_threshold

Change: nfso –o nfs_gather_threshold=NewValue

Change takes effect immediately.

Change is effective until next boot.

Diagnosis: N/A

Tuning: N/A

Refer to: N/A
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nfs_portmon  (Version 3.2.5), portcheck (AIX Version 4.1) 

Purpose: Specifies that NFS is to check whether or not requests
come from privileged ports.

Values: Default: 0 (no), Range: 0 to 1

Display: nfso –a or nfso –o nfs_portmon

Change: nfso –o nfs_portmon=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding nfso
command to /etc/rc.nfs.

Diagnosis: N/A

Tuning: This is a configuration decision with minimal performance
consequences.

Refer to: N/A

nfs_repeat_messages  (AIX Version 4.1 only) 

Purpose: Should messages written by NFS be repeated?

Values: Default: 1 (yes), Range: 0 to 1

Display: nfso –a or nfso –o nfs_repeat_messages

Change: nfso –o nfs_repeat_messages=NewValue

Change takes effect immediately.

Change is effective until next boot.

Diagnosis: N/A

Tuning: N/A

Refer to: N/A

nfs_setattr_error  (AIX Version 4.1 only) 

Purpose: Specifies that NFS is to ignore NFS errors due to illegal PC
setattrs.

Values: Default: 1, Range: 0 to 1

Display: nfso –a

Change: nfso –o nfs_setattr_error=NewValue

Change takes effect immediately.

Change is effective until next boot.

Diagnosis: N/A

Tuning: N/A

Refer to: N/A
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nfsudpcksum  (Version 3.2.5), udpchecksum (AIX Version 4.1) 

Purpose: Specifies that NFS is to use UDP checksum processing.

Values: Default: 1 (yes), Range: 0 to 1

Display: nfso –a or nfso –o nfsudpcksum

Change: nfso –o nfsudpcksum=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding nfso
command to /etc/rc.nfs.

Diagnosis: N/A

Tuning: Turning checksum processing off may save some
processing time but increases the risk of undetected data
errors.

Refer to: N/A

nonlocsrcroute 

Purpose: Indicates that strict–source–routed IP packets can be
addressed to hosts outside the local ring. (Loose source
routing is not affected.)

Values: Default: 0 (no), Range: 0 to 1

Display: no –a or no –o nonlocsrcroute

Change: no –o nonlocsrcroute=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: N/A

Tuning: This is a configuration decision with minimal performance
consequences.

Refer to: N/A

npskill (AIX Version 4.1 only)

Purpose: The number of free paging–space pages at which
processes begin to be killed.

Values: Default: 128, Range: 0 to the number of pages in real
memory.

Display: vmtune

Change: vmtune –k NewValue

Change takes effect immediately. Change is effective until
next boot.

Diagnosis: N/A

Tuning: N/A

Refer to: vmtune command, on page A-8 .



J-16 Performance Tuning Guide

npswarn (AIX Version 4.1 only)

Purpose: The number of free paging–space pages at which
processes begin to receive SIGDANGER.

Values: Default: 512, Range: At least npskill to the number of
pages in real memory.

Display: vmtune

Change: vmtune –w NewValue

Change takes effect immediately. Change is effective until
next boot.

Diagnosis: N/A

Tuning: Increase if you experience processes being killed for low
paging space.

Refer to: vmtune command, on page A-8 .

numclust (AIX Version 4.1 only)

Purpose: The number of 16KB clusters processed by write behind.

Values: Default: 1, Range: 1 to any positive integer

Display: vmtune

Change: vmtune –c NewValue

Change takes effect immediately. Change is effective until
next boot.

Diagnosis: N/A

Tuning: May be appropriate to increase if striped logical volumes or
disk arrays are being used.

Refer to: vmtune command, on page A-8 .

numfsbuf (AIX Version 4.1 only)

Purpose: The number of file–system bufstruct s.

Values: Default: 64, Range: 64 to any positive integer

Display: vmtune

Change: vmtune –b NewValue

Change takes effect immediately. Change is effective until
next boot.

Diagnosis: N/A

Tuning: May be appropriate to increase if striped logical volumes or
disk arrays are being used.

Refer to: vmtune command, on page A-8 .
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Paging Space Size 

Purpose: The amount of disk space required to hold pages of working
storage.

Values: Default: configuration–dependent, Range: 32MB to nMB for
hd6, 16MB to nMB for non–hd6

Display: lsps –a

Change: mkps or chps or smit pgsp

Change takes effect immediately and is permanent. Paging
space is not necessarily put into use immediately, however.

Diagnosis: lsps –a If processes have been killed for lack of paging
space, monitor the situation with the psdanger()
subroutine.

Tuning: If it appears that there is not enough paging space to
handle the normal workload, add a new paging space on
another physical volume or make the existing paging
spaces larger.

Refer to: Placement and Sizes of Paging Spaces, on page 4-24 .

pd_npages

Purpose: The number of pages that should be deleted in one chunk
from RAM when a file is deleted.

Values: Default: largest file size / page size, Range: 1 to largest file
size / page size

Display: vmtune

Change: vmtune –N NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding vmtune
command to /etc/inittab.

Diagnosis: This option may be useful if a real–time application is
experiencing some slow response time while large files are
being deleted.

Tuning: If real–time response is critical, adjusting this option may
improve response time by spreading the removal of file
pages from RAM more evenly over a workload.

Refer to:  vmtune command , on page A-8 .
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Process–Priority  Calculation 

Purpose: Specify the amount by which a process’s priority value will
be increased by its recent CPU usage, and the rate at
which the recent–CPU–usage value decays. The
parameters are called r and d.

Values: Default: 16, Range: 0 to 32 (Note: When applied to the
calculation, the values of r and d are divided by 32. Thus
the effective range of factors is from 0 to 1 in increments of
.03125.)

Display: schedtune

Change: schedtune –r or schedtune –d

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding
schedtune command to /etc/inittab.

Diagnosis: ps al If you find that the PRI column has priority values for
foreground processes (those with NI values of 20) that are
higher than the PRI values of some background processes
(NI values > 20), you may want to reduce the r value.

Tuning: Decreasing r makes it easier for foreground processes to
compete. Decreasing d enables foreground processes to
avoid competition with background processes for a longer
time. schedtune –r 2 would ensure that any new
foreground process would receive at least .5 seconds of
CPU time before it had to compete with any process with NI
>= 24.

Refer to: Tuning the Process–Priority–Value Calculation with
schedtune, on page 6-24 .

rec_que_size 

Purpose: (Tunable only in AIX Version 3.) Specifies the maximum
number of receive buffers that can be queued up for the
interface.

Values: Default: 30, Range: 20 to 150

Display: lsattr –E –l tokn –a rec_que_size 

Change: ifconfig tr0 detach

chdev –I tokn –a rec_que_size=NewValue

ifconfig tr0 hostname up

Change is effective across boots.

Diagnosis: N/A

Tuning: Increase size. Should be set to 150 as a matter of course
on network–oriented systems, especially servers.

Refer to: LAN Adapters and Device Drivers, on page 9-10 .
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rfc1122addrchk 

Purpose: Specifies whether address validation is performed between
communications layers.

Values: Default: 0 (no), Range: 0 to 1

Display: no –a or no –o rfc1122addrchk

Change: no –o rfc1122addrchk=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: N/A

Tuning: This value should not be changed.

Refer to: N/A

rfc1323 

Purpose: Value of 1 indicates that tcp_sendspace and
tcp_recvspace can exceed 64KB.

Values: Default: 0, Range: 0 or 1

Display: no –a or no –o rfc1323

Change: no –o rfc1323=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: None.

Tuning: Change before attempting to set tcp_sendspace and
tcp_recvspace to more than 64KB.

Refer to: TCP Layer, on page 9-6 .

sb_max 

Purpose: Provide an absolute upper bound on the size of TCP and
UDP socket buffers. Limits setsockopt(), udp_sendspace,
udp_recvspace, tcp_sendspace, and tcp_recvspace.

Values: Default: 65536, Range: N/A

Display: no –a or no –o sb_max

Change: no –o sb_max=NewValue

Change takes effect immediately for new connections.
Change is effective until next boot. Permanent change is
made by adding no command to /etc/rc.net.

Diagnosis: None.

Tuning: Increase size, preferably to multiple of 4096. Should be
about twice the largest socket buffer limit.

Refer to: Socket Layer, on page 9-3 .
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subnetsarelocal 

Purpose: Specifies that all subnets that match the subnet mask are to
be considered local for purposes of establishing, for
example, the TCP maximum segment size.

Values: Default: 1 (yes), Range: 0 to 1

Display: no –a or no –o subnetsarelocal

Change: no –o subnetsarelocal=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: N/A

Tuning: This is a configuration decision with performance
consequences. If the subnets do not all have the same
MTU, fragmentation at bridges may degrade performance.
If the subnets do have the same MTU, and
subnetsarelocal is 0, TCP sessions may use an
unnecessarily small MSS.

Refer to: Tuning TCP Maximum Segment Size (MSS), on page 9-19
.

syncd Interval 

Purpose: The time between sync() calls by syncd.

Values: Default: 60 (seconds), Range: 1 to any positive integer

Display: grep syncd /sbin/rc.boot

Change: vi /sbin/rc.boot

Change takes effect at next boot and is permanent.

Diagnosis: N/A

Tuning: At its default level, this parameter has little performance
cost. No change is recommended. Significant reductions in
the syncd interval in the interests of data integrity could
have adverse consequences.

Refer to: Using Performance Implications of sync/fsync, on page
8-22 .

tcp_keepidle 

Purpose: Total length of time to keep an idle TCP connection alive.

Values: Default: 14400 (half–seconds) = 2 hours, Range: any
positive integer

Display: no –a or no –o tcp_keepidle

Change: no –o tcp_keepidle=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.
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Diagnosis: N/A

Tuning: This is a configuration decision with minimal performance
consequences. No change is recommended.

Refer to: N/A

tcp_keepintvl 

Purpose: Interval between packets sent to validate the TCP
connection.

Values: Default: 150 (half–seconds) = 75 seconds, Range: any
positive integer

Display: no –a or no –o tcp_keepintvl

Change: no –o tcp_keepintvl=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: N/A

Tuning: This is a configuration decision with minimal performance
consequences. No change is recommended. If the interval
were shortened significantly, processing and bandwidth
costs might become significant.

Refer to: N/A

tcp_mssdflt 

Purpose: Default maximum segment size used in communicating with
remote networks.

Values: Default: 512, Range: 512 to (MTU of local net – 64)

Display: no –a or no –o tcp_mssdflt

Change: no –o tcp_mssdflt=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: N/A

Tuning: Increase, if practical.

Refer to: Tuning TCP Maximum Segment Size (MSS), on page 9-19
.
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tcp_recvspace 

Purpose: Provide the default value of the size of the TCP socket
receive buffer.

Values: Default: 16384, Range: 0 to 64KB if rfc1323=0,

Range: 0 to 4GB if rfc1323=1.

Must be less than or equal to sb_max.

Should be equal to tcp_sendspace and uniform on all
frequently accessed AIX systems.

Display: no –a or no –o tcp_recvspace

Change: no –o tcp_recvspace=NewValue

Change takes effect immediately for new connections.
Change is effective until next boot. Permanent change is
made by adding no command to /etc/rc.net.

Diagnosis: Poor throughput.

Tuning: Increase size, preferably to multiple of 4096.

Refer to: Socket Layer, on page 9-3 .

tcp_sendspace 

Purpose: Provide the default value of the size of the TCP socket send
buffer.

Values: Default: 16384, Range: 0 to 64KB if rfc1323=0,

Range: 0 to 4GB if rfc1323=1.

Must be less than or equal to sb_max.

Should be equal to tcp_recvspace and uniform on all
frequently accessed AIX systems.

Display: no –a or no –o tcp_sendspace

Change: no –o tcp_sendspace=NewValue

Change takes effect immediately for new connections.
Change is effective until next boot. Permanent change is
made by adding no command to /etc/rc.net.

Diagnosis: Poor throughput.

Tuning: Increase size, preferably to multiple of 4096.

Refer to: Socket Layer, on page 9-3 .

tcp_ttl 

Purpose: Time to live for TCP packets.

Values: Default: 60 (10–millisecond processor ticks), Range: any
positive integer

Display: no –a or no –o tcp_ttl
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Change: no –o tcp_ttl=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: netstat –s

Tuning: If the system is experiencing TCP timeouts, increasing
tcp_ttl may reduce retransmissions.

Refer to: N/A

thewall 

Purpose: Provide an absolute upper bound on the amount of real
memory that can be used by the communications
subsystem.

Values: Default: 25% of real memory, Range: 0 to 50% of real
memory

Display: no –a or no –o thewall

Change: no –o thewall=NewValue

NewValue is in KB, not bytes. Change takes effect
immediately for new connections. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: None.

Tuning: Increase size, preferably to multiple of 4(KB).

Refer to: Version 3.2.5 mbuf Pool Performance Tuning, on page 0 .

Time–Slice Expansion Amount 

Purpose: The number of 10 millisecond clock ticks by which the
default 10 millisecond time slice is to be increased.

Values: Default: 0, Range: 0 to any positive integer

Display: schedtune

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding
schedtune command to /etc/inittab.

Change: schedtune –t NewValue

Diagnosis: N/A

Tuning: In general, this parameter should not be changed. If the
workload consists almost entirely of very long–running,
CPU–intensive programs, increasing this parameter may
have some positive effect.

Refer to: Modifying the Scheduler Time Slice, on page 6-26 .
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udp_recvspace 

Purpose: Provide the default value of the size of the UDP socket
receive buffer.

Values: Default: 41600, Range: N/A

Must be less than or equal to sb_max.

Display: no –a or no –o udp_recvspace

Change: no –o udp_recvspace=NewValue

Change takes effect immediately for new connections.
Change is effective until next boot. Permanent change is
made by adding no command to /etc/rc.net.

Diagnosis: Nonzero n in netstat –s report of udp: n socket buffer
overflows

Tuning: Increase size, preferably to multiple of 4096.

Refer to: Socket Layer, on page 9-3 .

udp_sendspace 

Purpose: Provide the default value for the size of the UDP socket
send buffer.

Values: Default: 9216, Range: 0 to 65536

Must be less than or equal to sb_max.

Display: no –a or no –o udp_sendspace

Change: no –o udp_sendspace=NewValue

Change takes effect immediately for new connections.
Change is effective until next boot. Permanent change is
made by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: Increase size, preferably to multiple of 4096.

Refer to: Socket Layer, on page 9-3 .

udp_ttl 

Purpose: Time to live for UDP packets.

Values: Default: 30 (10–millisecond timer ticks), Range: any positive
integer

Display: no –a or no –o udp_ttl

Change: no –o udp_ttl=NewValue

Change takes effect immediately. Change is effective until
next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: N/A

Tuning: N/A

Refer to: N/A
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xmt_que_size 

Purpose: Specifies the maximum number of send buffers that can be
queued up for the device.

Values: Default: 30, Range: 20 to 150

Display: lsattr –E –l tok0 –a xmt_que_size

Change: ifconfig tr0 detach

chdev –I tok0 –a xmt_que_size=NewValue

ifconfig tr0 hostname up

Change is effective across boots.

Diagnosis: netstat –i 

Oerr > 0 

Tuning: Increase size. Should be set to 150 as a matter of course
on network–oriented systems, especially servers.

Refer to: LAN Adapters and Device Drivers, on page 9-10 .
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