Bull
AIX 5L System Management Guide
Operating System and Devices

AIX

ORDER REFERENCE
86 A2 26EF 03
Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX® is a registered trademark of International Business Machines Corporation, and is being used under licence.

UNIX is a registered trademark in the United States of America and other countries licensed exclusively through the Open Group.

Linux is a registered trademark of Linus Torvalds.
About This Book

This book contains information for understanding the tasks that you perform as a system administrator, as well as the tools provided for system management. Use this book along with AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

Beginning with the AIX 5.2 documentation library, any information that this book contained regarding AIX system security, or any security-related topic, has moved. For all security-related information, see the AIX 5L Version 5.2 Security Guide.

This edition supports the release of AIX 5L Version 5.2 with the 5200–01 Recommended Maintenance package. Any specific references to this maintenance package are indicated as AIX 5.2 with 5200–01.

Who Should Use This Book

This book provides system administrators with information for performing system management tasks. The book focuses on procedures, covering such topics as starting and stopping the system and managing processes, users and groups, system security, accounting, and devices.

It is assumed that you are familiar with the information and concepts presented in the following publications:

- AIX 5L Version 5.2 System User’s Guide: Operating System and Devices
- AIX 5L Version 5.2 System User’s Guide: Communications and Networks
- AIX 5L Version 5.2 Installation Guide and Reference

How to Use This Book

This book is organized to help you quickly find the information you need. The tasks of each chapter are arranged in the following order:

- Configuration tasks
- Maintenance tasks
- Troubleshooting

For conceptual information about system management tasks, see the AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.
Highlighting

The following highlighting conventions are used in this book:

Bold
Identifies commands, subroutines, keywords, files, structures, directories, and other items whose names are predefined by the system. Also identifies graphical objects such as buttons, labels, and icons that the user selects.

Italics
Identifies parameters whose actual names or values are to be supplied by the user.

Monospace
Identifies examples of specific data values, examples of text similar to what you might see displayed, examples of portions of program code similar to what you might write as a programmer, messages from the system, or information you should actually type.

Case–Sensitivity in AIX

Everything in the AIX operating system is case–sensitive, which means that it distinguishes between uppercase and lowercase letters. For example, you can use the `ls` command to list files. If you type `LS`, the system responds that the command is “not found.” Likewise, `FILEA`, `FiLeA`, and `filea` are three distinct file names, even if they reside in the same directory. To avoid causing undesirable actions to be performed, always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

In today’s computing environment, it is impossible to create a single book that addresses all the needs and concerns of a system administrator. While this guide cannot address everything, we have tried to structure the rest of our library so that a few key books can provide you with direction on each major aspect of your job.

- AIX 5L Version 5.2 System Management Guide: Communications and Networks
- AIX 5L Version 5.2 Security Guide
- AIX 5L Version 5.2 Installation Guide and Reference
- AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging Programs
- AIX 5L Version 5.2 Communications Programming Concepts
- AIX 5L Version 5.2 Kernel Extensions and Device Support Programming Concepts
- AIX 5L Version 5.2 Files Reference
- Performance Toolbox 1.2 and 2.1 for AIX: User’s Guide
- Common Desktop Environment 1.0: Advanced User’s and System Administrator’s Guide
Table of Contents

About This Book .. iii
Who Should Use This Book iii
How to Use This Book iii
Highlighting ... iv
Case-Sensitivity in AIX iv
ISO 9000 .. iv
Related Publications iv

Chapter 1. How–To’s for System Management Tasks 1-1
Add a Removable Media Drive 1-2
Configure Workload Manager (WLM) to Consolidate Workloads 1-3
 Step 1. Identify Application Requirements 1-3
 Step 2. Define Tiers, Shares, and Limits 1-5
 Step 3. Fine–Tune the Configuration 1-8
Copy a JFS to Another Physical Volume 1-9
Define a Raw Logical Volume for an Application 1-10
Fix a Corrupted Magic Number in the File System Superblock 1-11
Make an Online Backup of a Mounted JFS or JFS2 1-12
 Make an Online Backup of a JFS 1-12
 Make and Back Up a Snapshot of a JFS2 1-12
Re–create a Corrupted Boot Image 1-13
Reduce the Size of a File System in Your Root Volume Group 1-14
Replace a Failed Physical Volume in a Mirrored Volume Group 1-18
Split a Mirrored Disk from a Volume Group 1-19

Chapter 2. General Operating System Management Tasks 2-1
Starting and Stopping the System 2-2
Booting an Uninstalled System 2-2
Rebooting a Running System 2-2
Remotely Rebooting an Unresponsive System 2-3
Booting from Hard Disk for Maintenance 2-4
Booting a System That Crashed 2-4
Accessing a System That Will Not Boot 2-5
Rebooting a System With Planar Graphics 2-5
Diagnosing Boot Problems 2-5
Creating Boot Images 2-6
Identifying System Run Levels 2-7
Changing System Run Levels 2-7
Changing the /etc/inittab File 2-8
Stopping the System 2-9
Shutting Down the System without Rebooting 2-9
Shutting Down the System to Single–User Mode 2-10
Shutting Down the System in an Emergency 2-10
Reactivating an Inactive System 2-10
System Hang Management 2-13
Backing Up and Restoring Information 2-15
Compressing Files 2-15
Backing Up User Files or File Systems 2-15
Backing Up the System Image and User–Defined Volume Groups 2-16
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementing Scheduled Backups</td>
<td>2-18</td>
</tr>
<tr>
<td>Create a Remote Archive</td>
<td>2-19</td>
</tr>
<tr>
<td>Restoring from Backup Image Individual User Files</td>
<td>2-21</td>
</tr>
<tr>
<td>Changing System Environment Variables</td>
<td>2-22</td>
</tr>
<tr>
<td>Testing the System Battery</td>
<td>2-22</td>
</tr>
<tr>
<td>Resetting the System Clock</td>
<td>2-22</td>
</tr>
<tr>
<td>Changing the Message of the Day</td>
<td>2-23</td>
</tr>
<tr>
<td>Enabling Symbol.CPUGard</td>
<td>2-23</td>
</tr>
<tr>
<td>Monitoring and Managing Processes</td>
<td>2-24</td>
</tr>
<tr>
<td>Process Monitoring</td>
<td>2-24</td>
</tr>
<tr>
<td>Altering Process–Priority</td>
<td>2-26</td>
</tr>
<tr>
<td>Terminating a Process</td>
<td>2-27</td>
</tr>
<tr>
<td>Binding or Unbinding a Process</td>
<td>2-28</td>
</tr>
<tr>
<td>Fixing Stalled or Unwanted Processes</td>
<td>2-28</td>
</tr>
<tr>
<td>RT_MPC and RT_GRQ</td>
<td>2-30</td>
</tr>
<tr>
<td>Chapter 3. Physical and Logical Volume Storage Management Tasks</td>
<td>3-1</td>
</tr>
<tr>
<td>Physical and Logical Volumes</td>
<td>3-2</td>
</tr>
<tr>
<td>LVM Configuration Tasks</td>
<td>3-3</td>
</tr>
<tr>
<td>LVM Maintenance Tasks</td>
<td>3-6</td>
</tr>
<tr>
<td>LVM Troubleshooting Tasks</td>
<td>3-27</td>
</tr>
<tr>
<td>Paging Space and Virtual Memory</td>
<td>3-38</td>
</tr>
<tr>
<td>Paging Space Configuration Tasks</td>
<td>3-39</td>
</tr>
<tr>
<td>Paging Space Maintenance Tasks</td>
<td>3-41</td>
</tr>
<tr>
<td>Paging Space Troubleshooting Tasks</td>
<td>3-43</td>
</tr>
<tr>
<td>Chapter 4. File Systems Management Tasks</td>
<td>4-1</td>
</tr>
<tr>
<td>File Systems Configuration Tasks</td>
<td>4-2</td>
</tr>
<tr>
<td>File Systems Maintenance Tasks</td>
<td>4-3</td>
</tr>
<tr>
<td>Recover One or More Files from an Online JFS2 Snapshot</td>
<td>4-4</td>
</tr>
<tr>
<td>Use File Systems on CD–ROM and DVD Disks</td>
<td>4-4</td>
</tr>
<tr>
<td>Use File Systems on Read/Write Optical Media</td>
<td>4-4</td>
</tr>
<tr>
<td>Verify File Systems</td>
<td>4-6</td>
</tr>
<tr>
<td>File Systems Troubleshooting Tasks</td>
<td>4-8</td>
</tr>
<tr>
<td>Fix Disk Overflows</td>
<td>4-8</td>
</tr>
<tr>
<td>Fix a Damaged File System</td>
<td>4-12</td>
</tr>
<tr>
<td>Chapter 5. Resource Scheduling Management Tasks</td>
<td>5-1</td>
</tr>
<tr>
<td>Workload Manager</td>
<td>5-2</td>
</tr>
<tr>
<td>Workload Manager Configuration Tasks</td>
<td>5-3</td>
</tr>
<tr>
<td>WLM Troubleshooting Guidelines</td>
<td>5-9</td>
</tr>
<tr>
<td>System Resource Controller and Subsystems</td>
<td>5-10</td>
</tr>
<tr>
<td>Starting the System Resource Controller</td>
<td>5-10</td>
</tr>
<tr>
<td>Starting or Stopping a Subsystem, Subsystem Group, or Subserver</td>
<td>5-11</td>
</tr>
<tr>
<td>Displaying the Status of a Subsystem or Subsystems</td>
<td>5-11</td>
</tr>
<tr>
<td>Refreshing a Subsystem or Subsystem Group</td>
<td>5-12</td>
</tr>
<tr>
<td>Turning On or Off Subsystem, Subsystem Group, or Subserver Tracing</td>
<td>5-12</td>
</tr>
<tr>
<td>System Accounting</td>
<td>5-13</td>
</tr>
<tr>
<td>Setting Up an Accounting System</td>
<td>5-13</td>
</tr>
<tr>
<td>Generating System Accounting Reports</td>
<td>5-15</td>
</tr>
<tr>
<td>Generating Reports on System Activity</td>
<td>5-17</td>
</tr>
<tr>
<td>Summarizing Accounting Records</td>
<td>5-17</td>
</tr>
<tr>
<td>Starting the runacct Command</td>
<td>5-18</td>
</tr>
<tr>
<td>Restarting the runacct Command</td>
<td>5-18</td>
</tr>
<tr>
<td>Showing System Activity</td>
<td>5-19</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Showing System Activity While Running a Command</td>
<td>5-19</td>
</tr>
<tr>
<td>Showing Process Time</td>
<td>5-20</td>
</tr>
<tr>
<td>Showing CPU Usage</td>
<td>5-20</td>
</tr>
<tr>
<td>Showing Connect Time Usage</td>
<td>5-21</td>
</tr>
<tr>
<td>Showing Disk Space Utilization</td>
<td>5-22</td>
</tr>
<tr>
<td>Showing Printer Usage</td>
<td>5-22</td>
</tr>
<tr>
<td>Fixing tacct Errors</td>
<td>5-22</td>
</tr>
<tr>
<td>Fixing wtmp Errors</td>
<td>5-23</td>
</tr>
<tr>
<td>Fixing General Accounting Problems</td>
<td>5-24</td>
</tr>
</tbody>
</table>

Chapter 6. Device Management Tasks 6-1

- Tape Drives ... 6-2
 - Tape Drive Attributes 6-3
 - Special Files for Tape Drives 6-15
- Devices ... 6-16
 - Preparing to Install a Device 6-17
 - Installing an IDE Device 6-18
 - Configuring a Read/Write Optical Drive 6-22
 - Managing Hot Plug Connectors 6-23
 - Displaying PCI Hot–Plug Slot Information 6-23
 - Managing MPIO–Capable Devices 6-24
 - Unconfiguring Communications Adapters 6-27
 - Resolving Adapter–Removal Problems 6-33
 - Unconfiguring Storage Adapters 6-35
 - Unconfiguring Async Adapters 6-36
 - Removing or Replacing a PCI Hot Plug Adapter ... 6-37
 - Adding a PCI Hot Plug Adapter 6-38
 - Determining the Cause of Device Problems 6-39

Index ... X-1
This chapter provides instructions for performing the following system management tasks:

- Add a Removable Media Drive
- Configure Workload Manager (WLM) to Consolidate Workloads
- Copy a JFS to Another Physical Volume
- Define a Raw Logical Volume for an Application
- Fix a Corrupted Magic Number in the File System Superblock
- Make an Online Backup of a Mounted JFS or JFS2
- Re-create a Corrupted Boot Image
- Reduce the Size of a File System in Your Root Volume Group
- Replace a Failed Physical Volume in a Mirrored Volume Group
- Split a Mirrored Disk from a Volume Group
Add a Removable Media Drive

The following procedure uses SMIT to add a CD–ROM drive to your system. Other types of removable media drives are added using different fast paths but all follow the same general procedure. You can also add a removable media drive using Web–based System Manager, the Configuration Manager, or the `mkdev` command.

1. To add a CD–ROM drive to your system, install the hardware according to the documentation that came with your system.
2. With root authority, type the following SMIT fast path:

   ```
   smit makcdr
   ```
3. In the next screen, select the drive type from the available list of supported drives.
4. In the next screen, select the parent adapter from the available list.
5. In the next screen, at minimum, select the connection address from the available list. You can also use this screen to select other options. When you are finished, press Enter, and then SMIT adds the new CD–ROM drive.

At this point, the new CD–ROM drive is recognized by your system. To add a read/write optical drive, use the `smit makomd` fast path. To add a tape drive, use the `smit maktpe` fast path.
Configure Workload Manager (WLM) to Consolidate Workloads

Workload Manager (WLM) gives you control over the resources used by jobs on your system. A default WLM configuration template exists on every installed AIX operating system. The following procedure updates the WLM configuration template to implement a resource–management policy on a shared server. The resulting configuration can be used as a starting point for testing. Exactly how you configure WLM will depend on the workload and policy requirements for your environment. Notes:

1. Efficient use of WLM requires extensive knowledge of existing system processes and performance. Repeated testing and tuning will probably be needed before you can develop a configuration that works well for your workload. If you configure WLM with extreme or inaccurate values, you can significantly degrade system performance.

2. The process of configuring WLM is simpler when you already know one or more of the classification attributes of a process (for example, user, group, or application name). If you are unfamiliar with the current use of resources, use a tool such as `topas` to identify the processes that are the primary resource users and use the resulting information as the starting point for defining classes and rules.

3. The following scenario assumes you are familiar with the basic Workload Manager concepts as described in AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

The WLM configuration files exist in the `/etc/wlm/ ConfigurationName` directory. Each subclass for each superclass is defined in a configuration file named `/etc/wlm/ ConfigurationName/SuperClassName`. For more information about these files, see the AIX 5L Version 5.2 Files Reference.

In the following procedure, you consolidate the workloads from two separate department servers onto one larger server. This example edits the configuration files, but you can also create a configuration using SMIT (use the `smit wlmconfig_create` fast path) or Web-based System Manager (select the Workload Manager container, select the Configuration/Classes container, then from the Workload menu, select New Configuration). Briefly, in this procedure, you will do the following:

1. Identify the resource requirements of the applications you want to consolidate. This will help you determine how many applications you can move to the larger server.

2. Define tiers, as well as resource shares and limits, to begin testing with the consolidated workload.

3. Fine–tune the configuration until you achieve your desired results.

Step 1. Identify Application Requirements

In this scenario, the workload is typical of what you might see on a database server. Assume the jobs fall into the following general categories:

- **Listeners**: These are processes that sleep most of the time and wake up periodically in response to a request. Although these processes do not consume a lot of resources, response time can be critical.

- **Workers**: These are processes that do the work on behalf of a request, whether the request is local or remote. These processes probably use a lot of CPU time and memory.

- **Reporters**: These are processes that do automated tasks. They might require a lot of CPU time or memory, but they can tolerate a slower response time.

- **Monitors**: These are processes that typically run periodically to verify the state of the system or applications. These processes might use a significant amount of resource, but only for a short time.
Commands These are commands or other applications that system users might run at any time. Their resource requirements are unpredictable.

In addition to this work, scheduled jobs fall into one of the following categories:

SysTools These are processes that perform automated tasks. These jobs are not critical to system operation but need to run periodically and within certain time constraints.

SysBatch These are processes that run infrequently, are not critical to system operation, and need not finish in a timely manner.

The first step of creating a configuration is to define classes and rules. In the following steps, you will use the general job categories listed above to define your classes. Use the following procedure:

1. Make a new configuration within the /etc/wlm directory called MyConfig using the following command:

 mkdir /etc/wlm/MyConfig

2. Copy the template files into the /etc/wlm/MyConfig directory using the following command:

 cp –pr /etc/wlm/template/* /etc/wlm/MyConfig

3. To create the superclasses, use your favorite editor to modify the /etc/wlm/MyConfig/classes file to contain the following:

 System:
 Default:
 DeptA:
 DeptB:
 SysTools:
 SysBatch:

 As a starting point, you define one superclass for each department (because two departments will be sharing the server). The SysTool and SysBatch superclasses will handle the scheduled jobs outlined in the general categories above. The System and Default superclasses are always defined.

4. Within the MyConfig directory, create a directory for each the DeptA and DeptB superclasses. (When creating a configuration, you must create a directory for every superclass that has subclasses.) In the following step, you define five subclasses (one for each category of work) for each department’s superclass.

5. To create subclasses for each general category of jobs, edit the /etc/wlm/MyConfig/DeptA/classes and /etc/wlm/MyConfig/DeptB/classes files to contain the following:

 Listen:
 Work:
 Monitor:
 Report:
 Command:

 Note:: The contents of the classes file can be different for each superclass.

After the classes are identified, in the following step, you create the classification rules that are used to classify processes at the superclass and subclass levels. For the sake of
simplicity, assume that all applications run from known locations, that all processes from
one department run under the deptA UNIX group, and that processes from the other
department run under the deptB UNIX group.

6. To create the superclass assignment rules, modify the /etc/wlm/MyConfig/rules file to
contain the following:

- DeptA – deptA –
- DeptB – deptB –
- SysTools – root,bin – /usr/sbin/tools/* –
- SysBatch – root,bin – /usr/sbin/batch/* –
- System – root – –
- Default – – – –

Note::
If more than one instance of the same application can be running and
all classification attributes (other than the tag) are the same, use the
wlmassign command or wlm_set_tag subroutine to differentiate
between them by assigning them to different classes.

7. To create more specific subclass rules, create the /etc/wlm/MyConfig/DeptA/rules and
/etc/wlm/MyConfig/DeptB/rules files with the following content:

- Listen – – /opt/myapp/bin/listen* –
- Work – – /opt/myapp/bin/work* –
- Monitor – – /opt/bin/myapp/bin/monitor –
- Report – – /opt/bin/myapp/report* –
- Command – – /opt/commands/* –

8. To determine the resource-consumption behavior of each class, start WLM in passive
mode using the following command:

wlmctrl -p -d MyConfig

After starting WLM in passive mode, you can run each application separately at first to
gain a finer perspective of its resource requirements. You can then run all applications
simultaneously to better determine the interaction among all classes.

An alternative method of identifying the application resource requirements might be to first
run WLM in passive mode on the separate servers from which you are consolidating
applications. The disadvantages to this approach are that you would have to re-create the
configurations on the larger system, and the required percentage of resources will likely be
different on the larger system.

Step 2. Define Tiers, Shares, and Limits
A WLM configuration is an implementation of a resource-management policy. Running
WLM in passive mode provides information that helps you determine whether your
resource-management policy is reasonable for the given workload. You can now define
tiers, shares, and limits to regulate your workload based on your resource-management
policy.

For this scenario, assume you have the following requirements:

- The System class must have the highest priority and be guaranteed access to a
percentage of system resources at all times.
- The SysTools class must have access to a certain percentage of resources at all times,
but not so much that it will significantly impact the applications that are running in DeptA
and DeptB.
- The SysBatch class cannot interfere with any of the other work on the system.
- DeptA will receive 60% of the available resources (meaning resources that are available
to the classes with shares) and DeptB will receive 40%. Within DeptA and DeptB:
 - Processes in the Listen class must respond to requests with a low latency, but must
 not consume a lot of resources.
The Work class must be allowed to consume the most resources. The Monitor and Command classes must consume some resource, but less than the Work class.

The Report class cannot interfere with any of the other work.

In the following procedure, you define tiers, shares, and limits:

1. To create the superclass tiers, use your favorite editor to modify the `/etc/wlm/MyConfig/classes` file to contain the following:

```
System:

Default:

DeptA:
  localshm = yes
  adminuser = adminA
  authuser = adminA
  inheritance = yes

DeptB:
  localshm = yes
  adminuser = adminB
  authuser = adminB
  inheritance = yes

SysTools:
  localshm = yes

SysBatch:
  tier = 1
  localshm = yes
```

The SysBatch superclass is put in tier 1 because this class contains very low-priority jobs that you do not want to interfere with the rest of the work on the system. (When a tier is not specified, the class defaults to tier 0.) Administration of each department’s superclass is defined by the adminuser and authuser attributes. The inheritance attribute is enabled for DeptA and DeptB. All new processes started in a class with inheritance will remain classified in that class.

2. To create subclass tiers for each group of jobs, modify the `/etc/wlm/MyConfig/DeptA/classes` and `/etc/wlm/MyConfig/DeptB/classes` files to contain the following:

```
Listen:

Work:

Monitor:

Report:
  tier = 1

Command:
```

3. To assign the initial shares for the superclasses, edit the `/etc/wlm/MyConfig/shares` file to contain the following:

```
DeptA:
  CPU = 3
  memory = 3

DeptB:
  CPU = 2
  memory = 2
```

Because you assigned a CPU total of 5 shares, DeptA processes will have access to three out of five shares (or 60%) of the total CPU resources and DeptB processes will have access to two out of five (or 40%). Because you did not assign shares to the SysTools, System, and Default classes, their consumption targets will remain independent from the number of active shares, which gives them higher-priority access to resources than the DeptA and DeptB (until their limit is reached). You did not assign
the SysBatch class any shares because it is the only superclass in tier 1, and therefore any share assignment is irrelevant. Jobs in the SysBatch class can only consume resources that are unused by all classes in tier 0.

4. To assign the initial shares for the subclasses, edit the /etc/wlm/MyConfig/DeptA/shares and /etc/wlm/MyConfig/DeptB/shares files to contain the following:

 Work:

 CPU = 5
 memory = 5

 Monitor:

 CPU = 4
 memory = 1

 Command:

 CPU = 1
 memory = 1

Because you did not assign shares to the Listen class, it will have the highest–priority access (in the superclass) to resources when it requires them. You assigned the largest number of shares to the Work class because it has the greatest resource requirements. Accordingly, you assigned shares to the Monitor and Command classes based on their observed behavior and relative importance. You did not assign shares to the Report class because it is the only subclass in tier 1, and therefore any share assignment is irrelevant. Jobs in the Report class can only consume resources that are unused by subclasses in tier 0.

In the following step of this example, you assign limits to classes that were not assigned shares. (You can also assign limits to classes with shares. See Managing Resources with WLM in the AIX 5L Version 5.2 System Management Concepts: Operating System and Devices for more information.)

5. To assign limits to the superclasses, edit the /etc/wlm/MyConfig/limits file to contain the following:

 Default:

 CPU = 0%–10%;100%
 memory = 0%–10%;100%

 SysTools:

 CPU = 0%–10%;100%
 memory = 0%–5%;100%

 System:

 CPU = 5%–50%;100%
 memory = 5%–50%;100%

You assigned soft maximum limits to the System, SysTools, and Default classes to prevent them from significantly interfering with other work on the system. You assigned minimum limits to the System class for CPU and memory because this class contains processes that are essential to system operation, and it must be able to consume a guaranteed amount of resource.

6. To assign limits to the subclasses, edit the /etc/wlm/MyConfig/DeptA/limits and /etc/wlm/MyConfig/DeptB/limits files to contain the following:

 Listen:

 CPU = 10%–30%;100%
 memory = 10%–20%;100%

 Monitor:

 CPU = 0%–30%;100%
 memory = 0%–30%;100%

 Note:: The limits can be different for each subclass file.
You assigned soft maximum limits to the Listen and Monitor classes to prevent them from significantly interfering with the other subclasses in the same superclass. In particular, you do not want the system to continue accepting requests for jobs within the Work class, if the Work class does not have access to the resources to process them. You also assigned minimum limits to the Listen class to ensure fast response time. The minimum limit for memory ensures that pages used by this class will not be stolen by page replacement, resulting in faster execution time. The minimum limit for CPU ensures that when these processes can be run, they will have the highest-priority access (in the superclass) to the CPU resources.

Step 3. Fine-Tune the Configuration

Now that you have fully defined a configuration, you will run WLM in active mode to begin regulating the workload and analyzing how well your resource-management policy is being enforced. Based on your analysis, you might need to fine-tune your configuration to achieve your desired results. For maintenance, you might need to refine your configuration if your workload changes over time.

1. To start WLM in active mode, use the following command:

   ```
   wlcncntrl -a
   ```

2. Analyze the resource consumption using a command such as `wlmstat`.

3. If your desired consumption or performance goals for a particular class or application are not being met, you might need to adjust your WLM configuration to correct the problem. For guidelines, see WLM Troubleshooting Guidelines in the *AIX 5L Version 5.2 System Management Guide: Operating System and Devices*.

4. If you changed the configuration, update the active configuration for WLM using the following command:

   ```
   wlcncntrl -u
   ```

5. Analyze the resource consumption (step 2) and, if necessary, fine-tune the configuration again.
Copy a JFS to Another Physical Volume

The following scenario describes copying JFS file system to a different physical volume while retaining file system integrity.

Table 1. Things to Consider

For the following scenario to be successful in a concurrent volume group environment, AIX 4.3.2 or later must be installed on all concurrent nodes.

To copy a JFS to another physical volume while maintaining file system integrity, do the following:

1. Stop activity for the file system that you want to copy. Unless the application that is using the file system is quiescent or the file system is in a state that is known to you, you cannot know what is in the data of the backup.

2. Mirror the logical volume, by typing the following SMIT fast path on the command line:

 smit mklvcopy

3. Copy the file system, using the following command:

 chfs -a splitcopy=/backup -a copy=2 /testfs

 The `splitcopy` parameter for the `-a` flag causes the command to split off a mirrored copy of the file system and mount it read-only at the new mount point. This action provides a copy of the file system with consistent journaled meta data that can be used for backup purposes.

4. If you want to move the mirrored copy to a different mount point, use the following SMIT fast path:

 smit cplv

At this point, the file system copy is usable.
Define a Raw Logical Volume for an Application

A raw logical volume is an area of physical and logical disk space that is under the direct control of an application, such as a database or a partition, rather than under the direct control of the operating system or a file system. Bypassing the file system can yield better performance from the controlling application, especially from database applications. The amount of improvement, however, depends on factors such as the size of a database or the application's driver.

Note: You will need to provide the application with the character or block special device file for the new raw logical volume, as appropriate. The application will link to this device file when it attempts opens, reads, writes, and so on.

Attention: Each logical volume has a logical–volume control block (LVCB) located in the first 512 bytes. Data begins in the second 512–byte block. In a raw logical volume, the LVCB is not protected. If an application overwrites the LVCB, commands that normally update the LVCB will fail and generate a message. Although the logical volume might continue to operate correctly and the overwrite can be an allowable event, overwriting the LVCB is not recommended.

The following instructions use SMIT and the command line interface to define a raw logical volume. You can also use the Create a new logical volume wizard in Web-based System Manager (select Volumes –> Overview and Tasks –> Create a new logical volume). To define a raw logical volume within the wizard, accept the default use, applications and data, from its first selection screen. Online help is available if you need it.

1. With root authority, find the free physical partitions on which you can create the raw logical volume by typing the following SMIT fast path:

   ```
   smit lspv
   ```

2. Select a disk.

3. Accept the default in the second dialog (status) and click OK.

4. Multiply the value in the FREE PPs field by the value in the PP SIZE field to get the total number of megabytes available for a raw logical volume on the selected disk. If the amount of free space is not adequate, select a different disk until you find one that has enough available free space.

5. Exit SMIT.

6. Use the `mklv` command to create the raw logical volume. The following command creates a raw logical volume named `lvdb2003` in the `db2vg` volume group using 38–MB physical partitions:

   ```
   mklv –y lvdb2003 db2vg 38
   ```

 Use the `–y` flag to provide a name for the logical volume instead of using a system–generated name.

At this point, the raw logical volume is created. If you list the contents of your volume group, a raw logical volume is shown with the default type, which is jfs. This type entry for a logical volume is simply a label. It does not indicate a file system is mounted for your raw logical volume.

Consult your application's instructions on how to open `/dev/rawLVname` and how to use this raw space.
Fix a Corrupted Magic Number in the File System Superblock

If the superblock of a file system is damaged, the file system cannot be accessed. Most
damage to the superblock cannot be repaired. The following procedure describes how to
repair a superblock in a JFS file system when the problem is caused by a corrupted magic
number. If the primary superblock is corrupted in a JFS2 file system, use the `fsck`
command to automatically copy the secondary superblock and repair the primary superblock.

In the following scenario, assume `/home/myfs` is a JFS file system on the physical volume
`/dev/lv02`.

1. Unmount the `/home/myfs` file system, which you suspect might be damaged, using the
following command:
   ```
   umount /home/myfs
   ```

2. To confirm damage to the file system, run the `fsck` command against the file system. For
 example:
   ```
   fsck -p /dev/lv02
   ```
 If the problem is damage to the superblock, the `fsck` command returns one of the
 following messages:
   ```
   fsck: Not an AIXV5 file system
   OR
   Not a recognized filesystem type
   ```

3. With root authority, use the `od` command to display the superblock for the file system, as
 shown in the following example:
   ```
   od -x -N 64 /dev/lv02 +0x1000
   ```
 Where the `-x` flag displays output in hexadecimal format and the `-N` flag instructs the
 system to format no more than 64 input bytes from the offset parameter (+), which
 specifies the point in the file where the file output begins. The following is an example
 output:
   ```
   0001000  1234 0234 0000 0000 0000 4000 0000 000a
   0001010  0001 8000 1000 0000 2f6c 7633 0000 6c76
   0001020  3300 0000 000a 0003 0100 0000 2f28 0383
   0001030  0000 0001 0000 0200 0000 2000 0000 0000
   0001040
   ```
 In the preceding output, note the corrupted magic value at 0x1000 (1234 0234). If all
defaults were taken when the file system was created, the magic number should be
`0x43218765`. If any defaults were overridden, the magic number should be `0x65872143`.

4. Use the `od` command to check the secondary superblock for a correct magic number. An
 example command and its output follows:
   ```
   $ od -x -N 64 /dev/lv02 +0x1f000
   ```
   ```
   001f000  6587 2143 0000 0000 0000 4000 0000 000a
   001f010  0001 8000 1000 0000 2f6c 7633 0000 6c76
   001f020  3300 0000 000a 0003 0100 0000 2f28 0383
   001f030  0000 0001 0000 0200 0000 2000 0000 0000
   001f040
   ```
 In the preceding output, note the correct magic value at 0x1f000.

5. Copy the secondary superblock to the primary superblock. An example command and output
 follows:
   ```
   $ dd count=1 bs=4k skip=31 seek=1 if=/dev/lv02 of=/dev/lv02
   ```
   ```
   dd: 1+0 records in.
   dd: 1+0 records out.
   ```

6. Use the `fsck` command to clean up inconsistent files caused by using the secondary
 superblock. For example:
   ```
   fsck /dev/lv02 2>&1 tee /tmp/fsck.errs
   ```
Make an Online Backup of a Mounted JFS or JFS2

Making an online backup of a mounted journaled file system (JFS) or enhanced journaled file system (JFS2) creates a static image of the logical volume that contains the file system. The following procedures describe how to make an online backup. Which procedure you choose depends on whether the file system is a JFS or JFS2.

Make an Online Backup of a JFS

To make an online backup of a mounted JFS, the logical volume that the file system resides on and the logical volume that its log resides on must be mirrored.

Note:: Because the file writes are asynchronous, the split off copy might not contain all data that was written immediately before the split. Any modifications that begin after the split begins might not be present in the backup copy. Therefore, it is recommended that file system activity be minimal while the split is taking place.

To split off a mirrored copy of the /home/xyz file system to a new mount point named /jfsstaticcopy, type the following:

```bash
chfs -a splitcopy=/jfsstaticcopy /home/xyz
```

You can control which mirrored copy is used as the backup by using the `copy` attribute. The second mirrored copy is the default if a copy is not specified by the user. For example:

```bash
chfs -a splitcopy=/jfsstaticcopy -a copy=1 /home/xyz
```

At this point, a read–only copy of the file system is available in /jfsstaticcopy. Any changes made to the original file system after the copy is split off are not reflected in the backup copy.

To reintegrate the JFS split image as a mirrored copy at the /testcopy mount point, use the following command:

```bash
rmfs /testcopy
```

The `rmfs` command removes the file system copy from its split–off state and allows it to be reintegrated as a mirrored copy.

Make and Back Up a Snapshot of a JFS2

Beginning with AIX 5.2, you can make a snapshot of a mounted JFS2 that establishes a consistent block–level image of the file system at a point in time. The snapshot image remains stable even as the file system that was used to create the snapshot, called the snappedFS, continues to change. The snapshot retains the same security permissions as the snappedFS had when the snapshot was made.

In the following scenario, you create a snapshot and back up the snapshot to removable media without unmounting or quiescing the file system, all with one command: `backsnap`. You can also use the snapshot for other purposes, such as accessing the files or directories as they existed when the snapshot was taken. You can do the various snapshot procedures using Web–based System Manager, SMIT, or the `backsnap` and `snapshot` commands.

To create a snapshot of the /home/abc/test file system and back it up (by name) to the tape device /dev/rmt0, use the following command:

```bash
backsnap -m /tmp/snapshot -s size=16M -i f/dev/rmt0 /home/abc/test
```

This command creates a logical volume of 16 megabytes for the snapshot of the JFS2 file system (/home/abc/test). The snapshot is mounted on /tmp/snapshot and then a backup by name of the snapshot is made to the tape device. After the backup completes, the snapshot remains mounted. Use the `–R` flag with the `backsnap` command if you want the snapshot removed when the backup completes.
Re–create a Corrupted Boot Image

The following procedure describes how to identify a corrupted boot image and re–create it. If your machine is currently running and you know the boot image has been corrupted or deleted, re–create the boot image by running the bosboot command with root authority. **Attention:** Never reboot the system when you suspect the boot image is corrupted.

The following procedure assumes your system is not rebooting correctly because of a corrupted boot image. If possible, protect your system from a possible loss of data or functionality by scheduling your downtime when it least impacts your workload.

1. Insert the product media into the appropriate drive.
2. Power on the machine following the instructions provided with your system.
3. From the System Management Services menu, select Multiboot.
4. From the next screen, select Install From.
5. Select the device that holds the product media and then select Install.
6. Select the AIX version icon.
7. Follow the online instructions until you can select which mode you use for installation. At that point, select Start Maintenance Mode for System Recovery.
9. Follow the online instructions until you can select Access this Volume Group and start a shell.
10. Use the bosboot command to re–create the boot image. For example:

    ```bash
    bosboot -a -d /dev/hdisk0
    ```

 If the command fails and you receive the following message:

 0301–165 bosboot: WARNING! bosboot failed – do not attempt to boot device.

 Try to resolve the problem using one of the following options, and then run the bosboot command again until you have successfully created a boot image:

 – Delete the default boot logical volume (hd5) and then create a new hd5.

 Or

 – Run diagnostics on the hard disk. Repair or replace, as necessary. If the bosboot command continues to fail, contact your customer support representative. **Attention:** If the bosboot command fails while creating a boot image, do not reboot your machine.

11. When the bosboot command is successful, use the reboot command to reboot your system.
Reduce the Size of a File System in Your Root Volume Group

The simplest way to reduce all file systems to their minimum size is to set the SHRINK option to yes when restoring the base operating system from backup. The SHRINK option and the following scenario cannot be used in tandem. If you set the SHRINK option to yes after doing the following procedure, the installation overrides your changes to the /image.data file.

This scenario leads you through a manual process to reduce the size of a selected rootvg file system. You will identify a file system that is not using all of its allocated disk space and then reallocate based on the amount of space the file system actually uses, thus freeing more space for the root volume group’s use. As part of this procedure, you will back up your volume groups and reinstall the operating system, using the revised allocations. **Attention:** This procedure requires shutting down and reinstalling the base operating system. Whenever you reinstall any operating system, schedule your downtime when it least impacts your workload to protect yourself from a possible loss of data or functionality. Before reinstalling the operating system, ensure you have reliable backups of your data and any customized applications or volume groups.

1. Create a separate backup of all file systems that are not contained in the rootvg. The separate backup helps ensure the integrity of all your file systems.

2. With root authority, check which file systems in your root volume group are not using their allocated disk space by typing the following command:

   ```
   df -k
   ```

 The `-k` flag displays the file–system sizes in kilobytes. Your result will look similar to the following:

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>1024-blocks</th>
<th>Free %Used</th>
<th>Iused %Iused</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/hd4</td>
<td>196608</td>
<td>4976</td>
<td>98%</td>
<td>1944</td>
</tr>
<tr>
<td>/dev/hd2</td>
<td>1769472</td>
<td>623988</td>
<td>65%</td>
<td>36984</td>
</tr>
<tr>
<td>/dev/hd9var</td>
<td>163840</td>
<td>65116</td>
<td>61%</td>
<td>676</td>
</tr>
<tr>
<td>/dev/hd3</td>
<td>65536</td>
<td>63024</td>
<td>4%</td>
<td>115</td>
</tr>
<tr>
<td>/dev/hd1</td>
<td>49152</td>
<td>8536</td>
<td>83%</td>
<td>832</td>
</tr>
<tr>
<td>/proc</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>/dev/hd10opt</td>
<td>32768</td>
<td>26340</td>
<td>20%</td>
<td>293</td>
</tr>
</tbody>
</table>

 Looking at these results, you notice a large number of free blocks and a fairly low percentage of use associated with the file system that is mounted on `/usr`. You decide you can release a significant number of blocks by reducing the number of partitions allocated to the `/usr` file system.

3. Check the contents of the `/etc/filesystems` file to ensure that all file systems in the rootvg are mounted. If not, they will not be included in the reinstalled system.

4. Create an `/image.data` file, which lists all the active file systems in the rootvg that are included in the installation procedure, by typing the following command:

   ```
   mkszfile
   ```

5. Open the `/image.data` file in your favorite editor.

6. Search for the `usr` text string to locate the lv_data stanza that pertains to the `/usr` file system. Use numbers from this stanza as a base to determine how much you can reduce the `/usr` file system’s number of logical partitions. The default size of each
additional logical partition is defined in the \texttt{PP_SIZE} entry of the \texttt{/image.data} file. Your \texttt{/image.data} file would look similar to the following:

\begin{verbatim}
lv_data:
 VOLUME_GROUP= rootvg
 LV_SOURCE_DISK_LIST= hdisk0
 LV_IDENTIFIER= 00042345d300bf15.5
 LOGICAL_VOLUME= hd2
 VG_STAT= active/complete
 TYPE= jfs
 MAX_LPs= 32512
 COPIES= 1
 LPs= 108
 STALE_PPs= 0
 INTER_POLICY= minimum
 INTRA_POLICY= center
 MOUNT_POINT= /usr
 MIRROR_WRITE_CONSISTENCY= on/ACTIVE
 LV_SEPARATE_PV= yes
 PERMISSION= read/write
 LV_STATE= opened/syncd
 WRITE_VERIFY= off
 PP_SIZE= 16
 SCHED_POLICY= parallel
 PP= 108
 BB_POLICY= relocatable
 RELOCATABLE= yes
 UPPER_BOUND= 32
 LABEL= /usr
 MAPFILE= \\
 LV_MIN_LPs= 70
 STRIPE_WIDTH= \\
 STRIPE_SIZE= \\
The number of logical partitions devoted to this logical volume is 108 (LPs=108).

7. Determine the number of logical partitions needed by the existing data in the \texttt{/usr} file system by using your result from step 2. You can display the existing file sizes specifically for the \texttt{/usr} file system by using the following command:

\begin{verbatim}
df -k /usr
\end{verbatim}

The result repeats the numbers (in kilobytes) you received for the \texttt{/usr} file system in step 2. For example:

\texttt{Filesystem} \hspace{0.5cm} \texttt{1024–blocks} \hspace{0.5cm} \texttt{Free} \hspace{0.5cm} \texttt{%Used} \hspace{0.5cm} \texttt{Iused} \hspace{0.5cm} \texttt{%Iused} \hspace{0.5cm} \texttt{Mounted on} \\
\texttt{/dev/hd2} \hspace{1cm} 1769472 \hspace{0.5cm} 623988 \hspace{0.5cm} 65\% \hspace{0.5cm} 36984 \hspace{0.5cm} 9\% /usr}

\textbf{a.} Subtract the amount of free space from the total number of 1024–blocks allocated:

\begin{equation}
1769472 - 623988 = 1145484
\end{equation}

\textbf{b.} Add an estimate of the space you might need to accommodate any future growth expected in this file system. For this example, add 200000 to the result.

\begin{equation}
1145484 + 200000 = 1345484
\end{equation}

\textbf{c.} Divide the result by the logical–partition size in bytes (16*1024) to determine the minimum number of logical partitions you need.

\begin{equation}
1345484 / 16384 = 82.121826171875 \\
\end{equation}

Use this result, rounded upward, to redefine the number of logical partitions needed (LPs=83).

8. In your \texttt{image.data} file, change the \texttt{LPs} field from 108 to 83.

9. Find the \texttt{fs_data} stanza that pertains to the \texttt{/usr} file system. Your \texttt{fs_data} stanza will look similar to the following:
fs_data:
FS_NAME= /usr
FS_SIZE= 3538944
FS_MIN_SIZE= 2290968
FS_LV= /dev/hd2
FS_FS= 4096
FS_NBPI= 4096
FS_COMPRESS= no
FS_BF= false
FS_AGSIZE= 8

10. Calculate the file–system size (FS_SIZE) by multiplying the physical partition size (PP_SIZE) by 2 (the number of 512–byte blocks used by the physical partitions) by the number of logical partitions (LPs). Given the values used in this example, the calculation is:

\[\text{PP_SIZE} \times 512 \text{ blocks} \times \text{LPs} = \text{FS_SIZE} \]

\[16384 \times 2 \times 83 = 2719744 \]

11. In your image.data file, change the FS_SIZE field from 3538944 to 2719744.

12. Calculate the minimum file–system size (FS_MIN_SIZE) based on the actual size of the current data used by the /usr file system, as follows:

a. Calculate the minimum number of partitions needed. Given the values used in this example, the calculation is:

\[\frac{\text{size in use (see step 7a)}}{\text{PP_SIZE}} = \text{partitions} \]

\[\frac{1145484}{16384} = 69.914794921875 \]

b. Calculate the minimum size required by that number of partitions. Rounding the previous calculation results upward to 70, the calculation is:

\[\text{PP_SIZE} \times 512 \text{ blocks} \times \text{partitions} = \text{FS_MIN_SIZE} \]

\[16384 \times 2 \times 70 = 2293760 \]

13. In your image.data file, change the FS_MIN_SIZE field from 2290968 to 2293760.

14. Save your edits and exit the editor.

15. Unmount all file systems that are not in the rootvg volume group.

16. If you have any user–defined volume groups, type the following commands to vary off and export them:

\[\text{varyoffvg} \quad \text{VGName} \]
\[\text{exportvg} \quad \text{VGName} \]

17. With a tape in the tape drive, type the following command to initiate a complete system backup:

\[\text{mksysb} \quad /dev/rmt0 \]

This type of backup includes the file–system size information you specified in the /image.data file, which will be used later to reinstall your system with the new file–system sizes.

Note:
To initiate this backup, you must run the mksysb command from the command line. If you use a system management tool, such as SMIT, the backup creates a new image.data file, overwriting the changes you have made.

18. Use this backup to reinstall the operating system using the Install With Current System Settings option. During the installation, check that the following options are set appropriately:

- **Use Maps** must be set to **no**
- **Shrink the File Systems** must be set to **no**
If you need more information about the installation procedure, see the *AIX 5L Version 5.2 Installation Guide*.

19. After the operating system is installed, reboot the system in Normal mode. At this point, the */usr* file system is resized, but your user-defined file systems are not available.

20. Mount all file systems by typing the following command:

\[\text{mount all} \]

If you receive *Device Busy* messages about file systems that are already mounted, you can ignore these messages.

At this point, your */usr* file system is resized, your root volume group has more free space, and your file systems are usable.
Replace a Failed Physical Volume in a Mirrored Volume Group

The following scenario replaces a failed or failing disk associated with a physical volume within a mirrored volume group. In the instructions, you use the Configuration Manager to configure the new disk (named \texttt{hdisk10}) and then use the \texttt{replacepv} command to replace a physical volume in a mirrored volume group that resides, at least in part, on a failed disk drive (named \texttt{hdisk02}) without losing the physical volume's contents. You do not need to reboot or schedule down time to complete the following procedure.

1. Select a new disk drive that has a capacity at least as large as the failed disk.

2. With root authority, run the \textbf{Configuration Manager} to configure the new disk. Type the following on the command line:

 \begin{verbatim}
 cfgmgr -l hdisk10
 \end{verbatim}

 Use the \texttt{–l} flag to configure only the specified device and any "child" devices. Without this flag, the \texttt{cfgmgr} command runs Configuration Manager against the entire system.

3. Replace the physical volume so it can begin using the new disk, using the following command:

 \textbf{Note::} If the mirror for the logical volume is stale, the \texttt{replacepv} command does not work correctly.

 \begin{verbatim}
 replacepv hdisk02 hdisk10
 \end{verbatim}

4. When the associated mirrored volume group is the rootvg, you must also run the following commands to clear the failed disk from and add the new disk to the boot image:

 \begin{verbatim}
 chpv –c hdisk02
 bootlist hdisk10
 bosboot –a
 \end{verbatim}

 The \texttt{chpv –c} command clears \texttt{hdisk02} from the boot image. The \texttt{bootlist} command adds \texttt{hdisk10} to the list of possible boot devices from which the system can be booted. The \texttt{bosboot –a} command creates a complete boot image on the default boot logical volume.

At this point, the physical volume \texttt{hdisk02} now maps to the newly configured \texttt{hdisk10}.
Split a Mirrored Disk from a Volume Group

Beginning with AIX 5.2, *snapshot* support helps you protect the consistency of your mirrored volume groups from potential disk failure. Using the snapshot feature, you can split off a mirrored disk or disks to use as a reliable (from the standpoint of the LVM metadata) point–in–time backup of a volume group, and, when needed, reliably reintegrate the split disks into the volume group. In the following procedure, you first split off a mirrored disk from a volume group and then you merge the split–off disk into the original volume group. To further ensure the reliability of your snapshot, file systems must be unmounted and applications that use raw logical volumes must be in a known state (a state from which the application can recover if you need to use the backup).

A volume group cannot be split if any one of the following is true:

- A disk is already missing.
- The last non–stale partition would be on the split–off volume group.
- Any stale partitions exist in the volume group, unless you use the force flag (–f) with the `splitvg` command.

Furthermore, the snapshot feature (specifically, the `splitvg` command) cannot be used in enhanced or classic concurrent mode. The split–off volume group cannot be made concurrent or enhanced concurrent and there are limitations to the changes allowed for both the split–off and the original volume group. For details, read the `chvg` command description in *AIX 5L Version 5.2 Commands Reference*.

1. Ensure that the volume group is fully mirrored and that the mirror exists on a disk or set of disks that contains only this set of mirrors.

2. To enable snapshot support, split off the original volume group (`origVG`) to another disk or set of disks, using the following command:

   ```bash
   splitvg origVG
   ```

 At this point, you now have a reliable point–in–time backup of the original volume group. Be aware, however, that you cannot change the allocation on the split–off volume group.

3. Reactivate the split–off disk and merge it into the original volume group using the following command:

   ```bash
   joinvg origVG
   ```

 At this point, the split–off volume group is now reintegrated with the original volume group.
This chapter provides procedures for several routine maintenance tasks, including:

- Starting and Stopping the System
- Backing Up and Restoring Information
- Changing System Environment Variables
- Monitoring and Managing Processes
Starting and Stopping the System
This chapter deals with system startup activities such as booting, creating boot images or files for starting the system, and setting the system run level. Using the `reboot` and `shutdown` commands is also covered.

The following topics are included in this chapter:

- Booting an Uninstalled System
- Rebooting a Running System
- Remotely Rebooting an Unresponsive System
- Booting from Hard Disk for Maintenance
- Booting a System That Crashed
- Accessing a System That Will Not Boot
- Rebooting a System With Planar Graphics
- Diagnosing Boot Problems
- Creating Boot Images
- Identifying System Run Levels
- Changing System Run Levels
- Changing the `/etc/inittab` File
- Stopping the System
- Shutting Down the System without Rebooting
- Shutting Down the System to Single–User Mode
- Shutting Down the System in an Emergency
- Reactivating an Inactive System
- System Hang Management

Booting an Uninstalled System
The procedure for booting a new or uninstalled system is part of the installation process. For information on how to boot an uninstalled system, see Start the System in the AIX 5L Version 5.2 Installation Guide and Reference.

Rebooting a Running System
There are two methods for shutting down and rebooting your system, `shutdown` and `reboot`. Always use the `shutdown` method when multiple users are logged onto the system. Because processes might be running that should be terminated more gracefully than a `reboot` permits, `shutdown` is the preferred method for all systems.

<table>
<thead>
<tr>
<th>Rebooting a Running System Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web-based System Manager</td>
</tr>
<tr>
<td>Task</td>
</tr>
<tr>
<td>Rebooting a Multiuser System</td>
</tr>
<tr>
<td>Rebooting a Single–User System</td>
</tr>
</tbody>
</table>
Remotely Rebooting an Unresponsive System

The remote reboot facility allows the system to be rebooted through a native (integrated) serial port. The system is rebooted when the reboot_string on page 2-3 is received at the port. This facility is useful when the system does not otherwise respond but is capable of servicing serial port interrupts. Remote reboot can be enabled on only one native serial port at a time. Users are expected to provide their own external security for the port. This facility runs at the highest device interrupt class and a failure of the UART (Universal Asynchronous Receive/Transmit) to clear the transmit buffer quickly may have the effect of causing other devices to lose data if their buffers overflow during this time. It is suggested that this facility only be used to reboot a machine that is otherwise hung and cannot be remotely logged into. File systems will not be synchronized, and a potential for some loss of data which has not been flushed exists. It is strongly suggested that when remote reboot is enabled that the port not be used for any other purpose, especially file transfer, to prevent an inadvertent reboot.

Two native serial port attributes control the operation of remote reboot.

reboot_enable
Indicates whether this port is enabled to reboot the machine on receipt of the remote reboot_string, and if so, whether to take a system dump prior to rebooting.

- no - Indicates remote reboot is disabled
- reboot - Indicates remote reboot is enabled
- dump - Indicates remote reboot is enabled, and prior to rebooting a system dump will be taken on the primary dump device

reboot_string
Specifies the remote reboot_string that the serial port will scan for when the remote reboot feature is enabled. When the remote reboot feature is enabled and the reboot_string is received on the port, a ‘>’ character is transmitted and the system is ready to reboot. If a ‘1’ character is received, the system is rebooted; any character other than ‘1’ aborts the reboot process. The reboot_string has a maximum length of 16 characters and must not contain a space, colon, equal sign, null, new line, or Ctrl–\ character.

Remote reboot can be enabled through SMIT or the command line. For SMIT the path System Environments -> Manage Remote Reboot Facility may be used for a configured TTY. Alternatively, when configuring a new TTY, remote reboot may be enabled from the Add a TTY or Change/Show Characteristics of a TTY menus. These menus are accessed through the path Devices -> TTY.

From the command line, the mkdev or chdev commands are used to enable remote reboot. For example, the following command enables remote reboot (with the dump option) and sets the reboot string to ReBoOtMe on tty1.

chdev -l tty1 -a remreboot=dump -a reboot_string=ReBoOtMe

This example enables remote reboot on tty0 with the current reboot_string in the database only (will take effect on the next reboot).

chdev -P -l tty0 -a remreboot=reboot

If the tty is being used as a normal port, then you will have to use the pdisable command before enabling remote reboot. You may use penable to reenable the port afterwards.
Boot from Hard Disk for Maintenance

Prerequisites
A bootable removable media (tape or CD–ROM) must not be in the drive. Also, refer to the hardware documentation for the specific instructions to enable maintenance mode boot on your particular model.

Procedure
To boot a machine in maintenance mode from a hard disk:

1. To reboot, either turn the machine off and then power it back on, or press the reset button.
2. Press the key sequence for rebooting in maintenance mode that is specified in your hardware documentation.
3. The machine will boot to a point where it has a console device configured.
 If there is a system dump that needs to be retrieved, the system dump menu will be displayed on the console.
 Note: If the console fails to configure when there is a dump to be retrieved, the system will hang. The system must be booted from a removable medium to retrieve the dump.
4. If there is no system dump, or if it has been copied, the diagnostic operating instructions will be displayed. Press Enter to continue to the Function Selection menu.
5. From the Function Selection menu, you can select diagnostic or single user mode:
 Single–User Mode: To perform maintenance in a single–user environment, choose this option (option 5). The system continues to boot and enters single–user mode. Maintenance that requires the system to be in a standalone mode can be performed in this mode, and the `bosboot` command can be run, if required.

Booting a System That Crashed
In some instances, you might have to boot a system that has stopped (crashed) without being properly shut down. This procedure covers the basics of how to boot if your system was unable to recover from the crash.

Prerequisites
1. Your system crashed and was not properly shut down due to unusual conditions.
2. Your system is turned off.

Procedure
1. Ensure that all hardware and peripheral devices are correctly connected.
2. Turn on all of the peripheral devices.
3. Watch the screen for information about automatic hardware diagnostics.
 – If any hardware diagnostics tests are unsuccessful, refer to the hardware documentation.
 – If all hardware diagnostics tests are successful, turn the system unit on.
Accessing a System That Will Not Boot

If you have a system that will not boot from the hard disk, see the procedure on how to access a system that will not boot in Troubleshooting in the AIX 5L Version 5.2 Installation Guide and Reference.

This procedure enables you to get a system prompt so that you can attempt to recover data from the system or perform corrective action enabling the system to boot from the hard disk.

Notes:

1. This procedure is intended only for experienced system managers who have knowledge of how to boot or recover data from a system that is unable to boot from the hard disk. Most users should not attempt this procedure, but should contact their service representative.

2. This procedure is not intended for system managers who have just completed a new installation, because in this case the system does not contain data that needs to be recovered. If you are unable to boot from the hard disk after completing a new installation, contact your service representative.

Rebooting a System With Planar Graphics

If the machine has been installed with the planar graphics subsystem only, and later an additional graphics adapter is added to the system, the following occurs:

1. A new graphics adapter is added to the system, and its associated device driver software is installed.

2. The system is rebooted, and one of the following occurs:

 a. If the system console is defined to be /dev/lft0 (lscons displays this information), the user is asked to select which display is the system console at reboot time. If the user selects a graphics adapter (non–TTY device), it also becomes the new default display. If the user selects a TTY device instead of an LFT device, no system login appears. Reboot again, and the TTY login screen is displayed. It is assumed that if the user adds an additional graphics adapter into the system and the system console is an LFT device, the user will not select the TTY device as the system console.

 b. If the system console is defined to be a TTY, then at reboot time the newly added display adapter becomes the default display.

 Note: Since the TTY is the system console, it remains the system console.

3. If the system console is /def/lft0, then after reboot, DPMS is disabled in order to show the system console selection text on the screen for an indefinite period of time. To re–enable DPMS, reboot the system again.

Diagnosing Boot Problems

A variety of factors can cause a system to be unable to boot:

- Hardware problems
- Defective boot tapes or CD–ROMs
- Improperly configured network boot servers
- Damaged file systems
- Errors in scripts such as /sbin/rc.boot

For information on accessing a system that will not boot from the disk drive, see Accessing a System That Will Not Boot.
Creating Boot Images
To install the base operating system or to access a system that will not boot from the system hard drive, you need a boot image. This procedure describes how to create boot images. The boot image varies for each type of device. The associated RAM disk file system contains device configuration routines for the following devices:

- Disk
- Tape
- CD-ROM
- Network Token–Ring, Ethernet, or FDDI device

Prerequisites
- You must have root user authority to use the **bosboot** command.
- The `/tmp` file system must have at least 20 MB of free space.
- The physical disk must contain the boot logical volume. To determine which disk device to specify, type the following at a command prompt:

```
lsvg -l rootvg
```

The `lsvg -l` command lists the logical volumes on the root volume group (rootvg). From this list you can find the name of the boot logical volume. Then type the following at a command prompt:

```
lsvg -M rootvg
```

The `lsvg -M` command lists the physical disks that contain the various logical volumes.

Creating a Boot Image on a Boot Logical Volume
If the base operating system is being installed (either a new installation or an update), the **bosboot** command is called to place the boot image on the boot logical volume. The boot logical volume is a physically contiguous area on the disk created through the Logical Volume Manager (LVM) during installation.

The **bosboot** command does the following:

1. Checks the file system to see if there is enough room to create the boot image.
2. Creates a RAM file system using the **mkfs** command and a prototype file.
3. Calls the **mkboot** command, which merges the kernel and the RAM file system into a boot image.
4. Writes the boot image to the boot logical volume.

To create a boot image on the default boot logical volume on the fixed disk, type the following at a command prompt:

```
bosboot -a
```

OR:

```
bosboot -ad /dev/ipldevice
```

Note: Do not reboot the machine if the **bosboot** command fails while creating a boot image. Resolve the problem and run the **bosboot** command to successful completion.

You must reboot the system for the new boot image to be available for use.

Creating a Boot Image for a Network Device
To create a boot image for an Ethernet boot, type the following at a command prompt:

```
bosboot -ad /dev/ent
```

For a Token–Ring boot:

```
bosboot -ad /dev/tok
```
Identifying System Run Levels

Before performing maintenance on the operating system or changing the system run level, you might need to examine the various run levels. This procedure describes how to identify the run level at which the system is operating and how to display a history of previous run levels. The init command determines the system run level.

Identifying the Current Run Level

At the command line, type `cat /etc/.init.state`. The system displays one digit; that is the current run level. See the init command or the /etc/inittab file for more information about run levels.

Displaying a History of Previous Run Levels

You can display a history of previous run levels using the fwtmp command.

Note: The bosext2 acct.obj code must be installed on your system to use this command.

1. Log in as root user.
2. Type the following at a command prompt:

 /usr/lib/acct/fwtmp </var/adm/wtmp |grep run–level

 The system displays information similar to the following:

 run–level 2 0 1 0062 0123 697081013 Sun Feb 2 19:36:53 CST 1992
 run–level 2 0 1 0062 0123 697092441 Sun Feb 2 22:47:21 CST 1992
 run–level 4 0 1 0062 0123 698180044 Sat Feb 15 12:54:04 CST 1992
 run–level 2 0 1 0062 0123 698959131 Sun Feb 16 10:52:11 CST 1992
 run–level 5 0 1 0062 0123 698967773 Mon Feb 24 15:42:53 CST 1992

Changing System Run Levels

This procedure describes two methods for changing system run levels for multi–user or single–user systems.

When the system starts the first time, it enters the default run level defined by the initdefault entry in the /etc/inittab file. The system operates at that run level until it receives a signal to change it.

The following are the currently defined run levels:

0–9 When the init command changes to run levels 0–9, it kills all processes at the current run levels then restarts any processes associated with the new run levels.

0–1 Reserved for the future use of the operating system.

2 Default run level.

3–9 Can be defined according to the user’s preferences.

a, b, c When the init command requests a change to run levels a, b, or c, it does not kill processes at the current run levels; it simply starts any processes assigned with the new run levels.

Q, q Tells the init command to reexamine the /etc/inittab file.

Changing Run Levels on Multiuser Systems

1. Check the /etc/inittab file to confirm that the run level to which you are changing supports the processes that you are running. The getty process is particularly important, since it controls the terminal line access for the system console and other logins. Ensure that the getty process is enabled at all run levels.
2. Use the wall command to inform all users that you intend to change the run level and request that users log off.
3. Use the `smit telinit` fast path to access the Set System Run Level menu.
4. Type the new run level in the System RUN LEVEL field.
5. Press Enter to implement all of the settings in this procedure.

The system responds by telling you which processes are terminating or starting as a result of the change in run level and by displaying the message:

```
INIT: New run level:  n
```

where `n` is the new run–level number.

Changing Run Levels on Single–User Systems

1. Check the `/etc/inittab` file to confirm that the run level to which you are changing supports the processes that you are running. The getty process is particularly important, since it controls the terminal line access for the system console and other logins. Ensure that the getty process is enabled at all run levels.
2. Use the `smit telinit` fast path to access the Set System Run Level menu.
3. Type the new system run level in the System RUN LEVEL field.
4. Press Enter to implement all of the settings in this procedure.

The system responds by telling you which processes are terminating or starting as a result of the change in run level and by displaying the message:

```
INIT: New run level:  n
```

where `n` is the new run–level number.

Changing the `/etc/inittab` File

This section contains procedures for using the four commands (`chitab`, `lsitab`, `mkitab`, and `rmitab`) that modify the records in the `/etc/inittab` file.

Adding Records – `mkitab` Command

To add a record to the `/etc/inittab` file, type the following at a command prompt:

```
mkitab Identifier:Run Level:Action:Command
```

For example, to add a record for tty2, type the following at a command prompt:

```
mkitab tty002:2:respawn:/usr/sbin/getty /dev/tty2
```

In the above example:

- `tty002` identifies the object whose run level you are defining.
- `2` specifies the run level at which this process runs.
- `respawn` specifies the action that the `init` command should take for this process.
- `/usr/sbin/getty /dev/tty2` specifies the shell command to be executed.

Changing Records – `chitab` Command

To change a record to the `/etc/inittab` file, type the following at a command prompt:

```
chitab Identifier:Run Level:Action:Command
```

For example, to change a record for tty2 so that this process runs at run levels 2 and 3, type:

```
chitab tty002:23:respawn:/usr/sbin/getty /dev/tty2
```

In the above example:
tty002

Identifies the object whose run level you are defining.

23

Specifies the run levels at which this process runs.

respawn

Specifies the action that the init command should take for this process.

/usr/sbin/getty /dev/tty2

Specifies the shell command to be executed.

Listing Records – Isitab Command
To list all records in the /etc/inittab file, type the following at a command prompt:

lsitab -a

To list a specific record in the /etc/inittab file, type:

lsitab Identifier

For example, to list the record for tty2, type: lsitab tty2.

Removing Records
To remove a record from the /etc/inittab file, type the following at a command prompt:

rmitab Identifier

For example, to remove the record for tty2, type: rmitab tty2.

Stopping the System
The shutdown command is the safest and most thorough way to halt the operating system. When you designate the appropriate flags, this command notifies users that the system is about to go down, kills all existing processes, unmounts file systems, and halts the system.

The following methods for shutting down the system are covered in this section:

• Shutting Down the System without Rebooting
• Shutting Down the System to Single-User Mode
• Shutting Down the System in an Emergency

Shutting Down the System without Rebooting
You can use two methods to shut down the system without rebooting: the SMIT fastpath, or the shutdown command.

Prerequisites
You must have root user authority to shut down the system.

Procedure
To shut down the system using SMIT:

1. Log in as root.
2. At the command prompt, type:
 smit shutdown

To shut down the system using the shutdown command:

1. Log in as root.
2. At the command prompt, type:
 shutdown
Shutting Down the System to Single–User Mode
In some cases, you might need to shut down the system and enter single–user mode to perform software maintenance and diagnostics.

1. Type `cd /` to change to the root directory. You must be in the root directory to shut down the system to single–user mode to ensure that file systems are unmounted cleanly.

2. Type `shutdown -m`. The system shuts down to single–user mode. A system prompt displays and you can perform maintenance activities.

Shutting Down the System in an Emergency
You can also use the `shutdown` command to shut down the system under emergency conditions. Use this procedure to stop the system quickly without notifying other users.

Type `shutdown -F`. The `-F` flag instructs the `shutdown` command to bypass sending messages to other users and shut down the system as quickly as possible.

Reactivating an Inactive System
Your system can become inactive because of a hardware problem, a software problem, or a combination of both. This procedure guides you through steps to correct the problem and restart your system. If your system is still inactive after completing the procedure, refer to the problem–determination information in your hardware documentation.

Use the following procedures to reactivate an inactive system:

- Checking the Hardware
- Checking the Processes
- Restarting the System

Checking the Hardware
Check your hardware by:

- Checking the Power on page 2-10
- Checking the Operator Panel Display on page 2-10 if available
- Activating Your Display or Terminal on page 2-10

Checking the Power
If the Power–On light on your system is active, go to Checking the Operator Panel Display on page 2-10.

If the Power–On light on your system is not active, check that the power is on and the system is plugged in.

Checking the Operator Panel Display
If your system has an operator panel display, check it for any messages.

If the operator panel display on your system is blank, go to Activating Your Display or Terminal on page 2-10.

If the operator panel display on your system is not blank, go to the service guide for your unit to find information concerning digits in the Operator Panel Display.

Activating Your Display or Terminal
Check several parts of your display or terminal, as follows:

- Make sure the display cable is securely attached to the display and to the system unit.
- Make sure the keyboard cable is securely attached.
- Make sure the mouse cable is securely attached.
• Make sure the display is turned on and that its Power-On light is lit.
• Adjust the brightness control on the display.
• Make sure the terminal’s communication settings are correct.

If your system is now active, your hardware checks have corrected the problem.
If your system became inactive while you were trying to restart the system, go to Restarting the System on page 2-12.
If your system did not become inactive while you were trying to restart the system, go to Checking the Processes on page 2-11.

Checking the Processes
A stopped or stalled process might make your system inactive. Check your system processes by:
• Restarting Line Scrolling
• Using the Ctrl–D Key Sequence
• Using the Ctrl–C Key Sequence
• Logging In from a Remote Terminal or Host
• Ending Stalled Processes Remotely

Restarting Line Scrolling
Restart line scrolling halted by the Ctrl–S key sequence by doing the following:
1. Activate the window or shell with the problem process.
2. Press the Ctrl–Q key sequence to restart scrolling.

The Ctrl–S key sequence stops line scrolling, and the Ctrl–Q key sequence restarts line scrolling.

If your scroll check did not correct the problem with your inactive system, go to the next step, Using the Ctrl–D Key Sequence.

Using the Ctrl–D Key Sequence
End a stopped process by doing the following:
1. Activate the window or shell with the problem process.
2. Press the Ctrl–D key sequence. The Ctrl–D key sequence sends an end of file (EOF) signal to the process. The Ctrl–D key sequence may close the window or shell and log you out.

If the Ctrl–D key sequence did not correct the problem with your inactive system, go to the next step, Using the Ctrl–C Key Sequence.

Using the Ctrl–C Key Sequence
End a stopped process by doing the following:
1. Activate the window or shell with the problem process.
2. Press the Ctrl–C key sequence. The Ctrl–C key sequence stops the current search or filter.

If the Ctrl–C key sequence did not correct the problem with your inactive system, go to the next step, Logging In from a Remote Terminal or Host.
Logging In from a Remote Terminal or Host

Log in remotely in either of two ways:

- Log in to the system from another terminal if more than one terminal is attached to your system.
- Log in from another host on the network (if your system is connected to a network) by typing the `tn` command as follows:

 \[\text{tn} \quad \text{YourSystemName} \]

 The system asks for your regular login name and password when you use the `tn` command.

If you were able to log in to the system from a remote terminal or host, go to the next step, Ending Stalled Processes Remotely.

If you were not able to log in to the system from a remote terminal or host, go to Restarting the System.

You can also start a system dump to determine why your system became inactive. For more information, see System Dump Facility.

Ending Stalled Processes Remotely

End a stalled process from a remote terminal by doing the following:

1. List active processes by typing the following `ps` command:

 \[\text{ps} \quad \text{–ef} \]

 The `–e` and `–f` flags identify all active and inactive processes.

2. Identify the process ID of the stalled process.

 For help in identifying processes, use the `grep` command with a search string. For example, to end the `xlock` process, type the following to find the process ID:

 \[\text{ps} \quad \text{–ef} \quad | \quad \text{grep} \quad \text{xlock} \]

 The `grep` command allows you to search on the output from the `ps` command to identify the process ID of a specific process.

3. End the process by typing the following `kill` command:

 \[\text{kill} \quad \text{–9} \quad \text{ProcessID} \]

 Note: You must have root user authority to use the `kill` command on processes you did not initiate.

 If you cannot identify the problem process, the most recently activated process might be the cause of your inactive system. End the most recent process if you think that is the problem.

 If your process checks have not corrected the problem with your inactive system, go to Restarting the System.

 You can also start a system dump to determine why your system became inactive. For more information, see System Dump Facility.

Restarting the System

If the first two procedures fail to correct the problem that makes your system inactive, you need to restart your system.

Note: Before restarting your system, complete a system dump. For more information, see System Dump Facility.

This procedure involves the following:

- Checking the State of the Boot Device on page 2-13
- Loading the Operating System on page 2-13
Checking the State of the Boot Device
Your system boots with either a removable medium, an external device, a small computer system interface (SCSI) device, an integrated device electronics (IDE) device, or a local area network (LAN). Decide which method applies to your system, and use the following instructions to check the boot device:

- For a removable medium, such as tape, make sure the medium is inserted correctly.
- For IDE devices, verify that the IDE device ID settings are unique per adapter. If only one device is attached to the adapter, the IDE device ID must be set to the master device.
- For an externally attached device, such as a tape drive, make sure:
 - The power to the device is turned on.
 - The device cables are correctly attached to the device and to the system unit.
 - The ready indicator is on (if the device has one).
- For external SCSI devices, verify that the SCSI address settings are unique.
- For a LAN, verify that the network is up and operable.

If the boot device is working correctly, go to Loading the Operating System on page 2-13.

Loading the Operating System
Load your operating system by doing the following:

1. Turn off your system’s power.
2. Wait one minute.
3. Turn on your system’s power.
4. Wait for the system to boot.

If the operating system failed to load, boot the hard disk from maintenance mode or hardware diagnostics.

If you are still unable to restart the system, use an SRN to report the problem with your inactive system to your service representative.

System Hang Management
System hang management allows users to run mission-critical applications continuously while improving application availability. System hang detection alerts the system administrator of possible problems and then allows the administrator to log in as root or to reboot the system to resolve the problem.

shconf Command
The `shconf` command is invoked when System Hang Detection is enabled. The `shconf` command configures which events are surveyed and what actions are to be taken if such events occur. You can specify any of the following actions, the priority level to check, the time out while no process or thread executes at a lower or equal priority, the terminal device for the warning action, and the `getty` command action:

- Log an error in `errlog` file
- Display a warning message on the system console (alphanumeric console) or on a specified TTY
- Reboot the system
- Give a special `getty` to allow the user to log in as root and launch commands
- Launch a command

For the Launch a command and Give a special getty options, system hang detection launches the special `getty` command or the specified command at the highest priority. The
special `getty` command prints a warning message that it is a recovering `getty` running at priority 0. The following table captures the various actions and the associated default parameters for priority hang detection. Only one action is enabled for each type of detection.

<table>
<thead>
<tr>
<th>Option</th>
<th>Enablement</th>
<th>Priority</th>
<th>Timeout (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log an error in <code>errlog</code> file</td>
<td>disabled</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Display a warning message</td>
<td>disabled</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Give a recovering <code>getty</code></td>
<td>enabled</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Launch a command</td>
<td>disabled</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Reboot the system</td>
<td>disabled</td>
<td>39</td>
<td>300</td>
</tr>
</tbody>
</table>

Note: When Launch a recovering `getty` on a console is enabled, the `shconf` command adds the `–u` flag to the `getty` command in the `inittab` that is associated with the console login.

For lost IO detection, you can set the timeout value and enable the following actions:

<table>
<thead>
<tr>
<th>Option</th>
<th>Enablement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display a warning message</td>
<td>disabled</td>
</tr>
<tr>
<td>Reboot the system</td>
<td>disabled</td>
</tr>
</tbody>
</table>

Lost IO events are recorded in the AIX error log file.

shdaemon Daemon

The `shdaemon` daemon is a process that is launched by `init` and runs at priority 0 (zero). It is in charge of handling system hang detection by retrieving configuration information, initiating working structures, and starting detection times set by the user.

Changing the System Hang Detection Configuration

You can manage the system hang detection configuration from the SMIT management tool. SMIT menu options allow you to enable or disable the detection mechanism, display the current state of the feature, and change or show the current configuration. The fast paths for system hang detection menus are:

- `smit shd` Manage System Hang Detection
- `smit shstatus` System Hang Detection Status
- `smit shpriocfg` Change/Show Characteristics of Priority Problem Detection
- `smit shreset` Restore Default Priority Problem Configuration
- `smit shliocfg` Change/Show Characteristics of Lost I/O Detection
- `smit shlioreset` Restore Default Lost I/O Detection Configuration

You can also manage system hang detection using the `shconf` command, which is documented in *AIX 5L Version 5.2 Commands Reference*.
Back up and Restoring Information

This chapter contains the following procedures for backing up and restoring the operating system, applications, and data:

- Compressing Files
- Backing Up User Files or File Systems
- Backing Up Your System
- Create a Remote Archive
- Restoring from Backup Image Individual User Files

Compressing Files

Several methods exist for compressing a file system:

- Use the `–p` flag with the `backup` command.
- Use the `compress` or `pack` commands.

Files are compressed for the following reasons:

- Saving storage and archiving system resources:
 - Compress file systems before making backups to preserve tape space.
 - Compress log files created by shell scripts that run at night; it is easy to have the script compress the file before it exits.
 - Compress files that are not currently being accessed. For example, the files belonging to a user who is away for extended leave can be compressed and placed into a `tar` archive on disk or to a tape and later restored.

- Saving money and time by compressing files before sending them over a network.

Procedure

To compress the `foo` file and write the percentage compression to standard error, type:

```
compress –v foo
```

See the `compress` command for details about the return values but, in general, the problems encountered when compressing files can be summarized as follows:

- The command might run out of working space in the file system while compressing. Because the `compress` command creates the compressed files before it deletes any of the uncompressed files, it needs extra space—from 50% to 100% of the size of any given file.
- A file might fail to compress because it is already compressed. If the `compress` command cannot reduce the file size, it fails.

Backing Up User Files or File Systems

Two procedures can be used to back up files and file systems: the SMIT fast paths `smit backfile` or `smit backfilesys`, and the `backup` command.

For additional information about backing up user files or file systems, see Backing Up User Files or File Systems on page 2-15 in the AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

Prerequisites

- If you are backing up by i–node file systems that may be in use, unmount them first to prevent inconsistencies. **Attention:** If you attempt to back up a mounted file system, a
warning message is displayed. The **backup** command continues, but inconsistencies in
the file system may occur. This warning does not apply to the root (/) file system.

- To prevent errors, make sure the backup device has been cleaned recently.

<table>
<thead>
<tr>
<th>Task</th>
<th>SMIT Fast Path</th>
<th>Command or File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back Up User Files</td>
<td>smit backfile</td>
<td>1. Log in to your user account.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Backup: `find . -print</td>
</tr>
<tr>
<td>Back Up User File Systems</td>
<td>smit backfilesys</td>
<td>1. Unmount files systems that you plan to back up. For example: <code>umount all</code> or <code>umount /home/filesys1</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Verify the file systems. For example: <code>fsck /home/filesys1</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Back up by i–node. For example: <code>backup -5 -uf /dev/rmt0 /home/libr</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Restore the files using the following command: <code>restore -t</code></td>
</tr>
</tbody>
</table>

Note: If this command generates an error message, you must repeat the entire backup.

Backing Up the System Image and User–Defined Volume Groups

Backing Up Your System

The following procedures describe how to make an installable image of your system.

Prerequisites

Before backing up the rootvg volume group:

- All hardware must already be installed, including external devices, such as tape and CD–ROM drives.

- This backup procedure requires the **sysbr** fileset, which is in the BOS System Management Tools and Applications software package. Type the following command to determine whether the **sysbr** fileset is installed on your system:

  ```bash
  lslpp -l bos.sysmgt.sysbr
  ```

 If your system has the **sysbr** fileset installed, continue the backup procedures.

 If the `lslpp` command does not list the **sysbr** fileset, install it before continuing with the backup procedure. See Installing Optional Software and Service Updates in the *AIX 5L Version 5.2 Installation Guide and Reference* for instructions.

  ```bash
  installp -agX device bos.sysmgt.sysbr
  ```

 where `device` is the location of the software; for example, `/dev/rmt0` for a tape drive.

Before backing up a user–defined volume group:

- Before being saved, a volume group must be varied on and the file systems must be mounted. **Attention:** Executing the `savevg` command results in the loss of all material previously stored on the selected output medium.
- Make sure the backup device has been cleaned recently to prevent errors.

Backing Up Your System Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>SMIT Fast Path</th>
<th>Command or File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backing up the rootvg volume group</td>
<td>1. Log in as root. 2. Mount file systems for backup. [smit mountfs] 3. Unmount any local directories that are mounted over another local directory. [smit umountfs] 4. Make at least 8.8MB of free disk space available in the /tmp directory. [2] 5. Back up: [smit mksysb] 6. Write–protect the backup media. 7. Record any backed–up root and user passwords.</td>
<td>1. Log in as root. 2. Mount file systems for backup. [1] See [mount] command. 3. Unmount any local directories that are mounted over another local directory. See [umount] command. 4. Make at least 8.8MB of free disk space available in the /tmp directory. [2] 5. Back up. See [mksysb] command. 6. Write–protect the backup media. 7. Record any backed–up root and user passwords.</td>
</tr>
</tbody>
</table>

| Verify a Backup Tape \[^3\] | \[smit lsmksysb\] | |
| Backing up a user–defined volume group \[^4\] | \[smit savevg\] | 1. Modify the file system size before backing up, if necessary. \[\^[5\] mkvgsdata\] VGName then edit /tmp/vgdata/ VGName/ VGName.data \[2\] 3. Save the volume group. See the \[savevg\] command. |

Notes:

1. The \[mksysb\] command does not back up file systems mounted across an NFS network.

2. The \[mksysb\] command requires this working space for the duration of the backup. Use the \[df\] command, which reports in units of 512–byte blocks, to determine the free space in the /tmp directory. Use the \[chfs\] command to change the size of the file system, if necessary.

3. This procedure lists the contents of a \[mksysb\] backup tape. The contents list verifies most of the information on the tape but does not verify that the tape can be booted for installations. The only way to verify that the boot image on a \[mksysb\] tape functions correctly is by booting from the tape.

4. If you want to exclude files in a user–defined volume group from the backup image, create a file named \[/etc/exclude. volume_group_name\], where \[volume_group_name\] is the name of the volume group that you want to back up. Then edit \[/etc/exclude. volume_group_name\] and enter the patterns of file names that you do not want included in your backup image. The patterns in this file are input to the pattern
matching conventions of the `grep` command to determine which files are excluded from the backup.

5. If you choose to modify the `VGName.data` file to alter the size of a file system, you must not specify the `-i` flag or the `-m` flag with the `savevg` command, because the `VGName.data` file is overwritten.

For more information about installing (or restoring) a backup image, see "Installing BOS from a System Backup" in the AIX 5L Version 5.2 Installation Guide and Reference.

Implementing Scheduled Backups

This procedure describes how to develop and use a script to perform a weekly full backup and daily incremental backups of user files. The script included in this procedure is intended only as a model and needs to be carefully tailored to the needs of the specific site.

Prerequisites

- The amount of data scheduled for backup cannot exceed one tape when using this script.
- Make sure the tape is loaded in the backup device before the `cron` command runs the script.
- Make sure the device is connected and available, especially when using scripts that run at night. Use the `Isdev –C | pg` command to check availability.
- Make sure the backup device has been cleaned recently to prevent errors.
- If you are backing up file systems that might be in use, unmount them first to prevent file system corruption.
- Check the file system before making the backup. Use the procedure Verify File Systems or run the `fsck` command.

Back Up File Systems Using the cron Command

This procedure describes how to write a `crontab` script that you can pass to the `cron` command for execution. The script backs up two user file systems, `/home/plan` and `/home/run`, on Monday through Saturday nights. Both file systems are backed up on one tape, and each morning a new tape is inserted for the next night. The Monday night backups are full archives (level 0). The backups on Tuesday through Saturday are incremental backups.

1. The first step in making the `crontab` script is to issue the `crontab –e` command. This opens an empty file where you can make the entries that are submitted to the `cron` script for execution each night (the default editor is `vi`). Type:

   ```bash
   crontab –e
   ```

2. The following example shows the six `crontab` fields. Field 1 is for the minute, field 2 is for the hour on a 24-hour clock, field 3 is for the day of the month, and field 4 is for the month of the year. Fields 3 and 4 contain an * (asterisk) to show that the script runs every month on the day specified in the `day/wk` field. Field 5 is for the day of the week, and can also be specified with a range of days, for example, 1–6. Field 6 is for the shell command being run.

   ```bash
   min hr day/mo mo/yr day/wk       shell command
   0   2    *     *       1         backup –0 –uf /dev/rmt0.1 /home/plan
   ```

 The command line shown assumes that personnel at the site are available to respond to prompts when appropriate. The –0 (zero) flag for the `backup` command stands for level zero, or full backup. The –u flag updates the backup record in the `/etc/dumpdates` file and the f flag specifies the device name, a raw magnetic tape device 0.1 as in the example above. See rmt Special File in the AIX 5L Version 5.2 Files Reference for information on the meaning of extension .1 and other extensions (1–7).
3. Type a line similar to that in step 2 for each file system backed up on a specific day. The following example shows a full script that performs six days of backups on two file systems:

```
0 2 * * 1 backup -0 –uf /dev/rmt0.1 /home/plan
0 3 * * 1 backup -0 –uf /dev/rmt0.1 /home/run
0 2 * * 2 backup -1 –uf /dev/rmt0.1 /home/plan
0 3 * * 2 backup -1 –uf /dev/rmt0.1 /home/run
0 2 * * 3 backup -2 –uf /dev/rmt0.1 /home/plan
0 3 * * 3 backup -2 –uf /dev/rmt0.1 /home/run
0 2 * * 4 backup -3 –uf /dev/rmt0.1 /home/plan
0 3 * * 4 backup -3 –uf /dev/rmt0.1 /home/run
0 2 * * 5 backup -4 –uf /dev/rmt0.1 /home/plan
0 3 * * 5 backup -4 –uf /dev/rmt0.1 /home/run
0 2 * * 6 backup -5 –uf /dev/rmt0.1 /home/plan
0 3 * * 6 backup -5 –uf /dev/rmt0.1 /home/run
```

4. Save the file you created and exit the editor. The operating system passes the `crontab` file to the `cron` script.

Create a Remote Archive

Running AIX systems cannot mount a remote tape device as if it were local to the system; however, data can be sent to a remote machine tape device using the `rsh` command. This section describes how to archive files to a remote tape device. The following procedure writes to a single tape only. Multiple–tape archives require specialized application software.

In the following procedure, assume the following:

- **blocksize**: Represents the target tape device blocksize.
- **remotehost**: Is the name of the target system (the system that has the tape drive).
- **sourcehost**: Is the name of the source system (the system being archived).
- **/dev/rmt0**: Is the name of the remote tape device
- **pathname**: Represents the full pathname of a required directory or file.

The following instructions assume that both the local and remote user is root.

1. Ensure you have access to the remote machine. The source machine must have access to the system with the tape drive. (The target system can be accessed using any of the defined users on that system, but the user name must have root authority to do many of the following steps.)

2. Using your favorite editor, create a file in the `/ (root)` directory of the target system called `.rhosts` that allows the source system access to the target system. You need to add the authorized host name and user ID to this file. To determine the name of the source machine for the `.rhosts` file, you can use the following command:

   ```bash
   host SourceIPaddress
   ```

 For the purposes of this example, assume you add the following line to the `.rhosts` file:

   ```bash
   sourcehost.mynet.com root
   ```

3. Save the file and then change its permissions using the following command:

   ```bash
   chmod 600 .rhosts
   ```

4. Use the `rsh` command to test your access from the source machine. For example:

   ```bash
   rsh remotehost
   ```

 If everything is set up correctly, you should be granted shell access to the remote machine. You should not see a login prompt asking for a user name. Type `exit` to log out of this test shell.

5. Decide on the appropriate tape device blocksize. The following are the recommended values:
9–track or 0.25–in. media blocksize: 512
8–mm or 4–mm media blocksize: 1024

If you are unsure and want to check the current block size of the tape device, use the `tctl` command. For example:

```
tctl -f /dev/rmt0 status
```

If you want to change the tape blocksize, use the `chdev` command. For example:

```
chdev -l rmt0 -a block_size=1024
```

6. Create your archive using one of the following methods:

Backup by Name
To remotely create a backup archive by name, use the following command:

```
find pathname -print | backup -ivqf- | rsh remotehost \ 
"dd of=/dev/rmt0 bs= blocksize conv=sync"
```

Backup by inode
To remotely create a backup archive by inode, first unmount your file system then use the `backup` command. For example:

```
umount /myfs
backup -0 -uf- /myfs | rsh remotehost \ 
"dd ibs=5120 obs= blocksize of=/dev/rmt0"
```

Create and Copy an Archive to Remote Tape
To create and copy an archive to the remote tape device, use the following command:

```
tar -cvdf- pathname | rsh remotehost \ 
"dd of=/dev/rmt0 bs= blocksize conv=sync"
```

Create a Remote Dump
To remotely create a remote dump of the `/myfs` file system, use the following command:

```
rdump -u -0 -f remotehost :/dev/rmt0 /myfs
```

The `-u` flag tells the system to update the current backup level records in the `/etc/dumpdates` file. The `-0` is the setting of the `Level` flag. Backup level 0 specifies that all the files in the `/myfs` directory are to be backed up. For more information, see the `rdump` command description in *AIX 5L Version 5.2 Commands Reference*.

7. Restore your remote archive using one of the following methods:

Restore a Backup by Name
To restore a remote backup archive by name, use the following command:

```
rsh remotehost "dd if=/dev/rmt0 bs= blocksize " | restore \ 
-xvqdf- pathname
```

Restore a Backup by inode
To restore a remote backup archive by inode, use the following command:

```
rsh remotehost "dd if=/dev/rmt0 bs= blocksize " | restore \ 
-xvqf- pathname
```
Restore a Remote cpio Archive
To restore a remote archive created with the `cpio` command, use the following command:

```
rsh remotehost "dd if=/dev/rmt0 ibs=blocksize obs=5120" | 
cpio -icvdumB
```

Restore a tar Archive
To restore a remote `tar` archive, use the following command:

```
rsh remotehost "dd if=/dev/rmt0 bs=blocksize" | tar -xvpf- pathname
```

Restore a Remote Dump
To restore a remote dump of the `/myfs` file system, use the following command:

```
cd /myfs
rrestore -rvf remotehost :/dev/rmt0
```

Restoring from Backup Image Individual User Files
If you need to restore a backup image destroyed by accident, your most difficult problem is determining which of the backup tapes contains this file. The `restore -T` command can be used to list the contents of an archive. It is a good idea to restore the file in the `/tmp` directory so that you do not accidentally overwrite the user’s other files.

If the backup strategy included incremental backups, then it is helpful to find out from the user when the file was most recently modified. This helps to determine which incremental backup contains the file. If this information cannot be obtained or is found to be incorrect, then start searching the incremental backups in reverse order (7, 6, 5, ...). For incremental file system backups, the `-i` flag (interactive mode) of the `restore` command is very useful in both locating and restoring the lost file. (Interactive mode is also useful for restoring an individual user’s account from a backup of the `/home` file system.)

The procedures in the following table describe how to implement a level 0 (full) restoration of a directory or file system.

<table>
<thead>
<tr>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make sure the device is connected and available. To check availability, type:</td>
</tr>
<tr>
<td>`lsdev -C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Restoring from Backup Image Tasks</th>
<th>SMIT Fast Path</th>
<th>Command or File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restore Individual User Files</td>
<td><code>smit restfile</code></td>
<td>See <code>restore</code> command.</td>
</tr>
</tbody>
</table>
| Restoring a User File System | `smit restfilesys` | 1. `mkfs /dev/hd1`
 2. `mount /dev/hd1 /filesys`
 3. `cd /filesys`
 4. `restore -r` |
| Restoring a User Volume Group | `smit restvg` | See `restvg -q` command. |
Changing System Environment Variables

The system environment is primarily the set of variables that define or control certain aspects of process execution. They are set or reset each time a shell is started. From the system-management point of view, it is important to ensure the user is set up with the correct values at login. Most of these variables are set during system initialization. Their definitions are read from the /etc/profile file or set by default.

Testing the System Battery

If your system is losing track of time, the cause might be a depleted or disconnected battery. To determine the status of your system battery, type the following diag command:

```
diag -B -c
```

When the Diagnostics main menu appears, select the Problem Determination option. If the battery is disconnected or depleted, a problem menu will be displayed with a service request number (SRN). Record the SRN on Item 4 of the Problem Summary Form and report the problem to your hardware service organization.

If your system battery is operational, your system time might have been reset incorrectly because either the date or setclock command was run incorrectly or unsuccessfully. Refer to Resetting the System Clock on page 2-22 to correct the problem.

Resetting the System Clock

The system clock records the time of system events, allows you to schedule system events (such as running hardware diagnostics at 3:00 a.m.), and tells when you first created or last saved files. Use the date command to set your system clock. Use the setclock command to set the time and date by contacting a time server.

Using the date Command

The date command displays or sets the date and time. Enter the following command to determine what your system recognizes as the current date and time:

```
/usr/bin/date
```

Attention: Do not change the date when the system is running with more than one user.

The following formats can be used when setting the date with the Date parameter:

- `mmddHHMM [YYyy]` (default)
- `mmddHHMM [yy]`

The variables to the Date parameter are defined as follows:

- `mm` Specifies the number of the month.
- `dd` Specifies the number of the day in the month.
- `HH` Specifies the hour in the day (using a 24–hour clock).
- `MM` Specifies the minute number.
- `YY` Specifies the first two digits of a four–digit year.
- `yy` Specifies the last two numbers of the year.

With root authority, you can use the date command to set the current date and time. For example:

```
date 021714252002
```

Sets the date to Feb. 17, 2002, and time to 14:25. For more information about the date command, see its description in AIX 5L Version 5.2 Commands Reference.
Using the setclock Command

The setclock command displays or sets the time and date by requesting the current time from a time server on a network. To display your system's date and time, enter:

```
/usr/sbin/setclock
```

The setclock command takes the first response from the time server, converts the calendar clock reading found there, and shows the local date and time. If no time server responds, or if the network is not operational, the setclock command displays a message to that effect and leaves the date and time settings unchanged.

Note:: Any host running the inetd daemon can act as a time server.

With root authority, you can use the setclock command to send an Internet TIME service request to a time server host and sets the local date and time accordingly. For example:

```
setclock   TimeHost
```

Where TimeHost is the host name or IP address of the time server.

Changing the Message of the Day

The message of the day is displayed every time a user logs in to the system. It is a convenient way to communicate information to all users, such as installed software version numbers or current system news. To change the message of the day, use your favorite editor to edit the /etc/motd file.

Enabling Symbol.CPUGard

If your machine supports Dynamic Processor Deallocation, you can use SMIT or system commands to turn the feature on or off. Beginning with AIX 5.2, Symbol.CPUGard is enabled by default during installation, provided the machine has the correct hardware and firmware to support it. In previous versions of AIX, the feature is disabled by default, and if you try to enable it, a message alerts you when your machine cannot support this feature.

For additional information, see Enabling Symbol.CPUGard in the AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

SMIT Fastpath Procedure

1. With root authority, type smit system at the system prompt, then press Enter.
3. Use the SMIT dialogs to complete the task.

To obtain additional information for completing the task, you can select the F1 Help key in the SMIT dialogs.

Commands Procedure

With root authority, you can use the following commands to work with the Dynamic Processor Deallocation:

- Use the `chdev` command to change the characteristics of the device specified. For information about using this command, see `chdev` in the AIX 5L Version 5.2 Commands Reference, Volume 1.
- If the processor deallocation fails for any reason, you can use the `ha_star` command to restart it after it has been fixed. For information about using this command, see `ha_star` in the AIX 5L Version 5.2 Commands Reference, Volume 2.
- Use the `errpt` command to generate a report of logged errors. For information about using this command, see `errpt` in the AIX 5L Version 5.2 Commands Reference, Volume 2.
Monitoring and Managing Processes

This section describes procedures that you, as the system administrator, can use to manage processes. See Monitoring and Managing Processes in the AIX 5L Version 5.2 System Management Concepts: Operating System and Devices and see also AIX 5L Version 5.2 System User’s Guide: Operating System and Devices for basic information on managing your own processes; for example, restarting or stopping a process that you started or scheduling a process for a later time.

Process Monitoring

The ps command is the primary tool for observing the processes in the system. Most of the flags of the ps command fall into one of two categories:

- Flags that specify which types of processes to include in the output
- Flags that specify which attributes of those processes are to be displayed

The most widely useful variants of ps for system–management purposes are:

```
ps –ef
```

Lists all nonkernel processes, with the userid, process ID, recent CPU usage, total CPU usage, and the command that started the process (including its parameters).

```
ps –fu UserID
```

Lists all of the processes owned by UserID, with the process ID, recent CPU usage, total CPU usage, and the command that started the process (including its parameters).

To identify the current heaviest users of CPU time, you could enter:

```
ps –ef | egrep –v “STIME|$LOGNAME” | sort +3 –r | head –n 15
```

This command lists, in descending order, the 15 most CPU–intensive processes other than those owned by you.

For more specialized uses, the following two tables are intended to simplify the task of choosing ps flags by summarizing the effects of the flags.

Process–Specifying Flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>–A</th>
<th>–a</th>
<th>–d</th>
<th>–e</th>
<th>–G</th>
<th>–k</th>
<th>–p</th>
<th>–t</th>
<th>–U</th>
<th>–u</th>
<th>a</th>
<th>g</th>
<th>t</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>All processes</td>
<td>Y</td>
<td>–</td>
</tr>
<tr>
<td>Not processes group leaders and not associated with a terminal</td>
<td>–</td>
<td>Y</td>
<td>–</td>
</tr>
<tr>
<td>Not process group leaders</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
</tr>
<tr>
<td>Not kernel processes</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
</tr>
<tr>
<td>Members of specified–process groups</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Kernel processes</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Those specified in process number list</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Those associated with tty(s) in the list</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y (n tty)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Specified user processes</td>
<td>–</td>
</tr>
</tbody>
</table>

```
ps –ef | egrep –v “STIME|$LOGNAME” | sort +3 –r | head –n 15
```

This command lists, in descending order, the 15 most CPU–intensive processes other than those owned by you.
Processes with terminals

| | – | – | – | – | – | – | – | – | Y | – | – |

Not associated with a tty

| | – | – | – | – | Y | – | – | – | – | – | Y |

Column–Selecting Flags

<table>
<thead>
<tr>
<th></th>
<th>–f</th>
<th>–l</th>
<th>–U</th>
<th>Default2</th>
<th>e</th>
<th>l</th>
<th>s</th>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>TTY</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>TIME</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>CMD</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>USER</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
</tr>
<tr>
<td>UID</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PPID</td>
<td>–</td>
<td>Y</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C</td>
<td>–</td>
<td>Y</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>STIME</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>F</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>S/STAT</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>PIR</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>NI/NICE</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ADDR</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>SIZE</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
</tr>
<tr>
<td>SZ</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>WCHAN</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>RSS</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>SSIZ</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>%CPU</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>%MEM</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PGIN</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
</tr>
<tr>
<td>LIM</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
</tr>
<tr>
<td>TSIZ</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
</tr>
<tr>
<td>TRS</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Y</td>
</tr>
</tbody>
</table>

Environment (following the command)

| | – | – | – | – | Y | – | – | – | – |

If `ps` is given with no flags or with a process–specifying flag that begins with a minus sign, the columns displayed are those shown for Default1. If the command is given with a process–specifying flag that does not begin with minus, Default2 columns are displayed. The `–u` or `–U` flag is both a process–specifying and column–selecting flag.

The following are brief descriptions of the contents of the columns:

- **PID**: Process ID
- **TTY**: Terminal or pseudo–terminal associated with the process
- **TIME**: Cumulative CPU time consumed, in minutes and seconds
- **CMD**: Command the process is running
- **USER**: Login name of the user to whom the process belongs
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID</td>
<td>Numeric user ID of the user to whom the process belongs</td>
</tr>
<tr>
<td>PPID</td>
<td>ID of the parent process of this process</td>
</tr>
<tr>
<td>C</td>
<td>Recently used CPU time</td>
</tr>
<tr>
<td>STIME</td>
<td>Time the process started, if less than 24 hours. Otherwise the date the process is started</td>
</tr>
<tr>
<td>F</td>
<td>Eight–character hexadecimal value describing the flags associated with the process (see the detailed description of the <code>ps</code> command)</td>
</tr>
<tr>
<td>S/STAT</td>
<td>Status of the process (see the detailed description of the <code>ps</code> command)</td>
</tr>
<tr>
<td>PRI</td>
<td>Current priority value of the process</td>
</tr>
<tr>
<td>NI/NICE</td>
<td>Nice value for the process</td>
</tr>
<tr>
<td>ADDR</td>
<td>Segment number of the process stack</td>
</tr>
<tr>
<td>SIZE</td>
<td>The virtual size of the data section of the process (in kilobytes)</td>
</tr>
<tr>
<td>STIME</td>
<td>The size in kilobytes of the core image of the process.</td>
</tr>
<tr>
<td>WCHAN</td>
<td>Event on which the process is waiting</td>
</tr>
<tr>
<td>RSS</td>
<td>Sum of the numbers of working–segment and code–segment pages in memory times 4</td>
</tr>
<tr>
<td>SSIZ</td>
<td>Size of the kernel stack</td>
</tr>
<tr>
<td>%CPU</td>
<td>Percentage of time since the process started that it was using the CPU</td>
</tr>
<tr>
<td>%MEM</td>
<td>Nominally, the percentage of real memory being used by the process, this measure does not correlate with any other memory statistics</td>
</tr>
<tr>
<td>PGIN</td>
<td>Number of page ins caused by page faults. Since all I/O is classified as page faults, this is basically a measure of I/O volume</td>
</tr>
<tr>
<td>LIM</td>
<td>Always xx</td>
</tr>
<tr>
<td>TSIZ</td>
<td>Size of the text section of the executable file</td>
</tr>
<tr>
<td>TRS</td>
<td>Number of code–segment pages times 4</td>
</tr>
<tr>
<td>Environment</td>
<td>Value of all the environment variables for the process</td>
</tr>
</tbody>
</table>

Altering Process–Priority

 Basically, if you have identified a process that is using too much CPU time, you can reduce its effective priority by increasing its nice value with the `renice` command. For example:

```
renice +5        ProcID
```

The nice value of the `ProcID`’s would increase process from the normal 20 of a foreground process to 25. You must have root authority to reset the process `ProcID`’s nice value to 20.

Type:

```
renice -5        ProcID
```
Terminating a Process

Normally, you use the `kill` command to end a process. The `kill` command sends a signal to the designated process. Depending on the type of signal and the nature of the program that is running in the process, the process might end or might keep running. The signals you send are:

- **SIGTERM** (signal 15) is a request to the program to terminate. If the program has a signal handler for SIGTERM that does not actually terminate the application, this `kill` may have no effect. This is the default signal sent by `kill`.

- **SIGKILL** (signal 9) is a directive to kill the process immediately. This signal cannot be caught or ignored.

It is typically better to issue SIGTERM rather than SIGKILL. If the program has a handler for SIGTERM, it can clean up and terminate in an orderly fashion. Type:

```
kill -term ProcessID
```

(The `–term` could be omitted.) If the process does not respond to the SIGTERM, type:

```
kill –kill ProcessID
```

You might notice occasional defunct processes, also called *zombies*, in your process table. These processes are no longer executing, have no system space allocated, but still retain their PID number. You can recognize a zombie process in the process table because it displays `<defunct>` in the CMD column. For example:

```
UID   PID  PPID   C    STIME    TTY  TIME CMD
...  ...
lee 22392 20682   0   Jul 10      –  0:05 xclock
lee 22536 21188   0   Jul 10  pts/0  0:00  /bin/ksh
lee 22918 24334   0   Jul 10  pts/1  0:00  /bin/ksh
lee 23526 22536   22  0:00 <defunct>
lee 24334 20682   0   Jul 10      ?  0:00 aixterm
lee 24700   1     0   Jul 16      ?  0:00 aixterm
root 25394 26792   2   Jul 16  pts/2  0:00 ksh
lee 26070 24700   0   Jul 16  pts/3  0:00  /bin/ksh
lee 26792 20082   0   Jul 10  pts/2  0:00  /bin/ksh
root 27024 25394   2 17:10:44  pts/2  0:00 ps –ef
```

Zombie processes continue to exist in the process table until the parent process dies or the system is shut down and restarted. In the example shown above, the parent process (PPID) is the `ksh` command. When the Korn shell is exited, the defunct process is removed from the process table.

Sometimes a number of these defunct processes collect in your process table because an application has forked several child processes and has not exited. If this becomes a problem, the simplest solution is to modify the application so its `sigaction` subroutine ignores the `SIGCHLD` signal. For more information, see the `sigaction` subroutine in AIX 5L Version 5.2 Technical Reference: Base Operating System and Extensions Volume 2.
Binding or Unbinding a Process

On multiprocessor systems, you can bind a process to a processor or unbind a previously bound process from:

- Web-based System Manager
- SMIT
- command line

Note: While binding a process to a processor might lead to improved performance for the bound process (by decreasing hardware-cache misses), overuse of this facility could cause individual processors to become overloaded while other processors are underused. The resulting bottlenecks could reduce overall throughput and performance. During normal operations, it is better to let the operating system assign processes to processors automatically, distributing system load across all processors. Bind only those processes that you know can benefit from being run on a single processor.

Prerequisites

You must have root user authority to bind or unbind a process you do not own.

Binding or Unbinding a Process Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>SMIT Fast Path</th>
<th>Command or File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binding a Process</td>
<td>smit bindproc</td>
<td>bindprocessor –q</td>
</tr>
<tr>
<td>Unbinding a Process</td>
<td>smit ubindproc</td>
<td>bindprocessor –u</td>
</tr>
</tbody>
</table>

Fixing Stalled or Unwanted Processes

Stalled or unwanted processes can cause problems with your terminal. Some problems produce messages on your screen that give information about possible causes.

To perform the following procedures, you must have either a second terminal, a modem, or a network login. If you do not have any of these, fix the terminal problem by rebooting your machine.

Choose the appropriate procedure for fixing your terminal problem:

- Free a Terminal Taken Over by Processes
- Respond to Screen Messages

Free a Terminal Taken Over by Processes

Identify and stop stalled or unwanted processes by doing the following:

1. Determine the active processes running on the screen by typing the following `ps` command:

   ```bash
   ps -ef | pg
   ```

 The `ps` command shows the process status. The `–e` flag writes information about all processes (except kernel processes), and the `f` flag generates a full listing of processes including what the command name and parameters were when the process was created. The `pg` command limits output to a single page at a time, so information does not quickly scroll off the screen.

 Suspicious processes include system or user processes that use up excessive amounts of a system resource such as CPU or disk space. System processes such as `sendmail`, `routed`, and `lpd` frequently become runaways. Use the `ps –u` command to check CPU usage.
2. Determine who is running processes on this machine by using the **who** command:

   ```
   who
   ```

 The **who** command displays information about all users currently on this system, such as login name, workstation name, date, and time of login.

3. Determine if you need to stop, suspend, or change the priority of a user process.

 Note: You must have root authority to stop processes other than your own. If you terminate or change the priority of a user process, contact the process owner and explain what you have done.

 - Stop the process using the **kill** command. For example:

     ```
     kill 1883
     ```

 The **kill** command sends a signal to a running process. To stop a process, specify the process ID (PID), which is 1883 in this example. Use the **ps** command to determine the PID number of commands.

 - Suspend the process and run it in the background by using the ampersand (&). For example:

     ```
     /u/bin1/prog1 &
     ```

 The & signals that you want this process to run in the background. In a background process, the shell does not wait for the command to complete before returning the shell prompt. When a process requires more than a few seconds to complete, run the command in background by typing an & at the end of the command line. Jobs running in the background appear in the normal **ps** command.

 - Change the priority of the processes that have taken over by using the following **renice** command:

     ```
     renice 20 1883
     ```

 The **renice** command alters the scheduling priority of one or more running processes. The higher the number, the lower the priority with 20 being the lowest priority.

 In the previous example, **renice** reschedules process number 1883 to the lowest priority. It will run when there is a small amount of unused processor time available.

Respond to Screen Messages

Respond to and recover from screen messages by doing the following:

1. Make sure the **DISPLAY** environment variable is set correctly. Use either of the following methods to check the **DISPLAY** environment:

 - Use the **setsenv** command to display the environment variables.

     ```
     setsenv
     ```

 The **setsenv** command displays the protected state environment when you logged in.

 Determine if the **DISPLAY** variable has been set. In the following example, the **DISPLAY** variable does not appear, which indicates that the **DISPLAY** variable is not set to a specific value.

     ```
     SYSENVIRON:
     NAME=casey
     TTY=/dev/pts/5
     LOGNAME=casey
     LOGIN=casey
     ```

 OR

 - Change the value of the **DISPLAY** variable. For example, to set it to the machine named **bastet** and terminal 0, enter:

     ```
     DISPLAY=bastet:0
     ```

     ```
     export DISPLAY
     ```
If not specifically set, the **DISPLAY** environment variable defaults to `unix:0` (the console). The value of the variable is in the format `name: number` where `name` is the host name of a particular machine, and `number` is the X server number on the named system.

2. Reset the terminal to its defaults using the following **stty** command:

   ```
   stty sane
   ```

 The **stty sane** command restores the “sanity” of the terminal drivers. The command outputs an appropriate terminal resetting code from the `/etc/termcap` file (or `/usr/share/lib/terminfo` if available).

3. If the Return key does not work correctly, reset it by entering:

   ```
   ^J stty sane ^J
   ```

 The `^J` represents the Ctrl–J key sequence.

RT_MPC and RT_GRQ

The use of multiple queues increases the processor affinity of threads, but there is a special situation where you might want to counteract this effect. When there is only one run queue, a thread that has been awakened (the waking thread) by another running thread (the waker thread) would normally be able to use the CPU immediately on which the waker thread was running. With multiple run queues, the waking thread may be on the run queue of another CPU which cannot notice the waking thread until the next scheduling decision. This may result in up to a 10 ms delay.

This is similar to scenarios in earlier releases of this operating system which might have occurred using the bindprocessor option. If all CPUs are constantly busy, and there are a number of interdependent threads waking up, there are two options available.

- The first option, which uses one run queue, is to set the environment variable `RT_GRQ=ON` which forces unbound selected threads to be dispatched off the global run queue.

- Alternatively, you can choose the real time kernel option (type the command `bosdebug -R on` and then `bosboot`) and the `RT_MPC=ON` environment variable for selected processes. It is essential to maintain a performance log of your systems to closely monitor the impact of any tuning you attempt.
Chapter 3. Physical and Logical Volume Storage Management Tasks

This chapter contains instructions for managing the logical structure of the AIX operating system. Tasks are collected into the following categories:

- Physical and Logical Volumes
- Paging Space and Virtual Memory
Physical and Logical Volumes

This section provides several procedures for configuring disk drives for use by the Logical Volume Manager (LVM), maintaining physical and logical volumes and volume groups, and troubleshooting problems you might encounter. How-To's for System Management Tasks provides scenarios for additional Logical Volume Manager (LVM) tasks, such as how to use the snapshot feature (available with AIX 5.2 and later versions) to protect the consistency of your mirrored volume groups from potential disk failure.
LVM Configuration Tasks

The Logical Volume Manager (LVM) is installed with the base operating system and needs no further configuration. However, disks must be configured and defined as a physical volume before the LVM can use them. If you want to set up raw logical volumes for use by an application, see Define a Raw Logical Volume for an Application.

This section provides instructions for the following configuration tasks:

- Configuring a Disk
- Making an Available Disk a Physical Volume

Configuring a Disk

You can configure a new disk in any of the following ways.

- If you can shut down and power off the system, use Method 1 on page 3-3. Whenever possible, it is always preferable to shut down and power off any system when you are attaching a physical disk to it.
- If you cannot shut down your system and you know details about the new disk, such as the subclass, type, parent name, and where it is connected, use Method 2 on page 3-3.
- If you cannot shut down your system and you only know the location of the disk, use Method 3 on page 3-4.

After a disk is configured, although it is generally available for use, the Logical Volume Manager requires that it is further identified as a physical volume.

Method 1

Use the following method when you can shut down and power off the system before attaching the disk:

1. Physically connect the new disk to the system and then power on the disk and system according to the documentation that came with your system.

2. During system boot, let the Configuration Manager (cfgmgr) automatically configure the disk.

3. After system boot, with root authority, type the lspv command at the command line to look for the new disk's name. The system returns an entry similar to one of the following:

   ```
   hdisk1  none                     none
   OR:
   hdisk1  00005264d21adb2e         none
   ```

 The first field identifies the system–assigned name of the disk. The second field displays the physical volume ID (PVID), if any. If the new disk does not appear in the lspv output, refer to the AIX 5L Version 5.2 Installation Guide and Reference.

 At this point, the disk is usable by the system but it needs a PVID for use by the LVM. If the new disk does not have a PVID, then see Making an Available Disk a Physical Volume on page 3-4.

Method 2

Use the following method when you cannot shut down your system and you know the following information about the new disk:

- How the disk is attached (subclass)
- The type of the disk (type)
- Which system attachment the disk is connected to (parent name)
- The logical address of the disk (where connected).

Do the following:
1. Physically connect the new disk to the system and then power on the disk and system according to the documentation that came with your system.

2. To configure the disk and ensure that it is available as a physical volume, use the `mkdev` command with the flags shown, as in the following example:

   ```bash
   mkdev -c disk -s scsi -t 2200mb -p scsi3 \
   -w 6,0 -a pv=yes
   ``

   This example adds a 2.2 GB disk with a SCSI ID of 6 and logical unit number of 0 to the scsi3 SCSI bus. The `-c` flag defines the class of the device. The `-s` flag defines the subclass. The `-t` flag defines the type of device. The `-p` flag defines the parent device name that you want to assign. The `-w` flag designates the disk's location by SCSI ID and logical unit number. The `-a` flag specifies the device attribute-value pair, `pv=yes`, which makes the disk a physical volume and writes a boot record with a unique physical volume identifier onto the disk (if it does not already have one).

At this point, the disk is defined both as an available device and as a physical volume. You can type the `lspv` command on the command line to list the new disk entry. If the new disk does not appear in the `lspv` output, refer to the *AIX 5L Version 5.2 Installation Guide and Reference*.

**Method 3**

Use the following method when you cannot shut down your system and you know only the location of the disk:

1. Physically connect the new disk to the system and then power on the disk and system according to the documentation that came with your system.

2. To check which physical disks are already configured on the system, type the `lspv` command on the command line. The output looks similar to the following:

   ```bash
 hdisk0 000005265ac63976 rootvg
 ``

3. Type `cfgmgr` on the command line to enter the Configuration Manager. The Configuration Manager automatically detects and configures all newly connected devices on the system, including the new disk.

4. To confirm that the new disk was configured, type the `lspv` command again. The output looks similar to one of the following:

   ```bash
   hdisk1    none                none
   OR
   hdisk1    000005264d21adb2e     none
   ``

   The first field identifies the system-assigned name of the disk. The second field displays the physical volume ID (PVID), if any. If the new disk does not appear in the `lspv` output, refer to the *AIX 5L Version 5.2 Installation Guide and Reference*.

At this point, the disk is usable by the system but it needs a PVID for use by the LVM. If the new disk does not have a PVID, then see Making an Available Disk a Physical Volume on page 3-4.

**Making an Available Disk a Physical Volume**

A disk must be configured as a physical volume before it can be assigned to volume groups and used by the LVM. Use the following instructions to configure a physical volume:

1. Ensure the disk is known to the operating system, is available, and is not being used by the operating system or any applications. Type the `lspv` command on the command line. The output looks similar to the following:

   ```bash
 hdisk1 none none
 ``

 Check the output for the following:
– If the new disk’s name does not appear in command output, refer to Configuring a Disk.

– If the second field of the output shows a system-generated physical volume identifier (PVID) (for example, 00005264d21adb2e), the disk is already configured as a physical volume and you do not have to complete this procedure.

– If the third field of the output shows a volume group name (for example, rootvg), the disk is currently being used and is not an appropriate choice for this procedure.

If the new disk has no PVID and is not in use, continue with the next step.

2. To change an available disk to a physical volume, type the chdev command on the command line. For example:

 chdev -l hdisk3 -a pv=yes

 The –l flag specifies the device name of the disk. The –a flag specifies the device attribute-value pair, pv=yes, which makes the disk a physical volume and writes a boot record with a unique physical volume identifier onto the disk (if it does not already have one).

 At this point, the disk is defined as a physical volume. You can type the lspv command on the command line to list the new disk entry.
LVM Maintenance Tasks

The simplest tasks you might need when maintaining the entities that LVM controls (physical and logical volumes, volume groups, and file systems) are grouped within the following table. Instructions for additional maintenance tasks are located later in this section or in How–To’s for System Management Tasks. Instructions that are specific to file systems are located in File Systems Management Tasks.

You must have root authority to perform most of the following tasks. For your convenience, links to all the logical volume, physical volume, and volume group maintenance tasks are listed below:

- Activating a Volume Group
- Adding Disks while the System Remains Available
- Adding a Fixed Disk Without Data to an Existing Volume Group
- Adding a Fixed Disk Without Data to a New Volume Group
- Adding a JFS to a Previously Defined Logical Volume Menu
- Adding a Logical Volume
- Adding and Activating a New Volume Group
- Add a Removable Media Drive
- Adding a Volume Group
- Changing a Logical Volume to Use Data Allocation
- Changing a Volume Group to Nonquorum Status
- Changing a Volume Group to Use Automatic Activation
- Changing or Setting Logical Volume Policies
- Changing the Name of a Logical Volume
- Changing a Volume Group Name
- Copying a Logical Volume to a New Logical Volume
- Copying a Logical Volume to an Existing Logical Volume of Larger Size
- Copying a Logical Volume to an Existing Logical Volume of Smaller Size
- Copying a Logical Volume to an Existing Logical Volume of the Same Size
- Copying a Logical Volume to Another Physical Volume
- Creating a File System Log on a Dedicated Disk for a User–Defined Volume Group
- Deactivating a Volume Group
- Designating Hot Spare Disks
- Enabling and Configuring Hot Spot Reporting
- Enabling Write–Verify and Change Scheduling Policy
- Importing or Exporting a Volume Group
- Increasing the Maximum Size of a Logical Volume
- Increasing the Size of a Logical Volume
- Listing All Logical Volumes by Volume Group
- Listing All Physical Volumes in the System
- Listing All Volume Groups
- Listing the Contents of a Physical Volume
• Listing the Contents of a Volume Group
• Listing the Size of a Logical Volume
• Migrating the Contents of a Physical Volume
• Mirroring a Logical Volume with or without Data Allocation
• Mirroring a Volume Group
• Mirroring the Root Volume Group
• Powering Off a Disk
• Powering On a Removable Disk
• Removing a Disk while the System Remains Available
• Removing a Disk with Data from the Operating System
• Removing a Disk without Data
• Removing a Logical Volume
• Removing a Volume Group
• Reorganizing a Volume Group
• Resizing a RAID Volume Group
• Unconfiguring and Powering Off a Disk

Table 2. Managing Logical Volumes and Storage Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>SMIT Fast Path</th>
<th>Command or File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activate a volume group</td>
<td>smit varyonvg</td>
<td></td>
</tr>
<tr>
<td>Add a fixed disk without data to existing volume group</td>
<td>smit extendvg</td>
<td></td>
</tr>
<tr>
<td>Add a fixed disk without data to new volume group</td>
<td>smit mkvg</td>
<td></td>
</tr>
<tr>
<td>Add a logical volume Note 1</td>
<td>smit mklv</td>
<td></td>
</tr>
<tr>
<td>Add a volume group</td>
<td>smit mkvg</td>
<td></td>
</tr>
<tr>
<td>Add and activate a new volume group</td>
<td>smit mkvg</td>
<td></td>
</tr>
<tr>
<td>Change a logical volume to use data allocation</td>
<td>smit chlv1</td>
<td></td>
</tr>
<tr>
<td>Change the name of a volume group Note 2</td>
<td>1. smit varyoffvg 2. smit exportvg 3. smit importvg 4. smit mountfs</td>
<td>1. varyoffvg OldVGName 2. exportvg OldVGName 3. importvg NewVGName 4. mount all</td>
</tr>
<tr>
<td>Change a volume group to use automatic activation</td>
<td>smit chvg</td>
<td></td>
</tr>
<tr>
<td>Change or set logical volume policies</td>
<td>smit chlv1</td>
<td></td>
</tr>
<tr>
<td>Copy a logical volume to a new logical volume Note 3</td>
<td>smit cplv</td>
<td></td>
</tr>
<tr>
<td>Copy a logical volume to an existing logical volume of the same size Attn 1</td>
<td>smit cplv</td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>Command</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Copy a logical volume to an existing logical volume of smaller size (^1) @T> Note 3</td>
<td>Do not use SMIT (^2)</td>
<td></td>
</tr>
<tr>
<td>Attn 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Create logical volume. For example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Create new file system on new logical volume. For example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Mount file system. For example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Create directory at new mount point. For example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Transfer files system from source to destination logical volume. For example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>smit cplv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deactivate a volume group</td>
<td>smit varyoffvg</td>
<td></td>
</tr>
<tr>
<td>Enable write–verify and change scheduling policy</td>
<td>smit chlv1</td>
<td></td>
</tr>
<tr>
<td>Increase the maximum size of a logical volume</td>
<td>smit chlv1</td>
<td></td>
</tr>
<tr>
<td>Increase the size of a logical volume</td>
<td>smit extendlv</td>
<td></td>
</tr>
<tr>
<td>List all logical volumes by volume group</td>
<td>smit lsv2</td>
<td></td>
</tr>
<tr>
<td>List all physical volumes in system</td>
<td>smit lspv2</td>
<td></td>
</tr>
<tr>
<td>List all volume groups</td>
<td>smit lsvg2</td>
<td></td>
</tr>
<tr>
<td>List the status, logical volumes, or partitions of a physical volume</td>
<td>smit lspv</td>
<td></td>
</tr>
<tr>
<td>List the contents of a volume group</td>
<td>smit lsvg1</td>
<td></td>
</tr>
<tr>
<td>List a logical volume's status or mapping</td>
<td>smit ls1v</td>
<td></td>
</tr>
<tr>
<td>Mirror a logical volume with or without data allocation</td>
<td>smit mklvcopy</td>
<td></td>
</tr>
<tr>
<td>Power off a removable disk</td>
<td>smit offdsk</td>
<td>Available with the hot–removability feature only</td>
</tr>
<tr>
<td>Power on a removable disk</td>
<td>smit ondsk</td>
<td>Available with the hot–removability feature only</td>
</tr>
</tbody>
</table>
Physical and Logical Volume Storage Management Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove a disk with data from the operating system</td>
<td>smit exportvgrds</td>
</tr>
<tr>
<td>Remove a disk without data from the operating system</td>
<td>smit reducevgrds</td>
</tr>
<tr>
<td>Remove mirroring from a volume group</td>
<td>smit unmirrorvg</td>
</tr>
<tr>
<td>Remove a volume group</td>
<td>smit reducevg2</td>
</tr>
<tr>
<td>Reorganize a volume group</td>
<td>smit reorgvg</td>
</tr>
<tr>
<td>Unconfigure and power off a disk</td>
<td>smit rmvdsk1 or</td>
</tr>
<tr>
<td></td>
<td>smit rmvdsk then</td>
</tr>
<tr>
<td></td>
<td>smit opendoor</td>
</tr>
</tbody>
</table>

Attention:

1. Using this procedure to copy to an existing logical volume will overwrite any data on that volume without requesting user confirmation.

2. Do not use the SMIT procedure or the `cplv` command to copy a larger logical volume to a smaller one. Doing so results in a corrupted file system because some of the data (including the superblock) is not copied to the smaller logical volume. Notes:

 1. After you create a logical volume, the state will be closed because no LVM structure is using that logical volume. It will remain closed until a file system has been mounted over the logical volume or the logical volume is opened for raw I/O. See also Define a Raw Logical Volume for an Application.

 2. You cannot change the name of, import, or export `rootvg`.

 3. You must have enough direct access storage to duplicate a specific logical volume.

Adding Disks while the System Remains Available

The following procedure describes how to turn on and configure a disk using the hot-removability feature, which lets you add disks without powering off the system. You can add a disk for additional storage or to correct a disk failure. To remove a disk using the hot-removability feature, see Removing a Disk while the System Remains Available on page 3-21. This feature is only available on certain systems.

1. Install the disk in a free slot of the cabinet. For detailed information about the installation procedure, see the service guide for your machine.

2. Power on the new disk by typing the following fast path on the command line:

   ```
   smit ondisk
   ```

 At this point, the disk is added to the system but it is not yet usable. What you do next depends on whether the new disk contains data.

 - If the disk has no data, add it as a physical volume to a volume group using one of the following:
 - To add the disk to an existing volume group, type the following fast path on the command line:

       ```
       smit extendvg
       ```

 - To add the disk to a new volume group, type the following fast path on the command line:

       ```
       smit mkvg
       ```

 - If the disk contains data, import the data using the procedure in Importing or Exporting a Volume Group on page 3-16.
Changing a Volume Group to Nonquorum Status

You can change a volume group to nonquorum status to have data continuously available even when there is no quorum. This procedure is often used for systems with the following configurations:

- A two-disk volume group in which the logical volumes are mirrored
- A three-disk volume group in which the logical volumes are mirrored either once or twice

When a volume group under these circumstances can operate in nonquorum status, then even if a disk failure occurs, the volume group remains active as long as one logical volume copy remains intact on a disk. For conceptual information about quorums, refer to AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

To make recovery of nonquorum groups possible, ensure the following:

- If your system uses JFS or JFS2 file systems, mirror the JFS log logical volume.
- Place mirrored copies on separate disks. If you are unsure of the configuration, type the following command to check the physical location (PV1, PV2, and PV3) of each logical partition. (To place the copies on separate disks, the PV1, PV2, and PV3 columns must contain different hdisk numbers.)

```
lslv -m LVName
```

If a logical volume has its only copies residing on the same disk, and that disk becomes unavailable, the volume will not be available to the user regardless of the quorum or nonquorum status of its volume group.

Both user-defined and rootvg volume groups can operate in nonquorum status, but their configuration and recovery methods are different.

Changing a User-Defined Volume Group to Nonquorum Status

Use the following procedure to change a user-defined volume group to nonquorum status:

1. Check whether the user-defined volume group is currently active (varied on) by typing the following command:

```
lsvg -o
```

If the group you want is not listed, continue with step 3. If the group you want is listed, continue with step 2.

2. If the group is active (varied on), type the following command:

```
varyoffvg VGName
```

Where VGName is the name of your user-defined volume group.

3. To change an inactive user-defined volume group to nonquorum status, type the following command:

```
chvg -Qn VGName
```

If the volume group is active, the change does not take effect until the next varyoff/varyon cycle completes.

4. To activate the volume group and cause the change to take effect, type the following command:

```
varyonvg VGName
```

Note: To activate a nonquorum user-defined volume group, all of the volume group’s physical volumes must be accessible or the activation fails. Because nonquorum volume groups stay online until the last disk becomes inaccessible, it is necessary to have each disk accessible at activation time.

At this point, your user-defined volume group should be available even if a quorum of physical volumes is not available.
Physical and Logical Volume Storage Management Tasks

Changing the rootvg Volume Group to Nonquorum Status

The procedure to change a rootvg to nonquorum status requires shutting down your system and rebooting. **Attention:** When a disk associated with the rootvg volume group is missing, avoid powering on the system unless the missing disk cannot possibly be repaired. The Logical Volume Manager (LVM) always uses the –f flag to forcibly activate (vary on) a nonquorum rootvg; this operation involves risk. LVM must force the activation because the operating system cannot be brought up unless rootvg is activated. In other words, LVM makes a final attempt to activate (vary on) a nonquorum rootvg even if only a single disk is accessible.

1. To change the rootvg volume group to nonquorum status, type the following command:
   ```
   chvg -Qn rootvg
   ```

2. To shut down and reboot the system, which causes the change to nonquorum status to take effect, type:
   ```
   shutdown -Fr
   ```

 At this point, the rootvg should remain available even if a quorum of physical volumes is not available.

Changing the Name of a Logical Volume

The following procedure describes how to rename a logical volume without losing data on the logical volume.

In the following examples, the logical volume name is changed from lv00 to lv33.

1. Unmount all file systems associated with the logical volume, by typing:
   ```
   unmount / FSname
   ```
 Where `FSname` is the full name of a file system. Notes:
 a. The `unmount` command fails if the file system you are trying to unmount is currently being used. The `unmount` command executes only if none of the file system's files are open and no user's current directory is on that device.

 b. Another name for the `unmount` command is `umount`. The names are interchangeable.

2. Rename the logical volume, by typing:
   ```
   chlv -n NewLVname OldLVname
   ```
 Where the –n flag specifies the new logical volume name (NewLVname) and OldLVname is the name you want to change. For example:
   ```
   chlv -n lv33 lv00
   ```
 Note:: If you rename a JFS or JFS2 log, the system prompts you to run the `chfs` command on all file systems that use the renamed log device.

3. Remount the file systems you unmounted in step 1 by typing:
   ```
   mount /test1
   ```
 At this point, the logical volume is renamed and available for use.

Copying a Logical Volume to Another Physical Volume

Depending on your needs, there are several ways to copy a logical volume to another physical volume while retaining file system integrity. The following sections describe your options.

Note:: For the following scenarios to be successful in a concurrent volume group environment, AIX 4.3.2 or later must be installed on all concurrent nodes.

- Copy a Logical Volume
- Copy a Logical Volume While Original Logical Volume Remains Usable
• Copy a Raw Logical Volume to Another Physical Volume

This scenario offers multiple methods to copy a logical volume or JFS to another physical volume. Choose the method that best serves your purposes:

Copy a Logical Volume

The simplest method is to use the `cplv` command to copy the original logical volume and create a new logical volume on the destination physical volume.

1. Stop using the logical volume. Unmount the file system, if applicable, and stop any application that accesses the logical volume.

2. Select a physical volume that has the capacity to contain all of the data in the original logical volume. **Attention:** If you copy from a larger logical volume containing data to a smaller one, you can corrupt your file system because some data (including the superblock) might be lost.

3. Copy the original logical volume (in this example, it is named lv00) and create the new one, using the following command:

   ```
   cplv lv00
   ```

4. Mount the file systems, if applicable, and restart applications to begin using the logical volume.

At this point, the logical volume copy is usable.

Copy a Logical Volume While Original Logical Volume Remains Usable

If your environment requires continued use of the original logical volume, you can use the `splitlvcopy` command to copy the contents, as shown in the following example:

1. Mirror the logical volume, using the following SMIT fast path:

   ```
   smit mklvcopy
   ```

2. Stop using the logical volume. Unmount the file system, if applicable, and stop or put into quiescent mode any application that accesses the logical volume. **Attention:** The next step uses the `splitlvcopy` command. Always close logical volumes before splitting them and unmount any contained file systems before using this command. Splitting an open logical volume can corrupt your file systems and cause you to lose consistency between the original logical volume and the copy if the logical volume is accessed simultaneously by multiple processes.

3. With root authority, copy the original logical volume (`oldlv`) to the new logical volume (`newlv`) using the following command:

   ```
   splitlvcopy -y newlv oldlv
   ```

 The `-y` flag designates the new logical volume name. If the `oldlv` volume does not have a logical volume control block, the `splitlvcopy` command completes successfully but generates a message that the `newlv` volume has been created without a logical volume control block.

4. Mount the file systems, if applicable, and restart applications to begin using the logical volume.

At this point, the logical volume copy is usable.
Copy a Raw Logical Volume to Another Physical Volume

To copy a raw logical volume to another physical volume, do the following:

1. Create a mirrored copy of the logical volume on a new physical volume in the volume group using the following command:

 mklvcopy LogVol_name 2 new_PhysVol_name

2. Synchronize the partitions in the new mirror copy using the following command:

 syncvg -l LogVol_name

3. Remove the copy of the logical volume from the physical volume using the following command:

 rmlvcopy LogVol_name 1 old_PhysVol_name

At this point, the raw logical volume copy is usable.

Creating a File System Log on a Dedicated Disk for a User–Defined Volume Group

A JFS or JFS2 file system log is a formatted list of file system transaction records. The log ensures file system integrity (but not necessarily data integrity) in case the system goes down before transactions have been completed. A dedicated disk is created on hd8 for rootvg when the system is installed. The following procedure helps you create a JFS log on a separate disk for other volume groups. When you create a JFS2 log, the procedure requires the following changes:

- The log device type is jfs2log.
- The logform command requires a –V jfs2 option to specify a JFS2 log device.
- The crfs commands must specify jfs2 instead of jfs.

Creating a file system log file for user–defined volume groups can improve performance under certain conditions, for example, if you have an NFS server and you want the transactions for this server to be processed without competition from other processes.

To create a log file for user–defined volume groups, the easiest way is to use the Web-based System Manager wizard, as follows:

1. If Web-based System Manager is not already running, with root authority, type wsm on the command line.
2. Select a host name.
3. Select the Volumes container.
4. Select the Logical Volumes container.
5. In the Volumes menu, select New Logical Volume (Wizard). The wizard will guide you through the procedure. Online help is available if you need it.

Alternatively, you can use the following procedure, which creates a volume group (fsvg1) with two physical volumes (hdisk1 and hdisk2). The file system is on hdisk2 (a 256–MB file system mounted at /u/myfs) and the log is on hdisk1. By default, a JFS log size is 4 MB. You can place little–used programs, for example, /blv, on the same physical volume as the log without impacting performance.

The following instructions explain how to create a JFS log for a user–defined volume group using SMIT and the command line interface:

1. Add the new volume group (in this example, fsvg1) using the SMIT fast path:

 smit mkvg

2. Add a new logical volume to this volume group using the SMIT fast path:

 smit mklv
3. On the Add a Logical Volume screen, add your data to the following fields. For example:

- Logical Volumes NAME: fsvg1log
- Number of LOGICAL PARTITIONS: 1
- PHYSICAL VOLUME names: hdisk1
- Logical volume TYPE: jfslog
- POSITION on Physical Volume: center

4. After you set the fields, press Enter to accept your changes and exit SMIT.

5. Type the following on a command line:

```
/usr/sbin/logform /dev/fsvg1log
```

6. When you receive the following prompt, type `y` and press Enter:

```
Destroy /dev/fsvg1log
```

Despite the wording in this prompt, nothing is destroyed. When you respond `y` to this prompt, the system formats the logical volume for the JFS log so that it can record file-system transactions.

7. Add another logical volume using the following SMIT fast path:

```
smit mklv
```

8. Type the name of the same volume group as you used in step 2 (`fsvg1` in this example). In the Logical Volumes screen, add your data to the following fields. Remember to designate a different physical volume for this logical volume than you did in step 3. For example:

- Logical Volumes NAME: fslv1
- Number of LOGICAL PARTITIONS: 64
- PHYSICAL VOLUME names: hdisk2
- Logical volume TYPE: jfs

After you set the fields, press Enter to accept your changes and exit SMIT.

9. Add a file system to the new logical volume, designate the log, and mount the new file system, using the following sequence of commands:

```
crfs -v jfs -d LogVolName -m FileSysName -a logname= FSLogPath
mount FileSysName
```

Where `LogVolName` is the name of the logical volume you created in step 7; `FileSysName` is the name of the file system you want to mount on this logical volume; and `FSLogPath` is the name of the volume group you created in step 2. For example:

```
crfs -v jfs -d fslv1 -m /u/myfs -a logname=/dev/fsvg1log
mount /u/myfs
```

10. To verify that you have set up the file system and log correctly, type the following command (substituting your volume group name):

```
lsvg -l fsvg1
```

The output shows both logical volumes you created, with their file system types, as in the following example:

```
LV NAME             TYPE    ...
/dev/fsvg1log       jfslog  ...
fslv1              jfs     ...
```

At this point, you have created a volume group containing at least two logical volumes on separate physical volumes, and one of those logical volumes contains the file system log.
Designating Hot Spare Disks
Beginning with AIX 5.1, you can designate hot spare disks for a volume group to ensure the availability of your system if a disk or disks start to fail. Hot spare disk concepts and policies are described in *AIX 5L Version 5.2 System Management Concepts: Operating System and Devices*. The following procedures to enable hot spare disk support depend on whether you are designating hot spare disks to use with an existing volume group or enabling support while creating a new volume group.

Enable Hot Spare Disk Support for an Existing Volume Group
The following steps use Web-based System Manager to enable hot spare disk support for an existing volume.

1. Start Web-based System Manager (if not already running) by typing `wsm` on the command line.
2. Select the **Volumes** container.
3. Select the **Volume Groups** container.
4. Select the name of your target volume group, and choose **Properties** from the Selected menu.
5. Select the Hot Spare Disk Support tab and check beside **Enable hot spare disk support**.
6. Select the Physical Volumes tab to add available physical volumes to the Volume Group as hot spare disks.

At this point, your mirrored volume group has one or more disks designated as spares. If your system detects a failing disk, depending on the options you selected, the data on the failing disk can be migrated to a spare disk without interruption to use or availability.

Enable Hot Spare Disk Support while Creating a New Volume Group
The following steps use Web-based System Manager to enable hot spare disk support while you are creating a new volume group.

1. Start Web-based System Manager (if not already running) by typing `wsm` on the command line.
2. Select the **Volumes** container.
3. Select the **Volume Groups** container.
4. From the Volumes menu, select **New–>Volume Group (Advanced Method)**. The subsequent panels let you choose physical volumes and their sizes, enable hot spare disk support, select unused physical volumes to assign as hot spares, then set the migration characteristics for your hot spare disk or your hot spare disk pool.

At this point, your system recognizes a new mirrored volume group with one or more disks designated as spares. If your system detects a failing disk, depending on the options you selected, the data on the failing disk can be migrated to a spare disk without interruption to use or availability.

Enabling and Configuring Hot Spot Reporting
Beginning with AIX 5.1, you can identify hot spot problems with your logical volumes and remedy those problems without interrupting the use of your system. A hot-spot problem occurs when some of the logical partitions on your disk have so much disk I/O that your system performance noticeably suffers.

The following procedures use Web-based System Manager to enable host spot reporting and manage the result.

Enabling Hot Spot Reporting at the Volume Group Level
The following steps use Web-based System Manager to enable hot spot reporting at the volume group level.
1. Start Web-based System Manager (if not already running) by typing `wsm` on the command line.

2. Select the **Volumes** container.

3. Select the **Volume Groups** container.

4. Select the name of your target volume group, and choose **Hot Spot Reporting...** from the Selected menu.

5. Check beside **Enable hot spot reporting** and **Restart the Statistics Counters**.

At this point, the hot spot feature is enabled. Use the pull-down or pop-up menu in Web-based System Manager to access the **Manage Hot Spots...** Sequential dialog. In the subsequent panels, you can define your reporting and statistics, display your statistics, select logical partitions to migrate, specify the destination physical partition, and verify the information before committing your changes.

Enabling Hot Spot Reporting at the Logical Volume Level

The following steps use Web-based System Manager to enable hot spot reporting at the logical volume level so you can avoid enabling it for an entire volume group.

1. Start Web-based System Manager (if not already running) by typing `wsm` on the command line.

2. Select the **Volumes** container.

3. Select the **Logical Volumes** container.

4. Select the name of your target logical volume and choose **Hot Spot Reporting...** from the Selected menu.

5. Check beside **Enable hot spot reporting** and **Restart the Statistics Counters**.

At this point, the hot spot feature is enabled. Use the pull-down or pop-up menu in Web-based System Manager to access the **Manage Hot Spots...** Sequential dialog. In the subsequent panels, you can define your reporting and statistics, display your statistics, select logical partitions to migrate, specify the destination physical partition, and verify the information before committing your changes.

Importing or Exporting a Volume Group

The following table explains how to use import and export to move a user-defined volume group from one system to another. (The rootvg volume group cannot be exported or imported.) The export procedure removes the definition of a volume group from a system. The import procedure serves to introduce the volume group to its new system.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export</td>
<td>Removes the definition of a volume group from a system.</td>
</tr>
<tr>
<td>Import</td>
<td>Introduces a volume group to a new system.</td>
</tr>
<tr>
<td>Export and Import</td>
<td>Allows moving a volume group between systems, including adding new volumes.</td>
</tr>
</tbody>
</table>

You can also use the import procedure to reintroduce a volume group to the system when it once was associated with the system but had been exported. You can also use import and export to add a physical volume that contains data to a volume group by putting the disk to be added in its own volume group. **Attention:** The `importvg` command changes the name of an imported logical volume if a logical volume of that name already exists on the new system. If the `importvg` command must rename a logical volume, it prints an error message to standard error. When there are no conflicts, the `importvg` command also creates file mount points and entries in the `/etc/filesystems` file.
Import and Export Volume Group Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>SMIT Fast Path</th>
<th>Command or File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import a volume group</td>
<td>smit importvg</td>
<td></td>
</tr>
<tr>
<td>Export a volume group</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Unmount files systems on logical volumes in the volume group:</td>
<td>smit umntdsk</td>
</tr>
<tr>
<td></td>
<td>2. Vary off the volume group:</td>
<td>smit varyoffvg</td>
</tr>
<tr>
<td></td>
<td>3. Export the volume group:</td>
<td>smit exportvg</td>
</tr>
</tbody>
</table>

Attention: A volume group that has a paging space volume on it cannot be exported while the paging space is active. Before exporting a volume group with an active paging space, ensure that the paging space is not activated automatically at system initialization by typing the following command:

```
chps -a n paging_space name
```

Then, reboot the system so that the paging space is inactive.

Migrating the Contents of a Physical Volume

To move the physical partitions belonging to one or more specified logical volumes from one physical volume to one or more other physical volumes in a volume group, use the following instructions. You can also use this procedure to move data from a failing disk before replacing or repairing the failing disk. This procedure can be used on physical volumes in either the root volume group or a user-defined volume group. **Attention:** When the boot logical volume is migrated from a physical volume, the boot record on the source must be cleared or it could cause a system hang. When you execute the `bosboot` command, you must also execute the `chpv -c` command described in step 4 of the following procedure.

1. If you want to migrate the data to a new disk, do the following steps. Otherwise, continue with step 2.

 a. Check that the disk is recognizable by the system and available by typing:

   ```
   lsdev -Cc disk
   ```

 The output resembles the following:

   ```
   hdisk0 Available 10-60-00-8,0 16 Bit LVD SCSI Disk Drive
   hdisk1 Available 10-60-00-9,0 16 Bit LVD SCSI Disk Drive
   hdisk2 Available 10-60-00-11,0 16 Bit LVD SCSI Disk Drive
   ```

 b. If the disk is listed and in the available state, check that it does not belong to another volume group by typing:

   ```
   lspv
   ```

 The output looks similar to the following:

   ```
   hdisk0 0004234583aa7879 rootvg active
   hdisk1 00042345e05603c1 none active
   hdisk2 00083772caa7896e imagesvg active
   ```

 In the example, `hdisk1` can be used as a destination disk because the third field shows that it is not being used by a volume group.

 If the new disk is not listed or unavailable, refer to Configuring a Disk on page 3-3 or Adding Disks while the System Remains Available on page 3-9.

 c. Add the new disk to the volume group by typing:

   ```
   extendvg VGName diskname
   ```
2. The source and destination physical volumes must be in the same volume group. To determine whether both physical volumes are in the volume group, type:

```
lsvg -p VGName
```

Where `VGName` is the name of your volume group. The output for a root volume group looks similar to the following:

```
rootvg:

    PV_NAME      PV STATE     TOTAL PPs  FREE PPs  FREE DISTRIBUTION
    hdisk0       active       542         85        00..00..00..26..59
    hdisk1       active       542         306       00..00..00..00..06
```

Note the number of FREE PPs.

3. Check that you have enough room on the target disk for the source that you want to move:

a. Determine the number of physical partitions on the source disk by typing:

```
lspv SourceDiskName | grep "USED PPs"
```

Where `SourceDiskName` is of the name of the source disk, for example, hdisk0. The output looks similar to the following:

```
USED PPs:      159 (636 megabytes)
```

In this example, you need 159 FREE PPs on the destination disk to successfully complete the migration.

b. Compare the number of USED PPs from the source disk with the number of FREE PPs on the destination disk or disks (step 2). If the number of FREE PPs is larger than the number of USED PPs, you have enough space for the migration.

4. Follow this step only if you are migrating data from a disk in the rootvg volume group. If you are migrating data from a disk in a user–defined volume group, proceed to step 5.

Check to see if the boot logical volume (`hd5`) is on the source disk by typing:

```
lspv -l SourceDiskNumber | grep hd5
```

If you get no output, the boot logical volume is not located on the source disk. Continue to step 5.

If you get output similar to the following:

```
hd5            2   2   02..00..00..00..00   /blv
```

then run the following command:

```
migratepv -l hd5 SourceDiskName DestinationDiskName
```

You will receive a message warning you to perform the `bosboot` command on the destination disk. You must also perform a `mkboot –c` command to clear the boot record on the source. Type the following sequence of commands:

```
bosboot -a -d /dev/ DestinationDiskName
bootlist -m normal DestinationDiskName
mkboot -c -d /dev/ SourceDiskName
```

5. Migrate your data by typing the following SMIT fast path:

```
smit migratepv
```

6. List the physical volumes, and select the source physical volume you examined previously.
7. Go to the **DESTINATION** physical volume field. If you accept the default, all the physical volumes in the volume group are available for the transfer. Otherwise, select one or more disks with adequate space for the partitions you are moving (from step 4).

8. If you wish, go to the Move only data belonging to this **LOGICAL VOLUME** field, and list and select a logical volume. You move only the physical partitions allocated to the logical volume specified that are located on the physical volume selected as the source physical volume.

9. Press Enter to move the physical partitions.

At this point, the data now resides on the new (destination) disk. The original (source) disk, however, remains in the volume group. If the disk is still reliable, you could continue to use it as a hot spare disk (see Designating Hot Spare Disks on page 3-15). Especially when a disk is failing, it is advisable to do the following steps:

1. To remove the source disk from the volume group, type:
   ```
   reducevg VGNname SourceDiskName
   ```

2. To physically remove the source disk from the system, type:
   ```
   rmdev -l SourceDiskName -d
   ```

Mirroring a Volume Group

The following scenario explains how to mirror a normal volume group. If you want to mirror the root volume group (rootvg), see Mirroring the Root Volume Group.

The following instructions show you how to mirror a root volume group using the System Management Interface Tool (SMIT). You can also use Web-based System Manager (select a volume group in the **Volumes** container, then choose **Mirror** from the **Selected** menu). Experienced administrators can use the `mirrorvg` command.

Note: The following instructions assume you understand the mirroring and logical volume manager (LVM) concepts explained in *AIX 5L Version 5.2 System Management Concepts: Operating System and Devices*.

1. With root authority, add a disk to the volume group using the following SMIT fast path:
   ```
   smit extendvg
   ```

2. Mirror the volume group onto the new disk by typing the following SMIT fast path:
   ```
   smit mirrorvg
   ```

3. In the first panel, select a volume group for mirroring.

4. In the second panel, you can define mirroring options or accept defaults. Online help is available if you need it.

Note: When you complete the SMIT panels and click OK or exit, the underlying command can take a significant amount of time to complete. The length of time is affected by error checking, the size and number of logical volumes in the volume group, and the time it takes to synchronize the newly mirrored logical volumes.

At this point, all changes to the logical volumes will be mirrored as you specified in the SMIT panels.

Mirroring the Root Volume Group

The following scenario explains how to mirror the root volume group (rootvg). Notes:

1. Mirroring the root volume group requires advanced system administration experience. If not done correctly, you can cause your system to be unbootable.

2. Mirrored dump devices are supported in AIX 4.3.3 or later.

In the following scenario, the rootvg is contained on `hdisk01`, and the mirror is being made to a disk called `hdisk11`:
1. Check that hdisk11 is supported by AIX as a boot device:

 bootinfo –B hdisk11

 If this command returns a value of 1, the selected disk is bootable by AIX. Any other value indicates that hdisk11 is not a candidate for rootvg mirroring.

2. Extend rootvg to include hdisk11, using the following command:

 extendvg rootvg hdisk11

 If you receive the following error messages:

 0516-050 Not enough descriptor space left in this volume group, Either try adding a smaller PV or use another volume group.

 or a message similar to:

 0516-1162 extendvg: Warning, The Physical Partition size of 16 requires the creation of 1084 partitions for hdisk11. The limitation for volume group rootvg is 1016 physical partitions per physical volume. Use chvg command with the –t option to attempt to change the maximum physical partitions per Physical Volume for this volume group.

 You have the following options:

 – Mirror the rootvg to an empty disk that already belongs to the rootvg.

 – Use a smaller disk.

 – Change the maximum number of partitions supported by the rootvg, using the following procedure:

 a. Check the message for the number of physical partitions needed for the destination disk and the maximum number currently supported by rootvg.

 b. Use the chvg –t command to multiply the maximum number of partitions currently allowed in rootvg (in the above example, 1016) to a number that is larger than the physical partitions needed for the destination disk (in the above example, 1084). For example:

 chvg –t 2 rootvg

 c. Reissue the extendvg command at the beginning of step 2.

3. Mirror the rootvg, using the exact mapping option, as shown in the following command:

 mirrorvg –m rootvg hdisk11

 This command will turn off quorum when the volume group is rootvg. If you do not use the exact mapping option, you must verify that the new copy of the boot logical volume, hd5, is made of contiguous partitions.

4. Initialize all boot records and devices, using the following command:

 bosboot –a

5. Initialize the boot list with the following command:

 bootlist –m normal hdisk01 hdisk11

Notes:

a. Even though the bootlist command identifies hdisk11 as an alternate boot disk, it cannot guarantee the system will use hdisk11 as the boot device if hdisk01 fails. In such case, you might have to boot from the product media, select maintenance, and reissue the bootlist command without naming the failed disk.

b. If your hardware model does not support the bootlist command, you can still mirror the rootvg, but you must actively select the alternate boot disk when the original disk is unavailable.
Removing a Disk while the System Remains Available
The following procedure describes how to remove a disk using the hot-removability feature, which lets you remove the disk without turning the system off. This feature is only available on certain systems.

Hot removability is useful when you want to:

- Remove a disk that contains data in a separate non-rootvg volume group for security or maintenance purposes. (See Removing a Disk with Data.)
- Permanently remove a disk from a volume group. (See Removing a Disk without Data.)
- Correct a disk failure. (See Recovering from Disk Failure while the System Remains Available.)

Removing a Disk with Data
The following procedure describes how to remove a disk that contains data without turning the system off. The disk you are removing must be in a separate non-rootvg volume group. Use this procedure when you want to move a disk to another system.

1. To list the volume group associated with the disk you want to remove, type:

   ```
   smit lspv
   ```

 Your output looks similar to the following:

   ```
   PHYSICAL VOLUME:    hdisk2       VOLUME GROUP:     imagesvg
   PV IDENTIFIER:      00083772caa7896e VG IDENTIFIER
   00042345000004c000000000e9b5cac262
   PV STATE:           active
   STALE PARTITIONS:   0                        ALLOCATABLE:      yes
   PP SIZE:            16 megabyte(s)           LOGICAL VOLUMES:  5
   TOTAL PPs:          542 (8672 megabytes)     VG DESCRIPTORS:   2
   FREE PPs:           19 (304 megabytes)       HOT SPARE:        no
   USED PPs:           523 (8368 megabytes)     FREE DISTRIBUTION: 00..00..00..00..19
   USED DISTRIBUTION: 109..108..108..108..90
   ```

 The name of the volume group is listed in the VOLUME GROUP field. In this example, the volume group is imagesvg.

2. To verify that the disk is in a separate non-rootvg volume group, type:

   ```
   smit lsvg
   ```

 Then select the volume group associated with your disk (in this example, imagesvg).

 Your output looks similar to the following:
3. To unmount any file systems on the logical volumes on the disk, type:

 smit umountfs

4. To deactivate and export the volume group in which the disk resides, unconfigure the disk and turn it off, type:

 smit exportvgrds

 When the procedure completes, the system displays a message indicating the cabinet number and disk number of the disk to be removed. If the disk is placed at the front side of the cabinet, the disk shutter automatically opens.

5. Look at the LED display for the disk you want to remove. Ensure the yellow LED is off (not lit).

6. Physically remove the disk. For more information about the removal procedure, see the service guide for your machine.

At this point, the disk is physically and logically removed from your system. If you are permanently removing this disk, this procedure is completed. You can also do one of the following:

- Import the removed disk to another system. See Importing or Exporting a Volume Group.
- Replace the removed disk with a new one. See Adding Disks while the System Remains Available.

Removing a Disk without Data

The following procedure describes how to remove a disk that contains either no data or no data that you want to keep. **Attention:** The following procedure erases any data that resides on the disk.

1. To unmount any file systems on the logical volumes on the disk, type:

 smit umountfs

2. To deactivate and export any volume group in which the disk resides, unconfigure the disk and turn it off, type:

 smit exportvgrds
When the procedure completes, the system displays a message indicating the cabinet number and disk number of the disk to be removed. If the disk is placed at the front side of the cabinet, the disk shutter automatically opens.

3. Look at the LED display for the disk you want to remove. Ensure the yellow LED is off (not lit).
4. Physically remove the disk. For more information about the removal procedure, see the service guide for your machine.

At this point, the disk is physically and logically removed from your system. If you are permanently removing this disk, this procedure is completed. If you want to replace the removed disk with a new one, see Adding Disks while the System Remains Available.

Removing a Logical Volume

To remove a logical volume, you can use one of the following procedures. The primary difference between the following procedures is that the procedures to remove a logical volume by removing its file system remove the file system, its associated logical volume, and its record in the `/etc/filesystems` file. The procedures to remove a logical volume remove the logical volume and its file system, but not the file system’s record in `/etc/filesystems`.

Removing a Logical Volume by Removing the File System Attention: When you remove a file system, you destroy all data in the specified file systems and logical volume.

The following procedure explains how to remove a JFS or JFS2 file system, its associated logical volume, its associated stanza in the `/etc/filesystems` file, and, optionally, the mount point (directory) where the file system is mounted. If you want to remove a logical volume with a different type of file system mounted on it or a logical volume that does not contain a file system, refer to Removing a Logical Volume Only on page 3-24.

To remove a journaled file system through Web–based System Manager, use the following procedure:

1. If Web-based System Manager is not already running, with root authority type `wsm` on the command line.
2. Select a host name.
4. Select the Journaled File Systems container.
5. Select the file system you want to remove.
6. From the Selected menu, select Unmount.
7. From the Selected menu, select Delete.

To remove a journaled file system through SMIT, use the following procedure:

1. Unmount the file system that resides on the logical volume with a command similar to the following example:

   ```bash
   umount /adam/usr/local
   ```

 Note: You cannot use the `umount` command on a device in use. A device is in use if any file is open for any reason or if a user’s current directory is on that device.

2. To remove the file system, type the following fast path:

   ```bash
   smit rmfs
   ```

3. Select the name of the file system you want to remove.

4. Go to the Remove Mount Point field and toggle to your preference. If you select `yes`, the underlying command will also remove the mount point (directory) where the file system is mounted (if the directory is empty).
5. Press Enter to remove the file system. SMIT prompts you to confirm whether you want to remove the file system.

6. Confirm you want to remove the file system. SMIT displays a message when the file system has been removed successfully.

At this point, the file system, its data, and its associated logical volume are completely removed from your system.

Removing a Logical Volume Only Attention: Removing a logical volume destroys all data in the specified file systems and logical volume.

The following procedures explain how to remove a logical volume and any associated file system. You can use this procedure to remove a non-JFS file system or a logical volume that does not contain a file system. After the following procedures describe how to remove a logical volume, they describe how to remove any non-JFS file system's stanza in the /etc/filesystems file.

To remove a logical volume through Web-based System Manager, use the following procedure:

1. If Web-based System Manager is not already running, with root authority, type wsm on the command line.

2. Select a host name.

3. If the logical volume does not contain a file system, skip to step 10.

4. Select the File Systems container.

5. Select the container for the appropriate file system type.

6. Select the file system you want to unmount.

7. From the Selected menu, select Unmount.

8. Select the appropriate file system container in the navigation area to list its file systems.

9. Note the logical volume name of the system you want to remove.

10.

11. Select the Volumes container.

12. Select the Logical Volumes container.

13. Select the logical volume you want to remove.

14. From the Selected menu, select Delete.

To remove a logical volume through SMIT, use the following procedure:

1. If the logical volume does not contain a file system, skip to step 4.

2. Unmount all file systems associated with the logical volume by typing:

 unmount /FSname

 Where /FSname is the full path name of a file system. Notes:

 a. The unmount command fails if the file system you are trying to unmount is currently being used. The unmount command executes only if none of the file system's files are open and no user's current directory is on that device.

 b. Another name for the unmount command is umount. The names are interchangeable.

3. To list information you need to know about your file systems, type the following fast path:

 smit lsfs

 The following is a partial listing:
Physical and Logical Volume Storage Management Tasks

3-25

Physical and Logical Volume Storage Management Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Nodename</th>
<th>Mount Pt</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/hd3</td>
<td>––</td>
<td>/tmp</td>
<td>...</td>
</tr>
<tr>
<td>/dev/locallv</td>
<td>––</td>
<td>/adam/usr/local</td>
<td>...</td>
</tr>
</tbody>
</table>

Assuming standard naming conventions for the second listed item, the file system is named `/adam/usr/local` and the logical volume is `locallv`. To verify this, type the following fast path:

```bash
smit lsvl2
```

The following is a partial listing:

```
imagesvg:

<table>
<thead>
<tr>
<th>LV NAME</th>
<th>TYPE</th>
<th>LPs</th>
<th>PPs</th>
<th>PVs</th>
<th>LV STATE</th>
<th>MOUNT POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>hd3</td>
<td>jfs</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>open/syncd</td>
<td>/tmp</td>
</tr>
<tr>
<td>locallv</td>
<td>mine</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>closed/syncd</td>
<td>/adam/usr/local</td>
</tr>
</tbody>
</table>
```

4. To remove the logical volume, type the following fast path on the command line:

```bash
smit rmlv
```

5. Select the name of the logical volume you want to remove.

6. Go to the **Remove Mount Point** field and toggle to your preference. If you select **yes**, the underlying command will also remove the mount point (directory) where the file system is mounted (if any, and if that directory is empty).

7. Press Enter to remove the logical volume. SMIT prompts you to confirm whether you want to remove the logical volume.

8. Confirm you want to remove the logical volume. SMIT displays a message when the logical volume has been removed successfully.

9. If the logical volume had a non-JFS file system mounted on it, remove the file system and its associated stanza in the `/etc/filesystems` file, as shown in the following example:

```bash
rmfs /adam/usr/local
```

Or, you can use the file system name as follows:

```bash
rmfs /dev/locallv
```

At this point, the logical volume is removed. If the logical volume contained a non-JFS file system, that system’s stanza has also been removed from the `/etc/filesystems` file.

Resize a RAID Volume Group

In AIX 5.2 and later versions, on systems that use a redundant array of independent disks (RAID), `chvg` and `chpv` command options provide the ability to add a disk to the RAID group and grow the size of the physical volume that LVM uses without interruptions to the use or availability of the system. Notes:

1. This feature is not available while the volume group is activated in classic or in enhanced concurrent mode.

2. The rootvg volume group cannot be resized using the following procedure.

3. A volume group with an active paging space cannot be resized using the following procedure.

The size of all disks in a volume group is automatically examined when the volume group is activated (varyon). If growth is detected, the system generates an informational message.

The following procedure describes how to grow disks in a RAID environment:

1. To check for disk growth and resize if needed, type the following command:

```bash
chvg -g VGname
```
Where \textit{VGname} is the name of your volume group. This command examines all disks in the volume group. If any have grown in size, it attempts to add physical partitions to the physical volume. If necessary, it will determine the appropriate 1016 limit multiplier and convert the volume group to a big volume group.

2. To turn off LVM bad block relocation on a RAID disk, type the following command:

\texttt{chpv \ -r \ ny } \texttt{PVname}

Where \textit{PVname} is the name of your physical volume.
LVM Troubleshooting Tasks

The topics in this section provide diagnostics and recovery procedures to use if you encounter one of the following:

- Disk Drive Problems
- Physical or Logical Volume Errors
- Volume Group Errors

Disk Drive Problems

If your disk drive is running out of available space, see Getting More Space on a Disk Drive on page 3-27. If you suspect a disk drive is mechanically failing or has failed, run diagnostics on the disk use the following procedure:

1. With root authority, type the following SMIT fast path on the command line:

 `<smit diag`

2. Select **Current Shell Diagnostics** to enter the AIX Diagnostics tool.

3. After you read the Diagnostics Operating Instructions screen, press Enter.

4. Select **Diagnostics Routines**.

5. Select **System Verification**.

6. Scroll down through the list to find and select the drive you want to test.

7. Select **Commit**.

Based on the diagnostics results, you should be able to determine the condition of the disk:

- If you detect the disk drive is failing or has failed, of primary importance is recovering the data from that disk. If the disk is still accessible, try completing the procedure in Migrating the Contents of a Physical Volume on page 3-17. Migration is the preferred way to recover data from a failing disk. The following procedures describe how to recover or restore data in logical volumes if migration cannot complete successfully.

- If your drive is failing and you can repair the drive without reformatting it, no data will be lost. See Recovering a Disk Drive without Reformatting on page 3-28.

- If the disk drive must be reformatted or replaced, make a backup, if possible, and remove the disk drive from its volume group and system configuration before replacing it. Some data from single–copy file systems might be lost. See Recovering Using a Reformatted or Replacement Disk Drive on page 3-29.

- If your system supports the hot removability feature, see Recovering from Disk Failure while the System Remains Available on page 3-33.

Getting More Space on a Disk Drive

If you run out of space on a disk drive, there are several ways to remedy the problem. You can automatically track and remove unwanted files, restrict users from certain directories, or mount space from another disk drive.

You must have root user, system group, or administrative group authority to execute these tasks.

Cleaning Up File Systems Automatically

Use the `skulker` command to clean up file systems by removing unwanted files. Type the following from the command line:

`skulker -p`

The `skulker` command is used to periodically purge obsolete or unneeded files from file systems. Candidates include files in the `/tmp` directory, files older than a specified age, `a.out` files, core files, or `ed.hup` files.
The **skulker** command is typically run daily, as part of an accounting procedure run by the **cron** command during off-peak hours. For more information about using the **skulker** command in a **cron** process, see Fix Disk Overflows on page 4-8.

For information on typical **cron** entries, see Setting Up an Accounting System on page 5-13.

Restricting Users from Certain Directories

Another way to release disk space and possibly to keep it free is to restrict and monitor disk usage.

- Restrict users from certain directories by typing:
  ```bash
  chmod 655 DirName
  ```
 This command sets read and write permissions for the owner (root) and sets read–only permissions for the group and others. **DirName** is the full path name of the directory you want to restrict,

- Monitor the disk usage of individual users. One way to do this is to add the following line to the **/var/spool/cron/crontabs/adm** file:
  ```bash
  0 2 * * 4 /usr/sbin/acct/dodisk
  ```
 This line executes the **dodisk** command at 2 a.m. (0 2 4) each Thursday (4). The **dodisk** command initiates disk–usage accounting. This command is usually run as part of an accounting procedure run by the **cron** command during off–peak hours. See Setting Up an Accounting System on page 5-13 for more information on typical **cron** entries.

Mounting Space from Another Disk Drive

Another way to get more space on a disk drive is to mount space from another drive. You can mount space from one disk drive to another in the following ways:

- Use the **smit mountfs** fast path.
- Use the **mount** command. For example:
  ```bash
  mount -n nodeA -vnfs /usr/spool /usr/myspool
  ```
 The **mount** command makes a file system available for use at a specific location.

For more information about mounting file systems, see Mount a JFS or JFS2 on page 4-3.

Recovering a Disk Drive without Reformatting

If you repair a bad disk and place it back in the system without reformatting it, you can let the system automatically activate and resynchronize the stale physical partitions on the drive at boot time. A stale physical partition contains data your system cannot use.

If you suspect a stale physical partition, type the following on the command line:

```bash
lspv -M PhysVolName
```

Where **PhysVolName** is the name of your physical volume. The **lspv** command output will list all partitions on your physical volume. The following is an excerpt from example output:

`hdisk16:112 lv01:4:2 stale`
`hdisk16:113 lv01:5:2 stale`
`hdisk16:114 lv01:6:2 stale`
`hdisk16:115 lv01:7:2 stale`
`hdisk16:116 lv01:8:2 stale`
`hdisk16:117 lv01:9:2 stale`
`hdisk16:118 lv01:10:2 stale`

The first column displays the physical partitions and the second column displays the logical partitions. Any stale physical partitions are noted in the third column.
Recovering Using a Reformatted or Replacement Disk Drive

This section describes how to recover data from a failed disk drive when you must reformat or replace the failed disk. **Attention:** Before you reformat or replace a disk drive, remove all references to nonmirrored file systems from the failing disk and remove the disk from the volume group and system configuration. If you do not, you create problems in the ODM (object data manager) and system configuration databases. Instructions for these essential steps are included in the following procedure, under Before replacing or reformattting your failed or failing disk on page 3-29.

The following procedure uses a scenario in which the volume group called *myvg* contains three disk drives called *hdisk2*, *hdisk3*, and *hdisk4*. In this scenario, *hdisk3* goes bad. The nonmirrored logical volume *lv01* and a copy of the *mylv* logical volume is contained on *hdisk2*. The *mylv* logical volume is mirrored and has three copies, each of which takes up two physical partitions on its disk. The failing *hdisk3* contains another copy of *mylv*, and the nonmirrored logical volume called *lv00*. Finally, *hdisk4* contains a third copy of *mylv* as well as a logical volume called *lv02*. The following figure shows this scenario.

![Diagram of volume group](image)

This procedure is divided into the following key segments:
- The things you do to protect data before replacing or reformattting your failing disk
- The procedure you follow to reformat or replace the disk
- The things you do to recover the data after the disk is reformatted or replaced

Before replacing or reformattting your failed or failing disk:

1. Log in with root authority.
2. If you are not familiar with the logical volumes that are on the failing drive, use an operational disk to view the contents of the failing disk. For example, to use *hdisk4* to look at *hdisk3*, type the following on the command line:

   ```
   lsvp -M -n hdisk4 hdisk3
   ```

 The `lsvp` command displays information about a physical volume within a volume group. The output looks similar to the following:

   ```
   hdisk3:1        mylv:1
   hdisk3:2        mylv:2
   hdisk3:3        lv00:1
   hdisk3:4–50
   ```

 The first column displays the physical partitions, and the second column displays the logical partitions. Partitions 4 through 50 are free.
3. Back up all single-copy logical volumes on the failing device, if possible. For instructions, see Backing Up and Restoring Information on page 2-15.
4. If you have single-copy file systems, unmount them from the disk. (You can identify single-copy file systems from the output of the `lspv` command. Single-copy file systems have the same number of logical partitions as physical partitions on the output.) Mirrored file systems do not have to be unmounted.

In the scenario, `lv00` on the failing disk `hdisk3` is a single-copy file system. To unmount it, type the following:

```
unmount /dev/lv00
```

If you do not know the name of the file system, assuming the `/etc/filesystems` file is not solely located on the failed disk, type `mount` on the command line to list all mounted file systems and find the name associated with your logical volume. You can also use the `grep` command on the `/etc/filesystems` file to list only the file system names, if any, associated with your logical volume. For example:

```
grep lv00 /etc/filesystems
```

The output looks similar to the following:

```
dev             = /dev/lv00
log             = /dev/loglv00
```

Notes:

a. The `unmount` command fails if the file system you are trying to unmount is currently being used. The `unmount` command executes only if none of the file system’s files are open and no user’s current directory is on that device.

b. Another name for the `unmount` command is `umount`. The names are interchangeable.

5. Remove all single-copy file systems from the failed physical volume by typing the `rmfs` command:

```
r nfs / FSname
```

6. Remove all mirrored logical volumes located on the failing disk.

Note: You cannot use `rmlvcopy` on the hd5 and hd7 logical volumes from physical volumes in the rootvg volume group. The system does not allow you to remove these logical volumes because there is only one copy of these.

The `rmlvcopy` command removes copies from each logical partition. For example, type:

```
rmlvcopy mylv 2 hdisk3
```

By removing the copy on `hdisk3`, you reduce the number of copies of each logical partition belonging to the `mylv` logical volume from three to two (one on `hdisk4` and one on `hdisk2`).

7. If the failing disk was part of the root volume group and contained logical volume `hd7`, remove the primary dump device (hd7) by typing the following on the command line

```
sysdumpdev -P -p /dev/sysdumpnull
```

The `sysdumpdev` command changes the primary or secondary dump device location for a running system. When you reboot, the dump device returns to its original location.

8. Remove any paging space located on the disk using the following command:

```
rmps PSname
```

Where `PSname` is the name of the paging space to be removed, which is actually the name of the logical volume on which the paging space resides.

If the `rmps` command is not successful, you must use the `smit chps` fast path to deactivate the primary paging space and reboot before continuing with this procedure. The `reducevg` command in step 10 can fail if there are active paging spaces.

9. Remove any other logical volumes from the volume group, such as those that do not contain a file system, using the `rmlv` command. For example, type:
rmlv -f lv00

10. Remove the failed disk from the volume group using the `reducevg` command. For example, type:

```
reducevg -df myvg hdisk3
```

If you cannot execute the `reducevg` command or if the command is unsuccessful, the procedure in step 13 can help clean up the VGDA/ODM information after you reformat or replace the drive.

Replacing or reformatting your failed or failing disk:

11. The next step depends on whether you want to reformat or replace your disk and on what type of hardware you are using:

 - If you want to reformat the disk drive, use the following procedure:
 a. With root authority, type the following SMIT fast path on the command line:
        ```
smit diag
        ```
 b. Select **Current Shell Diagnostics** to enter the AIX Diagnostics tool.
 c. After you read the Diagnostics Operating Instructions screen, press Enter.
 d. Select **Task Selection**.
 e. Scroll down through the task list to find and select **Format Media**.
 f. Select the disk you want to reformat. After you confirm that you want to reformat the disk, all content on the disk will be erased.
 After the disk is reformatted, continue with step 12.

 - If your system supports hot swap disks, use the procedure in Recovering from Disk Failure while the System Remains Available on page 3-33 then continue with step 13.

 - If your system does not support hot swap disks, do the following:
 a. Power off the old drive using the SMIT fast path `smit rmvdsk`. Change the KEEP definition in database field to No.
 b. Contact your next level of system support to replace the disk drive.

After replacing or reformatting your failed or failing disk:

12. Follow the instructions in Configuring a Disk on page 3-3 and Making an Available Disk a Physical Volume on page 3-4.

13. If you could not use the `reducevg` command on the disk from the old volume group before the disk was formatted (step 10), the following procedure can help clean up the VGDA/ODM information.

 a. If the volume group consisted of only one disk that was reformatted, type:
      ```
      exportvg VGName
      ```
 Where `VGName` is the name of your volume group.

 b. If the volume group consists of more than one disk, type the following on the command line:
      ```
      varyonvg VGName
      ```
 The system displays a message about a missing or unavailable disk, and the new (or reformatted) disk is listed. Note the physical volume identifier (PVID) of the new disk, which is listed in the `varyonvg` message. It is the 16–character string between the name of the missing disk and the label PVNOTFND. For example:
      ```
      hdisk3 00083772caa7896e PVNOTFND
      ```
 Type:
      ```
      varyonvg -f VGName
      ```
The missing disk is now displayed with the PVREMOVED label. For example:

```
hdisk3 00083772caa7896e PVREMOVED
```

Then, type the command:

```
reducevg -df VGName PVID
```

Where PVID is the physical volume identifier (in this scenario, 00083772caa7896e).

14. To add the new disk drive to the volume group, use the `extendvg` command. For example, type:

```
extendvg myvg hdisk3
```

15. To re-create the single-copy logical volumes on the new (or reformatted) disk drive, use the `mklv` command. For example, type:

```
mklv -y lv00 myvg 1 hdisk3
```

This example recreates the lv00 logical volume on the hdisk3 drive. The 1 means that this logical volume is not mirrored.

16. To re-create the file systems on the logical volume, use the `crfs` command. For example, type:

```
crfs -v jfs -d lv00 -m /dev/lv00
```

17. To restore single-copy file system data from backup media, see Restoring from Backup Image Individual User Files on page 2-21.

18. To re-create the mirrored copies of logical volumes, use the `mklvcopy` command. For example, type:

```
mklvcopy mylv 3 hdisk3
```

This example creates a mirrored third partition of the `mylv` logical volume on hdisk3.

19. To synchronize the new mirror with the data on the other mirrors (in this example, hdisk2 and hdisk4), use the `syncvg` command. For example, type:

```
syncvg -p hdisk3
```

At this point, all mirrored file systems should be restored and up-to-date. If you were able to back up your single-copy file systems, they will also be ready to use. You should be able to proceed with normal system use.

Example of Recovery from a Failed Disk Drive

To recover from a failed disk drive, back out the way you came in; that is, list the steps you went through to create the volume group, and then go backwards. The following example is an illustration of this technique. It shows how a mirrored logical volume was created and then how it was altered, backing out one step at a time, when a disk failed.

Note: The following example illustrates a specific instance. It is not intended as a general prototype on which to base any general recovery procedures.

1. The system manager, Jane, created a volume group called `workvg` on hdisk1, by typing:

```
mkvg -y workvg hdisk1
```

2. She then created two more disks for this volume group, by typing:

```
extendvg workvg hdisk2
extendvg workvg hdisk3
```

3. Jane created a logical volume of 40 MB that has three copies. Each copy is on one of each of the three disks that comprise the `workvg` volume group. She used the following commands:

```
mklv -y testlv workvg 10
mklvcopy testlv 3
```
After Jane created the mirrored workvg volume group, hdisk2 failed. Therefore, she took the following steps to recover:

1. She removed the logical volume copy from hdisk2 by typing:
 \texttt{rmlvcopy testlv 2 hdisk2}

2. She detached hdisk2 from the system so that the ODM and VGDA are updated, by typing:
 \texttt{reducevg workvg hdisk2}

3. She removed hdisk2 from the system configuration to prepare for replacement by typing:
 \texttt{rmdev –l hdisk2 –d}

4. She chose to shut down the system, by typing:
 \texttt{shutdown –F}

5. She replaced the disk. The new disk did not have the same SCSI ID as the former hdisk2.

6. She rebooted the system.

 Because you have a new disk (the system sees that there is a new PVID on this disk), the system chooses the first open hdisk name. Because the \texttt{–d} flag was used in step 3, the name hdisk2 was released, so the system chose hdisk2 as the name of the new disk. If the \texttt{–d} flag had not been used, hdisk4 would have been chosen as the new name.

7. Jane added this disk into the \texttt{workvg} volume group by typing:
 \texttt{extendvg workvg hdisk2}

8. She created two mirrored copies of the logical volume by typing:
 \texttt{mklvcopy testlv 3}

 The Logical Volume Manager automatically placed the third logical volume copy on the new hdisk2.

Recovering from Disk Failure while the System Remains Available

The procedure to recover from disk failure using the hot removability feature is, for the most part, the same as described in Recovering a Disk Drive without Reformatting on page 3-28, with the following exceptions:

1. To unmount file systems on a disk, use the procedure Mount a JFS or JFS2 on page 4-3.

2. To remove the disk from its volume group and from the operating system, use the procedure Removing a Disk without Data on page 3-22.

3. To replace the failed disk with a new one, you do not need to shut down the system. Use the following sequence of procedures:
 a. Adding Disks while the System Remains Available on page 3-9
 b. Configuring a Disk on page 3-3
 c. Continue with step 13 of Recovering Using a Reformatted or Replacement Disk Drive on page 3-29.

Replacing a Disk When the Volume Group Consists of One Disk

If you can access a disk that is going bad as part of a volume group, use one of the following procedures:

- Add fixed disk without data to existing volume group on page 3-7
- Add fixed disk without data to new volume group on page 3-7
- Migrating the Contents of a Physical Volume on page 3-17

If the disk is bad and cannot be accessed, follow these steps:
1. Export the volume group.
2. Replace the drive.
3. Re-create the data from backup media that exists.

Physical or Logical Volume Errors
This section contains possible problems with and solutions for physical or logical volume errors.

Hot Spot Problems
If you notice performance degradation when accessing logical volumes, you might have hot spots in your logical volumes that are experiencing too much disk I/O. For more information, see AIX 5L Version 5.2 System Management Concepts: Operating System and Devices and Enabling and Configuring Hot Spot Reporting.

LVCB Warnings
The logical volume control block (LVCB) is the first 512 bytes of a logical volume. This area holds important information such as the creation date of the logical volume, information about mirrored copies, and possible mount points in the JFS. Certain LVM commands are required to update the LVCB, as part of the algorithms in LVM. The old LVCB is read and analyzed to see if it is a valid. If the information is valid LVCB information, the LVCB is updated. If the information is not valid, the LVCB update is not performed, and you might receive the following message:

Warning, cannot write lv control block data.

Most of the time, this message results when database programs bypass the JFS and access raw logical volumes as storage media. When this occurs, the information for the database is literally written over the LVCB. For raw logical volumes, this is not fatal. After the LVCB is overwritten, the user can still:

- Expand a logical volume
- Create mirrored copies of the logical volume
- Remove the logical volume
- Create a journaled file system to mount the logical volume

There are limitations to deleting LVCBs. A logical volumes with a deleted LVCB might not import successfully to other systems. During an importation, the LVM `importvg` command scans the LVCBs of all defined logical volumes in a volume group for information concerning the logical volumes. If the LVCB does not exist, the imported volume group still defines the logical volume to the new system that is accessing this volume group, and the user can still access the raw logical volume. However, the following typically happens:

- Any JFS information is lost and the associated mount point is not imported to the new system. In this case, you must create new mount points, and the availability of previous data stored in the file system is not ensured.
- Some non–JFS information concerning the logical volume cannot be found. When this occurs, the system uses default logical volume information to populate the ODM information. Thus, some output from the `lslv` command might be inconsistent with the real logical volume. If any logical volume copies still exist on the original disks, the information is not be correctly reflected in the ODM database. Use the `rmlvcopy` and `mklvcopy` commands to rebuild any logical volume copies and synchronize the ODM.
Physical Partition Limits

In the design of Logical Volume Manager (LVM), each logical partition maps to one physical partition (PP). And, each physical partition maps to a number of disk sectors. The design of LVM limits the number of physical partitions that LVM can track per disk to 1016. In most cases, not all of the 1016 tracking partitions are used by a disk. When this limit is exceeded, you might see a message similar to the following:

0516-1162 extendvg: Warning, The Physical Partition Size of \texttt{PPsize} requires the creation of \texttt{TotalPPs} partitions for \texttt{PVname}. The limitation for volume group \texttt{VGname} is \texttt{LIMIT} physical partitions per physical volume. Use chvg command with \texttt{-t} option to attempt to change the maximum Physical Partitions per Physical volume for this volume group.

Where:

\begin{itemize}
 \item \texttt{PPsize} \quad \text{Is 1 MB to 1 GB in powers of 2.}
 \item \texttt{Total PPs} \quad \text{Is the total number of physical partitions on this disk, given the \texttt{PPsize}.}
 \item \texttt{PVname} \quad \text{Is the name of the physical volume, for example, hdisk3.}
 \item \texttt{VGname} \quad \text{Is the name of the volume group.}
 \item \texttt{LIMIT} \quad \text{Is 1016 or a multiple of 1016.}
\end{itemize}

This limitation is enforced in the following instances:

1. When creating a volume group using the \texttt{mkvg} command, you specified a number of physical partitions on a disk in the volume group that exceeded 1016. To avoid this limitation, you can select from the physical partition size ranges of 1, 2, 4 (the default), 8, 16, 32, 64, 128, 256, 512 or 1024 MB and use the \texttt{mkvg –s} command to create the volume group. Alternatively, you can use a suitable factor that allows multiples of 1016 partitions per disk, and use the \texttt{mkvg –t} command to create the volume group.

2. When adding a disk to a pre-existing volume group with the \texttt{extendvg} command, the new disk caused the 1016 limitation violation. To resolve this situation, convert the existing volume group to hold multiples of 1016 partitions per disk using the \texttt{chvg –t} command. Alternatively, you can re-create the volume group with a larger partition size that allows the new disk, or you can create a standalone volume group consisting of a larger physical size for the new disk.

\textbf{Partition Limitations and the rootvg}

If the installation code detects that the rootvg drive is larger than 4 GB, it changes the \texttt{mkvg –s} value until the entire disk capacity can be mapped to the available 1016 tracks. This installation change also implies that all other disks added to rootvg, regardless of size, are also defined at that physical partition size.

\textbf{Partition Limitations and RAID Systems}

For systems using a redundant array of identical disks (RAID), the \texttt{/dev/hdiskX} name used by LVM may consist of many non-4 GB disks. In this case, the 1016 requirement still exists. LVM is unaware of the size of the individual disks that really make up \texttt{/dev/hdiskX}. LVM bases the 1016 limitation on the recognized size of \texttt{/dev/hdiskX}, and not the real physical disks that make up \texttt{/dev/hdiskX}.

\textbf{Synchronizing the Device Configuration Database}

A system malfunction can cause the device configuration database to become inconsistent with the LVM. When this happens, a logical volume command generates such error messages as:

\begin{itemize}
 \item 0516-322 The Device Configuration Database is inconsistent ...
 \item OR
 \item 0516-306 Unable to find logical volume \texttt{LVname} in the Device Configuration Database.
\end{itemize}
(where the logical volume called \textit{LVname} is normally available). \textbf{Attention:} Do not remove the \texttt{/dev} entries for volume groups or logical volumes. Do not change the database entries for volume groups or logical volumes using the Object Data Manager.

To synchronize the device configuration database with the LVM information, with root authority, type the following on the command line:

\texttt{syncIvodm \ -v \ VGName}

Where \textit{VGName} is the name of the volume group you want to synchronize.

\textbf{Volume Group Errors}

If the \texttt{importvg} command is not working correctly, try refreshing the device configuration database. See Synchronizing the Device Configuration Database on page 3-35.

\textbf{Overriding a Vary–On Failure Attention: Overriding a vary–on failure is an unusual operation; check all other possible problem sources such as hardware, cables, adapters, and power sources before proceeding. Overriding a quorum failure during a vary–on process is used only in an emergency and only as a last resort (for example, to salvage data from a failing disk). Data integrity cannot be guaranteed for management data contained in the chosen copies of the VGDA and the VGSA when a quorum failure is overridden.}

When you choose to forcibly vary–on a volume group by overriding the absence of a quorum, the PV STATE of all physical volumes that are missing during this vary–on process will be changed to removed. This means that all the VGDA and VGSA copies are removed from these physical volumes. After this is done, these physical volumes will no longer take part in quorum checking, nor are they allowed to become active within the volume group until you return them to the volume group.

Under one or more of the following conditions, you might want to override the vary–on failure so that the data on the available disks in the volume group can be accessed:

- Unavailable physical volumes appear permanently damaged.
- You can confirm that at least one of the presently accessible physical volumes (which must also contain a good VGDA and VGSA copy) was online when the volume group was last varied on. Unconfigure and power off the missing physical volumes until they can be diagnosed and repaired.

Use the following procedure to avoid losing quorum when one disk is missing or might soon fail and requires repair:

1. To temporarily remove the volume from the volume group, type:

 \texttt{chpv \ --vr \ PVname}

 When this command completes, the physical volume \textit{PVname} is no longer factored in quorum checking. However, in a two–disk volume group, this command fails if you try the \texttt{chpv} command on the disk that contains the two VGDA/VGSA. The command does not allow you to cause quorum to be lost.

2. If you need to remove the disk for repair, power off the system, and remove the disk. (For instructions, see Disk Drive Problems on page 3-27.) After fixing the disk and returning the disk to the system, continue with the next step.

3. To make the disk available again to the volume group for quorum checking, type:

 \texttt{chpv \ --v \ PVname}

 \textbf{Note::} The \texttt{chpv} command is used only for quorum–checking alteration. The data that resides on the disk is still there and must be moved or copied to other disks if the disk is not to be returned to the system.
VGDA Warnings
In some instances, the user experiences a problem adding a new disk to an existing volume
group or in creating of a new volume group. The message provided by LVM is:

0516-1163 extendvg: VGname already has maximum physical volumes. With
the maximum number of physical partitions per physical volume being LIMIT,
the maximum number of physical volumes for volume group VGname is
MaxDisks.

Where:

- **VGname** is the name of the volume group.
- **LIMIT** is 1016 or a multiple of 1016.
- **MaxDisks** is the maximum number of disks in a volume group. For example, if there
 are 1016 physical partitions (PPs) per disk, then MaxDisk is 32; if there are
 2032, then MaxDisk is 16.

You can modify the image.data file and then use alternate disk installation, or restore the
system using the mksysb command to re-create the volume group as a big volume group.
For more information, see the AIX 5L Version 5.2 Installation Guide and Reference.

On older AIX versions when the limit was smaller than 32 disks, the exception to this
description of the maximum VGDA was the rootvg. To provide users with more free disk
space, when rootvg was created, the mkvg –d command used the number of disks selected
in the installation menu as the reference number. This –d number is 7 for one disk and one
more for each additional disk selected. For example, if two disks are selected, the number is
8 and if three disks are selected, the number is 9, and so on.
This section provides several procedures for configuring, maintaining, and troubleshooting paging space and virtual memory. For concepts and background information, see Paging Space and Virtual Memory in the AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.
Paging Space Configuration Tasks

This section provides instructions for the following paging space configuration tasks:

- Adding and Activating Paging Space
- Configuring Paging Space to Improve Performance

Attention: Do not add paging space to volume groups on removable disks because removing a disk with an active paging space causes the system to crash.

Adding and Activating Paging Space

To make paging space available to your system, you must add and activate the paging space. The total amount of paging space is often determined by trial and error. One commonly used guideline is to double the RAM size and use that figure as a paging space target. To use the Web-based System Manager wizard to increase paging space, select the Volumes container, then the Paging Space container. From the Selected menu, choose Increase Paging Space → Wizard.

If you prefer to use SMIT, type one of the following fast paths on the command line:

- To list your current paging space, type: `smit lsps`
- To add paging space, type: `smit mkps`
- To activate paging space, type: `smit swapon`

Configuring Paging Space to Improve Performance

To improve paging performance, use multiple paging spaces and locate them on separate physical volumes whenever possible. However, more than one paging space can be located on the same physical volume. Although you can use multiple physical volumes, it is a good idea to select only those disks within the rootvg volume group unless you are thoroughly familiar with your system.

Setting the PSALLOC Environment Variable for Early Allocation Mode

The operating system uses the PSALLOC environment variable to determine the mechanism used for memory and paging space allocation. The default setting is late. For a description of the early and late alternatives for the PSALLOC environment variable, see Comparing Late and Early Paging Space Allocation in AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

The following examples show different ways to change the PSALLOC environment variable to early. The method you choose depends on how broadly you want to apply the change.

- Type the following command on a shell command line:
  ```bash
  PSALLOC=early;export PSALLOC
  ```
 This command causes all subsequent commands run from that shell session to run in early allocation mode.

- Add the following command in a shell resource file (`.shrc` or `.kshrc`):
  ```bash
  PSALLOC=early;export PSALLOC
  ```
 This entry causes all processes in your login session, with the exception of the login shell, to run under early allocation mode. This method also protects the processes from the SIGKILL signal mechanism.

- With root authority, add the following entry to the `/etc/environment` file:
  ```bash
  PSALLOC=early
  ```
 This entry causes all processes in the system, except the `init` process (process ID 1) to run in the early allocation mode. This method also protects the processes from the SIGKILL signal mechanism.
• Insert the `putenv` subroutine inside a program to set the `PSALLOC` environment variable to `early`. Using this method, the early allocation behavior takes effect at the next call to the `exec` subroutine.
Paging Space Maintenance Tasks

After paging space is created and activated, use the tasks in this section to maintain or remove it. This section is divided depending on the type of paging space you want to affect:

- To manage user-added paging space, see Changing or Removing a Paging Space.
- To manage the default paging logical volume (hd6), see Resizing or Moving the hd6 Paging Space

Changing or Removing a Paging Space

Changing the characteristics of a paging space can be done with Web-based System Manager, or you can type the following SMIT fast path on the command line: `smit chps`.

The procedure to remove a paging space is more risky, especially if the paging space you want to remove is a default paging space, such as hd6. A special procedure is required for removing the default paging spaces, because they are activated during boot time by shell scripts that configure the system. To remove one of the default paging spaces, these scripts must be altered and a new boot image must be created. **Attention:** Removing default paging spaces incorrectly can prevent the system from restarting. The following procedure is for experienced system managers only.

To remove an existing paging space, use the following procedure:

1. With root authority, deactivate the paging space by typing the following SMIT fast path on the command line: `smit swapoff`.
2. If the paging space you are removing is the default dump device, you must change the default dump device to another paging space or logical volume before removing the paging space. To change the default dump device, type the following command:
   ```bash
   sysdumpdev -P -p /dev/new_dump_device
   ```
3. Remove the paging space by typing the following fast path: `smit rmps`.

Resizing or Moving the hd6 Paging Space

You might want to reduce or move the default paging space in order to accomplish the following:

- Enhance storage system performance by forcing paging and swapping to other disks in the system that are less busy
- Conserve disk space on hdisk0

Whether moving the paging space or reducing its size, the rationale is the same: move paging space activity to disks that are less busy. The installation default creates a paging logical volume (hd6) on drive hdisk0, that contains part or all of the busy / (root) and /usr file systems. If the minimum inter-disk allocation policy is chosen, meaning that all of / and a large amount of /usr are on hdisk0, moving the paging space to a disk that is less busy can significantly improve performance. Even if the maximum inter-disk allocation policy is implemented and both / and /usr are distributed across multiple physical volumes, your hdisk2 (assuming three disks) likely contains fewer logical partitions belonging to the busiest file systems. (For more information on inter-disk allocation policies, see Choosing an Inter-Disk Allocation Policy for Your System in *AIX 5L Version 5.2 System Management Concepts: Operating System and Devices*).

The following procedures describe how to make the hd6 paging space smaller and how to move the hd6 paging space within the same volume group.

Making the hd6 Paging Space Smaller

The following procedure uses the `chps` command to shrink existing paging spaces, including the primary paging space and the primary and secondary dump device. This command calls the `shrinkps` script, which safely shrinks the paging space without leaving the system in an unbootable state. Specifically, the script does the following:

1. Creates a temporary paging space in the same volume
2. Moves information to that temporary space
3. Creates a new, smaller paging space in the same volume
4. Removes the old paging space

For the `chps` command to complete successfully, enough free disk space (space not allocated to any logical volume) must exist to create a temporary paging space. The size of the temporary paging space is equal to amount of space needed to hold all the paged out pages in the old paging space. The minimum size for a primary paging space is 32 MB. The minimum size for any other paging space is 16 MB.

Note: If the following procedure encounters an I/O error, the system might require immediate shutdown and rebooting.

1. Check your logical volume and file system distribution across physical volumes by typing the following command:
   ```
   lspv -l  hdiskX
   ``
   Where `hdiskX` is the name of your physical volume.

2. To shrink the paging space size, type the following on the command line:
   ```
 smit chps
   ```

**Note:** The primary paging space is hardcoded in the boot record. Therefore, the primary paging space will always be activated when the system is restarted. The `chps` command cannot deactivate the primary paging space.

Priority is given to maintaining an operational configuration. System checks can lead to immediate refusal to shrink the paging space. Errors occurring while the temporary paging space is being created cause the procedure to exit, and the system will revert to the original settings. Other problems are likely to provoke situations that will require intervention by the system administrator or possibly an immediate reboot. Some errors may prevent removal of the temporary paging space. This would normally require non-urgent attention from the administrator. **Attention:** If an I/O error is detected on system backing pages or user backing pages by the `swapoff` command within the `shrinkps` script, an immediate shutdown is advised to avoid a possible system crash. At reboot, the temporary paging space is active and an attempt can be made to stop and restart the applications which encountered the I/O errors. If the attempt is successful and the `swapoff` command is able to complete deactivation, the shrink procedure can be completed manually using the `mkps`, `swapoff` and `rmps` commands to create a paging space with the required size and to remove the temporary paging space.

Do not attempt to remove (using `rmps`) or reactivate (using `chps`) a deactivated paging space that was in the I/O ERROR state before the system restart. There is a risk that the disk space will be reused and may cause additional problems.

**Moving the hd6 Paging Space within the Same Volume Group**

Moving the default paging space from hdisk0 to a different disk within the same volume group does not require the system to shut down and reboot.

With root authority, type the following command to move the default (hd6) paging space from hdisk0 to hdisk2:

```bash
migratepv -l hd6 hdisk0 hdisk2
```

**Attention:** Moving a paging space with the name hd6 from rootvg to another volume group is not recommended because the name is hardcoded in several places, including the second phase of the boot process and the process that accesses the root volume group when booting from removable media. Only the paging spaces in rootvg are active during the second phase of the boot process, and having no paging space in rootvg could severely affect system boot performance. If you want the majority of paging space on other volume groups, it is better to make hd6 as small as possible (the same size as physical memory) and then create larger paging spaces on other volume groups (see Adding and Activating Paging Space).
Paging Space Troubleshooting

The total amount of paging space is often determined by trial and error. One commonly used guideline is to double the RAM size and use that figure as a paging space target. The most common problem regarding paging space is caused by running out of allocated space. If paging space runs low, processes can be lost, and if paging space runs out, the system can panic. The following signal and error information can help you monitor and resolve or prevent paging space problems.

The operating system monitors the number of free paging space blocks and detects when a paging–space shortage exists. When the number of free paging–space blocks falls below a threshold known as the paging–space warning level, the system informs all processes (except kprocs) of this condition by sending the SIGDANGER signal. If the shortage continues and falls below a second threshold known as the paging–space kill level, the system sends the SIGKILL signal to processes that are the major users of paging space and that do not have a signal handler for the SIGDANGER signal. (The default action for the SIGDANGER signal is to ignore the signal.) The system continues sending SIGKILL signals until the number of free paging–space blocks is above the paging–space kill level.

Processes that dynamically allocate memory can ensure that sufficient paging space exists by monitoring the paging–space levels with the psdanger subroutine or by using special allocation routines. You can use the disclaim subroutine to prevent processes from ending when the paging–space kill level is reached. To do this, define a signal handler for the SIGDANGER signal and release memory and paging–space resources allocated in their data and stack areas and in shared memory segments.

If you get error messages similar to the following, increase the paging space:

```
INIT: Paging space is low!
```

OR

```
You are close to running out of paging space.
You may want to save your documents because this program (and possibly the operating system) could terminate without future warning when the paging space fills up.
```

To increase the size of your paging space, see Changing or Removing a Paging Space or Resizing or Moving the hd6 Paging Space.
Chapter 4. File Systems Management Tasks

This section provides several procedures for configuring and maintaining file systems and directories, and for troubleshooting problems you might encounter. How-To’s for System Management Tasks provides scenarios for additional file system tasks, such as how to use the snapshot feature (available with AIX 5.2 and later versions) to protect the integrity of your file systems from potential disk failure.

This chapter describes tasks for journaled file systems (JFS), enhanced journaled file systems (JFS2), and CD–ROM file systems. For your convenience, pointers to file system tasks are listed below:

- Add a JFS or JFS2
- Backup an existing JFS2 snapshot image
- Change the attributes of a JFS or a JFS2
- Check size of a file system
- Copy a JFS to Another Physical Volume
- Create and backup a JFS2 snapshot
- Increase size of a file system
- List file systems
- Make an Online Backup of a Mounted JFS or JFS2
- Mount file systems
- Mount a JFS2 snapshot
- Recover One or More Files from an Online JFS2 Snapshot
- Remove a JFS or JFS2
- Remove a JFS2 snapshot
- Unmount file systems
- Use File Systems on CD–ROM and DVD Disks
- Use File Systems on Read/Write Optical Media
- Verify File Systems
- Fix Disk Overflows
- Fix a Damaged File System
## File Systems Configuration Tasks

When adding or configuring file systems, you can select options in the File Systems container of Web-based System Manager or use the SMIT fast paths provided in the following table.

<table>
<thead>
<tr>
<th>Task</th>
<th>SMIT Fast Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a JFS or JFS2</td>
<td><code>smit crfs</code></td>
</tr>
<tr>
<td>Add a JFS2 to an existing logical volume</td>
<td><code>smit crjfs2lvstd</code></td>
</tr>
<tr>
<td>Add a JFS to a previously defined logical volume menu</td>
<td>Create logical volume, then <code>smit crjfslv</code></td>
</tr>
<tr>
<td>Change the attributes of a JFS or a JFS2</td>
<td><code>smit chfs</code></td>
</tr>
<tr>
<td>Note 1</td>
<td></td>
</tr>
<tr>
<td>Check size of a file system</td>
<td><code>smit fs</code></td>
</tr>
<tr>
<td>Increase size of a file system</td>
<td>JFS: <code>smit chjfs</code></td>
</tr>
<tr>
<td></td>
<td>JFS2: <code>smit chjfs2</code></td>
</tr>
</tbody>
</table>
File Systems Maintenance Tasks

The simplest tasks you might need when maintaining file systems are grouped within the following table. Instructions for additional maintenance tasks are located later in this section or in How-To's for System Management Tasks.

Table 4. Maintaining File Systems Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>SMIT Fast Path</th>
<th>Command or File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backup by name files or directories</td>
<td>smit backfile</td>
<td>backup Note 1</td>
</tr>
<tr>
<td>Create and backup a JFS2 snapshot image</td>
<td>smit backsnap</td>
<td>backsnap Note 1</td>
</tr>
<tr>
<td>List all file systems on a disk</td>
<td>smit lsmntdsk</td>
<td></td>
</tr>
<tr>
<td>List file systems on a removable disk</td>
<td>smit lsmntdsk</td>
<td></td>
</tr>
<tr>
<td>List mounted file systems</td>
<td>smit fs</td>
<td></td>
</tr>
<tr>
<td>Mount a Group of File Systems Note 5</td>
<td>smit mountg</td>
<td>mount –t GroupName</td>
</tr>
<tr>
<td>Mount a JFS or JFS2 Note 3</td>
<td>smit mntsnap</td>
<td>mount –v jfs2 –o snapshot Device MountPoint</td>
</tr>
<tr>
<td>Remove a JFS or JFS2</td>
<td>smit rmfs</td>
<td></td>
</tr>
<tr>
<td>Remove a JFS2 Snapshot</td>
<td>smit rmsnap</td>
<td>snapshot –d SnapshotDevice</td>
</tr>
<tr>
<td>Unmount a File System Note 4</td>
<td>smit umountfs</td>
<td></td>
</tr>
<tr>
<td>Unmount a File System on a Removable Disk Note 4</td>
<td>smit umntdsk</td>
<td></td>
</tr>
<tr>
<td>Unmount a Group of File Systems Note 5</td>
<td>smit umountg</td>
<td>umount –t GroupName</td>
</tr>
</tbody>
</table>

Notes:

1. For options, see the command description in AIX 5L Version 5.2 Commands Reference.

2. Do not change the names of system-critical file systems, which are / (root) on logical volume 4 (hd4), /usr on hd2, /var on hd9var, /tmp on hd3, and /blv on hd5. If you use the hd n convention, start at hd10.

3. Check the file systems before mounting by using the procedure Verify File Systems or running the fsck command.

4. If an unmount fails, it might be because a user or process has an opened file in the file system being unmounted. The fuser command lets you find out which user or process might be causing the failure.

5. A file system group is a collection of file systems which have the same value for the type= identifier in the /etc/filesystems file.
Recover One or More Files from an Online JFS2 Snapshot

When a file becomes corrupted, you can replace it if you have an accurate copy in an online JFS2 snapshot. Use the following procedure to recover one or more files from a JFS2 snapshot image:

1. Mount the snapshot. For example:

   ```bash
 mount -v jfs2 -o snapshot /dev/mysnaplv /home/aaa/mysnap
   ```

2. Change to the directory that contains the snapshot. For example:

   ```bash
 cd /home/aaa/mysnap
   ```

3. Copy the accurate file to overwrite the corrupted one. For example:

   ```bash
 cp myfile /home/aaa/myfs
   ```
   copies only the file named myfile. The following example copies all files at once:

   ```bash
 cp -R home/aaa/mysnap /home/aaa/myfs
   ```

   For more examples, see the `cp` or `cpio` command descriptions in the *AIX 5L Version 5.2 Commands Reference*.

Use File Systems on CD–ROM and DVD Disks

Beginning with AIX 5.2, CDs and DVDs are automatically mounted by default but this feature can be disabled. If the feature has been disabled, use the `cdmount` command to mount the CDRFS or UDFS file system, for example:

```bash
cdmount cd0
```

When a DVD is automounted, the UDFS file system is read–only by default. If you want the automount feature or the `cdmount` command to automatically mount a read/write UDFS, edit the `cdromd.conf` file. You can also manually mount a read/write UDFS with the following command:

```bash
mount -V udfs DevName MtPt
```

Where `DevName` is the name of the DVD drive and `MtPt` is the mount point for the file system.

Use File Systems on Read/Write Optical Media

The following types of file systems can be used on read/write optical media:

- CDRFS
- JFS

A CD–ROM file system (CDRFS) can be stored on read/write optical media, provided that the optical media is write–protected, as well as on a CD–ROM. The following table tells you how to add, mount, or unmount a CDRFS on read/write optical media. You must specify the following information when mounting the file system:

<table>
<thead>
<tr>
<th>Device name</th>
<th>Mount point</th>
<th>Automatic mount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defines the name of device containing the media.</td>
<td>Specifies the directory where the file system will be mounted.</td>
<td>Specifies whether the file system will be mounted automatically at system restart.</td>
</tr>
</tbody>
</table>
## CDRFS on Optical Media Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>SMIT Fast Path</th>
<th>Command or File</th>
</tr>
</thead>
</table>
| Adding a CDRFS \(^1\) | smit crcdrfs   | 1. Add the file system: \texttt{crfs} –v cdrfs –p ro –d DeviceName –m MountPoint –A AutomaticMount  
                      |                | 2. Mount the file system: \texttt{mount} MountPoint |
| Removing a CDRFS \(^2\) |                | 1. Unmount the file system: \texttt{smit umountfs}  
                          |                | 2. Remove the file system: \texttt{smit rmcdrs} |
|                       |                | 1. Unmount the file system: \texttt{umount} FileSystem  
                          |                | 2. Remove the file system: \texttt{rmfs} MountPoint |

**Notes:**

1. Make sure the read/write optical media is write-protected.

2. A CDRFS file system must be unmounted before the read/write optical media can be removed.

A JFS provides a read/write file system on optical media similar to those on a hard disk. You must have system authority to create or import a read/write file system on read/write optical media (that is, your login must belong to the system group) and you must have the following information:

- **Volume group name**
  - Specifies the name of the volume group
- **Device name**
  - Specifies the logical name of the read/write optical drive
- **Mount point**
  - Specifies the directories where the file systems will be mounted
- **Automatic mount**
  - Specifies whether the file system will be mounted automatically at system restart

Notes:

1. Any volume group created on read/write optical media must be self contained on that media. Volume groups cannot go beyond one read/write optical disk.

2. When accessing a previously created journaled file system, the volume group name does not need to match the one used when the volume group was created.
### JFS on Optical Media Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>SMIT Fast Path</th>
<th>Command or File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a JFS</td>
<td>1. Insert optical disk into drive.</td>
<td>1. Insert optical disk into drive.</td>
</tr>
<tr>
<td></td>
<td>2. Create a volume group (if necessary):</td>
<td>2. Create a volume group (if necessary):</td>
</tr>
<tr>
<td></td>
<td>\texttt{smit mkvg}</td>
<td>\texttt{mkvg –f –y VGName –d 1 DeviceName}</td>
</tr>
<tr>
<td></td>
<td>3. Create a journaled file system:</td>
<td>3. Create a journaled file system:</td>
</tr>
<tr>
<td></td>
<td>\texttt{smit crfs}</td>
<td>\texttt{crfs –v jfs –g VGName –a size= SizeFileSystem –m MountPoint –A AutomaticMount –p rw}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Mount the file system:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\texttt{mount MountPoint}</td>
</tr>
</tbody>
</table>

Accessing previously created JFS Note 1

<table>
<thead>
<tr>
<th>Task</th>
<th>1. Insert optical disk into drive.</th>
<th>1. Insert optical disk into drive.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Import the volume group:</td>
<td>2. Import the volume group:</td>
</tr>
<tr>
<td></td>
<td>\texttt{smit importvg}</td>
<td>\texttt{importvg –y VGName DeviceName}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Mount the file system:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\texttt{mount MountPoint}</td>
</tr>
</tbody>
</table>

Removing a JFS Note 2

<table>
<thead>
<tr>
<th>Task</th>
<th>1. Unmount the file system:</th>
<th>1. Unmount the file system:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\texttt{smit umountfs}</td>
<td>\texttt{umount FileSystem}</td>
</tr>
<tr>
<td></td>
<td>2. Remove the file system:</td>
<td>2. Remove the file system:</td>
</tr>
<tr>
<td></td>
<td>\texttt{smit rmjfs}</td>
<td>\texttt{rmfs MountPoint}</td>
</tr>
</tbody>
</table>

### Verify File Systems

Inconsistencies can occur in file systems when the system is stopped while file systems remained mounted or when a disk is damaged. In such circumstances, it is important to verify file systems before mounting them. Also verify your file systems in the following circumstances:

- After a malfunction; for example, if a user cannot change directories to a directory that has that user’s permissions (uid)
- Before backing up file systems to prevent errors and possible restoration problems
- At installation or system boot to make sure that there are no operating system file errors

### Check a User–Defined File System

1. Unmount the user–defined file system being checked.
2. Ensure you have write permission on files in the file system. Otherwise, the \texttt{fsck} cannot repair damaged files even if you answer Yes to repair prompts.
3. Use the \texttt{smit fsck} fast path to access the Verify a File System menu.
4. Do one of the following:

Notes:

1. This procedure is required whenever inserting media containing journaled file systems.
2. Removing a journaled file system destroys all data contained in that file system and on the read/write optical media.
a. Specify the name of an individual file system to check in the **NAME** of file system field, or

b. Select a general file system type to check, such as a journaled file system (JFS) in the **TYPE of file system** field.

5. If you want to limit your check to the most likely candidates, specify Yes in the **FAST check?** field. The fast–check option checks only those file systems that are likely to have inconsistencies such as the file systems that were mounted when the system stopped at some point in the past.

6. Specify the name of a temporary file on a file system not being checked in the **SCRATCH file** field.

7. Start the file system check.

### Check Root and `/usr` File Systems

To run the **fsck** command on `/` or `/usr` file system, you must shut down the system and reboot it from removable media because the `/` (root) and `/usr` file systems cannot be unmounted from a running system. The following procedure describes how to run **fsck** on the `/` and `/usr` file systems from the maintenance shell.

1. With root authority, shut down your system.

2. Boot from your installation media.

3. From the Welcome menu, choose the **Maintenance** option.

4. From the Maintenance menu, choose the option to access a volume group.

5. Choose the rootvg volume group. A list of logical volumes that belong to the volume group you selected is displayed.

6. Choose 2 to access the volume group and to start a shell before mounting file systems.

   In the following steps, you will run the **fsck** command using the appropriate options and file system device names. The **fsck** command checks the file system consistency and interactively repairs the file system. The `/` (root) file system device is `/dev/hd4` and the `/usr` file system device is `/dev/hd2`.

7. To check `/` file system, type the following:

   ```
 $ fsck –y /dev/hd4
   ```

   The **–y** flag is recommended for less experienced users (see the **fsck** command).

8. To check the `/usr` file system, type the following:

   ```
 $ fsck –y /dev/hd2
   ```

9. To check other file systems in the rootvg, type the **fsck** command with the appropriate device names. The device for `/tmp` is `/dev/hd3`, and the device for `/var` is `/dev/hd9var`.

10. When you have completed checking the file systems, reboot the system.
File Systems Troubleshooting Tasks

The topics in this section provide diagnostics and recovery procedures to use if you encounter one of the following:

Fix Disk Overflows

A disk overflow occurs when too many files fill up the allotted space. This can be caused by a runaway process that creates many unnecessary files. You can use the following procedures to correct the problem:

Note: You must have root user authority to remove processes other than your own.

- Identify Problem Processes on page 4-8
- Terminate the Process on page 4-8
- Reclaim File Space without Terminating the Process on page 4-9
- Fix a / (root) Overflow on page 4-9
- Fix a /var Overflow on page 4-10
- Fix a User–Defined File System Overflow on page 4-11
- Fix Other File Systems and General Search Techniques on page 4-12

Identify Problem Processes

Use the following procedure to isolate problem processes.

1. To check the process status and identify processes that might be causing the problem, type:

   \[ \text{ps \ -ef | pg} \]

   The `ps` command shows the process status. The `-e` flag writes information about all processes (except kernel processes), and the `-f` flag generates a full listing of processes including what the command name and parameters were when the process was created. The `pg` command limits output to a single page at a time, so information does not scroll too quickly off the screen.

   Check for system or user processes that are using excessive amounts of a system resource, such as CPU time. System processes such as `sendmail`, `routed`, and `lpd` seem to be the system processes most prone to becoming runaways.

2. To check for user processes that use more CPU than expected, type:

   \[ \text{ps \ -u} \]

3. Note the process ID (PID) of each problem process.

Terminate the Process

Use the following procedure to terminate a problem process:

1. Terminate the process that is causing the problem by typing:

   \[ \text{kill \ -9 \ PID} \]

   Where PID is the ID of the problem process.

2. Remove the files the process has been making by typing:

   \[ \text{rm \ file1 \ file2 \ file3} \]

   Where `file1 file2 file3` represents names of process–related files.
Reclaim File Space without Terminating the Process

When an active file is removed from the file system, the blocks allocated to the file remain allocated until the last open reference is removed, either as a result of the process closing the file or because of the termination of the processes that have the file open. If a runaway process is writing to a file and the file is removed, the blocks allocated to the file are not freed until the process terminates.

To reclaim the blocks allocated to the active file without terminating the process, redirect the output of another command to the file. The data redirection truncates the file and reclaims the blocks of memory. For example:

```
$ ls -l
total 1248
-rwxrwxr-x 1 web staff 1274770 Jul 20 11:19 datafile
$ date > datafile
$ ls -l
total 4
-rwxrwxr-x 1 web staff 29 Jul 20 11:20 datafile
```

The output of the `date` command replaced the previous contents of the `datafile` file. The blocks reported for the truncated file reflect the size difference from 1248\(\text{B}\) to 4. If the runaway process continues to append information to this newly truncated file, the next `ls` command produces the following results:

```
$ ls -l
total 8
-rwxrwxr-x 1 web staff 1278866 Jul 20 11:21 datafile
```

The size of the `datafile` file reflects the append done by the runaway process, but the number of blocks allocated is small. The `datafile` file now has a hole in it. File holes are regions of the file that do not have disk blocks allocated to them.

Fix a / (root) Overflow

Check the following when the root file system (/) has become full:

- Use the following command to read the contents of the `/etc/security/failedlogin` file:
  
  ```
 who /etc/security/failedlogin
  ```
  
  The condition of TTYs respawning too rapidly can create failed login entries. To clear the file after reading or saving the output, execute the following command:

  ```
 cp /dev/null /etc/security/failedlogin
  ```

- Check the `/dev` directory for a device name that is typed incorrectly. If a device name is typed incorrectly, such as `rmto` instead of `rmt0`, a file will be created in `/dev` called `rmto`. The command will normally proceed until the entire root file system is filled before failing. `/dev` is part of the root (/) file system. Look for entries that are not devices (that do not have a major or minor number). To check for this situation, use the following command:

  ```
 cd /dev
 ls -l | pg
  ```

  In the same location that would indicate a file size for an ordinary file, a device file has two numbers separated by a comma. For example:

  ```
 crw-rw-rw- 1 root system 12,0 Oct 25 10:19 rmt0
  ```

  If the file name or size location indicates an invalid device, as shown in the following example, remove the associated file:

  ```
 crw-rw-rw- 1 root system 9375473 Oct 25 10:19 rmto
  ```

Notes:

1. Do not remove valid device names in the `/dev` directory. One indicator of an invalid device is an associated file size that is larger than 500 bytes.
2. If system auditing is running, the default /audit directory can rapidly fill up and require attention.

- Check for very large files that might be removed using the find command. For example, to find all files in the root (/) directory larger than 1 MB, use the following command:

  ```
 find / -xdev -size +2048 -ls | sort -r +6
  ```

  This command finds all files greater than 1 MB and sorts them in reverse order with the largest files first. Other flags for the find command, such as --newer, might be useful in this search. For detailed information, see the command description for the find command.

  **Note:** When checking the root directory, major and minor numbers for devices in the /dev directory will be interspersed with real files and file sizes. Major and minor numbers, which are separated by a comma, can be ignored.

  Before removing any files, use the following command to ensure a file is not currently in use by a user process:

  ```
 fuser filename
  ```

  Where *filename* is the name of the suspect large file. If a file is open at the time of removal, it is only removed from the directory listing. The blocks allocated to that file are not freed until the process holding the file open is killed.

**Fix a /var Overflow**

Check the following when the /var file system has become full:

- You can use the find command to look for large files in the /var directory. For example:

  ```
 find /var -xdev -size +2048 -ls | sort -r +6
  ```

  For detailed information, see the command description for the find command.

- Check for obsolete or leftover files in /var/tmp.

- Check the size of the /var/adm/wtmp file, which logs all logins, rlogins and telnet sessions. The log will grow indefinitely unless system accounting is running. System accounting clears it out nightly. The /var/adm/wtmp file can be cleared out or edited to remove old and unwanted information. To clear it, use the following command:

  ```
 cp /dev/null /var/adm/wtmp
  ```

  To edit the /var/adm/wtmp file, first copy the file temporarily with the following command:

  ```
 /usr/sbin/acct/fwtmp < /var/adm/wtmp >/tmp/out
  ```

  Edit the /tmp/out file to remove unwanted entries then replace the original file with the following command:

  ```
 /usr/sbin/acct/fwtmp -ic < /tmp/out > /var/adm/wtmp
  ```

- Clear the error log in the /var/adm/ras directory using the following procedure. The error log is never cleared unless it is manually cleared.

  **Note:** Never use the cp /dev/null command to clear the error log. A zero–length errlog file disables the error logging functions of the operating system and must be replaced from a backup.

  1. Stop the error daemon using the following command:

     ```
 /usr/lib/errstop
     ```

  2. Remove or move to a different filesystem the error log file by using one of the following commands:

     ```
 rm /var/adm/ras/errlog
     ```

     or
mv /var/adm/ras/errlog filename

Where filename is the name of the moved errlog file.

Note: The historical error data is deleted if you remove the error log file.

3. Restart the error daemon using the following command:

/usr/lib/errdemon

Note:: Consider limiting the errlog by running the following entries in cron:

```
0 11 * * * /usr/bin/errclear -d S,0 30
0 12 * * * /usr/bin/errclear -d H 90
```

- Check whether the trcfile file in this directory is large. If it is large and a trace is not currently being run, you can remove the file using the following command:

rm /var/adm/ras/trcfile

- If your dump device is set to hd6 (which is the default), there might be a number of vmcore * files in the /var/adm/ras directory. If their file dates are old or you do not want to retain them, you can remove them with the rm command.

- Check the /var/spool directory, which contains the queueing subsystem files. Clear the queueing subsystem using the following commands:

  - stopsrc -s qdaemon
  - rm /var/spool/lpd/qdir/*
  - rm /var/spool/lpd/stat/*
  - rm /var/spool/qdaemon/*
  - startsrc -s qdaemon

- Check the /var/adm/acct directory, which contains accounting records. If accounting is running, this directory may contain several large files. Information on how to manage these files is in System Accounting.

- Check the /var/preserve directory for terminated vi sessions. Generally, it is safe to remove these files. If a user wants to recover a session, you can use the vi –r command to list all recoverable sessions. To recover a specific session, use vi –r filename.

- Modify the /var/adm/sulog file, which records the number of attempted uses of the su command and whether each was successful. This is a flat file and can be viewed and modified with a favorite editor. If it is removed, it will be recreated by the next attempted su command. Modify the /var/tmp/snmpd.log, which records events from the snmpd daemon. If the file is removed it will be recreated by the snmpd daemon.

Note:: The size of the /var/tmp/snmpd.log file can be limited so that it does not grow indefinitely. Edit the /etc/snmpd.conf file to change the number (in bytes) in the appropriate section for size.

Fix a User–Defined File System Overflow

Use this procedure to fix an overflowing user–defined file system.

1. Remove old backup files and core files. The following example removes all *.bak,*.bak, a.out, core, *, or ed.hup files.

   ```
 find / (–name ".bak" –o –name core –o –name a.out –o \\
 –name "...*" –o –name ".*.bak" –o –name ed.hup) \
 –atime +1 –mtime +1 –type f –print | xargs –e rm –f
   ```

2. To prevent files from regularly overflowing the disk, run the skulker command as part of the cron process and remove files that are unnecessary or temporary.

The skulker command purges files in /tmp directory, files older than a specified age, a.out files, core files, and ed.hup files. It is run daily as part of an accounting procedure run by the cron command during off–peak periods (assuming you have turned on accounting).

The cron daemon runs shell commands at specified dates and times. Regularly scheduled commands such as skulker can be specified according to instructions.
For more information about how to create a cron process or edit the crontab file, refer to Setting Up an Accounting System on page 5-13.

Fix Other File Systems and General Search Techniques

Use the find command with the –size flag to locate large files or, if the file system recently overflowed, use the –newer flag to find recently modified files. To produce a file for the –newer flag to find against, use the following touch command:

```
touch mmddhhmm filename
```

Where mm is the month, dd is the date, hh is the hour in 24–hour format, mm is the minute, and filename is the name of the file you are creating with the touch command.

After you have created the touched file, you can use the following command to find newer large files:

```
find / filesystem_name –xdev –newer touch_filename –ls
```

You can also use the find command to locate files that have been changed in the last 24 hours, as shown in the following example:

```
find / filesystem_name –xdev –mtime 0 –ls
```

Fix a Damaged File System

File systems can get corrupted when the i–node or superblock information for the directory structure of the file system gets corrupted. This can be caused by a hardware–related ailment or by a program that gets corrupted that accesses the i–node or superblock information directly. (Programs written in assembler and C can bypass the operating system and write directly to the hardware.) One symptom of a corrupt file system is that the system cannot locate, read, or write data located in the particular file system.

To fix a damaged file system, you must diagnose the problem and then repair it. The fsck command performs low–level diagnosis and repairs.

Procedure

1. With root authority, unmount the damaged file system using one of the following SMIT fast paths: smit unmountfs (for a file system on a fixed disk drive) or smit unmntdsk (for a file system on a removable disk).

2. Assess file system damage by running the fsck command. In the following example, the fsck command checks the unmounted file system located on the /dev/myfilelv device:

```
fsck /dev/myfilelv
```

The fsck command checks and interactively repairs inconsistent file systems. Normally, the file system is consistent, and the fsck command merely reports on the number of files, used blocks, and free blocks in the file system. If the file system is inconsistent, the fsck command displays information about the inconsistencies found and prompts you for permission to repair them. The fsck command is conservative in its repair efforts and tries to avoid actions that might result in the loss of valid data. In certain cases, however, the fsck command recommends the destruction of a damaged file. Refer to the fsck command description in AIX 5L Version 5.2 Commands Reference for a list of inconsistences that this command checks for.

3. If the file system cannot be repaired, restore it from backup. **Attention:** Restoring a file system from a backup destroys and replaces any file system previously stored on the disk.

To restore the file system from backup, use the SMIT fastpath smit restfilesys or the series of commands shown in the following example:
mkfs /dev/myfilelv
mount /dev/myfilelv /myfilesys
cd /myfilesys
restore -r

In this example, the **mkfs** command makes a new file system on the device named /dev/myfilelv and initializes the volume label, file system label, and startup block. The **mount** command establishes /dev/myfilelv as the mountpoint for myfilesys and the **restore** command extracts the file system from the backup.

If your backup was made using incremental file system backups, you must restore the backups in increasing backup–level order (for example, 0, 1, 2). For more information about restoring a file system from backup, refer to “Restoring from Backup Image Individual User Files”.

When using **smit restfilesys** to restore an entire file system, enter the target directory, restore device (other than /dev/rfd0), and number of blocks to read in a single input operation.
Chapter 5. Resource Scheduling Management Tasks

This chapter contains instructions for managing resources within the AIX operating system. Tasks are grouped within the following tools:

- Workload Manager
- System Resource Controller and Subsystems
- System Accounting
Workload Manager

Workload Manager (WLM) gives system administrators more control over how the scheduler and the virtual memory manager (VMM) allocate resources to processes. Using WLM, you can prevent different classes of jobs from interfering with each other and you can allocate resources based on the requirements of different groups of users.

This section contains procedures for configuring WLM with classes and rules that are appropriate for your site and suggestions for troubleshooting unexpected resource consumption behavior. Also, Configure Workload Manager (WLM) to Consolidate Workloads provides instructions for creating an example configuration.

The tasks in this section assume you are familiar with WLM concepts provided in the AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

Attention: Efficient use of WLM requires extensive knowledge of existing system processes and performance. If the system administrator configures WLM with extreme or inaccurate values, performance will be significantly degraded.
Workload Manager Configuration Tasks

Workload Manager is part of the base operating system and is installed with the base operating system, but it is an optional service. It must be configured to suit your system environment, started when you want to use it, and stopped when you want to suspend or end WLM service.

This section provides instructions for the following configuration tasks:

- Starting and Stopping WLM
- Specifying WLM Properties
- Creating an Attribute Value Grouping
- Creating a Time–Based Configuration Set
- Creating a Resource Set

Instructions for creating an example WLM configuration are in Configure Workload Manager (WLM) to Consolidate Workloads.

Starting and Stopping WLM

WLM is an optional service that must be started and stopped. It is recommended that you use one of the system management interfaces, Web-based System Manager or SMIT, to start or stop WLM.

- To start or stop WLM using Web–based System Manager, select the Workload Manager icon from the session window.
- To start or stop WLM using SMIT, use the `smit wlmmanage` fast path.

The key difference between these options is permanence. In Web-based System Manager or SMIT, you can start or stop WLM three ways:

**current session** If you request to stop WLM with this option, WLM will be stopped for this session only and restarted at next reboot. If you request a start with this option, WLM will be started for this session only and not restarted at next reboot.

**next reboot** If you request to stop WLM with this option, WLM will remain running for this session only and will not be restarted at next reboot. If you request a start with this option, WLM will not be available for this session, but will be started at next reboot.

**both** If you request to stop WLM with this option, WLM will be stopped for this session only and will not be restarted at next reboot. If you request a start with this option, WLM will be started for this session only and will be restarted at next reboot.

You can also use the `wlmcntrl` command, but the `wlmcntrl` command allows you to start or stop WLM for the current session only. If you want to use the command line interface and you want the change to remain in effect when the machine is rebooted, you must edit the `/etc/inittab` file.

WLM can be used to regulate resource consumption as per–class percentages, per–class totals, or per–process totals. Regulation for all resource types can be enabled by running WLM in *active* mode. Optionally, you can start a mode of WLM that classifies new and existing processes and monitors the resource usage of the various classes, without attempting to regulate this usage. This mode is called the *passive* mode. If CPU time is the only resource that you are interested in regulating, you can choose to run WLM in active mode for CPU and passive mode for all other resources. This mode is called *cpu only* mode.

All processes existing in the system before WLM is started are classified according to the newly loaded assignment rules, and are monitored by WLM.
Specifying WLM Properties

You can specify the properties for the WLM configuration by using the Web–based System Manager, SMIT, the WLM command line interface, or by creating flat ASCII files. The Web-based System Manager and SMIT interfaces use the WLM commands to record the information in the same flat ASCII files, called property files.

A set of WLM property files defines a WLM configuration. You can create multiple sets of property files, defining different configurations of workload management. These configurations are located in subdirectories of /etc/wlm. The WLM property files describing the superclasses of the Config configuration are the file’s classes, description, limits, shares and rules in /etc/wlm/Config. Then, the property file’s describing the subclasses of the superclass Super of this configuration are the file’s classes, limits, shares and rules in directory /etc/wlm/Config/Super. Only the root user can start or stop WLM, or switch from one configuration to another.

The property files are named as follows:

- classes: Class definitions
- description: Configuration description text
- groupings: Attribute value groupings
- limits: Class limits
- shares: Class target shares
- rules: Class assignment rules

The command to submit the WLM property files, wlmcntrl, and the other WLM commands allow users to specify an alternate directory name for the WLM properties files. This allows you to change the WLM properties without altering the default WLM property files.

A symbolic link, /etc/wlm/current, points to the directory containing the current configuration files. Update this link with the wlmcntrl command when you start WLM with a specified configuration or configuration set. The sample configuration files shipped with the operating system are in /etc/wlm/standard.

Creating an Attribute Value Grouping

You can group attribute values and represent them with a single value in the rules file. These attribute value grouping are defined in a groupings file within the WLM configuration directory.

By default, a configuration has no groupings file. There is no command or management interface to create one. To create and use attribute value groupings, use the following procedure:

1. With root authority, change to the appropriate configuration directory, as shown in the following example:
   ```
 cd /etc/wlm/MyConfig
   ```
2. Use your favorite editor to create and edit a file named groupings. For example:
   ```
 vi groupings
   ```
3. Define attributes and their associated values using the following format:
   ```
 attribute = value, value, ...
   ```
   All values must be separated by commas. Spaces are not significant. Ranges and wild cards are allowed. For example:
   ```
 trusted = user[0-9][0-9], admin*
 nottrusted = user23, user45
 shell = /bin/?sh, \
 /bin/sh, \
 /bin/tcsh
 rootgroup=system,bin,sys,security,cron,audit
   ```
4. Save the file.
5. To use attribute groupings within the selection criteria for a class, edit the rules file. The attribute grouping name must be preceded by a dollar sign ($) to include the corresponding values or the exclamation point (!) to exclude the values. The exclamation point cannot be used in the members of the group (step 3), and it is the only modifier that can be used in front of the grouping in this rules file. In the following example, the asterisk (*) signals a comment line:

```
*class resvd user group application type
tag
 classA – $trusted,!$nottrusted – – –
 classB – – – $shell,!/bin/zsh –
 classC – – $rootgroup – –
```

6. Save the file.

At this point, your classification rules includes attribute value groupings. When the rules are parsed, if an element beings with a $, the system looks for that element within the groupings file. If an element is syntactically invalid or if the groupings file does not exist, the system displays a warning message and continues processing other rules.

Creating a Time–Based Configuration Set

You can create a set of specialty configurations and assign each configuration within the set to days and times when you want a specific configuration to be in effect. These sets, called time–based configuration sets, are completely separate from but compatible with your normal configuration. You can use the `wlmcntrl –u` command to switch between a configuration set and your normal configuration as needed.

When using a configuration set, you associate existing named configurations, typically with a specific time range. Because only one configuration can be used at any given time, each specified time range must be unique; time ranges cannot overlap or be duplicated.

The `wlmd` daemon alerts WLM when a specified configuration goes out of time range and another configuration needs to be used. Only the root user can manage these time ranges, which are specified within the configuration set's directory in an ASCII file called `.times`.

Use the following procedure to create a time–based configuration set:

1. With root authority, create a configuration set directory then change to that directory. For example:

   ```
 mkdir /etc/wlm/MyConfigSet
cd /etc/wlm/MyConfigSet
   ```

2. Use your favorite editor to create the configuration set's `.times` file and specify the configuration and time ranges in the following format:

   ```
 ConfigurationName:
 time = “ N – N , HH : MM – HH : MM ”
 or
 ConfigurationName:
 time = – (no time value specified)
   ```

   Where  `N` is a numeral representing a day of the week in the range of 0 (Sunday) through 6 (Saturday),  `HH` represents the hour in the range of 00 (midnight) to 23 (11 p.m.), and  `MM` represents the minutes in the range of 00 to 59. You can specify the day only or not at all. An hour value of 24 is valid for the ending hour of the day, provided that the minute value is 00. If you type a dash (–) instead of a time range for a particular configuration, that configuration will be used when the other configurations’ time ranges are not in effect. Only one configuration can be specified without a time range.
For example:

conf1:
  time = 8–5,8:00–17:00
conf2:
  time = “6–0,14:00–17:00”
conf3:
  time = “22:00–6:00”

3. Use the `wlmcntrl –u` command to update WLM with the new configuration set. For example:

    wlmcntrl –u /etc/wlm/MyConfigSet

At this point, WLM’s current configuration is your new time–based configuration set.

You can also use the `confsetcntrl` and `lswlmcfg` commands to create and manipulate configuration sets. For example:

To create the `confset1` configuration set with a default configuration of `conf1`, use the following command:

    confsetcntrl –C confset1 conf1

To add `conf2` to `confset1` and make it the active configuration from 8:00 AM to 5:00 PM daily, use the following command:

    confsetcntrl –d confset1 –a conf2 “0–6,08:00–17:00”

To make this configuration set the active configuration, use the following command:

    wlmcntrl –d confset1

### Creating a Resource Set

Using resource sets (rsets) is an effective way to isolate workloads from one another as far as the CPU is concerned. By separating two different workloads into two classes and giving each class a different subset of the CPUs, you can make sure that the two workloads never compete with each other for CPU resources, even though they still compete for physical memory and I/O bandwidth.

The simplest way to create a resource set is to use the SMIT interface (`smit addrsetcntl` fast path) or the `mkrset` command.

For instructional purposes, the following example illustrates each step of creating and naming a resource set on a 4–way system. Its goal is to create a resource set containing processors 0 to 2, and use it in WLM configuration to restrict all processes of a superclass to these three processors.

1. With root authority, view the available building blocks (from which to create the resource sets) using the following command:

        lsrset –av

The output for this example is the following:

<table>
<thead>
<tr>
<th>T</th>
<th>Name</th>
<th>Owner</th>
<th>Group</th>
<th>Mode</th>
<th>CPU</th>
<th>Memory</th>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>sys/sys0</td>
<td>root</td>
<td>system</td>
<td>r-----</td>
<td>4</td>
<td>98298</td>
<td>sys/sys0</td>
</tr>
<tr>
<td>r</td>
<td>sys/node.00000</td>
<td>root</td>
<td>system</td>
<td>r-----</td>
<td>4</td>
<td>98298</td>
<td>sys/sys0</td>
</tr>
<tr>
<td>r</td>
<td>sys/mem.00000</td>
<td>root</td>
<td>system</td>
<td>r-----</td>
<td>0</td>
<td>98298</td>
<td>sys/mem.00000</td>
</tr>
<tr>
<td>r</td>
<td>sys/cpu.00000</td>
<td>root</td>
<td>system</td>
<td>r-----</td>
<td>1</td>
<td>0</td>
<td>sys/cpu.00000</td>
</tr>
<tr>
<td>r</td>
<td>sys/cpu.00001</td>
<td>root</td>
<td>system</td>
<td>r-----</td>
<td>1</td>
<td>0</td>
<td>sys/cpu.00001</td>
</tr>
<tr>
<td>r</td>
<td>sys/cpu.00002</td>
<td>root</td>
<td>system</td>
<td>r-----</td>
<td>1</td>
<td>0</td>
<td>sys/cpu.00002</td>
</tr>
<tr>
<td>r</td>
<td>sys/cpu.00003</td>
<td>root</td>
<td>system</td>
<td>r-----</td>
<td>1</td>
<td>0</td>
<td>sys/cpu.00003</td>
</tr>
</tbody>
</table>

In the output, `sys/sys0` represents the whole system (in this case, a 4-way SMP). When a WLM class does not specify an `rset` attribute, this is the default set that its processes potentially can access.

2. Create and name the resource set using the following SMIT fast path:

        smit addrsetcntl

    sys/sys0
For this example, fill in the fields as follows:

Name Space admin

Resource Set Name proc0_2

Resources Select from the list those lines that correspond to the memory and CPUs 0 to 2 (sys/cpu.00000 to sys.cpu.00002).

All other fields Select from the lists. When you finish entering the fields and exit SMIT, the admin/proc0_2 rset is created in /etc/rsets.

3. To use the new rset, add it into the kernel data structures using the following SMIT fast path:

smit reloadrsetcntl

This menu gives you the option to reload the data base now, at next boot or both. Because this is the first time you are using the new resource set, select both so that this rset will be loaded now and after each reboot. (If you had changed an existing rset, you would probably have selected now.)

4. Add the new rset to a WLM class using the following SMIT fast path:

smit wlmclass_gal

Select the class (in this example, super1) then select admin/proc0_2 from the list available for the Resource Set field. After you make your selection and exit SMIT, the classes file on disk is changed.

5. Do one of the following:

- If WLM is running, update the configuration using the following SMIT fast path:

  smit wlmupdate

- If WLM is not running, start it using the following SMIT fast path:

  smit wlmstart

6. Monitor the effect of the new resource set on the class. For example:

   a. Start 90 CPU loops (program executing an infinite loop) in class super1.

   b. Type wlmstat on the command line. The output for this example is the following:

      CLASS  CPU  MEM  BIO
      Unclassified  0  0  0
      Unmanaged  0  0  0
      Default  8  0  0
      Shared  0  0  0
      System  0  0  0
      super1  75  0  0
      super2  0  0  0
      super2.Default  0  0  0
      super2.Shared  0  0  0
      super2.sub1  0  0  0
      super2.sub2  0  0  0

      This output shows that the 90 CPU bound processes, which otherwise unconstrained would take up 100% of the CPU, now use only 75% because the resource set limits them to run on CPUs 0 to 2.

   c. To verify what resource set a process (identified by its PID) has access to, use the following SMIT fast path:

      smit lsrsetproc

      Enter the PID of the process you are interested in or select it from the list. The following output is for one of the loop processes:
Compare this with a process from a class without a specified rset attribute. (When no rset is specified for a class, it uses the Default resource set.) The following output is from the init process, which is in a class that does not specify a resource set:

```
CPU Memory Resources
4 98298 sys/sys0
```

At this point, your resource set exists and is being used by at least one class within WLM. For additional information see the lsrset command description in the AIX 5L Version 5.2 Commands Reference.

**Note:** WLM will not set its rset attachment for a process that currently has a bindprocessor subroutine binding or another rset attachment. When the other attachment no longer exists, WLM will assign its rset automatically.
WLM Troubleshooting Guidelines

If you are not seeing the desired behavior with your current configuration, you might need to adjust your WLM configuration. The consumption values for each class can be monitored using tools such as `wlmstat`, `wlmmon` or `wlmperf`. This data can be collected and analyzed to help determine what changes might need to be made to the configuration. After you update the configuration, update the active WLM configuration using the `wlmcntrl –u` command.

The following guidelines can help you decide how to change your configuration:

- If the number of active shares in a tier varies greatly over time, you can give a class no shares for a resource so it can have a consumption target that is independent from the number of active shares. This technique is useful for important classes that require high-priority access to a resource.

- If you need to guarantee access to a certain amount of a resource, specify minimum limits. This technique is useful for interactive jobs that do not consume a lot of resources, but must respond quickly to external events.

- If you need to limit access to resources but shares do not provide enough control, specify maximum limits. In most cases, soft maximum limits are adequate, but hard maximums can be used for strict enforcement. Because hard maximum limits can result in wasted system resources, and they can increase paging activity when used for memory regulation, you should impose minimum limits for the other classes before imposing any hard limits.

- If less–important jobs are interfering with more–important jobs, put the less–important jobs in a lower tier. This technique ensures less–important jobs have lower priority and cannot compete for available resources while the more–important jobs are running.

- If a class cannot reach its consumption target for a resource, check whether this condition is caused by contention for another resource. If so, change the class allocation for the resource under contention.

- If processes within a class vary greatly in their behaviors or resource consumption, create more classes to gain more granular control. Also, it might be desirable to create a separate class for each important application.

- If your analysis shows the resource required by one class is dependent on the consumption of another class, reallocate your resources accordingly. For example, if the amount of resource required by ClassZ is dependent on the number of work requests that can be handled by ClassA, then ClassA must be guaranteed access to enough resources to provide what ClassZ needs.

- If one or more applications are consistently not receiving enough resources to perform adequately, your only option might be to reduce the workload on the system.

**Note:** You can define an adminuser for a superclass to reduce the amount of work that is required of the WLM administrator. After the top–level configuration has been tested and tuned, subsequent changes (including creating and configuring subclasses) can be made by the superclass adminusers to suit their particular needs.
System Resource Controller and Subsystems

This section contains procedures for starting and stopping, tracing, and obtaining status of the System Resource Controller (SRC) subsystems, including:

- Starting the System Resource Controller
- Starting or Stopping a Subsystem, Subsystem Group, or Subserver
- Displaying the Status of a Subsystem or Subsystems
- Refreshing a Subsystem or Subsystem Group
- Turning On or Off Subsystem, Subsystem Group, or Subserver Tracing

Starting the System Resource Controller

The System Resource Controller (SRC) is started during system initialization with a record for the /usr/sbin/srcmstr daemon in the /etc/inittab file. The default /etc/inittab file already contains such a record, so this procedure might be unnecessary. You can also start the SRC from the command line, a profile, or a shell script, but there are several reasons for starting it during initialization:

- Starting the SRC from the /etc/inittab file allows the init command to restart the SRC if it stops for any reason.
- The SRC is designed to simplify and reduce the amount of operator intervention required to control subsystems. Starting the SRC from any source other than the /etc/inittab file is counterproductive to that goal.
- The default /etc/inittab file contains a record for starting the print scheduling subsystem (qdaemon) with the startsrc command. Typical installations have other subsystems started with startsrc commands in the /etc/inittab file as well. Because the srcmstr command requires the SRC be running, removing the srcmstr daemon from the /etc/inittab file causes these startsrc commands to fail.

See the srcmstr command for the configuration requirements to support remote SRC requests.

Prerequisites

- Reading and writing the /etc/inittab file requires root user authority.
- The mkkitab command requires root user authority.
- The srcmstr daemon record must exist in the /etc/inittab file.

Procedure

Note: This procedure is necessary only if the /etc/inittab file does not already contain a record for the srcmstr daemon.

1. Make a record for the srcmstr daemon in the /etc/inittab file using the mkkitab command. For example, to make a record identical to the one that appears in the default /etc/inittab file, type:

   `mkkitab –i fbcheck srcmstr:2:respawn:/usr/sbin/srcmstr`

   The –i fbcheck flag ensures that the record is inserted before all subsystems records.

2. Tell the init command to reprocess the /etc/inittab file by typing:

   `telinit q`

   When init revisits the /etc/inittab file, it processes the newly entered record for the srcmstr daemon and starts the SRC.
Starting or Stopping a Subsystem, Subsystem Group, or Subserver

Use the `startsrc` command to start a System Resource Controller (SRC) resource such as a subsystem, a group of subsystems, or a subserver. The `startsrc` command can be used:

- From the `/etc/inittab` file so the resource is started during system initialization
- From the command line
- With SMIT.

When you start a subsystem group, all of its subsystems are also started. When you start a subsystem, all of its subservers are also started. When you start a subserver, its parent subsystem is also started if it is not already running.

Use the `stopsrc` command to stop an SRC resource such as a subsystem, a group of subsystems, or a subserver. When you stop a subsystem, all its subservers are also stopped. However, when you stop a subserver, the state of its parent subsystem is not changed.

Both the `startsrc` and `stopsrc` commands contain flags that allow requests to be made on local or remote hosts. See the `srcmstr` command for the configuration requirements to support remote SRC requests.

Prerequisites

- To start or stop an SRC resource, the SRC must be running. The SRC is normally started during system initialization. The default `/etc/inittab` file, which determines what processes are started during initialization, contains a record for the `srcmstr` daemon (the SRC). To see if the SRC is running, type `ps –A` and look for a process named `srcmstr`.
- The user or process starting an SRC resource must have root user authority. The process that initializes the system (`init` command) has root user authority.
- The user or process stopping an SRC resource must have root user authority.

Starting/Stopping a Subsystem Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>SMIT Fast Path</th>
<th>Command or File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start a Subsystem</td>
<td>smit startssys</td>
<td><code>/bin/startsrc –s SubsystemName</code> OR <code>edit /etc/inittab</code></td>
</tr>
<tr>
<td>Stop a Subsystem</td>
<td>smit stopssys</td>
<td><code>/bin/stopsrc –s SubsystemName</code></td>
</tr>
</tbody>
</table>

Displaying the Status of a Subsystem or Subsystems

Use the `lssrc` command to display the status of a System Resource Controller (SRC) resource such as a subsystem, a group of subsystems, or a subserver.

All subsystems can return a short status report that includes which group the subsystem belongs to, whether the subsystem is active, and what its process ID (PID) is. If a subsystem does not use the signals communication method, it can be programmed to return a long status report containing additional status information.

The `lssrc` command provides flags and parameters for specifying the subsystem by name or PID, for listing all subsystems, for requesting a short or long status report, and for requesting the status of SRC resources either locally or on remote hosts.

See the `srcmstr` command for the configuration requirements to support remote SRC requests.
Displaying the Status of Subsystems Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>SMIT Fast Path</th>
<th>Command or File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display the status of a subsystem (long format)</td>
<td>smit qssys</td>
<td>issrc –l –s SubsystemName</td>
</tr>
<tr>
<td>Display the status of all subsystems</td>
<td>smit lsssys</td>
<td>issrc –a</td>
</tr>
<tr>
<td>Display the status of all subsystems on a particular host</td>
<td></td>
<td>issrc –h HostName –a</td>
</tr>
</tbody>
</table>

Refreshing a Subsystem or Subsystem Group

Use the refresh command to tell a System Resource Controller (SRC) resource such as a subsystem or a group of subsystems to refresh itself.

The refresh command provides flags and parameters for specifying the subsystem by name or PID. You can also use it to request a subsystem or group of subsystems be refreshed, either locally or on remote hosts. See the srcmstr command for the configuration requirements to support remote SRC requests.

Prerequisites
- The SRC must be running. See Starting the System Resource Controller for details.
- The resource you want to refresh must not use the signals communications method.
- The resource you want to refresh must be programmed to respond to the refresh request.

Refreshing a Subsystem or Subsystem Group

<table>
<thead>
<tr>
<th>Task</th>
<th>SMIT Fast Path</th>
<th>Command or File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refresh a Subsystem</td>
<td>smit refresh</td>
<td>refresh –s Subsystem</td>
</tr>
</tbody>
</table>

Turning On or Off Subsystem, Subsystem Group, or Subserver Tracing

Use the traceson command to turn on tracing of a System Resource Controller (SRC) resource such as a subsystem, a group of subsystems, or a subserver.

Use the tracesoff command to turn off tracing of a System Resource Controller (SRC) resource such as a subsystem, a group of subsystems, or a subserver.

The traceson and tracesoff commands can be used to remotely turn on or turn off tracing on a specific host. See the srcmstr command for the configuration requirements for supporting remote SRC requests.

Prerequisites
- To turn the tracing of an SRC resource either on or off, the SRC must be running. See Starting the System Resource Controller for details.
- The resource you want to trace must not use the signals communications method.
- The resource you want to trace must be programmed to respond to the trace request.

<table>
<thead>
<tr>
<th>Task</th>
<th>SMIT Fast Path</th>
<th>Command or File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn on Subsystem Tracing (short format)</td>
<td>smit tracessyson</td>
<td>traceson –s Subsystem</td>
</tr>
<tr>
<td>Turn on Subsystem Tracing (long format)</td>
<td>smit tracessyson</td>
<td>traceson –l –s Subsystem</td>
</tr>
<tr>
<td>Turn off Subsystem Tracing</td>
<td>smit tracessysoff</td>
<td>tracesoff –s Subsystem</td>
</tr>
</tbody>
</table>
System Accounting

The system accounting utility allows you to collect and report on individual and group use of various system resources. Topics covered in this section are:

- Setting Up an Accounting System
- Generating System Accounting Reports
- Generating Reports on System Activity
- Summarizing Accounting Records
- Starting the runacct Command
- Restarting the runacct Command
- Showing System Activity
- Showing System Activity While Running a Command
- Showing Process Time
- Showing CPU Usage
- Showing Connect Time Usage
- Showing Disk Space Utilization
- Showing Printer Usage
- Fixing tacct Errors
- Fixing wtmp Errors
- Fixing General Accounting Problems

Setting Up an Accounting System

Prerequisites
You must have root authority to complete this procedure.

Procedure
The following is an overview of the steps you must take to set up an accounting system. Refer to the commands and files noted in these steps for more specific information.

1. Use the `nulladm` command to ensure that each file has the correct access permission: read (r) and write (w) permission for the file owner and group and read (r) permission for others by typing:
   
   ```
 /usr/sbin/acct/nulladm wtmp pacct
   ```

   This provides access to the `pacct` and `wtmp` files.

2. Update the `/etc/acct/holidays` file to include the hours you designate as prime time and to reflect your holiday schedule for the year.

   **Note:** Comment lines can appear anywhere in the file as long as the first character in the line is an asterisk (*).

   a. To define prime time, fill in the fields on the first data line (the first line that is not a comment), using a 24-hour clock. This line consists of three 4-digit fields, in the following order:

      . Current year
      . Beginning of prime time (hhmm)
      . End of prime time (hhmm) Leading blanks are ignored. You can enter midnight as either 0000 or 2400.
For example, to specify the year 2000, with prime time beginning at 8:00 a.m. and ending at 5:00 p.m., enter:

```
2000 0800 1700
```

b. To define the company holidays for the year on the next data line. Each line contains four fields, in the following order:

- Day of the year
- Month
- Day of the month
- Description of holiday The day–of–the–year field contains the number of the day on which the holiday falls and must be a number from 1 through 365 (366 on leap year). For example, February 1st is day 32. The other three fields are for information only and are treated as comments.

A two–line example follows:

```
 1 Jan 1 New Year’s Day
332 Nov 28 Thanksgiving Day
```

3. Turn on process accounting by adding the following line to the `/etc/rc` file or by deleting the comment symbol (#) in front of the line if it exists:

```
/usr/bin/su – adm –c /usr/sbin/acct/startup
```

The `startup` procedure records the time that accounting was turned on and cleans up the previous day’s accounting files.

4. Identify each file system you want included in disk accounting by adding the following line to the stanza for the file system in the `/etc/filesystems` file:

```
account = true
```

5. Specify the data file to use for printer data by adding the following line to the queue stanza in the `/etc/qconfig` file:

```
acctfile = /var/adm/qacct
```

6. As the adm user, create a `/var/adm/acct/nite`, a `/var/adm/acct/fiscal`, a and `/var/adm/acct/sum` directory to collect daily and fiscal period records:

```
su – adm
cd /var/adm/acct
mkdir nite fiscal sum
exit
```

7. Set daily accounting procedures to run automatically by editing the `/var/spool/cron/crontabs/root` file to include the `dodisk`, `ckpacct`, and `runacct` commands. For example:

```
0 2 * * 4 /usr/sbin/acct/dodisk
5 * * * /usr/sbin/acct/ckpacct
0 4 * * 1–6 /usr/sbin/acct/runacct
2>/var/adm/acct/nite/accterr
```

The first line starts disk accounting at 2:00 a.m. (0 2) each Thursday (4). The second line starts a check of the integrity of the active data files at 5 minutes past each hour (5 *) every day (*). The third line runs most accounting procedures and processes active data files at 4:00 a.m. (0 4) every Monday through Saturday (1–6). If these times do not fit the hours your system operates, adjust your entries.

**Note::** You must have root user authority to edit the `/var/spool/cron/crontabs/root` file.

8. Set the monthly accounting summary to run automatically by including the `monacct` command in the `/var/spool/cron/crontabs/root` file. For example, type:

```
15 5 1 * * /usr/sbin/acct/monacct
```
Be sure to schedule this procedure early enough to finish the report. This example starts the procedure at 5:15 a.m. on the first day of each month.

9. To submit the edited cron file, type:

   `crontab /var/spool/cron/crontabs/root`

### Generating System Accounting Reports

Once accounting has been configured on the system, daily and monthly reports are generated. The `runacct` command produces the daily reports and the `monact` command produces the monthly reports.

### Daily Accounting Reports

To generate a daily report, use the `runacct` command. This command summarizes data into an ASCII file named `/var/adm/acct/sum/rprtMMDD. MMDD` specifies the month and day the report is run. The report covers the following:

- Daily Report
- Daily Usage Report
- Daily Command Summary
- Monthly Total Command Summary
- Last Login

#### Daily Report

The first line of the Daily Report begins with the start and finish times for the data collected in the report, a list of system–level events including any existing shutdowns, reboots, and run–level changes. The total duration is also listed indicating the total number of minutes included within the accounting period (usually 1440 minutes, if the report is run every 24 hours). The report contains the following information:

<table>
<thead>
<tr>
<th>LINE</th>
<th>Console, tty, or pty In use</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINUTES</td>
<td>Total number of minutes the line was in use</td>
</tr>
<tr>
<td>PERCENT</td>
<td>Percentage of time in the accounting period that the line was in use</td>
</tr>
<tr>
<td># SESS</td>
<td>Number of new login sessions started</td>
</tr>
<tr>
<td># ON</td>
<td>Same as # SESS</td>
</tr>
<tr>
<td># OFF</td>
<td>Number of logouts plus interrupts made on the line</td>
</tr>
</tbody>
</table>

#### Daily Usage Report

The Daily Usage Report is a summarized report of system usage per user ID during the accounting period. Some fields are divided into prime and non–prime time, as defined by the accounting administrator in the `/usr/lib/acct/holidays` directory. The report contains the following information:

<table>
<thead>
<tr>
<th>UID</th>
<th>User ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOGIN NAME</td>
<td>User name</td>
</tr>
<tr>
<td>CPU (PRIME/NPRIME)</td>
<td>Total CPU time for all of the user’s processes in minutes</td>
</tr>
<tr>
<td>KCORE (PRIME/NPRIME)</td>
<td>Total memory used by running processes, in kilobyte–minutes</td>
</tr>
<tr>
<td>CONNECT (PRIME/NPRIME)</td>
<td>Total connect time (how long the user was logged in) in minutes</td>
</tr>
</tbody>
</table>
DISK BLOCKS
Average total amount of disk space used by the user on all filesystems for which accounting is enabled

FEES
Total fees entered with chargefee command

# OF PROCES
Total number of processes belonging to this user

# OF SESS
Number of distinct login sessions for this user

# DISK SAMPLES
Number of times disk samples were run during the accounting period. If no DISK BLOCKS are owned the value will be zero

Daily Command Summary
The Daily Command Summary report shows each command executed during the accounting period, with one line per each unique command name. The table is sorted by TOTAL KCOREMIN (described below), with the first line including the total information for all commands. The data listed for each command is cumulative for all executions of the command during the accounting period. The columns in this table include the following information:

- COMMAND NAME: Command that was executed
- NUMBER CMDS: Number of times the command executed
- TOTAL KCOREMIN: Total memory used by running the command, in kilobyte–minutes
- TOTAL CPU–MIN: Total CPU time used by the command in minutes
- TOTAL REAL–MIN: Total real time elapsed for the command in minutes
- MEAN SIZE–K: Mean size of memory used by the command per CPU minute
- MEAN CPU–MIN: Mean number of CPU minutes per execution of the command
- HOG FACTOR: Measurement of how much the command hogs the CPU while it is active. It is the ratio of TOTAL CPU–MIN over TOTAL REAL–MIN
- CHAR S TRNSFD: Number of characters transferred by the command with system reads and writes
- BLOCKS READ: Number of physical block reads and writes performed by the command

Monthly Total Command Summary
The Monthly Total Command Summary, created by the monacct command, provides information about all commands executed since the previous monthly report. The fields and information mean the same as those in the Daily Command Summary.

Last Login
The Last Login report displays two fields for each user ID. The first field is YY–MM–DD and indicates the most recent login for the specified user. The second field is the name of the user account. A date field of 00–00–00 indicates that the user ID has never logged in.
Fiscal Accounting Reports
The Fiscal Accounting Reports generally collected monthly by using the monacct command. The report is stored in /var/adm/acct/fiscal/fiscrptMM where MM is the month that the monacct command was executed. This report includes information similar to the daily reports summarized for the entire month.

Generating Reports on System Activity
To generate a report on system activity, use the prtacct command. This command reads the information in a total accounting file (tacct file format) and produces formatted output. Total accounting files include the daily reports on connect time, process time, disk usage, and printer usage.

Prerequisites
The prtacct command requires an input file in the tacct file format. This implies that you have an accounting system set up and running or that you have run the accounting system in the past. See Setting Up an Accounting System for guidelines.

Procedure
Generate a report on system activity by entering:

```
prtacct -f Specification -v Heading File
```

`Specification` is a comma–separated list of field numbers or ranges used by the acctmerg command. The optional `–v` flag produces verbose output where floating–point numbers are displayed in higher precision notation. `Heading` is the title you want to appear on the report and is optional. `File` is the full path name of the total accounting file to use for input. You can specify more than one file.

Summarizing Accounting Records
To summarize raw accounting data, use the sa command. This command reads the raw accounting data, usually collected in the /var/adm/pacct file, and the current usage summary data in the /var/adm/savacct file, if summary data exists. It combines this information into a new usage summary report and purges the raw data file to make room for further data collection.

Prerequisites
The sa command requires an input file of raw accounting data such as the pacct file (process accounting file). To collect raw accounting data, you must have an accounting system set up and running. See Setting Up an Accounting System on page 5-13 for guidelines.

Procedure
The purpose of the sa command is to summarize process accounting information and to display or store that information. The simplest use of the command displays a list of statistics about every process that has run during the life of the pacct file being read. To produce such a list, type:

```
/usr/sbin/sa
```

To summarize the accounting information and merge it into the summary file, type:

```
/usr/sbin/sa -s
```

The sa command offers many additional flags that specify how the accounting information is processed and displayed. See the sa command description for more information.
Starting the runacct Command

Prerequisites

1. You must have the accounting system installed.
2. You must have root user or adm group authority.

Notes:

1. If you call the runacct command with no parameters, the command assumes that this is the first time that the command has been run today. Therefore, you need to include the mmdd parameter when you restart the runacct program, so that the month and day are correct. If you do not specify a state, the runacct program reads the /var/adm/acct/nite/statefile file to determine the entry point for processing. To override the /var/adm/acct/nite/statefile file, specify the desired state on the command line.
2. When you perform the following task, you might need to use the full path name /usr/sbin/acct/runacct rather than the simple command name, runacct.

Procedure

To start the runacct command, type the following:

```
nohup runacct 2> /var/adm/acct/nite/accterr &
```

This entry causes the command to ignore all INTR and QUIT signals while it performs background processing. It redirects all standard error output to the /var/adm/acct/nite/accterr file.

Restarting the runacct Command

Prerequisites

1. You must have the accounting system installed.
2. You must have root user or adm group authority.

Note:: The most common reason why the runacct command can fail are because:

. The system goes down.
. The /usr file system runs out of space.
. The /var/adm/wtmp file has records with inconsistent date stamps.

Procedure

If the runacct command is unsuccessful, do the following:

1. Check the /var/adm/acct/nite/active mmdd file for error messages.
2. If both the active file and lock files exist in acct/nite, check the accterr file, where error messages are redirected when the cron daemon calls the runacct command.
3. Perform any actions needed to eliminate errors.
4. Restart the runacct command.
5. To restart the runacct command for a specific date, type the following:

```
nohup runacct 0601 2>> /var/adm/acct/nite/accterr &
```

This restarts the runacct program for June 1 (0601). The runacct program reads the /var/adm/acct/nite/statefile file to find out with which state to begin. All standard error output is appended to the /var/adm/acct/nite/accterr file.
6. To restart the runacct program at a specified state, for example, the MERGE state, type the following:

    nohup runacct 0601 MERGE 2>> /var/adm/acct/nite/accterr &

Showing System Activity

You can display formatted information about system activity with the sar command.

Prerequisites

To display system activity statistics, the sadc command must be running.

**Note:** The typical method of running the sadc command is to place an entry for the sa1 command in the root crontab file. The sa1 command is a shell–procedure variant of the sadc command designed to work with the cron daemon.

Procedure

To display basic system–activity information, type:

    sar 2 6

where the first number is the number of seconds between sampling intervals and the second number is the number of intervals to display. The output of this command looks something like this:

```
14:03:40 %usr %sys %wio %idle
14:03:42 4 9 0 88
14:03:43 1 10 0 89
14:03:44 1 11 0 88
14:03:45 1 11 0 88
14:03:46 3 9 0 88
14:03:47 2 10 0 88
```

The sar command also offers a number of flags for displaying an extensive array of system statistics. To see all available statistics, use the –A flag. For a list of the available statistics and the flags for displaying them, see the sar command.

**Note:** To have a daily system activity report written to /var/adm/sa/sa dd, include an entry in the root crontab file for the sa2 command. The sa2 command is a shell procedure variant for the sar command designed to work with the cron daemon.

Showing System Activity While Running a Command

You can use the time and timex commands to display formatted information about system activity while a particular command is running.

Prerequisites

The –o and –p flags of the timex command require that system accounting be turned on.

Procedure

- To display the elapsed time, user time, and system execution time for a particular command, type:

    time CommandName

    OR

    timex CommandName
• To display the total system activity (all the data items reported by the `sar` command)
during the execution of a particular command, type:

```
timenx -s CommandName
```

The `timex` command has two additional flags. The `–o` flag reports the total number of blocks
read or written by the command and all of its children. The `–p` flag lists all of the process
accounting records for a command and all of its children.

**Showing Process Time**

You can display formatted reports about the process time of active processes with the `ps`
command or of finished processes with the `acctcom` command.

**Prerequisites**

The `acctcom` command reads input in the total accounting record form (`acct` file format).
This implies that you have process accounting turned on or that you have run process

**Display the Process Time of Active Processes**

The `ps` command offers a number of flags to tailor the information displayed. To produce a
full list of all active processes except kernel processes, type:

```
ps -ef
```

Another useful variation displays a list of all processes associated with terminals. Type:

```
ps -al
```

Both of these usages display a number of columns for each process, including the current
CPU time for the process in minutes and seconds.

**Display the Process Time of Finished Processes**

The process accounting functions are turned on with the `startup` command, which is
typically started at system initialization with a call in the `/etc/rc` file. When the process
accounting functions are running, a record is written to `/var/adm/pacct` (a total accounting
record file) for every finished process that includes the start and stop time for the process.
You can display the process time information from a `pacct` file with the `acctcom` command.
This command has a number of flags that allow flexibility in specifying which processes to
display.

For example, to see all processes that ran for a minimum number of CPU seconds or
longer, use the `–O` flag, type:

```
acctcom –O 2
```

This displays records for every process that ran for at least 2 seconds. If you do not specify
an input file, the `acctcom` command reads input from the `/var/adm/pacct` directory.

**Showing CPU Usage**

You can display formatted reports about the CPU usage by process or by user with a
combination of the `acctprc1`, `acctprc2`, and `prtacct` commands.

**Prerequisites**

The `acctprc1` command requires input in the total accounting record form (`acct` file format).
This implies that you have process accounting turned on or that you have run process
Show CPU Usage for Each Process
   To produce a formatted report of CPU usage by process, type:
   
   acctprc1 </var/adm/pacct

   This information will be useful in some situations, but you might also want to summarize the CPU usage by user. The output from this command is used in the next procedure to produce that summary.

Show CPU Usage for Each User
1. Produce an output file of CPU usage by process by typing:
   
   acctprc1 </var/adm/pacct >out.file

   The /var/adm/pacct file is the default output for process accounting records. You might want to specify an archive pacct file instead.

2. Produce a binary total accounting record file from the output of the previous step by typing:
   
   acctprc2 <out.file >/var/adm/acct/nite/daytacct

   Note:: The daytacct file is merged with other total accounting records by the acctmerg command to produce the daily summary record, /var/adm/acct/sum/tacct.

3. Display a formatted report of CPU usage summarized by user by typing:
   
   prtacct </var/adm/acct/nite/daytacct

Showing Connect Time Usage
   You can display the connect time of all users, of individual users, and by individual login with the ac command.

Prerequisites
   The ac command extracts login information from the /var/adm/wtmp file, so this file must exist. If the file has not been created, the following error message is returned:

   No /var/adm/wtmp

   If the file becomes too full, additional wtmp files are created; you can display connect–time information from these files by specifying them with the –w flag.

Procedure
   • To display the total connect time for all users, type:
     
     /usr/sbin/acct/ac

     This command displays a single decimal number that is the sum total connect time, in minutes, for all users who have logged in during the life of the current wtmp file.

   • To display the total connect time for one or more particular users, type:
     
     /usr/sbin/acct/ac User1 User2 ...

     This command displays a single decimal number that is the sum total connect time, in minutes, for the user or users you specified for any logins during the life of the current wtmp file.

   • To display the connect time by individual user plus the total connect time, type:
     
     /usr/sbin/acct/ac –p User1 User2 ...

     This command displays as a decimal number for each user specified equal to the total connect time, in minutes, for that user during the life of the current wtmp file. It also displays a decimal number that is the sum total connect time for all the users specified. If no user is specified in the command, the list includes all users who have logged in during the life of the wtmp file.
Showing Disk Space Utilization

You can display disk space utilization information with the `acctmerg` command.

**Prerequisites**

To display disk space utilization information, the `acctmerg` command requires input from a `dacct` file (disk accounting). The collection of disk–usage accounting records is performed by the `dodisk` command. Placing an entry for the `dodisk` command in a `crontabs` file is part of the procedure described in Setting Up an Accounting System on page 5-13.

**Procedure**

To display disk space utilization information, type:

```
acctmerg -a1 -2,13 -h </var/adm/acct/nite/dacct
```

This command displays disk accounting records, which include the number of 1 KB blocks utilized by each user.

**Note:** The `acctmerg` command always reads from standard input and can read up to nine additional files. If you are not piping input to the command, you must redirect input from one file; the rest of the files can be specified without redirection.

Showing Printer Usage

You can display printer or plotter usage accounting records with the `pac` command.

**Prerequisites**

- To collect printer usage information, you must have an accounting system set up and running. See Setting Up an Accounting System for guidelines.
- The printer or plotter for which you want accounting records must have an `acctfile=` clause in the printer stanza of the `/etc/qconfig` file. The file specified in the `acctfile=` clause must grant read and write permissions to the root user or printq group.
- If the `-s` flag of the `pac` command is specified, the command rewrites the summary file name by appending `_sum` to the path name specified by the `acctfile=` clause in the `/etc/qconfig` file. This file must exist and grant read and write permissions to the root user or printq group.

**Procedure**

- To display printer usage information for all users of a particular printer, type:
  
  ```
 /usr/sbin/pac -PPrinter
  ```
  
  If you do not specify a printer, the default printer is named by the `PRINTER` environment variable. If the `PRINTER` variable is not defined, the default is `lp0`.
- To display printer usage information for particular users of a particular printer, type:
  
  ```
 /usr/sbin/pac -PPrinter User1 User2 ...
  ```

  The `pac` command offers other flags for controlling what information gets displayed.

Fixing tacct Errors

If you are using the accounting system to charge user for system resources, the integrity of the `/var/adm/acct/sum/tacct` file is quite important. Occasionally, mysterious `tacct` records appear that contain negative numbers, duplicate user numbers, or a user number of 65,535.

**Prerequisites**

You must have root user or adm group authority.
Patch a tacct File

1. Move to the /var/adm/acct/sum directory by typing:

   cd /var/adm/acct/sum

2. Use the `prtacct` command to check the total accounting file, `tacctprev`, by typing:

   prtacct tacctprev

   The `prtacct` command formats and displays the `tacctprev` file so that you can check connect time, process time, disk usage, and printer usage.

3. If the `tacctprev` file looks correct, change the latest `tacct. mmdd` file from a binary file to an ASCII file. In the following example, the `acctmerg` command converts the `tacct. mmdd` file to an ASCII file named `tacct.new`:

   acctmerg -v < tacct. mmdd > tacct.new

   **Note:** The `acctmerg` command with the `–a` flag also produces ASCII output. The `–v` flag produces more precise notation for floating–point numbers.

   The `acctmerg` command is used to merge the intermediate accounting record reports into a cumulative total report (`tacct`). This cumulative total is the source from which the `monacct` command produces the ASCII monthly summary report. Since the `monacct` command procedure removes all the `tacct. mmdd` files, you recreate the `tacct` file by merging these files.

4. Edit the `tacct.new` file to remove the bad records and write duplicate user number records to another file by typing:

   acctmerg -i < tacct.new > tacct.mmdd

5. Create the `tacct` file again by typing:

   acctmerg tacctprev < tacct. mmdd > tacct

Fixing wtmp Errors

The `/var/adm/wtmp`, or ”who temp” file, might cause problems in the day–to–day operation of the accounting system. When the date is changed and the system is in multiuser mode, date change records are written to the `/var/adm/wtmp` file. When a date change is encountered, the `wtmpfix` command adjusts the time stamps in the `wtmp` records. Some combinations of date changes and system restarts may slip past the `wtmpfix` command and cause the `acctcon1` command to fail and the `runacct` command to send mail to the `root` and `adm` accounts listing incorrect dates.

Prerequisites

You must have root user or adm group authority.

Procedure

1. Move to the `/var/adm/acct/nite` directory by typing:

   cd /var/adm/acct/nite

2. Convert the binary `wtmp` file to an ASCII file that you can edit by typing:

   fwtmp < wtmp. mmdd > wtmp.new

   The `fwtmp` command converts `wtmp` from binary to ASCII.

3. Edit the ASCII `wtmp.new` file to delete damaged records or all records from the beginning of the file up to the needed date change by typing:

   vi wtmp.new

4. Convert the ASCII `wtmp.new` file back to binary format by typing:

   fwtmp –ic < wtmp.new > wtmp. mmdd

5. If the `wtmp` file is beyond repair, use the `nulladm` command to create an empty `wtmp` file. This prevents any charges in the connect time.
The `nulladm` command creates the file specified with read and write permissions for the file owner and group, and read permissions for other users. It ensures that the file owner and group are `adm`.

### Fixing General Accounting Problems

You might encounter several different problems when using the accounting system. You might need to resolve file ownership and permissions problems.

This section describes how to fix general accounting problems:

- Fixing Incorrect File Permissions
- Fixing Errors
- Fixing Errors Encountered When Running the `runacct` Command
- Updating an Out-of-Date Holidays File

### Prerequisites

You must have root user or adm group authority.

### Fixing Incorrect File Permissions

To use the accounting system, file ownership and permissions must be correct. The `adm` administrative account owns the accounting command and scripts, except for `/var/adm/acct/accton` which is owned by root.

1. To check file permissions using the `ls` command, type:

   ```
 ls -l /var/adm/acct
   ```

   ```
 -rws--x--- 1 adm adm 14628 Mar 19 08:11 /var/adm/acct/fiscal
 -rws--x--- 1 adm adm 14628 Mar 19 08:11 /var/adm/acct/nite
 -rws--x--- 1 adm adm 14628 Mar 19 08:11 /var/adm/acct/sum
   ```

2. Adjust file permissions with the `chown` command, if necessary. The permissions are 755 (all permissions for owner and read and execute permissions for all others). Also, the directory itself should be write-protected from others. For example:
   a. Move to the `/var/adm/acct` directory by typing:

      ```
 cd /var/adm/acct
      ```

   b. Change the ownership for the `sum`, `nite`, and `fiscal` directories to `adm` group authority by typing:

      ```
 chown adm sum/* nite/* fiscal/*
      ```

      To prevent tampering by users trying to avoid charges, deny write permission for others on these files. Change the `accton` command group owner to `adm`, and permissions to 710, that is, no permissions for others. Processes owned by `adm` can execute the `accton` command, but ordinary users can not.

3. The `/var/adm/wtmp` file must also be owned by `adm`. If `/var/adm/wtmp` is owned by root, you will see the following message during startup:

   ```
 /var/adm/acct/startup: /var/adm/wtmp: Permission denied
   ```

   To correct the ownership of `/var/adm/wtmp`, change ownership to the `adm` group by typing the following command:

   ```
 chown adm /var/adm/wtmp
   ```
Fixing Errors

Processing the /var/adm/wtmp file might produce some warnings mailed to root. The wtmp file contains information collected by /etc/init and /bin/login and is used by accounting scripts primarily for calculating connect time (the length of time a user is logged in).

Unfortunately, date changes confuse the program that processes the wtmp file. As a result, the runacct command sends mail to root and adm complaining of any errors after a date change since the last time accounting was run.

1. Determine if you received any errors.

The acctcon1 command outputs error messages that are mailed to adm and root by the runacct command. For example, if the acctcon1 command stumbles after a date change and fails to collect connect times, adm might get mail like the following mail message:

Mon Jan 6 11:58:40 CST 1992
acctcon1: bad times: old: Tue Jan 7 00:57:14 1992
new: Mon Jan 6 11:57:59 1992
acctcon1: bad times: old: Tue Jan 7 00:57:14 1992
new: Mon Jan 6 11:57:59 1992
acctcon1: bad times: old: Tue Jan 7 00:57:14 1992
new: Mon Jan 6 11:57:59 1992

2. Adjust the wtmp file by typing:

```
/usr/sbin/acct/wtmpfix wtmp
```

The wtmpfix command examines the wtmp file for date and time–stamp inconsistencies and corrects problems that could make acctcon1 fail. However, some date changes slip by wtmpfix. See Fixing wtmp Errors on page 5-23.

3. Run accounting right before shutdown or immediately after startup.

Using the runacct command at these times minimizes the number of entries with bad times. The runacct command continues to send mail to the root and adm accounts, until you edit the runacct script, find the WTMPFIX section, and comment out the line where the file log gets mailed to the root and adm accounts.

Fixing Errors Encountered When Running the runacct Command

The runacct command processes files that are often very large. The procedure involves several passes through certain files and consumes considerable system resources while it is taking place. That is why the runacct command is normally run early in the morning when it can take over the machine and not disturb anyone.

The runacct command is a script divided into different stages. The stages allow you to restart the command where it stopped, without having to rerun the entire script.

When the runacct encounters problems, it sends error messages to different destinations depending on where the error occurred. Usually it sends a date and a message to the console directing you to look in the active MMDD file (such as active0621 for June 21st) which is in the /usr/adm/acct/nite directory. When the runacct command aborts, it moves the entire active file to active MMDD and appends a message describing the problem.

1. Review the following error message tables for errors you have encountered when running the runacct command. Notes:

1. The abbreviation MMDD stands for the month and day, such as 0102 for January 2. For example, a fatal error during the CONNECT1 process on January 2 creates the file active0102 containing the error message.

2. The abbreviation “SE message” stands for the standard error message such as:

```
********** ACCT ERRORS : see active0102 **********
```
<table>
<thead>
<tr>
<th>State</th>
<th>Command</th>
<th>Fatal?</th>
<th>Error Message</th>
<th>Destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre</td>
<td>runacct</td>
<td>yes</td>
<td>* 2 CRONS or</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACCT PROBLEMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*ERROR: locks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>found, run</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>aborted</td>
<td></td>
</tr>
<tr>
<td>pre</td>
<td>runacct</td>
<td>yes</td>
<td>runacct:</td>
<td>console, mail,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Insufficient</td>
<td>active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>space in /usr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(norrh)blks);</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Terminating</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>procedure</td>
<td></td>
</tr>
<tr>
<td>pre</td>
<td>runacct</td>
<td>yes</td>
<td>SE message;</td>
<td>console, mail,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ERROR: acctg</td>
<td>active MMDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>already run for</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>’date’: check</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lastdate</td>
<td></td>
</tr>
<tr>
<td>pre</td>
<td>runacct</td>
<td>no</td>
<td>restarting acctg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>for ’date’ at</td>
<td>console active,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STATE</td>
<td>console</td>
</tr>
<tr>
<td>pre</td>
<td>runacct</td>
<td>no</td>
<td>restarting acctg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>for ’date’ at</td>
<td>active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>state (argument</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$2) previous</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>state was STATE</td>
<td></td>
</tr>
<tr>
<td>pre</td>
<td>runacct</td>
<td>yes</td>
<td>SE message;</td>
<td>console, mail,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Error: runacct</td>
<td>active MMDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>called with</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>invalid</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>arguments</td>
<td></td>
</tr>
<tr>
<td>SETUP</td>
<td>runacct</td>
<td>no</td>
<td>ls –l fee</td>
<td>active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pacct*/</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/var/adm/wtmp</td>
<td></td>
</tr>
<tr>
<td>SETUP</td>
<td>runacct</td>
<td>yes</td>
<td>SE message;</td>
<td>console, mail,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ERROR: turnacct</td>
<td>active MMDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>switch returned</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rc=error</td>
<td></td>
</tr>
<tr>
<td>SETUP</td>
<td>runacct</td>
<td>yes</td>
<td>SE message;</td>
<td>active MMDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ERROR: Spacct</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MMDD already exists file setups</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>probably</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>already run</td>
<td></td>
</tr>
<tr>
<td>SETUP</td>
<td>runacct</td>
<td>yes</td>
<td>SE message;</td>
<td>console, mail,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ERROR: wtmpMMDD</td>
<td>active MMDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>already exists: run setup</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>manually</td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>Activity</td>
<td>Status</td>
<td>Description</td>
<td>Log Location</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>--------</td>
<td>-----------------------------------------------------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>WTMPFIX</td>
<td>wtmpfix</td>
<td>no</td>
<td>SE message; ERROR: wtmpfix errors see wtmperror MMDD</td>
<td>active MMDD, wtmperror MMDD</td>
</tr>
<tr>
<td>CONNECT1</td>
<td>acctcon1</td>
<td>no</td>
<td>SE message; (errors from acctcon1 log)</td>
<td>console, mail, active MMDD</td>
</tr>
<tr>
<td>CONNECT2</td>
<td>acctcon2</td>
<td>no</td>
<td>connect acctg complete</td>
<td>active</td>
</tr>
<tr>
<td>PROCESS</td>
<td>runacct</td>
<td>no</td>
<td>WARNING: accounting already run for pacct N</td>
<td>active</td>
</tr>
<tr>
<td>PROCESS</td>
<td>acctprc1 acctprc2</td>
<td>no</td>
<td>process acctg complete for Spacct NMMDD</td>
<td>active</td>
</tr>
<tr>
<td>PROCESS</td>
<td>runacct</td>
<td>no</td>
<td>all process acctg complete for date</td>
<td>active</td>
</tr>
<tr>
<td>MERGE</td>
<td>acctmerg</td>
<td>no</td>
<td>tacct merge to create dayacct complete</td>
<td>active</td>
</tr>
<tr>
<td>FEES</td>
<td>acctmerg</td>
<td>no</td>
<td>merged fees OR no fees</td>
<td>active</td>
</tr>
<tr>
<td>DISK</td>
<td>acctmerg</td>
<td>no</td>
<td>merged disk records OR no disk records</td>
<td>active</td>
</tr>
<tr>
<td>MERGEACCT</td>
<td>acctmerg</td>
<td>no</td>
<td>WARNING: recreating sum/tacct</td>
<td>active</td>
</tr>
<tr>
<td>MERGEACCT</td>
<td>acctmerg</td>
<td>no</td>
<td>updated sum/tacct</td>
<td>active</td>
</tr>
<tr>
<td>CMS</td>
<td>runacct</td>
<td>no</td>
<td>WARNING: recreating sum/cms</td>
<td>active</td>
</tr>
<tr>
<td>CMS</td>
<td>acctcms</td>
<td>no</td>
<td>command summaries complete</td>
<td>active</td>
</tr>
<tr>
<td>CLEANUP</td>
<td>runacct</td>
<td>no</td>
<td>system accounting completed at ‘date’</td>
<td>active</td>
</tr>
<tr>
<td>CLEANUP</td>
<td>runacct</td>
<td>no</td>
<td><em>SYSTEM ACCOUNTING COMPLETED</em></td>
<td>console</td>
</tr>
<tr>
<td>&lt;wrong&gt;</td>
<td>runacct</td>
<td>yes</td>
<td>SE message; ERROR: invalid state, check STATE</td>
<td>console, mail, active MMDD</td>
</tr>
</tbody>
</table>
Note:: The label `<wrong>` in the previous table does not represent a state, but rather a state other than the correct state that was written in the state file /usr/adm/acct/nite/statefile.

Summary of Message Destinations

<table>
<thead>
<tr>
<th>Destination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>console</td>
<td>The /dev/console device</td>
</tr>
<tr>
<td>mail</td>
<td>Message mailed to root and adm accounts</td>
</tr>
<tr>
<td>active</td>
<td>The /usr/adm/acct/nite/active file</td>
</tr>
<tr>
<td>activeMMDD</td>
<td>The /usr/adm/acct/nite/active MMDD file</td>
</tr>
<tr>
<td>wtmperrMMDD</td>
<td>The /usr/adm/acct/nite/wtmperror MMDD file</td>
</tr>
<tr>
<td>STATE</td>
<td>Current state in /usr/adm/acct/nite/statefile file</td>
</tr>
<tr>
<td>fd2log</td>
<td>Any other error messages</td>
</tr>
</tbody>
</table>

Updating an Out–of–Date Holidays File

The acctcon1 command (started from the runacct command) sends mail to the root and adm accounts when the /usr/lib/acct/holidays file gets out of date. The holidays file is out of date after the last holiday listed has passed or the year has changed.

Update the out–of–date holidays file by editing the /var/adm/acct/holidays file to differentiate between prime and nonprime time.

Prime time is assumed to be the period when your system is most active, such as workdays. Saturdays and Sundays are always nonprime times for the accounting system, as are any holidays that you list.

The holidays file contains three types of entries: comments, the year and prime–time period, and a list of holidays as in the following example:

* Prime/Non–Prime Time Table for Accounting System
  * Curr   Prime       Non–Prime
  * Year   Start       Start
  1992     0830        1700
  *
  * Day of   Calendar      Company
  * Year     Date         Holiday
  * 1        Jan 1        New Year’s Day
  * 20       Jan 20       Martin Luther King Day
  * 46       Feb 15       President’s Day
  * 143      May 28       Memorial Day
  * 186      Jul 3        4th of July
  * 248      Sep 7        Labor Day
  * 329      Nov 24       Thanksgiving
  * 330      Nov 25       Friday after
  * 359      Dec 24       Christmas Eve
  * 360      Dec 25       Christmas Day
  * 361      Dec 26       Day after Christmas

The first noncomment line must specify the current year (as four digits) and the beginning and end of prime time, also as four digits each. The concept of prime and nonprime time only affects the way that the accounting programs process the accounting records.

If the list of holidays is too long, the acctcon1 command generates an error, and you will need to shorten your list. You are safe with 20 or fewer holidays. If you want to add more holidays, just edit the holidays file each month.
This chapter provides procedures for managing tape drives and other devices, such as printers and disk drives.

- Tape Drives
- Devices
Tape Drives

This section covers system management functions related to tape drives. Many of these functions change or get information from the device configuration database that contains information about the devices on your system. The device configuration database consists of the predefined configuration database that contains information about all possible types of devices supported on the system, and the customized configuration database that contains information about the particular devices currently on the system. For the operating system to make use of a tape drive, or any other device, the device must be defined in the customized configuration database and must have a device type defined in the predefined configuration database.

See the *AIX 5L Version 5.2 System Management Concepts: Operating System and Devices* for the following related topics:

- Tape Drive Attributes
- Special Files for Tape Drives

Basic tasks for tape drives are shown in the following table:

*Tape Drive Tasks*

<table>
<thead>
<tr>
<th>Task</th>
<th>SMIT Fast Path</th>
<th>Command or File</th>
</tr>
</thead>
<tbody>
<tr>
<td>List All Defined Tape Drives</td>
<td>smit lsdtpe</td>
<td>lsdev –c tape –H</td>
</tr>
<tr>
<td>List All Supported Tape Drives</td>
<td>smit lsstpe</td>
<td>lsdev –P –c tape –F &quot;type subclass description&quot; –H</td>
</tr>
<tr>
<td>Add New Tape Drives</td>
<td>smit cfgmgr</td>
<td></td>
</tr>
<tr>
<td>Automatically</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add a User–Specified Tape Drive</td>
<td>smit mktpe</td>
<td>mkdev –c tape –t '8mm' –s 'scsi' –p 'scsi0' –w '4,0' –a extfm=yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show Characteristics of a</td>
<td>smit chgtpe</td>
<td></td>
</tr>
<tr>
<td>Tape Drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lsdev –C –l rmt0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lsattr –D –l rmt0 Note 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Attributes of a Tape</td>
<td>smit chgtpe</td>
<td></td>
</tr>
<tr>
<td>Drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>chdev –l rmt0 –a block_size='512' –a mode=no Note 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove a Tape Drive</td>
<td>smit rmvtpe</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rmdev –l 'rmt0' Note 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generate an Error Report</td>
<td>smit errpt</td>
<td>See Error Logging Tasks in *AIX 5L Version 5.2 General Programming Concepts:</td>
</tr>
<tr>
<td>for a Tape Drive</td>
<td></td>
<td>Writing and Debugging Programs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trace a Tape Drive</td>
<td>smit trace_link</td>
<td>See Starting the Trace Facility in *AIX 5L Version 5.2 General Programming</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concepts: Writing and Debugging Programs.</td>
</tr>
</tbody>
</table>

Notes:

1. This fast path applies to parallel SCSI devices only (scsi subclass), not to Fibre Channel devices (fcp subclass).
2. Where *rmt0* is the logical name of a tape drive.
Tape Drive Attributes

The following describes tape drive attributes you can adjust to meet the needs of your system. The attributes can be displayed or changed using the Web-based System Manager Devices application, SMIT, or commands (in particular, the `lsattr` and the `chdev` commands).

Each type of tape drive only uses a subset of all the attributes.

General Information about Each Attribute

Block Size
The block size attribute indicates the block size to use when reading or writing the tape. Data is written to tape in blocks of data, with inter-record gaps between blocks. Larger records are useful when writing to unformatted tape, because the number of inter-record gaps is reduced across the tape, allowing more data to be written. A value of 0 indicates variable length blocks. The allowable values and default values vary depending on the tape drive.

Device Buffers
Setting the Device Buffers attribute (the `mode` attribute for the `chdev` command) to the Yes value indicates an application is notified of write completion after the data has been transferred to the data buffer of the tape drive, but not necessarily after the data is actually written to the tape. If you specify the No value, an application is notified of write completion only after the data is actually written to the tape. Streaming mode cannot be maintained for reading or writing if this attribute is set to the No value. The default value is Yes.

With the No value, the tape drive is slower but has more complete data in the event of a power outage or system failure and allows better handling of end-of-media conditions.

Extended File Marks
Setting the Extended File Marks attribute (the `extfm` attribute for the `chdev` command) to the No value writes a regular file mark to tape whenever a file mark is written. Setting this attribute to the Yes value writes an extended file mark. For tape drives, this attribute can be set on. The default value is No. For example, extended filemarks on 8 mm tape drives use 2.2 MB of tape and can take up to 8.5 seconds to write. Regular file marks use 184 K and take approximately 1.5 seconds to write.

When you use an 8 mm tape in append mode, use extended file marks for better positioning after reverse operations at file marks. This reduces errors.

Retension
Setting the Retension attribute (the `ret` attribute for the `chdev` command) to Yes instructs the tape drive to retension a tape automatically whenever a tape is inserted or the drive is reset. Retensioning a tape means to wind to the end of the tape and then rewind to the beginning of the tape to even the tension throughout the tape. Retensioning the tape can reduce errors, but this action can take several minutes. If you specify the No value, the tape drive does not automatically retension the tape. The default value is Yes.

Density Setting #1 and Density Setting #2
Density Setting #1 (the `density_set_1` attribute for the `chdev` command) sets the density value that the tape drive writes when using special files `/dev/rmt*`, `/dev/rmt*.1`, `/dev/rmt*.2`, and `/dev/rmt*.3`. Density Setting #2 (for the `density_set_2` attribute of the `chdev` command) sets the density value that the tape drive writes when using special files `/dev/rmt*.4`, `/dev/rmt*.5`, `/dev/rmt*.6`, and `/dev/rmt*.7`. See Special Files for Tape Drives on page 6-15 for more information.

The density settings are represented as decimal numbers in the range 0 to 255. A zero (0) setting selects the default density for the tape drive, which is usually the drive’s high density setting. Specific permitted values and their meanings vary with different types of tape drives. These attributes do not affect the ability of the tape drive to read tapes written in all densities.
supported by the tape drive. It is customary to set Density Setting #1 to the highest density possible on the tape drive and Density Setting #2 to the second highest density possible on the tape drive.

**Reserve Support**
For tape drives that use the Reserve attribute (the res_support attribute for the chdev command), specifying the Yes value causes the tape drive to be reserved on the SCSI bus while it is open. If more than one SCSI adapter shares the tape device, this ensures access by a single adapter while the device is open. Some SCSI tape drives do not support the reserve or release commands. Some SCSI tape drives have a predefined value for this attribute so that the reserve and release commands are always supported.

**Variable Length Block Size**
The Variable Length Block Size attribute (the var_block_size attribute for the chdev command) specifies the block size required by the tape drive when writing variable length records. Some SCSI tape drives require that a nonzero block size be specified in their Mode Select data even when writing variable length records. The Block Size attribute is set to 0 to indicate variable length records. Refer to the specific tape drive SCSI specification to determine whether this is required.

**Data Compression**
Setting the Data Compression attribute (the compress attribute for the chdev command) to Yes causes the tape drive to be in compress mode, if the drive is capable of compressing data. If so, then the drive writes data to the tape in compressed format so that more data fits on a single tape. Setting this attribute to No forces the tape drive to write in native mode (noncompressed). Read operations are not affected by the setting of this attribute. The default setting is Yes.

**Autoloader**
Setting the Autoloader attribute (the autoload attribute for the chdev command) to Yes causes the Autoloader to be active, if the drive is so equipped. If so, and another tape is available in the loader, any read or write operation that advances the tape to the end is automatically continued on the next tape. Tape drive commands that are restricted to a single tape cartridge are unaffected. The default setting is Yes.

**Retry Delay**
The Retry Delay attribute sets the number of seconds that the system waits after a command has failed before reissuing the command. The system may reissue a failed command up to four times. This attribute applies only to type ost tape drives. The default setting is 45.

**Read/Write Timeout**
The Read/Write Timeout or Maximum Delay for a READ/WRITE attribute sets the maximum number of seconds that the system allows for a read or write command to complete. This attribute applies only to type ost tape drives. The default setting is 144.

**Return Error on Tape Change**
The Return Error on Tape Change or Reset attribute, when set, causes an error to be returned on open when the tape drive has been reset or the tape has been changed. A previous operation to the tape drive must have taken place that left the tape positioned beyond beginning of tape upon closing. The error returned is a –1 and errno global value is set to EIO. After being presented to the application, the error condition is cleared. Also, reconfiguring the tape drive itself clears the error condition.
Attributes for 2.0 GB 4 mm Tape Drives (Type 4mm2gb)

Block Size
The default value is 1024.

Device Buffers
The general information for this attribute applies to this tape drive type.

Attributes with Fixed Values
If a tape drive is configured as a 2.0 GB 4 mm tape drive, the Retension, Reserve Support, Variable Length Block Size, Density Setting #1, and Density Setting #2 attributes have predefined values that cannot be changed. The density settings are predefined because the tape drive always writes in 2.0 GB mode.

Attributes for 4.0 GB 4 mm Tape Drives (Type 4mm4gb)

Block Size
The default value is 1024.

Device Buffers
The general information for this attribute applies to this tape drive type.

Density Setting #1 and Density Setting #2
The user cannot change the density setting of this drive; the device reconfigures itself automatically depending on the Digital Data Storage (DDS) media type installed, as follows:

<table>
<thead>
<tr>
<th>Media Type</th>
<th>Device Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDS</td>
<td>Read-only.</td>
</tr>
<tr>
<td>DDS</td>
<td></td>
</tr>
<tr>
<td>DDS2</td>
<td>Read in either density; write in 4.0 GB mode only.</td>
</tr>
<tr>
<td>non-DDS</td>
<td>Not supported; cartridge will eject.</td>
</tr>
</tbody>
</table>

Data Compression
The general information for this attribute applies to this tape drive type.

Attributes with Fixed Values
If a tape drive is configured as a 4.0 GB 4 mm tape drive, the Retension, Reserve Support, Variable Length Block Size, Density Setting #1, and Density Setting #2 attributes have predefined values which cannot be changed.

Attributes for 2.3 GB 8 mm Tape Drives (Type 8mm)

Block Size
The default value is 1024. A smaller value reduces the amount of data stored on a tape.

Device Buffers
The general information for this attribute applies to this tape drive type.

Extended File Marks
The general information for this attribute applies to this tape drive type.

Attributes with Fixed Values
If a tape drive is configured as a 2.3 GB 8 mm tape drive, the Retension, Reserve Support, Variable Length Block Size, Data Compression, Density Setting #1, and Density Setting #2 attributes have predefined values which cannot be changed. The density settings are predefined because the tape drive always writes in 2.3 GB mode.
Attributes for 5.0 GB 8 mm Tape Drives (Type 8mm5gb)

Block Size
The default value is 1024. If a tape is being written in 2.3 GB mode, a smaller value reduces the amount of data stored on a tape.

Device Buffers
The general information for this attribute applies to this tape drive type.

Extended File Marks
The general information for this attribute applies to this tape drive type.

Density Setting #1 and Density Setting #2
The following settings apply:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>5 GB mode (compression capable)</td>
</tr>
<tr>
<td>21</td>
<td>5 GB mode noncompressed tape</td>
</tr>
<tr>
<td>20</td>
<td>2.3 GB mode</td>
</tr>
<tr>
<td>0</td>
<td>Default (5.0 GB mode)</td>
</tr>
</tbody>
</table>

The default values are 140 for Density Setting #1, and 20 for Density Setting #2. A value of 21 for Density Setting #1 or #2 permits the user to read or write a noncompressed tape in 5 GB mode.

Data Compression
The general information for this attribute applies to this tape drive type.

Attributes with Fixed Values
If a tape drive is configured as a 5.0 GB 8 mm tape drive, the Retension, Reserve Support, and Variable Length Block Size attributes have predefined values which cannot be changed.

Attributes for 20000 MB 8mm Tape Drives (Self–Configuring)

Block Size
The default value is 1024.

Device Buffers
The general information for this attribute applies to this tape drive type.

Extended File Marks
The general information for this attribute applies to this tape drive type.

Density Setting #1 and Density Setting #2
The drive can read and write data cartridges in 20.0 GB format. During a Read command, the drive automatically determines which format is written on tape. During a Write, the Density Setting determines which data format is written to tape.

The following settings apply:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>20 GB mode (compression capable)</td>
</tr>
<tr>
<td>0</td>
<td>Default (20.0 GB mode)</td>
</tr>
</tbody>
</table>

The default value is 39 for Density Setting #1 and Density Setting #2.
Data Compression
The general information for this attribute applies to this tape drive type.

Attributes with Fixed Values
If a tape drive is configured as a 20.0 GB 8 mm tape drive, the Retension, Reserve Support, and Variable Length Block Size attributes have predefined values which cannot be changed.

Attributes for 35 GB Tape Drives (Type 35gb)

Block Size
The 7205 Model 311 throughput is sensitive to blocksize. The minimum recommended blocksize for this drive is 32 K Bytes. Any block size less than 32 K Bytes restricts the data rate (backup and restore time). The following table lists recommended block sizes by command:

<table>
<thead>
<tr>
<th>Command Supported</th>
<th>Default Block Size (Bytes)</th>
<th>RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKUP</td>
<td>32 K or 51.2 K (default)</td>
<td>Uses either 32 K or 51.2 K depending on if “Backup” is by name or not. No change is required.</td>
</tr>
<tr>
<td>TAR</td>
<td>10 K</td>
<td>There is an error in the manual that states a 512 K byte block size. Set the Blocking Parameter to –N64.</td>
</tr>
<tr>
<td>MKSYSB</td>
<td>See BACKUP</td>
<td>MKSYSB uses the BACKUP Command. No change is required.</td>
</tr>
<tr>
<td>DD</td>
<td>n/a</td>
<td>Set the Blocking Parameter to bs=32K.</td>
</tr>
<tr>
<td>CPIO</td>
<td>n/a</td>
<td>Set the Blocking Parameter to –C64.</td>
</tr>
</tbody>
</table>

Note:: Be aware of the capacity and throughput when you select a blocksize. Small block sizes have a significant impact on performance and a minimal impact on capacity. The capacities of the 2.6 GB format (density) and 6.0 GB format (density) are significantly impacted when you use smaller than the recommended block sizes. As an example: using a block size of 1024 bytes to backup 32 GB of data takes approximately 22 hours. Backing up the same 32 GB of data using a block size of 32 K Bytes takes approximately 2 hours.

Device Buffers
The general information for this attribute applies to this tape drive type.

Extended File Marks
The general information for this attribute applies to this tape drive type.

Density Setting #1 and Density Setting #2
The following chart shows the Supported Data Cartridge type and Density Settings (in decimal and hex) for the 7205–311 Tape Drive. When you perform a Restore (Read) Operation, the tape drive automatically sets the density to match the written density. When you perform a Backup Operation (Write), you must set the Density Setting to match the Data Cartridge that you are using.
<table>
<thead>
<tr>
<th>Supported Data Cartridges</th>
<th>Native Capacity</th>
<th>Compressed Data Capacity</th>
<th>Web-based System Manager or SMIT Density Setting</th>
<th>HEX Density Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLTtape III</td>
<td>2.6 GB</td>
<td>2.6 GB (No Compression)</td>
<td>23</td>
<td>17h</td>
</tr>
<tr>
<td></td>
<td>6.0 GB</td>
<td>6.0 GB (No Compression)</td>
<td>24</td>
<td>18h</td>
</tr>
<tr>
<td></td>
<td>10.0 GB</td>
<td>20.0 GB (Default for drive)</td>
<td>25</td>
<td>19h</td>
</tr>
<tr>
<td>DLTtape IIIxt</td>
<td>15.0 GB</td>
<td>30.6 GB (Default for drive)</td>
<td>25</td>
<td>19h</td>
</tr>
<tr>
<td></td>
<td>20.0 GB</td>
<td>40.0 GB</td>
<td>26</td>
<td>1Ah</td>
</tr>
<tr>
<td></td>
<td>35.0 GB</td>
<td>70.0 GB (Default for drive)</td>
<td>27</td>
<td>1Bh</td>
</tr>
</tbody>
</table>

Note:: If you request an unsupported Native Capacity for the Data Cartridge, the drive defaults to the highest supported capacity for the Data Cartridge that is loaded into the drive.

Data Compression
The actual compression depends on the type of data being that is being written (see previous table). A Compression Ratio of 2:1 is assumed for this Compressed Data Capacity.

Attributes with Fixed Values
The general information for this attribute applies to this tape drive type.

Attributes for 150 MB 1/4–Inch Tape Drives (Type 150mb)
Block Size
The default block size is 512. The only other valid block size is 0 for variable length blocks.

Device Buffers
The general information for this attribute applies to this tape drive type.

Extended File Marks
Writing to a 1/4–inch tape can only occur at the beginning of tape (BOT) or after blank tape is detected. If data exists on the tape, you cannot overwrite the data except at BOT. If you wish to add data to a tape that has been written and then rewound, you must space forward until the next file mark is detected, which causes the system to return an error. Only then can you start writing again.

Retension
The general information for this attribute applies to this tape drive type.
Density Setting #1 and Density Setting #2
The following settings apply:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>QIC–150</td>
</tr>
<tr>
<td>15</td>
<td>QIC–120</td>
</tr>
</tbody>
</table>
| 0       | Default (QIC–150), or whatever was the last density setting by a using system.

The default values are 16 for Density Setting #1, and 15 for Density Setting #2.

Attributes with Fixed Values
If a tape drive is configured as a 150 MB 1/4–inch tape drive, the Extended File Marks, Reserve Support, Variable Length Block Size, and Data Compression attributes have predefined values which cannot be changed.

Attributes for 525 MB 1/4–Inch Tape Drives (Type 525mb)

Block Size
The default block size is 512. The other valid block sizes are 0 for variable length blocks, and 1024.

Device Buffers
The general information for this attribute applies to this tape drive type.

Extended File Marks
Writing to a 1/4–inch tape can only occur at the beginning of tape (BOT) or after blank tape is detected. If data exists on the tape, you cannot overwrite the data except at BOT. If you want to add data to a tape that has been written and then rewound, you must space forward until the next file mark is detected, which causes the system to return an error. Only then can you start writing again.

Retension
The general information for this attribute applies to this tape drive type.

Density Setting #1 and Density Setting #2
The following settings apply:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>QIC–525*</td>
</tr>
<tr>
<td>16</td>
<td>QIC–150</td>
</tr>
<tr>
<td>15</td>
<td>QIC–120</td>
</tr>
</tbody>
</table>
| 0       | Default (QIC–525), or whatever was the last density setting by a using system.  

* QIC–525 is the only mode that supports the 1024 block size.

The default values are 17 for Density Setting #1, and 16 for Density Setting #2.

Attributes with Fixed Values
If a tape drive is configured as a 525 MB 1/4–inch tape drive, the Extended File Marks, Reserve Support, Variable Length Block Size, and Data Compression attributes have predefined values which cannot be changed.
Attributes for 1200 MB 1/4–Inch Tape Drives (Type 1200mb–c)

**Block Size**
The default block size is 512. The other valid block sizes are 0 for variable length blocks, and 1024.

**Device Buffers**
The general information for this attribute applies to this tape drive type.

**Extended File Marks**
Writing to a 1/4–inch tape can only occur at the beginning of tape (BOT) or after blank tape is detected. If data exists on the tape, you cannot overwrite the data except at BOT. If you wish to add data to a tape that has been written and then rewound, you must space forward until the next file mark is detected, which causes the system to return an error. Only then can you start writing again.

**Retension**
The general information for this attribute applies to this tape drive type.

**Density Setting #1 and Density Setting #2**
The following settings apply:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>QIC–1000*</td>
</tr>
<tr>
<td>17</td>
<td>QIC–525*</td>
</tr>
<tr>
<td>16</td>
<td>QIC–150</td>
</tr>
<tr>
<td>15</td>
<td>QIC–120</td>
</tr>
<tr>
<td>0</td>
<td>Default (QIC–1000), or whatever was the last density setting by a using system.</td>
</tr>
</tbody>
</table>

Notes:
1. QIC–525 and QIC–1000 are the only modes that support the 1024 block size.
2. The default values are 21 for Density Setting #1, and 17 for Density Setting #2.

**Attributes with Fixed Values**
If a tape drive is configured as a 1200 MB 1/4–inch tape drive, the Extended File Marks, Reserve Support, Variable Length Block Size, and Data Compression attributes have predefined values which cannot be changed.
Attributes for 12000 MB 4 mm Tape Drives (Self–Configuring)

Block Size
The 12000 MB 4 mm Tape Drive’s throughput is sensitive to blocksize. The minimum recommended blocksize for this drive is 32 K Bytes. Any block size less than 32 K Bytes restricts the data rate (backup/restore time). The following table lists recommended block sizes by command:

<table>
<thead>
<tr>
<th>Command Supported</th>
<th>Default Block Size (Bytes)</th>
<th>RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKUP</td>
<td>32 K or 51.2 K (default)</td>
<td>Will use either 32 K or 51.2 K depending on if “Backup” is by name or not. No change is required.</td>
</tr>
<tr>
<td>TAR</td>
<td>10 K</td>
<td>There is an error in the manual that states a 512 K byte block size. Set the Blocking Parameter to –N64.</td>
</tr>
<tr>
<td>MKSYSB</td>
<td>See BACKUP</td>
<td>MKSYSB uses the BACKUP Command. No change is required.</td>
</tr>
<tr>
<td>DD</td>
<td>n/a</td>
<td>Set the Blocking Parameter to bs=32K.</td>
</tr>
<tr>
<td>CPIO</td>
<td>n/a</td>
<td>Set the Blocking Parameter to –C64.</td>
</tr>
</tbody>
</table>

Note:: You should be aware of the capacity and throughput when you select a blocksize. Small blocksizes have a significant impact on performance and a minimal impact on capacity.

Device Buffers
The general information for this attribute applies to this tape drive type.

Extended File Marks
The general information for this attribute applies to this tape drive type.

Density Setting #1 and Density Setting #2
The following chart shows the Supported Data Cartridge type and Density Settings (in decimal and hex) for the 12000 MB 4 mm Tape Drive. When you perform a Restore (Read) Operation, the tape drive automatically sets the density to match the written density. When you perform a Backup Operation (Write), you must set the Density Setting to match the Data Cartridge you are using.

<table>
<thead>
<tr>
<th>Supported Data Cartridges</th>
<th>Native Capacity</th>
<th>Compressed Data Capacity</th>
<th>Web-based System Manager or SMIT Density Setting</th>
<th>HEX Density Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDS III</td>
<td>2.0 GB</td>
<td>4.0 GB</td>
<td>19</td>
<td>13h</td>
</tr>
<tr>
<td>DDS2</td>
<td>4.0 GB</td>
<td>8.0 GB</td>
<td>36</td>
<td>24h</td>
</tr>
<tr>
<td>DDS3</td>
<td>12.0 GB</td>
<td>24.0 GB</td>
<td>37</td>
<td>25h</td>
</tr>
</tbody>
</table>

Note:: If you request an unsupported Native Capacity for the Data Cartridge, the drive defaults to the highest supported capacity for the Data Cartridge that is loaded into the drive.
Data Compression
The actual compression depends on the type of data being that is being written (see the previous table). A Compression Ratio of 2:1 is assumed for this Compressed Data Capacity.

Attributes with Fixed Values
The general information for this attribute applies to this tape drive type.

Attributes for 13000 MB 1/4–Inch Tape Drives (Self–Configuring)

Block Size
The default block size is 512. The other valid block sizes are 0 for variable length blocks, and 1024.

Device Buffers
The general information for this attribute applies to this tape drive type.

Extended File Marks
Writing to a 1/4–inch tape can only occur at the beginning of tape (BOT) or after blank tape is detected. If data exists on the tape, you cannot overwrite the data except at BOT. If you wish to add data to a tape that has been written and then rewound, you must space forward until the next file mark is detected, which causes the system to return an error. Only then can you start writing again.

Retension
The general information for this attribute applies to this tape drive type.

Density Setting #1 and Density Setting #2
The following settings apply:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>QIC–5010–DC*</td>
</tr>
<tr>
<td>34</td>
<td>QIC–2GB*</td>
</tr>
<tr>
<td>21</td>
<td>QIC–1000*</td>
</tr>
<tr>
<td>17</td>
<td>QIC–525*</td>
</tr>
<tr>
<td>16</td>
<td>QIC–150</td>
</tr>
<tr>
<td>15</td>
<td>QIC–120</td>
</tr>
<tr>
<td>0</td>
<td>Default (QIC–5010–DC)*</td>
</tr>
</tbody>
</table>

Notes:
1. QIC–525, QIC–1000, QIC–5010–DC, and QIC–2GB are the only modes that support the 1024 block size.
2. The default values are 33 for Density Setting #1, and 34 for Density Setting #2.

Attributes with Fixed Values
If a tape drive is configured as a 13000 MB 1/4–inch tape drive, the Extended File Marks, Reserve Support, and Variable Length Block Size attributes have predefined values which cannot be changed.
Attributes for 1/2–Inch 9–Track Tape Drives (Type 9trk)

**Block Size**
The default block size is 1024.

**Device Buffers**
The general information for this attribute applies to this tape drive type.

**Density Setting #1 and Density Setting #2**
The following settings apply:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6250 bits per inch (bpi)</td>
</tr>
<tr>
<td>2</td>
<td>1600 bpi</td>
</tr>
<tr>
<td>0</td>
<td>Whichever writing density was used previously.</td>
</tr>
</tbody>
</table>

The default values are 3 for Density Setting #1, and 2 for Density Setting #2.

**Attributes with Fixed Values**
If a tape drive is configured as a 1/2–inch 9–track tape drive, the Extended File Marks, Retension, Reserve Support, Variable Length Block Size, and Data Compression attributes have predefined values which cannot be changed.

Attributes for 3490e 1/2–Inch Cartridge (Type 3490e)

**Block Size**
The default block size is 1024. This drive features a high data transfer rate, and block size can be critical to efficient operation. Larger block sizes can greatly improve operational speeds, and in general, the largest possible block size should be used.

**Note:** Increasing the block value can cause incompatibilities with other programs on your system. If this occurs, you receive the following error message while running those programs:

```
A system call received a parameter that is not valid.
```

**Device Buffers**
The general information for this attribute applies to this tape drive type.

**Compression**
The general information for this attribute applies to this tape drive type.

**Autoloader**
This drive features a tape sequencer, an autoloader that sequentially loads and ejects a series of tape cartridges from the cartridge loader. For this function to operate correctly, the front panel switch must be in the AUTO position and the Autoloader attribute must be set to Yes.
Attributes for Other SCSI Tapes (Type ost)

Block Size
The system default is 512, but this should be adjusted to the default block size for your tape drive. Typical values are 512 and 1024. 8 mm and 4 mm tape drives usually use 1024 and waste space on the tape if the block size attribute is left at 51. 0 indicates variable block size on some drives.

Device Buffers
The general information for this attribute applies to this tape drive type.

Extended File Marks
The general information for this attribute applies to this tape drive type.

Density Setting #1 and Density Setting #2
The default value is 0 for both of these settings. Other values and their meanings vary for different tape drives.

Reserve Support
The default value is No. This may be set to Yes, if the drive supports reserve/release commands. If you are unsure, No is a safer value.

Variable Length Block Size
0 is the default value. Nonzero values are used primarily on quarter inch cartridge (QIC) drives. Refer to the SCSI specification for the particular tape drive for advice.

Retry Delay
This attribute applies exclusively to type ost tape drives

Read/Write Timeout
This attribute applies exclusively to type ost tape drives

Attributes with Fixed Values
If a tape drive is configured as an Other SCSI tape drive, the Extended File Marks, Retension, and Data Compression attributes have predefined values which cannot be changed.
Special Files for Tape Drives

Writing to and reading from files on tapes is done by using \texttt{rmt} special files. There are several special files associated with each tape drive known to the operating system. These special files are \texttt{/dev/rmt*}, \texttt{/dev/rmt*.1}, \texttt{/dev/rmt*.2}, ..., \texttt{/dev/rmt*.7}. The \texttt{rmt*} is the logical name of a tape drive, such as \texttt{rmt0}, \texttt{rmt1}, and so on.

By selecting one of the special files associated with a tape drive, you make choices about how the I/O operations related to the tape drive will be performed.

**Density**

You can select whether to write with the tape drive Density Setting #1 or with the tape drive Density Setting #2. The values for these density settings are part of the attributes of the tape drive. Because it is customary to set Density Setting #1 to the highest possible density for the tape drive and Density Setting #2 to the next highest possible density for the tape drive, special files that use Density Setting #1 are sometimes referred to as high density and special files that use Density Setting #2 sometimes are referred to as low density, but this view is not always correct. When reading from a tape, the density setting is ignored.

**Rewind–on–Close**

You can select whether the tape is rewound when the special file referring to the tape drive is closed. If rewind–on–close is selected, the tape is positioned at the beginning of the tape when the file is closed.

**Retension–on–Open**

You can select whether the tape is retensioned when the file is opened. Retensioning means winding to the end of the tape and then rewinding to the beginning of the tape to reduce errors. If retension–on–open is selected, the tape is positioned at the beginning of the tape as part of the open process.

The following table shows the names of the \texttt{rmt} special files and their characteristics. For more information about tape drive special files, see \textit{AIX 5L Version 5.2 System Management Concepts: Operating System and Devices}.

<table>
<thead>
<tr>
<th>Special File</th>
<th>Rewind on Close</th>
<th>Retension on Open</th>
<th>Density Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/rmt*</td>
<td>Yes</td>
<td>No</td>
<td>#1</td>
</tr>
<tr>
<td>/dev/rmt*.1</td>
<td>No</td>
<td>No</td>
<td>#1</td>
</tr>
<tr>
<td>/dev/rmt*.2</td>
<td>Yes</td>
<td>Yes</td>
<td>#1</td>
</tr>
<tr>
<td>/dev/rmt*.3</td>
<td>No</td>
<td>Yes</td>
<td>#1</td>
</tr>
<tr>
<td>/dev/rmt*.4</td>
<td>Yes</td>
<td>No</td>
<td>#2</td>
</tr>
<tr>
<td>/dev/rmt*.5</td>
<td>No</td>
<td>No</td>
<td>#2</td>
</tr>
<tr>
<td>/dev/rmt*.6</td>
<td>Yes</td>
<td>Yes</td>
<td>#2</td>
</tr>
<tr>
<td>/dev/rmt*.7</td>
<td>No</td>
<td>Yes</td>
<td>#2</td>
</tr>
</tbody>
</table>
Devices

Devices include hardware components such as, printers, drives, adapters, buses, and enclosures, as well as pseudo–devices, such as the error special file and null special file. The following sections provide instructions for managing devices:

- Preparing to Install a Device
- Installing an IDE Device
- Configuring a Read/Write Optical Drive
- Managing Hot Plug Connectors
- Managing MPIO–Capable Devices
- Unconfiguring Communications Adapters
- Unconfiguring Storage Adapters
- Unconfiguring Async Adapters
- Removing or Replacing a PCI Hot Plug Adapter
- Adding a PCI Hot Plug Adapter
- Determining the Cause of Device Problems
Preparing to Install a Device

Installing devices on your system consists of identifying where the device is to be attached, connecting the device physically, and configuring the device with Web–based System Manager, the Configuration Manager, or SMIT.

This section documents installation tasks that are common to all devices. Because of the wide variety of devices that you can install on your system, only a general procedure is provided. For more specific information, see the installation instructions shipped with the specific device.

**Note:** The following procedure requires a shutdown of your system to install the device. Not all device installations require a shutdown of your system. Refer to the documentation shipped with the specific device.

1. Stop all applications running on the system unit and shut down the system unit using the `shutdown` command.
2. Turn off the system unit and all attached devices.
3. Unplug the system unit and all attached devices.
4. Connect the new device to the system using the procedure described in the setup and operator guide for the device.
5. Plug in the system unit and all attached devices.
6. Turn on all the attached devices leaving the system unit turned off.
7. Turn on the system unit when all the devices complete power–on self–tests (POST).

The Configuration Manager automatically scans the attached devices and configures any new devices it detects. The new devices are configured with default attributes and recorded in the customized configuration database placing the device in **Available** state.

You can manually configure a device using Web-based System Manager ( `wsm`, then select **Devices** ), or the SMIT fast path, `smit dev`. If you need to customize the device attributes or if the device cannot be configured automatically, see the device documentation that shipped with the device for specific configuration requirements.
Installing an IDE Device

This section outlines the procedure used to install an IDE device on your system. The procedure has been divided into several tasks that must be performed in order.

Prerequisites

- You must have access to the operator’s guide for your system unit and the installation guide for the device to be installed. The documentation must identify how to set the IDE device jumper to configure the device to either the master or slave setting.
- There must be at least one unused IDE device ID on an IDE adapter on the system.
- If you are updating the product topology diskettes, you need the Product Topology System diskette which is kept with important records for the system, and the Product Topology Update diskette which is shipped with the device.
- Verify that the interface of the device is compatible with the interface of the IDE controllers on the system unit.
- There are two classifications for IDE devices, ATA and ATAPI. ATA are disk devices and ATAPI are CD-ROM or tape devices. Up to two devices are allowed to be connected to each IDE controller, one master and one slave. Typically an IDE adapter has two controllers, which allows up to four IDE devices to be attached.

With appropriate cabling, you can attach any of the following device combinations to a single controller:
  - 1 ATA device as master
  - 1 ATAPI device as master
  - 2 ATA devices as master and slave
  - 1 ATA device as master and 1 ATAPI device as slave
  - 2 ATAPI devices as master and slave
  - You cannot attach the following:
    - 1 ATA device as slave only
    - 1 ATAPI device as slave only
    - 1 ATAPI device as master and 1 ATA device as slave

Task 1 – Determine the Number and Location of the IDE Controllers

Determine how many IDE controllers are attached to your system unit and where the IDE controllers are located. An IDE adapter may be in an adapter slot or built into the system planar. Remember that IDE adapters have two IDE controllers (IDE buses). Thus, two IDE controllers are found in an adapter slot or built into the system planar.

You can obtain this information two different ways:

- Using a software configuration command. This method is available only when the operating system has been installed on the system unit.
- Using the About Your Machine document shipped with your system unit. This method is valid only for initial setup and installation of a new system unit.

Using a Software Configuration Command

This method applies to a system that already has the operating system installed.

To list the IDE I/O controllers on the system, type the following commands:

```
lsconf -l ide*
```

Examine the list of IDE controllers that are displayed. The following sample display from the `lsconf -l ide` command shows two IDE I/O controllers. Controller ide0 and ide1 are located on the system planar. The planar indicator is the second digit in the location value with a value of 1.
Initial Setup

Use the About Your Machine document to determine the IDE I/O controllers on the system if the device is being installed during initial setup.

Note:: Incorrect results are produced if controllers have been added after the system was shipped from the factory.

Determine whether the system unit has an IDE controller built into the planar board. A built–in IDE I/O controller is standard on some system units. Your system unit has a built–in IDE controller if About Your Machine document shows an internal media IDE device with a blank slot number.

Task 2 – Select an IDE Controller and an IDE Address on the Controller

After identifying the IDE controllers attached to the system unit, select the IDE I/O controller to which you want to connect a device. This IDE I/O controller must have at least one IDE setting that is not already assigned to another device.

Determine whether IDE device setting must be jumpered as master or slave. If no device is currently attached to the controller, the IDE device jumper must be set to master (some devices require no device ID setting in this situation). If an IDE device is already attached, the type of device must be determined. Disks are ATA devices. CD–ROM and tape are ATAPI devices. If ATA and ATAPI devices are both attached to the same IDE controller, the ATA device must be set to master ID and the ATAPI device must be set to slave ID.

Determine what IDE devices are attached to a controller by viewing information about the devices already connected to the IDE controllers.

You can use two methods to select an IDE I/O controller and an IDE address on the controller that is not already assigned to another device:

- Using a software configuration command if the operating system is already installed on the system unit.
- Using the About Your Machine document for initial setup and installation of a new system unit.

Using a Software Configuration Command

This method applies to a system that already has the operating system installed.

1. Type the following command to list all the currently defined IDE devices:

   ```
 lsdev -C -s ide -H
   ```

2. Examine the list of devices already assigned to each IDE controller. Each row in this display shows the logical name, status, location, and description of an IDE device. The location for each device begins with the location of the controller that the device is connected. In the sample below, the IDE I/O controller with address 01–00–00 has two IDE devices attached. The IDE I/O controller with location 01–00–01 has one IDE device attached.

   ```
 name status location description
 hdisk0 Available 01–00–00–00 720 MB IDE Disk Drive
 hdisk1 Available 01–00–00–01 540 MB IDE Disk Drive
 cd0 Available 01–00–01–00 IDE CD–ROM Drive
   ```

   IDE controller address (6th digit)
3. Select a controller that does not have two IDE devices already connected.

4. If one device is already attached to the controller, determine the type of the device. Also determine the type of device to be installed. Disk devices are classified as ATA devices. CD–ROM and tape devices are classified as ATAPI devices.

5. Determine the IDE jumper setting for the new device depending upon the combination of devices to be connected to the IDE controller. If the new device is the only device connected to the controller, the device jumper setting must be set to the master position (some devices require no setting in this case). If both devices are the same type, the new device jumper setting can be set to the slave position. If there is a mix of devices (ATA and ATAPI), the ATA device jumper must be set to the master position and the ATAPI device jumper must be set to the slave position. If there is a mix of devices and the new device is an ATA device (disk), the device jumper for the currently existing ATAPI device must be changed to the slave position and the new ATA device jumper must be set to master. If there is a mix of devices and the new device is an ATAPI device (CD–ROM or tape), the device jumper for the new ATAPI device must be set to slave and if the ATA device does not currently have a jumper setting, it must be set to master.

**Initial Setup**

Use the *About Your Machine* document to determine the devices assigned to the IDE I/O controllers on the system if the device is being installed during initial setup.

**Note:** Incorrect results are produced if controllers have been added after the system was shipped from the factory.

1. To determine the IDE devices assigned to addresses on the IDE controllers, see "Internal Media Devices" in *About Your Machine*.

2. Select a controller that does not have two IDE devices already connected.

3. If one device is already attached to the controller, determine the type of the device. Also determine the type of device to be installed. Disk devices are classified as ATA devices. CD–ROM and tape devices are classified as ATAPI devices.

4. Determine the IDE jumper setting for the new device depending upon the combination of devices to be connected to the IDE controller. If the new device will be the only device connected to the controller, the device jumper setting must be set to the master position (some devices require no setting in this case). If both devices are the same type, the new device jumper setting can be set to the slave position. If there is a mix of devices (ATA and ATAPI), the ATA device jumper must be set to the master position and the ATAPI device jumper must be set to the slave position. If there is a mix of devices and the new device is an ATA device (disk), the device jumper for the currently existing ATAPI device must be changed to the slave position and the new ATA device jumper must be set to master. If there is a mix of devices and the new device is an ATAPI device (CD–ROM or tape), the device jumper for the new ATAPI device must be set to slave and if the ATA device does not currently have a jumper setting, it must be set to master.

---

**Task 3 – Setting Up the Hardware**

**Prerequisites**

- Do not begin this task until you have selected and recorded the following:
  - Position of the IDE I/O controller where the device will be connected (either built-in or identified by an adapter slot number).
  - IDE address for the device.

- Determine the physical position on the system unit to connect the selected IDE controller. For example, locate the position of the built-in IDE controller. Refer to the operator’s guide for help.
Procedure
1. Shut down the system unit using the `shutdown` command after stopping all applications that are currently running. Type `shutdown –F` to stop the system immediately without notifying other users.

2. Wait for the message `Halt Completed` or a similar message to be displayed.

3. Turn off the system unit and all attached devices.

4. Unplug the system unit and all attached devices.

5. Make the physical connections following the procedure described in the setup and operator guide.
   
   **Note:** Do not power on the system unit; proceed to the next task.

Task 4 – Add the Device to the Customized Configuration Database
This task makes the device known to the system. During system unit startup, the operating system reads the current configuration and detects new devices. A record of each new device is added to the customized configuration database and are given default attributes.

If the device is being installed on a new system unit, the operating system must be installed. Instructions for installing the operating system are included in the installation guide for the operating system.

Follow this procedure to add a device to the customized configuration database:

1. Plug in the system unit and all attached devices.

2. Turn on all the devices, but leave the system unit turned off.

3. Turn on the system unit when all the attached devices have completed power–on self–tests (POSTs).
   
   **Note:** The startup process automatically detects and records the device in the customized configuration database.

4. Confirm that the device was added to the customized configuration database using the Web-based System Manager (type `wsm`), or the SMIT fast path, `smit lsdidea`. A list of all defined devices is displayed. Look at the location field for the IDE adapter and IDE address values of the device you just installed.

Task 5 – Customize the Attributes for the Device (Optional)
Default attributes are assigned to a supported device when it is added to the customized configuration database. These attributes are appropriate for typical use of the device. Change the device attributes when the device you are installing is not supported or when you need to customize some part of the device’s operation. For example, you might need to change your tape drive to write tapes in a lower–density format.

To customize the attributes for a device use the SMIT fast path, `smit dev`. 
Configuring a Read/Write Optical Drive

There are two methods for configuring a read/write optical drive.

Prerequisite

The read/write optical drive must be connected to the system and powered on.

Method 1

Method one is the faster of the two methods. It only configures the read/write optical drive specified. To use this method, you must provide the following information:

- **Subclass**: Defines how the drive is attached.
- **Type**: Specifies the type of read/write optical drive.
- **Parent Name**: Specifies the system attachment the drive is connected to.
- **Where Connected**: Specifies the logical address of the drive.

Enter the following command to configure the read/write optical drive:

```
mkdev -c rwoptical -s Subclass -t Type -p ParentName -w WhereConnected
```

The following is an example of a read/write optical drive that has a SCSI ID of 6, a logical unit number of zero, and is connected to the third (scsi3) SCSI bus:

```
mkdev -c rwoptical -s scsi -t osomd -p scsi3 -w 6,0 -a pv=yes
```

Method 2

Method two uses the Configuration Manager, searching the current configuration, detecting any new devices, and automatically configuring the devices. This method is used when little information is known about the read/write optical drive.

1. Use the configuration manager to configure all newly detected devices on the system (including the read/write optical drive) by typing:

   ```
 cfgmgr
   ```

2. Type the following command to list the names, location codes, and types of all currently configured read/write optical drives:

   ```
 lsdev -C -c rwoptical
   ```

3. Determine the name of the newly configured read/write optical drive using the location code that matches the location of the drive being added.
Managing Hot Plug Connectors
This section includes the following procedures for managing hot plug connectors and slots and for preparing PCI hot plug adapters to be added, removed, or replaced:

- Displaying PCI Hot–Plug Slot Information
- Unconfiguring Communications Adapters
- Unconfiguring Storage Adapters
- Unconfiguring Async Adapters
- Removing or Replacing a PCI Hot Plug Adapter
- Adding a PCI Hot Plug Adapter

For additional information about hot plug management, see PCI Hot Plug Management in the AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

Displaying PCI Hot–Plug Slot Information
Before you add, remove, or replace a hot–plug adapter, you can display the following information about the PCI hot–plug slots in a machine:

- A list of all the PCI hot–plug slots in the machine
- Whether a slot is available or empty
- Slots that are currently in use
- The characteristics of a specific slot such as slot name, description, connector type, and the attached device name

You can complete these tasks with Web–based System Manager. You can also use SMIT or system commands. To perform these tasks, you must log in as root user.

For additional information, see PCI Hot–Plug Management in the AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

SMIT Fastpath Procedure
1. Type smit devdrpci at the system prompt, then press Enter.
2. Use the SMIT dialogs to complete the task.

To obtain additional information for completing the task, you can select the F1 Help key in the SMIT dialogs.

Commands Procedure
You can use the following commands to display information about hot–plug slots and connected devices:

- The lsslot command displays a list of all the PCI hot–plug slots and their characteristics. For information about using this command, see lsslot in the AIX 5L Version 5.2 Commands Reference, Volume 3.
- The lsdev command displays the current state of all the devices installed in your system. For information about using this command, see lsdev in the AIX 5L Version 5.2 Commands Reference, Volume 3.
Managing MPIO–Capable Devices

Beginning with AIX 5.2, you can use the Multiple Path I/O (MPIO) feature to define alternate paths to a device for failover purposes. Failover is a path–management algorithm that improves the reliability and availability of a device because the system automatically detects when one I/O path fails and re–routes I/O through an alternate path. All SCSI SCSD disk drives are automatically configured as MPIO devices. Other devices can be supported, providing the device driver is compatible with the MPIO implementation in AIX. For more information about MPIO concepts, see Multi–path I/O in AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

MPIO is installed and configured as part of BOS installation. No further configuration is required, but you can add, remove, reconfigure, enable, and disable devices (or device paths) using SMIT, Web–based System Manager, or the command–line interface. The following commands help manage MPIO paths:

- **mkpath**: Adds a path to a target device.
- **rmpath**: Removes a path to a target device.
- **chpath**: Changes an attribute or the operational status of a path to a target device.
- **lspath**: Displays information about paths to a target device.

Cabling a SCSI Device as an MPIO Device

A SCSI device can be supported by a maximum of two adapters when configured as a MPIO–capable device. To cable a parallel SCSI device as an MPIO device, use the following simple configuration as an example. The following is the minimum configuration that must be done; your device might require additional configuration.

1. With the power off, install two SCSI adapters.
2. Cable the device to both SCSI adapters.
3. Power on the system.
4. Change the settings on one of the adapters to a unique SCSI ID. By default, SCSI adapters have a SCSI ID of 7. Because each ID must be unique, change one adapter to another number, for example, 6.
5. Run the **cfgmgr** command.
6. To verify the configuration, type the following on the command line:

   ```
 lspath -l hdisk X
   ```

   where  **X**  is the logical number of the newly configured device. The command output should display two paths and their status.
Cabling a Fibre Channel Device as an MPIO Device

A Fibre Channel device can be cabled to multiple adapters. There is no limit within the software. To cable a Fibre Channel device as an MPIO device, use the following simple configuration as an example. The following is the minimum configuration that must be done; your device might require additional configuration.

1. With the power off, install two Fibre Channel adapters.
2. Cable the adapters to a switch or hub.
3. Cable the device to the switch or hub.
4. Power on the system.
5. To verify the configuration, type the following on the command line:

   `lspath -l hdisk X`

   where X is the logical number of the newly configured device. The command output should display one path for each adapter you installed and the status of each.
Figure 2. Cable Configuration for MPIO Fibre Channel Device This illustration shows a simple configuration of two Fibre Channel adapters to a switch, which is cabled to a device.
Unconfiguring Communications Adapters

Before you can remove or replace a hot-plug adapter, you must unconfigure that adapter. This section provides the following procedures for unconfiguring communications adapters:

- Unconfiguring Ethernet, Token–ring, FDDI, and ATM Adapters
- Unconfiguring WAN Adapters
- Unconfiguring Other Adapters

Unconfiguring a communications adapter involves the following tasks:

- Closing all applications that are using the adapter you are removing or replacing
- Ensuring that all devices connected to the adapter are identified and stopped
- Listing all slots that are currently in use or a slot that is occupied by a specific adapter
- Identifying the adapter’s slot location
- Displaying and removing interface information from the network interface list
- Making the adapter unavailable

To perform these tasks, you must log in as root.

For additional information about unconfiguring communications adapters, see PCI Hot–Plug Management in the AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

Unconfiguring Ethernet, Token–ring, FDDI, and ATM Adapters

To unconfigure an Ethernet, Token–ring, FDDI, or ATM Adapter:

1. Type `lsslot –c pci` to list all the hot-plug slots in the system unit and display their characteristics.

2. Type the appropriate SMIT command, shown in the following examples, to list installed adapters and show the current state (see Devices on page 6-16) of all the devices in the system unit:

   - `smit lsdenet` to list Ethernet adapters
   - `smit lsdtok` to list token–ring adapters
   - `smit ls_atm` to list ATM adapters

   The following naming convention is used for the different type of adapters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Adapter Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>atm0, atm1, ...</td>
<td>ATM adapter</td>
</tr>
<tr>
<td>ent0, ent1, ...</td>
<td>Ethernet adapter</td>
</tr>
<tr>
<td>tok0, tok1, ...</td>
<td>Token Ring adapter</td>
</tr>
</tbody>
</table>

3. Close all applications that are using the adapter you are unconfiguring. To continue with this procedure, network dump locations must be disabled on the system. To look for and disable network dump locations, do the following:

   a. Type the following from a command line:

      ```
 smit dump
      ```

   b. Select Show Current Dump Devices.

   c. Check whether any configured dump device shows a network location. If not, exit SMIT and you are ready for step 4. To change a dump device to a local location, select Cancel or press F3 and continue with the following step.
d. If the primary dump device shows a network location, change to a local location by selecting **Change the Primary Dump Device** and then enter the local location in the **Primary dump device** field.

e. If the secondary dump device shows a network location, change to a local location by selecting **Change the Secondary Dump Device** and then enter the local location in the **Secondary dump device** field.

f. When finished, click OK or press Enter.

4. **Type** `netstat –i` to display a list of all configured interfaces and determine whether your adapter is configured for TCP/IP. **Output similar to the following displays:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Mtu</th>
<th>Network</th>
<th>Address</th>
<th>Ipkts</th>
<th>Ierrs</th>
<th>Opkts</th>
<th>Oerrs</th>
<th>Coll</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>16896</td>
<td>link#1</td>
<td></td>
<td>076</td>
<td>0</td>
<td>118</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lo0</td>
<td>16896</td>
<td>127</td>
<td>127.0.0.1</td>
<td>076</td>
<td>0</td>
<td>118</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lo0</td>
<td>16896</td>
<td>::1</td>
<td></td>
<td>076</td>
<td>0</td>
<td>118</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tr0</td>
<td>1492</td>
<td>link#2</td>
<td>8.0.5a.b8.b.ec</td>
<td>151</td>
<td>0</td>
<td>405</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>tr0</td>
<td>1492</td>
<td>19.13.97</td>
<td>19.13.97.106</td>
<td>151</td>
<td>0</td>
<td>405</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>at0</td>
<td>9180</td>
<td>link#3</td>
<td>0.4.ac.ad.e0.ad</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>at0</td>
<td>9180</td>
<td>6.6.6</td>
<td>6.6.6.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>en0</td>
<td>1500</td>
<td>link#5</td>
<td>0.11.0.66.11.1</td>
<td>212</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>en0</td>
<td>1500</td>
<td>8.8.8</td>
<td>8.8.8.106</td>
<td>212</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Token–ring adapters can have only one interface. Ethernet adapters can have two interfaces. ATM adapters can have multiple interfaces. For additional information, see Unconfiguring Communications Adapters in the AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

5. **Type** the appropriate `ifconfig` command, shown in the following examples, to remove the interface from the network interface list.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ifconfig en0 detach</td>
<td>To remove the standard Ethernet interface</td>
</tr>
<tr>
<td>ifconfig et0 detach</td>
<td>To remove the IEEE 802.3 Ethernet interface</td>
</tr>
<tr>
<td>ifconfig tr0 detach</td>
<td>To remove a token–ring interface</td>
</tr>
<tr>
<td>ifconfig at0 detach</td>
<td>To remove an ATM interface</td>
</tr>
</tbody>
</table>

For an explanation of the association between these adapters and their interfaces, see Unconfiguring Communications adapters in the AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

6. **Type** the appropriate `rmdev` command, shown in the following examples, to unconfigure the adapter and **keep** its device definition in the Customized Devices Object Class:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rmdev -l ent0</td>
<td>To unconfigure an Ethernet adapter</td>
</tr>
<tr>
<td>rmdev -l tok1</td>
<td>To unconfigure a token–ring adapter</td>
</tr>
<tr>
<td>rmdev -l atm1</td>
<td>To unconfigure an ATM adapter</td>
</tr>
<tr>
<td>rmdev -p pci1</td>
<td>To unconfigure the children of a PCI bus and all other devices under them while retaining their device definitions in the Customized Devices object class.</td>
</tr>
</tbody>
</table>

**Note::** To unconfigure the adapter and **remove** the device definition in the Customized Devices object class, you can use the `rmdev` command with the **–d** flag. **Do not** use the **–d** flag with the `rmdev` command for a hot–plug operation unless your intent is to remove the adapter and not replace it.
Unconfiguring WAN Adapters

To unconfigure a WAN Adapter:

1. Type `lsslot -c pci` to list all the hot-plug slots in the system unit and display their characteristics.

2. Type the appropriate SMIT command, shown in the following examples, to list installed adapters and show the current state of all the devices in the system unit:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>smit 331121b9_ls</code></td>
<td>To list 2–Port Multiprotocol WAN adapters</td>
</tr>
<tr>
<td><code>smit riciophx_ls</code></td>
<td>To list ARTIC WAN adapters</td>
</tr>
</tbody>
</table>

The following naming convention is used for the different type of adapters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Adapter Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>dpmpa</td>
<td>2–Port Multiprotocol Adapter</td>
</tr>
<tr>
<td>riciop</td>
<td>ARTIC960 Adapter</td>
</tr>
</tbody>
</table>

3. Type `lsdev -C –c port` to list X.25 ports on your host. A message similar to the following displays:

```
sx25a0 Available 00-05-01-00 X.25 Port
x25s0 Available 00-05-01-00–00 V.3 X.25 Emulator
```

4. Close all applications that are using the adapter you are unconfiguring. To continue with this procedure, network dump locations must be disabled on the system. To look for and disable network dump locations, do the following:

a. Type the following from a command line:
   ```
 smit dump
   ```

b. Select **Show Current Dump Devices**.

c. Check whether any configured dump device shows a network location. If not, exit SMIT and you are ready for step 4. To change a dump device to a local location, select **Cancel** or press F3 and continue with the following step.

d. If the primary dump device shows a network location, change to a local location by selecting **Change the Primary Dump Device** and then enter the local location in the **Primary dump device** field.

e. If the secondary dump device shows a network location, change to a local location by selecting **Change the Secondary Dump Device** and then enter the local location in the **Secondary dump device** field.

f. When finished, click OK or press Enter.

5. Remove an X.25 driver and port, following the steps in Configuration Commands in *AIXlink/X.25 Version 1.1 for AIX: Guide and Reference*.

6. Use the commands in the following table to unconfigure and remove the device drivers and emulator ports for these adapters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>smit rmhdlcdpmpdd</code></td>
<td>To unconfigure the device</td>
</tr>
<tr>
<td><code>smit rmsdlcscied</code></td>
<td>To unconfigure the SDLC COMIO emulator</td>
</tr>
</tbody>
</table>

For additional information, see 2–Port Multiprotocol Adapter HDLC Network Device Driver Overview in the *AIX 5L Version 5.2 System Management Guide: Communications and Networks*. 
Unconfiguring Other Adapters

This section includes procedures for unconfiguring adapters that require special handling.

4–Port 10/100 Base–TX Ethernet PCI Adapters

The 4–Port 10/100 Base–TX Ethernet PCI adapter has four ethernet ports and each port must be unconfigured before you can remove the adapter.

1. Type `lsslot –c pci` to list all the hot–plug slots in the system unit and display their characteristics.

2. Type `smit lsdenet` to list all the devices in the PCI subclass. A message similar to the following displays:

   ent1  Available IN–00 IBM 4–Port 10/100 Base–TX Ethernet PCI Adapter (23100020) (Port 1)
   ent2  Available IN–08 IBM 4–Port 10/100 Base–TX Ethernet PCI Adapter (23100020) (Port 2)
   ent3  Available IN–10 IBM 4–Port 10/100 Base–TX Ethernet PCI Adapter (23100020) (Port 3)
   ent4  Available IN–18 IBM 4–Port 10/100 Base–TX Ethernet PCI Adapter (23100020) (Port 4)

3. Close all applications that are using the adapter you are unconfiguring. To continue with this procedure, network dump locations must be disabled on the system. To look for and disable network dump locations, do the following:

   a. Type the following from a command line:

      ```
 smit dump
      ```

   b. Select Show Current Dump Devices.

   c. Check whether any configured dump device shows a network location. If not, exit SMIT and you are ready for step 4. To change a dump device to a local location, select Cancel or press F3 and continue with the following step.

   d. If the primary dump device shows a network location, change to a local location by selecting Change the Primary Dump Device and then enter the local location in the Primary dump device field.

   e. If the secondary dump device shows a network location, change to a local location by selecting Change the Secondary Dump Device and then enter the local location in the Secondary dump device field.

   f. When finished, click OK or press Enter.

4. Type `netstat –i` to display a list of all configured interfaces and determine whether your adapter is configured for TCP/IP. Output similar to the following displays:

<table>
<thead>
<tr>
<th>Name</th>
<th>Mtu</th>
<th>Network</th>
<th>Address</th>
<th>Ipkts</th>
<th>Ierrs</th>
<th>Opkts</th>
<th>Oerrs</th>
<th>Coll</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>16896</td>
<td>link#1</td>
<td>127.0.0.1</td>
<td>076</td>
<td>0</td>
<td>118</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lo0</td>
<td>16896</td>
<td>127</td>
<td>127.0.0.1</td>
<td>076</td>
<td>0</td>
<td>118</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lo0</td>
<td>16896</td>
<td>::1</td>
<td>127.0.0.1</td>
<td>076</td>
<td>0</td>
<td>118</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tr0</td>
<td>1492</td>
<td>link#2</td>
<td>8.0.5a.b8.b.ec</td>
<td>151</td>
<td>0</td>
<td>405</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>tr0</td>
<td>1492</td>
<td>19.13.97</td>
<td>19.13.97.106</td>
<td>151</td>
<td>0</td>
<td>405</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>at0</td>
<td>9180</td>
<td>link#3</td>
<td>0.4.ac.ad.e0.ad</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>at0</td>
<td>9180</td>
<td>6.6.6</td>
<td>6.6.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>en0</td>
<td>1500</td>
<td>link#5</td>
<td>0.11.0.66.11.1</td>
<td>212</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>en0</td>
<td>1500</td>
<td>8.8.8</td>
<td>8.8.8.106</td>
<td>212</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Ethernet adapters can have two interfaces, for example, et0 and en0. For additional information, see Unconfiguring Communications Adapters in the AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

5. Use the ifconfig command to remove each interface from the network interface list. For example, type `ifconfig en0 detach` to remove the standard Ethernet interface, and `ifconfig et0` to remove the IEEE 802.3 interface. For an explanation of the association between these adapters and their interfaces, see Unconfiguring Communications Adapters in the AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

6. Use the rmdev command to unconfigure the adapter and retain its device definition in the Customized Devices Object Class. For example, `rmdev -l ent0`.

   **Note:** To unconfigure the adapter and remove the device definition in the Customized Devices object class, you can use the rmdev command with the `–d` flag. Do not use the `–d` flag with the rmdev command for a hot-plug operation unless your intent is to remove the adapter and not replace it.

---

**ATM Adapters**

Classic IP and LAN emulation protocols can run over ATM adapters. LAN emulation protocol enables the implementation of emulated LANs over an ATM network. Emulated LANs can be Ethernet/IEEE 802.3, Token–ring/IEEE 802.5, and MPOA (MultiProtocol Over ATM). You must unconfigure each LAN–emulated device before you can remove the adapter.

For instructions for removing a classical interface, see Unconfiguring Ethernet, Token–ring, FDDI, and ATM Adapters on page 6-27. To remove a LAN interface, do the following:

1. Type `lsslot –c pci` to list all the hot–plug slots in the system unit and display their characteristics.

2. Type `smit ls_atm` to list all the ATM adapters. A message similiar to the following displays:

   ```
 atm0 Available 04–04 IBM PCI 155 Mbps ATM Adapter (14107c00)
 atm1 Available 04–06 IBM PCI 155 Mbps ATM Adapter (14104e00)
   ```

3. Type `smit listall_atmle` to list all the LAN–emulated clients on the adapters. A message similar to the following displays:

   ```
 ent1 Available ATM LAN Emulation Client (Ethernet)
 ent2 Available ATM LAN Emulation Client (Ethernet)
 ent3 Available ATM LAN Emulation Client (Ethernet)
 tok1 Available ATM LAN Emulation Client (Token Ring)
 tok2 Available ATM LAN Emulation Client (Token Ring)
   ```

   All ATM adapters can have multiple emulated clients running on them.

4. Type `smit listall_mpoa` to list all the LAN–emulated clients on the adapters. A message similar to the following displays:

   ```
 mpc0 Available ATM LAN Emulation MPOA Client
   ```

   `atm0` and `atm1` are the physical ATM adapters. `mpc0` is an MPOA–emulated client. `ent1`, `ent2`, `ent3`, `tok1`, and `tok2` are LAN–emulated clients.

5. Type `entstat` to determine on which adapter the client is running. A message similar to the following displays:
ETHERNET STATISTICS (ent1):
Device Type: ATM LAN Emulation
ATM Hardware Address: 00:04:ac:ad:e0:ad
.
.
ATM LAN Emulation Specific Statistics:

Emulated LAN Name: ETHelan3
Local ATM Device Name: atm0
Local LAN MAC Address:
.
.
6. Close all applications that are using the adapter you are unconfiguring. To continue with this procedure, network dump locations must be disabled on the system. To look for and disable network dump locations, do the following:

   a. Type the following from a command line:

      smit dump

   b. Select **Show Current Dump Devices**.

   c. Check whether any configured dump device shows a network location. If not, exit SMIT and you are ready for step 4. To change a dump device to a local location, select **Cancel** or press F3 and continue with the following step.

   d. If the primary dump device shows a network location, change to a local location by selecting **Change the Primary Dump Device** and then enter the local location in the **Primary dump device** field.

   e. If the secondary dump device shows a network location, change to a local location by selecting **Change the Secondary Dump Device** and then enter the local location in the **Secondary dump device** field.

   f. When finished, click OK or press Enter.

7. Use the `rmdev -l device` command to unconfigure the interfaces in the following order:

   - Emulated interface = en1, et1, en2, et2, tr1, tr2 ...
   - Emulated interface = ent1, ent2, tok1, tok2 ...
   - Multiprotocol Over ATM (MPOA) = mpc0
   - ATM adapter = atm0

8. To unconfigure the SCSI adapter `scsi1` and all of its children while retaining their device definitions in the Customized Devices object class, type:

    `rmdev -R scsi1`

    The system displays a message similar to the following:

    ```
rmt0 Defined
hdisk1 Defined
scsi1 Defined
``` 

9. To unconfigure just the children of the SCSI adapter `scsi1`, but not the adapter itself, while retaining their device definitions in the Customized Devices object class, type:

    `rmdev -p scsi1`

    The system displays a message similar to the following:

    ```
rmt0 Defined
hdisk1 Defined
```
10. To unconfigure the children of PCI bus pci1 and all other devices under them while retaining their device definitions in the Customized Devices object class, type:

```bash
rmdev -p pci1
```

The system displays a message similar to the following:

```
rmt0 Defined
hdisk1 Defined
scsi1 Defined
ent0 Defined
```

**Resolving Adapter–Removal Problems**

If the following type of message displays when the `rmdev` command is to unconfigure an adapter, this indicates that the device is open, possibly because applications are still trying to access the adapter you are trying to remove or replace.

```bash
#rmdev -l ent0
Method error (/usr/lib/methods/ucfgent):
 0514–062
 Cannot perform the requested function because the
 specified device is busy.
```

To resolve the problem, you must identify any applications that are still using the adapter and close them. These applications can include the following:

- TCP/IP
- SNA
- OSI
- IPX/SPX
- Novell NetWare
- Streams
- The generic data link control (GDLC)
  - IEEE Ethernet DLC
  - Token–ring DLC
  - FDDI DLC

**Systems Network Architecture (SNA) Applications**

Some SNA applications that may be using your adapter include:

- DB2
- TXSeries (CICS & Encina)
- DirectTalk
- MQSeries
- HCON
- ADSM

**Streams Applications**

Some of the streams–based applications that may be using your adapter include:

- IPX/SPX
- Novell NetWare V4 and Novell NetWare Services 4.1
- Connections and NetBios for this operating system
Applications Running on WAN Adapters

Applications that may be using your WAN adapter include:

- SDLC
- Bisync
- X.25
- ISDN
- QLLC for X.25

TCP/IP Applications

All TCP/IP applications using the interface layer can be detached with the `ifconfig` command. This causes the applications using TCP/IP to time out and warn users that the interface is down. After you add or replace the adapter and run the `ifconfig` command to attach the interface, the applications resume.
Unconfiguring Storage Adapters

This section provides steps for unconfiguring SCSI, SSA, and Fibre Channel storage adapters.

Before you can remove or replace a storage adapter, you must unconfigure that adapter. Unconfiguring a storage adapter involves the following tasks:

• Closing all applications that are using the adapter you are removing, replacing, or moving
• Unmounting file systems
• Ensuring that all devices connected to the adapter are identified and stopped
• Listing all slots that are currently in use or a slot that is occupied by a specific adapter
• Identifying the adapter’s slot location
• Making parent and child devices unavailable
• Making the adapter unavailable

To perform these tasks, you must log in as root user.

For additional information, see PCI Hot Plug Management in the AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

Unconfiguring SCSI, SSA, and Fibre Channel Adapters

Storage adapters are generally parent devices to media devices, such as disk or tape drives. Removing the parent requires that all attached child devices either be removed or placed in the define state.

To unconfigure SCSI, SSA, and Fibre Channel Adapters:

1. Close all applications that are using the adapter you are unconfiguring.

2. Type `lsslot –c pci` to list all the hot plug slots in the system unit and display their characteristics.

3. Type `lsdev –C` to list the current state of all the devices in the system unit.

4. Type `umount` to unmount previously mounted file systems, directories, or files using this adapter. For additional information, see Mount a JFS or JFS2 on page 4-3 in the AIX 5L Version 5.2 System Management Guide: Operating System and Devices.

5. Type `rmdev –l adapter –R` to make the adapter unavailable. **Attention:** Do not use the `–d` flag with the `rmdev` command for hot plug operations because this will cause your configuration to be removed.
Unconfiguring Async Adapters

This section provides steps for unconfiguring async adapters.

Before you can remove or replace an async adapter, you must unconfigure that adapter. Unconfiguring an async adapter involves the following tasks:

- Closing all applications that are using the adapter you are removing, replacing, or moving
- Ensuring that all devices connected to the adapter are identified and stopped
- Listing all slots that are currently in use or a slot that is occupied by a specific adapter
- Identifying the adapter’s slot location
- Making parent and child devices unavailable
- Making the adapter unavailable

To perform these tasks, you must log in as root user.

For additional information, see PCI Hot Plug Management in the AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

Unconfiguring Async Adapters

Before you can replace or remove an async adapter, you must unconfigure the adapter and all the devices controlled by that adapter. To unconfigure the devices, you must terminate all the processes using those devices. Use the following steps:

1. Close all applications that are using the adapter you are unconfiguring.
2. Type `lsslot -c pci` to list all the hot plug slots in the system unit and display their characteristics.
3. Type `lsdev -C -c tty` to list all available tty devices and the current state of all the devices in the system unit. For additional information, see Removing a TTY in the AIX 5L Version 5.2 Asynchronous Communications Guide.
4. Type `lsdev -C -c printer` to list all printer and plotter devices connected to the adapter. For additional information, see Printers, Print Jobs, and Queues for System Administrators in the AIX 5L Version 5.2 Guide to Printers and Printing.
5. Use the `rmdev` command to make the adapter unavailable. **Attention:** Do not use the `–d` flag with the `rmdev` command for hot plug operations because this will cause your configuration to be removed.
Removing or Replacing a PCI Hot Plug Adapter

This section provides procedures for removing a PCI hot plug adapter. You can complete these tasks with Web–based System Manager. You can also use SMIT or system commands. To perform these tasks, you must log in as root user.

You can remove or replace a PCI hot plug adapter from the system unit without shutting down the operating system or turning off the system power. Removing an adapter makes the resources provided by that adapter unavailable to the operating system and applications.

Replacing an adapter with another adapter of the same type retains the replaced adapter’s configuration information and compares the information to the card that replaces it. The existing device driver of the replaced adapter must be able to support the replacement adapter.

For additional information, see PCI Hot Plug Management in the AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

Prerequisites

Before you can remove an adapter, you must unconfigure it. See Unconfiguring Communications Adapters, Unconfiguring Storage Adapters, or Unconfiguring Async Adapters for instructions for unconfiguring adapters.

SMIT Fastpath Procedure

1. Type smit devdrpci at the system prompt, then press Enter.
2. Use the SMIT dialogs to complete the task.

To obtain additional information for completing the task, you can select the F1 Help key in the SMIT dialogs.

Commands Procedure

You can use the following commands to display information about hot plug slots and connected devices and to remove a PCI hot plug adapter:

- The lsslot command displays a list of all the PCI hot plug slots and their characteristics. For information about using this command, see lsslot in the AIX 5L Version 5.2 Commands Reference, Volume 3.
- The lsdev command displays the current state of all the devices installed in your system. For information about using this command, see lsdev in the AIX 5L Version 5.2 Commands Reference, Volume 3.
- The drslot command prepares a hot plug slot for removal of a hot plug adapter. For information about using this command, see drslot in the AIX 5L Version 5.2 Commands Reference, Volume 2.

For information about the physical handling of a PCI hot plug adapter, refer to your system unit documentation.
Adding a PCI Hot Plug Adapter

This section provides procedures for adding a new PCI hot plug adapter.

**Attention:** Before you attempt to add PCI hot plug adapters, refer to the *PCI Adapter Placement Reference* Appendix of your system unit documentation, shipped with system units, to determine whether your adapter can be hot plugged. Refer to your system unit documentation for instructions for installing or removing adapters.

You can add a PCI hot plug adapter into an available slot in the system unit and make new resources available to the operating system and applications without having to reboot the operating system. The adapter can be another adapter type that is currently installed or it can be a different adapter type.

Adding a new PCI hot plug adapter involves the following tasks:

- Finding and identifying an available slot in the machine
- Preparing the slot for configuring the adapter
- Installing the device driver, if necessary
- Configuring the new adapter

You can complete these tasks with Web–based System Manager. You can also use SMIT or system commands. To perform these tasks, you must log in as root user.

For additional information, see PCI Hot Plug Management in the *AIX 5L Version 5.2 System Management Concepts: Operating System and Devices*.

**Note:** When you add a hot plug adapter to the system, that adapter and its child devices might not be available for specification as a boot device using the `bootlist` command. You might be required to reboot your system to make all potential boot devices known to the operating system.

**SMIT Fastpath Procedure**

1. Type `smit devdrpci` at the system prompt, then press Enter.
2. Use the SMIT dialogs to complete the task.

To obtain additional information for completing the task, you can select the F1 Help key in the SMIT dialogs.

**Commands Procedure**

You can use the following commands to display information about PCI hot plug slots and connected devices and to add a PCI hot plug adapter:

- The `lsslot` command displays a list of all the hot plug slots and their characteristics. For information about using this command, see `lsslot` in the *AIX 5L Version 5.2 Commands Reference, Volume 3*.

- The `lsdev` command displays the current state of all the devices installed in your system. For information about using this command, see `lsdev` in the *AIX 5L Version 5.2 Commands Reference, Volume 3*.

- The `drslot` command prepares a hot plug slot for adding or removing a hot plug adapter. For information about using this command, see `drslot` in the *AIX 5L Version 5.2 Commands Reference, Volume 2*.

For information about installing or removing adapters, refer to your system unit documentation.
Determining the Cause of Device Problems
Use the following procedures to determine the cause of device problems.

Check the Device Software
Correct a device software problem by:
- Checking the Error Log on page 6-39
- Listing All Devices on page 6-39
- Checking the State of a Device on page 6-39
- Checking the Attributes of a Device on page 6-39
- Changing the Attributes of a Device on page 6-39
- Using a Device with Another Application on page 6-40
- Defining a New Device on page 6-40

Checking the Error Log
Check the error log to see whether any errors are recorded for either the device, its adapter, or the application using the device. Go to Error Logging Facility for information about performing this check. Return to this step after completing the procedures.

Did you correct the problem with the device?
If you were not able to correct the problem using the previous method, go to the next step, Listing All Devices.

Listing All Devices
Use the `lsdev -C` command to list all defined or available devices. This command shows the characteristics of all the devices in your system.

If the device is in the list of devices, go to the next step, Checking the State of a Device.
If the device is not in the list of devices, go to Defining a New Device on page 6-40.

Checking the State of a Device
Find the device in the list generated from the `lsdev -C` command. Check whether the device is in the Available state.

If the device is in the Available state, go to the next step, Checking the Attributes of a Device.
If the device is not in the Available state, go to Defining a New Device on page 6-40.

Checking the Attributes of a Device
Use the `lsattr -E -l DeviceName` command to list the attributes of your device.

The `lsattr` command shows attribute characteristics and possible values of attributes for devices in the system. Refer to the documentation for the specific device for the correct settings.

If the device attributes are set correctly, go to Using a Device with Another Application on page 6-40.
If the device attributes are not set correctly, go to the next step, Changing the Attributes of a Device.

Changing the Attributes of a Device
Use the `chdev -l Name -a Attribute = Value` command to change device attributes. Before you run this command, refer to AIX 5L Version 5.2 Commands Reference.

The `chdev` command changes the characteristics of the device you specify with the `-l Name` flag.
Using a Device with Another Application

Try using the device with another application. If the device works correctly with another application, there might be a problem with the first application.

If the device worked correctly with another application, you might have a problem with the first application. Report the problem to your software service representative.

If the device did not work correctly with another application, go to the next step, Defining a New Device.

Defining a New Device

Note:: You must either have root user authority or be a member of the security group to use the mkdev command.

Use the mkdev command to add a device to the system.

The mkdev command can either define and make available a new device or make available a device that is already defined. You can uniquely identify the predefined device by using any combination of the –c, –s, and –t flags. Before you run this command, refer to the AIX 5L Version 5.2 Commands Reference.

If defining the device did not correct the problem, You can either stop and report the problem to your service representative or use a diagnostics program to test your device.

Check the Device Hardware

Correct a device hardware problem by using the following procedures:

- Checking the Device Connections
- Checking the Ready State of a Device
- Running Diagnostics on a Device

Checking the Device Connections

Follow these steps to check your device connections:

1. Check that power is available at the electrical outlet.
2. Check that the device power cable is correctly attached to the device and to the electrical outlet.
3. Check that the device signal cable is attached correctly to the device and to the correct connection on the system unit.
4. For SCSI devices, check that the SCSI terminator is correctly attached and the SCSI address setting is correct.
5. For communications devices, check that the device is correctly attached to the communications line.
6. Check that the device is turned on.

Refer to the documentation for the specific device for cabling and configuring procedures and for further troubleshooting information.

If your check of the device connections have not corrected the problem, Go to the next step, Checking the Ready State of a Device.
Checking the Ready State of a Device
To determine whether the device is in a ready state, do the following:

1. Check that the device’s Ready indicator is on.

2. Check that removable media, such as tape, diskette, and optical devices, are inserted correctly.

3. Check the ribbon, the paper supply, and the toner supply for printers and plotters.

4. Check that the write medium is write–enabled if you are trying to write to the device.

Did your checks correct the problem with the device?
If your check of the device’s ready state did not correct the problem, go to the next step, Running Diagnostics on a Device.

Running Diagnostics on a Device
You might have a defective device. Run your hardware diagnostics.
If running hardware diagnostics fails to find a problem with your device, go to Check the Device Software If your device passes the diagnostic tests, you might have a problem with the way your device works with your system software. If it is possible that the preceding problem exists, report the problem to your software service organization.
Symbols

/etc/inittab file, changing, 2-8

A
accessing a system that will not boot, 2-5
accounting system
  connect–time data, displaying, 5-21
  CPU usage, displaying, 5-20
  disk–usage data
    displaying, 5-22
    recovering from, 5-18
  holidays file, updating, 5-28
  printer–usage data, displaying, 5-22
problems
  fixing bad times, 5-25
  fixing incorrect file permissions, 5-24
  fixing out–of–date holidays file, 5-28
  fixing runacct errors, 5-25
process data, displaying process time, 5-20
reports, 5-15
  daily, 5-15
  fiscal, 5-17
  monthly, 5-16
runacct command
  restarting, 5-18
  starting, 5-18
setting up, 5-13
summarizing records, 5-17
system activity data
  displaying, 5-19
  displaying while running a command, 5-19
  fixing, 5-22
  reporting, 5-17
  wtmp errors, fixing, 5-23

B
backup, 2-16
  compressing files, 2-15
  implementing with scripts, 2-18
  procedure for user file systems, 2-15
  procedure for user files, 2-15
boot image, creating, 2-6
booting
  checking connections, 6-40
  crashed system, 2-4
  diagnosing problems, 2-5
  from hard disk for maintenance, 2-4
  rebooting a running system, 2-2
  uninstalled system, 2-2

CD–ROM, file systems, 4-4
CDRFS file systems, 4-4

chdev command, 6-39
checking file systems for inconsistencies, 4-6
clock, resetting, 2-22
clock battery, 2-22
commands
  chdev, 6-39
  date, 2-22
  diag, 2-22
  grep, 2-12
  kill, 2-12, 2-28
  lsattr, 6-39
  lsvg, 6-39
  mkdev, 6-40
  ps, 2-12
  renice, 2-28
  setclock, 2-23
tn, 2-12
configuration
  logical volumes, 3-8
  physical volumes, contents of, 3-8
  physical volumes, listing, 3-8
  volume groups, contents of, 3-8
  volume groups, listing, 3-8
CPU usage, displaying, 5-20
Ctrl–C sequence, 2-11
Customized Configuration Database, 3-7, 3-8, 6-21

D
date command, 2-22
device
  configuring a read/write optical drive, 6-22
  installation, 6-17
device configuration database, synchronizing with
  Logical Volume Manager, 3-35
devices
  changing attributes, 6-39
  checking attributes, 6-39
  checking hardware, 6-40
  checking the connections, 6-40
  checking the ready state, 6-41
  checking the software, 6-39
  checking the state of, 6-39
  defining new, 6-40
  MPIO, cabling, 6-24
  MPIO Capable, 6-24
  running diagnostics, 6-41
diag command, 2-22
diagnosing boot problems
  accessing a system that will not boot, 2-5
  rebooting a system with planar graphics, 2-5
diagnosing disk drive problems, 3-27
disk
  adding, 3-9
  removing, 3-21
disk drives
  also see physical volumes, 1-18
  diagnosing, 3-27
  freeing space on, 3-27

Index
mounting space from another disk, 3-28
recovery of data, without reformatting, 3-28
removing obsolete files from, 3-27
restricting access to directories on, 3-28
unmounting file systems on a disk, 4-3
disk drives (hard drives), 3-9
powering off, 3-8
powering on, 3-8
removing a disk with data, 3-9
removing a disk without data, 3-9
unconfigure, 3-9
unmounting file systems on a disk, example of recovery from, 3-32
disk overflows, fixing, 4-8
disks (hard drives), 3-3
configuring, 3-3
DVD, file systems, 4-4
Dynamic Processor Deallocation, 2-23

E
emergency, shutting down in an, 2-10
error logging
checking for device errors, 6-39
example of recovery from, 3-32

F
file system, bypassing, 1-10
file system log, 3-13
file systems
backing up user file systems, 2-15
backing up with scripts, 2-18
CDRFS, 4-4
disk overflows, 4-8
fixing damaged, 4-12
groups
mounting, 4-3
unmounting, 4-3
mounting, 4-3
on read/write optical media, 4-4
reducing size in root volume group, 1-14
UDFS, 4-4
unmounting, 4-3
verifying integrity of, 4-6
files
compressing, 2-15
packing, 2-15
restoring, 2-21
fixed–disk drives (hard drives), 4-8
also see disk drives, 3-27

G
grep command, 2-12

H
hard disk, 3-3
checking for device problems, 6-40
hot disk removability, 3-9, 3-21
hot plug connectors, managing, 6-23
hot removability, 3-21, 3-22, 3-33
hot spare disk support, 3-15
hot spots in logical volumes, enabling, 3-15

I
IDE devices
address for a tape drive, 6-19
controls for a tape drive, 6-19
customized attributes, 6-21
installing, 6-18
Customized Configuration Database, 6-21
importing user–defined volume groups, 1-14
inactive system
checking hardware, 2-10
checking processes, 2-11
restarting the system, 2-12
inittab file, 2-8
srcmstr daemon in, 5-10
inoperable system
checking hardware, 2-10
checking processes, 2-11
restarting the system, 2-12

J
JFS, copy to another physical volume, 1-9
JFS (journaled file system), on read / write optical media, 4-5
JFS log, 3-13
JFS2 log, 3-13

K
kill command, 2-12, 2-28
logical partitions, defining size of, 1-14
logical volume, copy to another physical volume, 3-11
define, 1-10
Logical Volume Manager (LVM), synchronizing with device configuration database, 3-35
logical volume storage
configuring for availability, 3-8
configuring for performance, 3-7, 3-9
disk overflows, 4-8
displaying configuration information, 3-8
logical volumes
adding a file system on new, 4-2
adding to a volume group, 3-7
changing name, 3-11
copying when containing a file system
to existing logical volume, larger size, 3-8
to existing logical volume, same size, 3-7
to existing logical volume, smaller size, 3-8
to new logical volume, 3-7
displaying configuration information, 3-8
hot spare disk support, 3-15
hot spots, 3-15
mitations, 3-35
moving contents to another system, 3-17
removing from volume group, 3-23
replacing a disk, 3-33
size
checking, 3-8, 4-2
increasing, 3-8, 4-2
logical–volume control block, not protected from raw–logical–volume access, 1-10
lsattr command, 6-39
lsdev command, 6-39
lssrc command, 5-11
LVCB (logical–volume control block), not protected from raw–logical–volume access, 1-10

M
message of the day, changing, 2-23
messages, screen, responding to, 2-29
mirrored volume group, replacing a physical volume, 1-18
mirroring, 3-8
  removing from volume group, 3-9
root volume group (rootvg), 3-19
  splitting a mirrored disk from a volume group, 1-19
  volume group, 3-19
mitations, logical volumes, 3-35
mkdev command, 6-40
monitoring processes, 2-24
motd file, 2-23
MPIO, managing, 6-24
multiuser systems, changing run levels on, 2-7

O
operating system, loading, 2-13
optical drive, configuring, 6-22
optical media
  activating, 3-39
  adding, 3-39
  changing characteristics of, 3-41
  changing size of hd6, 3-41
  making available for use (activating), 3-39
  moving hd6, 3-41
  removing, 3-41
  using file systems on read/write, 4-4

P
performance, improving, defining raw logical volumes, 1-10
physical volume
  copy JFS to another, 1-9
  copy logical volume to another, 3-11
physical volumes
  adding to volume group, 3-7
  configuring a disk, 3-3
  creating from available disk drive, 3-4
  displaying configuration information, 3-8
  moving contents, 3-17
  replacing in a mirrored volume group, 1-18
  priority of processes, 2-26
processes
  binding of to a processor, 2-28
  displaying CPU usage, 5-20
  displaying process time, 5-20
  management of, 2-24
  monitoring of, 2-24
  priority alteration of, 2-26
  termination of, 2-27
ps command, 2-12, 2-28

Q
quorums
  changing to nonquorum status, 3-10
  define, 1-10

R
rebooting a system with planar graphics, 2-5
recovery data from a disk without reformating, 3-28
recovery procedures
  accessing a system that will not boot, 2-5
  rebooting a system with planar graphics, 2-5
  recovery procedures for failed disk drive, example of, 3-32
refresh command, 5-12
renice command, 2-28
restart the system, 2-12
restricting users from specified directories, 3-28
root volume group, replacing a physical volume within a mirrored, 1-18
root volume group (rootvg)
  mirroring, 3-19
  reducing size of file systems, 1-14
run level
  changing, 2-7
  displaying history, 2-7
  identifying, 2-7
runacct command
  restarting, 5-18
  starting, 5-18

S
screen messages, responding to, 2-29
setclock command, 2-23
shutdown
  emergency, 2-10
  to single–user mode, 2-10
  without rebooting, 2-9
shutting down the system, 2-9
single–user mode, 2-10
single–user systems, changing run levels on, 2-8
skulker command, 3-27
software, checking for device problems, 6-39
splitting a mirrored disk from a volume group, 1-19
srcmstr command, 5-12
srcmstr daemon, 5-10
starting Workload Manager, 5-3
startsrc command, 5-11
stopping Workload Manager, 5-3
stopsrc command, 5-11
subserver
  displaying status, 5-11
  starting, 5-11
  stopping, 5-11
  turning off tracing, 5-12
  turning on tracing, 5-12
subsystem
  displaying status, 5-11
  refreshing, 5-12
starting, 5-11
stopping, 5-11
turning off tracing, 5-12
turning on tracing, 5-12
subsystem group
displaying status, 5-11
refreshing, 5-12
starting, 5-11
stopping, 5-11
turning off tracing, 5-12
turning on tracing, 5-12
system, stopping the, 2-9
system accounting
connect–time data, 5-21
CPU usage, displaying, 5-20
disk–usage data, 5-22
refreshing from, 5-18
holidays file, updating, 5-28
printer–usage data, 5-22
problems
fixing bad times, 5-25
fixing incorrect file permissions, 5-24
fixing runacct errors, 5-25
fixing–out–of–date holidays file, 5-28
process data, displaying process time, 5-20
reports, 5-15
daily, 5-15
fiscal, 5-17
monthly, 5-16
runacct command
restarting, 5-18
starting, 5-18
setting up, 5-13
summarizing records, 5-17
system activity, data, 5-17
system activity data
displaying, 5-19
displaying while running a command, 5-19
fixing, 5-22
wtmp errors, fixing, 5-23
system activity, tracking, 5-17
system battery, 2-22
system clock
resetting, 2-22
testing the battery, 2-22
system environment
Dynamic Processor Deallocation, 2-23
message of the day, 2-23
system failure
checking hardware, 2-10
checking processes, 2-11
restarting the system, 2-12
System Resource Controller, starting, 5-10
system run level, 2-7
attributes, changeable, 6-3, 6-5, 6-6, 6-7, 6-8,
6-9, 6-10, 6-11, 6-12, 6-13, 6-14
changing, 2-7
fixing, 5-22
managing, 6-2
special files for, 6-15
T
terminal problems, stopping stalled processes, 2-28
terminal, locked up, 2-28
tracesoff command, 5-12
traceson command, 5-12
U
user–defined volume groups
importing, 1-14
overriding failure of, 3-36
V
verifying file systems, 4-6
volume group
mirroring, 3-19
root, mirroring, 3-19
splitting a mirrored disk from, 1-19
volume groups, 3-7
activating, 3-7
adding, 3-7
adding logical volumes to, 3-7
adding physical volumes to, 3-7
changing name, 3-7
changing to nonquorum status, 3-10
deactivating, 3-8
displaying configuration information, 3-8
exporting, 3-16
importing, 3-16
mirrored, replacing a physical volume, 1-18
moving, 3-16
removing, 3-9
removing mirroring, 3-9
reorganizing for performance, 3-9
replacing a disk, 3-33
user–defined, importing, 1-14
W
Workload Manager
configuring, 1-3
consolidating workloads, 1-3
starting and stopping, 5-3
write–verify scheduling, 3-8
wtmp errors, fixing, 5-23
Titre / Title : Bull AIX 5L System Management Guide Operating System and Devices

Nº Référence / Reference Nº : 86 A2 26EF 03

Daté / Dated : June 2003

ERREURS DETECTÉES / ERRORS IN PUBLICATION

AMELIORATIONS SUGGÉREES / SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Vos remarques et suggestions seront examinées attentivement.
Si vous désirez une réponse écrite, veuillez indiquer ci-après votre adresse postale complète.
Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please furnish your complete mailing address below.

NOM / NAME : ________________________________ Date : ________

SOCIETE / COMPANY : ________________________________

ADRESSE / ADDRESS : ________________________________

Remettez cet imprimé à un responsable BULL ou envoyez-le directement à :
Please give this technical publication remark form to your BULL representative or mail to:

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE
Technical Publications Ordering Form  
Bon de Commande de Documents Techniques

To order additional publications, please fill up a copy of this form and send it via mail to:
Pour commander des documents techniques, remplissez une copie de ce formulaire et envoyez-la à :

BULL CEDOC  
ATTN / Mr. L. CHERUBIN  
357 AVENUE PATTON  
B.P. 20845  
49008 ANGERS CEDEX 01  
FRANCE

Or visit our web sites at: / Ou visitez nos sites web à:
 http://www.logistics.bull.net/cedoc  
 http://www-frec.bull.com  
 http://www.bull.com

<table>
<thead>
<tr>
<th>CEDOC Reference # N° Référence CEDOC</th>
<th>Qty Qté</th>
<th>CEDOC Reference # N° Référence CEDOC</th>
<th>Qty Qté</th>
<th>CEDOC Reference # N° Référence CEDOC</th>
<th>Qty Qté</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ ... ]</td>
</tr>
<tr>
<td>[ ... ]</td>
</tr>
<tr>
<td>[ ... ]</td>
</tr>
<tr>
<td>[ ... ]</td>
</tr>
</tbody>
</table>

[ ... ] : no revision number means latest revision / pas de numéro de révision signifie révision la plus récente

---

NOM / NAME: ___________________________ Date: __________

SOCIETE / COMPANY: ________________________________

ADRESSE / ADDRESS: ________________________________

PHONE / TELEPHONE: ___________________________ FAX: __________

E–MAIL: __________

For Bull Subsidiaries / Pour les Filiales Bull:

Identification: ________________________________

For Bull Affiliated Customers / Pour les Clients Affiliés Bull:

Customer Code / Code Client: ________________________________

For Bull Internal Customers / Pour les Clients Internes Bull:

Budgetary Section / Section Budgétaire: ________________________________

For Others / Pour les Autres:

Please ask your Bull representative. / Merci de demander à votre contact Bull.
Utiliser les marques de découpe pour obtenir les étiquettes.

Use the cut marks to get the labels.