Bull

AlIX 5L Kernel Extensions and Device Support
Programming Concepts

AlIX

ORDER REFERENCE
86 A2 37EF 02

Bull

AIX 5L Kernel Extensions and Device Support
Programming Concepts

AIX

Software

May 2003

BULL CEDOC

357 AVENUE PATTON
B.P.20845

49008 ANGERS CEDEX 01
FRANCE

ORDER REFERENCE
86 A2 37EF 02

The following copyright notice protects this book under the Copyright laws of the United States of America
and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and
making derivative works.

Copyright © Bull S.A. 1992, 2003

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of
this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX® is a registered trademark of International Business Machines Corporation, and is being used under
licence.

UNIX is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Linux is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

Contents

About This Book . . .
Who Should Use This Book
How to Use This Book.
Highlighting .
Case-Sensitivity in AIX

ISO 9000

Related Publications

Chapter 1. Kernel Environment . .
Understanding Kernel Extension Symbol Resolutron .
Understanding Execution Environments.
Understanding Kernel Threads .

Using Kernel Processes .

Accessing User-Mode Data Wh|Ie in Kernel Mode
Understanding Locking

Understanding Exception Handlrng

Using Kernel Extensions to Support 64—bit Processes
64-bit Kernel Extension Programming Environment .
32-bit Kernel Extension Considerations

Related Information.

Chapter 2. System Calls .

Differences Between a System Call and a User Functlon
Understanding Protection Domains .

Understanding System Call Execution .

Accessing Kernel Data While in a System Call.

Passing Parameters to System Calls

Preempting a System Call .

Handling Signals While in a System CaII

Handling Exceptions While in a System Call
Understanding Nesting and Kernel-Mode Use of System Calls
Page Faulting within System Calls .

Returning Error Information from System Calls

System Calls Available to Kernel Extensions

Related Information.

Chapter 3. Virtual File Systems.
Logical File System Overview .
Virtual File System Overview .

Understanding Data Structures and Header Flles for VlrtuaI Flle Systems.

Configuring a Virtual File System.
Related Information. .

Chapter 4. Kernel Services

Categories of Kernel Services .

I/O Kernel Services. .

Block 1/0 Buffer Cache Kernel Servrces Overvrew .
Understanding Interrupts .

Understanding DMA Transfers. .
Kernel Extension and Device Driver Management Servrces .
Locking Kernel Services .

File Descriptor Management Servrces

Logical File System Kernel Services

© Copyright IBM Corp. 1997, 2003

. Vii
. Vii
. Vii
. Vii
. Vii
. Vii
. Vii

Programmed I/O (P1O) Kernel Services .b6

Memory Kernel Services - Y4
Understanding Virtual Memory Manager Interfaces e 1]
Message Queue Kernel Services.63
Network Kernel Services. . . N o 1)
Process and Exception Management Kernel Serwces e e66
RAS Kernel Services L L ..o oo s 89
Security Kernel Services . . . P 12
Timer and Time-of-Day Kernel Serwces Co (¢
Using Fine Granularity Timer Services and Structures Y 4
Using Multiprocessor-Safe Timer Services ..T11
Virtual File System (VFS) Kernel Services .. .72
Related Information. L ... T2
Chapter 5. Asynchronous I/O Subsystem. .75
How Do | Know if | Need to Use AIO?. .76
Functions of Asynchronous IO TT
Asynchronous I/O Subroutines . . . Y £°)
Subroutines Affected by Asynchronous I/O T < 0]
Changing Attributes for Asynchronous1/O .80
64-bit Enhancements L L o ..o oo o8t
Related Information. L8t
Chapter 6. Device Configuration Subsystem .83
Scope of Device Configuration Support .83
Device Configuration Subsystem Overview . . . T < X
General Structure of the Device Configuration Subsystem O =
Device Configuration Database Overview. .85
Basic Device Configuration Procedures Overview. .85
Device Configuration Manager Overview .86
Device Classes, Subclasses, and Types Overview .87
Writing a Device Method < <
Understanding Device Methods Interfaces e e e e e88
Understanding Device States . . . s
Adding an Unsupported Device to the System .o . [
Understanding Device Dependencies and Child Dewces e B
Accessing Device Attributes. . . . T
Device Dependent Structure (DDS) Overwew T
List of Device Configuration Commands .. .9
List of Device Configuration Subroutines .. .9
Related Information.9
Chapter 7. Communications /O Subsystem. .9
User-Mode Interface to a CommunicationsPDH .9
Kernel-Mode Interface to a CommunicationsPDH .97
CDLI Device Drivers . . . e o
Communications Physical Dewce Handler Model Overwew N o <
Status Blocks for Communications Device Handlers Overview . . T ° |
MPQP Device Handler Interface Overview for the ARTIC960Hx PCI Adapter e L0
Serial Optical Link Device Handler Overview .102
Configuring the Serial Optical Link Device Driver .103
Forum-Compliant ATM LAN Emulation Device Driver104
Fiber Distributed Data Interface (FDDI) Device Driver.17
High-Performance (8fc8) Token-Ring Device Driver121
High-Performance (8fa2) Token-Ring Device Driver129
PCI Token-Ring Device Drivers136

iV Kernel Extensions and Device Support Programming Concepts

Ethernet Device Drivers.
Related Information .

Chapter 8. Graphic Input Devices Subsystem
open and close Subroutines . e
read and write Subroutines

ioctl Subroutines

Input Ring.

Chapter 9. Low Function Terminal Subsystem

Low Function Terminal Interface Functional Description .
Components Affected by the Low Function Terminal Interface.
Accented Characters.

Related Information .

Chapter 10. Logical Volume Subsystem .
Direct Access Storage Devices (DASDs)
Physical Volumes .

Understanding the Logical Vqume DeV|ce Dr|ver
Understanding Logical Volumes and Bad Blocks
Related Information .

Chapter 11. Printer Addition Management Subsystem
Printer Types Currently Supported . Ce

Printer Types Currently Unsupported .

Adding a New Printer Type to Your System

Adding a Printer Definition.

Adding a Printer Formatter to the Prlnter Backend
Understanding Embedded References in Printer Attribute Stnngs
Related Information .

Chapter 12. Small Computer System Interface Subsystem
SCSI Subsystem Overview .

Understanding SCSI Asynchronous Event Handllng

SCSI Error Recovery.

A Typical Initiator-Mode SCSI Dnver Transactlon Sequence
Understanding SCSI Device Driver Internal Commands .
Understanding the Execution of Initiator I/O Requests
SCSI Command Tag Queuing

Understanding the sc_buf Structure

Other SCSI Design Considerations

SCSI Target-Mode Overview . .
Required SCSI Adapter Device Drlver |octl Commands .
Related Information .

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem .

Programming FCP and iSCSI Device Drivers .

FCP and iSCSI Subsystem Overview.

Understanding FCP and iSCSI Asynchronous Event Handhng
FCP and iSCSI Error Recovery .

FCP and iSCSI Initiator-Mode Recovery When Not Command Tag Queumg

Initiator-Mode Recovery During Command Tag Queuing.

A Typical Initiator-Mode FCP and iSCSI Driver Transaction Sequence
Understanding FCP and iSCSI Device Driver Internal Commands . .
Understanding the Execution of FCP and iSCSI Initiator /0O Requests

FCP and iSCSI Command Tag Queuing.

. 145
. 164

. 167
. 167
. 167
. 167
. 169

. 173
. 173
. 174
. 176
177

. 179
. 179
. 179
. 182
. 185
. 186

. 189
. 189
. 189
. 189
. 190
. 191
. 191
. 191

. 193
. 193
. 194
. 196
. 199
. 199
. 200
. 202
. 202
. 207
. 212
. 217
. 223

. 225
. 225
. 246
. 247
. 249
. 249
. 250
. 252
. 252
. 253
. 254

\'}

Understanding the scsi_buf Structure. . .

Other FCP and iSCSI Design Considerations.

Required FCP and iSCSI Adapter Device Driver ioctl Commands
Related Information . e e e e

Chapter 14. Integrated Device Electronics (IDE) Subsystem .
Responsibilities of the IDE Adapter Device Driver .
Responsibilities of the IDE Device Driver

Communication Between IDE Device Drivers and IDE Adapter Devrce Dnvers

IDE Error Recovery . .

A Typical IDE Driver Transactron Sequence
IDE Device Driver Internal Commands .
Execution of 1/0O Requests.

ataide_buf Structure . .

Other IDE Design ConS|derat|ons .

Required IDE Adapter Driver ioctl Commands
Related Information .

Chapter 15. Serial Direct Access Storage Device Subsystem
DASD Device Block Level Description

Chapter 16. Debug Facilities

System Dump Facility

Error Logging

Debug and Performance Tracmg .
Memory Overlay Detection System (MODS) .
Related Information . G

Chapter 17. KDB Kernel Debugger and Command .
The kdb Command . Ce e e

KDB Kernel Debugger . . .

Using the KDB Kernel Debug Program .

Setting Breakpoints . .

Viewing and Modifying Global Data

Stack Trace . .
Subcommands for the KDB Kernel Debugger and kdb Command

Chapter 18. Loadable Authentication Module Programming Interface
Overview .

Load Module Interfaces

Authentication Interfaces

Identification Interfaces .

Support Interfaces.

Configuration Files

Compound Load Modules .

Appendix. Notices .
Trademarks .

Index

Vi Kemel Extensions and Device Support Programming Concepts

. 254
. 260
. 265
. 267

. 269
. 269
. 269
. 269
. 270
. 270
. 271
. 271
. 272
. 275
. 276
. 278

. 279
. 279

. 281
. 281
. 288
. 293
. 313
. 314

. 317
. 317
. 318
. 322
. 330
. 335
. 339
. 343

. 505
. 505
. 505
. 506
. 508
. 512
. 515
. 516

. 519
. 520

. 521

About This Book

This book provides information on the kernel programming environment, and about writing system call,
kernel service, and virtual file system kernel extensions. Conceptual information on existing kernel
subsystems is also provided.

This edition supports the release of AIX 5L Version 5.2 with the 5200-01 Recommended Maintenance
package. Any specific references to this maintenance package are indicated as AIX 5.2 with 5200-01.

Who Should Use This Book

This book is intended for system programmers who are knowledgeable in operating system concepts and
kernel programming and want to extend the kernel.

How to Use This Book

This book provides two types of information: (1) an overview of the kernel programming environment and
information a programmer needs to write kernel extensions, and (2) information about existing kernel
subsystems.

Highlighting

The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files,
structures, directories, and other items whose names are

predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to
be supplied by the user.
Monospace Identifies examples of specific data values, examples of

text similar to what you might see displayed, examples of
portions of program code similar to what you might write
as a programmer, messages from the system, or
information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the Is command to list files. If you type LS, the
system responds that the command is "not found.” Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following books contain additional information on kernel extension programming and the existing
kernel subsystems:

* |AIX 5L Version 5.2 Guide to Printers and Printing|

« |Keyboard Technical Reference]

© Copyright IBM Corp. 1997, 2003 vii

« [AIX 5L Version 5.2 System Management Guide: Operating System and Deviced
« [AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1|
« [AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 2

Viii Kernel Extensions and Device Support Programming Concepts

Chapter 1. Kernel Environment

The kernel is dynamically extendable and can be expanded by adding routines that belong to any of the
following functional classes:

+ [System calls

« [Virtual file systems|

« [Kernel Extension and Device Driver Management Kernel Services|
» Device Drivers

The term kernel extension applies to all routines added to the kernel, independent of their purpose. Kernel
extensions can be added at any time by a user with the appropriate privilege.

Kernel extensions run in the same mode as the kernel. That is, when the 64-bit kernel is used, kernel
extensions run in 64—bit mode. These kernel extensions must be compiled to produce a 64—bit object.

The following kernel-environment programming information is provided to assist you in programming kernel
extensions:

« [“‘Understanding Kernel Extension Symbol Resolution’]
* |“Understanding Execution Environments” on page 5|
* |“Understanding Kernel Threads” on page 6|

* |“Using Kernel Processes” on page 8
* |“Accessing User-Mode Data While in Kernel Mode” on page 12|

+ [“Understanding Locking” on page 13|

+ [“Understanding Exception Handling” on page 14|

+ [“Using Kernel Extensions to Support 64—bit Processes” on page 19

A process executing in user mode can customize the kernel by using thesubroutine, if the
process has appropriate privilege. In this way, a user-mode process can load, unload, initialize, or
terminate kernel routines. Kernel configuration can also be altered by changing tunable system
parameters.

Kernel extensions can also customize the kernel by using kernel services to load, unload, initialize, and
terminate dynamically loaded kernel routines; to create and initialize kernel processes; and to define
interrupt handlers.

Note: Private kernel routines (or kernel services) execute in a privileged protection domain and can affect
the operation and integrity of the whole system. See [‘Kernel Protection Domain” on page 23| for
more information.

Understanding Kernel Extension Symbol Resolution

The following information is provided to assist you in understanding kernel extension symbol resolution:
« [‘Exporting Kernel Services and System Calls” on page 2|

[‘Using Kernel Services” on page 2|

[‘Using System Calls with Kernel Extensions” on page 2|

* |‘Using Private Routines” on paﬂ

. “‘Understanding Dual-Mode Kernel Extensions” on page 4{

* |“Using Libraries” on page 4|

© Copyright IBM Corp. 1997, 2003 1

Exporting Kernel Services and System Calls

A kernel extension provides additional kernel services and system calls by specifying an export file when it
is link-edited. An export file contains a list of symbols to be added to the kernel name space. In addition,
symbols can be identified as system calls for 32-bit processes, 64-bit processes, or both.

In an export file, symbols are listed one per line. These system calls are available to both 32- and 64-bit
processes. System calls are identified by using one of the syscall32, syscall64 or syscall3264 keywords
after the symbol name. Use syscall32 to make a system call available to 32-bit processes, syscall64 to
make a system call available to 64-bit processes, and syscall3264 to make a system call available to both
32- and 64-bit processes. For more information about export files, see in AIX 5L Version 5.2
Commands Reference, Volume 3.

When a new kernel extension is loaded by the sysconfig or kmod_load subroutine, any symbols
exported by the kernel extension are added to the kernel name space, and are available to all
subsequently loaded kernel extensions. Similarly, system calls exported by a kernel extension are
available to all user programs or shared objects subsequently loaded.

Using Kernel Services

The kernel provides a set of |base kernel services|to be used by kernel extensions. Kernel extensions can
export new kernel services, which can then be used by subsequently loaded kernel extensions. Base
kernel services, which are described in the services documentation, are made available to a kernel
extension by specifying the /usr/lib/kernex.imp import file during the link-edit of the extension.

Note: Link-editing of a kernel extension should always be performed by using the command. Do not
use the compiler to create a kernel extension.

If a kernel extension depends on kernel services provided by other kernel extensions, an additional import
file must be specified when link-editing. An import file lists additional kernel services, with each service
listed on its own line. An import file must contain the line #!/unix before any services are listed. The same
file can be used both as an import file and an export file. The #!/unix line is ignored when a file is used
as an export file. For more information on import files, see in AIX 5L Version 5.2 Commands
Reference, Volume 3.

Using System Calls with Kernel Extensions

A restricted set of system calls can be used by kernel extensions. A|kerne| proces§| can use a larger set of
system calls than a user process in kernel mode. [‘System Calls Available to Kernel Extensions” on
specifies which system calls can be used by either type of process. User-mode processes in
kernel mode can only use system calls that have all parameters passed by value. Kernel routines running
under user-mode processes cannot directly use a system call having parameters passed by reference.

The second restriction is imposed because, when they access a caller's data, system calls with
parameters passed by reference access storage across a protection domain. The cross-domain memory
services performing these cross-memory operations support kernel processes as if they, too, accessed
storage across a protection domain. However, these services have no way to determine that the caller is in
the same protection domain when the caller is a user-mode process in kernel mode. For more information
on cross-domain memory services, see [‘Cross-Memory Kernel Services” on page 59|

Note: System calls must not be used by kernel extensions executing in the interrupt handler
environment.

System calls available to kernel extensions are listed in /usr/lib/kernex.imp, along with other kernel
services.

2 Kernel Extensions and Device Support Programming Concepts

Loading and Unloading Kernel Extensions
Kernel extensions can be loaded and unloaded by calling the sysconfig function from user applications. A

kernel extension can load another kernel extension by using the kmod_load kernel service, and kernel
extensions can be unloaded by using the kmod_unload kernel service.

Loading Kernel Extensions: Normally, kernel extensions that provide new system calls or kernel
services only need to be loaded once. For these kernel extensions, loading should be performed by
specifying SYS_SINGLELOAD when calling the sysconfig function, or LD_SINGLELOAD when calling the
kmod_load function. If the specified kernel extension is already loaded, a second copy is not loaded.
Instead, a reference to the existing kernel extension is returned. The loader uses the specified pathname
to determine whether a kernel extensions is already loaded. If multiple pathnames refer to the same kernel
extension, multiple copies can be loaded into the kernel.

If a kernel extension can support multiple instances of itself (particularly its data), it can be loaded multiple
times, by specifying SYS_KLOAD when calling the sysconfig function, or by not specifying
LD_SINGLELOAD when calling the kmod_load function. Either of these operations loads a new copy of
the kernel extension, even when one or more copies are already loaded. When this operation is used,
currently loaded routines bound to the old copy of the kernel extension continue to use the old copy.
Subsequently loaded routines use the most recently loaded copy of the kernel extension.

Unloading Kernel Extensions: Kernel extensions can be unloaded. For each kernel extension, the
loader maintains a use count and a load count. The use count indicates how many other object files have
referenced some exported symbol provided by the kernel extension. The load count indicates how many
explicit load requests have been made for each kernel extension.

When an explicit unload of a kernel extension is requested, the load count is decremented. If the load
count and the use count are both equal to 0, the kernel extension is unloaded, and the memory used by
the text and data of the kernel extension is freed.

If either the load count or use count is not equal to 0, the kernel extension is not unloaded. As processes
exit or other kernel extensions are unloaded, the use counts for referenced kernel extensions are
decremented. Even if the load and use counts become 0, the kernel extension may not be unloaded
immediately. In this case, the kernel extension’s exported symbols are still available for load-time binding
unless another kernel extension is unloaded or thecommand is executed. At this time, the
loader unloads all modules that have both load and use counts of 0.

Using Private Routines

So far, symbol resolution for kernel extensions has been concerned with importing and exporting symbols
from and to the kernel name space. Exported symbols are global in the kernel, and can be referenced by
any subsequently loaded kernel extension.

Kernel extensions can also consist of several separately link-edited modules. This is particularly useful for
device drivers, where a kernel extension contains the top (pageable) half of the driver and a dependent
module contains the bottom (pinned) half of the driver. Using a dependent module also makes sense when
several kernel extensions use common routines. In both cases, the symbols exported by the dependent
modules are not added to the global kernel name space. Instead, these symbols are only available to the
kernel extension being loaded.

When link-editing a kernel extension that depends on another module, an import file should be specified
listing the symbols exported by the dependent module. Before any symbols are listed, the import file
should contain one of the following lines:

#! path/file

or
#! path/file(member)

Chapter 1. Kernel Environment 3

Note: This import file can also be used as an export file when building the dependent module.
Dependent modules can be found in an archive file. In this case, the member name must be specified in
the #! line.

While a kernel extension is being loaded, any dependent modules are only loaded a single time. This
allows modules to depend on each other in a complicated way, without causing multiple instances of a
module to be loaded.

Note: The loader uses the pathname of a module to determine whether it has already been loaded.
Another copy of the module can be loaded if different path names are used for the same module.

The symbols exported by dependent modules are not added to the kernel name space. These symbols
can only be used by a kernel extension and its other dependent modules. If another kernel extension is
loaded that uses the same dependent modules, these dependent modules will be loaded a second time.

Understanding Dual-Mode Kernel Extensions

Dual-mode kernel extensions can be used to simplify the loading of kernel extensions that run on both the
32- and 64-bit kernels. A "dual-mode kernel extension” is an archive file that contains both the 32- and
64-bit versions of a kernel extension as members. When the pathname specified in the sysconfig or
kmod_load call is an archive, the loader loads the first archive member whose object mode matches the
kernel's execution mode.

This special treatment of archives only applies to an explicitly loaded kernel extension. If a kernel
extension depends on a member of another archive, the kernel extension must be link-edited with an
import file that specifies the member name.

Using Libraries

The operating system provides the following two libraries that can be used by kernel extensions:
y

.

libcsys Library
The libesys.a library contains a subset of subroutines found in the user-mode libc.a library that can be

used by kernel extensions. When using any of these routines, the header file /usr/include/sys/libcsys.h
should be included to obtain function prototypes, instead of the application header files, such as
lusr/include/string.h or /usr/include/stdio.h. The following routines are included in libcsys.a:

- atoi

* bcmp

* bcopy

* bzero

* memccpy
* memchr
* memcmp
* memcpy
* memmove
* memset
* ovbcopy
» strcat

» strchr

* strcmp

» strcpy

4 Kernel Extensions and Device Support Programming Concepts

» strcspn
» strlen

» strncat
e strncmp
» strncpy
» strpbrk
» strrchr
* strspn
e strstr

» strtok

Note: In addition to these explicit subroutines, some additional functions are defined in libcsys.a. All
kernel extensions should be linked with libesys.a by specifying -lcsys at link-edit time. The
library libc.a is intended for user-level code only. Do not link-edit kernel extensions with the -lc
flag.

libsys Library

The libsys.a library provides the following set of kernel services:
* d_align

* d_roundup

+ timeout

* timeoutcf

* untimeout

When using these services, specify the -Isys flag at link-edit time.

User-provided Libraries

To simplify the development of kernel extensions, you can choose to split a kernel extension into
separately loadable modules. These modules can be used when linking kernel extensions in the same way
that they are used when developing user-level applications and shared objects. In particular, a kernel
module can be created as a shared object by linking with the -bM:SRE flag.. The shared object can then
be used as an input file when linking a kernel extension. In addition, shared objects can be put into an
archive file, and the archive file can be listed on the command line when linking a kernel extension. In both
cases, the shared object will be loaded as a dependent module when the kernel extension is loaded.

Understanding Execution Environments

There are two major environments under which a kernel extension can run:
» |Process environment|
* |Interrupt environment

A kernel extension runs in the process environment when invoked either by a user process in kernel mode
or by a kernel process. A kernel extension is executing in the interrupt environment when invoked as part
of an [interrupt handler

A kernel extension can determine in which environment it is called to run by calling the or

kernel service. These services respectively return the process or thread identifier of the
current process or thread , or a value of -1 if called in the interrupt environment. Some kernel services can
be called in both environments, whereas others can only be called in the process environment.

Note: No floating-point functions can be used in the kernel.

Chapter 1. Kernel Environment 5

Process Environment

A routine runs in the process environment when it is called by a user-mode process or by a kernel]
Routines running in the process environment are executed at an interrupt priority of INTBASE
(the least favored priority). A kernel extension running in this environment can cause page faults by
accessing pageable code or data. It can also be replaced by another process of equal or higher process
priority.

A routine running in the process environment can sleep or be interrupted by routines executing in the
interrupt environment. A kernel routine that runs on behalf of a user-mode process can only invoke system
calls that have no parameters passed by reference. A kernel process, however, can use all system calls
listed in the [System Calls Available to Kernel Extensiong| if necessary.

Interrupt Environment

A routine runs in the interrupt environment when called on behalf of an interrupt handler. A kernel routine
executing in this environment cannot request data that has been paged out of memory and therefore
cannot cause page faults by accessing pageable code or data. In addition, the kernel routine has a stack
of limited size, is not subject to replacement by another process, and cannot perform any function that
would cause it to sleep.

A routine in this environment is only interruptible either by interrupts that have priority more favored than
the current priority or by These routines cannot use system calls and can use only kernel
services available in both the process and interrupt environments.

A process in kernel mode can also put jtself into an environment similar to the interrupt environment. This
action, occurring when the interrupt priority is changed to a priority more favored than INTBASE, can be
accomplished by calling the |i_disable| or [disable_lock| kernel service. A kernel-mode process is
sometimes required to do this to serialize access to a resource shared by a routine executing in the
interrupt environment. When this is the case, the process operates under most of the same restrictions as
a routine executing in the interrupt environment. However, the [e_sleep, [e_wait [e_sleepl, let_wait, [lockl|
and [unlockl| process can sleep, wait, and use locking kerel services if the event word or lock word is
pinned.

Routines executed in this environment can adversely affect system real-time performance and are
therefore limited to a specific maximum path length. Guidelines for the maximum path length are
determined by the interrupt priority at which the routines are executed. [Understanding Interrupts| provides
more information.

Understanding Kernel Threads

A thread is an independent flow of control that operates within the same address space as other
independent flows of control within a process.

One process can have multiple threads, with each thread executing different code concurrently, while
sharing data and synchronizing much more easily than cooperating processes. Threads require fewer
system resources than processes, and can start more quickly.

Although threads can be scheduled, they exist in the context of their process. The following list indicates
what is managed at process level and shared among all threads within a process:

* Address space
» System resources, like files or terminals
» Signal list of actions.

The process remains the swappable entity. Only a few resources are managed at thread level, as
indicated in the following list:

6 Kernel Extensions and Device Support Programming Concepts

» State
» Stack
» Signal masks.

Kernel Threads, Kernel Only Threads, and User Threads
There are three kinds of threads:

* Kernel threads

» Kernel-only threads

* User threads.

A kernel thread is a kernel entity, like processes and interrupt handlers; it is the entity handled by the
system scheduler. A kernel thread runs in user mode environment when executing user functions or library
calls; it switches to kernel mode environment when executing system calls.

A kernel-only thread is a kernel thread that executes only in kernel mode environment. Kernel-only threads
are controlled by the kernel mode environment programmer through kernel services.

User mode programs can access user threads through a library (such as the libpthreads.a threads
library). User threads are part of a portable programming model. User threads are mapped to kernel
threads by the threads library, in an implementation dependent manner. The threads library uses a
proprietary interface to handle kernel threads. See Understanding Threads in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs to get detailed information about the user
threads library and their implementation.

All threads discussed in this article are kernel threads; and the information applies only to the kernel mode
environment. Kernel threads cannot be accessed from the user mode environment, except through the
threads library.

Kernel Data Structures

The kernel maintains thread- and process-related information in two types of structures:
* The user structure contains process-related information

* The uthread structure contains thread-related information.

These structures cannot be accessed directly by kernel extensions and device drivers. They are
encapsulated for portability reasons. Many fields that were previously in the user structure are now in the
uthread structure.

Thread Creation, Execution, and Termination

A process is always created with one thread, called the initial thread. The initial thread provides
compatibility with previous single-threaded processes. The initial thread’s stack is the process stack. See
[Kernel Process Creation, Execution, and Termination” on page 10| to get more information about kernel
process creation.

Other threads can be created, using a two-step procedure. The |thread_create|kernel service allocates
and initializes a new thread, and sets its state to idle. The |kthread_start| kernel service then starts the

thread, using the specified entry point routine.

A thread is terminated when it executes a return from its entry point, or when it calls the fthread_terminate|
kernel service. Its resources are automatically freed. If it is the last thread in the process, the process
ends.

Chapter 1. Kernel Environment 7

Thread Scheduling

Threads are scheduled using one of the following scheduling policies:

 First-in first-out (FIFO) scheduling policy, with fixed priority. Using the FIFO policy with high favored
priorities might lead to bad system performance.

* Round-robin (RR) scheduling policy, quantum based and with fixed priority.

» Default scheduling policy, a non-quantum based round-robin scheduling with fluctuating priority. Priority
is modified according to the CPU usage of the thread.

Scheduling parameters can be changed using the |thread_setsched kernel service. The process-oriented
system call sets the priority of all the threads within a process. The process-oriented system
call gets the priority of a thread in the process. The scheduling policy and priority of an individual thread
can be retrieved from the ti_policy and ti_pri fields of the thrdsinfo structure returned by the
system call.

Thread Signal Handling

The signal handling concepts are the following:

* A signal mask is associated with each thread.

* The list of actions associated with each signal number is shared among all threads in the process.

 If the signal action specifies termination, stop, or continue, the entire process, thus including all its
threads, is respectively terminated, stopped, or continued.

» Synchronous signals attributable to a particular thread (such as a hardware fault) are delivered to the
thread that caused the signal to be generated.

+ Signals can be directed to a particular thread. If the target thread has blocked the signal from delivery,
the signal remains pending on the thread until the thread unblocks the signal from delivery, or the action
associated with the signal is set to ignore by any thread within the process.

The signal mask of a thread is handled by the [limit_sigs| and [sigsetmask| kernel services. The
kthread_kill| kernel service can be used to direct a signal to a particular thread.

In the kernel environment, when a signal is received, no action is taken (no termination or handler
invocation), even for the SIGKILL signal. A thread in kernel environment, especially kernel-only threads,
must poll for signals so that signals can be delivered. Polling ensures the proper kernel-mode serialization.

For example, SIGKILL will not be delivered to a kernel-only thread that does not poll for signals.
Therefore, SIGKILL is not necessarily an effective means for terminating a kernel-only thread.

Signals whose actions are applied at generation time (rather than delivery time) have the same effect
regardless of whether the target is in kernel or user mode. A kernel-only thread can poll for unmasked
signals that are waiting to be delivered by calling the kernel service. This service returns the
signal number of a pending signal that was not blocked or ignored. The thread then uses the signal
number to determine which action should be taken. The kernel does not automatically call signal handlers
for a thread in kernel mode as it does for user mode.

See [‘Kernel Process Signal and Exception Handling” on page 11| for more information about signal
handling at process level.

Using Kernel Processes

A kernel process is a process that is created in the kernel protection domain and always executes in the
kernel protection domain. Kernel processes can be used in subsystems, by complex device drivers, and by
system calls. They can also be used by interrupt handlers to perform asynchronous processing not
available in the interrupt environment. Kernel processes can also be used as device managers where
asynchronous 1/O and device management is required.

8 Kernel Extensions and Device Support Programming Concepts

Introduction to Kernel Processes

A kernel process (kproc) exists only in the kernel protection domain and differs from a user process in the
following ways:

« It is created using the [creatp|and [initp| kernel services.
* It executes only within the kernel protection domain and has all security privileges.

* |t can call a restricted set of system calls and all applicable kernel services. For more information, see
[‘System Calls Available to Kernel Extensions” on page 35|

* It has access to the global kernel address space (including the kernel pinned and pageable heaps),
kernel code, and static data areas.

It must poll for signals and can choose to ignore any signal delivered, including a kill signal.
* Its text and data areas come from the global kernel heap.
» It cannot use application libraries.

+ It has a process-private region containing only the u-block (user block) structure and possibly the
kernel stack.

» Its parent process is the process that issued the creatp kernel service to create the process.

* It can change its parent process to the init process and can use interrupt disable functions for
serialization.

» It can use locking to serialize process-time access to critical data structures.
* |t can only be a 32—bit process in the 32—bit kernel.
* It can only be a 64-bit process in the 64—bit kernel.

A kernel process controls directly the kernel threads. Because kernel processes are always in the kernel
protection domain, threads within a kernel process are kernel-only threads. For more information on kernel
threads, see [‘Understanding Kernel Threads” on page 6|

A kernel process inherits the environment of its parent process (the one calling the creatp kernel service
to create it), but with some exceptions. The kernel process will not have a root directory or a current
directory when initialized. All uses of the file system functions must specify absolute path names.

Kernel processes created during phase 1 of system boot must not keep any long-term opens on files until
phase 2 of system boot or run time has been reached. This is because Base Operating System changes
root file systems between phase 1 and phase 2 of system boot. As a result, the system crashes if any files
are open at root file system transition time.

Accessing Data from a Kernel Process

Because kernel processes execute in the more privileged kernel protection domain, a kernel process can
access data that user processes cannot. This applies to all kernel data, of which there are three general
categories:

* The user block data structure

The u-block (or u-area) structure exists for kernel processes and contains roughly the same information
for kernel processes as for user-mode processes. A kernel process must use kernel services to query or
manipulate data from the u-area to maintain modularity and increase portability of code to other
platforms.

» The stack for a kernel process

To ensure binary compatibility with older applications, each kernel process has a stack called the
process stack. This stack is used by the process initial thread.

The location of the stack for a kernel process is implementation-dependent. This stack can be located in
global memory or in the process-private segment of the kernel process. A kernel process must not
assume automatically that its stack is located in global memory.

* Global kernel memory

Chapter 1. Kernel Environment 9

A kernel process can also access global kernel memory as well as allocate and de-allocate memory
from the kernel heaps. Because it runs in the kernel protection domain, a kernel process can access
any valid memory location within the global kernel address space. Memory dynamically allocated from
the kernel heaps by the kernel process must be freed by the kernel process before exiting. Unlike
user-mode processes, memory that is dynamically allocated by a kernel process is not freed
automatically upon process exit.

Cross-Memory Services

Kernel processes must be provided with a valid cross-memory descriptor to access address regions
outside the kernel global address space or kernel process address space. For example, if a kernel process
is to access data from a user-mode process, the system call using the process must obtain a
cross-memory descriptor for the user-mode region to be accessed. Calling theor xmattach64
kernel service provides a descriptor that can then be made available to the kernel process.

The kernel process should then call the [xmemin|and xmemout kernel services to access the targeted
cross-memory data area. When the kernel process has completed its operation on the memory area, the
cross-memory descriptor must be detached by using the kernel service.

Kernel Process Creation, Execution, and Termination

A kernel process is created by a kernel-mode routine by calling the kernel service. This service
allocates and initializes a process block for the process and sets the new process state to idle. This new
kernel process does not run until it is initialized by the kernel service, which must be called in the
same process that created the new kernel process (with the creatp service). The creatp kernel service
returns the process identifier for the new kernel process.

The process is created with one kernel-only thread, called the initial thread. See [Understanding Kernel
to get more information about threads.

After the initp kernel service has completed the process initialization, the initial thread is placed on the run
queue. On the first dispatch of the newly initialized kernel process, it begins execution at the entry point
previously supplied to the initp kernel service. The initialization parameters were previously specified in
the call to the initp kernel service.

A kernel process terminates when it executes a return from its main entry routine. A process should never
exit without both freeing all dynamically allocated storage and releasing all locks owned by the kernel
process.

When kernel processes exit, the parent process (the one calling the creatp and initp kernel services to
create the kernel process) receives the SIGCHLD signal, which indicates the end of a child process.
However, it is sometimes undesirable for the parent process to receive the SIGCHLD signal due to ending
a process. In this case, the kproc can call the kernel service to designate the init process as its
parent. The init process cleans up the state of all its child processes that have become zombie processes.
A kernel process can also issue the subroutine call to change its session. Signals and job control
affecting the parent process session do not affect the kernel process.

Kernel Process Preemption

A kernel process is initially created with the same process priority as its parent. It can therefore be
replaced by a more favored kernel or user process. It does not have higher priority just because it is a
kernel process. Kernel processes can use the subroutine to modify their execution priority.

The kernel process can use the locking kernel services to serialize access to critical data structures. This

use of locks does not guarantee that the process will not be replaced, but it does ensure that another
process trying to acquire the lock waits until the kernel process owning the lock has released it.

10 Kernel Extensions and Device Support Programming Concepts

Using locks, however, does not provide serialization if a kernel routine can access the critical data while
executing in the interrupt environment. Serialization with interrupt handlers must be handled by using
locking together with interrupt control. The disable_lock and kernel services should be
used to serialize with interrupt handlers.

Kernel processes must ensure that their maximum path lengths adhere to the specifications for interrupt
handlers when executing at an interrupt priority more favored than INTBASE. This ensures that system
real-time performance is not degraded.

Kernel Process Signal and Exception Handling

Signals are delivered to exactly one thread within the process which has not blocked the signal from
delivery. If all threads within the target process have blocked the signal from delivery, the signal remains
pending on the process until a thread unblocks the signal from delivery, or the action associated with the
signal is set to ignore by any thread within the process. See [‘Thread Signal Handling” on page 8|for more
information on signal handling by threads.

Signals whose action is applied at generation time (rather than delivery time) have the same effect
regardless of whether the target is a kernel or user process. A kernel process can poll for unmasked
signals that are waiting to be delivered by calling the kernel service. This service returns the
signal number of a pending signal that was not blocked or ignored. The kernel process then uses the
signal number to determine which action should be taken. The kernel does not automatically call signal
handlers for a kernel process as it does for user processes.

A kernel process should also use the exception-catching facilities (setjimpx], and [clrjmpx) available in
kernel mode to handle exceptions that can be caused during run time of the kernel process. Exceptions
received during the execution of a kernel process are handled the same as exceptions that occur in any
kernel-mode routine.

Unhandled exceptions that occur in kernel mode (in any user process while in kernel mode, in an interrupt
handler, or in a kernel process) result in a system crash. To avoid crashing the system due to unhandled
exceptions, kernel routines should use the setjmpx, clrjmpx, and|longjmpx| kernel services to handle
exceptions that might possibly occur during run time. See [‘Understanding Exception Handling” on page 14|
for more details on handling exceptions.

Kernel Process Use of System Calls

System calls made by kernel processes do not result in a change of protection domain because the kernel
process is already within the kernel protection domain. Routines in the kernel (including routines executing
in a kernel process) are bound by the loader to the system call function and not to the system call handler.
When system calls use kernel services to access user-mode data, these kernel services recognize that the
system call is running within a kernel process instead of a user process and correctly handle the data
accesses.

than for a user process. A kernel process must use the |getuerror|kernel service to retrieve the system call
error information normally provided in the errno global variable for user-mode processes. In addition, the
kernel process can use the kernel service to set the error information to 0 before calling the
system call. The return code from the system call is handled the same for all processes.

However, the error information returned from a kernel process sistem call must be accessed differently

Kernel processes can use only a restricted set of the base system calls. ['System Calls Available to Kernell
[Extensions” on page 35| lists system calls available to kernel processes.

Chapter 1. Kernel Environment 11

Accessing User-Mode Data While in Kernel Mode

Kernel extensions must use a set of kernel services to access data that is in the user-mode protection
domain. These services ensure that the caller has the authority to perform the desired operation at the
time of data access and also prevent system crashes in a system call when accessing user-mode data.
These services can be called only when running in the process environment of the process that contains

the user-mode data. For more information on user-mode protection, see|“‘User Protection Domain” on
page 23| For more information on the process environment, see [‘Process Environment” on page 6
Data Transfer Services

The following list shows user-mode data access kernel services (primitives):

Kernel Service Purpose
suword| suword64 Stores a word of data in user memory.
fubyte| fubyte64 Fetches, or retrieves, a byte of data from user memory.
fuword| fuword64 Fetches, or retrieves, a word of data from user memory.

inf copyin64 Copies data between user and kernel memory.

ut} copyout64 Copies data between user and kernel memory.
instn, copyinstr64 Copies a character string (including the terminating null character) from
user to kernel space.

Additional kernel services allow data transfer between user mode and kernel mode when a@ structure is
used, thereby describing the user-mode data area to be accessed. All addresses on the 32-bit kernel, with
the exception of addresses ending in "64", passed into these services must be remapped. Following is a
list of services that typically are used between the file system and device drivers to perform device I/O:

Kernel Service Purpose

Moves a block of data between kernel space and a space defined by a uio structure.
Writes a character to a buffer described by a uio structure.

Retrieves a character from a buffer described by a uio structure.

The services ending in “64” are not supported in the 64-bit kernel, since all pointers are already 64-bits
wide. The services without the “64” can be used instead. To allow common source code to be used,
macros are provided in the sys/uio.h header file that redefine these special services to their general
counterparts when compiling in 64-bit mode.

Using Cross-Memory Kernel Services

Occasionally, access to user-mode data is required when not in the environment of the user-mode process
that has addressability to the data. Such cases occur when the data is to be accessed asynchronously.
Examples of asynchronous accessing include:

» Direct memory access to the user data by I/O devices

» Data access by interrupt handlers

» Data access by a kernel process

In these circumstances, the kernel cross-memory services are required to provide the necessary access.
The and xmattach64 kernel services allow a cross-memory descriptor to be obtained for the
data area to be accessed. These services must be called in the process environment of the process
containing the data area.

Note: xmattach64 is not supported on the 64—bit kernel.

12 Kernel Extensions and Device Support Programming Concepts

After a cross-memory descriptor has been obtained, the [xmemin|and [xmemout] kernel services can be
used to access the data area outside the process environment containing the data. When access to the
data area is no longer required, the access must be removed by calling the [xmdetach| kernel service.
Kernel extensions should use these services only when absolutely necessary. Because of the machine
dependencies of cross-memory operations, using them increases the difficulty of porting the kernel
extension to other machine platforms.

Understanding Locking

The following information is provided to assist you in understanding locking.

Lockl Locks

The lockl locks (previously called conventional locks) are provided for compatibility only and should not be
used in new code: simple or complex locks should be used instead. These locks are used to protect a
critical section of code which accesses a resource such as a data structure or device, serializing access to
the resource. Every thread which accesses the resource must acquire the lock first, and release the lock
when finished.

A conventional lock has two states: locked or unlocked. In the locked state, a thread is currently executing
code in the critical section, and accessing the resource associated with the conventional lock. The thread
is considered to be the owner of the conventional lock. No other thread can lock the conventional lock
(and therefore enter the critical section) until the owner unlocks it; any thread attempting to do so must
wait until the lock is free. In the unlocked state, there are no threads accessing the resource or owning the
conventional lock.

Lockl locks are recursive and, unlike simple and complex locks, can be awakened by a signal.

Simple Locks

A simple lock provides exclusive-write access to a resource such as a data structure or device. Simple
locks are not recursive and have only two states: locked or unlocked.

Complex Locks

A complex lock can provide either shared or exclusive access to a resource such as a data structure or
device. Complex locks are not recursive by default (but can be made recursive) and have three states:
exclusive-write, shared-read, or unlocked.

If several threads perform read operations on the resource, they must first acquire the corresponding lock
in shared-read mode. Because no threads are updating the resource, it is safe for all to read it. Any thread
which writes to the resource must first acquire the lock in exclusive-write mode. This guarantees that no
other thread will read or write the resource while it is being updated.

Types of Critical Sections

There are two types of critical sections which must be protected from concurrent execution in order to
serialize access to a resource:

thread-thread These critical sections must be protected (by using the|locking kernel services) from
concurrent execution by multiple processes or threads.
thread-interrupt These critical sections must be protected (by using the|disable_lock| and

unlock_enable| kernel services) from concurrent execution by an interrupt handler

and a thread or process.

Chapter 1. Kernel Environment 13

Priority Promotion

When a lower priority thread owns a lock which a higher-priority thread is attempting to acquire, the owner
has its priority promoted to that of the most favored thread waiting for the lock. When the owner releases
the lock, its priority is restored to its normal value. Priority promotion ensures that the lock owner can run
and release its lock, so that higher priority processes or threads do not remain blocked on the lock.

Locking Strategy in Kernel Mode

Attention: A kernel extension should not attempt to acquire the kernel lock if it owns any other lock.
Doing so can cause unpredictable results or system failure.

A hierarchy of locks exists. This hierarchy is imposed by software convention, but is not enforced by the
system. The lockl kernel_lock variable, which is the global kernel lock, has the the coarsest granularity.
Other types of locks have finer granularity. The following list shows the ordering of locks based on
granularity:

* The kernel_lock global kernel lock

Note: Avoid using the kernel_lock global kernel lock variable in new code. It is only included for
compatibility purposes.

* File system locks (private to file systems)
» Device driver locks (private to device drivers)
» Private fine-granularity locks

Locks should generally be released in the reverse order from which they were acquired; all locks must be
released before a kernel process or thread exits. Kernel mode processes do not receive any signals while
they hold any lock.

Understanding Exception Handling

Exception handling involves a basic distinction between interrupts and exceptions:

* An interrupt is an asynchronous event and is not associated with the instruction that is executing when
the interrupt occurs.

* An exception is a synchronous event and is directly caused by the instruction that is executing when the
exception occurs.

The computer hardware generally uses the same mechanism to report both interrupts and exceptions. The
machine saves and modifies some of the event’s state and forces a branch to a particular location. When
decoding the reason for the machine interrupt, the interrupt handler determines whether the event is an
interrupt or an exception, then processes the event accordingly.

Exception Processing

When an exception occurs, the current instruction stream cannot continue. If you ignore the exception, the
results of executing the instruction may become undefined. Further execution of the program may cause
unpredictable results. The kernel provides a default exception-handling mechanism by which an instruction
stream (a process- or interrupt-level program) can specify what action is to be taken when an exception
occurs. Exceptions are handled differently depending on whether they occurred while executing in
Imode] or |user mode]

Default Exception-Handling Mechanism
If no exception handler is currently defined when an exception occurs, typically one of two things happens:

 If the exception occurs while a process is executing in user mode, the process is sent a signal relevant
to the type of exception.

 |If the exception occurs while in kernel mode, the system halts.

14 Kernel Extensions and Device Support Programming Concepts

Kernel-Mode Exception Handling

Exception handling in kernel mode extends the setjump and longjump subroutines context-save-and-
restore mechanism by providing |setjmpx| and |Iongjmp)_<| kernel services to handle exceptions. The
traditional system mechanism is extended by allowing these exception handlers (or context-save
checkpoints) to be stacked on a per-process or per-interrupt handler basis.

This stacking mechanism allows the execution point and context of a process or interrupt handler to be
restored to a point in the process or interrupt handler, at the point of return from the setjmpx kernel
service. When execution returns to this point, the return code from setjmpx kernel service indicates the
type of exception that occurred so that the process or interrupt handler state can be fully restored.
Appropriate retry or recovery operations are then invoked by the software performing the operation.

When an exception occurs, the kernel first-level exception handler gets control. The first-level exception
handler determines what type of exception has occurred and saves information necessary for handling the
specific type of exception. For an 1/0 exception, the first-level handler also enables again the programmed
I/O operations.

The first-level exception handler then modifies the saved context of the interrupted process or interrupt
handler. It does so to execute the longjmpx kernel service when the first-level exception handler returns
to the interrupted process or interrupt handler.

The longjmpx kernel service executes in the environment of the code that caused the exception and
restores the current context from the topmost jump buffer on the stack of saved contexts. As a result, the
state of the process or interrupt handler that caused the exception is restored to the point of the return
from the setjmpx kernel service. (The return code, nevertheless, indicates that an exception has
occurred.)

The process or interrupt handler software should then check the return code and invoke exception
handling code to restore fully the state of the process or interrupt handler. Additional information about the
exception can be obtained by using the kernel service.

User-Defined Exception Handling

A typical exception handler should do the following:

» Perform any necessary clean-up such as freeing storage or segment registers and releasing other
resources.

 If the exception is recognized by the current handler and can be handled entirely within the routine, the
handler should establish itself again by calling the kernel service. This allows normal
processing to continue.

* If the exception is not recognized by the current handler, it must be passed to the previously stacked
exception handler. The exception is passed by calling the |Iongjmpx‘kernel service, which either calls
the previous handler (if any) or takes the system’s default exception-handling mechanism.

« |If the exception is recognized by the current handler but cannot be handled, it is treated as though it is
unrecognized. The longjmpx kernel service is called, which either passes the exception along to the
previous handler (if any) or takes the system default exception-handling mechanism.

When a kernel routine that has established an exception handler completes normally, it must remove its
exception handler from the stack (by using the kernel service) before returning to its caller.

Note: When the longjmpx kernel service invokes an exception handler, that handler’s entry is
automatically removed from the stack.

Implementing Kernel Exception Handlers

The following information is provided to assist you in implementing kernel exception handlers.

Chapter 1. Kernel Environment 15

setjmpx, longjmpx, and clrjmpx Kernel Services
The setjmpx kernel service provides a way to save the following portions of the program state at the point
of a call:

* Nonvolatile general registers

» Stack pointer

* TOC pointer

* Interrupt priority number (intpri)
* Ownership of kernel-mode lock

This state can be restored later by calling the longjmpx kernel service, which accomplishes the following
tasks:

* Reloads the registers (including TOC and stack pointers)

» Enables or disables to the correct interrupt level

« Conditionally acquires or releases the kernel-mode lock

» Forces a branch back to the point of original return from the setjmpx kernel service

The setjmpx kernel service takes the address of a jump buffer (a label_t structure) as an explicit
parameter. This structure can be defined anywhere including on the stack (as an automatic variable). After
noting the state data in the jump buffer, the setjmpx kernel service pushes the buffer onto the top of a
stack that is maintained in the machine-state save structure.

The longjmpx] kerel service is used to return to the point in the code at which the kernel service

was called. Specifically, the longjmpx kernel service returns to the most recently created jump buffer, as
indicated by the top of the stack anchored in the machine-state save structure.

The parameter to the longjmpx kernel service is an exception code that is passed to the resumed
program as the return code from the setjmp kernel service. The resumed program tests this code to
determine the conditions under which the setjmpx kernel service is returning. If the setjmpx kernel
service has just saved its jump buffer, the return code is 0. If an exception has occurred, the program is
entered by a call to the longjmpx kernel service, which passes along a return code that is not equal to 0.

Note: Only the resources listed here are saved by the setjmpx kernel service and restored by the
longjmpx kernel service. Other resources, in particular segment registers, are not restored. A call
to the longjmpx kernel service, by definition, returns to an earlier point in the program. The
program code must free any resources that are allocated between the call to the setjmpx kernel
service and the call to the longjmpx kernel service.

If the exception handler stack is empty when the longjmpx kernel service is issued, there is no place to
jump to and the system default exception-handling mechanism is used. If the stack is not empty, the
context that is defined by the topmost jump buffer is reloaded and resumed. The topmost buffer is then
removed from the stack.

The kernel service removes the top element from the stack as placed there by the setjmpx kernel
service. The caller to the clrjmpx kernel service is expected to know exactly which jump buffer is being
removed. This should have been established earlier in the code by a call to the setjmpx kernel service.
Accordingly, the address of the buffer is required as a parameter to the clrjmpx kernel service. It can then
perform consistency checking by asserting that the address passed is indeed the address of the top stack
element.

Exception Handler Environment

The stacked exception handlers run in the environment in which the exception occurs. That is, an
exception occurring in a process environment causes the next dispatch of the process to run the exception

16 Kernel Extensions and Device Support Programming Concepts

handler on the top of the stack of exception handlers for that process. An exception occurring in an
interrupt handler causes the interrupt handler to return to the context saved by the last call to the setjmpx
kernel service made by the interrupt handler.

Note: An interrupt handler context is newly created each time the interrupt handler is invoked. As a result,
exception handlers for interrupt handlers must be registered (by calling the setjmpx kernel service)
each time the interrupt handler is invoked. Otherwise, an exception detected during execution of the
interrupt handler will be handled by the default handler.

Restrictions on Using the setjmpx Kernel Service

Process and interrupt handler routines registering exception handlers with the kernel service must
not return to their caller before removing the saved jump buffer or buffers from the list of jump buffers. A
saved jump buffer can be removed by invoking the kernel service in the reverse order of the
setjmpx calls. The saved jump buffer must be removed before return because the routine’s context no
longer exists once the routine has returned to its caller.

If, on the other hand, an exception does occur (that is, the return code from setjmpx kernel service is
nonzero), the jump buffer is automatically removed from the list of jump buffers. In this case, a call to the
clrjmpx kernel service for the jump buffer must not be performed.

Care must also be taken in defining variables that are used after the context save (the call to the setjmpx
service), and then again by the exception handler. Sensitive variables of this nature must be restored to
their correct value by the exception handler when an exception occurs.

Note: If the last value of the variable is desired at exception time, the variable data type must be
declared as "volatile.”

Exception handling is concluded in one of two ways. Either a registered exception handler handles the
exception and continues from the saved context, or the default exception handler is reached by exhausting
the stack of jump buffers.

Exception Codes

The /usr/include/sys/except.h file contains a list of code numbers corresponding to the various types of
hardware exceptions. When an exception handler is invoked (the return from the setjmpx kernel service is
not equal to 0), it is the responsibility of the handler to test the code to ensure that the exception is one
the routine can handle. If it is not an expected code, the exception handler must:

* Release any resources that would not otherwise be freed (buffers, segment registers, storage acquired
using the routines)

» Call the longjmpx kernel service, passing it the exception code as a parameter

Thus, when an exception handler does not recognize the exception for which it has been invoked, it
passes the exception on to the next most recent exception handler. This continues until an exception
handler is reached that recognizes the code and can handle it. Eventually, if no exception handler can
handle the exception, the stack is exhausted and the system default action is taken.

In this manner, a component can allocate resources (after calling the setjmpx kernel service to establish
an exception handler) and be assured that the resources will later be released. This ensures the exception
handler gets a chance to release those resources regardless of what events occur before the instruction
stream (a process- or interrupt-level code) is terminated.

By coding the exception handler to recognize what exception codes it can process rather than encoding
this knowledge in the stack entries, a powerful and simple-to-use mechanism is created. Each handler

Chapter 1. Kernel Environment 17

need only investigate the exception code that it receives rather than just assuming that it was invoked
because a particular exception has occurred to implement this scheme. The set of exception codes used
cannot have duplicates.

Exceptions generated by hardware use one of the codes in the /usr/include/sys/except.h file. However,
the longjmpx kernel service can be invoked by any kernel component, and any integer can serve as the
exception code. A mechanism similar to the old-style setjmp and longjmp kernel services can be
implemented on top of the setjmpx/longjmpx stack by using exception codes outside the range of those
used for hardware exceptions.

To implement this old-style mechanism, a unique set of exception codes is needed. These codes must not
conflict with either the pre-assigned hardware codes or codes used by any other component. A simple way
to get such codes is to use the addresses of unique objects as code values.

For example, a program that establishes an exception handler might compare the exception code to the
address of its own entry point. Later on in the calling sequence, after any number of intervening calls to
the kernel service by other programs, a program can issue a call to the kernel service
and pass the address of the agreed-on function descriptor as the code. This code is only recognized by a
single exception handler. All the intervening ones just clean up their resources and pass the code to the
longjmpx kernel service again.

Addresses of functions are not the only possibilities for unique code numbers. For example, addresses of
external variables can also be used. By using unigue, system-wide addresses, the problem of code-space
collision is transformed into a problem of external-name collision. This problem is easier to solve, and is
routinely solved whenever the system is built. By comparison, pre-assigning exception numbers by using
#define statements in a header file is a much more cumbersome and error-prone method.

Hardware Detection of Exceptions

Each of the exception types results in a hardware interrupt. For each such interrupt, a first-level interrupt
handler (FLIH) saves the state of the executing program and calls a second-level handler (SLIH). The
SLIH is passed a pointer to the machine-state save structure and a code indicating the cause of the
interrupt.

When a SLIH determines that a hardware interrupt should actually be considered a synchronous
exception, it sets up the machine-state save to invoke the longjmpx kernel service, and then returns. The
FLIH then resumes the instruction stream at the entry to the longjmpx service.

The longjmpx service then invokes the top exception handler on the stack or takes the system default
action as previously described.

User-Mode Exception Handling

Exceptions that occur in a user-mode process and are not automatically handled by the kernel cause the
user-mode process to be signaled. If the process is in a state in which it cannot take the signal, it is
terminated and the information logged. Kernel routines can install user-mode exception handlers that catch
exceptions before they are signaled to the user-mode process.

The luexadd| and juexdel| kernel services allow system-wide user-mode exception handlers to be added
and removed.

The most recently registered exception handler is the first called. If it cannot handle the exception, the next
most recent handler on the list is called, and this second handler attempts to handle the exception. If this
attempt fails, successive handlers are tried, until the default handler is called, which generates the signal.

Additional information about the exception can be obtained by using the |getexcept kernel service.

18 Kernel Extensions and Device Support Programming Concepts

Using Kernel Extensions to Support 64-bit Processes

Kernel extensions in the 32-bit kernel run in 32-bit mode, while kernel extensions in the 64-bit kernel run in
64-bit mode. Kernel extensions can be programmed to support both 32- and 64-bit applications. A 32-bit
kernel extension that supports 64-bit processes can also be loaded on a 32-bit system (where 64-bit
programs cannot run at all).

System calls can be made available to 32- or 64-bit processes, selectively. If an application invokes a
system call that is not exported to processes running in the current mode, the call will fail.

A 32-bit kernel extension that supports 64-bit applications on AIX 4.3 cannot be used to support 64-bit
applications on AIX 5.1 and beyond, because of a potential incompatibility with data types. Therefore, one
of the following three techniques must be used to indicate that a 32-bit kernel extension can be used with
64-bit applications:

* The module type of the kernel extension module can be set to LT, using the Id command with the
-bM:LT flag

+ If sysconfig is used to load a kernel extension, the SYS_64L flag can be logically ored with the
SYS_SINGLELOAD or SYS_KLOAD requires.

» If kmod_load is used to load a kernel extension, the LD_64L flag can be specified

If none of these techniques is used, a kernel extension will still load, but 64-bit programs with calls to one
of the exported system calls will not execute.

Kernel extension support for 64-bit applications has two aspects:

The first aspect is the use of kernel services for working with the 64-bit user address space. The 64-bit
services for examining and manipulating the 64-bit address space are as_att64, as_det64, as_geth64,
as_puth64, as_seth64, and as_getsrval64. The services for copying data to or from 64-bit address
spaces are copyin64, copyout64, copyinstr64, fubyte64, fuword64, subyte64, and suword64. The
service for doing cross-memory attaches to memory in a 64-bit address space is xmattach64. The
services for creating real memory mappings are rmmap_create64 and rmmap_remove64. The major
difference between all these services and their 32-bit counterparts is that they use 64-bit user addresses
rather than 32-bit user addresses.

The service for determining whether a process (and its address space) is 32-bit or 64-bit is 1S64U.

The second aspect of supporting 64-bit applications on the 32-bit kernel is taking 64-bit user data pointers
and using the pointers directly or transforming 64-bit pointers into 32-bit pointers which can be used in the
kernel. If the types of the parameters passed to a system call are all 32 bits or smaller when compiled in
64-bit mode, no additional work is required. However, if 64-bit data, long or pointers, are passed to a
system call, the function must reconstruct the full 64-bit values.

When a 64-bit process makes a system call in the 32-bit kernel, the system call handler saves the
high-order 32 bits of each parameter and converts the parameters to 32-bit values. If the full 64-bit value is
needed, the get64bitparm service should be called. This service converts a 32-bit parameter and a
0-based parameter number into a 64-bit long long value.

These 64-bit values can be manipulated directly by using services such as copyin64, or mapped to a
32-bit value, by calling as_remap64. In this way, much of the kernel does not have to deal with 64-bit
addresses. Services such as copyin will correctly transform a 32-bit value back into a 64-bit value before
referencing user space.

It is also possible to obtain the 64-bit value from a 32-bit pointer by calling as_unremap64. Both
as_remap64 and as_unremap64 are prototyped in /usr/include/sys/remap.h.

Chapter 1. Kernel Environment 19

64-bit Kernel Extension Programming Environment

C Language Data Model

The 64-bit kernel uses the LP64 (Long Pointer 64-bit) C language data model and requires kernel
extensions to do the same. The LP64 data model defines pointers, long, and long long types as 64 bits,
int as 32 bits, short as 16 bits, and char as 8 bits. In contrast, the 32-bit kernel uses the ILP32 data
model, which differs from LP64 in that long and pointer types are 32 bits.

In order to port an existing 32-bit kernel extension to the 64-bit kernel environment, source code must be
modified to be type-safe under LP64. This means ensuring that data types are used in a consistent
fashion. Source code is incorrect for the 64-bit environment if it assumes that pointers, long, and int are
all the same size.

In addition, the use of system-derived types must be examined whenever values are passed from an
application to the kernel. For example, size_t is a system-derived type whose size depends on the
compilation mode, and key_t is a system-derived type that is 64 bits in the 64-bit kernel environment, and
32 bits otherwise.

In cases where 32-bit and 64-bit versions of a kernel extension are to be generated from a single source
base, the kernel extension must be made type-safe for both the LP64 and ILP32 data models. To facilitate
this, the sys/types.h and sys/inttypes.h header files contain fixed-width system-derived types, constants,
and macros. For example, the int8_t, int16_t, int32_t, int64_t fixed-width types are provided along with
constants that specify their maximum values.

Kernel Data Structures

Several global, exported kernel data structures have been changed in the 64-bit kernel, in order to support
scalability and future functionality. These changes include larger structure sizes as a result of being
compiled under the LP64 data model. In porting a kernel extension to the 64-bit kernel environment, these
data structure changes must be considered.

Function Prototypes

Function prototypes are more important in the 64-bit programming environment than the 32-bit
programming environment, because the default return value of an undeclared function is int. If a function
prototype is missing for a function returning a pointer, the compiler will convert the returned value to an int
by setting the high-order word to 0, corrupting the value. In addition, function prototypes allow the compiler
to do more type checking, regardless of the compilation mode.

When compiled in 64-bit mode, system header files define full function prototypes for all kernel services
provided by the 64-bit kernel. By defining the __ FULL_PROTO macro, function prototypes are provided in
32-bit mode as well. It is recommended that function prototypes be provided by including the system
header files, instead of providing a prototype in a source file.

Compiler Options

To compile a kernel extension in 64-bit mode, the -q64 flag must be used. To check for missing function
prototypes, -qinfo=pro can be specified. To compile in ANSI mode, use the -glanglvi=ansi flag. When this
flag is used, additional error checking will be performed by the compiler. To link-edit a kernel extension, the
-b64 option must be used with the Id command.

Note: Do not link kernel extensions using the cc command.

Conditional Compilation

When compiling in 64-bit mode, the compiler automatically defines the macro _ 64BIT__. Kernel
extensions should always be compiled with the _ KERNEL macro defined, and if sys/types.h is included,

20 Kemel Extensions and Device Support Programming Concepts

the macro __64BIT_KERNEL will be defined for kernel extensions being compiled in 64-bit mode. The
__64BIT_KERNEL macro can be used to provide for conditional compilation when compiling kernel
extensions from common source code.

Kernel extensions should not be compiled with the _ KERNSYS macro defined. If this macro is defined, the
resulting kernel extension will not be supported, and binary compatibility will not be assured with future
releases.

Kernel Extension Libraries

The libcsys.a and libsys.a libraries are supported for both 32- and 64-bit kernel extensions. Each archive
contains 32- and 64-bit members. Function prototypes for all the functions in libcsys.a are found in
sys/libcsys.h.

Kernel Execution Mode

Within the 64-bit kernel, all kernel mode subsystems, including kernel extensions, run exclusively in 64-bit
processor mode and are capable of accessing data or executing instructions at any location within the
kernel's 64-bit address space, including those found above the first 4GBs of this address space. This
availability of the full 64-bit address space extends to all kernel entities, including kprocs and interrupt
handlers, and enables the potential for software resource scalability through the introduction of an
enormous kernel address space.

Kernel Address Space

The 64-bit kernel provides a common user and kernel 64-bit address space. This is different from the
32-bit kernel where separate 32-bit kernel and user address spaces exist.

Kernel Address Space Organization

The kernel address space has a different organization under the the 64-bit kernel than under the 32-bit
kernel and extends beyond the 4 GB line. In addition, the organization of kernel space under the 64-bit
kernel can differ between hardware systems. To cope with this, kernel extensions must not have any
dependencies on the locations, relative or absolute, of the kernel text, kernel global data, kernel heap
data, and kernel stack values, and must appropriately type variables used to hold kernel addresses.

Temporary Attachment

The 64-bit kernel provides kernel extensions with the capability to temporarily attach virtual memory
segments to the kernel space for the current thread of kernel mode execution. This capability is also
available on the 32-bit kernel, and is provided through the vm_att and vm_det services.

A total of four concurrent temporary attaches will be supported under a single thread of execution.

Global Regions

The 64-bit kernel provides kernel extensions with the capability to create global regions within the kernel
address space. Once created, a region is globally accessible to all kernel code until it is destroyed.
Regions may be created with unique characteristics, for example, page protection, that suit kernel
extension requirements and are different from the global virtual memory allocated from the kernel_heap.

Global regions are also useful for kernel extensions that in the past have organized their data around
virtual memory segments and require sizes and alignments that are inappropriate for the kernel heap.
Under the 64-bit kernel, this memory can be provided through global regions rather than separate virtual
memory segments, thus avoiding the complexity and performance cost of temporarily attaching virtual
memory segments.

Global regions are created and destroyed with the vm_galloc and vm_gfree kernel services.

Chapter 1. Kernel Environment 21

32-bit Kernel Extension Considerations

The introduction of the scalable 64-bit ABI requires 32-bit kernel extensions to be modified in order to be
used by 64-bit applications on AIX 5.1 and later. Existing AIX 4.3 kernel extensions can still be used
without change for 32-bit applications on AlIX 5.1 and later. If an AIX 4.3 kernel extension exports 64-bit
system calls, the symbols will be marked as invalid for 64-bit processes, and if a 64-bit program requires
these symbols, the program will fail to execute.

Once a kernel extension has been updated to support the new 64-bit ABI, there are two ways to indicate
that the kernel extension can be used by 64-bit processes again. The first way uses a linker flag to mark
the module as a ported kernel extension. Use the bM:LT linker flag to mark the module in this manner.
The second way requires changing the sysconfig or kmod_load call used to load the kernel extension.
When the SYS_64L flag is passed to sysconfig, or the LD_64L flag is passed to kmod_load, the
specified kernel extension will be allowed to export 64-bit system calls.

Kernel extensions in the 64-bit kernel are always assumed to support the 64-bit ABI. The module type,
specified by the -bM linker flag, as well as the SYS_64L and LD_64L flags are always ignored when the
64-bit kernel is running.

32-bit device drivers cannot be used by 64-bit applications unless the DEV_64L flag is set in the d_opts
field. The DEV_64BIT flag is ignored, and in the 64-bit kernel, DEV_64L is ignored as well.

Related Information
[Chapter 15, “Serial Direct Access Storage Device Subsystem”, on page 279|

[‘Locking Kernel Services” on page 52|

[‘Handling Signals While in a System Call” on page 32|

[‘System Calls Available to Kernel Extensions” on page 35

Subroutine References

The [setpri] subroutine, subroutine in AIX 5L Version 5.2 Technical Reference: Base Operating
System and Extensions Volume 2.

Commands References
Thecommand in AIX 5L Version 5.2 Commands Reference, Volume 1.

The command in AIX 5L Version 5.2 Commands Reference, Volume 3.

Technical References

The [clrjmpx] kerel service, [copyin] kernel service, kernel service, [copyout| kernel service,
creatp| kernel service, [disable_lock| kernel service, le_sleep| kernel service kernel service
le_wait] kernel service, [et_wait|kernel service kernel service, [fluword/kernel service, [getexcept]

kernel service, [i_disable| kernel service, el kernel service, l kernel service,|initp| kernel service,
kernel service, [longjmpx| kernel service, |setjmpx|kernel service m kernel service, |sig_ch
kernel service, [subyte| kernel service, [suword| kernel service, luiomove|kernel service, |un|ock|| kernel
service, jureadc| kernel service, kernel service, kernel service, juexdell kernel service,

xmalloc| kernel service, kernel service, [xmdetach kernel service, erneI service,

xmemou!] kernel service in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

The@ structure in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

22 Kemel Extensions and Device Support Programming Concepts

Chapter 2. System Calls

A system call is a routine that allows a user application to request actions that require special privileges.
Adding system calls is one of several ways to extend the functions provided by the kernel.

The distinction between a system call and an ordinary function call is only important in the kernel
programming environment. User-mode application programs are not usually aware of this distinction.

Operating system functions are made available to the application program in the form of programming
libraries. A set of library functions found in a library such as libc.a can have functions that perform some
user-mode processing and then internally start a system call. In other cases, the system call can be
directly exported by the library without any user-space code. For more information on programming
libraries, see [‘Using Libraries” on page 4}

Operating system functions available to application programs can be split or moved between user-mode
functions and kernel-mode functions as required for different releases or machine platforms. Such
movement does not affect the application program. |Chapter 1, “Kernel Environment”, on page 1| provides
more information on how to use system calls in the kernel environment.

Differences Between a System Call and a User Function

A system call differs from a user function in several key ways:

» A system call has more privilege than a normal subroutine. A system call runs with kernel-mode
privilege in the kernel protection domain.

» System call code and data are located in global kernel memory.
» System call routines can create and use kernel processes to perform asynchronous processing.
» System calls cannot use shared libraries or any symbols not found in the kernel protection domain.

Understanding Protection Domains

There are two protection domains in the operating system: the user protection domain and the kernel
mode protection domain.

User Protection Domain

Application programs run in the user protection domain, which provides:
* Read and write access to the data region of the process

* Read access to the text and shared text regions of the process

» Access to shared data regions using the shared memory functions.

When a program is running in the user protection domain, the processor executes instructions in the
problem state, and the program does not have direct access to kernel data.

Kernel Protection Domain

The code in the kernel and kernel extensions run in the kernel protection domain. This code includes
interrupt handlers, kernel processes, device drivers, system calls, and file system code. The processor is
in the kernel protection domain when it executes instructions in the privileged state, which provides:

* Read and write access to the global kernel address space

* Read and write access to the thread’s uthread block and u-block, except when an interrupt handler is
running.

© Copyright IBM Corp. 1997, 2003 23

Code running in the kernel protection domain can affect the execution environments of all processes
because it:

* Can access global system data
» Can use all kernel services
* |s exempt from all security constraints.

Programming errors in the code running in the kernel protection domain can cause the operating system to
fail. In particular, a process’s user data cannot be accessed directly, but must be accessed using the
copyin and copyout kernel services, or their variants. These routines protect the kernel from improperly
supplied user data addresses.

Application programs can gain controlled access to kernel data by making system calls. Access to
functions that directly or indirectly invoke system calls is typically provided by programming libraries,
providing access to operating system functions.

Understanding System Call Execution

When a user program invokes a system call, a system call instruction is executed, which causes the
processor to begin executing the system call handler in the kernel protection domain. This system call
handler performs the following actions:

1. Sets the ut_error field in the uthread structure to 0
2. Switches to a kernel stack associated with the calling thread
3. Calls the function that implements the requested system call.

The system loader maintains a table of the functions that are used for each system call.

The system call runs within the calling thread, but with more privilege because system calls run in the
kernel protection domain. After the function implementing the system call has performed the requested
action, control returns to the system call handler. If the ut_error field in the uthread structure has a
non-zero value, the value is copied to the application’s thread-specific errno variable. If a signal is
pending, signal processing take place, which can result in an application’s signal handler being invoked. If
no signals are pending, the system call handler restores the state of the calling thread, which is resumed
in the user protection domain. For more information on protection domains, see|“‘Understanding Protection|
[Domains” on page 23|

Accessing Kernel Data While in a System Call

A system call can access data that the calling thread cannot access because system calls execute in the
kernel protection domain. The following are the general categories of kernel data:

* The ublock or u-block (user block data) structure:

System calls should use the kernel services to read or modify data traditionally found in the ublock or
uthread structures. For example, the system call handler uses the value of the thread’s ut_error field
to update the thread-specific errno variable before returning to user mode. This field can be read or set
by using the |getuerrori and [setuerror kernel services. The current process ID can be obtained by using
the |getpid| kernel service, and the current thread ID can be obtained by using the kernel
service.

* Global memory

System calls can also access global memory such as the kernel and kernel data regions. These regions
contain the code and static data for the system call as well as the rest of the kernel.

* The stack for a system call:

A system call routine runs on a protected stack associated with a calling thread, which allows a system
call to execute properly even when the stack pointer to the calling thread is invalid. In addition,
privileged data can be saved on the stack without danger of exposing the data to the calling thread.

24 Kemel Extensions and Device Support Programming Concepts

Attention: Incorrectly modifying fields in kernel or user block structures can cause unpredictable results
or system crashes.

Passing Parameters to System Calls

Parameters are passed to system calls in the same way that parameters are passed to other functions,
but some additional calling conventions and limitations apply.

First, system calls cannot have floating-point parameters. In fact, the operating system does not preserve
the contents of floating-point registers when a system call is preempted by another thread, so system calls
cannot use any floating-point operations.

Second, a system call in the 32-bit kernel cannot return a long long value to a 32-bit application. In
32-bit mode, long long values are returned in a pair of general purpose registers, GPR3 and GPR4. Only
GPRS3 is preserved by the system call handler before it returns to the application. A system call in the
32-bit kernel can return a 64—bit value to a 64—bit application, but the kernel service must
used.

Third, since a system call runs on its own stack, the number of arguments that can be passed to a system
call is limited. The operating system linkage conventions specify that up to eight general purpose registers
are used for parameter passing. If more parameters exist than will fit in eight registers, the remaining
parameters are passed in the stack. Because a system call does not have direct access to the
application’s stack, all parameters for system calls must fit in eight registers.

Some parameters are passed in multiple registers. For example, 32-bit applications pass long long
parameters in two registers, and structures passed by value can require multiple registers, depending on
the structure size. The writer of a system call should be familiar with the way parameters are passed by
the compiler and ensure that the 8-register limit is not exceeded. For more information on parameter
calling conventions, see [Subroutine Linkage Convention|in Assembler Language Reference.

Finally, because 32- and 64-bit applications are supported by both the 32- and 64-bit kernels, the data
model used by the kernel does not always match the data model used by the application. When the data
models do not match, the system call might have to perform extra processing before parameters can be
used.

Regardless of whether the 32-bit or 64-bit kernel is running, the interface that is provided by the kernel to
applications must be identical. This simplifies the development of applications and libraries, because their
behavior does not depend on the mode of the kernel. On the other hand, system calls might need to know
the mode of the calling process. The macro can be used to determine if the caller of a system call
is a 64-bit process. For more information on the 1S64U macro, see[IS64U Kernel Service|in AIX 5L
Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

The ILP32 and LP64 data models differ in the way that pointers and long and long long parameters are
treated when used in structures or passed as functional parameters. The following tables summarize the
differences.

Type Size Used as Parameter
long 32 bits One register
pointer 32 bits One register
long long 64 bits Two registers
Type Size Used as Parameter
long 64 bits One register

Chapter 2. System Calls 25

Type Size Used as Parameter

pointer 64 bits One register

long long 64 bits One register

System calls using these types must take the differing data models into account. The treatment of these
types depends on whether they are used as parameters or in structures passed as parameters by value or
by reference.

Passing Scalar Parameters to System Calls

Scalar parameters (pointers and integral values) are passed in registers. The combinations of kernel and
application modes are:

» |32—bit application support on the 64—bit kernel
» |64—bit application support on the 64—bit kernel
* |32—bit application support on the 32—bit kernel
[64—bit application support on the 32—bit kernel|

32-bit Application Support on the 64-bit Kernel
When a 32-bit application makes a system call to the 64-bit kernel, the system call handler zeros the

high-order word of each parameter register. This allows 64-bit system calls to use pointers and unsigned
long parameters directly. Signed and unsigned integer parameters can also be used directly by 64-bit
system calls. This is because in 64-bit mode, the compiler generates code that sign extends or zero fills
integers passed as parameters. Similar processing is performed for char and short parameters, so these
types do not require any special handling either. Only signed long and long long parameters need
additional processing.

Signed long Parameters: To convert a 32-bit signed long parameter to a 64-bit value, the 32-bit value
must be sign extended. The LONG32TOLONG64 macro is provided for this operation. It converts a 32-bit
signed value into a 64-bit signed value, as shown in this example:

syscalll(long incr)

{
/* If the caller is a 32-bit process, convert
* 'incr' to a signed, 64-bit value.
*/
if (11S64U)
incr = LONG32TOLONG64 (incr);

}

If a parameter can be either a pointer or a symbolic constant, special handling is needed. For example, if
-1 is passed as a pointer argument to indicate a special case, comparing the pointer to -1 will fail, as will
unconditionally sign-extending the parameter value. Code similar to the following should be used:

syscall2(void *ptr)
{

/* If caller is a 32-bit process,

* check for special parameter value.

*/

if (11S64U && (LONG32TOLONG64(ptr) == -1)
ptr = (void *)-1;

if (ptr == (void *)-1)

special_handling();
else {

26 Kemel Extensions and Device Support Programming Concepts

}
Similar treatment is required when an unsigned long parameter is interpreted as a signed value.

long long Parameters: A 32-bit application passes a long long parameter in two registers, while a
64-bit kernel system call uses a single register for a long long parameter value.

The system call function prototype cannot match the function prototype used by the application. Instead,
each long long parameter should be replaced by a pair of uintptr_t parameters. Subsequent parameters
should be replaced with uintptr_t parameters as well. When the caller is a 32-bit process, a single 64-bit
value will be constructed from two consecutive parameters. This operation can be performed using the
INTSTOLLONG macro. For a 64-bit caller, a single parameter is used directly.

For example, suppose the application function prototype is:
syscall3(void *ptr, long Tong lenl, long long len2, int size);

The corresponding system call code should be similar to:

syscall3(void *ptr, uintptr_t L1,
uintptr_t L2, uintptr_t L3,
uintptr_t L4, uintptr_t L5)

long Tenl;
long len2;
int size;

/* If caller is a 32-bit application, lenl
and Ten2 must be constructed from pairs of
* parameters. Otherwise, a single parameter
* can be used for each length.

*

/

*

if (11S64U) {

lenl = INTSTOLLONG(L1, L2);
len2 = INTSTOLLONG(L3, L4);
size = (int)L5;

}

else {
lenl = (Tong)Ll
len2 = (long)L2
size = (int)L3;

}

64-bit Application Support on the 64-bit Kernel

For the most part, system call parameters from a 64-bit application can be used directly by 64-bit system
calls. The system call handler does not modify the parameter registers, so the system call sees the same
values that were passed by the application. The only exceptions are the pid_t and key_t types, which are
32-bit signed types in 64-bit applications, but are 64-bit signed types in 64-bit system calls. Before these
two types can be used, the 32-bit parameter values must be sign extended using the LONG32TOLONG64
macro.

32-bit Application Support on the 32-bit Kernel

No special parameter processing is required when 32-bit applications call 32-bit system calls. Application
parameters can be used directly by system calls.

Chapter 2. System Calls 27

64-bit Application Support on the 32-bit Kernel

When 64-bit applications make system calls, 64-bit parameters are passed in registers. When 32-bit
system calls are running, the high-order words of the parameter registers are not visible, so 64-bit
parameters cannot be obtained directly. To allow 64-bit parameter values to be used by 32-bit system
calls, the system call handler saves the high-order word of each 64-bit parameter register in a save area
associated with the current thread. If a system call needs to obtain the full 64-bit value, use the

get64bitparm| kernel service.

If a 64-bit parameter is an address, the system call might not be able to use the address directly. Instead,
it might be necessary to map the 64-bit address into a 32-bit address, which can be passed to various
kernel services.

Access to 64-bit System Call Parameter Values

When a 32-bit system call function is called by the system call handler on behalf of a 64-bit process, the
parameter registers are treated as 32-bit registers, and the system call function can only see the low-order
word of each parameter. For integer, char, or short parameters, the parameter can be used directly.
Otherwise, the get64bitparm kernel service must be called to obtain the full 64-bit parameter value. This
kernel service takes two parameters: the zero-based index of the parameter to be obtained, and the value
of the parameter as seen by the system call function. This value is the low-order word of the original 64-bit
parameter, and it will be combined with the high-order word that was saved by the system call handler,
allowing the original 64-bit parameter to be returned as a long long value.

For example, suppose that the first and third parameters of a system call are 64-bit values. The full
parameter values are obtained as shown:
#include <sys/types.h>

syscall4(char *str, int fd, long count)

{
ptr6od stro64d;
int64 count64;

if (1S64U)
{

/* get 64-bit address. */
str64 = getbdbitparm(str, 0);

/* get 64-bit value =/
count64 = get64bitparm(count, 2);

}

The get64bitparm kernel service must not be used when the caller is a 32-bit process, nor should it be
used when the parameter type is an int or smaller. In these cases, the system call parameter can be used
directly. For example, the fd parameter in the previous example can be used direcily.

Using 64-bit Address Parameters

When a system call parameter is a pointer passed from a 64-bit application, the full 64-bit address is
obtained by calling the get64bitparm kernel service. Thereafter, consideration must be given as to how
the address will be used.

A system call can use a 64-bit address to access user-space memory by calling one of the 64-bit
data-movement kernel services, such as copyin64, copyout64, or copyinstr64. Alternatively, if the user
address is to be passed to kernel services that expect 32-bit addresses, the 64-bit address should be
mapped to a 32-bit address.

Mapping associates a 32-bit value with a 64-bit address. This 32-bit value can be passed to kernel
services in the 32-bit kernel that expect pointer parameters. When the 32-bit value is passed to a

28 Kemel Extensions and Device Support Programming Concepts

data-movement kernel service, such as copyin or copyout, the original 64-bit address will be obtained
and used. Address mapping allows common code to be used for many kernel services. Only the
data-movement routines need to be aware of the address mapping.

Consider a system call that takes a path name and a buffer pointer as parameters. This system call will
use the path name to obtain information about the file, and use the buffer pointer to return the information.
Because pathname is passed to the lookupname kernel service, which takes a 32-bit pointer, the
pathname parameter must be mapped. The buffer address can be used directly. For example:

int syscalls (

char *pathname,
char xpuffer)

ptr64 upathanme;
ptré4 ubuffer;

struct vnode *vp;
struct cred *crp;

/* If 64-bit application, obtain 64-bit parameter
* values and map "pathname".

*/

if (IS64U)

{

upathname = get64bitparm(pathname, 0);

/* The as_remap64() call modifies pathname. */
as_remap64 (upathname, MAXPATH, &pathname);

ubuffer = get64bitparm(buffer, 1);
else

/* For 32-bit process, convert 32-bit address
* 64-bit address.
*/
ubuffer = (ptr64)buffer;
}

crp = crref();
rc = lookupname(pathname, USR, L_SEARCH, NULL, &vp, crp);
getinfo(vp, &local buffer);

/* Copy information to user space,

* for both 32-bit and 64-bit applications.

*/

rc = copyout64(&local_buffer, ubuffer,
strlen(local_buffer));

}

The function prototype for the get64bitparm kernel service is found in the sys/remap.h header file. To
allow common code to be written, the get64bitparm kernel service is defined as a macro when compiling
in 64-bit mode. The macro simply returns the specified parameter value, as this value is already a full
64-bit value.

In some cases, a system call or kernel service will need to obtain the original 64-bit address from the
32-bit mapped address. The as_unremap64 kernel service is used for this purpose.

Chapter 2. System Calls 29

Returning 64-bit Values from System Calls

For some system calls, it is necessary to return a 64-bit value to 64-bit applications. The 64-bit application
expects the 64-bit value to be contained in a single register. A 32-bit system call, however, has no way to
set the high-order word of a 64—bit register.

The saveretval64 kernel service allows a 32-bit system call to return a 64-bit value to a 64-bit application.
This kernel service takes a single long long parameter, saves the low-order word (passed in GPR4) in a
save area for the current thread, and returns the original parameter. Depending on the return type of the
system call function, this value can be returned to the system call handler, or the high-order word of the
full 64-bit return value can be returned.

After the system call function returns to the system call handler, the original 64-bit return value will be
reconstructed in GPR3, and returned to the application. If the saveretval64 kernel service is not called by
the system call, the high-order word of GPRS3 is zeroed before returning to the application. For example:

void * syscall6 (

int arg)
{
if (1S64U) {
ptr64 rc = f(arg);
saveretval64(rc); /* Save low-order word x/

return (void *)(rc >> 32); /* Return high-order word as
* 32-bit address */
}

else {
return (void *)f(arg);
1

}

Passing Structure Parameters to System Calls

When structures are passed to or from system calls, whether by value or by reference, the layout of the
structure in the application might not match the layout of the same structure in the system call. There are
two ways that system calls can process structures passed from or to applications: structure reshaping and
dual implementation.

Structure Reshaping
Structure reshaping allows system calls to support both 32- and 64-bit applications using a single system
call interface and using code that is predominately common to both application types.

Structure reshaping requires defining more than one version of a structure. One version of the structure is
used internally by the system call to process the request. The other version should use size-invariant
types, so that the layout of the structure fields matches the application’s view of the structures. When a
structure is copied in from user space, the application-view structure definition is used. The structure is
reshaped by copying each field of the application’s structure to the kernel’s structure, converting the fields
as required. A similar conversion is performed on structures that are being returned to the caller.

Structure reshaping is used for structures whose size and layout as seen by an application differ from the
size and layout as seen by the system call. If the system call uses a structure definition with fields big
enough for both 32- and 64-bit applications, the system call can use this structure, independent of the
mode of the caller.

While reshaping requires two versions of a structure, only one version is public and visible to the end user.
This version is the natural structure, which can also be used by the system call if reshaping is not needed.
The private version should only be defined in the source file that performs the reshaping. The following
example demonstrates the techniques for passing structures to system calls that are running in the 64-bit
kernel and how a structure can be reshaped:

30 Kemel Extensions and Device Support Programming Concepts

/* Public definition */
struct foo {

int a;

long b;
}s

/* Private definition--matches 32-bit
* application's view of the data structure. =/
struct foo32 {
int a;
int b;
1

syscall7(struct foo *f)
{

struct foo fl;
struct foo32 f2;

if (I1S64U()) {
copyin(&fl, f, sizeof(fl));

else {
copyin(&f2, f, sizeof(f2));
fl.a = f2.a;
fl.b = f2.b;

}

/* Common structure fl1 used from now on. =*/

}

Dual Implementation: The dual implementation approach involves separate code paths for calls from
32-bit applications and calls from 64-bit applications. Similar to reshaping, the system call code defines a
private view of the application’s structure. With dual implementations, the function syscall7 could be
rewritten as:

syscall8(struct foo *f)
{

struct foo fl;
struct foo32 f2;

if (1S64U()) {
copyin(&fl, f, sizeof(fl));
/* Code for 64-bit process uses fl */

}

else {
copyin(&f2, f, sizeof(f2));
/* Code for 32-bit process uses 2 %/

}

Dual implementation is most appropriate when the structures are so large that the overhead of reshaping
would affect the performance of the system call.

Passing Structures by Value: When structures are passed by value, the structure is loaded into as
many parameter registers as are needed. When the data model of an application and the data model of
the kernel extension differ, the values in the registers cannot be used directly. Instead, the registers must
be stored in a temporary variable. For example:

Chapter 2. System Calls 31

Note: This example builds upon the structure definitions defined in ['Dual Implementation” on page 31|.
/* Application prototype: syscall9(struct foo f); =/

syscall9(unsigned long al, unsigned long al)
{
union {
struct foo fl; /* Structure for 64-bit caller. %/
struct foo32 f2; /* Structure for 32-bit caller. */
unsigned long p64[2]; /* Overlay for parameter registers
* when caller is 64-bit program
*/
unsigned int p32[2]; /* Overlay for parameter registers
* when caller is 32-bit program
*/
} uarg;
if (I1S64U()) {
uarg.p64[0] = al;
uarg.p64[1] = a2;
/* Now uarg.fl can be used */

1
else {
uarg.p32[0] = al;
uarg.p32[1] = a2;
/* Now uarg.f2 can be used */

}

Comparisons to AIX 4.3
In AIX 4.3, the conventions for passing parameters from a 64-bit application to a system call required

user-space library code to perform some of the parameter reshaping and address mapping. In AIX 5.1 and
later, all parameter reshaping and address mapping should be performed by the system call, eliminating
the need for kernel-specific library code. In fact, user-space address mapping is no longer supported. In
most cases, system calls can be implemented without any application-specific library code.

Preempting a System Call

The kernel allows a thread to be preempted by a more favored thread, even when a system call is
executing. This capability provides better system responsiveness for large multi-user systems.

Because system calls can be preempted, access to global data must be serialized. Kernel locking
services, such as [simple_lock| and [simple_unlock, are frequently used to serialize access to kernel data.
A thread can be preempted even when it owns a lock. If multiple locks are obtained by system calls, a
technique must be used to prevent multiple threads from deadlocking. One technique is to define a lock
hierarchy. A system call must never return while holding a lock. For more information on locking, see
[‘Understanding Locking” on page 13|

Handling Signals While in a System Call

Signals can be generated asynchronously or synchronously with respect to the thread that receives the
signal. An asynchronously generated signal is one that results from some action external to a thread. It is
not directly related to the current instruction stream of that thread. Generally these are generated by other
threads or by device drivers.

32 Kemel Extensions and Device Support Programming Concepts

A synchronously generated signal is one that results from the current instruction stream of the thread.
These signals cause interrupts. Examples of such cases are the execution of an illegal instruction, or an
attempted data access to nonexistent address space.

Delivery of Signals to a System Call

Delivery of signals to a thread only takes place when a user application is about to be resumed in the user
protection domain. Signals cannot be delivered to a thread if the thread is in the middle of a system call.
For more information on signal delivery for kernel processes, see r‘Using Kernel Processes” on page 8l

Asynchronous Signals and Wait Termination

An asynchronous signal can alter the operation of a system call or kernel extension by terminating a long
wait. Kernel services such as le_block_thread, [e_sleep_thread| and [et_wait|are affected by signals. The
following options are provided when a signal is posted to a thread:

* Return from the kernel service with a return code indicating that the call was interrupted by a signal

« Call the kernel service to resume execution at a previously saved context in the event of a
signal

* Ignore the signal using the short-wait option, allowing the kernel service to return normally.

The sleep kernel service, provided for compatibility, also supports the PCATCH and SWAKEONSIG
options to control the response to a signal during the sleep function.

Previously, the kernel automatically saved context on entry to the system call handler. As a result, any long
(interruptible) sleep not specifying the PCATCH option returned control to the saved context when a signal
interrupted the wait. The system call handler then set the errno global variable to EINTR and returned a
return code of -1 from the system call.

The kernel, however, requires each system call that can directly or indirectly issue a sleep call without the
PCATCH option to set up a saved context using the kernel service. This is done to avoid
overhead for system calls that handle waits terminated by signals. Using the setjmpx service, the system
can set up a saved context, which sets the system call return code to a -1 and the ut_error field to
EINTR, if a signal interrupts a long wait not specifying return-from-signal.

It is probably faster and more robust to specify return-from-signal on all long waits and use the return
code to control the system call return.

Stacking Saved Contexts for Nested setjmpx Calls

The kernel supports nested calls to the kernel service. It implements the stack of saved contexts
by maintaining a linked list of context information anchored in the machine state save area. This area is in
the user block structure for a process. Interrupt handlers have special machine state save areas.

An initial context is set up for each process by the kernel service for kernel processes and by the
subroutine for user processes. The process terminates if that context is resumed.

Handling Exceptions While in a System Call

Exceptions are detected by the processor as a result of the current instruction stream. They
therefore take effect synchronously with respect to the current thread.

The default exception handler generates a signal if the process is in a state where signals can be
delivered immediately. Otherwise, the default exception handler generates a system dump.

Chapter 2. System Calls 33

Alternative Exception Handling Using the setjmpx Kernel Service

For certain types of exceptions, a system call can specify unique exception-handler routines through calls
to the service. The exception handler routine is saved as part of the stacked saved context. Each
exception handler is passed the exception type as a parameter.

The exception handler returns a value that can specify any of the following:

» The process should resume with the instruction that caused the exception.

* The process should return to the saved context that is on the top of the stack of contexts.
* The exception handler did not handle the exception.

If the exception handler did not handle the exception, then the next exception handler in the stack of
contexts is called. If none of the stacked exception handlers handle the exception, the kernel performs
default exception handling. The setjmpx and kernel services help implement exception
handlers.

Understanding Nesting and Kernel-Mode Use of System Calls

The operating system supports nested system calls with some restrictions. System calls (and any other
kernel-mode routines running under the process environment of a user-mode process) can use system
calls that pass all parameters by value. System calls and other kernel-mode routines must not start system
calls that have one or more parameters passed by reference. Doing so can result in a system crash. This
is because system calls with reference parameters assume that the referenced data area is in the user
protection domain. As a result, these system calls must use special kernel services to access the data.
However, these services are unsuccessful if the data area they are trying to access is not in the user
protection domain.

This restriction does not apply to kernel processes. User-mode data access services can distinguish
between kernel processes and user-mode processes in kernel mode. As a result, these services can
access the referenced data areas accessed correctly when the caller is a kernel process.

Kernel processes cannot call the or [exed] system calls, among others. A list of the base operating
system calls available to system calls or other routines in kernel mode is provided in ['System Calls
[Available to Kernel Extensions” on page 35}

Page Faulting within System Calls

Attention: A page fault that occurs while external interrupts are disabled results in a system crash.
Therefore, a system call should be programmed to ensure that its code, data, and stack are pinned before
it disables external interrupts.

Most data accessed by system calls is pageable by default. This includes the system call code, static data,
dynamically allocated data, and stack. As a result, a system call can be preempted in two ways:

» By a more favored process, or by an equally favored process when a time slice has been exhausted
» By losing control of the processor when it page faults

In the latter case, even less-favored processes can run while the system call is waiting for the paging 1/0
to complete.

34 Kemel Extensions and Device Support Programming Concepts

Returning Error Information from System Calls

Error information returned by system calls differs from that returned by kernel services that are not system
calls. System calls typically return a special value, such as -1 or NULL, to indicate that an error has
occurred. When an error condition is to be returned, the ut_error field should be updated by the system
call before returning from the system call function. The ut_error field is written using thekernel
service.

Before actually calling the system call function, the system call handler sets the ut_error field to 0. Upon
return from the system call function, the system call handler copies the value found in ut_error into the
thread-specific errno variable if ut_error was nonzero. After setting the errno variable, the system call
handler returns to user mode with the return code provided by the system call function.

Kernel-mode callers of system calls must be aware of this return code convention and use the
kernel service to obtain the error value when an error indication is returned by the system call. When
system calls are nested, the system call function called by the system call handler can return the error
value provided by the nested system call function or can replace this value with a new one by using the
setuerror kernel service.

System Calls Available to Kernel Extensions

The following system calls are grouped according to which subroutines call them:
+ [System calls available to all kernel extensions|
+ [System calls available to kernel processes only|

Note: System calls are not available to interrupt handlers.

System Calls Available to All Kernel Extensions

Gets the unique identifier of the current host.

Gets the process ID, process group ID, and parent process ID.
Gets the process ID, process group ID, and parent process ID.
Returns the scheduling priority of a process.

Gets or sets the nice value.

Gets a set of semaphores.

Sets the process user IDs.

Sets the process group IDs.

Sets the unique identifier of the current host.

Sets the process group IDs.

Sets the process group IDs.

Sets a process scheduling priority to a constant value.

Gets or sets the nice value.

Sets the process user IDs.

Creates a session and sets the process group ID.

Sets the process user IDs.

ulimit Sets and gets user limits.
umas Sets and gets the value of the file-creation mask.

System Calls Available to Kernel Processes Only

Disclaims the content of a memory address range.
Gets the name of the current domain.

Gets the concurrent group set of the current process.
Gets the name of the local host.

Chapter 2. System Calls 35

Gets the name of the peer socket.

Controls maximum system resource consumption.

Displays information about resource use.

Gets the socket name.

Gets options on sockets.

Gets and sets the current value for the specified system-wide timer.
Manipulates the expiration time of interval timers.

Manipulates the expiration time of interval timers.

Gets and sets the current value for the specified system-wide timer.
Controls semaphore operations.

Performs semaphore operations.

Sets the name of the current domain.

Sets the concurrent group set of the current process.

Sets the name of the current host.

Controls maximum system resource consumption.

Gets and sets the current value for the specified systemwide timer.
Attaches a shared memory segment or a mapped file to the current process.
Controls shared memory operations.

Detaches a shared memory segment.

Gets shared memory segments.

Specifies the action to take upon delivery of a signal.

Sets the current signal mask.

Sets and gets signal stack context.

Atomically changes the set of blocked signals and waits for a signal.
Provides a service for controlling system/kernel configuration.
Provides a service for examining or setting kernel run-time tunable parameters.
Displays information about resource use.

Gets the name of the current system.

Gets the name of the current system.

Gets and sets user information about the owner of the current process.
Sets file access and modification times.

Related Information

[‘Handling Signals While in a System Call’ on page 32|

[‘Understanding Protection Domains” on page 23

[‘Understanding Kernel Threads” on page 6|

[‘Using Kernel Processes” on page 8|

[Using Libraries” on page 4|

[“Understanding Locking” on page 13|

[Locking Kernel Services” on page 52|

[‘Understanding Interrupts” on page 49|

Subroutine References

The [fork| subroutine in AIX 5L Version 5.2 Technical Reference: Base Operating System and Extensions
Volume 1.

36 Kemel Extensions and Device Support Programming Concepts

Technical References

The [e_sleep| kernel service, [e_sleepl| kernel service, [et_wait kernel service, [getuerrod kernel service,
|initp| kernel service, |lockl| kernel service, |Iongjmp§| kernel service,|setjmp)_<| kernel service, |§etuerro[|
kernel service, lunlockl|

kernel service in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems
Volume 1.

Chapter 2. System Calls 37

38 Kemel Extensions and Device Support Programming Concepts

Chapter 3. Virtual File Systems

The virtual file system (VFS) interface, also known as the v-node interface, provides a bridge between the
physical and logical file systems. The information that follows discusses the virtual file system interface, its
data structures, and its header files, and explains how to configure a virtual file system.

There are two essential components in the file system:

Logical file system Provides support for the system call interface.
Physical file system Manages permanent storage of data.

The interface between the physical and logical file systems is the virtual file system interface. This
interface allows support for multiple concurrent instances of physical file systems, each of which is called a
file system implementation. The file system implementation can support storing the file data in the local
node or at a remote node. For more information on the virtual filesystem interface, see ['Understanding the
|Virtual File System Interface” on page 41}

The virtual file system interface is usually referred to as the v-node interface. The v-node structure is the
key element in communication between the virtual file system and the layers that call it. For more
information on v-nodes, see [‘Understanding Virtual Nodes (V-nodes)” on page 40}

Both the virtual and logical file systems exist across all of this operating system family’s platforms.

Logical File System Overview

The logical file system is the level of the file system at which users can request file operations by system
call. This level of the file system provides the kernel with a consistent view of what might be multiple
physical file systems and multiple file system implementations. As far as the logical file system is
concerned, file system types, whether local, remote, or strictly logical, and regardless of implementation,
are indistinguishable.

A consistent view of file system implementations is made possible by the virtual file system abstraction.
This abstraction specifies the set of file system operations that an implementation must include in order to
carry out logical file system requests. Physical file systems can differ in how they implement these
predefined operations, but they must present a uniform interface to the logical file system. A list of file
system operators can be found at[‘Requirements for a File System Implementation” on page 41| For more
information on the virual file system, see|*Virtual File System Overview” on page 40|

Each set of predefined operations implemented constitutes a virtual file system. As such, a single physical
file system can appear to the logical file system as one or more separate virtual file systems.

Virtual file system operations are available at the logical file system level through the virtual file system
switch. This array contains one entry for each virtual file system, with each entry holding entry point
addresses for separate operations. Each file system type has a set of entries in the virtual file system
switch.

The logical file system and the virtual file system switch support other operating system file-system access
semantics. This does not mean that only other operating system file systems can be supported. It does
mean, however, that a file system implementation must be designed to fit into the logical file system
model. Operations or information requested from a file system implementation need be performed only to
the extent possible.

Logical file system can also refer to the tree of known path names in force while the system is running. A
virtual file system that is mounted onto the logical file system tree itself becomes part of that tree. In fact, a

© Copyright IBM Corp. 1997, 2003 39

single virtual file system can be mounted onto the logical file system tree at multiple points, so that nodes
in the virtual subtree have multiple names. Multiple mount points allow maximum flexibility when
constructing the logical file system view.

Component Structure of the Logical File System
The logical file system is divided into the following components:
» System calls
Implement services exported to users. System calls that carry out file system requests do the following:

— Map the user’s parameters to a file system object. This requires that the system call component use
|the v-node (virtual node) component| to follow the object’s path name. In addition, the system call
must resolve a file descriptor or establish implicit (mapped) references using the open file
component.

— Verify that a requested operation is applicable to the type of the specified object.
— Dispatch a request to the file system implementation to perform operations.
* Logical file system file routines

Manage open file table entries and per-process file descriptors. An open file table entry records the
authorization of a process’s access to a file system object. A user can refer to an open file table ent
through a file descriptor or by accessing the virtual memory to which the file was mapped. The
[file system routines| are those kernel services, such as|fp_ioctl|and [fp_select, that begin with the prefix
fp_.

* v-nodes

Provide system calls with a mechanism for local name resolution. Local name resolution allows the
logical file system to access multiple file system implementations through a uniform name space.

Virtual File System Overview

The virtual file system is an abstraction of a physical file system implementation. It provides a consistent
interface to multiple file systems, both local and remote. This consistent interface allows the user to view
the directory tree on the running system as a single entity even when the tree is made up of a number of
diverse file system types. The interface also allows the logical file system code in the kernel to operate
without regard to the type of file system being accessed. For more information on the logical file system,
see [‘Logical File System Overview” on page 39|

A virtual file system can also be viewed as a subset of the logical file system tree, that part belonging to a
single file system implementation. A virtual file system can be physical (the instantiation of a physical file
system), remote, or strictly logical. In the latter case, for example, a virtual file system need not actually be
a true file system or entail any underlying physical storage device.

A virtual file system mount point grafts a virtual file system subtree onto the logical file system tree. This
mount point ties together a mounted-over v-node (virtual node) and the root of the virtual file system
subtree. A mounted-over, or stub, v-node points to a virtual file system, and the mounted VFS points to the
v-node it is mounted over.

Understanding Virtual Nodes (V-nodes)

A virtual node (v-node) represents access to an object within a virtual file system. V-nodes are used only
to translate a path name into a generic node (g-node). For more information on g-nodes, see
|“Understanding Generic I-nodes (G-nodes)” on page 41l

A v-node is either created or used again for every reference made to a file by path name. When a user
attempts to open or create a file, if the VFS containing the file already has a v-node representing that file,
a use count in the v-node is incremented and the existing v-node is used. Otherwise, a new v-node is
created.

40 Kemel Extensions and Device Support Programming Concepts

Every path name known to the logical file system can be associated with, at most, one file system object.
However, each file system object can have several names. Multiple names appear in the following cases:

* The object can appear in multiple virtual file systems. This can happen if the object (or an ancestor) is
mounted in different virtual file systems using a local file-over-file or directory-over-directory mount.

» The object does not have a unique name within the virtual file system. (The file system implementation
can provide synonyms. For example, the use of links causes files to have more than one name.
However, opens of synonymous paths do not cause multiple v-nodes to be created.)

Understanding Generic I-nodes (G-nodes)

A generic i-node (g-node) is the representation of an object in a file system implementation. There is a
one-to-one correspondence between a g-node and an object in a file system implementation. Each g-node
represents an object owned by the file system implementation.

Each file system implementation is responsible for allocating and destroying g-nodes. The g-node then
serves as the interface between the logical file system and the file system implementation. Calls to the file
system implementation serve as requests to perform an operation on a specific g-node.

A g-node is needed, in addition to the file system i-node, because some file system implementations may
not include the concept of an i-node. Thus the g-node structure substitutes for whatever structure the file
system implementation may have used to uniquely identify a file system object.

The logical file system relies on the file system implementation to provide valid data for the following fields
in the g-node:

gn_type Identifies the type of object represented by the g-node.
gn_ops Identifies the set of operations that can be performed on the object.

Understanding the Virtual File System Interface

Operations that can be performed upon a virtual file system and its underlying objects are divided into two
categories. Operations upon a file system implementation as a whole (not requiring the existence of an
underlying file system object) are called vfs operations. Operations upon the underlying file system objects
are called v-node (virtual node) operations. Before writing specific virtual file system operations, it is
important to note the requirements for a file system implementation.

Requirements for a File System Implementation
File system implementations differ in how they implement the predefined operations. However, the logical

file system expects that a file system implementation meets the following criteria:
» All vfs and v-node operations must supply a return value:
— Areturn value of 0 indicates the operation was successful.

— A nonzero return value is interpreted as a valid error number (taken from the
lusr/include/sys/errno.h file) and returned through the system call interface to the application
program.

» All vfs operations must exist for each file system type, but can return an error upon startup. The
following are the necessary vfs operations:

— |vfs_cntl
— |vfs_mount
— |vfs_root
— |vfs_statfs|

— |vfs_unmoun
— |vfs_vget

i}

Chapter 3. Virtual File Systems 41

— vfs_quotactl

For a complete list of file system operations, see [List of Virtual File System Operations|in AIX 5L Version
5.2 Technical Reference: Kernel and Subsystems Volume 1.

Important Data Structures for a File System Implementation
There are two important data structures used to represent information about a virtual file system, the vfs

structure and the v-node. Each virtual file system has a vfs structure in memory that describes its type,
attributes, and position in the file tree hierarchy. Each file object within that virtual file system can be
represented by a v-node.

The vfs structure contains the following fields:

vfs_flag Contains the state flags:

VFS_DEVMOUNT
Indicates whether the virtual file system has a physical mount structure underlying it.

VFS_READONLY
Indicates whether the virtual file system is mounted read-only.

vfs_type Identifies the type of file system implementation. Possible values for this field are described in
the Jlusr/include/sys/vmount.h|file.

vfs_ops Points to the set of operations for the specified file system type.

vfs_mntdover Points to the mounted-over v-node.

vfs_data Points to the file system implementation data. The interpretation of this field is left to the

discretion of the file system implementation. For example, the field could be used to point to
data in the kernel extension segment or as an offset to another segment.

vfs_mdata Records the user arguments to thecall that created this virtual file system. This field
has a time stamp. The user arguments are retained to implement thecall, which
replaces the /etc/mnttab table.

Understanding Data Structures and Header Files for Virtual File
Systems

These are the data structures used in implementing virtual file systems:
* The structure contains information about a virtual file system as a single entity.

« The[vnode structure contains information about a file system object in a virtual file system. There can
be multiple v-nodes for a single file system object.

« The structure contains information about a file system object in a physical file system. There is
only a single g-node for a given file system object.

» The gfs structure contains information about a file system implementation. This is distinct from the vfs
structure, which contains information about an instance of a virtual file system.

The header files contain the structure definitions for the key components of the virtual file system
abstraction. Understanding the contents of these files and the relationships between them is essential to
an understanding of virtual file systems. The following are the necessary header files:

* sys/vfs.h

» sys/gfs.h

» sys/vnode.h
* sys/vmount.h

42 Kemel Extensions and Device Support Programming Concepts

Configuring a Virtual File System

The kernel maintains a table of active |fi|e systeﬂ types. A file system implementation must be registered
with the kernel before a request to |mount| a|virtual file system| (VFS) of that type can be honored. Two
kernel services, |gfsadd|and |gfsdel, are supplied for adding a file system type to the gfs file system table.

These are the steps that must be followed to get a file system configured.

1. A user-level routine must call the subroutine requesting that the code for the virtual file
system be loaded.

2. The user-level routine must then request, again by calling the sysconfig subroutine, that the virtual file
system be configured. The name of a VFS-specific configuration routine must be specified.

3. The virtual file system-specific configuration routine calls the gfsadd kernel service to have the new file
system added to the gfs table. The gfs table that the configuration routine passes to the gfsadd
kernel service contains a pointer to an initialization routine. This routine is then called to do any further
virtual file system-specific initialization.

4. The file system is now operational.

Related Information

[‘Logical File System Kernel Services” on page 55|

[‘Understanding Data Structures and Header Files for Virtual File Systems” on page 42|

[‘Configuring a Virtual File System’]

[‘Understanding Protection Domains” on page 23

[List of Virtual File System Operationsg in AlIX 5L Version 5.2 Technical Reference: Kernel and Subsystems
Volume 1.

Subroutine References
The subroutine, subroutine, subroutine in AIX 5L Version 5.2 Technical

Reference: Base Operating System and Extensions Volume 1.

Files References
The [vmount.h file in AIX 5L Version 5.2 Files Reference.

Technical References

The |gfsadd| kernel service, kernel service in AIX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 1.

Chapter 3. Virtual File Systems 43

44 Kemel Extensions and Device Support Programming Concepts

Chapter 4. Kernel Services

Kernel services are routines that provide the runtime kernel environment to programs executing in kernel
mode. Kernel extensions call kernel services, which resemble library routines. In contrast, application
programs call library routines.

Callers of kernel services execute in kernel mode. They therefore share with the kernel the responsibility
for ensuring that system integrity is not compromised.

For a list of system calls that kernel extensions are allowed to use, see [‘System Calls Available to Kernel|
[Extensions” on page 35|

Categories of Kernel Services

Following are the categories of kernel services:

+ [/O Kernel Services’]

« [“Kernel Extension and Device Driver Management Services” on page 51|
* [‘Locking Kernel Services” on page 52
. “‘Logical File System Kernel Services” on page 55|
* |“Memory Kernel Services” on page 57|
- [‘Message Queue Kernel Services” on page 63|
* |“Network Kernel Services” on page 64
* [“Process and Exception Management Kernel Services” on page 66|
[‘RAS Kernel Services” on page 69|

[Security Kernel Services” on page 69|

[“Timer and Time-of-Day Kernel Services” on page 70|

[“Virtual File System (VFS) Kernel Services” on page 72

I/O Kernel Services

The 1/O kernel services fall into the following categories:
« [Buffer Cache services|

+ [Character I/0O services|

+ [Interrupt Management services|

+ [Memory Buffer (mbuf) serviceg|

+ [DMA Management services|

Block I/0 Kernel Services
The Block I/O kernel services are:

iodon Performs block 1/0O completion processing.
iowai Waits for block I/O completion.
uphysi Performs character I/O for a block device using a uio structure.

Buffer Cache Kernel Services

For information on how to manage the buffer cache with the Buffer Cache kernel services, see|“Block I/0)
|Buffer Cache Kernel Services: Overview” on page 48|. The Buffer Cache kernel services are:

© Copyright IBM Corp. 1997, 2003 45

Writes the specified buffer's data without waiting for I/O to complete.
Releases the specified buffer after marking it for delayed write.

Flushes all write-behind blocks on the specified device from the buffer cache.
Invalidates all of the specified device’s blocks in the buffer cache.
Flushes the specified block if it is in the buffer cache.

Reads the specified block’s data into a buffer.

Reads in the specified block and then starts I/O on the read-ahead block.
Frees the specified buffer.

Writes the specified buffer's data.

Sets the memory for the specified buffer structure’s buffer to all zeros.
Assigns a buffer to the specified block.

Allocates a free buffer.

Determines the completion status of the buffer.

Purges the specified block from the buffer cache.

Character I/0 Kernel Services
The Character I/O kernel services are:

putcx

waitcfree|

Retrieves a character from a character list.

Removes the first buffer from a character list and returns the address of the removed buffer.
Retrieves multiple characters from a character buffer and places them at a designated address.
Retrieves a free character buffer.

Returns the character at the end of a designated list.

Manages the list of free character buffers.

Places a character at the end of a character list.

Places a character buffer at the end of a character list.

Places several characters at the end of a character list.

Frees a specified buffer.

Frees the specified list of buffers.

Places a character on a character list.

Checks the availability of a free character buffer.

Interrupt Management Services
The operating system provides the following set of kernel services for managing interrupts. See

[Understanding Interrupts| for a description of these services:

i_clea
i_reset

Removes an interrupt handler from the system.

Resets a bus interrupt level.

Schedules off-level processing.

Disables an interrupt level.

Enables an interrupt level.

Disables all of the interrupt levels at a particular interrupt priority and all interrupt levels at a
less-favored interrupt priority.

Enables all of the interrupt levels at a particular interrupt priority and all interrupt levels at a
more-favored interrupt priority.

Memory Buffer (mbuf) Kernel Services

The Memory Buffer (mbuf) kernel services provide functions to obtain, release, and manipulate memory
buffers, or mbufs. These mbuf services provide the means to easily work with the mbuf data structure,
which is defined in the /usrf/include/sys/mbuf.h file. Data can be stored directly in an mbuf’s data portion

46 Kemel Extensions and Device Support Programming Concepts

or in an attached external cluster. Mbufs can also be chained together by using the m_next field in the
mbuf structure. This is particularly useful for communications protocols that need to add and remove
protocol headers.

The Memory Buffer (mbuf) kernel services are:

Adjusts the size of an mbuf chain.

Allocates an mbuf structure and attaches an external cluster.

Appends one mbuf chain to the end of another.

Allocates and attaches an external buffer.

Guarantees that an mbuf chain contains no more than a given number of mbuf structures.
Copies data from an mbuf chain to a specified buffer.

Creates a copy of all or part of a list of mbuf structures.

Deregisters expected mbuf structure usage.

Frees an mbuf structure and any associated external storage area.

Frees an entire mbuf chain.

Allocates a memory buffer from the mbuf pool.

Allocates and zeros a memory buffer from the mbuf pool.

Allocates an mbuf structure from the mbuf buffer pool and attaches a cluster of the specified

size.

m_gethdr| Allocates a header memory buffer from the mbuf pool.

m_pullup Adjusts an mbuf chain so that a given number of bytes is in contiguous memory in the data
area of the head mbuf structure.

Registers expected mbuf usage.

In addition to the mbuf kernel services, the following macros are available for use with mbufs:

Allocates a page-sized mbuf structure cluster.

Creates a copy of all or part of a list of mbuf structures.

Allocates an mbuf structure from the mbuf buffer pool and attaches a page-sized cluster.
Determines if an mbuf structure has an attached cluster.

Converts an address anywhere within an mbuf structure to the head of that mbuf structure.
Converts a pointer to an mbuf structure to a pointer to the head of an attached cluster.
Converts a pointer to an mbuf structure to a pointer to the data stored in that mbuf structure.
Returns the address of an mbuf cross-memory descriptor.

DMA Management Kernel Services

The operating system kernel provides several services for managing direct memory access (DMA)
channels and performing DMA operations. [Understanding DMA Transferg provides additional kernel
services information.

The services provided are:

d_align Provides needed information to align a buffer with a processor cache line.

d_cflush| Flushes the processor and I/O controller (IOCC) data caches when using the long term
DMA_WRITE_ONLY mapping of DMA buffers approach to the bus device DMA.

Frees a DMA channel.

Cleans up after a DMA transfer.

Initializes a DMA channel.

Allocates and initializes resources for performing DMA with PCI and ISA devices.
Disables a DMA channel.

Initializes a block-mode DMA transfer for a DMA master.

Provides consistent access to system memory that is accessed asynchronously by a device and
the processor on the system.

Rounds the value length up to a given number of cache lines.

Chapter 4. Kernel Services 47

d_slave| Initializes a block-mode DMA transfer for a DMA slave.
d_unmas Enables a DMA channel.

Block 1/0 Buffer Cache Kernel Services: Overview

The Block I/0O Buffer Cache services are provided to support user access to device drivers through block
I/0 special files. This access is required by the operating system file system for mounts and other limited
activity, as well as for compatibility services required when other file systems are installed on these kinds
of systems. These services are not used by the operating system’s JFS (journal file system), NFS
(Network File System), or CDRFS (CD-ROM file system) when processing standard file I/O data. Instead
they use the virtual memory manager and pager to manage the system’s memory pages as a buffer
cache.

For compatibility support of other file systems and block special file support, the buffer cache services
serve two important purposes:

» They ensure that multiple processes accessing the same block of the same device in multiprogrammed
fashion maintain a consistent view of the data in the block.

* They increase the efficiency of the system by keeping in-memory copies of blocks that are frequently
accessed.

The Buffer Cache services use the structure or buffer header as their main data-tracking mechanism.
Each buffer header contains a pair of pointers that maintains a doubly-linked list of buffers associated with
a particular block device. An additional pair of pointers maintain a doubly-linked list of blocks available for
use again on another operation. Buffers that have I/O in progress or that are busy for other purposes do
not appear in this available list.

Kernel buffers are discussed in more detail in{Introduction to Kernel Buffers|in AIX 5L Version 5.2
Technical Reference: Kernel and Subsystems Volume 1.

See [‘Block 1/0 Kernel Services” on page 45|for a list of these services.

Managing the Buffer Cache

Fourteen kernel services provide management of this block I/O buffer cache mechanism. The
kernel service allocates a buffer header and a free buffer from the buffer pool. Given a device and block
number, the getblk and kernel services both return a pointer to a buffer header for the block. But
the bread service is guaranteed to return a buffer actually containing a current data for the block. In
contrast, the getblk service returns a buffer that contains the data in the block only if it is already in
memory.

In either case, the buffer and the corresponding device block are made busy. Other processes attempting
to access the buffer must wait until it becomes free. The getblk service is used when:

* Ablock is about to be rewritten totally.
 |ts previous contents are not useful.
* No other processes should be allowed to access it until the new data has been placed into it.

The kernel service is used to perform read-ahead 1/0 and is similar to the bread service except
that an additional parameter specifies the number of the block on the same device to be read
asynchronously after the requested block is available. The kernel service makes the specified
buffer available again to other processes.

Using the Buffer Cache write Services

There are three slightly different write routines. All of them take a buffer pointer as a parameter and all
logically release the buffer by placing it on the free list. Theservice puts the buffer on the

48 Kemel Extensions and Device Support Programming Concepts

appropriate device queue by calling the device’s strategy routine. The bwrite service then waits for 1/0
completion and sets the caller’s error flag, if required. This service is used when the caller wants to be
sure that I/O takes place synchronously, so that any errors can be handled immediately.

The [bawrite] service is an asynchronous version of the bwrite service and does not wait for /0
completion. This service is normally used when the overlap of processing and device I/O activity is
desired.

The service does not start any I/0O operations, but marks the buffer as a delayed write and
releases it to the free list. Later, when the buffer is obtained from the free list and found to contain data
from some other block, the data is written out to the correct device before the buffer is used. The bdwrite
service is used when it is undetermined if the write is needed immediately.

For example, the bdwrite service is called when the last byte of the write operation associated with a
block special file falls short of the end of a block. The bdwrite service is called on the assumption that
another write will soon occur that will use the same block again. On the other hand, as the end of a block
is passed, the bawrite service is called, because it is assumed the block will not be accessed again soon.
Therefore, the I/O processing can be started as soon as possible.

Note that the getblk and bread services dedicated the specified block to the caller while making other
processes wait, whereas the brelse, bwrite, bawrite, or bdwrite services must eventually be called to
free the block for use by other processes.

Understanding Interrupts

Each hardware interrupt has an interrupt level and an interrupt priority. The interrupt level defines the
source of the interrupt. There are basically two types of interrupt levels: system and bus. The system bus
interrupts are generated from the Micro Channel bus and system 1/0. Examples of system interrupts are
the timer and serial link interrupts.

The interrupt level of a system interrupt is defined in the sys/intr.h file. The interrupt level of a bus
interrupt is one of the resources managed by the bus configuration methods.

Interrupt Priorities

The interrupt priority defines which of a set of pending interrupts is serviced first. INTMAX is the most
favored interrupt priority and INTBASE is the least favored interrupt priority. The interrupt priorities for bus
interrupts range from INTCLASSO to INTCLASSS. The rest of the interrupt priorities are reserved for the
base kernel. Interrupts that cannot be serviced within the time limits specified for bus interrupts qualify as
off-level interrupts.

A device’s interrupt priority is selected based on two criteria: its maximum interrupt latency requirements
and the device driver’s interrupt execution time. The interrupt latency requirement is the maximum time
within which an interrupt must be serviced. (If it is not serviced in this time, some event is lost or
performance is degraded seriously.) The interrupt execution time is the number of machine cycles required
by the device driver to service the interrupt. Interrupts with a short interrupt latency time must have a short
interrupt service time.

The general rule for interrupt service times is based on the following interrupt priority table:

Priority Service Time (machine cycles)
INTCLASSO 200 cycles
INTCLASS1 400 cycles
INTCLASS2 600 cycles
INTCLASS3 800 cycles

Chapter 4. Kernel Services 49

The valid interrupt priorities are defined in the /usr/include/sys/intr.h file.

See [‘Interrupt Management Services” on page 46| for a list of these services.

Understanding DMA Transfers

A device driver must call theservice to set up a DMA slave transfer or call the service
to set up a DMA master transfer. The device driver then sets up the device to perform the DMA transfer.
The device transfers data when it is available and interrupts the processor upon completion of the DMA
transfer. The device driver then calls theservice to clean up after the DMA transfer. This
process is typically repeated each time a DMA transfer is to occur.

Hiding DMA Data

In this system, data can be located in the processor cache, system memory, or DMA buffer. The DMA
services have been written to ensure that data is moved between these three locations correctly. The
d_master and d_slave services flush the data from the processor cache to system memory. They then
hide the page, preventing data from being placed back into the processor cache. All pages containing user
data must be hidden while DMA operations are being performed on them. This is required to ensure that
data is not lost by being put in more than one of these locations. The hardware moves the data between
system memory, the DMA buffers, and the device. The d_complete service flushes data from the DMA
buffers to system memory and unhides the buffer.

A count is maintained of the number of times a page is hidden for DMA. A page is not actually hidden
except when the count goes from 0 to 1 and is not unhidden except when the count goes from 1 to 0.
Therefore, the users of the services must make sure to have the same number of calls to both the
d_master and d_complete services. Otherwise, the page can be incorrectly unhidden and data lost. This
count is intended to support operations such as logical volume mirrored writes.

DMA operations can be carefully performed on kernel data without hiding the pages containing the data.
The DMA_WRITE_ONLY flag, when specified to the d_master service, causes it not to flush the
processor cache or hide the pages. The same flag when specified to the d_complete service causes it not
to unhide the pages. This flag requires that the caller has carefully flushed the processor cache using the
vm_cflush service. Additionally, the caller must carefully allocate complete pages for the data buffer and
carefully split them up into transfers. Transferred pages must each be aligned at the start of a DMA buffer
boundary, and no other data can be in the same DMA buffers as the data to be transferred. The d_align
and d_roundup services help ensure that the buffer allocation is correct.

The d_align service (provided in libsys.a) returns the alignment value required for starting a buffer on a
processor cache line boundary. The d_roundup service (also provided in libsys.a) can be used to round
the desired DMA buffer length up to a value that is an integer number of cache lines. These two services
allow buffers to be used for DMA to be aligned on a cache line boundary and allocated in whole multiples
of the cache line size so that the buffer is not split across processor cache lines. This reduces the
possibility of consistency problems because of DMA and also minimizes the number of cache lines that
must be flushed or invalidated when used for DMA. For example, these services can be used to provide
alignment as follows:

align = d_align();

buffer_length = d_roundup(required Tength);

buf _ptr = xmalloc(buffer_length, align, kernel_heap);

Note: If the kernel heap is used for DMA buffers, the buffer must be pinned using the kernel service
before being utilized for DMA. Alternately, the memory could be requested from the pinned heap.

Accessing Data While the DMA Operation Is in Progress

Data must be carefully accessed when a DMA operation is in progress. The service provides a
means of accessing the data while a DMA transfer is being performed on it. This service accesses the

50 Kerel Extensions and Device Support Programming Concepts

data through the same system hardware as that used to perform the DMA transfer. The d_move service,
therefore, cannot cause the data to become inconsistent. This service can also access data hidden from
normal processor accesses.

See ['DMA Management Kernel Services” on page 47|for a list of these services.

Kernel Extension and Device Driver Management Services

The kernel provides a set of program and device driver management services. These services include
kernel extension loading and unloading services and device driver binding services. Services that allow
kernel extensions to be notified of base kernel configuration changes, user-mode exceptions, and process
state changes are also provided.

The following information is provided to assist you in in learning more about kernel services:
* |“Kernel Extension Loading and Unloading Services”|

« [‘Other Kernel Extension and Device Driver Management Services’|

+ [“List of Kernel Extension and Device Driver Management Kernel Services” on page 52|

Kernel Extension Loading and Unloading Services

The [kmod_load| kmod_unload] and kmod_entrypt services provide kernel extension loading, unloading,
and query services. User-mode programs and kernel processes can use thesubroutine to
invoke the kmod_load and kmod_unload services. The kmod_entrypt service returns a pointer to a
kernel extension’s entry point.

The kmod_load, kmod_unload services can be used to dynamically alter the set of routines loaded into
the kernel based on system configuration and application demand. Subsystems and device drivers can
use these services to load large, seldom-used routines on demand.

Other Kernel Extension and Device Driver Management Services

The device driver binding services are [devswadd| [devswdel, [devswchg, and|devswqry. The devswadd,
devswdel, and devswchg services are used to add, remove, or modify device driver entries in the
dynamically-managed device switch table. The devswqry service is used to obtain information about a
particular device switch table entry.

Some kernel extensions might be sensitive to the settings of base kernel runtime configurable parameters
that are found in the var structure defined in the /usr/include/sys/var.h file. These parameters can be set
automatically during system boot or at runtime by a privileged user. Kernel extensions can register or
unregister a configuration notification routine with the |cfgnadd| and |cfgnde! kernel services. Each time the
sysconfig subroutine is used to change base kernel tunable parameters found in the var structure, each
registered configuration notification routine is called.

The |prochadd|and [prochdell kernel services allow kernel extensions to be notified when any process in
the system has a state transition, such as being created, exiting, or being swapped in or swapped out.

The [uexadd| and uexdel| kernel services give kernel extensions the capability to intercept user-mode
exceptions. A user-mode exception handler can use this capability to dynamically reassign access to
single-use resources or to clean up after some particular user-mode error. The associatedand
services can be used by these handlers to block and resume process execution when handling
these exceptions.

The|pio_assis!| and |getexcept| kernel services are used by device drivers to obtain detailed information
about exceptions that occur during I/O bus access. The getexcept service can also be used by any
exception handler requiring more information about an exception that has occurred. The kernel

Chapter 4. Kernel Services 51

service is used by file select operations to register unsatisfied asynchronous poll or select event requests
with the kernel. The [selnotify| kernel service provides the same functionality as the selwakeup service
found on other operating systems.

The [iostadd| and [iostdel services are used by tty and disk device drivers to register device activity

reporting structures to be used by the [iostat| and [vmstat| commands.

The |getuerror| and [setuerror] services allow kernel extensions to read or set the ut_error field for the

current thread. This field can be used to pass an error code from a system call function to an application
program, because kernel extensions do not have direct access to the application’s errno variable.

List of Kernel Extension and Device Driver Management Kernel

Services

The Kernel Program and Device Driver Management kernel services are:

ctgnadd
cfgndel

devdumF]
devstrat

devswadd
devswch
devswdel

devswqry
getexcept

kmod_enterEﬂ
kmod_loaa

kmod_unloa
io_assist|

uexclea
uexdel

Registers a natification routine to be called when system-configurable variables are changed.
Removes a notification routine for receiving broadcasts of changes to system configurable
variables.

Calls a device driver dump-to-device routine.

Calls a block device driver’s strategy routine.

Adds a device entry to the device switch table.

Alters a device switch entry point in the device switch table.

Deletes a device driver entry from the device switch table.

Checks the status of a device switch entry in the device switch table.

Allows kernel exception handlers to retrieve additional exception information.

Allows kernel extensions to read the ut_error field for the current thread.

Registers an /O statistics structure used for updating 1/O statistics reported by the iostat
subroutine.

Removes the registration of an 1/O statistics structure used for maintaining 1/O statistics on a
particular device.

Returns a function pointer to a kernel module’s entry point.

Loads an object file into the kernel or queries for an object file already loaded.

Unloads a kernel object file.

Provides a standardized programmed 1/O exception handling mechanism for all routines
performing programmed I/O.

Adds a system wide process state-change notification routine.

Deletes a process state change notification routine.

Registers an asynchronous poll or select request with the kernel.

Wakes up processes waiting in a poll or select subroutine or the fp_poll kernel service.
Allows kernel extensions to set the ut_error field for the current thread.

Adds a system wide exception handler for catching user-mode process exceptions.
Makes the currently active kernel thread not runnable when called from a user-mode
exception handler.

Makes a kernel thread blocked by the uexblock service runnable again.

Deletes a previously added system-wide user-mode exception handler.

Locking Kernel Services

The following information is provided to assist you in understanding the locking kernel services:

» |Lock Allocation and Other Services|

* [Simple Lock§|
* |Complex Lock

* |Lockl Lock

[Atomic Operations|

52 Kemel Extensions and Device Support Programming Concepts

Lock Allocation and Other Services

The following lock allocation services allocate and free internal operating system memory for simple and
complex locks, or check if the caller owns a lock:

Allocates system memory for a simple or complex lock.
Frees the system memory of a simple or complex lock.
Checks whether a simple or complex lock is owned by the caller.

Simple Locks

Simple locks are exclusive-write, non-recursive locks that protect thread-thread or thread-interrupt critical
sections. Simple locks are preemptable, meaning that a kernel thread can be preempted by another,
higher priority kernel thread while it holds a simple lock. The simple lock kernel services are:

imple_lock _init Initializes a simple lock.
simple_lock] simple_lock_try Locks a simple lock.
simple_unlock Unlocks a simple lock.

On a multiprocessor system, simple locks that protect thread-interrupt critical sections must be used in
conjunction with interrupt control in order to serialize execution both within the executing processor and
between different processors. On a uniprocessor system interrupt control is sufficient; there is no need to
use locks. The following kernel services provide appropriate locking calls for the system on which they are
executed:

disable_lock Raises the interrupt priority, and locks a simple lock if necessary.
unlock_enabl Unlocks a simple lock if necessary, and restores the interrupt priority.

Using the disable_lock and unlock_enable kernel services to protect thread-interrupt critical sections
(instead of calling the underlying interrupt control and locking kernel services directly) ensures that
multiprocessor-safe code does not make unnecessary locking calls on uniprocessor systems.

Simple locks are spin locks; a kernel thread that attempts to acquire a simple lock may spin (busy-wait:
repeatedly execute instructions which do nothing) if the lock is not free. The table shows the behavior of
kernel threads and interrupt handlers that attempt to acquire a busy simple lock.

Caller Owner is Running Owner is Sleeping

Thread (with interrupts enabled) Caller spins initially; it sleeps if the Caller sleeps immediately.
maximum spin threshold is crossed.

Interrupt handler or thread (with Caller spins until lock is acquired. Caller spins until lock is freed (must

interrupts disabled) not happen).

Note: On uniprocessor systems, the maximum spin threshold is set to one, meaning that that a kernel
thread will never spin waiting for a lock.

A simple lock that protects a thread-interrupt critical section must never be held across a sleep, otherwise
the interrupt could spin for the duration of the sleep, as shown in the table. This means that such a routine
must not call any external services that might result in a sleep. In general, using any kernel service which
is callable from process level may result in a sleep, as can accessing unpinned data. These restrictions do
not apply to simple locks that protect thread-thread critical sections.

The lock word of a simple lock must be located in pinned memory if simple locking services are called with
interrupts disabled.

Chapter 4. Kernel Services 53

Complex Locks

Complex locks are read-write locks that protect thread-thread critical sections. Complex locks are
preemptable, meaning that a kernel thread can be preempted by another, higher priority kernel thread
while it holds a complex lock. The complex lock kernel services are:

lock_read| [lock_try_read|
lock_read_to_write] [lock_try_read_to_writd

lock_write] lock_try_write|
lock_write_to_read

lock set recursive
lock clear recursive

Initializes a complex lock.

Tests whether a complex lock is locked.

Unlocks a complex lock.

Locks a complex lock in shared-read mode.

Upgrades a complex lock from shared-read mode to
exclusive-write mode.

Locks a complex lock in exclusive-write mode.
Downgrades a complex lock from exclusive-write mode to
shared-read mode.

Prepares a complex lock for recursive use.

Prevents a complex lock from being acquired recursively.

By default, complex locks are not recursive (they cannot be acquired in exclusive-write mode multiple
times by a single thread). A complex lock can become recursive through the lock_set_recursive kernel
service. A recursive complex lock is not freed until lock_done is called once for each time that the lock

was locked.

Complex locks are not spin locks; a kernel thread that attempts to acquire a complex lock may spin briefly
(busy-wait: repeatedly execute instructions which do nothing) if the lock is not free. The table shows the

behavior of kernel threads that attempt to acquire a busy complex lock:

Owner is Running and no Other
Current Lock Mode Thread is Asleep on This Lock Owner is Sleeping

Exclusive-write Caller spins initially, but sleeps if the | Caller sleeps immediately.
maximum spin threshold is crossed,
or if the owner later sleeps.

Shared-read being acquired for Caller sleeps immediately.
exclusive-write

Shared-read being acquired for Lock granted immediately
shared-read

Note:

1. On uniprocessor systems, the maximum spin threshold is set to one, meaning that a kernel
thread will never spin waiting for a lock.

2. The concept of a single owner does not apply to a lock held in shared-read mode.

Lockl Locks

Note: Lockl locks (previously called conventional locks) are only provided to ensure compatibility with
existing code. New code should use simple or complex locks.

Lockl locks are exclusive-access and recursive locks. The lockl lock kernel services are:

lockl Locks a conventional lock.
unlockl Unlocks a conventional lock.

A thread which tries to acquire a busy lockl lock sleeps immediately.

54 Kemel Extensions and Device Support Programming Concepts

The lock word of a lockl lock must be located in pinned memory if the lockl service is called with interrupts
disabled.

Atomic Operations

Atomic operations are sequences of instructions that guarantee atomic accesses and updates of shared
single word variables. This means that atomic operations cannot protect accesses to complex data
structures in the way that locks can, but they provide a very efficient way of serializing access to a single
word.

The atomic operation kernel services are:

fetch_and_add Increments a single word variable atomically.

fetch_and_and| [fetch_and_o1 Manipulates bits in a single word variable atomically.

compare_and_swap| Conditionally updates or returns a single word variable
atomically.

Single word variables accessed by atomic operations must be aligned on a full word boundary, and must
be located in pinned memory if atomic operation kernel services are called with interrupts disabled.

File Descriptor Management Services

The File Descriptor Management services are supplied by the logical file system for creating, using, and
maintaining file descriptors. These services allow for the implementation of system calls that use a file
descriptor as a parameter, create a file descriptor, or return file descriptors to calling applications. The
following are the File Descriptor Management services:

ufdcreate) Allocates and initializes a file descriptor.

Increments the reference count on a file descriptor.
Decrements the reference count on a file descriptor.
Gets a file structure pointer from a held file descriptor.
Gets the flags from a file descriptor.

Sets flags in a file descriptor.

Logical File System Kernel Services

The Logical File System services (also known as the fp_services) allow processes running in kernel mode
to open and manipulate files in the same way that user-mode processes do. Data access limitations make
it unreasonable to accomplish these tasks with system calls, so a subset of the file system calls has been
provided with an alternate kernel-only interface.

The Logical File System services are one component of the logical file system, which provides the
functions required to map system call requests to virtual file system requests. The logical file system is
responsible for resolution of file names and file descriptors. It tracks all open files in the system using the
file table. The Logical File System services are lower level entry points into the system call support within
the logical file system.

Routines in the kernel that must access data stored in files or that must set up paths to devices are the
primary users of these services. This occurs most commonly in device drivers, where a lower level device
driver must be accessed or where the device requires microcode to be downloaded. Use of the Logical
File System services is not, however, restricted to these cases.

A process can use the Logical File System services to establish access to a file or device by calling:
. Theservice with a path name to the file or device it must access.

Chapter 4. Kernel Services 55

« The service with the device number of a device it must access.

* The[fp_getf service with a file descriptor for the file or device. If the process wants to retain access past
the duration of the system call, it must then call the fp_hold service to acquire a private file pointer.

These three services return a file pointer that is needed to call the other Logical File System services. The
other services provide the functions that are provided by the corresponding system calls.

Other Considerations
The Logical File System services are available only in the [process environment]

In addition, calling the fp_open service at certain times can cause a deadlock. The lookup on the file
name must acquire file system locks. If the process is already holding any lock on a component of the
path, the process will be deadlocked. Therefore, do not use the fp_open service when the process is
already executing an operation that holds file system locks on the requested path. The operations most
likely to cause this condition are those that create files.

List of Logical File System Kernel Services
These are the Logical File System kernel services:

Checks for access permission to an open file.

Closes a file.

Gets the attributes of an open file.

Gets the device number or channel number for a device.

Retrieves a pointer to a file structure.

Increments the open count for a specified file pointer.

Issues a control command to an open device or file.

Changes the current offset in an open file.

Changes the current offset in an open file. Used to access offsets beyond 2GB.
Opens special and regular files or directories.

Opens a device special file.

Checks the 1/O status of multiple file pointers, file descriptors, and message queues.
Performs a read on an open file with arguments passed.

Performs a read operation on an open file with arguments passed in iovec elements.
Performs read or write on an open file with arguments passed in a uio structure.
Provides for cascaded, or redirected, support of the select or poll request.

Performs a write operation on an open file with arguments passed.

Performs a write operation on an open file with arguments passed in iovec elements.
Writes changes for a specified range of a file to permanent storage.

Programmed I/O (PIO) Kernel Services

The following is a list of PIO kernel services:

||io_mag| Attaches to an I/O mapping

| Removes an I/0O mapping segment
| Creates and initializes an 1/0 mapping segment
| Detaches from an I/O mapping

These kernel services are defined in the adspace.h and ioacc.h header files.

For a list of PIO macros, see [Programmed I/O Services|in Understanding the Diagnostic Subsystem for
AlX.

56 Kemel Extensions and Device Support Programming Concepts

Memory Kernel Services

The Memory kernel services provide kernel extensions with the ability to:

» Dynamically allocate and free memory

* Pin and unpin code and data

* Access user memory and transfer data between user and kernel memory
» Create, reference, and change virtual memory objects

The following information is provided to assist you in learning more about memory kernel services:
+ [Memory Management Kernel Services|

* [Memory Pinning Kernel Services
« [User Memory Access Kernel Services|

* |Virtual Memory Management Kernel Services|
+ |Cross-Memory Kernel Services|

Memory Management Kernel Services
The Memory Management services are:
Initializes a new heap to be used with kernel memory management services.

Allocates memory.
Frees allocated memory.

Memory Pinning Kernel Services
The Memory Pinning services are:

Pins the address range in the system (kernel) space and frees the page space for the
associated pages.

Unpins the address range in system (kernel) address space and reallocates paging
space for the specified region.

Pins the address range in the system (kernel) space.

Pins the code and data associated with a loaded object module.

Pins the specified address range in user or system memory.

Unpins the address range in system (kernel) address space.

Unpins the code and data associated with a loaded object module.

Unpins the specified address range in user or system memory.

Pins the specified address range in user or system memory, given a valid
cross-memory descriptor.

Unpins the specified address range in user or system memory, given a valid
cross-memory descriptor.

Note: pinu and unpinu are only available on the 32—-bit kernel. Because of this limitation, it is
recommended that xmempin and xmemunpin be used in place of pinu and unpinu.

User-Memory-Access Kernel Services

In a system call or kernel extension running under a user process, data in the user process can be moved
in or out of the kernel using the [copyin| and |copyout| services. The service is used for scatter
and gather operations. If user data is to be referenced asynchronously, such as from an interrupt handler
or a kernel process, the cross memory services must be used.

Chapter 4. Kernel Services 57

The User-Memory-Access kernel services are:

copyin] copyin64

copxinstj copyinstr64

copyout]| copyout64
fubyte| fubyte64
fuword| fuword64
subyte| subyte64
suword| suword64

Copies data between user and kernel memory.

Copies a character string (including the terminating null character) from user to kernel
space.

Copies data between user and kernel memory.

Fetches, or retrieves, a byte of data from user memory.

Fetches, or retrieves, a word of data from user memory.

Stores a byte of data in user memory.

Stores a word of data in user memory.

Moves a block of data between kernel space and a space defined by a uio structure.
Writes a character to a buffer described by a uio structure.

Retrieves a character from a buffer described by a uio structure.

Note: The copyin64, copyout64, copyinstr64, fubyte64, fuword64, subyte64, and suword64 kernel
services are defined as macros when compiling kernel extensions on the 64-bit kernel. The macros
invoke the corresponding kernel services without the "64" suffix.

Virtual Memory Management Kernel Services

These services are described in more detail in[“Understanding Virtual Memory Manager Interfaces” on|
The Virtual Memory Management services are:

as_att64

as_det, as_det64
as_geth64
, as_getsrval64
as_puth64
, as_seth64

vm_release

Selects, allocates, and maps a specified region in the current user address space.
Unmaps and deallocates a region in the specified address space that was mapped
with the as_att or as_att64 kernel service.

Obtains a handle to the virtual memory object for the specified address given in the
specified address space. The virtual memory object is protected.

Obtains a handle to the virtual memory object for the specified address given in the
specified address space.

Indicates that no more references will be made to a virtual memory object that was
obtained using the as_geth or as_geth64 kernel service.

Maps a specified region in the specified address space for the specified virtual
memory object.

Obtains a pointer to the current process’s address space structure for use with the
as_att and as_det kernel services.

Selects, allocates, and maps a region in the current address space for I/O access.
Unmaps and deallocates the region in the current address space at the given
address.

Maps a specified virtual memory object to a region in the current address space.
Flushes the processor’s cache for a specified address range.

Unmaps and deallocates the region in the current address space that contains a
given address.

Allocates a region of global memory in the 64-bit kernel.

Frees a region of global memory in the kernel previously allocated with the
vm_galloc kernel service.

Constructs a virtual memory handle for mapping a virtual memory object with
specified access level.

Makes a page in client storage.

Adds a file system to the paging device table.

Moves data between a virtual memory object and a buffer specified in the uio
structure.

Sets the page protection key for a page range.

Determines whether a mapped file has been changed.

Releases virtual memory resources for the specified address range.

Releases virtual memory resources for the specified page range.

58 Kemel Extensions and Device Support Programming Concepts

Moves data between a virtual memory object and a buffer specified in the uio
structure.

Removes a file system from the paging device table.

Converts a virtual memory handle to a virtual memory object (id).

Initiates page-out for a page range in the address space.

Initiates page-out for a page range in a virtual memory object.

Creates a virtual memory object of the type and size and limits specified.

Deletes a virtual memory object.

Waits for the completion of all page-out operations for pages in the virtual memory
object.

Note: as_att, as_det, as_geth, as_getsrval, as_seth, getadsp, lo_att and lo_det are supported only on
the 32-bit kernel.

Cross-Memory Kernel Services

The cross-memory services allow data to be moved between the kernel and an address space other than
the current process address space. A data area within one region of an address space is attached by
calling the or xmattach64 service. As a result, the virtual memory object cannot be deleted
while data is being moved in or out of pages belonging to it. A cross-memory descriptor is filled out by the
xmattach or xmattach64 service. The attach operation must be done while under a process. When the
data movement is completed, theservice can be called. The detach operation can be done
from an interrupt handler.

Theservice can be used to transfer data from an address space to kernel space. The

service can be used to transfer data from kernel space to an address space. These routines may be called
from interrupt handler level routines if the referenced buffers are in memory.

Cross-memory services provide the or xmemdma64 service to prepare a page for DMA
processing. The xmemdma or xmemdma64 service returns the real address of the page for use in
preparing DMA address lists. When the DMA transfer is completed, the xmemdma or xmemdma64
service must be called again to unhide the page.

The xmemdma64 service is identical to xmemdma, except that xmemdma64 returns a 64-bit real
address. The xmemdma64 service can be called from the process or interrupt environments. It is also
present on 32-bit platform to allow a single device driver or kernel extension binary to work on 32-bit or
64-bit platforms with no change and no run-time checks.

Data movement by DMA or an interrupt handler requires that the pages remain in memory. This is ensured
by pinning the data areas using the xmempin service. This can only be done under a process, because
the memory pinning services page-fault on pages not present in memory.

The xmemunpin service unpins pinned pages. This can be done by an interrupt handler if the data area is
the global kernel address space. It must be done under the process if the data area is in user process
space.

The Cross-Memory services are:

xmattach| [xmattach64| Attaches to a user buffer for cross-memory operations.

xmdetach| Detaches from a user buffer used for cross-memory operations.

xmemin Performs a cross-memory move by copying data from the specified address space to kernel
global memory.
Performs a cross-memory move by copying data from kernel global memory to a specified
address space.

Prepares a page for DMA I/O or processes a page after DMA 1/O is complete.

Chapter 4. Kernel Services 59

Prepares a page for DMA 1/O or processes a page after DMA 1/O is complete. Returns
64-bit real address.

Note: xmattach, xmattach64 and xmemdma are supported only on the 32-bit kernel. xmemdma64 is
supported on both the 32— and 64—bit kernels.

Understanding Virtual Memory Manager Interfaces

The virtual memory manager supports functions that allow a wide range of kernel extension data
operations.

The following aspects of the virtual memory manager interface are discussed:
« |Virtual Memory Objects|

» |Addressing Data
+ [Moving Data to or from a Virtual Memory Objec]
.

[Discarding Datal

+ [Protecting Datal

[Executable Data

[Installing Pager Backends|

[Referenced Routines|

Virtual Memory Objects

A virtual memory object is an abstraction for the contiguous data that can be mapped into a region of an
address space. As a data object, it is independent of any address space. The data it represents can be in
memory or on an external storage device. The data represented by the virtual memory object can be
shared by mapping the virtual memory object into each address space sharing the access, with the access
capability of each mapping represented in that address space map.

File systems use virtual memory objects so that the files can be referenced using a mapped file access
method. The mapped file access method represents the data through a virtual memory object, and allows
the virtual memory manager to handle page faults on the mapped file. When a page fault occurs, the
virtual memory manager calls the services supplied by the service provider (such as a virtual file system)
to get and put pages. A data provider (such as a file system) maintains any data structures necessary to
map between the virtual memory object offset and external storage addressing.

The data provider creates a virtual memory object when it has a request for access to the data. It deletes
the virtual memory object when it has no more clients referencing the data in the virtual memory object.

The [vms_create] service is called to create virtual memory objects. The service is called to

delete virtual memory objects.

Addressing Data

Data in a virtual memory object is made addressable in user or kernel processes through the
subroutine. A kernel extension uses the kernel service to select and allocate a region in the current
(per-process kernel) address space.

The per-process kernel address space initially sees only global kernel memory and the per-process kernel
data. The vm_att service allows kernel extensions to allocate additional regions. However, this augmented
per-process kernel address space does not persist across system calls. The additional regions must be
re-allocated with each entry into the kernel protection domain.

60 Kemel Extensions and Device Support Programming Concepts

The vm_att service takes as an argument a virtual memory handle representing the virtual memory object
and the access capability to be used. The service constructs the virtual memory handles.

When the kernel extension has finished processing the data mapped into the current address space, it
should call the vm_det| service to deallocate the region and remove access.

Moving Data to or from a Virtual Memory Object

A data provider (such as a file system) can call theservice to cause a memory page to be
instantiated. This permits a page of data to be moved into a virtual memory object page without causing

the virtual memory manager to page in the previous data contents from an external source. This is an
operation on the virtual memory object, not an address space range.

The [vm_move| and vm_uiomove|kernel services move data between a virtual memory object and a buffer
specified in a uio structure. This allows data providers (such as a file system) to move data to or from a
specified buffer to a designated offset in a virtual memory object. This service is similar to uiomove
service, but the trusted buffer is replaced by the virtual memory object, which need not be currently
addressable.

Data Flushing

A kernel extension can initiate the writing of a data area to external storage with the kernel
service, if it has addressability to the data area. The kernel service can be used if the virtual
memory object is not currently addressable.

If the kernel extension needs to ensure that the data is moved successfully, it can wait on the 1/0
completion by calling theservice, giving the virtual memory object as an argument.

Discarding Data

The pages specified by a data range can be released from the underlying virtual memory object by calling
the service. The virtual memory manager deallocates any associated paging space slots. A
subsequent reference to data in the range results in a page fault.

A virtual memory data provider can release a specified range of pages in a virtual memory object by
calling the service. The virtual memory object need not be addressable for this call.

Protecting Data

The [vm_protectp| service can change the storage protect keys in a page range in one client storage
virtual memory object. This only acts on the resident pages. The pages are referred to through the virtual

memory object. They do not need to be addressable in the current address space. A client file system data
provider uses this protection to detect stores of in-memory data, so that mapped files can be extended by
storing into them beyond their current end of file.

Executable Data

If the data moved is to become executable, any data remaining in processor cache must be guaranteed to
be moved from cache to memory. This is because the retrieval of the instruction does not need to use the
data cache. The service performs this operation.

Installing Pager Backends

The kernel extension data providers must provide appropriate routines to be called by the virtual memory
manager. These routines move a page-sized block of data into or out of a specified page. These services
are also referred to as pager backends.

For a local device, the device strategy routine is required. A call to the vm_mount service is used to
identify the device (through a dev_t value) to the virtual memory manager.

Chapter 4. Kernel Services 61

For a remote data provider, the routine required is a strategy routine, which is specified in the
service. These strategy routines must run as interrupt-level routines. They must not page fault, and they

cannot sleep waiting for locks.

When access to a remote data provider or a local device is removed, the [vm_umount| service must be
called to remove the device entry from the virtual memory manager’s paging device table.

Referenced Routines

The virtual memory manager exports these routines exported to kernel extensions:

Services That Manipulate Virtual Memory Objects

<
3
ll’l)
o
(3
1]
—
(] D

vm_de

vm_make
vm_mov

il §

vm_protectp
vm_releasep

vm_vmid

vm_writep

m_uiomove

Selects and allocates a region in the current address
space for the specified virtual memory object.

Creates virtual memory object of the specified type and
size limits.

Deletes a virtual memory object.

Unmaps and deallocates the region at a specified address
in the current address space.

Constructs a virtual memory handle for mapping a virtual
memory object with a specified access level.

Waits for the completion of all page-out operations in the
virtual memory object.

Makes a page in client storage.

Moves data between the virtual memory object and buffer
specified in the uio structure.

Sets the page protection key for a page range.

Releases page frames and paging space slots for pages
in the specified range.

Moves data between the virtual memory object and buffer
specified in the uio structure.

Converts a virtual memory handle to a virtual memory
object (id).

Initiates page-out for a page range in a virtual memory
object.

Selects, allocates, and maps a region in the specified address space for the
specified virtual memory object.

Unmaps and deallocates a region in the specified address space that was mapped
with the as_att kernel service.

Obtains a handle to the virtual memory object for the specified address given in
the specified address space. The virtual memory object is protected.

Obtains a handle to the virtual memory object for the specified address given in
the specified address space.

Indicates that no more references will be made to a virtual memory object that was
obtained using the as_geth kernel service.

Maps a specified region in the specified address space for the specified virtual
memory object.

Obtains a pointer to the current process’s address space structure for use with the
as_att and as_det kernel services.

Flushes cache lines for a specified address range.

Releases page frames and paging space slots for the specified address range.
Initiates page-out for an address range.

62 Kemel Extensions and Device Support Programming Concepts

Note: as_att, as_det, as_geth, as_getsrval, as_seth and getadsp are supported only on the 32-bit
kernel.

The following Memory-Pinning kernel services also support address space operations. They are the
[pinu} junpin| and junpinu services.

Services That Support Cross-Memory Operations
[Cross Memory Services|are listed in "Memory Kernel Services”.

Services that Support the Installation of Pager Backends

vm_moun Allocates an entry in the paging device table.
vm_umount| Removes a file system from the paging device table.

Services that Support 64-bit Processes on the 32-bit Kernel

as_att64 Allocates and maps a specified region in the current user address space.

as_det64 Unmaps and deallocates a region in the current user address space that was mapped with
the as_att64 kernel service.

as_geth64 Obtains a handle to the virtual memory object for the specified address.

as_puth64 Indicates that no more references will be made to a virtual memory object using the
as_geth64 kernel service.

as_seth64 Maps a specified region for the specified virtual memory object.

as_getsrval64 Obtains a handle to the virtual memory object for the specified address.

1IS64U Determines if the current user address space is 64-bit or not.

Services that Support 64-bit Processes
The following services are supported only on the 32-bit kernel:

as_remap64 Maps a 64-bit address to a 32-bit address that can be used by the 32-bit kernel.

as_unremap64 Returns the original 64-bit original address associated with a 32-bit mapped address.

rmmap_create64 Defines an effective address to real address translation region for either 64-bit or 32-bit
effective addresses.

rmmap_remove64 Destroys an effective address to real address translation region.

xmattach64 Attaches to a user buffer for cross-memory operations.

copyin64 Copies data between user and kernel memory.

copyout64 Copies data between user and kernel memory.

copyinstr64 Copies data between user and kernel memory.

fubyte64 Retrieves a byte of data from user memory.

fuword64 Retrieves a word of data from user memory.

subyte64 Stores a byte of data in user memory.

suword64 Stores a word of data in user memory.

Message Queue Kernel Services

The Message Queue kernel services provide the same message queue functions to a kernel extension as

the|msgct||, |msggetl |msgsnd|, and |msgxrcvv subroutines make available to a program executing in user
mode. Parameters have been added for moving returned information to an explicit parameter to free the

return codes for error code usage. Instead of the error information available in the errno global variable

Chapter 4. Kernel Services 63

(as in user mode), the Message Queue services use the service’s return code. The error values are the
same, except that a memory fault error (EFAULT) cannot occur because message buffer pointers in the
kernel address space are assumed to be valid.

The Message Queue services can be called only from the [process environment| because they prevent the
caller from specifying kernel buffers. These services can be used as an Interprocess Communication
mechanism to other kernel processes or user-mode processes. See [Kernel Extension and Device Driver|
IManagement Services|for more information on the functions that these services provide.

There are four Message Queue services available from the kernel:

Provides message-queue control operations.

Obtains a message-queue identifier.

Reads a message from a message queue.

Sends a message using a previously defined message queue.

Network Kernel Services

The Network kernel services are divided into:

+ [Address Family Domain and Network Interface Device Driver services
+ [Routing and Interface services|

+ [Loopback services|

+ [Protocol services|

+ [Communications Device Handler Interface services|

Address Family Domain and Network Interface Device Driver Kernel
Services

The Address Family Domain and Network Interface Device Driver services enable address family domains
(Protocols) and network interface drivers to add and remove themselves from network switch tables.

The [if_attach| service and services add and remove network interfaces from the Network
Interface List. Protocols search this list to determine an appropriate interface on which to transmit a
packet.

Protocols use the [add_input_type] and|del_input_type| services to notify network interface drivers that the
protocol is available to handle packets of a certain type. The Network Interface Driver uses the
ffind_input_type| service to distribute packets to a protocol.

The [add_netisr| and |[del_netisH services add and delete network software interrupt handlers. Address
families add and delete themselves from the Address Family Domain switch table by using the
ladd_domain_af| and [del_domain_af services. The Address Family Domain switch table is a list of all
available protocols that can be used in the socket subroutine.

The Address Family Domain and Network Interface Device Driver services are:

add_domain_af

Adds an address family to the Address Family domain switch table.

Adds a new input type to the Network Input table.

Adds a network software interrupt service to the Network Interrupt table.

Deletes an address family from the Address Family domain switch table.

Deletes an input type from the Network Input table.

Deletes a network software interrupt service routine from the Network Interrupt table.
Finds the given packet type in the Network Input Interface switch table and distributes
the input packet according to the table entry for that type.

del_netis
find_input_type

64 Kemel Extensions and Device Support Programming Concepts

Adds a network interface to the network interface list.

Deletes a network interface from the network interface list.
Returns a pointer to the ifnet structure of the requested interface.
Schedules or invokes a network software interrupt service routine.

Routing and Interface Address Kernel Services

The Routing and Interface Address services provide protocols with a means of establishing, accessing,
and removing routes to remote hosts or gateways. Routes bind destinations to a particular network
interface.

The interface address services accept a destination address or network and return an associated interface
address. Protocols use these services to determine if an address is on a directly connected network.

The Routing and Interface Address services are:

ifa_ifwithadd
ifa_ifwithdstaddr,

Locates an interface based on a complete address.

Locates the point-to-point interface with a given destination address.
Locates an interface on a specific network.

Marks an interface as down.

Zeroes statistical elements of the interface array in preparation for an attach
operation.

Allocates a route.

Frees the routing table entry

Sets up a routing table entry, typically for a network interface.

Forces a routing table entry with the specified destination to go through the given
gateway.

Carries out a request to change the routing table.

Loopback Kernel Services

The Loopback services enable networking code to be exercised without actually transmitting packets on a
network. This is a useful tool for developing new protocols without introducing network variables. Loopback
services can also be used to send packets to local addresses without using hardware loopback.

The Loopback services are:

loifp Returns the address of the software loopback interface structure.
looutput Sends data through a software loopback interface.

Protocol Kernel Services

Protocol kernel services provide a means of finding a particular address family as well as a raw protocol
handler. The raw protocol handler basically passes raw packets up through sockets so that a protocol can
be implemented in user space.

The Protocol kernel services are:

Starts the ctlinput function for each configured protocol.

Returns the address of a protocol switch table entry.

Builds a raw_header structure for a packet and sends both to the raw protocol handler.
Implements user requests for raw protocols.

Chapter 4. Kernel Services 65

Communications Device Handler Interface Kernel Services

The Communications Device Handler Interface services provide a standard interface between network
interface drivers and [communications device handlers| The |net_attach|and |net_detach|services open and
close the device handler. Once the device handler has been opened, the [net_xmit] service can be used to
transmit packets. Asynchronous start done notifications are recorded by the|net_start_done| service. The
service handles error conditions.

The Communications Device Handler Interface services are:

add_netopﬂ This macro adds a network option structure to the list of network options.
del_netopf This macro deletes a network option structure from the list of network options.
net_attach Opens a communications I/O device handler.

Closes a communications I/0O device handler.

Handles errors for communication network interface drivers.

Sleeps on the specified wait channel.

Starts network IDs on a communications 1/O device handler.

Starts the done notification handler for communications 1/0 device handlers.

Wakes up all sleepers waiting on the specified wait channel.

Transmits data using a communications 1/O device handler.

Traces transmit packets. This kernel service was added for those network interfaces that
do not use the net_xmit kernel service to trace transmit packets.

Process and Exception Management Kernel Services

The process and exception management kernel services provided by the base kernel provide the
capability to:

+ Create [kernel processes|

* Register [exception handlers|

* Provide process serialization

» Generate and handle signals

» Support event waiting and notification

Creating Kernel Processes

Kernel extensions use the [creatp|and [initp] kernel services to create and initialize a [kernel process The
kernel service allow a kernel process to change its parent process from the one that created it to
the init process, so that the creating process does not receive the death-of-child process signal upon
kernel process termination. [‘Using Kernel Processes” on page 8| provides additional information concerning
use of these services.

Creating Kernel Threads

Kernel extensions use the [thread_create] and [kthread_star services to create and initialize kernel-only
threads. For more information about threads, see [‘Understanding Kernel Threads” on page 6|

The|thread_setsched| service is used to control the scheduling parameters, priority and scheduling policy,
of a thread.

Kernel Structures Encapsulation

The [getpid| kernel service is used by a kernel extension in either the process or interrupt environment to
determine the current [execution environment and obtain the process ID of the current process if in the
process environment. The|rusage_inc[| service provides an access to the rusage structure.

66 Kemel Extensions and Device Support Programming Concepts

The thread-specific uthread structure is also encapsulated. The |getuerror| and |[setuerror] kernel services
should be used to access the ut_error field. The [thread_self| kernel service should be used to get the
current thread’s ID.

Registering Exception Handlers

The |setjmpx|, |c|rjmpx| and |Iongjmp§| kernel services allow a kernel extension to register an exception
handler by:

+ Saving the exception handler's context with the setjmpx kernel service
* Removing its saved context with the clrjmpx kernel service if no exception occurred

+ Starting the next registered exception handler with the longjmpx kernel service if it was unable to
handle the exception

For more information concerning use of these services, see [‘Handling Exceptions While in a System Call]

Signal Management
Signals can be posted either to a kernel process or to a kernel thread. Theservice posts a signal
_hread_kill

to a specified kernel process; the service posts a signal to a specified kernel thread. A thread
uses theservice to poll for signals delivered to the kernel process or thread in the kernel mode.

For more information about signal management, see [‘Kernel Process Signal and Exception Handling” on|

Events Management
The event notification services provide support for two types of interprocess communications:

Primitive Allows only one process thread waiting on the event.
Shared Allows multiple processes threads waiting on the event.

The [et_wait| and|et_post| kernel services support single waiter event notification by using mutually agreed
upon event control bits for the kernel thread being posted. There are a limited number of control bits
available for use by kernel extensions. If the kernel_lock is owned by the caller of the et_wait service, it
is released and acquired again upon wakeup.

The following kernel services support a shared event notification mechanism that allows for multiple
threads to be waiting on the shared event.

e_assert_wait e_wakeup
e_block_thread e_wakeup_one
e_clear_wait e_wakeup_w_result
e_sleep_thread e_wakeup_w_sig

These services support an unlimited number of shared events (by using caller-supplied event words). The
following list indicates methods to wait for an event to occur:

« Calling|e_assert_wait{and |e_block_thread| successively; the first call puts the thread on the event
queue, the second blocks the thread. Between the two calls, the thread can do any job, like releasing
several locks. If only one lock, or no lock at all, needs to be released, one of the two other methods
should be preferred.

» Calling |e_s|eep_threadt this service releases a simple or a complex lock, and blocks the thread. The
lock can be automatically reacquired at wakeup.

Chapter 4. Kernel Services 67

The [e_clear_wait| service can be used by a thread or an interrupt handler to wake up a specified thread,
or by a thread that called e_assert_wait to remove itself from the event queue without blocking when
calling e_block_thread. The other wakeup services are event-based. The and
fe_wakeup_w_result|services wake up every thread sleeping on an event queue; whereas the
le_wakeup_one|service wakes up only the most favored thread. The [e_wakeup_w_sig| service posts a
signal to every thread sleeping on an event queue, waking up all the threads whose sleep is interruptible.

The le_sleep| and |e_sleepl|kernel services are provided for code that was written for previous releases of
the operating system. Threads that have called one of these services are woken up by the e_wakeup,
e_wakeup_one, e_wakeup_w_result, e_wakeup_w_sig, or e_clear_wait kernel services. If the caller of
the e_sleep service owns the kernel lock, it is released before waiting and is acquired again upon
wakeup. The e_sleepl service provides the same function as the e_sleep service except that a
caller-specified lock is released and acquired again instead of the kernel_lock.

List of Process, Thread, and Exception Management Kernel Services
The Process, Thread, and Exception Management kernel services are listed below.

I

e_assert_wai
e_block_threa
e_clear_wait

le_sleep| [e_sleep_thread| orle_sleepl|

e_sleep_thread

le_wakeup, e_wakeup_one, or e_wakeup_w_result

e_wakeup_w_sig

setpinit

§

Removes a saved context by popping the most recently
saved jump buffer from the list of saved contexts.
Creates a new kernel process.

Asserts that the calling kernel thread is going to sleep.
Blocks the calling kernel thread.

Clears the wait condition for a kernel thread.

Forces the calling kernel thread to wait for the occurrence
of a shared event.

Forces the calling kernel thread to wait the occurrence of
a shared event.

Notifies kernel threads waiting on a shared event of the
event’s occurrence.

Posts a signal to sleeping kernel threads.

Notifies a kernel thread of the occurrence of one or more
events.

Forces the calling kernel thread to wait for the occurrence
of an event.

Gets the process ID of the current process.

Gets the parent process ID of the specified process.
Changes the state of a kernel process from idle to ready.
Posts a signal to a specified kernel-only thread.

Starts a previously created kernel-only thread.

Changes the signal mask for the calling kernel thread.
Allows exception handling by causing execution to resume
at the most recently saved context.

Submits a request to print an internationalized message to
the controlling terminal of a process.

Sends a signal to all of the processes in a process group.
Sends a signal to a process.

Increments a field of the rusage structure.

Allows saving the current execution state or context.

Sets the parent of the current kernel process to the init
process.

Provides the calling kernel thread with the ability to poll for
receipt of signals.

Changes the signal mask for the calling kernel thread.
Forces the calling kernel thread to wait on a specified
channel.

Creates a new kernel-only thread in the calling process.

68 Kemel Extensions and Device Support Programming Concepts

thread_self Returns the caller's kernel thread ID.
thread_setsche Sets kernel thread scheduling parameters.

thread;terminatel Terminates the calling kernel thread.
ue_proc_chec Determines if a process is critical to the system.
uprint Submits a request to print a message to the controlling

terminal of a process.

RAS Kernel Services

The Reliability, Availability, and Serviceability (RAS) kernel services are used to record the occurrence of
hardware or software failures and to capture data about these failures. The recorded information can be
examined using the or commands.

The panic kernel service is called when a catastrophic failure occurs and the system can no longer
operate. The service performs a system dump. The system dump captures data areas that are
registered in the Master Dump Table. The kernel and kernel extensions use the kernel service to
add and delete entries in the Master Dump Table, and record dump routine failures.

The lerrsave and errlast| kernel service is called to record an entry in the system error log when a
hardware or software failure is detected.

The [trcgenk| and ftregenkt] kernel services are used along with the subroutine to record selected

system events in the event-tracing facility.

The [register_HA_handler| and junregister_HA_handler| kernel services are used to register high
availability event handlers for kernel extensions that need to be aware of events such as processor
deallocation.

Security Kernel Services

The Security kernel services provide methods for controlling the auditing system and for determining the
access rights to objects for the invoking process.

The following services are security kernel services:

Determines the privilege state of a process.

Initiates an audit record for a system call.

Appends event information to the current audit event buffer.

Writes an audit record for a kernel service.

Creates a copy of a security credentials structure.

Creates a copy of the current security credentials structure.

Provide a means for accessing the user and group identifier fields within a credentials
structure.

Copies an internal format credentials structure to an external format credentials
structure.

Frees a security credentials structure.

Allocates a new, uninitialized security credentials structure.

Increments the reference count of a security credentials structure.

Increments the reference count of the current security credentials structure.
Replaces the current security credentials structure.

Copies a capability vector from a credentials structure.

Copies the concurrent group set from a credentials structure.

Copies a process authentication group (PAG) ID from a credentials structure.
Returns the process authentication group (PAG) identifier for a PAG name.
Retrieves the name of a process authentication group (PAG).

audit_svcstart
udit_svcbcopy

Chapter 4. Kernel Services 69

kcred_getpriv| Copies a privilege vector from a credentials structure.
kcred_setca Copies a capabilities set into a credentials structure.

kcred:set roup. Copies a concurrent group set into a credentials structure.
kcred_setpa Copies a process authentication group ID into a credentials structure.
kcred:setpa name| Copies a process authentication group ID into a credentials structure.
kcred:setpri§ Copies a privilege vector into a credentials structure.

Timer and Time-of-Day Kernel Services

The Timer and Time-of-Day kernel services provide kernel extensions with the ability to be notified when a
period of time has passed. The service supports a very fine granularity of time. The service
is built on the tstart service and is provided for compatibility with earlier versions of the operating system.
The service provides a timer with less granularity, but much cheaper path-length overhead when
starting a timer.

The Timer and Time-of-Day kernel services are divided into the following categories:
+ [Time-of-Day services|

+ [Fine Granularity Timer services|

+ [Timer services for compatibility|

+ [Watchdog Timer services|

Time-Of-Day Kernel Services
The Time-Of-Day kernel services are:

Reads the current time into a time structure.

Retrieves the current status of the systemwide time-of-day timer-adjustment values.
Sets the systemwide time-of-day timer.

Sets the current status of the systemwide timer-adjustment values.

Fine Granularity Timer Kernel Services

The Fine Granularity Timer kernel services are:

delay| Suspends the calling process for the specified number of timer ticks.
talloc Allocates a timer request block before starting a timer request.

tfreel Deallocates a timer request block.

tstart Submits a timer request.

tstop| Cancels a pending timer request.

For more information about using the Fine Granularity Timer services, see |“Using Fine Granularity TimerI
[Services and Structures” on page 71|

Timer Kernel Services for Compatibility
The following Timer kernel services are provided for compatibility:
Schedules a function to be called after a specified interval.

Allocates or deallocates callout table entries for use with the timeout kernel service.
Cancels a pending timer request.

70 Kemel Extensions and Device Support Programming Concepts

Watchdog Timer Kernel Services
The Watchdog timer kernel services are:

w_clear Removes a watchdog timer from the list of watchdog timers known to the kernel.
E Registers a watchdog timer with the kernel.

w_start Starts a watchdog timer.

m Stops a watchdog timer.

Using Fine Granularity Timer Services and Structures

The [tstart, [tfree] [talloc| and [tstop|services provide fine-resolution timing functions. These timer services
should be used when the following conditions are required:

» Timing requests for less than one second

* Critical timing

* Absolute timing

The Watchdog timer services can be used for noncritical times having a one-second resolution. The
service can be used for noncritical times having a clock-tick resolution.

Timer Services Data Structures

The trb (timer request) structure is found in the /sys/timer.h file. The itimerstruc_t structure contains the
second/nanosecond structure for time operations and is found in the sys/time.h file.

The itimerstruc_t t.it value substructure should be used to store time information for both absolute and
incremental timers. The T_ABSOLUTE absolute request flag is defined in the sys/timer.h file. It should be
ORed into the t->flag field if an absolute timer request is desired.

The T_LOWRES flag causes the system to round the t->timeout value to the next timer timeout. It should
be ORed into the t->flags field. The timeout is always rounded to a larger value. Because the system
maintains 10ms interval timer, T_LOWRES will never cause more than 10ms to be added to a timeout.
The advantage of using T_LOWRES is that it prevents an extra interrupt from being generated.

The t->timeout and t->flags fields must be set or reset before each call to the tstart kernel service.

Coding the Timer Function
The t->func timer function should be declared as follows:

void func (t)
struct trb *t;

The argument to the func completion handler routine is the address of the trb structure, not the contents
of the t_union field.

The t->func timer function is called on an interrupt level. Therefore, code for this routine must follow
conventions for interrupt handlers.

Using Multiprocessor-Safe Timer Services

On a multiprocessor system, timer request blocks and watchdog timer structures could be accessed
simultaneously by several processors. The kernel services shown below potentially alter critical information
in these blocks and structures, and therefore check whether it is safe to perform the requested service
before proceeding:

Cancels a pending timer request.

Chapter 4. Kernel Services 71

w_clear| Removes a watchdog timer from the list of watchdog timers known to the kernel.
w_ini Registers a watchdog timer with the kernel.

If the requested service cannot be performed, the kernel service returns an error value.

In order to be multiprocessor safe, the caller must check the value returned by these kernel services. If the
service was not successful, the caller must take an appropriate action, for example, retrying in a loop. If
the caller holds a device driver lock, it should release and then reacquire the lock within this loop in order
to avoid deadlock.

Drivers which were written for uniprocessor systems do not check the return values of these kernel
services and are not multiprocessor-safe. Such drivers can still run as funnelled device drivers.

Virtual File System (VFS) Kernel Services

The Virtual File System (VFS) kernel services are provided as fundamental building blocks for use when
writing a virtual file system. These services present a standard interface for such functions as configuring
file systems, creating and freeing and looking up path names.

Most functions involved in the writing of a file system are specific to that file system type. But a limited
number of functions must be performed in a consistent manner across the various file system types to
enable the logical file system to operate independently of the file system type.

The VFS kernel services are:

common_reclock| Implements a generic interface to the record locking functions.
Maps a file system structure to a file ID.

Adds a file system type to the gfs table.

Removes a file system type from the gfs table.

Holds a vfs structure and increments the structure’s use count.
Releases a vfs structure and decrements the structure’s use count.
Releases all resources associated with a virtual file system.
Searches the vfs list.

Frees a v-node previously allocated by the vn_get kernel service.
Allocates a virtual node and associates it with the designated virtual file system.
Retrieves the v-node that corresponds to the named path.

Related Information

[Chapter 1, “Kernel Environment”, on page 1|

['Block 1/0 Buffer Cache Kernel Services: Overview” on page 48|

[Understanding the Virtual File System Interfacej

[Communications Physical Device Handler Model Overview|

|Understanding File Descriptors| in AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs.

Subroutine References
Thesubroutine, subroutine, subroutine, subroutine in AIX 5L Version

5.2 Technical Reference: Base Operating System and Extensions Volume 1.

72 Kemel Extensions and Device Support Programming Concepts

The [trchook] subroutine in AIX 5L Version 5.2 Technical Reference: Base Operating System and
Extensions Volume 2.

Commands References
The command in AIX 5L Version 5.2 Commands Reference, Volume 3.

The command in AIX 5L Version 5.2 Commands Reference, Volume 6.
Technical References
The kernel service, kernel service, kernel service, kernel service in AIX 5L Version

5.2 Technical Reference: Kernel and Subsystems Volume 1.

Chapter 4. Kernel Services 73

74 Kemel Extensions and Device Support Programming Concepts

Chapter 5. Asynchronous I/O Subsystem

Synchronous I/0O occurs while you wait. Applications processing cannot continue until the 1/0 operation is
complete.

In contrast, asynchronous I/O operations run in the background and do not block user applications. This
improves performance, because 1/O operations and applications processing can run simultaneously.

Using asynchronous 1/O will usually improve your I/O throughput, especially when you are storing data in
raw logical volumes (as opposed to Journaled file systems). The actual performance, however, depends
on how many server processes are running that will handle the I/O requests.

Many applications, such as databases and file servers, take advantage of the ability to overlap processing
and 1/0O. These asynchronous I/O operations use various kinds of devices and files. Additionally, multiple
asynchronous /O operations can run at the same time on one or more devices or files.

Each asynchronous 1/O request has a corresponding control block in the application’s address space.
When an asynchronous I/O request is made, a handle is established in the control block. This handle is
used to retrieve the status and the return values of the request.

Applications use the aio_read and aio_write subroutines to perform the 1/0. Control returns to the
application from the subroutine, as soon as the request has been queued. The application can then
continue processing while the disk operation is being performed.

A kernel process (kproc), called a server, is in charge of each request from the time it is taken off the
queue until it completes. The number of servers limits the number of disk I/O operations that can be in
progress in the system simultaneously.

The default values are minservers=1 and maxservers=10. In systems that seldom run applications that use
asynchronous 1/O, this is usually adequate. For environments with many disk drives and key applications
that use asynchronous I/O, the default is far too low. The result of a deficiency of servers is that disk 1/0
seems much slower than it should be. Not only do requests spend inordinate lengths of time in the queue,
but the low ratio of servers to disk drives means that the seek-optimization algorithms have too few
requests to work with for each drive.

Note: Asynchronous I/O will not work if the control block or buffer is created using mmap (mapping
segments).

In AIX 5.2 there are two Asynchronous I/O Subsystems. The original AIX AlO, now called LEGACY AIO,
has the same function names as the posix compliant POSIX AlO. The major differences between the two
involve different parameter passing. Both subsytems are defined in the /usr/include/sys/aio.h file. The
_AIO_AIX_SOURCE macro is used to distinguish between the two versions.

Note: The _AIO_AIX_SOURCE macro used in the /usr/include/sys/aio.h file must be defined when
using this file to compile an aio application with the LEGACY AIO function definitions. The default
compile using the aio.h file is for an application with the new POSIX AlIO definitions. To use the
LEGACY AIO function defintions do the following in the source file:

#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or when compiling on the command line, type the following:
xlc ... -D_AIO_AIX_SOURCE ... classic_aio_program.c

© Copyright IBM Corp. 1997, 2003 75

For each aio function there is a legacy and a posix definition. LEGACY AIO has an additional [aio_nwait]
function, which although not a part of posix definitions has been included in POSIX AlO to help those who
want to port from LEGACY to POSIX definitions. POSIX AlO has an additional [aio_fsynd function, which
is not included in LEGACY AIO. For a list of these functions, see [‘Asynchronous 1/0 Subroutines” on|

How Do | Know if | Need to Use AIO?

Using the vmstat command with an interval and count value, you can determine if the CPU is idle waiting
for disk 1/0. The wa column details the percentage of time the CPU was idle with pending local disk I/O.

If there is at least one outstanding I/O to a local disk when the wait process is running, the time is
classified as waiting for I/O. Unless asynchronous 1/O is being used by the process, an 1/O request to disk
causes the calling process to block (or sleep) until the request has been completed. Once a process’s 1/0
request completes, it is placed on the run queue.

A wa value consistently over 25 percent may indicate that the disk subsystem is not balanced properly, or it
may be the result of a disk-intensive workload.

Note: AIO will not relieve an overly busy disk drive. Using the iostat command with an interval and count
value, you can determine if any disks are overly busy. Monitor the %tm_act column for each disk
drive on the system. On some systems, a %tm_act of 35.0 or higher for one disk can cause
noticeably slower performance. The relief for this case could be to move data from more busy to
less busy disks, but simply having AIO will not relieve an overly busy disk problem.

SMP Systems

For SMP systems, the us, sy, id and wa columns are only averages over all processors. But keep in
mind that the I/O wait statistic per processor is not really a processor-specific statistic; it is a global
statistic. An 1/O wait is distinguished from idle time only by the state of a pending I/O. If there is any
pending disk I/0, and the processor is not busy, then it is an 1/0 wait time. Disk 1/O is not tracked by
processors, so when there is any I/O wait, all processors get charged (assuming they are all equally idle).

How Many AIO Servers Am | Currently Using?

To determine you how many Posix AlO Servers (aios) are currently running, type the following on the
command line:

pstat -a | grep posix_aioserver | wc -1
Note: You must run this command as the root user.

To determine you how many Legacy AIO Servers (aios) are currently running, type the following on the
command line:
pstat -a | egrep

aioserver' | wc -1
Note: You must run this command as the root user.

If the disk drives that are being accessed asynchronously are using either the Journaled File System (JFS)
or the Enhanced Journaled File System (JFS2), all 1/0 will be routed through the aios kprocs.

If the disk drives that are being accessed asynchronously are using a form of raw logical volume
management, then the disk /O is not routed through the aios kprocs. In that case the number of servers
running is not relevant.

However, if you want to confirm that an application that uses raw logic volumes is taking advantage of
AIQ, you can disable the fast path option via SMIT. When this option is disabled, even raw I/O will be
forced through the aios kprocs. At that point, the pstat command listed in preceding discussion will work.

76 Kemel Extensions and Device Support Programming Concepts

You would not want to run the system with this option disabled for any length of time. This is simply a
suggestion to confirm that the application is working with AIO and raw logical volumes.

At releases earlier than AIX 4.3, the fast path is enabled by default and cannot be disabled.

How Many AIO Servers Do | Need?

Here are some suggested rules of thumb for determining what value to set maximum number of servers
to:

1. The first rule of thumb suggests that you limit the maximum number of servers to a number equal to
ten times the number of disks that are to be used concurrently, but not more than 80. The minimum
number of servers should be set to half of this maximum number.

2. Another rule of thumb is to set the maximum number of servers to 80 and leave the minimum number
of servers set to the default of 1 and reboot. Monitor the number of additional servers started
throughout the course of normal workload. After a 24-hour period of normal activity, set the maximum
number of servers to the number of currently running aios + 10, and set the minimum number of
servers to the number of currently running aios - 10.

In some environments you may see more than 80 aios KPROCs running. If so, consider the third rule
of thumb.

3. A third suggestion is to take statistics using vmstat -s before any high I/O activity begins, and again at
the end. Check the field iodone. From this you can determine how many physical I/Os are being
handled in a given wall clock period. Then increase the maximum number of servers and see if you
can get more iodones in the same time period.

Prerequisites
To make use of asynchronous I/O the following fileset must be installed:
bos.rte.aio

To determine if this fileset is installed, use:

1slpp -1 bos.rte.aio

You must also make the aioO or posix_aioO device available using SMIT.

smit chgaio
smit chgposixaio

STATE to be configured at system restart available

or

smit aio
smit posixaio

Configure aio now

Functions of Asynchronous 1/O

Functions provided by the asynchronous 1/O facilities are:
« |Large File-Enabled Asynchronous /0|

* [Nonblocking I/Q
» [Notification of /0 completion|
+ |Cancellation of 1/0 requests|

Large File-Enabled Asynchronous 1/O

The fundamental data structure associated with all asynchronous 1/O operations is struct aiocb. Within
this structure is the aio_offset field which is used to specify the offset for an I/O operation.

Chapter 5. Asynchronous I/O Subsystem 77

Due to the signed 32-bit definition of aio_offset, the default asynchronous 1/O interfaces are limited to an
offset of 2G minus 1. To overcome this limitation, a new aio control block with a signed 64-bit offset field
and a new set of asynchronous I/O interfaces has been defined. These 64—bit definitions end with "64".

The large offset-enabled asynchronous I/O interfaces are available under the _LARGE_FILES compilation
environment and under the _LARGE_FILE_API programming environment. For further information, see
|Writing Programs That Access Large Files| in AIX 5L Version 5.2 General Programming Concepts: Writing
and Debugging Programs.

Under the _LARGE_FILES compilation environment, asynchronous I/O applications written to the default
interfaces see the following redefinitions:

Item Redefined To Be Header File
struct aiocb struct aiocb64 sys/aio.h
aio_read() aio_read64() sys/aio.h
aio_write() aio_write64() sys/aio.h
aio_cancel() aio_cancel64() sys/aio.h
aio_suspend() aio_suspend64() sys/aio.h
aio_listio() aio_listio64() sys/aio.h
aio_return() aio_return64() sys/aio.h
aio_error() aio_error64() sys/aio.h

For information on using the _LARGE_FILES environment, see [Porting Applications to the Large File|
in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging Programs

In the _LARGE_FILE_API environment, the 64-bit API interfaces are visible. This environment requires
recoding of applications to the new 64-bit APl name. For further information on using the
_LARGE_FILE_API environment, see |Using the 64-Bit File System Subroutines|in AIX 5L Version 5.2
General Programming Concepts: Writing and Debugging Programs

Nonblocking I/0

After issuing an I/O request, the user application can proceed without being blocked while the 1/0
operation is in progress. The I/O operation occurs while the application is running. Specifically, when the
application issues an I/O request, the request is queued. The application can then resume running before
the 1/0O operation is initiated.

To manage asynchronous I/O, each asynchronous I/O request has a corresponding control block in the
application’s address space. This control block contains the control and status information for the request.
It can be used again when the 1/O operation is completed.

Notification of /0 Completion

After issuing an asynchronous 1/O request, the user application can determine when and how the 1/0
operation is completed. This information is provided in three ways:

* The application canthe status of the I/O operation.
* The system can asynchronously the application when the I/O operation is done.
+ The application can until the 1/O operation is complete.

Polling the Status of the I/0 Operation
The application can periodically poll the status of the I/O operation. The status of each I/O operation is

provided in the application’s address space in the control block associated with each request. Portable

78 Kemel Extensions and Device Support Programming Concepts

applications can retrieve the status by using the aio_error subroutine.The aio_suspend subroutine
suspends the calling process until one or more asynchronous I/O requests are completed.

Asynchronously Notifying the Application When the I/O Operation Completes
Asynchronously notifying the 1/0 completion is done by signals. Specifically, an application may request
that a SIGIO signal be delivered when the 1/O operation is complete. To do this, the application sets a flag
in the control block at the time it issues the I/O request. If several requests have been issued, the
application can poll the status of the requests to determine which have actually completed.

Blocking the Application until the I/O Operation Is Complete
The third way to determine whether an I/O operation is complete is to let the calling process become

blocked and wait until at least one of the 1/0 requests it is waiting for is complete. This is similar to
synchronous style I/O. It is useful for applications that, after performing some processing, need to wait for
I/O completion before proceeding.

Cancellation of I/0 Requests

I/O requests can be canceled if they are cancelable. Cancellation is not guaranteed and may succeed or
not depending upon the state of the individual request. If a request is in the queue and the 1/O operations
have not yet started, the request is cancellable. Typically, a request is no longer cancelable when the
actual I/O operation has begun.

Asynchronous I/O Subroutines

Note: The 64-bit APIs are as follows:

The following subroutines are provided for performing asynchronous I/O:

Subroutine Purpose
laio_cancel or aio_cancel64] Cancels one or more outstanding asynchronous 1/0O requests.
|aio_error or aio_error64| Retrieves the error status of an asynchronous 1/0 request.
laio_fsynd] Synchronizes asynchronous files.
|Iio_|istio or lio_listio64| Initiates a list of asynchronous 1/O requests with a single call.
io_nwait Suspends the calling process until n asynchronous 1/O requests are
completed.
io_read or aio=read64| Reads asynchronously from a file.
@return or aio=return64| Retrieves the return status of an asynchronous I/O request.
io_suspend or aio_suspend64| Suspends the calling process until one or more asynchronous I/O requests is
completed.
[aio_write or aio_write64| Writes asynchronously to a file.

Order and Priority of Asynchronous /O Calls

An application may issue several asynchronous 1/O requests on the same file or device. However,
because the I/0O operations are performed asynchronously, the order in which they are handled may not be
the order in which the I/O calls were made. The application must enforce ordering of its own 1/O requests
if ordering is required.

Priority among the I/O requests is not currently implemented. The aio_reqprio field in the control block is
currently ignored.

For files that support seek operations, seeking is allowed as part of the asynchronous read or write

operations. The whence and offset fields are provided in the control block of the request to set the seek
parameters. The seek pointer is updated when the asynchronous read or write call returns.

Chapter 5. Asynchronous I/O Subsystem 79

Subroutines Affected by Asynchronous 1/O

The following existing subroutines are affected by asynchronous I/O:
* Thel[close]subroutine

* The @ subroutine

* The :Eeél subroutine

* The :for subroutine

If the application closes a file, or calls the _exit or exec subroutines while it has some outstanding I/O
requests, the requests are canceled. If they cannot be canceled, the application is blocked until the
requests have completed. When a process calls the fork subroutine, its asynchronous I/O is not inherited
by the child process.

One fundamental limitation in asynchronous I/O is page hiding. When an unbuffered (raw) asynchronous
I/O is issued, the page that contains the user buffer is hidden during the actual I/O operation. This ensures
cache consistency. However, the application may access the memory locations that fall within the same
page as the user buffer. This may cause the application to block as a result of a page fault. To alleviate
this, allocate page aligned buffers and do not touch the buffers until the 1/O request using it has
completed.

Changing Attributes for Asynchronous 1/0

You can change attributes relating to asynchronous 1/O using the command or Likewise, you
can use SMIT to configure and remove (unconfigure) asynchronous 1/O. (Alternatively, you can use the
[mkdeV] and rmdev|commands to configure and remove asynchronous I/O). To start SMIT at the main
menu for asynchronous 1/O, enter smit aio or smit posixaio.

MINIMUM number of servers
Indicates the minimum number of kernel processes dedicated to asynchronous I/O processing.
Because each kernel process uses memory, this number should not be large when the amount of
asynchronous 1/O expected is small.

MAXIMUM number of servers per cpu
Indicates the maximum number of kernel processes per cpu that are dedicated to asynchronous
I/O processing. This number when multiplied by the number of cpus indicates the limit on 1/0
requests in progress at one time, and represents the limit for possible 1/0 concurrency.

Maximum number of REQUESTS
Indicates the maximum number of asynchronous 1/O requests that can be outstanding at one time.
This includes requests that are in progress as well as those that are waiting to be started. The
maximum number of asynchronous I/O requests cannot be less than the value of AIO_MAX, as
defined in the /usr/include/sys/limits.h file, but it can be greater. It would be appropriate for a
system with a high volume of asynchronous I/O to have a maximum number of asynchronous I/O
requests larger than AIO_MAX.

Server PRIORITY
Indicates the priority level of kernel processes dedicated to asynchronous I/O. The lower the
priority number is, the more favored the process is in scheduling. Concurrency is enhanced by
making this number slightly less than the value of PUSER, the priority of a normal user process. It
cannot be made lower than the values of PRI_SCHED.

Because the default priority is (40+nice), these daemons will be slightly favored with this value of
(39+nice). If you want to favor them more, make changes slowly. A very low priority can interfere
with the system process that require low priority.

80 Kemel Extensions and Device Support Programming Concepts

Attention: Raising the server PRIORITY (decreasing this numeric value) is not recommended
because system hangs or crashes could occur if the priority of the AlO servers is favored too
much. There is little to be gained by making big priority changes.

PUSER and PRI_SCHED are defined in the /usr/include/sys/pri.h file.

STATE to be configured at system restart
Indicates the state to which asynchronous I/O is to be configured during system initialization. The
possible values are:

» defined, which indicates that the asynchronous I/O will be left in the defined state and not
available for use

« available, which indicates that asynchronous 1/O will be configured and available for use

STATE of FastPath
The AIO Fastpath is used only on character devices (raw logical volumes) and sends I/O requests
directly to the underlying device. The file system path used on block devices uses the aio kprocs
to send requests through file system routines provided to kernel extensions. Disabling this option
forces all 1/0 activity through the aios kprocs, including 1/O activity that involves raw logical
volumes. In AlX 4.3 and earlier, the fast path is enabled by default and cannot be disabled.

64-bit Enhancements

Asynchronous I/0O (AIO) has been enhanced to support 64-bit enabled applications. On 64-bit platforms,
both 32-bit and 64-bit AIO can occur simultaneously.

The struct aiocb, the fundamental data structure associated with all asynchronous I/O operation, has
changed. The element of this struct, aio_return, is now defined as ssize_t. Previously, it was defined as
an int. AlO supports large files by default. An application compiled in 64-bit mode can do AIO to a large
file without any additional #define or special opening of those files.

Related Information

Subroutine References

The [aio_cancel or aio_cancel64] subroutine, [aio_error or aio_error64 subroutine, [aio_read or]
faio_read64| subroutine, [aio_return or aio_return64] subroutine, |aio_suspend or aio_suspend64|
subroutine, [aio_write or aio_write64| subroutine, Jlio_listio or lio_listio64] subroutine in AIX 5L Version
5.2 Technical Reference: Base Operating System and Extensions Volume 1.

Commands References
The [chdev] command in AIX 5L Version 5.2 Commands Reference, Volume 1.

The command in AIX 5L Version 5.2 Commands Reference, Volume 3.

The command in AIX 5L Version 5.2 Commands Reference, Volume 4.

Chapter 5. Asynchronous I/O Subsystem 81

82 Kemel Extensions and Device Support Programming Concepts

Chapter 6. Device Configuration Subsystem

Devices are usually pieces of equipment that attach to a computer. Devices include printers, adapters, and
disk drives. Additionally, devices are special files that can handle device-related tasks.

System users cannot operate devices until device configuration occurs. To configure devices, the Device
Configuration Subsystem is available.

Read about general configuration characteristics and procedures in:

* [“Scope of Device Configuration Support’|

+ [‘Device Configuration Subsystem Overview’|

* [“General Structure of the Device Configuration Subsystem” on page 84|

Scope of Device Configuration Support

The term device has a wider range of meaning in this operating system than in traditional operating
systems. Traditionally, devices refers to hardware components such as disk drives, tape drives, printers,
and keyboards. Pseudo-devices, such as the console, error special file, and null special file, are also
included in this category. However, in this operating system, all of these devices are referred to as kernel
devices, which have device drivers and are known to the system by major and minor numbers.

Also, in this operating system, hardware components such as buses, adapters, and enclosures (including
racks, drawers, and expansion boxes) are considered devices.

Device Configuration Subsystem Overview

Devices are organized hierarchically within the system. This organization requires lower-level device
dependence on upper-level devices in child-parent relationships. The system device (sys0) is the
highest-level device in the system node, which consists of all physical devices in the system.

Each device is classified into functional classes, functional subclasses and device types (for example,
printer class, parallel subclass, 4201 Proprinter type). These classifications are maintained in the device
configuration databases with all other device information.

The Device Configuration Subsystem consists of:

High-level Commands Maintain (add, delete, view, change) configured devices within the system.
These commands manage all of the configuration functions and are performed
by invoking the appropriate device methods for the device being configured.
These commands call device methods and low-level commands.

The system uses the high-level Configuration Manager (cfgmgr) command
used to invoke automatic device configurations through system boot phases
and the user can invoke the command during system run time. Configuration
rules govern the efgmgr command.

Device Methods Define, configure, change, unconfigure, and undefine devices. The device
methods are used to identify or change the device states (operational modes).
Database Maintains data through the ODM (Object Data Manager) by object classes.

Predefined Device Objects contain configuration data for all devices that can
possibly be used by the system. Customized Device Objects contain data for
device instances that are actually in use by the system.

© Copyright IBM Corp. 1997, 2003 83

General Structure of the Device Configuration Subsystem

The Device Configuration Subsystem can be viewed from the following different levels:
» High-level perspective

* Device method level

* Low-level perspective

Data that is used by the three levels is maintained in the|Configuration databasd. The database is
managed as object classes by the Object Data Manager (ODM). All information relevant to support the
device configuration process is stored in the configuration database.

The system cannot use any device unless it is configured.

The database has two components: the Predefined database and the Customized database. The
Predefined database contains configuration data for all devices that could possibly be supported by the
system. The Customized database contains configuration data for the devices actually defined or
configured in that particular system.

The|Configuration manager (cfgmgr command) performs the configuration of a system’s devices
automatically when the system is booted. This high-level program can also be invoked through the system
keyboard to perform automatic device configuration. The configuration manager command configures
devices as specified by Configuration rules.

High-Level Perspective

From a high-level, user-oriented perspective, device configuration comprises the following basic tasks:
* Adding a device to the system

» Deleting a device from the system

» Changing the attributes of a device

» Showing information about a device

From a high-level, system-oriented perspective, device configuration provides the basic task of automatic
device configuration: running the configuration manager program.

A set of high-level commands accomplish all of these tasks during run time: |chdev| Imkdev, [Isattr]
Isconn| [Isdev| [Isparent| fmdev| and [cfgmgr| High-level commands can invoke device methods and
low-level commands.

Device Method Level

Beneath the high-level commands (including the cfgmgr Configuration Manager program) is a set of
functions called device methods. These methods perform well-defined configuration steps, including these
five functions:

» Defining a device in the configuration database

» Configuring a device to make it available

» Changing a device to make a change in its characteristics
* Unconfiguring a device to make it unavailable

* Undefining a device from the configuration database

|“Understanding Device States” on page 89|discusses possible device states and how the various methods
affect device state changes.

84 Kemel Extensions and Device Support Programming Concepts

The high-level device commands (including cfgmgr) can use the device methods. These methods insulate
high-level configuration programs from kernel-specific, hardware-specific, and device-specific configuration
steps. Device methods can invoke low-level commands.

Low-Level Perspective

Beneath the device methods is a set of low-level |library routines|that can be directly called by device
methods as well as by high-level configuration programs.

Device Configuration Database Overview

The Configuration database is an object-oriented database. The Object Data Manager (ODM) provides
facilities for accessing and manipulating it through object classes.

The following databases are used in the configuration process:

Predefined database Contains information about all possible types of devices that can be defined for
the system.
Customized database Describes all devices currently defined for use in the system. Items are referred

to as device instances.

[ODM Device Configuration Object Classed in AlX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 2 provides access to the object classes that make up the Predefined and Customized
databases.

Devices must be defined in the database for the system to make use of them. For a device to be in the
Defined state, the Configuration database must contain a complete description of it. This information
includes items such as the device driver name, the device major and minor numbers, the device method
names, the device attributes, connection information, and location information.

Basic Device Configuration Procedures Overview

At system boot time, cfgmgr) is automatically invoked to configure all devices detected as well as any
device whose device information is stored in the Configuration database. At run time, you can configure a
specific device by directly invoking (or indirectly invoking through a usability interface layer) high-level
device commands.

High-level device commands invoke methods and allow the user to add, delete, show, and change devices
and their associated attributes.

When a specific device is defined through its define method, the information from the Predefined database
for that type of device is used to create the information describing the specific device instance. This
specific device instance information is then stored in the Customized database. For more information on
define methods, see |Writing a Define Method)|in AIX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 2.

The process of configuring a device is often highly device-specific. The configure method for a kernel
device must:

* Load the device’s driver into the kernel.

» Pass the device dependent structure (DDS) describing the device instance to the driver. For more
information on DDS, see [‘Device Dependent Structure (DDS) Overview” on page 93,

» Create a special file for the device in the /dev directory. For more information, see [Special Files|in AIX
5L Version 5.2 Files Reference.

Chapter 6. Device Configuration Subsystem 85

For more information on configure methods, see [Writing a Configure Method|in AIX 5L Version 5.2
Technical Reference: Kernel and Subsystems Volume 2.

Of course, many devices do not have device drivers. For this type of device the configured state is not as
meaningful. However, it still has a Configure method that simply marks the device as configured or
performs more complex operations to determine if there are any devices attached to it.

The configuration process requires that a device be defined or configured before a device attached to it
can be defined or configured. At system boot time, the Configuration Manager first configures the system
device. The remaining devices are configured by traversing down the parent-child connections layer by
layer. The Configuration Manager then configures any pseudo-devices that need to be configured.

Device Configuration Manager Overview

The Configuration Manager is a rule-driven program that automatically configures devices in the system
during system boot and run time. When the Configuration Manager is invoked, it reads rules from the
Configuration Rules object class and performs the indicated actions. For more information on Configuration
Rules, see [Configuration Rules (Config Rules) Object Class| in AIX 5L Version 5.2 Technical Reference:
Kernel and Subsystems Volume 2.

Devices in the system are organized in clusters of tree structures known as nodes. Each tree is a logical

subsystem by itself. For example, the system node consists of all the physical devices in the system. The
top of the node is the system device. Below the bus and connected to it are the adapters. The bottom of

the hierarchy contains devices to which no other devices are connected. Most pseudo-devices, including

low -function terminal (LFT) and pseudo-terminal (pty) devices, are organized as separate tree structures
or nodes.

Devices Graph
See [‘Understanding Device Dependencies and Child Devices” on page 91| for more information.

Configuration Rules

Each rule in the Configuration Rules (Config_Rules) object class specifies a program name that the
Configuration Manager must execute. These programs are typically the configuration programs for the
devices at the top of the nodes. When these programs are invoked, the names of the next lower-level
devices that need to be configured are returned.

The Configuration Manager configures the next lower-level devices by invoking the configuration methods
for those devices. In turn, those configuration methods return a list of to-be-configured device names. The
process is repeated until no more device names are returned. As a result, all devices in the same node
are configured in transverse order. The following are different types of rules:

¢ Phase 1
* Phase 2
* Service

The system boot process is divided into two phases. In each phase, the Configuration Manager is invoked.
During phase 1, the Configuration Manager is called with a -f flag, which specifies that phase = 1 rules are
to be executed. This results in the configuration of base devices into the system, so that the root file
system can be used. During phase 2, the Configuration Manager is called with a -s flag, which specifies
that phase = 2 rules are to be executed. This results in the configuration of the rest of the devices into the
system.

For more information on the booting process, see [Understanding System Boot Processing|in AlX 5L
Version 5.2 System Management Guide: Operating System and Devices.

86 Kemel Extensions and Device Support Programming Concepts

The Configuration Manager invokes the programs in the order specified by the sequence value in the rule.
In general, the lower the sequence number within a given phase, the higher the priority. Thus, a rule with a
2 sequence number is executed before a rule with a sequence number of 5. An exception is made for 0
sequence numbers, which indicate a don’t-care condition. Any rule with a sequence number of 0 is
executed last. The Configuration Rules (Config_Rules) object class provides an example of this process.

If device names are returned from the program invoked, the Configuration Manager finishes traversing the
node tree before it invokes the next program. Note that some program names might not be associated
with any devices, but they must be included to configure the system.

Invoking the Configuration Manager

During system boot time, the Configuration Manager is run in two phases. In phase 1, it configures the
base devices needed to successfully start the system. These devices include the root volume group, which
permits the configuration database to be read in from the root file system.

In phase 2, the Configuration Manager configures the remaining devices using the configuration database
from the root file system. During this phase, different rules are used, depending on whether the system
was booted in normal mode or in service mode. If the system is booted in service mode, the rules for
service mode are used. Otherwise, the phase 2 rules are used.

The Configuration Manager can also be invoked during run time to configure all the detectable devices
that might have been turned off at system boot or added after the system boot. In this case, the
Configuration Manager uses the phase 2 rules.

Device Classes, Subclasses, and Types Overview

To manage the wide variety of devices it supports more easily, the operating system classifies them
hierarchically. One advantage of this arrangement is that device methods and high-level commands can
operate against a whole set of similar devices.

Devices are categorized into the following main groups:
* Functional classes

* Functional subclasses

* Device types

Devices are organized into a set of functional classes at the highest level. From a user’s point of view, all
devices belonging to the same class perform the same functions. For example, all printer devices basically
perform the same function of generating printed output.

However, devices within a class can have different interfaces. A class can therefore be partitioned into a
set of functional subclasses in which devices belonging to the same subclass have similar interfaces. For
example, serial printers and parallel printers form two subclasses of printer devices.

Finally, a device subclass is a collection of device types. All devices belonging to the same device type
share the same manufacturer's model name and number. For example, 3812-2 (model 2 Pageprinter) and
4201 (Proprinter Il) printers represent two types of printers.

Devices of the same device type can be managed by different drivers if the type belongs to more than one
subclass. For example, the 4201 printer belongs to both the serial interface and parallel interface
subclasses of the printer class, although there are different drivers for the two interfaces. However, a
device of a particular class, subclass, and type can be managed by only one device driver.

Devices in the system are organized in clusters of tree structures known as nodes. For example, the
system node consists of all the physical devices in the system. At the top of the node is the system

Chapter 6. Device Configuration Subsystem 87

device. Below the bus and connected to it are the adapters. The bottom of the hierarchy contains the
devices to which no other devices are connected. Most pseudo-devices, including LFT and PTY, are
organized as separate nodes.

Writing a Device Method

Device methods are programs associated with a device that perform basic device configuration operations.
These operations consist of defining, undefining, configuring, unconfiguring, and reconfiguring a device.
Some devices also use optional start and stop operations.

The following are the basic device methods:

Defin Creates a device instance in the Customized database.

Confiéurﬂ Configures a device instance already represented in the Customized database. This method is
responsible for making a device available for use in the system.

Change| Reconfigures a device by allowing device characteristics or attributes to be changed.

Unconfi%ure| Makes a configured device unavailable for use in the system. The device instance remains in

the Customized database but must be reconfigured before it can be used.
Deletes a device instance from the Customized database.

Invoking Methods

One device method can invoke another device method. For instance, a Configure method for a device
may need to invoke the Define method for child devices. The Change method can invoke the Unconfigure
and Configure methods. To ensure proper operation, a method that invokes another method must always
use the|odm_run_method|subroutine.

Example Methods

See the /usr/samples directory for example device method source code. These source code excerpts are
provided for example purposes only. The examples do not function as written.

Understanding Device Methods Interfaces

Device methods are not executed directly from the command line. They are only invoked by the
Configuration Manager at boot time or by the [cfgmgr} [Imkdev, chdev], and [rmdeV| configuration
commands at run time. As a result, any device method you write should meet well-defined interfaces.

The parameters that are passed into the methods as well as the exit codes returned must both satisfy the
requirements for each type of method. Additionally, some methods must write information to the stdout
and stderr files.

These interfaces are defined for each of the device methods in the individual articles on writing each
method.

To better understand how these interfaces work, one needs to understand, at least superficially, the flow of
operations through the Configuration Manager and the run-time configuration commands.

Configuration Manager

The Configuration Manager begins by invoking a Node Configuration program listed in one of the rules in
the|Configuration Rules (Config_Rules) object classl A node is a group of devices organized into a tree
structure representing the various interconnections of the devices. The Node Configuration program is
responsible for starting the configuration process for a node. It does this by querying the Customized
database to see if the device at the top of the node is represented in the database. If so, the program
writes the logical name of the device to the stdout file and then returns to the Configuration Manager.

88 Kemel Extensions and Device Support Programming Concepts

The Configuration Manager intercepts the Node Configuration program’s stdout file to obtain the name of
the device that was written. It then invokes the [Configure method for that device. The device’s Configure
method performs the steps necessary to make the device available. If the device is not an intermediate
one, the Configure method simply returns to the Configuration Manager. However, if the device is an
intermediate device that has , the Configure method must determine whether any of the child
devices need to be configured. If so, the Configure method writes the names of all the child devices to be
configured to the stdout file and then returns to the Configuration Manager.

The Configuration Manager intercepts the Configure method’s stdout file to retrieve the names of the
children. It then invokes, one at a time, the Configure methods for each child device. Each of these
Configure methods operates as described for the parent device. For example, it might simply exit when
complete, or write to its stdout file a list of additional device names to be configured and then exit. The
Configuration Manager will continue to intercept the device names written to the stdout file and to invoke
the Configure methods for those devices until the Configure methods for all the devices have been run
and no more names are written to the stdout file.

Run-Time Configuration Commands
User configuration commands invoke device methods during run time.

mkdev Thecommand is invoked to define or configure, or define and configure, devices at run time. If
just defining a device, the mkdev command invokes the|Define method| for the device. The Define
method creates the customized device instance in the [Customized Devices (CuDv) object class| and
writes the name assigned to the device to the stdout file. The mkdev command intercepts the device
name written to the stdout file by the Define method to learn the name of the device. If user-specified
attributes are supplied with the -a flag, the mkdev command then invokes the Change method for the
device.

If defining and configuring a device, the mkdev command invokes the Define method, gets the name
written to the stdout file with the Define method, invokes the|Change methoa for the device if
user-specified attributes were supplied, and finally invokes the device’s|Configure method|

If only configuring a device, the device must already exist in the CuDv object class and its name must
be specified to the mkdev command. In this case, the mkdev command simply invokes the Configure
method for the device.

chdev The command is used to change the characteristics, or attributes, of a device. The device must
already exist in the CuDv object class, and the name of the device must be supplied to the chdev
command. The chdev command simply invokes the Change method for the device.

rmdev The command can be used to undefine or unconfigure, or unconfigure and undefine, a device.
In all cases, the device must already exist in the CuDv object class and the name of the device must
be supplied to the rmdev command. The rmdev command then invokes the [Undefine method, the
|Unconfigure method, or the Unconfigure method followed by the Undefine method, depending on the
function requested by the user.

cfgmgr Thecommand can be used to configure all detectable devices that did not get configured at
boot time. This might occur if the devices had been powered off at boot time. The cfgmgr command is
the Configuration Manager and operates in the same way at run time as it does at boot time. The boot
time operation is described in [Device Configuration Manager Overview .

Understanding Device States

Device methods are responsible for changing the state of a device in the system. A device can be in one
of four states as represented by the Device Status Flag descriptor in the device’s object in the
[Devices (CuDv) object class}

Defined Represented in the Customized database, but neither configured nor available for use in the
system.

Available Configured and available for use.

Undefined Not represented in the Customized database.

Chapter 6. Device Configuration Subsystem 89

Stopped Configured, but not available for use by applications. (Optional state)
Note: Start and stop methods are only supported on the inet0 device.

The [Define method]is responsible for creating a device instance in the Customized database and setting
the state to Defined. The [Configure method| performs all operations necessary to make the device usable
and then sets the state to Available.

The [Change method|usually does not change the state of the device. If the device is in the Defined state,
the Change method applies all changes to the database and leaves the device defined. If the device is in
the Available state, the Change method attempts to apply the changes to both the database and the actual
device, while leaving the device available. However, if an error occurs when applying the changes to the
actual device, the Change method might need to unconfigure the device, thus changing the state to
Defined.

Any|Unconfigure method| you write must perform the operations necessary to make a device unusable.
Basically, this method undoes the operations performed by the Configure method and sets the device state
to Defined. Finally, the |Undefine method| actually deletes all information for a device instance from the
Customized database, thus reverting the instance to the Undefined state.

The Stopped state is an optional state that some devices require. A device that supports this state needs
[Start and Stop methods| The Stop method changes the state from Available to Stopped. The Start method
changes it from Stopped back to Available.

Note: Start and stop methods are only supported on the inet0 device.

Adding an Unsupported Device to the System

The operating system provides support for a wide variety of devices. However, some devices are not
currently supported. You can add a currently unsupported device only if you also add the necessary
software to support it.

To add a currently unsupported device to your system, you might need to:
« [Modify the Predefined database]

+ [Add appropriate device methods|

+ [Add a device driver]

« [Use installp procedures|

Modifying the Predefined Database

To add a currently unsupported device to your system, you must modify the Predefined database. To do
this, you must add information about your device to three predefined object classes:

+ |Predefined Devices (PdDv) object class|
 |Predefined Attribute (PdAt) object classl
+ [Predefined Connection (PdCn) object class|

To describe the device, you must add one object to the PdDv object class to indicate the [class, subclass)|
|and device typel You must also add one object to the PdAt object class for each device attribute, such as
interrupt level or block size. Finally, you must add objects to the PdCn object class if the device is an
intermediate device. If the device is an intermediate device, you must add an object for each different
connection location on the intermediate device.

You can use the Object Data Manager (ODM) command from the command line or in a shell
script to populate the necessary Predefined object classes from stanza files.

90 Kemel Extensions and Device Support Programming Concepts

The Predefined database is populated with devices that are present at the time of installation. For some
supported devices, such as serial and parallel printers and SCSI disks, the database also contains generic
device objects. These generic device objects can be used to configure other similar devices that are not
explicitly supported in the Predefined database. If new devices are added after installation, additional
device support might need to be installed.

For example, if you have a serial printer that closely resembles a printer supported by the system, and the
system’s device driver for serial printers works on your printer, you can add the device driver as a printer
of type osp (other serial printer). If these generic devices successfully add your device, you do not need to
provide additional system software.

Adding Device Methods

You must add device methods when adding system support for a new device. Primary methods needed to
support a device are:

* [Configure]
* |Change
* |Undefing

* [Unconfigure]

When adding a device that closely resembles devices already supported, you might be able to use one of
the methods of the already supported device. For example, if you are adding a new type of SCSI disk
whose interfaces are identical to supported SCSI disks, the existing methods for SCSI disks may work. If
so, all you need to do is populate the Predefined database with information describing the new SCSI disk,
which will be similar to information describing a supported SCSI disk.

If you need instructions on how to write a device method, see |Writing a Device Method .

Adding a Device Driver

If you add a new device, you will probably need to add a device driver. However, if you are adding a new
device that closely resembles an already supported device, you might be able to use the existing device
driver. For example, when you are adding a new type of SCSI disk whose interfaces are identical to
supported SCSI disks, the existing SCSI disk device driver might work.

Using installp Procedures

The installp procedures provide a method for adding the software and Predefined information needed to
support your new device. You might need to write shell scripts to perform tasks such as populating the
Predefined database.

Understanding Device Dependencies and Child Devices

The dependencies that one device has on another can be represented in the configuration database in two
ways. One way usually represents physical connections such as a keyboard device connected to a
particular keyboard adapter. The keyboard device has a dependency on the keyboard adapter in that it
cannot be configured until after the adapter is configured. This relationship is usually referred to as a
parent-child relationship, with the adapter as parent and the keyboard device as child. These relationships
are represented with the Parent Device Logical Name and Location Where Device Is Connected
descriptors in the [Customized Devices (CuDv) object class}

The second method represents a logical connection. Aldevice method| can add an object identifying both a
dependent device and the device upon which it depends to the [Customized Dependency (CuDep) object]
The dependent device is considered to have a dependency, and the depended-upon device is

Chapter 6. Device Configuration Subsystem 91

considered to be a dependency. CuDep objects are usually added to the database to represent a situation
in which one device requires access to another device. For example, the Ift0 device depends upon a
particular keyboard or display device.

These two types of dependencies differ significantly. The configuration process uses parent-child
dependencies at boot time to configure all devices that make up a node. The CuDep dependency is
usually only used by a device’s Configure method to record the names of the devices on which it depends.

For device methods, the parent-child relationship is the more important. Parent-child relationships affect
device-method activities in these ways:

* A parent device cannot be unconfigured if it has a configured child.
» A parent device cannot be undefined if it has a defined or configured child.
» A child device cannot be defined if the parent is not defined or configured.
» A child device cannot be configured if the parent is not configured.

» A parent device’s configuration cannot be changed if it has a configured child. This guarantees that the
information about the parent that the child’s device driver might be using remains valid.

However, when a device is listed as a dependency of another device in the CuDep object class, the only
effect is to prevent the depended-upon device from being undefined. The name of the dependency is
important to the dependent device. If the depended-upon device were allowed to be undefined, a third
device could be defined and assigned the same name.

Writers of |[Unconfigure] and [Change] methods for a depended-upon device should not worry about whether
the device is listed as a dependency. If the depended-upon device is actually open by the other device,
the Unconfigure and Change operations will fail because their device is busy. But if the depended-upon
device is not currently open, the Unconfigure or Change operations can be performed without affecting the
dependent device.

The possible parent-child connections are defined in the Predefined Connection object class. Each
predefined device type that can be a parent device is represented in this object class. There is an object
for each connection location (such as slots or ports) describing the subclass of devices that can be
connected at that location. The subclass is used to identify each device because it indicates the devices’
connection type (for example, SCSI or rs232).

There is no corresponding predefined object class describing the possible CuDep dependencies. A device
method can be written so that it already knows what the dependencies are. If predefined data is required,
it can be added as predefined attributes for the dependent device in the Predefined Attribute object
class.

Accessing Device Attributes

The predefined device attributes for each type of predefined device are stored in the |Predefined Attribute|
|(PdAt) object classl The objects in the PdAt object class identify the default values as well as other
possible values for each attribute. The |Customized Attribute (CuAt) object class| contains only attributes for
customized device instances that have been changed from their default values.

When a customized device instance is created by a its attributes assume the default
values. As a result, no objects are added to the CuAt object class for the device. If an attribute for the
device is changed from the default value by the |Change methodl an object to describe the attribute’s
current value is added to the CuAt object class for the attribute. If the attribute is subsequently changed
back to the default value, the Change method deletes the CuAt object for the attribute.

Any device methods that need the current attribute values for a device must access both the PdAt and
CuAt object classes. If an attribute appears in the CuAt object class, then the associated object identifies
the current value. Otherwise, the default value from the PdAt attribute object identifies the current value.

92 Kemel Extensions and Device Support Programming Concepts

Modifying an Attribute Value

When modifying an attribute value, methods you write must obtain the objects for that attribute from both
the PdAt and CuAt object classes.

Any method you write must be able to handle the following four scenarios:
» If the new value differs from the default value and no object currently exists in the CuAt object class,
any method you write must add an object into the CuAt object class to identify the new value.

 If the new value differs from the default value and an object already exists in the CuAt object class, any
method you write must update the CuAt object with the new value.

+ If the new value is the same as the default value and an object exists in the CuAt object class, any
method you write must delete the CuAt object for the attribute.

 |f the new value is the same as the default value and no object exists in the CuAt object class, any
method you write does not need to do anything.

Your methods can use the [getattr| and |putattr| subroutines to get and modify attributes. The getattr
subroutine checks both the PdAt and CuAt object classes before returning an attribute to you. It always
returns the information in the form of a CuAt object even if returning the default value from the PdAt object
class.

Use the putattr subroutine to modify these attributes.

Device Dependent Structure (DDS) Overview

A device dependent structure (DDS) contains information that describes a device instance to the device
driver. It typically contains information about device-dependent attributes as well as other information the
driver needs to communicate with the device. In many cases, information about a device’s parent is
included. (For instance, a driver needs information about the adapter and the bus the adapter is plugged
into to communicate with a device connected to an adapter.)

A device’s DDS is built each time the device is configured. The [Configure method| can fill in the DDS with
fixed values, computed values, and information from the Configuration database. Most of the information
from the Configuration database usually comes from the attributes for the device in the
object class, but can come from any of the object classes. Information from the database
for the device’s parent device or parent’s parent device can also be included. The DDS is passed to the

device driver with the[SYS_CFGDD| flag of the [sysconfig| subroutine, which calls the device drivers
subroutine with the CFG_INIT command.

How the Change Method Updates the DDS

The method is invoked when changing the configuration of a device. The Change method must
ensure consistency between the Configuration database and the view that any device driver might have of
the device. This is accomplished by:

1. Not allowing the configuration to be changed if the device has configured children; that is, children in
either the Available or Stopped states. This ensures that a DDS built using information in the database
about a parent device remains valid because the parent cannot be changed.

2. If a device has a device driver and the device is in either the Available or Stopped state, the Change
method must communicate to the device driver any changes that would affect the DDS. This can be
accomplished with operations, if the device driver provides the support to do so. It can also be
accomplished by taking the following steps:

a. Terminating the device instance by calling the broutine with the [SYS_CFGDD

operation. This operation calls the device driver's subroutine with the CFG_TERM
command.

b. Rebuilding the DDS using the changed information.

Chapter 6. Device Configuration Subsystem 93

c. Passing the new DDS to the device driver by calling the [sysconfig| subroutine [SYS_CFGDD
operation. This operation then calls the [ddconfig| subroutine with the CFG_INIT command.

Many Change methods simply invoke the device’s Unconfigure method, apply changes to the database,
and then invoke the device’s Configure method. This process ensures the two stipulated conditions since
the Unconfigure method, and thus the change, will fail, if the device has Available or Stopped children.
Also, if the device has a device driver, its Unconfigure method terminates the device instance. Its
Configure method also rebuilds the DDS and passes it to the driver.

Guidelines for DDS Structure

There is no single defined DDS format. Writers of device drivers and device methods must agree upon a
particular device’s DDS format. When obtaining information about a parent device, you might want to
group that information together in the DDS.

When building a DDS for a device connected to an adapter card, you will typically need the following
adapter information:

slot number Obtained from the connwhere descriptor of the adapter's Customized Device (CuDv)
object.
bus resources Obtained from attributes for the adapter in the Customized Attribute (CuAt) or Predefined

Attribute (PdAt) object classes. These include attributes for bus interrupt levels, interrupt
priorities, bus memory addresses, bus I/O addresses, and DMA arbitration levels.

The following attribute must be obtained for the adapter’'s parent bus device:

bus_id Identifies the I/O bus. This field is needed by the device driver to access the I/O bus.

Note: The [getattd] device configuration subroutine should be used whenever attributes are obtained from
the Configuration database. This subroutine returns the Customized attribute value if the attribute is
represented in the Customized Attribute object class. Otherwise, it returns the default value from the
Predefined Attribute object class.

Finally, a DDS generally includes the device’s logical name. This is used by the device driver to identify
the device when logging an error for the device.

Example of DDS

The following example provides a guide for using DDS format.

/* Device DDS */
struct device_dds {
/* Bus information =/

ulong bus_id; /* 1/0 bus id */
ushort us_type; /* Bus type, i.e. BUS_MICRO_CHANNEL=*/
/* Adapter information */

int slot_num; /% STot number */
ulong io_addr_base; /* Base bus i/o0 address */
int bus_intr_1vl; /* bus interrupt Tevel */
int intr_priority; /* System interrupt priority */
int dma_lvl; /* DMA arbitration level */
/* Device specific information */

int block_size; /* Size of block in bytes */
int abc_attr; /* The abc attribute */
int xyz_attr; /% The xyz attribute */
char resource name[16]; /* Device logical name */

94 Kemel Extensions and Device Support Programming Concepts

List of Device Configuration Commands
The high-level device configuration commands are:

Changes a device’s characteristics.

Displays devices in the system and their characteristics.

Adds a device to the system.

Removes a device from the system.

Displays attribute characteristics and possible values of attributes for devices in the system.
Displays the connections a given device, or kind of device, can accept.

Displays the possible parent devices that accept a specified connection type or device.
Configures devices by running the programs specified in the [Configuration Rules (Config_Rules)
object class.

Associated commands are:

Alters the list of boot devices seen by ROS when the machine boots.

Displays diagnostic information about a device.

Reads the base customized information from the boot image and restores it into the Device
Configuration database used during system boot phase 1.

Saves information about base customized devices in the Device Configuration Database onto the
boot device.

List of Device Configuration Subroutines

Following are the preexisting conditions for using the device configuration library subroutines:

* The caller has initialized the Object Data Manager (ODM) before invoking any of these library
subroutines. This is done using the initialize_odm subroutine. Similarly, the caller must terminate the
ODM (using the terminate_odm subroutine) after these library subroutines have completed.

» Because all of these library subroutines (except the attrval, getattr, and putattr subroutines) access
the Customized Device Driver (CuDvDr) object class, this class must be exclusively locked and
unlocked at the proper times. The application does this by using the odm_lock and odm_unlock
subroutines. In addition, those library subroutines that access the CuDvDr object class exclusively lock
this class with their own internal locks.

Following are the device configuration library subroutines:

Verifies that attributes are within range.

Generates the next available major number for a device driver instance.

Generates the smallest unused minor number, a requested minor number for a device if it is
available, or a set of unused minor numbers.

Generates a unique sequence number for creating a device’s logical name.

Returns attribute objects from either the Predefined Attribute (PdAt) or Customized Attribute
(CuAt) object class, or both.

Gets from the CuDvDr object class the minor numbers for a given major number.

Loads or unloads and binds or unbinds device drivers to or from the kernel.

Updates attribute information in the CuAt object class or creates a new object for the attribute

information.
reldevn Releases the minor number or major number, or both, for a device instance.
relmajo Releases the major number associated with a specific device driver instance.

Chapter 6. Device Configuration Subsystem 95

Related Information

[Understanding System Boot Processing|in AIX 5L Version 5.2 System Management Guide: Operating
System and Devices

Special Files|in AIX 5L Version 5.2 Files Reference

Iinitial Printer Configuration| in AIX 5L Version 5.2 Guide to Printers and Printing

[Machine Device Driver [Loading a Device Driverin AIX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 2.

Writing a Define Method, [Writing a Configure Method, [Writing a Change Method, [Writing an Unconfigure]
Method, [Writing an Undefine Method, [Writing Optional Start and Stop Methods|, [How Device Methods|
Return Errors| [Device Methods for Adapter Cards: Guidelines|in AIX 5L VerSIOn 5.2 Technical Reference:
Kernel and Subsystems Volume 2

Configuration Rules (Config_Rules) Object Class), [Customized Dependency (CuDep) Object Class|
Customized Devices (CuDv) Object Class} [Predefined Attribute (PdAt) Object Class] |Predefined|
Connection (PdCn) Object Class| |Adapter-Specific Considerations For the Predefined Devices (PdDv)|
Object Class] |Adapter-Specific Considerations For the Predefined Attributes (PdAt) Object Class,
Predefined Devices Object Class|, |[ODM Device Configuration Object Classes|in AlX 5L Version 5.2
Technical Reference: Kernel and Subsystems Volume 2.

Subroutine References
The subroutin subroutine, [odm_run_method| subroutine, subroutine in AIX 5L

Version 5.2 Technical Reference: Base Operating System and Extensions Volume 1.

The subroutine in AIX 5L Version 5.2 Technical Reference: Base Operating System and
Extensions Volume 2.

Commands References
The@ command, command in AIX 5L Version 5.2 Commands Reference, Volume 1.

The command in AIX 5L Version 5.2 Commands Reference, Volume 3.

The [rmdev] command in AIX 5L Version 5.2 Commands Reference, Volume 4.

Technical References

The [SYS_CFGDD] sysconfig operation in AIX 5L Version 5.2 Technical Reference: Base Operating
System and Extensions Volume 1.

The device driver entry point in AIX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 1.

96 Kemel Extensions and Device Support Programming Concepts

Chapter 7. Communications 1/0 Subsystem

The Communication I/O Subsystem design introduces a more efficient, streamlined approach to attaching
data link control processes to communication and LAN adapters.

The Communication I/O Subsystem consists of one or more physical device handlers (PDHSs) that control
various communication adapters. The interface to the physical device handlers can support any number of
processes, the limit being device-dependent.

Note: A PDH, as used for the Communications I/O, provides both the device head role for interfacing
to users, and the device handler role for performing 1/O to the device.

Alcommunications PDH|is a special type of multiplexed character device driver. Information common to all
communications device handlers is discussed here. Additionally, individual communications PDHs have
their own adapter-specific sets of information. Refer to the following to learn more about the adapter types:

Serial Optical Link Device Handler Overview|

Each adapter type requires a device driver. Each PDH can support one or more adapters of the same
type.

There are two interfaces a user can use to access a PDH. One is from a user-mode process (application
space), and the other is from a kernel-mode process (within the kernel).

User-Mode Interface to a Communications PDH

The user-mode process uses system calls (open, close, select, poll, ioctl, read, write) to interface to the
PDH to send or receive data. The poll or select subroutine notifies a user-mode process of available
receive data, available transmit, and status and exception conditions.

Kernel-Mode Interface to a Communications PDH

The kernel-mode interface to a communications PDH differs from the interface supported for a user-mode
process in the following ways:

» Kernel services are used instead of system calls. This means that, for example, the fp_open kernel
service is used instead of the open subroutine. The same holds true for the fp_close, fp_ioctl, and
fp_write kernel services.

* The ddread entry point, ddselect entry point, and CIO_GET_STAT (Get Status) ddioctl operation are
not supported in kernel mode. Instead, kernel-mode processes specify at open time the addresses of
their own procedures for handling receive data available, transmit available and status or exception
conditions. The PDH directly calls the appropriate procedure, whenever that condition arises. These
kernel procedures must execute and return quickly since they are executing within the priority of the
PDH.

* The ddwrite operation for a kernel-mode process differs from a user-mode process in that there are two
ways to issue a ddwrite operation to transmit data:

— Transmit each buffer of data with the fp_write kernel service.

— Use the fast write operation, which allows the user to directly call the ddwrite operation (no context
switching) for each buffer of data to be transmitted. This operation helps increase the performance of
transmitted data. A fp_ioctl (CIO_GET_FASTWRT) kernel service call obtains the functional address
of the write function. This address is used on all subsequent write function calls. Support of the fast
write operation is optional for each device.

© Copyright IBM Corp. 1997, 2003 97

CDLI Device Drivers

Some device drivers have a different design and use the services known as Common Data Link Interface
(CDLI). The following device drivers use CDLI:

Forum-Compliant ATM LAN Emulation Device Driver|

Fiber Distributed Data Interface (FDDI) Device Driver|

High-Performance (8fc8) Token-Ring Device Driver|
High-Performance (8fa2) Token-Ring Device Driver
Ethernet Device Drivers|

Communications Physical Device Handler Model Overview

A physical device handler (PDH) must provide eight common entry points. An individual PDH names its
entry points by placing a unique identifier in front of the supported command type.The following are the
required eight communications PDH entry points:

Performs configuration functions for a device handler. Supported the same way that the common
ddconfig entry point is.

Allocates or deallocates a channel for a multiplexed device handler. Supported the same way as the
common ddmpx device handler entry point.

do Performs data structure allocation and initialization for a communications PDH. Supported the same
way as the common ddopen entry point. Time-consuming tasks, such as port initialization and
connection establishment, are deferred until the ddioctl call is issued. A PDH can
support multiple users of a single port.

Frees up system resources used by the specified communications device until they are needed
again. Supported the same way as the common ddclose entry point.

Queues a message for transmission or blocks until the message can be queued. The ddwrite entry
point can attempt to queue a transmit request (nonblocking) or wait for it to be queued (blocking),
depending on the setting of the flag. The caller has the additional option of requesting an
asynchronous acknowledgment when the transmission actually completes.

drea Returns a message of data to a user-mode process. Supports blocking or nonblocking reads
depending on the setting of the DNDELAY flag. A blocking read request does not return to the caller
until data is available. A nonblocking read returns with a message of data if it is immediately
available. Otherwise, it returns a length of 0 (zero).

dselect Checks to see if a specified event or events has occurred on the device for a user-mode process.
Supported the same way as the common ddselect entry point.

Performs the special I/O operations requested in an ioctl subroutine. Supported the same way as the
common ddioctl entry point. In addition, a communications PDH must support the following four
options:

. ETo_START
. Co_RALT
. E1o_GeT sTAT

o o [« [«
Q
e
5 5
(]
a @ o Lx

Individual PDHs can add additional commands. Hardware initialization and other time-consuming activities,
such as call establishment, are performed during the CIO_START operation.

Use of mbuf Structures in the Communications PDH

PDHs use mbuf structures to buffer send and receive data. These structures allow the PDH to gather data
when transmitting frames and scatter for receive operations. The mbuf structures are internal to the kernel
and are used only by kernel-mode processes and PDHs.

PDHs and kernel-mode processes require a set of utilities for obtaining and returning mbuf structures from
a buffer pool.

98 Kemel Extensions and Device Support Programming Concepts

Kernel-mode processes use the Berkeley mbuf scheme for transmit and receive buffers. The structure for
an mbuf is defined in the /usr/include/sys/mbuf.h file.

Common Communications Status and Exception Codes

In general, communication device handlers return codes from a group of common exception codes.
However, device handlers for specific communication devices can return device-specific exception codes.
Common exception codes are defined in the /usr/include/sys/comio.h file and include the following:

CIO_OK Indicates that the operation was successful.

CIO_BUF_OVFLW Indicates that the data was lost due to buffer overflow.

CIO_HARD_FAIL Indicates that a hardware failure was detected.

CIO_NOMBUF Indicates that the operation was unable to allocate mbuf structures.

CIO_TIMEOUT Indicates that a time-out error occurred.

CIO_TX_FULL Indicates that the transmit queue is full.

CIO_NET_RCVRY_ENTER Enters network recovery.

CIO_NET_RCVRY_EXIT Indicates the device handler is exiting network recovery.

CIO_NET_RCVRY_MODE Indicates the device handler is in Recovery mode.

CIO_INV_CMD Indicates that an invalid command was issued.

CIO_BAD_MICROCODE Indicates that the microcode download failed.

CIO_NOT_DIAG_MODE Indicates that the command could not be accepted because the adapter is not
open in Diagnostic mode.

CIO_BAD_RANGE Indicates that the parameter values have failed a range check.

CIO_NOT_STARTED Indicates that the command could not be accepted because the device has not
yet been started by the first call to CIO_START operation.

CIO_LOST_DATA Indicates that the receive packet was lost.

CIO_LOST_STATUS Indicates that a status block was lost.

CIO_NETID_INV Indicates that the network ID was not valid.

CIO_NETID_DUP Indicates that the network ID was a duplicate of an existing ID already in use
on the network.

CIO_NETID_FULL Indicates that the network ID table is full.

Status Blocks for Communications Device Handlers Overview

Status blocks are used to communicate status and exception information.

User-mode processes receive a status block whenever they request a|CIO_GET_STAT| operation. A
user-mode process can wait for the next available status block by issuing a|ddselect|entry point with the

specified POLLPRI| event.

A kernel-mode process receives a status block through the[stat_fn| procedure. This procedure is specified
when the device is opened with the entry point.

Status blocks contain a code field and possible options. The code field indicates the type of status block
code (for example, CIO_START_DONE). A status block’s options depend on the block code. The C
structure of a status block is defined in the /usr/include/sys/comio.h file.

The following are the common status codes:

- [CI0_START_DONE|
+ [CIO_HALT_DONE|

» |CIO_TX_DONE

« [CIO_NULL_BLK
- [cl0 LOST STATUS

[CIO_ASYNC STATUS|

Chapter 7. Communications 1/O Subsystem 99

Additional device-dependent status block codes may be defined.

CIO_START_DONE
This block is provided by the device handler when the [CIO_START|operation completes:

option[0]
option[1]

option[2]
option[3]

The|CIO_OK]or [CIO_HARD_FAIL|status/exception code from the common or device-dependent
list.

The low-order two bytes are filled in with the netid field. This field is passed when the CIO_START
operation is invoked.

Device-dependent.

Device-dependent.

CIO_HALT_DONE
This block is provided by the device handler when the |[CIO_HALT]| operation completes:

option[0] Thestatus/exception code from the common or device-dependent list.

option[1] The low-order two bytes are filled in with the netid field. This field is passed when the CIO_START
operation is invoked.

option[2] Device-dependent.

option[3] Device-dependent.

CIO_TX_DONE

The following block is provided when the physical device handler (PDH) is finished with a transmit request
for which acknowledgment was requested:

option[0]
option[1]

option[2]
option[3]

The|CIO_OK]or [CIO_TIMEOUT] status/exception code from the common or device-dependent list.
The write_id field specified in the write_extension structure passed in the ext parameter to the

entry point.

For a kernel-mode process, indicates the mbuf pointer for the transmitted frame.
Device-dependent.

CIO_NULL_BLK

This block is returned whenever a status block is requested but there are none available:

option[0]
option[1]
option[2]
option[3]

Not used
Not used
Not used
Not used

CIO_LOST_STATUS

This block is returned once after one or more status blocks is lost due to status queue overflow. The
CIO_LOST_STATUS block provides the following:

option[0]
option[1]
option[2]
option[3]

Not used
Not used
Not used
Not used

100 Kernel Extensions and Device Support Programming Concepts

CIO_ASYNC_STATUS

This status block is used to return status and exception codes that occur unexpectedly:

option[0] The [CIO_HARD_FAIL|or|CIO_LOST_DATA| status/exception code from the common or
device-dependent list

option[1] Device-dependent

option[2] Device-dependent

option[3] Device-dependent

MPQP Device Handler Interface Overview for the ARTIC960Hx PCI
Adapter

The ARTIC960Hx PCI Adapter (PCI MPQP) device handler is a component of the [communication 1/0]
The PCI MPQP device handler interface is made up of the following eight entry points:

Resets the PCI MPQP device to a known state and returns system resources back to the
system on the last close for that adapter. The port no longer transmits or receives data.
Provides functions for initializing and terminating the PCI MPQP device handler and
adapter.
Provides the following functions for controlling the PCI MPQP device:
CIO_STAR
Initiates a session with the PCI MPQP device handler.
CIO_HAL
Ends a session with the PClI MPQP device handler.
CIO_QUER
Reads the counter values accumulated by the PCI MPQP device handler.
CIO_GET_STA

Gets the status of the current PCI MPQP adapter and device handler.

[MP_CHG_PARMS|
Permits the data link control (DLC) to change certain profile parameters after the
PCI MPQP device has been started.

Opens a channel on the PCI MPQP device for transmitting and receiving data.

Provides allocation and deallocation of a channel.

Provides the means for receiving data to the PClI MPQP device.

Provides the means for determining which specified events have occurred on the PCI

MPQP device.

Provides the means for transmitting data to the PCI MPQP device.

Binary Synchronous Communication (BSC) with the PCI MPQP
Adapter

The PCI MPQP adapter software performs low-level BSC frame-type determination to facilitate character
parsing at the kernel-mode process level. Frames received without errors are parsed. A message type is
returned in the status field of the extension block along with a pointer to the receive buffer. The message
type indicates the type of frame that was received.

For control frames that only contain control characters, the message type is returned and no data is
transferred from the board. For example, if an ACKO was received, the message type MP_ACKO is returned
in the status field of the extension block. In addition, a NULL pointer for the receive buffer is returned. If
an error occurs, the error status is logged by the device driver. Unlogged buffer overrun errors are an
exception.

Note: In BSC communications, the caller receives either a message type or an error status.

Chapter 7. Communications I/0 Subsystem 101

Read operations must be performed using the [readx] subroutine because the read_extension structure is
needed to return BSC function results.

BSC Message Types Detected by the PCI MPQP Adapter
BSC message types are defined in the /usr/include/sys/mpqp.h file. The PClI MPQP adapter can detect

the following message types:

MP_ACKO MP_DISC MP_STX_ETX
MP_ACK1 MP_SOH_ITB MP_STX_ENQ
MP_WACK MP_SOH_ETB MP_DATA_ACKO
MP_NAK MP_SOH_ETX MP_DATA_ACK1
MP_ENQ MP_SOH_ENQ MP_DATA_NAK
MP_EOT MP_STX_ITB MP_DATA_ENQ
MP_RVI MP_STX_ETB

Receive Errors Logged by the PClI MPQP Adapter

The PCI MPQP adapter detects many types of receive errors. As errors occur they are logged and the
appropriate statistical counter is incremented. The kernel-mode process is not notified of the error. The
following are the possible BSC receive errors logged by the PClI MPQP adapter:

* Receive overrun

* A cyclical redundancy check (CRC) or longitudinal redundancy check (LRC) framing error
» Parity error

* Clear to Send (CTS) timeout

» Data synchronization lost

+ ID field greater than 15 bytes (BSC)

* Invalid pad at end of frame (BSC)

* Unexpected or invalid data (BSC)

If status and data information are available, but no extension block is provided, the read operation returns
the data, but not the status information.

Note: Errors, such as buffer overflow errors, can occur during the read data operation. In these cases, the
return value is the byte count. Therefore, status should be checked even if no errno global value is
returned.

Description of the PCI MPQP Card

The PCI MPQP card is a 4-port multiprotocol adapter that supports BSC and SDLC on the EIA232-D,
X.21, and V.35 physical interfaces. When using the X.21 physical interface, X.21 centralized multipoint
operation on a leased-circuit public data network is not supported.

Serial Optical Link Device Handler Overview

The serial optical link (SOL) device handler is a component of the communication 1/0 subsystem. The
device handler can support one to four serial optical ports. An optical port consists of two separate pieces.
The serial link adapter is on the system planar and is packaged with two to four adapters in a single chip.
The serial optical channel converter plugs into a slot on the system planar and provides two separate
optical ports.

102 Kernel Extensions and Device Support Programming Concepts

Special Files

There are two separate interfaces to the serial optical link device handler. The special file /dev/ops0
provides access to the optical port subsystem. An application that opens this special file has access to all
the ports, but it does not need to be aware of the number of ports available. Each write operation includes
a destination processor ID. The device handler sends the data out the correct port to reach that processor.
In case of a link failure, the device handler uses any link that is available.

The /dev/op0, /dev/op1, ..., /dev/opn special files provide a diagnostic interface to the serial link adapters
and the serial optical channel converters. Each special file corresponds to a single optical port that can
only be opened in Diagnostic mode. A diagnostic open allows the diagnostic ioctls to be used, but normal
reads and writes are not allowed. A port that is open in this manner cannot be opened with the /dev/ops0
special file. In addition, if the port has already been opened with the /dev/ops0 special file, attempting to
open a /dev/opx special file will fail unless a forced diagnostic open is used.

Entry Points

The SOL device handler interface consists of the following entry points:

sol_close Resets the device to a known state and frees system resources.

sol_config Provides functions to initialize and terminate the device handler, and query the vital product
data (VPD).

sol_fastwrt Provides the means for kernel-mode users to transmit data to the SOL device driver.

sol_ioctl Provides various functions for controlling the device. The valid sol_ioctl operations are:

[CIO_GET_FASTWRT]
Gets attributes needed for the sol_fastwrt entry point.

I0_GET_STA

Gets the device status.

I0_HALT|

Halts the device.

10_QUERY]

Queries device statistics.

I0_START

Starts the device.

OCINFO

Provides I/O character information.

ISOL_CHECK_PRID|
Checks whether a processor ID is connected.

[SOL_GET_PRIDS|
Gets connected processor IDs.
Provides allocation and deallocation of a channel.
Initializes the device handler and allocates the required system resources.
Provides the means for receiving data.
Determines if a specified event has occurred on the device.
Provides the means for transmitting data.

Configuring the Serial Optical Link Device Driver

When configuring the serial optical link (SOL) device driver, consider the physical and logical devices, and
lchangeable attributes| of the SOL subsystem.

Chapter 7. Communications /0O Subsystem 103

Physical and Logical Devices
The SOL subsystem consists of several physical and logical devices in the ODM configuration database:

Device Description

slc (serial link chip) There are two serial link adapters in each COMBO chip. The slc
device is automatically detected and configured by the system.

otp (optic two-port card) Also known as the serial optical channel converter (SOCC). There

is one SOCC possible for each slc. The otp device is
automatically detected and configured by the system.

op (optic port) There are two optic ports per otp. The op device is automatically
detected and configured by the system.
ops (optic port subsystem) This is a logical device. There is only one created at any time.

The ops device requires some additional configuration initially,
and is then automatically configured from that point on. The
/dev/ops0 special file is created when the ops device is
configured. The ops device cannot be configured when the
processor ID is set to -1.

Changeable Attributes of the Serial Optical Link Subsystem

The system administrator can change the following attributes of the serial optical link subsystem:

Note: If your system uses serial optical link to make a direct, point-to-point connection to another system
or systems, special conditions apply. You must start interfaces on two systems at approximately the
same time, or a method error occurs. If you wish to connect to at least one machine on which the
interface has already been started, this is not necessary.

Processor ID This is the address by which other machines connected by means of the optical
link address this machine. The processor ID can be any value in the range of 1 to
254. To avoid a conflict on the network, this value is initially set to -1, which is not
valid, and the ops device cannot be configured.
Note: If you are using TCP/IP over the serial optical link, the processor ID must
be the same as the low-order octet of the IP address. It is not possible to
successfully configure TCP/IP if the processor ID does not match.

Receive Queue Size This is the maximum number of packets that is queued for a user-mode caller.
The default value is 30 packets. Any integer in the range from 30 to 150 is valid.
Status Queue Size This is the maximum number of status blocks that will be queued for a user-mode

caller. The default value is 10. Any integer in the range from 3 to 20 is valid.

The standard SMIT interface is available for setting these attributes, listing the serial optical channel
converters, handling the initial configuration of the ops device, generating a trace report, generating an
error report, and configuring TCP/IP.

Forum-Compliant ATM LAN Emulation Device Driver

The Forum-Compliant ATM LAN Emulation (LANE) device driver allows communications applications
and access methods that would normally operate over local area network (LAN) attachments to operate
over high-speed ATM networks. This ATM LANE function supports LAN Emulation Client (LEC) as
specified in The ATM Forum Technical Committee LAN Emulation Over ATM Version 1.0, as well as
MPOA Client (MPC) via a subset of ATM Forum LAN Emulation Over ATM Version 2 - LUNI Specification,
and ATM Forum Multi-Protocol Over ATM Version 1.0.

The ATM LANE device driver emulates the operation of Standard Ethernet, IEEE 802.3 Ethernet, and
IEEE 802.5 Token Ring LANSs. It encapsulates each LAN packet and transfers its LAN data over an ATM
network at up to OC12 speeds (622 megabits per second). This data can also be bridged transparently to
a traditional LAN with ATM/LAN bridges such as the IBM 2216.

104 Kermel Extensions and Device Support Programming Concepts

Each LEC participates in an emulated LAN containing additional functions such as:

* A LAN Emulation Configuration Server (LECS) that provides automated configuration of the LEC’s
operational attributes.

* A LAN Emulation Server (LES) that provides address resolution

* A Broadcast and Unknown Server (BUS) that distributes packets sent to a broadcast address or packets
sent without knowing the ATM address of the remote station (for example, whenever an ARP response
has not been received yet).

There is always at least one ATM switch and a possibility of additional switches, bridges, or concentrators.
ATM supports UNI3.0, UNI3.1, and UNI4.0 signalling.

In support of Ethernet jumbo frames, LE Clients can be configured with maximum frame size values
greater than 1516 bytes. Supported forum values are: 1516, 4544, 9234, and 18190.

Incoming Add Party requests are supported for the Control Distribute and Multicast Forward Virtual Circuits
(VCs). This allows multiple LE clients to be open concurrently on the same ELAN without additional
hardware.

LANE and MPOA are both enabled for IPV4 TCP checksum offload. Transmit offload is automaticall
enabled when it is supported by the adapter. Receive offload is configured by using the
attribute. The NDD_CHECKSUM_OFFLOAD device driver flag is set to indicate general offload capability
and also indicates that transmit offload is operational.

Transmit offload of IP-fragmented TCP packets is not supported. Transmit packets that MPOA needs to
fragment are offloaded in the MPOA software, instead of in the adapter. UDP offloading is also not
supported.

The ATM LANE device driver is a dynamically loadable device driver. Each LE Client or MPOA Client is
configurable by the operator, and the LANE driver is loaded into the system as part of that configuration
process. If an LE Client or MPOA Client has already been configured, the LANE driver is automatically
reloaded at reboot time as part of the system configuration process.

The interface to the ATM LANE device driver is through kernel services known as Network Services.

Interfacing to the ATM LANE device driver is achieved by calling the device driver’s entry points for
opening the device, closing the device, transmitting data, and issuing device control commands, just as
you would interface to any of the Common Data Link Interface (CDLI) LAN device drivers.

The ATM LANE device driver interfaces with all hardware-level ATM device drivers that support CDLI, ATM
Call Management, and ATM Signaling.

Adding ATM LANE Clients

At least one ATM LAN Emulation client must be added to the system to communicate over an ATM
network using the ATM Forum LANE protocol. A user with root authority can add Ethernet or Token-Ring
clients using the smit atmle_panel fast path.

Entries are required for the Local LE Client's LAN MAC Address field and possibly the LES ATM
Address or LECS ATM Address fields, depending on the support provided at the server. If the server
accepts the well-known ATM address for LECS, the value of the Automatic Configuration via LECS field
can be set to Yes, and the LES and LECS ATM Address fields can be left blank. If the server does not
support the well-known ATM address for LECS, an ATM address must be entered for either LES (manual
configuration) or LECS (automatic configuration). All other configuration attribute values are optional. If
used, you can accept the defaults for ease-of-use.

Chapter 7. Communications I/O Subsystem 105

Configuration help text is also available within the SMIT LE Client add and change menus.

Configuration Parameters for the ATM LANE Device Driver
The ATM LANE device driver supports the following configuration parameters for each LE Client:

addl_drvr

addl_stat

arp_aging_time

arp_cache_size
arp_response_timeout

atm_device

auto_cfg

debug_trace

Specifies the CDLI demultiplexer being used by the LE Client. The value set by the
ATM LANE device driver is /usr/lib/methods/cfgdmxtok for Token Ring emulation
and /usr/lib/methods/cfgdmxeth for Ethernet. This is not an operator-configurable
attribute.

Specifies the routine being used by the LE client to generate device-specific statistics
for the entstat and tokstat commands. The values set by the ATM LANE device
driver are:

» [usr/sbin/atmle_ent_stat
* [usr/sbin/atmle_tok_stat

The addl_stat attribute is not operator-configurable.

Specifies the maximum timeout period (in seconds) that the LE Client will maintain
an LE_ARP cache entry without verification (ATM Forum LE Client parameter C17).
The default value is 300 seconds.

Specifies the maximum number of LE_ARP cache entries that will be held by the LE
Client before removing the least recently used entry. The default value is 32 entries.
Specifies the maximum timeout period (in seconds) for LE_ARP request/response
exchanges (ATM Forum LE Client parameter C20). The default value is 1 second.
Specifies the logical name of the physical ATM device driver that this LE Client is to
operate with, as specified in the CuDv database (for example, atm0, atm1, atm2, ...).
The default is atmO.

Specifies whether the LE Client is to be automatically configured. Select Yes if the
LAN Emulation Configuration Server (LECS) will be used by the LE Client to obtain
the ATM address of the LE ARP Server, as well as any additional configuration
parameters provided by the LECS. The default value is No (manual configuration).
The attribute values are:

Yes auto configuration

No manual configuration

Note: Configuration parameters provided by LECS override configuration values
provided by the operator.

Specifies whether this LE Client should keep a real time debug log within the kernel
and allow full system trace capability. Select Yes to enable full tracing capability for
this LE Client. Select No for optimal performance when minimal tracing is desired.
The default is Yes (full tracing capability).

106 Kernel Extensions and Device Support Programming Concepts

elan_name

failsafe_time

flush_timeout

force_elan_name

fwd_delay_time

fwd_dsc_timeout

init_ctl_time

lan_type

Specifies the name of the Emulated LAN this LE Client wishes to join (ATM Forum
LE Client parameter C5). This is an SNMPv2 DisplayString of 1-32 characters, or
may be left blank (unused). See RFC1213 for a definition of an SNMPv2
DisplayString.

Note:

1. Any operator configured elan_name should match exactly what is expected at
the LECS/LES server when attempting to join an ELAN. Some servers can alias
the ELAN name and allow the operator to specify a logical name that correlates
to the actual name. Other servers might require the exact name to be specified.

Previous versions of LANE would accept any elan_name from the server, even
when configured differently by the operator. However, with multiple LECS/LES
now possible, it is desirable that only the ELAN identified by the network
administrator is joined. Use the force_elan_name attribute below to insure that
the name you have specified will by the only ELAN joined.

If no elan_name attribute is configured at the LEC, or the force_elan_name
attribute is disabled, the server can stipulate whatever elan_name is available.

Failure to use an ELAN name that is identical to the server's when specifying the
elan_name and force_elan_name attributes will cause the LEC to fail the join
process, with entstat/tokstat status indicating Driver Flag Limbo.

2. Blanks may be inserted within an elan_name by typing a tilde (~) character
whenever a blank character is desired. This allows a network administrator to
specify an ELAN name with imbedded blanks as in the default of some servers.

Any tilde (~) character that occupies the first character position of the elan_name

remains unchanged (that is, the resulting name may start with a tilde (~) but all

remaining tilde characters are converted to blanks).
Specifies the maximum timeout period (in seconds) that the LE Client will attempt to
recover from a network outage. A value of zero indicates that you should continue
recovery attempts unless a nonrecoverable error is encountered. The default value is
0 (unlimited).
Specifies the maximum timeout period (in seconds) for FLUSH request/response
exchanges (ATM Forum LE Client parameter C27). The default value is 4 seconds.
Specifies that the Emulated LAN Name returned from the LECS or LES servers must
exactly match the name entered in the elan_name attribute above. Select Yes if the
elan_name field must match the server configuration and join parameters. This
allows a specific ELAN to be joined when multiple LECS and LES servers are
available on the network. The default value is No, which allows the server to specify
the ELAN Name.
Specifies the maximum timeout period (in seconds) that the LE Client will maintain
an entry for a non-local MAC address in its LE_ARP cache without verification, when
the Topology Change flag is True (ATM Forum LE Client parameter C18). The
default value is 15 seconds.
Specifies the timeout period (in seconds) that can elapse without an active Multicast
Forward VCC from the BUS. (ATM Forum LE Client parameter C33). If the timer
expires without an active Multicast Forward VCC, the LE Client attempts recovery by
re-establishing its Multicast Send VCC to the BUS. The default value is 60 seconds.
Specifies the initial control timeout period (in seconds) for most request/response
control frame interactions (ATM Forum LE Client parameter C7i). This timeout is
increased by its initial value after each timeout expiration without a response, but
does not exceed the value specified by the Maximum Control Timeout attribute
(max_ctl_time). The default value is 5 seconds.
Identifies the type of local area network being emulated (ATM Forum LE Client
parameter C2). Both Ethernet/IEEE 802.3 and Token Ring LANs can be emulated
using ATM Forum LANE. The attribute values are:

» Ethernet/IEEE802.3
» TokenRing

Chapter 7. Communications /0 Subsystem 107

lecs_atm_addr

les_atm_addr

local_lan_addrs

max_arp_retries

max_config_retries

max_ctl_time

max_frame_size

max_queued_frames

max_rdy_retries

max_unknown_fct

If you are doing auto configuration using the LE Configuration Server (LECS), this
field specifies the ATM address of LECS. It can remain blank if the address of LECS
is not known and the LECS is connected by way of PVC (VPI=0, VCI=17) or the
well-known address, or is registered by way of ILMI. If the 20-byte address of the
LECS is known, it must be entered as hexadecimal numbers using a period (.) as the
delimiter between bytes. Leading zeros of each byte may be omitted, for example:

47.0.79.0.0.0.0.0.0.0.0.0.0.0.0.20.3.0.0.1

(the LECS well-known address)

If you are doing manual configuration (without the aid of an LECS), this field
specifies the ATM address of the LE ARP Server (LES) (ATM Forum LE Client
parameter C9). This 20-byte address must be entered as hexadecimal numbers
using a period (.) as the delimiter between bytes. Leading zeros of each byte may be
omitted, for example:

39.11.1f.22.99.99.99.0.0.0.0.1.49.10.0.5a.68.0.a.1

Specifies the local unicast LAN MAC address that will be represented by this LE
Client and registered with the LE Server (ATM Forum LE Client parameter C6). This
6-byte address must be entered as hexadecimal numbers using a period (.) as the
delimiter between bytes. Leading zeros of each byte may be omitted.

Ethernet Example: 2.60.8C.2C.D2.DC

Token Ring Example: 10.0.5A.4F.4B.C4

Specifies the maximum number of times an LE_ARP request can be retried (ATM
Forum LE Client parameter C13). The default value is 1.

Specifies the number of times a configuration control frame such as
LE_JOIN_REQUEST should be retried. Duration (in seconds) between retries is
derived from the init_ctl_time and max_ctl_time attributes. The default is 1.
Specifies the maximum timeout period (in seconds) for most request and response
control frame interactions (ATM Forum LE Client parameter C7). The default value is
30 seconds.

Specifies the maximum AAL-5 send data-unit size of data frames for this LE Client.
In general, this value should coincide with the LAN type and speed as follows:

Unspecified
for auto LECS configuration

1516 bytes
for Ethernet and IEEE 802.3 networks

4544 bytes
for 4 Mbps Token Rings or Ethernet jumbo frames

9234 bytes
for 16 Mbps Token Rings or Ethernet jumbo frames

18190 bytes

for 16 Mbps Token Rings or Ethernet jumbo frames
Specifies the maximum number of outbound packets that will be held for
transmission per LE_ARP cache entry. This queueing occurs when the Maximum
Unknown Frame Count (max_unknown_fct) has been reached, or when flushing
previously transmitted packets while switching to a new virtual channel. The default
value is 60 packets.
Specifies the maximum number of READY_QUERY packets sent in response to an
incoming call that has not yet received data or a READY_IND packet. The default
value is 2 retries.
Specifies the maximum number of frames for a given unicast LAN MAC address that
may be sent to the Broadcast and Unknown Server (BUS) within time period
Maximum Unknown Frame Time (max_unknown_ftm) (ATM Forum LE Client
parameter C10). The default value is 1.

108 Kernel Extensions and Device Support Programming Concepts

max_unknown_ftm

mpoa_enabled

mpoa_primary

path_sw_delay

peak_rate

ready_timeout

ring_speed

rx_checksum

soft_restart

vee_activity_timeout

Specifies the maximum timeout period (in seconds) that a given unicast LAN address
may be sent to the Broadcast and Unknown Server (BUS). The LE Client will send
no more than Maximum Unknown Frame Count (max_unknown_fct) packets to a
given unicast LAN destination within this timeout period (ATM Forum LE Client
parameter C11). The default value is 1 second.

Specifies whether Forum MPOA and LANE-2 functions should be enabled for this LE
Client. Select Yes if MPOA will be operational on the LE Client. Select No when
traditional LANE-1 functionality is required. The default is No (LANE-1).

Specifies whether this LE Client is to be the primary configurator for MPOA via LAN
Emulation Configuration Server (LECS). Select Yes if this LE Client will be obtaining
configuration information from the LECS for the MPOA Client. This attribute is only
meaningful if running auto config with an LECS, and indicates that the MPOA
configuration TLVs from this LEC will be made available to the MPC. Only one LE
Client can be active as the MPOA primary configurator. The default is No.

Specifies the maximum timeout period (in seconds) that frames sent on any path in
the network will take to be delivered (ATM Forum LE Client parameter C22). The
default value is 6 seconds.

Specifies the forward and backward peak bit rate in K-bits per second that will be
used by this LE Client to set up virtual channels. Specify a value that is compatible
with the lowest speed remote device with which you expect this LE Client to be
communicating. Higher values might cause congestion in the network. A value of
zero allows the LE Client to adjust its peak_rate to the actual speed of the adapter. If
the adapter does not provide its maximum peak rate value, the LE Client will default
peak_rate to 25600. Any non-zero value specified will be accepted and used by the
LE Client up to the maximum value allowed by the adapter. The default value is 0,
which uses the adapter's maximum peak rate.

Specifies the maximum timeout period (in seconds) in which data or a READY_IND
message is expected from a calling party (ATM Forum LE Client parameter C28).
The default value is 4 seconds.

Specifies the Token Ring speed as viewed by the ifnet layer. The value set by the
ATM LANE device driver is 16 Mbps for Token Ring emulation and ignored for
Ethernet. This is not an operator-configurable attribute.

Specifies whether this LE Client should offload TCP receive checksums to the ATM
hardware. Select Yes if TCP checksums should be handled in hardware. Select No if
TCP checksums should be handled in software. The default is Yes (enable hardware
receive checksum).

Note: The ATM adapter must also have receive checksum enabled to be functional.
Specifies whether active data virtual circuits (VCs) are to be maintained during
connection loss of ELAN services such as the LE ARP Server (LES) or Broadcast
and Unknown Server (BUS). Normal ATM Forum operation forces a disconnect of
data VCs when LES/BUS connections are lost. This option to maintain active data
VCs might be advantageous when server backup capabilities are available. The
default value is No.

Specifies the maximum timeout period (in seconds) for inactive Data Direct Virtual
Channel Connections (VCCs). Any switched Data Direct VCC that does not transmit
or receive data frames in this timeout period is terminated (ATM Forum LE Client
parameter C12). The default value is 1200 seconds (20 minutes).

Device Driver Configuration and Unconfiguration
The atmle_config entry point performs configuration functions for the ATM LANE device driver.

Device Driver Open

The atmle_open function is called to open the specified network device.

The LANE device driver does an asynchronous open. It starts the process of attaching the device to the
network, sets the NDD_UP flag in the ndd_flags field, and returns 0. The network attachment will continue
in the background where it is driven by network activity and system timers.

Chapter 7. Communications /0 Subsystem 109

Note: The Network Services ns_alloc routine that calls this open routine causes the open to be
synchronous. It waits until the NDD_RUNNING or the NDD_LIMBO flag is set in the ndd_flags field
or 15 seconds have passed.

If the connection is successful, the NDD_RUNNING flag will be set in the ndd_flags field, and an
NDD_CONNECTED status block will be sent. The ns_alloc routine will return at this time.

If the device connection fails, the NDD_LIMBO flag will be set in the ndd_flags field, and an
NDD_LIMBO_ENTRY status block will be sent.

If the device is eventually connected, the NDD_LIMBO flag will be disabled, and the NDD_RUNNING flag
will be set in the ndd_flags field. Both NDD_CONNECTED and NDD_LIMBO_EXIT status blocks will be
sent.

Device Driver Close

The atmle_close function is called by the Network Services ns_free routine to close the specified network
device. This function resets the device to a known state and frees system resources associated with the
device.

The device will not be detached from the network until the device’s transmit queue is allowed to drain.

Data Transmission
The atmle_output function transmits data using the network device.

If the destination address in the packet is a broadcast address, the M_BCAST flag in the
p_mbuf->m_flags field should be set prior to entering this routine. A broadcast address is defined as
FF.FF.FF.FF.FF.FF (hex) for both Ethernet and Token Ring and C0.00.FF.FF.FF.FF (hex) for Token Ring.

If the destination address in the packet is a multicast or group address, the M_MCAST flag in the
p_mbuf->m_flags field should be set prior to entering this routine. A multicast or group address is defined
as any nonindividual address other than a broadcast address.

The device driver will keep statistics based on the M_BCAST and M_MCAST flags.

Token Ring LANE emulates a duplex device. If a Token Ring packet is transmitted with a destination
address that matches the LAN MAC address of the local LE Client, the packet is received. This is also
True for Token Ring packets transmitted to a broadcast address, enabled functional address, or an
enabled group address. Ethernet LANE, on the other hand, emulates a simplex device and does not
receive its own broadcast or multicast transmit packets.

Data Reception

When the LANE device driver receives a valid packet from a network ATM device driver, the LANE device
driver calls the nd_receive function that is specified in the ndd_t structure of the network device. The
nd_receive function is part of a CDLI network demuxer. The packet is passed to the nd_receive function
in mbufs.

The LANE device driver passes one packet to the nd_receive function at a time.

The device driver sets the M_BCAST flag in the p_mbuf->m_flags field when a packet is received that
has an all-stations broadcast destination address. This address value is defined as FF.FF.FF.FF.FF.FF
(hex) for both Token Ring and Ethernet and is defined as C0.00.FF.FF.FF.FF (hex) for Token Ring.

The device driver sets the M_MCAST flag in the p_mbuf->m_flags field when a packet is received that
has a nonindividual address that is different than an all-stations broadcast address.

110 Kernel Extensions and Device Support Programming Concepts

Any packets received from the network are discarded if they do not fit the currently emulated LAN protocol
and frame format are discarded.

Asynchronous Status

When a status event occurs on the device, the LANE device driver builds the appropriate status block and
calls the nd_status function that is specified in the ndd_t structure of the network device. The nd_status
function is part of a CDLI network demuxer.

The following status blocks are defined for the LANE device driver:

Hard Failure

When an error occurs within the internal operation of the ATM LANE device driver, it is considered
unrecoverable. If the device was operational at the time of the error, the NDD_LIMBO and
NDD_RUNNING flags are disabled, and the NDD_DEAD flag is set in the ndd_flags field, and a hard
failure status block is generated.

code Set to NDD_HARD_FAIL
option[0] Set to NDD_UCODE_FAIL

Enter Network Recovery Mode
When the device driver detects an error that requires initiating recovery logic to make the device
temporarily unavailable, the following status block is returned by the device driver:

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_UCODE_FAIL

Note: While the device driver is in this recovery logic, the network connections might not be fully
functional. The device driver will notify users when the device is fully functional by way of an
NDD_LIMBO_EXIT asynchronous status block.

When a general error occurs during operation of the device, this status block is generated.

Exit Network Recovery Mode

When the device driver has successfully completed recovery logic from the error that made the device
temporarily unavailable, the following status block is returned by the device driver. This status block means
the device is now fully functional.

code Set to NDD_LIMBO_EXIT
option[0] The option field is not used.

Device Control Operations
The atmle_ctl function is used to provide device control functions.

ATMLE_MIB_GET
This control requests the LANE device driver’s current ATM LAN Emulation MIB statistics.

The user should pass in the address of an atmle_mibs_t structure as defined in
usr/include/sys/atmle_mibs.h. The driver will return EINVAL if the buffer area is smaller than the required
structure.

The ndd_flags field can be checked to determine the current state of the LANE device.

ATMLE_MIB_QUERY
This control requests the LANE device driver's ATM LAN Emulation MIB support structure.

Chapter 7. Communications /O Subsystem 111

The user should pass in the address of an atmle_mibs_t structure as defined in
usr/include/sys/atmle_mibs.h. The driver will return EINVAL if the buffer area is smaller than the required
structure.

The device driver does not support any variables for read_write or write only. If the syntax of a member of
the structure is some integer type, the level of support flag will be stored in the whole field, regardless of
the size of the field. For those fields defined as character arrays, the value will be returned only in the first
byte in the field.

NDD_CLEAR_STATS
This control requests all the statistics counters kept by the LANE device driver to be zeroed.

NDD_DISABLE_ADDRESS

This command disables the receipt of packets destined for a multicast/group address; and for Token Ring,
it disables the receipt of packets destined for a functional address. For Token Ring, the functional address
indicator (bit 0, the most significant bit of byte 2) indicates whether the address is a functional address (the
bit is a 0) or a group address (the bit is a 1).

In all cases, the length field value is required to be 6. Any other value will cause the LANE device driver
to return EINVAL.

Functional Address: The reference counts are decremented for those bits in the functional address that
are enabled (set to 1). If the reference count for a bit goes to zero, the bit will be disabled in the functional
address mask for this LE Client.

If no functional addresses are active after receipt of this command, the TOK_RECEIVE_FUNC flag in the
ndd_flags field is reset. If no functional or multicast/group addresses are active after receipt of this
command, the NDD_ALTADDRS flag in the ndd_flags field is reset.

Multicast/Group Address: If a multicast/group address that is currently enabled is specified, receipt of
packets destined for that group address is disabled. If an address is specified that is not currently enabled,
EINVAL is returned.

If no functional or multicast/group addresses are active after receipt of this command, the
NDD_ALTADDRS flag in the ndd_flags field is reset. Additionally for Token Ring, if no multicast/group
address is active after receipt of this command, the TOK_RECEIVE_GROUP flag in the ndd_flags field is
reset.

NDD_DISABLE_MULTICAST

The NDD_DISABLE_MULTICAST command disables the receipt of all packets with unregistered multicast
addresses, and only receives those packets whose multicast addresses were registered using the
NDD_ENABLE_ADDRESS command. The arg and length parameters are not used. The
NDD_MULTICAST flag in the ndd_flags field is reset only after the reference count for multicast
addresses has reached zero.

NDD_ENABLE_ADDRESS

The NDD_ENABLE_ADDRESS command enables the receipt of packets destined for a multicast/group
address; and additionally for Token Ring, it enables the receipt of packets destined for a functional
address. For Ethernet, the address is entered in canonical format, which is left-to-right byte order with the
I/G (Individual/Group) indicator as the least significant bit of the first byte. For Token Ring, the address
format is entered in noncanonical format, which is left-to-right bit and byte order and has a functional
address indicator. The functional address indicator (the most significant bit of byte 2) indicates whether the
address is a functional address (the bit value is 0) or a group address (the bit value is 1).

In all cases, the length field value is required to be 6. Any other length value will cause the LANE device
driver to return EINVAL.

112 Kernel Extensions and Device Support Programming Concepts

Functional Address: The Token-Ring network architecture provides bit-specific functional addresses for
widely used functions, such as Ring Parameter Server or Configuration Report Server. Ring stations use
functional address masks to identify these functions. The specified address is OR’ED with the currently
specified functional addresses, and the resultant address is set as the functional address for the device.
Functional addresses are encoded in a bit-significant format, thereby allowing multiple individual groups to
be designated by a single address.

For example, if function G is assigned a functional address of C0.00.00.08.00.00 (hex), and function M is
assigned a functional address of C0.00.00.00.00.40 (hex), then ring station Y, whose node contains
function G and M, would have a mask of C0.00.00.08.00.40 (hex). Ring station Y would receive packets
addressed to either function G or M or to an address like C0.00.00.08.00.48 (hex) because that address
contains bits specified in the mask.

Note: The LANE device driver forces the first 2 bytes of the functional address to be C0.00 (hex). In
addition, bits 6 and 7 of byte 5 of the functional address are forced to 0.

The NDD_ALTADDRS and TOK_RECEIVE_FUNC flags in the ndd_flags field are set.

Because functional addresses are encoded in a bit-significant format, reference counts are kept on each of
the 31 least significant bits of the address. Reference counts are not kept on the 17 most significant bits
(the C0.00 (hex) of the functional address and the functional address indicator bit).

Multicast/Group Address: A multicast/group address table is used by the LANE device driver to store
address filters for incoming multicast/group packets. If the LANE device driver is unable to allocate kernel
memory when attempting to add a multicast/group address to the table, the address is not added and
ENOMEM is returned.

If the LANE device driver is successful in adding a multicast/group address, the NDD_ALTADDRS flag in
the ndd_flags field is set. Additionally for Token Ring, the TOK_RECEIVE_GROUP flag is set, and the
first 2 bytes of the group address are forced to be C0.00 (hex).

NDD_ENABLE_MULTICAST
The NDD_ENABLE_MULTICAST command enables the receipt of packets with any multicast (or group)

address. The arg and length parameters are not used. The NDD_MULTICAST flag in the ndd_flags field
is set.

NDD_DEBUG_TRACE

This control requests a LANE or MPOA driver to toggle the current state of its debug_trace configuration
flag.

This control is available to the operator through the LANE Ethernet entstat -t or LANE Token Ring tokstat
-t commands, or through the MPOA mpcstat -t command. The current state of the debug_trace
configuration flag is displayed in the output of each command as follows:

» For the entstat and tokstat commands, NDD_DEBUG_TRACE is enabled only if you see Driver
Flags: Debug.

* For the mpecstat command, you will see Debug Trace: Enabled.

NDD_GET_ALL_STATS
This control requests all current LANE statistics, based on both the generic LAN statistics and the ATM
LANE protocol in progress.

For Ethernet, pass in the address of an ent_ndd_stats_t structure as defined in the file
/usrfinclude/sys/cdli_entuser.h.

For Token Ring, pass in the address of a tok_ndd_stats_t structure as defined in the file
/usr/include/sys/cdli_tokuser.h.

Chapter 7. Communications 1/O Subsystem 113

The driver will return EINVAL if the buffer area is smaller than the required structure.

The ndd_flags field can be checked to determine the current state of the LANE device.

NDD_GET_STATS

This control requests the current generic LAN statistics based on the LAN protocol being emulated.

For Ethernet, pass in the address of an ent_ndd_stats_t structure as defined in the file
/usrfinclude/sys/cdli_entuser.h.

For Token Ring, pass in the address of a tok_ndd_stats_t structure as defined in file
/usr/include/sys/cdli_tokuser.h.

The ndd_flags field can be checked to determine the current state of the LANE device.

NDD_MIB_ADDR
This control requests the current receive addresses that are enabled on the LANE device driver. The
following address types are returned, up to the amount of memory specified to accept the address list:

* Local LAN MAC Address

» Broadcast Address FF.FF.FF.FF.FF.FF (hex)

» Broadcast Address C0.00.FF.FF.FF.FF (hex)

» (returned for Token Ring only)

* Functional Address Mask

» (returned for Token Ring only, and only if at least one functional address has been enabled)
* Multicast/Group Address 1 through n

» (returned only if at least one multicast/group address has been enabled)

Each address is 6-bytes in length.
NDD_MIB_GET

This control requests the current MIB statistics based on whether the LAN being emulated is Ethernet or
Token Ring.

If Ethernet, pass in the address of an ethernet_all_mib_t structure as defined in the file
lusrlinclude/sys/ethernet_mibs.h.

If Token Ring, pass in the address of a token_ring_all_mib_t structure as defined in the file
lusr/include/sys/tokenring_mibs.h.

The driver will return EINVAL if the buffer area is smaller than the required structure.

The ndd_flags field can be checked to determine the current state of the LANE device.

NDD_MIB_QUERY
This control requests LANE device driver's MIB support structure based on whether the LAN being
emulated is Ethernet or Token Ring.

If Ethernet, pass in the address of an ethernet_all_mib_t structure as defined in the file
lusrl/include/sys/ethernet_mibs.h.

If Token Ring, pass in the address of a token_ring_all_mib_t structure as defined in the file
lusr/include/sys/tokenring_mibs.h.

The driver will return EINVAL if the buffer area is smaller than the required structure.

114 Kernel Extensions and Device Support Programming Concepts

The device driver does not support any variables for read_write or write only. If the syntax of a member of
the structure is some integer type, the level of support flag will be stored in the whole field, regardless of
the size of the field. For those fields which are defined as character arrays, the value will be returned only
in the first byte in the field.

Tracing and Error Logging in the ATM LANE Device Driver
The LANE device driver has two trace points:

* 3A1 - Normal Code Paths

* 3A2 - Error Conditions

Tracing can be enabled through SMIT or with the trace command.

trace -a -j 3al,3a2

Tracing can be disabled through SMIT or with the trestop command. Once trace is stopped, the results
can be formatted into readable text with the trerpt command.

trcrpt > /tmp/trc.out

LANE error log templates:

ERRID _ATMLE_MEM_ERR An error occurred while attempting to allocate memory or
pin the code. This error log entry accompanies return
code ENOMEM on an open or control operation.

ERRID_ATMLE_LOST_SW The LANE device driver lost contact with the ATM switch.
The device driver will enter Network Recovery Mode in an
attempt to recover from the error and will be temporarily
unavailable during the recovery procedure. This generally
occurs when the cable is unplugged from the switch or
ATM adapter.

ERRID_ATMLE_REGAIN_SW Contact with the ATM switch has been re-established (for
example, the cable has been plugged back in).
ERRID_ATMLE_NET_FAIL The device driver has gone into Network Recovery Mode

in an attempt to recover from a network error and is
temporarily unavailable during the recovery procedure.
User intervention is not required for this error unless the
problem persists.

ERRID_ATMLE_RCVRY_CMPLETE The network error that caused the LANE device driver to
go into error recovery mode has been corrected.

Adding an ATM MPOA Client

A Multi-Protocol Over ATM (MPOA) Client (MPC) can be added to the system to allow ATM LANE packets
that would normally be routed through various LANE IP Subnets or Logical IP Subnets (LISs) within an
ATM network, to be sent and received over shortcut paths that do not contain routers. MPOA can provide
significant savings on end-to-end throughput performance for large data transfers, and can free up
resources in routers that might otherwise be used up handling packets that could have bypassed routers
altogether.

Only one MPOA Client is established per node. This MPC can support multiple ATM ports, containing LE
Clients/Servers and MPOA Servers. The key requirement being, that for this MPC to create shortcut paths,
each remote target node must also support MPOA Client, and must be directly accessible via the matrix of
switches representing the ATM network.

A user with root authority can add this MPOA Client using the smit mpoa_panel fast path, or click
Devices —> Communication —> ATM Adapter —> Services —> Multi-Protocol Over ATM (MPOA).

Chapter 7. Communications I/O Subsystem 115

No configuration entries are required for the MPOA Client. Ease-of-use default values are provided for
each of the attributes derived from ATM Forum recommendations.

Configuration help text is also available within MPOA Client SMIT to aid in making any modifications to
attribute default values.

Configuration Parameters for ATM MPOA Client
The ATM LANE device driver supports the following configuration parameters for the MPOA Client:

auto_cfg Auto Configuration with LEC/LECS. Specifies whether the MPOA Client is to be
automatically configured via LANE Configuration Server (LECS). Select Yes if a
primary LE Client will be used to obtain the MPOA configuration attributes, which will
override any manual or default values.
The default value is No (manual configuration). The attribute values are:
Yes - auto configuration
No - manual configuration

debug trace Specifies whether this MPOA Client should keep a real time debug log within the
kernel and allow full system trace capability. Select Yes to enable full tracing
capabilities for this MPOA Client. Select No for optimal performance when minimal
tracing is desired.
The default is Yes (full tracing capability).

fragment Enables MPOA fragmentation and specifies whether fragmentation should be
performed on packets that exceed the MTU returned in the MPOA Resolution Reply.
Select Yes to have outgoing packets fragmented as needed. Select No to avoid
having outgoing packets fragmented. Selecting No causes outgoing packets to be sent
down the LANE path when fragmentation must be performed. Incoming packets will
always be fragmented as needed even if No has been selected. The default value is
Yes.

hold_down_time Failed resolution request retry Hold Down Time (in seconds). Specifies the length of
time to wait before reinitiating a failed address resolution attempt. This value is
normally set to a value greater than retry_time_max. This attribute correlates to ATM
Forum MPC Configuration parameter MPC-pé.
The default value is 160 seconds.

init_retry_time Initial Request Retry Time (in seconds). Specifies the length of time to wait before
sending the first retry of a request that does not receive a response. This attribute
correlates to ATM Forum MPC Configuration parameter MPC-p4.
The default value is 5 seconds.

retry_time_max Maximum Request Retry Time (in seconds). Specifies the maximum length of time to
wait when retrying requests that have not received a response. Each retry duration
after the initial retry are doubled (2x) until the retry duration reaches this Maximum
Request Retry Time. All subsequent retries will wait this maximum value. This attribute
correlates to ATM Forum MPC Configuration parameter MPC-p5.
The default value is 40 seconds.

sc_setup_count Shortcut Setup Frame Count. This attribute is used in conjunction with sc_setup_time
to determine when to establish a shortcut path. Once the MPC has forwarded at least
sc_setup_count packets to the same target within a period of sc_setup_time, the MPC
attempts to create a shortcut VCC. This attribute correlates to ATM Forum MPC
Configuration parameter MPC-p1.
The default value is 10 packets.

sc_setup_time Shortcut Setup Frame Time (in seconds). This attribute is used in conjunction with
sc_setup_count above to determine when to establish a shortcut path. Once the MPC
has forwarded at least sc_setup_count packets to the same target within a period of
sc_setup_time, the MPC attempts to create a shortcut VCC. This attribute correlates
to ATM Forum MPC Configuration parameter MPC-p2.
The default value is 1 second.

vec_inact_time VCC Inactivity Timeout value (in minutes). Specifies the maximum length of time to
keep a shortcut VCC enabled when there is no send or receive activity on that VCC.
The default value is 20 minutes.

116 Kernel Extensions and Device Support Programming Concepts

Tracing and Error Logging in the ATM MPOA Client
The ATM MPOA Client has two trace points:

* 3A3 - Normal Code Paths

» 3A4 - Error Conditions

Tracing can be enabled through SMIT or with the trace command.
trace -a -j 3a3,3a4

Tracing can be disabled through SMIT or with the trestop command. Once trace is stopped, the results
can be formatted into readable text with the trerpt command.

trcrpt > /tmp/trc.out

MPOA Client error log templates
Each of the MPOA Client error log templates are prefixed with ERRID_MPOA. An example of an MPOA
error entry is as follows:

ERRID_MPOA_MEM_ERR
An error occurred while attempting to allocate kernel memory.

Getting Client Status

Three commands are available to obtain status information related to ATM LANE clients.

* The entstat command and tokstat command are used to obtain general ethernet or tokenring device
status.

* The lecstat command is used to obtain more specific information about a LANE client.
* The mpcstat command is used to obtain MPOA client status information.

For more information see, |lentstat Command| [lecstat Command] [mpcstat Command} and ftokstat Command|
in AIX 5L Version 5.2 Commands Reference.

Fiber Distributed Data Interface (FDDI) Device Driver

Note: The information in this section is specific to AIX 5.1 and earlier.

The FDDI device driver is a dynamically loadable device driver. The device driver is automatically loaded
into the system at device configuration time as part of the configuration process.

The interface to the device is through the kernel services known as Network Services.

Interfacing to the device driver is achieved by calling the device driver’s entry points for opening the
device, closing the device, transmitting data, doing a remote dump, and issuing device control commands.

The FDDI device driver supports the SMT 7.2 standard.

Configuration Parameters for FDDI Device Driver

Software Transmit Queue
The driver provides a software transmit queue to supplement the hardware queue. The queue is
configurable and contains between 3 and 250 mbufs. The default is 30 mbufs.

Alternate Address
The driver supports specifying a configurable alternate address to be used instead of the address
burned in on the card. This address must have the local bit set. Addresses between
0x400000000000 and Ox7FFFFFFFFFFF are supported. The default is 0x400000000000.

Chapter 7. Communications I/O Subsystem 117

Enable Alternate Address
The driver supports enabling the alternate address set with the Alternate Address parameter.
Values are YES and NO, with NO as the default.

PMF Password
The driver provides the ability to configure a PMF password. The password default is 0, meaning
no password.

Max T-Req
The driver enables the user to configure the card’s maximum T-Req.

TVX Lower Bound
The driver enables the user to configure the card’s TVX Lower Bound.

User Data
The driver enables the user to set the user data field on the adapter. This data can be any string
up to 32 bytes of data. The default is a zero length string.

FDDI Device Driver Configuration and Unconfiguration
The fddi_config entry point performs configuration functions for the FDDI device driver.

Device Driver Open
The fddi_open function is called to open the specified network device.

The device is initialized. When the resources have been successfully allocated, the device is attached to
the network.

If the station is not connected to another running station, the device driver opens, but is unable to transmit
Logical Link Control (LLC) packets. When in this mode, the device driver sets the

CFDDI_NDD_LLC_DOWN flag (defined in /usr/include/sys/cdli_fddiuser.h). When the adapter is able to
make a connection with at least one other station this flag is cleared and LLC packets can be transmitted.

Device Driver Close

The fddi_close function is called to close the specified network device. This function resets the device to
a known state and frees system resources used by the device.

The device is not detached from the network until the device’s transmit queue is allowed to drain.

Data Transmission
The fddi_output function transmits data using the network device.

The FDDI device driver supports up to three mbuf’s for each packet. It cannot gather from more than three
locations to a packet.

The FDDI device driver does not accept user-memory mbufs. It uses becopy on small frames which does
not work on user memory.

The driver supports up to the entire mtu in a single mbuf.
The driver requires that the entire mac header be in a single mbuf.

The driver will not accept chained frames of different types. The user should not send Logical Link Control
(LLC) and station management (SMT) frames in the same call to output.

The user needs to fill the frame out completely before calling the output routine. The mac header for a
FDDI packet is defined by the cfddi_hdr_t structure defined in /usr/include/sys/cdli_fddiuser.h. The first

118 Kernel Extensions and Device Support Programming Concepts

byte of a packet is used as a flag for routing the packet on the adapter. For most driver users the value of
the packet should be set to FDDI_TX_NORM. The possible flags are:

CFDDI_TX_NORM
Transmits the frame onto the ring. This is the normal flag value.

CFDDI_TX_LOOPBACK
Moves the frame from the adapter’s transmit queue to its receive queue as if it were received from
the media. The frame is not transmitted onto the media.

CFDDI_TX_PROC_ONLY
Processes the status information frame (SIF) or parameter management frame (PMF) request
frame and sends a SIF or PMF response to the host. The frame is not transmitted onto the media.
This flag is not valid for LLC packets.

CFDDI_TX_PROC_XMIT
Processes the SIF or PMF request frames and sends a SIF or PMF response to the host. The
frame is also transmitted onto the media. This flag is not valid for LLC packets.

Data Reception

When the FDDI device driver receives a valid packet from the network device, the FDDI device driver calls
the nd_receive function that is specified in the ndd_t structure of the network device. The nd_receive
function is part of a CDLI network demuxer. The packet is passed to the nd_receive function in mbufs.

Reliability, Availability, and Serviceability for FDDI Device Driver

The FDDI device driver has three trace points. The IDs are defined in the
lusr/include/sys/cdli_fddiuser.h file.

For FDDI the type of data in an error log is the same for every error log. Only the specifics and the title of
the error log change. Information that follows includes an example of an error log and a list of error log
entries.

Example FDDI Error Log
Detail Data

FILE NAME
Tine: 332 file: fddiintr_b.c

POS REGISTERS
F48E D317 3CC7 0008

SOURCE ADDRESS
4000 0000 0000

ATTACHMENT CLASS
0000 0001

MICRO CHANNEL AND PIO EXCEPTION CODES
0000 0000 0000 0000 0000 0000

FDDI LINK STATISTICS

0080 0000 04A0 0000 0000 0000 0001 00O 0O OO0
0001 0008 0008 0005 0005 0012 0003 0002 OO0 OO0
0000 0000 0000 0000 0000 0000 0000 0000

SELF TESTS
0000 0000 0000 0000 0000 0000 0000 0000 0000 OO0
0000 0000 0000

DEVICE DRIVER INTERNAL STATE
0fdd 0fdd 0000 0000 0000 0000 0000 0000

Chapter 7. Communications I/O Subsystem 119

Error Log Entries
The FDDI device driver returns the following are the error log entries:

ERRID_CFDDI_RMV_ADAP
This error indicates that the adapter has received a disconnect command from a remote station.
The FDDI device driver will initiate shutdown of the device. The device is no longer functional due
to this error. User intervention is required to bring the device back online.

If there is no local LAN administrator, user action is required to make the device available. For the
device to be brought back online, the device needs to be reset. This can be accomplished by
having all users of the FDDI device driver close the device. When all users have closed the device
and the device is reset, the device can be brought back online.

ERRID_CFDDI_ADAP_CHECK
This error indicates that an FDDI adapter check has occurred. If the device was connected to the
network when this error occurred, the FDDI device goes into Network Recovery Mode in an
attempt to recover from the error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required to bring the device back online.

ERRID_CFDDI_DWNLD
Indicates that the microcode download to the FDDI adapter has failed. If this error occurs during
the configuration of the device, the configuration of the device fails. User intervention is required to
make the device available.

ERRID_CFDDI_RCVRY_ENTER
Indicates that the FDDI device driver has entered Network Recovery Mode in an attempt to
recover from an error. The error which caused the device to enter this mode, is error logged
before this error log entry. The device is not fully functional until the device has left this mode.
User intervention is not required to bring the device back online.

ERRID_CFDDI_RCVRY_EXIT
Indicates that the FDDI device driver has successfully recovered from the error which caused the
device to go into Network Recovery Mode.The device in now fully functional.

ERRID_CFDDI_RCVRY_TERM
Indicates that the FDDI device driver was unable to recover from the error which caused the
device to go into Network Recovery Mode and has terminated recovery logic. The termination of
recovery logic might be due to an irrecoverable error being detected or the device being closed. If
termination is due to an irrecoverable error, that error will be error logged before this error log
entry. User intervention is required to bring the device back online.

ERRID_CFDDI_MC_ERR
Indicates that the FDDI device driver has detected a Micro Channel error. The device driver
initiates recovery logic in an attempt to recover from the error. User intervention is not required for
this error unless the problem persists.

ERRID_CFDDI_TX_ERR
Indicates that the FDDI device driver has detected a transmission error. User intervention is not
required unless the problem persists.

ERRID_CFDDI_PIO
Indicates the FDDI device driver has detected a program IO error. The device driver initiates
recovery logic in an attempt to recover from the error. User intervention is not required for this
error unless the problem persists.

ERRID_CFDDI_DOWN
Indicates that the FDDI device has been shutdown due to an irrecoverable error. The FDDI device
is no longer functional due to the error. The irrecoverable error which caused the device to be
shutdown is error logged before this error log entry. User intervention is required to bring the
device back online.

120 Kernel Extensions and Device Support Programming Concepts

ERRID_CFDDI_SELF_TEST
Indicates that the FDDI adapter has received a run self-test command from a remote station. The
device is unavailable while the adapter’s self-tests are being run. If the tests are successful, the
FDDI device driver initiates logic to reconnect the device to the network. Otherwise, the device will
be shutdown.

ERRID_CFDDI_SELFT_ERR
Indicates that an error occurred during the FDDI self-tests. User intervention is required to bring
the device back online.

ERRID_CFDDI_PATH_ERR
Indicates that an error occurred during the FDDI adapter’s path tests. The FDDI device driver will
initiate recovery logic in an attempt to recover from the error. The FDDI device will temporarily be
unavailable during the recovery procedure. User intervention is not required to bring the device
back online.

ERRID_CFDDI_PORT
Indicates that a port on the FDDI device is in a stuck condition. User intervention is not required
for this error. This error typically occurs when a cable is not correctly connected.

ERRID_CFDDI_BYPASS
Indicates that the optical bypass switch is in a stuck condition. User intervention is not required for
this error.

ERRID_CFDDI_CMD_FAIL
Indicates that a command to the adapter has failed.

High-Performance (8fc8) Token-Ring Device Driver

Note: The information in this section is specific to AIX 5.1 and earlier.

The 8fc8 Token-Ring device driver is a dynamically loadable device driver. The device driver automatically
loads into the system at device configuration time as part of the configuration process.

The interface to the device is through the kernel services known as Network Services.

Interfacing to the device driver is achieved by calling the device driver’s entry points for opening the
device, closing the device, transmitting data, doing a remote dump, and issuing device control commands.

The Token-Ring device driver interfaces with the Token-Ring High-Performance Network Adapter (8fc8). It
provides a Micro Channel-based connection to a Token-Ring network. The adapter is IEEE 802.5
compatible and supports both 4 and 16 megabit per second networks. The adapter supports only a
Shielded Twisted-Pair (STP) Token-Ring connection.

Configuration Parameters for Token-Ring Device Driver

Ring Speed
The device driver will support a user configurable parameter that indicates if the Token-Ring is to
be run at 4 or 16 megabits per second.

Software Transmit Queue
The device driver will support a user configurable transmit queue, that can be set to store between
32 and 160 transmit request pointers. Each transmit request pointer corresponds to a transmit
request, which might be for several buffers of data.

Attention MAC frames
The device driver will support a user configurable parameter that indicates if attention MAC frames
should be received.

Chapter 7. Communications I/0O Subsystem 121

Beacon MAC frames
The device driver will support a user configurable parameter that indicates if beacon MAC frames
should be received.

Network Address
The driver supports the use of the device’s hardware address as the network address or an
alternate network address configured through software. When an alternate address is used, any
valid individual address can be used. The most significant bit of the address must be set to zero
(definition of an individual address).

Device Driver Configuration and Unconfiguration
The tok_config entry point performs configuration functions Token-Ring device driver.

Device Driver Open
The tok_open function is called to open the specified network device.

The Token Ring device driver does an asynchronous open. It starts the process of attaching the device to
the network, sets the NDD_UP flag in the ndd_flags field, and returns 0. The network attachment will
continue in the background where it is driven by device activity and system timers.

Note: The Network Services ns_alloc routine that calls this open routine causes the open to be
synchronous. It waits until the NDD_RUNNING flag is set in the ndd_flags field or 60 seconds have
passed.

If the connection is successful, the NDD_RUNNING flag will be set in the ndd_flags field and a
NDD_CONNECTED status block will be sent. The ns_alloc routine will return at this time.

If the device connection fails, the NDD_LIMBO flag will be set in the ndd_flags field and a
NDD_LIMBO_ENTRY status block will be sent.

If the device is eventually connected, the NDD_LIMBO flag will be turned off and the NDD_RUNNING flag
will be set in the ndd_flags field. Both NDD_CONNECTED and NDD_LIMBO_EXIT status blocks will be
set.

Device Driver Close

The tok_close function is called to close the specified network device. This function resets the device to a
known state and frees system resources associated with the device.

The device will not be detached from the network until the device’s transmit queue is allowed to drain.

Data Transmission
The tok_output function transmits data using the network device.

The device driver does not support mbufs from user memory (which have the M_EXT flag set).

If the destination address in the packet is a broadcast address, the M_BCAST flag in the p_mbuf->m_flags
field should be set prior to entering this routine. A broadcast address is defined as OxFFFF FFFF FFFF or
0xC000 FFFF FFFF. If the destination address in the packet is a multicast address the M_MCAST flag in
the p_mbuf->m_flags field should be set prior to entering this routine. A multicast address is defined as a
non-individual address other than a broadcast address. The device driver will keep statistics based upon
the M_BCAST and M_MCAST flags.

122 Kernel Extensions and Device Support Programming Concepts

If a packet is transmitted with a destination address that matches the adapter’s address, the packet will be
received. This is true for the adapter’s physical address, broadcast addresses (0xC000 FFFF FFFF or
OxFFFF FFFF FFFF), enabled functional addresses, or an enabled group address.

Data Reception

When the Token-Ring device driver receives a valid packet from the network device, the Token-Ring
device driver calls the nd_receive function that is specified in the ndd_t structure of the network device.
The nd_receive function is part of a CDLI network demuxer. The packet is passed to the nd_receive
function in mbufs.

The Token-Ring device driver passes one packet to the nd_receive function at a time.

The device driver sets the M_BCAST flag in the p_mbuf->m_flags field when a packet is received that has
an all-stations broadcast address. This address is defined as OxFFFF FFFF FFFF or OxC000 FFFF FFFF.

The device driver sets the M_MCAST flag in the p_mbuf->m_flags field when a packet is received that has
a non-individual address that is different than the all-stations broadcast address.

The adapter does not pass invalid packets to the device driver.

Asynchronous Status

When a status event occurs on the device, the Token-Ring device driver builds the appropriate status
block and calls the nd_status function that is specified in the ndd_t structure of the network device. The
nd_status function is part of a CDLI network demuxer.

The following status blocks are defined for the Token-Ring device driver.

Hard Failure
When a hard failure has occurred on the Token-Ring device, the following status blocks can be returned

by the Token-Ring device driver. One of these status blocks indicates that a fatal error occurred.

NDD_PIO_FAIL: When a PIO error occurs, it is retried 3 times. If the error still occurs, it is considered
unrecoverable and this status block is generated.

code Set to NDD_HARD_FAIL
option[0] Set to NDD_PIO_FAIL
option([] The remainder of the status block may be used to return additional status information.

TOK_RECOVERY_THRESH: When most network errors occur, they are retried. Some errors are retried
with no limit and others have a recovery threshold. Errors that have a recovery threshold and fail all the
retries specified by the recovery threshold are considered unrecoverable and generate the following status
block:

code Set to NDD_HARD_FAIL
option[0] Set to TOK_RECOVERY_THRESH
option[1] The specific error that occurred. Possible values are:

« TOK_DUP_ADDR - duplicate node address

« TOK_PERM_HW_ERR - the device has an unrecoverable hardware error
* TOK_RING_SPEED - ring beaconing on physical insertion to the ring

* TOK_RMV_ADAP - remove ring station MAC frame received

Enter Network Recovery Mode
When the device driver has detected an error that requires initiating recovery logic that will make the

device temporarily unavailable, the following status block is returned by the device driver:

Chapter 7. Communications I/O Subsystem 123

Note: While the device driver is in this recovery logic, the device might not be fully functional. The
device driver will notify users when the device is fully functional by way of an NDD_LIMBO_EXIT
asynchronous status block.

NDD_ADAP_CHECK: When an adapter check has occurred, this status block is generated.

code Set to NDD_LIMBO_ENTER

option[0] Set to NDD_ADAP_CHECK

option[1] The adapter check interrupt information is stored in the 2 high-order bytes. The adapter also
returns three two-byte parameters. Parameter 0 is stored in the 2 low-order bytes.

option[2] Parameter 1 is stored in the 2 high-order bytes. Parameter 2 is stored in the 2 low-order bytes.

NDD_AUTO_RMV: When an internal hardware error following the beacon automatic-removal process
has been detected, this status block is generated.

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_AUTO_RMV

NDD _BUS ERR: The device has detected a I/O channel error.

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_BUS_ERR
option[1] Set to error information from the device.

NDD_CMD_FAIL: The device has detected an error in a command the device driver issued to it.

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_CMD_FAIL
option[1] Set to error information from the device.

NDD_TX_ERROR: The device has detected an error in a packet given to the device.

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_TX_ERROR
option[1] Set to error information from the device.

NDD_TX_TIMEOUT: The device has detected an error in a packet given to the device.

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_TX_TIMEOUT

TOK_ADAP_INIT: When the initialization of the device fails, this status block is generated.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_ADAP_INIT
option[1] Set to error information from the device.

TOK_ADAP_OPEN: When a general error occurs during open of the device, this status block is
generated.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_ADAP_OPEN
option[1] Set to the device open error code from the device.

124 Kerel Extensions and Device Support Programming Concepts

TOK_DMA_FAIL: A d_complete has failed.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_DMA_FAIL

TOK_RING_SPEED: When an error code of 0x27 (physical insertion, ring beaconing) occurs during open
of the device, this status block is generated.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_RING_SPEED

TOK_RMV_ADAP: The device has received a remove ring station MAC frame indicating that a network
management function had directed this device to get off the ring.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_RMV_ADAP

TOK_WIRE_FAULT: When an error code of Ox11 (lobe media test, function failure) occurs during open of
the device, this status block is generated.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_WIRE_FAULT

Exit Network Recovery Mode
When the device driver has successfully completed recovery logic from the error that made the device

temporarily unavailable, the following status block is returned by the device driver. This status block means
the device is now fully functional.

code Set to NDD_LIMBO_EXIT
option([] The option fields are not used.

Network Device Driver Status
When the device driver has status or event information to report, the following status block is returned by

the device driver:

Ring Beaconing: When the Token-Ring device has detected a beaconing condition (or the ring has
recovered from one), the following status block is generated by the Token-Ring device driver:

code Set to NDD_STATUS
option[0] Set to TOK_BEACONING
option[1] Set to the ring status received from the device.

Device Connected
When the device is successfully connected to the network the following status block is returned by the

device driver:

code Set to NDD_CONNECTED
option([] The option fields are not used.

Device Control Operations
The tok_ctl function is used to provide device control functions.

Chapter 7. Communications I/O Subsystem 125

NDD_GET_STATS
The user should pass in the tok_ndd_stats_t structure as defined in usr/include/sys/cdli_tokuser.h. The
driver will fail a call with a buffer smaller than the structure.

The statistics that are returned contain statistics obtained from the device. If the device is inoperable, the
statistics that are returned will not contain the current device statistics. The copy of the ndd_flags field
can be checked to determine the state of the device.

NDD_MIB_QUERY
The arg parameter specifies the address of the token_ring_all_mib_t structure. This structure is defined in
the /usr/include/sys/tokenring_mibs.h file.

The device driver does not support any variables for read_write or write only. If the syntax of a member of
the structure is some integer type, the level of support flag will be stored in the whole field, regardless of
the size of the field. For those fields defined as character arrays, the value will be returned only in the first
byte in the field.

NDD_MIB_GET
The arg parameter specifies the address of the token_ring_all_mib_t structure. This structure is defined in
the /usr/include/sys/tokenring_mibs.h file.

If the device is inoperable, the upstream field of the Dot5Entry_t structure will be zero instead of containing
the nearest active upstream neighbor (NAUN). Also the statistics that are returned contain statistics
obtained from the device. If the device is inoperable, the statistics that are returned will not contain the
current device statistics. The copy of the ndd_flags field can be checked to determine the state of the
device.

NDD_ENABLE_ADDRESS

This command enables the receipt of packets with a functional or a group address. The functional address
indicator (bit 0 "the MSB" of byte 2) indicates whether the address is a functional address (the bit is a 0)
or a group address (the bit is a 1). The length field is not used because the address must be 6 bytes in
length.

Functional Address: The specified address is ORed with the currently specified functional addresses
and the resultant address is set as the functional address for the device. Functional addresses are
encoded in a bit-significant format, thereby allowing multiple individual groups to be designated by a single
address.

The Token-Ring network architecture provides bit-specific functional addresses for widely-used functions,
such as configuration report server. Ring stations use functional address masks to identify these functions.
For example, if function G is assigned a functional address of 0xC0O00 0008 0000, and function M is
assigned a function address of 0xC000 0000 0040, then ring station Y, whose node contains function G
and M, would have a mask of 0xC000 0008 0040. Ring station Y would receive packets addressed to
either function G or M or to an address like 0xC000 0008 0048 because that address contains bits
specified in the mask.

Note: The device forces the first 2 bytes of the functional address to be 0xC000. In addition, bits 6 and 7
of byte 5 of the functional address are forced to a 0 by the device.

The NDD_ALTADDRS and TOK_RECEIVE_FUNC flags in the ndd_flags field are set.
Because functional addresses are encoded in a bit-significant format, reference counts are kept on each of

the 31 least significant bits of the address. Reference counts are not kept on the 17 most significant bits
(the 0xCO000 of the functional address and the functional address indicator bit).

126 Kernel Extensions and Device Support Programming Concepts

Group Address: If no group address is currently enabled, the specified address is set as the group
address for the device. The group address will not be set and EINVAL will be returned if a group address
is currently enabled.

The device forces the first 2 bytes of the group address to be 0xC00O.

The NDD_ALTADDRS and TOK_RECEIVE_GROUP flags in the ndd_flags field are set.
NDD_DISABLE_ADDRESS

This command disables the receipt of packets with a functional or a group address. The functional address
indicator (bit 0 "the MSB" of byte 2) indicates whether the address is a functional address (the bit is a 0)
or a group address (the bit is a 1). The length field is not used because the address must be 6 bytes in
length.

Functional Address: The reference counts are decremented for those bits in the functional address that
are a one (on). If the reference count for a bit goes to zero, the bit will be "turned off” in the functional
address for the device.

If no functional addresses are active after receipt of this command, the TOK_RECEIVE_FUNC flag in the
ndd_flags field is reset. If no functional or group addresses are active after receipt of this command, the
NDD_ALTADDRS flag in the ndd_flags field is reset.

Group Address: If the group address that is currently enabled is specified, receipt of packets with a
group address is disabled. If a different address is specified, EINVAL will be returned.

If no group address is active after receipt of this command, the TOK_RECEIVE_GROUP flag in the
ndd_flags field is reset. If no functional or group addresses are active after receipt of this command, the
NDD_ALTADDRS flag in the ndd_flags field is reset.

NDD_MIB_ADDR
The following addresses are returned:

» Device Physical Address (or alternate address specified by user)
* Broadcast Address OxFFFF FFFF FFFF

» Broadcast Address 0xC000 FFFF FFFF

* Functional Address (only if a user specified a functional address)
» Group Address (only if a user specified a group address)

NDD_CLEAR_STATS

The counters kept by the device will be zeroed.

NDD_GET_ALL_STATS
The arg parameter specifies the address of the mon_all_stats_t structure. This structure is defined in the
/usrfinclude/sys/cdli_tokuser.h file.

The statistics that are returned contain statistics obtained from the device. If the device is inoperable, the
statistics that are returned will not contain the current device statistics. The copy of the ndd_flags field
can be checked to determine the state of the device.

Trace Points and Error Log Templates for 8fc8 Token-Ring Device
Driver

The Token-Ring device driver has three trace points. The IDs are defined in the
usr/include/sys/cdli_tokuser.h file.

The Token-Ring error log templates are:

Chapter 7. Communications I/O Subsystem 127

ERRID_CTOK_ADAP_CHECK
The microcode on the device performs a series of diagnostic checks when the device is idle.
These checks can find errors and they are reported as adapter checks. If the device was
connected to the network when this error occurred, the device driver will go into Network Recovery
Mode in an attempt to recover from the error. The device is temporarily unavailable during the
recovery procedure. User intervention is not required for this error unless the problem persists.

ERRID_CTOK_ADAP_OPEN
The device driver was enable to open the device. The device driver will go into Network Recovery
Mode in an attempt to recover from the error. The device is temporarily unavailable during the
recovery procedure. User intervention is not required for this error unless the problem persists.

ERRID_CTOK_AUTO_RMV
An internal hardware error following the beacon automatic removal process has been detected.
The device driver will go into Network Recovery Mode in an attempt to recover from the error. The
device is temporarily unavailable during the recovery procedure. User intervention is not required
for this error unless the problem persists.

ERRID_CONFIG
The ring speed (or ring data rate) is probably wrong. Contact the network administrator to
determine the speed of the ring. The device driver will only retry twice at 2 minute intervals after
this error log entry has been generated.

ERRID_CTOK_DEVICE_ERR
The device detected an I/O channel error or an error in a command the device driver issued, an
error occurred during a PIO operation, or the device has detected an error in a packet given to the
device. The device driver will go into Network Recovery Mode in an attempt to recover from the
error. The device is temporarily unavailable during the recovery procedure. User intervention is not
required for this error unless the problem persists.

ERRID_CTOK_DOWNLOAD
The download of the microcode to the device failed. User intervention is required to make the
device available.

ERRID_CTOK_DUP_ADDR
The device has detected that another station on the ring has a device address that is the same as
the device address being tested. Contact network administrator to determine why.

ERRID_CTOK_MEM_ERR
An error occurred while allocating memory or timer control block structures.

ERRID_CTOK_PERM_HW
The device driver could not reset the card. For example, did not receive status from the adapter
within the retry period.

ERRID_CTOK_RCVRY_EXIT
The error that caused the device driver to go into error recovery mode has been corrected.

ERRID_CTOK_RMV_ADAP
The device has received a remove ring station MAC frame indicating that a network management
function has directed this device to get off the ring. Contact network administrator to determine
why.

ERRID_CTOK_WIRE_FAULT
There is probably a loose (or bad) cable between the device and the MAU. There is some chance
that it might be a bad device. The device driver will go into Network Recovery Mode in an attempt

to recover from the error. The device is temporarily unavailable during the recovery procedure.
User intervention is required for this error.

128 Kernel Extensions and Device Support Programming Concepts

High-Performance (8fa2) Token-Ring Device Driver

Note: The information in this section is specific to AIX 5.1 and earlier.

The 8fa2 Token-Ring device driver is a dynamically loadable device driver. The device driver is
automatically loaded into the system at device configuration time as part of the configuration process.

The interface to the device is through the kernel services known as Network Services.

Interfacing to the device driver is achieved by calling the device driver’s entry points for opening the
device, closing the device, transmitting data, doing a remote dump, and issuing device control commands.

The Token-Ring device driver interfaces with the Token-Ring High-Performance Network Adapter (8fa2). It
provides a Micro Channel-based connection to a Token-Ring network. The adapter is IEEE 802.5
compatible and supports both 4 and 16 megabit per second networks. The adapter supports only a RJ-45
connection.

Configuration Parameters for 8fa2 Token-Ring Device Driver
The following lists the configuration parameters necessary to use the device driver.
Ring Speed
Indicates the Token-Ring speed. The speed is set at 4 or 16 megabits per second or autosense.

4 Specifies that the device driver will open the adapter with 4 Mbits. It will return an error if ring
speed does not match the network speed.

16 Specifies that the device driver will open the adapter with 16 Mbits. It will return an error if ring
speed does not match the network speed.

autosense
Specifies that the adapter will open with the speed used determined as follows:
» If it is an open on an existing network, the speed will be the ring speed of the network.
« If it is an open on a new network:
 If the adapter is a new adapter, 16 Mbits is used.

+ If the adapter had successfully opened, the ring speed will be the ring speed of the last
successful open.

Software Transmit Queue
Specifies a transmit request pointer that can be set to store between 32 and 2048 transmit request
pointers. Each transmit request pointer corresponds to a transmit request which might be for
several buffers of data.

Attention MAC frames
Indicates if attention MAC frames should be received.

Beacon MAC frames
Indicates if beacon MAC frames should be received.

Priority Data Transmission
Specifies a request priority transmission of the data packets.

Network Address
Specifies the use of the device’s hardware address as the network address or an alternate
network address configured through software. When an alternate address is used, any valid
Individual Address can be used. The most significant bit of the address must be set to zero
(definition of an Individual Address).

Chapter 7. Communications /0O Subsystem 129

Device Driver Configuration and Unconfiguration
The tok_config entry point performs configuration functions Token-Ring device driver.

Device Driver Open
The tok_open function is called to open the specified network device.

The Token Ring device driver does a synchronous open. The device will be initialized at this time. When
the resources have been successfully allocated, the device will start the process of attaching the device to
the network.

If the connection is successful, the NDD_RUNNING flag will be set in the ndd_flags field and a
NDD_CONNECTED status block will be sent.

If the device connection fails, the NDD_LIMBO flag will be set in the ndd_flags field and a
NDD_LIMBO_ENTRY status block will be sent.

If the device is eventually connected, the NDD_LIMBO flag will be turned off and the NDD_RUNNING flag
will be set in the ndd_flags field. Both NDD_CONNECTED and NDD_LIMBO_EXIT status blocks will be
set.

Device Driver Close

The tok_close function is called to close the specified network device. This function resets the device to a
known state and frees system resources associated with the device.

The device will not be detached from the network until the device’s transmit queue is allowed to drain.

Data Transmission
The tok_output function transmits data using the network device.

The device driver does not support mbufs from user memory (which have the M_EXT flag set).

If the destination address in the packet is a broadcast address the M_BCAST flag in the
p_mbuf->m_flags field should be set prior to entering this routine. A broadcast address is defined as
O0xFFFF FFFF FFFF or 0OxC000 FFFF FFFF. If the destination address in the packet is a multicast address
the M_MCAST flag in the p_mbuf->m_flags field should be set prior to entering this routine. A multicast
address is defined as a non-individual address other than a broadcast address. The device driver will keep
statistics based upon the M_BCAST and M_MCAST flags.

If a packet is transmitted with a destination address which matches the adapter’s address, the packet will
be received. This is true for the adapter’s physical address, broadcast addresses (0xC000 FFFF FFFF or
OxFFFF FFFF FFFF), enabled functional addresses, or an enabled group address.

Data Reception

When the Token-Ring device driver receives a valid packet from the network device, the Token-Ring
device driver calls the nd_receive function that is specified in the ndd_t structure of the network device.
The nd_receive function is part of a CDLI network demuxer. The packet is passed to the nd_receive
function in mbufs.

The Token-Ring device driver will pass only one packet to the nd_receive function at a time.
The device driver will set the M_BCAST flag in the p_mbuf->m_flags field when a packet is received which

has an all stations broadcast address. This address is defined as OxFFFF FFFF FFFF or OxC0O00 FFFF
FFFF.

130 Kernel Extensions and Device Support Programming Concepts

The device driver will set the M_MCAST flag in the p_mbuf->m_flags field when a packet is received
which has a non-individual address which is different than the all-stations broadcast address.

The adapter will not pass invalid packets to the device driver.

Asynchronous Status
When a status event occurs on the device, the Token-Ring device driver builds the appropriate status

block and calls the nd_status function that is specified in the ndd_t structure of the network device. The
nd_status function is part of a CDLI network demuxer.

The following status blocks are defined for the Token-Ring device driver.

Hard Failure
When a hard failure has occurred on the Token-Ring device, the following status blocks can be returned
by the Token-Ring device driver. One of these status blocks indicates that a fatal error occured.

NDD_PIO_FAIL
Indicates that when a PIO error occurs, it is retried 3 times. If the error persists, it is considered
unrecoverable and the following status block is generated:

code Set to NDD_HARD_FAIL
option[0] Set to NDD_PIO_FAIL
option([] The remainder of the status block is used to return additional status information.

NDD_HARD_FAIL
Indicates that when a transmit error occurs it is retried. If the error is unrecoverable, the following
status block is generated:

code Set to NDD_HARD_FAIL
option[0] Set to NDD_HARD_FAIL
option([] The remainder of the status block is used to return additional status information.

NDD_ADAP_CHECK
Indicates that when an adapter check has occurred, the following status block is generated:

code Set to NDD_ADAP_CHECK
option([] The remainder of the status block is used to return additional status information.

NDD_DUP_ADDR
Indicates that the device detected a duplicated address in the network and the following status
block is generated:

code Set to NDD_DUP_ADDR
option([] The remainder of the status block is used to return additional status information.

NDD_CMD_FAIL
Indicates that the device detected an error in a command that the device driver issued. The
following status block is generated:

code Set to NDD_CMD_FAIL
option[0] Set to the command code
option([] Set to error information from the command.

TOK_RING_SPEED
Indicates that when a ring speed error occurs while the device is being open, the following status
block is generated:

Chapter 7. Communications I/0 Subsystem 131

code Set to NDD_LIMBO_ENTER
option[] Set to error information.

Enter Network Recovery Mode
Indicates that when the device driver has detected an error which requires initiating recovery logic that will
make the device temporarily unavailable, the following status block is returned by the device driver.

Note: While the device driver is in this recovery logic, the device might not be fully functional. The device
driver will notify users when the device is fully functional by way of an NDD_LIMBO_EXIT
asynchronous status block.

code Set to NDD_LIMBO_ENTER
option[0] Set to one of the following:

- NDD_CMD_FAIL

* TOK_WIRE_FAULT

+ NDD_BUS_ERROR
* NDD_ADAP_CHECK
* NDD_TX_TIMEOUT

« TOK_BEACONING
option([] The remainder of the status block is used to return additional status information by the device
driver.

Exit Network Recovery Mode

Indicates that when the device driver has successfully completed recovery logic from the error that made
the device temporarily unavailable, the following status block is returned by the device driver. This status
block indicates the device is now fully functional.

code Set to NDD_LIMBO_EXIT
option([] N/A

Device Connected
Indicates that when the device is successfully connected to the network the following status block is
returned by the device driver:

code Set to NDD_CONNECTED
option[] N/A

Device Control Operations
The tok_ctl function is used to provide device control functions.

NDD_GET_STATS
The user should pass in the tok_ndd_stats_t structure as defined in <sys/cdli_tokuser.h>. The
driver will fail a call with a buffer smaller than the structure.

The structure must be in a kernel heap so that the device driver can copy the statistics into it; and
it must be pinned.

NDD_PROMISCUOUS_ON
Setting promiscuous mode will not cause non-LLC frames to be received by the driver unless the
user also enables those filters (Attention MAC frames, Beacon MAC frames).

The driver will maintain a counter of requests.

132 Kernel Extensions and Device Support Programming Concepts

NDD_PROMISCUOUS_OFF
This command will release a request from a user to PROMISCUOUS_ON; it will not exit the mode
on the adapter if more requests are outstanding.

NDD_MIB_QUERY
The arg parameter specifies the address of the token_ring_all_mib_t structure. This structure is
defined in the /usr/include/sys/tokenring_mibs.h file.

The device driver does not support any variables for read_write or write only. If the syntax of a
member of the structure is some integer type, the level of support flag will be stored in the whole
field, regardless of the size of the field. For those fields which are defined as character arrays, the
value will be returned only in the first byte in the field.

NDD_MIB_GET
The arg parameter specifies the address of the token_ring_all_mib_t structure. This structure is
defined in the /usr/include/sys/tokenring_mibs.h file.

NDD_ENABLE_ADDRESS
This command enables the receipt of packets with a functional or a group address. The functional
address indicator (bit 0 "the MSB" of byte 2) indicates whether the address is a functional address
(the bit is a 0) or a group address (the bit is a 1). The length field is not used because the address
must be 6 bytes in length.

Functional Address
The specified address is ORed with the currently specified functional addresses and the resultant address

is set as the functional address for the device. Functional addresses are encoded in a bit-significant
format, thereby allowing multiple individual groups to be designated by a single address.

The Token-Ring network architecture provides bit-specific functional addresses for widely used functions,
such as configuration report server. Ring stations use functional address masks to identify these functions.
For example, if function G is assigned a functional address of 0xC000 0008 0000, and function M is
assigned a function address of 0xC000 0000 0040, then ring station Y, whose node contains function G
and M, would have a mask of 0xC000 0008 0040. Ring station Y would receive packets addressed to
either function G or M or to an address like 0xC000 0008 0048 because that address contains bits
specified in the mask.

The NDD_ALTADDRS and TOK_RECEIVE_FUNC flags in the ndd_flags field are set.

Because functional addresses are encoded in a bit-significant format, reference counts are kept on each of
the 31 least significant bits of the address.

Group Address
The device support 256 general group addresses. The promiscuous mode will be turned on when the

group addresses needed to be set are more than 256. The device driver will maintain a reference count on
this operation.

The NDD_ALTADDRS and TOK_RECEIVE_GROUP flags in the ndd_flags field are set.

NDD_DISABLE_ADDRESS
This command disables the receipt of packets with a functional or a group address. The functional
address indicator (bit 0 "the MSB” of byte 2) indicates whether the address is a functional address
(the bit is a 0) or a group address (the bit is a 1). The length field is not used because the address
must be 6 bytes in length.

Functional Address
The reference counts are decremented for those bits in the functional address that are one (meaning on).

If the reference count for a bit goes to zero, the bit will be "turned off” in the functional address for the
device.

Chapter 7. Communications I/O Subsystem 133

If no functional addresses are active after receipt of this command, the TOK_RECEIVE_FUNC flag in the
ndd_flags field is reset. If no functional or group addresses are active after receipt of this command, the
NDD_ALTADDRS flag in the ndd_flags field is reset.

Group Address

If the number of group address enabled is less than 256, the driver sends a command to the device to
disable the receipt of the packets with the specified group address. Otherwise, the driver just deletes the
group address from the group address table.

If there are less than 256 group addresses enabled after the receipt of this command, the promiscuous
mode is turned off.

If no group address is active after receipt of this command, the TOK_RECEIVE_GROUP flag in the
ndd_flags field is reset. If no functional or group addresses are active after receipt of this command, the
NDD_ALTADDRS flag in the ndd_flags field is reset.

NDD_PRIORITY_ADDRESS
The driver returns the address of the device driver’s priority transmit routine.

NDD_MIB_ADDR
The driver will return at least three addresses: device physical address (or alternate address
specified by user) and two broadcast addresses (OxFFFF FFFF FFFF and 0xC000 FFFF FFFF).
Additional addresses specified by the user, such as functional address and group addresses,
might also be returned.

NDD_CLEAR_STATS
The counters kept by the device are zeroed.

NDD_GET_ALL_STATS
The arg parameter specifies the address of the mon_all_stats_t structure. This structure is
defined in the /usr/include/sys/cdli_tokuser.h file.

The statistics returned include statistics obtained from the device. If the device is inoperable, the
statistics returned do not contain the current device statistics. The copy of the ndd_flags field can
be checked to determine the state of the device.

Trace Points and Error Log Templates for 8fa2 Token-Ring Device
Driver

The Token-Ring device driver has four trace points. The IDs are defined in the
lusr/include/sys/cdli_tokuser.h file.

The Token-Ring error log templates are :

ERRID_MPS_ADAP_CHECK
The microcode on the device performs a series of diagnostic checks when the device is idle.
These checks can find errors and they are reported as adapter checks. If the device was
connected to the network when this error occurred, the device driver goes into Network Recovery
Mode to try to recover from the error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required unless the problem persists.

ERRID_MPS_ADAP_OPEN
The device driver was enable to open the device. The device driver goes into Network Recovery
Mode to try to recover from the error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required unless the problem persists.

ERRID_MPS_AUTO_RMV
An internal hardware error following the beacon automatic removal process has been detected.

134 Kerel Extensions and Device Support Programming Concepts

The device driver goes into Network Recovery Mode to try to recover from the error. The device is
temporarily unavailable during the recovery procedure. User intervention is not required unless the
problem persists.

ERRID_MPS_RING_SPEED
The ring speed (or ring data rate) is probably wrong. Contact the network administrator to
determine the speed of the ring. The device driver only retries twice at 2 minute intervals when
this error log entry is generated.

ERRID_MPS_DMAFAIL
The device detected a DMA error in a TX or RX operation. The device driver goes into Network
Recovery Mode to try to recover from the error. The device is temporarily unavailable during the
recovery procedure. User intervention is not required unless the problem persists.

ERRID_MPS_BUS_ERR
The device detected a Micro Channel bus error. The device driver goes into Network Recovery
Mode to try to recover from the error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required unless the problem persists.

ERRID_MPS_DUP_ADDR
The device has detected that another station on the ring has a device address which is the same
as the device address being tested. Contact the network administrator to determine why.

ERRID_MPS_MEM_ERR
An error occurred while allocating memory or timer control block structures.

ERRID_MPS_PERM_HW
The device driver could not reset the card. For example, it did not receive status from the adapter
within the retry period.

ERRID_MPS_RCVRY_EXIT
The error that caused the device driver to go into error recovery mode has been corrected.

ERRID_MPS_RMV_ADAP
The device has received a remove ring station MAC frame indicating that a network management
function has directed this device to get off the ring. Contact the network administrator to determine
why.

ERRID_MPS_WIRE_FAULT
There is probably a loose (or bad) cable between the device and the MAU. There is some chance
that it might be a bad device. The device driver goes into Network Recovery Mode to try to
recover from the error. The device is temporarily unavailable during the recovery procedure. User
intervention is required for this error.

ERRID_MPS_RX_ERR
The device detected a receive error. The device driver goes into Network Recovery Mode to try to
recover from the error. The device is temporarily unavailable during the recovery procedure. User
intervention is not required unless the problem persists.

ERRID_MPS_TX_TIMEOUT
The transmit watchdog timer expired before transmitting a frame is complete. The device driver
goes into Network Recovery Mode to try to recover from the error. The device is temporarily
unavailable during the recovery procedure. User intervention is not required unless the problem
persists.

ERRID_MPS_CTL_ERR
The IOCTL watchdog timer expired before the device driver received a response from the device.
The device driver goes into Network Recovery Mode to try to recover from the error. The device is
temporarily unavailable during the recovery procedure. User intervention is not required unless the
problem persists.

Chapter 7. Communications I/O Subsystem 135

PCI Token-Ring Device Drivers

The following Token-Ring device drivers are dynamically loadable. The device driver is automatically
loaded into the system at device configuration time as part of the configuration process.

» PCI Token-Ring High PerformanceDevice Driver (14101800)
» PCI Token-Ring Device Driver (14103e00)

The interface to the device is through the kernel services known as Network Services. Interfacing to the
device driver is achieved by calling the device driver’'s entry points to perform the following actions:

* Opening the device

» Closing the device

* Transmitting data

» Performing a remote dump

* Issuing device control commands

The PCI Token-Ring High Performance Device Driver (14101800) interfaces with the PCI Token-Ring
High-Performance Network Adapter (14101800). The adapter is IEEE 802.5 compatible and supports both
4 and 16 Mbps networks. The adapter supports only an RJ-45 connection.

The PCI Token-Ring Device Driver (14103e00) interfaces with the PCI Token-Ring Network Adapter
(14103e00). The adapter is IEEE 802.5 compatible and supports both 4 and 16 Mbps networks. The
adapter supports both an RJ-45 and a 9 Pin connection.

Configuration Parameters
The following configuration parameter is supported by all PCI Token-Ring Device Drivers:

Ring Speed
The device driver supports a user-configurable parameter that indicates if the token-ring is to run
at 4 or 16 Mbps.

The device driver supports a user-configurable parameter that selects the ring speed of the
adapter. There are three options for the ring speed: 4, 16, or autosense.

1. If 4 is selected, the device driver opens the adapter with 4 Mbits. It returns an error if the ring
speed does not match the network speed.

2. If 16 is selected, the device driver opens the adapter with 16 Mbits. It returns an error if the
ring speed does not match the network speed.

3. If autosense is selected, the adapter guarantees a successful open, and the speed used to
open is dependent on the following:

+ |If the adapter is opened on an existing network the speed is determined by the ring speed
of the network.

 |f the device is opened on a new network and the adapter is new, 16 Mbits is used. Or, if
the adapter opened successfully, the ring speed is determined by the speed of the last
successful open.

Software Transmit Queue
The device driver supports a user-configurable transmit queue that can be set to store between 32
and 2048 transmit request pointers. Each transmit request pointer corresponds to a transmit
request that might be for several buffers of data.

Receive Queue
The device driver supports a user-configurable receive queue that can be set to store between 32
and 160 receive buffers. These buffers are mbuf clusters into which the device writes the received
data.

136 Kernel Extensions and Device Support Programming Concepts

Full Duplex
Indicates whether the adapter is operating in full-duplex or half-duplex mode. If this field is set to
yes, the device driver programs the adapter to be in full-duplex mode. The default value is
half-duplex.

Attention MAC Frames
The device driver supports a user-configurable parameter that indicates if attention MAC frames
should be received.

Beacon MAC Frames
The device driver supports a user-configurable parameter that indicates if beacon MAC frames
should be received.

Network Address
The driver supports the use of the device’s hardware address as the network address or an
alternate network address configured through software. When an alternate address is used, any
valid individual address can be used. The most significant bit of the address must be set to zero.

In addition, the following configuration parameters are supported by the PCI Token-Ring High Performance
Device Driver (14101800):

Priority Data Transmission
The device driver supports a user option to request priority transmission of the data packets.

Software Priority Transmit Queue
The device driver supports a user-configurable priority transmit queue that can be set to store
between 32 and 160 transmit request pointers. Each transmit request pointer corresponds to a
transmit request that might be for several buffers of data.

Device Driver Configuration and Unconfiguration

The configuration entry points of the device drivers conform to the guidelines for kernel object file entry
points. These configuration entry points are as follows:

* tok_config for the PCI Token-Ring High Performance Device Driver (14101800).
» cs_config for the PCI Token-Ring Device Driver (14103e00).

Device Driver Open

The Token-Ring device driver performs a synchronous open. The device is initialized at this time. When
the resources are successfully allocated, the device starts the process of attaching the device to the
network.

If the connection is successful, the NDD_RUNNING flag is set in the ndd_flags field, and an
NDD_CONNECTED status block is sent.

If the device connection fails, the NDD_LIMBO flag is set in the ndd_flags field, and an
NDD_LIMBO_ENTRY status block is sent.

If the device is eventually connected, the NDD_LIMBO flag is turned off, and the NDD_RUNNING flag is
set in the ndd_flags field. Both NDD_CONNECTED and NDD_LIMBO_EXIT status blocks are set.

The entry points are as follows:
» tok_open for the PCI Token-Ring High Performance Device Driver (14101800).
» c¢s_open for the PCI Token-Ring Device Driver (14103e00).

Chapter 7. Communications /0 Subsystem 137

Device Driver Close
This function resets the device to a known state and frees system resources associated with the device.

The device is not detached from the network until the device’s transmit queue is allowed to drain.

The close entry points are as follows:
» tok_close for the PCI Token-Ring High Performance Device Driver (14101800).
» cs_close for the PCI Token-Ring Device Driver (14103e00).

Data Transmission
The device drivers do not support mbuf structures from user memory that have the M_EXT flag set.

If the destination address in the packet is a broadcast address, the M_BCAST flag in the p_mbuf->m_flags
field must be set prior to entering this routine. A broadcast address is defined as OxFFFF FFFF FFFF or
0xC000 FFFF FFFF. If the destination address in the packet is a multicast address, the M_MCAST flag in
the p_mbuf->m_flags field must be set prior to entering this routine. A multicast address is defined as a
non-individual address other than a broadcast address. The device driver keeps statistics based on the
M_BCAST and M_MCAST flags.

If a packet is transmitted with a destination address that matches the adapter’'s address, the packet is
received. This is true for the adapter’s physical address, broadcast addresses (0xC000 FFFF FFFF or
OxFFFF FFFF FFFF), enabled functional addresses, or an enabled group address.

The output entry points are as follows:
» tok_output for the PCI Token-Ring High Performance Device Driver (14101800).
» cs_close for the PCI Token-Ring Device Driver (14103e00).

Data Reception

When the Token-Ring device driver receives a valid packet from the network device, the Token-Ring
device driver calls the nd_receive() function specified in the ndd_t structure of the network device. The
nd_receive() function is part of a CDLI network demuxer. The packet is passed to the nd_receive()
function in the mbuf structures.

The Token-Ring device driver passes only one packet to the nd_receive() function at a time.

The device driver sets the M_BCAST flag in the p_mbuf->m_flags field when a packet that has an
all-stations broadcast address is received. This address is defined as OxFFFF FFFF FFFF or 0xC000
FFFF FFFF.

The device driver sets the M_MCAST flag in the p_mbuf->m_flags field when a packet is received that has
a non-individual address that is different from the all-stations broadcast address.

The adapter does not pass invalid packets to the device driver.

Asynchronous Status

When a status event occurs on the device, the Token-Ring device driver builds the appropriate status
block and calls the nd_status() function specified in the ndd_t structure of the network device. The
nd_status() function is part of a CDLI network demuxer.

The following status blocks are defined for the Token-Ring device driver.

138 Kernel Extensions and Device Support Programming Concepts

Hard Failure
When a hard failure occurs on the Token-Ring device, the following status blocks are returned by the

Token-Ring device driver. One of these status blocks indicates that a fatal error has occurred.

NDD HARD_FAIL
When a transmit error occurs, it tries to recover. If the error is unrecoverable, this status block is
generated.

code Setto NDD_HARD_FAIL.
option[0]
Set to NDD_HARD_FAIL.

option[]
The remainder of the status block can be used to return additional status information.

Enter Network Recovery Mode
When the device driver detects an error that requires initiating recovery logic to make the device

temporarily unavailable, the following status block is returned by the device driver.

Note: While the device driver is in this recovery logic, the device might not be fully functional. The device
driver notifies users when the device is fully functional by way of an NDD_LIMBO_EXIT
asynchronous status block:

code Set to NDD_LIMBO_ENTER.
option[0] Set to one of the following:

» NDD_CMD_FAIL
 NDD_ADAP_CHECK
* NDD_TX_ERR

* NDD_TX_TIMEOUT
* NDD_AUTO_RMV
 TOK_ADAP_OPEN

* TOK_ADAP_INIT

* TOK_DMA_FAIL

* TOK_RING_SPEED
+ TOK_RMV_ADAP

* TOK_WIRE_FAULT
option|[] The remainder of the status block can be used to return additional status information by the device
driver.

Exit Network Recovery Mode
When the device driver has successfully completed recovery logic from the error that made the device

temporarily unavailable, the following status block is returned by the device driver:

code Set to NDD_LIMBO_EXIT.
option|[] The option fields are not used.

The device is now fully functional.

Device Control Operations
The ndd_ctl entry point is used to provide device control functions.

NDD_GET_STATS
The user should pass in the tok_ndd_stats_t structure as defined in the sys/cdli_tokuser.h file.
The driver fails a call with a buffer smaller than the structure.

Chapter 7. Communications /0 Subsystem 139

The structure must be in kernel heap so that the device driver can copy the statistics into it. Also,
it must be pinned.

NDD_PROMISCUOUS_ON
Setting promiscuous mode will not cause non-LLC frames to be received by the driver unless the
user also enables those filters (Attention MAC frames, Beacon MAC frames).

The driver maintains a counter of requests.

NDD_PROMISCUOUS_OFF
This command releases a request from a user to PROMISCUOUS_ON; it will not exit the mode on
the adapter if more requests are outstanding.

NDD_MIB_QUERY
The arg parameter specifies the address of the token_ring_all_mib_t structure. This structure is
defined in the /usr/include/sys/tokenring_mibs.h file.

The device driver does not support any variables for read_write or write only. If the syntax of a
member of the structure is an integer type, the level of support flag is stored in the whole field,
regardless of the size of the field. For those fields that are defined as character arrays, the value
is returned only in the first byte in the field.

NDD_MIB_GET
The arg parameter specifies the address of the token_ring_all_mib_t structure. This structure is
defined in the /usr/include/sys/tokenring_mibs.h file.

NDD_ENABLE_ADDRESS
This command enables the receipt of packets with a functional or a group address. The functional
address indicator (bit 0 "the MSB” of byte 2) indicates whether the address is a functional address
(bit 0) or a group address (bit 1). The Tength field is not used because the address must be 6
bytes in length.

functional address
The specified address is ORed with the currently specified functional addresses, and the
resultant address is set as the functional address for the device. Functional addresses are
encoded in a bit-significant format, thereby allowing multiple individual groups to be
designated by a single address.

The Token-Ring network architecture provides bit-specific functional addresses for widely
used functions, such as configuration report server. Ring stations use functional address
"masks” to identify these functions. For example, if function G is assigned a functional
address of 0OxC000 0008 0000, and function M is assigned a function address of 0xC000
0000 0040, then ring station Y, whose node contains function G and M, would have a
mask of 0xC000 0008 0040. Ring station Y would receive packets addressed to either
function G or M or to an address, such as 0xC000 0008 0048, because that address
contains bits specified in the "mask.”

The NDD_ALTADDRS and TOK_RECEIVE_FUNC flags in the ndd_flags field are set.

Because functional addresses are encoded in a bit-significant format, reference counts are
kept on each of the 31 least significant bits of the address.

group address
The device supports 256 general group addresses. The promiscuous mode is turned on
when the group addresses to be set is more than 256. The device driver maintains a
reference count on this operation.

The device supports 256 general group addresses. The promiscuous mode is turned on
when the group address needed to be set are more than 256. The device driver will
maintain a reference count on this operation.

The NDD_ALTADDRS and TOK_RECEIVE_GROUP flags in the ndd_fTags field are set.

140 Kernel Extensions and Device Support Programming Concepts

NDD_DISABLE_ADDRESS
This command disables the receipt of packets with a functional or a group address. The functional
address indicator (bit 0 "the MSB” of byte 2) indicates whether the address is a functional address
(bit 0) or a group address (bit 1). The Tength field is not used because the address must be 6
bytes in length.

functional address
The reference counts are decremented for those bits in the functional address that are 1
(on). If the reference count for a bit goes to 0, the bit is "turned off” in the functional
address for the device.

If no functional addresses are active after receipt of this command, the
TOK_RECEIVE_FUNC flag in the ndd_fTags field is reset. If no functional or group
addresses are active after receipt of this command, the NDD_ALTADDRS flag in the
ndd_fTags field is reset.

group address
If group address enable is less than 256, the driver sends a command to the device to
disable the receipt of the packets with the specified group address. Otherwise, the group
address is deleted from the group address table.

If there are less than 256 group addresses enabled after the receipt of this command, the
promiscuous mode is turned off.

If no group address is active after receipt of this command, the TOK_RECEIVE_GROUP
flag in the ndd_flags field is reset. If no functional or group addresses are active after
receipt of this command, the NDD_ALTADDRS flag in the ndd_flags field is reset.

NDD_PRIORITY_ADDRESS
The driver returns the address of the device driver’s priority transmit routine.

NDD_MIB_ADDR
The driver returns at least three addresses that are device physical addresses (or alternate
addresses specified by the user), two broadcast addresses (OxFFFFFFFFFFFF and 0xC000 FFFF
FFFF), and any additional addresses specified by the user, such as functional addresses and
group addresses.

NDD_CLEAR_STATS
The counters kept by the device are zeroed.

NDD_GET_ALL_STATS
Used to gather all statistics for the specified device. The arg parameter specifies the address of
the statistics structure for this particular device type. The folowing structures are available:

* The sky_all_stats_t structure is available for the PCI Token-Ring High Performance Device
Driver (14101800), and is defined in the device-specific /usr/include/sys/cdli_tokuser.h include
file.

* The cs_all_stats_t structure is available for the PCI Token-Ring Device Driver (14103e00), and
is defined in the device-specific /usr/include/sys/cdli_tokuser.cstok.h include file.

The statistics that are returned contain information obtained from the device. If the device is
inoperable, the statistics returned are not the current device statistics. The copy of the ndd_fTlags
field can be checked to determine the state of the device.

Reliability, Availability, and Serviceability (RAS)

Trace
For LAN device drivers, trace points enable error monitoring as well as tracking packets as they move
through the driver. The drivers issue trace points for some or all of the following conditions:

» Beginning and ending of main functions in the main path

Chapter 7. Communications I/0 Subsystem 141

* Error conditions
* Beginning and ending of each function that is tracking buffers outside of the main path

» Debugging purposes (These trace points are only enabled when the driver is compiled with the
-DDEBUG option turned, therefore, the driver can contain as many of these trace points as needed.)

Following is a list of trace hooks and location of definition files for the existing ethernet device drivers.

The PCI Token-Ring High Performance Device Driver (14101800): Definition File:
Isys/cdli_tokuser.h

Trace Hook IDs
e Transmit 2A7
* Receive 2A8
* Error 2A9
* Other 2AA

The PCI Token-Ring (14103e00) Device Driver: Definition File: /sys/cdli_tokuser.cstok.h

Trace Hook IDs
e Transmit 2DA
* Receive 2DB
* General 2DC

Error Logging

PCI Token-Ring High Performance Device Driver (14101800): The error IDs for the PCI Token-Ring
High Performance Device Driver (14101800) are as follows:

ERRID_STOK_ADAP_CHECK
The microcode on the device performs a series of diagnostic checks when the device is idle.
These checks can find errors, and they are reported as adapter checks. If the device is connected
to the network when this error occurs, the device driver goes into Network Recovery Mode in an
attempt to recover from the error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required for this error unless the problem persists.

ERRID_STOK_ADAP_OPEN
Enables the device driver to open the device. The device driver goes into Network Recovery Mode
in an attempt to recover from the error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required for this error unless the problem persists.

ERRID_STOK_AUTO_RMV
An internal hardware error following the beacon automatic removal process was detected. The
device driver goes into Network Recovery Mode in an attempt to recover from the error. The
device is temporarily unavailable during the recovery procedure. User intervention is not required
for this error unless the problem persists.

ERRID_STOK_RING_SPEED
The ring speed (or ring data rate) is probably wrong. Contact the network administrator to
determine the speed of the ring. The device driver only retries twice at 2-minute intervals after this
error log entry is generated.

ERRID_STOK_DMAFAIL
The device detected a DMA error in a TX or RX operation. The device driver goes into Network
Recovery Mode in an attempt to recover from the error. The device is temporarily unavailable
during the recovery procedure. User intervention is not required unless the problem persists.

142 Kernel Extensions and Device Support Programming Concepts

ERRID_STOK_BUS_ERR
The device detected a Micro Channel bus error. The device driver goes into Network Recovery
Mode in an attempt to recover from the error. The device is temporarily unavailable during the
recovery procedure. User intervention is not required for this error unless the problem persists.

Note: Micro Channel is only supported on AIX 5.1 and earlier.

ERRID_STOK_DUP_ADDR
The device detected that another station on the ring has a device address that is the same as the
device address being tested. Contact the network administrator to determine why.

ERRID_STOK_MEM_ERR
An error occurred while allocating memory or timer control block structures.

ERRID_STOK_RCVRY_EXIT
The error that caused the device driver to go into error recovery mode was corrected.

ERRID_STOK_RMV_ADAP
The device received a remove ring station MAC frame indicating that a network management
function directed this device to get off the ring. Contact the network administrator to determine
why.

ERRID_STOK_WIRE_FAULT
There is a loose (or bad) cable between the device and the MAU. There is a chance that it might
be a bad device. The device driver goes into Network Recover Mode in an attempt to recover from
the error. The device is temporarily unavailable during the recovery procedure. User intervention is
not required for this error unless the problem persists.

ERRID_STOK_TX_TIMEOUT
The transmit watchdog timer expired before transmitting a frame. The device driver goes into
Network Recovery Mode in an attempt to recover from the error. The device is temporarily
unavailable during the recovery procedure. User intervention is not required for this error unless
the problem persists.

ERRID_STOK_CTL_ERR
The ioctl watchdog timer expired before the device driver received a response from the device.
The device driver goes into Network Recovery Mode in an attempt to recover from the error. The
device is temporarily unavailable during the recovery procedure. User intervention is not required
for this error unless the problem persists.

PCI Token-Ring Device Driver (14103e00): The error IDs for the PCI Token-Ring Device Driver
(14103e00) are as follows:

ERRID_CSTOK_ADAP_CHECK
The microcode on the device performs a series of diagnostic checks when the device is idle on
initialization. These checks find errors and they are reported as adapter checks. If the device was
connected to the network when this error occurred, the device driver will go into Network Recovery
Mode in an attempt to recover from the error. The device is temporarily unavailable during the
recovery procedure. After this error log entry has been generated, the device driver will retry 3
times with no delay between retries. User intervention is not required for this error unless the
problem persists.

ERRID_CSTOK_ADAP_OPEN
The device driver was unable to open the device. The device driver will go into Network Recovery
Mode in an attempt to recover from this error. The device is temporarily unavailable during the
recovery procedure. The device driver will retry indefinitely with a 30 second delay between retries
to recover. User intervention is not required for this error unless the problem persists.

ERRID_CSTOK_AUTO_RMV
An internal hardware error following the beacon automatic removal process has been detected.

Chapter 7. Communications /O Subsystem 143

The device driver will go into Network Recovery Mode in an attempt to recover from the error. The
device is temporarily unavailable during the recovery procedure. User intervention is not required
for this error unless the problem persists.

ERRID_CSTOK_RING_SPEED

The ring speed or ring data rate is probably wrong. Contact the network administrator to determine
the speed of the ring. The device driver will only retry twice at 2 minute intervals after this error log
entry has been generated.

ERRID_CSTOK_DMAFAIL

The device detected a DMA error in a TX or RX operation. The device driver will go into Network
Recovery Mode in an attempt to recover from this error. The device is temporarily unavailable
during the recovery procedure. User intervention is not required for this error unless the problem
persists.

ERRID_CSTOK_BUS_ERR

The device detected a PCI bus error. The device driver will go into Network Recovery Mode in an
attempt to recover from this error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required for this error unless the problem persists.

ERRID_CSTOK_DUP_ADDR

The device has detected that another station on the ring has a device address which is the same
as the device address being tested. Contact network administrator to determine why.

ERRID_CSTOK_MEM_ERR

An error occurred while allocating memory or timer control block structures. This usually implies
the sytem has run out of available memory. User intervention is required.

ERRID_CSTOK_RCVRY_ENTER

An error has occurred which caused the device driver to go into network recovery.

ERRID_CSTOK_RCVRY_EXIT

The error which caused the device driver to go into Network Recovery Mode has been corrected.

ERRID_CSTOK_RMV_ADAP

The device has received a remove ring station MAC frame indicating that a network management
function has directed this device to get off the ring. The device driver will only twice with 6 minute
delay between retries after this error log entry has been generated. Contact network administrator
to determine why.

ERRID_CSTOK_WIRE_FAULT

There is probably a loose (or bad) cable between the device and the MAU. There is some
chance that it might be a bad device. The device driver will go into Network Recovery Mode in an
attempt to recover from this error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required for this error unless the problem persists.

ERRID_CSTOK_RX_ERR

The device has detected a receive error. The device driver will go into Network Recovery Mode in
an attempt to recover from this error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required for this error unless the problem persists.

ERRID_CSTOK_TX_ERR

The device has detected a transmit error. The device driver will go into Network Recovery Mode in
an attempt to recover from this error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required for this error unless the problem persists.

ERRID_CSTOK_TX_TMOUT

144

The transmit watchdog timer has expired before the transmit of a frame has completed. The
device driver will go into Network Recovery Mode in an attempt to recover from this error. The
device is temporarily unavailable during the recovery procedure. User intervention is not required
for this error unless the problem persists.

Kernel Extensions and Device Support Programming Concepts

ERRID_CSTOK_CMD_TMOUT
The ioctl watchdog timer has expired before the device driver received a response from the
device. The device driver will go into Network Recovery Mode in an attempt to recover from this
error. The device is temporarily unavailable during the recovery procedure. User intervention is not
required for this error unless the problem persists.

ERRID_CSTOK_PIO_ERR
The driver has encountered a PIO operation error. The device driver will attempt to retry the
operation 3 times before it will fail the command and return in the DEAD state to the user. User
intervention is required.

ERRID_CSTOK_PERM_HW
The microcode on the device performs a series of diagnostic checks on initialization. These
checks can find errors and they are reported as adapter checks. If the error occurs 4 times during
adapter initialization this error log will be generated and the device considered inoperable. User
intervention is required.

ERRID_CSTOK_ASB_ERR
The adapter has indicated that the processing of a TokenRing mac command failed.

ERRID_CSTOK_AUTO_FAIL
The ring speed of the adapter is set to autosense, and open has failed because this adapter is the
only one on the ring. User intervention is required.

ERRID_CSTOK_EISR
If the adapter detects a PCI Master or Target Abort, the Error Interrupt Status Register (EISR) will
be set.

ERRID_CSTOK_CMD_ERR
Adapter failed command due to a transient error and goes into limbo one time, if that fails the
adapter goes into the dead state.

ERRID_CSTOK_EEH_ENTER
The adapter encountered a Bus I/O Error, and is attempting to recover by using the EEH recovery
process.

ERRID_CSTOK_EEH_EXIT
The adapter sucessfully recovered from the 1/0O Error by using the EEH recovery process.

ERRID_CSTOK_EEH_HW_ERR
The adapter could not recover from the EEH error. The EEH error was the result of an adapter
error, and not a bus error (logged by the kernel).

Ethernet Device Drivers

The following Ethernet device drivers are dynamically loadable. The device drivers are automatically
loaded into the system at device configuration time as part of the configuration process.
» PCI Ethernet Adapter Device Driver (22100020)

* 10/100Mbps Ethernet PCI Adapter Device Driver (23100020)

* 10/100Mbps Ethernet PCI Adapter Il Device Driver (1410ff01)

» Gigabit Ethernet-SX PCI Adapter Device Driver (14100401)

* Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802)

* 10/100/1000 Base-T Ethernet PCI-X Adapter Device Driver (14106902)

» 2-Port Gigabit Ethernet-SX PCI-X Adapter (14108802)

» 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)

The following information is provided about each of the ethernet device drivers:
« [Configuration Parameters|

Chapter 7. Communications I/O Subsystem 145

[Interface Entry Points|
+ [Asynchronous Status|
+ [Device Control Operations|

. ‘Trace|
* |Error Logging

For each Ethernet device, the interface to the device driver is achieved by calling the entry points for
opening, closing, transmitting data, and issuing device control commands.

There are a number of Ethernet device drivers in use. All drivers provide PCl-based connections to an
Ethernet network, and support both Standard and IEEE 802.3 Ethernet Protocols.

The PCI Ethernet Adapter Device Driver (22100020) supports the PCI Ethernet BNC/RJ-45 Adapter
(feature 2985) and the PCI Ethernet BNC/AUI Adapter (feature 2987), as well as the integrated ethernet
port on certain systems.

The 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020) supports the 10/100 Mbps Ethernet PCI
Adapter (feature 2968) and the Four Port 10/100 Mbps Ethernet PCI Adapter (features 4951 and 4961), as
well as the integrated ethernet port on certain systems.

The 10/100 Mpbs Ethernet PCI Adapter Il Device Driver (1410ff01) supports the 10/100 Mbps Ethernet
PCI Adapter Il (feature 4962), as well as the integrated ethernet port on certain systems.

The Gigabit Ethernet-SX PCI Adapter Device Driver (14100401) supports the Gigabit Ethernet-SX PCI
Adapter (feature 2969) and the 10/100/1000 Base-T Ethernet Adapter (feature 2975).

The Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802) supports the Gigabit Ethernet-SX PCI-X
Adapter (feature 5700).

The 10/100/1000 Base-TX Ethernet PCI-X Adapter Device Driver (14106902) supports the 10/100/1000
Base-TX Ethernet PCI-X Adapter (feature 5701).

The 2-Port Gigabit Ethernet-SX PCI-X Adapter Device Driver (14108802) supports the 2-Port Gigabit
Ethernet-SX PCI-X Adapter (feature 5707).

The 2-Port 10/100/1000 Base-TX PCI-X Adapter Device Driver (14108902) supports the 2-Port
10/100/1000 Base-TX PCI-X Adapter (feature 5706).

Configuration Parameters
The following configuration parameter is supported by all Ethernet device drivers:

Alternate Ethernet Addresses
The device drivers support the device’s hardware address as the network address or an alternate
network address configured through software. When an alternate address is used, any valid
Individual Address can be used. The least significant bit of an Individual Address must be set to
zero. A multicast address can not be defined as a network address. Two configuration parameters
are provided to provide the alternate Ethernet address and enable the alternate address.

PCI Ethernet Device Driver (22100020)
The PCI Ethernet Device Driver (22100020) supports the following additional configuration parameters:

Full Duplex
Indicates whether the adapter is operating in full-duplex or half-duplex mode. If this field is set to
yes, the device driver programs the adapter to be in full-duplex mode.

146 Kernel Extensions and Device Support Programming Concepts

Hardware Transmit Queue
Specifies the actual queue size the adapter uses to transmit packets. Each element corresponds
to an Ethernet packet. It is configurable at 16, 32, 64, 1 28, and 256 elements.

Hardware Receive Queue
Specifies the actual queue size the adapter uses to receive packets. Each element corresponds to
an Ethernet packet. It is configurable at 16, 32, 64, 128, and 256 elements.

10/100 Mbps Ethernet PCI Adapter Device Driver (23100020)
The 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020) supports the following additional
configuration parameters:

Software Transmit Queue
Indicates the number of transmit requests that can be queued for transmission by the device
driver. Valid values range from 16 through 16384.

Hardware Receive Queue
The 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020) supports a user-configurable
receive queue for the adapter. This is the actual queue the adapter uses to receive packets. Each
element corresponds to an Ethernet packet. It is configurable at 16, 32, 64, 128, and 256
elements.

Receive Buffer Pool
The 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020) implements a private pool of
receive memory buffers in order to enhance driver performance. The number of private receive
buffers reserved by the driver is configurable from 16 to 2048 elements.

Media Speed
The 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020) supports a user-configurable
media speed for the adapter. The media speed attribute indicates the speed at which the adapter
will attempt to operate. The available speeds are 10 Mbps half-duplex, 10 Mbps full-duplex, 100
Mbps half-duplex, 100 Mbps full-duplex and auto-negotiation, with a default of auto-negotiation.
Select auto-negotiate when the adapter should use auto-negotiation across the network to
determine the speed. When the network will not support auto-negotiation, select the specific
speed.

Note: If auto-negotiation is selected, the remote link device must also be set to auto-negotiate or
the link might not function properly.

Inter Packet Gap
The 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020) supports a user-configurable
inter packet gap for the adapter. The inter packet gap attribute controls the aggressiveness of the
adapter on the network. A small number will increase the aggressiveness of the adapter, but a
large number will decrease the aggressiveness (and increase the fairness) of the adapter. A small
number (more aggressive) could cause the adapter to capture the network by forcing other less
aggressive nodes to defer. A larger number (less aggressive) might cause the adapter to defer
more often than normal. If the statistics for other nodes on the network show a large number of
collisions and deferrals, then try increasing this number. The default is 96, which results in IPG of
9.6 micro seconds for 10 Mbps and 0.96 microseconds for 100 Mbps media speed. Each unit of
bit rate introduces an IPG of 100 nsec at 10 Mbps, and 10 nsec at 100 Mbps media speed.

Link Polling Timer
The 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020) implements a polling function
(Enable Link Polling) that periodically queries the adapter to determine whether the ethernet link
is up or down. The Enable Link Polling attribute is disabled by default. If this function is enabled,
the link polling timer value indicates how often the driver should poll the adapter for link status.
This value can range from 100 to 1000 milliseconds. If the adapter’s link goes down, the device
driver will disable its NDD_RUNNING flag. When the device driver finds that the link has come
back up, it will enable this NDD_RUNNING flag. In order for this to work successfully, protocol
layer implementations, such as Etherchannel, need notification if the link has gone down. Enable

Chapter 7. Communications /0 Subsystem 147

the Enable Link Polling attribute to obtain this notification. Because of the additional PIO calls
that the device driver makes, enabling this attribute can decrease the performance of this adapter.

10/100 Mbps Ethernet PCI Adapter Il Device Driver (1410ff01)
The 10/100 Mbps Ethernet PCI Adapter Il Device Driver (1410ff01) supports the following additional
configuration parameters:

Software Transmit Queue
Indicates the number of transmit requests that can be queued for transmission by the device
driver. Valid values range from 512 through 16384.

Hardware Transmit Queue
The 10/100 Mbps Ethernet PCI Adapter Il Device Driver (1410ff01) supports a user-configurable
transmit queue for the adapter. This is the actual queue the adapter uses to transmit packets.
Each element corresponds to an Ethernet packet. It is configurable from 100 to 1024 elements.

Hardware Receive Queue
The 10/100 Mbps Ethernet PCI Adapter Il Device Driver (1410ff01) supports a user-configurable
receive queue for the adapter. This is the actual queue the adapter uses to receive packets. Each
element corresponds to an Ethernet packet. It is configurable from 100 to 1024 elements.

Receive Buffer Pool
The 10/100 Mbps Ethernet PCI Adapter Il Device Driver (1410ff01) implements a private pool of
receive memory buffers in order to enhance driver performance. The number of private receive
buffers reserved by the driver is configurable from 512 to 2048 elements.

Media Speed
The 10/100 Mbps Ethernet PCI Adapter Il Device Driver (1410ff01) supports a user-configurable
media speed for the adapter. The media speed attribute indicates the speed at which the adapter
will attempt to operate. The available speeds are 10 Mbps half-duplex, 10 Mbps full-duplex, 100
Mbps half-duplex, 100 Mbps full-duplex and auto-negotiation, with a default of auto-negotiation.
Select auto-negotiate when the adapter should use auto-negotiation across the network to
determine the speed. When the network will not support auto-negotiation, select the specific
speed.

Note: If auto-negotiation is selected, the remote link device must also be set to auto-negotiate or
the link might not function properly.

Link Polling Timer
The 10/100 Mbps Ethernet PCI Adapter Il Device Driver (1410ff01) implements a polling function
which periodically queries the adapter to determine whether the ethernet link is up or down. If this
function is enabled, the link polling timer value indicates how often the driver should poll the
adapter for link status. This value can range from 100 to 1000 milliseconds.

Checksum Offload
The 10/100 Mbps Ethernet PCI Adapter Il Device Driver (1410ff01) supports the capability of the
adapter to calculate TCP checksums in hardware. If this capability is enabled, the TCP checksum
calculation will be performed on the adapter instead of the host, which may increase system
performance. Allowed values are yes and no.

Transmit TCP Resegmentation Offload
The 10/100 Mbps Ethernet PCI Adapter Il Device Driver (1410ff01) supports the capability of the
adapter to perform resegmentation of transmitted TCP segments in hardware. This capability
enables the host to use TCP segments that are larger than the actual MTU size of the ethernet
link, which may increase system performance. Allowed values are yes and no.

IPsec Offload
The 10/100 Mbps Ethernet PCI Adapter Il Device Driver (1410ff01) supports the capability of the
adapter to perform IPsec cryptographic algorithms for data encryption and authentication in
hardware. This capability enables the host to offload CPU-intensive cryptographic processing to
the adapter, which may increase system performance. Allowed values are yes and no.

148 Kernel Extensions and Device Support Programming Concepts

Gigabit Ethernet-SX PCI Adapter Device Driver (14100401)
The Gigabit Ethernet-SX PCI Adapter Device Driver (14100401) supports the following additional

configuration parameters:

Software Transmit Queue Size
Indicates the number of transmit requests that can be queued for transmission by the device
driver. Valid values range from 512 through 2048.

Transmit Jumbo Frames
Setting this attribute to the yes value indicates that frames up to 9018 bytes in length may be
transmitted on this adapter. If you specify the no value, the maximum size of frames transmitted is
1518 bytes. Frames up to 9018 bytes in length can always be received on this adapter.

Enable Hardware Checksum Offload
Setting this attribute to the yes value indicates that the adapter calculates the checksum for
transmitted and received TCP frames. If you specify the no value, the checksum will be calculated
by the appropriate software.

Note: The mbuf describing a frame to be transmitted contains a flag that says if the adapter
should calculate the checksum for the frame.

Media Speed
The Gigabit Ethernet-SX PCI Adapter Device Driver (14100401) supports a user-configurable
media speed only for the IBM 10/100/1000 Base-T Ethernet PCI adapter (feature 2975). For the
Gigabit Ethernet-SX PCI Adapter (feature 2969), the only allowed choice is auto-negotiation. The
media speed attribute indicates the speed at which the adapter will attempt to operate. The
available speeds are 10 Mbps half-duplex, 10 Mbps full-duplex, 100 Mbps half-duplex, 100 Mbps
full-duplex and auto-negotiation, with a default of auto-negotiation. Select auto-negotiate when the
adapter should use auto-negotiation across the network to determine the speed. When the
network will not support auto-negotiation, select the specific speed.

Note: The auto-negotiation setting must be selected in order for the adapter to run at 1000 Mbit/s.

Enable Hardware Transmit TCP Resegmentation
Setting this attribute to yes indicates that the adapter should perform TCP resegmentation on
transmitted TCP segments. This capability allows TCP/IP to send larger datagrams to the adapter
which can increase performance. If no is specified, TCP resegmentation will not be performed.

Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802)
The Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802) supports the following additional
configuration parameters:

Transmit descriptor queue size
Indicates the number of transmit requests that can be queued for transmission by the adapter.
Valid values range from 128 to 1024.

Receive descriptor queue size
Indicates the maximum number of received ethernet packets the adapter can hold in its buffer.
Valid values range from 128 to 1024.

Software Transmit Queue
Indicates the number of transmit requests that can be queued for transmission by the device
driver. Valid values range from 512 through 16384.

Media Speed
The media speed attribute indicates the speed at which the adapter will attempt to operate. The
available speeds are 1000 Mbps full-duplex and auto-negotiation. The default is auto-negotiation.
Select auto-negotiate when the adapter should use auto-negotiation across the network to
determine the duplexity. When the network will not support auto-negotiation, select 1000 Mbps
full-duplex.

Chapter 7. Communications /0 Subsystem 149

Transmit TCP Resegmentation Offload
Supports the capability of the adapter to perform resegmentation of transmitted TCP segments in
hardware. This capability enables the host to use TCP segments that are larger than the actual
MTU size of the ethernet link, which may increase system performance. Allowed values are yes
and no.

Enable Hardware Checksum Offload
Setting this attribute to the yes value indicates that the adapter calculates the checksum for
transmitted and received TCP frames. If you specify the no value, the checksum will be calculated
by the appropriate software.

Note: The mbuf structure that describes a transmitted frame contains a flag that indicates
whether the adapter should calculate the checksum for the frame.

10/100/1000 Base-T Ethernet PCI-X Adapter Device Driver (14106902)
The 10/100/1000 Base-T Ethernet PCI-X Adapter Device Driver (14106902) supports the following
additional configuration parameters:

Transmit descriptor queue size
Indicates the number of transmit requests that can be queued for transmission by the adapter.
Valid values range from 128 to 1024.

Receive descriptor queue size
Indicates the maximum number of received ethernet packets the adapter can buffer. Valid values
range from 128 to 1024.

Software Transmit Queue
Indicates the number of transmit requests that can be queued for transmission by the device
driver. Valid values range from 512 through 16384.

Media Speed
The media speed attribute indicates the speed at which the adapter will attempt to operate. The
available speeds are 10 Mbps half-duplex, 10 Mbps full-duplex, 100 Mbps half-duplex, 100 Mbps
full-duplex and auto-negotiation, with a default of auto-negotiation. Select auto-negotiate when the
adapter should use auto-negotiation across the network to determine the speed. When the
network will not support auto-negotiation, select the specific speed.

Note: 1000 MBps half and full duplex are not valid values. As per the IEEE 802.3z specification,
gigabit speeds of any duplexity must be auto-negotiated for copper (TX) based adapters.
Please select auto-negotiation if these speeds are desired.

Transmit TCP Resegmentation Offload
Supports the capability of the adapter to perform resegmentation of transmitted TCP segments in
hardware. This capability enables the host to use TCP segments that are larger than the actual
MTU size of the ethernet link, which may increase system performance. Allowed values are yes
and no.

Enable Hardware Checksum Offload
Setting this attribute to the yes value indicates that the adapter calculates the checksum for
transmitted and received TCP frames. If you specify the no value, the checksum will be calculated
by the appropriate software.

Note: The mbuf describing a frame to be transmitted contains a flag that says if the adapter
should calculate the checksum for the frame.

Gigabit Backward Compatibility
Older gigabit TX equipment may not be able to communicate to this adapter. Some manufacturers
produced hardware implementing the IEEE 802.3z auto-negotiation algorithm incorrectly. As such,
this option should be enabled if the adapter is unable to communicate with your older gigabit
equipment.

150 Kernel Extensions and Device Support Programming Concepts

Note: Enabling this option forces the adapter to implement the IEEE 802.3z incorrectly. As such, if
it is enabled, it will not be able to communicate to newer equipment. Only enable this if you
are having trouble obtaining a link with auto-negotiation, but can force a link at a slower
speed (i.e. 100 full-duplex).

2-Port Gigabit Ethernet-SX PCI-X Adapter Device Driver (14108802)
The 2-Port Gigabit Ethernet-SX PCI-X Adapter Device Driver (14108802) supports the following additional

configuration parameters:

Transmit descriptor queue size
Indicates the number of transmit requests that can be queued for transmission by the adapter.
Valid values range from 128 to 1024.

Receive descriptor queue size
Indicates the maximum number of received ethernet packets the adapter can hold in its buffer.
Valid values range from 128 to 1024.

Software Transmit Queue
Indicates the number of transmit requests that can be queued for transmission by the device
driver. Valid values range from 512 through 16384.

Media Speed
The media speed attribute indicates the speed at which the adapter attempts to operate. The
available speeds are 1000 Mbps full-duplex and auto-negotiation. The default is auto-negotiation.
Select auto-negotiate when the adapter should use auto-negotiation across the network to
determine the duplexity. When the network does not support auto-negotiation, select 1000 Mbps
full-duplex.

Transmit TCP Resegmentation Offload
Supports the capability of the adapter to perform resegmentation of transmitted TCP segments in
hardware. This capability enables the host to use TCP segments that are larger than the actual
MTU size of the ethernet link, which can increase system performance. Allowed values are yes
and no.

Enable Hardware Checksum Offload
Setting this attribute to the yes value indicates that the adapter calculates the checksum for
transmitted and received TCP frames. If you specify the no value, the checksum will be calculated
by the appropriate software.

Note: The mbuf structure that describes a transmitted frame contains a flag that indicates
whether the adapter should calculate the checksum for the frame.

2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)
The 2-Port 10/100/1000 Base-TX PCI-X Adapter Device Driver (14108902) supports the following

additional configuration parameters:

Transmit descriptor queue size
Indicates the number of transmit requests that can be queued for transmission by the adapter.
Valid values range from 128 to 1024.

Receive descriptor queue size
Indicates the maximum number of received ethernet packets the adapter can hold in its buffer.
Valid values range from 128 to 1024.

Software Transmit Queue
Indicates the number of transmit requests that can be queued for transmission by the device
driver. Valid values range from 512 through 16384.

Media Speed
The media speed attribute indicates the speed at which the adapter attempts to operate. The
available speeds are 10 Mbps half-duplex, 10 Mbps full-duplex, 100 Mbps half-duplex, 100 Mbps

Chapter 7. Communications I/0O Subsystem 151

full-duplex and auto-negotiation. The default is auto-negotiation. Select auto-negotiate when the
adapter should use auto-negotiation across the network to determine the speed. When the
network does not support auto-negotiation, select the specific speed.

Note: 1000 Mbps half-duplex and full-duplex are not valid values. The IEEE 802.3z specification
dictates that the gigabit speeds of any duplexity must be auto-negotiated for copper
(TX)-based adapters. Select auto-negotiation if these speeds are desired.

Transmit TCP Resegmentation Offload
Supports the capability of the adapter to perform resegmentation of transmitted TCP segments in
hardware. This capability enables the host to use TCP segments that are larger than the actual
MTU size of the ethernet link, which can increase system performance. Allowed values are yes
and no.

Enable Hardware Checksum Offload
Setting this attribute to the yes value indicates that the adapter calculates the checksum for
transmitted and received TCP frames. If you specify the no value, the checksum will be calculated
by the appropriate software.

Note: The mbuf structure that describes a transmitted frame contains a flag that indicates
whether the adapter should calculate the checksum for the frame.

Gigabit Backward Compatibility
Older gigabit TX equipment might not be able to communicate with this adapter. If the adapter is
unable to communicate with your older gigabit equipment, enabling this option forces the adapter
to implement the IEEE 802.3z incorrectly. As such, this option should be enabled if the adapter is
unable to communicate with your older gigabit equipment.

Note: Enabling this option forces the adapter to implement the IEEE 802.3z incorrectly. If this
option is enabled, the adapter will not be able to communicate with newer equipment.
Enable this option only if you cannot obtain a link using auto-negotiation, but can force a
link at a slower speed (for example, 100 full-duplex).

Interface Entry Points

Device Driver Configuration and Unconfiguration
The configuration entry points of the device drivers conform to the guidelines for kernel object file entry

points. These configuration entry points are as follows:

» kent_config for the PCI Ethernet Device Driver (22100020)

» phxent_config for the 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020)
» scent_config for the 10/100 Mbps Ethernet PCI Adapter Il Device Driver (1410ff01)
+ gxent_config for the Gigabit Ethernet-SX PCI Adapter Device Driver (14100401)

« goent_config for the Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802), the 10/100/1000
Base-T Ethernet PCI-X Adapter Device Driver (14106902), the 2-Port Gigabit Ethernet-SX PCI-X
Adapter Device Driver (14108802), and the 2-Port 10/100/1000 Base-TX PCI-X Adapter Device
Driver(14108902)

Device Driver Open
The open entry point for the device drivers perform a synchronous open of the specified network device.

The device driver issues commands to start the initialization of the device. The state of the device now is
OPEN_PENDING. The device driver invokes the open process for the device. The open process involves
a sequence of events that are necessary to initialize and configure the device. The device driver will do
the sequence of events in an orderly fashion to make sure that one step is finished executing on the
adapter before the next step is continued. Any error during these sequence of events will make the open

152 Kernel Extensions and Device Support Programming Concepts

fail. The device driver requires about 2 seconds to open the device. When the whole sequence of events
is done, the device driver verifies the open status and then returns to the caller of the open with a return
code to indicate open success or open failure.

After the device has been successfully configured and connected to the network, the device driver sets the
device state to OPENED, the NDD_RUNNING flag in the NDD flags field is turned on. In the case of
unsuccessful open, both the NDD_UP and NDD_RUNNING flags in the NDD flags field will be off and a
non-zero error code will be returned to the caller.

The open entry points are as follows:

» kent_open for the PCI Ethernet Device Driver (22100020)

» phxent_open for the 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020)

» scent_open for the 10/100 Mbps Ethernet PCI Adapter Il Device Driver (1410ff01)

+ gxent_open for the Gigabit Ethernet-SX PCI Adapter Device Driver (14100401)

» goent_open for the Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802), the 10/100/1000
Base-T Ethernet PCI-X Adapter Device Driver (14106902), the 2-Port Gigabit Ethernet-SX PCI-X

Adapter Device Driver (14108802), and the 2-Port 10/100/1000 Base-TX PCI-X Adapter Device
Driver(14108902)

Device Driver Close
The close entry point for the device drivers is called to close the specified network device. This function
resets the device to a known state and frees system resources associated with the device.

The device will not be detached from the network until the device’s transmit queue is allowed to drain.
That is, the close entry point will not return until all packets have been transmitted or timed out. If the
device is inoperable at the time of the close, the device’s transmit queue does not have to be allowed to
drain.

At the beginning of the close entry point, the device state will be set to be CLOSE_PENDING. The
NDD_RUNNING flag in the ndd_flags will be turned off. After the outstanding transmit queue is all done,
the device driver will start a sequence of operations to deactivate the adapter and to free up resources.
Before the close entry point returns to the caller, the device state is set to CLOSED.

The close entry points are as follows:

» kent_close for the PCI Ethernet Device Driver (22100020)

* phxent_close for the 10/100 Mbps Ethernet PCl Adapter Device Driver (23100020)
» scent_close for the 10/100 Mbps Ethernet PCI Adapter Il Device Driver (1410ff01)
» gxent_close for the Gigabit Ethernet-SX PCI Adapter Device Driver (14100401)

» goent_close for the Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802), the 10/100/1000
Base-T Ethernet PCI-X Adapter Device Driver (14106902), the 2-Port Gigabit Ethernet-SX PCI-X
Adapter Device Driver (14108802), and the 2-Port 10/100/1000 Base-TX PCI-X Adapter Device
Driver(14108902)

Data Transmission
The output entry point transmits data using the specified network device.

The data to be transmitted is passed into the device driver by way of mbuf structures. The first mbuf
structure in the chain must be of M_PKTHDR format. Multiple mbuf structures may be used to hold the
frame. Link the mbuf structures using the m_next field of the mbuf structure.

Multiple packet transmits are allowed with the mbufs being chained using the m_nextpkt field of the mbuf

structure. The m_pkthdr.len field must be set to the total length of the packet. The device driver does not
support mbufs from user memory (which have the M_EXT flag set).

Chapter 7. Communications I/O Subsystem 153

On successful transmit requests, the device driver is responsible for freeing all the mbufs associated with
the transmit request. If the device driver returns an error, the caller is responsible for the mbufs. If any of
the chained packets can be transmitted, the transmit is considered successful and the device driver is
responsible for all of the mbufs in the chain.

If the destination address in the packet is a broadcast address the M_BCAST flag in the m_flags field
should be set prior to entering this routine. A broadcast address is defined as OxFFFF FFFF FFFF. If the
destination address in the packet is a multicast address the M_MCAST flag in the m_flags field should be
set prior to entering this routine. A multicast address is defined as a non-individual address other than a
broadcast address. The device driver will keep statistics based upon the M_BCAST and M_MCAST flags.

For packets that are shorter than the Ethernet minimum MTU size (60 bytes), the device driver will pad
them by adjusting the transmit length to the adapter so they can be transmitted as valid Ethernet packets.

Users will not be notified by the device driver about the status of the transmission. Various statistics about
data transmission are kept by the driver in the ndd structure. These statistics will be part of the data
returned by the NDD_GET_STATS control operation.

The output entry points are as follows:

* kent_output for the PCI Ethernet Device Driver (22100020)

» phxent_output for the 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020)
» scent_output for the 10/100 Mbps Ethernet PCI Adapter Il Device Driver (1410ff01)
+ gxent_output for the Gigabit Ethernet-SX PCI Adapter Device Driver (14100401)

» goent_output for the Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802), the 10/100/1000
Base-T Ethernet PCI-X Adapter Device Driver (14106902), the 2-Port Gigabit Ethernet-SX PCI-X
Adapter Device Driver (14108802), and the 2-Port 10/100/1000 Base-TX PCI-X Adapter Device
Driver(14108902)

Data Reception

When the Ethernet device drivers receive a valid packet from the network device, the device drivers call
the nd_receive function that is specified in the ndd_t structure of the network device. The nd_receive
function is part of a CDLI network demultiplexer. The packet is passed to the nd_receive function in the
form of a mbuf.

The Ethernet device drivers can pass multiple packets to the nd_receive function by chaining the packets
together using the m_nextpkt field of the mbuf structure. The m_pkthdr.len field must be set to the total
length of the packet. If the source address in the packet is a broadcast address the M_BCAST flag in the
m_flags field should be set. If the source address in the packet is a multicast address the M_MCAST flag
in the m_flags field should be set.

When the device driver initially configures the device to discard all invalid frames. A frame is considered to
be invalid for the following reasons:

* The packet is too short.

* The packet is too long.

* The packet contains a CRC error.

» The packet contains an alignment error.

If the asynchronous status for receiving invalid frames has been issued to the device driver, the device
driver will configure the device to receive bad packets as well as good packets. Whenever a bad packet is
received by the driver, an asynchronous status block NDD_BAD_PKTS is created and delivered to the
appropriate user. The user must copy the contents of the mbuf to another memory area. The user must
not modify the contents of the mbuf or free the mbuf. The device driver has the responsibility of releasing
the mbuf upon returning from nd_status.

154 Kernel Extensions and Device Support Programming Concepts

Various statistics about data reception on the device will be kept by the driver in the ndd structure. These
statistics will be part of the data returned by the NDD_GET_STATS and NDD_GET_ALL_STATS control
operations.

There is no specified entry point for this function. The device informs the device driver of a received
packet via an interrupt. Upon determining that the interrupt was the result of a packet reception, the device
driver’s interrupt handler invoke the rx_handler completion routine to perform the tasks mentioned above.

Asynchronous Status

When a status event occurs on the device, the Ethernet device drivers build the appropriate status block
and call the nd_status function that is specified in the ndd_t structure of the network device. The
nd_status function is part of a CDLI network demuxer.

The following status blocks are defined for the Ethernet device drivers.

Note: The PCI Ethernet Device Driver (22100020) only supports the Bad Packets status block. The
following device driver do not support asynchronous status:

* 10/100 Mbit Ethernet PCI Adapter Device Driver (23100020)
* 10/100 Mbit Ethernet PCI Adapter Il Device Driver (1410ff01)
* Gigabit Ethernet-SX PCI Adapter Device Driver(14100401)
* Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802)
* 10/100/1000 Base-T Ethernet PCI-X Adapter Device Driver (14106902)
« 2-Port Gigabit Ethernet-SX PCI-X Adapter (14108802)
* 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)
Hard Failure

When a hard failure has occurred on the Ethernet device, the following status blocks can be
returned by the Ethernet device driver. These status blocks indicates that a fatal error occurred.

code Set to NDD_HARD_FAIL.

option[0]
Set to one of the reason codes defined in <sys/ndd.h> and <sys/cdli_entuser.h>.

Enter Network Recovery Mode
When the device driver has detected an error that requires initiating recovery logic that will make
the device temporarily unavailable, the following status block is returned by the device driver.

code Setto NDD_LIMBO_ENTER.
option[0]
Set to one of the reason codes defined in <sys/ndd.h> and <sys/cdli_entuser.h>.

Note: While the device driver is in this recovery logic, the device might not be fully functional. The
device driver will notify users when the device is fully functional by way of an
NDD_LIMBO_EXIT asynchronous status block.

Exit Network Recovery Mode
When the device driver has successfully completed recovery logic from the error that made the
device temporarily unavailable, the following status block is returned by the device driver.

code Setto NDD_LIMBO EXIT.

option[]
The option fields are not used.

Note: The device is now fully functional.

Chapter 7. Communications I/O Subsystem 155

Network Device Driver Status
When the device driver has status or event information to report, the following status block is
returned by the device driver.

code Set to NDD_STATUS.

option[0]
Might be any of the common or interface type specific reason codes.

option[]
The remainder of the status block can be used to return additional status information by
the device driver.

Bad Packets
When the a bad packet has been received by a device driver (and a user has requested bad
packets), the following status block is returned by the device driver.

code Set to NDD_BAD_PKTS.

option[0]
Specifies the error status of the packet. These error numbers are defined in
<sys/cdli_entuser.h>.

option[1]
Pointer to the mbuf containing the bad packet.

option[]
The remainder of the status block can be used to return additional status information by
the device driver.

Note: The user will not own the mbuf containing the bad packet. The user must copy the mbuf
(and the status block information if desired). The device driver will free the mbuf upon
return from the nd_status function.

Device Connected
When the device is successfully connected to the network the following status block is returned by
the device driver.

code Set to NDD_CONNECTED.

option[]
The option fields are not used.

Note: Integrated Ethernet only.

Device Control Operations
The ndd_ctl entry point is used to provide device control functions.

NDD_GET_STATS Device Control Operation

The NDD_GET_STATS command returns statistics concerning the network device. General statistics are
maintained by the device driver in the ndd_genstats field in the ndd_t structure. The ndd_specstats field
in the ndd_t structure is a pointer to media-specific and device-specific statistics maintained by the device
driver. Both sets of statistics are directly readable at any time by those users of the device that can access
them. This command provides a way for any of the users of the device to access the general and
media-specific statistics.

The arg and length parameters specify the address and length in bytes of the area where the statistics are
to be written. The length specified must be the exact length of the general and media-specific statistics.

156 Kernel Extensions and Device Support Programming Concepts

Note: The ndd_speclen field in the ndd_t structure plus the length of the ndd_genstats_t structure is
the required length. The device-specific statistics might change with each new release of the
operating system, but the general and media-specific statistics are not expected to change.

The user should pass in the ent_ndd_stats_t structure as defined in sys/cdli_entuser.h. The driver fails
a call with a buffer smaller than the structure.

The statistics that are returned contain statistics obtained from the device. If the device is inoperable, the
statistics that are returned will not contain the current device statistics. The copy of the ndd_flags field
can be checked to determine the state of the device.

NDD_MIB_QUERY Device Control Operation

The NDD_MIB_QUERY operation is used to determine which device-specific MIBs are supported on the
network device. The arg and length parameters specify the address and length in bytes of a
device-specific MIB structure. The device driver will fill every member of that structure with a flag indicating
the level of support for that member. The individual MIB variables that are not supported on the network
device will be set to MIB_NOT_SUPPORTED. The individual MIB variables that can only be read on the
network device will be set to MIB_READ_ONLY. The individual MIB variables that can be read and set on
the network device will be set to MIB_READ_WRITE. The individual MIB variables that can only be set
(not read) on the network device will be set to MIB_WRITE_ONLY. These flags are defined in the
lusr/include/sys/ndd.h file.

The arg parameter specifies the address of the ethernet_all_mib structure. This structure is defined in the
lusr/include/sys/ethernet_mibs.h file.

NDD_MIB_GET Device Control Operation

The NDD_MIB_GET operation is used to get all MIBs on the specified network device. The arg and length
parameters specify the address and length in bytes of the device specific MIB structure. The device driver
will set any unsupported variables to zero (nulls for strings).

If the device supports the RFC 1229 receive address object, the corresponding variable is set to the
number of receive addresses currently active.

The arg parameter specifies the address of the ethernet_all_mib structure. This structure is defined in the
lusr/include/sys/ethernet_mibs.h file.

NDD_ENABLE_ADDRESS Device Control Operation
The NDD_ENABLE_ADDRESS command enables the receipt of packets with an alternate (for example,

multicast) address. The arg and length parameters specify the address and length in bytes of the alternate
address to be enabled. The NDD_ALTADDRS flag in the ndd_flags field is set.

The device driver verifies that if the address is a valid multicast address. If the address is not a valid
multicast address, the operation will fail with an EINVAL error. If the address is valid, the driver will add it
to its multicast table and enable the multicast filter on the adapter. The driver will keep a reference count
for each individual address. Whenever a duplicate address is registered, the driver simply increments the
reference count of that address in its multicast table, no update of the adapter’s filter is needed. There is a
hardware limitation on the number of multicast addresses in the filter.

NDD_DISABLE_ADDRESS Device Control Operation

The NDD_DISABLE_ADDRESS command disables the receiving packets with a specified alternate (for
example, multicast) address. The arg and length parameters specify the address and length in bytes of the
alternate address to be disabled. The NDD_ALTADDRS flag in the ndd_flags field is reset if this is the
last alternate address.

The device driver verifies that if the address is a valid multicast address. If the address is not a valid
multicast address, the operation will fail with an EINVAL error. The device driver makes sure that the
multicast address can be found in its multicast table. Whenever a match is found, the driver will decrement

Chapter 7. Communications I/0 Subsystem 157

the reference count of that individual address in its multicast table. If the reference count becomes 0, the
driver will delete the address from the table and update the multicast filter on the adapter.

NDD_MIB_ADDR Device Control Operation

The NDD_MIB_ADDR operation is used to get all the addresses for which the specified device will accept
packets or frames. The arg parameter specifies the address of the ndd_mib_addr_t structure. The length
parameter specifies the length of the structure with the appropriate number of ndd_mib_addr_t.mib_addr
elements. This structure is defined in the /usr/include/sys/ndd.h file. If the length is less than the length
of the ndd_mib_addr_t structure, the device driver returns EINVAL. If the structure is not large enough to
hold all the addresses, the addresses that fit will still be placed in the structure. The
ndd_mib_addr_t.count field is set to the number of addresses returned and E2BIG is returned.

One of the following address types is returned:

» Device physical address (or alternate address specified by user)
» Broadcast addresses

* Multicast addresses

NDD_CLEAR_STATS Device Control Operation
The counters kept by the device will be zeroed.

NDD_GET_ALL_STATS Device Control Operation
The NDD_GET_ALL_STATS operation is used to gather all the statistics for the specified device. The arg

parameter specifies the address of the statistics structure for the particular device type. The following
structures are available:

* The kent_all_stats_t structure is available for the PCI Ethernet Adapter Device Driver (22100020), and
is defined in the cdli_entuser.h include file.

* The phxent_all_stats_t structure is available for the 10/100 Mbps Ethernet PCI Adapter Device Driver
(23100020), and is defined in the device-specific cdli_entuser.phxent.h include file.

* The scent_all_stats_t structure is available for the 10/100 Mbps Ethernet PCI Adapter Il Device Driver
(1410ff01), and is defined in the device-specific cdli_entuser.scent.h include file.

* The gxent_all_stats_t structure is available for the Gigabit Ethernet-SX PCI Adapter Device Driver
(14100401), and is defined in the device-specific cdli_entuser.gxent.h include file.

* The goent_all_stats_t structure is available for the Gigabit Ethernet-SX PCI-X Adapter Device Driver
(14106802) and the 10/100/1000 Base-T Ethernet PCI-X Adapter Device Driver (14106902), and is
defined in the device-specific cdli_entuser.goent.h include file.

The statistics that are returned contain statistics obtained from the device. If the device is inoperable, the
statistics that are returned will not contain the current device statistics. The copy of the ndd_flags field
can be checked to determine the state of the device.

NDD_ENABLE_MULTICAST Device Control Operation

The NDD_ENABLE_MULTICAST command enables the receipt of packets with any multicast (or group)
address. The arg and length parameters are not used. The NDD_MULTICAST flag in the ndd_flags field
is set.

NDD_DISABLE_MULTICAST Device Control Operation

The NDD_DISABLE_MULTICAST command disables the receipt of all packets with multicast addresses
and only receives those packets whose multicast addresses were specified using the
NDD_ENABLE_ADDRESS command. The arg and length parameters are not used. The
NDD_MULTICAST flag in the ndd_flags field is reset only after the reference count for multicast
addresses has reached zero.

NDD_PROMISCUOUS_ON Device Control Operation
The NDD_PROMISCUOUS_ON command turns on promiscuous mode. The arg and length parameters
are not used.

158 Kernel Extensions and Device Support Programming Concepts

When the device driver is running in promiscuous mode, all network traffic is passed to the network
demultiplexer. When the Ethernet device driver receives a valid packet from the network device, the
Ethernet device driver calls the nd_receive function that is specified in the ndd_t structure of the network
device. The NDD_PROMISC flag in the ndd_flags field is set. Promiscuous mode is considered to be
valid packets only. See the NDD_ADD_STATUS command for information about how to request support
for bad packets.

The device driver will maintain a reference count on this operation. The device driver increments the
reference count for each operation. When this reference count is equal to one, the device driver issues
commands to enable the promiscuous mode. If the reference count is greater than one, the device driver
does not issue any commands to enable the promiscuous mode.

NDD_PROMISCUOUS_OFF Device Control Operation
The NDD_PROMISCUOUS_OFF command terminates promiscuous mode. The arg and length parameters

are not used. The NDD_PROMISC flag in the ndd_flags field is reset.

The device driver will maintain a reference count on this operation. The device driver decrements the
reference count for each operation. When the reference count is not equal to zero, the device driver does
not issue commands to disable the promiscuous mode. Once the reference count for this operation is
equal to zero, the device driver issues commands to disable the promiscuous mode.

NDD_DUMP_ADDR Device Control Operation

The NDD_DUMP_ADDR command returns the address of the device driver's remote dump routine. The
arg parameter specifies the address where the dump routine’s address is to be written. The length
parameter is not used.

NDD_DISABLE_ADAPTER Device Control Operation

Note: This device control operation is not supported on the PCI Ethernet Adapter Device Driver
(22100020).

The NDD_DISABLE_ADAPTER operation is used by etherchannel to disable the adapter so that it cannot
transmit or receive data. During this operation the NDD_RUNNING and NDD_LIMBO flags are cleared
and the adapter is reset. The arg and len parameters are not used.

NDD_ENABLE_ADAPTER Device Control Operation

Note: This device control operation is not supported on the PCI Ethernet Adapter Device Driver
(22100020).

The NDD_ENABLE_ADAPTER operation is used by etherchannel to return the adapter to a running state
so it can transmit and receive data. During this operation the adapter is started and the NDD_RUNNING
flag is set. The arg and len parameters are not used.

NDD_SET_LINK_STATUS Device Control Operation

Note: This device control operation is not supported on the PCI Ethernet Adapter Device Driver
(22100020).

The NDD_SET_LINK_STATUS operation is used by etherchannel to pass the driver a function pointer and
argument that will subsequently be called by the driver whenever the link status changes. The arg
parameter contains a pointer to a ndd_sls_t structure, and the /en parameter contains the length of the
ndd_sls_t structure.

Chapter 7. Communications I/0O Subsystem 159

NDD_SET_MAC_ADDR Device Control Operation

Note: This device control operation is not supported on the PCI Ethernet Adapter Device Driver
(22100020).

The NDD_SET_NAC_ADDR operation is used by etherchannel to set the adapters MAC address at
runtime. The MAC address set by this ioctl is valid until another NDD_SET_MAC_ADDR call is made with
a new address or when the adapter is closed. If the adapter is closed, the previously-configured MAC
address. The MAC address configured with the ioctl supersedes any alternate address that might have
been configured.

The arg argument is char [6], representing the MAC address that is configured on the adapter. The len
argument is 6.

Trace

For LAN device drivers, trace points enable error monitoring as well as tracking packets as they move
through the driver. The drivers issue trace points for some or all of the following conditions:

» Beginning and ending of main functions in the main path
» Error conditions
» Beginning and ending of each function that is tracking buffers outside of the main path

» Debugging purposes (These trace points are only enabled when the driver is compiled with -DDEBUG
turned on, and therefore the driver can contain as many of these trace points as desired.)

The existing Ethernet device drivers each have either three or four trace points. The Trace Hook IDs the
PCI Ethernet Adapter Device Driver (22100020) is defined in the sys/cdli_entuser.h file. Other drivers
have defined local cdli_entuser.driver.h files with the Trace Hook definitions. For more information, see
[‘Debug and Performance Tracing” on page 293

Following is a list of trace hooks (and location of definition file) for the existing Ethernet device drivers.

PCI Ethernet Adapter Device Driver (22100020)
Definition file: cdli_entuser.h

Trace Hook IDs:

Transmit -2A4
Receive -2A5
Other -2A6

10/100 Mbps Ethernet PCI Adpater Device Driver (23100020)
Definition file: cdli_entuser.phxent.h

Trace Hook IDs:

Transmit -2E6
Receive -2E7
Other -2E8

10/100 Mbps Ethernet PCI Adapter Il Device Driver (1410ff01)
Definition file: cdli_entuser.scent.h

Trace Hook IDs:

Transmit -470

160 Kernel Extensions and Device Support Programming Concepts

Receive -471
Other -472

Gigabit Ethernet-SX PCI Adapter Device Driver (14100401)
Definition file: cdli_entuser.gxent.h

Trace Hook IDs:

Transmit -2EA
Receive -2EB
Other -2EC

Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802), 10/100/1000 Base-T
Ethernet PCI-X Adapter Device Driver (14106902), 2-Port Gigabit Ethernet-SX PCI-X
Adapter (14108802), 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)

Definition file: cdli_entuser.goent.h

Trace Hook IDs:

Transmit -473
Receive -474
Other -475

The device driver also has the following trace points to support the netpmon program:

WQUE An output packet has been queued for transmission.
WEND The output of a packet is complete.

RDAT An input packet has been received by the device driver.
RNOT An input packet has been given to the demuxer.

REND The demultiplexer has returned.

Error Logging

For error logging information, see [‘Error Logging” on page 288,

PCI Ethernet Adapter Device Driver (22100020)
The Error IDs for the PCI Ethernet Adapter Device Driver (22100020) are as follows:

ERRID_KENT_ADAP_ERR
Indicates that the adapter is not responding to initialization commands. User intervention is
necessary to fix the problem.

ERRID_KENT_RCVRY
Indicates that the device driver detected a temporary adapter error requiring that it enter network
recovery mode. It has reset the adapter in an attempt to fix the problem.

ERRID_KENT_TX_ERR
Indicates the the device driver has detected a transmission error. User intervention is not required
unless the problem persists.

ERRID_KENT_PIO
Indicates that the device driver has detected a program 1O error. The device driver was unable to
fix the problem. User intervention is necessary to fix the problem.

ERRID_KENT_DOWN
Indicates that the device driver has shut down the adapter due to an unrecoverable error. The

Chapter 7. Communications I/0 Subsystem 161

adapter is no longer functional due to the error. The error that caused the device to shut down is
error logged immediately before this error log entry. User intervention is necessary to fix the
problem.

10/100 Mbps Ethernet PCI Adapter Device Driver (23100020)
The Error IDs for the 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020) are as follows:

ERRID_PHXENT_ADAP_ERR
Indicates that the adapter is not responding to initialization commands. User-intervention is
necessary to fix the problem.

ERRID_PHXENT_ERR_RCVRY
Indicates that the device driver detected a temporary adapter error requiring that it enter network
recovery mode. It has reset the adapter in an attempt to fix the problem.

ERRID_PHXENT_TX_ERR
Indicates that the device driver has detected a transmission error. User-intervention is not required
unless the problem persists.

ERRID_PHXENT_PIO
Indicates that the device driver has detected a program IO error. The device driver was unable to
fix the problem. User intervention is necessary to fix the problem.

ERRID_PHXENT_DOWN
Indicates that the device driver has shutdown the adapter due to an unrecoverable error. The
adapter is no longer functional due to the error. The error that caused the device shutdown is error
logged immediately before this error log entry. User intervention is necessary to fix the problem.

ERRID_PHXENT_EEPROM_ERR
Indicates that the device driver is in a defined state due to an invalid or bad EEPROM. The device
driver will not become available. Hardware support should be contacted.

ERRID_PHXENT_EEPROM2_ERR
Indicates that the device driver is in a defined state due to an invalid or bad EEPROM. The device
driver will not become available. Hardware support should be contacted.

ERRID_PHXENT_CLOSE_ERR
Indicates that an application is holding a private receive mbuf owned by the device driver during a
close operation. User intervention is not required.

ERRID_PHXENT_LINK_ERR
Indicates that the link between the adapter and the network switch is down. The device driver will
attempt to reestablish the connection once the physical link is reestablished. When the link is
again established, the device driver will log ERRID_PHXENT_ERR_RCVRY. User intervention is
necessary to fix the problem.

Gigabit Ethernet-SX PCI Adapter Device Driver (14100401)
The Error IDs for the Gigabit Ethernet-SX PCI Adapter Device Driver (14100401) are as follows:

ERRID_GXENT_ADAP_ERR
Indicates that the adapter failed initialization commands. User intervention is necessary to fix the
problem.

ERRID_GXENT_CMD_ERR
Indicates that the device driver has detected an error while issuing commands to the adapter. The
device driver will enter an adapter recovery mode where it will attempt to recover from the error. If
the device driver is successful, it will log ERRID_GXENT_RCVRY_EXIT. User intervention is not
necessary for this error unless the problem persists.

ERRID_GXENT_DOWNLOAD_ERR
Indicates that an error occurred while downloading firmware to the adapter. User intervention is
necessary to fix the problem.

162 Kernel Extensions and Device Support Programming Concepts

ERRID_GXENT_EEPROM_ERR
Indicates that an error occurred while reading the adapter EEPROM. User intervention is
necessary to fix the problem.

ERRID_GXENT_LINK_DOWN
Indicates that the link between the adapter and the network switch is down. The device driver will
attempt to reestablish the connection once the physical link is reestablished. When the link is
again established, the device driver will log ERRID_GXENT_RCVRY_EXIT. User intervention is
necessary to fix the problem.

ERRID_GXENT_RCVRY_EXIT
Indicates that a temporary error (link down, command error, or transmission error) has been
corrected.

ERRID_GXENT_TX_ERR
Indicates that the device driver has detected a transmission error. The device driver will enter an
adapter recovery mode in an attempt to recover from the error. If the device driver is successful, it
will log ERRID_GXENT_RCVRY_EXIT. User intervention is not necessary for this error unless the
problem persists.

ERRID_GXENT_EEH_SERVICE_ERR
Indicates that the device driver has detected a error during an attempt to recover from a PCI bus
error. User intervention is necessary to fix the problem.

10/100 Mbps Ethernet PCI Adapter Il Device Driver (1410ff01)
The Error IDs for the 10/100 Mbps Ethernet PCI Adapter Il Device Driver (1410ff01) are as follows:

ERRID_SCENT_ADAP_ERR
Indicates that the adapter failed initialization commands. User intervention is necessary to fix the
problem.

ERRID_SCENT_PIO_ERR
Indicates that the device driver has detected a program 10 error. The device driver was unable to
fix the problem. User intervention is necessary to fix the problem.

ERRID_SCENT_EEPROM_ERR
Indicates that an error occurred while reading the adapter EEPROM. User intervention is
necessary to fix the problem.

ERRID_SCENT_LINK_DOWN
Indicates that the link between the adapter and the network switch is down. The device driver will
attempt to reestablish the connection once the physical link is reestablished. When the link is
again established, the device driver will log ERRID_SCENT_RCVRY_EXIT. User intervention is
necessary to fix the problem.

ERRID_SCENT_RCVRY_EXIT
Indicates that a temporary error (link down, command error, or transmission error) has been
corrected.

ERRID_SCENT_TX_ERR
Indicates that the device driver has detected a transmission error. The device driver will enter an
adapter recovery mode in an attempt to recover from the error. If the device driver is successful, it
will log ERRID_SCENT_RCVRY_EXIT. User intervention is not necessary for this error unless the
problem persists.

ERRID_SCENT_EEH_SERVICE_ERR
Indicates that the device driver has detected a error during an attempt to recover from a PCI bus
error. User intervention is necessary to fix the problem.

Chapter 7. Communications /O Subsystem 163

Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802), 10/100/1000 Base-T
Ethernet PCI-X Adapter Device Driver (14106902), 2-Port Gigabit Ethernet-SX PCI-X
Adapter (14108802), 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)

The Error IDs for the Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802), the 10/100/1000
Base-T Ethernet PCI-X Adapter Device Driver (14106902), the 2-Port Gigabit Ethernet-SX PCI-X Adapter
Device Driver (14108802), and the 2-Port 10/100/1000 Base-TX PCI-X Adapter Device Driver (14108902)
are as follows:

ERRID_GOENT_ADAP_ERR
Indicates that the adapter failed initialization commands. User intervention is necessary to fix the
problem.

ERRID_GOENT_PIO_ERR
Indicates that the device driver has detected a program I/O error. The device driver was unable to
fix the problem. User intervention is necessary to fix the problem.

ERRID_GOENT_EEPROM_ERR
Indicates that an error occurred while reading the adapter EEPROM. User intervention is
necessary to fix the problem.

ERRID_GOENT_LINK_DOWN
Indicates that the link between the adapter and the network switch is down. The device driver will
attempt to reestablish the connection once the physical link is reestablished. When the link is
again established, the device driver will log ERRID_GOENT_RCVRY_EXIT. User intervention is
necessary to fix the problem.

ERRID_GOENT_RCVRY_EXIT
Indicates that a temporary error (link down, command error, or transmission error) has been
corrected.

ERRID_GOENT_TX_ERR
Indicates that the device driver has detected a transmission error. The device driver will enter an
adapter recovery mode in an attempt to recover from the error. If the device driver is successful, it
will log ERRID_GOENT_RCVRY_EXIT. User intervention is not necessary for this error unless the
problem persists.

ERRID_GOENT_EEH_SERVICE_ERR
Indicates that the device driver has detected a error during an attempt to recover from a PCI bus
error. User intervention is necessary to fix the problem.

Related Information

[‘Common Communications Status and Exception Codes” on page 99}

[‘Logical File System Kernel Services” on page 55}

ISystem Management Interface Tool (SMIT): Overview|in AIX 5L Version 5.2 System Management
Concepts: Operating System and Devices.

|Error Logging Overview| in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

Status Blocks for the Serial Optical Link Device Driver, [Sense Data for the Serial Optical Link Device]
Drive[| in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 2.

Subroutine References

The subroutine in AIX 5L Version 5.2 Technical Reference: Base Operating System and Extensions
Volume 2.

164 Kerel Extensions and Device Support Programming Concepts

Commands References

The [entstat Command|in AIX 5L Version 5.2 Commands Reference, Volume 1.

The [lecstat Command, [npcstat Command|in AIX 5L Version 5.2 Commands Reference, Volume 3.

The|tokstat Commandl in AIX 5L Version 5.2 Commands Reference, Volume 5.

Technical References

The entry point, [ddselect| entry point in AIX 5L Version 5.2 Technical Reference: Kernel and

Subsystems Volume 2.

The [CIO_GET_STAT]| operation, [CIO_HALT] operation, [CIO_START| operation in AIX 5L Version 5.2

Technical Reference: Kernel and Subsystems Volume 2.

The [mpconfig Multiprotocol (MPQP) Device Handler Entry Point, [mpwrite Multiprotocol (MPQP)

[Device Handler Entry Point| [mpread

Multiprotocol (MPQP) Device Handler Entry Point] Impmp

Multiprotocol (MPQP) Device Handler Entry Point , [npopen Multiprotocol (MPQP) Device Handler

Entry Point| [mpselect Multiprotocol

MPQP) Device Handler Entry Point] [mpclose Multiprotocoll

(MPQP) Device Handler Entry Point]

mpioctl Multiprotocol (MPQP) Device Handler Entry Poin{ in

AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 2.

Chapter 7. Communications I/O Subsystem 165

166 Kernel Extensions and Device Support Programming Concepts

Chapter 8. Graphic Input Devices Subsystem

The graphic input devices subsystem includes the keyboard/sound, mouse, tablet, dials, and lighted
programmable-function keys (LPFK) devices. These devices provide operator input primarily to graphic
applications. However, the keyboard can provide system input by means of the console.

The program interface to the input device drivers is described in the inputdd.h header file. This header file
is available as part of the bos.adt.graphics fileset.

open and close Subroutines

An open subroutine call is used to create a channel between the caller and a graphic input device driver.
The keyboard supports two such channels. The most recently created channel is considered the active
channel. All other graphic input device drivers support only one channel. The open subroutine call is
processed normally, except that the OFLAG and MODE parameters are ignored. The keyboard provides
support for the fp_open subroutine call; however, only one kernel mode channel can be open at any given
time. The fp_open subroutine call returns EACCES for all other graphic input devices.

The close subroutine is used to remove a channel created by the open subroutine call.

read and write Subroutines

The graphic input device drivers do not support read or write operations. A read or write to a graphic input
device special file behaves as if a read or write was made to /dev/null.

ioctl Subroutines

The ioctl operations provide run-time services. The special files support the following ioctl operations:
* |Keyboar

i
o

* |Mouse

 |Tablef

+ [GIO (Graphics 1/0) Adapter]

 |Dials

* |LPFEK]

Keyboard

IOCINFO Returns the devinfo structure.
KSQUERYID Queries the keyboard device identifier.
KSQUERYSV Queries the keyboard service vector.
KSREGRING Registers the input ring.

KSRFLUSH Flushes the input ring.

KSLED Sets and resets the keyboard LEDs.
KSCFGCLICK Configures the clicker.

KSVOLUME Sets the alarm volume.

KSALARM Sounds the alarm.

KSTRATE Sets the repeat rate.

KSTDELAY Sets the delay before repeat.

KSKAP Enables and disables the keep-alive poll.
KSKAPACK Acknowledges the keep-alive poll.

KSDIAGMODE Enables and disables the diagnostics mode.

© Copyright IBM Corp. 1997, 2003 167

Note:
1. A nonactive channel processes only IOCINFO, KSQUERYID, KSQUERYSV, KSREGRING,
KSRFLUSH, KSKAP, and KSKAPACK. All other ioctl subroutine calls are ignored without error.

2. The KSLED, KSCFGCLICK, KSVOLUME, KSALARM, KSTRATE, and KSTDELAY ioctl
subroutine calls return an EBUSY error in the errno global variable when the keyboard is in
diagnostics mode.

3. The KSQUERYSYV ioctl subroutine call is only available when the channel is open from kernel
mode (with the fp_open kernel service).

4. The KSKAP, KSKAPACK, KSDIAGMODE ioctl subroutine calls are only available when the
channel is open from user mode.

Mouse

IOCINFO Returns the devinfo structure.
MQUERYID Queries the mouse device identifier.
MREGRING Registers the input ring.

MRFLUSH Flushes the input ring.
MTHRESHOLD Sets the mouse reporting threshold.
MRESOLUTION Sets the mouse resolution.
MSCALE Sets the mouse scale.

MSAMPLERATE Sets the mouse sample rate.

Tablet

IOCINFO Returns the devinfo structure.
TABQUERYID Queries the tablet device identifier.
TABREGRING Registers the input ring.
TABFLUSH Flushes the input ring.
TABCONVERSION Sets the tablet conversion mode.
TABRESOLUTION Sets the tablet resolution.
TABORIGIN Sets the tablet origin.
TABSAMPLERATE Sets the tablet sample rate.
TABDEADZONE Sets the tablet dead zones.

GIO (Graphics 1/0) Adapter

IOCINFO Returns the devinfo structure.
GIOQUERYID Returns the ID of the attached devices.
Dials

IOCINFO Returns the devinfo structure.
DIALREGRING Registers the input ring.
DIALRFLUSH Flushes the input ring.
DIALSETGRAND Sets the dial granularity.
LPFK

IOCINFO Returns the devinfo structure.
LPFKREGRING Registers the input ring.
LPFKRFLUSH Flushes the input ring.

168 Kernel Extensions and Device Support Programming Concepts

LPFKLIGHT Sets and resets the key lights.

Input Ring

Data is obtained from graphic input devices by way of a circular First-In First-Out (FIFO) queue or input
ring, rather than with a read subroutine call. The memory address of the input ring is registered with an
ioctl (or fp_ioctl) subroutine call. The program that registers the input ring is the owner of the ring and is
responsible for allocating, initializing, and freeing the storage associated with the ring. The same input ring
can be shared by multiple devices.

The input ring consists of the input ring header followed by the reporting area. The input ring header
contains the reporting area size, the head pointer, the tail pointer, the overflow flag, and the notification
type flag. Before registering an input ring, the ring owner must ensure that the head and tail pointers
contain the starting address of the reporting area. The overflow flag must also be cleared and the size field
set equal to the number of bytes in the reporting area. After the input ring has been registered, the owner
can modify only the head pointer and the notification type flag.

Data stored on the input ring is structured as one or more event reports. Event reports are placed at the
tail of the ring by the graphic input device drivers. Previously queued event reports are taken from the
head of the input ring by the owner of the ring. The input ring is empty when the head and tail locations
are the same. An overflow condition exists if placement of an event on the input ring would overwrite data
that has not been processed. Following an overflow, new event reports are not placed on the input ring
until the input ring is flushed via an ioctl subroutine or service vector call.

The owner of the input ring is notified when an event is available for processing via a SIGMSG signal or
via callback if the channel was created by an fp_open subroutine call. The notification type flag in the
input ring header specifies whether the owner should be notified each tine an event is placed on the ring
or only when an event is placed on an empty ring.

Management of Multiple Keyboard Input Rings

When multiple keyboard channels are opened, keyboard events are placed on the input ring associated
with the most recently opened channel. When this channel is closed, the alternate channel is activated and
keyboard events are placed on the input ring associated with that channel.

Event Report Formats

Each event report consists of an identifier followed by the report size in bytes, a time stamp (system time
in milliseconds), and one or more bytes of device-dependent data. The value of the identifier is specified
when the input ring is registered. The program requesting the input-ring registration is responsible for
identifier uniqueness within the input-ring scope.

Note: Event report structures are placed on the input-ring without spacing. Data wraps from the end to the
beginning of the reporting area. A report can be split on any byte boundary into two non-contiguous
sections.

The event reports are as follows:

Keyboard

ID Specifies the report identifier.

Length Specifies the report length.

Time stamp Specifies the system time (in milliseconds).
Key position code Specifies the key position code.

Key scan code Specifies the key scan code.

Status flags Specifies the status flags.

Chapter 8. Graphic Input Devices Subsystem 169

Tablet

ID Specifies the report identifier.

Length Specifies the report length.

Time stamp Specifies the system time (in milliseconds).

Absolute X Specifies the absolute X coordinate.

Absolute Y Specifies the absolute Y coordinate.

LPFK

ID Specifies the report identifier.

Length Specifies the report length.

Time stamp Specifies the system time (in milliseconds).

Number of key pressed

Dials

ID

Length

Time stamp

Number of dial changed
Delta change

Specifies the number of the key pressed.

Specifies the report identifier.

Specifies the report length.

Specifies the system time (in milliseconds).
Specifies the number of the dial changed.
Specifies delta dial rotation.

Mouse (Standard Format)

ID

Length

Time stamp
Delta X
Delta Y
Button status

Specifies the report identifier.

Specifies the report length.

Specifies the system time (in milliseconds).
Specifies the delta mouse motion along the X axis.
Specifies the delta mouse motion along the Y axis.
Specifies the button status.

Mouse (Extended Format)

ID
Length
Time stamp

Format

Specifies the report identifier.
Specifies the report length.
Specifies the system time (in milliseconds).

Specifies the format of additional fields.

Format 1:
» Status: Specifies the extended button status
* Delta Wheel: Specifies the delta wheel movement

Format 2:

+ Button Status: Specifies the button status.

+ Delta X: Specifies the delta mouse motion along the X axis.
» Delta Y: Specifies the delta mouse motion along the Y axis.
» Delta Wheel: Specifies the delta wheel movement

170 Kernel Extensions and Device Support Programming Concepts

Keyboard Service Vector

The keyboard service vector provides a limited set of keyboard-related and sound-related services for
kernel extensions. The following services are available:

* Sound alarm
* Enable and disable secure attention key (SAK)
* Flush input queue

The address of the service vector is obtained with the fp_ioctl subroutine call during a non-critical period.
The kernel extension can later invoke the service using an indirect call as follows:

(*ServiceVecto ServiceNumber]) (dev_t DeviceNumber, caddr_t Arg);

where:

» The service vector is a pointer to the service vector obtained by the KSQUERYSV fp_loctl subroutine
call.

» The ServiceNumber parameter is defined in the inputdd.h file.
» The DeviceNumber parameter specifies the major and minor numbers of the keyboard.

» The Arg parameter points to a ksalarm structure for alarm requests and a uint variable for SAK enable
and disable requests. The Arg parameter is NULL for flush queue requests.

If successful, the function returns a value of 0 is returned. Otherwise, the function returns an error number
defined in the errno.h file. Flush-queue and enable/disable-SAK requests are always processed, but alarm
requests are ignored if the kernel extension’s channel is inactive.

The following example uses the service vector to sound the alarm:

/* pinned data structures */
/* This example assumes that pinning is done elsewhere. */
int (*xksvtbl) ();

struct ksalarm alarm;

dev_t devno;

/* get address of service vector */
/* This should be done in a noncritical section */
if (fp_ioctl1(fp, KSQUERYSV, &ksvtbl, 0)) {

/* error recovery x/

}

/* critical section */
/* sound alarm for 1 second using service vector */
alarm.duration = 128;
alarm.frequency = 100;

if ((xksvtb1[KSVALARM]) (devno, &alarm)) {
/* error recovery x/

}

Special Keyboard Sequences

Special keyboard sequences are provided for the Secure Attention Key (SAK) and the Keep Alive Poll
(KAP).

Secure Attention Key

The user requests a secure shell by keying a secure attention. The keyboard driver interprets the key
sequence CTRL x r as the SAK. An indirect call using the keyboard service vector enables and disables
the detection of this key sequence. If detection of the SAK is enabled, a SAK causes the SAK callback to

Chapter 8. Graphic Input Devices Subsystem 171

be invoked. The SAK callback is invoked even if the input ring is inactive due to a user process issuing an
open to the keyboard special file. The SAK callback runs within the interrupt environment.

Keep Alive Poll

The keyboard device driver supports a special key sequence that kills the process that owns the keyboard.
This sequence must first be defined with a KSKAP ioctl operation. After this sequence is defined, the
keyboard device driver sends a SIGKAP signal to the process that owns the keyboard when the special
sequence is entered on the keyboard. The process that owns the keyboard must acknowledge the KSKAP
signal with a KSKAPACK ioctl within 30 seconds or the keyboard driver will terminate the process with a
SIGKILL signal. The KAP is enabled on a per-channel basis and is unavailable if the channel is owned by
a kernel extension.

172 Kermel Extensions and Device Support Programming Concepts

Chapter 9. Low Function Terminal Subsystem

This chapter discusses the following topics:

+ [Low Function Terminal Interface Functional Description|

+ [Components Affected by the Low Function Terminal Interface]
« [Accented Characters|

The low function terminal (Ift) interface is a pseudo-device driver that interfaces with device drivers for the
system keyboard and display adapters. The [ft interface adheres to all standard requirements for
pseudo-device drivers and has all the entry points and configuration code as required by the device driver
architecture. This section gives a high-level description of the various configuration methods and entry
points provided by the Ift interface.

All the device drivers controlled by the Ift interface are also used by AlXwindows. Consequently, along with
the functions required for the tty sybsystem interface, the Ift interface provides the functions required by
AlXwindows interfaces with display device driver adapters.

Low Function Terminal Interface Functional Description

This section covers the Ift interface functional description:

+ [Terminal Emulation|

« [IOCTLS Needed for AlXwindows Suppor

« [Low Function Terminal to System Keyboard Interface]

+ [Low Function Terminal to Display Device Driver Interface]
« [Low Function Terminal Device Driver Entry Points|

Configuration

The Ift interface uses the common define, undefine, and unconfiguration methods standard for most
devices.

Note: The Ift interface does not support any change method for dynamically changing the Ift configuration.
Instead, use the -P flag with the chdev command. The changes become effective the next time the
Ift interface is configured.

The configuration process for the Ift opens all display device drivers. To define the default display and
console, select the default display and console during the console configuration process. If a graphics
display is chosen as the system console, it automatically becomes the default display. The Ift interface
displays text on the default display.

The configuration process for the Ift interface queries the ODM database for the available fonts and
software keyboard map for the current session.

Terminal Emulation

The Ift interface is a stream-based tty subsystem. The Ift interface provides VT100 (or IBM 3151) terminal
emulation for the standard part of the ANSI 3.64 data stream. All line discipline handling is performed in
the layers above the Ift interface. The Ift interface does not support virtual terminals.

The Ift interface supports multiple fonts to handle the different screen sizes and resolutions necessary in
providing a 25x80 character display on various display adapters.

© Copyright IBM Corp. 1997, 2003 173

Note: Applications requiring hft extensions need to use aixterm.

IOCTLS Needed for AIXwindows Support

AlXwindows and the Ift interface share the system keyboard and display device drivers. To prevent screen
and keyboard inconsistencies, a set of ioctl coordinates usage between AlXwindows and the Ift interface.
On a system with multiple displays, the Ift interface can still use the default display as long as AlXwindows
is using another display.

Note: The Ift interface provides ioctl support to set and change the default display.

Low Function Terminal to System Keyboard Interface

The Ift interface with the system keyboard uses an input ring mechanism. The details of the keyboard
driver ioctls, as well as the format and description of this input ring, are provided in |Chapter 8, “Graphio|
|Input Devices Subsystem”, on page 167|. The keyboard device driver passes raw keystrokes to the Ift
interface. These keystrokes are converted to the appropriate code point using keyboard tables. The use of
keyboard-language-dependent keyboard tables ensures that the Ift interface provides National Language
Support.

Low Function Terminal to Display Device Driver Interface

The Ift uses a device independent interface known as the virtual display driver (vdd) interface. Because the
Ift interface has no virtual terminal or monitor mode support, some of the vdd entry points are not used by
the Ift.

The display drivers might enqueue font request through the font process started during Ift initialization. The
font process pins and unpins the requested fonts for DMA to the display adapter.

Low Function Terminal Device Driver Entry Points
The Ift interface supports the open, close, read, write, ioctl, and configuration entry points.

Components Affected by the Low Function Terminal Interface

The Ift interface impacts the following components:
« [Configuration User Commandsg

« Keyboard Device Driver (Information about this is contained in [Graphic Input Device Driver
[Programming Interface].)

- [Display Device Driver|
« [Rendering Context Manager|

Configuration User Commands

The Ift interface is a pseudo-device driver. Consequently, the system configuration process does not detect
the Ift interface as it does an adapter. The system provides for pseudo-device drivers to be started through
Config_Rules. To start the Ift interface, use the startlft program.

Supported commands include:
* Isfont

* mkfont

* chfont

* Iskbd

» chkbd

* Isdisp (see note)

» chdisp (see note)

174 Kemel Extensions and Device Support Programming Concepts

Note:
1. Isdisp outputs the logical device name instead of the instance number.
2. chdisp uses the ioctl interface to the Ift to set the requested display.

Display Device Driver
Beginning with AIX 4.1, a display device driver is required for each supported display adapter.

The display device drivers provide all the standard interfaces (such as config, initialize, terminate, and so
forth) required in any AlIX 4.1 (or later) device drivers. The only device switch table entries supported are
open, close, config, and ioctl. All other device switch table entries are set to nodev. In addition, the display
device drivers provide a set of ioctls for use by AlIXwindows and diagnostics to perform device specific
functions such as get bus access, bus memory address, DMA operations, and so forth.

Rendering Context Manager
The Rendering Context Manager (RCM) is a loadable module.

Note: Previously, the high functional terminal interface provided AlXwindows with the gsc_handle. This
handle is used in all of the aixgsc system calls. The RCM provides this service for the Ift interface.

To ensure that Ift can recover the display in case AIXwindows should terminate abnormally, AIXwindows
issues the ioctl to RCM after opening the pseudo-device. RCM passes on the ioctl to the Ift. This way, the
close function in RCM is invoked (Because AlXwindows is the only application that has opened RCM), and
RCM notifies the Ift interface to start reusing the display. To support this communication, the RCM provides
the required ioctl support.

The RCM to Ift Interface Initialization
1. RCM performs the open /dev/Ift.

2. Upon receiving a list of displays from X, RCM passes the information to the Ift through an ioctl.
3. RCM resets the adapter.

If AIXwindows Terminates Abnormally
1. RCM receives notification from X about the displays it was using.

2. RCM resets the adapter.
3. RCM passes the information to the Ift by way of an ioctl.

AlXwindows to Ift Initialization
The AlXwindows to Ift initialization includes the following:

1. AlXwindows opens /dev/rcm.

AlXwindows gets the gsc_handle from RCM via an ioctl.

AlXwindows becomes a graphics process aixgsc (MAKE_GP, ...)

AlXwindows, through an ioctl, informs RCM about the displays it wishes to use.

AlXwindows opens all of the input devices it needs and passes the same input ring to each of them.

ok 0N

Upon Normal Termination
1. Xissues a close to all of the input devices it opened.
2. Xinforms RCM, through an ioctl, about the displays it was using.

Diagnostics

Diagnostics and other applications that require access to the graphics adapter use the AlXwindows to Ift
interface.

Chapter 9. Low Function Terminal Subsystem 175

Accented Characters

Here are the valid sets of characters for each of the diacritics that the Low Function Terminal (LFT)

subsystem uses to validate the two-key nonspacing character sequence.

List of Diacritics Supported by the HFT LFT Subsystem
There are seven diacritic characters for which sets of characters are provided:

* |Acute

» |Grave

. ircumflex

[|LIU

c

mlau

Id
vercircle

=
[0}

([}

(@)
®
=

Valid Sets of Characters (Categorized by Diacritics)
The following are acute function code values:

Acute Function Code Value
Acute accent Oxef
Apostrophe (acute) 0x27
e Acute small 0x82
e Acute capital 0x90
a Acute small 0xa0
i Acute small Oxal
o Acute small 0xa2
u Acute small O0xa3
a Acute capital 0xb5
i Acute capital 0xd6
y Acute small Oxec
y Acute capital Oxed
o Acute capital 0xe0
u Acute capital 0xe9

The following are grave function code values:

Grave Function Code Value
Grave accent 0x60
a Grave small 0x85
e Grave small 0x8a
i Grave small 0x8d
o Grave small 0x95
u Grave small 0x97
a Grave capital 0xb7
e Grave capital 0xd4
i Grave capital Oxde
o Grave capital 0xe3
u Grave capital Oxeb

The following are circumflex function code values:

Circumflex Function
A Circumflex accent

Code Value
Ox5e

176 Kernel Extensions and Device Support Programming Concepts

a Circumflex small 0x83

e Circumflex small 0x88
i Circumflex small 0x8c
o Circumflex small 0x93
u Circumflex small 0x96
a Circumflex capital 0xb6
e Circumflex capital 0xd2
i Circumflex capital 0xd7
o Circumflex capital Oxe2
u Circumflex capital Oxea

The following are umlaut function code values:

Umlaut Function Code Value
Umlaut accent 0xf9
u Umlaut small 0x81
a Umlaut small 0x84
e Umlaut small 0x89
i Umlaut small 0x8b
a Umlaut capital 0x8e
O Umlaut capital 0x99
u Umlaut capital 0x9a
e Umlaut capital 0xd3
i Umlaut capital 0xd8

The following are tilde function code values:

Tilde Function Code Value
Tilde accent Ox7e
n Tilde small Oxa4
n Tilde capital Oxab
a Tilde small 0xc6
a Tilde capital Oxc7
o Tilde small Oxe4
o Tilde capital 0xeb5
Overcircle Function Code Value
Overcircle accent 0x7d
a Overcircle small 0x86
a Overcircle capital 0x8f
Cedilla Function Code Value
Cedilla accent 0xf7
¢ Cedilla capital 0x80
¢ Cedilla small 0x87

Related Information

INational Language Support Overview} [Setting National Language Support for Devices, [Locales|in AIX 5L
Version 5.2 System Management Guide: Operating System and Devices

IKeyboard Overview in Keyboard Technical Reference

Understanding the Japanese Input Method (JIM)| [Understanding the Korean Input Method (KIM)|
Understanding the Traditional Chinese Input Method (TIM){ in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

Chapter 9. Low Function Terminal Subsystem 177

Commands References
The [icony] command in AIX 5L Version 5.2 Commands Reference, Volume 3.

178 Kernel Extensions and Device Support Programming Concepts

Chapter 10. Logical Volume Subsystem

A logical volume subsystem provides flexible access and control for complex physical storage systems.

The following topics describe how the logical volume device driver (LVDD) interacts with physical volumes:
+ [“Direct Access Storage Devices (DASDs)’|

* [“Physical Volumes”|

* [‘Understanding the Logical Volume Device Driver’ on page 182|

« [‘Understanding Logical Volumes and Bad Blocks” on page 185|

Direct Access Storage Devices (DASDs)

Direct access storage devices (DASDs) are fixed or removable storage devices. Typically, these devices
are hard disks. A fixed storage device is any storage device defined during system configuration to be an
integral part of the system DASD. The operating system detects an error if a fixed storage device is not
available at some time during normal operation.

A removable storage device is any storage device defined by the person who administers your system
during system configuration to be an optional part of the system DASD. The removable storage device can
be removed from the system at any time during normal operation. As long as the device is logically
unmounted first, the operating system does not detect an error.

The following types of devices are not considered DASD and are not supported by the |logical volume
(LVM):

» Diskettes

* CD-ROM (compact disk read-only memory)
* DVD-ROM (DVD read-only memory)

*+ WORM (write-once read-many)

For a description of the block level, see ['DASD Device Block Level Description” on page 279|

Physical Volumes

A logical volume is a portion of a physical volume viewed by the system as a volume. Logical records are
records defined in terms of the information they contain rather than physical attributes.

A physical volume is a DASD structured for requests at the physical level, that is, the level at which a
processing unit can request device-independent operations on a physical block address basis. A physical
volume is composed of the following:

* A device-dependent reserved area

» A variable number of physical blocks that serve as DASD descriptors

* An integral number of partitions, each containing a fixed number of physical blocks

When performing 1/O at a physical level, no bad-block relocation is supported. Bad blocks are not hidden
at this level as they are at the logical level. Typical operations at the physical level are
read-physical-block and write-physical-block. For more information on bad blocks, see [Understanding]
[Logical Volumes and Bad Blocks” on page 185}

The following are terms used when discussing DASD volumes:

block A contiguous, 512-byte region of a physical volume that corresponds in size to a DASD sector

© Copyright IBM Corp. 1997, 2003 179

partition A set of blocks (with sequential cylinder, head, and sector numbers) contained within a single
physical volume

The number of blocks in a partition, as well as the number of partitions in a given physical volume, are
fixed when the physical volume is installed in a volume group. Every physical volume in a volume group
has exactly the same partition size. There is no restriction on the types of DASDs (for example, Small
Computer Systems Interface (SCSI), Enhanced Small Device Interface (ESDI), or Intelligent Peripheral
Interface (IP1)) that can be placed in a given volume group.

Note: A given physical volume must be assigned to a volume group before that physical volume can be
used by the LVM.

Physical Volume Implementation Limitations

When composing a physical volume from a DASD, the following implementation restrictions apply to DASD
characteristics:

« 1 to 32 physical volumes per volume group

1 to 128 physical volumes in a big volume group

The partition size is restricted to 2**n bytes, for 20 <= n <= 30
* The physical block size is restricted to 512 bytes

Physical Volume Layout

A physical volume consists of a logically contiguous string of physical sectors. Sectors are numbered 0
through the last physical sector number (LPSN) on the physical volume. The total number of physical
sectors on a physical volume is LPSN + 1. The actual physical location and physical order of the sectors
are transparent to the sector numbering scheme.

Note: Sector numbering applies to user-accessible data sectors only. Spare sectors and
Customer-Engineer (CE) sectors are not included. CE sectors are reserved for use by diagnostic
test routines or microcode.

Reserved Sectors on a Physical Volume

A physical volume reserves the first 128 sectors to store various types of DASD configuration and
operation information. The /usr/include/sys/hd_psn.h file describes the information stored on the
reserved sectors. The locations of the items in the reserved area are expressed as physical sector
numbers in this file, and the lengths of those items are in number of sectors.

The 128-sector reserved area of a physical volume includes a boot record, the bad-block directory, the
LVM record, and the mirror write consistency (MWC) record. The boot record consists of one sector
containing information that allows the read-only system (ROS) to boot the system. A description of the boot
record can be found in the /usr/include/sys/bootrecord.h file.

The boot record also contains the pv_id field. This field is a 64-bit number uniquely identifying a physical
volume. This identifier might be assigned by the manufacturer of the physical volume. However, if a
physical volume is part of a volume group, the pv_id field will be assigned by the LVM.

The|bad-block directoryl records the blocks on the physical volume that have been diagnosed as unusable.
The structure of the bad-block directory and its entries can be found in the /usr/include/sys/bbdir.h file.

The LVM record consists of one sector and contains information used by the LVM when the physical
volume is a member of the volume group. The LVM record is described in the /usr/include/lvmrec.h file.

180 Kernel Extensions and Device Support Programming Concepts

The MWC record consists of one sector. It identifies which logical partitions might be inconsistent if the
system is not shut down properly. When the volume group is varied back online for use, this information is
used to make logical partitions consistent again.

Sectors Reserved for the Logical Volume Manager (LVM)

If a physical volume is part of a volume group, the physical volume is used by the LVM and contains two
additional reserved areas. One area contains the volume group descriptor area/volume group status area
and follows the first 128 reserved sectors. The other area is at the end of the physical volume reserved as
a relocation pool for bad blocks that must be software-relocated. Both of these areas are described by the
LVM record. The space between these last two reserved areas is divided into equal-sized partitions.

The volume group descriptor area (VGDA) is divided into the following:

* The volume group header. This header contains general information about the volume group and a time
stamp used to verify the consistency of the VGDA.

» Alist of logical volume entries. The logical volume entries describe the states and policies of logical
volumes. This list defines the maximum number of logical volumes allowed in the volume group. The
maximum is specified when a volume group is created.

» Alist of physical volume entries. The size of the physical volume list is variable because the number of
entries in the partition map can vary for each physical volume. For example, a 200 MB physical volume
with a partition size of 1 MB has 200 partition map entries.

* A name list. This list contains the special file names of each logical volume in the volume group.
* A volume group trailer. This trailer contains an ending time stamp for the volume group descriptor area.

When a volume group is varied online, a majority (also called a quorum) of VGDAs must be present to
perform recovery operations unless you have specified the force flag. (The vary-on operation, performed
by using the varyonvg command, makes a volume group available to the system.) See
[Storage Overview|in AIX 5L Version 5.2 System Management Concepts: Operating System and Devices
for introductory information about the vary-on process and quorums.

Attention: Use of the force flag can result in data inconsistency.

A volume group with only one physical volume must contain two copies of the physical volume group
descriptor area. For any volume group containing more than one physical volume, there are at least three
on-disk copies of the volume group descriptor area. The default placement of these areas on the physical
volume is as follows:

» For the first physical volume installed in a volume group, two copies of the volume group descriptor
area are placed on the physical volume.

» For the second physical volume installed in a volume group, one copy of the volume group descriptor
area is placed on the physical volume.

* For the third physical volume installed in a volume group, one copy of the volume group descriptor area
is placed on the physical volume. The second copy is removed from the first volume.

» For additional physical volumes installed in a volume group, one copy of the volume group descriptor
area is placed on the physical volume.

When a vary-on operation is performed, a majority of copies of the volume group descriptor area must be
able to come online before the vary-on operation is considered successful. A quorum ensures that at least
one copy of the volume group descriptor areas available to perform recovery was also one of the volume
group descriptor areas that were online during the previous vary-off operation. If not, the consistency of
the volume group descriptor area cannot be ensured.

The volume group status area (VGSA) contains the status of all physical volumes in the volume group.
This status is limited to active or missing. The VGSA also contains the state of all allocated physical

Chapter 10. Logical Volume Subsystem 181

partitions (PP) on all physical volumes in the volume group. This state is limited to active or stale. A PP
with a stale state is not used to satisfy a read request and is not updated on a write request.

A PP changes from stale to active after a successful resynchronization of the logical partition (LP) that has
multiple copies, or mirrors, and is no longer consistent with its peers in the LP. This inconsistency can be
caused by a write error or by not having a physical volume available when the LP is written to or updated.

A PP changes from stale to active after a successful resynchronization of the LP. A resynchronization
operation issues resynchronization requests starting at the beginning of the LP and proceeding
sequentially through its end. The LVDD reads from an active partition in the LP and then writes that data
to any stale partition in the LP. When the entire LP has been traversed, the partition state is changed from
stale to active.

Normal 1/O can occur concurrently in an LP that is being resynchronized.

Note: If a write error occurs in a stale partition while a resynchronization is in progress, that partition
remains stale.

If all stale partitions in an LP encounter write errors, the resynchronization operation is ended for this LP
and must be restarted from the beginning.

The vary-on operation uses the information in the VGSA to initialize the LVDD data structures when the
volume group is brought online.

Understanding the Logical Volume Device Driver

The Logical Volume Device Driver (LVDD) is a pseudo-device driver that operates on logical volumes
through the /dev/lvn special file. Like the physical disk device driver, this pseudo-device driver provides
character and block entry points with compatible arguments. Each volume group has an entry in the kernel
device switch table. Each entry contains entry points for the device driver and a pointer to the volume
group data structure. The logical volumes of a volume group are distinguished by their minor numbers.

Attention: Each logical volume has a control block located in the first 512 bytes. Data begins in the
second 512-byte block. Care must be taken when reading and writing directly to the logical volume, such
as when using applications that write to raw logical volumes, because the control block is not protected
from such writes. If the control block is overwritten, commands that use the control block will use default
information instead.

Character 1/0 requests are performed by issuing a read or write request on a /dev/rlvn character special
file for a logical volume. The read or write is processed by the file system SVC handler, which calls the
LVDD ddread or ddwrite entry point. The ddread or ddwrite entry point transforms the character request
into a block request. This is done by building a buffer for the request and calling the LVDD ddstrategy
entry point.

Block 1/0 requests are performed by issuing a read or write on a block special file /dev/lvn for a logical
volume. These requests go through the SVC handler to the oread| or [bwrite| block I/0 kernel services.
These services build buffers for the request and call the LVDD ddstrategy entry point. The LVDD
ddstrategy entry point then translates the logical address to a physical address (handling bad block
relocation and mirroring) and calls the appropriate physical disk device driver.

On completion of the 1/0O, the physical disk device driver calls the kernel service on the device
interrupt level. This service then calls the LVDD 1I/0O completion-handling routine. Once this is completed,
the LVDD calls the iodone service again to notify the requester that the 1/0 is completed.

The LVDD is logically split into top and bottom halves. The top half contains the ddopen, ddclose,
ddread, ddwrite, ddioctl, and ddconfig entry points. The bottom half contains the ddstrategy entry point,

182 Kernel Extensions and Device Support Programming Concepts

which contains block read and write code. This is done to isolate the code that must run fully pinned and
has no access to user process context. The bottom half of the device driver runs on interrupt levels and is
not permitted to page fault. The top half runs in the context of a process address space and can page
fault.

Data Structures

The interface to the ddstrategy entry point is one or more logical buf structures in a list. The logical buf
structure is defined in the /usr/include/sys/buf.h file and contains all needed information about an I/O
request, including a pointer to the data buffer. The ddstrategy entry point associates one or more (if
mirrored) physical buf structures (or pbufs) with each logical buf structure and passes them to the
appropriate physical device driver.

The pbuf structure is a standard buf structure with some additional fields. The LVDD uses these fields to
track the status of the physical requests that correspond to each logical I/0 request. A pool of pinned pbuf
structures is allocated and managed by the LVDD.

There is one device switch entry for each volume group defined on the system. Each volume group entry
contains a pointer to the volume group data structure describing it.

Top Half of LVDD

The top half of the LVDD contains the code that runs in the context of a process address space and can
page fault. It contains the following entry points:

ddopen Called by the file system when a logical volume is mounted, to open the logical volume specified.
ddclose Called by the file system when a logical volume is unmounted, to close the logical volume specified.
ddconfig Initializes data structures for the LVDD.

ddread Called by the read subroutine to translate character 1/0 requests to block I/O requests. This entry

point verifies that the request is on a 512-byte boundary and is a multiple of 512 bytes in length.

Most of the time a request will be sent down as a single request to the LVDD ddstrategy entry point
which handles logical block I/O requests. However, the ddread routine might divide very large
requests into multiple requests that are passed to the LVDD ddstrategy entry point.

If the ext parameter is set (called by thesubroutine), the ddread entry point passes this
parameter to the LVDD ddstrategy routine in the b_options field of the buffer header.

ddwrite Called by the subroutine to translate character I/O requests to block 1/O requests. The LVDD
ddwrite routine performs the same processing for a write request as the LVDD ddread routine does
for read requests.

ddioctl Supports the following operations:

CACLNUP
Causes the mirror write consistency (MWC) cache to be written to all physical volumes
(PVs) in a volume group.

IOCINFO, XLATE
Return LVM configuration information and PP status information.

LV_INFO
Provides information about a logical volume.

PBUFCNT
Increases the number of physical buffer headers (pbufs) in the LVM pbuf pool.

Bottom Half of the LVDD

The bottom half of the device driver supports the ddstrategy entry point. This entry point processes all
logical block requests and performs the following functions:

» Validates 1/0O requests.

Chapter 10. Logical Volume Subsystem 183

» Checks requests for conflicts (such as overlapping block ranges) with requests currently in progress.
» Translates logical addresses to physical addresses.
* Handles mirroring and bad-block relocation.

The bottom half of the LVDD runs on interrupt levels and, as a result, is not permitted to page fault. The
bottom half of the LVDD is divided into the following three layers:

 |Strategy Iayer|

+ |Scheduler layer

 |Physical layer

Each logical I/0 request passes down through the bottom three layers before reaching the physical disk
device driver. Once the I/O is complete, the request returns back up through the layers to handle the 1/0
completion processing at each layer. Finally, control returns to the original requestor.

Strategy Layer

The strategy layer deals only with logical requests. The ddstrategy entry point is called with one or more
logical [buf| structures. A list of buf structures for requests that are not blocked are passed to the second
layer, the scheduler.

Scheduler Layer

The scheduler layer schedules physical requests for logical operations and handles mirroring and the
MWC cache. For each logical request the scheduler layer schedules one or more physical requests. These
requests involve translating logical addresses to physical addresses, handling mirroring, and calling the
LVDD physical layer with a list of physical requests.

When a physical I/O operation is complete for one phase or mirror of a logical request, the scheduler
initiates the next phase (if there is one). If no more 1/O operations are required for the request, the
scheduler calls the strategy termination routine. This routine notifies the originator that the request has
been completed.

The scheduler also handles the MWC cache for the volume group. If a logical volume is using mirror write

consistency, then requests for this logical volume are held within the scheduling layer until the MWC cache
blocks can be updated on the target physical volumes. When the MWC cache blocks have been updated,

the request proceeds with the physical data write operations.

When MWC is being used, system performance can be adversely affected. This is caused by the
overhead of logging or journalling that a write request is active in one or more logical track groups (LTGs)
(128K, 256K, 512K or 1024K). This overhead is for mirrored writes only. It is necessary to guarantee data
consistency between mirrors particularly if the system crashes before the write to all mirrors has been
completed.

Mirror write consistency can be turned off for an entire logical volume. It can also be inhibited on a request
basis by turning on the NO_MWC flag as defined in the /usr/include/sys/Ivdd.h file.

Physical Layer

The physical layer of the LVDD handles startup and termination of the physical request. The physical layer
calls a physical disk device driver's ddstrategy entry point with a list of buf structures linked together. In
turn, the physical layer is called by the iodone kernel service when each physical request is completed.

This layer also performs bad-block relocation and detection/correction of bad blocks, when necessary.
These details are hidden from the other two layers.

Interface to Physical Disk Device Drivers
Physical disk device drivers adhere to the following criteria if they are to be accessed by the LVDD:
» Disk block size must be 512 bytes.

184 Kerel Extensions and Device Support Programming Concepts

» The physical disk device driver needs to accept a list of requests defined by buf structures, which are
linked together by the av_forw field in each buf structure.

» For unrecoverable media errors, physical disk device drivers need to set the following:

— The B_ERROR flag must be set to on (defined in the /usr/include/sys/buf.h file) in the b_flags
field.

— The b_error field must be set to E_MEDIA (defined in the /usr/include/sys/errno.h file).

— The b_resid field must be set to the number of bytes in the request that were not read or written
successfully. The b_resid field is used to determine the block in error.

Note: For write requests, the LVDD attempts to hardware-relocate the bad block. If this is
unsuccessful, then the block is software-relocated. For read requests, the information is
recorded and the block is relocated on the next write request to that block.

» For a successful request that generated an excessive number of retries, the device driver can return
good data. To indicate this situation it must set the following:

— The b_error field is set to ESOFT; this is defined in the /usr/include/sys/errno.h file.
— The b_flags field has the B_ERROR flag set to on.

— The b_resid field is set to a count indicating the first block in the request that had excessive retries.
This block is then relocated.

» The physical disk device driver needs to accept a request of one block with HWRELOC (defined in the
lusr/include/sys/lvdd.h file) set to on in the b_options field. This indicates that the device driver is to
perform a hardware relocation on this request. If the device driver does not support hardware relocation
the following should be set:

— The b_error field is set to EIO; this is defined in the /usr/include/sys/errno.h file.
— The b_flags field has the B_ERROR flag set on.
— The b_resid field is set to a count indicating the first block in the request that has excessive retries.

* The physical disk device driver should support the system dump interface as defined.

» The physical disk device driver must support write verification on an 1/O request. Requests for write
verification are made by setting the b_options field to WRITEV. This value is defined in the
lusr/include/sys/lvdd.h file.

Understanding Logical Volumes and Bad Blocks

The [physical layer of the logical volume device driver (LVDD) initiates all bad-block processing and
isolates all of the decision making from the physical disk device driver. This happens so the physical disk
device driver does not need to handle mirroring, which is the duplication of data transparent to the user.

Relocating Bad Blocks

The physical layer of the LVDD checks each physical request to see if there are any known
software-relocated bad blocks in the request. The LVDD determines if a request contains known
software-relocated bad blocks by hashing the physical address. Then a hash chain of the LVDD defects
directory is searched to see if any bad-block entries are in the address range of the request.

If bad blocks exist in a physical request, the request is split into pieces. The first piece contains any blocks
up to the relocated block. The second piece contains the relocated block (the relocated address is
specified in the bad-block entry) of the defects directory. The third piece contains any blocks after the
relocated block to the end of the request or to the next relocated block. These separate pieces are
processed sequentially until the entire request has been satisfied.

Once the I/O for the first of the separate pieces has completed, the kernel service calls the LVDD

physical layer’s termination routine (specified in the b_done field of the buf structure). The termination
routine initiates I/O for the second piece of the original request (containing the relocated block), and then

Chapter 10. Logical Volume Subsystem 185

for the third piece. When the entire physical operation is completed, the appropriate scheduler’s policy
routine (in the second layer of the LVDD) is called to start the next phase of the logical operation.

Detecting and Correcting Bad Blocks

If a logical volume is mirrored, a newly detected bad block is fixed by relocating that block. A good mirror
is read and then the block is relocated using data from the good mirror. With mirroring, the user does not
need to know when bad blocks are found. However, the physical disk device driver does log permanent
I/O errors so the user can determine the rate of media surface errors.

When a bad block is detected during I/O, the physical disk device driver sets the error fields in the
structure to indicate that there was a media surface error. The physical layer of the LVDD then initiates
any bad-block processing that must be done.

If the operation was a nonmirrored read, the block is not relocated because the data in the relocated block
is not initialized until a write is performed to the block. To support this delayed relocation, an entry for the
bad block is put into the LVDD defects directory and into the bad-block directory on disk. These entries
contain no relocated block address and the status for the block is set to indicate that relocation is desired.

On each I/O request, the physical layer checks whether there are any bad blocks in the request. If the
request is a write and contains a block that is in a relocation-desired state, the request is sent to the
physical disk device driver with safe hardware relocation requested. If the request is a read, a read of the
known defective block is attempted.

If the operation was a read operation in a mirrored LP, a request to read one of the other mirrors is
initiated. If the second read is successful, then the read is turned into a write request and the physical disk
device driver is called with safe hardware relocation specified to fix the bad mirror.

If the hardware relocation fails or the device does not support safe hardware relocation, the physical layer
of the LVDD attempts software relocation. At the end of each volume is a reserved area used by the LVDD
as a pool of relocation blocks. When a bad block is detected and the disk device driver is unable to
relocate the block, the LVDD picks the next unused block in the relocation pool and writes to this new
location. A new entry is added to the LVDD defects directory in memory (and to the bad-block directory on
disk) that maps the bad-block address to the new relocation block address. Any subsequent I/O requests
to the bad-block address are routed to the relocation address.

Attention: Formatting a fixed disk deletes any data on the disk. Format a fixed disk only when
absolutely necessary and preferably after backing up all data on the dis

If you need to format a fixed disk completely (including reinitializing any bad blocks), use the formatting
function supplied by the command. (The diag command typically, but not necessarily, writes over all
data on a fixed disk. Refer to the documentation that comes with the fixed disk to determine the effect of
formatting with the diag command.)

Related Information

eria ubsystem Device Driver|in ersion 5.2 Technical Reference: Kernel and Subsystems
Serial DASD Sub Device Dri in AIX 5L Version 5.2 Technical Ref K | and Sub.
Volume 2.

Subroutine References

The subroutine, subroutine in AIX 5L Version 5.2 Technical Reference: Base Operating
System and Extensions Volume 2.

Files Reference
The special file in AIX 5L Version 5.2 Files Reference.

186 Kernel Extensions and Device Support Programming Concepts

Technical References
The [buf| structure in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

Thekernel service, kernel service, kernel service in AIX 5L Version 5.2 Technical

Reference: Kernel and Subsystems Volume 1.

Chapter 10. Logical Volume Subsystem 187

188 Kernel Extensions and Device Support Programming Concepts

Chapter 11. Printer Addition Management Subsystem

If you are configuring a printer for your system, there are basically two types of printers: printers already
supported by the operating system and new printer types. |Printer Supportin AIX 5L Version 5.2 Guide to

Printers and Printing lists supported printers.

Printer Types Currently Supported

To configure a supported type of printer, you need only to run the command to create a
customized printer file for your printer. This customized printer file, which is in the
Ivar/spool/lpd/pio/@local/custom directory, describes the specific parameters for your printer. For more
information see |Configuring a Printer without Adding a Queud| in AIX 5L Version 5.2 Guide to Printers and
Printing.

Printer Types Currently Unsupported

To configure a currently unsupported type of printer, you must develop and add a predefined printer
definition for your printer. This new option is then entered in the list of available choices when the user
selects a printer to configure for the system. The actual data used by the printer subsystem comes from
the Customized printer definition created by the mkvirprt command.

|“Adding a New Printer Type to Your System”|provides general instructions for adding an undefined printer.
To add an undefined printer, you modify an existing printer definition. Undefined printers fall into two
categories:

 Printers that closely emulate a supported printer. You can use SMIT or the virtual printer commands to
make the changes you need.

* Printers that do not emulate a supported printer or that emulate several data streams. It is simpler to
make the necessary changes for these printers by editing the printer colon file. See|Adding a Printer]
[Using the Printer Colon File|in AIX 5L Version 5.2 Guide to Printers and Printing.

[‘Adding an Unsupported Device to the System” on page 90| offers an overview of the major steps required
to add an unsupported device of any type to your system.

Adding a New Printer Type to Your System

To add an unsupported printer to your system, you must add a new Printer definition to the printer
directories. For more complicated scenarios, you might also need to add a new printer-specific formatter to
the printer backend.

[Example of Print Formatter|in AIX 5L Version 5.2 Guide to Printers and Printing shows how the print
formatter interacts with the printer formatter subroutines.

Additional Steps for Adding a New Printer Type

However, if you want the new Printer definition to carry the name of the new printer, you must develop a
new Predefined definition to carry the new printer information besides adding a new Printer definition. Use

the command to do this.

Steps for adding a new printer-specific formatter to the printer backend are discussed in|Adding a Printer|
[Formatter to the Printer Backend|. [Example of Print Formatter|in AIX 5L Version 5.2 Guide to Printers and
Printing shows how print formatters can interact with the printer formatter subroutines.

Note: These instructions apply to the addition of a new printer definition to the system, not to the addition
of a physical printer device itself. For information on adding a new printer device, refer to device

© Copyright IBM Corp. 1997, 2003 189

configuration and management. If your new printer requires an interface other than the parallel or
serial interface provided by the operating system, you must also provide a new device driver.

If the printer being added does not emulate a supported printer or if it emulates several data streams, you
need to make more changes to the Printer definition. It is simpler to make the necessary changes for
these printers by editing the printer colon file. See|Adding a Printer Using the Printer Colon Fileg|in AIX 5L
Version 5.2 Guide to Printers and Printing.

Modifying Printer Attributes

Edit the customized file (/var/spool/lpd/pio/custom /var/spool/lpd/pio/@local/custom
QueueName:QueueDeviceName), adding or changing the printer attributes to match the new printer.

For example, assume that you created a new file based on the existing 4201-3 printer. The customized file
for the 4201-3 printer contains the following template that the printer formatter uses to initialize the printer:

%1[ez,em,eA,cv,eC,e0,cp,cc, . . .

The formatter fills in the string as directed by this template and sends the resulting sequence of
commands to the 4201-3 printer. Specifically, this generates a string of escape sequences that initialize the
printer and set such parameters as vertical and horizontal spacing and page length. You would construct a
similar command string to properly initialize the new printer and put it into 4201-emulation mode. Although
many of the escape sequences might be the same, at least one will be different: the escape sequence that
is the command to put the printer into the specific printer-emulation mode. Assume that you added an ep
attribute that specifies the string to initialize the printer to 4201-3 emulation mode, as follows:

\033\012\013

The Printer Initialization field will then be:

%I[ep,ez,em,eA,cv,eC,e0,cp,cc, . . .

You must create a virtual printer for each printer-emulation mode you want to use. See[Real and Virtual
in AIX 5L Version 5.2 Guide to Printers and Printing.

Adding a Printer Definition

To add a new printer to the system, you must first create a description of the printer by adding a new
printer definition to the printer definition directories.

Typically, to add a new printer definition to the database, you first modify an existing printer definition and
then create a customized printer definition in the Customized Printer Directory.

Once you have added the new customized printer definition to the directory, the [mkvirpr] command uses
it to present the new printer as a choice for printer addition and selection. Because the new printer
definition is a customized printer definition, it appears in the list of printers under the name of the original
printer from which it was customized.

A totally new printer must be added as a predefined printer definition in the /usr/lib/Ipd/pio/predef
directory. If the user chooses to work with printers once this new predefined printer definition is added to
the Predefined Printer Directory, the mkvirprt command can then list all the printers in that directory. The
added printer appears on the list of printers given to the user as if it had been supported all along. Specific
information about this printer can then be extended, added, modified, or deleted, as necessary.

Printer Support in AIX 5L Version 5.2 Guide to Printers and Printing lists the supported printer types and
names of representative printers.

190 Kernel Extensions and Device Support Programming Concepts

Adding a Printer Formatter to the Printer Backend

If your new printer’'s data stream differs significantly from one of the numerous printer data streams
currently handled by the operating system, you must define a new backend formatter. Adding a new
formatter does not require the addition of a new backend. Instead, all you typically need are modifications
to the formatter commands associated with that printer under the supervision of the existing printer
backend. If a new backend is required, see |Printer Backend Overview for Programming|in AIX 5L Version
5.2 Guide to Printers and Printing.

Understanding Embedded References in Printer Attribute Strings

The attribute string retrieved by the piocmdout) piogetstr], and |piogetvals|subroutines can contain
embedded references to other attribute strings or integers. The attribute string can also contain embedded
logic that dynamically determines the content of the constructed string. This allows the constructed string
to reflect the state of the formatter environment when one of these subroutines is called.

Embedded references and logic are defined with escape sequences that are placed at appropriate
locations in the attribute string. The first character of each escape sequence is always the % character.
This character indicates the beginning of an escape sequence. The second character (and sometimes
subsequent characters) define the operation to be performed. The remainder of the characters (if any) in
the escape sequence are operands to be used in performing the specified operation.

The escape sequences that can be specified in an attribute string are based on the terminfo
parameterized string escape sequences for terminals. These escape sequences have been modified and
extended for printers.

The attribute names that can be referenced by attribute strings are:

» The names of all attribute variables (which can be integer or string variables) defined to the piogetvals
subroutine. When references are made to these variables, the piogetvals-defined versions are the
values used.

* All other attributes names in the database. These attributes are considered string constants.

Any attribute value (integer variable, string variable, or string constant) can be referenced by any attribute
string. Consequently, it is important that the formatter ensures that the values for all the integer variables
and string variables defined to the piogetvals subroutine are kept current.

The formatter must not assume that the particular attribute string whose name it specifies to the piogetstr
or piocmdout subroutine does not reference certain variables. The attribute string is retrieved from the
database that is external to the formatter. The values in the database represented by the string can be
changed to reference additional variables without the formatter's knowledge.

Related Information
AIX 5L Version 5.2 Guide to Printers and Printing

Subroutine References

The subroutine, |piogetstr| subroutine, |piogetvals| subroutine in AIX 5L Version 5.2 Technical

Reference: Base Operating System and Extensions Volume 1.

Commands References
The command in AIX 5L Version 5.2 Commands Reference, Volume 3.

Thecommand in AIX 5L Version 5.2 Commands Reference, Volume 4.

Chapter 11. Printer Addition Management Subsystem 191

192 Kernel Extensions and Device Support Programming Concepts

Chapter 12. Small Computer System Interface Subsystem

This overview describes the interface between a small computer system interface (SCSI) device driver and
a SCSI adapter device driver. It is directed toward those wishing to design and write a SCSI device driver
that interfaces with an existing SCSI adapter device driver. It is also meant for those wishing to design and
write a SCSI adapter device driver that interfaces with existing SCSI device drivers.

SCSI Subsystem Overview

The main topics covered in this overview are:

« [Responsibilities of the SCSI Adapter Device Driver|
+ [Responsibilities of the SCSI Device Driver]

« [Initiator-Mode Support]

+ [Target-Mode Support|

This section frequently refers to both a SCS/ device driver and a SCSI adapter device driver. These two
distinct device drivers work together in a layered approach to support attachment of a range of SCSI
devices. The SCSI adapter device driver is the lower device driver of the pair, and the SCSI device driver
is the upper device driver.

Responsibilities of the SCSI Adapter Device Driver

The SCSI adapter device driver (the lower layer) is the software interface to the system hardware. This
hardware includes the SCSI bus hardware plus any other system I/O hardware required to run an I/O
request. The SCSI adapter device driver hides the details of the I/O hardware from the SCSI device driver.
The design of the software interface allows a user with limited knowledge of the system hardware to write
the upper device driver.

The SCSI adapter device driver manages the SCSI bus but not the SCSI devices. It can send and receive
SCSI commands, but it cannot interpret the contents of the commands. The lower driver also provides
recovery and logging for errors related to the SCSI bus and system 1/O hardware. Management of the
device specifics is left to the SCSI device driver. The interface of the two drivers allows the upper driver to
communicate with different SCSI bus adapters without requiring special code paths for each adapter.

Responsibilities of the SCSI Device Driver

The SCSI device driver (the upper layer) provides the rest of the operating system with the software
interface to a given SCSI device or device class. The upper layer recognizes which SCSI commands are
required to control a particular SCSI device or device class. The SCSI device driver builds I/O requests
containing device SCSI commands and sends them to the SCSI adapter device driver in the sequence
needed to operate the device successfully. The SCSI device driver cannot manage adapter resources or
give the SCSI command to the adapter. Specifics about the adapter and system hardware are left to the
lower layer.

The SCSI device driver also provides recovery and logging for errors related to the SCSI device it controls.

The operating system provides several kernel services allowing the SCSI device driver to communicate
with SCSI adapter device driver entry points without having the actual name or address of those entry
points. The description contained in [‘Logical File System Kernel Services” on page 55 can provide more
information.

© Copyright IBM Corp. 1997, 2003 193

Communication between SCSI Devices

When two SCSI devices communicate, one assumes the initiator-mode role, and the other assumes the
target-mode role. The initiator-mode device generates the SCSI command, which requests an operation,
and the target-mode device receives the SCSI command and acts. It is possible for a SCSI device to
perform both roles simultaneously.

When writing a new SCSI adapter device driver, the writer must know which mode or modes must be
supported to meet the requirements of the SCSI adapter and any interfaced SCSI device drivers. When a
SCSI adapter device driver is added so that a new SCSI adapter works with all existing SCSI device
drivers, both initiator-mode and target-mode must be supported in the SCSI adapter device driver.

Initiator-Mode Support

The interface between the SCSI device driver and the SCSI adapter device driver for initiator-mode
support (that is, the attached device acts as a target) is accessed through calls to the SCSI adapter device
driver open, close, ioctl, and strategy routines. I/O requests are queued to the SCSI adapter device
driver through calls to its strategy entry point.

Communication between the SCSI device driver and the SCSI adapter device driver for a particular
initiator 1/0 request is made through the [sc_buf structure] which is passed to and from the strategy routine
in the same way a standard driver uses a struct buf structure.

Target-Mode Support

The interface between the SCSI device driver and the SCSI adapter device driver for target-mode support
(that is, the attached device acts as an initiator) is accessed through calls to the SCSI adapter device
driver open, close, and ioctl subroutines. Buffers that contain data received from an attached initiator
device are passed from the SCSI adapter device driver to the SCSI device driver, and back again, in
tm_buf structures.

Communication between the SCSI adapter device driver and the SCSI device driver for a particular data
transfer is made by passing the tm_buf structures by pointer directly to routines whose entry points have
been previously registered. This registration occurs as part of the sequence of commands the SCSI device
driver executes using calls to the SCSI adapter device driver when the device driver opens a target-mode
device instance.

Understanding SCSI Asynchronous Event Handling

Note: This operation is not supported by all SCSI I/O controllers.

A SCSI device driver can register a particular device instance for receiving asynchronous event status by
calling the SCIOEVENT ioctl operation for the SCSI-adapter device driver. When an event covered by the
SCIOEVENT ioctl operation is detected by the SCSI adapter device driver, it builds an sc_event_info
structure and passes a pointer to the structure and to the asynchronous event-handler routine entry point,
which was previously registered. The fields in the structure are filled in by the SCSI adapter device driver
as follows:

id For initiator mode, this is set to the SCSI ID of the attached SCSI target device. For
target mode, this is set to the SCSI ID of the attached SCSI initiator device.

lun For initiator mode, this is set to the SCSI LUN of the attached SCSI target device. For
target mode, this is set to 0).

mode Identifies whether the initiator or target mode device is being reported. The following
values are possible:

SC_IM_MODE
An initiator mode device is being reported.

SC_TM_MODE
A target mode device is being reported.

194 Kernel Extensions and Device Support Programming Concepts

events This field is set to indicate what event or events are being reported. The following
values are possible, as defined in the /usr/include/sys/scsi.h file:

SC_FATAL_HDW_ERR
A fatal adapter hardware error occurred.

SC_ADAP_CMD_FAILED
An unrecoverable adapter command failure occurred.

SC_SCSI_RESET_EVENT
A SCSI bus reset was detected.

SC_BUFS_EXHAUSTED
In target-mode, a maximum buffer usage event has occurred.

adap_devno This field is set to indicate the device major and minor numbers of the adapter on
which the device is located.
async_correlator This field is set to the value passed to the SCSI adapter device driver in the

sc_event_struct structure. The SCSI device driver may optionally use this field to
provide an efficient means of associating event status with the device instance it goes
with. Alternatively, the SCSI device driver uses the combination of the id, Tun, mode,
and adap_devno fields to identify the device instance.

Note: Reserved fields should be set to 0 by the SCSI adapter device driver.

The information reported in the sc_event_info.events field does not queue to the SCSI device driver, but
is instead reported as one or more flags as they occur. Because the data does not queue, the SCSI
adapter device driver writer can use a single sc_event_info structure and pass it one at a time, by pointer,
to each asynchronous event handler routine for the appropriate device instance. After determining for
which device the events are being reported, the SCSI device driver must copy the sc_event_info.events
field into local space and must not modify the contents of the rest of the sc_event_info structure.

Because the event status is optional, the SCSI device driver writer determines what action is necessary to
take upon receiving event status. The writer may decide to save the status and report it back to the calling
application, or the SCSI device driver or application level program can take error recovery actions.

Defined Events and Recovery Actions

The adapter fatal hardware failure event is intended to indicate that no further commands to or from this
SCSI device are likely to succeed, because the adapter it is attached to has failed. It is recommended that
the application end the session with the device.

The unrecoverable adapter command failure event is not necessarily a fatal condition, but it can indicate
that the adapter is not functioning properly. Possible actions by the application program include:

» Ending of the session with the device in the near future
» Ending of the session after multiple (two or more) such events
» Attempting to continue the session indefinitely

The SCSI Bus Reset detection event is mainly intended as information only, but may be used by the
application to perform further actions, if necessary.

The maximum buffer usage detected event applies only to a given target-mode device; it will not be
reported for an initiator-mode device. This event indicates to the application that this particular target-mode
device instance has filled its maximum allotted buffer space. The application should perform read system
calls fast enough to prevent this condition. If this event occurs, data is not lost, but it is delayed to prevent
further buffer usage. Data reception will be restored when the application empties enough buffers to
continue reasonable operations. The num_bufs attribute may need to be increased to help minimize this

Chapter 12. Small Computer System Interface Subsystem 195

problem. Also, it is possible that regardless of the number of buffers, the application simply is not
processing received data fast enough. This may require some fine tuning of the application’s data
processing routines.

Asynchronous Event-Handling Routine

The SCSI-device driver asynchronous event-handling routine is typically called directly from the hardware
interrupt-handling routine for the SCSI adapter device driver. The SCSI device driver writer must be aware
of how this affects the design of the SCSI device driver.

Because the event handling routine is running on the hardware interrupt level, the SCSI device driver must
be careful to limit operations in that routine. Processing should be kept to a minimum. In particular, if any
error recovery actions are performed, it is recommended that the event-handling routine set state or status
flags only and allow a process level routine to perform the actual operations.

The SCSI device driver must be careful to disable interrupts at the correct level in places where the SCSI
device driver’s lower execution priority routines manipulate variables that are also modified by the
event-handling routine. To allow the SCSI device driver to disable at the correct level, the SCSI adapter
device driver writer must provide a configuration database attribute that defines the interrupt class, or
priority, it runs on. This attribute must be named intr_priority so that the SCSI device driver configuration
method knows which attribute of the parent adapter to query. The SCSI device driver configuration method
should then pass this interrupt priority value to the SCSI device driver along with other configuration data
for the device instance.

The SCSI device driver writer must follow any other general system rules for writing a routine that must
execute in an interrupt environment. For example, the routine must not attempt to sleep or wait on 1/0
operations. It can perform wakeups to allow the process level to handle those operations.

Because the SCSI device driver copies the information from the sc_event_info.events field on each call
to its asynchronous event-handling routine, there is no resource to free or any information which must be
passed back later to the SCSI adapter device driver.

SCSI Error Recovery

The SCSI error-recovery process handles different issues depending on whether the SCSI device is in
initiator mode or target mode. If the device is in initiator mode, the error-recovery process varies
depending on whether or not the device is supporting command queuing.

SCSI Initiator-Mode Recovery When Not Command Tag Queuing

If an error such as a check condition or hardware failure occurs, transactions queued within the SCSI
adapter device driver are terminated abnormally with iodone calls. The transaction active during the error
is returned with the sc_buf.bufstruct.b_error field set to EIO. Other transactions in the queue are
returned with the sc_buf.bufstruct.b_error field set to ENXIO. The SCSI device driver should process or
recover the condition, rerunning any mode selects or device reservations to recover from this condition
properly. After this recovery, it should reschedule the transaction that had the error. In many cases, the
SCSI device driver only needs to retry the unsuccessful operation.

The SCSI adapter device driver should never retry a SCSI command on error after the command has
successfully been given to the adapter. The consequences for retrying a SCSI command at this point
range from minimal to catastrophic, depending upon the type of device. Commands for certain devices
cannot be retried immediately after a failure (for example, tapes and other sequential access devices). If
such an error occurs, the failed command returns an appropriate error status with an iodone call to the
SCSI device driver for error recovery. Only the SCSI device driver that originally issued the command
knows if the command can be retried on the device. The SCSI adapter device driver must only retry

196 Kernel Extensions and Device Support Programming Concepts

commands that were never successfully transferred to the adapter. In this case, if retries are successful,
the sc_buf status should not reflect an error. However, the SCSI adapter device driver should perform
error logging on the retried condition.

The first transaction passed to the SCSI adapter device driver during error recovery must include a special
flag. This SC_RESUME flag in the sc_buf.flags field must be set to inform the SCSI adapter device driver
that the SCSI device driver has recognized the fatal error and is beginning recovery operations. Any
transactions passed to the SCSI adapter device driver, after the fatal error occurs and before the
SC_RESUME transaction is issued, should be flushed; that is, returned with an error type of ENXIO
through an iodone call.

Note: If a SCSI device driver continues to pass transactions to the SCSI adapter device driver after the
SCSI adapter device driver has flushed the queue, these transactions are also flushed with an error
return of ENXIO through the iodone service. This gives the SCSI device driver a positive indication
of all transactions flushed.

If the SCSI device driver is executing a operation, the error-recovery information mentioned
previously is still valid, but the caller must restore the contents of the sc_buf.resvdwl field and the uio
struct that the field pointed to before attempting the retry. The retry must occur from the SCSI device
driver’s process level; it cannot be performed from the caller's iodone subroutine. Also, additional return
codes of EFAULT and ENOMEM are possible in the sc_buf.bufstruct.b_error field for a gathered write
operation.

SCSI Initiator-Mode Recovery During Command Tag Queuing

If the SCSI device driver is queuing multiple transactions to the device and either a check condition error
or a command terminated error occurs, the SCSI adapter driver does not clear all transactions in its
queues for the device. It returns the failed transaction to the SCSI device driver with an indication that the
queue for this device is not cleared by setting the SC_DID_NOT_CLEAR_Q flag in the
sc_buf.adap_q_status field. The SCSI adapter driver halts the queue for this device awaiting error
recovery notification from the SCSI device driver. The SCSI device driver then has three options to recover
from this error:

* Send one error recovery command (request sense) to the device.
» Clear the SCSI adapter driver's queue for this device.
* Resume the SCSI adapter driver's queue for this device.

When the SCSI adapter driver's queue is halted, the SCSI device drive can get sense data from a device
by setting the SC_RESUME flag in the sc_buf.flags field and the SC_NO_Q flag in sc_buf.q_tag msg
field of the request-sense sc_buf. This action notifies the SCSI adapter driver that this is an error-recovery
transaction and should be sent to the device while the remainder of the queue for the device remains
halted. When the request sense completes, the SCSI device driver needs to either clear or resume the
SCSI adapter driver's queue for this device.

The SCSI device driver can notify the SCSI adapter driver to clear its halted queue by sending a
transaction with the SC_Q_CLR flag in the sc_buf.flags field. This transaction must not contain a SCSI
command because it is cleared from the SCSI adapter driver's queue without being sent to the adapter.
However, this transaction must have the SCSI ID field (sc_buf.scsi_command.scsi_id) and the LUN fields
(sc_buf.scsi_command.scsi_cmd.lun and sc_buf.1un) filled in with the device’s SCSI ID and logical unit
number (LUN). If addressing LUNs 8 - 31, the sc_buf.1un field should be set to the logical unit number
and the sc_buf.scsi_command.scsi_cmd.lun field should be zeroed out. See the descriptions of these
fields for further explanation. Upon receiving an SC_Q_CLR transaction, the SCSI adapter driver flushes
all transactions for this device and sets their sc_buf.bufstruct.b_error fields to ENXIO. The SCSI device
driver must wait until the sc_buf with the SC_Q_CLR flag set is returned before it resumes issuing
transactions. The first transaction sent by the SCSI device driver after it receives the returned SC_Q_CLR
transaction must have the SC_RESUME flag set in the sc_buf.flags fields.

Chapter 12. Small Computer System Interface Subsystem 197

If the SCSI device driver wants the SCSI adapter driver to resume its halted queue, it must send a
transaction with the SC_Q_RESUME flag set in the sc_buf.flags field. This transaction can contain an
actual SCSI command, but it is not required. However, this transaction must have the
sc_buf.scsi_command.scsi_id, sc_buf.scsi_command.scsi_cmd.Tun,and the sc_buf.Tun fields filled in with
the device’s SCSI ID and logical unit number. See the description of these fields for further details. If this
is the first transaction issued by the SCSI device driver after receiving the error (indicating that the adapter
driver's queue is halted), then the SC_RESUME flag must be set as well as the SC_Q_RESUME flag.

Analyzing Returned Status

The following order of precedence should be followed by SCSI device drivers when analyzing the returned
status:

1.

If the sc_buf.bufstruct.b_flags field has the B_ERROR flag set, then an error has occurred and the
sc_buf.bufstruct.b_error field contains a valid errno value.

If the b_error field contains the ENXIO value, either the command needs to be restarted or it was
canceled at the request of the SCSI device driver.

If the b_error field contains the EIO value, then either one or no flag is set in the
sc_buf.status_validity field. If a flag is set, an error in either the scsi_status or
general_card_status field is the cause.

If the status_validity field is O, then the sc_buf.bufstruct.b _resid field should be examined to see if
the SCSI command issued was in error. The b_resid field can have a value without an error having
occurred. To decide whether an error has occurred, the SCSI device driver must evaluate this field with
regard to the SCSI command being sent and the SCSI device being driven.

If the SCSI device driver is queuing multiple transactions to the device and if either
SC_CHECK_CONDITION or SC_COMMAND_TERMINATED is set in scsi_status , then the value of
sc_buf.adap_q_status must be analyzed to determine if the adapter driver has cleared its queue for
this device. If the SCSI adapter driver has not cleared its queue after an error, then it holds that queue
in a halted state.

If sc_buf.adap_q_status is set to 0, the SCSI adapter driver has cleared its queue for this device and
any transactions outstanding are flushed back to the SCSI device driver with an error of ENXIO.

If the SC_DID_NOT_CLEAR_Q flag is set in the sc_buf.adap_q_status field, the adapter driver has
not cleared its queue for this device. When this condition occurs, the SCSI adapter driver allows the
SCSI device driver to send one error recovery transaction (request sense) that has the field
sc_buf.q_tag msg set to SC_NO_Q and the field sc_buf.flags set to SC_RESUME. The SCSI device
driver can then notify the SCSI adapter driver to clear or resume its queue for the device by sending a
SC_Q CLR or SC_Q_RESUME transaction.

If the SCSI device driver does not queue multiple transactions to the device (that is, the SC_NO_Q is
set in sc_buf.q_tag_msg), then the SCSI adapter clears its queue on error and sets
sc_buf.adap_qg status to 0.

If the sc_buf.bufstruct.b _flags field does not have the B_ERROR flag set, then no error is being
reported. However, the SCSI device driver should examine the b_resid field to check for cases where
less data was transferred than expected. For some SCSI commands, this occurrence might not
represent an error. The SCSI device driver must determine if an error has occurred.

If a nonzero b_resid field does represent an error condition, then the device queue is not halted by the
SCSI adapter device driver. It is possible for one or more succeeding queued commands to be sent to
the adapter (and possibly the device). Recovering from this situation is the responsibility of the SCSI
device driver.

In any of the above cases, if sc_buf.bufstruct.b_flags field has the B_ERROR flag set, then the

queue of the device in question has been halted. The first sc_buf structure sent to recover the error
(or continue operations) must have the SC_RESUME bit set in the sc_buf.flags field.

198 Kernel Extensions and Device Support Programming Concepts

Target-Mode Error Recovery

If an error occurs during the reception of send command data, the SCSI adapter device driver sets the
TM_ERROR flag in the tm_buf.user_flag field. The SCSI adapter device driver also sets the
SC_ADAPTER_ERROR bit in the tm_buf.status_validity field and sets a single flag in the
tm_buf.general_card_status field to indicate the error that occurred.

In the SCSI subsystem, an error during a send command does not affect future target-mode data
reception. Future send commands continue to be processed by the SCSI adapter device driver and queue
up, as necessary, after the data with the error. The SCSI device driver continues processing the send
command data, satisfying user read requests as usual except that the error status is returned for the
appropriate user request. Any error recovery or synchronization procedures the user requires for a
target-mode received-data error must be implemented in user-supplied software.

A Typical Initiator-Mode SCSI Driver Transaction Sequence

A simplified sequence of events for a transaction between a SCSI device driver and a SCSI adapter
device driver follows. In this sequence, routine names preceded by a dd_ are part of the SCSI device
driver, where as those preceded by a sc_ are part of the SCSI adapter device driver.

1. The SCSI device driver receives a call to its dd_strategy routine; any required internal queuing occurs
in this routine. The dd_strategy entry point then triggers the operation by calling the dd_start entry
point. The dd_start routine invokes the sc_strategy entry point by calling the devstrategy kernel
service with the relevant sc_buf structure as a parameter.

2. The sc_strategy entry point initially checks the sc_buf structure for validity. These checks include
validating the devno field, matching the SCSI ID/LUN to internal tables for configuration purposes, and
validating the request size.

3. Although the SCSI adapter device driver cannot reorder transactions, it does perform queue chaining.
If no other transactions are pending for the requested device, the sc_strategy routine immediately
calls the sc_start routine with the new transaction. If there are other transactions pending, the new
transaction is added to the tail of the device chain.

4. At each interrupt, the sc_intr interrupt handler verifies the current status. The SCSI adapter device
driver fills in the sc_buf status_validity field, updating the scsi_status and general card status
fields as required.

5. The SCSI adapter device driver also fills in the bufstruct.b_resid field with the number of bytes not
transferred from the request. If all the data was transferred, the b_resid field is set to a value of 0.
When a transaction completes, the sc_intr routine causes the sc_buf entry to be removed from the
device queue and calls the iodone kernel service, passing the just dequeued sc_buf structure for the
device as the parameter.

The sc_start routine is then called again to process the next transaction on the device queue. The
iodone kernel service calls the SCSI device driver dd_iodone entry point, signaling the SCSI device
driver that the particular transaction has completed.

6. The SCSI device driver dd_iodone routine investigates the 1/0 completion codes in the sc_buf status
entries and performs error recovery, if required. If the operation completed correctly, the SCSI device
driver dequeues the original buffer structures. It calls the iodone kernel service with the original buffer
pointers to notify the originator of the request.

Understanding SCSI Device Driver Internal Commands

During initialization, error recovery, and open or close operations, SCSI device drivers initiate some
transactions not directly related to an operating system request. These transactions are called internal
commands and are relatively simple to handle.

Chapter 12. Small Computer System Interface Subsystem 199

Internal commands differ from operating system-initiated transactions in several ways. The primary
difference is that the SCSI device driver is required to generate a struct buf that is not related to a
specific request. Also, the actual SCSI commands are typically more control-oriented than data
transfer-related.

The only special requirement for commands with short data-phase transfers (less than or equal to 256
bytes) is that the SCSI device driver must have pinned the memory being transferred into or out of system
memory pages. However, due to system hardware considerations, additional precautions must be taken for
data transfers into system memory pages when the transfers are larger than 256 bytes. The problem is
that any system memory area with a DMA data operation in progress causes the entire memory page that
contains it to become inaccessible.

As a result, a SCSI device driver that initiates an internal command with more than 256 bytes must have
preallocated and pinned an area of some multiple whose size is the system page size. The driver must not
place in this area any other data areas that it may need to access while I/O is being performed into or out
of that page. Memory pages so allocated must be avoided by the device driver from the moment the
transaction is passed to the adapter device driver until the device driver iodone routine is called for the
transaction (and for any other transactions to those pages).

Understanding the Execution of Initiator I/O Requests

During normal processing, many transactions are queued in the SCSI device driver. As the SCSI device
driver processes these transactions and passes them to the SCSI adapter device driver, the SCSI device
driver moves them to the in-process queue. When the SCSI adapter device driver returns through the
iodone service with one of these transactions, the SCSI device driver either recovers any errors on the
transaction or returns using the iodone kernel service to the calling level.

The SCSI device driver can send only one sc_buf structure per call to the SCSI adapter device driver.
Thus, the sc_buf.bufstruct.av_forw pointer should be null when given to the SCSI adapter device driver,
which indicates that this is the only request. The SCSI device driver can queue multiple sc_buf requests
by making multiple calls to the SCSI adapter device driver strategy routine.

Spanned (Consolidated) Commands

Some kernel operations might be composed of sequential operations to a device. For example, if
consecutive blocks are written to disk, blocks might or might not be in physically consecutive buffer pool
blocks.

To enhance SCSI bus performance, the SCSI device driver should consolidate multiple queued requests
when possible into a single SCSI command. To allow the SCSI adapter device driver the ability to handle
the scatter and gather operations required, the sc_buf.bp should always point to the first buf structure
entry for the spanned transaction. A null-terminated list of additional struct buf entries should be chained
from the first field through the buf.av_forw field to give the SCSI adapter device driver enough information
to perform the DMA scatter and gather operations required. This information must include at least the
buffer’s starting address, length, and cross-memory descriptor.

The spanned requests should always be for requests in either the read or write direction but not both,
because the SCSI adapter device driver must be given a single SCSI command to handle the requests.
The spanned request should always consist of complete 1/O requests (including the additional struct buf
entries). The SCSI device driver should not attempt to use partial requests to reach the maximum transfer
size.

The maximum transfer size is actually adapter-dependent. The IOCINFO ioctl operation can be used to

discover the SCSI adapter device driver's maximum allowable transfer size. To ease the design,
implementation, and testing of components that might need to interact with multiple SCSI-adapter device

200 Kernel Extensions and Device Support Programming Concepts

drivers, a required minimum size has been established that all SCSI adapter device drivers must be
capable of supporting. The value of this minimum/maximum transfer size is defined as the following value
in the /usr/include/sys/scsi.h file:

SC_MAXREQUEST /* maximum transfer request for a single x/
/* SCSI command (in bytes) =/

If a transfer size larger than the supported maximum is attempted, the SCSI adapter device driver returns
a value of EINVAL in the sc_buf.bufstruct.b_error field.

Due to system hardware requirements, the SCSI device driver must consolidate only commands that are
memory page-aligned at both their starting and ending addresses. Specifically, this applies to the
consolidation of inner memory buffers. The ending address of the first buffer and the starting address of all
subsequent buffers should be memory page-aligned. However, the starting address of the first memory
buffer and the ending address of the last do not need to be aligned so.

The purpose of consolidating transactions is to decrease the number of SCSI commands and bus phases
required to perform the required operation. The time required to maintain the simple chain of buf structure
entries is significantly less than the overhead of multiple (even two) SCSI bus transactions.

Fragmented Commands

Single 1/0O requests larger than the maximum transfer size must be divided into smaller requests by the
SCSI device driver. For calls to a SCSI device driver’'s character I/O (read/write) entry points, the uphysio
kernel service can be used to break up these requests. For a fragmented command such as this, the
sc_buf.bp field should be null so that the SCSI adapter device driver uses only the information in the
sc_buf structure to prepare for the DMA operation.

Gathered Write Commands

The gathered write commands facilitate communication applications that are required to send header and
trailer messages with data buffers. These headers and trailers are typically the same or similar for each
transfer. Therefore, there might be a single copy of these messages but multiple data buffers.

The gathered write commands, accessed through the sc_buf.resvdl field, differ from the spanned
commands, accessed through the sc_buf.bp field, in several ways:

» Gathered write commands can transfer data regardless of address alignment, where as spanned
commands must be memory page-aligned in address and length, making small transfers difficult.

» Gathered write commands can be implemented either in software (which requires the extra step of
copying the data to temporary buffers) or hardware. Spanned commands can be implemented in system
hardware due to address-alignment requirements. As a result, spanned commands are potentially faster
to run.

» Gathered write commands are not able to handle read requests. Spanned commands can handle both
read and write requests.

» Gathered write commands can be initiated only on the process level, but spanned commands can be
initiated on either the process or interrupt level.

To execute a gathered write command, the SCSI device driver must:

* Fill in the resvd1 field with a pointer to the uio struct

» Call the SCSI adapter device driver on the same process level with the sc_buf structure in question
* Be attempting a write

* Not have put a non-null value in the sc_buf.bp field

If any of these conditions are not met, the gathered write commands do not succeed and the
sc_buf.bufstruct.b_error is set to EINVAL.

Chapter 12. Small Computer System Interface Subsystem 201

This interface allows the SCSI adapter device driver to perform the gathered write commands in both
software or and hardware as long as the adapter supports this capability. Because the gathered write
commands can be performed in software (by using such kernel services as uiomove), the contents of the
resvdl field and the uio struct can be altered. Therefore, the caller must restore the contents of both the
resvdl field and the uio struct before attempting a retry. Also, the retry must occur from the process level;
it must not be performed from the caller’s iodone subroutine.

To support SCSI adapter device drivers that perform the gathered write commands in software, additional
return values in the sc_buf.bufstruct.b_error field are possible when gathered write commands are
unsuccessful.

ENOMEM Error due to lack of system memory to perform copy.
EFAULT Error due to memory copy problem.

Note: The gathered write command facility is optional for both the SCSI device driver and the SCSI
adapter device driver. Attempting a gathered write command to a SCSI adapter device driver that
does not support gathered write can cause a system crash. Therefore, any SCSI device driver must
issue a SCIOGTHW ioctl operation to the SCSI adapter device driver before using gathered writes. A
SCSI adapter device driver that supports gathered writes must support the SCIOGTHW ioctl as well.
The ioctl returns a successful return code if gathered writes are supported. If the ioctl fails, the SCSI
device driver must not attempt a gathered write. Typically, a SCSI device driver plac