
Bull
AIX 5L Kernel Extensions and Device Support
Programming Concepts

AIX

86 A2 37EF 02
ORDER REFERENCE

Bull
AIX 5L Kernel Extensions and Device Support
Programming Concepts

AIX

Software

May 2003

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

86 A2 37EF 02
ORDER REFERENCE

The following copyright notice protects this book under the Copyright laws of the United States of America
and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and
making derivative works.

Copyright Bull S.A. 1992, 2003

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of
this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX� is a registered trademark of International Business Machines Corporation, and is being used under
licence.

UNIX is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Linux is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

Contents

About This Book . vii
Who Should Use This Book . vii
How to Use This Book . vii
Highlighting . vii
Case-Sensitivity in AIX. vii
ISO 9000 . vii
Related Publications . vii

Chapter 1. Kernel Environment . 1
Understanding Kernel Extension Symbol Resolution . 1
Understanding Execution Environments . 5
Understanding Kernel Threads . 6
Using Kernel Processes . 8
Accessing User-Mode Data While in Kernel Mode . 12
Understanding Locking . 13
Understanding Exception Handling . 14
Using Kernel Extensions to Support 64–bit Processes 19
64-bit Kernel Extension Programming Environment . 20
32-bit Kernel Extension Considerations . 22
Related Information. 22

Chapter 2. System Calls . 23
Differences Between a System Call and a User Function 23
Understanding Protection Domains . 23
Understanding System Call Execution . 24
Accessing Kernel Data While in a System Call. 24
Passing Parameters to System Calls . 25
Preempting a System Call . 32
Handling Signals While in a System Call . 32
Handling Exceptions While in a System Call . 33
Understanding Nesting and Kernel-Mode Use of System Calls 34
Page Faulting within System Calls . 34
Returning Error Information from System Calls. 35
System Calls Available to Kernel Extensions . 35
Related Information. 36

Chapter 3. Virtual File Systems. 39
Logical File System Overview . 39
Virtual File System Overview . 40
Understanding Data Structures and Header Files for Virtual File Systems 42
Configuring a Virtual File System. 43
Related Information. 43

Chapter 4. Kernel Services . 45
Categories of Kernel Services . 45
I/O Kernel Services . 45
Block I/O Buffer Cache Kernel Services: Overview . 48
Understanding Interrupts . 49
Understanding DMA Transfers . 50
Kernel Extension and Device Driver Management Services 51
Locking Kernel Services . 52
File Descriptor Management Services . 55
Logical File System Kernel Services . 55

© Copyright IBM Corp. 1997, 2003 iii

Programmed I/O (PIO) Kernel Services . 56
Memory Kernel Services . 57
Understanding Virtual Memory Manager Interfaces . 60
Message Queue Kernel Services. 63
Network Kernel Services . 64
Process and Exception Management Kernel Services 66
RAS Kernel Services . 69
Security Kernel Services . 69
Timer and Time-of-Day Kernel Services . 70
Using Fine Granularity Timer Services and Structures 71
Using Multiprocessor-Safe Timer Services . 71
Virtual File System (VFS) Kernel Services . 72
Related Information. 72

Chapter 5. Asynchronous I/O Subsystem . 75
How Do I Know if I Need to Use AIO? . 76
Functions of Asynchronous I/O . 77
Asynchronous I/O Subroutines . 79
Subroutines Affected by Asynchronous I/O . 80
Changing Attributes for Asynchronous I/O . 80
64-bit Enhancements . 81
Related Information. 81

Chapter 6. Device Configuration Subsystem . 83
Scope of Device Configuration Support . 83
Device Configuration Subsystem Overview . 83
General Structure of the Device Configuration Subsystem 84
Device Configuration Database Overview. 85
Basic Device Configuration Procedures Overview. 85
Device Configuration Manager Overview . 86
Device Classes, Subclasses, and Types Overview . 87
Writing a Device Method . 88
Understanding Device Methods Interfaces . 88
Understanding Device States . 89
Adding an Unsupported Device to the System . 90
Understanding Device Dependencies and Child Devices 91
Accessing Device Attributes. 92
Device Dependent Structure (DDS) Overview . 93
List of Device Configuration Commands . 95
List of Device Configuration Subroutines . 95
Related Information. 96

Chapter 7. Communications I/O Subsystem . 97
User-Mode Interface to a Communications PDH . 97
Kernel-Mode Interface to a Communications PDH . 97
CDLI Device Drivers . 98
Communications Physical Device Handler Model Overview 98
Status Blocks for Communications Device Handlers Overview 99
MPQP Device Handler Interface Overview for the ARTIC960Hx PCI Adapter 101
Serial Optical Link Device Handler Overview . 102
Configuring the Serial Optical Link Device Driver . 103
Forum-Compliant ATM LAN Emulation Device Driver 104
Fiber Distributed Data Interface (FDDI) Device Driver 117
High-Performance (8fc8) Token-Ring Device Driver 121
High-Performance (8fa2) Token-Ring Device Driver 129
PCI Token-Ring Device Drivers . 136

iv Kernel Extensions and Device Support Programming Concepts

Ethernet Device Drivers. 145
Related Information . 164

Chapter 8. Graphic Input Devices Subsystem . 167
open and close Subroutines . 167
read and write Subroutines . 167
ioctl Subroutines . 167
Input Ring. 169

Chapter 9. Low Function Terminal Subsystem . 173
Low Function Terminal Interface Functional Description 173
Components Affected by the Low Function Terminal Interface 174
Accented Characters . 176
Related Information . 177

Chapter 10. Logical Volume Subsystem . 179
Direct Access Storage Devices (DASDs) . 179
Physical Volumes . 179
Understanding the Logical Volume Device Driver . 182
Understanding Logical Volumes and Bad Blocks . 185
Related Information . 186

Chapter 11. Printer Addition Management Subsystem 189
Printer Types Currently Supported . 189
Printer Types Currently Unsupported . 189
Adding a New Printer Type to Your System . 189
Adding a Printer Definition . 190
Adding a Printer Formatter to the Printer Backend . 191
Understanding Embedded References in Printer Attribute Strings 191
Related Information . 191

Chapter 12. Small Computer System Interface Subsystem 193
SCSI Subsystem Overview . 193
Understanding SCSI Asynchronous Event Handling 194
SCSI Error Recovery. 196
A Typical Initiator-Mode SCSI Driver Transaction Sequence 199
Understanding SCSI Device Driver Internal Commands 199
Understanding the Execution of Initiator I/O Requests 200
SCSI Command Tag Queuing . 202
Understanding the sc_buf Structure . 202
Other SCSI Design Considerations . 207
SCSI Target-Mode Overview . 212
Required SCSI Adapter Device Driver ioctl Commands 217
Related Information . 223

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 225
Programming FCP and iSCSI Device Drivers . 225
FCP and iSCSI Subsystem Overview. 246
Understanding FCP and iSCSI Asynchronous Event Handling. 247
FCP and iSCSI Error Recovery . 249
FCP and iSCSI Initiator-Mode Recovery When Not Command Tag Queuing 249
Initiator-Mode Recovery During Command Tag Queuing 250
A Typical Initiator-Mode FCP and iSCSI Driver Transaction Sequence. 252
Understanding FCP and iSCSI Device Driver Internal Commands 252
Understanding the Execution of FCP and iSCSI Initiator I/O Requests 253
FCP and iSCSI Command Tag Queuing. 254

Contents v

Understanding the scsi_buf Structure. 254
Other FCP and iSCSI Design Considerations . 260
Required FCP and iSCSI Adapter Device Driver ioctl Commands 265
Related Information . 267

Chapter 14. Integrated Device Electronics (IDE) Subsystem 269
Responsibilities of the IDE Adapter Device Driver . 269
Responsibilities of the IDE Device Driver . 269
Communication Between IDE Device Drivers and IDE Adapter Device Drivers 269
IDE Error Recovery . 270
A Typical IDE Driver Transaction Sequence . 270
IDE Device Driver Internal Commands . 271
Execution of I/O Requests . 271
ataide_buf Structure . 272
Other IDE Design Considerations . 275
Required IDE Adapter Driver ioctl Commands . 276
Related Information . 278

Chapter 15. Serial Direct Access Storage Device Subsystem 279
DASD Device Block Level Description . 279

Chapter 16. Debug Facilities . 281
System Dump Facility . 281
Error Logging . 288
Debug and Performance Tracing . 293
Memory Overlay Detection System (MODS) . 313
Related Information . 314

Chapter 17. KDB Kernel Debugger and Command 317
The kdb Command . 317
KDB Kernel Debugger . 318
Using the KDB Kernel Debug Program . 322
Setting Breakpoints . 330
Viewing and Modifying Global Data . 335
Stack Trace . 339
Subcommands for the KDB Kernel Debugger and kdb Command 343

Chapter 18. Loadable Authentication Module Programming Interface 505
Overview . 505
Load Module Interfaces . 505
Authentication Interfaces . 506
Identification Interfaces . 508
Support Interfaces. 512
Configuration Files . 515
Compound Load Modules . 516

Appendix. Notices . 519
Trademarks . 520

Index . 521

vi Kernel Extensions and Device Support Programming Concepts

About This Book

This book provides information on the kernel programming environment, and about writing system call,
kernel service, and virtual file system kernel extensions. Conceptual information on existing kernel
subsystems is also provided.

This edition supports the release of AIX 5L Version 5.2 with the 5200-01 Recommended Maintenance
package. Any specific references to this maintenance package are indicated as AIX 5.2 with 5200-01.

Who Should Use This Book
This book is intended for system programmers who are knowledgeable in operating system concepts and
kernel programming and want to extend the kernel.

How to Use This Book
This book provides two types of information: (1) an overview of the kernel programming environment and
information a programmer needs to write kernel extensions, and (2) information about existing kernel
subsystems.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files,
structures, directories, and other items whose names are
predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to
be supplied by the user.

Monospace Identifies examples of specific data values, examples of
text similar to what you might see displayed, examples of
portions of program code similar to what you might write
as a programmer, messages from the system, or
information you should actually type.

Case-Sensitivity in AIX
Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the
system responds that the command is ″not found.″ Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications
The following books contain additional information on kernel extension programming and the existing
kernel subsystems:

v AIX 5L Version 5.2 Guide to Printers and Printing

v Keyboard Technical Reference

© Copyright IBM Corp. 1997, 2003 vii

v AIX 5L Version 5.2 System Management Guide: Operating System and Devices

v AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1

v AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 2

viii Kernel Extensions and Device Support Programming Concepts

Chapter 1. Kernel Environment

The kernel is dynamically extendable and can be expanded by adding routines that belong to any of the
following functional classes:

v System calls

v Virtual file systems

v Kernel Extension and Device Driver Management Kernel Services

v Device Drivers

The term kernel extension applies to all routines added to the kernel, independent of their purpose. Kernel
extensions can be added at any time by a user with the appropriate privilege.

Kernel extensions run in the same mode as the kernel. That is, when the 64–bit kernel is used, kernel
extensions run in 64–bit mode. These kernel extensions must be compiled to produce a 64–bit object.

The following kernel-environment programming information is provided to assist you in programming kernel
extensions:

v “Understanding Kernel Extension Symbol Resolution”

v “Understanding Execution Environments” on page 5

v “Understanding Kernel Threads” on page 6

v “Using Kernel Processes” on page 8

v “Accessing User-Mode Data While in Kernel Mode” on page 12

v “Understanding Locking” on page 13

v “Understanding Exception Handling” on page 14

v “Using Kernel Extensions to Support 64–bit Processes” on page 19

A process executing in user mode can customize the kernel by using the sysconfig subroutine, if the
process has appropriate privilege. In this way, a user-mode process can load, unload, initialize, or
terminate kernel routines. Kernel configuration can also be altered by changing tunable system
parameters.

Kernel extensions can also customize the kernel by using kernel services to load, unload, initialize, and
terminate dynamically loaded kernel routines; to create and initialize kernel processes; and to define
interrupt handlers.

Note: Private kernel routines (or kernel services) execute in a privileged protection domain and can affect
the operation and integrity of the whole system. See “Kernel Protection Domain” on page 23 for
more information.

Understanding Kernel Extension Symbol Resolution
The following information is provided to assist you in understanding kernel extension symbol resolution:

v “Exporting Kernel Services and System Calls” on page 2

v “Using Kernel Services” on page 2

v “Using System Calls with Kernel Extensions” on page 2

v “Using Private Routines” on page 3

v “Understanding Dual-Mode Kernel Extensions” on page 4

v “Using Libraries” on page 4

© Copyright IBM Corp. 1997, 2003 1

Exporting Kernel Services and System Calls
A kernel extension provides additional kernel services and system calls by specifying an export file when it
is link-edited. An export file contains a list of symbols to be added to the kernel name space. In addition,
symbols can be identified as system calls for 32-bit processes, 64-bit processes, or both.

In an export file, symbols are listed one per line. These system calls are available to both 32- and 64-bit
processes. System calls are identified by using one of the syscall32, syscall64 or syscall3264 keywords
after the symbol name. Use syscall32 to make a system call available to 32-bit processes, syscall64 to
make a system call available to 64-bit processes, and syscall3264 to make a system call available to both
32- and 64-bit processes. For more information about export files, see ld Command in AIX 5L Version 5.2
Commands Reference, Volume 3.

When a new kernel extension is loaded by the sysconfig or kmod_load subroutine, any symbols
exported by the kernel extension are added to the kernel name space, and are available to all
subsequently loaded kernel extensions. Similarly, system calls exported by a kernel extension are
available to all user programs or shared objects subsequently loaded.

Using Kernel Services
The kernel provides a set of base kernel services to be used by kernel extensions. Kernel extensions can
export new kernel services, which can then be used by subsequently loaded kernel extensions. Base
kernel services, which are described in the services documentation, are made available to a kernel
extension by specifying the /usr/lib/kernex.imp import file during the link-edit of the extension.

Note: Link-editing of a kernel extension should always be performed by using the ld command. Do not
use the compiler to create a kernel extension.

If a kernel extension depends on kernel services provided by other kernel extensions, an additional import
file must be specified when link-editing. An import file lists additional kernel services, with each service
listed on its own line. An import file must contain the line #!/unix before any services are listed. The same
file can be used both as an import file and an export file. The #!/unix line is ignored when a file is used
as an export file. For more information on import files, see ld command in AIX 5L Version 5.2 Commands
Reference, Volume 3.

Using System Calls with Kernel Extensions
A restricted set of system calls can be used by kernel extensions. A kernel process can use a larger set of
system calls than a user process in kernel mode. “System Calls Available to Kernel Extensions” on
page 35 specifies which system calls can be used by either type of process. User-mode processes in
kernel mode can only use system calls that have all parameters passed by value. Kernel routines running
under user-mode processes cannot directly use a system call having parameters passed by reference.

The second restriction is imposed because, when they access a caller’s data, system calls with
parameters passed by reference access storage across a protection domain. The cross-domain memory
services performing these cross-memory operations support kernel processes as if they, too, accessed
storage across a protection domain. However, these services have no way to determine that the caller is in
the same protection domain when the caller is a user-mode process in kernel mode. For more information
on cross-domain memory services, see “Cross-Memory Kernel Services” on page 59.

Note: System calls must not be used by kernel extensions executing in the interrupt handler
environment.

System calls available to kernel extensions are listed in /usr/lib/kernex.imp, along with other kernel
services.

2 Kernel Extensions and Device Support Programming Concepts

Loading and Unloading Kernel Extensions
Kernel extensions can be loaded and unloaded by calling the sysconfig function from user applications. A
kernel extension can load another kernel extension by using the kmod_load kernel service, and kernel
extensions can be unloaded by using the kmod_unload kernel service.

Loading Kernel Extensions: Normally, kernel extensions that provide new system calls or kernel
services only need to be loaded once. For these kernel extensions, loading should be performed by
specifying SYS_SINGLELOAD when calling the sysconfig function, or LD_SINGLELOAD when calling the
kmod_load function. If the specified kernel extension is already loaded, a second copy is not loaded.
Instead, a reference to the existing kernel extension is returned. The loader uses the specified pathname
to determine whether a kernel extensions is already loaded. If multiple pathnames refer to the same kernel
extension, multiple copies can be loaded into the kernel.

If a kernel extension can support multiple instances of itself (particularly its data), it can be loaded multiple
times, by specifying SYS_KLOAD when calling the sysconfig function, or by not specifying
LD_SINGLELOAD when calling the kmod_load function. Either of these operations loads a new copy of
the kernel extension, even when one or more copies are already loaded. When this operation is used,
currently loaded routines bound to the old copy of the kernel extension continue to use the old copy.
Subsequently loaded routines use the most recently loaded copy of the kernel extension.

Unloading Kernel Extensions: Kernel extensions can be unloaded. For each kernel extension, the
loader maintains a use count and a load count. The use count indicates how many other object files have
referenced some exported symbol provided by the kernel extension. The load count indicates how many
explicit load requests have been made for each kernel extension.

When an explicit unload of a kernel extension is requested, the load count is decremented. If the load
count and the use count are both equal to 0, the kernel extension is unloaded, and the memory used by
the text and data of the kernel extension is freed.

If either the load count or use count is not equal to 0, the kernel extension is not unloaded. As processes
exit or other kernel extensions are unloaded, the use counts for referenced kernel extensions are
decremented. Even if the load and use counts become 0, the kernel extension may not be unloaded
immediately. In this case, the kernel extension’s exported symbols are still available for load-time binding
unless another kernel extension is unloaded or the slibclean command is executed. At this time, the
loader unloads all modules that have both load and use counts of 0.

Using Private Routines
So far, symbol resolution for kernel extensions has been concerned with importing and exporting symbols
from and to the kernel name space. Exported symbols are global in the kernel, and can be referenced by
any subsequently loaded kernel extension.

Kernel extensions can also consist of several separately link-edited modules. This is particularly useful for
device drivers, where a kernel extension contains the top (pageable) half of the driver and a dependent
module contains the bottom (pinned) half of the driver. Using a dependent module also makes sense when
several kernel extensions use common routines. In both cases, the symbols exported by the dependent
modules are not added to the global kernel name space. Instead, these symbols are only available to the
kernel extension being loaded.

When link-editing a kernel extension that depends on another module, an import file should be specified
listing the symbols exported by the dependent module. Before any symbols are listed, the import file
should contain one of the following lines:
#! path/file

or
#! path/file(member)

Chapter 1. Kernel Environment 3

Note: This import file can also be used as an export file when building the dependent module.
Dependent modules can be found in an archive file. In this case, the member name must be specified in
the #! line.

While a kernel extension is being loaded, any dependent modules are only loaded a single time. This
allows modules to depend on each other in a complicated way, without causing multiple instances of a
module to be loaded.

Note: The loader uses the pathname of a module to determine whether it has already been loaded.
Another copy of the module can be loaded if different path names are used for the same module.

The symbols exported by dependent modules are not added to the kernel name space. These symbols
can only be used by a kernel extension and its other dependent modules. If another kernel extension is
loaded that uses the same dependent modules, these dependent modules will be loaded a second time.

Understanding Dual-Mode Kernel Extensions
Dual-mode kernel extensions can be used to simplify the loading of kernel extensions that run on both the
32- and 64-bit kernels. A ″dual-mode kernel extension″ is an archive file that contains both the 32- and
64-bit versions of a kernel extension as members. When the pathname specified in the sysconfig or
kmod_load call is an archive, the loader loads the first archive member whose object mode matches the
kernel’s execution mode.

This special treatment of archives only applies to an explicitly loaded kernel extension. If a kernel
extension depends on a member of another archive, the kernel extension must be link-edited with an
import file that specifies the member name.

Using Libraries
The operating system provides the following two libraries that can be used by kernel extensions:

v libcsys.a

v libsys.a

libcsys Library
The libcsys.a library contains a subset of subroutines found in the user-mode libc.a library that can be
used by kernel extensions. When using any of these routines, the header file /usr/include/sys/libcsys.h
should be included to obtain function prototypes, instead of the application header files, such as
/usr/include/string.h or /usr/include/stdio.h. The following routines are included in libcsys.a:

v atoi

v bcmp

v bcopy

v bzero

v memccpy

v memchr

v memcmp

v memcpy

v memmove

v memset

v ovbcopy

v strcat

v strchr

v strcmp

v strcpy

4 Kernel Extensions and Device Support Programming Concepts

v strcspn

v strlen

v strncat

v strncmp

v strncpy

v strpbrk

v strrchr

v strspn

v strstr

v strtok

Note: In addition to these explicit subroutines, some additional functions are defined in libcsys.a. All
kernel extensions should be linked with libcsys.a by specifying -lcsys at link-edit time. The
library libc.a is intended for user-level code only. Do not link-edit kernel extensions with the -lc
flag.

libsys Library
The libsys.a library provides the following set of kernel services:

v d_align

v d_roundup

v timeout

v timeoutcf

v untimeout

When using these services, specify the -lsys flag at link-edit time.

User-provided Libraries
To simplify the development of kernel extensions, you can choose to split a kernel extension into
separately loadable modules. These modules can be used when linking kernel extensions in the same way
that they are used when developing user-level applications and shared objects. In particular, a kernel
module can be created as a shared object by linking with the -bM:SRE flag.. The shared object can then
be used as an input file when linking a kernel extension. In addition, shared objects can be put into an
archive file, and the archive file can be listed on the command line when linking a kernel extension. In both
cases, the shared object will be loaded as a dependent module when the kernel extension is loaded.

Understanding Execution Environments
There are two major environments under which a kernel extension can run:

v Process environment

v Interrupt environment

A kernel extension runs in the process environment when invoked either by a user process in kernel mode
or by a kernel process. A kernel extension is executing in the interrupt environment when invoked as part
of an interrupt handler.

A kernel extension can determine in which environment it is called to run by calling the getpid or
thread_self kernel service. These services respectively return the process or thread identifier of the
current process or thread , or a value of -1 if called in the interrupt environment. Some kernel services can
be called in both environments, whereas others can only be called in the process environment.

Note: No floating-point functions can be used in the kernel.

Chapter 1. Kernel Environment 5

Process Environment
A routine runs in the process environment when it is called by a user-mode process or by a kernel
process. Routines running in the process environment are executed at an interrupt priority of INTBASE
(the least favored priority). A kernel extension running in this environment can cause page faults by
accessing pageable code or data. It can also be replaced by another process of equal or higher process
priority.

A routine running in the process environment can sleep or be interrupted by routines executing in the
interrupt environment. A kernel routine that runs on behalf of a user-mode process can only invoke system
calls that have no parameters passed by reference. A kernel process, however, can use all system calls
listed in the System Calls Available to Kernel Extensions if necessary.

Interrupt Environment
A routine runs in the interrupt environment when called on behalf of an interrupt handler. A kernel routine
executing in this environment cannot request data that has been paged out of memory and therefore
cannot cause page faults by accessing pageable code or data. In addition, the kernel routine has a stack
of limited size, is not subject to replacement by another process, and cannot perform any function that
would cause it to sleep.

A routine in this environment is only interruptible either by interrupts that have priority more favored than
the current priority or by exceptions. These routines cannot use system calls and can use only kernel
services available in both the process and interrupt environments.

A process in kernel mode can also put itself into an environment similar to the interrupt environment. This
action, occurring when the interrupt priority is changed to a priority more favored than INTBASE, can be
accomplished by calling the i_disable or disable_lock kernel service. A kernel-mode process is
sometimes required to do this to serialize access to a resource shared by a routine executing in the
interrupt environment. When this is the case, the process operates under most of the same restrictions as
a routine executing in the interrupt environment. However, the e_sleep, e_wait, e_sleepl, et_wait, lockl,
and unlockl process can sleep, wait, and use locking kernel services if the event word or lock word is
pinned.

Routines executed in this environment can adversely affect system real-time performance and are
therefore limited to a specific maximum path length. Guidelines for the maximum path length are
determined by the interrupt priority at which the routines are executed. Understanding Interrupts provides
more information.

Understanding Kernel Threads
A thread is an independent flow of control that operates within the same address space as other
independent flows of control within a process.

One process can have multiple threads, with each thread executing different code concurrently, while
sharing data and synchronizing much more easily than cooperating processes. Threads require fewer
system resources than processes, and can start more quickly.

Although threads can be scheduled, they exist in the context of their process. The following list indicates
what is managed at process level and shared among all threads within a process:

v Address space

v System resources, like files or terminals

v Signal list of actions.

The process remains the swappable entity. Only a few resources are managed at thread level, as
indicated in the following list:

6 Kernel Extensions and Device Support Programming Concepts

v State

v Stack

v Signal masks.

Kernel Threads, Kernel Only Threads, and User Threads
There are three kinds of threads:

v Kernel threads

v Kernel-only threads

v User threads.

A kernel thread is a kernel entity, like processes and interrupt handlers; it is the entity handled by the
system scheduler. A kernel thread runs in user mode environment when executing user functions or library
calls; it switches to kernel mode environment when executing system calls.

A kernel-only thread is a kernel thread that executes only in kernel mode environment. Kernel-only threads
are controlled by the kernel mode environment programmer through kernel services.

User mode programs can access user threads through a library (such as the libpthreads.a threads
library). User threads are part of a portable programming model. User threads are mapped to kernel
threads by the threads library, in an implementation dependent manner. The threads library uses a
proprietary interface to handle kernel threads. See Understanding Threads in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs to get detailed information about the user
threads library and their implementation.

All threads discussed in this article are kernel threads; and the information applies only to the kernel mode
environment. Kernel threads cannot be accessed from the user mode environment, except through the
threads library.

Kernel Data Structures
The kernel maintains thread- and process-related information in two types of structures:

v The user structure contains process-related information

v The uthread structure contains thread-related information.

These structures cannot be accessed directly by kernel extensions and device drivers. They are
encapsulated for portability reasons. Many fields that were previously in the user structure are now in the
uthread structure.

Thread Creation, Execution, and Termination
A process is always created with one thread, called the initial thread. The initial thread provides
compatibility with previous single-threaded processes. The initial thread’s stack is the process stack. See
“Kernel Process Creation, Execution, and Termination” on page 10 to get more information about kernel
process creation.

Other threads can be created, using a two-step procedure. The thread_create kernel service allocates
and initializes a new thread, and sets its state to idle. The kthread_start kernel service then starts the
thread, using the specified entry point routine.

A thread is terminated when it executes a return from its entry point, or when it calls the thread_terminate
kernel service. Its resources are automatically freed. If it is the last thread in the process, the process
ends.

Chapter 1. Kernel Environment 7

Thread Scheduling
Threads are scheduled using one of the following scheduling policies:

v First-in first-out (FIFO) scheduling policy, with fixed priority. Using the FIFO policy with high favored
priorities might lead to bad system performance.

v Round-robin (RR) scheduling policy, quantum based and with fixed priority.

v Default scheduling policy, a non-quantum based round-robin scheduling with fluctuating priority. Priority
is modified according to the CPU usage of the thread.

Scheduling parameters can be changed using the thread_setsched kernel service. The process-oriented
setpri system call sets the priority of all the threads within a process. The process-oriented getpri system
call gets the priority of a thread in the process. The scheduling policy and priority of an individual thread
can be retrieved from the ti_policy and ti_pri fields of the thrdsinfo structure returned by the getthrds
system call.

Thread Signal Handling
The signal handling concepts are the following:

v A signal mask is associated with each thread.

v The list of actions associated with each signal number is shared among all threads in the process.

v If the signal action specifies termination, stop, or continue, the entire process, thus including all its
threads, is respectively terminated, stopped, or continued.

v Synchronous signals attributable to a particular thread (such as a hardware fault) are delivered to the
thread that caused the signal to be generated.

v Signals can be directed to a particular thread. If the target thread has blocked the signal from delivery,
the signal remains pending on the thread until the thread unblocks the signal from delivery, or the action
associated with the signal is set to ignore by any thread within the process.

The signal mask of a thread is handled by the limit_sigs and sigsetmask kernel services. The
kthread_kill kernel service can be used to direct a signal to a particular thread.

In the kernel environment, when a signal is received, no action is taken (no termination or handler
invocation), even for the SIGKILL signal. A thread in kernel environment, especially kernel-only threads,
must poll for signals so that signals can be delivered. Polling ensures the proper kernel-mode serialization.
For example, SIGKILL will not be delivered to a kernel-only thread that does not poll for signals.
Therefore, SIGKILL is not necessarily an effective means for terminating a kernel-only thread.

Signals whose actions are applied at generation time (rather than delivery time) have the same effect
regardless of whether the target is in kernel or user mode. A kernel-only thread can poll for unmasked
signals that are waiting to be delivered by calling the sig_chk kernel service. This service returns the
signal number of a pending signal that was not blocked or ignored. The thread then uses the signal
number to determine which action should be taken. The kernel does not automatically call signal handlers
for a thread in kernel mode as it does for user mode.

See “Kernel Process Signal and Exception Handling” on page 11 for more information about signal
handling at process level.

Using Kernel Processes
A kernel process is a process that is created in the kernel protection domain and always executes in the
kernel protection domain. Kernel processes can be used in subsystems, by complex device drivers, and by
system calls. They can also be used by interrupt handlers to perform asynchronous processing not
available in the interrupt environment. Kernel processes can also be used as device managers where
asynchronous I/O and device management is required.

8 Kernel Extensions and Device Support Programming Concepts

Introduction to Kernel Processes
A kernel process (kproc) exists only in the kernel protection domain and differs from a user process in the
following ways:

v It is created using the creatp and initp kernel services.

v It executes only within the kernel protection domain and has all security privileges.

v It can call a restricted set of system calls and all applicable kernel services. For more information, see
“System Calls Available to Kernel Extensions” on page 35.

v It has access to the global kernel address space (including the kernel pinned and pageable heaps),
kernel code, and static data areas.

v It must poll for signals and can choose to ignore any signal delivered, including a kill signal.

v Its text and data areas come from the global kernel heap.

v It cannot use application libraries.

v It has a process-private region containing only the u-block (user block) structure and possibly the
kernel stack.

v Its parent process is the process that issued the creatp kernel service to create the process.

v It can change its parent process to the init process and can use interrupt disable functions for
serialization.

v It can use locking to serialize process-time access to critical data structures.

v It can only be a 32–bit process in the 32–bit kernel.

v It can only be a 64–bit process in the 64–bit kernel.

A kernel process controls directly the kernel threads. Because kernel processes are always in the kernel
protection domain, threads within a kernel process are kernel-only threads. For more information on kernel
threads, see “Understanding Kernel Threads” on page 6.

A kernel process inherits the environment of its parent process (the one calling the creatp kernel service
to create it), but with some exceptions. The kernel process will not have a root directory or a current
directory when initialized. All uses of the file system functions must specify absolute path names.

Kernel processes created during phase 1 of system boot must not keep any long-term opens on files until
phase 2 of system boot or run time has been reached. This is because Base Operating System changes
root file systems between phase 1 and phase 2 of system boot. As a result, the system crashes if any files
are open at root file system transition time.

Accessing Data from a Kernel Process
Because kernel processes execute in the more privileged kernel protection domain, a kernel process can
access data that user processes cannot. This applies to all kernel data, of which there are three general
categories:

v The user block data structure

The u-block (or u-area) structure exists for kernel processes and contains roughly the same information
for kernel processes as for user-mode processes. A kernel process must use kernel services to query or
manipulate data from the u-area to maintain modularity and increase portability of code to other
platforms.

v The stack for a kernel process

To ensure binary compatibility with older applications, each kernel process has a stack called the
process stack. This stack is used by the process initial thread.

The location of the stack for a kernel process is implementation-dependent. This stack can be located in
global memory or in the process-private segment of the kernel process. A kernel process must not
assume automatically that its stack is located in global memory.

v Global kernel memory

Chapter 1. Kernel Environment 9

A kernel process can also access global kernel memory as well as allocate and de-allocate memory
from the kernel heaps. Because it runs in the kernel protection domain, a kernel process can access
any valid memory location within the global kernel address space. Memory dynamically allocated from
the kernel heaps by the kernel process must be freed by the kernel process before exiting. Unlike
user-mode processes, memory that is dynamically allocated by a kernel process is not freed
automatically upon process exit.

Cross-Memory Services
Kernel processes must be provided with a valid cross-memory descriptor to access address regions
outside the kernel global address space or kernel process address space. For example, if a kernel process
is to access data from a user-mode process, the system call using the process must obtain a
cross-memory descriptor for the user-mode region to be accessed. Calling the xmattach or xmattach64
kernel service provides a descriptor that can then be made available to the kernel process.

The kernel process should then call the xmemin and xmemout kernel services to access the targeted
cross-memory data area. When the kernel process has completed its operation on the memory area, the
cross-memory descriptor must be detached by using the xmdetach kernel service.

Kernel Process Creation, Execution, and Termination
A kernel process is created by a kernel-mode routine by calling the creatp kernel service. This service
allocates and initializes a process block for the process and sets the new process state to idle. This new
kernel process does not run until it is initialized by the initp kernel service, which must be called in the
same process that created the new kernel process (with the creatp service). The creatp kernel service
returns the process identifier for the new kernel process.

The process is created with one kernel-only thread, called the initial thread. See Understanding Kernel
Threads to get more information about threads.

After the initp kernel service has completed the process initialization, the initial thread is placed on the run
queue. On the first dispatch of the newly initialized kernel process, it begins execution at the entry point
previously supplied to the initp kernel service. The initialization parameters were previously specified in
the call to the initp kernel service.

A kernel process terminates when it executes a return from its main entry routine. A process should never
exit without both freeing all dynamically allocated storage and releasing all locks owned by the kernel
process.

When kernel processes exit, the parent process (the one calling the creatp and initp kernel services to
create the kernel process) receives the SIGCHLD signal, which indicates the end of a child process.
However, it is sometimes undesirable for the parent process to receive the SIGCHLD signal due to ending
a process. In this case, the kproc can call the setpinit kernel service to designate the init process as its
parent. The init process cleans up the state of all its child processes that have become zombie processes.
A kernel process can also issue the setsid subroutine call to change its session. Signals and job control
affecting the parent process session do not affect the kernel process.

Kernel Process Preemption
A kernel process is initially created with the same process priority as its parent. It can therefore be
replaced by a more favored kernel or user process. It does not have higher priority just because it is a
kernel process. Kernel processes can use the setpri subroutine to modify their execution priority.

The kernel process can use the locking kernel services to serialize access to critical data structures. This
use of locks does not guarantee that the process will not be replaced, but it does ensure that another
process trying to acquire the lock waits until the kernel process owning the lock has released it.

10 Kernel Extensions and Device Support Programming Concepts

Using locks, however, does not provide serialization if a kernel routine can access the critical data while
executing in the interrupt environment. Serialization with interrupt handlers must be handled by using
locking together with interrupt control. The disable_lock and unlock_enable kernel services should be
used to serialize with interrupt handlers.

Kernel processes must ensure that their maximum path lengths adhere to the specifications for interrupt
handlers when executing at an interrupt priority more favored than INTBASE. This ensures that system
real-time performance is not degraded.

Kernel Process Signal and Exception Handling
Signals are delivered to exactly one thread within the process which has not blocked the signal from
delivery. If all threads within the target process have blocked the signal from delivery, the signal remains
pending on the process until a thread unblocks the signal from delivery, or the action associated with the
signal is set to ignore by any thread within the process. See “Thread Signal Handling” on page 8 for more
information on signal handling by threads.

Signals whose action is applied at generation time (rather than delivery time) have the same effect
regardless of whether the target is a kernel or user process. A kernel process can poll for unmasked
signals that are waiting to be delivered by calling the sig_chk kernel service. This service returns the
signal number of a pending signal that was not blocked or ignored. The kernel process then uses the
signal number to determine which action should be taken. The kernel does not automatically call signal
handlers for a kernel process as it does for user processes.

A kernel process should also use the exception-catching facilities (setjmpx, and clrjmpx) available in
kernel mode to handle exceptions that can be caused during run time of the kernel process. Exceptions
received during the execution of a kernel process are handled the same as exceptions that occur in any
kernel-mode routine.

Unhandled exceptions that occur in kernel mode (in any user process while in kernel mode, in an interrupt
handler, or in a kernel process) result in a system crash. To avoid crashing the system due to unhandled
exceptions, kernel routines should use the setjmpx, clrjmpx, and longjmpx kernel services to handle
exceptions that might possibly occur during run time. See “Understanding Exception Handling” on page 14
for more details on handling exceptions.

Kernel Process Use of System Calls
System calls made by kernel processes do not result in a change of protection domain because the kernel
process is already within the kernel protection domain. Routines in the kernel (including routines executing
in a kernel process) are bound by the loader to the system call function and not to the system call handler.
When system calls use kernel services to access user-mode data, these kernel services recognize that the
system call is running within a kernel process instead of a user process and correctly handle the data
accesses.

However, the error information returned from a kernel process system call must be accessed differently
than for a user process. A kernel process must use the getuerror kernel service to retrieve the system call
error information normally provided in the errno global variable for user-mode processes. In addition, the
kernel process can use the setuerror kernel service to set the error information to 0 before calling the
system call. The return code from the system call is handled the same for all processes.

Kernel processes can use only a restricted set of the base system calls. “System Calls Available to Kernel
Extensions” on page 35 lists system calls available to kernel processes.

Chapter 1. Kernel Environment 11

Accessing User-Mode Data While in Kernel Mode
Kernel extensions must use a set of kernel services to access data that is in the user-mode protection
domain. These services ensure that the caller has the authority to perform the desired operation at the
time of data access and also prevent system crashes in a system call when accessing user-mode data.
These services can be called only when running in the process environment of the process that contains
the user-mode data. For more information on user-mode protection, see “User Protection Domain” on
page 23. For more information on the process environment, see “Process Environment” on page 6.

Data Transfer Services
The following list shows user-mode data access kernel services (primitives):

Kernel Service Purpose
suword, suword64 Stores a word of data in user memory.
fubyte, fubyte64 Fetches, or retrieves, a byte of data from user memory.
fuword, fuword64 Fetches, or retrieves, a word of data from user memory.
copyin, copyin64 Copies data between user and kernel memory.
copyout, copyout64 Copies data between user and kernel memory.
copyinstr, copyinstr64 Copies a character string (including the terminating null character) from

user to kernel space.

Additional kernel services allow data transfer between user mode and kernel mode when a uio structure is
used, thereby describing the user-mode data area to be accessed. All addresses on the 32–bit kernel, with
the exception of addresses ending in ″64″, passed into these services must be remapped. Following is a
list of services that typically are used between the file system and device drivers to perform device I/O:

Kernel Service Purpose
uiomove Moves a block of data between kernel space and a space defined by a uio structure.
ureadc Writes a character to a buffer described by a uio structure.
uwritec Retrieves a character from a buffer described by a uio structure.

The services ending in “64” are not supported in the 64-bit kernel, since all pointers are already 64-bits
wide. The services without the “64” can be used instead. To allow common source code to be used,
macros are provided in the sys/uio.h header file that redefine these special services to their general
counterparts when compiling in 64-bit mode.

Using Cross-Memory Kernel Services

Occasionally, access to user-mode data is required when not in the environment of the user-mode process
that has addressability to the data. Such cases occur when the data is to be accessed asynchronously.
Examples of asynchronous accessing include:

v Direct memory access to the user data by I/O devices

v Data access by interrupt handlers

v Data access by a kernel process

In these circumstances, the kernel cross-memory services are required to provide the necessary access.
The xmattach and xmattach64 kernel services allow a cross-memory descriptor to be obtained for the
data area to be accessed. These services must be called in the process environment of the process
containing the data area.

Note: xmattach64 is not supported on the 64–bit kernel.

12 Kernel Extensions and Device Support Programming Concepts

After a cross-memory descriptor has been obtained, the xmemin and xmemout kernel services can be
used to access the data area outside the process environment containing the data. When access to the
data area is no longer required, the access must be removed by calling the xmdetach kernel service.
Kernel extensions should use these services only when absolutely necessary. Because of the machine
dependencies of cross-memory operations, using them increases the difficulty of porting the kernel
extension to other machine platforms.

Understanding Locking
The following information is provided to assist you in understanding locking.

Lockl Locks
The lockl locks (previously called conventional locks) are provided for compatibility only and should not be
used in new code: simple or complex locks should be used instead. These locks are used to protect a
critical section of code which accesses a resource such as a data structure or device, serializing access to
the resource. Every thread which accesses the resource must acquire the lock first, and release the lock
when finished.

A conventional lock has two states: locked or unlocked. In the locked state, a thread is currently executing
code in the critical section, and accessing the resource associated with the conventional lock. The thread
is considered to be the owner of the conventional lock. No other thread can lock the conventional lock
(and therefore enter the critical section) until the owner unlocks it; any thread attempting to do so must
wait until the lock is free. In the unlocked state, there are no threads accessing the resource or owning the
conventional lock.

Lockl locks are recursive and, unlike simple and complex locks, can be awakened by a signal.

Simple Locks
A simple lock provides exclusive-write access to a resource such as a data structure or device. Simple
locks are not recursive and have only two states: locked or unlocked.

Complex Locks
A complex lock can provide either shared or exclusive access to a resource such as a data structure or
device. Complex locks are not recursive by default (but can be made recursive) and have three states:
exclusive-write, shared-read, or unlocked.

If several threads perform read operations on the resource, they must first acquire the corresponding lock
in shared-read mode. Because no threads are updating the resource, it is safe for all to read it. Any thread
which writes to the resource must first acquire the lock in exclusive-write mode. This guarantees that no
other thread will read or write the resource while it is being updated.

Types of Critical Sections
There are two types of critical sections which must be protected from concurrent execution in order to
serialize access to a resource:

thread-thread These critical sections must be protected (by using the locking kernel services) from
concurrent execution by multiple processes or threads.

thread-interrupt These critical sections must be protected (by using the disable_lock and
unlock_enable kernel services) from concurrent execution by an interrupt handler
and a thread or process.

Chapter 1. Kernel Environment 13

Priority Promotion
When a lower priority thread owns a lock which a higher-priority thread is attempting to acquire, the owner
has its priority promoted to that of the most favored thread waiting for the lock. When the owner releases
the lock, its priority is restored to its normal value. Priority promotion ensures that the lock owner can run
and release its lock, so that higher priority processes or threads do not remain blocked on the lock.

Locking Strategy in Kernel Mode

Attention: A kernel extension should not attempt to acquire the kernel lock if it owns any other lock.
Doing so can cause unpredictable results or system failure.

A hierarchy of locks exists. This hierarchy is imposed by software convention, but is not enforced by the
system. The lockl kernel_lock variable, which is the global kernel lock, has the the coarsest granularity.
Other types of locks have finer granularity. The following list shows the ordering of locks based on
granularity:

v The kernel_lock global kernel lock

Note: Avoid using the kernel_lock global kernel lock variable in new code. It is only included for
compatibility purposes.

v File system locks (private to file systems)

v Device driver locks (private to device drivers)

v Private fine-granularity locks

Locks should generally be released in the reverse order from which they were acquired; all locks must be
released before a kernel process or thread exits. Kernel mode processes do not receive any signals while
they hold any lock.

Understanding Exception Handling
Exception handling involves a basic distinction between interrupts and exceptions:

v An interrupt is an asynchronous event and is not associated with the instruction that is executing when
the interrupt occurs.

v An exception is a synchronous event and is directly caused by the instruction that is executing when the
exception occurs.

The computer hardware generally uses the same mechanism to report both interrupts and exceptions. The
machine saves and modifies some of the event’s state and forces a branch to a particular location. When
decoding the reason for the machine interrupt, the interrupt handler determines whether the event is an
interrupt or an exception, then processes the event accordingly.

Exception Processing
When an exception occurs, the current instruction stream cannot continue. If you ignore the exception, the
results of executing the instruction may become undefined. Further execution of the program may cause
unpredictable results. The kernel provides a default exception-handling mechanism by which an instruction
stream (a process- or interrupt-level program) can specify what action is to be taken when an exception
occurs. Exceptions are handled differently depending on whether they occurred while executing in kernel
mode or user mode.

Default Exception-Handling Mechanism
If no exception handler is currently defined when an exception occurs, typically one of two things happens:

v If the exception occurs while a process is executing in user mode, the process is sent a signal relevant
to the type of exception.

v If the exception occurs while in kernel mode, the system halts.

14 Kernel Extensions and Device Support Programming Concepts

Kernel-Mode Exception Handling
Exception handling in kernel mode extends the setjump and longjump subroutines context-save-and-
restore mechanism by providing setjmpx and longjmpx kernel services to handle exceptions. The
traditional system mechanism is extended by allowing these exception handlers (or context-save
checkpoints) to be stacked on a per-process or per-interrupt handler basis.

This stacking mechanism allows the execution point and context of a process or interrupt handler to be
restored to a point in the process or interrupt handler, at the point of return from the setjmpx kernel
service. When execution returns to this point, the return code from setjmpx kernel service indicates the
type of exception that occurred so that the process or interrupt handler state can be fully restored.
Appropriate retry or recovery operations are then invoked by the software performing the operation.

When an exception occurs, the kernel first-level exception handler gets control. The first-level exception
handler determines what type of exception has occurred and saves information necessary for handling the
specific type of exception. For an I/O exception, the first-level handler also enables again the programmed
I/O operations.

The first-level exception handler then modifies the saved context of the interrupted process or interrupt
handler. It does so to execute the longjmpx kernel service when the first-level exception handler returns
to the interrupted process or interrupt handler.

The longjmpx kernel service executes in the environment of the code that caused the exception and
restores the current context from the topmost jump buffer on the stack of saved contexts. As a result, the
state of the process or interrupt handler that caused the exception is restored to the point of the return
from the setjmpx kernel service. (The return code, nevertheless, indicates that an exception has
occurred.)

The process or interrupt handler software should then check the return code and invoke exception
handling code to restore fully the state of the process or interrupt handler. Additional information about the
exception can be obtained by using the getexcept kernel service.

User-Defined Exception Handling
A typical exception handler should do the following:

v Perform any necessary clean-up such as freeing storage or segment registers and releasing other
resources.

v If the exception is recognized by the current handler and can be handled entirely within the routine, the
handler should establish itself again by calling the setjmpx kernel service. This allows normal
processing to continue.

v If the exception is not recognized by the current handler, it must be passed to the previously stacked
exception handler. The exception is passed by calling the longjmpx kernel service, which either calls
the previous handler (if any) or takes the system’s default exception-handling mechanism.

v If the exception is recognized by the current handler but cannot be handled, it is treated as though it is
unrecognized. The longjmpx kernel service is called, which either passes the exception along to the
previous handler (if any) or takes the system default exception-handling mechanism.

When a kernel routine that has established an exception handler completes normally, it must remove its
exception handler from the stack (by using the clrjmpx kernel service) before returning to its caller.

Note: When the longjmpx kernel service invokes an exception handler, that handler’s entry is
automatically removed from the stack.

Implementing Kernel Exception Handlers

The following information is provided to assist you in implementing kernel exception handlers.

Chapter 1. Kernel Environment 15

setjmpx, longjmpx, and clrjmpx Kernel Services
The setjmpx kernel service provides a way to save the following portions of the program state at the point
of a call:

v Nonvolatile general registers

v Stack pointer

v TOC pointer

v Interrupt priority number (intpri)

v Ownership of kernel-mode lock

This state can be restored later by calling the longjmpx kernel service, which accomplishes the following
tasks:

v Reloads the registers (including TOC and stack pointers)

v Enables or disables to the correct interrupt level

v Conditionally acquires or releases the kernel-mode lock

v Forces a branch back to the point of original return from the setjmpx kernel service

The setjmpx kernel service takes the address of a jump buffer (a label_t structure) as an explicit
parameter. This structure can be defined anywhere including on the stack (as an automatic variable). After
noting the state data in the jump buffer, the setjmpx kernel service pushes the buffer onto the top of a
stack that is maintained in the machine-state save structure.

The longjmpx kernel service is used to return to the point in the code at which the setjmpx kernel service
was called. Specifically, the longjmpx kernel service returns to the most recently created jump buffer, as
indicated by the top of the stack anchored in the machine-state save structure.

The parameter to the longjmpx kernel service is an exception code that is passed to the resumed
program as the return code from the setjmp kernel service. The resumed program tests this code to
determine the conditions under which the setjmpx kernel service is returning. If the setjmpx kernel
service has just saved its jump buffer, the return code is 0. If an exception has occurred, the program is
entered by a call to the longjmpx kernel service, which passes along a return code that is not equal to 0.

Note: Only the resources listed here are saved by the setjmpx kernel service and restored by the
longjmpx kernel service. Other resources, in particular segment registers, are not restored. A call
to the longjmpx kernel service, by definition, returns to an earlier point in the program. The
program code must free any resources that are allocated between the call to the setjmpx kernel
service and the call to the longjmpx kernel service.

If the exception handler stack is empty when the longjmpx kernel service is issued, there is no place to
jump to and the system default exception-handling mechanism is used. If the stack is not empty, the
context that is defined by the topmost jump buffer is reloaded and resumed. The topmost buffer is then
removed from the stack.

The clrjmpx kernel service removes the top element from the stack as placed there by the setjmpx kernel
service. The caller to the clrjmpx kernel service is expected to know exactly which jump buffer is being
removed. This should have been established earlier in the code by a call to the setjmpx kernel service.
Accordingly, the address of the buffer is required as a parameter to the clrjmpx kernel service. It can then
perform consistency checking by asserting that the address passed is indeed the address of the top stack
element.

Exception Handler Environment
The stacked exception handlers run in the environment in which the exception occurs. That is, an
exception occurring in a process environment causes the next dispatch of the process to run the exception

16 Kernel Extensions and Device Support Programming Concepts

handler on the top of the stack of exception handlers for that process. An exception occurring in an
interrupt handler causes the interrupt handler to return to the context saved by the last call to the setjmpx
kernel service made by the interrupt handler.

Note: An interrupt handler context is newly created each time the interrupt handler is invoked. As a result,
exception handlers for interrupt handlers must be registered (by calling the setjmpx kernel service)
each time the interrupt handler is invoked. Otherwise, an exception detected during execution of the
interrupt handler will be handled by the default handler.

Restrictions on Using the setjmpx Kernel Service

Process and interrupt handler routines registering exception handlers with the setjmpx kernel service must
not return to their caller before removing the saved jump buffer or buffers from the list of jump buffers. A
saved jump buffer can be removed by invoking the clrjmpx kernel service in the reverse order of the
setjmpx calls. The saved jump buffer must be removed before return because the routine’s context no
longer exists once the routine has returned to its caller.

If, on the other hand, an exception does occur (that is, the return code from setjmpx kernel service is
nonzero), the jump buffer is automatically removed from the list of jump buffers. In this case, a call to the
clrjmpx kernel service for the jump buffer must not be performed.

Care must also be taken in defining variables that are used after the context save (the call to the setjmpx
service), and then again by the exception handler. Sensitive variables of this nature must be restored to
their correct value by the exception handler when an exception occurs.

Note: If the last value of the variable is desired at exception time, the variable data type must be
declared as ″volatile.″

Exception handling is concluded in one of two ways. Either a registered exception handler handles the
exception and continues from the saved context, or the default exception handler is reached by exhausting
the stack of jump buffers.

Exception Codes

The /usr/include/sys/except.h file contains a list of code numbers corresponding to the various types of
hardware exceptions. When an exception handler is invoked (the return from the setjmpx kernel service is
not equal to 0), it is the responsibility of the handler to test the code to ensure that the exception is one
the routine can handle. If it is not an expected code, the exception handler must:

v Release any resources that would not otherwise be freed (buffers, segment registers, storage acquired
using the xmalloc routines)

v Call the longjmpx kernel service, passing it the exception code as a parameter

Thus, when an exception handler does not recognize the exception for which it has been invoked, it
passes the exception on to the next most recent exception handler. This continues until an exception
handler is reached that recognizes the code and can handle it. Eventually, if no exception handler can
handle the exception, the stack is exhausted and the system default action is taken.

In this manner, a component can allocate resources (after calling the setjmpx kernel service to establish
an exception handler) and be assured that the resources will later be released. This ensures the exception
handler gets a chance to release those resources regardless of what events occur before the instruction
stream (a process- or interrupt-level code) is terminated.

By coding the exception handler to recognize what exception codes it can process rather than encoding
this knowledge in the stack entries, a powerful and simple-to-use mechanism is created. Each handler

Chapter 1. Kernel Environment 17

need only investigate the exception code that it receives rather than just assuming that it was invoked
because a particular exception has occurred to implement this scheme. The set of exception codes used
cannot have duplicates.

Exceptions generated by hardware use one of the codes in the /usr/include/sys/except.h file. However,
the longjmpx kernel service can be invoked by any kernel component, and any integer can serve as the
exception code. A mechanism similar to the old-style setjmp and longjmp kernel services can be
implemented on top of the setjmpx/longjmpx stack by using exception codes outside the range of those
used for hardware exceptions.

To implement this old-style mechanism, a unique set of exception codes is needed. These codes must not
conflict with either the pre-assigned hardware codes or codes used by any other component. A simple way
to get such codes is to use the addresses of unique objects as code values.

For example, a program that establishes an exception handler might compare the exception code to the
address of its own entry point. Later on in the calling sequence, after any number of intervening calls to
the setjmpx kernel service by other programs, a program can issue a call to the longjmpx kernel service
and pass the address of the agreed-on function descriptor as the code. This code is only recognized by a
single exception handler. All the intervening ones just clean up their resources and pass the code to the
longjmpx kernel service again.

Addresses of functions are not the only possibilities for unique code numbers. For example, addresses of
external variables can also be used. By using unigue, system-wide addresses, the problem of code-space
collision is transformed into a problem of external-name collision. This problem is easier to solve, and is
routinely solved whenever the system is built. By comparison, pre-assigning exception numbers by using
#define statements in a header file is a much more cumbersome and error-prone method.

Hardware Detection of Exceptions

Each of the exception types results in a hardware interrupt. For each such interrupt, a first-level interrupt
handler (FLIH) saves the state of the executing program and calls a second-level handler (SLIH). The
SLIH is passed a pointer to the machine-state save structure and a code indicating the cause of the
interrupt.

When a SLIH determines that a hardware interrupt should actually be considered a synchronous
exception, it sets up the machine-state save to invoke the longjmpx kernel service, and then returns. The
FLIH then resumes the instruction stream at the entry to the longjmpx service.

The longjmpx service then invokes the top exception handler on the stack or takes the system default
action as previously described.

User-Mode Exception Handling
Exceptions that occur in a user-mode process and are not automatically handled by the kernel cause the
user-mode process to be signaled. If the process is in a state in which it cannot take the signal, it is
terminated and the information logged. Kernel routines can install user-mode exception handlers that catch
exceptions before they are signaled to the user-mode process.

The uexadd and uexdel kernel services allow system-wide user-mode exception handlers to be added
and removed.

The most recently registered exception handler is the first called. If it cannot handle the exception, the next
most recent handler on the list is called, and this second handler attempts to handle the exception. If this
attempt fails, successive handlers are tried, until the default handler is called, which generates the signal.

Additional information about the exception can be obtained by using the getexcept kernel service.

18 Kernel Extensions and Device Support Programming Concepts

Using Kernel Extensions to Support 64–bit Processes
Kernel extensions in the 32-bit kernel run in 32-bit mode, while kernel extensions in the 64-bit kernel run in
64-bit mode. Kernel extensions can be programmed to support both 32- and 64-bit applications. A 32-bit
kernel extension that supports 64-bit processes can also be loaded on a 32-bit system (where 64-bit
programs cannot run at all).

System calls can be made available to 32- or 64-bit processes, selectively. If an application invokes a
system call that is not exported to processes running in the current mode, the call will fail.

A 32-bit kernel extension that supports 64-bit applications on AIX 4.3 cannot be used to support 64-bit
applications on AIX 5.1 and beyond, because of a potential incompatibility with data types. Therefore, one
of the following three techniques must be used to indicate that a 32-bit kernel extension can be used with
64-bit applications:

v The module type of the kernel extension module can be set to LT, using the ld command with the
-bM:LT flag

v If sysconfig is used to load a kernel extension, the SYS_64L flag can be logically ored with the
SYS_SINGLELOAD or SYS_KLOAD requires.

v If kmod_load is used to load a kernel extension, the LD_64L flag can be specified

If none of these techniques is used, a kernel extension will still load, but 64-bit programs with calls to one
of the exported system calls will not execute.

Kernel extension support for 64-bit applications has two aspects:

The first aspect is the use of kernel services for working with the 64-bit user address space. The 64-bit
services for examining and manipulating the 64-bit address space are as_att64, as_det64, as_geth64,
as_puth64, as_seth64, and as_getsrval64. The services for copying data to or from 64-bit address
spaces are copyin64, copyout64, copyinstr64, fubyte64, fuword64, subyte64, and suword64. The
service for doing cross-memory attaches to memory in a 64-bit address space is xmattach64. The
services for creating real memory mappings are rmmap_create64 and rmmap_remove64. The major
difference between all these services and their 32-bit counterparts is that they use 64-bit user addresses
rather than 32-bit user addresses.

The service for determining whether a process (and its address space) is 32-bit or 64-bit is IS64U.

The second aspect of supporting 64-bit applications on the 32-bit kernel is taking 64-bit user data pointers
and using the pointers directly or transforming 64-bit pointers into 32-bit pointers which can be used in the
kernel. If the types of the parameters passed to a system call are all 32 bits or smaller when compiled in
64-bit mode, no additional work is required. However, if 64-bit data, long or pointers, are passed to a
system call, the function must reconstruct the full 64-bit values.

When a 64-bit process makes a system call in the 32-bit kernel, the system call handler saves the
high-order 32 bits of each parameter and converts the parameters to 32-bit values. If the full 64-bit value is
needed, the get64bitparm service should be called. This service converts a 32-bit parameter and a
0-based parameter number into a 64-bit long long value.

These 64-bit values can be manipulated directly by using services such as copyin64, or mapped to a
32-bit value, by calling as_remap64. In this way, much of the kernel does not have to deal with 64-bit
addresses. Services such as copyin will correctly transform a 32-bit value back into a 64-bit value before
referencing user space.

It is also possible to obtain the 64-bit value from a 32-bit pointer by calling as_unremap64. Both
as_remap64 and as_unremap64 are prototyped in /usr/include/sys/remap.h.

Chapter 1. Kernel Environment 19

64-bit Kernel Extension Programming Environment

C Language Data Model
The 64-bit kernel uses the LP64 (Long Pointer 64-bit) C language data model and requires kernel
extensions to do the same. The LP64 data model defines pointers, long, and long long types as 64 bits,
int as 32 bits, short as 16 bits, and char as 8 bits. In contrast, the 32-bit kernel uses the ILP32 data
model, which differs from LP64 in that long and pointer types are 32 bits.

In order to port an existing 32-bit kernel extension to the 64-bit kernel environment, source code must be
modified to be type-safe under LP64. This means ensuring that data types are used in a consistent
fashion. Source code is incorrect for the 64-bit environment if it assumes that pointers, long, and int are
all the same size.

In addition, the use of system-derived types must be examined whenever values are passed from an
application to the kernel. For example, size_t is a system-derived type whose size depends on the
compilation mode, and key_t is a system-derived type that is 64 bits in the 64-bit kernel environment, and
32 bits otherwise.

In cases where 32-bit and 64-bit versions of a kernel extension are to be generated from a single source
base, the kernel extension must be made type-safe for both the LP64 and ILP32 data models. To facilitate
this, the sys/types.h and sys/inttypes.h header files contain fixed-width system-derived types, constants,
and macros. For example, the int8_t, int16_t, int32_t, int64_t fixed-width types are provided along with
constants that specify their maximum values.

Kernel Data Structures
Several global, exported kernel data structures have been changed in the 64-bit kernel, in order to support
scalability and future functionality. These changes include larger structure sizes as a result of being
compiled under the LP64 data model. In porting a kernel extension to the 64-bit kernel environment, these
data structure changes must be considered.

Function Prototypes
Function prototypes are more important in the 64-bit programming environment than the 32-bit
programming environment, because the default return value of an undeclared function is int. If a function
prototype is missing for a function returning a pointer, the compiler will convert the returned value to an int
by setting the high-order word to 0, corrupting the value. In addition, function prototypes allow the compiler
to do more type checking, regardless of the compilation mode.

When compiled in 64-bit mode, system header files define full function prototypes for all kernel services
provided by the 64-bit kernel. By defining the __FULL_PROTO macro, function prototypes are provided in
32-bit mode as well. It is recommended that function prototypes be provided by including the system
header files, instead of providing a prototype in a source file.

Compiler Options
To compile a kernel extension in 64-bit mode, the -q64 flag must be used. To check for missing function
prototypes, -qinfo=pro can be specified. To compile in ANSI mode, use the -qlanglvl=ansi flag. When this
flag is used, additional error checking will be performed by the compiler. To link-edit a kernel extension, the
-b64 option must be used with the ld command.

Note: Do not link kernel extensions using the cc command.

Conditional Compilation
When compiling in 64-bit mode, the compiler automatically defines the macro __64BIT__. Kernel
extensions should always be compiled with the _KERNEL macro defined, and if sys/types.h is included,

20 Kernel Extensions and Device Support Programming Concepts

the macro __64BIT_KERNEL will be defined for kernel extensions being compiled in 64-bit mode. The
__64BIT_KERNEL macro can be used to provide for conditional compilation when compiling kernel
extensions from common source code.

Kernel extensions should not be compiled with the _KERNSYS macro defined. If this macro is defined, the
resulting kernel extension will not be supported, and binary compatibility will not be assured with future
releases.

Kernel Extension Libraries
The libcsys.a and libsys.a libraries are supported for both 32- and 64-bit kernel extensions. Each archive
contains 32- and 64-bit members. Function prototypes for all the functions in libcsys.a are found in
sys/libcsys.h.

Kernel Execution Mode
Within the 64-bit kernel, all kernel mode subsystems, including kernel extensions, run exclusively in 64-bit
processor mode and are capable of accessing data or executing instructions at any location within the
kernel’s 64-bit address space, including those found above the first 4GBs of this address space. This
availability of the full 64-bit address space extends to all kernel entities, including kprocs and interrupt
handlers, and enables the potential for software resource scalability through the introduction of an
enormous kernel address space.

Kernel Address Space
The 64-bit kernel provides a common user and kernel 64-bit address space. This is different from the
32-bit kernel where separate 32-bit kernel and user address spaces exist.

Kernel Address Space Organization
The kernel address space has a different organization under the the 64-bit kernel than under the 32-bit
kernel and extends beyond the 4 GB line. In addition, the organization of kernel space under the 64-bit
kernel can differ between hardware systems. To cope with this, kernel extensions must not have any
dependencies on the locations, relative or absolute, of the kernel text, kernel global data, kernel heap
data, and kernel stack values, and must appropriately type variables used to hold kernel addresses.

Temporary Attachment
The 64-bit kernel provides kernel extensions with the capability to temporarily attach virtual memory
segments to the kernel space for the current thread of kernel mode execution. This capability is also
available on the 32-bit kernel, and is provided through the vm_att and vm_det services.

A total of four concurrent temporary attaches will be supported under a single thread of execution.

Global Regions
The 64-bit kernel provides kernel extensions with the capability to create global regions within the kernel
address space. Once created, a region is globally accessible to all kernel code until it is destroyed.
Regions may be created with unique characteristics, for example, page protection, that suit kernel
extension requirements and are different from the global virtual memory allocated from the kernel_heap.

Global regions are also useful for kernel extensions that in the past have organized their data around
virtual memory segments and require sizes and alignments that are inappropriate for the kernel heap.
Under the 64-bit kernel, this memory can be provided through global regions rather than separate virtual
memory segments, thus avoiding the complexity and performance cost of temporarily attaching virtual
memory segments.

Global regions are created and destroyed with the vm_galloc and vm_gfree kernel services.

Chapter 1. Kernel Environment 21

32-bit Kernel Extension Considerations

The introduction of the scalable 64-bit ABI requires 32-bit kernel extensions to be modified in order to be
used by 64-bit applications on AIX 5.1 and later. Existing AIX 4.3 kernel extensions can still be used
without change for 32-bit applications on AIX 5.1 and later. If an AIX 4.3 kernel extension exports 64-bit
system calls, the symbols will be marked as invalid for 64-bit processes, and if a 64-bit program requires
these symbols, the program will fail to execute.

Once a kernel extension has been updated to support the new 64-bit ABI, there are two ways to indicate
that the kernel extension can be used by 64-bit processes again. The first way uses a linker flag to mark
the module as a ported kernel extension. Use the bM:LT linker flag to mark the module in this manner.
The second way requires changing the sysconfig or kmod_load call used to load the kernel extension.
When the SYS_64L flag is passed to sysconfig, or the LD_64L flag is passed to kmod_load, the
specified kernel extension will be allowed to export 64-bit system calls.

Kernel extensions in the 64-bit kernel are always assumed to support the 64-bit ABI. The module type,
specified by the -bM linker flag, as well as the SYS_64L and LD_64L flags are always ignored when the
64-bit kernel is running.

32-bit device drivers cannot be used by 64-bit applications unless the DEV_64L flag is set in the d_opts
field. The DEV_64BIT flag is ignored, and in the 64-bit kernel, DEV_64L is ignored as well.

Related Information
Chapter 15, “Serial Direct Access Storage Device Subsystem”, on page 279

“Locking Kernel Services” on page 52

“Handling Signals While in a System Call” on page 32

“System Calls Available to Kernel Extensions” on page 35

Subroutine References
The setpri subroutine, sysconfig subroutine in AIX 5L Version 5.2 Technical Reference: Base Operating
System and Extensions Volume 2.

Commands References
The ar command in AIX 5L Version 5.2 Commands Reference, Volume 1.

The ld command in AIX 5L Version 5.2 Commands Reference, Volume 3.

Technical References
The clrjmpx kernel service, copyin kernel service, copyinstr kernel service, copyout kernel service,
creatp kernel service, disable_lock kernel service, e_sleep kernel service, e_sleepl kernel service,
e_wait kernel service, et_wait kernel service, fubyte kernel service, fuword kernel service, getexcept
kernel service, i_disable kernel service, i_enable kernel service, i_init kernel service, initp kernel service,
lockl kernel service, longjmpx kernel service, setjmpx kernel service, setpinit kernel service, sig_chk
kernel service, subyte kernel service, suword kernel service, uiomove kernel service, unlockl kernel
service, ureadc kernel service, uwritec kernel service, uexadd kernel service, uexdel kernel service,
xmalloc kernel service, xmattach kernel service, xmdetach kernel service, xmemin kernel service,
xmemout kernel service in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

The uio structure in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

22 Kernel Extensions and Device Support Programming Concepts

Chapter 2. System Calls

A system call is a routine that allows a user application to request actions that require special privileges.
Adding system calls is one of several ways to extend the functions provided by the kernel.

The distinction between a system call and an ordinary function call is only important in the kernel
programming environment. User-mode application programs are not usually aware of this distinction.

Operating system functions are made available to the application program in the form of programming
libraries. A set of library functions found in a library such as libc.a can have functions that perform some
user-mode processing and then internally start a system call. In other cases, the system call can be
directly exported by the library without any user-space code. For more information on programming
libraries, see “Using Libraries” on page 4.

Operating system functions available to application programs can be split or moved between user-mode
functions and kernel-mode functions as required for different releases or machine platforms. Such
movement does not affect the application program. Chapter 1, “Kernel Environment”, on page 1 provides
more information on how to use system calls in the kernel environment.

Differences Between a System Call and a User Function
A system call differs from a user function in several key ways:

v A system call has more privilege than a normal subroutine. A system call runs with kernel-mode
privilege in the kernel protection domain.

v System call code and data are located in global kernel memory.

v System call routines can create and use kernel processes to perform asynchronous processing.

v System calls cannot use shared libraries or any symbols not found in the kernel protection domain.

Understanding Protection Domains
There are two protection domains in the operating system: the user protection domain and the kernel
mode protection domain.

User Protection Domain
Application programs run in the user protection domain, which provides:

v Read and write access to the data region of the process

v Read access to the text and shared text regions of the process

v Access to shared data regions using the shared memory functions.

When a program is running in the user protection domain, the processor executes instructions in the
problem state, and the program does not have direct access to kernel data.

Kernel Protection Domain
The code in the kernel and kernel extensions run in the kernel protection domain. This code includes
interrupt handlers, kernel processes, device drivers, system calls, and file system code. The processor is
in the kernel protection domain when it executes instructions in the privileged state, which provides:

v Read and write access to the global kernel address space

v Read and write access to the thread’s uthread block and u-block, except when an interrupt handler is
running.

© Copyright IBM Corp. 1997, 2003 23

Code running in the kernel protection domain can affect the execution environments of all processes
because it:

v Can access global system data

v Can use all kernel services

v Is exempt from all security constraints.

Programming errors in the code running in the kernel protection domain can cause the operating system to
fail. In particular, a process’s user data cannot be accessed directly, but must be accessed using the
copyin and copyout kernel services, or their variants. These routines protect the kernel from improperly
supplied user data addresses.

Application programs can gain controlled access to kernel data by making system calls. Access to
functions that directly or indirectly invoke system calls is typically provided by programming libraries,
providing access to operating system functions.

Understanding System Call Execution
When a user program invokes a system call, a system call instruction is executed, which causes the
processor to begin executing the system call handler in the kernel protection domain. This system call
handler performs the following actions:

1. Sets the ut_error field in the uthread structure to 0

2. Switches to a kernel stack associated with the calling thread

3. Calls the function that implements the requested system call.

The system loader maintains a table of the functions that are used for each system call.

The system call runs within the calling thread, but with more privilege because system calls run in the
kernel protection domain. After the function implementing the system call has performed the requested
action, control returns to the system call handler. If the ut_error field in the uthread structure has a
non-zero value, the value is copied to the application’s thread-specific errno variable. If a signal is
pending, signal processing take place, which can result in an application’s signal handler being invoked. If
no signals are pending, the system call handler restores the state of the calling thread, which is resumed
in the user protection domain. For more information on protection domains, see “Understanding Protection
Domains” on page 23.

Accessing Kernel Data While in a System Call
A system call can access data that the calling thread cannot access because system calls execute in the
kernel protection domain. The following are the general categories of kernel data:

v The ublock or u-block (user block data) structure:

System calls should use the kernel services to read or modify data traditionally found in the ublock or
uthread structures. For example, the system call handler uses the value of the thread’s ut_error field
to update the thread-specific errno variable before returning to user mode. This field can be read or set
by using the getuerror and setuerror kernel services. The current process ID can be obtained by using
the getpid kernel service, and the current thread ID can be obtained by using the thread_self kernel
service.

v Global memory

System calls can also access global memory such as the kernel and kernel data regions. These regions
contain the code and static data for the system call as well as the rest of the kernel.

v The stack for a system call:

A system call routine runs on a protected stack associated with a calling thread, which allows a system
call to execute properly even when the stack pointer to the calling thread is invalid. In addition,
privileged data can be saved on the stack without danger of exposing the data to the calling thread.

24 Kernel Extensions and Device Support Programming Concepts

Attention: Incorrectly modifying fields in kernel or user block structures can cause unpredictable results
or system crashes.

Passing Parameters to System Calls
Parameters are passed to system calls in the same way that parameters are passed to other functions,
but some additional calling conventions and limitations apply.

First, system calls cannot have floating-point parameters. In fact, the operating system does not preserve
the contents of floating-point registers when a system call is preempted by another thread, so system calls
cannot use any floating-point operations.

Second, a system call in the 32–bit kernel cannot return a long long value to a 32–bit application. In
32–bit mode, long long values are returned in a pair of general purpose registers, GPR3 and GPR4. Only
GPR3 is preserved by the system call handler before it returns to the application. A system call in the
32–bit kernel can return a 64–bit value to a 64–bit application, but the saveretval64 kernel service must
used.

Third, since a system call runs on its own stack, the number of arguments that can be passed to a system
call is limited. The operating system linkage conventions specify that up to eight general purpose registers
are used for parameter passing. If more parameters exist than will fit in eight registers, the remaining
parameters are passed in the stack. Because a system call does not have direct access to the
application’s stack, all parameters for system calls must fit in eight registers.

Some parameters are passed in multiple registers. For example, 32-bit applications pass long long
parameters in two registers, and structures passed by value can require multiple registers, depending on
the structure size. The writer of a system call should be familiar with the way parameters are passed by
the compiler and ensure that the 8-register limit is not exceeded. For more information on parameter
calling conventions, see Subroutine Linkage Convention in Assembler Language Reference.

Finally, because 32- and 64-bit applications are supported by both the 32- and 64-bit kernels, the data
model used by the kernel does not always match the data model used by the application. When the data
models do not match, the system call might have to perform extra processing before parameters can be
used.

Regardless of whether the 32-bit or 64-bit kernel is running, the interface that is provided by the kernel to
applications must be identical. This simplifies the development of applications and libraries, because their
behavior does not depend on the mode of the kernel. On the other hand, system calls might need to know
the mode of the calling process. The IS64U macro can be used to determine if the caller of a system call
is a 64-bit process. For more information on the IS64U macro, see IS64U Kernel Service in AIX 5L
Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

The ILP32 and LP64 data models differ in the way that pointers and long and long long parameters are
treated when used in structures or passed as functional parameters. The following tables summarize the
differences.

Type Size Used as Parameter

long 32 bits One register

pointer 32 bits One register

long long 64 bits Two registers

Type Size Used as Parameter

long 64 bits One register

Chapter 2. System Calls 25

Type Size Used as Parameter

pointer 64 bits One register

long long 64 bits One register

System calls using these types must take the differing data models into account. The treatment of these
types depends on whether they are used as parameters or in structures passed as parameters by value or
by reference.

Passing Scalar Parameters to System Calls
Scalar parameters (pointers and integral values) are passed in registers. The combinations of kernel and
application modes are:

v 32–bit application support on the 64–bit kernel

v 64–bit application support on the 64–bit kernel

v 32–bit application support on the 32–bit kernel

v 64–bit application support on the 32–bit kernel

32-bit Application Support on the 64-bit Kernel
When a 32-bit application makes a system call to the 64-bit kernel, the system call handler zeros the
high-order word of each parameter register. This allows 64-bit system calls to use pointers and unsigned
long parameters directly. Signed and unsigned integer parameters can also be used directly by 64-bit
system calls. This is because in 64-bit mode, the compiler generates code that sign extends or zero fills
integers passed as parameters. Similar processing is performed for char and short parameters, so these
types do not require any special handling either. Only signed long and long long parameters need
additional processing.

Signed long Parameters: To convert a 32-bit signed long parameter to a 64-bit value, the 32-bit value
must be sign extended. The LONG32TOLONG64 macro is provided for this operation. It converts a 32-bit
signed value into a 64-bit signed value, as shown in this example:
syscall1(long incr)

{
/* If the caller is a 32-bit process, convert
* ’incr’ to a signed, 64-bit value.
*/
if (!IS64U)

incr = LONG32TOLONG64(incr);
.
.
.

}

If a parameter can be either a pointer or a symbolic constant, special handling is needed. For example, if
-1 is passed as a pointer argument to indicate a special case, comparing the pointer to -1 will fail, as will
unconditionally sign-extending the parameter value. Code similar to the following should be used:
syscall2(void *ptr)

{
/* If caller is a 32-bit process,
* check for special parameter value.
*/
if (!IS64U && (LONG32TOLONG64(ptr) == -1)

ptr = (void *)-1;

if (ptr == (void *)-1)
special_handling();

else {
.

26 Kernel Extensions and Device Support Programming Concepts

.

.
}

}

Similar treatment is required when an unsigned long parameter is interpreted as a signed value.

long long Parameters: A 32-bit application passes a long long parameter in two registers, while a
64-bit kernel system call uses a single register for a long long parameter value.

The system call function prototype cannot match the function prototype used by the application. Instead,
each long long parameter should be replaced by a pair of uintptr_t parameters. Subsequent parameters
should be replaced with uintptr_t parameters as well. When the caller is a 32-bit process, a single 64-bit
value will be constructed from two consecutive parameters. This operation can be performed using the
INTSTOLLONG macro. For a 64-bit caller, a single parameter is used directly.

For example, suppose the application function prototype is:
syscall3(void *ptr, long long len1, long long len2, int size);

The corresponding system call code should be similar to:
syscall3(void *ptr, uintptr_t L1,

uintptr_t L2, uintptr_t L3,
uintptr_t L4, uintptr_t L5)

{
long len1;
long len2;
int size;

/* If caller is a 32-bit application, len1
* and len2 must be constructed from pairs of
* parameters. Otherwise, a single parameter
* can be used for each length.
*/

if (!IS64U) {
len1 = INTSTOLLONG(L1, L2);
len2 = INTSTOLLONG(L3, L4);
size = (int)L5;

}
else {

len1 = (long)L1
len2 = (long)L2
size = (int)L3;

}
.
.
.

}

64-bit Application Support on the 64-bit Kernel
For the most part, system call parameters from a 64-bit application can be used directly by 64-bit system
calls. The system call handler does not modify the parameter registers, so the system call sees the same
values that were passed by the application. The only exceptions are the pid_t and key_t types, which are
32-bit signed types in 64-bit applications, but are 64-bit signed types in 64-bit system calls. Before these
two types can be used, the 32-bit parameter values must be sign extended using the LONG32TOLONG64
macro.

32-bit Application Support on the 32-bit Kernel
No special parameter processing is required when 32-bit applications call 32-bit system calls. Application
parameters can be used directly by system calls.

Chapter 2. System Calls 27

64-bit Application Support on the 32-bit Kernel
When 64-bit applications make system calls, 64-bit parameters are passed in registers. When 32-bit
system calls are running, the high-order words of the parameter registers are not visible, so 64-bit
parameters cannot be obtained directly. To allow 64-bit parameter values to be used by 32-bit system
calls, the system call handler saves the high-order word of each 64-bit parameter register in a save area
associated with the current thread. If a system call needs to obtain the full 64-bit value, use the
get64bitparm kernel service.

If a 64-bit parameter is an address, the system call might not be able to use the address directly. Instead,
it might be necessary to map the 64-bit address into a 32-bit address, which can be passed to various
kernel services.

Access to 64-bit System Call Parameter Values
When a 32-bit system call function is called by the system call handler on behalf of a 64-bit process, the
parameter registers are treated as 32-bit registers, and the system call function can only see the low-order
word of each parameter. For integer, char, or short parameters, the parameter can be used directly.
Otherwise, the get64bitparm kernel service must be called to obtain the full 64-bit parameter value. This
kernel service takes two parameters: the zero-based index of the parameter to be obtained, and the value
of the parameter as seen by the system call function. This value is the low-order word of the original 64-bit
parameter, and it will be combined with the high-order word that was saved by the system call handler,
allowing the original 64-bit parameter to be returned as a long long value.

For example, suppose that the first and third parameters of a system call are 64-bit values. The full
parameter values are obtained as shown:
#include <sys/types.h>

syscall4(char *str, int fd, long count)
{

ptr64 str64;
int64 count64;

if (IS64U)
{

/* get 64-bit address. */
str64 = get64bitparm(str, 0);

/* get 64-bit value */
count64 = get64bitparm(count, 2);

}
.
.
.

}

The get64bitparm kernel service must not be used when the caller is a 32-bit process, nor should it be
used when the parameter type is an int or smaller. In these cases, the system call parameter can be used
directly. For example, the fd parameter in the previous example can be used directly.

Using 64-bit Address Parameters
When a system call parameter is a pointer passed from a 64-bit application, the full 64-bit address is
obtained by calling the get64bitparm kernel service. Thereafter, consideration must be given as to how
the address will be used.

A system call can use a 64-bit address to access user-space memory by calling one of the 64-bit
data-movement kernel services, such as copyin64, copyout64, or copyinstr64. Alternatively, if the user
address is to be passed to kernel services that expect 32-bit addresses, the 64-bit address should be
mapped to a 32-bit address.

Mapping associates a 32-bit value with a 64-bit address. This 32-bit value can be passed to kernel
services in the 32-bit kernel that expect pointer parameters. When the 32-bit value is passed to a

28 Kernel Extensions and Device Support Programming Concepts

data-movement kernel service, such as copyin or copyout, the original 64-bit address will be obtained
and used. Address mapping allows common code to be used for many kernel services. Only the
data-movement routines need to be aware of the address mapping.

Consider a system call that takes a path name and a buffer pointer as parameters. This system call will
use the path name to obtain information about the file, and use the buffer pointer to return the information.
Because pathname is passed to the lookupname kernel service, which takes a 32-bit pointer, the
pathname parameter must be mapped. The buffer address can be used directly. For example:
int syscall5 (

char *pathname,
char *buffer)

{
ptr64 upathanme;
ptr64 ubuffer;
struct vnode *vp;
struct cred *crp;

/* If 64-bit application, obtain 64-bit parameter
* values and map "pathname".
*/
if (IS64U)
{

upathname = get64bitparm(pathname, 0);

/* The as_remap64() call modifies pathname. */
as_remap64(upathname, MAXPATH, &pathname);

ubuffer = get64bitparm(buffer, 1);
}
else
{

/* For 32-bit process, convert 32-bit address
* 64-bit address.
*/
ubuffer = (ptr64)buffer;

}

crp = crref();
rc = lookupname(pathname, USR, L_SEARCH, NULL, &vp, crp);
getinfo(vp, &local_buffer);

/* Copy information to user space,
* for both 32-bit and 64-bit applications.
*/
rc = copyout64(&local_buffer, ubuffer,

strlen(local_buffer));
.
.
.

}

The function prototype for the get64bitparm kernel service is found in the sys/remap.h header file. To
allow common code to be written, the get64bitparm kernel service is defined as a macro when compiling
in 64-bit mode. The macro simply returns the specified parameter value, as this value is already a full
64-bit value.

In some cases, a system call or kernel service will need to obtain the original 64-bit address from the
32-bit mapped address. The as_unremap64 kernel service is used for this purpose.

Chapter 2. System Calls 29

Returning 64-bit Values from System Calls
For some system calls, it is necessary to return a 64-bit value to 64-bit applications. The 64-bit application
expects the 64-bit value to be contained in a single register. A 32-bit system call, however, has no way to
set the high-order word of a 64–bit register.

The saveretval64 kernel service allows a 32-bit system call to return a 64-bit value to a 64-bit application.
This kernel service takes a single long long parameter, saves the low-order word (passed in GPR4) in a
save area for the current thread, and returns the original parameter. Depending on the return type of the
system call function, this value can be returned to the system call handler, or the high-order word of the
full 64-bit return value can be returned.

After the system call function returns to the system call handler, the original 64-bit return value will be
reconstructed in GPR3, and returned to the application. If the saveretval64 kernel service is not called by
the system call, the high-order word of GPR3 is zeroed before returning to the application. For example:
void * syscall6 (

int arg)
{

if (IS64U) {
ptr64 rc = f(arg);
saveretval64(rc); /* Save low-order word */
return (void *)(rc >> 32); /* Return high-order word as

* 32-bit address */
}
else {

return (void *)f(arg);
}

}

Passing Structure Parameters to System Calls
When structures are passed to or from system calls, whether by value or by reference, the layout of the
structure in the application might not match the layout of the same structure in the system call. There are
two ways that system calls can process structures passed from or to applications: structure reshaping and
dual implementation.

Structure Reshaping
Structure reshaping allows system calls to support both 32- and 64-bit applications using a single system
call interface and using code that is predominately common to both application types.

Structure reshaping requires defining more than one version of a structure. One version of the structure is
used internally by the system call to process the request. The other version should use size-invariant
types, so that the layout of the structure fields matches the application’s view of the structures. When a
structure is copied in from user space, the application-view structure definition is used. The structure is
reshaped by copying each field of the application’s structure to the kernel’s structure, converting the fields
as required. A similar conversion is performed on structures that are being returned to the caller.

Structure reshaping is used for structures whose size and layout as seen by an application differ from the
size and layout as seen by the system call. If the system call uses a structure definition with fields big
enough for both 32- and 64-bit applications, the system call can use this structure, independent of the
mode of the caller.

While reshaping requires two versions of a structure, only one version is public and visible to the end user.
This version is the natural structure, which can also be used by the system call if reshaping is not needed.
The private version should only be defined in the source file that performs the reshaping. The following
example demonstrates the techniques for passing structures to system calls that are running in the 64-bit
kernel and how a structure can be reshaped:

30 Kernel Extensions and Device Support Programming Concepts

/* Public definition */
struct foo {

int a;
long b;

};

/* Private definition--matches 32-bit
* application’s view of the data structure. */
struct foo32 {

int a;
int b;

}

syscall7(struct foo *f)
{

struct foo f1;
struct foo32 f2;

if (IS64U()) {
copyin(&f1, f, sizeof(f1));

}
else {

copyin(&f2, f, sizeof(f2));
f1.a = f2.a;
f1.b = f2.b;

}
/* Common structure f1 used from now on. */
.
.
.

}

Dual Implementation: The dual implementation approach involves separate code paths for calls from
32-bit applications and calls from 64-bit applications. Similar to reshaping, the system call code defines a
private view of the application’s structure. With dual implementations, the function syscall7 could be
rewritten as:
syscall8(struct foo *f)
{

struct foo f1;
struct foo32 f2;

if (IS64U()) {
copyin(&f1, f, sizeof(f1));
/* Code for 64-bit process uses f1 */
.
.
.

}
else {

copyin(&f2, f, sizeof(f2));
/* Code for 32-bit process uses f2 */
.
.
.

}
}

Dual implementation is most appropriate when the structures are so large that the overhead of reshaping
would affect the performance of the system call.

Passing Structures by Value: When structures are passed by value, the structure is loaded into as
many parameter registers as are needed. When the data model of an application and the data model of
the kernel extension differ, the values in the registers cannot be used directly. Instead, the registers must
be stored in a temporary variable. For example:

Chapter 2. System Calls 31

Note: This example builds upon the structure definitions defined in “Dual Implementation” on page 31.
/* Application prototype: syscall9(struct foo f); */

syscall9(unsigned long a1, unsigned long a1)
{

union {
struct foo f1; /* Structure for 64-bit caller. */
struct foo32 f2; /* Structure for 32-bit caller. */
unsigned long p64[2]; /* Overlay for parameter registers

* when caller is 64-bit program
*/

unsigned int p32[2]; /* Overlay for parameter registers
* when caller is 32-bit program

*/
} uarg;
if (IS64U()) {

uarg.p64[0] = a1;
uarg.p64[1] = a2;
/* Now uarg.f1 can be used */
.
.
.

}
else {

uarg.p32[0] = a1;
uarg.p32[1] = a2;
/* Now uarg.f2 can be used */
.
.
.

}
}

Comparisons to AIX 4.3
In AIX 4.3, the conventions for passing parameters from a 64-bit application to a system call required
user-space library code to perform some of the parameter reshaping and address mapping. In AIX 5.1 and
later, all parameter reshaping and address mapping should be performed by the system call, eliminating
the need for kernel-specific library code. In fact, user-space address mapping is no longer supported. In
most cases, system calls can be implemented without any application-specific library code.

Preempting a System Call
The kernel allows a thread to be preempted by a more favored thread, even when a system call is
executing. This capability provides better system responsiveness for large multi-user systems.

Because system calls can be preempted, access to global data must be serialized. Kernel locking
services, such as simple_lock and simple_unlock, are frequently used to serialize access to kernel data.
A thread can be preempted even when it owns a lock. If multiple locks are obtained by system calls, a
technique must be used to prevent multiple threads from deadlocking. One technique is to define a lock
hierarchy. A system call must never return while holding a lock. For more information on locking, see
“Understanding Locking” on page 13.

Handling Signals While in a System Call
Signals can be generated asynchronously or synchronously with respect to the thread that receives the
signal. An asynchronously generated signal is one that results from some action external to a thread. It is
not directly related to the current instruction stream of that thread. Generally these are generated by other
threads or by device drivers.

32 Kernel Extensions and Device Support Programming Concepts

A synchronously generated signal is one that results from the current instruction stream of the thread.
These signals cause interrupts. Examples of such cases are the execution of an illegal instruction, or an
attempted data access to nonexistent address space.

Delivery of Signals to a System Call
Delivery of signals to a thread only takes place when a user application is about to be resumed in the user
protection domain. Signals cannot be delivered to a thread if the thread is in the middle of a system call.
For more information on signal delivery for kernel processes, see “Using Kernel Processes” on page 8.

Asynchronous Signals and Wait Termination
An asynchronous signal can alter the operation of a system call or kernel extension by terminating a long
wait. Kernel services such as e_block_thread, e_sleep_thread, and et_wait are affected by signals. The
following options are provided when a signal is posted to a thread:

v Return from the kernel service with a return code indicating that the call was interrupted by a signal

v Call the longjmpx kernel service to resume execution at a previously saved context in the event of a
signal

v Ignore the signal using the short-wait option, allowing the kernel service to return normally.

The sleep kernel service, provided for compatibility, also supports the PCATCH and SWAKEONSIG
options to control the response to a signal during the sleep function.

Previously, the kernel automatically saved context on entry to the system call handler. As a result, any long
(interruptible) sleep not specifying the PCATCH option returned control to the saved context when a signal
interrupted the wait. The system call handler then set the errno global variable to EINTR and returned a
return code of -1 from the system call.

The kernel, however, requires each system call that can directly or indirectly issue a sleep call without the
PCATCH option to set up a saved context using the setjmpx kernel service. This is done to avoid
overhead for system calls that handle waits terminated by signals. Using the setjmpx service, the system
can set up a saved context, which sets the system call return code to a -1 and the ut_error field to
EINTR, if a signal interrupts a long wait not specifying return-from-signal.

It is probably faster and more robust to specify return-from-signal on all long waits and use the return
code to control the system call return.

Stacking Saved Contexts for Nested setjmpx Calls
The kernel supports nested calls to the setjmpx kernel service. It implements the stack of saved contexts
by maintaining a linked list of context information anchored in the machine state save area. This area is in
the user block structure for a process. Interrupt handlers have special machine state save areas.

An initial context is set up for each process by the initp kernel service for kernel processes and by the
fork subroutine for user processes. The process terminates if that context is resumed.

Handling Exceptions While in a System Call
Exceptions are interrupts detected by the processor as a result of the current instruction stream. They
therefore take effect synchronously with respect to the current thread.

The default exception handler generates a signal if the process is in a state where signals can be
delivered immediately. Otherwise, the default exception handler generates a system dump.

Chapter 2. System Calls 33

Alternative Exception Handling Using the setjmpx Kernel Service
For certain types of exceptions, a system call can specify unique exception-handler routines through calls
to the setjmpx service. The exception handler routine is saved as part of the stacked saved context. Each
exception handler is passed the exception type as a parameter.

The exception handler returns a value that can specify any of the following:

v The process should resume with the instruction that caused the exception.

v The process should return to the saved context that is on the top of the stack of contexts.

v The exception handler did not handle the exception.

If the exception handler did not handle the exception, then the next exception handler in the stack of
contexts is called. If none of the stacked exception handlers handle the exception, the kernel performs
default exception handling. The setjmpx and longjmpx kernel services help implement exception
handlers.

Understanding Nesting and Kernel-Mode Use of System Calls
The operating system supports nested system calls with some restrictions. System calls (and any other
kernel-mode routines running under the process environment of a user-mode process) can use system
calls that pass all parameters by value. System calls and other kernel-mode routines must not start system
calls that have one or more parameters passed by reference. Doing so can result in a system crash. This
is because system calls with reference parameters assume that the referenced data area is in the user
protection domain. As a result, these system calls must use special kernel services to access the data.
However, these services are unsuccessful if the data area they are trying to access is not in the user
protection domain.

This restriction does not apply to kernel processes. User-mode data access services can distinguish
between kernel processes and user-mode processes in kernel mode. As a result, these services can
access the referenced data areas accessed correctly when the caller is a kernel process.

Kernel processes cannot call the fork or exec system calls, among others. A list of the base operating
system calls available to system calls or other routines in kernel mode is provided in “System Calls
Available to Kernel Extensions” on page 35.

Page Faulting within System Calls
Attention: A page fault that occurs while external interrupts are disabled results in a system crash.
Therefore, a system call should be programmed to ensure that its code, data, and stack are pinned before
it disables external interrupts.

Most data accessed by system calls is pageable by default. This includes the system call code, static data,
dynamically allocated data, and stack. As a result, a system call can be preempted in two ways:

v By a more favored process, or by an equally favored process when a time slice has been exhausted

v By losing control of the processor when it page faults

In the latter case, even less-favored processes can run while the system call is waiting for the paging I/O
to complete.

34 Kernel Extensions and Device Support Programming Concepts

Returning Error Information from System Calls
Error information returned by system calls differs from that returned by kernel services that are not system
calls. System calls typically return a special value, such as -1 or NULL, to indicate that an error has
occurred. When an error condition is to be returned, the ut_error field should be updated by the system
call before returning from the system call function. The ut_error field is written using the setuerror kernel
service.

Before actually calling the system call function, the system call handler sets the ut_error field to 0. Upon
return from the system call function, the system call handler copies the value found in ut_error into the
thread-specific errno variable if ut_error was nonzero. After setting the errno variable, the system call
handler returns to user mode with the return code provided by the system call function.

Kernel-mode callers of system calls must be aware of this return code convention and use the getuerror
kernel service to obtain the error value when an error indication is returned by the system call. When
system calls are nested, the system call function called by the system call handler can return the error
value provided by the nested system call function or can replace this value with a new one by using the
setuerror kernel service.

System Calls Available to Kernel Extensions
The following system calls are grouped according to which subroutines call them:

v System calls available to all kernel extensions

v System calls available to kernel processes only

Note: System calls are not available to interrupt handlers.

System Calls Available to All Kernel Extensions

gethostid Gets the unique identifier of the current host.
getpgrp Gets the process ID, process group ID, and parent process ID.
getppid Gets the process ID, process group ID, and parent process ID.
getpri Returns the scheduling priority of a process.
getpriority Gets or sets the nice value.
semget Gets a set of semaphores.
seteuid Sets the process user IDs.
setgid Sets the process group IDs.
sethostid Sets the unique identifier of the current host.
setpgid Sets the process group IDs.
setpgrp Sets the process group IDs.
setpri Sets a process scheduling priority to a constant value.
setpriority Gets or sets the nice value.
setreuid Sets the process user IDs.
setsid Creates a session and sets the process group ID.
setuid Sets the process user IDs.
ulimit Sets and gets user limits.
umask Sets and gets the value of the file-creation mask.

System Calls Available to Kernel Processes Only

disclaim Disclaims the content of a memory address range.
getdomainname Gets the name of the current domain.
getgroups Gets the concurrent group set of the current process.
gethostname Gets the name of the local host.

Chapter 2. System Calls 35

getpeername Gets the name of the peer socket.
getrlimit Controls maximum system resource consumption.
getrusage Displays information about resource use.
getsockname Gets the socket name.
getsockopt Gets options on sockets.
gettimer Gets and sets the current value for the specified system-wide timer.
resabs Manipulates the expiration time of interval timers.
resinc Manipulates the expiration time of interval timers.
restimer Gets and sets the current value for the specified system-wide timer.
semctl Controls semaphore operations.
semop Performs semaphore operations.
setdomainname Sets the name of the current domain.
setgroups Sets the concurrent group set of the current process.
sethostname Sets the name of the current host.
setrlimit Controls maximum system resource consumption.
settimer Gets and sets the current value for the specified systemwide timer.
shmat Attaches a shared memory segment or a mapped file to the current process.
shmctl Controls shared memory operations.
shmdt Detaches a shared memory segment.
shmget Gets shared memory segments.
sigaction Specifies the action to take upon delivery of a signal.
sigprocmask Sets the current signal mask.
sigstack Sets and gets signal stack context.
sigsuspend Atomically changes the set of blocked signals and waits for a signal.
sysconfig Provides a service for controlling system/kernel configuration.
sys_parm Provides a service for examining or setting kernel run-time tunable parameters.
times Displays information about resource use.
uname Gets the name of the current system.
unamex Gets the name of the current system.
usrinfo Gets and sets user information about the owner of the current process.
utimes Sets file access and modification times.

Related Information
“Handling Signals While in a System Call” on page 32

“Understanding Protection Domains” on page 23

“Understanding Kernel Threads” on page 6

“Using Kernel Processes” on page 8

“Using Libraries” on page 4

“Understanding Locking” on page 13

“Locking Kernel Services” on page 52

“Understanding Interrupts” on page 49

Subroutine References
The fork subroutine in AIX 5L Version 5.2 Technical Reference: Base Operating System and Extensions
Volume 1.

36 Kernel Extensions and Device Support Programming Concepts

Technical References
The e_sleep kernel service, e_sleepl kernel service, et_wait kernel service, getuerror kernel service,
initp kernel service, lockl kernel service, longjmpx kernel service, setjmpx kernel service, setuerror
kernel service, unlockl kernel service in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems
Volume 1.

Chapter 2. System Calls 37

38 Kernel Extensions and Device Support Programming Concepts

Chapter 3. Virtual File Systems

The virtual file system (VFS) interface, also known as the v-node interface, provides a bridge between the
physical and logical file systems. The information that follows discusses the virtual file system interface, its
data structures, and its header files, and explains how to configure a virtual file system.

There are two essential components in the file system:

Logical file system Provides support for the system call interface.
Physical file system Manages permanent storage of data.

The interface between the physical and logical file systems is the virtual file system interface. This
interface allows support for multiple concurrent instances of physical file systems, each of which is called a
file system implementation. The file system implementation can support storing the file data in the local
node or at a remote node. For more information on the virtual filesystem interface, see “Understanding the
Virtual File System Interface” on page 41.

The virtual file system interface is usually referred to as the v-node interface. The v-node structure is the
key element in communication between the virtual file system and the layers that call it. For more
information on v-nodes, see “Understanding Virtual Nodes (V-nodes)” on page 40.

Both the virtual and logical file systems exist across all of this operating system family’s platforms.

Logical File System Overview
The logical file system is the level of the file system at which users can request file operations by system
call. This level of the file system provides the kernel with a consistent view of what might be multiple
physical file systems and multiple file system implementations. As far as the logical file system is
concerned, file system types, whether local, remote, or strictly logical, and regardless of implementation,
are indistinguishable.

A consistent view of file system implementations is made possible by the virtual file system abstraction.
This abstraction specifies the set of file system operations that an implementation must include in order to
carry out logical file system requests. Physical file systems can differ in how they implement these
predefined operations, but they must present a uniform interface to the logical file system. A list of file
system operators can be found at “Requirements for a File System Implementation” on page 41. For more
information on the virual file system, see “Virtual File System Overview” on page 40.

Each set of predefined operations implemented constitutes a virtual file system. As such, a single physical
file system can appear to the logical file system as one or more separate virtual file systems.

Virtual file system operations are available at the logical file system level through the virtual file system
switch. This array contains one entry for each virtual file system, with each entry holding entry point
addresses for separate operations. Each file system type has a set of entries in the virtual file system
switch.

The logical file system and the virtual file system switch support other operating system file-system access
semantics. This does not mean that only other operating system file systems can be supported. It does
mean, however, that a file system implementation must be designed to fit into the logical file system
model. Operations or information requested from a file system implementation need be performed only to
the extent possible.

Logical file system can also refer to the tree of known path names in force while the system is running. A
virtual file system that is mounted onto the logical file system tree itself becomes part of that tree. In fact, a

© Copyright IBM Corp. 1997, 2003 39

single virtual file system can be mounted onto the logical file system tree at multiple points, so that nodes
in the virtual subtree have multiple names. Multiple mount points allow maximum flexibility when
constructing the logical file system view.

Component Structure of the Logical File System
The logical file system is divided into the following components:

v System calls

Implement services exported to users. System calls that carry out file system requests do the following:

– Map the user’s parameters to a file system object. This requires that the system call component use
the v-node (virtual node) component to follow the object’s path name. In addition, the system call
must resolve a file descriptor or establish implicit (mapped) references using the open file
component.

– Verify that a requested operation is applicable to the type of the specified object.

– Dispatch a request to the file system implementation to perform operations.

v Logical file system file routines

Manage open file table entries and per-process file descriptors. An open file table entry records the
authorization of a process’s access to a file system object. A user can refer to an open file table entry
through a file descriptor or by accessing the virtual memory to which the file was mapped. The logical
file system routines are those kernel services, such as fp_ioctl and fp_select, that begin with the prefix
fp_.

v v-nodes

Provide system calls with a mechanism for local name resolution. Local name resolution allows the
logical file system to access multiple file system implementations through a uniform name space.

Virtual File System Overview
The virtual file system is an abstraction of a physical file system implementation. It provides a consistent
interface to multiple file systems, both local and remote. This consistent interface allows the user to view
the directory tree on the running system as a single entity even when the tree is made up of a number of
diverse file system types. The interface also allows the logical file system code in the kernel to operate
without regard to the type of file system being accessed. For more information on the logical file system,
see “Logical File System Overview” on page 39.

A virtual file system can also be viewed as a subset of the logical file system tree, that part belonging to a
single file system implementation. A virtual file system can be physical (the instantiation of a physical file
system), remote, or strictly logical. In the latter case, for example, a virtual file system need not actually be
a true file system or entail any underlying physical storage device.

A virtual file system mount point grafts a virtual file system subtree onto the logical file system tree. This
mount point ties together a mounted-over v-node (virtual node) and the root of the virtual file system
subtree. A mounted-over, or stub, v-node points to a virtual file system, and the mounted VFS points to the
v-node it is mounted over.

Understanding Virtual Nodes (V-nodes)
A virtual node (v-node) represents access to an object within a virtual file system. V-nodes are used only
to translate a path name into a generic node (g-node). For more information on g-nodes, see
“Understanding Generic I-nodes (G-nodes)” on page 41.

A v-node is either created or used again for every reference made to a file by path name. When a user
attempts to open or create a file, if the VFS containing the file already has a v-node representing that file,
a use count in the v-node is incremented and the existing v-node is used. Otherwise, a new v-node is
created.

40 Kernel Extensions and Device Support Programming Concepts

Every path name known to the logical file system can be associated with, at most, one file system object.
However, each file system object can have several names. Multiple names appear in the following cases:

v The object can appear in multiple virtual file systems. This can happen if the object (or an ancestor) is
mounted in different virtual file systems using a local file-over-file or directory-over-directory mount.

v The object does not have a unique name within the virtual file system. (The file system implementation
can provide synonyms. For example, the use of links causes files to have more than one name.
However, opens of synonymous paths do not cause multiple v-nodes to be created.)

Understanding Generic I-nodes (G-nodes)
A generic i-node (g-node) is the representation of an object in a file system implementation. There is a
one-to-one correspondence between a g-node and an object in a file system implementation. Each g-node
represents an object owned by the file system implementation.

Each file system implementation is responsible for allocating and destroying g-nodes. The g-node then
serves as the interface between the logical file system and the file system implementation. Calls to the file
system implementation serve as requests to perform an operation on a specific g-node.

A g-node is needed, in addition to the file system i-node, because some file system implementations may
not include the concept of an i-node. Thus the g-node structure substitutes for whatever structure the file
system implementation may have used to uniquely identify a file system object.

The logical file system relies on the file system implementation to provide valid data for the following fields
in the g-node:

gn_type Identifies the type of object represented by the g-node.
gn_ops Identifies the set of operations that can be performed on the object.

Understanding the Virtual File System Interface
Operations that can be performed upon a virtual file system and its underlying objects are divided into two
categories. Operations upon a file system implementation as a whole (not requiring the existence of an
underlying file system object) are called vfs operations. Operations upon the underlying file system objects
are called v-node (virtual node) operations. Before writing specific virtual file system operations, it is
important to note the requirements for a file system implementation.

Requirements for a File System Implementation
File system implementations differ in how they implement the predefined operations. However, the logical
file system expects that a file system implementation meets the following criteria:

v All vfs and v-node operations must supply a return value:

– A return value of 0 indicates the operation was successful.

– A nonzero return value is interpreted as a valid error number (taken from the
/usr/include/sys/errno.h file) and returned through the system call interface to the application
program.

v All vfs operations must exist for each file system type, but can return an error upon startup. The
following are the necessary vfs operations:

– vfs_cntl

– vfs_mount

– vfs_root

– vfs_statfs

– vfs_sync

– vfs_unmount

– vfs_vget

Chapter 3. Virtual File Systems 41

– vfs_quotactl

For a complete list of file system operations, see List of Virtual File System Operations in AIX 5L Version
5.2 Technical Reference: Kernel and Subsystems Volume 1.

Important Data Structures for a File System Implementation
There are two important data structures used to represent information about a virtual file system, the vfs
structure and the v-node. Each virtual file system has a vfs structure in memory that describes its type,
attributes, and position in the file tree hierarchy. Each file object within that virtual file system can be
represented by a v-node.

The vfs structure contains the following fields:

vfs_flag Contains the state flags:

VFS_DEVMOUNT
Indicates whether the virtual file system has a physical mount structure underlying it.

VFS_READONLY
Indicates whether the virtual file system is mounted read-only.

vfs_type Identifies the type of file system implementation. Possible values for this field are described in
the /usr/include/sys/vmount.h file.

vfs_ops Points to the set of operations for the specified file system type.
vfs_mntdover Points to the mounted-over v-node.
vfs_data Points to the file system implementation data. The interpretation of this field is left to the

discretion of the file system implementation. For example, the field could be used to point to
data in the kernel extension segment or as an offset to another segment.

vfs_mdata Records the user arguments to the mount call that created this virtual file system. This field
has a time stamp. The user arguments are retained to implement the mntctl call, which
replaces the /etc/mnttab table.

Understanding Data Structures and Header Files for Virtual File
Systems
These are the data structures used in implementing virtual file systems:

v The vfs structure contains information about a virtual file system as a single entity.

v The vnode structure contains information about a file system object in a virtual file system. There can
be multiple v-nodes for a single file system object.

v The gnode structure contains information about a file system object in a physical file system. There is
only a single g-node for a given file system object.

v The gfs structure contains information about a file system implementation. This is distinct from the vfs
structure, which contains information about an instance of a virtual file system.

The header files contain the structure definitions for the key components of the virtual file system
abstraction. Understanding the contents of these files and the relationships between them is essential to
an understanding of virtual file systems. The following are the necessary header files:

v sys/vfs.h

v sys/gfs.h

v sys/vnode.h

v sys/vmount.h

42 Kernel Extensions and Device Support Programming Concepts

Configuring a Virtual File System
The kernel maintains a table of active file system types. A file system implementation must be registered
with the kernel before a request to mount a virtual file system (VFS) of that type can be honored. Two
kernel services, gfsadd and gfsdel, are supplied for adding a file system type to the gfs file system table.

These are the steps that must be followed to get a file system configured.

1. A user-level routine must call the sysconfig subroutine requesting that the code for the virtual file
system be loaded.

2. The user-level routine must then request, again by calling the sysconfig subroutine, that the virtual file
system be configured. The name of a VFS-specific configuration routine must be specified.

3. The virtual file system-specific configuration routine calls the gfsadd kernel service to have the new file
system added to the gfs table. The gfs table that the configuration routine passes to the gfsadd
kernel service contains a pointer to an initialization routine. This routine is then called to do any further
virtual file system-specific initialization.

4. The file system is now operational.

Related Information
“Logical File System Kernel Services” on page 55

“Understanding Data Structures and Header Files for Virtual File Systems” on page 42

“Configuring a Virtual File System”

“Understanding Protection Domains” on page 23

List of Virtual File System Operations in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems
Volume 1.

Subroutine References
The mntctl subroutine, mount subroutine, sysconfig subroutine in AIX 5L Version 5.2 Technical
Reference: Base Operating System and Extensions Volume 1.

Files References
The vmount.h file in AIX 5L Version 5.2 Files Reference.

Technical References
The gfsadd kernel service, gfsdel kernel service in AIX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 1.

Chapter 3. Virtual File Systems 43

44 Kernel Extensions and Device Support Programming Concepts

Chapter 4. Kernel Services

Kernel services are routines that provide the runtime kernel environment to programs executing in kernel
mode. Kernel extensions call kernel services, which resemble library routines. In contrast, application
programs call library routines.

Callers of kernel services execute in kernel mode. They therefore share with the kernel the responsibility
for ensuring that system integrity is not compromised.

For a list of system calls that kernel extensions are allowed to use, see “System Calls Available to Kernel
Extensions” on page 35.

Categories of Kernel Services
Following are the categories of kernel services:

v “I/O Kernel Services”

v “Kernel Extension and Device Driver Management Services” on page 51

v “Locking Kernel Services” on page 52

v “Logical File System Kernel Services” on page 55

v “Memory Kernel Services” on page 57

v “Message Queue Kernel Services” on page 63

v “Network Kernel Services” on page 64

v “Process and Exception Management Kernel Services” on page 66

v “RAS Kernel Services” on page 69

v “Security Kernel Services” on page 69

v “Timer and Time-of-Day Kernel Services” on page 70

v “Virtual File System (VFS) Kernel Services” on page 72

I/O Kernel Services
The I/O kernel services fall into the following categories:

v Buffer Cache services

v Character I/O services

v Interrupt Management services

v Memory Buffer (mbuf) services

v DMA Management services

Block I/O Kernel Services
The Block I/O kernel services are:

iodone Performs block I/O completion processing.
iowait Waits for block I/O completion.
uphysio Performs character I/O for a block device using a uio structure.

Buffer Cache Kernel Services
For information on how to manage the buffer cache with the Buffer Cache kernel services, see “Block I/O
Buffer Cache Kernel Services: Overview” on page 48. The Buffer Cache kernel services are:

© Copyright IBM Corp. 1997, 2003 45

bawrite Writes the specified buffer’s data without waiting for I/O to complete.
bdwrite Releases the specified buffer after marking it for delayed write.
bflush Flushes all write-behind blocks on the specified device from the buffer cache.
binval Invalidates all of the specified device’s blocks in the buffer cache.
blkflush Flushes the specified block if it is in the buffer cache.
bread Reads the specified block’s data into a buffer.
breada Reads in the specified block and then starts I/O on the read-ahead block.
brelse Frees the specified buffer.
bwrite Writes the specified buffer’s data.
clrbuf Sets the memory for the specified buffer structure’s buffer to all zeros.
getblk Assigns a buffer to the specified block.
geteblk Allocates a free buffer.
geterror Determines the completion status of the buffer.
purblk Purges the specified block from the buffer cache.

Character I/O Kernel Services
The Character I/O kernel services are:

getc Retrieves a character from a character list.
getcb Removes the first buffer from a character list and returns the address of the removed buffer.
getcbp Retrieves multiple characters from a character buffer and places them at a designated address.
getcf Retrieves a free character buffer.
getcx Returns the character at the end of a designated list.
pincf Manages the list of free character buffers.
putc Places a character at the end of a character list.
putcb Places a character buffer at the end of a character list.
putcbp Places several characters at the end of a character list.
putcf Frees a specified buffer.
putcfl Frees the specified list of buffers.
putcx Places a character on a character list.
waitcfree Checks the availability of a free character buffer.

Interrupt Management Services
The operating system provides the following set of kernel services for managing interrupts. See
Understanding Interrupts for a description of these services:

i_clear Removes an interrupt handler from the system.
i_reset Resets a bus interrupt level.
i_sched Schedules off-level processing.
i_mask Disables an interrupt level.
i_unmask Enables an interrupt level.
i_disable Disables all of the interrupt levels at a particular interrupt priority and all interrupt levels at a

less-favored interrupt priority.
i_enable Enables all of the interrupt levels at a particular interrupt priority and all interrupt levels at a

more-favored interrupt priority.

Memory Buffer (mbuf) Kernel Services
The Memory Buffer (mbuf) kernel services provide functions to obtain, release, and manipulate memory
buffers, or mbufs. These mbuf services provide the means to easily work with the mbuf data structure,
which is defined in the /usr/include/sys/mbuf.h file. Data can be stored directly in an mbuf’s data portion

46 Kernel Extensions and Device Support Programming Concepts

or in an attached external cluster. Mbufs can also be chained together by using the m_next field in the
mbuf structure. This is particularly useful for communications protocols that need to add and remove
protocol headers.

The Memory Buffer (mbuf) kernel services are:

m_adj Adjusts the size of an mbuf chain.
m_clattach Allocates an mbuf structure and attaches an external cluster.
m_cat Appends one mbuf chain to the end of another.
m_clgetm Allocates and attaches an external buffer.
m_collapse Guarantees that an mbuf chain contains no more than a given number of mbuf structures.
m_copydata Copies data from an mbuf chain to a specified buffer.
m_copym Creates a copy of all or part of a list of mbuf structures.
m_dereg Deregisters expected mbuf structure usage.
m_free Frees an mbuf structure and any associated external storage area.
m_freem Frees an entire mbuf chain.
m_get Allocates a memory buffer from the mbuf pool.
m_getclr Allocates and zeros a memory buffer from the mbuf pool.
m_getclustm Allocates an mbuf structure from the mbuf buffer pool and attaches a cluster of the specified

size.
m_gethdr Allocates a header memory buffer from the mbuf pool.
m_pullup Adjusts an mbuf chain so that a given number of bytes is in contiguous memory in the data

area of the head mbuf structure.
m_reg Registers expected mbuf usage.

In addition to the mbuf kernel services, the following macros are available for use with mbufs:

m_clget Allocates a page-sized mbuf structure cluster.
m_copy Creates a copy of all or part of a list of mbuf structures.
m_getclust Allocates an mbuf structure from the mbuf buffer pool and attaches a page-sized cluster.
M_HASCL Determines if an mbuf structure has an attached cluster.
DTOM Converts an address anywhere within an mbuf structure to the head of that mbuf structure.
MTOCL Converts a pointer to an mbuf structure to a pointer to the head of an attached cluster.
MTOD Converts a pointer to an mbuf structure to a pointer to the data stored in that mbuf structure.
M_XMEMD Returns the address of an mbuf cross-memory descriptor.

DMA Management Kernel Services
The operating system kernel provides several services for managing direct memory access (DMA)
channels and performing DMA operations. Understanding DMA Transfers provides additional kernel
services information.

The services provided are:

d_align Provides needed information to align a buffer with a processor cache line.
d_cflush Flushes the processor and I/O controller (IOCC) data caches when using the long term

DMA_WRITE_ONLY mapping of DMA buffers approach to the bus device DMA.
d_clear Frees a DMA channel.
d_complete Cleans up after a DMA transfer.
d_init Initializes a DMA channel.
d_map_init Allocates and initializes resources for performing DMA with PCI and ISA devices.
d_mask Disables a DMA channel.
d_master Initializes a block-mode DMA transfer for a DMA master.
d_move Provides consistent access to system memory that is accessed asynchronously by a device and

the processor on the system.
d_roundup Rounds the value length up to a given number of cache lines.

Chapter 4. Kernel Services 47

d_slave Initializes a block-mode DMA transfer for a DMA slave.
d_unmask Enables a DMA channel.

Block I/O Buffer Cache Kernel Services: Overview
The Block I/O Buffer Cache services are provided to support user access to device drivers through block
I/O special files. This access is required by the operating system file system for mounts and other limited
activity, as well as for compatibility services required when other file systems are installed on these kinds
of systems. These services are not used by the operating system’s JFS (journal file system), NFS
(Network File System), or CDRFS (CD-ROM file system) when processing standard file I/O data. Instead
they use the virtual memory manager and pager to manage the system’s memory pages as a buffer
cache.

For compatibility support of other file systems and block special file support, the buffer cache services
serve two important purposes:

v They ensure that multiple processes accessing the same block of the same device in multiprogrammed
fashion maintain a consistent view of the data in the block.

v They increase the efficiency of the system by keeping in-memory copies of blocks that are frequently
accessed.

The Buffer Cache services use the buf structure or buffer header as their main data-tracking mechanism.
Each buffer header contains a pair of pointers that maintains a doubly-linked list of buffers associated with
a particular block device. An additional pair of pointers maintain a doubly-linked list of blocks available for
use again on another operation. Buffers that have I/O in progress or that are busy for other purposes do
not appear in this available list.

Kernel buffers are discussed in more detail in Introduction to Kernel Buffers in AIX 5L Version 5.2
Technical Reference: Kernel and Subsystems Volume 1.

See “Block I/O Kernel Services” on page 45 for a list of these services.

Managing the Buffer Cache
Fourteen kernel services provide management of this block I/O buffer cache mechanism. The getblk
kernel service allocates a buffer header and a free buffer from the buffer pool. Given a device and block
number, the getblk and bread kernel services both return a pointer to a buffer header for the block. But
the bread service is guaranteed to return a buffer actually containing a current data for the block. In
contrast, the getblk service returns a buffer that contains the data in the block only if it is already in
memory.

In either case, the buffer and the corresponding device block are made busy. Other processes attempting
to access the buffer must wait until it becomes free. The getblk service is used when:

v A block is about to be rewritten totally.

v Its previous contents are not useful.

v No other processes should be allowed to access it until the new data has been placed into it.

The breada kernel service is used to perform read-ahead I/O and is similar to the bread service except
that an additional parameter specifies the number of the block on the same device to be read
asynchronously after the requested block is available. The brelse kernel service makes the specified
buffer available again to other processes.

Using the Buffer Cache write Services
There are three slightly different write routines. All of them take a buffer pointer as a parameter and all
logically release the buffer by placing it on the free list. The bwrite service puts the buffer on the

48 Kernel Extensions and Device Support Programming Concepts

appropriate device queue by calling the device’s strategy routine. The bwrite service then waits for I/O
completion and sets the caller’s error flag, if required. This service is used when the caller wants to be
sure that I/O takes place synchronously, so that any errors can be handled immediately.

The bawrite service is an asynchronous version of the bwrite service and does not wait for I/O
completion. This service is normally used when the overlap of processing and device I/O activity is
desired.

The bdwrite service does not start any I/O operations, but marks the buffer as a delayed write and
releases it to the free list. Later, when the buffer is obtained from the free list and found to contain data
from some other block, the data is written out to the correct device before the buffer is used. The bdwrite
service is used when it is undetermined if the write is needed immediately.

For example, the bdwrite service is called when the last byte of the write operation associated with a
block special file falls short of the end of a block. The bdwrite service is called on the assumption that
another write will soon occur that will use the same block again. On the other hand, as the end of a block
is passed, the bawrite service is called, because it is assumed the block will not be accessed again soon.
Therefore, the I/O processing can be started as soon as possible.

Note that the getblk and bread services dedicated the specified block to the caller while making other
processes wait, whereas the brelse, bwrite, bawrite, or bdwrite services must eventually be called to
free the block for use by other processes.

Understanding Interrupts
Each hardware interrupt has an interrupt level and an interrupt priority. The interrupt level defines the
source of the interrupt. There are basically two types of interrupt levels: system and bus. The system bus
interrupts are generated from the Micro Channel bus and system I/O. Examples of system interrupts are
the timer and serial link interrupts.

The interrupt level of a system interrupt is defined in the sys/intr.h file. The interrupt level of a bus
interrupt is one of the resources managed by the bus configuration methods.

Interrupt Priorities
The interrupt priority defines which of a set of pending interrupts is serviced first. INTMAX is the most
favored interrupt priority and INTBASE is the least favored interrupt priority. The interrupt priorities for bus
interrupts range from INTCLASS0 to INTCLASS3. The rest of the interrupt priorities are reserved for the
base kernel. Interrupts that cannot be serviced within the time limits specified for bus interrupts qualify as
off-level interrupts.

A device’s interrupt priority is selected based on two criteria: its maximum interrupt latency requirements
and the device driver’s interrupt execution time. The interrupt latency requirement is the maximum time
within which an interrupt must be serviced. (If it is not serviced in this time, some event is lost or
performance is degraded seriously.) The interrupt execution time is the number of machine cycles required
by the device driver to service the interrupt. Interrupts with a short interrupt latency time must have a short
interrupt service time.

The general rule for interrupt service times is based on the following interrupt priority table:

Priority Service Time (machine cycles)
INTCLASS0 200 cycles
INTCLASS1 400 cycles
INTCLASS2 600 cycles
INTCLASS3 800 cycles

Chapter 4. Kernel Services 49

The valid interrupt priorities are defined in the /usr/include/sys/intr.h file.

See “Interrupt Management Services” on page 46 for a list of these services.

Understanding DMA Transfers
A device driver must call the d_slave service to set up a DMA slave transfer or call the d_master service
to set up a DMA master transfer. The device driver then sets up the device to perform the DMA transfer.
The device transfers data when it is available and interrupts the processor upon completion of the DMA
transfer. The device driver then calls the d_complete service to clean up after the DMA transfer. This
process is typically repeated each time a DMA transfer is to occur.

Hiding DMA Data
In this system, data can be located in the processor cache, system memory, or DMA buffer. The DMA
services have been written to ensure that data is moved between these three locations correctly. The
d_master and d_slave services flush the data from the processor cache to system memory. They then
hide the page, preventing data from being placed back into the processor cache. All pages containing user
data must be hidden while DMA operations are being performed on them. This is required to ensure that
data is not lost by being put in more than one of these locations. The hardware moves the data between
system memory, the DMA buffers, and the device. The d_complete service flushes data from the DMA
buffers to system memory and unhides the buffer.

A count is maintained of the number of times a page is hidden for DMA. A page is not actually hidden
except when the count goes from 0 to 1 and is not unhidden except when the count goes from 1 to 0.
Therefore, the users of the services must make sure to have the same number of calls to both the
d_master and d_complete services. Otherwise, the page can be incorrectly unhidden and data lost. This
count is intended to support operations such as logical volume mirrored writes.

DMA operations can be carefully performed on kernel data without hiding the pages containing the data.
The DMA_WRITE_ONLY flag, when specified to the d_master service, causes it not to flush the
processor cache or hide the pages. The same flag when specified to the d_complete service causes it not
to unhide the pages. This flag requires that the caller has carefully flushed the processor cache using the
vm_cflush service. Additionally, the caller must carefully allocate complete pages for the data buffer and
carefully split them up into transfers. Transferred pages must each be aligned at the start of a DMA buffer
boundary, and no other data can be in the same DMA buffers as the data to be transferred. The d_align
and d_roundup services help ensure that the buffer allocation is correct.

The d_align service (provided in libsys.a) returns the alignment value required for starting a buffer on a
processor cache line boundary. The d_roundup service (also provided in libsys.a) can be used to round
the desired DMA buffer length up to a value that is an integer number of cache lines. These two services
allow buffers to be used for DMA to be aligned on a cache line boundary and allocated in whole multiples
of the cache line size so that the buffer is not split across processor cache lines. This reduces the
possibility of consistency problems because of DMA and also minimizes the number of cache lines that
must be flushed or invalidated when used for DMA. For example, these services can be used to provide
alignment as follows:
align = d_align();
buffer_length = d_roundup(required_length);
buf_ptr = xmalloc(buffer_length, align, kernel_heap);

Note: If the kernel heap is used for DMA buffers, the buffer must be pinned using the pin kernel service
before being utilized for DMA. Alternately, the memory could be requested from the pinned heap.

Accessing Data While the DMA Operation Is in Progress
Data must be carefully accessed when a DMA operation is in progress. The d_move service provides a
means of accessing the data while a DMA transfer is being performed on it. This service accesses the

50 Kernel Extensions and Device Support Programming Concepts

data through the same system hardware as that used to perform the DMA transfer. The d_move service,
therefore, cannot cause the data to become inconsistent. This service can also access data hidden from
normal processor accesses.

See “DMA Management Kernel Services” on page 47 for a list of these services.

Kernel Extension and Device Driver Management Services
The kernel provides a set of program and device driver management services. These services include
kernel extension loading and unloading services and device driver binding services. Services that allow
kernel extensions to be notified of base kernel configuration changes, user-mode exceptions, and process
state changes are also provided.

The following information is provided to assist you in in learning more about kernel services:

v “Kernel Extension Loading and Unloading Services”

v “Other Kernel Extension and Device Driver Management Services”

v “List of Kernel Extension and Device Driver Management Kernel Services” on page 52

Kernel Extension Loading and Unloading Services
The kmod_load, kmod_unload, and kmod_entrypt services provide kernel extension loading, unloading,
and query services. User-mode programs and kernel processes can use the sysconfig subroutine to
invoke the kmod_load and kmod_unload services. The kmod_entrypt service returns a pointer to a
kernel extension’s entry point.

The kmod_load, kmod_unload services can be used to dynamically alter the set of routines loaded into
the kernel based on system configuration and application demand. Subsystems and device drivers can
use these services to load large, seldom-used routines on demand.

Other Kernel Extension and Device Driver Management Services
The device driver binding services are devswadd, devswdel, devswchg, and devswqry. The devswadd,
devswdel, and devswchg services are used to add, remove, or modify device driver entries in the
dynamically-managed device switch table. The devswqry service is used to obtain information about a
particular device switch table entry.

Some kernel extensions might be sensitive to the settings of base kernel runtime configurable parameters
that are found in the var structure defined in the /usr/include/sys/var.h file. These parameters can be set
automatically during system boot or at runtime by a privileged user. Kernel extensions can register or
unregister a configuration notification routine with the cfgnadd and cfgndel kernel services. Each time the
sysconfig subroutine is used to change base kernel tunable parameters found in the var structure, each
registered configuration notification routine is called.

The prochadd and prochdel kernel services allow kernel extensions to be notified when any process in
the system has a state transition, such as being created, exiting, or being swapped in or swapped out.

The uexadd and uexdel kernel services give kernel extensions the capability to intercept user-mode
exceptions. A user-mode exception handler can use this capability to dynamically reassign access to
single-use resources or to clean up after some particular user-mode error. The associated uexblock and
uexclear services can be used by these handlers to block and resume process execution when handling
these exceptions.

The pio_assist and getexcept kernel services are used by device drivers to obtain detailed information
about exceptions that occur during I/O bus access. The getexcept service can also be used by any
exception handler requiring more information about an exception that has occurred. The selreg kernel

Chapter 4. Kernel Services 51

service is used by file select operations to register unsatisfied asynchronous poll or select event requests
with the kernel. The selnotify kernel service provides the same functionality as the selwakeup service
found on other operating systems.

The iostadd and iostdel services are used by tty and disk device drivers to register device activity
reporting structures to be used by the iostat and vmstat commands.

The getuerror and setuerror services allow kernel extensions to read or set the ut_error field for the
current thread. This field can be used to pass an error code from a system call function to an application
program, because kernel extensions do not have direct access to the application’s errno variable.

List of Kernel Extension and Device Driver Management Kernel
Services
The Kernel Program and Device Driver Management kernel services are:

cfgnadd Registers a notification routine to be called when system-configurable variables are changed.
cfgndel Removes a notification routine for receiving broadcasts of changes to system configurable

variables.
devdump Calls a device driver dump-to-device routine.
devstrat Calls a block device driver’s strategy routine.
devswadd Adds a device entry to the device switch table.
devswchg Alters a device switch entry point in the device switch table.
devswdel Deletes a device driver entry from the device switch table.
devswqry Checks the status of a device switch entry in the device switch table.
getexcept Allows kernel exception handlers to retrieve additional exception information.
getuerror Allows kernel extensions to read the ut_error field for the current thread.
iostadd Registers an I/O statistics structure used for updating I/O statistics reported by the iostat

subroutine.
iostdel Removes the registration of an I/O statistics structure used for maintaining I/O statistics on a

particular device.
kmod_entrypt Returns a function pointer to a kernel module’s entry point.
kmod_load Loads an object file into the kernel or queries for an object file already loaded.
kmod_unload Unloads a kernel object file.
pio_assist Provides a standardized programmed I/O exception handling mechanism for all routines

performing programmed I/O.
prochadd Adds a system wide process state-change notification routine.
prochdel Deletes a process state change notification routine.
selreg Registers an asynchronous poll or select request with the kernel.
selnotify Wakes up processes waiting in a poll or select subroutine or the fp_poll kernel service.
setuerror Allows kernel extensions to set the ut_error field for the current thread.
uexadd Adds a system wide exception handler for catching user-mode process exceptions.
uexblock Makes the currently active kernel thread not runnable when called from a user-mode

exception handler.
uexclear Makes a kernel thread blocked by the uexblock service runnable again.
uexdel Deletes a previously added system-wide user-mode exception handler.

Locking Kernel Services
The following information is provided to assist you in understanding the locking kernel services:

v Lock Allocation and Other Services

v Simple Locks

v Complex Locks

v Lockl Locks

v Atomic Operations

52 Kernel Extensions and Device Support Programming Concepts

Lock Allocation and Other Services
The following lock allocation services allocate and free internal operating system memory for simple and
complex locks, or check if the caller owns a lock:

lock_alloc Allocates system memory for a simple or complex lock.
lock_free Frees the system memory of a simple or complex lock.
lock_mine Checks whether a simple or complex lock is owned by the caller.

Simple Locks
Simple locks are exclusive-write, non-recursive locks that protect thread-thread or thread-interrupt critical
sections. Simple locks are preemptable, meaning that a kernel thread can be preempted by another,
higher priority kernel thread while it holds a simple lock. The simple lock kernel services are:

simple_lock_init Initializes a simple lock.
simple_lock, simple_lock_try Locks a simple lock.
simple_unlock Unlocks a simple lock.

On a multiprocessor system, simple locks that protect thread-interrupt critical sections must be used in
conjunction with interrupt control in order to serialize execution both within the executing processor and
between different processors. On a uniprocessor system interrupt control is sufficient; there is no need to
use locks. The following kernel services provide appropriate locking calls for the system on which they are
executed:

disable_lock Raises the interrupt priority, and locks a simple lock if necessary.
unlock_enable Unlocks a simple lock if necessary, and restores the interrupt priority.

Using the disable_lock and unlock_enable kernel services to protect thread-interrupt critical sections
(instead of calling the underlying interrupt control and locking kernel services directly) ensures that
multiprocessor-safe code does not make unnecessary locking calls on uniprocessor systems.

Simple locks are spin locks; a kernel thread that attempts to acquire a simple lock may spin (busy-wait:
repeatedly execute instructions which do nothing) if the lock is not free. The table shows the behavior of
kernel threads and interrupt handlers that attempt to acquire a busy simple lock.

Caller Owner is Running Owner is Sleeping

Thread (with interrupts enabled) Caller spins initially; it sleeps if the
maximum spin threshold is crossed.

Caller sleeps immediately.

Interrupt handler or thread (with
interrupts disabled)

Caller spins until lock is acquired. Caller spins until lock is freed (must
not happen).

Note: On uniprocessor systems, the maximum spin threshold is set to one, meaning that that a kernel
thread will never spin waiting for a lock.

A simple lock that protects a thread-interrupt critical section must never be held across a sleep, otherwise
the interrupt could spin for the duration of the sleep, as shown in the table. This means that such a routine
must not call any external services that might result in a sleep. In general, using any kernel service which
is callable from process level may result in a sleep, as can accessing unpinned data. These restrictions do
not apply to simple locks that protect thread-thread critical sections.

The lock word of a simple lock must be located in pinned memory if simple locking services are called with
interrupts disabled.

Chapter 4. Kernel Services 53

Complex Locks
Complex locks are read-write locks that protect thread-thread critical sections. Complex locks are
preemptable, meaning that a kernel thread can be preempted by another, higher priority kernel thread
while it holds a complex lock. The complex lock kernel services are:

lock_init Initializes a complex lock.
lock_islocked Tests whether a complex lock is locked.
lock_done Unlocks a complex lock.
lock_read, lock_try_read Locks a complex lock in shared-read mode.
lock_read_to_write, lock_try_read_to_write Upgrades a complex lock from shared-read mode to

exclusive-write mode.
lock_write, lock_try_write Locks a complex lock in exclusive-write mode.
lock_write_to_read Downgrades a complex lock from exclusive-write mode to

shared-read mode.
lock_set_recursive Prepares a complex lock for recursive use.
lock_clear_recursive Prevents a complex lock from being acquired recursively.

By default, complex locks are not recursive (they cannot be acquired in exclusive-write mode multiple
times by a single thread). A complex lock can become recursive through the lock_set_recursive kernel
service. A recursive complex lock is not freed until lock_done is called once for each time that the lock
was locked.

Complex locks are not spin locks; a kernel thread that attempts to acquire a complex lock may spin briefly
(busy-wait: repeatedly execute instructions which do nothing) if the lock is not free. The table shows the
behavior of kernel threads that attempt to acquire a busy complex lock:

Current Lock Mode
Owner is Running and no Other
Thread is Asleep on This Lock Owner is Sleeping

Exclusive-write Caller spins initially, but sleeps if the
maximum spin threshold is crossed,
or if the owner later sleeps.

Caller sleeps immediately.

Shared-read being acquired for
exclusive-write

Caller sleeps immediately.

Shared-read being acquired for
shared-read

Lock granted immediately

Note:

1. On uniprocessor systems, the maximum spin threshold is set to one, meaning that a kernel
thread will never spin waiting for a lock.

2. The concept of a single owner does not apply to a lock held in shared-read mode.

Lockl Locks

Note: Lockl locks (previously called conventional locks) are only provided to ensure compatibility with
existing code. New code should use simple or complex locks.

Lockl locks are exclusive-access and recursive locks. The lockl lock kernel services are:

lockl Locks a conventional lock.
unlockl Unlocks a conventional lock.

A thread which tries to acquire a busy lockl lock sleeps immediately.

54 Kernel Extensions and Device Support Programming Concepts

The lock word of a lockl lock must be located in pinned memory if the lockl service is called with interrupts
disabled.

Atomic Operations

Atomic operations are sequences of instructions that guarantee atomic accesses and updates of shared
single word variables. This means that atomic operations cannot protect accesses to complex data
structures in the way that locks can, but they provide a very efficient way of serializing access to a single
word.

The atomic operation kernel services are:

fetch_and_add Increments a single word variable atomically.
fetch_and_and, fetch_and_or Manipulates bits in a single word variable atomically.
compare_and_swap Conditionally updates or returns a single word variable

atomically.

Single word variables accessed by atomic operations must be aligned on a full word boundary, and must
be located in pinned memory if atomic operation kernel services are called with interrupts disabled.

File Descriptor Management Services
The File Descriptor Management services are supplied by the logical file system for creating, using, and
maintaining file descriptors. These services allow for the implementation of system calls that use a file
descriptor as a parameter, create a file descriptor, or return file descriptors to calling applications. The
following are the File Descriptor Management services:

ufdcreate Allocates and initializes a file descriptor.
ufdhold Increments the reference count on a file descriptor.
ufdrele Decrements the reference count on a file descriptor.
ufdgetf Gets a file structure pointer from a held file descriptor.
getufdflags Gets the flags from a file descriptor.
setufdflags Sets flags in a file descriptor.

Logical File System Kernel Services
The Logical File System services (also known as the fp_services) allow processes running in kernel mode
to open and manipulate files in the same way that user-mode processes do. Data access limitations make
it unreasonable to accomplish these tasks with system calls, so a subset of the file system calls has been
provided with an alternate kernel-only interface.

The Logical File System services are one component of the logical file system, which provides the
functions required to map system call requests to virtual file system requests. The logical file system is
responsible for resolution of file names and file descriptors. It tracks all open files in the system using the
file table. The Logical File System services are lower level entry points into the system call support within
the logical file system.

Routines in the kernel that must access data stored in files or that must set up paths to devices are the
primary users of these services. This occurs most commonly in device drivers, where a lower level device
driver must be accessed or where the device requires microcode to be downloaded. Use of the Logical
File System services is not, however, restricted to these cases.

A process can use the Logical File System services to establish access to a file or device by calling:

v The fp_open service with a path name to the file or device it must access.

Chapter 4. Kernel Services 55

v The fp_opendev service with the device number of a device it must access.

v The fp_getf service with a file descriptor for the file or device. If the process wants to retain access past
the duration of the system call, it must then call the fp_hold service to acquire a private file pointer.

These three services return a file pointer that is needed to call the other Logical File System services. The
other services provide the functions that are provided by the corresponding system calls.

Other Considerations
The Logical File System services are available only in the process environment.

In addition, calling the fp_open service at certain times can cause a deadlock. The lookup on the file
name must acquire file system locks. If the process is already holding any lock on a component of the
path, the process will be deadlocked. Therefore, do not use the fp_open service when the process is
already executing an operation that holds file system locks on the requested path. The operations most
likely to cause this condition are those that create files.

List of Logical File System Kernel Services
These are the Logical File System kernel services:

fp_access Checks for access permission to an open file.
fp_close Closes a file.
fp_fstat Gets the attributes of an open file.
fp_getdevno Gets the device number or channel number for a device.
fp_getf Retrieves a pointer to a file structure.
fp_hold Increments the open count for a specified file pointer.
fp_ioctl Issues a control command to an open device or file.
fp_lseek Changes the current offset in an open file.
fp_llseek Changes the current offset in an open file. Used to access offsets beyond 2GB.
fp_open Opens special and regular files or directories.
fp_opendev Opens a device special file.
fp_poll Checks the I/O status of multiple file pointers, file descriptors, and message queues.
fp_read Performs a read on an open file with arguments passed.
fp_readv Performs a read operation on an open file with arguments passed in iovec elements.
fp_rwuio Performs read or write on an open file with arguments passed in a uio structure.
fp_select Provides for cascaded, or redirected, support of the select or poll request.
fp_write Performs a write operation on an open file with arguments passed.
fp_writev Performs a write operation on an open file with arguments passed in iovec elements.
fp_fsync Writes changes for a specified range of a file to permanent storage.

Programmed I/O (PIO) Kernel Services
The following is a list of PIO kernel services:

io_map Attaches to an I/O mapping

io_map_clear Removes an I/O mapping segment

io_map_init Creates and initializes an I/O mapping segment

io_unmap Detaches from an I/O mapping

These kernel services are defined in the adspace.h and ioacc.h header files.

For a list of PIO macros, see Programmed I/O Services in Understanding the Diagnostic Subsystem for
AIX.

56 Kernel Extensions and Device Support Programming Concepts

Memory Kernel Services
The Memory kernel services provide kernel extensions with the ability to:

v Dynamically allocate and free memory

v Pin and unpin code and data

v Access user memory and transfer data between user and kernel memory

v Create, reference, and change virtual memory objects

The following information is provided to assist you in learning more about memory kernel services:

v Memory Management Kernel Services

v Memory Pinning Kernel Services

v User Memory Access Kernel Services

v Virtual Memory Management Kernel Services

v Cross-Memory Kernel Services

Memory Management Kernel Services
The Memory Management services are:

init_heap Initializes a new heap to be used with kernel memory management services.
xmalloc Allocates memory.
xmfree Frees allocated memory.

Memory Pinning Kernel Services
The Memory Pinning services are:

ltpin Pins the address range in the system (kernel) space and frees the page space for the
associated pages.

ltunpin Unpins the address range in system (kernel) address space and reallocates paging
space for the specified region.

pin Pins the address range in the system (kernel) space.
pincode Pins the code and data associated with a loaded object module.
pinu Pins the specified address range in user or system memory.
unpin Unpins the address range in system (kernel) address space.
unpincode Unpins the code and data associated with a loaded object module.
unpinu Unpins the specified address range in user or system memory.
xmempin Pins the specified address range in user or system memory, given a valid

cross-memory descriptor.
xmemunpin Unpins the specified address range in user or system memory, given a valid

cross-memory descriptor.

Note: pinu and unpinu are only available on the 32–bit kernel. Because of this limitation, it is
recommended that xmempin and xmemunpin be used in place of pinu and unpinu.

User-Memory-Access Kernel Services
In a system call or kernel extension running under a user process, data in the user process can be moved
in or out of the kernel using the copyin and copyout services. The uiomove service is used for scatter
and gather operations. If user data is to be referenced asynchronously, such as from an interrupt handler
or a kernel process, the cross memory services must be used.

Chapter 4. Kernel Services 57

The User-Memory-Access kernel services are:

copyin, copyin64 Copies data between user and kernel memory.
copyinstr, copyinstr64 Copies a character string (including the terminating null character) from user to kernel

space.
copyout, copyout64 Copies data between user and kernel memory.
fubyte, fubyte64 Fetches, or retrieves, a byte of data from user memory.
fuword, fuword64 Fetches, or retrieves, a word of data from user memory.
subyte, subyte64 Stores a byte of data in user memory.
suword, suword64 Stores a word of data in user memory.
uiomove Moves a block of data between kernel space and a space defined by a uio structure.
ureadc Writes a character to a buffer described by a uio structure.
uwritec Retrieves a character from a buffer described by a uio structure.

Note: The copyin64, copyout64, copyinstr64, fubyte64, fuword64, subyte64, and suword64 kernel
services are defined as macros when compiling kernel extensions on the 64–bit kernel. The macros
invoke the corresponding kernel services without the ″64″ suffix.

Virtual Memory Management Kernel Services
These services are described in more detail in “Understanding Virtual Memory Manager Interfaces” on
page 60. The Virtual Memory Management services are:

as_att, as_att64 Selects, allocates, and maps a specified region in the current user address space.
as_det, as_det64 Unmaps and deallocates a region in the specified address space that was mapped

with the as_att or as_att64 kernel service.
as_geth, as_geth64 Obtains a handle to the virtual memory object for the specified address given in the

specified address space. The virtual memory object is protected.
as_getsrval, as_getsrval64 Obtains a handle to the virtual memory object for the specified address given in the

specified address space.
as_puth as_puth64 Indicates that no more references will be made to a virtual memory object that was

obtained using the as_geth or as_geth64 kernel service.
as_seth, as_seth64 Maps a specified region in the specified address space for the specified virtual

memory object.
getadsp Obtains a pointer to the current process’s address space structure for use with the

as_att and as_det kernel services.
io_att Selects, allocates, and maps a region in the current address space for I/O access.
io_det Unmaps and deallocates the region in the current address space at the given

address.
vm_att Maps a specified virtual memory object to a region in the current address space.
vm_cflush Flushes the processor’s cache for a specified address range.
vm_det Unmaps and deallocates the region in the current address space that contains a

given address.
vm_galloc Allocates a region of global memory in the 64-bit kernel.
vm_gfree Frees a region of global memory in the kernel previously allocated with the

vm_galloc kernel service.
vm_handle Constructs a virtual memory handle for mapping a virtual memory object with

specified access level.
vm_makep Makes a page in client storage.
vm_mount Adds a file system to the paging device table.
vm_move Moves data between a virtual memory object and a buffer specified in the uio

structure.
vm_protectp Sets the page protection key for a page range.
vm_qmodify Determines whether a mapped file has been changed.
vm_release Releases virtual memory resources for the specified address range.
vm_releasep Releases virtual memory resources for the specified page range.

58 Kernel Extensions and Device Support Programming Concepts

vm_uiomove Moves data between a virtual memory object and a buffer specified in the uio
structure.

vm_umount Removes a file system from the paging device table.
vm_vmid Converts a virtual memory handle to a virtual memory object (id).
vm_write Initiates page-out for a page range in the address space.
vm_writep Initiates page-out for a page range in a virtual memory object.
vms_create Creates a virtual memory object of the type and size and limits specified.
vms_delete Deletes a virtual memory object.
vms_iowait Waits for the completion of all page-out operations for pages in the virtual memory

object.

Note: as_att, as_det, as_geth, as_getsrval, as_seth, getadsp, lo_att and lo_det are supported only on
the 32–bit kernel.

Cross-Memory Kernel Services
The cross-memory services allow data to be moved between the kernel and an address space other than
the current process address space. A data area within one region of an address space is attached by
calling the xmattach or xmattach64 service. As a result, the virtual memory object cannot be deleted
while data is being moved in or out of pages belonging to it. A cross-memory descriptor is filled out by the
xmattach or xmattach64 service. The attach operation must be done while under a process. When the
data movement is completed, the xmdetach service can be called. The detach operation can be done
from an interrupt handler.

The xmemin service can be used to transfer data from an address space to kernel space. The xmemout
service can be used to transfer data from kernel space to an address space. These routines may be called
from interrupt handler level routines if the referenced buffers are in memory.

Cross-memory services provide the xmemdma or xmemdma64 service to prepare a page for DMA
processing. The xmemdma or xmemdma64 service returns the real address of the page for use in
preparing DMA address lists. When the DMA transfer is completed, the xmemdma or xmemdma64
service must be called again to unhide the page.

The xmemdma64 service is identical to xmemdma, except that xmemdma64 returns a 64-bit real
address. The xmemdma64 service can be called from the process or interrupt environments. It is also
present on 32-bit platform to allow a single device driver or kernel extension binary to work on 32-bit or
64-bit platforms with no change and no run-time checks.

Data movement by DMA or an interrupt handler requires that the pages remain in memory. This is ensured
by pinning the data areas using the xmempin service. This can only be done under a process, because
the memory pinning services page-fault on pages not present in memory.

The xmemunpin service unpins pinned pages. This can be done by an interrupt handler if the data area is
the global kernel address space. It must be done under the process if the data area is in user process
space.

The Cross-Memory services are:

xmattach, xmattach64 Attaches to a user buffer for cross-memory operations.
xmdetach Detaches from a user buffer used for cross-memory operations.
xmemin Performs a cross-memory move by copying data from the specified address space to kernel

global memory.
xmemout Performs a cross-memory move by copying data from kernel global memory to a specified

address space.
xmemdma Prepares a page for DMA I/O or processes a page after DMA I/O is complete.

Chapter 4. Kernel Services 59

xmemdma64 Prepares a page for DMA I/O or processes a page after DMA I/O is complete. Returns
64-bit real address.

Note: xmattach, xmattach64 and xmemdma are supported only on the 32–bit kernel. xmemdma64 is
supported on both the 32– and 64–bit kernels.

Understanding Virtual Memory Manager Interfaces
The virtual memory manager supports functions that allow a wide range of kernel extension data
operations.

The following aspects of the virtual memory manager interface are discussed:

v Virtual Memory Objects

v Addressing Data

v Moving Data to or from a Virtual Memory Object

v Data Flushing

v Discarding Data

v Protecting Data

v Executable Data

v Installing Pager Backends

v Referenced Routines

Virtual Memory Objects
A virtual memory object is an abstraction for the contiguous data that can be mapped into a region of an
address space. As a data object, it is independent of any address space. The data it represents can be in
memory or on an external storage device. The data represented by the virtual memory object can be
shared by mapping the virtual memory object into each address space sharing the access, with the access
capability of each mapping represented in that address space map.

File systems use virtual memory objects so that the files can be referenced using a mapped file access
method. The mapped file access method represents the data through a virtual memory object, and allows
the virtual memory manager to handle page faults on the mapped file. When a page fault occurs, the
virtual memory manager calls the services supplied by the service provider (such as a virtual file system)
to get and put pages. A data provider (such as a file system) maintains any data structures necessary to
map between the virtual memory object offset and external storage addressing.

The data provider creates a virtual memory object when it has a request for access to the data. It deletes
the virtual memory object when it has no more clients referencing the data in the virtual memory object.

The vms_create service is called to create virtual memory objects. The vms_delete service is called to
delete virtual memory objects.

Addressing Data
Data in a virtual memory object is made addressable in user or kernel processes through the shmat
subroutine. A kernel extension uses the vm_att kernel service to select and allocate a region in the current
(per-process kernel) address space.

The per-process kernel address space initially sees only global kernel memory and the per-process kernel
data. The vm_att service allows kernel extensions to allocate additional regions. However, this augmented
per-process kernel address space does not persist across system calls. The additional regions must be
re-allocated with each entry into the kernel protection domain.

60 Kernel Extensions and Device Support Programming Concepts

The vm_att service takes as an argument a virtual memory handle representing the virtual memory object
and the access capability to be used. The vm_handle service constructs the virtual memory handles.

When the kernel extension has finished processing the data mapped into the current address space, it
should call the vm_det service to deallocate the region and remove access.

Moving Data to or from a Virtual Memory Object
A data provider (such as a file system) can call the vm_makep service to cause a memory page to be
instantiated. This permits a page of data to be moved into a virtual memory object page without causing
the virtual memory manager to page in the previous data contents from an external source. This is an
operation on the virtual memory object, not an address space range.

The vm_move and vm_uiomove kernel services move data between a virtual memory object and a buffer
specified in a uio structure. This allows data providers (such as a file system) to move data to or from a
specified buffer to a designated offset in a virtual memory object. This service is similar to uiomove
service, but the trusted buffer is replaced by the virtual memory object, which need not be currently
addressable.

Data Flushing
A kernel extension can initiate the writing of a data area to external storage with the vm_write kernel
service, if it has addressability to the data area. The vm_writep kernel service can be used if the virtual
memory object is not currently addressable.

If the kernel extension needs to ensure that the data is moved successfully, it can wait on the I/O
completion by calling the vms_iowait service, giving the virtual memory object as an argument.

Discarding Data
The pages specified by a data range can be released from the underlying virtual memory object by calling
the vm_release service. The virtual memory manager deallocates any associated paging space slots. A
subsequent reference to data in the range results in a page fault.

A virtual memory data provider can release a specified range of pages in a virtual memory object by
calling the vm_releasep service. The virtual memory object need not be addressable for this call.

Protecting Data
The vm_protectp service can change the storage protect keys in a page range in one client storage
virtual memory object. This only acts on the resident pages. The pages are referred to through the virtual
memory object. They do not need to be addressable in the current address space. A client file system data
provider uses this protection to detect stores of in-memory data, so that mapped files can be extended by
storing into them beyond their current end of file.

Executable Data
If the data moved is to become executable, any data remaining in processor cache must be guaranteed to
be moved from cache to memory. This is because the retrieval of the instruction does not need to use the
data cache. The vm_cflush service performs this operation.

Installing Pager Backends
The kernel extension data providers must provide appropriate routines to be called by the virtual memory
manager. These routines move a page-sized block of data into or out of a specified page. These services
are also referred to as pager backends.

For a local device, the device strategy routine is required. A call to the vm_mount service is used to
identify the device (through a dev_t value) to the virtual memory manager.

Chapter 4. Kernel Services 61

For a remote data provider, the routine required is a strategy routine, which is specified in the vm_mount
service. These strategy routines must run as interrupt-level routines. They must not page fault, and they
cannot sleep waiting for locks.

When access to a remote data provider or a local device is removed, the vm_umount service must be
called to remove the device entry from the virtual memory manager’s paging device table.

Referenced Routines
The virtual memory manager exports these routines exported to kernel extensions:

Services That Manipulate Virtual Memory Objects
vm_att Selects and allocates a region in the current address

space for the specified virtual memory object.
vms_create Creates virtual memory object of the specified type and

size limits.
vms_delete Deletes a virtual memory object.
vm_det Unmaps and deallocates the region at a specified address

in the current address space.
vm_handle Constructs a virtual memory handle for mapping a virtual

memory object with a specified access level.
vms_iowait Waits for the completion of all page-out operations in the

virtual memory object.
vm_makep Makes a page in client storage.
vm_move Moves data between the virtual memory object and buffer

specified in the uio structure.
vm_protectp Sets the page protection key for a page range.
vm_releasep Releases page frames and paging space slots for pages

in the specified range.
vm_uiomove Moves data between the virtual memory object and buffer

specified in the uio structure.
vm_vmid Converts a virtual memory handle to a virtual memory

object (id).
vm_writep Initiates page-out for a page range in a virtual memory

object.

The following services support address space operations:

as_att Selects, allocates, and maps a region in the specified address space for the
specified virtual memory object.

as_det Unmaps and deallocates a region in the specified address space that was mapped
with the as_att kernel service.

as_geth Obtains a handle to the virtual memory object for the specified address given in
the specified address space. The virtual memory object is protected.

as_getsrval Obtains a handle to the virtual memory object for the specified address given in
the specified address space.

as_puth Indicates that no more references will be made to a virtual memory object that was
obtained using the as_geth kernel service.

as_seth Maps a specified region in the specified address space for the specified virtual
memory object.

getadsp Obtains a pointer to the current process’s address space structure for use with the
as_att and as_det kernel services.

vm_cflush Flushes cache lines for a specified address range.
vm_release Releases page frames and paging space slots for the specified address range.
vm_write Initiates page-out for an address range.

62 Kernel Extensions and Device Support Programming Concepts

Note: as_att, as_det, as_geth, as_getsrval, as_seth and getadsp are supported only on the 32–bit
kernel.

The following Memory-Pinning kernel services also support address space operations. They are the pin,
pinu, unpin, and unpinu services.

Services That Support Cross-Memory Operations
Cross Memory Services are listed in ″Memory Kernel Services″.

Services that Support the Installation of Pager Backends
vm_mount Allocates an entry in the paging device table.
vm_umount Removes a file system from the paging device table.

Services that Support 64-bit Processes on the 32-bit Kernel

as_att64 Allocates and maps a specified region in the current user address space.
as_det64 Unmaps and deallocates a region in the current user address space that was mapped with

the as_att64 kernel service.
as_geth64 Obtains a handle to the virtual memory object for the specified address.
as_puth64 Indicates that no more references will be made to a virtual memory object using the

as_geth64 kernel service.
as_seth64 Maps a specified region for the specified virtual memory object.
as_getsrval64 Obtains a handle to the virtual memory object for the specified address.
IS64U Determines if the current user address space is 64-bit or not.

Services that Support 64-bit Processes
The following services are supported only on the 32–bit kernel:

as_remap64 Maps a 64-bit address to a 32-bit address that can be used by the 32–bit kernel.

as_unremap64 Returns the original 64-bit original address associated with a 32-bit mapped address.

rmmap_create64 Defines an effective address to real address translation region for either 64-bit or 32-bit
effective addresses.

rmmap_remove64 Destroys an effective address to real address translation region.

xmattach64 Attaches to a user buffer for cross-memory operations.

copyin64 Copies data between user and kernel memory.

copyout64 Copies data between user and kernel memory.

copyinstr64 Copies data between user and kernel memory.

fubyte64 Retrieves a byte of data from user memory.

fuword64 Retrieves a word of data from user memory.

subyte64 Stores a byte of data in user memory.

suword64 Stores a word of data in user memory.

Message Queue Kernel Services
The Message Queue kernel services provide the same message queue functions to a kernel extension as
the msgctl, msgget, msgsnd, and msgxrcv subroutines make available to a program executing in user
mode. Parameters have been added for moving returned information to an explicit parameter to free the
return codes for error code usage. Instead of the error information available in the errno global variable

Chapter 4. Kernel Services 63

(as in user mode), the Message Queue services use the service’s return code. The error values are the
same, except that a memory fault error (EFAULT) cannot occur because message buffer pointers in the
kernel address space are assumed to be valid.

The Message Queue services can be called only from the process environment because they prevent the
caller from specifying kernel buffers. These services can be used as an Interprocess Communication
mechanism to other kernel processes or user-mode processes. See Kernel Extension and Device Driver
Management Services for more information on the functions that these services provide.

There are four Message Queue services available from the kernel:

kmsgctl Provides message-queue control operations.
kmsgget Obtains a message-queue identifier.
kmsgrcv Reads a message from a message queue.
kmsgsnd Sends a message using a previously defined message queue.

Network Kernel Services
The Network kernel services are divided into:

v Address Family Domain and Network Interface Device Driver services

v Routing and Interface services

v Loopback services

v Protocol services

v Communications Device Handler Interface services

Address Family Domain and Network Interface Device Driver Kernel
Services
The Address Family Domain and Network Interface Device Driver services enable address family domains
(Protocols) and network interface drivers to add and remove themselves from network switch tables.

The if_attach service and if_detach services add and remove network interfaces from the Network
Interface List. Protocols search this list to determine an appropriate interface on which to transmit a
packet.

Protocols use the add_input_type and del_input_type services to notify network interface drivers that the
protocol is available to handle packets of a certain type. The Network Interface Driver uses the
find_input_type service to distribute packets to a protocol.

The add_netisr and del_netisr services add and delete network software interrupt handlers. Address
families add and delete themselves from the Address Family Domain switch table by using the
add_domain_af and del_domain_af services. The Address Family Domain switch table is a list of all
available protocols that can be used in the socket subroutine.

The Address Family Domain and Network Interface Device Driver services are:

add_domain_af Adds an address family to the Address Family domain switch table.
add_input_type Adds a new input type to the Network Input table.
add_netisr Adds a network software interrupt service to the Network Interrupt table.
del_domain_af Deletes an address family from the Address Family domain switch table.
del_input_type Deletes an input type from the Network Input table.
del_netisr Deletes a network software interrupt service routine from the Network Interrupt table.
find_input_type Finds the given packet type in the Network Input Interface switch table and distributes

the input packet according to the table entry for that type.

64 Kernel Extensions and Device Support Programming Concepts

if_attach Adds a network interface to the network interface list.
if_detach Deletes a network interface from the network interface list.
ifunit Returns a pointer to the ifnet structure of the requested interface.
schednetisr Schedules or invokes a network software interrupt service routine.

Routing and Interface Address Kernel Services
The Routing and Interface Address services provide protocols with a means of establishing, accessing,
and removing routes to remote hosts or gateways. Routes bind destinations to a particular network
interface.

The interface address services accept a destination address or network and return an associated interface
address. Protocols use these services to determine if an address is on a directly connected network.

The Routing and Interface Address services are:

ifa_ifwithaddr Locates an interface based on a complete address.
ifa_ifwithdstaddr Locates the point-to-point interface with a given destination address.
ifa_ifwithnet Locates an interface on a specific network.
if_down Marks an interface as down.
if_nostat Zeroes statistical elements of the interface array in preparation for an attach

operation.
rtalloc Allocates a route.
rtfree Frees the routing table entry
rtinit Sets up a routing table entry, typically for a network interface.
rtredirect Forces a routing table entry with the specified destination to go through the given

gateway.
rtrequest Carries out a request to change the routing table.

Loopback Kernel Services
The Loopback services enable networking code to be exercised without actually transmitting packets on a
network. This is a useful tool for developing new protocols without introducing network variables. Loopback
services can also be used to send packets to local addresses without using hardware loopback.

The Loopback services are:

loifp Returns the address of the software loopback interface structure.
looutput Sends data through a software loopback interface.

Protocol Kernel Services
Protocol kernel services provide a means of finding a particular address family as well as a raw protocol
handler. The raw protocol handler basically passes raw packets up through sockets so that a protocol can
be implemented in user space.

The Protocol kernel services are:

pfctlinput Starts the ctlinput function for each configured protocol.
pffindproto Returns the address of a protocol switch table entry.
raw_input Builds a raw_header structure for a packet and sends both to the raw protocol handler.
raw_usrreq Implements user requests for raw protocols.

Chapter 4. Kernel Services 65

Communications Device Handler Interface Kernel Services
The Communications Device Handler Interface services provide a standard interface between network
interface drivers and communications device handlers. The net_attach and net_detach services open and
close the device handler. Once the device handler has been opened, the net_xmit service can be used to
transmit packets. Asynchronous start done notifications are recorded by the net_start_done service. The
net_error service handles error conditions.

The Communications Device Handler Interface services are:

add_netopt This macro adds a network option structure to the list of network options.
del_netopt This macro deletes a network option structure from the list of network options.
net_attach Opens a communications I/O device handler.
net_detach Closes a communications I/O device handler.
net_error Handles errors for communication network interface drivers.
net_sleep Sleeps on the specified wait channel.
net_start Starts network IDs on a communications I/O device handler.
net_start_done Starts the done notification handler for communications I/O device handlers.
net_wakeup Wakes up all sleepers waiting on the specified wait channel.
net_xmit Transmits data using a communications I/O device handler.
net_xmit_trace Traces transmit packets. This kernel service was added for those network interfaces that

do not use the net_xmit kernel service to trace transmit packets.

Process and Exception Management Kernel Services
The process and exception management kernel services provided by the base kernel provide the
capability to:

v Create kernel processes

v Register exception handlers

v Provide process serialization

v Generate and handle signals

v Support event waiting and notification

Creating Kernel Processes
Kernel extensions use the creatp and initp kernel services to create and initialize a kernel process. The
setpinit kernel service allow a kernel process to change its parent process from the one that created it to
the init process, so that the creating process does not receive the death-of-child process signal upon
kernel process termination. “Using Kernel Processes” on page 8 provides additional information concerning
use of these services.

Creating Kernel Threads
Kernel extensions use the thread_create and kthread_start services to create and initialize kernel-only
threads. For more information about threads, see “Understanding Kernel Threads” on page 6.

The thread_setsched service is used to control the scheduling parameters, priority and scheduling policy,
of a thread.

Kernel Structures Encapsulation
The getpid kernel service is used by a kernel extension in either the process or interrupt environment to
determine the current execution environment and obtain the process ID of the current process if in the
process environment. The rusage_incr service provides an access to the rusage structure.

66 Kernel Extensions and Device Support Programming Concepts

The thread-specific uthread structure is also encapsulated. The getuerror and setuerror kernel services
should be used to access the ut_error field. The thread_self kernel service should be used to get the
current thread’s ID.

Registering Exception Handlers
The setjmpx, clrjmpx, and longjmpx kernel services allow a kernel extension to register an exception
handler by:

v Saving the exception handler’s context with the setjmpx kernel service

v Removing its saved context with the clrjmpx kernel service if no exception occurred

v Starting the next registered exception handler with the longjmpx kernel service if it was unable to
handle the exception

For more information concerning use of these services, see “Handling Exceptions While in a System Call”
on page 33.

Signal Management
Signals can be posted either to a kernel process or to a kernel thread. The pidsig service posts a signal
to a specified kernel process; the kthread_kill service posts a signal to a specified kernel thread. A thread
uses the sig_chk service to poll for signals delivered to the kernel process or thread in the kernel mode.

For more information about signal management, see “Kernel Process Signal and Exception Handling” on
page 11.

Events Management
The event notification services provide support for two types of interprocess communications:

Primitive Allows only one process thread waiting on the event.
Shared Allows multiple processes threads waiting on the event.

The et_wait and et_post kernel services support single waiter event notification by using mutually agreed
upon event control bits for the kernel thread being posted. There are a limited number of control bits
available for use by kernel extensions. If the kernel_lock is owned by the caller of the et_wait service, it
is released and acquired again upon wakeup.

The following kernel services support a shared event notification mechanism that allows for multiple
threads to be waiting on the shared event.

e_assert_wait e_wakeup
e_block_thread e_wakeup_one
e_clear_wait e_wakeup_w_result
e_sleep_thread e_wakeup_w_sig

These services support an unlimited number of shared events (by using caller-supplied event words). The
following list indicates methods to wait for an event to occur:

v Calling e_assert_wait and e_block_thread successively; the first call puts the thread on the event
queue, the second blocks the thread. Between the two calls, the thread can do any job, like releasing
several locks. If only one lock, or no lock at all, needs to be released, one of the two other methods
should be preferred.

v Calling e_sleep_thread; this service releases a simple or a complex lock, and blocks the thread. The
lock can be automatically reacquired at wakeup.

Chapter 4. Kernel Services 67

The e_clear_wait service can be used by a thread or an interrupt handler to wake up a specified thread,
or by a thread that called e_assert_wait to remove itself from the event queue without blocking when
calling e_block_thread. The other wakeup services are event-based. The e_wakeup and
e_wakeup_w_result services wake up every thread sleeping on an event queue; whereas the
e_wakeup_one service wakes up only the most favored thread. The e_wakeup_w_sig service posts a
signal to every thread sleeping on an event queue, waking up all the threads whose sleep is interruptible.

The e_sleep and e_sleepl kernel services are provided for code that was written for previous releases of
the operating system. Threads that have called one of these services are woken up by the e_wakeup,
e_wakeup_one, e_wakeup_w_result, e_wakeup_w_sig, or e_clear_wait kernel services. If the caller of
the e_sleep service owns the kernel lock, it is released before waiting and is acquired again upon
wakeup. The e_sleepl service provides the same function as the e_sleep service except that a
caller-specified lock is released and acquired again instead of the kernel_lock.

List of Process, Thread, and Exception Management Kernel Services
The Process, Thread, and Exception Management kernel services are listed below.

clrjmpx Removes a saved context by popping the most recently
saved jump buffer from the list of saved contexts.

creatp Creates a new kernel process.
e_assert_wait Asserts that the calling kernel thread is going to sleep.
e_block_thread Blocks the calling kernel thread.
e_clear_wait Clears the wait condition for a kernel thread.
e_sleep, e_sleep_thread, or e_sleepl Forces the calling kernel thread to wait for the occurrence

of a shared event.
e_sleep_thread Forces the calling kernel thread to wait the occurrence of

a shared event.
e_wakeup, e_wakeup_one, or e_wakeup_w_result Notifies kernel threads waiting on a shared event of the

event’s occurrence.
e_wakeup_w_sig Posts a signal to sleeping kernel threads.
et_post Notifies a kernel thread of the occurrence of one or more

events.
et_wait Forces the calling kernel thread to wait for the occurrence

of an event.
getpid Gets the process ID of the current process.
getppidx Gets the parent process ID of the specified process.
initp Changes the state of a kernel process from idle to ready.
kthread_kill Posts a signal to a specified kernel-only thread.
kthread_start Starts a previously created kernel-only thread.
limit_sigs Changes the signal mask for the calling kernel thread.
longjmpx Allows exception handling by causing execution to resume

at the most recently saved context.
NLuprintf Submits a request to print an internationalized message to

the controlling terminal of a process.
pgsignal Sends a signal to all of the processes in a process group.
pidsig Sends a signal to a process.
rusage_incr Increments a field of the rusage structure.
setjmpx Allows saving the current execution state or context.
setpinit Sets the parent of the current kernel process to the init

process.
sig_chk Provides the calling kernel thread with the ability to poll for

receipt of signals.
sigsetmask Changes the signal mask for the calling kernel thread.
sleep Forces the calling kernel thread to wait on a specified

channel.
thread_create Creates a new kernel-only thread in the calling process.

68 Kernel Extensions and Device Support Programming Concepts

thread_self Returns the caller’s kernel thread ID.
thread_setsched Sets kernel thread scheduling parameters.
thread_terminate Terminates the calling kernel thread.
ue_proc_check Determines if a process is critical to the system.
uprintf Submits a request to print a message to the controlling

terminal of a process.

RAS Kernel Services
The Reliability, Availability, and Serviceability (RAS) kernel services are used to record the occurrence of
hardware or software failures and to capture data about these failures. The recorded information can be
examined using the errpt or trcrpt commands.

The panic kernel service is called when a catastrophic failure occurs and the system can no longer
operate. The panic service performs a system dump. The system dump captures data areas that are
registered in the Master Dump Table. The kernel and kernel extensions use the dmp_ctl kernel service to
add and delete entries in the Master Dump Table, and record dump routine failures.

The errsave and errlast kernel service is called to record an entry in the system error log when a
hardware or software failure is detected.

The trcgenk and trcgenkt kernel services are used along with the trchook subroutine to record selected
system events in the event-tracing facility.

The register_HA_handler and unregister_HA_handler kernel services are used to register high
availability event handlers for kernel extensions that need to be aware of events such as processor
deallocation.

Security Kernel Services
The Security kernel services provide methods for controlling the auditing system and for determining the
access rights to objects for the invoking process.

The following services are security kernel services:

suser Determines the privilege state of a process.
audit_svcstart Initiates an audit record for a system call.
audit_svcbcopy Appends event information to the current audit event buffer.
audit_svcfinis Writes an audit record for a kernel service.
crcopy Creates a copy of a security credentials structure.
crdup Creates a copy of the current security credentials structure.
credential macros Provide a means for accessing the user and group identifier fields within a credentials

structure.
crexport Copies an internal format credentials structure to an external format credentials

structure.
crfree Frees a security credentials structure.
crget Allocates a new, uninitialized security credentials structure.
crhold Increments the reference count of a security credentials structure.
crref Increments the reference count of the current security credentials structure.
crset Replaces the current security credentials structure.
kcred_getcap Copies a capability vector from a credentials structure.
kcred_getgroups Copies the concurrent group set from a credentials structure.
kcred_getpag Copies a process authentication group (PAG) ID from a credentials structure.
kcred_getpagid Returns the process authentication group (PAG) identifier for a PAG name.
kcred_getpagname Retrieves the name of a process authentication group (PAG).

Chapter 4. Kernel Services 69

kcred_getpriv Copies a privilege vector from a credentials structure.
kcred_setcap Copies a capabilities set into a credentials structure.
kcred_setgroups Copies a concurrent group set into a credentials structure.
kcred_setpag Copies a process authentication group ID into a credentials structure.
kcred_setpagname Copies a process authentication group ID into a credentials structure.
kcred_setpriv Copies a privilege vector into a credentials structure.

Timer and Time-of-Day Kernel Services
The Timer and Time-of-Day kernel services provide kernel extensions with the ability to be notified when a
period of time has passed. The tstart service supports a very fine granularity of time. The timeout service
is built on the tstart service and is provided for compatibility with earlier versions of the operating system.
The w_start service provides a timer with less granularity, but much cheaper path-length overhead when
starting a timer.

The Timer and Time-of-Day kernel services are divided into the following categories:

v Time-of-Day services

v Fine Granularity Timer services

v Timer services for compatibility

v Watchdog Timer services

Time-Of-Day Kernel Services
The Time-Of-Day kernel services are:

curtime Reads the current time into a time structure.
kgettickd Retrieves the current status of the systemwide time-of-day timer-adjustment values.
ksettimer Sets the systemwide time-of-day timer.
ksettickd Sets the current status of the systemwide timer-adjustment values.

Fine Granularity Timer Kernel Services

The Fine Granularity Timer kernel services are:

delay Suspends the calling process for the specified number of timer ticks.
talloc Allocates a timer request block before starting a timer request.
tfree Deallocates a timer request block.
tstart Submits a timer request.
tstop Cancels a pending timer request.

For more information about using the Fine Granularity Timer services, see “Using Fine Granularity Timer
Services and Structures” on page 71.

Timer Kernel Services for Compatibility
The following Timer kernel services are provided for compatibility:

timeout Schedules a function to be called after a specified interval.
timeoutcf Allocates or deallocates callout table entries for use with the timeout kernel service.
untimeout Cancels a pending timer request.

70 Kernel Extensions and Device Support Programming Concepts

Watchdog Timer Kernel Services
The Watchdog timer kernel services are:

w_clear Removes a watchdog timer from the list of watchdog timers known to the kernel.
w_init Registers a watchdog timer with the kernel.
w_start Starts a watchdog timer.
w_stop Stops a watchdog timer.

Using Fine Granularity Timer Services and Structures
The tstart, tfree, talloc, and tstop services provide fine-resolution timing functions. These timer services
should be used when the following conditions are required:

v Timing requests for less than one second

v Critical timing

v Absolute timing

The Watchdog timer services can be used for noncritical times having a one-second resolution. The
timeout service can be used for noncritical times having a clock-tick resolution.

Timer Services Data Structures
The trb (timer request) structure is found in the /sys/timer.h file. The itimerstruc_t structure contains the
second/nanosecond structure for time operations and is found in the sys/time.h file.

The itimerstruc_t t.it value substructure should be used to store time information for both absolute and
incremental timers. The T_ABSOLUTE absolute request flag is defined in the sys/timer.h file. It should be
ORed into the t->flag field if an absolute timer request is desired.

The T_LOWRES flag causes the system to round the t->timeout value to the next timer timeout. It should
be ORed into the t->flags field. The timeout is always rounded to a larger value. Because the system
maintains 10ms interval timer, T_LOWRES will never cause more than 10ms to be added to a timeout.
The advantage of using T_LOWRES is that it prevents an extra interrupt from being generated.

The t->timeout and t->flags fields must be set or reset before each call to the tstart kernel service.

Coding the Timer Function
The t->func timer function should be declared as follows:
void func (t)
struct trb *t;

The argument to the func completion handler routine is the address of the trb structure, not the contents
of the t_union field.

The t->func timer function is called on an interrupt level. Therefore, code for this routine must follow
conventions for interrupt handlers.

Using Multiprocessor-Safe Timer Services
On a multiprocessor system, timer request blocks and watchdog timer structures could be accessed
simultaneously by several processors. The kernel services shown below potentially alter critical information
in these blocks and structures, and therefore check whether it is safe to perform the requested service
before proceeding:

tstop Cancels a pending timer request.

Chapter 4. Kernel Services 71

w_clear Removes a watchdog timer from the list of watchdog timers known to the kernel.
w_init Registers a watchdog timer with the kernel.

If the requested service cannot be performed, the kernel service returns an error value.

In order to be multiprocessor safe, the caller must check the value returned by these kernel services. If the
service was not successful, the caller must take an appropriate action, for example, retrying in a loop. If
the caller holds a device driver lock, it should release and then reacquire the lock within this loop in order
to avoid deadlock.

Drivers which were written for uniprocessor systems do not check the return values of these kernel
services and are not multiprocessor-safe. Such drivers can still run as funnelled device drivers.

Virtual File System (VFS) Kernel Services
The Virtual File System (VFS) kernel services are provided as fundamental building blocks for use when
writing a virtual file system. These services present a standard interface for such functions as configuring
file systems, creating and freeing v-nodes, and looking up path names.

Most functions involved in the writing of a file system are specific to that file system type. But a limited
number of functions must be performed in a consistent manner across the various file system types to
enable the logical file system to operate independently of the file system type.

The VFS kernel services are:

common_reclock Implements a generic interface to the record locking functions.
fidtovp Maps a file system structure to a file ID.
gfsadd Adds a file system type to the gfs table.
gfsdel Removes a file system type from the gfs table.
vfs_hold Holds a vfs structure and increments the structure’s use count.
vfs_unhold Releases a vfs structure and decrements the structure’s use count.
vfsrele Releases all resources associated with a virtual file system.
vfs_search Searches the vfs list.
vn_free Frees a v-node previously allocated by the vn_get kernel service.
vn_get Allocates a virtual node and associates it with the designated virtual file system.
lookupvp Retrieves the v-node that corresponds to the named path.

Related Information
Chapter 1, “Kernel Environment”, on page 1

“Block I/O Buffer Cache Kernel Services: Overview” on page 48

Understanding the Virtual File System Interface

Communications Physical Device Handler Model Overview

Understanding File Descriptors in AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs.

Subroutine References
The msgctl subroutine, msgget subroutine, msgsnd subroutine, msgxrcv subroutine in AIX 5L Version
5.2 Technical Reference: Base Operating System and Extensions Volume 1.

72 Kernel Extensions and Device Support Programming Concepts

The trchook subroutine in AIX 5L Version 5.2 Technical Reference: Base Operating System and
Extensions Volume 2.

Commands References
The iostat command in AIX 5L Version 5.2 Commands Reference, Volume 3.

The vmstat command in AIX 5L Version 5.2 Commands Reference, Volume 6.

Technical References
The talloc kernel service, tfree kernel service, tstart kernel service, tstop kernel service in AIX 5L Version
5.2 Technical Reference: Kernel and Subsystems Volume 1.

Chapter 4. Kernel Services 73

74 Kernel Extensions and Device Support Programming Concepts

Chapter 5. Asynchronous I/O Subsystem

Synchronous I/O occurs while you wait. Applications processing cannot continue until the I/O operation is
complete.

In contrast, asynchronous I/O operations run in the background and do not block user applications. This
improves performance, because I/O operations and applications processing can run simultaneously.

Using asynchronous I/O will usually improve your I/O throughput, especially when you are storing data in
raw logical volumes (as opposed to Journaled file systems). The actual performance, however, depends
on how many server processes are running that will handle the I/O requests.

Many applications, such as databases and file servers, take advantage of the ability to overlap processing
and I/O. These asynchronous I/O operations use various kinds of devices and files. Additionally, multiple
asynchronous I/O operations can run at the same time on one or more devices or files.

Each asynchronous I/O request has a corresponding control block in the application’s address space.
When an asynchronous I/O request is made, a handle is established in the control block. This handle is
used to retrieve the status and the return values of the request.

Applications use the aio_read and aio_write subroutines to perform the I/O. Control returns to the
application from the subroutine, as soon as the request has been queued. The application can then
continue processing while the disk operation is being performed.

A kernel process (kproc), called a server, is in charge of each request from the time it is taken off the
queue until it completes. The number of servers limits the number of disk I/O operations that can be in
progress in the system simultaneously.

The default values are minservers=1 and maxservers=10. In systems that seldom run applications that use
asynchronous I/O, this is usually adequate. For environments with many disk drives and key applications
that use asynchronous I/O, the default is far too low. The result of a deficiency of servers is that disk I/O
seems much slower than it should be. Not only do requests spend inordinate lengths of time in the queue,
but the low ratio of servers to disk drives means that the seek-optimization algorithms have too few
requests to work with for each drive.

Note: Asynchronous I/O will not work if the control block or buffer is created using mmap (mapping
segments).

In AIX 5.2 there are two Asynchronous I/O Subsystems. The original AIX AIO, now called LEGACY AIO,
has the same function names as the posix compliant POSIX AIO. The major differences between the two
involve different parameter passing. Both subsytems are defined in the /usr/include/sys/aio.h file. The
_AIO_AIX_SOURCE macro is used to distinguish between the two versions.

Note: The _AIO_AIX_SOURCE macro used in the /usr/include/sys/aio.h file must be defined when
using this file to compile an aio application with the LEGACY AIO function definitions. The default
compile using the aio.h file is for an application with the new POSIX AIO definitions. To use the
LEGACY AIO function defintions do the following in the source file:
#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or when compiling on the command line, type the following:
xlc ... -D_AIO_AIX_SOURCE ... classic_aio_program.c

© Copyright IBM Corp. 1997, 2003 75

For each aio function there is a legacy and a posix definition. LEGACY AIO has an additional aio_nwait
function, which although not a part of posix definitions has been included in POSIX AIO to help those who
want to port from LEGACY to POSIX definitions. POSIX AIO has an additional aio_fsync function, which
is not included in LEGACY AIO. For a list of these functions, see “Asynchronous I/O Subroutines” on
page 79.

How Do I Know if I Need to Use AIO?
Using the vmstat command with an interval and count value, you can determine if the CPU is idle waiting
for disk I/O. The wa column details the percentage of time the CPU was idle with pending local disk I/O.

If there is at least one outstanding I/O to a local disk when the wait process is running, the time is
classified as waiting for I/O. Unless asynchronous I/O is being used by the process, an I/O request to disk
causes the calling process to block (or sleep) until the request has been completed. Once a process’s I/O
request completes, it is placed on the run queue.

A wa value consistently over 25 percent may indicate that the disk subsystem is not balanced properly, or it
may be the result of a disk-intensive workload.

Note: AIO will not relieve an overly busy disk drive. Using the iostat command with an interval and count
value, you can determine if any disks are overly busy. Monitor the %tm_act column for each disk
drive on the system. On some systems, a %tm_act of 35.0 or higher for one disk can cause
noticeably slower performance. The relief for this case could be to move data from more busy to
less busy disks, but simply having AIO will not relieve an overly busy disk problem.

SMP Systems
For SMP systems, the us, sy, id and wa columns are only averages over all processors. But keep in
mind that the I/O wait statistic per processor is not really a processor-specific statistic; it is a global
statistic. An I/O wait is distinguished from idle time only by the state of a pending I/O. If there is any
pending disk I/O, and the processor is not busy, then it is an I/O wait time. Disk I/O is not tracked by
processors, so when there is any I/O wait, all processors get charged (assuming they are all equally idle).

How Many AIO Servers Am I Currently Using?
To determine you how many Posix AIO Servers (aios) are currently running, type the following on the
command line:
pstat -a | grep posix_aioserver | wc -l

Note: You must run this command as the root user.

To determine you how many Legacy AIO Servers (aios) are currently running, type the following on the
command line:
pstat -a | egrep ’ aioserver’ | wc -l

Note: You must run this command as the root user.

If the disk drives that are being accessed asynchronously are using either the Journaled File System (JFS)
or the Enhanced Journaled File System (JFS2), all I/O will be routed through the aios kprocs.

If the disk drives that are being accessed asynchronously are using a form of raw logical volume
management, then the disk I/O is not routed through the aios kprocs. In that case the number of servers
running is not relevant.

However, if you want to confirm that an application that uses raw logic volumes is taking advantage of
AIO, you can disable the fast path option via SMIT. When this option is disabled, even raw I/O will be
forced through the aios kprocs. At that point, the pstat command listed in preceding discussion will work.

76 Kernel Extensions and Device Support Programming Concepts

You would not want to run the system with this option disabled for any length of time. This is simply a
suggestion to confirm that the application is working with AIO and raw logical volumes.

At releases earlier than AIX 4.3, the fast path is enabled by default and cannot be disabled.

How Many AIO Servers Do I Need?
Here are some suggested rules of thumb for determining what value to set maximum number of servers
to:

1. The first rule of thumb suggests that you limit the maximum number of servers to a number equal to
ten times the number of disks that are to be used concurrently, but not more than 80. The minimum
number of servers should be set to half of this maximum number.

2. Another rule of thumb is to set the maximum number of servers to 80 and leave the minimum number
of servers set to the default of 1 and reboot. Monitor the number of additional servers started
throughout the course of normal workload. After a 24-hour period of normal activity, set the maximum
number of servers to the number of currently running aios + 10, and set the minimum number of
servers to the number of currently running aios - 10.

In some environments you may see more than 80 aios KPROCs running. If so, consider the third rule
of thumb.

3. A third suggestion is to take statistics using vmstat -s before any high I/O activity begins, and again at
the end. Check the field iodone. From this you can determine how many physical I/Os are being
handled in a given wall clock period. Then increase the maximum number of servers and see if you
can get more iodones in the same time period.

Prerequisites
To make use of asynchronous I/O the following fileset must be installed:
bos.rte.aio

To determine if this fileset is installed, use:
lslpp -l bos.rte.aio

You must also make the aio0 or posix_aio0 device available using SMIT.
smit chgaio
smit chgposixaio

STATE to be configured at system restart available

or
smit aio
smit posixaio

Configure aio now

Functions of Asynchronous I/O
Functions provided by the asynchronous I/O facilities are:

v Large File-Enabled Asynchronous I/O

v Nonblocking I/O

v Notification of I/O completion

v Cancellation of I/O requests

Large File-Enabled Asynchronous I/O
The fundamental data structure associated with all asynchronous I/O operations is struct aiocb. Within
this structure is the aio_offset field which is used to specify the offset for an I/O operation.

Chapter 5. Asynchronous I/O Subsystem 77

Due to the signed 32-bit definition of aio_offset, the default asynchronous I/O interfaces are limited to an
offset of 2G minus 1. To overcome this limitation, a new aio control block with a signed 64-bit offset field
and a new set of asynchronous I/O interfaces has been defined. These 64–bit definitions end with ″64″.

The large offset-enabled asynchronous I/O interfaces are available under the _LARGE_FILES compilation
environment and under the _LARGE_FILE_API programming environment. For further information, see
Writing Programs That Access Large Files in AIX 5L Version 5.2 General Programming Concepts: Writing
and Debugging Programs.

Under the _LARGE_FILES compilation environment, asynchronous I/O applications written to the default
interfaces see the following redefinitions:

Item Redefined To Be Header File

struct aiocb struct aiocb64 sys/aio.h

aio_read() aio_read64() sys/aio.h

aio_write() aio_write64() sys/aio.h

aio_cancel() aio_cancel64() sys/aio.h

aio_suspend() aio_suspend64() sys/aio.h

aio_listio() aio_listio64() sys/aio.h

aio_return() aio_return64() sys/aio.h

aio_error() aio_error64() sys/aio.h

For information on using the _LARGE_FILES environment, see Porting Applications to the Large File
Environment in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging Programs

In the _LARGE_FILE_API environment, the 64-bit API interfaces are visible. This environment requires
recoding of applications to the new 64-bit API name. For further information on using the
_LARGE_FILE_API environment, see Using the 64-Bit File System Subroutines in AIX 5L Version 5.2
General Programming Concepts: Writing and Debugging Programs

Nonblocking I/O
After issuing an I/O request, the user application can proceed without being blocked while the I/O
operation is in progress. The I/O operation occurs while the application is running. Specifically, when the
application issues an I/O request, the request is queued. The application can then resume running before
the I/O operation is initiated.

To manage asynchronous I/O, each asynchronous I/O request has a corresponding control block in the
application’s address space. This control block contains the control and status information for the request.
It can be used again when the I/O operation is completed.

Notification of I/O Completion
After issuing an asynchronous I/O request, the user application can determine when and how the I/O
operation is completed. This information is provided in three ways:

v The application can poll the status of the I/O operation.

v The system can asynchronously notify the application when the I/O operation is done.

v The application can block until the I/O operation is complete.

Polling the Status of the I/O Operation
The application can periodically poll the status of the I/O operation. The status of each I/O operation is
provided in the application’s address space in the control block associated with each request. Portable

78 Kernel Extensions and Device Support Programming Concepts

applications can retrieve the status by using the aio_error subroutine.The aio_suspend subroutine
suspends the calling process until one or more asynchronous I/O requests are completed.

Asynchronously Notifying the Application When the I/O Operation Completes
Asynchronously notifying the I/O completion is done by signals. Specifically, an application may request
that a SIGIO signal be delivered when the I/O operation is complete. To do this, the application sets a flag
in the control block at the time it issues the I/O request. If several requests have been issued, the
application can poll the status of the requests to determine which have actually completed.

Blocking the Application until the I/O Operation Is Complete
The third way to determine whether an I/O operation is complete is to let the calling process become
blocked and wait until at least one of the I/O requests it is waiting for is complete. This is similar to
synchronous style I/O. It is useful for applications that, after performing some processing, need to wait for
I/O completion before proceeding.

Cancellation of I/O Requests
I/O requests can be canceled if they are cancelable. Cancellation is not guaranteed and may succeed or
not depending upon the state of the individual request. If a request is in the queue and the I/O operations
have not yet started, the request is cancellable. Typically, a request is no longer cancelable when the
actual I/O operation has begun.

Asynchronous I/O Subroutines

Note: The 64-bit APIs are as follows:

The following subroutines are provided for performing asynchronous I/O:

Subroutine Purpose
aio_cancel or aio_cancel64 Cancels one or more outstanding asynchronous I/O requests.
aio_error or aio_error64 Retrieves the error status of an asynchronous I/O request.
aio_fsync Synchronizes asynchronous files.
lio_listio or lio_listio64 Initiates a list of asynchronous I/O requests with a single call.
aio_nwait Suspends the calling process until n asynchronous I/O requests are

completed.
aio_read or aio_read64 Reads asynchronously from a file.
aio_return or aio_return64 Retrieves the return status of an asynchronous I/O request.
aio_suspend or aio_suspend64 Suspends the calling process until one or more asynchronous I/O requests is

completed.
aio_write or aio_write64 Writes asynchronously to a file.

Order and Priority of Asynchronous I/O Calls
An application may issue several asynchronous I/O requests on the same file or device. However,
because the I/O operations are performed asynchronously, the order in which they are handled may not be
the order in which the I/O calls were made. The application must enforce ordering of its own I/O requests
if ordering is required.

Priority among the I/O requests is not currently implemented. The aio_reqprio field in the control block is
currently ignored.

For files that support seek operations, seeking is allowed as part of the asynchronous read or write
operations. The whence and offset fields are provided in the control block of the request to set the seek
parameters. The seek pointer is updated when the asynchronous read or write call returns.

Chapter 5. Asynchronous I/O Subsystem 79

Subroutines Affected by Asynchronous I/O
The following existing subroutines are affected by asynchronous I/O:

v The close subroutine

v The exit subroutine

v The exec subroutine

v The fork subroutine

If the application closes a file, or calls the _exit or exec subroutines while it has some outstanding I/O
requests, the requests are canceled. If they cannot be canceled, the application is blocked until the
requests have completed. When a process calls the fork subroutine, its asynchronous I/O is not inherited
by the child process.

One fundamental limitation in asynchronous I/O is page hiding. When an unbuffered (raw) asynchronous
I/O is issued, the page that contains the user buffer is hidden during the actual I/O operation. This ensures
cache consistency. However, the application may access the memory locations that fall within the same
page as the user buffer. This may cause the application to block as a result of a page fault. To alleviate
this, allocate page aligned buffers and do not touch the buffers until the I/O request using it has
completed.

Changing Attributes for Asynchronous I/O
You can change attributes relating to asynchronous I/O using the chdev command or SMIT. Likewise, you
can use SMIT to configure and remove (unconfigure) asynchronous I/O. (Alternatively, you can use the
mkdev and rmdev commands to configure and remove asynchronous I/O). To start SMIT at the main
menu for asynchronous I/O, enter smit aio or smit posixaio.

MINIMUM number of servers
Indicates the minimum number of kernel processes dedicated to asynchronous I/O processing.
Because each kernel process uses memory, this number should not be large when the amount of
asynchronous I/O expected is small.

MAXIMUM number of servers per cpu
Indicates the maximum number of kernel processes per cpu that are dedicated to asynchronous
I/O processing. This number when multiplied by the number of cpus indicates the limit on I/O
requests in progress at one time, and represents the limit for possible I/O concurrency.

Maximum number of REQUESTS
Indicates the maximum number of asynchronous I/O requests that can be outstanding at one time.
This includes requests that are in progress as well as those that are waiting to be started. The
maximum number of asynchronous I/O requests cannot be less than the value of AIO_MAX, as
defined in the /usr/include/sys/limits.h file, but it can be greater. It would be appropriate for a
system with a high volume of asynchronous I/O to have a maximum number of asynchronous I/O
requests larger than AIO_MAX.

Server PRIORITY
Indicates the priority level of kernel processes dedicated to asynchronous I/O. The lower the
priority number is, the more favored the process is in scheduling. Concurrency is enhanced by
making this number slightly less than the value of PUSER, the priority of a normal user process. It
cannot be made lower than the values of PRI_SCHED.

Because the default priority is (40+nice), these daemons will be slightly favored with this value of
(39+nice). If you want to favor them more, make changes slowly. A very low priority can interfere
with the system process that require low priority.

80 Kernel Extensions and Device Support Programming Concepts

Attention: Raising the server PRIORITY (decreasing this numeric value) is not recommended
because system hangs or crashes could occur if the priority of the AIO servers is favored too
much. There is little to be gained by making big priority changes.

PUSER and PRI_SCHED are defined in the /usr/include/sys/pri.h file.

STATE to be configured at system restart
Indicates the state to which asynchronous I/O is to be configured during system initialization. The
possible values are:

v defined, which indicates that the asynchronous I/O will be left in the defined state and not
available for use

v available, which indicates that asynchronous I/O will be configured and available for use

STATE of FastPath
The AIO Fastpath is used only on character devices (raw logical volumes) and sends I/O requests
directly to the underlying device. The file system path used on block devices uses the aio kprocs
to send requests through file system routines provided to kernel extensions. Disabling this option
forces all I/O activity through the aios kprocs, including I/O activity that involves raw logical
volumes. In AIX 4.3 and earlier, the fast path is enabled by default and cannot be disabled.

64-bit Enhancements
Asynchronous I/O (AIO) has been enhanced to support 64-bit enabled applications. On 64-bit platforms,
both 32-bit and 64-bit AIO can occur simultaneously.

The struct aiocb, the fundamental data structure associated with all asynchronous I/O operation, has
changed. The element of this struct, aio_return, is now defined as ssize_t. Previously, it was defined as
an int. AIO supports large files by default. An application compiled in 64-bit mode can do AIO to a large
file without any additional #define or special opening of those files.

Related Information

Subroutine References
The aio_cancel or aio_cancel64 subroutine, aio_error or aio_error64 subroutine, aio_read or
aio_read64 subroutine, aio_return or aio_return64 subroutine, aio_suspend or aio_suspend64
subroutine, aio_write or aio_write64 subroutine, lio_listio or lio_listio64 subroutine in AIX 5L Version
5.2 Technical Reference: Base Operating System and Extensions Volume 1.

Commands References
The chdev command in AIX 5L Version 5.2 Commands Reference, Volume 1.

The mkdev command in AIX 5L Version 5.2 Commands Reference, Volume 3.

The rmdev command in AIX 5L Version 5.2 Commands Reference, Volume 4.

Chapter 5. Asynchronous I/O Subsystem 81

82 Kernel Extensions and Device Support Programming Concepts

Chapter 6. Device Configuration Subsystem

Devices are usually pieces of equipment that attach to a computer. Devices include printers, adapters, and
disk drives. Additionally, devices are special files that can handle device-related tasks.

System users cannot operate devices until device configuration occurs. To configure devices, the Device
Configuration Subsystem is available.

Read about general configuration characteristics and procedures in:

v “Scope of Device Configuration Support”

v “Device Configuration Subsystem Overview”

v “General Structure of the Device Configuration Subsystem” on page 84

Scope of Device Configuration Support
The term device has a wider range of meaning in this operating system than in traditional operating
systems. Traditionally, devices refers to hardware components such as disk drives, tape drives, printers,
and keyboards. Pseudo-devices, such as the console, error special file, and null special file, are also
included in this category. However, in this operating system, all of these devices are referred to as kernel
devices, which have device drivers and are known to the system by major and minor numbers.

Also, in this operating system, hardware components such as buses, adapters, and enclosures (including
racks, drawers, and expansion boxes) are considered devices.

Device Configuration Subsystem Overview
Devices are organized hierarchically within the system. This organization requires lower-level device
dependence on upper-level devices in child-parent relationships. The system device (sys0) is the
highest-level device in the system node, which consists of all physical devices in the system.

Each device is classified into functional classes, functional subclasses and device types (for example,
printer class, parallel subclass, 4201 Proprinter type). These classifications are maintained in the device
configuration databases with all other device information.

The Device Configuration Subsystem consists of:

High-level Commands Maintain (add, delete, view, change) configured devices within the system.
These commands manage all of the configuration functions and are performed
by invoking the appropriate device methods for the device being configured.
These commands call device methods and low-level commands.

The system uses the high-level Configuration Manager (cfgmgr) command
used to invoke automatic device configurations through system boot phases
and the user can invoke the command during system run time. Configuration
rules govern the cfgmgr command.

Device Methods Define, configure, change, unconfigure, and undefine devices. The device
methods are used to identify or change the device states (operational modes).

Database Maintains data through the ODM (Object Data Manager) by object classes.
Predefined Device Objects contain configuration data for all devices that can
possibly be used by the system. Customized Device Objects contain data for
device instances that are actually in use by the system.

© Copyright IBM Corp. 1997, 2003 83

General Structure of the Device Configuration Subsystem
The Device Configuration Subsystem can be viewed from the following different levels:

v High-level perspective

v Device method level

v Low-level perspective

Data that is used by the three levels is maintained in the Configuration database. The database is
managed as object classes by the Object Data Manager (ODM). All information relevant to support the
device configuration process is stored in the configuration database.

The system cannot use any device unless it is configured.

The database has two components: the Predefined database and the Customized database. The
Predefined database contains configuration data for all devices that could possibly be supported by the
system. The Customized database contains configuration data for the devices actually defined or
configured in that particular system.

The Configuration manager (cfgmgr command) performs the configuration of a system’s devices
automatically when the system is booted. This high-level program can also be invoked through the system
keyboard to perform automatic device configuration. The configuration manager command configures
devices as specified by Configuration rules.

High-Level Perspective
From a high-level, user-oriented perspective, device configuration comprises the following basic tasks:

v Adding a device to the system

v Deleting a device from the system

v Changing the attributes of a device

v Showing information about a device

From a high-level, system-oriented perspective, device configuration provides the basic task of automatic
device configuration: running the configuration manager program.

A set of high-level commands accomplish all of these tasks during run time: chdev, mkdev, lsattr,
lsconn, lsdev, lsparent, rmdev, and cfgmgr. High-level commands can invoke device methods and
low-level commands.

Device Method Level
Beneath the high-level commands (including the cfgmgr Configuration Manager program) is a set of
functions called device methods. These methods perform well-defined configuration steps, including these
five functions:

v Defining a device in the configuration database

v Configuring a device to make it available

v Changing a device to make a change in its characteristics

v Unconfiguring a device to make it unavailable

v Undefining a device from the configuration database

“Understanding Device States” on page 89 discusses possible device states and how the various methods
affect device state changes.

84 Kernel Extensions and Device Support Programming Concepts

The high-level device commands (including cfgmgr) can use the device methods. These methods insulate
high-level configuration programs from kernel-specific, hardware-specific, and device-specific configuration
steps. Device methods can invoke low-level commands.

Low-Level Perspective
Beneath the device methods is a set of low-level library routines that can be directly called by device
methods as well as by high-level configuration programs.

Device Configuration Database Overview
The Configuration database is an object-oriented database. The Object Data Manager (ODM) provides
facilities for accessing and manipulating it through object classes.

The following databases are used in the configuration process:

Predefined database Contains information about all possible types of devices that can be defined for
the system.

Customized database Describes all devices currently defined for use in the system. Items are referred
to as device instances.

ODM Device Configuration Object Classes in AIX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 2 provides access to the object classes that make up the Predefined and Customized
databases.

Devices must be defined in the database for the system to make use of them. For a device to be in the
Defined state, the Configuration database must contain a complete description of it. This information
includes items such as the device driver name, the device major and minor numbers, the device method
names, the device attributes, connection information, and location information.

Basic Device Configuration Procedures Overview
At system boot time, cfgmgr) is automatically invoked to configure all devices detected as well as any
device whose device information is stored in the Configuration database. At run time, you can configure a
specific device by directly invoking (or indirectly invoking through a usability interface layer) high-level
device commands.

High-level device commands invoke methods and allow the user to add, delete, show, and change devices
and their associated attributes.

When a specific device is defined through its define method, the information from the Predefined database
for that type of device is used to create the information describing the specific device instance. This
specific device instance information is then stored in the Customized database. For more information on
define methods, see Writing a Define Method in AIX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 2.

The process of configuring a device is often highly device-specific. The configure method for a kernel
device must:

v Load the device’s driver into the kernel.

v Pass the device dependent structure (DDS) describing the device instance to the driver. For more
information on DDS, see “Device Dependent Structure (DDS) Overview” on page 93.

v Create a special file for the device in the /dev directory. For more information, see Special Files in AIX
5L Version 5.2 Files Reference.

Chapter 6. Device Configuration Subsystem 85

For more information on configure methods, see Writing a Configure Method in AIX 5L Version 5.2
Technical Reference: Kernel and Subsystems Volume 2.

Of course, many devices do not have device drivers. For this type of device the configured state is not as
meaningful. However, it still has a Configure method that simply marks the device as configured or
performs more complex operations to determine if there are any devices attached to it.

The configuration process requires that a device be defined or configured before a device attached to it
can be defined or configured. At system boot time, the Configuration Manager first configures the system
device. The remaining devices are configured by traversing down the parent-child connections layer by
layer. The Configuration Manager then configures any pseudo-devices that need to be configured.

Device Configuration Manager Overview
The Configuration Manager is a rule-driven program that automatically configures devices in the system
during system boot and run time. When the Configuration Manager is invoked, it reads rules from the
Configuration Rules object class and performs the indicated actions. For more information on Configuration
Rules, see Configuration Rules (Config_Rules) Object Class in AIX 5L Version 5.2 Technical Reference:
Kernel and Subsystems Volume 2.

Devices in the system are organized in clusters of tree structures known as nodes. Each tree is a logical
subsystem by itself. For example, the system node consists of all the physical devices in the system. The
top of the node is the system device. Below the bus and connected to it are the adapters. The bottom of
the hierarchy contains devices to which no other devices are connected. Most pseudo-devices, including
low -function terminal (LFT) and pseudo-terminal (pty) devices, are organized as separate tree structures
or nodes.

Devices Graph
See “Understanding Device Dependencies and Child Devices” on page 91 for more information.

Configuration Rules

Each rule in the Configuration Rules (Config_Rules) object class specifies a program name that the
Configuration Manager must execute. These programs are typically the configuration programs for the
devices at the top of the nodes. When these programs are invoked, the names of the next lower-level
devices that need to be configured are returned.

The Configuration Manager configures the next lower-level devices by invoking the configuration methods
for those devices. In turn, those configuration methods return a list of to-be-configured device names. The
process is repeated until no more device names are returned. As a result, all devices in the same node
are configured in transverse order. The following are different types of rules:

v Phase 1

v Phase 2

v Service

The system boot process is divided into two phases. In each phase, the Configuration Manager is invoked.
During phase 1, the Configuration Manager is called with a -f flag, which specifies that phase = 1 rules are
to be executed. This results in the configuration of base devices into the system, so that the root file
system can be used. During phase 2, the Configuration Manager is called with a -s flag, which specifies
that phase = 2 rules are to be executed. This results in the configuration of the rest of the devices into the
system.

For more information on the booting process, see Understanding System Boot Processing in AIX 5L
Version 5.2 System Management Guide: Operating System and Devices.

86 Kernel Extensions and Device Support Programming Concepts

The Configuration Manager invokes the programs in the order specified by the sequence value in the rule.
In general, the lower the sequence number within a given phase, the higher the priority. Thus, a rule with a
2 sequence number is executed before a rule with a sequence number of 5. An exception is made for 0
sequence numbers, which indicate a don’t-care condition. Any rule with a sequence number of 0 is
executed last. The Configuration Rules (Config_Rules) object class provides an example of this process.

If device names are returned from the program invoked, the Configuration Manager finishes traversing the
node tree before it invokes the next program. Note that some program names might not be associated
with any devices, but they must be included to configure the system.

Invoking the Configuration Manager
During system boot time, the Configuration Manager is run in two phases. In phase 1, it configures the
base devices needed to successfully start the system. These devices include the root volume group, which
permits the configuration database to be read in from the root file system.

In phase 2, the Configuration Manager configures the remaining devices using the configuration database
from the root file system. During this phase, different rules are used, depending on whether the system
was booted in normal mode or in service mode. If the system is booted in service mode, the rules for
service mode are used. Otherwise, the phase 2 rules are used.

The Configuration Manager can also be invoked during run time to configure all the detectable devices
that might have been turned off at system boot or added after the system boot. In this case, the
Configuration Manager uses the phase 2 rules.

Device Classes, Subclasses, and Types Overview
To manage the wide variety of devices it supports more easily, the operating system classifies them
hierarchically. One advantage of this arrangement is that device methods and high-level commands can
operate against a whole set of similar devices.

Devices are categorized into the following main groups:

v Functional classes

v Functional subclasses

v Device types

Devices are organized into a set of functional classes at the highest level. From a user’s point of view, all
devices belonging to the same class perform the same functions. For example, all printer devices basically
perform the same function of generating printed output.

However, devices within a class can have different interfaces. A class can therefore be partitioned into a
set of functional subclasses in which devices belonging to the same subclass have similar interfaces. For
example, serial printers and parallel printers form two subclasses of printer devices.

Finally, a device subclass is a collection of device types. All devices belonging to the same device type
share the same manufacturer’s model name and number. For example, 3812-2 (model 2 Pageprinter) and
4201 (Proprinter II) printers represent two types of printers.

Devices of the same device type can be managed by different drivers if the type belongs to more than one
subclass. For example, the 4201 printer belongs to both the serial interface and parallel interface
subclasses of the printer class, although there are different drivers for the two interfaces. However, a
device of a particular class, subclass, and type can be managed by only one device driver.

Devices in the system are organized in clusters of tree structures known as nodes. For example, the
system node consists of all the physical devices in the system. At the top of the node is the system

Chapter 6. Device Configuration Subsystem 87

device. Below the bus and connected to it are the adapters. The bottom of the hierarchy contains the
devices to which no other devices are connected. Most pseudo-devices, including LFT and PTY, are
organized as separate nodes.

Writing a Device Method
Device methods are programs associated with a device that perform basic device configuration operations.
These operations consist of defining, undefining, configuring, unconfiguring, and reconfiguring a device.
Some devices also use optional start and stop operations.

The following are the basic device methods:

Define Creates a device instance in the Customized database.
Configure Configures a device instance already represented in the Customized database. This method is

responsible for making a device available for use in the system.
Change Reconfigures a device by allowing device characteristics or attributes to be changed.
Unconfigure Makes a configured device unavailable for use in the system. The device instance remains in

the Customized database but must be reconfigured before it can be used.
Undefine Deletes a device instance from the Customized database.

Invoking Methods
One device method can invoke another device method. For instance, a Configure method for a device
may need to invoke the Define method for child devices. The Change method can invoke the Unconfigure
and Configure methods. To ensure proper operation, a method that invokes another method must always
use the odm_run_method subroutine.

Example Methods
See the /usr/samples directory for example device method source code. These source code excerpts are
provided for example purposes only. The examples do not function as written.

Understanding Device Methods Interfaces
Device methods are not executed directly from the command line. They are only invoked by the
Configuration Manager at boot time or by the cfgmgr, mkdev, chdev, and rmdev configuration
commands at run time. As a result, any device method you write should meet well-defined interfaces.

The parameters that are passed into the methods as well as the exit codes returned must both satisfy the
requirements for each type of method. Additionally, some methods must write information to the stdout
and stderr files.

These interfaces are defined for each of the device methods in the individual articles on writing each
method.

To better understand how these interfaces work, one needs to understand, at least superficially, the flow of
operations through the Configuration Manager and the run-time configuration commands.

Configuration Manager
The Configuration Manager begins by invoking a Node Configuration program listed in one of the rules in
the Configuration Rules (Config_Rules) object class. A node is a group of devices organized into a tree
structure representing the various interconnections of the devices. The Node Configuration program is
responsible for starting the configuration process for a node. It does this by querying the Customized
database to see if the device at the top of the node is represented in the database. If so, the program
writes the logical name of the device to the stdout file and then returns to the Configuration Manager.

88 Kernel Extensions and Device Support Programming Concepts

The Configuration Manager intercepts the Node Configuration program’s stdout file to obtain the name of
the device that was written. It then invokes the Configure method for that device. The device’s Configure
method performs the steps necessary to make the device available. If the device is not an intermediate
one, the Configure method simply returns to the Configuration Manager. However, if the device is an
intermediate device that has child devices, the Configure method must determine whether any of the child
devices need to be configured. If so, the Configure method writes the names of all the child devices to be
configured to the stdout file and then returns to the Configuration Manager.

The Configuration Manager intercepts the Configure method’s stdout file to retrieve the names of the
children. It then invokes, one at a time, the Configure methods for each child device. Each of these
Configure methods operates as described for the parent device. For example, it might simply exit when
complete, or write to its stdout file a list of additional device names to be configured and then exit. The
Configuration Manager will continue to intercept the device names written to the stdout file and to invoke
the Configure methods for those devices until the Configure methods for all the devices have been run
and no more names are written to the stdout file.

Run-Time Configuration Commands
User configuration commands invoke device methods during run time.

mkdev The mkdev command is invoked to define or configure, or define and configure, devices at run time. If
just defining a device, the mkdev command invokes the Define method for the device. The Define
method creates the customized device instance in the Customized Devices (CuDv) object class and
writes the name assigned to the device to the stdout file. The mkdev command intercepts the device
name written to the stdout file by the Define method to learn the name of the device. If user-specified
attributes are supplied with the -a flag, the mkdev command then invokes the Change method for the
device.

If defining and configuring a device, the mkdev command invokes the Define method, gets the name
written to the stdout file with the Define method, invokes the Change method for the device if
user-specified attributes were supplied, and finally invokes the device’s Configure method.

If only configuring a device, the device must already exist in the CuDv object class and its name must
be specified to the mkdev command. In this case, the mkdev command simply invokes the Configure
method for the device.

chdev The chdev command is used to change the characteristics, or attributes, of a device. The device must
already exist in the CuDv object class, and the name of the device must be supplied to the chdev
command. The chdev command simply invokes the Change method for the device.

rmdev The rmdev command can be used to undefine or unconfigure, or unconfigure and undefine, a device.
In all cases, the device must already exist in the CuDv object class and the name of the device must
be supplied to the rmdev command. The rmdev command then invokes the Undefine method, the
Unconfigure method, or the Unconfigure method followed by the Undefine method, depending on the
function requested by the user.

cfgmgr The cfgmgr command can be used to configure all detectable devices that did not get configured at
boot time. This might occur if the devices had been powered off at boot time. The cfgmgr command is
the Configuration Manager and operates in the same way at run time as it does at boot time. The boot
time operation is described in Device Configuration Manager Overview .

Understanding Device States
Device methods are responsible for changing the state of a device in the system. A device can be in one
of four states as represented by the Device Status Flag descriptor in the device’s object in the Customized
Devices (CuDv) object class.

Defined Represented in the Customized database, but neither configured nor available for use in the
system.

Available Configured and available for use.
Undefined Not represented in the Customized database.

Chapter 6. Device Configuration Subsystem 89

Stopped Configured, but not available for use by applications. (Optional state)
Note: Start and stop methods are only supported on the inet0 device.

The Define method is responsible for creating a device instance in the Customized database and setting
the state to Defined. The Configure method performs all operations necessary to make the device usable
and then sets the state to Available.

The Change method usually does not change the state of the device. If the device is in the Defined state,
the Change method applies all changes to the database and leaves the device defined. If the device is in
the Available state, the Change method attempts to apply the changes to both the database and the actual
device, while leaving the device available. However, if an error occurs when applying the changes to the
actual device, the Change method might need to unconfigure the device, thus changing the state to
Defined.

Any Unconfigure method you write must perform the operations necessary to make a device unusable.
Basically, this method undoes the operations performed by the Configure method and sets the device state
to Defined. Finally, the Undefine method actually deletes all information for a device instance from the
Customized database, thus reverting the instance to the Undefined state.

The Stopped state is an optional state that some devices require. A device that supports this state needs
Start and Stop methods. The Stop method changes the state from Available to Stopped. The Start method
changes it from Stopped back to Available.

Note: Start and stop methods are only supported on the inet0 device.

Adding an Unsupported Device to the System
The operating system provides support for a wide variety of devices. However, some devices are not
currently supported. You can add a currently unsupported device only if you also add the necessary
software to support it.

To add a currently unsupported device to your system, you might need to:

v Modify the Predefined database

v Add appropriate device methods

v Add a device driver

v Use installp procedures

Modifying the Predefined Database
To add a currently unsupported device to your system, you must modify the Predefined database. To do
this, you must add information about your device to three predefined object classes:

v Predefined Devices (PdDv) object class

v Predefined Attribute (PdAt) object class

v Predefined Connection (PdCn) object class

To describe the device, you must add one object to the PdDv object class to indicate the class, subclass,
and device type. You must also add one object to the PdAt object class for each device attribute, such as
interrupt level or block size. Finally, you must add objects to the PdCn object class if the device is an
intermediate device. If the device is an intermediate device, you must add an object for each different
connection location on the intermediate device.

You can use the odmadd Object Data Manager (ODM) command from the command line or in a shell
script to populate the necessary Predefined object classes from stanza files.

90 Kernel Extensions and Device Support Programming Concepts

The Predefined database is populated with devices that are present at the time of installation. For some
supported devices, such as serial and parallel printers and SCSI disks, the database also contains generic
device objects. These generic device objects can be used to configure other similar devices that are not
explicitly supported in the Predefined database. If new devices are added after installation, additional
device support might need to be installed.

For example, if you have a serial printer that closely resembles a printer supported by the system, and the
system’s device driver for serial printers works on your printer, you can add the device driver as a printer
of type osp (other serial printer). If these generic devices successfully add your device, you do not need to
provide additional system software.

Adding Device Methods
You must add device methods when adding system support for a new device. Primary methods needed to
support a device are:

v Define

v Configure

v Change

v Undefine

v Unconfigure

When adding a device that closely resembles devices already supported, you might be able to use one of
the methods of the already supported device. For example, if you are adding a new type of SCSI disk
whose interfaces are identical to supported SCSI disks, the existing methods for SCSI disks may work. If
so, all you need to do is populate the Predefined database with information describing the new SCSI disk,
which will be similar to information describing a supported SCSI disk.

If you need instructions on how to write a device method, see Writing a Device Method .

Adding a Device Driver
If you add a new device, you will probably need to add a device driver. However, if you are adding a new
device that closely resembles an already supported device, you might be able to use the existing device
driver. For example, when you are adding a new type of SCSI disk whose interfaces are identical to
supported SCSI disks, the existing SCSI disk device driver might work.

Using installp Procedures
The installp procedures provide a method for adding the software and Predefined information needed to
support your new device. You might need to write shell scripts to perform tasks such as populating the
Predefined database.

Understanding Device Dependencies and Child Devices
The dependencies that one device has on another can be represented in the configuration database in two
ways. One way usually represents physical connections such as a keyboard device connected to a
particular keyboard adapter. The keyboard device has a dependency on the keyboard adapter in that it
cannot be configured until after the adapter is configured. This relationship is usually referred to as a
parent-child relationship, with the adapter as parent and the keyboard device as child. These relationships
are represented with the Parent Device Logical Name and Location Where Device Is Connected
descriptors in the Customized Devices (CuDv) object class.

The second method represents a logical connection. A device method can add an object identifying both a
dependent device and the device upon which it depends to the Customized Dependency (CuDep) object
class. The dependent device is considered to have a dependency, and the depended-upon device is

Chapter 6. Device Configuration Subsystem 91

considered to be a dependency. CuDep objects are usually added to the database to represent a situation
in which one device requires access to another device. For example, the lft0 device depends upon a
particular keyboard or display device.

These two types of dependencies differ significantly. The configuration process uses parent-child
dependencies at boot time to configure all devices that make up a node. The CuDep dependency is
usually only used by a device’s Configure method to record the names of the devices on which it depends.

For device methods, the parent-child relationship is the more important. Parent-child relationships affect
device-method activities in these ways:

v A parent device cannot be unconfigured if it has a configured child.

v A parent device cannot be undefined if it has a defined or configured child.

v A child device cannot be defined if the parent is not defined or configured.

v A child device cannot be configured if the parent is not configured.

v A parent device’s configuration cannot be changed if it has a configured child. This guarantees that the
information about the parent that the child’s device driver might be using remains valid.

However, when a device is listed as a dependency of another device in the CuDep object class, the only
effect is to prevent the depended-upon device from being undefined. The name of the dependency is
important to the dependent device. If the depended-upon device were allowed to be undefined, a third
device could be defined and assigned the same name.

Writers of Unconfigure and Change methods for a depended-upon device should not worry about whether
the device is listed as a dependency. If the depended-upon device is actually open by the other device,
the Unconfigure and Change operations will fail because their device is busy. But if the depended-upon
device is not currently open, the Unconfigure or Change operations can be performed without affecting the
dependent device.

The possible parent-child connections are defined in the Predefined Connection (PdCn) object class. Each
predefined device type that can be a parent device is represented in this object class. There is an object
for each connection location (such as slots or ports) describing the subclass of devices that can be
connected at that location. The subclass is used to identify each device because it indicates the devices’
connection type (for example, SCSI or rs232).

There is no corresponding predefined object class describing the possible CuDep dependencies. A device
method can be written so that it already knows what the dependencies are. If predefined data is required,
it can be added as predefined attributes for the dependent device in the Predefined Attribute (PdAt) object
class.

Accessing Device Attributes
The predefined device attributes for each type of predefined device are stored in the Predefined Attribute
(PdAt) object class. The objects in the PdAt object class identify the default values as well as other
possible values for each attribute. The Customized Attribute (CuAt) object class contains only attributes for
customized device instances that have been changed from their default values.

When a customized device instance is created by a Define method, its attributes assume the default
values. As a result, no objects are added to the CuAt object class for the device. If an attribute for the
device is changed from the default value by the Change method, an object to describe the attribute’s
current value is added to the CuAt object class for the attribute. If the attribute is subsequently changed
back to the default value, the Change method deletes the CuAt object for the attribute.

Any device methods that need the current attribute values for a device must access both the PdAt and
CuAt object classes. If an attribute appears in the CuAt object class, then the associated object identifies
the current value. Otherwise, the default value from the PdAt attribute object identifies the current value.

92 Kernel Extensions and Device Support Programming Concepts

Modifying an Attribute Value
When modifying an attribute value, methods you write must obtain the objects for that attribute from both
the PdAt and CuAt object classes.

Any method you write must be able to handle the following four scenarios:

v If the new value differs from the default value and no object currently exists in the CuAt object class,
any method you write must add an object into the CuAt object class to identify the new value.

v If the new value differs from the default value and an object already exists in the CuAt object class, any
method you write must update the CuAt object with the new value.

v If the new value is the same as the default value and an object exists in the CuAt object class, any
method you write must delete the CuAt object for the attribute.

v If the new value is the same as the default value and no object exists in the CuAt object class, any
method you write does not need to do anything.

Your methods can use the getattr and putattr subroutines to get and modify attributes. The getattr
subroutine checks both the PdAt and CuAt object classes before returning an attribute to you. It always
returns the information in the form of a CuAt object even if returning the default value from the PdAt object
class.

Use the putattr subroutine to modify these attributes.

Device Dependent Structure (DDS) Overview
A device dependent structure (DDS) contains information that describes a device instance to the device
driver. It typically contains information about device-dependent attributes as well as other information the
driver needs to communicate with the device. In many cases, information about a device’s parent is
included. (For instance, a driver needs information about the adapter and the bus the adapter is plugged
into to communicate with a device connected to an adapter.)

A device’s DDS is built each time the device is configured. The Configure method can fill in the DDS with
fixed values, computed values, and information from the Configuration database. Most of the information
from the Configuration database usually comes from the attributes for the device in the Customized
Attribute (CuAt) object class, but can come from any of the object classes. Information from the database
for the device’s parent device or parent’s parent device can also be included. The DDS is passed to the
device driver with the SYS_CFGDD flag of the sysconfig subroutine, which calls the device driver’s
ddconfig subroutine with the CFG_INIT command.

How the Change Method Updates the DDS
The Change method is invoked when changing the configuration of a device. The Change method must
ensure consistency between the Configuration database and the view that any device driver might have of
the device. This is accomplished by:

1. Not allowing the configuration to be changed if the device has configured children; that is, children in
either the Available or Stopped states. This ensures that a DDS built using information in the database
about a parent device remains valid because the parent cannot be changed.

2. If a device has a device driver and the device is in either the Available or Stopped state, the Change
method must communicate to the device driver any changes that would affect the DDS. This can be
accomplished with ioctl operations, if the device driver provides the support to do so. It can also be
accomplished by taking the following steps:

a. Terminating the device instance by calling the sysconfig subroutine with the SYS_CFGDD
operation. This operation calls the device driver’s ddconfig subroutine with the CFG_TERM
command.

b. Rebuilding the DDS using the changed information.

Chapter 6. Device Configuration Subsystem 93

c. Passing the new DDS to the device driver by calling the sysconfig subroutine SYS_CFGDD
operation. This operation then calls the ddconfig subroutine with the CFG_INIT command.

Many Change methods simply invoke the device’s Unconfigure method, apply changes to the database,
and then invoke the device’s Configure method. This process ensures the two stipulated conditions since
the Unconfigure method, and thus the change, will fail, if the device has Available or Stopped children.
Also, if the device has a device driver, its Unconfigure method terminates the device instance. Its
Configure method also rebuilds the DDS and passes it to the driver.

Guidelines for DDS Structure
There is no single defined DDS format. Writers of device drivers and device methods must agree upon a
particular device’s DDS format. When obtaining information about a parent device, you might want to
group that information together in the DDS.

When building a DDS for a device connected to an adapter card, you will typically need the following
adapter information:

slot number Obtained from the connwhere descriptor of the adapter’s Customized Device (CuDv)
object.

bus resources Obtained from attributes for the adapter in the Customized Attribute (CuAt) or Predefined
Attribute (PdAt) object classes. These include attributes for bus interrupt levels, interrupt
priorities, bus memory addresses, bus I/O addresses, and DMA arbitration levels.

The following attribute must be obtained for the adapter’s parent bus device:

bus_id Identifies the I/O bus. This field is needed by the device driver to access the I/O bus.

Note: The getattr device configuration subroutine should be used whenever attributes are obtained from
the Configuration database. This subroutine returns the Customized attribute value if the attribute is
represented in the Customized Attribute object class. Otherwise, it returns the default value from the
Predefined Attribute object class.

Finally, a DDS generally includes the device’s logical name. This is used by the device driver to identify
the device when logging an error for the device.

Example of DDS
The following example provides a guide for using DDS format.
/* Device DDS */
struct device_dds {

/* Bus information */
ulong bus_id; /* I/O bus id */
ushort us_type; /* Bus type, i.e. BUS_MICRO_CHANNEL*/
/* Adapter information */
int slot_num; /* Slot number */
ulong io_addr_base; /* Base bus i/o address */
int bus_intr_lvl; /* bus interrupt level */
int intr_priority; /* System interrupt priority */
int dma_lvl; /* DMA arbitration level */
/* Device specific information */
int block_size; /* Size of block in bytes */
int abc_attr; /* The abc attribute */
int xyz_attr; /* The xyz attribute */
char resource_name[16]; /* Device logical name */

};

94 Kernel Extensions and Device Support Programming Concepts

List of Device Configuration Commands
The high-level device configuration commands are:

chdev Changes a device’s characteristics.
lsdev Displays devices in the system and their characteristics.
mkdev Adds a device to the system.
rmdev Removes a device from the system.
lsattr Displays attribute characteristics and possible values of attributes for devices in the system.
lsconn Displays the connections a given device, or kind of device, can accept.
lsparent Displays the possible parent devices that accept a specified connection type or device.
cfgmgr Configures devices by running the programs specified in the Configuration Rules (Config_Rules)

object class.

Associated commands are:

bootlist Alters the list of boot devices seen by ROS when the machine boots.
lscfg Displays diagnostic information about a device.
restbase Reads the base customized information from the boot image and restores it into the Device

Configuration database used during system boot phase 1.
savebase Saves information about base customized devices in the Device Configuration Database onto the

boot device.

List of Device Configuration Subroutines
Following are the preexisting conditions for using the device configuration library subroutines:

v The caller has initialized the Object Data Manager (ODM) before invoking any of these library
subroutines. This is done using the initialize_odm subroutine. Similarly, the caller must terminate the
ODM (using the terminate_odm subroutine) after these library subroutines have completed.

v Because all of these library subroutines (except the attrval, getattr, and putattr subroutines) access
the Customized Device Driver (CuDvDr) object class, this class must be exclusively locked and
unlocked at the proper times. The application does this by using the odm_lock and odm_unlock
subroutines. In addition, those library subroutines that access the CuDvDr object class exclusively lock
this class with their own internal locks.

Following are the device configuration library subroutines:

attrval Verifies that attributes are within range.
genmajor Generates the next available major number for a device driver instance.
genminor Generates the smallest unused minor number, a requested minor number for a device if it is

available, or a set of unused minor numbers.
genseq Generates a unique sequence number for creating a device’s logical name.
getattr Returns attribute objects from either the Predefined Attribute (PdAt) or Customized Attribute

(CuAt) object class, or both.
getminor Gets from the CuDvDr object class the minor numbers for a given major number.
loadext Loads or unloads and binds or unbinds device drivers to or from the kernel.
putattr Updates attribute information in the CuAt object class or creates a new object for the attribute

information.
reldevno Releases the minor number or major number, or both, for a device instance.
relmajor Releases the major number associated with a specific device driver instance.

Chapter 6. Device Configuration Subsystem 95

Related Information
Understanding System Boot Processing in AIX 5L Version 5.2 System Management Guide: Operating
System and Devices

Special Files in AIX 5L Version 5.2 Files Reference

Initial Printer Configuration in AIX 5L Version 5.2 Guide to Printers and Printing

Machine Device Driver, Loading a Device Driver in AIX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 2.

Writing a Define Method, Writing a Configure Method, Writing a Change Method, Writing an Unconfigure
Method, Writing an Undefine Method, Writing Optional Start and Stop Methods, How Device Methods
Return Errors, Device Methods for Adapter Cards: Guidelines in AIX 5L Version 5.2 Technical Reference:
Kernel and Subsystems Volume 2

Configuration Rules (Config_Rules) Object Class, Customized Dependency (CuDep) Object Class,
Customized Devices (CuDv) Object Class, Predefined Attribute (PdAt) Object Class, Predefined
Connection (PdCn) Object Class, Adapter-Specific Considerations For the Predefined Devices (PdDv)
Object Class, Adapter-Specific Considerations For the Predefined Attributes (PdAt) Object Class,
Predefined Devices Object Class, ODM Device Configuration Object Classes in AIX 5L Version 5.2
Technical Reference: Kernel and Subsystems Volume 2.

Subroutine References
The getattr subroutineioctl subroutine, odm_run_method subroutine, putattr subroutine in AIX 5L
Version 5.2 Technical Reference: Base Operating System and Extensions Volume 1.

The sysconfig subroutine in AIX 5L Version 5.2 Technical Reference: Base Operating System and
Extensions Volume 2.

Commands References
The cfgmgr command, chdev command in AIX 5L Version 5.2 Commands Reference, Volume 1.

The mkdev command in AIX 5L Version 5.2 Commands Reference, Volume 3.

The rmdev command in AIX 5L Version 5.2 Commands Reference, Volume 4.

Technical References
The SYS_CFGDD sysconfig operation in AIX 5L Version 5.2 Technical Reference: Base Operating
System and Extensions Volume 1.

The ddconfig device driver entry point in AIX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 1.

96 Kernel Extensions and Device Support Programming Concepts

Chapter 7. Communications I/O Subsystem

The Communication I/O Subsystem design introduces a more efficient, streamlined approach to attaching
data link control (DLC) processes to communication and LAN adapters.

The Communication I/O Subsystem consists of one or more physical device handlers (PDHs) that control
various communication adapters. The interface to the physical device handlers can support any number of
processes, the limit being device-dependent.

Note: A PDH, as used for the Communications I/O, provides both the device head role for interfacing
to users, and the device handler role for performing I/O to the device.

A communications PDH is a special type of multiplexed character device driver. Information common to all
communications device handlers is discussed here. Additionally, individual communications PDHs have
their own adapter-specific sets of information. Refer to the following to learn more about the adapter types:

v Serial Optical Link Device Handler Overview

Each adapter type requires a device driver. Each PDH can support one or more adapters of the same
type.

There are two interfaces a user can use to access a PDH. One is from a user-mode process (application
space), and the other is from a kernel-mode process (within the kernel).

User-Mode Interface to a Communications PDH
The user-mode process uses system calls (open, close, select, poll, ioctl, read, write) to interface to the
PDH to send or receive data. The poll or select subroutine notifies a user-mode process of available
receive data, available transmit, and status and exception conditions.

Kernel-Mode Interface to a Communications PDH
The kernel-mode interface to a communications PDH differs from the interface supported for a user-mode
process in the following ways:

v Kernel services are used instead of system calls. This means that, for example, the fp_open kernel
service is used instead of the open subroutine. The same holds true for the fp_close, fp_ioctl, and
fp_write kernel services.

v The ddread entry point, ddselect entry point, and CIO_GET_STAT (Get Status) ddioctl operation are
not supported in kernel mode. Instead, kernel-mode processes specify at open time the addresses of
their own procedures for handling receive data available, transmit available and status or exception
conditions. The PDH directly calls the appropriate procedure, whenever that condition arises. These
kernel procedures must execute and return quickly since they are executing within the priority of the
PDH.

v The ddwrite operation for a kernel-mode process differs from a user-mode process in that there are two
ways to issue a ddwrite operation to transmit data:

– Transmit each buffer of data with the fp_write kernel service.

– Use the fast write operation, which allows the user to directly call the ddwrite operation (no context
switching) for each buffer of data to be transmitted. This operation helps increase the performance of
transmitted data. A fp_ioctl (CIO_GET_FASTWRT) kernel service call obtains the functional address
of the write function. This address is used on all subsequent write function calls. Support of the fast
write operation is optional for each device.

© Copyright IBM Corp. 1997, 2003 97

CDLI Device Drivers
Some device drivers have a different design and use the services known as Common Data Link Interface
(CDLI). The following device drivers use CDLI:

v Forum-Compliant ATM LAN Emulation Device Driver

v Fiber Distributed Data Interface (FDDI) Device Driver

v High-Performance (8fc8) Token-Ring Device Driver

v High-Performance (8fa2) Token-Ring Device Driver

v Ethernet Device Drivers

Communications Physical Device Handler Model Overview
A physical device handler (PDH) must provide eight common entry points. An individual PDH names its
entry points by placing a unique identifier in front of the supported command type.The following are the
required eight communications PDH entry points:

ddconfig Performs configuration functions for a device handler. Supported the same way that the common
ddconfig entry point is.

ddmpx Allocates or deallocates a channel for a multiplexed device handler. Supported the same way as the
common ddmpx device handler entry point.

ddopen Performs data structure allocation and initialization for a communications PDH. Supported the same
way as the common ddopen entry point. Time-consuming tasks, such as port initialization and
connection establishment, are deferred until the (CIO_START) ddioctl call is issued. A PDH can
support multiple users of a single port.

ddclose Frees up system resources used by the specified communications device until they are needed
again. Supported the same way as the common ddclose entry point.

ddwrite Queues a message for transmission or blocks until the message can be queued. The ddwrite entry
point can attempt to queue a transmit request (nonblocking) or wait for it to be queued (blocking),
depending on the setting of the DNDELAY flag. The caller has the additional option of requesting an
asynchronous acknowledgment when the transmission actually completes.

ddread Returns a message of data to a user-mode process. Supports blocking or nonblocking reads
depending on the setting of the DNDELAY flag. A blocking read request does not return to the caller
until data is available. A nonblocking read returns with a message of data if it is immediately
available. Otherwise, it returns a length of 0 (zero).

ddselect Checks to see if a specified event or events has occurred on the device for a user-mode process.
Supported the same way as the common ddselect entry point.

ddioctl Performs the special I/O operations requested in an ioctl subroutine. Supported the same way as the
common ddioctl entry point. In addition, a communications PDH must support the following four
options:

v CIO_START

v CIO_HALT

v CIO_QUERY

v CIO_GET_STAT

Individual PDHs can add additional commands. Hardware initialization and other time-consuming activities,
such as call establishment, are performed during the CIO_START operation.

Use of mbuf Structures in the Communications PDH
PDHs use mbuf structures to buffer send and receive data. These structures allow the PDH to gather data
when transmitting frames and scatter for receive operations. The mbuf structures are internal to the kernel
and are used only by kernel-mode processes and PDHs.

PDHs and kernel-mode processes require a set of utilities for obtaining and returning mbuf structures from
a buffer pool.

98 Kernel Extensions and Device Support Programming Concepts

Kernel-mode processes use the Berkeley mbuf scheme for transmit and receive buffers. The structure for
an mbuf is defined in the /usr/include/sys/mbuf.h file.

Common Communications Status and Exception Codes
In general, communication device handlers return codes from a group of common exception codes.
However, device handlers for specific communication devices can return device-specific exception codes.
Common exception codes are defined in the /usr/include/sys/comio.h file and include the following:

CIO_OK Indicates that the operation was successful.
CIO_BUF_OVFLW Indicates that the data was lost due to buffer overflow.
CIO_HARD_FAIL Indicates that a hardware failure was detected.
CIO_NOMBUF Indicates that the operation was unable to allocate mbuf structures.
CIO_TIMEOUT Indicates that a time-out error occurred.
CIO_TX_FULL Indicates that the transmit queue is full.
CIO_NET_RCVRY_ENTER Enters network recovery.
CIO_NET_RCVRY_EXIT Indicates the device handler is exiting network recovery.
CIO_NET_RCVRY_MODE Indicates the device handler is in Recovery mode.
CIO_INV_CMD Indicates that an invalid command was issued.
CIO_BAD_MICROCODE Indicates that the microcode download failed.
CIO_NOT_DIAG_MODE Indicates that the command could not be accepted because the adapter is not

open in Diagnostic mode.
CIO_BAD_RANGE Indicates that the parameter values have failed a range check.
CIO_NOT_STARTED Indicates that the command could not be accepted because the device has not

yet been started by the first call to CIO_START operation.
CIO_LOST_DATA Indicates that the receive packet was lost.
CIO_LOST_STATUS Indicates that a status block was lost.
CIO_NETID_INV Indicates that the network ID was not valid.
CIO_NETID_DUP Indicates that the network ID was a duplicate of an existing ID already in use

on the network.
CIO_NETID_FULL Indicates that the network ID table is full.

Status Blocks for Communications Device Handlers Overview
Status blocks are used to communicate status and exception information.

User-mode processes receive a status block whenever they request a CIO_GET_STAT operation. A
user-mode process can wait for the next available status block by issuing a ddselect entry point with the
specified POLLPRI event.

A kernel-mode process receives a status block through the stat_fn procedure. This procedure is specified
when the device is opened with the ddopen entry point.

Status blocks contain a code field and possible options. The code field indicates the type of status block
code (for example, CIO_START_DONE). A status block’s options depend on the block code. The C
structure of a status block is defined in the /usr/include/sys/comio.h file.

The following are the common status codes:

v CIO_START_DONE

v CIO_HALT_DONE

v CIO_TX_DONE

v CIO_NULL_BLK

v CIO_LOST_STATUS

v CIO_ASYNC_STATUS

Chapter 7. Communications I/O Subsystem 99

Additional device-dependent status block codes may be defined.

CIO_START_DONE
This block is provided by the device handler when the CIO_START operation completes:

option[0] The CIO_OK or CIO_HARD_FAIL status/exception code from the common or device-dependent
list.

option[1] The low-order two bytes are filled in with the netid field. This field is passed when the CIO_START
operation is invoked.

option[2] Device-dependent.
option[3] Device-dependent.

CIO_HALT_DONE
This block is provided by the device handler when the CIO_HALT operation completes:

option[0] The CIO_OK status/exception code from the common or device-dependent list.
option[1] The low-order two bytes are filled in with the netid field. This field is passed when the CIO_START

operation is invoked.
option[2] Device-dependent.
option[3] Device-dependent.

CIO_TX_DONE
The following block is provided when the physical device handler (PDH) is finished with a transmit request
for which acknowledgment was requested:

option[0] The CIO_OK or CIO_TIMEOUT status/exception code from the common or device-dependent list.
option[1] The write_id field specified in the write_extension structure passed in the ext parameter to the

ddwrite entry point.
option[2] For a kernel-mode process, indicates the mbuf pointer for the transmitted frame.
option[3] Device-dependent.

CIO_NULL_BLK
This block is returned whenever a status block is requested but there are none available:

option[0] Not used
option[1] Not used
option[2] Not used
option[3] Not used

CIO_LOST_STATUS
This block is returned once after one or more status blocks is lost due to status queue overflow. The
CIO_LOST_STATUS block provides the following:

option[0] Not used
option[1] Not used
option[2] Not used
option[3] Not used

100 Kernel Extensions and Device Support Programming Concepts

CIO_ASYNC_STATUS
This status block is used to return status and exception codes that occur unexpectedly:

option[0] The CIO_HARD_FAIL or CIO_LOST_DATA status/exception code from the common or
device-dependent list

option[1] Device-dependent
option[2] Device-dependent
option[3] Device-dependent

MPQP Device Handler Interface Overview for the ARTIC960Hx PCI
Adapter
The ARTIC960Hx PCI Adapter (PCI MPQP) device handler is a component of the communication I/O
subsystem. The PCI MPQP device handler interface is made up of the following eight entry points:

tsclose Resets the PCI MPQP device to a known state and returns system resources back to the
system on the last close for that adapter. The port no longer transmits or receives data.

tsconfig Provides functions for initializing and terminating the PCI MPQP device handler and
adapter.

tsioctl Provides the following functions for controlling the PCI MPQP device:

CIO_START
Initiates a session with the PCI MPQP device handler.

CIO_HALT
Ends a session with the PCI MPQP device handler.

CIO_QUERY
Reads the counter values accumulated by the PCI MPQP device handler.

CIO_GET_STAT
Gets the status of the current PCI MPQP adapter and device handler.

MP_CHG_PARMS
Permits the data link control (DLC) to change certain profile parameters after the
PCI MPQP device has been started.

tsopen Opens a channel on the PCI MPQP device for transmitting and receiving data.
tsmpx Provides allocation and deallocation of a channel.
tsread Provides the means for receiving data to the PCI MPQP device.
tsselect Provides the means for determining which specified events have occurred on the PCI

MPQP device.
tswrite Provides the means for transmitting data to the PCI MPQP device.

Binary Synchronous Communication (BSC) with the PCI MPQP
Adapter
The PCI MPQP adapter software performs low-level BSC frame-type determination to facilitate character
parsing at the kernel-mode process level. Frames received without errors are parsed. A message type is
returned in the status field of the extension block along with a pointer to the receive buffer. The message
type indicates the type of frame that was received.

For control frames that only contain control characters, the message type is returned and no data is
transferred from the board. For example, if an ACK0 was received, the message type MP_ACK0 is returned
in the status field of the extension block. In addition, a NULL pointer for the receive buffer is returned. If
an error occurs, the error status is logged by the device driver. Unlogged buffer overrun errors are an
exception.

Note: In BSC communications, the caller receives either a message type or an error status.

Chapter 7. Communications I/O Subsystem 101

Read operations must be performed using the readx subroutine because the read_extension structure is
needed to return BSC function results.

BSC Message Types Detected by the PCI MPQP Adapter
BSC message types are defined in the /usr/include/sys/mpqp.h file. The PCI MPQP adapter can detect
the following message types:

MP_ACK0 MP_DISC MP_STX_ETX

MP_ACK1 MP_SOH_ITB MP_STX_ENQ

MP_WACK MP_SOH_ETB MP_DATA_ACK0

MP_NAK MP_SOH_ETX MP_DATA_ACK1

MP_ENQ MP_SOH_ENQ MP_DATA_NAK

MP_EOT MP_STX_ITB MP_DATA_ENQ

MP_RVI MP_STX_ETB

Receive Errors Logged by the PCI MPQP Adapter
The PCI MPQP adapter detects many types of receive errors. As errors occur they are logged and the
appropriate statistical counter is incremented. The kernel-mode process is not notified of the error. The
following are the possible BSC receive errors logged by the PCI MPQP adapter:

v Receive overrun

v A cyclical redundancy check (CRC) or longitudinal redundancy check (LRC) framing error

v Parity error

v Clear to Send (CTS) timeout

v Data synchronization lost

v ID field greater than 15 bytes (BSC)

v Invalid pad at end of frame (BSC)

v Unexpected or invalid data (BSC)

If status and data information are available, but no extension block is provided, the read operation returns
the data, but not the status information.

Note: Errors, such as buffer overflow errors, can occur during the read data operation. In these cases, the
return value is the byte count. Therefore, status should be checked even if no errno global value is
returned.

Description of the PCI MPQP Card
The PCI MPQP card is a 4-port multiprotocol adapter that supports BSC and SDLC on the EIA232-D,
X.21, and V.35 physical interfaces. When using the X.21 physical interface, X.21 centralized multipoint
operation on a leased-circuit public data network is not supported.

Serial Optical Link Device Handler Overview

The serial optical link (SOL) device handler is a component of the communication I/O subsystem. The
device handler can support one to four serial optical ports. An optical port consists of two separate pieces.
The serial link adapter is on the system planar and is packaged with two to four adapters in a single chip.
The serial optical channel converter plugs into a slot on the system planar and provides two separate
optical ports.

102 Kernel Extensions and Device Support Programming Concepts

Special Files

There are two separate interfaces to the serial optical link device handler. The special file /dev/ops0
provides access to the optical port subsystem. An application that opens this special file has access to all
the ports, but it does not need to be aware of the number of ports available. Each write operation includes
a destination processor ID. The device handler sends the data out the correct port to reach that processor.
In case of a link failure, the device handler uses any link that is available.

The /dev/op0, /dev/op1, ..., /dev/opn special files provide a diagnostic interface to the serial link adapters
and the serial optical channel converters. Each special file corresponds to a single optical port that can
only be opened in Diagnostic mode. A diagnostic open allows the diagnostic ioctls to be used, but normal
reads and writes are not allowed. A port that is open in this manner cannot be opened with the /dev/ops0
special file. In addition, if the port has already been opened with the /dev/ops0 special file, attempting to
open a /dev/opx special file will fail unless a forced diagnostic open is used.

Entry Points

The SOL device handler interface consists of the following entry points:

sol_close Resets the device to a known state and frees system resources.
sol_config Provides functions to initialize and terminate the device handler, and query the vital product

data (VPD).
sol_fastwrt Provides the means for kernel-mode users to transmit data to the SOL device driver.
sol_ioctl Provides various functions for controlling the device. The valid sol_ioctl operations are:

CIO_GET_FASTWRT
Gets attributes needed for the sol_fastwrt entry point.

CIO_GET_STAT
Gets the device status.

CIO_HALT
Halts the device.

CIO_QUERY
Queries device statistics.

CIO_START
Starts the device.

IOCINFO
Provides I/O character information.

SOL_CHECK_PRID
Checks whether a processor ID is connected.

SOL_GET_PRIDS
Gets connected processor IDs.

sol_mpx Provides allocation and deallocation of a channel.
sol_open Initializes the device handler and allocates the required system resources.
sol_read Provides the means for receiving data.
sol_select Determines if a specified event has occurred on the device.
sol_write Provides the means for transmitting data.

Configuring the Serial Optical Link Device Driver
When configuring the serial optical link (SOL) device driver, consider the physical and logical devices, and
changeable attributes of the SOL subsystem.

Chapter 7. Communications I/O Subsystem 103

Physical and Logical Devices
The SOL subsystem consists of several physical and logical devices in the ODM configuration database:

Device Description
slc (serial link chip) There are two serial link adapters in each COMBO chip. The slc

device is automatically detected and configured by the system.
otp (optic two-port card) Also known as the serial optical channel converter (SOCC). There

is one SOCC possible for each slc. The otp device is
automatically detected and configured by the system.

op (optic port) There are two optic ports per otp. The op device is automatically
detected and configured by the system.

ops (optic port subsystem) This is a logical device. There is only one created at any time.
The ops device requires some additional configuration initially,
and is then automatically configured from that point on. The
/dev/ops0 special file is created when the ops device is
configured. The ops device cannot be configured when the
processor ID is set to -1.

Changeable Attributes of the Serial Optical Link Subsystem
The system administrator can change the following attributes of the serial optical link subsystem:

Note: If your system uses serial optical link to make a direct, point-to-point connection to another system
or systems, special conditions apply. You must start interfaces on two systems at approximately the
same time, or a method error occurs. If you wish to connect to at least one machine on which the
interface has already been started, this is not necessary.

Processor ID This is the address by which other machines connected by means of the optical
link address this machine. The processor ID can be any value in the range of 1 to
254. To avoid a conflict on the network, this value is initially set to -1, which is not
valid, and the ops device cannot be configured.
Note: If you are using TCP/IP over the serial optical link, the processor ID must
be the same as the low-order octet of the IP address. It is not possible to
successfully configure TCP/IP if the processor ID does not match.

Receive Queue Size This is the maximum number of packets that is queued for a user-mode caller.
The default value is 30 packets. Any integer in the range from 30 to 150 is valid.

Status Queue Size This is the maximum number of status blocks that will be queued for a user-mode
caller. The default value is 10. Any integer in the range from 3 to 20 is valid.

The standard SMIT interface is available for setting these attributes, listing the serial optical channel
converters, handling the initial configuration of the ops device, generating a trace report, generating an
error report, and configuring TCP/IP.

Forum-Compliant ATM LAN Emulation Device Driver
The Forum-Compliant ATM LAN Emulation (LANE) device driver allows communications applications
and access methods that would normally operate over local area network (LAN) attachments to operate
over high-speed ATM networks. This ATM LANE function supports LAN Emulation Client (LEC) as
specified in The ATM Forum Technical Committee LAN Emulation Over ATM Version 1.0, as well as
MPOA Client (MPC) via a subset of ATM Forum LAN Emulation Over ATM Version 2 - LUNI Specification,
and ATM Forum Multi-Protocol Over ATM Version 1.0.

The ATM LANE device driver emulates the operation of Standard Ethernet, IEEE 802.3 Ethernet, and
IEEE 802.5 Token Ring LANs. It encapsulates each LAN packet and transfers its LAN data over an ATM
network at up to OC12 speeds (622 megabits per second). This data can also be bridged transparently to
a traditional LAN with ATM/LAN bridges such as the IBM 2216.

104 Kernel Extensions and Device Support Programming Concepts

Each LEC participates in an emulated LAN containing additional functions such as:

v A LAN Emulation Configuration Server (LECS) that provides automated configuration of the LEC’s
operational attributes.

v A LAN Emulation Server (LES) that provides address resolution

v A Broadcast and Unknown Server (BUS) that distributes packets sent to a broadcast address or packets
sent without knowing the ATM address of the remote station (for example, whenever an ARP response
has not been received yet).

There is always at least one ATM switch and a possibility of additional switches, bridges, or concentrators.

ATM supports UNI3.0, UNI3.1, and UNI4.0 signalling.

In support of Ethernet jumbo frames, LE Clients can be configured with maximum frame size values
greater than 1516 bytes. Supported forum values are: 1516, 4544, 9234, and 18190.

Incoming Add Party requests are supported for the Control Distribute and Multicast Forward Virtual Circuits
(VCs). This allows multiple LE clients to be open concurrently on the same ELAN without additional
hardware.

LANE and MPOA are both enabled for IPV4 TCP checksum offload. Transmit offload is automatically
enabled when it is supported by the adapter. Receive offload is configured by using the rx_checksum
attribute. The NDD_CHECKSUM_OFFLOAD device driver flag is set to indicate general offload capability
and also indicates that transmit offload is operational.

Transmit offload of IP-fragmented TCP packets is not supported. Transmit packets that MPOA needs to
fragment are offloaded in the MPOA software, instead of in the adapter. UDP offloading is also not
supported.

The ATM LANE device driver is a dynamically loadable device driver. Each LE Client or MPOA Client is
configurable by the operator, and the LANE driver is loaded into the system as part of that configuration
process. If an LE Client or MPOA Client has already been configured, the LANE driver is automatically
reloaded at reboot time as part of the system configuration process.

The interface to the ATM LANE device driver is through kernel services known as Network Services.

Interfacing to the ATM LANE device driver is achieved by calling the device driver’s entry points for
opening the device, closing the device, transmitting data, and issuing device control commands, just as
you would interface to any of the Common Data Link Interface (CDLI) LAN device drivers.

The ATM LANE device driver interfaces with all hardware-level ATM device drivers that support CDLI, ATM
Call Management, and ATM Signaling.

Adding ATM LANE Clients
At least one ATM LAN Emulation client must be added to the system to communicate over an ATM
network using the ATM Forum LANE protocol. A user with root authority can add Ethernet or Token-Ring
clients using the smit atmle_panel fast path.

Entries are required for the Local LE Client’s LAN MAC Address field and possibly the LES ATM
Address or LECS ATM Address fields, depending on the support provided at the server. If the server
accepts the well-known ATM address for LECS, the value of the Automatic Configuration via LECS field
can be set to Yes, and the LES and LECS ATM Address fields can be left blank. If the server does not
support the well-known ATM address for LECS, an ATM address must be entered for either LES (manual
configuration) or LECS (automatic configuration). All other configuration attribute values are optional. If
used, you can accept the defaults for ease-of-use.

Chapter 7. Communications I/O Subsystem 105

Configuration help text is also available within the SMIT LE Client add and change menus.

Configuration Parameters for the ATM LANE Device Driver
The ATM LANE device driver supports the following configuration parameters for each LE Client:

addl_drvr Specifies the CDLI demultiplexer being used by the LE Client. The value set by the
ATM LANE device driver is /usr/lib/methods/cfgdmxtok for Token Ring emulation
and /usr/lib/methods/cfgdmxeth for Ethernet. This is not an operator-configurable
attribute.

addl_stat Specifies the routine being used by the LE client to generate device-specific statistics
for the entstat and tokstat commands. The values set by the ATM LANE device
driver are:

v /usr/sbin/atmle_ent_stat

v /usr/sbin/atmle_tok_stat

The addl_stat attribute is not operator-configurable.
arp_aging_time Specifies the maximum timeout period (in seconds) that the LE Client will maintain

an LE_ARP cache entry without verification (ATM Forum LE Client parameter C17).
The default value is 300 seconds.

arp_cache_size Specifies the maximum number of LE_ARP cache entries that will be held by the LE
Client before removing the least recently used entry. The default value is 32 entries.

arp_response_timeout Specifies the maximum timeout period (in seconds) for LE_ARP request/response
exchanges (ATM Forum LE Client parameter C20). The default value is 1 second.

atm_device Specifies the logical name of the physical ATM device driver that this LE Client is to
operate with, as specified in the CuDv database (for example, atm0, atm1, atm2, ...).
The default is atm0.

auto_cfg Specifies whether the LE Client is to be automatically configured. Select Yes if the
LAN Emulation Configuration Server (LECS) will be used by the LE Client to obtain
the ATM address of the LE ARP Server, as well as any additional configuration
parameters provided by the LECS. The default value is No (manual configuration).
The attribute values are:

Yes auto configuration

No manual configuration

Note: Configuration parameters provided by LECS override configuration values
provided by the operator.

debug_trace Specifies whether this LE Client should keep a real time debug log within the kernel
and allow full system trace capability. Select Yes to enable full tracing capability for
this LE Client. Select No for optimal performance when minimal tracing is desired.
The default is Yes (full tracing capability).

106 Kernel Extensions and Device Support Programming Concepts

elan_name Specifies the name of the Emulated LAN this LE Client wishes to join (ATM Forum
LE Client parameter C5). This is an SNMPv2 DisplayString of 1-32 characters, or
may be left blank (unused). See RFC1213 for a definition of an SNMPv2
DisplayString.
Note:

1. Any operator configured elan_name should match exactly what is expected at
the LECS/LES server when attempting to join an ELAN. Some servers can alias
the ELAN name and allow the operator to specify a logical name that correlates
to the actual name. Other servers might require the exact name to be specified.

Previous versions of LANE would accept any elan_name from the server, even
when configured differently by the operator. However, with multiple LECS/LES
now possible, it is desirable that only the ELAN identified by the network
administrator is joined. Use the force_elan_name attribute below to insure that
the name you have specified will by the only ELAN joined.

If no elan_name attribute is configured at the LEC, or the force_elan_name
attribute is disabled, the server can stipulate whatever elan_name is available.

Failure to use an ELAN name that is identical to the server’s when specifying the
elan_name and force_elan_name attributes will cause the LEC to fail the join
process, with entstat/tokstat status indicating Driver Flag Limbo.

2. Blanks may be inserted within an elan_name by typing a tilde (~) character
whenever a blank character is desired. This allows a network administrator to
specify an ELAN name with imbedded blanks as in the default of some servers.

Any tilde (~) character that occupies the first character position of the elan_name
remains unchanged (that is, the resulting name may start with a tilde (~) but all
remaining tilde characters are converted to blanks).

failsafe_time Specifies the maximum timeout period (in seconds) that the LE Client will attempt to
recover from a network outage. A value of zero indicates that you should continue
recovery attempts unless a nonrecoverable error is encountered. The default value is
0 (unlimited).

flush_timeout Specifies the maximum timeout period (in seconds) for FLUSH request/response
exchanges (ATM Forum LE Client parameter C21). The default value is 4 seconds.

force_elan_name Specifies that the Emulated LAN Name returned from the LECS or LES servers must
exactly match the name entered in the elan_name attribute above. Select Yes if the
elan_name field must match the server configuration and join parameters. This
allows a specific ELAN to be joined when multiple LECS and LES servers are
available on the network. The default value is No, which allows the server to specify
the ELAN Name.

fwd_delay_time Specifies the maximum timeout period (in seconds) that the LE Client will maintain
an entry for a non-local MAC address in its LE_ARP cache without verification, when
the Topology Change flag is True (ATM Forum LE Client parameter C18). The
default value is 15 seconds.

fwd_dsc_timeout Specifies the timeout period (in seconds) that can elapse without an active Multicast
Forward VCC from the BUS. (ATM Forum LE Client parameter C33). If the timer
expires without an active Multicast Forward VCC, the LE Client attempts recovery by
re-establishing its Multicast Send VCC to the BUS. The default value is 60 seconds.

init_ctl_time Specifies the initial control timeout period (in seconds) for most request/response
control frame interactions (ATM Forum LE Client parameter C7i). This timeout is
increased by its initial value after each timeout expiration without a response, but
does not exceed the value specified by the Maximum Control Timeout attribute
(max_ctl_time). The default value is 5 seconds.

lan_type Identifies the type of local area network being emulated (ATM Forum LE Client
parameter C2). Both Ethernet/IEEE 802.3 and Token Ring LANs can be emulated
using ATM Forum LANE. The attribute values are:

v Ethernet/IEEE802.3

v TokenRing

Chapter 7. Communications I/O Subsystem 107

lecs_atm_addr If you are doing auto configuration using the LE Configuration Server (LECS), this
field specifies the ATM address of LECS. It can remain blank if the address of LECS
is not known and the LECS is connected by way of PVC (VPI=0, VCI=17) or the
well-known address, or is registered by way of ILMI. If the 20-byte address of the
LECS is known, it must be entered as hexadecimal numbers using a period (.) as the
delimiter between bytes. Leading zeros of each byte may be omitted, for example:

47.0.79.0.0.0.0.0.0.0.0.0.0.0.0.a0.3.0.0.1

(the LECS well-known address)
les_atm_addr If you are doing manual configuration (without the aid of an LECS), this field

specifies the ATM address of the LE ARP Server (LES) (ATM Forum LE Client
parameter C9). This 20-byte address must be entered as hexadecimal numbers
using a period (.) as the delimiter between bytes. Leading zeros of each byte may be
omitted, for example:

39.11.ff.22.99.99.99.0.0.0.0.1.49.10.0.5a.68.0.a.1
local_lan_addrs Specifies the local unicast LAN MAC address that will be represented by this LE

Client and registered with the LE Server (ATM Forum LE Client parameter C6). This
6-byte address must be entered as hexadecimal numbers using a period (.) as the
delimiter between bytes. Leading zeros of each byte may be omitted.

Ethernet Example: 2.60.8C.2C.D2.DC
Token Ring Example: 10.0.5A.4F.4B.C4

max_arp_retries Specifies the maximum number of times an LE_ARP request can be retried (ATM
Forum LE Client parameter C13). The default value is 1.

max_config_retries Specifies the number of times a configuration control frame such as
LE_JOIN_REQUEST should be retried. Duration (in seconds) between retries is
derived from the init_ctl_time and max_ctl_time attributes. The default is 1.

max_ctl_time Specifies the maximum timeout period (in seconds) for most request and response
control frame interactions (ATM Forum LE Client parameter C7). The default value is
30 seconds.

max_frame_size Specifies the maximum AAL-5 send data-unit size of data frames for this LE Client.
In general, this value should coincide with the LAN type and speed as follows:

Unspecified
for auto LECS configuration

1516 bytes
for Ethernet and IEEE 802.3 networks

4544 bytes
for 4 Mbps Token Rings or Ethernet jumbo frames

9234 bytes
for 16 Mbps Token Rings or Ethernet jumbo frames

18190 bytes
for 16 Mbps Token Rings or Ethernet jumbo frames

max_queued_frames Specifies the maximum number of outbound packets that will be held for
transmission per LE_ARP cache entry. This queueing occurs when the Maximum
Unknown Frame Count (max_unknown_fct) has been reached, or when flushing
previously transmitted packets while switching to a new virtual channel. The default
value is 60 packets.

max_rdy_retries Specifies the maximum number of READY_QUERY packets sent in response to an
incoming call that has not yet received data or a READY_IND packet. The default
value is 2 retries.

max_unknown_fct Specifies the maximum number of frames for a given unicast LAN MAC address that
may be sent to the Broadcast and Unknown Server (BUS) within time period
Maximum Unknown Frame Time (max_unknown_ftm) (ATM Forum LE Client
parameter C10). The default value is 1.

108 Kernel Extensions and Device Support Programming Concepts

max_unknown_ftm Specifies the maximum timeout period (in seconds) that a given unicast LAN address
may be sent to the Broadcast and Unknown Server (BUS). The LE Client will send
no more than Maximum Unknown Frame Count (max_unknown_fct) packets to a
given unicast LAN destination within this timeout period (ATM Forum LE Client
parameter C11). The default value is 1 second.

mpoa_enabled Specifies whether Forum MPOA and LANE-2 functions should be enabled for this LE
Client. Select Yes if MPOA will be operational on the LE Client. Select No when
traditional LANE-1 functionality is required. The default is No (LANE-1).

mpoa_primary Specifies whether this LE Client is to be the primary configurator for MPOA via LAN
Emulation Configuration Server (LECS). Select Yes if this LE Client will be obtaining
configuration information from the LECS for the MPOA Client. This attribute is only
meaningful if running auto config with an LECS, and indicates that the MPOA
configuration TLVs from this LEC will be made available to the MPC. Only one LE
Client can be active as the MPOA primary configurator. The default is No.

path_sw_delay Specifies the maximum timeout period (in seconds) that frames sent on any path in
the network will take to be delivered (ATM Forum LE Client parameter C22). The
default value is 6 seconds.

peak_rate Specifies the forward and backward peak bit rate in K-bits per second that will be
used by this LE Client to set up virtual channels. Specify a value that is compatible
with the lowest speed remote device with which you expect this LE Client to be
communicating. Higher values might cause congestion in the network. A value of
zero allows the LE Client to adjust its peak_rate to the actual speed of the adapter. If
the adapter does not provide its maximum peak rate value, the LE Client will default
peak_rate to 25600. Any non-zero value specified will be accepted and used by the
LE Client up to the maximum value allowed by the adapter. The default value is 0,
which uses the adapter’s maximum peak rate.

ready_timeout Specifies the maximum timeout period (in seconds) in which data or a READY_IND
message is expected from a calling party (ATM Forum LE Client parameter C28).
The default value is 4 seconds.

ring_speed Specifies the Token Ring speed as viewed by the ifnet layer. The value set by the
ATM LANE device driver is 16 Mbps for Token Ring emulation and ignored for
Ethernet. This is not an operator-configurable attribute.

rx_checksum Specifies whether this LE Client should offload TCP receive checksums to the ATM
hardware. Select Yes if TCP checksums should be handled in hardware. Select No if
TCP checksums should be handled in software. The default is Yes (enable hardware
receive checksum).
Note: The ATM adapter must also have receive checksum enabled to be functional.

soft_restart Specifies whether active data virtual circuits (VCs) are to be maintained during
connection loss of ELAN services such as the LE ARP Server (LES) or Broadcast
and Unknown Server (BUS). Normal ATM Forum operation forces a disconnect of
data VCs when LES/BUS connections are lost. This option to maintain active data
VCs might be advantageous when server backup capabilities are available. The
default value is No.

vcc_activity_timeout Specifies the maximum timeout period (in seconds) for inactive Data Direct Virtual
Channel Connections (VCCs). Any switched Data Direct VCC that does not transmit
or receive data frames in this timeout period is terminated (ATM Forum LE Client
parameter C12). The default value is 1200 seconds (20 minutes).

Device Driver Configuration and Unconfiguration
The atmle_config entry point performs configuration functions for the ATM LANE device driver.

Device Driver Open
The atmle_open function is called to open the specified network device.

The LANE device driver does an asynchronous open. It starts the process of attaching the device to the
network, sets the NDD_UP flag in the ndd_flags field, and returns 0. The network attachment will continue
in the background where it is driven by network activity and system timers.

Chapter 7. Communications I/O Subsystem 109

Note: The Network Services ns_alloc routine that calls this open routine causes the open to be
synchronous. It waits until the NDD_RUNNING or the NDD_LIMBO flag is set in the ndd_flags field
or 15 seconds have passed.

If the connection is successful, the NDD_RUNNING flag will be set in the ndd_flags field, and an
NDD_CONNECTED status block will be sent. The ns_alloc routine will return at this time.

If the device connection fails, the NDD_LIMBO flag will be set in the ndd_flags field, and an
NDD_LIMBO_ENTRY status block will be sent.

If the device is eventually connected, the NDD_LIMBO flag will be disabled, and the NDD_RUNNING flag
will be set in the ndd_flags field. Both NDD_CONNECTED and NDD_LIMBO_EXIT status blocks will be
sent.

Device Driver Close
The atmle_close function is called by the Network Services ns_free routine to close the specified network
device. This function resets the device to a known state and frees system resources associated with the
device.

The device will not be detached from the network until the device’s transmit queue is allowed to drain.

Data Transmission
The atmle_output function transmits data using the network device.

If the destination address in the packet is a broadcast address, the M_BCAST flag in the
p_mbuf->m_flags field should be set prior to entering this routine. A broadcast address is defined as
FF.FF.FF.FF.FF.FF (hex) for both Ethernet and Token Ring and C0.00.FF.FF.FF.FF (hex) for Token Ring.

If the destination address in the packet is a multicast or group address, the M_MCAST flag in the
p_mbuf->m_flags field should be set prior to entering this routine. A multicast or group address is defined
as any nonindividual address other than a broadcast address.

The device driver will keep statistics based on the M_BCAST and M_MCAST flags.

Token Ring LANE emulates a duplex device. If a Token Ring packet is transmitted with a destination
address that matches the LAN MAC address of the local LE Client, the packet is received. This is also
True for Token Ring packets transmitted to a broadcast address, enabled functional address, or an
enabled group address. Ethernet LANE, on the other hand, emulates a simplex device and does not
receive its own broadcast or multicast transmit packets.

Data Reception
When the LANE device driver receives a valid packet from a network ATM device driver, the LANE device
driver calls the nd_receive function that is specified in the ndd_t structure of the network device. The
nd_receive function is part of a CDLI network demuxer. The packet is passed to the nd_receive function
in mbufs.

The LANE device driver passes one packet to the nd_receive function at a time.

The device driver sets the M_BCAST flag in the p_mbuf->m_flags field when a packet is received that
has an all-stations broadcast destination address. This address value is defined as FF.FF.FF.FF.FF.FF
(hex) for both Token Ring and Ethernet and is defined as C0.00.FF.FF.FF.FF (hex) for Token Ring.

The device driver sets the M_MCAST flag in the p_mbuf->m_flags field when a packet is received that
has a nonindividual address that is different than an all-stations broadcast address.

110 Kernel Extensions and Device Support Programming Concepts

Any packets received from the network are discarded if they do not fit the currently emulated LAN protocol
and frame format are discarded.

Asynchronous Status
When a status event occurs on the device, the LANE device driver builds the appropriate status block and
calls the nd_status function that is specified in the ndd_t structure of the network device. The nd_status
function is part of a CDLI network demuxer.

The following status blocks are defined for the LANE device driver:

Hard Failure
When an error occurs within the internal operation of the ATM LANE device driver, it is considered
unrecoverable. If the device was operational at the time of the error, the NDD_LIMBO and
NDD_RUNNING flags are disabled, and the NDD_DEAD flag is set in the ndd_flags field, and a hard
failure status block is generated.

code Set to NDD_HARD_FAIL
option[0] Set to NDD_UCODE_FAIL

Enter Network Recovery Mode
When the device driver detects an error that requires initiating recovery logic to make the device
temporarily unavailable, the following status block is returned by the device driver:

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_UCODE_FAIL

Note: While the device driver is in this recovery logic, the network connections might not be fully
functional. The device driver will notify users when the device is fully functional by way of an
NDD_LIMBO_EXIT asynchronous status block.

When a general error occurs during operation of the device, this status block is generated.

Exit Network Recovery Mode
When the device driver has successfully completed recovery logic from the error that made the device
temporarily unavailable, the following status block is returned by the device driver. This status block means
the device is now fully functional.

code Set to NDD_LIMBO_EXIT
option[0] The option field is not used.

Device Control Operations
The atmle_ctl function is used to provide device control functions.

ATMLE_MIB_GET
This control requests the LANE device driver’s current ATM LAN Emulation MIB statistics.

The user should pass in the address of an atmle_mibs_t structure as defined in
usr/include/sys/atmle_mibs.h. The driver will return EINVAL if the buffer area is smaller than the required
structure.

The ndd_flags field can be checked to determine the current state of the LANE device.

ATMLE_MIB_QUERY
This control requests the LANE device driver’s ATM LAN Emulation MIB support structure.

Chapter 7. Communications I/O Subsystem 111

The user should pass in the address of an atmle_mibs_t structure as defined in
usr/include/sys/atmle_mibs.h. The driver will return EINVAL if the buffer area is smaller than the required
structure.

The device driver does not support any variables for read_write or write only. If the syntax of a member of
the structure is some integer type, the level of support flag will be stored in the whole field, regardless of
the size of the field. For those fields defined as character arrays, the value will be returned only in the first
byte in the field.

NDD_CLEAR_STATS
This control requests all the statistics counters kept by the LANE device driver to be zeroed.

NDD_DISABLE_ADDRESS
This command disables the receipt of packets destined for a multicast/group address; and for Token Ring,
it disables the receipt of packets destined for a functional address. For Token Ring, the functional address
indicator (bit 0, the most significant bit of byte 2) indicates whether the address is a functional address (the
bit is a 0) or a group address (the bit is a 1).

In all cases, the length field value is required to be 6. Any other value will cause the LANE device driver
to return EINVAL.

Functional Address: The reference counts are decremented for those bits in the functional address that
are enabled (set to 1). If the reference count for a bit goes to zero, the bit will be disabled in the functional
address mask for this LE Client.

If no functional addresses are active after receipt of this command, the TOK_RECEIVE_FUNC flag in the
ndd_flags field is reset. If no functional or multicast/group addresses are active after receipt of this
command, the NDD_ALTADDRS flag in the ndd_flags field is reset.

Multicast/Group Address: If a multicast/group address that is currently enabled is specified, receipt of
packets destined for that group address is disabled. If an address is specified that is not currently enabled,
EINVAL is returned.

If no functional or multicast/group addresses are active after receipt of this command, the
NDD_ALTADDRS flag in the ndd_flags field is reset. Additionally for Token Ring, if no multicast/group
address is active after receipt of this command, the TOK_RECEIVE_GROUP flag in the ndd_flags field is
reset.

NDD_DISABLE_MULTICAST
The NDD_DISABLE_MULTICAST command disables the receipt of all packets with unregistered multicast
addresses, and only receives those packets whose multicast addresses were registered using the
NDD_ENABLE_ADDRESS command. The arg and length parameters are not used. The
NDD_MULTICAST flag in the ndd_flags field is reset only after the reference count for multicast
addresses has reached zero.

NDD_ENABLE_ADDRESS
The NDD_ENABLE_ADDRESS command enables the receipt of packets destined for a multicast/group
address; and additionally for Token Ring, it enables the receipt of packets destined for a functional
address. For Ethernet, the address is entered in canonical format, which is left-to-right byte order with the
I/G (Individual/Group) indicator as the least significant bit of the first byte. For Token Ring, the address
format is entered in noncanonical format, which is left-to-right bit and byte order and has a functional
address indicator. The functional address indicator (the most significant bit of byte 2) indicates whether the
address is a functional address (the bit value is 0) or a group address (the bit value is 1).

In all cases, the length field value is required to be 6. Any other length value will cause the LANE device
driver to return EINVAL.

112 Kernel Extensions and Device Support Programming Concepts

Functional Address: The Token-Ring network architecture provides bit-specific functional addresses for
widely used functions, such as Ring Parameter Server or Configuration Report Server. Ring stations use
functional address masks to identify these functions. The specified address is OR’ED with the currently
specified functional addresses, and the resultant address is set as the functional address for the device.
Functional addresses are encoded in a bit-significant format, thereby allowing multiple individual groups to
be designated by a single address.

For example, if function G is assigned a functional address of C0.00.00.08.00.00 (hex), and function M is
assigned a functional address of C0.00.00.00.00.40 (hex), then ring station Y, whose node contains
function G and M, would have a mask of C0.00.00.08.00.40 (hex). Ring station Y would receive packets
addressed to either function G or M or to an address like C0.00.00.08.00.48 (hex) because that address
contains bits specified in the mask.

Note: The LANE device driver forces the first 2 bytes of the functional address to be C0.00 (hex). In
addition, bits 6 and 7 of byte 5 of the functional address are forced to 0.

The NDD_ALTADDRS and TOK_RECEIVE_FUNC flags in the ndd_flags field are set.

Because functional addresses are encoded in a bit-significant format, reference counts are kept on each of
the 31 least significant bits of the address. Reference counts are not kept on the 17 most significant bits
(the C0.00 (hex) of the functional address and the functional address indicator bit).

Multicast/Group Address: A multicast/group address table is used by the LANE device driver to store
address filters for incoming multicast/group packets. If the LANE device driver is unable to allocate kernel
memory when attempting to add a multicast/group address to the table, the address is not added and
ENOMEM is returned.

If the LANE device driver is successful in adding a multicast/group address, the NDD_ALTADDRS flag in
the ndd_flags field is set. Additionally for Token Ring, the TOK_RECEIVE_GROUP flag is set, and the
first 2 bytes of the group address are forced to be C0.00 (hex).

NDD_ENABLE_MULTICAST
The NDD_ENABLE_MULTICAST command enables the receipt of packets with any multicast (or group)
address. The arg and length parameters are not used. The NDD_MULTICAST flag in the ndd_flags field
is set.

NDD_DEBUG_TRACE
This control requests a LANE or MPOA driver to toggle the current state of its debug_trace configuration
flag.

This control is available to the operator through the LANE Ethernet entstat -t or LANE Token Ring tokstat
-t commands, or through the MPOA mpcstat -t command. The current state of the debug_trace
configuration flag is displayed in the output of each command as follows:

v For the entstat and tokstat commands, NDD_DEBUG_TRACE is enabled only if you see Driver
Flags: Debug.

v For the mpcstat command, you will see Debug Trace: Enabled.

NDD_GET_ALL_STATS
This control requests all current LANE statistics, based on both the generic LAN statistics and the ATM
LANE protocol in progress.

For Ethernet, pass in the address of an ent_ndd_stats_t structure as defined in the file
/usr/include/sys/cdli_entuser.h.

For Token Ring, pass in the address of a tok_ndd_stats_t structure as defined in the file
/usr/include/sys/cdli_tokuser.h.

Chapter 7. Communications I/O Subsystem 113

The driver will return EINVAL if the buffer area is smaller than the required structure.

The ndd_flags field can be checked to determine the current state of the LANE device.

NDD_GET_STATS
This control requests the current generic LAN statistics based on the LAN protocol being emulated.

For Ethernet, pass in the address of an ent_ndd_stats_t structure as defined in the file
/usr/include/sys/cdli_entuser.h.

For Token Ring, pass in the address of a tok_ndd_stats_t structure as defined in file
/usr/include/sys/cdli_tokuser.h.

The ndd_flags field can be checked to determine the current state of the LANE device.

NDD_MIB_ADDR
This control requests the current receive addresses that are enabled on the LANE device driver. The
following address types are returned, up to the amount of memory specified to accept the address list:

v Local LAN MAC Address

v Broadcast Address FF.FF.FF.FF.FF.FF (hex)

v Broadcast Address C0.00.FF.FF.FF.FF (hex)

v (returned for Token Ring only)

v Functional Address Mask

v (returned for Token Ring only, and only if at least one functional address has been enabled)

v Multicast/Group Address 1 through n

v (returned only if at least one multicast/group address has been enabled)

Each address is 6-bytes in length.

NDD_MIB_GET
This control requests the current MIB statistics based on whether the LAN being emulated is Ethernet or
Token Ring.

If Ethernet, pass in the address of an ethernet_all_mib_t structure as defined in the file
/usr/include/sys/ethernet_mibs.h.

If Token Ring, pass in the address of a token_ring_all_mib_t structure as defined in the file
/usr/include/sys/tokenring_mibs.h.

The driver will return EINVAL if the buffer area is smaller than the required structure.

The ndd_flags field can be checked to determine the current state of the LANE device.

NDD_MIB_QUERY
This control requests LANE device driver’s MIB support structure based on whether the LAN being
emulated is Ethernet or Token Ring.

If Ethernet, pass in the address of an ethernet_all_mib_t structure as defined in the file
/usr/include/sys/ethernet_mibs.h.

If Token Ring, pass in the address of a token_ring_all_mib_t structure as defined in the file
/usr/include/sys/tokenring_mibs.h.

The driver will return EINVAL if the buffer area is smaller than the required structure.

114 Kernel Extensions and Device Support Programming Concepts

The device driver does not support any variables for read_write or write only. If the syntax of a member of
the structure is some integer type, the level of support flag will be stored in the whole field, regardless of
the size of the field. For those fields which are defined as character arrays, the value will be returned only
in the first byte in the field.

Tracing and Error Logging in the ATM LANE Device Driver
The LANE device driver has two trace points:

v 3A1 - Normal Code Paths

v 3A2 - Error Conditions

Tracing can be enabled through SMIT or with the trace command.
trace -a -j 3a1,3a2

Tracing can be disabled through SMIT or with the trcstop command. Once trace is stopped, the results
can be formatted into readable text with the trcrpt command.
trcrpt > /tmp/trc.out

LANE error log templates:

ERRID_ATMLE_MEM_ERR An error occurred while attempting to allocate memory or
pin the code. This error log entry accompanies return
code ENOMEM on an open or control operation.

ERRID_ATMLE_LOST_SW The LANE device driver lost contact with the ATM switch.
The device driver will enter Network Recovery Mode in an
attempt to recover from the error and will be temporarily
unavailable during the recovery procedure. This generally
occurs when the cable is unplugged from the switch or
ATM adapter.

ERRID_ATMLE_REGAIN_SW Contact with the ATM switch has been re-established (for
example, the cable has been plugged back in).

ERRID_ATMLE_NET_FAIL The device driver has gone into Network Recovery Mode
in an attempt to recover from a network error and is
temporarily unavailable during the recovery procedure.
User intervention is not required for this error unless the
problem persists.

ERRID_ATMLE_RCVRY_CMPLETE The network error that caused the LANE device driver to
go into error recovery mode has been corrected.

Adding an ATM MPOA Client
A Multi-Protocol Over ATM (MPOA) Client (MPC) can be added to the system to allow ATM LANE packets
that would normally be routed through various LANE IP Subnets or Logical IP Subnets (LISs) within an
ATM network, to be sent and received over shortcut paths that do not contain routers. MPOA can provide
significant savings on end-to-end throughput performance for large data transfers, and can free up
resources in routers that might otherwise be used up handling packets that could have bypassed routers
altogether.

Only one MPOA Client is established per node. This MPC can support multiple ATM ports, containing LE
Clients/Servers and MPOA Servers. The key requirement being, that for this MPC to create shortcut paths,
each remote target node must also support MPOA Client, and must be directly accessible via the matrix of
switches representing the ATM network.

A user with root authority can add this MPOA Client using the smit mpoa_panel fast path, or click
Devices —> Communication —> ATM Adapter —> Services —> Multi-Protocol Over ATM (MPOA).

Chapter 7. Communications I/O Subsystem 115

No configuration entries are required for the MPOA Client. Ease-of-use default values are provided for
each of the attributes derived from ATM Forum recommendations.

Configuration help text is also available within MPOA Client SMIT to aid in making any modifications to
attribute default values.

Configuration Parameters for ATM MPOA Client
The ATM LANE device driver supports the following configuration parameters for the MPOA Client:

auto_cfg Auto Configuration with LEC/LECS. Specifies whether the MPOA Client is to be
automatically configured via LANE Configuration Server (LECS). Select Yes if a
primary LE Client will be used to obtain the MPOA configuration attributes, which will
override any manual or default values.
The default value is No (manual configuration). The attribute values are:
Yes - auto configuration
No - manual configuration

debug_trace Specifies whether this MPOA Client should keep a real time debug log within the
kernel and allow full system trace capability. Select Yes to enable full tracing
capabilities for this MPOA Client. Select No for optimal performance when minimal
tracing is desired.
The default is Yes (full tracing capability).

fragment Enables MPOA fragmentation and specifies whether fragmentation should be
performed on packets that exceed the MTU returned in the MPOA Resolution Reply.
Select Yes to have outgoing packets fragmented as needed. Select No to avoid
having outgoing packets fragmented. Selecting No causes outgoing packets to be sent
down the LANE path when fragmentation must be performed. Incoming packets will
always be fragmented as needed even if No has been selected. The default value is
Yes.

hold_down_time Failed resolution request retry Hold Down Time (in seconds). Specifies the length of
time to wait before reinitiating a failed address resolution attempt. This value is
normally set to a value greater than retry_time_max. This attribute correlates to ATM
Forum MPC Configuration parameter MPC-p6.
The default value is 160 seconds.

init_retry_time Initial Request Retry Time (in seconds). Specifies the length of time to wait before
sending the first retry of a request that does not receive a response. This attribute
correlates to ATM Forum MPC Configuration parameter MPC-p4.
The default value is 5 seconds.

retry_time_max Maximum Request Retry Time (in seconds). Specifies the maximum length of time to
wait when retrying requests that have not received a response. Each retry duration
after the initial retry are doubled (2x) until the retry duration reaches this Maximum
Request Retry Time. All subsequent retries will wait this maximum value. This attribute
correlates to ATM Forum MPC Configuration parameter MPC-p5.
The default value is 40 seconds.

sc_setup_count Shortcut Setup Frame Count. This attribute is used in conjunction with sc_setup_time
to determine when to establish a shortcut path. Once the MPC has forwarded at least
sc_setup_count packets to the same target within a period of sc_setup_time, the MPC
attempts to create a shortcut VCC. This attribute correlates to ATM Forum MPC
Configuration parameter MPC-p1.
The default value is 10 packets.

sc_setup_time Shortcut Setup Frame Time (in seconds). This attribute is used in conjunction with
sc_setup_count above to determine when to establish a shortcut path. Once the MPC
has forwarded at least sc_setup_count packets to the same target within a period of
sc_setup_time, the MPC attempts to create a shortcut VCC. This attribute correlates
to ATM Forum MPC Configuration parameter MPC-p2.
The default value is 1 second.

vcc_inact_time VCC Inactivity Timeout value (in minutes). Specifies the maximum length of time to
keep a shortcut VCC enabled when there is no send or receive activity on that VCC.
The default value is 20 minutes.

116 Kernel Extensions and Device Support Programming Concepts

Tracing and Error Logging in the ATM MPOA Client
The ATM MPOA Client has two trace points:

v 3A3 - Normal Code Paths

v 3A4 - Error Conditions

Tracing can be enabled through SMIT or with the trace command.
trace -a -j 3a3,3a4

Tracing can be disabled through SMIT or with the trcstop command. Once trace is stopped, the results
can be formatted into readable text with the trcrpt command.
trcrpt > /tmp/trc.out

MPOA Client error log templates
Each of the MPOA Client error log templates are prefixed with ERRID_MPOA. An example of an MPOA
error entry is as follows:

ERRID_MPOA_MEM_ERR
An error occurred while attempting to allocate kernel memory.

Getting Client Status
Three commands are available to obtain status information related to ATM LANE clients.

v The entstat command and tokstat command are used to obtain general ethernet or tokenring device
status.

v The lecstat command is used to obtain more specific information about a LANE client.

v The mpcstat command is used to obtain MPOA client status information.

For more information see, entstat Command, lecstat Command, mpcstat Command, and tokstat Command
in AIX 5L Version 5.2 Commands Reference.

Fiber Distributed Data Interface (FDDI) Device Driver

Note: The information in this section is specific to AIX 5.1 and earlier.

The FDDI device driver is a dynamically loadable device driver. The device driver is automatically loaded
into the system at device configuration time as part of the configuration process.

The interface to the device is through the kernel services known as Network Services.

Interfacing to the device driver is achieved by calling the device driver’s entry points for opening the
device, closing the device, transmitting data, doing a remote dump, and issuing device control commands.

The FDDI device driver supports the SMT 7.2 standard.

Configuration Parameters for FDDI Device Driver
Software Transmit Queue

The driver provides a software transmit queue to supplement the hardware queue. The queue is
configurable and contains between 3 and 250 mbufs. The default is 30 mbufs.

Alternate Address
The driver supports specifying a configurable alternate address to be used instead of the address
burned in on the card. This address must have the local bit set. Addresses between
0x400000000000 and 0x7FFFFFFFFFFF are supported. The default is 0x400000000000.

Chapter 7. Communications I/O Subsystem 117

Enable Alternate Address
The driver supports enabling the alternate address set with the Alternate Address parameter.
Values are YES and NO, with NO as the default.

PMF Password
The driver provides the ability to configure a PMF password. The password default is 0, meaning
no password.

Max T-Req
The driver enables the user to configure the card’s maximum T-Req.

TVX Lower Bound
The driver enables the user to configure the card’s TVX Lower Bound.

User Data
The driver enables the user to set the user data field on the adapter. This data can be any string
up to 32 bytes of data. The default is a zero length string.

FDDI Device Driver Configuration and Unconfiguration
The fddi_config entry point performs configuration functions for the FDDI device driver.

Device Driver Open
The fddi_open function is called to open the specified network device.

The device is initialized. When the resources have been successfully allocated, the device is attached to
the network.

If the station is not connected to another running station, the device driver opens, but is unable to transmit
Logical Link Control (LLC) packets. When in this mode, the device driver sets the
CFDDI_NDD_LLC_DOWN flag (defined in /usr/include/sys/cdli_fddiuser.h). When the adapter is able to
make a connection with at least one other station this flag is cleared and LLC packets can be transmitted.

Device Driver Close
The fddi_close function is called to close the specified network device. This function resets the device to
a known state and frees system resources used by the device.

The device is not detached from the network until the device’s transmit queue is allowed to drain.

Data Transmission
The fddi_output function transmits data using the network device.

The FDDI device driver supports up to three mbuf’s for each packet. It cannot gather from more than three
locations to a packet.

The FDDI device driver does not accept user-memory mbufs. It uses bcopy on small frames which does
not work on user memory.

The driver supports up to the entire mtu in a single mbuf.

The driver requires that the entire mac header be in a single mbuf.

The driver will not accept chained frames of different types. The user should not send Logical Link Control
(LLC) and station management (SMT) frames in the same call to output.

The user needs to fill the frame out completely before calling the output routine. The mac header for a
FDDI packet is defined by the cfddi_hdr_t structure defined in /usr/include/sys/cdli_fddiuser.h. The first

118 Kernel Extensions and Device Support Programming Concepts

byte of a packet is used as a flag for routing the packet on the adapter. For most driver users the value of
the packet should be set to FDDI_TX_NORM. The possible flags are:

CFDDI_TX_NORM
Transmits the frame onto the ring. This is the normal flag value.

CFDDI_TX_LOOPBACK
Moves the frame from the adapter’s transmit queue to its receive queue as if it were received from
the media. The frame is not transmitted onto the media.

CFDDI_TX_PROC_ONLY
Processes the status information frame (SIF) or parameter management frame (PMF) request
frame and sends a SIF or PMF response to the host. The frame is not transmitted onto the media.
This flag is not valid for LLC packets.

CFDDI_TX_PROC_XMIT
Processes the SIF or PMF request frames and sends a SIF or PMF response to the host. The
frame is also transmitted onto the media. This flag is not valid for LLC packets.

Data Reception
When the FDDI device driver receives a valid packet from the network device, the FDDI device driver calls
the nd_receive function that is specified in the ndd_t structure of the network device. The nd_receive
function is part of a CDLI network demuxer. The packet is passed to the nd_receive function in mbufs.

Reliability, Availability, and Serviceability for FDDI Device Driver

The FDDI device driver has three trace points. The IDs are defined in the
/usr/include/sys/cdli_fddiuser.h file.

For FDDI the type of data in an error log is the same for every error log. Only the specifics and the title of
the error log change. Information that follows includes an example of an error log and a list of error log
entries.

Example FDDI Error Log
Detail Data

FILE NAME
line: 332 file: fddiintr_b.c

POS REGISTERS
F48E D317 3CC7 0008

SOURCE ADDRESS
4000 0000 0000

ATTACHMENT CLASS
0000 0001

MICRO CHANNEL AND PIO EXCEPTION CODES
0000 0000 0000 0000 0000 0000

FDDI LINK STATISTICS
0080 0000 04A0 0000 0000 0000 0001 0000 0000 0000
0001 0008 0008 0005 0005 0012 0003 0002 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

SELF TESTS
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000

DEVICE DRIVER INTERNAL STATE
0fdd 0fdd 0000 0000 0000 0000 0000 0000

Chapter 7. Communications I/O Subsystem 119

Error Log Entries
The FDDI device driver returns the following are the error log entries:

ERRID_CFDDI_RMV_ADAP
This error indicates that the adapter has received a disconnect command from a remote station.
The FDDI device driver will initiate shutdown of the device. The device is no longer functional due
to this error. User intervention is required to bring the device back online.

If there is no local LAN administrator, user action is required to make the device available. For the
device to be brought back online, the device needs to be reset. This can be accomplished by
having all users of the FDDI device driver close the device. When all users have closed the device
and the device is reset, the device can be brought back online.

ERRID_CFDDI_ADAP_CHECK
This error indicates that an FDDI adapter check has occurred. If the device was connected to the
network when this error occurred, the FDDI device goes into Network Recovery Mode in an
attempt to recover from the error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required to bring the device back online.

ERRID_CFDDI_DWNLD
Indicates that the microcode download to the FDDI adapter has failed. If this error occurs during
the configuration of the device, the configuration of the device fails. User intervention is required to
make the device available.

ERRID_CFDDI_RCVRY_ENTER
Indicates that the FDDI device driver has entered Network Recovery Mode in an attempt to
recover from an error. The error which caused the device to enter this mode, is error logged
before this error log entry. The device is not fully functional until the device has left this mode.
User intervention is not required to bring the device back online.

ERRID_CFDDI_RCVRY_EXIT
Indicates that the FDDI device driver has successfully recovered from the error which caused the
device to go into Network Recovery Mode.The device in now fully functional.

ERRID_CFDDI_RCVRY_TERM
Indicates that the FDDI device driver was unable to recover from the error which caused the
device to go into Network Recovery Mode and has terminated recovery logic. The termination of
recovery logic might be due to an irrecoverable error being detected or the device being closed. If
termination is due to an irrecoverable error, that error will be error logged before this error log
entry. User intervention is required to bring the device back online.

ERRID_CFDDI_MC_ERR
Indicates that the FDDI device driver has detected a Micro Channel error. The device driver
initiates recovery logic in an attempt to recover from the error. User intervention is not required for
this error unless the problem persists.

ERRID_CFDDI_TX_ERR
Indicates that the FDDI device driver has detected a transmission error. User intervention is not
required unless the problem persists.

ERRID_CFDDI_PIO
Indicates the FDDI device driver has detected a program IO error. The device driver initiates
recovery logic in an attempt to recover from the error. User intervention is not required for this
error unless the problem persists.

ERRID_CFDDI_DOWN
Indicates that the FDDI device has been shutdown due to an irrecoverable error. The FDDI device
is no longer functional due to the error. The irrecoverable error which caused the device to be
shutdown is error logged before this error log entry. User intervention is required to bring the
device back online.

120 Kernel Extensions and Device Support Programming Concepts

ERRID_CFDDI_SELF_TEST
Indicates that the FDDI adapter has received a run self-test command from a remote station. The
device is unavailable while the adapter’s self-tests are being run. If the tests are successful, the
FDDI device driver initiates logic to reconnect the device to the network. Otherwise, the device will
be shutdown.

ERRID_CFDDI_SELFT_ERR
Indicates that an error occurred during the FDDI self-tests. User intervention is required to bring
the device back online.

ERRID_CFDDI_PATH_ERR
Indicates that an error occurred during the FDDI adapter’s path tests. The FDDI device driver will
initiate recovery logic in an attempt to recover from the error. The FDDI device will temporarily be
unavailable during the recovery procedure. User intervention is not required to bring the device
back online.

ERRID_CFDDI_PORT
Indicates that a port on the FDDI device is in a stuck condition. User intervention is not required
for this error. This error typically occurs when a cable is not correctly connected.

ERRID_CFDDI_BYPASS
Indicates that the optical bypass switch is in a stuck condition. User intervention is not required for
this error.

ERRID_CFDDI_CMD_FAIL
Indicates that a command to the adapter has failed.

High-Performance (8fc8) Token-Ring Device Driver

Note: The information in this section is specific to AIX 5.1 and earlier.

The 8fc8 Token-Ring device driver is a dynamically loadable device driver. The device driver automatically
loads into the system at device configuration time as part of the configuration process.

The interface to the device is through the kernel services known as Network Services.

Interfacing to the device driver is achieved by calling the device driver’s entry points for opening the
device, closing the device, transmitting data, doing a remote dump, and issuing device control commands.

The Token-Ring device driver interfaces with the Token-Ring High-Performance Network Adapter (8fc8). It
provides a Micro Channel-based connection to a Token-Ring network. The adapter is IEEE 802.5
compatible and supports both 4 and 16 megabit per second networks. The adapter supports only a
Shielded Twisted-Pair (STP) Token-Ring connection.

Configuration Parameters for Token-Ring Device Driver
Ring Speed

The device driver will support a user configurable parameter that indicates if the Token-Ring is to
be run at 4 or 16 megabits per second.

Software Transmit Queue
The device driver will support a user configurable transmit queue, that can be set to store between
32 and 160 transmit request pointers. Each transmit request pointer corresponds to a transmit
request, which might be for several buffers of data.

Attention MAC frames
The device driver will support a user configurable parameter that indicates if attention MAC frames
should be received.

Chapter 7. Communications I/O Subsystem 121

Beacon MAC frames
The device driver will support a user configurable parameter that indicates if beacon MAC frames
should be received.

Network Address
The driver supports the use of the device’s hardware address as the network address or an
alternate network address configured through software. When an alternate address is used, any
valid individual address can be used. The most significant bit of the address must be set to zero
(definition of an individual address).

Device Driver Configuration and Unconfiguration
The tok_config entry point performs configuration functions Token-Ring device driver.

Device Driver Open
The tok_open function is called to open the specified network device.

The Token Ring device driver does an asynchronous open. It starts the process of attaching the device to
the network, sets the NDD_UP flag in the ndd_flags field, and returns 0. The network attachment will
continue in the background where it is driven by device activity and system timers.

Note: The Network Services ns_alloc routine that calls this open routine causes the open to be
synchronous. It waits until the NDD_RUNNING flag is set in the ndd_flags field or 60 seconds have
passed.

If the connection is successful, the NDD_RUNNING flag will be set in the ndd_flags field and a
NDD_CONNECTED status block will be sent. The ns_alloc routine will return at this time.

If the device connection fails, the NDD_LIMBO flag will be set in the ndd_flags field and a
NDD_LIMBO_ENTRY status block will be sent.

If the device is eventually connected, the NDD_LIMBO flag will be turned off and the NDD_RUNNING flag
will be set in the ndd_flags field. Both NDD_CONNECTED and NDD_LIMBO_EXIT status blocks will be
set.

Device Driver Close
The tok_close function is called to close the specified network device. This function resets the device to a
known state and frees system resources associated with the device.

The device will not be detached from the network until the device’s transmit queue is allowed to drain.

Data Transmission
The tok_output function transmits data using the network device.

The device driver does not support mbufs from user memory (which have the M_EXT flag set).

If the destination address in the packet is a broadcast address, the M_BCAST flag in the p_mbuf->m_flags
field should be set prior to entering this routine. A broadcast address is defined as 0xFFFF FFFF FFFF or
0xC000 FFFF FFFF. If the destination address in the packet is a multicast address the M_MCAST flag in
the p_mbuf->m_flags field should be set prior to entering this routine. A multicast address is defined as a
non-individual address other than a broadcast address. The device driver will keep statistics based upon
the M_BCAST and M_MCAST flags.

122 Kernel Extensions and Device Support Programming Concepts

If a packet is transmitted with a destination address that matches the adapter’s address, the packet will be
received. This is true for the adapter’s physical address, broadcast addresses (0xC000 FFFF FFFF or
0xFFFF FFFF FFFF), enabled functional addresses, or an enabled group address.

Data Reception
When the Token-Ring device driver receives a valid packet from the network device, the Token-Ring
device driver calls the nd_receive function that is specified in the ndd_t structure of the network device.
The nd_receive function is part of a CDLI network demuxer. The packet is passed to the nd_receive
function in mbufs.

The Token-Ring device driver passes one packet to the nd_receive function at a time.

The device driver sets the M_BCAST flag in the p_mbuf->m_flags field when a packet is received that has
an all-stations broadcast address. This address is defined as 0xFFFF FFFF FFFF or 0xC000 FFFF FFFF.

The device driver sets the M_MCAST flag in the p_mbuf->m_flags field when a packet is received that has
a non-individual address that is different than the all-stations broadcast address.

The adapter does not pass invalid packets to the device driver.

Asynchronous Status
When a status event occurs on the device, the Token-Ring device driver builds the appropriate status
block and calls the nd_status function that is specified in the ndd_t structure of the network device. The
nd_status function is part of a CDLI network demuxer.

The following status blocks are defined for the Token-Ring device driver.

Hard Failure
When a hard failure has occurred on the Token-Ring device, the following status blocks can be returned
by the Token-Ring device driver. One of these status blocks indicates that a fatal error occurred.

NDD_PIO_FAIL: When a PIO error occurs, it is retried 3 times. If the error still occurs, it is considered
unrecoverable and this status block is generated.

code Set to NDD_HARD_FAIL
option[0] Set to NDD_PIO_FAIL
option[] The remainder of the status block may be used to return additional status information.

TOK_RECOVERY_THRESH: When most network errors occur, they are retried. Some errors are retried
with no limit and others have a recovery threshold. Errors that have a recovery threshold and fail all the
retries specified by the recovery threshold are considered unrecoverable and generate the following status
block:

code Set to NDD_HARD_FAIL
option[0] Set to TOK_RECOVERY_THRESH
option[1] The specific error that occurred. Possible values are:

v TOK_DUP_ADDR - duplicate node address

v TOK_PERM_HW_ERR - the device has an unrecoverable hardware error

v TOK_RING_SPEED - ring beaconing on physical insertion to the ring

v TOK_RMV_ADAP - remove ring station MAC frame received

Enter Network Recovery Mode
When the device driver has detected an error that requires initiating recovery logic that will make the
device temporarily unavailable, the following status block is returned by the device driver:

Chapter 7. Communications I/O Subsystem 123

Note: While the device driver is in this recovery logic, the device might not be fully functional. The
device driver will notify users when the device is fully functional by way of an NDD_LIMBO_EXIT
asynchronous status block.

NDD_ADAP_CHECK: When an adapter check has occurred, this status block is generated.

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_ADAP_CHECK
option[1] The adapter check interrupt information is stored in the 2 high-order bytes. The adapter also

returns three two-byte parameters. Parameter 0 is stored in the 2 low-order bytes.
option[2] Parameter 1 is stored in the 2 high-order bytes. Parameter 2 is stored in the 2 low-order bytes.

NDD_AUTO_RMV: When an internal hardware error following the beacon automatic-removal process
has been detected, this status block is generated.

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_AUTO_RMV

NDD_BUS_ERR: The device has detected a I/O channel error.

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_BUS_ERR
option[1] Set to error information from the device.

NDD_CMD_FAIL: The device has detected an error in a command the device driver issued to it.

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_CMD_FAIL
option[1] Set to error information from the device.

NDD_TX_ERROR: The device has detected an error in a packet given to the device.

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_TX_ERROR
option[1] Set to error information from the device.

NDD_TX_TIMEOUT: The device has detected an error in a packet given to the device.

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_TX_TIMEOUT

TOK_ADAP_INIT: When the initialization of the device fails, this status block is generated.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_ADAP_INIT
option[1] Set to error information from the device.

TOK_ADAP_OPEN: When a general error occurs during open of the device, this status block is
generated.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_ADAP_OPEN
option[1] Set to the device open error code from the device.

124 Kernel Extensions and Device Support Programming Concepts

TOK_DMA_FAIL: A d_complete has failed.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_DMA_FAIL

TOK_RING_SPEED: When an error code of 0x27 (physical insertion, ring beaconing) occurs during open
of the device, this status block is generated.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_RING_SPEED

TOK_RMV_ADAP: The device has received a remove ring station MAC frame indicating that a network
management function had directed this device to get off the ring.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_RMV_ADAP

TOK_WIRE_FAULT: When an error code of 0x11 (lobe media test, function failure) occurs during open of
the device, this status block is generated.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_WIRE_FAULT

Exit Network Recovery Mode
When the device driver has successfully completed recovery logic from the error that made the device
temporarily unavailable, the following status block is returned by the device driver. This status block means
the device is now fully functional.

code Set to NDD_LIMBO_EXIT
option[] The option fields are not used.

Network Device Driver Status
When the device driver has status or event information to report, the following status block is returned by
the device driver:

Ring Beaconing: When the Token-Ring device has detected a beaconing condition (or the ring has
recovered from one), the following status block is generated by the Token-Ring device driver:

code Set to NDD_STATUS
option[0] Set to TOK_BEACONING
option[1] Set to the ring status received from the device.

Device Connected
When the device is successfully connected to the network the following status block is returned by the
device driver:

code Set to NDD_CONNECTED
option[] The option fields are not used.

Device Control Operations
The tok_ctl function is used to provide device control functions.

Chapter 7. Communications I/O Subsystem 125

NDD_GET_STATS
The user should pass in the tok_ndd_stats_t structure as defined in usr/include/sys/cdli_tokuser.h. The
driver will fail a call with a buffer smaller than the structure.

The statistics that are returned contain statistics obtained from the device. If the device is inoperable, the
statistics that are returned will not contain the current device statistics. The copy of the ndd_flags field
can be checked to determine the state of the device.

NDD_MIB_QUERY
The arg parameter specifies the address of the token_ring_all_mib_t structure. This structure is defined in
the /usr/include/sys/tokenring_mibs.h file.

The device driver does not support any variables for read_write or write only. If the syntax of a member of
the structure is some integer type, the level of support flag will be stored in the whole field, regardless of
the size of the field. For those fields defined as character arrays, the value will be returned only in the first
byte in the field.

NDD_MIB_GET
The arg parameter specifies the address of the token_ring_all_mib_t structure. This structure is defined in
the /usr/include/sys/tokenring_mibs.h file.

If the device is inoperable, the upstream field of the Dot5Entry_t structure will be zero instead of containing
the nearest active upstream neighbor (NAUN). Also the statistics that are returned contain statistics
obtained from the device. If the device is inoperable, the statistics that are returned will not contain the
current device statistics. The copy of the ndd_flags field can be checked to determine the state of the
device.

NDD_ENABLE_ADDRESS
This command enables the receipt of packets with a functional or a group address. The functional address
indicator (bit 0 ″the MSB″ of byte 2) indicates whether the address is a functional address (the bit is a 0)
or a group address (the bit is a 1). The length field is not used because the address must be 6 bytes in
length.

Functional Address: The specified address is ORed with the currently specified functional addresses
and the resultant address is set as the functional address for the device. Functional addresses are
encoded in a bit-significant format, thereby allowing multiple individual groups to be designated by a single
address.

The Token-Ring network architecture provides bit-specific functional addresses for widely-used functions,
such as configuration report server. Ring stations use functional address masks to identify these functions.
For example, if function G is assigned a functional address of 0xC000 0008 0000, and function M is
assigned a function address of 0xC000 0000 0040, then ring station Y, whose node contains function G
and M, would have a mask of 0xC000 0008 0040. Ring station Y would receive packets addressed to
either function G or M or to an address like 0xC000 0008 0048 because that address contains bits
specified in the mask.

Note: The device forces the first 2 bytes of the functional address to be 0xC000. In addition, bits 6 and 7
of byte 5 of the functional address are forced to a 0 by the device.

The NDD_ALTADDRS and TOK_RECEIVE_FUNC flags in the ndd_flags field are set.

Because functional addresses are encoded in a bit-significant format, reference counts are kept on each of
the 31 least significant bits of the address. Reference counts are not kept on the 17 most significant bits
(the 0xC000 of the functional address and the functional address indicator bit).

126 Kernel Extensions and Device Support Programming Concepts

Group Address: If no group address is currently enabled, the specified address is set as the group
address for the device. The group address will not be set and EINVAL will be returned if a group address
is currently enabled.

The device forces the first 2 bytes of the group address to be 0xC000.

The NDD_ALTADDRS and TOK_RECEIVE_GROUP flags in the ndd_flags field are set.

NDD_DISABLE_ADDRESS
This command disables the receipt of packets with a functional or a group address. The functional address
indicator (bit 0 ″the MSB″ of byte 2) indicates whether the address is a functional address (the bit is a 0)
or a group address (the bit is a 1). The length field is not used because the address must be 6 bytes in
length.

Functional Address: The reference counts are decremented for those bits in the functional address that
are a one (on). If the reference count for a bit goes to zero, the bit will be ″turned off″ in the functional
address for the device.

If no functional addresses are active after receipt of this command, the TOK_RECEIVE_FUNC flag in the
ndd_flags field is reset. If no functional or group addresses are active after receipt of this command, the
NDD_ALTADDRS flag in the ndd_flags field is reset.

Group Address: If the group address that is currently enabled is specified, receipt of packets with a
group address is disabled. If a different address is specified, EINVAL will be returned.

If no group address is active after receipt of this command, the TOK_RECEIVE_GROUP flag in the
ndd_flags field is reset. If no functional or group addresses are active after receipt of this command, the
NDD_ALTADDRS flag in the ndd_flags field is reset.

NDD_MIB_ADDR
The following addresses are returned:

v Device Physical Address (or alternate address specified by user)

v Broadcast Address 0xFFFF FFFF FFFF

v Broadcast Address 0xC000 FFFF FFFF

v Functional Address (only if a user specified a functional address)

v Group Address (only if a user specified a group address)

NDD_CLEAR_STATS
The counters kept by the device will be zeroed.

NDD_GET_ALL_STATS
The arg parameter specifies the address of the mon_all_stats_t structure. This structure is defined in the
/usr/include/sys/cdli_tokuser.h file.

The statistics that are returned contain statistics obtained from the device. If the device is inoperable, the
statistics that are returned will not contain the current device statistics. The copy of the ndd_flags field
can be checked to determine the state of the device.

Trace Points and Error Log Templates for 8fc8 Token-Ring Device
Driver
The Token-Ring device driver has three trace points. The IDs are defined in the
usr/include/sys/cdli_tokuser.h file.

The Token-Ring error log templates are:

Chapter 7. Communications I/O Subsystem 127

ERRID_CTOK_ADAP_CHECK
The microcode on the device performs a series of diagnostic checks when the device is idle.
These checks can find errors and they are reported as adapter checks. If the device was
connected to the network when this error occurred, the device driver will go into Network Recovery
Mode in an attempt to recover from the error. The device is temporarily unavailable during the
recovery procedure. User intervention is not required for this error unless the problem persists.

ERRID_CTOK_ADAP_OPEN
The device driver was enable to open the device. The device driver will go into Network Recovery
Mode in an attempt to recover from the error. The device is temporarily unavailable during the
recovery procedure. User intervention is not required for this error unless the problem persists.

ERRID_CTOK_AUTO_RMV
An internal hardware error following the beacon automatic removal process has been detected.
The device driver will go into Network Recovery Mode in an attempt to recover from the error. The
device is temporarily unavailable during the recovery procedure. User intervention is not required
for this error unless the problem persists.

ERRID_CONFIG
The ring speed (or ring data rate) is probably wrong. Contact the network administrator to
determine the speed of the ring. The device driver will only retry twice at 2 minute intervals after
this error log entry has been generated.

ERRID_CTOK_DEVICE_ERR
The device detected an I/O channel error or an error in a command the device driver issued, an
error occurred during a PIO operation, or the device has detected an error in a packet given to the
device. The device driver will go into Network Recovery Mode in an attempt to recover from the
error. The device is temporarily unavailable during the recovery procedure. User intervention is not
required for this error unless the problem persists.

ERRID_CTOK_DOWNLOAD
The download of the microcode to the device failed. User intervention is required to make the
device available.

ERRID_CTOK_DUP_ADDR
The device has detected that another station on the ring has a device address that is the same as
the device address being tested. Contact network administrator to determine why.

ERRID_CTOK_MEM_ERR
An error occurred while allocating memory or timer control block structures.

ERRID_CTOK_PERM_HW
The device driver could not reset the card. For example, did not receive status from the adapter
within the retry period.

ERRID_CTOK_RCVRY_EXIT
The error that caused the device driver to go into error recovery mode has been corrected.

ERRID_CTOK_RMV_ADAP
The device has received a remove ring station MAC frame indicating that a network management
function has directed this device to get off the ring. Contact network administrator to determine
why.

ERRID_CTOK_WIRE_FAULT
There is probably a loose (or bad) cable between the device and the MAU. There is some chance
that it might be a bad device. The device driver will go into Network Recovery Mode in an attempt
to recover from the error. The device is temporarily unavailable during the recovery procedure.
User intervention is required for this error.

128 Kernel Extensions and Device Support Programming Concepts

High-Performance (8fa2) Token-Ring Device Driver

Note: The information in this section is specific to AIX 5.1 and earlier.

The 8fa2 Token-Ring device driver is a dynamically loadable device driver. The device driver is
automatically loaded into the system at device configuration time as part of the configuration process.

The interface to the device is through the kernel services known as Network Services.

Interfacing to the device driver is achieved by calling the device driver’s entry points for opening the
device, closing the device, transmitting data, doing a remote dump, and issuing device control commands.

The Token-Ring device driver interfaces with the Token-Ring High-Performance Network Adapter (8fa2). It
provides a Micro Channel-based connection to a Token-Ring network. The adapter is IEEE 802.5
compatible and supports both 4 and 16 megabit per second networks. The adapter supports only a RJ-45
connection.

Configuration Parameters for 8fa2 Token-Ring Device Driver
The following lists the configuration parameters necessary to use the device driver.

Ring Speed
Indicates the Token-Ring speed. The speed is set at 4 or 16 megabits per second or autosense.

4 Specifies that the device driver will open the adapter with 4 Mbits. It will return an error if ring
speed does not match the network speed.

16 Specifies that the device driver will open the adapter with 16 Mbits. It will return an error if ring
speed does not match the network speed.

autosense
Specifies that the adapter will open with the speed used determined as follows:

v If it is an open on an existing network, the speed will be the ring speed of the network.

v If it is an open on a new network:

v If the adapter is a new adapter, 16 Mbits is used.

v If the adapter had successfully opened, the ring speed will be the ring speed of the last
successful open.

Software Transmit Queue
Specifies a transmit request pointer that can be set to store between 32 and 2048 transmit request
pointers. Each transmit request pointer corresponds to a transmit request which might be for
several buffers of data.

Attention MAC frames
Indicates if attention MAC frames should be received.

Beacon MAC frames
Indicates if beacon MAC frames should be received.

Priority Data Transmission
Specifies a request priority transmission of the data packets.

Network Address
Specifies the use of the device’s hardware address as the network address or an alternate
network address configured through software. When an alternate address is used, any valid
Individual Address can be used. The most significant bit of the address must be set to zero
(definition of an Individual Address).

Chapter 7. Communications I/O Subsystem 129

Device Driver Configuration and Unconfiguration
The tok_config entry point performs configuration functions Token-Ring device driver.

Device Driver Open
The tok_open function is called to open the specified network device.

The Token Ring device driver does a synchronous open. The device will be initialized at this time. When
the resources have been successfully allocated, the device will start the process of attaching the device to
the network.

If the connection is successful, the NDD_RUNNING flag will be set in the ndd_flags field and a
NDD_CONNECTED status block will be sent.

If the device connection fails, the NDD_LIMBO flag will be set in the ndd_flags field and a
NDD_LIMBO_ENTRY status block will be sent.

If the device is eventually connected, the NDD_LIMBO flag will be turned off and the NDD_RUNNING flag
will be set in the ndd_flags field. Both NDD_CONNECTED and NDD_LIMBO_EXIT status blocks will be
set.

Device Driver Close
The tok_close function is called to close the specified network device. This function resets the device to a
known state and frees system resources associated with the device.

The device will not be detached from the network until the device’s transmit queue is allowed to drain.

Data Transmission
The tok_output function transmits data using the network device.

The device driver does not support mbufs from user memory (which have the M_EXT flag set).

If the destination address in the packet is a broadcast address the M_BCAST flag in the
p_mbuf->m_flags field should be set prior to entering this routine. A broadcast address is defined as
0xFFFF FFFF FFFF or 0xC000 FFFF FFFF. If the destination address in the packet is a multicast address
the M_MCAST flag in the p_mbuf->m_flags field should be set prior to entering this routine. A multicast
address is defined as a non-individual address other than a broadcast address. The device driver will keep
statistics based upon the M_BCAST and M_MCAST flags.

If a packet is transmitted with a destination address which matches the adapter’s address, the packet will
be received. This is true for the adapter’s physical address, broadcast addresses (0xC000 FFFF FFFF or
0xFFFF FFFF FFFF), enabled functional addresses, or an enabled group address.

Data Reception
When the Token-Ring device driver receives a valid packet from the network device, the Token-Ring
device driver calls the nd_receive function that is specified in the ndd_t structure of the network device.
The nd_receive function is part of a CDLI network demuxer. The packet is passed to the nd_receive
function in mbufs.

The Token-Ring device driver will pass only one packet to the nd_receive function at a time.

The device driver will set the M_BCAST flag in the p_mbuf->m_flags field when a packet is received which
has an all stations broadcast address. This address is defined as 0xFFFF FFFF FFFF or 0xC000 FFFF
FFFF.

130 Kernel Extensions and Device Support Programming Concepts

The device driver will set the M_MCAST flag in the p_mbuf->m_flags field when a packet is received
which has a non-individual address which is different than the all-stations broadcast address.

The adapter will not pass invalid packets to the device driver.

Asynchronous Status
When a status event occurs on the device, the Token-Ring device driver builds the appropriate status
block and calls the nd_status function that is specified in the ndd_t structure of the network device. The
nd_status function is part of a CDLI network demuxer.

The following status blocks are defined for the Token-Ring device driver.

Hard Failure
When a hard failure has occurred on the Token-Ring device, the following status blocks can be returned
by the Token-Ring device driver. One of these status blocks indicates that a fatal error occured.

NDD_PIO_FAIL
Indicates that when a PIO error occurs, it is retried 3 times. If the error persists, it is considered
unrecoverable and the following status block is generated:

code Set to NDD_HARD_FAIL
option[0] Set to NDD_PIO_FAIL
option[] The remainder of the status block is used to return additional status information.

NDD_HARD_FAIL
Indicates that when a transmit error occurs it is retried. If the error is unrecoverable, the following
status block is generated:

code Set to NDD_HARD_FAIL
option[0] Set to NDD_HARD_FAIL
option[] The remainder of the status block is used to return additional status information.

NDD_ADAP_CHECK
Indicates that when an adapter check has occurred, the following status block is generated:

code Set to NDD_ADAP_CHECK
option[] The remainder of the status block is used to return additional status information.

NDD_DUP_ADDR
Indicates that the device detected a duplicated address in the network and the following status
block is generated:

code Set to NDD_DUP_ADDR
option[] The remainder of the status block is used to return additional status information.

NDD_CMD_FAIL
Indicates that the device detected an error in a command that the device driver issued. The
following status block is generated:

code Set to NDD_CMD_FAIL
option[0] Set to the command code
option[] Set to error information from the command.

TOK_RING_SPEED
Indicates that when a ring speed error occurs while the device is being open, the following status
block is generated:

Chapter 7. Communications I/O Subsystem 131

code Set to NDD_LIMBO_ENTER
option[] Set to error information.

Enter Network Recovery Mode
Indicates that when the device driver has detected an error which requires initiating recovery logic that will
make the device temporarily unavailable, the following status block is returned by the device driver.

Note: While the device driver is in this recovery logic, the device might not be fully functional. The device
driver will notify users when the device is fully functional by way of an NDD_LIMBO_EXIT
asynchronous status block.

code Set to NDD_LIMBO_ENTER
option[0] Set to one of the following:

v NDD_CMD_FAIL

v TOK_WIRE_FAULT

v NDD_BUS_ERROR

v NDD_ADAP_CHECK

v NDD_TX_TIMEOUT

v TOK_BEACONING
option[] The remainder of the status block is used to return additional status information by the device

driver.

Exit Network Recovery Mode
Indicates that when the device driver has successfully completed recovery logic from the error that made
the device temporarily unavailable, the following status block is returned by the device driver. This status
block indicates the device is now fully functional.

code Set to NDD_LIMBO_EXIT
option[] N/A

Device Connected
Indicates that when the device is successfully connected to the network the following status block is
returned by the device driver:

code Set to NDD_CONNECTED
option[] N/A

Device Control Operations
The tok_ctl function is used to provide device control functions.

NDD_GET_STATS
The user should pass in the tok_ndd_stats_t structure as defined in <sys/cdli_tokuser.h>. The
driver will fail a call with a buffer smaller than the structure.

The structure must be in a kernel heap so that the device driver can copy the statistics into it; and
it must be pinned.

NDD_PROMISCUOUS_ON
Setting promiscuous mode will not cause non-LLC frames to be received by the driver unless the
user also enables those filters (Attention MAC frames, Beacon MAC frames).

The driver will maintain a counter of requests.

132 Kernel Extensions and Device Support Programming Concepts

NDD_PROMISCUOUS_OFF
This command will release a request from a user to PROMISCUOUS_ON; it will not exit the mode
on the adapter if more requests are outstanding.

NDD_MIB_QUERY
The arg parameter specifies the address of the token_ring_all_mib_t structure. This structure is
defined in the /usr/include/sys/tokenring_mibs.h file.

The device driver does not support any variables for read_write or write only. If the syntax of a
member of the structure is some integer type, the level of support flag will be stored in the whole
field, regardless of the size of the field. For those fields which are defined as character arrays, the
value will be returned only in the first byte in the field.

NDD_MIB_GET
The arg parameter specifies the address of the token_ring_all_mib_t structure. This structure is
defined in the /usr/include/sys/tokenring_mibs.h file.

NDD_ENABLE_ADDRESS
This command enables the receipt of packets with a functional or a group address. The functional
address indicator (bit 0 ″the MSB″ of byte 2) indicates whether the address is a functional address
(the bit is a 0) or a group address (the bit is a 1). The length field is not used because the address
must be 6 bytes in length.

Functional Address
The specified address is ORed with the currently specified functional addresses and the resultant address
is set as the functional address for the device. Functional addresses are encoded in a bit-significant
format, thereby allowing multiple individual groups to be designated by a single address.

The Token-Ring network architecture provides bit-specific functional addresses for widely used functions,
such as configuration report server. Ring stations use functional address masks to identify these functions.
For example, if function G is assigned a functional address of 0xC000 0008 0000, and function M is
assigned a function address of 0xC000 0000 0040, then ring station Y, whose node contains function G
and M, would have a mask of 0xC000 0008 0040. Ring station Y would receive packets addressed to
either function G or M or to an address like 0xC000 0008 0048 because that address contains bits
specified in the mask.

The NDD_ALTADDRS and TOK_RECEIVE_FUNC flags in the ndd_flags field are set.

Because functional addresses are encoded in a bit-significant format, reference counts are kept on each of
the 31 least significant bits of the address.

Group Address
The device support 256 general group addresses. The promiscuous mode will be turned on when the
group addresses needed to be set are more than 256. The device driver will maintain a reference count on
this operation.

The NDD_ALTADDRS and TOK_RECEIVE_GROUP flags in the ndd_flags field are set.

NDD_DISABLE_ADDRESS
This command disables the receipt of packets with a functional or a group address. The functional
address indicator (bit 0 ″the MSB″ of byte 2) indicates whether the address is a functional address
(the bit is a 0) or a group address (the bit is a 1). The length field is not used because the address
must be 6 bytes in length.

Functional Address
The reference counts are decremented for those bits in the functional address that are one (meaning on).
If the reference count for a bit goes to zero, the bit will be ″turned off″ in the functional address for the
device.

Chapter 7. Communications I/O Subsystem 133

If no functional addresses are active after receipt of this command, the TOK_RECEIVE_FUNC flag in the
ndd_flags field is reset. If no functional or group addresses are active after receipt of this command, the
NDD_ALTADDRS flag in the ndd_flags field is reset.

Group Address
If the number of group address enabled is less than 256, the driver sends a command to the device to
disable the receipt of the packets with the specified group address. Otherwise, the driver just deletes the
group address from the group address table.

If there are less than 256 group addresses enabled after the receipt of this command, the promiscuous
mode is turned off.

If no group address is active after receipt of this command, the TOK_RECEIVE_GROUP flag in the
ndd_flags field is reset. If no functional or group addresses are active after receipt of this command, the
NDD_ALTADDRS flag in the ndd_flags field is reset.

NDD_PRIORITY_ADDRESS
The driver returns the address of the device driver’s priority transmit routine.

NDD_MIB_ADDR
The driver will return at least three addresses: device physical address (or alternate address
specified by user) and two broadcast addresses (0xFFFF FFFF FFFF and 0xC000 FFFF FFFF).
Additional addresses specified by the user, such as functional address and group addresses,
might also be returned.

NDD_CLEAR_STATS
The counters kept by the device are zeroed.

NDD_GET_ALL_STATS
The arg parameter specifies the address of the mon_all_stats_t structure. This structure is
defined in the /usr/include/sys/cdli_tokuser.h file.

The statistics returned include statistics obtained from the device. If the device is inoperable, the
statistics returned do not contain the current device statistics. The copy of the ndd_flags field can
be checked to determine the state of the device.

Trace Points and Error Log Templates for 8fa2 Token-Ring Device
Driver
The Token-Ring device driver has four trace points. The IDs are defined in the
/usr/include/sys/cdli_tokuser.h file.

The Token-Ring error log templates are :

ERRID_MPS_ADAP_CHECK
The microcode on the device performs a series of diagnostic checks when the device is idle.
These checks can find errors and they are reported as adapter checks. If the device was
connected to the network when this error occurred, the device driver goes into Network Recovery
Mode to try to recover from the error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required unless the problem persists.

ERRID_MPS_ADAP_OPEN
The device driver was enable to open the device. The device driver goes into Network Recovery
Mode to try to recover from the error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required unless the problem persists.

ERRID_MPS_AUTO_RMV
An internal hardware error following the beacon automatic removal process has been detected.

134 Kernel Extensions and Device Support Programming Concepts

The device driver goes into Network Recovery Mode to try to recover from the error. The device is
temporarily unavailable during the recovery procedure. User intervention is not required unless the
problem persists.

ERRID_MPS_RING_SPEED
The ring speed (or ring data rate) is probably wrong. Contact the network administrator to
determine the speed of the ring. The device driver only retries twice at 2 minute intervals when
this error log entry is generated.

ERRID_MPS_DMAFAIL
The device detected a DMA error in a TX or RX operation. The device driver goes into Network
Recovery Mode to try to recover from the error. The device is temporarily unavailable during the
recovery procedure. User intervention is not required unless the problem persists.

ERRID_MPS_BUS_ERR
The device detected a Micro Channel bus error. The device driver goes into Network Recovery
Mode to try to recover from the error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required unless the problem persists.

ERRID_MPS_DUP_ADDR
The device has detected that another station on the ring has a device address which is the same
as the device address being tested. Contact the network administrator to determine why.

ERRID_MPS_MEM_ERR
An error occurred while allocating memory or timer control block structures.

ERRID_MPS_PERM_HW
The device driver could not reset the card. For example, it did not receive status from the adapter
within the retry period.

ERRID_MPS_RCVRY_EXIT
The error that caused the device driver to go into error recovery mode has been corrected.

ERRID_MPS_RMV_ADAP
The device has received a remove ring station MAC frame indicating that a network management
function has directed this device to get off the ring. Contact the network administrator to determine
why.

ERRID_MPS_WIRE_FAULT
There is probably a loose (or bad) cable between the device and the MAU. There is some chance
that it might be a bad device. The device driver goes into Network Recovery Mode to try to
recover from the error. The device is temporarily unavailable during the recovery procedure. User
intervention is required for this error.

ERRID_MPS_RX_ERR
The device detected a receive error. The device driver goes into Network Recovery Mode to try to
recover from the error. The device is temporarily unavailable during the recovery procedure. User
intervention is not required unless the problem persists.

ERRID_MPS_TX_TIMEOUT
The transmit watchdog timer expired before transmitting a frame is complete. The device driver
goes into Network Recovery Mode to try to recover from the error. The device is temporarily
unavailable during the recovery procedure. User intervention is not required unless the problem
persists.

ERRID_MPS_CTL_ERR
The IOCTL watchdog timer expired before the device driver received a response from the device.
The device driver goes into Network Recovery Mode to try to recover from the error. The device is
temporarily unavailable during the recovery procedure. User intervention is not required unless the
problem persists.

Chapter 7. Communications I/O Subsystem 135

PCI Token-Ring Device Drivers
The following Token-Ring device drivers are dynamically loadable. The device driver is automatically
loaded into the system at device configuration time as part of the configuration process.

v PCI Token-Ring High PerformanceDevice Driver (14101800)

v PCI Token-Ring Device Driver (14103e00)

The interface to the device is through the kernel services known as Network Services. Interfacing to the
device driver is achieved by calling the device driver’s entry points to perform the following actions:

v Opening the device

v Closing the device

v Transmitting data

v Performing a remote dump

v Issuing device control commands

The PCI Token-Ring High Performance Device Driver (14101800) interfaces with the PCI Token-Ring
High-Performance Network Adapter (14101800). The adapter is IEEE 802.5 compatible and supports both
4 and 16 Mbps networks. The adapter supports only an RJ-45 connection.

The PCI Token-Ring Device Driver (14103e00) interfaces with the PCI Token-Ring Network Adapter
(14103e00). The adapter is IEEE 802.5 compatible and supports both 4 and 16 Mbps networks. The
adapter supports both an RJ-45 and a 9 Pin connection.

Configuration Parameters
The following configuration parameter is supported by all PCI Token-Ring Device Drivers:

Ring Speed
The device driver supports a user-configurable parameter that indicates if the token-ring is to run
at 4 or 16 Mbps.

The device driver supports a user-configurable parameter that selects the ring speed of the
adapter. There are three options for the ring speed: 4, 16, or autosense.

1. If 4 is selected, the device driver opens the adapter with 4 Mbits. It returns an error if the ring
speed does not match the network speed.

2. If 16 is selected, the device driver opens the adapter with 16 Mbits. It returns an error if the
ring speed does not match the network speed.

3. If autosense is selected, the adapter guarantees a successful open, and the speed used to
open is dependent on the following:

v If the adapter is opened on an existing network the speed is determined by the ring speed
of the network.

v If the device is opened on a new network and the adapter is new, 16 Mbits is used. Or, if
the adapter opened successfully, the ring speed is determined by the speed of the last
successful open.

Software Transmit Queue
The device driver supports a user-configurable transmit queue that can be set to store between 32
and 2048 transmit request pointers. Each transmit request pointer corresponds to a transmit
request that might be for several buffers of data.

Receive Queue
The device driver supports a user-configurable receive queue that can be set to store between 32
and 160 receive buffers. These buffers are mbuf clusters into which the device writes the received
data.

136 Kernel Extensions and Device Support Programming Concepts

Full Duplex
Indicates whether the adapter is operating in full-duplex or half-duplex mode. If this field is set to
yes, the device driver programs the adapter to be in full-duplex mode. The default value is
half-duplex.

Attention MAC Frames
The device driver supports a user-configurable parameter that indicates if attention MAC frames
should be received.

Beacon MAC Frames
The device driver supports a user-configurable parameter that indicates if beacon MAC frames
should be received.

Network Address
The driver supports the use of the device’s hardware address as the network address or an
alternate network address configured through software. When an alternate address is used, any
valid individual address can be used. The most significant bit of the address must be set to zero.

In addition, the following configuration parameters are supported by the PCI Token-Ring High Performance
Device Driver (14101800):

Priority Data Transmission
The device driver supports a user option to request priority transmission of the data packets.

Software Priority Transmit Queue
The device driver supports a user-configurable priority transmit queue that can be set to store
between 32 and 160 transmit request pointers. Each transmit request pointer corresponds to a
transmit request that might be for several buffers of data.

Device Driver Configuration and Unconfiguration
The configuration entry points of the device drivers conform to the guidelines for kernel object file entry
points. These configuration entry points are as follows:

v tok_config for the PCI Token-Ring High Performance Device Driver (14101800).

v cs_config for the PCI Token-Ring Device Driver (14103e00).

Device Driver Open
The Token-Ring device driver performs a synchronous open. The device is initialized at this time. When
the resources are successfully allocated, the device starts the process of attaching the device to the
network.

If the connection is successful, the NDD_RUNNING flag is set in the ndd_flags field, and an
NDD_CONNECTED status block is sent.

If the device connection fails, the NDD_LIMBO flag is set in the ndd_flags field, and an
NDD_LIMBO_ENTRY status block is sent.

If the device is eventually connected, the NDD_LIMBO flag is turned off, and the NDD_RUNNING flag is
set in the ndd_flags field. Both NDD_CONNECTED and NDD_LIMBO_EXIT status blocks are set.

The entry points are as follows:

v tok_open for the PCI Token-Ring High Performance Device Driver (14101800).

v cs_open for the PCI Token-Ring Device Driver (14103e00).

Chapter 7. Communications I/O Subsystem 137

Device Driver Close
This function resets the device to a known state and frees system resources associated with the device.

The device is not detached from the network until the device’s transmit queue is allowed to drain.

The close entry points are as follows:

v tok_close for the PCI Token-Ring High Performance Device Driver (14101800).

v cs_close for the PCI Token-Ring Device Driver (14103e00).

Data Transmission
The device drivers do not support mbuf structures from user memory that have the M_EXT flag set.

If the destination address in the packet is a broadcast address, the M_BCAST flag in the p_mbuf->m_flags
field must be set prior to entering this routine. A broadcast address is defined as 0xFFFF FFFF FFFF or
0xC000 FFFF FFFF. If the destination address in the packet is a multicast address, the M_MCAST flag in
the p_mbuf->m_flags field must be set prior to entering this routine. A multicast address is defined as a
non-individual address other than a broadcast address. The device driver keeps statistics based on the
M_BCAST and M_MCAST flags.

If a packet is transmitted with a destination address that matches the adapter’s address, the packet is
received. This is true for the adapter’s physical address, broadcast addresses (0xC000 FFFF FFFF or
0xFFFF FFFF FFFF), enabled functional addresses, or an enabled group address.

The output entry points are as follows:

v tok_output for the PCI Token-Ring High Performance Device Driver (14101800).

v cs_close for the PCI Token-Ring Device Driver (14103e00).

Data Reception
When the Token-Ring device driver receives a valid packet from the network device, the Token-Ring
device driver calls the nd_receive() function specified in the ndd_t structure of the network device. The
nd_receive() function is part of a CDLI network demuxer. The packet is passed to the nd_receive()
function in the mbuf structures.

The Token-Ring device driver passes only one packet to the nd_receive() function at a time.

The device driver sets the M_BCAST flag in the p_mbuf->m_flags field when a packet that has an
all-stations broadcast address is received. This address is defined as 0xFFFF FFFF FFFF or 0xC000
FFFF FFFF.

The device driver sets the M_MCAST flag in the p_mbuf->m_flags field when a packet is received that has
a non-individual address that is different from the all-stations broadcast address.

The adapter does not pass invalid packets to the device driver.

Asynchronous Status
When a status event occurs on the device, the Token-Ring device driver builds the appropriate status
block and calls the nd_status() function specified in the ndd_t structure of the network device. The
nd_status() function is part of a CDLI network demuxer.

The following status blocks are defined for the Token-Ring device driver.

138 Kernel Extensions and Device Support Programming Concepts

Hard Failure
When a hard failure occurs on the Token-Ring device, the following status blocks are returned by the
Token-Ring device driver. One of these status blocks indicates that a fatal error has occurred.

NDD_HARD_FAIL
When a transmit error occurs, it tries to recover. If the error is unrecoverable, this status block is
generated.

code Set to NDD_HARD_FAIL.

option[0]
Set to NDD_HARD_FAIL.

option[]
The remainder of the status block can be used to return additional status information.

Enter Network Recovery Mode
When the device driver detects an error that requires initiating recovery logic to make the device
temporarily unavailable, the following status block is returned by the device driver.

Note: While the device driver is in this recovery logic, the device might not be fully functional. The device
driver notifies users when the device is fully functional by way of an NDD_LIMBO_EXIT
asynchronous status block:

code Set to NDD_LIMBO_ENTER.
option[0] Set to one of the following:

v NDD_CMD_FAIL

v NDD_ADAP_CHECK

v NDD_TX_ERR

v NDD_TX_TIMEOUT

v NDD_AUTO_RMV

v TOK_ADAP_OPEN

v TOK_ADAP_INIT

v TOK_DMA_FAIL

v TOK_RING_SPEED

v TOK_RMV_ADAP

v TOK_WIRE_FAULT
option[] The remainder of the status block can be used to return additional status information by the device

driver.

Exit Network Recovery Mode
When the device driver has successfully completed recovery logic from the error that made the device
temporarily unavailable, the following status block is returned by the device driver:

code Set to NDD_LIMBO_EXIT.
option[] The option fields are not used.

The device is now fully functional.

Device Control Operations
The ndd_ctl entry point is used to provide device control functions.

NDD_GET_STATS
The user should pass in the tok_ndd_stats_t structure as defined in the sys/cdli_tokuser.h file.
The driver fails a call with a buffer smaller than the structure.

Chapter 7. Communications I/O Subsystem 139

The structure must be in kernel heap so that the device driver can copy the statistics into it. Also,
it must be pinned.

NDD_PROMISCUOUS_ON
Setting promiscuous mode will not cause non-LLC frames to be received by the driver unless the
user also enables those filters (Attention MAC frames, Beacon MAC frames).

The driver maintains a counter of requests.

NDD_PROMISCUOUS_OFF
This command releases a request from a user to PROMISCUOUS_ON; it will not exit the mode on
the adapter if more requests are outstanding.

NDD_MIB_QUERY
The arg parameter specifies the address of the token_ring_all_mib_t structure. This structure is
defined in the /usr/include/sys/tokenring_mibs.h file.

The device driver does not support any variables for read_write or write only. If the syntax of a
member of the structure is an integer type, the level of support flag is stored in the whole field,
regardless of the size of the field. For those fields that are defined as character arrays, the value
is returned only in the first byte in the field.

NDD_MIB_GET
The arg parameter specifies the address of the token_ring_all_mib_t structure. This structure is
defined in the /usr/include/sys/tokenring_mibs.h file.

NDD_ENABLE_ADDRESS
This command enables the receipt of packets with a functional or a group address. The functional
address indicator (bit 0 ″the MSB″ of byte 2) indicates whether the address is a functional address
(bit 0) or a group address (bit 1). The length field is not used because the address must be 6
bytes in length.

functional address
The specified address is ORed with the currently specified functional addresses, and the
resultant address is set as the functional address for the device. Functional addresses are
encoded in a bit-significant format, thereby allowing multiple individual groups to be
designated by a single address.

The Token-Ring network architecture provides bit-specific functional addresses for widely
used functions, such as configuration report server. Ring stations use functional address
″masks″ to identify these functions. For example, if function G is assigned a functional
address of 0xC000 0008 0000, and function M is assigned a function address of 0xC000
0000 0040, then ring station Y, whose node contains function G and M, would have a
mask of 0xC000 0008 0040. Ring station Y would receive packets addressed to either
function G or M or to an address, such as 0xC000 0008 0048, because that address
contains bits specified in the ″mask.″

The NDD_ALTADDRS and TOK_RECEIVE_FUNC flags in the ndd_flags field are set.

Because functional addresses are encoded in a bit-significant format, reference counts are
kept on each of the 31 least significant bits of the address.

group address
The device supports 256 general group addresses. The promiscuous mode is turned on
when the group addresses to be set is more than 256. The device driver maintains a
reference count on this operation.

The device supports 256 general group addresses. The promiscuous mode is turned on
when the group address needed to be set are more than 256. The device driver will
maintain a reference count on this operation.

The NDD_ALTADDRS and TOK_RECEIVE_GROUP flags in the ndd_flags field are set.

140 Kernel Extensions and Device Support Programming Concepts

NDD_DISABLE_ADDRESS
This command disables the receipt of packets with a functional or a group address. The functional
address indicator (bit 0 ″the MSB″ of byte 2) indicates whether the address is a functional address
(bit 0) or a group address (bit 1). The length field is not used because the address must be 6
bytes in length.

functional address
The reference counts are decremented for those bits in the functional address that are 1
(on). If the reference count for a bit goes to 0, the bit is ″turned off″ in the functional
address for the device.

If no functional addresses are active after receipt of this command, the
TOK_RECEIVE_FUNC flag in the ndd_flags field is reset. If no functional or group
addresses are active after receipt of this command, the NDD_ALTADDRS flag in the
ndd_flags field is reset.

group address
If group address enable is less than 256, the driver sends a command to the device to
disable the receipt of the packets with the specified group address. Otherwise, the group
address is deleted from the group address table.

If there are less than 256 group addresses enabled after the receipt of this command, the
promiscuous mode is turned off.

If no group address is active after receipt of this command, the TOK_RECEIVE_GROUP
flag in the ndd_flags field is reset. If no functional or group addresses are active after
receipt of this command, the NDD_ALTADDRS flag in the ndd_flags field is reset.

NDD_PRIORITY_ADDRESS
The driver returns the address of the device driver’s priority transmit routine.

NDD_MIB_ADDR
The driver returns at least three addresses that are device physical addresses (or alternate
addresses specified by the user), two broadcast addresses (0xFFFFFFFFFFFF and 0xC000 FFFF
FFFF), and any additional addresses specified by the user, such as functional addresses and
group addresses.

NDD_CLEAR_STATS
The counters kept by the device are zeroed.

NDD_GET_ALL_STATS
Used to gather all statistics for the specified device. The arg parameter specifies the address of
the statistics structure for this particular device type. The folowing structures are available:

v The sky_all_stats_t structure is available for the PCI Token-Ring High Performance Device
Driver (14101800), and is defined in the device-specific /usr/include/sys/cdli_tokuser.h include
file.

v The cs_all_stats_t structure is available for the PCI Token-Ring Device Driver (14103e00), and
is defined in the device-specific /usr/include/sys/cdli_tokuser.cstok.h include file.

The statistics that are returned contain information obtained from the device. If the device is
inoperable, the statistics returned are not the current device statistics. The copy of the ndd_flags
field can be checked to determine the state of the device.

Reliability, Availability, and Serviceability (RAS)

Trace
For LAN device drivers, trace points enable error monitoring as well as tracking packets as they move
through the driver. The drivers issue trace points for some or all of the following conditions:

v Beginning and ending of main functions in the main path

Chapter 7. Communications I/O Subsystem 141

v Error conditions

v Beginning and ending of each function that is tracking buffers outside of the main path

v Debugging purposes (These trace points are only enabled when the driver is compiled with the
-DDEBUG option turned, therefore, the driver can contain as many of these trace points as needed.)

Following is a list of trace hooks and location of definition files for the existing ethernet device drivers.

The PCI Token-Ring High Performance Device Driver (14101800): Definition File:
/sys/cdli_tokuser.h

Trace Hook IDs

v Transmit 2A7

v Receive 2A8

v Error 2A9

v Other 2AA

The PCI Token-Ring (14103e00) Device Driver: Definition File: /sys/cdli_tokuser.cstok.h

Trace Hook IDs

v Transmit 2DA

v Receive 2DB

v General 2DC

Error Logging

PCI Token-Ring High Performance Device Driver (14101800): The error IDs for the PCI Token-Ring
High Performance Device Driver (14101800) are as follows:

ERRID_STOK_ADAP_CHECK
The microcode on the device performs a series of diagnostic checks when the device is idle.
These checks can find errors, and they are reported as adapter checks. If the device is connected
to the network when this error occurs, the device driver goes into Network Recovery Mode in an
attempt to recover from the error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required for this error unless the problem persists.

ERRID_STOK_ADAP_OPEN
Enables the device driver to open the device. The device driver goes into Network Recovery Mode
in an attempt to recover from the error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required for this error unless the problem persists.

ERRID_STOK_AUTO_RMV
An internal hardware error following the beacon automatic removal process was detected. The
device driver goes into Network Recovery Mode in an attempt to recover from the error. The
device is temporarily unavailable during the recovery procedure. User intervention is not required
for this error unless the problem persists.

ERRID_STOK_RING_SPEED
The ring speed (or ring data rate) is probably wrong. Contact the network administrator to
determine the speed of the ring. The device driver only retries twice at 2-minute intervals after this
error log entry is generated.

ERRID_STOK_DMAFAIL
The device detected a DMA error in a TX or RX operation. The device driver goes into Network
Recovery Mode in an attempt to recover from the error. The device is temporarily unavailable
during the recovery procedure. User intervention is not required unless the problem persists.

142 Kernel Extensions and Device Support Programming Concepts

ERRID_STOK_BUS_ERR
The device detected a Micro Channel bus error. The device driver goes into Network Recovery
Mode in an attempt to recover from the error. The device is temporarily unavailable during the
recovery procedure. User intervention is not required for this error unless the problem persists.

Note: Micro Channel is only supported on AIX 5.1 and earlier.

ERRID_STOK_DUP_ADDR
The device detected that another station on the ring has a device address that is the same as the
device address being tested. Contact the network administrator to determine why.

ERRID_STOK_MEM_ERR
An error occurred while allocating memory or timer control block structures.

ERRID_STOK_RCVRY_EXIT
The error that caused the device driver to go into error recovery mode was corrected.

ERRID_STOK_RMV_ADAP
The device received a remove ring station MAC frame indicating that a network management
function directed this device to get off the ring. Contact the network administrator to determine
why.

ERRID_STOK_WIRE_FAULT
There is a loose (or bad) cable between the device and the MAU. There is a chance that it might
be a bad device. The device driver goes into Network Recover Mode in an attempt to recover from
the error. The device is temporarily unavailable during the recovery procedure. User intervention is
not required for this error unless the problem persists.

ERRID_STOK_TX_TIMEOUT
The transmit watchdog timer expired before transmitting a frame. The device driver goes into
Network Recovery Mode in an attempt to recover from the error. The device is temporarily
unavailable during the recovery procedure. User intervention is not required for this error unless
the problem persists.

ERRID_STOK_CTL_ERR
The ioctl watchdog timer expired before the device driver received a response from the device.
The device driver goes into Network Recovery Mode in an attempt to recover from the error. The
device is temporarily unavailable during the recovery procedure. User intervention is not required
for this error unless the problem persists.

PCI Token-Ring Device Driver (14103e00): The error IDs for the PCI Token-Ring Device Driver
(14103e00) are as follows:

ERRID_CSTOK_ADAP_CHECK
The microcode on the device performs a series of diagnostic checks when the device is idle on
initialization. These checks find errors and they are reported as adapter checks. If the device was
connected to the network when this error occurred, the device driver will go into Network Recovery
Mode in an attempt to recover from the error. The device is temporarily unavailable during the
recovery procedure. After this error log entry has been generated, the device driver will retry 3
times with no delay between retries. User intervention is not required for this error unless the
problem persists.

ERRID_CSTOK_ADAP_OPEN
The device driver was unable to open the device. The device driver will go into Network Recovery
Mode in an attempt to recover from this error. The device is temporarily unavailable during the
recovery procedure. The device driver will retry indefinitely with a 30 second delay between retries
to recover. User intervention is not required for this error unless the problem persists.

ERRID_CSTOK_AUTO_RMV
An internal hardware error following the beacon automatic removal process has been detected.

Chapter 7. Communications I/O Subsystem 143

The device driver will go into Network Recovery Mode in an attempt to recover from the error. The
device is temporarily unavailable during the recovery procedure. User intervention is not required
for this error unless the problem persists.

ERRID_CSTOK_RING_SPEED
The ring speed or ring data rate is probably wrong. Contact the network administrator to determine
the speed of the ring. The device driver will only retry twice at 2 minute intervals after this error log
entry has been generated.

ERRID_CSTOK_DMAFAIL
The device detected a DMA error in a TX or RX operation. The device driver will go into Network
Recovery Mode in an attempt to recover from this error. The device is temporarily unavailable
during the recovery procedure. User intervention is not required for this error unless the problem
persists.

ERRID_CSTOK_BUS_ERR
The device detected a PCI bus error. The device driver will go into Network Recovery Mode in an
attempt to recover from this error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required for this error unless the problem persists.

ERRID_CSTOK_DUP_ADDR
The device has detected that another station on the ring has a device address which is the same
as the device address being tested. Contact network administrator to determine why.

ERRID_CSTOK_MEM_ERR
An error occurred while allocating memory or timer control block structures. This usually implies
the sytem has run out of available memory. User intervention is required.

ERRID_CSTOK_RCVRY_ENTER
An error has occurred which caused the device driver to go into network recovery.

ERRID_CSTOK_RCVRY_EXIT
The error which caused the device driver to go into Network Recovery Mode has been corrected.

ERRID_CSTOK_RMV_ADAP
The device has received a remove ring station MAC frame indicating that a network management
function has directed this device to get off the ring. The device driver will only twice with 6 minute
delay between retries after this error log entry has been generated. Contact network administrator
to determine why.

ERRID_CSTOK_WIRE_FAULT
There is probably a loose (or bad) cable between the device and the MAU. There is some
chance that it might be a bad device. The device driver will go into Network Recovery Mode in an
attempt to recover from this error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required for this error unless the problem persists.

ERRID_CSTOK_RX_ERR
The device has detected a receive error. The device driver will go into Network Recovery Mode in
an attempt to recover from this error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required for this error unless the problem persists.

ERRID_CSTOK_TX_ERR
The device has detected a transmit error. The device driver will go into Network Recovery Mode in
an attempt to recover from this error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required for this error unless the problem persists.

ERRID_CSTOK_TX_TMOUT
The transmit watchdog timer has expired before the transmit of a frame has completed. The
device driver will go into Network Recovery Mode in an attempt to recover from this error. The
device is temporarily unavailable during the recovery procedure. User intervention is not required
for this error unless the problem persists.

144 Kernel Extensions and Device Support Programming Concepts

ERRID_CSTOK_CMD_TMOUT
The ioctl watchdog timer has expired before the device driver received a response from the
device. The device driver will go into Network Recovery Mode in an attempt to recover from this
error. The device is temporarily unavailable during the recovery procedure. User intervention is not
required for this error unless the problem persists.

ERRID_CSTOK_PIO_ERR
The driver has encountered a PIO operation error. The device driver will attempt to retry the
operation 3 times before it will fail the command and return in the DEAD state to the user. User
intervention is required.

ERRID_CSTOK_PERM_HW
The microcode on the device performs a series of diagnostic checks on initialization. These
checks can find errors and they are reported as adapter checks. If the error occurs 4 times during
adapter initialization this error log will be generated and the device considered inoperable. User
intervention is required.

ERRID_CSTOK_ASB_ERR
The adapter has indicated that the processing of a TokenRing mac command failed.

ERRID_CSTOK_AUTO_FAIL
The ring speed of the adapter is set to autosense, and open has failed because this adapter is the
only one on the ring. User intervention is required.

ERRID_CSTOK_EISR
If the adapter detects a PCI Master or Target Abort, the Error Interrupt Status Register (EISR) will
be set.

ERRID_CSTOK_CMD_ERR
Adapter failed command due to a transient error and goes into limbo one time, if that fails the
adapter goes into the dead state.

ERRID_CSTOK_EEH_ENTER
The adapter encountered a Bus I/O Error, and is attempting to recover by using the EEH recovery
process.

ERRID_CSTOK_EEH_EXIT
The adapter sucessfully recovered from the I/O Error by using the EEH recovery process.

ERRID_CSTOK_EEH_HW_ERR
The adapter could not recover from the EEH error. The EEH error was the result of an adapter
error, and not a bus error (logged by the kernel).

Ethernet Device Drivers
The following Ethernet device drivers are dynamically loadable. The device drivers are automatically
loaded into the system at device configuration time as part of the configuration process.

v PCI Ethernet Adapter Device Driver (22100020)

v 10/100Mbps Ethernet PCI Adapter Device Driver (23100020)

v 10/100Mbps Ethernet PCI Adapter II Device Driver (1410ff01)

v Gigabit Ethernet-SX PCI Adapter Device Driver (14100401)

v Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802)

v 10/100/1000 Base-T Ethernet PCI-X Adapter Device Driver (14106902)

v 2-Port Gigabit Ethernet-SX PCI-X Adapter (14108802)

v 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)

The following information is provided about each of the ethernet device drivers:

v Configuration Parameters

Chapter 7. Communications I/O Subsystem 145

v Interface Entry Points

v Asynchronous Status

v Device Control Operations

v Trace

v Error Logging

For each Ethernet device, the interface to the device driver is achieved by calling the entry points for
opening, closing, transmitting data, and issuing device control commands.

There are a number of Ethernet device drivers in use. All drivers provide PCI-based connections to an
Ethernet network, and support both Standard and IEEE 802.3 Ethernet Protocols.

The PCI Ethernet Adapter Device Driver (22100020) supports the PCI Ethernet BNC/RJ-45 Adapter
(feature 2985) and the PCI Ethernet BNC/AUI Adapter (feature 2987), as well as the integrated ethernet
port on certain systems.

The 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020) supports the 10/100 Mbps Ethernet PCI
Adapter (feature 2968) and the Four Port 10/100 Mbps Ethernet PCI Adapter (features 4951 and 4961), as
well as the integrated ethernet port on certain systems.

The 10/100 Mpbs Ethernet PCI Adapter II Device Driver (1410ff01) supports the 10/100 Mbps Ethernet
PCI Adapter II (feature 4962), as well as the integrated ethernet port on certain systems.

The Gigabit Ethernet-SX PCI Adapter Device Driver (14100401) supports the Gigabit Ethernet-SX PCI
Adapter (feature 2969) and the 10/100/1000 Base-T Ethernet Adapter (feature 2975).

The Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802) supports the Gigabit Ethernet-SX PCI-X
Adapter (feature 5700).

The 10/100/1000 Base-TX Ethernet PCI-X Adapter Device Driver (14106902) supports the 10/100/1000
Base-TX Ethernet PCI-X Adapter (feature 5701).

The 2-Port Gigabit Ethernet-SX PCI-X Adapter Device Driver (14108802) supports the 2-Port Gigabit
Ethernet-SX PCI-X Adapter (feature 5707).

The 2-Port 10/100/1000 Base-TX PCI-X Adapter Device Driver (14108902) supports the 2-Port
10/100/1000 Base-TX PCI-X Adapter (feature 5706).

Configuration Parameters
The following configuration parameter is supported by all Ethernet device drivers:

Alternate Ethernet Addresses
The device drivers support the device’s hardware address as the network address or an alternate
network address configured through software. When an alternate address is used, any valid
Individual Address can be used. The least significant bit of an Individual Address must be set to
zero. A multicast address can not be defined as a network address. Two configuration parameters
are provided to provide the alternate Ethernet address and enable the alternate address.

PCI Ethernet Device Driver (22100020)
The PCI Ethernet Device Driver (22100020) supports the following additional configuration parameters:

Full Duplex
Indicates whether the adapter is operating in full-duplex or half-duplex mode. If this field is set to
yes, the device driver programs the adapter to be in full-duplex mode.

146 Kernel Extensions and Device Support Programming Concepts

Hardware Transmit Queue
Specifies the actual queue size the adapter uses to transmit packets. Each element corresponds
to an Ethernet packet. It is configurable at 16, 32, 64, 1 28, and 256 elements.

Hardware Receive Queue
Specifies the actual queue size the adapter uses to receive packets. Each element corresponds to
an Ethernet packet. It is configurable at 16, 32, 64, 128, and 256 elements.

10/100 Mbps Ethernet PCI Adapter Device Driver (23100020)
The 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020) supports the following additional
configuration parameters:

Software Transmit Queue
Indicates the number of transmit requests that can be queued for transmission by the device
driver. Valid values range from 16 through 16384.

Hardware Receive Queue
The 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020) supports a user-configurable
receive queue for the adapter. This is the actual queue the adapter uses to receive packets. Each
element corresponds to an Ethernet packet. It is configurable at 16, 32, 64, 128, and 256
elements.

Receive Buffer Pool
The 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020) implements a private pool of
receive memory buffers in order to enhance driver performance. The number of private receive
buffers reserved by the driver is configurable from 16 to 2048 elements.

Media Speed
The 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020) supports a user-configurable
media speed for the adapter. The media speed attribute indicates the speed at which the adapter
will attempt to operate. The available speeds are 10 Mbps half-duplex, 10 Mbps full-duplex, 100
Mbps half-duplex, 100 Mbps full-duplex and auto-negotiation, with a default of auto-negotiation.
Select auto-negotiate when the adapter should use auto-negotiation across the network to
determine the speed. When the network will not support auto-negotiation, select the specific
speed.

Note: If auto-negotiation is selected, the remote link device must also be set to auto-negotiate or
the link might not function properly.

Inter Packet Gap
The 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020) supports a user-configurable
inter packet gap for the adapter. The inter packet gap attribute controls the aggressiveness of the
adapter on the network. A small number will increase the aggressiveness of the adapter, but a
large number will decrease the aggressiveness (and increase the fairness) of the adapter. A small
number (more aggressive) could cause the adapter to capture the network by forcing other less
aggressive nodes to defer. A larger number (less aggressive) might cause the adapter to defer
more often than normal. If the statistics for other nodes on the network show a large number of
collisions and deferrals, then try increasing this number. The default is 96, which results in IPG of
9.6 micro seconds for 10 Mbps and 0.96 microseconds for 100 Mbps media speed. Each unit of
bit rate introduces an IPG of 100 nsec at 10 Mbps, and 10 nsec at 100 Mbps media speed.

Link Polling Timer
The 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020) implements a polling function
(Enable Link Polling) that periodically queries the adapter to determine whether the ethernet link
is up or down. The Enable Link Polling attribute is disabled by default. If this function is enabled,
the link polling timer value indicates how often the driver should poll the adapter for link status.
This value can range from 100 to 1000 milliseconds. If the adapter’s link goes down, the device
driver will disable its NDD_RUNNING flag. When the device driver finds that the link has come
back up, it will enable this NDD_RUNNING flag. In order for this to work successfully, protocol
layer implementations, such as Etherchannel, need notification if the link has gone down. Enable

Chapter 7. Communications I/O Subsystem 147

the Enable Link Polling attribute to obtain this notification. Because of the additional PIO calls
that the device driver makes, enabling this attribute can decrease the performance of this adapter.

10/100 Mbps Ethernet PCI Adapter II Device Driver (1410ff01)
The 10/100 Mbps Ethernet PCI Adapter II Device Driver (1410ff01) supports the following additional
configuration parameters:

Software Transmit Queue
Indicates the number of transmit requests that can be queued for transmission by the device
driver. Valid values range from 512 through 16384.

Hardware Transmit Queue
The 10/100 Mbps Ethernet PCI Adapter II Device Driver (1410ff01) supports a user-configurable
transmit queue for the adapter. This is the actual queue the adapter uses to transmit packets.
Each element corresponds to an Ethernet packet. It is configurable from 100 to 1024 elements.

Hardware Receive Queue
The 10/100 Mbps Ethernet PCI Adapter II Device Driver (1410ff01) supports a user-configurable
receive queue for the adapter. This is the actual queue the adapter uses to receive packets. Each
element corresponds to an Ethernet packet. It is configurable from 100 to 1024 elements.

Receive Buffer Pool
The 10/100 Mbps Ethernet PCI Adapter II Device Driver (1410ff01) implements a private pool of
receive memory buffers in order to enhance driver performance. The number of private receive
buffers reserved by the driver is configurable from 512 to 2048 elements.

Media Speed
The 10/100 Mbps Ethernet PCI Adapter II Device Driver (1410ff01) supports a user-configurable
media speed for the adapter. The media speed attribute indicates the speed at which the adapter
will attempt to operate. The available speeds are 10 Mbps half-duplex, 10 Mbps full-duplex, 100
Mbps half-duplex, 100 Mbps full-duplex and auto-negotiation, with a default of auto-negotiation.
Select auto-negotiate when the adapter should use auto-negotiation across the network to
determine the speed. When the network will not support auto-negotiation, select the specific
speed.

Note: If auto-negotiation is selected, the remote link device must also be set to auto-negotiate or
the link might not function properly.

Link Polling Timer
The 10/100 Mbps Ethernet PCI Adapter II Device Driver (1410ff01) implements a polling function
which periodically queries the adapter to determine whether the ethernet link is up or down. If this
function is enabled, the link polling timer value indicates how often the driver should poll the
adapter for link status. This value can range from 100 to 1000 milliseconds.

Checksum Offload
The 10/100 Mbps Ethernet PCI Adapter II Device Driver (1410ff01) supports the capability of the
adapter to calculate TCP checksums in hardware. If this capability is enabled, the TCP checksum
calculation will be performed on the adapter instead of the host, which may increase system
performance. Allowed values are yes and no.

Transmit TCP Resegmentation Offload
The 10/100 Mbps Ethernet PCI Adapter II Device Driver (1410ff01) supports the capability of the
adapter to perform resegmentation of transmitted TCP segments in hardware. This capability
enables the host to use TCP segments that are larger than the actual MTU size of the ethernet
link, which may increase system performance. Allowed values are yes and no.

IPsec Offload
The 10/100 Mbps Ethernet PCI Adapter II Device Driver (1410ff01) supports the capability of the
adapter to perform IPsec cryptographic algorithms for data encryption and authentication in
hardware. This capability enables the host to offload CPU-intensive cryptographic processing to
the adapter, which may increase system performance. Allowed values are yes and no.

148 Kernel Extensions and Device Support Programming Concepts

Gigabit Ethernet-SX PCI Adapter Device Driver (14100401)
The Gigabit Ethernet-SX PCI Adapter Device Driver (14100401) supports the following additional
configuration parameters:

Software Transmit Queue Size
Indicates the number of transmit requests that can be queued for transmission by the device
driver. Valid values range from 512 through 2048.

Transmit Jumbo Frames
Setting this attribute to the yes value indicates that frames up to 9018 bytes in length may be
transmitted on this adapter. If you specify the no value, the maximum size of frames transmitted is
1518 bytes. Frames up to 9018 bytes in length can always be received on this adapter.

Enable Hardware Checksum Offload
Setting this attribute to the yes value indicates that the adapter calculates the checksum for
transmitted and received TCP frames. If you specify the no value, the checksum will be calculated
by the appropriate software.

Note: The mbuf describing a frame to be transmitted contains a flag that says if the adapter
should calculate the checksum for the frame.

Media Speed
The Gigabit Ethernet-SX PCI Adapter Device Driver (14100401) supports a user-configurable
media speed only for the IBM 10/100/1000 Base-T Ethernet PCI adapter (feature 2975). For the
Gigabit Ethernet-SX PCI Adapter (feature 2969), the only allowed choice is auto-negotiation. The
media speed attribute indicates the speed at which the adapter will attempt to operate. The
available speeds are 10 Mbps half-duplex, 10 Mbps full-duplex, 100 Mbps half-duplex, 100 Mbps
full-duplex and auto-negotiation, with a default of auto-negotiation. Select auto-negotiate when the
adapter should use auto-negotiation across the network to determine the speed. When the
network will not support auto-negotiation, select the specific speed.

Note: The auto-negotiation setting must be selected in order for the adapter to run at 1000 Mbit/s.

Enable Hardware Transmit TCP Resegmentation
Setting this attribute to yes indicates that the adapter should perform TCP resegmentation on
transmitted TCP segments. This capability allows TCP/IP to send larger datagrams to the adapter
which can increase performance. If no is specified, TCP resegmentation will not be performed.

Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802)
The Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802) supports the following additional
configuration parameters:

Transmit descriptor queue size
Indicates the number of transmit requests that can be queued for transmission by the adapter.
Valid values range from 128 to 1024.

Receive descriptor queue size
Indicates the maximum number of received ethernet packets the adapter can hold in its buffer.
Valid values range from 128 to 1024.

Software Transmit Queue
Indicates the number of transmit requests that can be queued for transmission by the device
driver. Valid values range from 512 through 16384.

Media Speed
The media speed attribute indicates the speed at which the adapter will attempt to operate. The
available speeds are 1000 Mbps full-duplex and auto-negotiation. The default is auto-negotiation.
Select auto-negotiate when the adapter should use auto-negotiation across the network to
determine the duplexity. When the network will not support auto-negotiation, select 1000 Mbps
full-duplex.

Chapter 7. Communications I/O Subsystem 149

Transmit TCP Resegmentation Offload
Supports the capability of the adapter to perform resegmentation of transmitted TCP segments in
hardware. This capability enables the host to use TCP segments that are larger than the actual
MTU size of the ethernet link, which may increase system performance. Allowed values are yes
and no.

Enable Hardware Checksum Offload
Setting this attribute to the yes value indicates that the adapter calculates the checksum for
transmitted and received TCP frames. If you specify the no value, the checksum will be calculated
by the appropriate software.

Note: The mbuf structure that describes a transmitted frame contains a flag that indicates
whether the adapter should calculate the checksum for the frame.

10/100/1000 Base-T Ethernet PCI-X Adapter Device Driver (14106902)
The 10/100/1000 Base-T Ethernet PCI-X Adapter Device Driver (14106902) supports the following
additional configuration parameters:

Transmit descriptor queue size
Indicates the number of transmit requests that can be queued for transmission by the adapter.
Valid values range from 128 to 1024.

Receive descriptor queue size
Indicates the maximum number of received ethernet packets the adapter can buffer. Valid values
range from 128 to 1024.

Software Transmit Queue
Indicates the number of transmit requests that can be queued for transmission by the device
driver. Valid values range from 512 through 16384.

Media Speed
The media speed attribute indicates the speed at which the adapter will attempt to operate. The
available speeds are 10 Mbps half-duplex, 10 Mbps full-duplex, 100 Mbps half-duplex, 100 Mbps
full-duplex and auto-negotiation, with a default of auto-negotiation. Select auto-negotiate when the
adapter should use auto-negotiation across the network to determine the speed. When the
network will not support auto-negotiation, select the specific speed.

Note: 1000 MBps half and full duplex are not valid values. As per the IEEE 802.3z specification,
gigabit speeds of any duplexity must be auto-negotiated for copper (TX) based adapters.
Please select auto-negotiation if these speeds are desired.

Transmit TCP Resegmentation Offload
Supports the capability of the adapter to perform resegmentation of transmitted TCP segments in
hardware. This capability enables the host to use TCP segments that are larger than the actual
MTU size of the ethernet link, which may increase system performance. Allowed values are yes
and no.

Enable Hardware Checksum Offload
Setting this attribute to the yes value indicates that the adapter calculates the checksum for
transmitted and received TCP frames. If you specify the no value, the checksum will be calculated
by the appropriate software.

Note: The mbuf describing a frame to be transmitted contains a flag that says if the adapter
should calculate the checksum for the frame.

Gigabit Backward Compatibility
Older gigabit TX equipment may not be able to communicate to this adapter. Some manufacturers
produced hardware implementing the IEEE 802.3z auto-negotiation algorithm incorrectly. As such,
this option should be enabled if the adapter is unable to communicate with your older gigabit
equipment.

150 Kernel Extensions and Device Support Programming Concepts

Note: Enabling this option forces the adapter to implement the IEEE 802.3z incorrectly. As such, if
it is enabled, it will not be able to communicate to newer equipment. Only enable this if you
are having trouble obtaining a link with auto-negotiation, but can force a link at a slower
speed (i.e. 100 full-duplex).

2-Port Gigabit Ethernet-SX PCI-X Adapter Device Driver (14108802)
The 2-Port Gigabit Ethernet-SX PCI-X Adapter Device Driver (14108802) supports the following additional
configuration parameters:

Transmit descriptor queue size
Indicates the number of transmit requests that can be queued for transmission by the adapter.
Valid values range from 128 to 1024.

Receive descriptor queue size
Indicates the maximum number of received ethernet packets the adapter can hold in its buffer.
Valid values range from 128 to 1024.

Software Transmit Queue
Indicates the number of transmit requests that can be queued for transmission by the device
driver. Valid values range from 512 through 16384.

Media Speed
The media speed attribute indicates the speed at which the adapter attempts to operate. The
available speeds are 1000 Mbps full-duplex and auto-negotiation. The default is auto-negotiation.
Select auto-negotiate when the adapter should use auto-negotiation across the network to
determine the duplexity. When the network does not support auto-negotiation, select 1000 Mbps
full-duplex.

Transmit TCP Resegmentation Offload
Supports the capability of the adapter to perform resegmentation of transmitted TCP segments in
hardware. This capability enables the host to use TCP segments that are larger than the actual
MTU size of the ethernet link, which can increase system performance. Allowed values are yes
and no.

Enable Hardware Checksum Offload
Setting this attribute to the yes value indicates that the adapter calculates the checksum for
transmitted and received TCP frames. If you specify the no value, the checksum will be calculated
by the appropriate software.

Note: The mbuf structure that describes a transmitted frame contains a flag that indicates
whether the adapter should calculate the checksum for the frame.

2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)
The 2-Port 10/100/1000 Base-TX PCI-X Adapter Device Driver (14108902) supports the following
additional configuration parameters:

Transmit descriptor queue size
Indicates the number of transmit requests that can be queued for transmission by the adapter.
Valid values range from 128 to 1024.

Receive descriptor queue size
Indicates the maximum number of received ethernet packets the adapter can hold in its buffer.
Valid values range from 128 to 1024.

Software Transmit Queue
Indicates the number of transmit requests that can be queued for transmission by the device
driver. Valid values range from 512 through 16384.

Media Speed
The media speed attribute indicates the speed at which the adapter attempts to operate. The
available speeds are 10 Mbps half-duplex, 10 Mbps full-duplex, 100 Mbps half-duplex, 100 Mbps

Chapter 7. Communications I/O Subsystem 151

full-duplex and auto-negotiation. The default is auto-negotiation. Select auto-negotiate when the
adapter should use auto-negotiation across the network to determine the speed. When the
network does not support auto-negotiation, select the specific speed.

Note: 1000 Mbps half-duplex and full-duplex are not valid values. The IEEE 802.3z specification
dictates that the gigabit speeds of any duplexity must be auto-negotiated for copper
(TX)-based adapters. Select auto-negotiation if these speeds are desired.

Transmit TCP Resegmentation Offload
Supports the capability of the adapter to perform resegmentation of transmitted TCP segments in
hardware. This capability enables the host to use TCP segments that are larger than the actual
MTU size of the ethernet link, which can increase system performance. Allowed values are yes
and no.

Enable Hardware Checksum Offload
Setting this attribute to the yes value indicates that the adapter calculates the checksum for
transmitted and received TCP frames. If you specify the no value, the checksum will be calculated
by the appropriate software.

Note: The mbuf structure that describes a transmitted frame contains a flag that indicates
whether the adapter should calculate the checksum for the frame.

Gigabit Backward Compatibility
Older gigabit TX equipment might not be able to communicate with this adapter. If the adapter is
unable to communicate with your older gigabit equipment, enabling this option forces the adapter
to implement the IEEE 802.3z incorrectly. As such, this option should be enabled if the adapter is
unable to communicate with your older gigabit equipment.

Note: Enabling this option forces the adapter to implement the IEEE 802.3z incorrectly. If this
option is enabled, the adapter will not be able to communicate with newer equipment.
Enable this option only if you cannot obtain a link using auto-negotiation, but can force a
link at a slower speed (for example, 100 full-duplex).

Interface Entry Points

Device Driver Configuration and Unconfiguration
The configuration entry points of the device drivers conform to the guidelines for kernel object file entry
points. These configuration entry points are as follows:

v kent_config for the PCI Ethernet Device Driver (22100020)

v phxent_config for the 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020)

v scent_config for the 10/100 Mbps Ethernet PCI Adapter II Device Driver (1410ff01)

v gxent_config for the Gigabit Ethernet-SX PCI Adapter Device Driver (14100401)

v goent_config for the Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802), the 10/100/1000
Base-T Ethernet PCI-X Adapter Device Driver (14106902), the 2-Port Gigabit Ethernet-SX PCI-X
Adapter Device Driver (14108802), and the 2-Port 10/100/1000 Base-TX PCI-X Adapter Device
Driver(14108902)

Device Driver Open
The open entry point for the device drivers perform a synchronous open of the specified network device.

The device driver issues commands to start the initialization of the device. The state of the device now is
OPEN_PENDING. The device driver invokes the open process for the device. The open process involves
a sequence of events that are necessary to initialize and configure the device. The device driver will do
the sequence of events in an orderly fashion to make sure that one step is finished executing on the
adapter before the next step is continued. Any error during these sequence of events will make the open

152 Kernel Extensions and Device Support Programming Concepts

fail. The device driver requires about 2 seconds to open the device. When the whole sequence of events
is done, the device driver verifies the open status and then returns to the caller of the open with a return
code to indicate open success or open failure.

After the device has been successfully configured and connected to the network, the device driver sets the
device state to OPENED, the NDD_RUNNING flag in the NDD flags field is turned on. In the case of
unsuccessful open, both the NDD_UP and NDD_RUNNING flags in the NDD flags field will be off and a
non-zero error code will be returned to the caller.

The open entry points are as follows:

v kent_open for the PCI Ethernet Device Driver (22100020)

v phxent_open for the 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020)

v scent_open for the 10/100 Mbps Ethernet PCI Adapter II Device Driver (1410ff01)

v gxent_open for the Gigabit Ethernet-SX PCI Adapter Device Driver (14100401)

v goent_open for the Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802), the 10/100/1000
Base-T Ethernet PCI-X Adapter Device Driver (14106902), the 2-Port Gigabit Ethernet-SX PCI-X
Adapter Device Driver (14108802), and the 2-Port 10/100/1000 Base-TX PCI-X Adapter Device
Driver(14108902)

Device Driver Close
The close entry point for the device drivers is called to close the specified network device. This function
resets the device to a known state and frees system resources associated with the device.

The device will not be detached from the network until the device’s transmit queue is allowed to drain.
That is, the close entry point will not return until all packets have been transmitted or timed out. If the
device is inoperable at the time of the close, the device’s transmit queue does not have to be allowed to
drain.

At the beginning of the close entry point, the device state will be set to be CLOSE_PENDING. The
NDD_RUNNING flag in the ndd_flags will be turned off. After the outstanding transmit queue is all done,
the device driver will start a sequence of operations to deactivate the adapter and to free up resources.
Before the close entry point returns to the caller, the device state is set to CLOSED.

The close entry points are as follows:

v kent_close for the PCI Ethernet Device Driver (22100020)

v phxent_close for the 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020)

v scent_close for the 10/100 Mbps Ethernet PCI Adapter II Device Driver (1410ff01)

v gxent_close for the Gigabit Ethernet-SX PCI Adapter Device Driver (14100401)

v goent_close for the Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802), the 10/100/1000
Base-T Ethernet PCI-X Adapter Device Driver (14106902), the 2-Port Gigabit Ethernet-SX PCI-X
Adapter Device Driver (14108802), and the 2-Port 10/100/1000 Base-TX PCI-X Adapter Device
Driver(14108902)

Data Transmission
The output entry point transmits data using the specified network device.

The data to be transmitted is passed into the device driver by way of mbuf structures. The first mbuf
structure in the chain must be of M_PKTHDR format. Multiple mbuf structures may be used to hold the
frame. Link the mbuf structures using the m_next field of the mbuf structure.

Multiple packet transmits are allowed with the mbufs being chained using the m_nextpkt field of the mbuf
structure. The m_pkthdr.len field must be set to the total length of the packet. The device driver does not
support mbufs from user memory (which have the M_EXT flag set).

Chapter 7. Communications I/O Subsystem 153

On successful transmit requests, the device driver is responsible for freeing all the mbufs associated with
the transmit request. If the device driver returns an error, the caller is responsible for the mbufs. If any of
the chained packets can be transmitted, the transmit is considered successful and the device driver is
responsible for all of the mbufs in the chain.

If the destination address in the packet is a broadcast address the M_BCAST flag in the m_flags field
should be set prior to entering this routine. A broadcast address is defined as 0xFFFF FFFF FFFF. If the
destination address in the packet is a multicast address the M_MCAST flag in the m_flags field should be
set prior to entering this routine. A multicast address is defined as a non-individual address other than a
broadcast address. The device driver will keep statistics based upon the M_BCAST and M_MCAST flags.

For packets that are shorter than the Ethernet minimum MTU size (60 bytes), the device driver will pad
them by adjusting the transmit length to the adapter so they can be transmitted as valid Ethernet packets.

Users will not be notified by the device driver about the status of the transmission. Various statistics about
data transmission are kept by the driver in the ndd structure. These statistics will be part of the data
returned by the NDD_GET_STATS control operation.

The output entry points are as follows:

v kent_output for the PCI Ethernet Device Driver (22100020)

v phxent_output for the 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020)

v scent_output for the 10/100 Mbps Ethernet PCI Adapter II Device Driver (1410ff01)

v gxent_output for the Gigabit Ethernet-SX PCI Adapter Device Driver (14100401)

v goent_output for the Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802), the 10/100/1000
Base-T Ethernet PCI-X Adapter Device Driver (14106902), the 2-Port Gigabit Ethernet-SX PCI-X
Adapter Device Driver (14108802), and the 2-Port 10/100/1000 Base-TX PCI-X Adapter Device
Driver(14108902)

Data Reception
When the Ethernet device drivers receive a valid packet from the network device, the device drivers call
the nd_receive function that is specified in the ndd_t structure of the network device. The nd_receive
function is part of a CDLI network demultiplexer. The packet is passed to the nd_receive function in the
form of a mbuf.

The Ethernet device drivers can pass multiple packets to the nd_receive function by chaining the packets
together using the m_nextpkt field of the mbuf structure. The m_pkthdr.len field must be set to the total
length of the packet. If the source address in the packet is a broadcast address the M_BCAST flag in the
m_flags field should be set. If the source address in the packet is a multicast address the M_MCAST flag
in the m_flags field should be set.

When the device driver initially configures the device to discard all invalid frames. A frame is considered to
be invalid for the following reasons:

v The packet is too short.

v The packet is too long.

v The packet contains a CRC error.

v The packet contains an alignment error.

If the asynchronous status for receiving invalid frames has been issued to the device driver, the device
driver will configure the device to receive bad packets as well as good packets. Whenever a bad packet is
received by the driver, an asynchronous status block NDD_BAD_PKTS is created and delivered to the
appropriate user. The user must copy the contents of the mbuf to another memory area. The user must
not modify the contents of the mbuf or free the mbuf. The device driver has the responsibility of releasing
the mbuf upon returning from nd_status.

154 Kernel Extensions and Device Support Programming Concepts

Various statistics about data reception on the device will be kept by the driver in the ndd structure. These
statistics will be part of the data returned by the NDD_GET_STATS and NDD_GET_ALL_STATS control
operations.

There is no specified entry point for this function. The device informs the device driver of a received
packet via an interrupt. Upon determining that the interrupt was the result of a packet reception, the device
driver’s interrupt handler invoke the rx_handler completion routine to perform the tasks mentioned above.

Asynchronous Status

When a status event occurs on the device, the Ethernet device drivers build the appropriate status block
and call the nd_status function that is specified in the ndd_t structure of the network device. The
nd_status function is part of a CDLI network demuxer.

The following status blocks are defined for the Ethernet device drivers.

Note: The PCI Ethernet Device Driver (22100020) only supports the Bad Packets status block. The
following device driver do not support asynchronous status:

v 10/100 Mbit Ethernet PCI Adapter Device Driver (23100020)

v 10/100 Mbit Ethernet PCI Adapter II Device Driver (1410ff01)

v Gigabit Ethernet-SX PCI Adapter Device Driver(14100401)

v Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802)

v 10/100/1000 Base-T Ethernet PCI-X Adapter Device Driver (14106902)

v 2-Port Gigabit Ethernet-SX PCI-X Adapter (14108802)

v 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)

Hard Failure
When a hard failure has occurred on the Ethernet device, the following status blocks can be
returned by the Ethernet device driver. These status blocks indicates that a fatal error occurred.

code Set to NDD_HARD_FAIL.

option[0]
Set to one of the reason codes defined in <sys/ndd.h> and <sys/cdli_entuser.h>.

Enter Network Recovery Mode
When the device driver has detected an error that requires initiating recovery logic that will make
the device temporarily unavailable, the following status block is returned by the device driver.

code Set to NDD_LIMBO_ENTER.

option[0]
Set to one of the reason codes defined in <sys/ndd.h> and <sys/cdli_entuser.h>.

Note: While the device driver is in this recovery logic, the device might not be fully functional. The
device driver will notify users when the device is fully functional by way of an
NDD_LIMBO_EXIT asynchronous status block.

Exit Network Recovery Mode
When the device driver has successfully completed recovery logic from the error that made the
device temporarily unavailable, the following status block is returned by the device driver.

code Set to NDD_LIMBO_EXIT.

option[]
The option fields are not used.

Note: The device is now fully functional.

Chapter 7. Communications I/O Subsystem 155

Network Device Driver Status
When the device driver has status or event information to report, the following status block is
returned by the device driver.

code Set to NDD_STATUS.

option[0]
Might be any of the common or interface type specific reason codes.

option[]
The remainder of the status block can be used to return additional status information by
the device driver.

Bad Packets
When the a bad packet has been received by a device driver (and a user has requested bad
packets), the following status block is returned by the device driver.

code Set to NDD_BAD_PKTS.

option[0]
Specifies the error status of the packet. These error numbers are defined in
<sys/cdli_entuser.h>.

option[1]
Pointer to the mbuf containing the bad packet.

option[]
The remainder of the status block can be used to return additional status information by
the device driver.

Note: The user will not own the mbuf containing the bad packet. The user must copy the mbuf
(and the status block information if desired). The device driver will free the mbuf upon
return from the nd_status function.

Device Connected
When the device is successfully connected to the network the following status block is returned by
the device driver.

code Set to NDD_CONNECTED.

option[]
The option fields are not used.

Note: Integrated Ethernet only.

Device Control Operations
The ndd_ctl entry point is used to provide device control functions.

NDD_GET_STATS Device Control Operation
The NDD_GET_STATS command returns statistics concerning the network device. General statistics are
maintained by the device driver in the ndd_genstats field in the ndd_t structure. The ndd_specstats field
in the ndd_t structure is a pointer to media-specific and device-specific statistics maintained by the device
driver. Both sets of statistics are directly readable at any time by those users of the device that can access
them. This command provides a way for any of the users of the device to access the general and
media-specific statistics.

The arg and length parameters specify the address and length in bytes of the area where the statistics are
to be written. The length specified must be the exact length of the general and media-specific statistics.

156 Kernel Extensions and Device Support Programming Concepts

Note: The ndd_speclen field in the ndd_t structure plus the length of the ndd_genstats_t structure is
the required length. The device-specific statistics might change with each new release of the
operating system, but the general and media-specific statistics are not expected to change.

The user should pass in the ent_ndd_stats_t structure as defined in sys/cdli_entuser.h. The driver fails
a call with a buffer smaller than the structure.

The statistics that are returned contain statistics obtained from the device. If the device is inoperable, the
statistics that are returned will not contain the current device statistics. The copy of the ndd_flags field
can be checked to determine the state of the device.

NDD_MIB_QUERY Device Control Operation
The NDD_MIB_QUERY operation is used to determine which device-specific MIBs are supported on the
network device. The arg and length parameters specify the address and length in bytes of a
device-specific MIB structure. The device driver will fill every member of that structure with a flag indicating
the level of support for that member. The individual MIB variables that are not supported on the network
device will be set to MIB_NOT_SUPPORTED. The individual MIB variables that can only be read on the
network device will be set to MIB_READ_ONLY. The individual MIB variables that can be read and set on
the network device will be set to MIB_READ_WRITE. The individual MIB variables that can only be set
(not read) on the network device will be set to MIB_WRITE_ONLY. These flags are defined in the
/usr/include/sys/ndd.h file.

The arg parameter specifies the address of the ethernet_all_mib structure. This structure is defined in the
/usr/include/sys/ethernet_mibs.h file.

NDD_MIB_GET Device Control Operation
The NDD_MIB_GET operation is used to get all MIBs on the specified network device. The arg and length
parameters specify the address and length in bytes of the device specific MIB structure. The device driver
will set any unsupported variables to zero (nulls for strings).

If the device supports the RFC 1229 receive address object, the corresponding variable is set to the
number of receive addresses currently active.

The arg parameter specifies the address of the ethernet_all_mib structure. This structure is defined in the
/usr/include/sys/ethernet_mibs.h file.

NDD_ENABLE_ADDRESS Device Control Operation
The NDD_ENABLE_ADDRESS command enables the receipt of packets with an alternate (for example,
multicast) address. The arg and length parameters specify the address and length in bytes of the alternate
address to be enabled. The NDD_ALTADDRS flag in the ndd_flags field is set.

The device driver verifies that if the address is a valid multicast address. If the address is not a valid
multicast address, the operation will fail with an EINVAL error. If the address is valid, the driver will add it
to its multicast table and enable the multicast filter on the adapter. The driver will keep a reference count
for each individual address. Whenever a duplicate address is registered, the driver simply increments the
reference count of that address in its multicast table, no update of the adapter’s filter is needed. There is a
hardware limitation on the number of multicast addresses in the filter.

NDD_DISABLE_ADDRESS Device Control Operation
The NDD_DISABLE_ADDRESS command disables the receiving packets with a specified alternate (for
example, multicast) address. The arg and length parameters specify the address and length in bytes of the
alternate address to be disabled. The NDD_ALTADDRS flag in the ndd_flags field is reset if this is the
last alternate address.

The device driver verifies that if the address is a valid multicast address. If the address is not a valid
multicast address, the operation will fail with an EINVAL error. The device driver makes sure that the
multicast address can be found in its multicast table. Whenever a match is found, the driver will decrement

Chapter 7. Communications I/O Subsystem 157

the reference count of that individual address in its multicast table. If the reference count becomes 0, the
driver will delete the address from the table and update the multicast filter on the adapter.

NDD_MIB_ADDR Device Control Operation
The NDD_MIB_ADDR operation is used to get all the addresses for which the specified device will accept
packets or frames. The arg parameter specifies the address of the ndd_mib_addr_t structure. The length
parameter specifies the length of the structure with the appropriate number of ndd_mib_addr_t.mib_addr
elements. This structure is defined in the /usr/include/sys/ndd.h file. If the length is less than the length
of the ndd_mib_addr_t structure, the device driver returns EINVAL. If the structure is not large enough to
hold all the addresses, the addresses that fit will still be placed in the structure. The
ndd_mib_addr_t.count field is set to the number of addresses returned and E2BIG is returned.

One of the following address types is returned:

v Device physical address (or alternate address specified by user)

v Broadcast addresses

v Multicast addresses

NDD_CLEAR_STATS Device Control Operation
The counters kept by the device will be zeroed.

NDD_GET_ALL_STATS Device Control Operation
The NDD_GET_ALL_STATS operation is used to gather all the statistics for the specified device. The arg
parameter specifies the address of the statistics structure for the particular device type. The following
structures are available:

v The kent_all_stats_t structure is available for the PCI Ethernet Adapter Device Driver (22100020), and
is defined in the cdli_entuser.h include file.

v The phxent_all_stats_t structure is available for the 10/100 Mbps Ethernet PCI Adapter Device Driver
(23100020), and is defined in the device-specific cdli_entuser.phxent.h include file.

v The scent_all_stats_t structure is available for the 10/100 Mbps Ethernet PCI Adapter II Device Driver
(1410ff01), and is defined in the device-specific cdli_entuser.scent.h include file.

v The gxent_all_stats_t structure is available for the Gigabit Ethernet-SX PCI Adapter Device Driver
(14100401), and is defined in the device-specific cdli_entuser.gxent.h include file.

v The goent_all_stats_t structure is available for the Gigabit Ethernet-SX PCI-X Adapter Device Driver
(14106802) and the 10/100/1000 Base-T Ethernet PCI-X Adapter Device Driver (14106902), and is
defined in the device-specific cdli_entuser.goent.h include file.

The statistics that are returned contain statistics obtained from the device. If the device is inoperable, the
statistics that are returned will not contain the current device statistics. The copy of the ndd_flags field
can be checked to determine the state of the device.

NDD_ENABLE_MULTICAST Device Control Operation
The NDD_ENABLE_MULTICAST command enables the receipt of packets with any multicast (or group)
address. The arg and length parameters are not used. The NDD_MULTICAST flag in the ndd_flags field
is set.

NDD_DISABLE_MULTICAST Device Control Operation
The NDD_DISABLE_MULTICAST command disables the receipt of all packets with multicast addresses
and only receives those packets whose multicast addresses were specified using the
NDD_ENABLE_ADDRESS command. The arg and length parameters are not used. The
NDD_MULTICAST flag in the ndd_flags field is reset only after the reference count for multicast
addresses has reached zero.

NDD_PROMISCUOUS_ON Device Control Operation
The NDD_PROMISCUOUS_ON command turns on promiscuous mode. The arg and length parameters
are not used.

158 Kernel Extensions and Device Support Programming Concepts

When the device driver is running in promiscuous mode, all network traffic is passed to the network
demultiplexer. When the Ethernet device driver receives a valid packet from the network device, the
Ethernet device driver calls the nd_receive function that is specified in the ndd_t structure of the network
device. The NDD_PROMISC flag in the ndd_flags field is set. Promiscuous mode is considered to be
valid packets only. See the NDD_ADD_STATUS command for information about how to request support
for bad packets.

The device driver will maintain a reference count on this operation. The device driver increments the
reference count for each operation. When this reference count is equal to one, the device driver issues
commands to enable the promiscuous mode. If the reference count is greater than one, the device driver
does not issue any commands to enable the promiscuous mode.

NDD_PROMISCUOUS_OFF Device Control Operation
The NDD_PROMISCUOUS_OFF command terminates promiscuous mode. The arg and length parameters
are not used. The NDD_PROMISC flag in the ndd_flags field is reset.

The device driver will maintain a reference count on this operation. The device driver decrements the
reference count for each operation. When the reference count is not equal to zero, the device driver does
not issue commands to disable the promiscuous mode. Once the reference count for this operation is
equal to zero, the device driver issues commands to disable the promiscuous mode.

NDD_DUMP_ADDR Device Control Operation
The NDD_DUMP_ADDR command returns the address of the device driver’s remote dump routine. The
arg parameter specifies the address where the dump routine’s address is to be written. The length
parameter is not used.

NDD_DISABLE_ADAPTER Device Control Operation

Note: This device control operation is not supported on the PCI Ethernet Adapter Device Driver
(22100020).

The NDD_DISABLE_ADAPTER operation is used by etherchannel to disable the adapter so that it cannot
transmit or receive data. During this operation the NDD_RUNNING and NDD_LIMBO flags are cleared
and the adapter is reset. The arg and len parameters are not used.

NDD_ENABLE_ADAPTER Device Control Operation

Note: This device control operation is not supported on the PCI Ethernet Adapter Device Driver
(22100020).

The NDD_ENABLE_ADAPTER operation is used by etherchannel to return the adapter to a running state
so it can transmit and receive data. During this operation the adapter is started and the NDD_RUNNING
flag is set. The arg and len parameters are not used.

NDD_SET_LINK_STATUS Device Control Operation

Note: This device control operation is not supported on the PCI Ethernet Adapter Device Driver
(22100020).

The NDD_SET_LINK_STATUS operation is used by etherchannel to pass the driver a function pointer and
argument that will subsequently be called by the driver whenever the link status changes. The arg
parameter contains a pointer to a ndd_sls_t structure, and the len parameter contains the length of the
ndd_sls_t structure.

Chapter 7. Communications I/O Subsystem 159

NDD_SET_MAC_ADDR Device Control Operation

Note: This device control operation is not supported on the PCI Ethernet Adapter Device Driver
(22100020).

The NDD_SET_NAC_ADDR operation is used by etherchannel to set the adapters MAC address at
runtime. The MAC address set by this ioctl is valid until another NDD_SET_MAC_ADDR call is made with
a new address or when the adapter is closed. If the adapter is closed, the previously-configured MAC
address. The MAC address configured with the ioctl supersedes any alternate address that might have
been configured.

The arg argument is char [6], representing the MAC address that is configured on the adapter. The len
argument is 6.

Trace
For LAN device drivers, trace points enable error monitoring as well as tracking packets as they move
through the driver. The drivers issue trace points for some or all of the following conditions:

v Beginning and ending of main functions in the main path

v Error conditions

v Beginning and ending of each function that is tracking buffers outside of the main path

v Debugging purposes (These trace points are only enabled when the driver is compiled with -DDEBUG
turned on, and therefore the driver can contain as many of these trace points as desired.)

The existing Ethernet device drivers each have either three or four trace points. The Trace Hook IDs the
PCI Ethernet Adapter Device Driver (22100020) is defined in the sys/cdli_entuser.h file. Other drivers
have defined local cdli_entuser.driver.h files with the Trace Hook definitions. For more information, see
“Debug and Performance Tracing” on page 293.

Following is a list of trace hooks (and location of definition file) for the existing Ethernet device drivers.

PCI Ethernet Adapter Device Driver (22100020)
Definition file: cdli_entuser.h

Trace Hook IDs:

Transmit -2A4
Receive -2A5
Other -2A6

10/100 Mbps Ethernet PCI Adpater Device Driver (23100020)
Definition file: cdli_entuser.phxent.h

Trace Hook IDs:

Transmit -2E6
Receive -2E7
Other -2E8

10/100 Mbps Ethernet PCI Adapter II Device Driver (1410ff01)
Definition file: cdli_entuser.scent.h

Trace Hook IDs:

Transmit -470

160 Kernel Extensions and Device Support Programming Concepts

Receive -471
Other -472

Gigabit Ethernet-SX PCI Adapter Device Driver (14100401)
Definition file: cdli_entuser.gxent.h

Trace Hook IDs:

Transmit -2EA
Receive -2EB
Other -2EC

Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802), 10/100/1000 Base-T
Ethernet PCI-X Adapter Device Driver (14106902), 2-Port Gigabit Ethernet-SX PCI-X
Adapter (14108802), 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)
Definition file: cdli_entuser.goent.h

Trace Hook IDs:

Transmit -473
Receive -474
Other -475

The device driver also has the following trace points to support the netpmon program:

WQUE An output packet has been queued for transmission.
WEND The output of a packet is complete.
RDAT An input packet has been received by the device driver.
RNOT An input packet has been given to the demuxer.
REND The demultiplexer has returned.

Error Logging
For error logging information, see “Error Logging” on page 288.

PCI Ethernet Adapter Device Driver (22100020)
The Error IDs for the PCI Ethernet Adapter Device Driver (22100020) are as follows:

ERRID_KENT_ADAP_ERR
Indicates that the adapter is not responding to initialization commands. User intervention is
necessary to fix the problem.

ERRID_KENT_RCVRY
Indicates that the device driver detected a temporary adapter error requiring that it enter network
recovery mode. It has reset the adapter in an attempt to fix the problem.

ERRID_KENT_TX_ERR
Indicates the the device driver has detected a transmission error. User intervention is not required
unless the problem persists.

ERRID_KENT_PIO
Indicates that the device driver has detected a program IO error. The device driver was unable to
fix the problem. User intervention is necessary to fix the problem.

ERRID_KENT_DOWN
Indicates that the device driver has shut down the adapter due to an unrecoverable error. The

Chapter 7. Communications I/O Subsystem 161

adapter is no longer functional due to the error. The error that caused the device to shut down is
error logged immediately before this error log entry. User intervention is necessary to fix the
problem.

10/100 Mbps Ethernet PCI Adapter Device Driver (23100020)
The Error IDs for the 10/100 Mbps Ethernet PCI Adapter Device Driver (23100020) are as follows:

ERRID_PHXENT_ADAP_ERR
Indicates that the adapter is not responding to initialization commands. User-intervention is
necessary to fix the problem.

ERRID_PHXENT_ERR_RCVRY
Indicates that the device driver detected a temporary adapter error requiring that it enter network
recovery mode. It has reset the adapter in an attempt to fix the problem.

ERRID_PHXENT_TX_ERR
Indicates that the device driver has detected a transmission error. User-intervention is not required
unless the problem persists.

ERRID_PHXENT_PIO
Indicates that the device driver has detected a program IO error. The device driver was unable to
fix the problem. User intervention is necessary to fix the problem.

ERRID_PHXENT_DOWN
Indicates that the device driver has shutdown the adapter due to an unrecoverable error. The
adapter is no longer functional due to the error. The error that caused the device shutdown is error
logged immediately before this error log entry. User intervention is necessary to fix the problem.

ERRID_PHXENT_EEPROM_ERR
Indicates that the device driver is in a defined state due to an invalid or bad EEPROM. The device
driver will not become available. Hardware support should be contacted.

ERRID_PHXENT_EEPROM2_ERR
Indicates that the device driver is in a defined state due to an invalid or bad EEPROM. The device
driver will not become available. Hardware support should be contacted.

ERRID_PHXENT_CLOSE_ERR
Indicates that an application is holding a private receive mbuf owned by the device driver during a
close operation. User intervention is not required.

ERRID_PHXENT_LINK_ERR
Indicates that the link between the adapter and the network switch is down. The device driver will
attempt to reestablish the connection once the physical link is reestablished. When the link is
again established, the device driver will log ERRID_PHXENT_ERR_RCVRY. User intervention is
necessary to fix the problem.

Gigabit Ethernet-SX PCI Adapter Device Driver (14100401)
The Error IDs for the Gigabit Ethernet-SX PCI Adapter Device Driver (14100401) are as follows:

ERRID_GXENT_ADAP_ERR
Indicates that the adapter failed initialization commands. User intervention is necessary to fix the
problem.

ERRID_GXENT_CMD_ERR
Indicates that the device driver has detected an error while issuing commands to the adapter. The
device driver will enter an adapter recovery mode where it will attempt to recover from the error. If
the device driver is successful, it will log ERRID_GXENT_RCVRY_EXIT. User intervention is not
necessary for this error unless the problem persists.

ERRID_GXENT_DOWNLOAD_ERR
Indicates that an error occurred while downloading firmware to the adapter. User intervention is
necessary to fix the problem.

162 Kernel Extensions and Device Support Programming Concepts

ERRID_GXENT_EEPROM_ERR
Indicates that an error occurred while reading the adapter EEPROM. User intervention is
necessary to fix the problem.

ERRID_GXENT_LINK_DOWN
Indicates that the link between the adapter and the network switch is down. The device driver will
attempt to reestablish the connection once the physical link is reestablished. When the link is
again established, the device driver will log ERRID_GXENT_RCVRY_EXIT. User intervention is
necessary to fix the problem.

ERRID_GXENT_RCVRY_EXIT
Indicates that a temporary error (link down, command error, or transmission error) has been
corrected.

ERRID_GXENT_TX_ERR
Indicates that the device driver has detected a transmission error. The device driver will enter an
adapter recovery mode in an attempt to recover from the error. If the device driver is successful, it
will log ERRID_GXENT_RCVRY_EXIT. User intervention is not necessary for this error unless the
problem persists.

ERRID_GXENT_EEH_SERVICE_ERR
Indicates that the device driver has detected a error during an attempt to recover from a PCI bus
error. User intervention is necessary to fix the problem.

10/100 Mbps Ethernet PCI Adapter II Device Driver (1410ff01)
The Error IDs for the 10/100 Mbps Ethernet PCI Adapter II Device Driver (1410ff01) are as follows:

ERRID_SCENT_ADAP_ERR
Indicates that the adapter failed initialization commands. User intervention is necessary to fix the
problem.

ERRID_SCENT_PIO_ERR
Indicates that the device driver has detected a program IO error. The device driver was unable to
fix the problem. User intervention is necessary to fix the problem.

ERRID_SCENT_EEPROM_ERR
Indicates that an error occurred while reading the adapter EEPROM. User intervention is
necessary to fix the problem.

ERRID_SCENT_LINK_DOWN
Indicates that the link between the adapter and the network switch is down. The device driver will
attempt to reestablish the connection once the physical link is reestablished. When the link is
again established, the device driver will log ERRID_SCENT_RCVRY_EXIT. User intervention is
necessary to fix the problem.

ERRID_SCENT_RCVRY_EXIT
Indicates that a temporary error (link down, command error, or transmission error) has been
corrected.

ERRID_SCENT_TX_ERR
Indicates that the device driver has detected a transmission error. The device driver will enter an
adapter recovery mode in an attempt to recover from the error. If the device driver is successful, it
will log ERRID_SCENT_RCVRY_EXIT. User intervention is not necessary for this error unless the
problem persists.

ERRID_SCENT_EEH_SERVICE_ERR
Indicates that the device driver has detected a error during an attempt to recover from a PCI bus
error. User intervention is necessary to fix the problem.

Chapter 7. Communications I/O Subsystem 163

Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802), 10/100/1000 Base-T
Ethernet PCI-X Adapter Device Driver (14106902), 2-Port Gigabit Ethernet-SX PCI-X
Adapter (14108802), 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)
The Error IDs for the Gigabit Ethernet-SX PCI-X Adapter Device Driver (14106802), the 10/100/1000
Base-T Ethernet PCI-X Adapter Device Driver (14106902), the 2-Port Gigabit Ethernet-SX PCI-X Adapter
Device Driver (14108802), and the 2-Port 10/100/1000 Base-TX PCI-X Adapter Device Driver (14108902)
are as follows:

ERRID_GOENT_ADAP_ERR
Indicates that the adapter failed initialization commands. User intervention is necessary to fix the
problem.

ERRID_GOENT_PIO_ERR
Indicates that the device driver has detected a program I/O error. The device driver was unable to
fix the problem. User intervention is necessary to fix the problem.

ERRID_GOENT_EEPROM_ERR
Indicates that an error occurred while reading the adapter EEPROM. User intervention is
necessary to fix the problem.

ERRID_GOENT_LINK_DOWN
Indicates that the link between the adapter and the network switch is down. The device driver will
attempt to reestablish the connection once the physical link is reestablished. When the link is
again established, the device driver will log ERRID_GOENT_RCVRY_EXIT. User intervention is
necessary to fix the problem.

ERRID_GOENT_RCVRY_EXIT
Indicates that a temporary error (link down, command error, or transmission error) has been
corrected.

ERRID_GOENT_TX_ERR
Indicates that the device driver has detected a transmission error. The device driver will enter an
adapter recovery mode in an attempt to recover from the error. If the device driver is successful, it
will log ERRID_GOENT_RCVRY_EXIT. User intervention is not necessary for this error unless the
problem persists.

ERRID_GOENT_EEH_SERVICE_ERR
Indicates that the device driver has detected a error during an attempt to recover from a PCI bus
error. User intervention is necessary to fix the problem.

Related Information
“Common Communications Status and Exception Codes” on page 99.

“Logical File System Kernel Services” on page 55.

System Management Interface Tool (SMIT): Overview in AIX 5L Version 5.2 System Management
Concepts: Operating System and Devices.

Error Logging Overview in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

Status Blocks for the Serial Optical Link Device Driver, Sense Data for the Serial Optical Link Device
Driver in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 2.

Subroutine References
The readx subroutine in AIX 5L Version 5.2 Technical Reference: Base Operating System and Extensions
Volume 2.

164 Kernel Extensions and Device Support Programming Concepts

Commands References
The entstat Command in AIX 5L Version 5.2 Commands Reference, Volume 1.

The lecstat Command, mpcstat Command in AIX 5L Version 5.2 Commands Reference, Volume 3.

The tokstat Command in AIX 5L Version 5.2 Commands Reference, Volume 5.

Technical References
The ddwrite entry point, ddselect entry point in AIX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 2.

The CIO_GET_STAT operation, CIO_HALT operation, CIO_START operation in AIX 5L Version 5.2
Technical Reference: Kernel and Subsystems Volume 2.

The mpconfig Multiprotocol (MPQP) Device Handler Entry Point, mpwrite Multiprotocol (MPQP)
Device Handler Entry Point, mpread Multiprotocol (MPQP) Device Handler Entry Point, mpmpx
Multiprotocol (MPQP) Device Handler Entry Point , mpopen Multiprotocol (MPQP) Device Handler
Entry Point, mpselect Multiprotocol (MPQP) Device Handler Entry Point, mpclose Multiprotocol
(MPQP) Device Handler Entry Point, mpioctl Multiprotocol (MPQP) Device Handler Entry Point in
AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 2.

Chapter 7. Communications I/O Subsystem 165

166 Kernel Extensions and Device Support Programming Concepts

Chapter 8. Graphic Input Devices Subsystem

The graphic input devices subsystem includes the keyboard/sound, mouse, tablet, dials, and lighted
programmable-function keys (LPFK) devices. These devices provide operator input primarily to graphic
applications. However, the keyboard can provide system input by means of the console.

The program interface to the input device drivers is described in the inputdd.h header file. This header file
is available as part of the bos.adt.graphics fileset.

open and close Subroutines
An open subroutine call is used to create a channel between the caller and a graphic input device driver.
The keyboard supports two such channels. The most recently created channel is considered the active
channel. All other graphic input device drivers support only one channel. The open subroutine call is
processed normally, except that the OFLAG and MODE parameters are ignored. The keyboard provides
support for the fp_open subroutine call; however, only one kernel mode channel can be open at any given
time. The fp_open subroutine call returns EACCES for all other graphic input devices.

The close subroutine is used to remove a channel created by the open subroutine call.

read and write Subroutines
The graphic input device drivers do not support read or write operations. A read or write to a graphic input
device special file behaves as if a read or write was made to /dev/null.

ioctl Subroutines
The ioctl operations provide run-time services. The special files support the following ioctl operations:

v Keyboard

v Mouse

v Tablet

v GIO (Graphics I/O) Adapter

v Dials

v LPFK

Keyboard

IOCINFO Returns the devinfo structure.
KSQUERYID Queries the keyboard device identifier.
KSQUERYSV Queries the keyboard service vector.
KSREGRING Registers the input ring.
KSRFLUSH Flushes the input ring.
KSLED Sets and resets the keyboard LEDs.
KSCFGCLICK Configures the clicker.
KSVOLUME Sets the alarm volume.
KSALARM Sounds the alarm.
KSTRATE Sets the repeat rate.
KSTDELAY Sets the delay before repeat.
KSKAP Enables and disables the keep-alive poll.
KSKAPACK Acknowledges the keep-alive poll.
KSDIAGMODE Enables and disables the diagnostics mode.

© Copyright IBM Corp. 1997, 2003 167

Note:

1. A nonactive channel processes only IOCINFO, KSQUERYID, KSQUERYSV, KSREGRING,
KSRFLUSH, KSKAP, and KSKAPACK. All other ioctl subroutine calls are ignored without error.

2. The KSLED, KSCFGCLICK, KSVOLUME, KSALARM, KSTRATE, and KSTDELAY ioctl
subroutine calls return an EBUSY error in the errno global variable when the keyboard is in
diagnostics mode.

3. The KSQUERYSV ioctl subroutine call is only available when the channel is open from kernel
mode (with the fp_open kernel service).

4. The KSKAP, KSKAPACK, KSDIAGMODE ioctl subroutine calls are only available when the
channel is open from user mode.

Mouse

IOCINFO Returns the devinfo structure.
MQUERYID Queries the mouse device identifier.
MREGRING Registers the input ring.
MRFLUSH Flushes the input ring.
MTHRESHOLD Sets the mouse reporting threshold.
MRESOLUTION Sets the mouse resolution.
MSCALE Sets the mouse scale.
MSAMPLERATE Sets the mouse sample rate.

Tablet

IOCINFO Returns the devinfo structure.
TABQUERYID Queries the tablet device identifier.
TABREGRING Registers the input ring.
TABFLUSH Flushes the input ring.
TABCONVERSION Sets the tablet conversion mode.
TABRESOLUTION Sets the tablet resolution.
TABORIGIN Sets the tablet origin.
TABSAMPLERATE Sets the tablet sample rate.
TABDEADZONE Sets the tablet dead zones.

GIO (Graphics I/O) Adapter

IOCINFO Returns the devinfo structure.
GIOQUERYID Returns the ID of the attached devices.

Dials

IOCINFO Returns the devinfo structure.
DIALREGRING Registers the input ring.
DIALRFLUSH Flushes the input ring.
DIALSETGRAND Sets the dial granularity.

LPFK

IOCINFO Returns the devinfo structure.
LPFKREGRING Registers the input ring.
LPFKRFLUSH Flushes the input ring.

168 Kernel Extensions and Device Support Programming Concepts

LPFKLIGHT Sets and resets the key lights.

Input Ring
Data is obtained from graphic input devices by way of a circular First-In First-Out (FIFO) queue or input
ring, rather than with a read subroutine call. The memory address of the input ring is registered with an
ioctl (or fp_ioctl) subroutine call. The program that registers the input ring is the owner of the ring and is
responsible for allocating, initializing, and freeing the storage associated with the ring. The same input ring
can be shared by multiple devices.

The input ring consists of the input ring header followed by the reporting area. The input ring header
contains the reporting area size, the head pointer, the tail pointer, the overflow flag, and the notification
type flag. Before registering an input ring, the ring owner must ensure that the head and tail pointers
contain the starting address of the reporting area. The overflow flag must also be cleared and the size field
set equal to the number of bytes in the reporting area. After the input ring has been registered, the owner
can modify only the head pointer and the notification type flag.

Data stored on the input ring is structured as one or more event reports. Event reports are placed at the
tail of the ring by the graphic input device drivers. Previously queued event reports are taken from the
head of the input ring by the owner of the ring. The input ring is empty when the head and tail locations
are the same. An overflow condition exists if placement of an event on the input ring would overwrite data
that has not been processed. Following an overflow, new event reports are not placed on the input ring
until the input ring is flushed via an ioctl subroutine or service vector call.

The owner of the input ring is notified when an event is available for processing via a SIGMSG signal or
via callback if the channel was created by an fp_open subroutine call. The notification type flag in the
input ring header specifies whether the owner should be notified each tine an event is placed on the ring
or only when an event is placed on an empty ring.

Management of Multiple Keyboard Input Rings
When multiple keyboard channels are opened, keyboard events are placed on the input ring associated
with the most recently opened channel. When this channel is closed, the alternate channel is activated and
keyboard events are placed on the input ring associated with that channel.

Event Report Formats
Each event report consists of an identifier followed by the report size in bytes, a time stamp (system time
in milliseconds), and one or more bytes of device-dependent data. The value of the identifier is specified
when the input ring is registered. The program requesting the input-ring registration is responsible for
identifier uniqueness within the input-ring scope.

Note: Event report structures are placed on the input-ring without spacing. Data wraps from the end to the
beginning of the reporting area. A report can be split on any byte boundary into two non-contiguous
sections.

The event reports are as follows:

Keyboard

ID Specifies the report identifier.
Length Specifies the report length.
Time stamp Specifies the system time (in milliseconds).
Key position code Specifies the key position code.
Key scan code Specifies the key scan code.
Status flags Specifies the status flags.

Chapter 8. Graphic Input Devices Subsystem 169

Tablet

ID Specifies the report identifier.
Length Specifies the report length.
Time stamp Specifies the system time (in milliseconds).
Absolute X Specifies the absolute X coordinate.
Absolute Y Specifies the absolute Y coordinate.

LPFK

ID Specifies the report identifier.
Length Specifies the report length.
Time stamp Specifies the system time (in milliseconds).
Number of key pressed Specifies the number of the key pressed.

Dials

ID Specifies the report identifier.
Length Specifies the report length.
Time stamp Specifies the system time (in milliseconds).
Number of dial changed Specifies the number of the dial changed.
Delta change Specifies delta dial rotation.

Mouse (Standard Format)

ID Specifies the report identifier.
Length Specifies the report length.
Time stamp Specifies the system time (in milliseconds).
Delta X Specifies the delta mouse motion along the X axis.
Delta Y Specifies the delta mouse motion along the Y axis.
Button status Specifies the button status.

Mouse (Extended Format)

ID Specifies the report identifier.

Length Specifies the report length.

Time stamp Specifies the system time (in milliseconds).

Format Specifies the format of additional fields.

Format 1:

v Status: Specifies the extended button status

v Delta Wheel: Specifies the delta wheel movement

Format 2:

v Button Status: Specifies the button status.

v Delta X: Specifies the delta mouse motion along the X axis.

v Delta Y: Specifies the delta mouse motion along the Y axis.

v Delta Wheel: Specifies the delta wheel movement

170 Kernel Extensions and Device Support Programming Concepts

Keyboard Service Vector
The keyboard service vector provides a limited set of keyboard-related and sound-related services for
kernel extensions. The following services are available:

v Sound alarm

v Enable and disable secure attention key (SAK)

v Flush input queue

The address of the service vector is obtained with the fp_ioctl subroutine call during a non-critical period.
The kernel extension can later invoke the service using an indirect call as follows:

(*ServiceVector[ServiceNumber]) (dev_t DeviceNumber, caddr_t Arg);

where:

v The service vector is a pointer to the service vector obtained by the KSQUERYSV fp_loctl subroutine
call.

v The ServiceNumber parameter is defined in the inputdd.h file.

v The DeviceNumber parameter specifies the major and minor numbers of the keyboard.

v The Arg parameter points to a ksalarm structure for alarm requests and a uint variable for SAK enable
and disable requests. The Arg parameter is NULL for flush queue requests.

If successful, the function returns a value of 0 is returned. Otherwise, the function returns an error number
defined in the errno.h file. Flush-queue and enable/disable-SAK requests are always processed, but alarm
requests are ignored if the kernel extension’s channel is inactive.

The following example uses the service vector to sound the alarm:
/* pinned data structures */
/* This example assumes that pinning is done elsewhere. */
int (**ksvtbl) ();
struct ksalarm alarm;
dev_t devno;

/* get address of service vector */
/* This should be done in a noncritical section */
if (fp_ioctl(fp, KSQUERYSV, &ksvtbl, 0)) {
/* error recovery */
}
.
.
.

/* critical section */
/* sound alarm for 1 second using service vector */
alarm.duration = 128;
alarm.frequency = 100;

if ((*ksvtbl[KSVALARM]) (devno, &alarm)) {
/* error recovery */
}

Special Keyboard Sequences
Special keyboard sequences are provided for the Secure Attention Key (SAK) and the Keep Alive Poll
(KAP).

Secure Attention Key
The user requests a secure shell by keying a secure attention. The keyboard driver interprets the key
sequence CTRL x r as the SAK. An indirect call using the keyboard service vector enables and disables
the detection of this key sequence. If detection of the SAK is enabled, a SAK causes the SAK callback to

Chapter 8. Graphic Input Devices Subsystem 171

be invoked. The SAK callback is invoked even if the input ring is inactive due to a user process issuing an
open to the keyboard special file. The SAK callback runs within the interrupt environment.

Keep Alive Poll
The keyboard device driver supports a special key sequence that kills the process that owns the keyboard.
This sequence must first be defined with a KSKAP ioctl operation. After this sequence is defined, the
keyboard device driver sends a SIGKAP signal to the process that owns the keyboard when the special
sequence is entered on the keyboard. The process that owns the keyboard must acknowledge the KSKAP
signal with a KSKAPACK ioctl within 30 seconds or the keyboard driver will terminate the process with a
SIGKILL signal. The KAP is enabled on a per-channel basis and is unavailable if the channel is owned by
a kernel extension.

172 Kernel Extensions and Device Support Programming Concepts

Chapter 9. Low Function Terminal Subsystem

This chapter discusses the following topics:

v Low Function Terminal Interface Functional Description

v Components Affected by the Low Function Terminal Interface

v Accented Characters

The low function terminal (lft) interface is a pseudo-device driver that interfaces with device drivers for the
system keyboard and display adapters. The lft interface adheres to all standard requirements for
pseudo-device drivers and has all the entry points and configuration code as required by the device driver
architecture. This section gives a high-level description of the various configuration methods and entry
points provided by the lft interface.

All the device drivers controlled by the lft interface are also used by AIXwindows. Consequently, along with
the functions required for the tty sybsystem interface, the lft interface provides the functions required by
AIXwindows interfaces with display device driver adapters.

Low Function Terminal Interface Functional Description
This section covers the lft interface functional description:

v Configuration

v Terminal Emulation

v IOCTLS Needed for AIXwindows Support

v Low Function Terminal to System Keyboard Interface

v Low Function Terminal to Display Device Driver Interface

v Low Function Terminal Device Driver Entry Points

Configuration
The lft interface uses the common define, undefine, and unconfiguration methods standard for most
devices.

Note: The lft interface does not support any change method for dynamically changing the lft configuration.
Instead, use the -P flag with the chdev command. The changes become effective the next time the
lft interface is configured.

The configuration process for the lft opens all display device drivers. To define the default display and
console, select the default display and console during the console configuration process. If a graphics
display is chosen as the system console, it automatically becomes the default display. The lft interface
displays text on the default display.

The configuration process for the lft interface queries the ODM database for the available fonts and
software keyboard map for the current session.

Terminal Emulation
The lft interface is a stream-based tty subsystem. The lft interface provides VT100 (or IBM 3151) terminal
emulation for the standard part of the ANSI 3.64 data stream. All line discipline handling is performed in
the layers above the lft interface. The lft interface does not support virtual terminals.

The lft interface supports multiple fonts to handle the different screen sizes and resolutions necessary in
providing a 25x80 character display on various display adapters.

© Copyright IBM Corp. 1997, 2003 173

Note: Applications requiring hft extensions need to use aixterm.

IOCTLS Needed for AIXwindows Support
AIXwindows and the lft interface share the system keyboard and display device drivers. To prevent screen
and keyboard inconsistencies, a set of ioctl coordinates usage between AIXwindows and the lft interface.
On a system with multiple displays, the lft interface can still use the default display as long as AIXwindows
is using another display.

Note: The lft interface provides ioctl support to set and change the default display.

Low Function Terminal to System Keyboard Interface
The lft interface with the system keyboard uses an input ring mechanism. The details of the keyboard
driver ioctls, as well as the format and description of this input ring, are provided in Chapter 8, “Graphic
Input Devices Subsystem”, on page 167. The keyboard device driver passes raw keystrokes to the lft
interface. These keystrokes are converted to the appropriate code point using keyboard tables. The use of
keyboard-language-dependent keyboard tables ensures that the lft interface provides National Language
Support.

Low Function Terminal to Display Device Driver Interface
The lft uses a device independent interface known as the virtual display driver (vdd) interface. Because the
lft interface has no virtual terminal or monitor mode support, some of the vdd entry points are not used by
the lft.

The display drivers might enqueue font request through the font process started during lft initialization. The
font process pins and unpins the requested fonts for DMA to the display adapter.

Low Function Terminal Device Driver Entry Points
The lft interface supports the open, close, read, write, ioctl, and configuration entry points.

Components Affected by the Low Function Terminal Interface
The lft interface impacts the following components:

v Configuration User Commands

v Keyboard Device Driver (Information about this is contained in Graphic Input Device Driver
Programming Interface.)

v Display Device Driver

v Rendering Context Manager

Configuration User Commands
The lft interface is a pseudo-device driver. Consequently, the system configuration process does not detect
the lft interface as it does an adapter. The system provides for pseudo-device drivers to be started through
Config_Rules. To start the lft interface, use the startlft program.

Supported commands include:

v lsfont

v mkfont

v chfont

v lskbd

v chkbd

v lsdisp (see note)

v chdisp (see note)

174 Kernel Extensions and Device Support Programming Concepts

Note:

1. lsdisp outputs the logical device name instead of the instance number.

2. chdisp uses the ioctl interface to the lft to set the requested display.

Display Device Driver
Beginning with AIX 4.1, a display device driver is required for each supported display adapter.

The display device drivers provide all the standard interfaces (such as config, initialize, terminate, and so
forth) required in any AIX 4.1 (or later) device drivers. The only device switch table entries supported are
open, close, config, and ioctl. All other device switch table entries are set to nodev. In addition, the display
device drivers provide a set of ioctls for use by AIXwindows and diagnostics to perform device specific
functions such as get bus access, bus memory address, DMA operations, and so forth.

Rendering Context Manager
The Rendering Context Manager (RCM) is a loadable module.

Note: Previously, the high functional terminal interface provided AIXwindows with the gsc_handle. This
handle is used in all of the aixgsc system calls. The RCM provides this service for the lft interface.

To ensure that lft can recover the display in case AIXwindows should terminate abnormally, AIXwindows
issues the ioctl to RCM after opening the pseudo-device. RCM passes on the ioctl to the lft. This way, the
close function in RCM is invoked (Because AIXwindows is the only application that has opened RCM), and
RCM notifies the lft interface to start reusing the display. To support this communication, the RCM provides
the required ioctl support.

The RCM to lft Interface Initialization
1. RCM performs the open /dev/lft.

2. Upon receiving a list of displays from X, RCM passes the information to the lft through an ioctl.

3. RCM resets the adapter.

If AIXwindows Terminates Abnormally
1. RCM receives notification from X about the displays it was using.

2. RCM resets the adapter.

3. RCM passes the information to the lft by way of an ioctl.

AIXwindows to lft Initialization
The AIXwindows to lft initialization includes the following:

1. AIXwindows opens /dev/rcm.

2. AIXwindows gets the gsc_handle from RCM via an ioctl.

3. AIXwindows becomes a graphics process aixgsc (MAKE_GP, ...)

4. AIXwindows, through an ioctl, informs RCM about the displays it wishes to use.

5. AIXwindows opens all of the input devices it needs and passes the same input ring to each of them.

Upon Normal Termination
1. X issues a close to all of the input devices it opened.

2. X informs RCM, through an ioctl, about the displays it was using.

Diagnostics
Diagnostics and other applications that require access to the graphics adapter use the AIXwindows to lft
interface.

Chapter 9. Low Function Terminal Subsystem 175

Accented Characters
Here are the valid sets of characters for each of the diacritics that the Low Function Terminal (LFT)
subsystem uses to validate the two-key nonspacing character sequence.

List of Diacritics Supported by the HFT LFT Subsystem
There are seven diacritic characters for which sets of characters are provided:

v Acute

v Grave

v Circumflex

v Umlaut

v Tilde

v Overcircle

v Cedilla

Valid Sets of Characters (Categorized by Diacritics)
The following are acute function code values:

Acute Function Code Value
Acute accent 0xef
Apostrophe (acute) 0x27
e Acute small 0x82
e Acute capital 0x90
a Acute small 0xa0
i Acute small 0xa1
o Acute small 0xa2
u Acute small 0xa3
a Acute capital 0xb5
i Acute capital 0xd6
y Acute small 0xec
y Acute capital 0xed
o Acute capital 0xe0
u Acute capital 0xe9

The following are grave function code values:

Grave Function Code Value
Grave accent 0x60
a Grave small 0x85
e Grave small 0x8a
i Grave small 0x8d
o Grave small 0x95
u Grave small 0x97
a Grave capital 0xb7
e Grave capital 0xd4
i Grave capital 0xde
o Grave capital 0xe3
u Grave capital 0xeb

The following are circumflex function code values:

Circumflex Function Code Value
^ Circumflex accent 0x5e

176 Kernel Extensions and Device Support Programming Concepts

a Circumflex small 0x83
e Circumflex small 0x88
i Circumflex small 0x8c
o Circumflex small 0x93
u Circumflex small 0x96
a Circumflex capital 0xb6
e Circumflex capital 0xd2
i Circumflex capital 0xd7
o Circumflex capital 0xe2
u Circumflex capital 0xea

The following are umlaut function code values:

Umlaut Function Code Value
Umlaut accent 0xf9
u Umlaut small 0x81
a Umlaut small 0x84
e Umlaut small 0x89
i Umlaut small 0x8b
a Umlaut capital 0x8e
O Umlaut capital 0x99
u Umlaut capital 0x9a
e Umlaut capital 0xd3
i Umlaut capital 0xd8

The following are tilde function code values:

Tilde Function Code Value
Tilde accent 0x7e
n Tilde small 0xa4
n Tilde capital 0xa5
a Tilde small 0xc6
a Tilde capital 0xc7
o Tilde small 0xe4
o Tilde capital 0xe5
Overcircle Function Code Value
Overcircle accent 0x7d
a Overcircle small 0x86
a Overcircle capital 0x8f
Cedilla Function Code Value
Cedilla accent 0xf7
c Cedilla capital 0x80
c Cedilla small 0x87

Related Information
National Language Support Overview, Setting National Language Support for Devices, Locales in AIX 5L
Version 5.2 System Management Guide: Operating System and Devices

Keyboard Overview in Keyboard Technical Reference

Understanding the Japanese Input Method (JIM), Understanding the Korean Input Method (KIM),
Understanding the Traditional Chinese Input Method (TIM) in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

Chapter 9. Low Function Terminal Subsystem 177

Commands References
The iconv command in AIX 5L Version 5.2 Commands Reference, Volume 3.

178 Kernel Extensions and Device Support Programming Concepts

Chapter 10. Logical Volume Subsystem

A logical volume subsystem provides flexible access and control for complex physical storage systems.

The following topics describe how the logical volume device driver (LVDD) interacts with physical volumes:

v “Direct Access Storage Devices (DASDs)”

v “Physical Volumes”

v “Understanding the Logical Volume Device Driver” on page 182

v “Understanding Logical Volumes and Bad Blocks” on page 185

Direct Access Storage Devices (DASDs)
Direct access storage devices (DASDs) are fixed or removable storage devices. Typically, these devices
are hard disks. A fixed storage device is any storage device defined during system configuration to be an
integral part of the system DASD. The operating system detects an error if a fixed storage device is not
available at some time during normal operation.

A removable storage device is any storage device defined by the person who administers your system
during system configuration to be an optional part of the system DASD. The removable storage device can
be removed from the system at any time during normal operation. As long as the device is logically
unmounted first, the operating system does not detect an error.

The following types of devices are not considered DASD and are not supported by the logical volume
manager (LVM):

v Diskettes

v CD-ROM (compact disk read-only memory)

v DVD-ROM (DVD read-only memory)

v WORM (write-once read-many)

For a description of the block level, see “DASD Device Block Level Description” on page 279.

Physical Volumes
A logical volume is a portion of a physical volume viewed by the system as a volume. Logical records are
records defined in terms of the information they contain rather than physical attributes.

A physical volume is a DASD structured for requests at the physical level, that is, the level at which a
processing unit can request device-independent operations on a physical block address basis. A physical
volume is composed of the following:

v A device-dependent reserved area

v A variable number of physical blocks that serve as DASD descriptors

v An integral number of partitions, each containing a fixed number of physical blocks

When performing I/O at a physical level, no bad-block relocation is supported. Bad blocks are not hidden
at this level as they are at the logical level. Typical operations at the physical level are
read-physical-block and write-physical-block. For more information on bad blocks, see “Understanding
Logical Volumes and Bad Blocks” on page 185.

The following are terms used when discussing DASD volumes:

block A contiguous, 512-byte region of a physical volume that corresponds in size to a DASD sector

© Copyright IBM Corp. 1997, 2003 179

partition A set of blocks (with sequential cylinder, head, and sector numbers) contained within a single
physical volume

The number of blocks in a partition, as well as the number of partitions in a given physical volume, are
fixed when the physical volume is installed in a volume group. Every physical volume in a volume group
has exactly the same partition size. There is no restriction on the types of DASDs (for example, Small
Computer Systems Interface (SCSI), Enhanced Small Device Interface (ESDI), or Intelligent Peripheral
Interface (IPI)) that can be placed in a given volume group.

Note: A given physical volume must be assigned to a volume group before that physical volume can be
used by the LVM.

Physical Volume Implementation Limitations
When composing a physical volume from a DASD, the following implementation restrictions apply to DASD
characteristics:

v 1 to 32 physical volumes per volume group

v 1 to 128 physical volumes in a big volume group

v The partition size is restricted to 2**n bytes, for 20 <= n <= 30

v The physical block size is restricted to 512 bytes

Physical Volume Layout
A physical volume consists of a logically contiguous string of physical sectors. Sectors are numbered 0
through the last physical sector number (LPSN) on the physical volume. The total number of physical
sectors on a physical volume is LPSN + 1. The actual physical location and physical order of the sectors
are transparent to the sector numbering scheme.

Note: Sector numbering applies to user-accessible data sectors only. Spare sectors and
Customer-Engineer (CE) sectors are not included. CE sectors are reserved for use by diagnostic
test routines or microcode.

Reserved Sectors on a Physical Volume
A physical volume reserves the first 128 sectors to store various types of DASD configuration and
operation information. The /usr/include/sys/hd_psn.h file describes the information stored on the
reserved sectors. The locations of the items in the reserved area are expressed as physical sector
numbers in this file, and the lengths of those items are in number of sectors.

The 128-sector reserved area of a physical volume includes a boot record, the bad-block directory, the
LVM record, and the mirror write consistency (MWC) record. The boot record consists of one sector
containing information that allows the read-only system (ROS) to boot the system. A description of the boot
record can be found in the /usr/include/sys/bootrecord.h file.

The boot record also contains the pv_id field. This field is a 64-bit number uniquely identifying a physical
volume. This identifier might be assigned by the manufacturer of the physical volume. However, if a
physical volume is part of a volume group, the pv_id field will be assigned by the LVM.

The bad-block directory records the blocks on the physical volume that have been diagnosed as unusable.
The structure of the bad-block directory and its entries can be found in the /usr/include/sys/bbdir.h file.

The LVM record consists of one sector and contains information used by the LVM when the physical
volume is a member of the volume group. The LVM record is described in the /usr/include/lvmrec.h file.

180 Kernel Extensions and Device Support Programming Concepts

The MWC record consists of one sector. It identifies which logical partitions might be inconsistent if the
system is not shut down properly. When the volume group is varied back online for use, this information is
used to make logical partitions consistent again.

Sectors Reserved for the Logical Volume Manager (LVM)
If a physical volume is part of a volume group, the physical volume is used by the LVM and contains two
additional reserved areas. One area contains the volume group descriptor area/volume group status area
and follows the first 128 reserved sectors. The other area is at the end of the physical volume reserved as
a relocation pool for bad blocks that must be software-relocated. Both of these areas are described by the
LVM record. The space between these last two reserved areas is divided into equal-sized partitions.

The volume group descriptor area (VGDA) is divided into the following:

v The volume group header. This header contains general information about the volume group and a time
stamp used to verify the consistency of the VGDA.

v A list of logical volume entries. The logical volume entries describe the states and policies of logical
volumes. This list defines the maximum number of logical volumes allowed in the volume group. The
maximum is specified when a volume group is created.

v A list of physical volume entries. The size of the physical volume list is variable because the number of
entries in the partition map can vary for each physical volume. For example, a 200 MB physical volume
with a partition size of 1 MB has 200 partition map entries.

v A name list. This list contains the special file names of each logical volume in the volume group.

v A volume group trailer. This trailer contains an ending time stamp for the volume group descriptor area.

When a volume group is varied online, a majority (also called a quorum) of VGDAs must be present to
perform recovery operations unless you have specified the force flag. (The vary-on operation, performed
by using the varyonvg command, makes a volume group available to the system.) See Logical Volume
Storage Overview in AIX 5L Version 5.2 System Management Concepts: Operating System and Devices
for introductory information about the vary-on process and quorums.

Attention: Use of the force flag can result in data inconsistency.

A volume group with only one physical volume must contain two copies of the physical volume group
descriptor area. For any volume group containing more than one physical volume, there are at least three
on-disk copies of the volume group descriptor area. The default placement of these areas on the physical
volume is as follows:

v For the first physical volume installed in a volume group, two copies of the volume group descriptor
area are placed on the physical volume.

v For the second physical volume installed in a volume group, one copy of the volume group descriptor
area is placed on the physical volume.

v For the third physical volume installed in a volume group, one copy of the volume group descriptor area
is placed on the physical volume. The second copy is removed from the first volume.

v For additional physical volumes installed in a volume group, one copy of the volume group descriptor
area is placed on the physical volume.

When a vary-on operation is performed, a majority of copies of the volume group descriptor area must be
able to come online before the vary-on operation is considered successful. A quorum ensures that at least
one copy of the volume group descriptor areas available to perform recovery was also one of the volume
group descriptor areas that were online during the previous vary-off operation. If not, the consistency of
the volume group descriptor area cannot be ensured.

The volume group status area (VGSA) contains the status of all physical volumes in the volume group.
This status is limited to active or missing. The VGSA also contains the state of all allocated physical

Chapter 10. Logical Volume Subsystem 181

partitions (PP) on all physical volumes in the volume group. This state is limited to active or stale. A PP
with a stale state is not used to satisfy a read request and is not updated on a write request.

A PP changes from stale to active after a successful resynchronization of the logical partition (LP) that has
multiple copies, or mirrors, and is no longer consistent with its peers in the LP. This inconsistency can be
caused by a write error or by not having a physical volume available when the LP is written to or updated.

A PP changes from stale to active after a successful resynchronization of the LP. A resynchronization
operation issues resynchronization requests starting at the beginning of the LP and proceeding
sequentially through its end. The LVDD reads from an active partition in the LP and then writes that data
to any stale partition in the LP. When the entire LP has been traversed, the partition state is changed from
stale to active.

Normal I/O can occur concurrently in an LP that is being resynchronized.

Note: If a write error occurs in a stale partition while a resynchronization is in progress, that partition
remains stale.

If all stale partitions in an LP encounter write errors, the resynchronization operation is ended for this LP
and must be restarted from the beginning.

The vary-on operation uses the information in the VGSA to initialize the LVDD data structures when the
volume group is brought online.

Understanding the Logical Volume Device Driver
The Logical Volume Device Driver (LVDD) is a pseudo-device driver that operates on logical volumes
through the /dev/lvn special file. Like the physical disk device driver, this pseudo-device driver provides
character and block entry points with compatible arguments. Each volume group has an entry in the kernel
device switch table. Each entry contains entry points for the device driver and a pointer to the volume
group data structure. The logical volumes of a volume group are distinguished by their minor numbers.

Attention: Each logical volume has a control block located in the first 512 bytes. Data begins in the
second 512-byte block. Care must be taken when reading and writing directly to the logical volume, such
as when using applications that write to raw logical volumes, because the control block is not protected
from such writes. If the control block is overwritten, commands that use the control block will use default
information instead.

Character I/O requests are performed by issuing a read or write request on a /dev/rlvn character special
file for a logical volume. The read or write is processed by the file system SVC handler, which calls the
LVDD ddread or ddwrite entry point. The ddread or ddwrite entry point transforms the character request
into a block request. This is done by building a buffer for the request and calling the LVDD ddstrategy
entry point.

Block I/O requests are performed by issuing a read or write on a block special file /dev/lvn for a logical
volume. These requests go through the SVC handler to the bread or bwrite block I/O kernel services.
These services build buffers for the request and call the LVDD ddstrategy entry point. The LVDD
ddstrategy entry point then translates the logical address to a physical address (handling bad block
relocation and mirroring) and calls the appropriate physical disk device driver.

On completion of the I/O, the physical disk device driver calls the iodone kernel service on the device
interrupt level. This service then calls the LVDD I/O completion-handling routine. Once this is completed,
the LVDD calls the iodone service again to notify the requester that the I/O is completed.

The LVDD is logically split into top and bottom halves. The top half contains the ddopen, ddclose,
ddread, ddwrite, ddioctl, and ddconfig entry points. The bottom half contains the ddstrategy entry point,

182 Kernel Extensions and Device Support Programming Concepts

which contains block read and write code. This is done to isolate the code that must run fully pinned and
has no access to user process context. The bottom half of the device driver runs on interrupt levels and is
not permitted to page fault. The top half runs in the context of a process address space and can page
fault.

Data Structures
The interface to the ddstrategy entry point is one or more logical buf structures in a list. The logical buf
structure is defined in the /usr/include/sys/buf.h file and contains all needed information about an I/O
request, including a pointer to the data buffer. The ddstrategy entry point associates one or more (if
mirrored) physical buf structures (or pbufs) with each logical buf structure and passes them to the
appropriate physical device driver.

The pbuf structure is a standard buf structure with some additional fields. The LVDD uses these fields to
track the status of the physical requests that correspond to each logical I/O request. A pool of pinned pbuf
structures is allocated and managed by the LVDD.

There is one device switch entry for each volume group defined on the system. Each volume group entry
contains a pointer to the volume group data structure describing it.

Top Half of LVDD
The top half of the LVDD contains the code that runs in the context of a process address space and can
page fault. It contains the following entry points:

ddopen Called by the file system when a logical volume is mounted, to open the logical volume specified.
ddclose Called by the file system when a logical volume is unmounted, to close the logical volume specified.
ddconfig Initializes data structures for the LVDD.
ddread Called by the read subroutine to translate character I/O requests to block I/O requests. This entry

point verifies that the request is on a 512-byte boundary and is a multiple of 512 bytes in length.

Most of the time a request will be sent down as a single request to the LVDD ddstrategy entry point
which handles logical block I/O requests. However, the ddread routine might divide very large
requests into multiple requests that are passed to the LVDD ddstrategy entry point.

If the ext parameter is set (called by the readx subroutine), the ddread entry point passes this
parameter to the LVDD ddstrategy routine in the b_options field of the buffer header.

ddwrite Called by the write subroutine to translate character I/O requests to block I/O requests. The LVDD
ddwrite routine performs the same processing for a write request as the LVDD ddread routine does
for read requests.

ddioctl Supports the following operations:

CACLNUP
Causes the mirror write consistency (MWC) cache to be written to all physical volumes
(PVs) in a volume group.

IOCINFO, XLATE
Return LVM configuration information and PP status information.

LV_INFO
Provides information about a logical volume.

PBUFCNT
Increases the number of physical buffer headers (pbufs) in the LVM pbuf pool.

Bottom Half of the LVDD
The bottom half of the device driver supports the ddstrategy entry point. This entry point processes all
logical block requests and performs the following functions:

v Validates I/O requests.

Chapter 10. Logical Volume Subsystem 183

v Checks requests for conflicts (such as overlapping block ranges) with requests currently in progress.

v Translates logical addresses to physical addresses.

v Handles mirroring and bad-block relocation.

The bottom half of the LVDD runs on interrupt levels and, as a result, is not permitted to page fault. The
bottom half of the LVDD is divided into the following three layers:

v Strategy layer

v Scheduler layer

v Physical layer

Each logical I/O request passes down through the bottom three layers before reaching the physical disk
device driver. Once the I/O is complete, the request returns back up through the layers to handle the I/O
completion processing at each layer. Finally, control returns to the original requestor.

Strategy Layer
The strategy layer deals only with logical requests. The ddstrategy entry point is called with one or more
logical buf structures. A list of buf structures for requests that are not blocked are passed to the second
layer, the scheduler.

Scheduler Layer
The scheduler layer schedules physical requests for logical operations and handles mirroring and the
MWC cache. For each logical request the scheduler layer schedules one or more physical requests. These
requests involve translating logical addresses to physical addresses, handling mirroring, and calling the
LVDD physical layer with a list of physical requests.

When a physical I/O operation is complete for one phase or mirror of a logical request, the scheduler
initiates the next phase (if there is one). If no more I/O operations are required for the request, the
scheduler calls the strategy termination routine. This routine notifies the originator that the request has
been completed.

The scheduler also handles the MWC cache for the volume group. If a logical volume is using mirror write
consistency, then requests for this logical volume are held within the scheduling layer until the MWC cache
blocks can be updated on the target physical volumes. When the MWC cache blocks have been updated,
the request proceeds with the physical data write operations.

When MWC is being used, system performance can be adversely affected. This is caused by the
overhead of logging or journalling that a write request is active in one or more logical track groups (LTGs)
(128K, 256K, 512K or 1024K). This overhead is for mirrored writes only. It is necessary to guarantee data
consistency between mirrors particularly if the system crashes before the write to all mirrors has been
completed.

Mirror write consistency can be turned off for an entire logical volume. It can also be inhibited on a request
basis by turning on the NO_MWC flag as defined in the /usr/include/sys/lvdd.h file.

Physical Layer
The physical layer of the LVDD handles startup and termination of the physical request. The physical layer
calls a physical disk device driver’s ddstrategy entry point with a list of buf structures linked together. In
turn, the physical layer is called by the iodone kernel service when each physical request is completed.

This layer also performs bad-block relocation and detection/correction of bad blocks, when necessary.
These details are hidden from the other two layers.

Interface to Physical Disk Device Drivers
Physical disk device drivers adhere to the following criteria if they are to be accessed by the LVDD:

v Disk block size must be 512 bytes.

184 Kernel Extensions and Device Support Programming Concepts

v The physical disk device driver needs to accept a list of requests defined by buf structures, which are
linked together by the av_forw field in each buf structure.

v For unrecoverable media errors, physical disk device drivers need to set the following:

– The B_ERROR flag must be set to on (defined in the /usr/include/sys/buf.h file) in the b_flags
field.

– The b_error field must be set to E_MEDIA (defined in the /usr/include/sys/errno.h file).

– The b_resid field must be set to the number of bytes in the request that were not read or written
successfully. The b_resid field is used to determine the block in error.

Note: For write requests, the LVDD attempts to hardware-relocate the bad block. If this is
unsuccessful, then the block is software-relocated. For read requests, the information is
recorded and the block is relocated on the next write request to that block.

v For a successful request that generated an excessive number of retries, the device driver can return
good data. To indicate this situation it must set the following:

– The b_error field is set to ESOFT; this is defined in the /usr/include/sys/errno.h file.

– The b_flags field has the B_ERROR flag set to on.

– The b_resid field is set to a count indicating the first block in the request that had excessive retries.
This block is then relocated.

v The physical disk device driver needs to accept a request of one block with HWRELOC (defined in the
/usr/include/sys/lvdd.h file) set to on in the b_options field. This indicates that the device driver is to
perform a hardware relocation on this request. If the device driver does not support hardware relocation
the following should be set:

– The b_error field is set to EIO; this is defined in the /usr/include/sys/errno.h file.

– The b_flags field has the B_ERROR flag set on.

– The b_resid field is set to a count indicating the first block in the request that has excessive retries.

v The physical disk device driver should support the system dump interface as defined.

v The physical disk device driver must support write verification on an I/O request. Requests for write
verification are made by setting the b_options field to WRITEV. This value is defined in the
/usr/include/sys/lvdd.h file.

Understanding Logical Volumes and Bad Blocks
The physical layer of the logical volume device driver (LVDD) initiates all bad-block processing and
isolates all of the decision making from the physical disk device driver. This happens so the physical disk
device driver does not need to handle mirroring, which is the duplication of data transparent to the user.

Relocating Bad Blocks
The physical layer of the LVDD checks each physical request to see if there are any known
software-relocated bad blocks in the request. The LVDD determines if a request contains known
software-relocated bad blocks by hashing the physical address. Then a hash chain of the LVDD defects
directory is searched to see if any bad-block entries are in the address range of the request.

If bad blocks exist in a physical request, the request is split into pieces. The first piece contains any blocks
up to the relocated block. The second piece contains the relocated block (the relocated address is
specified in the bad-block entry) of the defects directory. The third piece contains any blocks after the
relocated block to the end of the request or to the next relocated block. These separate pieces are
processed sequentially until the entire request has been satisfied.

Once the I/O for the first of the separate pieces has completed, the iodone kernel service calls the LVDD
physical layer’s termination routine (specified in the b_done field of the buf structure). The termination
routine initiates I/O for the second piece of the original request (containing the relocated block), and then

Chapter 10. Logical Volume Subsystem 185

for the third piece. When the entire physical operation is completed, the appropriate scheduler’s policy
routine (in the second layer of the LVDD) is called to start the next phase of the logical operation.

Detecting and Correcting Bad Blocks
If a logical volume is mirrored, a newly detected bad block is fixed by relocating that block. A good mirror
is read and then the block is relocated using data from the good mirror. With mirroring, the user does not
need to know when bad blocks are found. However, the physical disk device driver does log permanent
I/O errors so the user can determine the rate of media surface errors.

When a bad block is detected during I/O, the physical disk device driver sets the error fields in the buf
structure to indicate that there was a media surface error. The physical layer of the LVDD then initiates
any bad-block processing that must be done.

If the operation was a nonmirrored read, the block is not relocated because the data in the relocated block
is not initialized until a write is performed to the block. To support this delayed relocation, an entry for the
bad block is put into the LVDD defects directory and into the bad-block directory on disk. These entries
contain no relocated block address and the status for the block is set to indicate that relocation is desired.

On each I/O request, the physical layer checks whether there are any bad blocks in the request. If the
request is a write and contains a block that is in a relocation-desired state, the request is sent to the
physical disk device driver with safe hardware relocation requested. If the request is a read, a read of the
known defective block is attempted.

If the operation was a read operation in a mirrored LP, a request to read one of the other mirrors is
initiated. If the second read is successful, then the read is turned into a write request and the physical disk
device driver is called with safe hardware relocation specified to fix the bad mirror.

If the hardware relocation fails or the device does not support safe hardware relocation, the physical layer
of the LVDD attempts software relocation. At the end of each volume is a reserved area used by the LVDD
as a pool of relocation blocks. When a bad block is detected and the disk device driver is unable to
relocate the block, the LVDD picks the next unused block in the relocation pool and writes to this new
location. A new entry is added to the LVDD defects directory in memory (and to the bad-block directory on
disk) that maps the bad-block address to the new relocation block address. Any subsequent I/O requests
to the bad-block address are routed to the relocation address.

Attention: Formatting a fixed disk deletes any data on the disk. Format a fixed disk only when
absolutely necessary and preferably after backing up all data on the dis

If you need to format a fixed disk completely (including reinitializing any bad blocks), use the formatting
function supplied by the diag command. (The diag command typically, but not necessarily, writes over all
data on a fixed disk. Refer to the documentation that comes with the fixed disk to determine the effect of
formatting with the diag command.)

Related Information
Serial DASD Subsystem Device Driver in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems
Volume 2.

Subroutine References
The readx subroutine, write subroutine in AIX 5L Version 5.2 Technical Reference: Base Operating
System and Extensions Volume 2.

Files Reference
The lvdd special file in AIX 5L Version 5.2 Files Reference.

186 Kernel Extensions and Device Support Programming Concepts

Technical References
The buf structure in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

The bread kernel service, bwrite kernel service, iodone kernel service in AIX 5L Version 5.2 Technical
Reference: Kernel and Subsystems Volume 1.

Chapter 10. Logical Volume Subsystem 187

188 Kernel Extensions and Device Support Programming Concepts

Chapter 11. Printer Addition Management Subsystem

If you are configuring a printer for your system, there are basically two types of printers: printers already
supported by the operating system and new printer types. Printer Support in AIX 5L Version 5.2 Guide to
Printers and Printing lists supported printers.

Printer Types Currently Supported
To configure a supported type of printer, you need only to run the mkvirprt command to create a
customized printer file for your printer. This customized printer file, which is in the
/var/spool/lpd/pio/@local/custom directory, describes the specific parameters for your printer. For more
information see Configuring a Printer without Adding a Queue in AIX 5L Version 5.2 Guide to Printers and
Printing.

Printer Types Currently Unsupported
To configure a currently unsupported type of printer, you must develop and add a predefined printer
definition for your printer. This new option is then entered in the list of available choices when the user
selects a printer to configure for the system. The actual data used by the printer subsystem comes from
the Customized printer definition created by the mkvirprt command.

“Adding a New Printer Type to Your System” provides general instructions for adding an undefined printer.
To add an undefined printer, you modify an existing printer definition. Undefined printers fall into two
categories:

v Printers that closely emulate a supported printer. You can use SMIT or the virtual printer commands to
make the changes you need.

v Printers that do not emulate a supported printer or that emulate several data streams. It is simpler to
make the necessary changes for these printers by editing the printer colon file. See Adding a Printer
Using the Printer Colon File in AIX 5L Version 5.2 Guide to Printers and Printing.

“Adding an Unsupported Device to the System” on page 90 offers an overview of the major steps required
to add an unsupported device of any type to your system.

Adding a New Printer Type to Your System
To add an unsupported printer to your system, you must add a new Printer definition to the printer
directories. For more complicated scenarios, you might also need to add a new printer-specific formatter to
the printer backend.

Example of Print Formatter in AIX 5L Version 5.2 Guide to Printers and Printing shows how the print
formatter interacts with the printer formatter subroutines.

Additional Steps for Adding a New Printer Type
However, if you want the new Printer definition to carry the name of the new printer, you must develop a
new Predefined definition to carry the new printer information besides adding a new Printer definition. Use
the piopredef command to do this.

Steps for adding a new printer-specific formatter to the printer backend are discussed in Adding a Printer
Formatter to the Printer Backend . Example of Print Formatter in AIX 5L Version 5.2 Guide to Printers and
Printing shows how print formatters can interact with the printer formatter subroutines.

Note: These instructions apply to the addition of a new printer definition to the system, not to the addition
of a physical printer device itself. For information on adding a new printer device, refer to device

© Copyright IBM Corp. 1997, 2003 189

configuration and management. If your new printer requires an interface other than the parallel or
serial interface provided by the operating system, you must also provide a new device driver.

If the printer being added does not emulate a supported printer or if it emulates several data streams, you
need to make more changes to the Printer definition. It is simpler to make the necessary changes for
these printers by editing the printer colon file. See Adding a Printer Using the Printer Colon File in AIX 5L
Version 5.2 Guide to Printers and Printing.

Modifying Printer Attributes
Edit the customized file (/var/spool/lpd/pio/custom /var/spool/lpd/pio/@local/custom
QueueName:QueueDeviceName), adding or changing the printer attributes to match the new printer.

For example, assume that you created a new file based on the existing 4201-3 printer. The customized file
for the 4201-3 printer contains the following template that the printer formatter uses to initialize the printer:
%I[ez,em,eA,cv,eC,eO,cp,cc, . . .

The formatter fills in the string as directed by this template and sends the resulting sequence of
commands to the 4201-3 printer. Specifically, this generates a string of escape sequences that initialize the
printer and set such parameters as vertical and horizontal spacing and page length. You would construct a
similar command string to properly initialize the new printer and put it into 4201-emulation mode. Although
many of the escape sequences might be the same, at least one will be different: the escape sequence that
is the command to put the printer into the specific printer-emulation mode. Assume that you added an ep
attribute that specifies the string to initialize the printer to 4201-3 emulation mode, as follows:
\033\012\013

The Printer Initialization field will then be:
%I[ep,ez,em,eA,cv,eC,eO,cp,cc, . . .

You must create a virtual printer for each printer-emulation mode you want to use. See Real and Virtual
Printers in AIX 5L Version 5.2 Guide to Printers and Printing.

Adding a Printer Definition
To add a new printer to the system, you must first create a description of the printer by adding a new
printer definition to the printer definition directories.

Typically, to add a new printer definition to the database, you first modify an existing printer definition and
then create a customized printer definition in the Customized Printer Directory.

Once you have added the new customized printer definition to the directory, the mkvirprt command uses
it to present the new printer as a choice for printer addition and selection. Because the new printer
definition is a customized printer definition, it appears in the list of printers under the name of the original
printer from which it was customized.

A totally new printer must be added as a predefined printer definition in the /usr/lib/lpd/pio/predef
directory. If the user chooses to work with printers once this new predefined printer definition is added to
the Predefined Printer Directory, the mkvirprt command can then list all the printers in that directory. The
added printer appears on the list of printers given to the user as if it had been supported all along. Specific
information about this printer can then be extended, added, modified, or deleted, as necessary.

Printer Support in AIX 5L Version 5.2 Guide to Printers and Printing lists the supported printer types and
names of representative printers.

190 Kernel Extensions and Device Support Programming Concepts

Adding a Printer Formatter to the Printer Backend
If your new printer’s data stream differs significantly from one of the numerous printer data streams
currently handled by the operating system, you must define a new backend formatter. Adding a new
formatter does not require the addition of a new backend. Instead, all you typically need are modifications
to the formatter commands associated with that printer under the supervision of the existing printer
backend. If a new backend is required, see Printer Backend Overview for Programming in AIX 5L Version
5.2 Guide to Printers and Printing.

Understanding Embedded References in Printer Attribute Strings
The attribute string retrieved by the piocmdout, piogetstr, and piogetvals subroutines can contain
embedded references to other attribute strings or integers. The attribute string can also contain embedded
logic that dynamically determines the content of the constructed string. This allows the constructed string
to reflect the state of the formatter environment when one of these subroutines is called.

Embedded references and logic are defined with escape sequences that are placed at appropriate
locations in the attribute string. The first character of each escape sequence is always the % character.
This character indicates the beginning of an escape sequence. The second character (and sometimes
subsequent characters) define the operation to be performed. The remainder of the characters (if any) in
the escape sequence are operands to be used in performing the specified operation.

The escape sequences that can be specified in an attribute string are based on the terminfo
parameterized string escape sequences for terminals. These escape sequences have been modified and
extended for printers.

The attribute names that can be referenced by attribute strings are:

v The names of all attribute variables (which can be integer or string variables) defined to the piogetvals
subroutine. When references are made to these variables, the piogetvals-defined versions are the
values used.

v All other attributes names in the database. These attributes are considered string constants.

Any attribute value (integer variable, string variable, or string constant) can be referenced by any attribute
string. Consequently, it is important that the formatter ensures that the values for all the integer variables
and string variables defined to the piogetvals subroutine are kept current.

The formatter must not assume that the particular attribute string whose name it specifies to the piogetstr
or piocmdout subroutine does not reference certain variables. The attribute string is retrieved from the
database that is external to the formatter. The values in the database represented by the string can be
changed to reference additional variables without the formatter’s knowledge.

Related Information
AIX 5L Version 5.2 Guide to Printers and Printing

Subroutine References
The piocmdout subroutine, piogetstr subroutine, piogetvals subroutine in AIX 5L Version 5.2 Technical
Reference: Base Operating System and Extensions Volume 1.

Commands References
The mkvirprt command in AIX 5L Version 5.2 Commands Reference, Volume 3.

The piopredef command in AIX 5L Version 5.2 Commands Reference, Volume 4.

Chapter 11. Printer Addition Management Subsystem 191

192 Kernel Extensions and Device Support Programming Concepts

Chapter 12. Small Computer System Interface Subsystem

This overview describes the interface between a small computer system interface (SCSI) device driver and
a SCSI adapter device driver. It is directed toward those wishing to design and write a SCSI device driver
that interfaces with an existing SCSI adapter device driver. It is also meant for those wishing to design and
write a SCSI adapter device driver that interfaces with existing SCSI device drivers.

SCSI Subsystem Overview
The main topics covered in this overview are:

v Responsibilities of the SCSI Adapter Device Driver

v Responsibilities of the SCSI Device Driver

v Initiator-Mode Support

v Target-Mode Support

This section frequently refers to both a SCSI device driver and a SCSI adapter device driver. These two
distinct device drivers work together in a layered approach to support attachment of a range of SCSI
devices. The SCSI adapter device driver is the lower device driver of the pair, and the SCSI device driver
is the upper device driver.

Responsibilities of the SCSI Adapter Device Driver
The SCSI adapter device driver (the lower layer) is the software interface to the system hardware. This
hardware includes the SCSI bus hardware plus any other system I/O hardware required to run an I/O
request. The SCSI adapter device driver hides the details of the I/O hardware from the SCSI device driver.
The design of the software interface allows a user with limited knowledge of the system hardware to write
the upper device driver.

The SCSI adapter device driver manages the SCSI bus but not the SCSI devices. It can send and receive
SCSI commands, but it cannot interpret the contents of the commands. The lower driver also provides
recovery and logging for errors related to the SCSI bus and system I/O hardware. Management of the
device specifics is left to the SCSI device driver. The interface of the two drivers allows the upper driver to
communicate with different SCSI bus adapters without requiring special code paths for each adapter.

Responsibilities of the SCSI Device Driver
The SCSI device driver (the upper layer) provides the rest of the operating system with the software
interface to a given SCSI device or device class. The upper layer recognizes which SCSI commands are
required to control a particular SCSI device or device class. The SCSI device driver builds I/O requests
containing device SCSI commands and sends them to the SCSI adapter device driver in the sequence
needed to operate the device successfully. The SCSI device driver cannot manage adapter resources or
give the SCSI command to the adapter. Specifics about the adapter and system hardware are left to the
lower layer.

The SCSI device driver also provides recovery and logging for errors related to the SCSI device it controls.

The operating system provides several kernel services allowing the SCSI device driver to communicate
with SCSI adapter device driver entry points without having the actual name or address of those entry
points. The description contained in “Logical File System Kernel Services” on page 55 can provide more
information.

© Copyright IBM Corp. 1997, 2003 193

Communication between SCSI Devices
When two SCSI devices communicate, one assumes the initiator-mode role, and the other assumes the
target-mode role. The initiator-mode device generates the SCSI command, which requests an operation,
and the target-mode device receives the SCSI command and acts. It is possible for a SCSI device to
perform both roles simultaneously.

When writing a new SCSI adapter device driver, the writer must know which mode or modes must be
supported to meet the requirements of the SCSI adapter and any interfaced SCSI device drivers. When a
SCSI adapter device driver is added so that a new SCSI adapter works with all existing SCSI device
drivers, both initiator-mode and target-mode must be supported in the SCSI adapter device driver.

Initiator-Mode Support
The interface between the SCSI device driver and the SCSI adapter device driver for initiator-mode
support (that is, the attached device acts as a target) is accessed through calls to the SCSI adapter device
driver open, close, ioctl, and strategy routines. I/O requests are queued to the SCSI adapter device
driver through calls to its strategy entry point.

Communication between the SCSI device driver and the SCSI adapter device driver for a particular
initiator I/O request is made through the sc_buf structure, which is passed to and from the strategy routine
in the same way a standard driver uses a struct buf structure.

Target-Mode Support
The interface between the SCSI device driver and the SCSI adapter device driver for target-mode support
(that is, the attached device acts as an initiator) is accessed through calls to the SCSI adapter device
driver open, close, and ioctl subroutines. Buffers that contain data received from an attached initiator
device are passed from the SCSI adapter device driver to the SCSI device driver, and back again, in
tm_buf structures.

Communication between the SCSI adapter device driver and the SCSI device driver for a particular data
transfer is made by passing the tm_buf structures by pointer directly to routines whose entry points have
been previously registered. This registration occurs as part of the sequence of commands the SCSI device
driver executes using calls to the SCSI adapter device driver when the device driver opens a target-mode
device instance.

Understanding SCSI Asynchronous Event Handling

Note: This operation is not supported by all SCSI I/O controllers.

A SCSI device driver can register a particular device instance for receiving asynchronous event status by
calling the SCIOEVENT ioctl operation for the SCSI-adapter device driver. When an event covered by the
SCIOEVENT ioctl operation is detected by the SCSI adapter device driver, it builds an sc_event_info
structure and passes a pointer to the structure and to the asynchronous event-handler routine entry point,
which was previously registered. The fields in the structure are filled in by the SCSI adapter device driver
as follows:

id For initiator mode, this is set to the SCSI ID of the attached SCSI target device. For
target mode, this is set to the SCSI ID of the attached SCSI initiator device.

lun For initiator mode, this is set to the SCSI LUN of the attached SCSI target device. For
target mode, this is set to 0).

mode Identifies whether the initiator or target mode device is being reported. The following
values are possible:

SC_IM_MODE
An initiator mode device is being reported.

SC_TM_MODE
A target mode device is being reported.

194 Kernel Extensions and Device Support Programming Concepts

events This field is set to indicate what event or events are being reported. The following
values are possible, as defined in the /usr/include/sys/scsi.h file:

SC_FATAL_HDW_ERR
A fatal adapter hardware error occurred.

SC_ADAP_CMD_FAILED
An unrecoverable adapter command failure occurred.

SC_SCSI_RESET_EVENT
A SCSI bus reset was detected.

SC_BUFS_EXHAUSTED
In target-mode, a maximum buffer usage event has occurred.

adap_devno This field is set to indicate the device major and minor numbers of the adapter on
which the device is located.

async_correlator This field is set to the value passed to the SCSI adapter device driver in the
sc_event_struct structure. The SCSI device driver may optionally use this field to
provide an efficient means of associating event status with the device instance it goes
with. Alternatively, the SCSI device driver uses the combination of the id, lun, mode,
and adap_devno fields to identify the device instance.

Note: Reserved fields should be set to 0 by the SCSI adapter device driver.

The information reported in the sc_event_info.events field does not queue to the SCSI device driver, but
is instead reported as one or more flags as they occur. Because the data does not queue, the SCSI
adapter device driver writer can use a single sc_event_info structure and pass it one at a time, by pointer,
to each asynchronous event handler routine for the appropriate device instance. After determining for
which device the events are being reported, the SCSI device driver must copy the sc_event_info.events
field into local space and must not modify the contents of the rest of the sc_event_info structure.

Because the event status is optional, the SCSI device driver writer determines what action is necessary to
take upon receiving event status. The writer may decide to save the status and report it back to the calling
application, or the SCSI device driver or application level program can take error recovery actions.

Defined Events and Recovery Actions
The adapter fatal hardware failure event is intended to indicate that no further commands to or from this
SCSI device are likely to succeed, because the adapter it is attached to has failed. It is recommended that
the application end the session with the device.

The unrecoverable adapter command failure event is not necessarily a fatal condition, but it can indicate
that the adapter is not functioning properly. Possible actions by the application program include:

v Ending of the session with the device in the near future

v Ending of the session after multiple (two or more) such events

v Attempting to continue the session indefinitely

The SCSI Bus Reset detection event is mainly intended as information only, but may be used by the
application to perform further actions, if necessary.

The maximum buffer usage detected event applies only to a given target-mode device; it will not be
reported for an initiator-mode device. This event indicates to the application that this particular target-mode
device instance has filled its maximum allotted buffer space. The application should perform read system
calls fast enough to prevent this condition. If this event occurs, data is not lost, but it is delayed to prevent
further buffer usage. Data reception will be restored when the application empties enough buffers to
continue reasonable operations. The num_bufs attribute may need to be increased to help minimize this

Chapter 12. Small Computer System Interface Subsystem 195

problem. Also, it is possible that regardless of the number of buffers, the application simply is not
processing received data fast enough. This may require some fine tuning of the application’s data
processing routines.

Asynchronous Event-Handling Routine
The SCSI-device driver asynchronous event-handling routine is typically called directly from the hardware
interrupt-handling routine for the SCSI adapter device driver. The SCSI device driver writer must be aware
of how this affects the design of the SCSI device driver.

Because the event handling routine is running on the hardware interrupt level, the SCSI device driver must
be careful to limit operations in that routine. Processing should be kept to a minimum. In particular, if any
error recovery actions are performed, it is recommended that the event-handling routine set state or status
flags only and allow a process level routine to perform the actual operations.

The SCSI device driver must be careful to disable interrupts at the correct level in places where the SCSI
device driver’s lower execution priority routines manipulate variables that are also modified by the
event-handling routine. To allow the SCSI device driver to disable at the correct level, the SCSI adapter
device driver writer must provide a configuration database attribute that defines the interrupt class, or
priority, it runs on. This attribute must be named intr_priority so that the SCSI device driver configuration
method knows which attribute of the parent adapter to query. The SCSI device driver configuration method
should then pass this interrupt priority value to the SCSI device driver along with other configuration data
for the device instance.

The SCSI device driver writer must follow any other general system rules for writing a routine that must
execute in an interrupt environment. For example, the routine must not attempt to sleep or wait on I/O
operations. It can perform wakeups to allow the process level to handle those operations.

Because the SCSI device driver copies the information from the sc_event_info.events field on each call
to its asynchronous event-handling routine, there is no resource to free or any information which must be
passed back later to the SCSI adapter device driver.

SCSI Error Recovery
The SCSI error-recovery process handles different issues depending on whether the SCSI device is in
initiator mode or target mode. If the device is in initiator mode, the error-recovery process varies
depending on whether or not the device is supporting command queuing.

SCSI Initiator-Mode Recovery When Not Command Tag Queuing
If an error such as a check condition or hardware failure occurs, transactions queued within the SCSI
adapter device driver are terminated abnormally with iodone calls. The transaction active during the error
is returned with the sc_buf.bufstruct.b_error field set to EIO. Other transactions in the queue are
returned with the sc_buf.bufstruct.b_error field set to ENXIO. The SCSI device driver should process or
recover the condition, rerunning any mode selects or device reservations to recover from this condition
properly. After this recovery, it should reschedule the transaction that had the error. In many cases, the
SCSI device driver only needs to retry the unsuccessful operation.

The SCSI adapter device driver should never retry a SCSI command on error after the command has
successfully been given to the adapter. The consequences for retrying a SCSI command at this point
range from minimal to catastrophic, depending upon the type of device. Commands for certain devices
cannot be retried immediately after a failure (for example, tapes and other sequential access devices). If
such an error occurs, the failed command returns an appropriate error status with an iodone call to the
SCSI device driver for error recovery. Only the SCSI device driver that originally issued the command
knows if the command can be retried on the device. The SCSI adapter device driver must only retry

196 Kernel Extensions and Device Support Programming Concepts

commands that were never successfully transferred to the adapter. In this case, if retries are successful,
the sc_buf status should not reflect an error. However, the SCSI adapter device driver should perform
error logging on the retried condition.

The first transaction passed to the SCSI adapter device driver during error recovery must include a special
flag. This SC_RESUME flag in the sc_buf.flags field must be set to inform the SCSI adapter device driver
that the SCSI device driver has recognized the fatal error and is beginning recovery operations. Any
transactions passed to the SCSI adapter device driver, after the fatal error occurs and before the
SC_RESUME transaction is issued, should be flushed; that is, returned with an error type of ENXIO
through an iodone call.

Note: If a SCSI device driver continues to pass transactions to the SCSI adapter device driver after the
SCSI adapter device driver has flushed the queue, these transactions are also flushed with an error
return of ENXIO through the iodone service. This gives the SCSI device driver a positive indication
of all transactions flushed.

If the SCSI device driver is executing a gathered write operation, the error-recovery information mentioned
previously is still valid, but the caller must restore the contents of the sc_buf.resvdw1 field and the uio
struct that the field pointed to before attempting the retry. The retry must occur from the SCSI device
driver’s process level; it cannot be performed from the caller’s iodone subroutine. Also, additional return
codes of EFAULT and ENOMEM are possible in the sc_buf.bufstruct.b_error field for a gathered write
operation.

SCSI Initiator-Mode Recovery During Command Tag Queuing
If the SCSI device driver is queuing multiple transactions to the device and either a check condition error
or a command terminated error occurs, the SCSI adapter driver does not clear all transactions in its
queues for the device. It returns the failed transaction to the SCSI device driver with an indication that the
queue for this device is not cleared by setting the SC_DID_NOT_CLEAR_Q flag in the
sc_buf.adap_q_status field. The SCSI adapter driver halts the queue for this device awaiting error
recovery notification from the SCSI device driver. The SCSI device driver then has three options to recover
from this error:

v Send one error recovery command (request sense) to the device.

v Clear the SCSI adapter driver’s queue for this device.

v Resume the SCSI adapter driver’s queue for this device.

When the SCSI adapter driver’s queue is halted, the SCSI device drive can get sense data from a device
by setting the SC_RESUME flag in the sc_buf.flags field and the SC_NO_Q flag in sc_buf.q_tag_msg
field of the request-sense sc_buf. This action notifies the SCSI adapter driver that this is an error-recovery
transaction and should be sent to the device while the remainder of the queue for the device remains
halted. When the request sense completes, the SCSI device driver needs to either clear or resume the
SCSI adapter driver’s queue for this device.

The SCSI device driver can notify the SCSI adapter driver to clear its halted queue by sending a
transaction with the SC_Q_CLR flag in the sc_buf.flags field. This transaction must not contain a SCSI
command because it is cleared from the SCSI adapter driver’s queue without being sent to the adapter.
However, this transaction must have the SCSI ID field (sc_buf.scsi_command.scsi_id) and the LUN fields
(sc_buf.scsi_command.scsi_cmd.lun and sc_buf.lun) filled in with the device’s SCSI ID and logical unit
number (LUN). If addressing LUNs 8 - 31, the sc_buf.lun field should be set to the logical unit number
and the sc_buf.scsi_command.scsi_cmd.lun field should be zeroed out. See the descriptions of these
fields for further explanation. Upon receiving an SC_Q_CLR transaction, the SCSI adapter driver flushes
all transactions for this device and sets their sc_buf.bufstruct.b_error fields to ENXIO. The SCSI device
driver must wait until the sc_buf with the SC_Q_CLR flag set is returned before it resumes issuing
transactions. The first transaction sent by the SCSI device driver after it receives the returned SC_Q_CLR
transaction must have the SC_RESUME flag set in the sc_buf.flags fields.

Chapter 12. Small Computer System Interface Subsystem 197

If the SCSI device driver wants the SCSI adapter driver to resume its halted queue, it must send a
transaction with the SC_Q_RESUME flag set in the sc_buf.flags field. This transaction can contain an
actual SCSI command, but it is not required. However, this transaction must have the
sc_buf.scsi_command.scsi_id, sc_buf.scsi_command.scsi_cmd.lun,and the sc_buf.lun fields filled in with
the device’s SCSI ID and logical unit number. See the description of these fields for further details. If this
is the first transaction issued by the SCSI device driver after receiving the error (indicating that the adapter
driver’s queue is halted), then the SC_RESUME flag must be set as well as the SC_Q_RESUME flag.

Analyzing Returned Status
The following order of precedence should be followed by SCSI device drivers when analyzing the returned
status:

1. If the sc_buf.bufstruct.b_flags field has the B_ERROR flag set, then an error has occurred and the
sc_buf.bufstruct.b_error field contains a valid errno value.

If the b_error field contains the ENXIO value, either the command needs to be restarted or it was
canceled at the request of the SCSI device driver.

If the b_error field contains the EIO value, then either one or no flag is set in the
sc_buf.status_validity field. If a flag is set, an error in either the scsi_status or
general_card_status field is the cause.

If the status_validity field is 0, then the sc_buf.bufstruct.b_resid field should be examined to see if
the SCSI command issued was in error. The b_resid field can have a value without an error having
occurred. To decide whether an error has occurred, the SCSI device driver must evaluate this field with
regard to the SCSI command being sent and the SCSI device being driven.

If the SCSI device driver is queuing multiple transactions to the device and if either
SC_CHECK_CONDITION or SC_COMMAND_TERMINATED is set in scsi_status , then the value of
sc_buf.adap_q_status must be analyzed to determine if the adapter driver has cleared its queue for
this device. If the SCSI adapter driver has not cleared its queue after an error, then it holds that queue
in a halted state.

If sc_buf.adap_q_status is set to 0, the SCSI adapter driver has cleared its queue for this device and
any transactions outstanding are flushed back to the SCSI device driver with an error of ENXIO.

If the SC_DID_NOT_CLEAR_Q flag is set in the sc_buf.adap_q_status field, the adapter driver has
not cleared its queue for this device. When this condition occurs, the SCSI adapter driver allows the
SCSI device driver to send one error recovery transaction (request sense) that has the field
sc_buf.q_tag_msg set to SC_NO_Q and the field sc_buf.flags set to SC_RESUME. The SCSI device
driver can then notify the SCSI adapter driver to clear or resume its queue for the device by sending a
SC_Q CLR or SC_Q_RESUME transaction.

If the SCSI device driver does not queue multiple transactions to the device (that is, the SC_NO_Q is
set in sc_buf.q_tag_msg), then the SCSI adapter clears its queue on error and sets
sc_buf.adap_q_status to 0.

2. If the sc_buf.bufstruct.b_flags field does not have the B_ERROR flag set, then no error is being
reported. However, the SCSI device driver should examine the b_resid field to check for cases where
less data was transferred than expected. For some SCSI commands, this occurrence might not
represent an error. The SCSI device driver must determine if an error has occurred.

If a nonzero b_resid field does represent an error condition, then the device queue is not halted by the
SCSI adapter device driver. It is possible for one or more succeeding queued commands to be sent to
the adapter (and possibly the device). Recovering from this situation is the responsibility of the SCSI
device driver.

3. In any of the above cases, if sc_buf.bufstruct.b_flags field has the B_ERROR flag set, then the
queue of the device in question has been halted. The first sc_buf structure sent to recover the error
(or continue operations) must have the SC_RESUME bit set in the sc_buf.flags field.

198 Kernel Extensions and Device Support Programming Concepts

Target-Mode Error Recovery
If an error occurs during the reception of send command data, the SCSI adapter device driver sets the
TM_ERROR flag in the tm_buf.user_flag field. The SCSI adapter device driver also sets the
SC_ADAPTER_ERROR bit in the tm_buf.status_validity field and sets a single flag in the
tm_buf.general_card_status field to indicate the error that occurred.

In the SCSI subsystem, an error during a send command does not affect future target-mode data
reception. Future send commands continue to be processed by the SCSI adapter device driver and queue
up, as necessary, after the data with the error. The SCSI device driver continues processing the send
command data, satisfying user read requests as usual except that the error status is returned for the
appropriate user request. Any error recovery or synchronization procedures the user requires for a
target-mode received-data error must be implemented in user-supplied software.

A Typical Initiator-Mode SCSI Driver Transaction Sequence
A simplified sequence of events for a transaction between a SCSI device driver and a SCSI adapter
device driver follows. In this sequence, routine names preceded by a dd_ are part of the SCSI device
driver, where as those preceded by a sc_ are part of the SCSI adapter device driver.

1. The SCSI device driver receives a call to its dd_strategy routine; any required internal queuing occurs
in this routine. The dd_strategy entry point then triggers the operation by calling the dd_start entry
point. The dd_start routine invokes the sc_strategy entry point by calling the devstrategy kernel
service with the relevant sc_buf structure as a parameter.

2. The sc_strategy entry point initially checks the sc_buf structure for validity. These checks include
validating the devno field, matching the SCSI ID/LUN to internal tables for configuration purposes, and
validating the request size.

3. Although the SCSI adapter device driver cannot reorder transactions, it does perform queue chaining.
If no other transactions are pending for the requested device, the sc_strategy routine immediately
calls the sc_start routine with the new transaction. If there are other transactions pending, the new
transaction is added to the tail of the device chain.

4. At each interrupt, the sc_intr interrupt handler verifies the current status. The SCSI adapter device
driver fills in the sc_buf status_validity field, updating the scsi_status and general_card_status
fields as required.

5. The SCSI adapter device driver also fills in the bufstruct.b_resid field with the number of bytes not
transferred from the request. If all the data was transferred, the b_resid field is set to a value of 0.
When a transaction completes, the sc_intr routine causes the sc_buf entry to be removed from the
device queue and calls the iodone kernel service, passing the just dequeued sc_buf structure for the
device as the parameter.

The sc_start routine is then called again to process the next transaction on the device queue. The
iodone kernel service calls the SCSI device driver dd_iodone entry point, signaling the SCSI device
driver that the particular transaction has completed.

6. The SCSI device driver dd_iodone routine investigates the I/O completion codes in the sc_buf status
entries and performs error recovery, if required. If the operation completed correctly, the SCSI device
driver dequeues the original buffer structures. It calls the iodone kernel service with the original buffer
pointers to notify the originator of the request.

Understanding SCSI Device Driver Internal Commands
During initialization, error recovery, and open or close operations, SCSI device drivers initiate some
transactions not directly related to an operating system request. These transactions are called internal
commands and are relatively simple to handle.

Chapter 12. Small Computer System Interface Subsystem 199

Internal commands differ from operating system-initiated transactions in several ways. The primary
difference is that the SCSI device driver is required to generate a struct buf that is not related to a
specific request. Also, the actual SCSI commands are typically more control-oriented than data
transfer-related.

The only special requirement for commands with short data-phase transfers (less than or equal to 256
bytes) is that the SCSI device driver must have pinned the memory being transferred into or out of system
memory pages. However, due to system hardware considerations, additional precautions must be taken for
data transfers into system memory pages when the transfers are larger than 256 bytes. The problem is
that any system memory area with a DMA data operation in progress causes the entire memory page that
contains it to become inaccessible.

As a result, a SCSI device driver that initiates an internal command with more than 256 bytes must have
preallocated and pinned an area of some multiple whose size is the system page size. The driver must not
place in this area any other data areas that it may need to access while I/O is being performed into or out
of that page. Memory pages so allocated must be avoided by the device driver from the moment the
transaction is passed to the adapter device driver until the device driver iodone routine is called for the
transaction (and for any other transactions to those pages).

Understanding the Execution of Initiator I/O Requests
During normal processing, many transactions are queued in the SCSI device driver. As the SCSI device
driver processes these transactions and passes them to the SCSI adapter device driver, the SCSI device
driver moves them to the in-process queue. When the SCSI adapter device driver returns through the
iodone service with one of these transactions, the SCSI device driver either recovers any errors on the
transaction or returns using the iodone kernel service to the calling level.

The SCSI device driver can send only one sc_buf structure per call to the SCSI adapter device driver.
Thus, the sc_buf.bufstruct.av_forw pointer should be null when given to the SCSI adapter device driver,
which indicates that this is the only request. The SCSI device driver can queue multiple sc_buf requests
by making multiple calls to the SCSI adapter device driver strategy routine.

Spanned (Consolidated) Commands
Some kernel operations might be composed of sequential operations to a device. For example, if
consecutive blocks are written to disk, blocks might or might not be in physically consecutive buffer pool
blocks.

To enhance SCSI bus performance, the SCSI device driver should consolidate multiple queued requests
when possible into a single SCSI command. To allow the SCSI adapter device driver the ability to handle
the scatter and gather operations required, the sc_buf.bp should always point to the first buf structure
entry for the spanned transaction. A null-terminated list of additional struct buf entries should be chained
from the first field through the buf.av_forw field to give the SCSI adapter device driver enough information
to perform the DMA scatter and gather operations required. This information must include at least the
buffer’s starting address, length, and cross-memory descriptor.

The spanned requests should always be for requests in either the read or write direction but not both,
because the SCSI adapter device driver must be given a single SCSI command to handle the requests.
The spanned request should always consist of complete I/O requests (including the additional struct buf
entries). The SCSI device driver should not attempt to use partial requests to reach the maximum transfer
size.

The maximum transfer size is actually adapter-dependent. The IOCINFO ioctl operation can be used to
discover the SCSI adapter device driver’s maximum allowable transfer size. To ease the design,
implementation, and testing of components that might need to interact with multiple SCSI-adapter device

200 Kernel Extensions and Device Support Programming Concepts

drivers, a required minimum size has been established that all SCSI adapter device drivers must be
capable of supporting. The value of this minimum/maximum transfer size is defined as the following value
in the /usr/include/sys/scsi.h file:
SC_MAXREQUEST /* maximum transfer request for a single */

/* SCSI command (in bytes) */

If a transfer size larger than the supported maximum is attempted, the SCSI adapter device driver returns
a value of EINVAL in the sc_buf.bufstruct.b_error field.

Due to system hardware requirements, the SCSI device driver must consolidate only commands that are
memory page-aligned at both their starting and ending addresses. Specifically, this applies to the
consolidation of inner memory buffers. The ending address of the first buffer and the starting address of all
subsequent buffers should be memory page-aligned. However, the starting address of the first memory
buffer and the ending address of the last do not need to be aligned so.

The purpose of consolidating transactions is to decrease the number of SCSI commands and bus phases
required to perform the required operation. The time required to maintain the simple chain of buf structure
entries is significantly less than the overhead of multiple (even two) SCSI bus transactions.

Fragmented Commands
Single I/O requests larger than the maximum transfer size must be divided into smaller requests by the
SCSI device driver. For calls to a SCSI device driver’s character I/O (read/write) entry points, the uphysio
kernel service can be used to break up these requests. For a fragmented command such as this, the
sc_buf.bp field should be null so that the SCSI adapter device driver uses only the information in the
sc_buf structure to prepare for the DMA operation.

Gathered Write Commands
The gathered write commands facilitate communication applications that are required to send header and
trailer messages with data buffers. These headers and trailers are typically the same or similar for each
transfer. Therefore, there might be a single copy of these messages but multiple data buffers.

The gathered write commands, accessed through the sc_buf.resvd1 field, differ from the spanned
commands, accessed through the sc_buf.bp field, in several ways:

v Gathered write commands can transfer data regardless of address alignment, where as spanned
commands must be memory page-aligned in address and length, making small transfers difficult.

v Gathered write commands can be implemented either in software (which requires the extra step of
copying the data to temporary buffers) or hardware. Spanned commands can be implemented in system
hardware due to address-alignment requirements. As a result, spanned commands are potentially faster
to run.

v Gathered write commands are not able to handle read requests. Spanned commands can handle both
read and write requests.

v Gathered write commands can be initiated only on the process level, but spanned commands can be
initiated on either the process or interrupt level.

To execute a gathered write command, the SCSI device driver must:

v Fill in the resvd1 field with a pointer to the uio struct

v Call the SCSI adapter device driver on the same process level with the sc_buf structure in question

v Be attempting a write

v Not have put a non-null value in the sc_buf.bp field

If any of these conditions are not met, the gathered write commands do not succeed and the
sc_buf.bufstruct.b_error is set to EINVAL.

Chapter 12. Small Computer System Interface Subsystem 201

This interface allows the SCSI adapter device driver to perform the gathered write commands in both
software or and hardware as long as the adapter supports this capability. Because the gathered write
commands can be performed in software (by using such kernel services as uiomove), the contents of the
resvd1 field and the uio struct can be altered. Therefore, the caller must restore the contents of both the
resvd1 field and the uio struct before attempting a retry. Also, the retry must occur from the process level;
it must not be performed from the caller’s iodone subroutine.

To support SCSI adapter device drivers that perform the gathered write commands in software, additional
return values in the sc_buf.bufstruct.b_error field are possible when gathered write commands are
unsuccessful.

ENOMEM Error due to lack of system memory to perform copy.
EFAULT Error due to memory copy problem.

Note: The gathered write command facility is optional for both the SCSI device driver and the SCSI
adapter device driver. Attempting a gathered write command to a SCSI adapter device driver that
does not support gathered write can cause a system crash. Therefore, any SCSI device driver must
issue a SCIOGTHW ioctl operation to the SCSI adapter device driver before using gathered writes. A
SCSI adapter device driver that supports gathered writes must support the SCIOGTHW ioctl as well.
The ioctl returns a successful return code if gathered writes are supported. If the ioctl fails, the SCSI
device driver must not attempt a gathered write. Typically, a SCSI device driver places the
SCIOGTHW call in its open routine for device instances that it will send gathered writes to.

SCSI Command Tag Queuing

Note: This operation is not supported by all SCSI I/O controllers.

SCSI command tag queuing refers to queuing multiple commands to a SCSI device. Queuing to the SCSI
device can improve performance because the device itself determines the most efficient way to order and
process commands. SCSI devices that support command tag queuing can be divided into two classes:
those that clear their queues on error and those that do not. Devices that do not clear their queues on
error resume processing of queued commands when the error condition is cleared typically by receiving
the next command. Devices that do clear their queues flush all commands currently outstanding.

Command tag queueing requires the SCSI adapter, the SCSI device, the SCSI device driver, and the SCSI
adapter driver to support this capability. For a SCSI device driver to queue multiple commands to a SCSI
device (that supports command tag queuing), it must be able to provide at least one of the following
values in the sc_buf.q_tag_msg: SC_SIMPLE_Q, SC_HEAD_OF_Q, or SC_ORDERED_Q. The SCSI disk
device driver and SCSI adapter driver do support this capability. This implementation provides some
queuing-specific changeable attributes for disks that can queue commands. With this information, the disk
device driver attempts to queue to the disk, first by queuing commands to the adapter driver. The SCSI
adapter driver then queues these commands to the adapter, providing that the adapter supports command
tag queuing. If the SCSI adapter does not support command tag queuing, then the SCSI adapter driver
sends only one command at a time to the SCSI adapter and so multiple commands are not queued to the
SCSI disk.

Understanding the sc_buf Structure
The sc_buf structure is used for communication between the SCSI device driver and the SCSI adapter
device driver during an initiator I/O request. This structure is passed to and from the strategy routine in the
same way a standard driver uses a struct buf structure.

202 Kernel Extensions and Device Support Programming Concepts

Fields in the sc_buf Structure
The sc_buf structure contains certain fields used to pass a SCSI command and associated parameters to
the SCSI adapter device driver. Other fields within this structure are used to pass returned status back to
the SCSI device driver. The sc_buf structure is defined in the /usr/include/sys/scsi.h file.

Fields in the sc_buf structure are used as follows:

1. Reserved fields should be set to a value of 0, except where noted.

2. The bufstruct field contains a copy of the standard buf buffer structure that documents the I/O
request. Included in this structure, for example, are the buffer address, byte count, and transfer
direction. The b_work field in the buf structure is reserved for use by the SCSI adapter device driver.
The current definition of the buf structure is in the /usr/include/sys/buf.h include file.

3. The bp field points to the original buffer structure received by the SCSI Device Driver from the caller,
if any. This can be a chain of entries in the case of spanned transfers (SCSI commands that transfer
data from or to more than one system-memory buffer). A null pointer indicates a nonspanned transfer.
The null value specifically tells the SCSI adapter device driver that all the information needed to
perform the DMA data transfer is contained in the bufstruct fields of the sc_buf structure. If the bp
field is set to a non-null value, the sc_buf.resvd1 field must have a value of null, or else the operation
is not allowed.

4. The scsi_command field, defined as a scsi structure, contains, for example, the SCSI ID, SCSI
command length, SCSI command, and a flag variable:

a. The scsi_length field is the number of bytes in the actual SCSI command. This is normally 6, 10,
or 12 (decimal).

b. The scsi_id field is the SCSI physical unit ID.

c. The scsi_flags field contains the following bit flags:

SC_NODISC
Do not allow the target to disconnect during this command.

SC_ASYNC
Do not allow the adapter to negotiate for synchronous transfer to the SCSI device.

During normal use, the SC_NODISC bit should not be set. Setting this bit allows a device
executing commands to monopolize the SCSI bus. Sometimes it is desirable for a particular
device to maintain control of the bus once it has successfully arbitrated for it; for instance, when
this is the only device on the SCSI bus or the only device that will be in use. For performance
reasons, it might not be desirable to go through SCSI selections again to save SCSI bus
overhead on each command.

Also during normal use, the SC_ASYNC bit must not be set. It should be set only in cases where
a previous command to the device ended in an unexpected SCSI bus free condition. This
condition is noted as SC_SCSI_BUS_FAULT in the general_card_status field of the sc_cmd
structure. Because other errors might also result in the SC_SCSI_BUS_FAULT flag being set, the
SC_ASYNC bit should only be set on the last retry of the failed command.

d. The sc_cmd structure contains the physical SCSI command block. The 6 to 12 bytes of a single
SCSI command are stored in consecutive bytes, with the op code and logical unit identified
individually. The sc_cmd structure contains the following fields:

v The scsi_op_code field specifies the standard SCSI op code for this command.

v The lun field specifies the standard SCSI logical unit for the physical SCSI device controller.
Typically, there will be one LUN per controller (LUN=0, for example) for devices with imbedded
controllers. Only the upper 3 bits of this field contain the actual LUN ID. If addressing LUN’s 0 -
7, this lun field should always be filled in with the LUN value. When addressing LUN’s 8 - 31,
this lun field should be set to 0 and the LUN value should be placed into the sc_buf.lun field
described in this section.

Chapter 12. Small Computer System Interface Subsystem 203

v The scsi_bytes field contains the remaining command-unique bytes of the SCSI command
block. The actual number of bytes depends on the value in the scsi_op_code field.

v The resvd1 field is set to a non-null value to indicate a request for a gathered write. A gathered
write means the SCSI command conducts a system-to-device data transfer where multiple,
noncontiguous system buffers contain the write data. This data is transferred in order as a
single data transfer for the SCSI command in this sc_buf structure.

The contents of the resvd1 field, if non-null, must be a pointer to the uio structure that is
passed to the SCSI device driver. The SCSI adapter device driver treats the resvd1 field as a
pointer to a uio structure that accesses the iovec structures containing pointers to the data.
There are no address-alignment restrictions on the data in the iovec structures. The only
restriction is that the total transfer length of all the data must not exceed the maximum transfer
length for the adapter device driver.

The sc_buf.bufstruct.b_un.b_addr field, which normally contains the starting system-buffer
address, is ignored and can be altered by the SCSI adapter device driver when the sc_buf is
returned. The sc_buf.bufstruct.b_bcount field should be set by the caller to the total transfer
length for the data.

5. The timeout_value field specifies the time-out limit (in seconds) to be used for completion of this
command. A time-out value of 0 means no time-out is applied to this I/O request.

6. The status_validity field contains an output parameter that can have one of the following bit flags
as a value:

SC_SCSI_ERROR
The scsi_status field is valid.

SC_ADAPTER_ERROR
The general_card_status field is valid.

7. The scsi_status field in the sc_buf structure is an output parameter that provides valid SCSI
command completion status when its status_validity bit is nonzero. The sc_buf.bufstruct.b_error
field should be set to EIO anytime the scsi_status field is valid. Typical status values include:

SC_GOOD_STATUS
The target successfully completed the command.

SC_CHECK_CONDITION
The target is reporting an error, exception, or other conditions.

SC_BUSY_STATUS
The target is currently busy and cannot accept a command now.

SC_RESERVATION_CONFLICT
The target is reserved by another initiator and cannot be accessed.

SC_COMMAND_TERMINATED
The target terminated this command after receiving a terminate I/O process message from
the SCSI adapter.

SC_QUEUE_FULL
The target’s command queue is full, so this command is returned.

8. The general_card_status field is an output parameter that is valid when its status_validity bit is
nonzero. The sc_buf.bufstruct.b_error field should be set to EIO anytime the general_card_status
field is valid. This field contains generic SCSI adapter card status. It is intentionally general in
coverage so that it can report error status from any typical SCSI adapter.

If an error is detected during execution of a SCSI command, and the error prevented the SCSI
command from actually being sent to the SCSI bus by the adapter, then the error should be
processed or recovered, or both, by the SCSI adapter device driver.

If it is recovered successfully by the SCSI adapter device driver, the error is logged, as appropriate,
but is not reflected in the general_card_status byte. If the error cannot be recovered by the SCSI

204 Kernel Extensions and Device Support Programming Concepts

adapter device driver, the appropriate general_card_status bit is set and the sc_buf structure is
returned to the SCSI device driver for further processing.

If an error is detected after the command was actually sent to the SCSI device, then it should be
processed or recovered, or both, by the SCSI device driver.

For error logging, the SCSI adapter device driver logs SCSI bus- and adapter-related conditions,
where as the SCSI device driver logs SCSI device-related errors. In the following description, a
capital letter ″A″ after the error name indicates that the SCSI adapter device driver handles error
logging. A capital letter ″H″ indicates that the SCSI device driver handles error logging.

Some of the following error conditions indicate a SCSI device failure. Others are SCSI bus- or
adapter-related.

SC_HOST_IO_BUS_ERR (A)
The system I/O bus generated or detected an error during a DMA or Programmed I/O (PIO)
transfer.

SC_SCSI_BUS_FAULT (H)
The SCSI bus protocol or hardware was unsuccessful.

SC_CMD_TIMEOUT (H)
The command timed out before completion.

SC_NO_DEVICE_RESPONSE (H)
The target device did not respond to selection phase.

SC_ADAPTER_HDW_FAILURE (A)
The adapter indicated an onboard hardware failure.

SC_ADAPTER_SFW_FAILURE (A)
The adapter indicated microcode failure.

SC_FUSE_OR_TERMINAL_PWR (A)
The adapter indicated a blown terminator fuse or bad termination.

SC_SCSI_BUS_RESET (A)
The adapter indicated the SCSI bus has been reset.

9. When the SCSI device driver queues multiple transactions to a device, the adap_q_status field
indicates whether or not the SCSI adapter driver has cleared its queue for this device after an error
has occurred. The flag of SC_DID_NOT CLEAR_Q indicates that the SCSI adapter driver has not
cleared its queue for this device and that it is in a halted state (so none of the pending queued
transactions are sent to the device).

10. The lun field provides addressability of up to 32 logical units (LUNs). This field specifies the standard
SCSI LUN for the physical SCSI device controller. If addressing LUN’s 0 - 7, both this lun field
(sc_buf.lun) and the lun field located in the scsi_command structure
(sc_buf.scsi_command.scsi_cmd.lun) should be set to the LUN value. If addressing LUN’s 8 - 31,
this lun field (sc_buf.lun) should be set to the LUN value and the lun field located in the
scsi_command structure (sc_buf.scsi_command.scsi_cmd.lun) should be set to 0.

Logical Unit Numbers (LUNs)

lun Fields LUN 0 - 7 LUN 8 - 31

sc_buf.lun LUN Value LUN Value

sc_buf.scsi_command.scsi_cmd.lun LUN Value 0

Note: LUN value is the current value of LUN.

11. The q_tag_msg field indicates if the SCSI adapter can attempt to queue this transaction to the device.
This information causes the SCSI adapter to fill in the Queue Tag Message Code of the queue tag
message for a SCSI command. The following values are valid for this field:

Chapter 12. Small Computer System Interface Subsystem 205

SC_NO_Q
Specifies that the SCSI adapter does not send a queue tag message for this command, and
so the device does not allow more than one SCSI command on its command queue. This
value must be used for all commands sent to SCSI devices that do not support command tag
queuing.

SC_SIMPLE_Q
Specifies placing this command in the device’s command queue. The device determines the
order that it executes commands in its queue. The SCSI-2 specification calls this value the
″Simple Queue Tag Message.″

SC_HEAD_OF_Q
Specifies placing this command first in the device’s command queue. This command does not
preempt an active command at the device, but it is executed before all other commands in
the command queue. The SCSI-2 specification calls this value the ″Head of Queue Tag
Message.″

SC_ORDERED_Q
Specifies placing this command in the device’s command queue. The device processes these
commands in the order that they are received. The SCSI-2 specification calls this value the
″Ordered Queue Tag Message.″

Note: Commands with the value of SC_NO_Q for the q_tag_msg field (except for request sense
commands) should not be queued to a device whose queue contains a command with another
value for q_tag_msg. If commands with the SC_NO_Q value (except for request sense) are
sent to the device, then the SCSI device driver must make sure that no active commands are
using different values for q_tag_msg. Similarly, the SCSI device driver must also make sure that
a command with a q_tag_msg value of SC_ORDERED_Q, SC_HEAD_Q, or SC_SIMPLE_Q is
not sent to a device that has a command with the q_tag_msg field of SC_NO_Q.

12. The flags field contains bit flags sent from the SCSI device driver to the SCSI adapter device driver.
The following flags are defined:

SC_RESUME
When set, means the SCSI adapter device driver should resume transaction queuing for this
ID/LUN. Error recovery is complete after a SCIOHALT operation, check condition, or severe
SCSI bus error. This flag is used to restart the SCSI adapter device driver following a
reported error.

SC_DELAY_CMD
When set, means the SCSI adapter device driver should delay sending this command
(following a SCSI reset or BDR to this device) by at least the number of seconds specified to
the SCSI adapter device driver in its configuration information. For SCSI devices that do not
require this function, this flag should not be set.

SC_Q_CLR
When set, means the SCSI adapter driver should clear its transaction queue for this ID/LUN.
The transaction containing this flag setting does not require an actual SCSI command in the
sc_buf because it is flushed back to the SCSI device driver with the rest of the transactions
for this ID/LUN. However, this transaction must have the SCSI ID field
(sc_buf.scsi_command.scsi_id) and the LUN fields (sc_buf.scsi_command.scsi_cmd.lun and
sc_buf.lun) filled in with the device’s SCSI ID and logical unit number (LUN). This flag is
valid only during error recovery of a check condition or command terminated at a command
tag queuing device when the SC_DID_NOT_CLR_Q flag is set in the sc_buf.adap_q_status
field.

Note: When addressing LUN’s 8 - 31, be sure to see the description of the sc_buf.lun field
within the sc_buf structure.

206 Kernel Extensions and Device Support Programming Concepts

SC_Q_RESUME
When set, means that the SCSI adapter driver should resume its halted transaction queue for
this ID/LUN. The transaction containing this flag setting does not require an actual SCSI
command to be sent to the SCSI adapter driver. However, this transaction must have the
sc_buf.scsi_command.scsi_id and sc_buf.scsi_command.scsi_cmd.lun fields filled in with the
device’s SCSI ID and logical unit number. If the transaction containing this flag setting is the
first issued by the SCSI device driver after it receives an error (indicating that the adapter
driver’s queue is halted), then the SC_RESUME flag must be set also.

Note: When addressing LUN’s 8 - 31, be sure to see the description of the sc_buf.lun field
within the sc_buf structure.

Other SCSI Design Considerations
The following topics cover design considerations of SCSI device and adapter device drivers:

v Responsibilities of the SCSI Device Driver

v SCSI Options to the openx Subroutine

v Using the SC_FORCED_OPEN Option

v Using the SC_RETAIN_RESERVATION Option

v Using the SC_DIAGNOSTIC Option

v Using the SC_NO_RESERVE Option

v Using the SC_SINGLE Option

v Closing the SCSI Device

v SCSI Error Processing

v Device Driver and Adapter Device Driver Interfaces

v Performing SCSI Dumps

Responsibilities of the SCSI Device Driver
SCSI device drivers are responsible for the following actions:

v Interfacing with block I/O and logical-volume device-driver code in the operating system.

v Translating I/O requests from the operating system into SCSI commands suitable for the particular SCSI
device. These commands are then given to the SCSI adapter device driver for execution.

v Issuing any and all SCSI commands to the attached device. The SCSI adapter device driver sends no
SCSI commands except those it is directed to send by the calling SCSI device driver.

v Managing SCSI device reservations and releases. In the operating system, it is assumed that other
SCSI initiators might be active on the SCSI bus. Usually, the SCSI device driver reserves the SCSI
device at open time and releases it at close time (except when told to do otherwise through parameters
in the SCSI device driver interface). Once the device is reserved, the SCSI device driver must be
prepared to reserve the SCSI device again whenever a Unit Attention condition is reported through the
SCSI request-sense data.

SCSI Options to the openx Subroutine
SCSI device drivers in the operating system must support eight defined extended options in their open
routine (that is, an openx subroutine). Additional extended options to the open are also allowed, but they
must not conflict with predefined open options. The defined extended options are bit flags in the ext open
parameter. These options can be specified singly or in combination with each other. The required ext
options are defined in the /usr/include/sys/scsi.h header file and can have one of the following values:

SC_FORCED_OPEN Do not honor device reservation-conflict status.
SC_RETAIN_RESERVATION Do not release SCSI device on close.
SC_DIAGNOSTIC Enter diagnostic mode for this device.

Chapter 12. Small Computer System Interface Subsystem 207

SC_NO_RESERVE Prevents the reservation of the device during an openx subroutine call to
that device. Allows multiple hosts to share a device.

SC_SINGLE Places the selected device in Exclusive Access mode.
SC_RESV_05 Reserved for future expansion.
SC_RESV_07 Reserved for future expansion.
SC_RESV_08 Reserved for future expansion.

Using the SC_FORCED_OPEN Option
The SC_FORCED_OPEN option causes the SCSI device driver to call the SCSI adapter device driver’s
Bus Device Reset ioctl (SCIORESET) operation on the first open. This forces the device to release
another initiator’s reservation. After the SCIORESET command is completed, other SCSI commands are
sent as in a normal open. If any of the SCSI commands fail due to a reservation conflict, the open
registers the failure as an EBUSY status. This is also the result if a reservation conflict occurs during a
normal open. The SCSI device driver should require the caller to have appropriate authority to request the
SC_FORCED_OPEN option because this request can force a device to drop a SCSI reservation. If the
caller attempts to initiate this system call without the proper authority, the SCSI device driver should return
a value of -1, with the errno global variable set to a value of EPERM.

Using the SC_RETAIN_RESERVATION Option
The SC_RETAIN_RESERVATION option causes the SCSI device driver not to issue the SCSI release
command during the close of the device. This guarantees a calling program control of the device (using
SCSI reservation) through open and close cycles. For shared devices (for example, disk or CD-ROM), the
SCSI device driver must OR together this option for all opens to a given device. If any caller requests this
option, the close routine does not issue the release even if other opens to the device do not set
SC_RETAIN_RESERVATION. The SCSI device driver should require the caller to have appropriate
authority to request the SC_RETAIN_RESERVATION option because this request can allow a program to
monopolize a device (for example, if this is a nonshared device). If the caller attempts to initiate this
system call without the proper authority, the SCSI device driver should return a value of -1, with the errno
global variable set to a value of EPERM.

Using the SC_DIAGNOSTIC Option
The SC_DIAGNOSTIC option causes the SCSI device driver to enter Diagnostic mode for the given
device. This option directs the SCSI device driver to perform only minimal operations to open a logical
path to the device. No SCSI commands should be sent to the device in the open or close routine when
the device is in Diagnostic mode. One or more ioctl operations should be provided by the SCSI device
driver to allow the caller to issue SCSI commands to the attached device for diagnostic purposes.

The SC_DIAGNOSTIC option gives the caller an exclusive open to the selected device. This option
requires appropriate authority to run. If the caller attempts to initiate this system call without the proper
authority, the SCSI device driver should return a value of -1, with the errno global variable set to a value
of EPERM. The SC_DIAGNOSTIC option may be run only if the device is not already opened for normal
operation. If this ioctl operation is attempted when the device is already opened, or if an openx call with
the SC_DIAGNOSTIC option is already in progress, a return value of -1 should be passed, with the errno
global variable set to a value of EACCES. Once successfully opened with the SC_DIAGNOSTIC flag, the
SCSI device driver is placed in Diagnostic mode for the selected device.

Using the SC_NO_RESERVE Option
The SC_NO_RESERVE option causes the SCSI device driver not to issue the SCSI reserve command
during the opening of the device and not to issue the SCSI release command during the close of the
device. This allows multiple hosts to share the device. The SCSI device driver should require the caller to
have appropriate authority to request the SC_NO_RESERVE option, because this request allows other
hosts to modify data on the device. If a caller does this kind of request then the caller must ensure data

208 Kernel Extensions and Device Support Programming Concepts

integrity between multiple hosts. If the caller attempts to initiate this system call without the proper
authority, the SCSI device driver should return a value of -1, with the errno global variable set to a value
of EPERM.

Using the SC_SINGLE Option
The SC_SINGLE option causes the SCSI device driver to issue a normal open, but does not allow another
caller to issue another open until the first caller has closed the device. This request gives the caller an
exclusive open to the selected device. If this openx is attempted when the device is already open, a return
value of -1 is passed, with the errno global variable set to a value of EBUSY.

Once sucessfully opened, the device is placed in Exclusive Access mode. If another caller tries to do any
type of open, a return value of -1 is passed, with the errno global variable set to a value of EACCES.

The remaining options for the ext parameter are reserved for future requirements.

Implementation note: The following table shows how the various combinations of ext options should be
handled in the SCSI device driver.

EXT OPTIONS openx ext option Device Driver Action

none Open: normal. Close: normal.

diag Open: no SCSI commands. Close: no SCSI commands.

diag + force Open: issue SCIORESET otherwise, no SCSI commands
issued. Close: no SCSI commands.

diag + force + no_reserve Open: issue SCIORESET; otherwise, no SCSI commands
isssued. Close: no SCSI commands.

diag + force + no_reserve + single Open: issue SCIORESET; otherwise, no SCSI commands
isssued. Close: no SCSI commands.

diag + force +retain Open: issue SCIORESET; otherwise, no SCSI commands
issued. Close: no SCSI commands.

diag + force +retain + no_reserve Open: issue SCIORESET; otherwise, no SCSI commands
issued. Close: no SCSI commands.

diag + force +retain + no_reserve + single Open: issue SCIORESET; otherwise, no SCSI commands
issued. Close: no SCSI commands.

diag + force +retain + single Open: issue SCIORESET; otherwise, no SCSI commands
issued. Close: no SCSI commands.

diag + force + single Open: issue SCIORESET; otherwise, no SCSI commands
issued. Close: no SCSI commands.

diag+no_reserve Open: no SCSI commands. Close: no SCSI commands.

diag + retain Open: no SCSI commands. Close: no SCSI commands.

diag + retain + no_reserve Open: no SCSI commands. Close: no SCSI commands.

diag + retain + no_reserve + single Open: no SCSI commands. Close: no SCSI commands.

diag + retain + single Open: no SCSI commands. Close: no SCSI commands.

diag + single Open: no SCSI commands. Close: no SCSI commands.

diag + single + no_reserve Open: no SCSI commands. Close: no SCSI commands.

force Open: normal, except SCIORESET issued prior toany
SCSI commands. Close: normal.

force + no_reserve Open: normal except SCIORESET issued prior to any
SCSI commands. No RESERVE command issued. Close:
normal except no RELEASE.

Chapter 12. Small Computer System Interface Subsystem 209

EXT OPTIONS openx ext option Device Driver Action

force + retain Open: normal, except SCIORESET issued prior to any
SCSI commands. Close: no RELEASE.

force + retain + no_reserve Open: normal except SCIORESET issued prior to any
SCSI commands. No RESERVE command issued. Close:
no RELEASE.

force + retain + no_reserve + single Open: normal except SCIORESET issued prior to any
SCSI commands. No RESERVE command issued. Close:
no RELEASE.

force + retain + single Open: normal except SCIORESET issued prior to any
SCSI commands. Close: no RELEASE.

force + single Open: normal except SCIORESETissued prior to any
SCSI commands. Close: normal.

force + single + no_reserve Open: normal except SCIORESET issued prior to any
SCSI commands. No RESERVE command issued. Close:
no RELEASE.

no_reserve Open: no RESERVE. Close: no RELEASE.

retain Open: normal. Close: no RELEASE.

retain + no_reserve Open: no RESERVE. Close: no RELEASE.

retain + single Open: normal. Close: no RELEASE.

retain + single + no_reserve Open: normal except no RESERVE command issued.
Close: no RELEASE.

single Open: normal. Close: normal.

single + no_reserve Open: no RESERVE. Close: no RELEASE.

Closing the SCSI Device
When a SCSI device driver is preparing to close a device through the SCSI adapter device driver, it must
ensure that all transactions are complete. When the SCSI adapter device driver receives a SCIOSTOP
ioctl operation and there are pending I/O requests, the ioctl operation does not return until all have
completed. New requests received during this time are rejected from the adapter device driver’s
ddstrategy routine.

When the SCSI adapter device driver receives an SCIOSTOPTGT ioctl operation, it must forcibly free any
receive data buffers that have been queued to the SCSI device driver for this device and have not been
returned to the SCSI adapter device driver through the buffer free routine. The SCSI device driver is
responsible for making sure all the receive data buffers are freed before calling the SCIOSTOPTGT ioctl
operation. However, the SCSI adapter device driver must check that this is done, and, if necessary,
forcibly free the buffers. The buffers must be freed because those not freed result in memory areas being
permanently lost to the system (until the next boot).

To allow the SCSI adapter device driver to free buffers that are sent to the SCSI device driver but never
returned, it must track which tm_bufs are currently queued to the SCSI device driver. Tracking tm_bufs
requires the SCSI adapter device driver to violate the general SCSI rule, which states the SCSI adapter
device driver should not modify the tm_bufs structure while it is queued to the SCSI device driver. This
exception to the rule is necessary because it is never acceptable not to free memory allocated from the
system.

210 Kernel Extensions and Device Support Programming Concepts

SCSI Error Processing
It is the responsibility of the SCSI device driver to process SCSI check conditions and other returned
errors properly. The SCSI adapter device driver only passes SCSI commands without otherwise
processing them and is not responsible for device error recovery.

Device Driver and Adapter Device Driver Interfaces
The SCSI device drivers can have both character (raw) and block special files in the /dev directory. The
SCSI adapter device driver has only character (raw) special files in the /dev directory and has only the
ddconfig, ddopen, ddclose, dddump, and ddioctl entry points available to operating system programs.
The ddread and ddwrite entry points are not implemented.

Internally, the devsw table has entry points for the ddconfig, ddopen, ddclose, dddump, ddioctl, and
ddstrategy routines. The SCSI device drivers pass their SCSI commands to the SCSI adapter device
driver by calling the SCSI adapter device driver ddstrategy routine. (This routine is unavailable to other
operating system programs due to the lack of a block-device special file.)

Access to the SCSI adapter device driver’s ddconfig, ddopen, ddclose, dddump, ddioctl, and
ddstrategy entry points by the SCSI device drivers is performed through the kernel services provided.
These include such services as fp_opendev, fp_close, fp_ioctl, devdump, and devstrategy.

Performing SCSI Dumps
A SCSI adapter device driver must have a dddump entry point if it is used to access a system dump
device. A SCSI device driver must have a dddump entry point if it drives a dump device. Examples of
dump devices are disks and tapes.

Note: SCSI adapter-device-driver writers should be aware that system services providing interrupt and
timer services are unavailable for use in the dump routine. Kernel DMA services are assumed to be
available for use by the dump routine. The SCSI adapter device driver should be designed to ignore
extra DUMPINIT and DUMPSTART commands to the dddump entry point.

The DUMPQUERY option should return a minimum transfer size of 0 bytes, and a maximum transfer size
equal to the maximum transfer size supported by the SCSI adapter device driver.

Calls to the SCSI adapter device driver DUMPWRITE option should use the arg parameter as a pointer to
the sc_buf structure to be processed. Using this interface, a SCSI write command can be run on a
previously started (opened) target device. The uiop parameter is ignored by the SCSI adapter device
driver during the DUMPWRITE command. Spanned, or consolidated, commands are not supported using
the DUMPWRITE option. Gathered write commands are also not supported using the DUMPWRITE
option. No queuing of sc_buf structures is supported during dump processing because the dump routine
runs essentially as a subroutine call from the caller’s dump routine. Control is returned when the entire
sc_buf structure has been processed.

Attention: Also, both adapter-device-driver and device-driver writers should be aware that any error
occurring during the DUMPWRITE option is considered unsuccessful. Therefore, no error recovery is
employed during the DUMPWRITE. Return values from the call to the dddump routine indicate the
specific nature of the failure.

Successful completion of the selected operation is indicated by a 0 return value to the subroutine.
Unsuccessful completion is indicated by a return code set to one of the following values for the errno
global variable. The various sc_buf status fields, including the b_error field, are not set by the SCSI
adapter device driver at completion of the DUMPWRITE command. Error logging is, of necessity, not
supported during the dump.

Chapter 12. Small Computer System Interface Subsystem 211

v An errno value of EINVAL indicates that a request that was not valid passed to the SCSI adapter
device driver, such as to attempt a DUMPSTART command before successfully executing a DUMPINIT
command.

v An errno value of EIO indicates that the SCSI adapter device driver was unable to complete the
command due to a lack of required resources or an I/O error.

v An errno value of ETIMEDOUT indicates that the adapter did not respond with completion status before
the passed command time-out value expired.

SCSI Target-Mode Overview

Note: This operation is not supported by all SCSI I/O controllers.

The SCSI target-mode interface is intended to be used with the SCSI initiator-mode interface to provide
the equivalent of a full-duplex communications path between processor type devices. Both communicating
devices must support target-mode and initiator-mode. To work with the SCSI subsystem in this manner, an
attached device’s target-mode and initiator-mode interfaces must meet certain minimum requirements:

v The device’s target-mode interface must be capable of receiving and processing at least the following
SCSI commands:

– send

– request sense

– inquiry

The data returned by the inquiry command must set the peripheral device type field to processor
device. The device should support the vendor and product identification fields. Additional functional
SCSI requirements, such as SCSI message support, must be addressed by examining the detailed
functional specification of the SCSI initiator that the target-mode device is attached to.

v The attached device’s initiator mode interface must be capable of sending the following SCSI
commands:

– send

– request sense

In addition, the inquiry command should be supported by the attached initiator if it needs to identify
SCSI target devices. Additional functional SCSI requirements, such as SCSI message support, must be
addressed by examining the detailed functional specification of the SCSI target that the initiator-mode
device is attached to.

Configuring and Using SCSI Target Mode
The adapter, acting as either a target or initiator device, requires its own SCSI ID. This ID, as well as the
IDs of all attached devices on this SCSI bus, must be unique and between 0 and 7, inclusive. Because
each device on the bus must be at a unique ID, the user must complete any installation and configuration
of the SCSI devices required to set the correct IDs before physically cabling the devices together. Failure
to do so will produce unpredictable results.

SCSI target mode in the SCSI subsystem does not attempt to implement any receive-data protocol, with
the exception of actions taken to prevent an application from excessive receive-data-buffer usage. Any
protocol required to maintain or otherwise manage the communications of data must be implemented in
user-supplied programs. The only delays in receiving data are those inherent in the SCSI subsystem and
the hardware environment in which it operates.

The SCSI target mode is capable of simultaneously receiving data from all attached SCSI IDs using SCSI
send commands. In target-mode, the host adapter is assumed to act as a single SCSI Logical Unit
Number (LUN) at its assigned SCSI ID. Therefore, only one logical connection is possible between each
attached SCSI initiator on the SCSI Bus and the host adapter. The SCSI subsystem is designed to be fully
capable of simultaneously sending SCSI commands in initiator-mode while receiving data in target-mode.

212 Kernel Extensions and Device Support Programming Concepts

Managing Receive-Data Buffers
In the SCSI subsystem target-mode interface, the SCSI adapter device driver is responsible for managing
the receive-data buffers versus the SCSI device driver because the buffering is dependent upon how the
adapter works. It is not possible for the SCSI device driver to run a single approach that is capable of
making full use of the performance advantages of various adapters’ buffering schemes. With the SCSI
adapter device driver layer performing the buffer management, the SCSI device driver can be interfaced to
a variety of adapter types and can potentially get the best possible performance out of each adapter. This
approach also allows multiple SCSI target-mode device drivers to be run on top of adapters that use a
shared-pool buffer management scheme. This would not be possible if the target-mode device drivers
managed the buffers.

Understanding Target-Mode Data Pacing
Because it is possible for the attached initiator device to send data faster than the host operating system
and associated application can process it, eventually the situation arises in which all buffers for this device
instance are in use at the same time. There are two possible scenarios:

v The previous send command has been received by the adapter, but there is no space for the next send
command.

v The send command is not yet completed, and there is no space for the remaining data.

In both cases, the combination of the SCSI adapter device driver and the SCSI adapter must be capable
of stopping the flow of data from the initiator device.

SCSI Adapter Device Driver
The adapter can handle both cases described previously by simply accepting the send command (if newly
received) and then disconnecting during the data phase. When buffer space becomes available, the SCSI
adapter reconnects and continues the data transfer. As an alternative, when handling a newly received
command, a check condition can be given back to the initiator to indicate a lack of resources. The
implementation of this alternative is adapter-dependent. The technique of accepting the command and
then disconnecting until buffer space is available should result in better throughput, as it avoids both a
request sense command and the retry of the send command.

For adapters allowing a shared pool of buffers to be used for all attached initiators’ data transfers, an
additional problem can result. If any single initiator instance is allowed to transfer data continually, the
entire shared pool of buffers can fill up. These filled-up buffers prevent other initiator instances from
transferring data. To solve this problem, the combination of the SCSI adapter device driver and the host
SCSI adapter must stop the flow of data from a particular initiator ID on the bus. This could include
disconnecting during the data phase for a particular ID but allowing other IDs to continue data transfer.
This could begin when the number of tm_buf structures on a target-mode instance’s tm_buf queue equals
the number of buffers allocated for this device. When a threshold percentage of the number of buffers is
processed and returned to the SCSI adapter device driver’s buffer-free routine, the ID can be enabled
again for the continuation of data transfer.

SCSI Device Driver
The SCSI device driver can optionally be informed by the SCSI adapter device driver whenever all buffers
for this device are in use. This is known as a maximum-buffer-usage event. To pass this information, the
SCSI device driver must be registered for notification of asynchronous event status from the SCSI adapter
device driver. Registration is done by calling the SCSI adapter device-driver ioctl entry point with the
SCIOEVENT operation. If registering for event notification, the SCSI device driver receives notification of
all asynchronous events, not just the maximum buffer usage event.

Chapter 12. Small Computer System Interface Subsystem 213

Understanding the SCSI Target Mode Device Driver Receive Buffer
Routine
The SCSI target-mode device-driver receive buffer routine must be a pinned routine that the SCSI
adapter device driver can directly address. This routine is called directly from the SCSI adapter device
driver hardware interrupt handling routine. The SCSI device driver writer must be aware of how this routine
affects the design of the SCSI device driver.

First, because the receive buffer routine is running on the hardware interrupt level, the SCSI device driver
must limit operations in order to limit routine processing time. In particular, the data copy, which occurs
because the data is queued ahead of the user read request, must not occur in the receive buffer routine.
Data copying in this routine will adversely affect system response time. Data copy is best performed in a
process level SCSI device-driver routine. This routine sleeps, waiting for data, and is awakened by the
receive buffer routine. Typically, this process level routine is the SCSI device driver’s read routine.

Second, the receive buffer routine is called at the SCSI adapter device driver hardware interrupt level, so
care must be taken when disabling interrupts. They must be disabled to the correct level in places in the
SCSI device driver’s lower run priority routines, which manipulate variables also modified in the receive
buffer routine. To allow the SCSI device driver to disable to the correct level, the SCSI adapter
device-driver writer must provide a configuration database attribute, named intr_priority, that defines the
interrupt class, or priority, that the adapter runs on. The SCSI device-driver configuration method should
pass this attribute to the SCSI device driver along with other configuration data for the device instance.

Third, the SCSI device-driver writer must follow any other general system rules for writing a routine that
must run in an interrupt environment. For example, the routine must not attempt to sleep or wait on I/O
operations. It can perform wake-up calls to allow the process level to handle those operations.

Duties of the SCSI device driver receive buffer routine include:

v Matching the data with the appropriate target-mode instance.

v Queuing the tm_buf structures to the appropriate target-mode instance.

v Waking up the process-level routine for further processing of the received data.

After the tm_buf structure has been passed to the SCSI device driver receive buffer routine, the SCSI
device driver is considered to be responsible for it. Responsibilities include processing the data and any
error conditions and also maintaining the next pointer for chained tm_buf structures. The SCSI device
driver’s responsibilities for the tm_buf structures end when it passes the structure back to the SCSI
adapter device driver.

Until the tm_buf structure is again passed to the SCSI device driver receive buffer routine, the SCSI
adapter device driver is considered responsible for it. The SCSI adapter device-driver writer must be
aware that during the time the SCSI device driver is responsible for the tm_buf structure, it is still possible
for the SCSI adapter device driver to access the structure’s contents. Access is possible because only one
copy of the structure is in memory, and only a pointer to the structure is passed to the SCSI device driver.

Note: Under no circumstances should the SCSI adapter device driver access the structure or modify its
contents while the SCSI device driver is responsible for it, or the other way around.

It is recommended that the SCSI device-driver writer implement a threshold level to wake up the process
level with available tm_buf structures. This way, processing for some of the buffers, including copying the
data to the user buffer, can be overlapped with time spent waiting for more data. It is also recommended
the writer implement a threshold level for these buffers to handle cases where the send command data
length exceeds the aggregate receive-data buffer space. A suggested threshold level is 25% of the
device’s total buffers. That is, when 25% or more of the number of buffers allocated for this device is
queued and no end to the send command is encountered, the SCSI device driver receive buffer routine
should wake the process level to process these buffers.

214 Kernel Extensions and Device Support Programming Concepts

Understanding the tm_buf Structure
The tm_buf structure is used for communication between the SCSI device driver and the SCSI adapter
device driver for a target-mode received-data buffer. The tm_buf structure is passed by pointer directly to
routines whose entry points have been registered through the SCIOSTARTTGT ioctl operation of the SCSI
adapter device driver. The SCSI device driver is required to call this ioctl operation when opening a
target-mode device instance.

Fields in the tm_buf Structure
The tm_buf structure contains certain fields used to pass a received data buffer from the SCSI adapter
device driver to the SCSI device driver. Other fields are used to pass returned status back to the SCSI
device driver. After processing the data, the tm_buf structure is passed back from the SCSI device driver
to the SCSI adapter device driver to allow the buffer to be reused. The tm_buf structure is defined in the
/usr/include/sys/scsi.h file and contains the following fields:

Note: Reserved fields must not be modified by the SCSI device driver, unless noted otherwise.
Nonreserved fields can be modified, except where noted otherwise.

1. The tm_correlator field is an optional field for the SCSI device driver. This field is a copy of the field
with the same name that was passed by the SCSI device driver in the SCIOSTARTTGT ioctl. The
SCSI device driver should use this field to speed the search for the target-mode device instance the
tm_buf structure is associated with. Alternatively, the SCSI device driver can combine the
tm_buf.user_id and tm_buf.adap_devno fields to find the associated device.

2. The adap_devno field is the device major and minor numbers of the adapter instance on which this
target mode device is defined. This field can be used to find the particular target-mode instance the
tm_buf structure is associated with.

Note: The SCSI device driver must not modify this field.

3. The data_addr field is the kernel space address where the data begins for this buffer.

4. The data_len field is the length of valid data in the buffer starting at the tm_buf.data_addr location in
memory.

5. The user_flag field is a set of bit flags that can be set to communicate information about this data
buffer to the SCSI device driver. Except where noted, one or more of the following flags can be set:

TM_HASDATA
Set to indicate a valid tm_buf structure

TM_MORE_DATA
Set if more data is coming (that is, more tm_buf structures) for a particular send command.
This is only possible for adapters that support spanning the send command data across
multiple receive buffers. This flag cannot be used with the TM_ERROR flag.

TM_ERROR
Set if any error occurred on a particular send command. This flag cannot be used with the
TM_MORE_DATA flag.

6. The user_id field is set to the SCSI ID of the initiator that sent the data to this target mode instance. If
more than one adapter is used for target mode in this system, this ID might not be unique. Therefore,
this field must be used in combination with the tm_buf.adap_devno field to find the target-mode
instance this ID is associated with.

Note: The SCSI device driver must not modify this field.

7. The status_validity field contains the following bit flag:

SC_ADAPTER_ERROR
Indicates the tm_buf.general_card_status is valid.

8. The general_card_status field is a returned status field that gives a broad indication of the class of
error encountered by the adapter. This field is valid when its status-validity bit is set in the

Chapter 12. Small Computer System Interface Subsystem 215

tm_buf.status_validity field. The definition of this field is the same as that found in the sc_buf
structure definition, except the SC_CMD_TIMEOUT value is not possible and is never returned for a
target-mode transfer.

9. The next field is a tm_buf pointer that is either null, meaning this is the only or last tm_buf structure,
or else contains a non-null pointer to the next tm_buf structure.

Understanding the Running of SCSI Target-Mode Requests
The target-mode interface provided by the SCSI subsystem is designed to handle data reception from
SCSI send commands. The host SCSI adapter acts as a secondary device that waits for an attached
initiator device to issue a SCSI send command. The SCSI send command data is received by buffers
managed by the SCSI adapter device driver. The tm_buf structure is used to manage individual buffers.
For each buffer of data received from an attached initiator, the SCSI adapter device driver passes a
tm_buf structure to the SCSI device driver for processing. Multiple tm_buf structures can be linked
together and passed to the SCSI device driver at one time. When the SCSI device driver has processed
one or more tm_buf structures, it passes the tm_buf structures back to the SCSI adapter device driver so
they can be reused.

Detailed Running of Target-Mode Requests
When a send command is received by the host SCSI adapter, data is placed in one or more receive-data
buffers. These buffers are made available to the adapter by the SCSI adapter device driver. The procedure
by which the data gets from the SCSI bus to the system-memory buffer is adapter-dependent. The SCSI
adapter device driver takes the received data and updates the information in one or more tm_buf
structures in order to identify the data to the SCSI device driver. This process includes filling the
tm_correlator, adap_devno, data_addr, data_len, user_flag, and user_id fields. Error status information is
put in the status_validity and general_card_status fields. The next field is set to null to indicate this is
the only element, or set to non-null to link multiple tm_buf structures. If there are multiple tm_buf
structures, the final tm_buf.next field is set to null to end the chain. If there are multiple tm_buf structures
and they are linked, they must all be from the same initiator SCSI ID. The tm_buf.tm_correlator field, in
this case, has the same value as it does in the SCIOSTARTTGT ioctl operation to the SCSI adapter
device driver. The SCSI device driver should use this field to speed the search for the target-mode
instance designated by this tm_buf structure. For example, when using the value of tm_buf.tm_correlator
as a pointer to the device-information structure associated with this target-mode instance.

Each send command, no matter how short its data length, requires its own tm_buf structure. For host
SCSI adapters capable of spanning multiple receive-data buffers with data from a single send command,
the SCSI adapter device driver must set the TM_MORE_DATA flag in the tm_buf.user_flag fields of all
but the final tm_buf structure holding data for the send command. The SCSI device driver must be
designed to support the TM_MORE_DATA flag. Using this flag, the target-mode SCSI device driver can
associate multiple buffers with the single transfer they represent. The end of a send command will be the
boundary used by the SCSI device driver to satisfy a user read request.

The SCSI adapter device driver is responsible for sending the tm_buf structures for a particular initiator
SCSI ID to the SCSI device driver in the order they were received. The SCSI device driver is responsible
for processing these tm_buf structures in the order they were received. There is no particular ordering
implied in the processing of simultaneous send commands from different SCSI IDs, as long as the data
from an individual SCSI ID’s send command is processed in the order it was received.

The pointer to the tm_buf structure chain is passed by the SCSI adapter device driver to the SCSI device
driver’s receive buffer routine. The address of this routine is registered with the SCSI adapter device driver
by the SCSI device driver using the SCIOSTARTTGT ioctl. The duties of the receive buffer routine include
queuing the tm_buf structures and waking up a process-level routine (typically the SCSI device driver’s
read routine) to process the received data.

When the process-level SCSI device driver routine finishes processing one or more tm_buf structures, it
passes them to the SCSI adapter device driver’s buffer-free routine. The address of this routine is

216 Kernel Extensions and Device Support Programming Concepts

registered with the SCSI device driver in an output field in the structure passed to the SCSI adapter device
driver SCIOSTARTTGT ioctl operation. The buffer-free routine must be a pinned routine the SCSI device
driver can directly access. The buffer-free routine is typically called directly from the SCSI device driver
buffer-handling routine. The SCSI device driver chains one or more tm_buf structures by using the next
field (a null value for the last tm_buf next field ends the chain). It then passes a pointer, which points to
the head of the chain, to the SCSI adapter device driver buffer-free routine. These tm_buf structures must
all be for the same target-mode instance. Also, the SCSI device driver must not modify the tm_buf.user_id
or tm_buf.adap_devno field.

The SCSI adapter device driver takes the tm_buf structures passed to its buffer-free routine and attempts
to make the described receive buffers available to the adapter for future data transfers. Because it is
desirable to keep as many buffers as possible available to the adapter, the SCSI device driver should pass
processed tm_buf structures to the SCSI-adapter device driver’s buffer-free routine as quickly as possible.
The writer of a SCSI device driver should avoid requiring the last buffer of a send command to be
received before processing buffers, as this could cause a situation where all buffers are in use and the
send command has not completed. It is recommended that the writer therefore place a threshold of 25%
on the free buffers. That is, when 25% or more of the number of buffers allocated for this device have
been processed and the send command is not completed, the SCSI device driver should free the
processed buffers by passing them to the SCSI adapter device driver’s buffer-free routine.

Required SCSI Adapter Device Driver ioctl Commands
Various ioctl operations must be performed for proper operation of the SCSI adapter device driver. The
ioctl operations described here are the minimum set of commands the SCSI adapter device driver must
implement to support SCSI device drivers. Other operations might be required in the SCSI adapter device
driver to support, for example, system management facilities and diagnostics. SCSI device driver writers
also need to understand these ioctl operations.

Every SCSI adapter device driver must support the IOCINFO ioctl operation. The structure to be returned
to the caller is the devinfo structure, including the scsi union definition for the SCSI adapter, which can be
found in the /usr/include/sys/devinfo.h file. The SCSI device driver should request the IOCINFO ioctl
operation (probably during its open routine) to get the maximum transfer size of the adapter.

Note: The SCSI adapter device driver ioctl operations can only be called from the process level. They
cannot be run from a call on any more favored priority levels. Attempting to call them from a more
favored priority level can result in a system crash.

Initiator-Mode ioctl Commands
The following SCIOSTART and SCIOSTOP operations must be sent by the SCSI device driver (for the
open and close routines, respectively) for each device. They cause the SCSI adapter device driver to
allocate and initialize internal resources. The SCIOHALT ioctl operation is used to abort pending or
running commands, usually after signal processing by the SCSI device driver. This might be used by a
SCSI device driver to end an operation instead of waiting for completion or a time out. The SCIORESET
operation is provided for clearing device hard errors and competing initiator reservations during open
processing by the SCSI device driver. The SCIOGTHW operation is supported by SCSI adapter device
drivers that support gathered write commands to target devices.

Except where noted otherwise, the arg parameter for each of the ioctl operations described here must
contain a long integer. In this field, the least significant byte is the SCSI LUN and the next least significant
byte is the SCSI ID value. (The upper two bytes are reserved and should be set to 0.) This provides the
information required to allocate or deallocate resources and perform SCSI bus operations for the ioctl
operation requested.

The following information is provided on the various ioctl operations:

Chapter 12. Small Computer System Interface Subsystem 217

SCIOSTART
This operation allocates and initializes SCSI device-dependent information local to the SCSI
adapter device driver. Run this operation only on the first open of an ID/LUN device. Subsequent
SCIOSTART commands to the same ID/LUN fail unless an intervening SCIOSTOP command is
issued.

The following values for the errno global variable are supported:

0 Indicates successful completion.

EIO Indicates lack of resources or other error-preventing device allocation.

EINVAL
Indicates that the selected SCSI ID and LUN are already in use, or the SCSI ID matches
the adapter ID.

ETIMEDOUT
Indicates that the command did not complete.

SCIOSTOP
This operation deallocates resources local to the SCSI adapter device driver for this SCSI device.
This should be run on the last close of an ID/LUN device. If an SCIOSTART operation has not
been previously issued, this command is unsuccessful.

The following values for the errno global variable should be supported:

0 Indicates successful completion.

EIO Indicates error preventing device deallocation.

EINVAL
Indicates that the selected SCSI ID and LUN have not been started.

ETIMEDOUT
Indicates that the command did not complete.

SCIOCMD
The SCIOCMD operation provides the means for issuing any SCSI command to the specified
device after the SCSI device has been successfully started (SCIOSTART). The SCSI adapter
driver performs no error recovery other then issuing a request sense for a SCSI check condition
error. If the caller allocated an autosense buffer, then the request sense data is returned in that
buffer. The SCSI adapter driver will not log any errors in the system error log for failures on a
SCIOCMD operation. The following is a typical call:
rc = ioctl(adapter, SCIOCMD, &iocmd);

where adapter is a file descriptor and iocmd is an sc_passthru structure as defined in the
/usr/include/sys/scsi.h header file. The SCSI ID and LUN should be placed in the sc_passthru
parameter block.

The SCSI status byte and the adapter status bytes are returned through the sc_passthru
structure. If the SCIOCMD operation returns a value of -1 and the errno global variable is set to a
nonzero value, the requested operation has failed. In this case, the caller should evaluate the
returned status bytes to determine why the operation failed and what recovery actions should be
taken.

If a SCIOCMD operation fails because a field in the sc_passthru structure has an invalid value,
then the subroutine will return a value of -1 and set the errno global variable to EINVAL. In
addition the einval_arg field will be set to the field number (starting with 1 for the version field) of
the field that had an invalid value. A value of 0 for the einval_arg field indicates no additional
information on the failure is available.

218 Kernel Extensions and Device Support Programming Concepts

The devinfo structure defines the maximum transfer size for the command. If an attempt is made
to transfer more than the maximum, a value of -1 is returned and the errno global variable set to a
value of EINVAL. Refer to the Small Computer System Interface (SCSI) Specification for the
applicable device to get request sense information.

Possible errno values are:

EIO A system error has occurred. Consider retrying the operation several (three or more)
times, because another attempt might be successful. If an EIO error occurs and the
status_validity field is set to SC_SCSI_ERROR, then the scsi_status field has a valid
value and should be inspected.

If the status_validity field is zero and remains so on successive retries, then an
unrecoverable error has occurred with the device.

If the status_validity field is SC_SCSI_ERROR and the scsi_status field contains a
Check Condition status, then a SCSI request sense should be issued using the SCIOCMD
ioctl to recover the the sense data.

EFAULT
A user process copy has failed.

EINVAL
The device is not opened or the caller has set a field in the sc_passthru structure to an
invalid value.

EACCES
The adapter is in diagnostics mode.

ENOMEM
A memory request has failed.

ETIMEDOUT
The command has timed out, which indicates the operation did not complete before the
time-out value was exceeded. Consider retrying the operation.

ENODEV
The device is not responding.

Note: This operation requires the SCIOSTART operation to be run first.

If the FCP SCIOCMD ioctl operation completes successfully, then the adap_set_flags field might
have the SC_RET_ID flag set. This field is set only if the world_wide_name and node_ name
fields were provided in the ioctl call and the FC adapter driver detects that the scsi_id field of this
device has changed. The scsi_id field will contain the new scsi_id value.

For more information, see SCIOCMD SCSI Adapter Device Driver ioctl Operation in AIX 5L
Version 5.2 Technical Reference: Kernel and Subsystems Volume 2.

SCIOHALT
This operation halts outstanding transactions to this ID/LUN device and causes the SCSI adapter
device driver to stop accepting transactions for this device. This situation remains in effect until the
SCSI device driver sends another transaction with the SC_RESUME flag set (in the sc_buf.flags
field) for this ID/LUN combination. The SCIOHALT ioctl operation causes the SCSI adapter device
driver to fail the command in progress, if any, as well as all queued commands for the device with
a return value of ENXIO in the sc_buf.bufstruct.b_error field. If an SCIOSTART operation has
not been previously issued, this command fails.

The following values for the errno global variable are supported:

0 Indicates successful completion.

Chapter 12. Small Computer System Interface Subsystem 219

EIO Indicates an unrecovered I/O error occurred.

EINVAL
Indicates that the selected SCSI ID and LUN have not been started.

ETIMEDOUT
Indicates that the command did not complete.

SCIORESET
This operation causes the SCSI adapter device driver to send a SCSI Bus Device Reset (BDR)
message to the selected SCSI ID. For this operation, the SCSI device driver should set the LUN in
the arg parameter to the LUN ID of a LUN on this SCSI ID, which has been successfully started
using the SCIOSTART operation.

The SCSI device driver should use this command only when directed to do a forced open. This
occurs in two possible situations: one, when it is desirable to force the device to drop a SCSI
reservation; two, when the device needs to be reset to clear an error condition (for example, when
running diagnostics on this device).

Note: In normal system operation, this command should not be issued, as it would force the
device to drop a SCSI reservation another initiator (and, hence, another system) might
have. If an SCIOSTART operation has not been previously issued, this command is
unsuccessful.

The following values for the errno global variable are supported:

0 Indicates successful completion.

EIO Indicates an unrecovered I/O error occurred.

EINVAL
Indicates that the selected SCSI ID and LUN have not been started.

ETIMEDOUT
Indicates that the command did not complete.

SCIOGTHW
This operation is only supported by SCSI adapter device drivers that support gathered write
commands. The purpose of the operation is to indicate support for gathered writes to SCSI device
drivers that intend to use this facility. If the SCSI adapter device driver does not support gathered
write commands, it must fail the operation. The SCSI device driver should call this operation from
its open routine for a particular device instance. If the operation is unsuccessful, the SCSI device
driver should not attempt to run a gathered write command.

The arg parameter to the SCIOGTHW is set to null by the caller to indicate that no input
parameter is passed:

The following values for the errno global variable are supported:

0 Indicates successful completion and in particular that the adapter driver supports gathered
writes.

EINVAL
Indicates that the SCSI adapter device driver does not support gathered writes.

Target-Mode ioctl Commands
The following SCIOSTARTTGT and SCIOSTOPTGT operations must be sent by the SCSI device driver
(for the open and close routines, respectively) for each target-mode device instance. This causes the SCSI
adapter device driver to allocate and initialize internal resources, and, if necessary, prepare the hardware
for operation.

220 Kernel Extensions and Device Support Programming Concepts

Target-mode support in the SCSI device driver and SCSI adapter device driver is optional. A failing return
code from these commands, in the absence of any programming error, indicates target mode is not
supported. If the SCSI device driver requires target mode, it must check the return code to verify the SCSI
adapter device driver supports it.

Only a kernel process or device driver can call these ioctls. If attempted by a user process, the ioctl will
fail, and the errno global variable will be set to EPERM.

The following information is provided on the various target-mode ioctl operations:

SCIOSTARTTGT
This operation opens a logical path to a SCSI initiator device. It allocates and initializes SCSI
device-dependent information local to the SCSI adapter device driver. This is run by the SCSI
device driver in its open routine. Subsequent SCIOSTARTTGT commands to the same ID (LUN is
always 0) are unsuccessful unless an intervening SCIOSTOPTGT is issued. This command also
causes the SCSI adapter device driver to allocate system buffer areas to hold data received from
the initiator, and makes the adapter ready to receive data from the selected initiator.

The arg parameter to the SCIOSTARTTGT should be set to the address of an sc_strt_tgt
structure, which is defined in the /usr/include/sys/scsi.h file. The following parameters are
supported:

id The caller fills in the SCSI ID of the attached SCSI initiator.

lun The caller sets the LUN to 0, as the initiator LUN is ignored for received data.

buf_size
The caller specifies size in bytes to be used for each receive buffer allocated for this host
target instance.

num_bufs
The caller specifies how many buffers to allocate for this target instance.

tm_correlator
The caller optionally places a value in this field to be passed back in each tm_buf for this
target instance.

recv_func
The caller places in this field the address of a pinned routine the SCSI adapter device
driver should call to pass tm_bufs received for this target instance.

free_func
This is an output parameter the SCSI adapter device driver fills with the address of a
pinned routine that the SCSI device driver calls to pass tm_bufs after they have been
processed. The SCSI adapter device driver ignores the value passed as input.

Note: All reserved fields should be set to 0 by the caller.

The following values for the errno global variable are supported:

0 Indicates successful completion.

EINVAL
An SCIOSTARTTGT command has already been issued to this SCSI ID.

The passed SCSI ID is the same as that of the adapter.

The LUN ID field is not set to zero.

The buf_size is not valid. This is an adapter dependent value.

Chapter 12. Small Computer System Interface Subsystem 221

The Num_bufs is not valid. This is an adapter dependent value.

The recv_func value, which cannot be null, is not valid.

EPERM
Indicates the caller is not running in kernel mode, which is the only mode allowed to run
this operation.

ENOMEM
Indicates that a memory allocation failure has occurred.

EIO Indicates an I/O error occurred, preventing the device driver from completing
SCIOSTARTTGT processing.

SCIOSTOPTGT
This operation closes a logical path to a SCSI initiator device. It causes the SCSI adapter device
driver to deallocate device dependent information areas allocated in response to a
SCIOSTARTTGT operation. It also causes the SCSI adapter device driver to deallocate system
buffer areas used to hold data received from the initiator, and to disable the host adapter’s ability
to receive data from the selected initiator.

The arg parameter to the SCIOSTOPTGT ioctl should be set to the address of an sc_stop_tgt
structure, which is defined in the /usr/include/sys/scsi.h file. The caller fills in the id field with the
SCSI ID of the SCSI initiator, and sets the lun field to 0 as the initiator LUN is ignored for received
data. Reserved fields should be set to 0 by the caller.

The following values for the errno global variable should be supported:

0 Indicates successful completion.

EINVAL
An SCIOSTARTTGT command has not been previously issued to this SCSI ID.

EPERM
Indicates the caller is not running in kernel mode, which is the only mode allowed to run
this operation.

Target- and Initiator-Mode ioctl Commands
For either target or initiator mode, the SCSI device driver can issue an SCIOEVENT ioctl operation to
register for receiving asynchronous event status from the SCSI adapter device driver for a particular
device instance. This is an optional call for the SCSI device driver, and is optionally supported for the
SCSI adapter device driver. A failing return code from this command, in the absence of any programming
error, indicates it is not supported. If the SCSI device driver requires this function, it must check the return
code to verify the SCSI adapter device driver supports it.

Only a kernel process or device driver can invoke these ioctls. If attempted by a user process, the ioctl will
fail, and the errno global variable will be set to EPERM.

The event registration performed by this ioctl operation is allowed once per device session. Only the first
SCIOEVENT ioctl operation is accepted after the device session is opened. Succeeding SCIOEVENT ioctl
operations will fail, and the errno global variable will be set to EINVAL. The event registration is canceled
automatically when the device session is closed.

The arg parameter to the SCIOEVENT ioctl operation should be set to the address of an sc_event_struct
structure, which is defined in the /usr/include/sys/scsi.h file. The following parameters are supported:

id The caller sets id to the SCSI ID of the attached SCSI target device for initiator-mode.
For target-mode, the caller sets the id to the SCSI ID of the attached SCSI initiator
device.

222 Kernel Extensions and Device Support Programming Concepts

lun The caller sets the lun field to the SCSI LUN of the attached SCSI target device for
initiator-mode. For target-mode, the caller sets the lun field to 0.

mode Identifies whether the initiator- or target-mode device is being registered. These
values are possible:

SC_IM_MODE
This is an initiator mode device.

SC_TM_MODE
This is a target mode device.

async_correlator The caller places a value in this optional field, which is saved by the SCSI adapter
device driver and returned when an event occurs in this field in the sc_event_info
structure. This structure is defined in the /user/include/sys/scsi.h file.

async_func The caller fills in the address of a pinned routine that the SCSI adapter device driver
calls whenever asynchronous event status is available. The SCSI adapter device
driver passes a pointer to a sc_event_info structure to the caller’s async_func
routine.

Note: All reserved fields should be set to 0 by the caller.

The following values for the errno global variable are supported:

0 Indicates successful completion.
EINVAL Either an SCIOSTART or SCIOSTARTTGT has not been issued to this device instance, or this device is

already registered for async events.
EPERM Indicates the caller is not running in kernel mode, which is the only mode allowed to run this operation.

Related Information
Logical File System Kernel Services

Technical References
The following reference articles can be found in AIX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 2:

v scdisk SCSI Device Driver

v scsidisk SCSI Device Driver

v SCSI Adapter Device Driver

v SCIOCMD SCSI Adapter Device Driver ioctl Operation

v SCIODIAG (Diagnostic) SCSI Adapter Device Driver ioctl Operation

v SCIODNLD (Download) SCSI Adapter Device Driver ioctl Operation

v SCIOEVENT (Event) SCSI Adapter Device Driver ioctl Operation

v SCIOGTHW (Gathered Write) SCSI Adapter Device Driver ioctl Operation

v SCIOHALT (HALT) SCSI Adapter Device Driver ioctl Operation

v SCIOINQU (Inquiry) SCSI Adapter Device Driver ioctl Operation

v SCIOREAD (Read) SCSI Adapter Device Driver ioctl Operation

v SCIORESET (Reset) SCSI Adapter Device Driver ioctl Operation

v SCIOSTART (Start SCSI) SCSI Adapter Device Driver ioctl Operation

v SCIOSTARTTGT (Start Target) SCSI Adapter Device Driver ioctl Operation

v SCIOSTOP (Stop Device) SCSI Adapter Device Driver ioctl Operation

v SCIOSTOPTGT (Stop Target) SCSI Adapter Device Driver ioctl Operation

v SCIOSTUNIT (Start Unit) SCSI Adapter Device Driver ioctl Operation

Chapter 12. Small Computer System Interface Subsystem 223

v SCIOTRAM (Diagnostic) SCSI Adapter Device Driver ioctl Operation

v SCIOTUR (Test Unit Ready) SCSI Adapter Device Driver ioctl Operation

224 Kernel Extensions and Device Support Programming Concepts

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI
Subsystem

This overview describes the interface between a Fibre Channel Protocol for SCSI (FCP) and iSCSI device
driver and an FCP and iSCSI adapter device driver. The term FC SCSI is also used to refer to FCP
devices. It is directed toward those wishing to design and write a FCP device driver that interfaces with an
existing FCP adapter device driver. It is also meant for those wishing to design and write a FCP adapter
device driver that interfaces with existing FCP device drivers.

Programming FCP and iSCSI Device Drivers
The Fibre Channel Protocol for SCSI (FCP) subsystem has two parts:

v Device Driver

v Adapter Device Driver

The adapter device driver is designed to shield you from having to communicate directly with the system
I/O hardware. This gives you the ability to successfully write a device driver without having a detailed
knowledge of the system hardware. You can look at the subsystem as a two-tiered structure in which the
adapter device driver is the bottom or supporting layer. As a programmer, you need only worry about the
upper layer. This chapter only discusses writing a device driver, because the adapter device driver is
already provided.

The adapter device driver, or lower layer, is responsible only for the communications to and from the bus,
and any error logging and recovery. The upper layer is responsible for all of the device-specific
commands. The device driver should handle all commands directed towards its specific device by building
the necessary sequence of I/O requests to the adapter device driver in order to properly communicate with
the device.

These I/O requests contain the commands that are needed by the device. One important aspect to note is
that the device driver cannot access any of the adapter resources and should never try to pass the
commands directly to the adapter, since it has absolutely no knowledge of the meaning of those
commands.

FCP and iSCSI Device Drivers
The role of the device driver is to pass information between the operating system and the adapter device
driver by accepting I/O requests and passing these requests to the adapter device driver. The device
driver should accept either character or block I/O requests, build the necessary commands, and then issue
these commands to the device through the adapter device driver.

The device driver should also process the various required reservations and releases needed for the
device. The device driver is notified through the iodone kernel service once the adapter has completed
the processing of the command. The device driver should then notify its calling process that the request
has completed processing through the iodone kernel service.

FCP and iSCSI Adapter Device Driver
Unlike most other device drivers, the adapter device driver does not support the read and write
subroutines. It only supports the open, close, ioctl, config, and strategy subroutines. Included with the
open subroutine call is the openx subroutine that allows adapter diagnostics.

A device driver does not need to access the diagnostic commands. Commands received from the device
driver through the strategy routine of the adapter are processed from a queue. Once the command has
completed, the device driver is notified through the iodone kernel service.

© Copyright IBM Corp. 1997, 2003 225

FCP and iSCSI Adapter and Device Interface
The adapter device driver does not contain the ddread and ddwrite entry points, but does contain the
ddconfig, ddopen, ddclose, dddump, and ddioctl entry points.

Therefore, the adapter device driver’s entry in the kernel devsw table contains only those entries plus an
additional ddstrategy entry point. This ddstrategy routine is the path that the device driver uses to pass
commands to the device driver. Access to these entry points is possible through the following kernel
services:

v fp_open

v fp_close

v devdump

v fp_ioctl

v devstrat

The adapter is accessed by the device driver through the /dev/fscsi# special files, where # indicates
ascending numbers 0,1, 2, and so on. The adapter is designed so that multiple devices on the same
adapter can be accessed at the same time.

The iSCSI adapter is accessed by the device driver through the /dev/iscsin special files, where n indicates
ascending numbers 0, 1, 2, and so on. The adapter is designed so that multiple devices on the same
adapter can be accessed at the same time.

For additional information on spanned and gathered write commands, see “Understanding the Execution of
FCP and iSCSI Initiator I/O Requests” on page 253.

scsi_buf Structure
The I/O requests made from the device driver to the adapter device driver are completed through the use
of the scsi_buf structure, which is defined in the /usr/include/sys/scsi_buf.h header file. This structure,
which is similar to the buf structure in other drivers, is passed between the two subsystem drivers through
the strategy routine. The following is a brief description of the fields contained in the scsi_buf structure:

v Reserved fields should be set to a value of 0, except where noted.

v The bufstruct field contains a copy of the standard buf buffer structure that documents the I/O request.
Included in this structure, for example, are the buffer address, byte count, and transfer direction. The
b_work field in the buf structure is reserved for use by the adapter device driver. The current definition
of the buf structure is in the /usr/include/sys/buf.h include file.

v The bp field points to the original buffer structure received by the Device Driver from the caller, if any.
This can be a chain of entries in the case of spanned transfers (commands that transfer data from or to
more than one system-memory buffer). A null pointer indicates a nonspanned transfer. The null value
specifically tells the adapter device driver that all the information needed to perform the DMA data
transfer is contained in the bufstruct fields of the scsi_buf structure.

v The scsi_command field, defined as a scsi_cmd structure, contains, for example, the SCSI command
length, SCSI command, and a flag variable:

– The scsi_length field is the number of bytes in the actual SCSI command. This is normally 6,10,12,
or 16 (decimal).

– The FCP_flags field contains the following bit flags:

SC_NODISC
Do not allow the target to disconnect during this command.

SC_ASYNC
Do not allow the adapter to negotiate for synchronous transfer to the device.

During normal use, the SC_NODISC bit should not be set. Setting this bit allows a device executing
commands to monopolize the transport layer. Sometimes it is desirable for a particular device to

226 Kernel Extensions and Device Support Programming Concepts

maintain control of the transport layer once it has successfully arbitrated for it; for instance, when this
is the only device on the transport layer or the only device that will be in use. For performance
reasons, it might not be desirable to go through selections again to save transport layer overhead on
each command.

Also during normal use, the SC_ASYNC bit must not be set. It should be set only in cases where a
previous command to the device ended in an unexpected transport free condition. This condition is
noted as SCSI_TRANSPORT_FAULT in the adapter_status field of the scsi_cmd structure.
Because other errors might also result in the SCSI_TRANSPORT_FAULT flag being set, the
SC_ASYNC bit should only be set on the last retry of the failed command.

– The scsi_cdb structure contains the physical SCSI command block. The 6 to 16 bytes of a single
SCSI command are stored in consecutive bytes, with the op code identified individually. The
scsi_cdb structure contains the following fields:

1. The scsi_op_code field specifies the standard op code for this command.

2. The scsi_bytes field contains the remaining command-unique bytes of the command block. The
actual number of bytes depends on the value in the scsi_op_code field.

v The timeout_value field specifies the time-out limit (in seconds) to be used for completion of this
command. A time-out value of 0 means no time-out is applied to this I/O request.

v The status_validity field contains an output parameter that can have one of the following bit flags as a
value:

SC_SCSI_ERROR
The scsi_status field is valid.

SC_ADAPTER_ERROR
The adapter_status field is valid.

v The scsi_status field in the scsi_buf structure is an output parameter that provides valid command
completion status when its status_validity bit is nonzero. The scsi_buf.bufstruct.b_error field should
be set to EIO anytime the scsi_status field is valid. Typical status values include:

SC_GOOD_STATUS
The target successfully completed the command.

SC_CHECK_CONDITION
The target is reporting an error, exception, or other conditions.

SC_BUSY_STATUS
The target is currently transporting and cannot accept a command now.

SC_RESERVATION_CONFLICT
The target is reserved by another initiator and cannot be accessed.

SC_COMMAND_TERMINATED
The target terminated this command after receiving a terminate I/O process message from the
adapter.

SC_QUEUE_FULL
The target’s command queue is full, so this command is returned.

SC_ACA_ACTIVE
The device has an ACA (auto contingent allegiance) condition that requires a Clear ACA to
request to clear it.

v The adapter_status field is an output parameter that is valid when its status_validity bit is nonzero.
The scsi_buf.bufstruct.b_erro field should be set to EIO anytime the adapter_status field is valid. This
field contains generic adapter card status. It is intentionally general in coverage so that it can report
error status from any typical adapter.

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 227

If an error is detected during execution of a command, and the error prevented the command from
actually being sent to the transport layer by the adapter, then the error should be processed or
recovered, or both, by the adapter device driver.

If it is recovered successfully by the adapter device driver, the error is logged, as appropriate, but is not
reflected in the adapter_status byte. If the error cannot be recovered by the adapter device driver, the
appropriate adapter_status bit is set and the scsi_buf structure is returned to the device driver for
further processing.

If an error is detected after the command was actually sent to the device, then it should be processed
or recovered, or both, by the device driver.

For error logging, the adapter device driver logs transport layer and adapter-related conditions, andl the
device driver logs device-related errors. In the following description, a capital letter (A) after the error
name indicates that the adapter device driver handles error logging. A capital letter (H) indicates that the
device driver handles error logging.

Some of the following error conditions indicate a device failure. Others are transport layer or
adapter-related.

SCSI_HOST_IO_BUS_ERR (A)
The system I/O transport layer generated or detected an error during a DMA or Programmed
I/O (PIO) transfer.

SCSI_TRANSPORT_FAULT (H)
The transport protocol or hardware was unsuccessful.

SCSI_CMD_TIMEOUT (H)
The command timed out before completion.

SCSI_NO_DEVICE_RESPONSE (H)
The target device did not respond to selection phase.

SCSI_ADAPTER_HDW_FAILURE (A)
The adapter indicated an onboard hardware failure.

SCSI_ADAPTER_SFW_FAILURE (A)
The adapter indicated microcode failure.

SCSI_FUSE_OR_TERMINAL_PWR (A)
The adapter indicated a blown terminator fuse or bad termination.

SCSI_TRANSPORT_RESET (A)
The adapter indicated the transport layer has been reset.

SCSI_WW_NAME_CHANGE (A)
The adapter indicated the device at this SCSI ID has a new world wide name.

SCSI_TRANSPORT_BUSY (A)
The adapter indicated the transport layer is busy.

SCSI_TRANSPORT_DEAD (A)
The adapter indicated the transport layer currently inoperative and is likely to remain this way
for an extended time.

v The add_status field contains additional device status. For devices, this field contains the Response
code returned.

v When the FCP device driver queues multiple transactions to a device, the adap_q_status field
indicates whether or not the FCP adapter driver has cleared its queue for this device after an error has
occurred. The flag of SC_DID_NOT CLEAR_Q indicates that the adapter driver has not cleared its
queue for this device and that it is in a halted state (so none of the pending queued transactions are
sent to the device).

v The q_tag_msg field indicates if the adapter can attempt to queue this transaction to the device. This
information causes the adapter to fill in the Queue Tag Message Code of the queue tag message for a
command. The following values are valid for this field:

228 Kernel Extensions and Device Support Programming Concepts

SC_NO_Q
Specifies that the adapter does not send a queue tag message for this command, and so the
device does not allow more than one command on its command queue. This value must be
used for all commands sent to devices that do not support command tag queuing.

SC_SIMPLE_Q
Specifies placing this command in the device’s command queue. The device determines the
order that it executes commands in its queue. The SCSI-2 specification calls this value the
Simple Queue Tag Message.

SC_HEAD_OF_Q
Specifies placing this command first in the device’s command queue. This command does not
preempt an active command at the device, but it is executed before all other commands in the
command queue. The SCSI-2 specification calls this value the Head of Queue Tag Message.

SC_ORDERED_Q
Specifies placing this command in the device’s command queue. The device processes these
commands in the order that they are received. The SCSI-2 specification calls this value the
Ordered Queue Tag Message.

SC_ACA_Q
Specifies placing this command in the device’s command queue, when the device has an ACA
(auto contingent allegiance) condition. The SCSI-3 Architecture Model calls this value the ACA
task attribute.

Note: Commands with the value of SC_NO_Q for the q_tag_msg field (except for request sense
commands) should not be queued to a device whose queue contains a command with another
value for q_tag_msg. If commands with the SC_NO_Q value (except for request sense) are sent to
the device, then the device driver must make sure that no active commands are using different
values for q_tag_ms. Similarly, the device driver must also make sure that a command with a
q_tag_msg value of SC_ORDERED_Q, SC_HEAD_Q, or SC_SIMPLE_Q is not sent to a device that has a
command with the q_tag_msg field of SC_NO_Q.

v The flags field contains bit flags sent from the device driver to the adapter device driver. The following
flags are defined:

SC_RESUME
When set, means the adapter device driver should resume transaction queuing for this ID/LUN.
Error recovery is complete after a SCIOLHALT operation, check condition, or severe transport
error. This flag is used to restart the adapter device driver following a reported error.

SC_DELAY_CMD
When set, means the adapter device driver should delay sending this command (following a
reset or BDR to this device) by at least the number of seconds specified to the adapter device
driver in its configuration information. For devices that do not require this function, this flag
should not be set.

SC_Q_CLR
When set, means the adapter driver should clear its transaction queue for this ID/LUN. The
transaction containing this flag setting does not require an actual command in the scsi_buf
because it is flushed back to the device driver with the rest of the transactions for this ID/LUN.
However, this transaction must have the SCSI ID field (scsi_buf.scsi_id) and the LUN field
(scsi_buf.lun_id) filled in with the device’s SCSI ID and LUN. This flag is valid only during error
recovery of a check condition or command terminated at a command tag queuing device when
the SC_DID_NOT_CLR_Q flag is set in the scsi_buf.adap_q_status field.

SC_Q_RESUME
When set, means that the adapter driver should resume its halted transaction queue for this
ID/LUN. The transaction containing this flag setting does not require an actual command to be
sent to the adapter driver. However, this transaction must have the SCSI ID field
(scsi_buf.scsi_id) and the LUN field (scsi_buf.lun_id) filled in with the device’s SCSI ID and

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 229

logical unit number (LUN). If the transaction containing this flag setting is the first issued by the
device driver after it receives an error (indicating that the adapter driver’s queue is halted), then
the SC_RESUME flag must be set also.

SC_CLEAR_ACA
When set, means the SCSI adapter driver should issue a Clear ACA task management request
for this ID/LUN. This flag should be used in conjunction with either the SC_Q_CLR or
SC_Q_RESUME flags to clear or resume the SCSI adapter driver’s queue for this device. If
neither of these flags is used, then this transaction is treated as if the SC_Q_RESUME flag is
also set. The transaction containing the SC_CLEAR_ACA flag setting does not require an
actual SCSI command in the sc_buf. If this transaction contains a SCSI command then it will
be processed depending on whether SC_Q_CLR or SC_Q_RESUME is set. This transaction
must have the SCSI ID field (scsi_buf.scsi_id) and the LUN field (scsi_buf.lun_id) filled in
with the device’s SCSI ID and LUN. This flag is valid only during error recovery of a check
condition or command terminated at a command tag queuing.

SC_TARGET_RESET
When set, means the SCSI adapter driver should issue a Target Reset task management
request for this ID/LUN. This flag should be used in conjunction with ethe SC_Q_CLR flag
flag.The transaction containing this flag setting does allow an actual command to be sent to the
adapter driver. However, this transaction must have the SCSI ID field (scsi_buf.scsi_id) filled in
with the device’s SCSI ID. If the transaction containing this flag setting is the first issued by the
device driver after it receives an error (indicating that the adapter driver’s queue is halted), then
the SC_RESUME flag must be set also.

SC_LUN_RESET
When set, means the SCSI adapter driver should issue a Lun Reset task management request
for this ID/LUN. This flag should be used in conjunction with ethe SC_Q_CLR flag flag.The
transaction containing this flag setting does allow an actual command to be sent to the adapter
driver. However, this transaction must have the the SCSI ID field (scsi_buf.scsi_id) and the
LUN field (scsi_buf.lun_id) filled in with the device’s SCSI ID and logical unit number (LUN). If
the transaction containing this flag setting is the first issued by the device driver after it receives
an error (indicating that the adapter driver’s queue is halted), then the SC_RESUME flag must
be set also.

v The dev_flags field contains additional values sent from the FCP device driver to the FCP adapter
device driver. This field is not used for iSCSI device drivers. The following values are defined:

FC_CLASS1
When set, this tells the SCSI adapter driver that it should issue this request as a Fibre Channel
Class 1 request. If the SCSI adapter driver does not support this class, then it will fail the
scsi_buf with an error of EINVAL. If no Fibre Channel Class is specified in the scsi_buf then the
SCSI adapter will default to a Fibre Channel Class.

FC_CLASS2
When set, this tells the SCSI adapter driver that it should issue this request as a Fibre Channel
Class 2 request. If the SCSI adapter driver does not support this class, then it will fail the
scsi_buf with an error of EINVAL. If no Fibre Channel Class is specified in the scsi_buf then the
SCSI adapter will default to a Fibre Channel Class.

FC_CLASS3
When set, this tells the SCSI adapter driver that it should issue this request as a Fibre Channel
Class 3 request. If the SCSI adapter driver does not support this class, then it will fail the
scsi_buf with an error of EINVAL. If no Fibre Channel Class is specified in the scsi_buf then the
SCSI adapter will default to a Fibre Channel Class.

FC_CLASS4
When set, this tells the SCSI adapter driver that it should issue this request as a Fibre Channel
Class 4 request. If the SCSI adapter driver does not support this class, then it will fail the

230 Kernel Extensions and Device Support Programming Concepts

scsi_buf with an error of EINVAL. If no Fibre Channel Class is specified in the scsi_buf then the
SCSI adapter will default to a Fibre Channel Class.

v The add_work field is reserved for use by the adapter device driver.

v The adap_set_flags field contains an output parameter that can have one of the following bit flags as a
value:

SC_AUTOSENSE_DATA_VALID
Autosense data was placed in the autosense buffer referenced by the autosense_buffer_ptr
field.

v The autosense_length field contains the length in bytes of the SCSI device driver’s sense buffer, which
is referenced via the autosense_buffer_ptr field. For devices this field must be non-zero, otherwise the
autosense data will be lost.

v The autosense_buffer_ptr field contains the address of the SCSI devices driver’s autosense buffer for
this command. For devices this field must be non-NULL, otherwise the autosense data will be lost.

v The dev_burst_len field contains the burst size if this write operation in bytes. This should only be set
by the device driver if it has negotiated with the device and it allows burst of write data without transfer
readys. For most operations, this should be set to 0.

v The scsi_id field contains the 64-bit SCSI ID for this device. This field must be set for FCP devices.

v The lun_id field contains the 64-bit lun ID for this device. This field must be set for devices.

v The kernext_handle field contains the pointer returned from the kernext_handle field of the
scsi_sciolst argument for the SCIOLSTART ioctl.

Adapter and Device Driver Intercommunication
In a typical request to the device driver, a call is first made to the device driver’s strategy routine, which
takes care of any necessary queuing. The device driver’s strategy routine then calls the device driver’s
start routine, which fills in the scsi_buf structure and calls the adapter driver’s strategy routine through
the devstrat kernel service.

The adapter driver’s strategy routine validates all of the information contained in the scsi_buf structure
and also performs any necessary queuing of the transaction request. If no queuing is necessary, the
adapter driver’s start subroutine is called.

When an interrupt occurs, adapter driver interrupt routine fills in the status_validity field and the
appropriate scsi_status or adapter_status field of the scsi_buf structure. The bufstruct.b_resid field is
also filled in with the value of nontransferred bytes. The adapter driver’s interrupt routine then passes this
newly filled in scsi_buf structure to the iodone kernel service, which then signals the device driver’s
iodone subroutine. The adapter driver’s start routine is also called from the interrupt routine to process
any additional transactions on the queue.

The device driver’s iodone routine should then process all of the applicable fields in the queued scsi_buf
structure for any errors and attempt error recovery if necessary. The device driver should then dequeue
the scsi_buf structure and then pass a pointer to the structure back to the iodone kernel service so that it
can notify the originator of the request.

FCP and iSCSI Adapter Device Driver Routines
This section describes the following routines:

v config

v open

v close

v openx

v strategy

v ioctl

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 231

v start

v interrupt

config Routine
The config routine performs all of the processing needed to configure, unconfigure, and read Vital Product
Data (VPD) for the adapter. When this routine is called to configure an adapter, it performs the required
checks and building of data structures needed to prepare the adapter for the processing of requests.

When asked to unconfigure or terminate an adapter, this routine deallocates any structures defined for the
adapter and marks the adapter as unconfigured. This routine can also be called to return the Vital Product
Data for the adapter, which contains information that is used to identify the serial number, change level, or
part number of the adapter.

open Routine
The open routine establishes a connection between a special file and a file descriptor. This file descriptor
is the link to the special file that is the access point to a device and is used by all subsequent calls to
perform I/O requests to the device. Interrupts are enabled and any data structures needed by the adapter
driver are also initialized.

close Routine
The close routine marks the adapter as closed and disables all future interrupts, which causes the driver
to reject all future requests to this adapter.

openx Routine
The openx routine allows a process with the proper authority to open the adapter in diagnostic mode. If
the adapter is already open in either normal or diagnostic mode, the openx subroutine has a return value
of -1. Improper authority results in an errno value of EPERM, while an already open error results in an
errno value of EACCES. If the adapter is in diagnostic mode, only the close and ioctl routines are allowed.
All other routines return a value of -1 and an errno value of EACCES.

While in diagnostics mode, the adapter can run diagnostics, run wrap tests, and download microcode. The
openx routine is called with an ext parameter that contains the adapter mode and the SC_DIAGNOSTIC
value, both of which are defined in the sys/scsi.h header file.

strategy Routine
The strategy routine is the link between the device driver and the adapter device driver for all normal I/O
requests. Whenever the device driver receives a call, it builds an scsi_buf structure with the correct
parameters and then passes it to this routine, which in turn queues up the request if necessary. Each
request on the pending queue is then processed by building the necessary commands required to carry
out the request. When the command has completed, the device driver is notified through the iodone
kernel service.

ioctl Routine
The ioctl routine allows various diagnostic and nondiagnostic adapter operations. Operations include the
following:

v IOCINFO

v SCIOLSTART

v SCIOLSTOP

v SCIOLINQU

v SCIOLEVENT

v SCIOLSTUNIT

v SCIOLTUR

v SCIOLREAD

v SCIOLRESET

v SCIOLHALT

232 Kernel Extensions and Device Support Programming Concepts

v SCIOLCMD

v SCIOLCHBA

v SCIOLPASSTHRUHBA

start Routine
The start routine is responsible for checking all pending queues and issuing commands to the adapter.
When a command is issued to the adapter, the scsi_buf is converted into an adapter specific request
needed for the scsi_buf. At this time, the bufstruct.b_addr for the scsi_buf will be mapped for DMA.
When the adapter specific request is completed, the adapter will be notified of this request.

interrupt Routine
The interrupt routine is called whenever the adapter posts an interrupt. When this occurs, the interrupt
routine will find the scsi_buf corresponding to this interrupt. The buffer for the scsi_buf will be unmapped
from DMA. If an error occurred, the status_validity, scsi_status, and adapter_status fields will be set
accordingly. The bufstruct.b_resid field will be set with the number of nontransferred bytes. The interrupt
handler then runs the iodone kernel service against the scsi_buf, which will send the scsi_buf back to
the device driver which originated it.

FCP and iSCSI Adapter ioctl Operations
This section describes the following ioctl operations:

v IOCINFO for FCP Adapters

v IOCINFO for iSCSI Adapters

v SCIOLSTART

v SCIOLSTOP

v SCIOLEVENT

v SCIOLINQU

v SCIOLSTUNIT

v SCIOLTUR

v SCIOLREAD

v SCIOLRESET

v SCIOLHALT

v SCIOLCMD

v SCIOLNMSRV

v SCIOLQWWN

v SCIOLPAYLD

v SCIOLCHBA

v SCIOLPASSTHRUHBA

IOCINFO for FCP Adapters
This operation allows a FCP device driver to obtain important information about a FCP adapter, including
the adapter’s SCSI ID, the maximum data transfer size in bytes, and the FC topology to which the adapter
is connected. By knowing the maximum data transfer size, a FCP device driver can control several
different devices on several different adapters. This operation returns a devinfo structure as defined in the
sys/devinfo.h header file with the device type DD_BUS and subtype DS_FCP. The following is an
example of a call to obtain the information:
rc = fp_ioctl(fp, IOCINFO, &infostruct, NULL);

where fp is a pointer to a file structure and infostruct is a devinfo structure. A non-zero rc value indicates
an error. Note that the devinfo structure is a union of several structures and that fcp is the structure that
applies to the adapter. For example, the maximum transfer size value is contained in the
infostruct.un.fcp.max_transfer variable and the card ID is contained in infostruct.un.fcp.scsi_id.

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 233

IOCINFO for iSCSI Adapters
This operation allows an iSCSI device driver to obtain important information about an iSCSI adapter,
including the adapter’s maximum data transfer size in bytes. By knowing the maximum data transfer size,
an iSCSI device driver can control several different devices on several different adapters. This operation
returns a devinfo structure as defined in the sys/devinfo.h header file with the device type DD_BUS and
subtype DS_ISCSI. The following is an example of a call to obtain the information:
rc = fp_ioctl(fp, IOCINFO, &infostruct, NULL);

where fp is a pointer to a file structure and infostruct is a devinfo structure. A non-zero rc value indicates
an error. Note that the devinfo structure is a union of several structures and that iscsi is the structure that
applies to the adapter. For example, the maximum transfer size value is contained in the
infostruct.un.iscsi.max_transfer variable.

SCIOLSTART
This operation opens a logical path to the FCP device and causes the FCP adapter device driver to
allocate and initialize all of the data areas needed for the FCP device. The SCIOLSTOP operation should
be issued when those data areas are no longer needed. This operation should be issued before any
nondiagnostic operation except for IOCINFO. The following is a typical call:
rc = fp_ioctl(fp, SCIOLSTART, &sciolst);

This operation opens a logical path to the device and causes the adapter device driver to allocate and
initialize all of the data areas needed for the device. The SCIOLSTOP operation should be issued when
those data areas are no longer needed. This operation should be issued before any nondiagnostic
operation except for IOCINFO. The following is a typical call:
rc = fp_ioctl(fp, SCIOLSTART, &sciolst);

where fp is a pointer to a file structure and sciolst is a scsi_sciolst structure (defined in
/usr/include/sys/scsi_buf.h) that contains the SCSI and Logical Unit Number (LUN) ID values of the
device to be started. In addition, the scsi_sciolst structure can be used to specify an explicit login for this
operation.

For FCP adapters, the version field of the scsi_sciolst structure must be set to the value of
SCSI_VERSION_1, which is defined in the /usr/include/sys/scsi_buf.h file. In addition, the following fields
can be set:

v world_wide_name - The caller can set the world_wide_name field to the World Wide Name of the
attached target device. If the world_wide_name field is set and the version field is set to
SCSI_VERSION_1, the World Wide Name can be used to address the target instead of the scsi_id field. If
Dynamic Tracking of FC devices is enabled, the world_wide_name field must be set to ensure
communication with the device because the scsi_id field of a device can change after dynamic tracking
events.

v node_name - The caller can set the node_name field to the Node Name of the attached target device.
For AIX 5.2 through AIX 5.2.0.9, if the world_wide_name field and the version field are set to
SCSI_VERSION_1 but the node_name field is not set, the scsi_id will be used for device lookup instead
of the world_wide_name.

If a World Wide Name or Node Name is provided and it does not match the World Wide Name or Node
Name that was detected for the target, an error log will be generated and the SCIOLSTART operation
will fail with an errno of ENXIO.

Upon successfully return from an SCIOLSTART operation, both the world_wide_name field and the
node_name field are set to the World Wide Name and Node Name of this device. These values are
inspected to ensure that the SCIOLSTART operation was delivered to the intended device.

If Dynamic Tracking of FC devices is enabled, the node_name field must be set to ensure
communication with the device because the scsi_id field of a device can change after dynamic tracking
events.

234 Kernel Extensions and Device Support Programming Concepts

For iSCSI adapters, this version field of the scsi_sciolst must be set to the value of SCSI_VERSION_1
(defined in the /usr/include/sys/scsi_buf.h file). In addition, iSCSI adapters require the caller to set the
following fields:

v lun_id of the device’s LUN ID

v parms.iscsi.name to the device’s iSCSI target name

v parms.iscsi.iscsi_ip_addr to the device’s IP V4 or IP V6 address

v parms.iscsi.port_num to the devices TCP port number

If the iSCSI SCIOLSTART ioctl operation completes successfully, then the adap_set_flags field should
have the SCIOL_RET_ID_ALIAS flag and the scsi_id field set to a SCSI ID alias that can be used for
subsequent ioctl calls to this device other than SCIOLSTART.

For AIX 5.2 with 5200-01 and later, if the FCP SCIOLSTART ioctl operation completes successfully, and
the adap_set_flags field has the SCIOL_DYNTRK_ENABLED flag set, then Dynamic Tracking of FC
Devices has been enabled for this device.

All FC adapter ioctl calls for AIX 5.2 with 5200-01 and later, should set the version field to
SCSI_VERSION_1 if indicated in the ioctl structure comments in the header files. The world_wide_name
and node_name fields of all SCSI_VERSION_1 ioctl structures should also be set. This is especially
important if dynamic tracking has been enabled on this adapter. Dynamic tracking allows the FC adapter
driver to recover from scsi_id changes of FC devices while devices are online. Because the scsi_id can
change, use of the world_wide_name and node_name fields is necessary to ensure communication with
the intended device.

Failure to use a SCSI_VERSION_1 ioctl structure for SCIOLSTART when dynamic tracking is enabled can
produce undesired results, and temporarily disable dynamic tracking for a given device. If a target has at
least one lun activated by SCIOLSTART with the version field set to SCSI_VERSION_1, then a
SCSI_VERISON_0 SCIOLSTART will fail. If this is the first lun activated by SCIOLSTART on this target
and the version field is set to SCSI_VERSION_0, then an error log of type INFO is generated and dynamic
tracking is temporarily disabled for this target until a corresponding SCSI_VERSION_0 SCIOLSTOP is
issued.

The version field for all ioctl structures should be set consistently. For example, if an SCIOLSTART
operation is performed with the version field set to SCSI_VERSION_1, but the SCIOLINQU or
SCIOLSTOP ioctl operations have the version field set to SCSI_VERSION_0, then the ioctl call will fail if
dynamic tracking is enabled because the version fields do not match.

If the FCP SCIOLSTART ioctl operation completes successfully, then the adap_set_flags field might have
the SCIOL_RET_ID_ALIAS flag set. This field is set only if the world_wide_name field was provided in
the ioctl call and the FC adapter driver detects that the scsi_id field of this device has changed. The
scsi_id field will contain the new scsi_id value.

If the caller of the iSCSI or FCP SCIOLSTART is a kernel extension, then the SCIOL_RET_HANDLE flag
can be set in the adap_set_flags field along with the kernext_handle field. In this case the
kernext_handle field can be used for scsi_buf structures issued to the adapter driver for this device.

A nonzero return value indicates an error has occurred and all operations to this SCSI/LUN pair should
cease because the device is either already started or failed the start operation. Possible errno values are:

EIO The command could not complete due to a system error.
EINVAL Either the Logical Unit Number (LUN) ID or SCSI ID is invalid, or the adapter is already

open.
ENOMEM Indicates that system resources are not available to start this device.
ETIMEDOUT Indicates that the command did not complete.
ENODEV Indicates that no device responded to the explicit process login at this SCSI ID.

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 235

ECONNREFUSED Indicates that the device at this SCSI ID rejected explicit process login. This could be due
to the device rejecting the security password or the device does not support FCP.

EACCES The adapter is not in normal mode.

SCIOLSTOP
This operation closes a logical path to the device and causes the adapter device driver to deallocate all
data areas that were allocated by the SCIOLSTART operation. This operation should only be issued after
a successful SCIOLSTART operation to a device. The following is a typical call:
rc = fp_ioctl(fp, SCIOLSTOP, &sciolst);

where fp is a pointer to a file structure and sciolst is a scsi_sciolst structure (defined in
/usr/include/sys/scsi_buf.h) that contains the SCSI or iSCSI device’s SCSI ID alias, and Logical Unit
Number (LUN) ID values of the device to be started.

A non-zero return value indicates an error has occurred. Possible errno values are:

EIO An unrecoverable system error has occurred.
EINVAL The adapter was not in open mode.

For FCP adapters, the version field of the scsi_sciolst structure must be set to the value of
SCSI_VERSION_1, which is defined in the /usr/include/sys/scsi_buf.h file. In addition, the following fields
can be set:

v world_wide_name - The caller can set the world_wide_name field to the World Wide Name of the
attached target device. If Dynamic Tracking of FC devices is enabled, the world_wide_name field
must be set to ensure communication with the device because the scsi_id field of a device can change
after dynamic tracking events.

v node_name - The caller can set the node_name field to the Node Name of the attached target device.
For AIX 5.2 through AIX 5.2.0.9, if the world_wide_name field and the version field are set to
SCSI_VERSION_1 but the node_name field is not set, the scsi_id will be used for device lookup instead
of the world_wide_name. If Dynamic Tracking of FC devices is enabled, the node_name field must
be set to ensure communication with the device because the scsi_id field of a device can change after
dynamic tracking events.

This operation requires SCIOLSTART to be run first.

SCIOLEVENT
This operation allows a device driver to register a particular device instance for receiving asynchronous
event status by calling the SCIOLEVENT ioctl operation for the adapter device driver. When an event
covered by the SCIOLEVENT ioctl operation is detected by the adapter device driver, it builds an
scsi_event_info structure and passes a pointer to the structure and to the asynchronous event-handler
routine entry point, which was previously registered.

The information reported in the scsi_event_info.events field does not queue to the device driver, but is
instead reported as one or more flags as they occur. Because the data does not queue, the adapter
device driver writer can use a single scsi_event_info structure and pass it one at a time, by pointer, to
each asynchronous event handler routine for the appropriate device instance. After determining for which
device the events are being reported, the device driver must copy the scsi_event_info.events field into
local space and must not modify the contents of the rest of the scsi_event_info structure.

Because the event status is optional, the device driver writer determines what action is necessary to take
upon receiving event status. The writer might decide to save the status and report it back to the calling
application, or the device driver or application level program can take error recovery actions.

236 Kernel Extensions and Device Support Programming Concepts

This operation should only be issued after a successful SCIOLSTART operation to a device. The following
is a typical call:

rc = fp_ioctl(fp, SCIOLEVENT, &scevent);

where fp is a pointer to a file structure and scevent is a scsi_event_struct structure (defined in
/usr/include/sys/scsi_buf.h) that contains the SCSI and Logical Unit Number (LUN) ID values of the
device to be started.

A non-zero return value indicates an error has occurred. Possible errno values are:

EIO An unrecoverable system error has occurred.
EINVAL The adapter was not in open mode.

For FCP adapters, the version field of the scsi_event_struct structure must be set to the value of
SCSI_VERSION_1, which is defined in the /usr/include/sys/scsi_buf.h file. In addition, the following fields
can be set:

v world_wide_name - The caller can set the world_wide_name field to the World Wide Name of the
attached target device. If Dynamic Tracking of FC devices is enabled, the world_wide_name field
must be set to ensure communication with the device because the scsi_id field of a device can change
after dynamic tracking events.

v node_name - The caller can set the node_name field to the Node Name of the attached target device.
If the world_wide_name field and the version field are set to SCSI_VERSION_1 but the node_name field
is not set, the scsi_id will be used for device lookup instead of the world_wide_name. If Dynamic
Tracking of FC devices is enabled, the node_name field must be set to ensure communication with
the device because the scsi_id field of a device can change after dynamic tracking events.

This operation requires SCIOLSTART to be run first.

If the FCP SCIOLEVENT ioctl operation completes successfully, then the adap_set_flags field might have
the SC_RET_ID flag set. This field is set only if the world_wide_name and node_ name fields were
provided in the ioctl call and the FC adapter driver detects that the scsi_id field of this device has
changed. The scsi_id field will contain the new scsi_id value.

SCIOLINQU
This operation issues an inquiry command to an device and is used to aid in device configuration. The
following is a typical call:
rc = ioctl(adapter, SCIOLINQU, &inquiry_block);

where adapter is a file descriptor and inquiry_block is a scsi_inquiry structure as defined in the
/usr/include/sys/scsi_buf.h header file. The FCP ID or iSCSI device’s SCSI ID alias, and LUN should be
placed in the scsi_inquiry parameter block. The SC_ASYNC flag should not be set on the first call to this
operation and should only be set if a bus fault has occurred. Possible errno values are:

EIO A system error has occurred. Consider retrying the operation several times, because
another attempt might be successful.

EFAULT A user process copy has failed.
EINVAL The device is not opened.
EACCES The adapter is in diagnostics mode.
ENOMEM A memory request has failed.
ETIMEDOUT The command has timed out. Consider retrying the operation several times, because

another attempt might be successful.
ENODEV The device is not responding. Possibly no LUNs exist on the present FCP ID.
ENOCONNECT A bus fault has occurred and the operation should be retried with the SC_ASYNC flag set

in the scsi_inquiry structure. In the case of multiple retries, this flag should be set only on
the last retry.

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 237

For FCP adapters, the version field of the scsi_inquiry structure must be set to the value of
SCSI_VERSION_1, which is defined in the /usr/include/sys/scsi_buf.h file. In addition, the following fields
can be set:

v world_wide_name - The caller can set the world_wide_name field to the World Wide Name of the
attached target device. If Dynamic Tracking of FC devices is enabled, the world_wide_name field
must be set to ensure communication with the device because the scsi_id field of a device can change
after dynamic tracking events.

v node_name - The caller can set the node_name field to the Node Name of the attached target device.
If the world_wide_name field and the version field are set to SCSI_VERSION_1 but the node_name field
is not set, the scsi_id will be used for device lookup instead of the world_wide_name. If Dynamic
Tracking of FC devices is enabled, the node_name field must be set to ensure communication with
the device because the scsi_id field of a device can change after dynamic tracking events.

This operation requires SCIOLSTART to be run first.

If the FCP SCIOLINQU ioctl operation completes successfully, then the adap_set_flags field might have
the SC_RET_ID flag set. This field is set only if the world_wide_name and node_ name fields were
provided in the ioctl call and the FC adapter driver detects that the scsi_id field of this device has
changed. The scsi_id field will contain the new scsi_id value.

SCIOLSTUNIT
This operation issues a start unit command to an device and is used to aid in device configuration. The
following is a typical call:
rc = ioctl(adapter, SCIOLSTUNIT, &start_block);

where adapter is a file descriptor and start_block is a scsi_startunit structure as defined in the
/usr/include/sys/scsi_buf.h header file. The FCP ID or iSCSI device’s SCSI ID alias, and LUN should be
placed in the scsi_startunit parameter block. The start_flag field designates the start option, which when
set to true, makes the device available for use. When this field is set to false, the device is stopped.

The SC_ASYNC flag should not be set on the first call to this operation and should only be set if a bus
fault has occurred. The immed_flag field allows overlapping start operations to several devices on the
adapter. When this field is set to false, status is returned only when the operation has completed. When
this field is set to true, status is returned as soon as the device receives the command. The SCIOLTUR
operation can then be issued to check on completion of the operation on a particular device.

Note that when the FCP or iSCSI adapter is allowed to issue simultaneous start operations, it is important
that a delay of 10 seconds be allowed between successive SCIOLSTUNIT operations to devices sharing a
common power supply because damage to the system or devices can occur if this precaution is not
followed. Possible errno values are:

EIO A system error has occurred. Consider retrying the operation several times, because
another attempt might be successful.

EFAULT A user process copy has failed.
EINVAL The device is not opened.
EACCES The adapter is in diagnostics mode.
ENOMEM A memory request has failed.
ETIMEDOUT The command has timed out. Consider retrying the operation several times, because

another attempt might be successful.
ENODEV The device is not responding. Possibly no LUNs exist on the present FCP ID.
ENOCONNECT A bus fault has occurred. Try the operation again with the SC_ASYNC flag set in the

scsi_inquiry structure. In the case of multiple retries, this flag should be set only on the last
retry.

238 Kernel Extensions and Device Support Programming Concepts

For FCP adapters, the version field of the scsi_startunit structure must be set to the value of
SCSI_VERSION_1, which is defined in the /usr/include/sys/scsi_buf.h file. In addition, the following fields
can be set:

v world_wide_name - The caller can set the world_wide_name field to the World Wide Name of the
attached target device. If Dynamic Tracking of FC devices is enabled, the world_wide_name field
must be set to ensure communication with the device because the scsi_id field of a device can change
after dynamic tracking events.

v node_name - The caller can set the node_name field to the Node Name of the attached target device.
If the world_wide_name field and the version field are set to SCSI_VERSION_1 but the node_name field
is not set, the scsi_id will be used for device lookup instead of the world_wide_name. If Dynamic
Tracking of FC devices is enabled, the node_name field must be set to ensure communication with
the device because the scsi_id field of a device can change after dynamic tracking events.

This operation requires SCIOLSTART to be run first.

If the FCP SCIOLSTUNIT ioctl operation completes successfully, then the adap_set_flags field might
have the SC_RET_ID flag set. This field is set only if the world_wide_name and node_ name fields were
provided in the ioctl call and the FC adapter driver detects that the scsi_id field of this device has
changed. The scsi_id field will contain the new scsi_id value.

SCIOLTUR
This operation issues a Test Unit Ready command to an adapter and aids in device configuration. The
following is a typical call:
rc = ioctl(adapter, SCIOLTUR, &ready_struct);

where adapter is a file descriptor and ready_struct is a scsi_ready structure as defined in the
/usr/include/sys/scsi_buf.h header file. The FCP ID or iSCSI device’s SCSI ID alias, and LUN should be
placed in the scsi_ready parameter block. The SC_ASYNC flag should not be set on the first call to this
operation and should only be set if a bus fault has occurred. The status of the device can be determined
by evaluating the two output fields: status_validity and scsi_status. Possible errno values are:

EIO A system error has occurred. Consider retrying the operation several (around three) times,
because another attempt might be successful. If an EIO error occurs and the status_validity
field is set to SC_FCP_ERROR, then the scsi_status field has a valid value and should be
inspected.

If the status_validit field is zero and remains so on successive retries, then an unrecoverable
error has occurred with the device.

If the status_validity field is SC_FCP_ERROR and the scsi_status field contains a Check Condition
status, then the SCIOLTUR operation should be retried after several seconds.

If after successive retries, the Check Condition status remains, the device should be considered
inoperable.

EFAULT A user process copy has failed.
EINVAL The device is not opened.
EACCES The adapter is in diagnostics mode.
ENOMEM A memory request has failed.
ETIMEDOUT The command has timed out. Consider retrying the operation several times, because another

attempt might be successful.
ENODEV The device is not responding and possibly no LUNs exist on the present target.
ENOCONNECT A bus fault has occurred and the operation should be retried with the SC_ASYNC flag set in the

scsi_inquiry structure. In the case of multiple retries, this flag should be set only on the last
retry.

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 239

For FCP adapters, the version field of the scsi_ready structure must be set to the value of
SCSI_VERSION_1, which is defined in the /usr/include/sys/scsi_buf.h file. In addition, the following fields
can be set:

v world_wide_name - The caller can set the world_wide_name field to the World Wide Name of the
attached target device. If Dynamic Tracking of FC devices is enabled, the world_wide_name field
must be set to ensure communication with the device because the scsi_id field of a device can change
after dynamic tracking events.

v node_name - The caller can set the node_name field to the Node Name of the attached target device.
If the world_wide_name field and the version field are set to SCSI_VERSION_1 but the node_name field
is not set, the scsi_id will be used for device lookup instead of the world_wide_name. If Dynamic
Tracking of FC devices is enabled, the node_name field must be set to ensure communication with
the device because the scsi_id field of a device can change after dynamic tracking events.

This operation requires SCIOLSTART to be run first.

If the FCP SCIOLTUR ioctl operation completes successfully, then the adap_set_flags field might have
the SC_RET_ID flag set. This field is set only if the world_wide_name and node_ name fields were
provided in the ioctl call and the FC adapter driver detects that the scsi_id field of this device has
changed. The scsi_id field will contain the new scsi_id value.

SCIOLREAD
This operation issues an read command to an device and is used to aid in device configuration. The
following is a typical call:
rc = ioctl(adapter, SCIOLREAD, &readblk);

where adapter is a file descriptor and readblk is a scsi_readblk structure as defined in the
/usr/include/sys/scsi_buf.h header file. The FCP ID or iSCSI device’s SCSI ID alias, and the LUN should
be placed in the scsi_readblk parameter block. The SC_ASYNC flag should not be set on the first call to
this operation and should only be set if a bus fault has occurred. Possible errno values are:

EIO A system error has occurred. Consider retrying the operation several times, because another
attempt might be successful.

EFAULT A user process copy has failed.
EINVAL The device is not opened.
EACCES The adapter is in diagnostics mode.
ENOMEM A memory request has failed.
ETIMEDOUT The command has timed out. Consider retrying the operation several times, because another

attempt might be successful.
ENODEV The device is not responding. Possibly no LUNs exist on the present target.
ENOCONNECT A bus fault has occurred and the operation should be retried with the SC_ASYNC flag set in

the scsi_readblk structure. In the case of multiple retries, this flag should be set only on the
last retry.

For FCP adapters, the version field of the scsi_readblk structure must be set to the value of
SCSI_VERSION_1, which is defined in the /usr/include/sys/scsi_buf.h file. In addition, the following fields
can be set:

v world_wide_name - The caller can set the world_wide_name field to the World Wide Name of the
attached target device. If Dynamic Tracking of FC devices is enabled, the world_wide_name field
must be set to ensure communication with the device because the scsi_id field of a device can change
after dynamic tracking events.

v node_name - The caller can set the node_name field to the Node Name of the attached target device.
If the world_wide_name field and the version field are set to SCSI_VERSION_1 but the node_name field
is not set, the scsi_id will be used for device lookup instead of the world_wide_name. If Dynamic
Tracking of FC devices is enabled, the node_name field must be set to ensure communication with
the device because the scsi_id field of a device can change after dynamic tracking events.

240 Kernel Extensions and Device Support Programming Concepts

This operation requires SCIOLSTART to be run first.

If the FCP SCIOLREAD ioctl operation completes successfully, then the adap_set_flags field might have
the SC_RET_ID flag set. This field is set only if the world_wide_name and node_ name fields were
provided in the ioctl call and the FC adapter driver detects that the scsi_id field of this device has
changed. The scsi_id field will contain the new scsi_id value.

SCIOLRESET
If the SCIOLRESET_LUN_RESET flag is not set in the flags field of the scsi_sciolst, then this operation
causes a device to release all reservations, clear all current commands, and return to an initial state by
issuing a Target Reset, which resets all LUNs associated with the specified FCP ID or iSCSI device’s
SCSI ID alias. If the SCIOLRESET_LUN_RESET flag is set in the flags field of the scsi_sciolst, then this
operation causes an FCP device to release all reservations, clear all current commands, and return to an
initial state by issuing a Lun Reset, which resets just the specified LUN associated with the specified FCP
ID or iSCSI device’s SCSI ID alias.

A reserve command should be issued after the SCIOLRESET operation to prevent other initiators from
claiming the device. Note that because a certain amount of time exists between a reset and reserve
command, it is still possible for another initiator to successfully reserve a particular device. The following is
a typical call:

rc = fp_ioctl(fp, SCIOLRESET, &sciolst);

where fp is a pointer to a file structure and sciolst is a scsi_sciolst structure (defined in
/usr/include/sys/scsi_buf.h) that contains the SCSI ID or iSCSI device’s SCSI ID alias, and Logical Unit
Number (LUN) ID values of the device to be started.

A nonzero return value indicates an error has occurred. Possible errno values are:

EIO An unrecoverable system error has occurred.
EINVAL The device is not opened.
EACCES The adapter is in diagnostics mode.
ETIMEDOUT The operation did not complete before the time-out value was exceeded.

For FCP adapters, the version field of the scsi_sciolst structure must be set to the value of
SCSI_VERSION_1, which is defined in the /usr/include/sys/scsi_buf.h file. In addition, the following fields
can be set:

v world_wide_name - The caller can set the world_wide_name field to the World Wide Name of the
attached target device. If Dynamic Tracking of FC devices is enabled, the world_wide_name field
must be set to ensure communication with the device because the scsi_id field of a device can change
after dynamic tracking events.

v node_name - The caller can set the node_name field to the Node Name of the attached target device.
If the world_wide_name field and the version field are set to SCSI_VERSION_1 but the node_name field
is not set, the scsi_id will be used for device lookup instead of the world_wide_name. If Dynamic
Tracking of FC devices is enabled, the node_name field must be set to ensure communication with
the device because the scsi_id field of a device can change after dynamic tracking events.

This operation requires SCIOLSTART to be run first.

If the FCP SCIOLRESET ioctl operation completes successfully, then the adap_set_flags field might have
the SCIOL_RET_ID_ALIAS flag set. This field is set only if the world_wide_name and node_ name fields
were provided in the ioctl call and the FC adapter driver detects that the scsi_id field of this device has
changed. The scsi_id field will contain the new scsi_id value.

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 241

SCIOLHALT
This operation stops the current command of the selected device, clears the command queue of any
pending commands, and brings the device to a halted state. The adapter sends an abort message to the
device and is usually used by the device driver to abort the current operation instead of allowing it to
complete or time out.

After the SCIOLHALT operation is sent, the device driver must set the SC_RESUME flag in the next
scsi_buf structure sent to the adapter device driver, or all subsequent scsi_buf structures sent are
ignored.

The adapter also performs normal error recovery procedures during this command. The following is a
typical call:
rc = fp_ioctl(fp, SCIOLHALT, &sciolst);

where fp is a pointer to a file structure and sciolst is a scsi_sciolst structure (defined in
/usr/include/sys/scsi_buf.h) that contains the SCSI ID or iSCSI device’s SCSI ID alias, and Logical Unit
Number (LUN) ID values of the device to be started.

A nonzero return value indicates an error has occurred. Possible errno values are:

EIO An unrecoverable system error has occurred.
EINVAL The device is not opened.
EACCES The adapter is in diagnostics mode.
ETIMEDOUT The operation did not complete before the time-out value was exceeded.

For FCP adapters, the version field of the scsi_sciolst structure must be set to the value of
SCSI_VERSION_1, which is defined in the /usr/include/sys/scsi_buf.h file. In addition, the following fields
can be set:

v world_wide_name - The caller can set the world_wide_name field to the World Wide Name of the
attached target device. If Dynamic Tracking of FC devices is enabled, the world_wide_name field
must be set to ensure communication with the device because the scsi_id field of a device can change
after dynamic tracking events.

v node_name - The caller can set the node_name field to the Node Name of the attached target device.
If the world_wide_name field and the version field are set to SCSI_VERSION_1 but the node_name field
is not set, the scsi_id will be used for device lookup instead of the world_wide_name. If Dynamic
Tracking of FC devices is enabled, the node_name field must be set to ensure communication with
the device because the scsi_id field of a device can change after dynamic tracking events.

This operation requires SCIOLSTART to be run first.

If the FCP SCIOLHALT ioctl operation completes successfully, then the adap_set_flags field might have
the SCIOL_RET_ID_ALIAS flag set. This field is set only if the world_wide_name and node_ name fields
were provided in the ioctl call and the FC adapter driver detects that the scsi_id field of this device has
changed. The scsi_id field will contain the new scsi_id value.

SCIOLCMD
After the SCSI device has been successfully started using SCIOLSTART, the SCIOLCMD ioctl operation
provides the means for issuing any SCSI command to the specified device. The SCSI adapter driver
performs no error recovery or logging on failures of this ioctl operation. The following is a typical call:
rc = ioctl(adapter, SCIOLCMD, &iocmd);

where adapter is a file descriptor and iocmd is a scsi_iocmd structure as defined in the
/usr/include/sys/scsi_buf.h header file. The SCSI ID or iSCSI device’s SCSI ID alias, and LUN ID should
be placed in the scsi_iocmd parameter block.

242 Kernel Extensions and Device Support Programming Concepts

The SCSI status byte and the adapter status bytes are returned via the scsi_iocmd structure. If the
SCIOLCMD operation returns a value of -1 and theerrno global variable is set to a nonzero value, the
requested operation has failed. In this case, the caller should evaluate the returned status bytes to
determine why the operation failed and what recovery actions should be taken.

The devinfo structure defines the maximum transfer size for the command. If an attempt is made to
transfer more than the maximum, a value of -1 is returned and the errno global variable set to a value of
EINVAL. Refer to the Small Computer System Interface (SCSI) Specification for the applicable device to
get request sense information.

Possible errno values are:

EIO A system error has occurred. Consider retrying the operation several (around three) times, because
another attempt might be successful. If an EIO error occurs and the status_validity field is set to
SC_SCSI_ERROR, then the scsi_status field has a valid value and should be inspected.

If the status_validity field is zero and remains so on successive retries then an unrecoverable
error has occurred with the device.

If the status_validity field is SC_SCSI_ERROR and the scsi_status field contains a Check Condition
status, then a SCSI request sense should be issued via the SCIOLCMD ioctl to recover the the
sense data.

EFAULT A user process copy has failed.
EINVAL The device is not opened.
EACCES The adapter is in diagnostics mode.
ENOMEM A memory request has failed.
ETIMEDOUT The command has timed out. Consider retrying the operation several times, because another

attempt might be successful.
ENODEV The device is not responding.
ETIMEDOUT The operation did not complete before the time-out value was exceeded.

For FCP adapters, the version field of the scsi_iocmd structure must be set to the value of
SCSI_VERSION_1, which is defined in the /usr/include/sys/scsi_buf.h file. In addition, the following fields
can be set:

v world_wide_name - The caller can set the world_wide_name field to the World Wide Name of the
attached target device. If Dynamic Tracking of FC devices is enabled, the world_wide_name field
must be set to ensure communication with the device because the scsi_id field of a device can change
after dynamic tracking events.

v node_name - The caller can set the node_name field to the Node Name of the attached target device.
If the world_wide_name field and the version field are set to SCSI_VERSION_1 but the node_name field
is not set, the scsi_id will be used for device lookup instead of the world_wide_name. If Dynamic
Tracking of FC devices is enabled, the node_name field must be set to ensure communication with
the device because the scsi_id field of a device can change after dynamic tracking events.

This operation requires SCIOLSTART to be run first.

If the FCP SCIOLCMD ioctl operation completes successfully, then the adap_set_flags field might have
the SC_RET_ID flag set. This field is set only if the world_wide_name and node_ name fields were
provided in the ioctl call and the FC adapter driver detects that the scsi_id field of this device has
changed. The scsi_id field will contain the new scsi_id value.

SCIOLNMSRV

Note: SCIOLNMSRV is specific to FCP.

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 243

This operation issues a query name server request to find all SCSI devices and is used to aid in SCSI
device configuration. The following is a typical call:
rc = ioctl(adapter, SCIOLNMSRV, &nmserv);

where adapter is a file descriptor and nmserv is a scsi_nmserv structure as defined in the
/usr/include/sys/scsi_buf.h header file. The caller of this ioctl, must allocate a buffer be referenced by
the scsi_id_list field. In addition the caller must set the list_len field to indicate the size of the buffer in
bytes.

On successful completion, the num_ids field indicates the number of SCSI IDs returned in the current list.
If the more ids were found then could be placed in the list, then the adapter driver will update the list_len
field to indicate the length of buffer needed to receive all SCSI IDs.

Possible errno values are:

EIO A system error has occurred. Consider retrying the operation several times, because another
attempt may be successful.

EFAULT A user process copy has failed.
EINVAL The physical configuration does not support this request.
ENOMEM A memory request has failed.
ETIMEDOUT The command has timed out. Consider retrying the operation several times, because another

attempt may be successful.
ENODEV The device is not responding. Possibly no LUNs exist on the present target.

SCIOLQWWN

Note: SCIOLQWWN is specific to FCP.

This operation issues a request to find the SCSI ID of a device for the specified world wide name. The
following is a typical call:
rc = ioctl(adapter, SCIOLQWWN, &qrywwn);

where adapter is a file descriptor and qrywwn is a scsi_qry_wwn structure as defined in the
/usr/include/sys/scsi_buf.h header file. The caller of this ioctl, must specify the device’s world wide name
in the world_wide_name field. On successful completion, the scsi_id field will be returned with the SCSI
ID of the device with this world wide name.

Possible errno values are:

EIO A system error has occurred. Consider retrying the operation several times, because another
attempt may be successful.

EFAULT A user process copy has failed.
EINVAL The physical configuration does not support this request.
ENOMEM A memory request has failed.
ETIMEDOUT The command has timed out. Consider retrying the operation several times, because another

attempt may be successful.
ENODEV The device is not responding. Possibly no LUNs exist on the present FCP ID.

SCIOLPAYLD
This operation provides the means for issuing a transport payload to the specified device. The SCSI
adapter driver performs no error recovery or logging on failures of this ioctl operation. The following is a
typical call:
rc = ioctl(adapter, SCIOLPAYLD, &payld);

244 Kernel Extensions and Device Support Programming Concepts

where adapter is a file descriptor and payld is a scsi_trans_payld structure as defined in the
/usr/include/sys/scsi_buf.h header file. The SCSI ID or SCSI ID alias should be placed in the
scsi_trans_payld. In addition the user must allocate a payload buffer referenced by the payld_bufferfield
and a response buffer referenced by the response_buffer field. The fields payld_size and
response_size specify the size in bytes of the payload buffer and response buffer, respectively. In addition
the caller may also set payld_type (for FC this is the FC-4 type), and payld_ctl (for FC this is the router
control field),.

If the SCIOLPAYLD operation returns a value of -1 and the errno global variable is set to a nonzero
value, the requested operation has failed. In this case, the caller should evaluate the returned status bytes
to determine why the operation failed and what recovery actions should be taken.

Possible errno values are:

EIO A system error has occurred.
EFAULT A user process copy has failed.
EINVAL Payload and or response buffer are too large. For FCP and iSCSI the maximum size is 4096

bytes.
ENOMEM A memory request has failed.
ETIMEDOUT The command has timed out. Consider retrying the operation several times, because another

attempt may be successful.
ENODEV The device is not responding.
ETIMEDOUT The operation did not complete before the time-out value was exceeded.

SCIOLCHBA
When the device has been successfully opened, the SCIOLCHBA operation provides the means for
issuing one or more common HBA API commands to the adapter. The FC adapter driver will perform full
error recovery on failures of this operation.

The arg parameter contains the address of a scsi_chba structure, which is defined in the
/usr/include/sys/scsi_buf.h file.

The cmd field in the scsi_chba structure will determine the common HBA API operation that is performed.

If the SCIOLCHBA operation fails, the subroutine returns a value of -1 and sets the errno global variable
to a nonzero value. In this case, the caller should evaluate the returned status bytes to determine why the
operation was unsuccessful and what recovery actions should be taken.

If a SCIOLCHBA operation fails because a field in the scsi_chba structure has an invalid value, the
subroutine will return a value of -1 and set the errno global variable to EINVAL.

SCIOLPASSTHRUHBA
When the device has been successfully opened, the SCIOLPASSTHRUHBA operation provides the
means for issuing passthru commands to the adapter. The FC adapter driver will perform full error
recovery on failures of this operation.

The arg parameter contains the address of a scsi_passthru_hba structure, which is defined in the
/usr/include/sys/scsi_buf.h file.

The cmd field in the scsi_passthru_hba structure will determine the type of passthru operation to be
performed.

If the SCIOPASSTHRUHBA operation fails, the subroutine returns a value of -1 and sets the errno global
variable to a nonzero value. In this case, the caller should evaluate the returned status bytes to determine
why the operation was unsuccessful and what recovery actions should be taken.

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 245

If a SCIOLPASSTHRUHBA operation fails because a field in the scsi_passthru_hba structure has an
invalid value, the subroutine will return a value of -1 and set the errno global variable to EINVAL.

FCP and iSCSI Subsystem Overview
This section frequently refers to both device driver and adapter device driver. These two distinct device
drivers work together in a layered approach to support attachment of a range of devices. The adapter
device driver is the lower device driver of the pair, and the device driver is the upper device driver.

Responsibilities of the Adapter Device Driver
The adapter device driver is the software interface to the system hardware. This hardware includes the
transport layer hardware, plus any other system I/O hardware required to run an I/O request. The adapter
device driver hides the details of the I/O hardware from the device driver. The design of the software
interface allows a user with limited knowledge of the system hardware to write the upper device driver.

The adapter device driver manages the transport layer but not the devices. It can send and receive
commands, but it cannot interpret the contents of the command. The lower driver also provides recovery
and logging for errors related to the transport layer and system I/O hardware. Management of the device
specifics is left to the device driver. The interface of the two drivers allows the upper driver to
communicate with different transport layer adapters without requiring special code paths for each adapter.

Responsibilities of the Device Driver
The device driver provides the rest of the operating system with the software interface to a given device or
device class. The upper layer recognizes which commands are required to control a particular device or
device class. The device driver builds I/O requests containing device commands, and sends them to the
adapter device driver in the sequence needed to operate the device successfully. The device driver cannot
manage adapter resources or give the command to the adapter. Specifics about the adapter and system
hardware are left to the lower layer.

The device driver also provides recovery and logging for errors related to the device that it controls.

The operating system provides several kernel services allowing the device driver to communicate with
adapter device driver entry points without having the actual name or address of those entry points. See
“Logical File System Kernel Services” on page 55 for more information.

Communication between Devices
When two devices communicate, one assumes the initiator-mode role, and the other assumes the
target-mode role. The initiator-mode device generates the command, which requests an operation, and the
target-mode device receives the command and acts. It is possible for a device to perform both roles
simultaneously.

When writing a new adapter device driver, the writer must know which mode or modes must be supported
to meet the requirements of the adapter and any interfaced device drivers.

Initiator-Mode Support
The interface between the device driver and the adapter device driver for initiator-mode support (that is,
the attached device acts as a target) is accessed through calls to the adapter device driver open, close,
ioctl, and strategy subroutines. I/O requests are queued to the adapter device driver through calls to its
strategy entry point.

Communication between the device driver and the adapter device driver for a particular initiator I/O
request is made through the scsi_buf structure, which is passed to and from the strategy subroutine in
the same way a standard driver uses a struct buf structure.

246 Kernel Extensions and Device Support Programming Concepts

Understanding FCP and iSCSI Asynchronous Event Handling

Note: This operation is not supported by all I/O controllers.

A device driver can register a particular device instance for receiving asynchronous event status by calling
the SCIOLEVENT ioctl operation for the adapter device driver. When an event covered by the
SCIOLEVENT ioctl operation is detected by the adapter device driver, it builds an scsi_event_info
structure and passes a pointer to the structure and to the asynchronous event-handler routine entry point,
which was previously registered. The fields in the structure are filled in by the adapter device driver as
follows:

scsi_id
For initiator mode, this is set to the SCSI ID or SCSI ID alias of the attached target device. For
target mode, this is set to the SCSI ID or SCSI ID alias of the attached initiator device.

lun_id
For initiator mode, this is set to the SCSI LUN of the attached target device. For target mode, this
is set to 0.

mode Identifies whether the initiator or target mode device is being reported. The following values are
possible:

SCSI_IM_MODE
An initiator mode device is being reported.

SCSI_TM_MODE
A target mode device is being reported.

events
This field is set to indicate what event or events are being reported. The following values are
possible, as defined in the /usr/include/sys/scsi.h file:

SCSI_FATAL_HDW_ERR
A fatal adapter hardware error occurred.

SCSI_ADAP_CMD_FAILED
An unrecoverable adapter command failure occurred.

SCSI_RESET_EVENT
A transport layer reset was detected.

SCSI_BUFS_EXHAUSTED
In target-mode, a maximum buffer usage event has occurred.

adap_devno
This field is set to indicate the device major and minor numbers of the adapter on which the
device is located.

async_correlator
This field is set to the value passed to the adapter device driver in the scsi_event_struct
structure. The device driver might optionally use this field to provide an efficient means of
associating event status with the device instance it goes with. Alternatively, the device driver would
use the combination of the id, lun, mode, and adap_devno fields to identify the device instance.

The information reported in the scsi_event_info.events field does not queue to the device driver, but is
instead reported as one or more flags as they occur. Because the data does not queue, the adapter
device driver writer can use a single scsi_event_info structure and pass it one at a time, by pointer, to
each asynchronous event handler routine for the appropriate device instance. After determining for which
device the events are being reported, the device driver must copy the scsi_event_info.events field into
local space and must not modify the contents of the rest of the scsi_event_info structure.

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 247

Because the event status is optional, the device driver writer determines which action is necessary to take
upon receiving event status. The writer might decide to save the status and report it back to the calling
application, or the device driver or application level program can take error recovery actions.

Defined Events and Recovery Actions
The adapter fatal hardware failure event is intended to indicate that no further commands to or from this
device are likely to succeed, because the adapter to which it is attached, has failed. It is recommended
that the application end the session with the device.

The unrecoverable adapter command failure event is not necessarily a fatal condition, but it can indicate
that the adapter is not functioning properly. Possible actions by the application program include:

v Ending of the session with the device in the near future.

v Ending of the session after multiple (two or more) such events.

v Attempt to continue the session indefinitely.

The SCSI Reset detection event is mainly intended as information only, but can be used by the application
to perform further actions, if necessary.

The maximum buffer usage detected event only applies to a given target-mode device; it will not be
reported for an initiator-mode device. This event indicates to the application that this particular target-mode
device instance has filled its maximum allotted buffer space. The application should perform read system
calls fast enough to prevent this condition. If this event occurs, data is not lost, but it is delayed to prevent
further buffer usage. Data reception will be restored when the application empties enough buffers to
continue reasonable operations. The num_bufs attribute might need to be increased to help minimize this
problem. Also, it is possible that regardless of the number of buffers, the application simply is not
processing received data fast enough. This might require some fine tuning of the application’s data
processing routines.

Asynchronous Event-Handling Routine
The device driver asynchronous event-handling routine is typically called directly from the hardware
interrupt-handling routine for the adapter device driver. The device driver writer must be aware of how this
affects the design of the device driver.

Because the event handling routine is running on the hardware interrupt level, the device driver must be
careful to limit operations in that routine. Processing should be kept to a minimum. In particular, if any
error recovery actions are performed, it is recommended that the event-handling routine set state or status
flags only and allow a process level routine to perform the actual operations.

The device driver must be careful to disable interrupts at the correct level in places where the device
driver’s lower execution priority routines manipulate variables that are also modified by the event-handling
routine. To allow the device driver to disable at the correct level, the adapter device driver writer must
provide a configuration database attribute that defines the interrupt class, or priority, it runs on. This
attribute must be named intr_priority so that the device driver configuration method knows which attribute
of the parent adapter to query. The device driver configuration method should then pass this interrupt
priority value to the device driver along with other configuration data for the device instance.

The SCSI device driver writer must follow any other general system rules for writing a routine that must
execute in an interrupt environment. For example, the routine must not attempt to sleep or wait on I/O
operations. It can perform wakeups to allow the process level to handle those operations.

Because the device driver copies the information from the scsi_event_info.events field on each call to its
asynchronous event-handling routine, there is no resource to free and no information that must be passed
back later to the adapter device driver.

248 Kernel Extensions and Device Support Programming Concepts

FCP and iSCSI Error Recovery
If the device is in initiator mode, the error-recovery process varies depending on whether or not the device
is supporting command queuing. Also some devices might support NACA=1 error recovery. Thus, error
recovery needs to deal with the two following concepts.

Autosense Data
When a device returns a check condition or command terminated (the scsi_buf.scsi_status will have the
value of SC_CHECK_CONDITION or SC_COMMAND_TERMINATED, respectively), it will also return the request sense
data.

Note: Subsequent commands to the device will clear the request sense data.

If the device driver has specified a valid autosense buffer (scsi_buf.autosense_length > 0 and the
scsi_buf.autosense_buffer_ptr field is not NULL), then the adapter device driver will copy the returned
autosense data into the buffer referenced by scsi_buf.autosense_buffer_ptr. When this occurs, the
adapter device driver will set the SC_AUTOSENSE_DATA_VALID flag in the scsi_buf.adap_set_flags.

When the device driver receives the SCSI status of check condition or command terminated (the
scsi_buf.scsi_status will have the value of SC_CHECK_CONDITION or SC_COMMAND_TERMINATED, respectively),
it should then determine if the SC_AUTOSENSE_DATA_VALID flag is set in the
scsi_buf.adap_set_flags. If so then it should process the autosense data and not send a SCSI request
sense command.

NACA=1 error recovery
Some devices support setting the NACA (Normal Auto Contingent Allegiance) bit to a value of one
(NACA=1) in the control byte of the SCSI command . If a device returns a check condition or command
terminated (the scsi_buf.scsi_status will have the value of SC_CHECK_CONDITION or
SC_COMMAND_TERMINATED, respectively) for a command with NACA=1 set, then the device will require a
Clear ACA task management request to clear the error condition on the drive. The device driver can issue
a Clear ACA task management request by sending a transaction with the SC_CLEAR_ACA flag in the
sc_buf.flags field. The SC_CLEAR_ACA flag can be used in conjunction with the SC_Q_CLR and
SC_Q_RESUME flag in the sc_buf.flags to clear or resume the queue of transactions for this device,
respectively. For more information, see “Initiator-Mode Recovery During Command Tag Queuing” on
page 250.

FCP and iSCSI Initiator-Mode Recovery When Not Command Tag
Queuing
If an error such as a check condition or hardware failure occurs, the transaction active during the error is
returned with the scsi_buf.bufstruct.b_error field set to EIO. Other transactions in the queue might be
returned with the scsi_buf.bufstruct.b_error field set to ENXIO. If the adapter driver decides not to return
other outstanding commands it has queued to it, then the failed transaction will be returned to the device
driver with an indication that the queue for this device is not cleared by setting the
SC_DID_NOT_CLEAR_Q flag in the scsi_buf.adap_q_status field. The device driver should process or
recover the condition, rerunning any mode selects or device reservations to recover from this condition
properly. After this recovery, it should reschedule the transaction that had the error. In many cases, the
device driver only needs to retry the unsuccessful operation.

The adapter device driver should never retry a SCSI command on error after the command has
successfully been given to the adapter. The consequences for retrying a command at this point range from
minimal to catastrophic, depending upon the type of device. Commands for certain devices cannot be
retried immediately after a failure (for example, tapes and other sequential access devices). If such an
error occurs, the failed command returns an appropriate error status with an iodone call to the device

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 249

driver for error recovery. Only the device driver that originally issued the command knows if the command
can be retried on the device. The adapter device driver must only retry commands that were never
successfully transferred to the adapter. In this case, if retries are successful, the scsi_buf status should
not reflect an error. However, the adapter device driver should perform error logging on the retried
condition.

The first transaction passed to the adapter device driver during error recovery must include a special flag.
This SC_RESUME flag in the scsi_buf.flags field must be set to inform the adapter device driver that the
device driver has recognized the fatal error and is beginning recovery operations. Any transactions passed
to the adapter device driver, after the fatal error occurs and before the SC_RESUME transaction is issued,
should be flushed; that is, returned with an error type of ENXIO through an iodone call.

Note: If a device driver continues to pass transactions to the adapter device driver after the adapter
device driver has flushed the queue, these transactions are also flushed with an error return of
ENXIO through the iodone service. This gives the device driver a positive indication of all
transactions flushed.

Initiator-Mode Recovery During Command Tag Queuing
If the device driver is queuing multiple transactions to the device and either a check condition error or a
command terminated error occurs, the adapter driver does not clear all transactions in its queues for the
device. It returns the failed transaction to the device driver with an indication that the queue for this device
is not cleared by setting the SC_DID_NOT_CLEAR_Q flag in the scsi_buf.adap_q_status field. The
adapter driver halts the queue for this device awaiting error recovery notification from the device driver.
The device driver then has three options to recover from this error:

v Send one error recovery command (request sense) to the device.

v Clear the adapter driver’s queue for this device.

v Resume the adapter driver’s queue for this device.

When the adapter driver’s queue is halted, the device drive can get sense data from a device by setting
the SC_RESUME flag in the scsi_buf.flags field and the SC_NO_Q flag in scsi_buf.q_tag_msg field of
the request-sense scsi_buf. This action notifies the adapter driver that this is an error-recovery transaction
and should be sent to the device while the remainder of the queue for the device remains halted. When
the request sense completes, the device driver needs to either clear or resume the adapter driver’s queue
for this device.

The device driver can notify the adapter driver to clear its halted queue by sending a transaction with the
SC_Q_CLR flag in the scsi_buf.flags field. This transaction must not contain a command because it is
cleared from the adapter driver’s queue without being sent to the adapter. However, this transaction must
have the SCSI ID field (scsi_buf.scsi_id) and the LUN field (scsi_buf.lun_id) filled in with the device’s
SCSI ID and logical unit number (LUN), respectively. Upon receiving an SC_Q_CLR transaction, the
adapter driver flushes all transactions for this device and sets their scsi_buf.bufstruct.b_error fields to
ENXIO. The device driver must wait until the scsi_buf with the SC_Q_CLR flag set is returned before it
resumes issuing transactions. The first transaction sent by the device driver after it receives the returned
SC_Q_CLR transaction must have the SC_RESUME flag set in the scsi_buf.flags fields.

If the device driver wants the adapter driver to resume its halted queue, it must send a transaction with the
SC_Q_RESUME flag set in the scsi_buf.flags field. This transaction can contain an actual command, but
it is not required. However, this transaction must have the SCSI ID field (scsi_buf.scsi_id) and the LUN
field (scsi_buf.lun_id) filled in with the device’s SCSI ID and logical unit number (LUN). If this is the first
transaction issued by the device driver after receiving the error (indicating that the adapter driver’s queue
is halted),then the SC_RESUME flag must be set as well as the SC_Q_RESUME flag.

250 Kernel Extensions and Device Support Programming Concepts

Analyzing Returned Status
The following order of precedence should be followed by device drivers when analyzing the returned
status:

1. If the scsi_buf.bufstruct.b_flags field has the B_ERROR flag set, then an error has occurred and the
scsi_buf.bufstruct.b_error field contains a valid errno value.

If the b_error field contains the ENXIO value, either the command needs to be restarted or it was
canceled at the request of the device driver.

If the b_error field contains the EIO value, then either one or no flag is set in the
scsi_buf.status_validity field. If a flag is set, an error in either the scsi_status or adapter_status
field is the cause.

If the status_validity field is 0, then the scsi_buf.bufstruct.b_resid field should be examined to see if
the command issued was in error. The b_resid field can have a value without an error having
occurred. To decide whether an error has occurred, the device driver must evaluate this field with
regard to the command being sent and the device being driven.

If the SC_CHECK_CONDITION or SC_COMMAND_TERMINATED is set in scsi_status, then a
device driver must analyze the value of scsi_buf.adap_set_flags to determine if autosense data was
returned from the device.

If the SC_AUTOSENSE_DATA_VALID flag is set in the scsi_buf.adap_set_flags field for a device,
then the device returned autosense data in the buffer referenced by scsi_buf.autosense_buffer_ptr.
In this situation the device driver does not need to issue a SCSI request sense to determine the
appropriate error recovery for the devices.

If the device driver is queuing multiple transactions to the device and if either
SC_CHECK_CONDITION or SC_COMMAND_TERMINATED is set in scsi_status, then the value of
scsi_buf.adap_q_status must be analyzed to determine if the adapter driver has cleared its queue for
this device. If the adapter driver has not cleared its queue after an error, then it holds that queue in a
halted state.

If scsi_buf.adap_q_status is set to 0, the adapter driver has cleared its queue for this device and any
transactions outstanding are flushed back to the device driver with an error of ENXIO.

If the SC_DID_NOT_CLEAR_Q flag is set in the scsi_buf.adap_q_status field, the adapter driver has
not cleared its queue for this device. When this condition occurs, the adapter driver allows the device
driver to send one error recovery transaction (request sense) that has the field scsi_buf.q_tag_msg
set to SC_NO_Q and the field scsi_buf.flags set to SC_RESUME. The device driver can then notify the
adapter driver to clear or resume its queue for the device by sending a SC_Q_CLR or
SC_Q_RESUME transaction.

If the device driver does not queue multiple transactions to the device (that is, the SC_NO_Q is set in
scsi_buf.q_tag_msg), then the adapter clears its queue on error and sets scsi_buf.adap_q_status
to 0.

2. If the scsi_buf.bufstruct.b_flags field does not have the B_ERROR flag set, then no error is being
reported. However, the device driver should examine the b_resid field to check for cases where less
data was transferred than expected. For some commands, this occurrence might not represent an
error. The device driver must determine if an error has occurred.

If a nonzero b_resid field does represent an error condition, then the device queue is not halted by the
adapter device driver. It is possible for one or more succeeding queued commands to be sent to the
adapter (and possibly the device). Recovering from this situation is the responsibility of the device
driver.

3. In any of the above cases, if scsi_buf.bufstruct.b_flags field has the B_ERROR flag set, then the
queue of the device in question has been halted. The first scsi_buf structure sent to recover the error
(or continue operations) must have the SC_RESUME bit set in the scsi_buf.flags field.

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 251

A Typical Initiator-Mode FCP and iSCSI Driver Transaction Sequence
A simplified sequence of events for a transaction between a device driver and an adapter device driver
follows. In this sequence, routine names preceded by dd_ are part of the device driver, and those
preceded byscsi_ are part of the adapter device driver.

1. The device driver receives a call to its dd_strategy routine; any required internal queuing occurs in
this routine. The dd_strategy entry point then triggers the operation by calling the dd_start entry
point. The dd_start routine invokes the scsi_strategy entry point by calling the devstrategy kernel
service with the relevant scsi_buf structure as a parameter.

2. The scsi_strategy entry point initially checks the scsi_buf structure for validity. These checks include
validating the devno field, matching the SCSI ID or the LUN to internal tables for configuration
purposes, and validating the request size.

3. Although the adapter device driver cannot reorder transactions, it does perform queue chaining. If no
other transactions are pending for the requested device, the scsi_strategy routine immediately calls
the scsi_start routine with the new transaction. If there are other transactions pending, the new
transaction is added to the tail of the device chain.

4. At each interrupt, the scsi_intr interrupt handler verifies the current status. The adapter device driver
fills in the scsi_buf status_validity field, updating the scsi_status and adapter_status fields as
required. The adapter device driver also fills in the bufstruct.b_resid field with the number of bytes
not transferred from the request. If all the data was transferred, the b_resid field is set to a value of 0.
If the SCSI adapter driver is a adapter driver and autosense data is returned from the device, then the
adapter driver will also fill in the adap_set_flags and autosense_buffer_ptr fields of the scsi_buf
structure. When a transaction completes, the scsi_intr routine causes the scsi_buf entry to be
removed from the device queue and calls the iodone kernel service, passing the just dequeued
scsi_buf structure for the device as the parameter. The scsi_start routine is then called again to
process the next transaction on the device queue. The iodone kernel service calls the device driver
dd_iodone entry point, signaling the device driver that the particular transaction has completed.

5. The device driver dd_iodone routine investigates the I/O completion codes in the scsi_buf status
entries and performs error recovery, if required. If the operation completed correctly, the device driver
dequeues the original buffer structures. It calls the iodone kernel service with the original buffer
pointers to notify the originator of the request.

Understanding FCP and iSCSI Device Driver Internal Commands
During initialization, error recovery, and open or close operations, device drivers initiate some transactions
not directly related to an operating system request. These transactions are called internal commands and
are relatively simple to handle.

Internal commands differ from operating system-initiated transactions in several ways. The primary
difference is that the device driver is required to generate a struct buf that is not related to a specific
request. Also, the actual commands are typically more control-oriented than data transfer-related.

The only special requirement for commands with short data-phase transfers (less than or equal to 256
bytes) is that the device driver must have pinned the memory being transferred into or out of system
memory pages. However, due to system hardware considerations, additional precautions must be taken for
data transfers into system memory pages when the transfers are larger than 256 bytes. The problem is
that any system memory area with a DMA data operation in progress causes the entire memory page that
contains it to become inaccessible.

As a result, a device driver that initiates an internal command with more than 256 bytes must have
preallocated and pinned an area of some multiple whose size is the system page size. The driver must not
place in this area any other data areas that it may need to access while I/O is being performed into or out
of that page. Memory pages so allocated must be avoided by the device driver from the moment the
transaction is passed to the adapter device driver until the device driver iodone routine is called for the
transaction (and for any other transactions to those pages).

252 Kernel Extensions and Device Support Programming Concepts

Understanding the Execution of FCP and iSCSI Initiator I/O Requests
During normal processing, many transactions are queued in the device driver. As the device driver
processes these transactions and passes them to the adapter device driver, the device driver moves them
to the in-process queue. When the adapter device driver returns through the iodone service with one of
these transactions, the device driver either recovers any errors on the transaction or returns using the
iodone kernel service to the calling level.

The device driver can send only one scsi_buf structure per call to the adapter device driver. Thus, the
scsi_buf.bufstruct.av_forw pointer should be null when given to the adapter device driver, which
indicates that this is the only request. The device driver can queue multiple scsi_buf requests by making
multiple calls to the adapter device driver strategy routine.

Spanned (Consolidated) Commands
Some kernel operations may be composed of sequential operations to a device. For example, if
consecutive blocks are written to disk, blocks might or might not be in physically consecutive buffer pool
blocks.

To enhance the transport layer performance, the device driver should consolidate multiple queued requests
when possible into a single command. To allow the adapter device driver the ability to handle the scatter
and gather operations required, the scsi_buf.bp should always point to the first buf structure entry for the
spanned transaction. A null-terminated list of additional struct buf entries should be chained from the first
field through the buf.av_forw field to give the adapter device driver enough information to perform the
DMA scatter and gather operations required. This information must include at least the buffer’s starting
address, length, and cross-memory descriptor.

The spanned requests should always be for requests in either the read or write direction but not both,
since the adapter device driver must be given a single command to handle the requests. The spanned
request should always consist of complete I/O requests (including the additional struct buf entries). The
device driver should not attempt to use partial requests to reach the maximum transfer size.

The maximum transfer size is actually adapter-dependent. The IOCINFO ioctl operation can be used to
discover the adapter device driver’s maximum allowable transfer size. To ease the design, implementation,
and testing of components that may need to interact with multiple adapter device drivers, a required
minimum size has been established that all adapter device drivers must be capable of supporting. The
value of this minimum/maximum transfer size is defined as the following value in the
/usr/include/sys/scsi.h file:

SC_MAXREQUEST /* maximum transfer request for a single */
/* FCP or iSCSI command (in bytes) */

If a transfer size larger than the supported maximum is attempted, the adapter device driver returns a
value of EINVAL in the scsi_buf.bufstruct.b_error field.

Due to system hardware requirements, the device driver must consolidate only commands that are
memory page-aligned at both their starting and ending addresses. Specifically, this applies to the
consolidation of inner memory buffers. The ending address of the first buffer and the starting address of all
subsequent buffers should be memory page-aligned. However, the starting address of the first memory
buffer and the ending address of the last do not need to be aligned so.

The purpose of consolidating transactions is to decrease the number of commands and transport layer
phases required to perform the required operation. The time required to maintain the simple chain of buf
structure entries is significantly less than the overhead of multiple (even two) transport layer transactions.

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 253

Fragmented Commands
Single I/O requests larger than the maximum transfer size must be divided into smaller requests by the
device driver. For calls to a device driver’s character I/O (read/write) entry points, the uphysio kernel
service can be used to break up these requests. For a fragmented command such as this, the
scsi_buf.bp field should be null so that the adapter device driver uses only the information in the
scsi_buf structure to prepare for the DMA operation.

FCP and iSCSI Command Tag Queuing

Note: This operation is not supported by all I/O controllers.

Command tag queuing refers to queuing multiple commands to a device. Queuing to the device can
improve performance because the device itself determines the most efficient way to order and process
commands. Devices that support command tag queuing can be divided into two classes: those that clear
their queues on error and those that do not. Devices that do not clear their queues on error resume
processing of queued commands when the error condition is cleared (either by receiving the next
command for NACA=0 error recovery or by receiving a Clear ACA task management command for
NACA=1 error recovery). Devices that do clear their queues flush all commands currently outstanding.

Command tag queuing requires the adapter, the device, the device driver, and the adapter driver to
support this capability. For a device driver to queue multiple commands to a device (that supports
command tag queuing), it must be able to provide at least one of the following values in the
scsi_buf.q_tag_msg:

v SC_SIMPLE_Q

v SC_HEAD_OF_Q

v SC_ORDERED_Q

The disk device driver and adapter driver do support this capability. This implementation provides some
queuing-specific changeable attributes for disks that can queue commands. With this information, the disk
device driver attempts to queue to the disk, first by queuing commands to the adapter driver. The adapter
driver then queues these commands to the adapter, providing that the adapter supports command tag
queuing. If the adapter does not support command tag queuing, then the adapter driver sends only one
command at a time to the adapter and so multiple commands are not queued to the disk.

Understanding the scsi_buf Structure
The scsi_buf structure is used for communication between the device driver and the adapter device driver
during an initiator I/O request. This structure is passed to and from the strategy routine in the same way a
standard driver uses a struct buf structure.

Fields in the scsi_buf Structure
The scsi_buf structure contains certain fields used to pass a command and associated parameters to the
adapter device driver. Other fields within this structure are used to pass returned status back to the device
driver. The scsi_buf structure is defined in the /usr/include/sys/scsi_buf.h file.

Fields in the scsi_buf structure are used as follows:

v Reserved fields should be set to a value of 0, except where noted.

v The bufstruct field contains a copy of the standard buf buffer structure that documents the I/O request.
Included in this structure, for example, are the buffer address, byte count, and transfer direction. The
b_work field in the buf structure is reserved for use by the adapter device driver. The current definition
of the buf structure is in the /usr/include/sys/buf.h include file.

v The bp field points to the original buffer structure received by the device driver from the caller, if any.
This can be a chain of entries in the case of spanned transfers (commands that transfer data from or to

254 Kernel Extensions and Device Support Programming Concepts

more than one system-memory buffer). A null pointer indicates a nonspanned transfer. The null value
specifically tells the adapter device driver that all the information needed to perform the DMA data
transfer is contained in the bufstruct fields of the scsi_buf structure.

v The scsi_command field, defined as a scsi_cmd structure, contains, for example, the SCSI command
length, SCSI command, and a flag variable:

– The scsi_length field is the number of bytes in the actual SCSI command. This is normally 6, 10, 12,
or 16 (decimal).

– The FCP_flags field contains the following bit flags:

SC_NODISC
Do not allow the target to disconnect during this command.

SC_ASYNC
Do not allow the adapter to negotiate for synchronous transfer to the device.

During normal use, the SC_NODISC bit should not be set. Setting this bit allows a device running
commands to monopolize the transport layer. Sometimes it is desirable for a particular device to
maintain control of the transport layer once it has successfully arbitrated for it; for instance, when this
is the only device on the transport layer or the only device that will be in use. For performance
reasons, it might not be desirable to go through selections again to save transport layer overhead on
each command.

Also during normal use, the SC_ASYNC bit must not be set. It should be set only in cases where a
previous command to the device ended in an unexpected transport free condition. This condition is
noted as SCSI_TRANSPORT_FAULT in the adapter_status field of the scsi_cmd structure. Because
other errors might also result in the SCSI_TRANSPORT_FAULT flag being set, the SC_ASYNC bit should
only be set on the last retry of the failed command.

– The scsi_cdb structure contains the physical SCSI command block. The 6 to 16 bytes of a single
SCSI command are stored in consecutive bytes, with the op code identified individually. The
scsi_cdb structure contains the following fields:

scsi_op_code
This field specifies the standard SCSI op code for this command.

scsi_bytes
This field contains the remaining command-unique bytes of the command block. The actual
number of bytes depends on the value in the scsi_op_code field.

v The timeout_value field specifies the time-out limit (in seconds) to be used for completion of this
command. A time-out value of 0 means no time-out is applied to this I/O request.

v The status_validity field contains an output parameter that can have one of the following bit flags as a
value:

SC_SCSI_ERROR
The scsi_status field is valid.

SC_ADAPTER_ERROR
The adapter_status field is valid.

v The scsi_status field in the scsi_buf structure is an output parameter that provides valid command
completion status when its status_validity bit is nonzero. The scsi_buf.bufstruct.b_error field should
be set to EIO any time the scsi_status field is valid. Typical status values include:

SC_GOOD_STATUS
The target successfully completed the command.

SC_CHECK_CONDITION
The target is reporting an error, exception, or other conditions.

SC_BUSY_STATUS
The target is currently transporting and cannot accept a command now.

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 255

SC_RESERVATION_CONFLICT
The target is reserved by another initiator and cannot be accessed.

SC_COMMAND_TERMINATED
The target terminated this command after receiving a terminate I/O process message from the
adapter.

SC_QUEUE_FULL
The target’s command queue is full, so this command is returned.

SC_ACA_ACTIVE
The device has an ACA (auto contingent allegiance) condition that requires a Clear ACA to
request to clear it.

v The adapter_status field is an output parameter that is valid when its status_validity bit is nonzero.
The scsi_buf.bufstruct.b_error field should be set to EIO any time the adapter_status field is valid.
This field contains generic adapter card status. It is intentionally general in coverage so that it can
report error status from any typical adapter.

If an error is detected while an command is running, and the error prevented the command from
actually being sent to the transport layer by the adapter, then the error should be processed or
recovered, or both, by the adapter device driver.

If it is recovered successfully by the adapter device driver, the error is logged, as appropriate, but is not
reflected in the adapter_status byte. If the error cannot be recovered by the adapter device driver, the
appropriate adapter_status bit is set and the scsi_buf structure is returned to the device driver for
further processing.

If an error is detected after the command was actually sent to the device, then it should be processed
or recovered, or both, by the device driver.

For error logging, the adapter device driver logs transport layer and adapter-related conditions, and the
device driver logs device-related errors. In the following description, a capital letter (A) after the error
name indicates that the adapter device driver handles error logging. A capital letter (H) indicates that the
device driver handles error logging.

Some of the following error conditions indicate a device failure. Others are transport layer or
adapter-related.

SCSI_HOST_IO_BUS_ERR (A)
The system I/O transport layer generated or detected an error during a DMA or Programmed
I/O (PIO) transfer.

SCSI_TRANSPORT_FAULT (H)
The transport protocol or hardware was unsuccessful.

SCSI_CMD_TIMEOUT (H)
The command timed out before completion.

SCSI_NO_DEVICE_RESPONSE (H)
The target device did not respond to selection phase.

SCSI_ADAPTER_HDW_FAILURE (A)
The adapter indicated an onboard hardware failure.

SCSI_ADAPTER_SFW_FAILURE (A)
The adapter indicated microcode failure.

SCSI_FUSE_OR_TERMINAL_PWR (A)
The adapter indicated a blown terminator fuse or bad termination.

SCSI_TRANSPORT_RESET (A)
The adapter indicated the transport layer has been reset.

SCSI_WW_NAME_CHANGE (A)
The adapter indicated the device at this SCSI ID has a new world wide name. For AIX 5.2 with

256 Kernel Extensions and Device Support Programming Concepts

5200-01 and later, if Dynamic Tracing of FC Devices is enabled, the adapter driver has
detected a change to the scsi_id field for this device and a scsi_buf structure with the
SC_DEV_RESTART flag can be sent to the device. For more information, see 258.

Note: When Dynamic Tracking of FC Devices is enabled, an adapter status of
SCSI_WW_NAME_CHANGE might mean that the SCSI ID of a given world wide name
on the fabric has changed, and not that the world wide name changed.

An adapter status of SCSI_WW_NAME_CHANGE should be interpreted more generally as a
situation where the SCSI ID-to-WWN mapping has changed when dynamic tracking is enabled
as opposed to interpreting this literally as a world wide name change for this SCSI ID.

If dynamic tracking is disabled, the FC adapter driver assumes that the SCSI ID-to-WWN
mapping cannot change. If a cable is moved from remote target port A to target port B, and
target port B assumes the SCSI ID that previously belonged to target port A, then from the
perspective of the driver with dynamic tracking disabled, the world wide name at this SCSI ID
has changed.

With dynamic tracking enabled, the general error recovery logic in this case is different. The
SCSI ID is considered volatile, so devices are tracked by world wide name. As such, all queries
after events such as those described in the above text, are based on world wide name. The
situation described in the previous paragraph would most likely result in a
SCSI_NO_DEVICE_RESPONSE status, since it would be determined that the world wide name
of port A is no longer reachable. If a cable connected to port A was instead moved from one
switch port to another, the SCSI ID of port A on the remote target might change. The FC
adapter driver will return SCSI_WW_NAME_CHANGE in this case, even though the SCSI ID is
what actually changed, and not the world wide name.

SCSI_TRANSPORT_BUSY (A)
The adapter indicated the transport layer is busy.

SCSI_TRANSPORT_DEAD (A)
The adapter indicated the transport layer currently inoperative and is likely to remain this way
for an extended time.

v The add_status field contains additional device status. For devices, this field contains the Response
code returned.

v When the device driver queues multiple transactions to a device, the adap_q_status field indicates
whether or not the adapter driver has cleared its queue for this device after an error has occurred. The
flag of SC_DID_NOT CLEAR_Q indicates that the adapter driver has not cleared its queue for this device
and that it is in a halted state (so none of the pending queued transactions are sent to the device).

v The q_tag_msg field indicates if the adapter can attempt to queue this transaction to the device. This
information causes the adapter to fill in the Queue Tag Message Code of the queue tag message for a
command. The following values are valid for this field:

SC_NO_Q
Specifies that the adapter does not send a queue tag message for this command, and so the
device does not allow more than one command on its command queue. This value must be
used for all commands sent to devices that do not support command tag queuing.

SC_SIMPLE_Q
Specifies placing this command in the device’s command queue. The device determines the
order that it executes commands in its queue. The SCSI-2 specification calls this value the
″Simple Queue Tag Message″.

SC_HEAD_OF_Q
Specifies placing this command first in the device’s command queue. This command does not
preempt an active command at the device, but it is run before all other commands in the
command queue. The SCSI-2 specification calls this value the ″Head of Queue Tag Message″.

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 257

SC_ORDERED_Q
Specifies placing this command in the device’s command queue. The device processes these
commands in the order that they are received. The SCSI-2 specification calls this value the
″Ordered Queue Tag Message″.

SC_ACA_Q
Specifies placing this command in the device’s command queue, when the device has an ACA
(Auto Contingent Allegiance) condition. The SCSI-3 Architecture Model calls this value the ″ACA
task attribute″.

Note: Commands with the value of SC_NO_Q for the q_tag_msg field (except for request sense
commands) should not be queued to a device whose queue contains a command with another
value for q_tag_msg. If commands with the SC_NO_Q value (except for request sense) are sent to
the device, then the device driver must make sure that no active commands are using different
values for q_tag_msg. Similarly, the device driver must also make sure that a command with a
q_tag_msg value of SC_ORDERED_Q, SC_HEAD_Q, or SC_SIMPLE_Q is not sent to a device that has a
command with the q_tag_msg field of SC_NO_Q.

v The flags field contains bit flags sent from the device driver to the adapter device driver. The following
flags are defined:

SC_CLEAR_ACA
When set, means the SCSI adapter driver should issue a Clear ACA task management request
for this ID/LUN. This flag should be used in conjunction with either the SC_Q_CLR or SC_Q_RESUME
flags to clear or resume the SCSI adapter driver’s queue for this device. If neither of these flags
is used, then this transaction is treated as if the SC_Q_RESUME flag is also set. The transaction
containing the SC_CLEAR_ACA flag setting does not require an actual SCSI command in the
sc_buf. If this transaction contains a SCSI command then it will be processed depending on
whether SC_Q_CLR or SC_Q_RESUME is set.

This transaction must have the SCSI ID field (scsi_buf.scsi_id) and the LUN field
(scsi_buf.lun_id) filled in with the device’s SCSI ID and logical unit number (LUN). This flag is
valid only during error recovery of a check condition or command terminated at a command tag
queuing.

SC_DELAY_CMD
When set, means the adapter device driver should delay sending this command (following a
reset or BDR to this device) by at least the number of seconds specified to the adapter device
driver in its configuration information. For devices that do not require this function, this flag
should not be set.

SC_DEV_RESTART
If a scsi_buf request fails with a status of SCSI_WW_NAME_CHANGE, a scsi_buf request
with the SC_DEV_RESTART flag can be sent if the device driver is dynamic tracking capable.

For AIX 5.2 with 5200-01 and later, if Dynamic Tracking of FC Devices is enabled, a scsi_buf
request with SC_DEV_RESTART performs a handshake, indicating that the device driver
acknowledges the device address change and that the FC adapter driver can proceed with
tracking operations. If the SC_DEV_RESTART flag is set, then the SC_Q_CLR flag must also
be set. In addition, no scsi command can be included in this scsi_buf structure. Failure to meet
these two criteria will result in a failure with adapter status of SCSI_ADAPTER_SFW_FAILURE.

After the SC_DEV_RESTART call completes successfully, the device driver performs device
validation procedures, such as those performed during an open (Test Unit Ready, Inquiry, Serial
Number validation, etc.), in order to confirm the identity of the device after the fabric event.

If an SC_DEV_RESTART call fails with any adapter status, the SC_DEV_RESTART call can be
retried as deemed appropriate by the device driver, because a future retry might succeed.

SC_LUN_RESET
When set, means the SCSI adapter driver should issue a Lun Reset task management request

258 Kernel Extensions and Device Support Programming Concepts

for this ID/LUN. This flag should be used in conjunction with ethe SC_Q_CLR flag flag.The
transaction containing this flag setting does allow an actual command to be sent to the adapter
driver. However, this transaction must have the the SCSI ID field (scsi_buf.scsi_id) and the
LUN field (scsi_buf.lun_id) filled in with the device’s SCSI ID and logical unit number (LUN). If
the transaction containing this flag setting is the first issued by the device driver after it receives
an error (indicating that the adapter driver’s queue is halted), then the SC_RESUME flag must
be set also.

SC_Q_CLR
When set, means the adapter driver should clear its transaction queue for this ID/LUN. The
transaction containing this flag setting does not require an actual command in the scsi_buf
because it is flushed back to the device driver with the rest of the transactions for this ID/LUN.
However, this transaction must have the SCSI ID field (scsi_buf.scsi_id) and the LUN field
(scsi_buf.lun_id) filled in with the device’s SCSI ID and logical unit number (LUN). This flag is
valid only during error recovery of a check condition or command ended at a command tag
queuing device when the SC_DID_NOT_CLR_Q flag is set in the scsi_buf.adap_q_status field.

SC_Q_RESUME
When set, means that the adapter driver should resume its halted transaction queue for this
ID/LUN. The transaction containing this flag setting does not require an actual command to be
sent to the adapter driver. However, this transaction must have the SCSI ID field
(scsi_buf.scsi_id) and the LUN field (scsi_buf.lun_id) filled in with the device’s SCSI ID and
logical unit number (LUN). If the transaction containing this flag setting is the first issued by the
device driver after it receives an error (indicating that the adapter driver’s queue is halted), then
the SC_RESUME flag must be set also.

SC_RESUME
When set, means the adapter device driver should resume transaction queuing for this ID/LUN.
Error recovery is complete after a SCIOLHALT operation, check condition, or severe transport
error. This flag is used to restart the adapter device driver following a reported error.

SC_TARGET_RESET
When set, means the SCSI adapter driver should issue a Target Reset task management
request for this ID/LUN. This flag should be used in conjunction with ethe SC_Q_CLR flag
flag.The transaction containing this flag setting does allow an actual command to be sent to the
adapter driver. However, this transaction must have the SCSI ID field (scsi_buf.scsi_id) filled in
with the device’s SCSI ID. If the transaction containing this flag setting is the first issued by the
device driver after it receives an error (indicating that the adapter driver’s queue is halted), then
the SC_RESUME flag must be set also.

v The dev_flags field contains additional values sent from the device driver to the adapter device driver.
The following values are defined:

FC_CLASS1
When set, this tells the SCSI adapter driver that it should issue this request as a Fibre Channel
Class 1 request. If the SCSI adapter driver does not support this class, then it will fail the
scsi_buf with an error of EINVAL. If no Fibre Channel Class is specified in the scsi_buf then the
SCSI adapter will default to a Fibre Channel Class.

FC_CLASS2
When set, this tells the SCSI adapter driver that it should issue this request as a Fibre Channel
Class 2 request. If the SCSI adapter driver does not support this class, then it will fail the
scsi_buf with an error of EINVAL. If no Fibre Channel Class is specified in the scsi_buf then the
SCSI adapter will default to a Fibre Channel Class.

FC_CLASS3
When set, this tells the SCSI adapter driver that it should issue this request as a Fibre Channel
Class 3 request. If the SCSI adapter driver does not support this class, then it will fail the
scsi_buf with an error of EINVAL. If no Fibre Channel Class is specified in the scsi_buf then the
SCSI adapter will default to a Fibre Channel Class.

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 259

FC_CLASS4
When set, this tells the SCSI adapter driver that it should issue this request as a Fibre Channel
Class 4 request. If the SCSI adapter driver does not support this class, then it will fail the
scsi_buf with an error of EINVAL. If no Fibre Channel Class is specified in the scsi_buf then the
SCSI adapter will default to a Fibre Channel Class.

v The add_work field is reserved for use by the adapter device driver.

v The adap_set_flags field contains an output parameter that can have one of the following bit flags as a
value:

SC_AUTOSENSE_DATA_VALID
Autosense data was placed in the autosense buffer referenced by the autosense_buffer_ptr
field.

v The autosense_length field contains the length in bytes of the SCSI device driver’s sense buffer, which
is referenced via the autosense_buffer_ptr field. For devices this field must be non-zero, otherwise the
autosense data will be lost.

v The autosense_buffer_ptr field contains the address of the SCSI devices driver’s autosense buffer for
this command. For devices this field must be non-NULL, otherwise the autosense data will be lost.

v The dev_burst_len field contains the burst size if this write operation in bytes. This should only be set
by the device driver if it h as negotiated with the device and it allows burst of write data without transfer
readys. For most operations, this should be set to 0.

v The scsi_id field contains the 64-bit SCSI ID for this device. This field must be set for devices.

v The lun_id field contains the 64-bit lun ID for this device. This field must be set for devices.

v The kernext_handle field contains the pointer returned from the kernext_handle field of the
scsi_sciolst argument for the SCIOLSTART ioctl operation. For AIX 5.2 with 5200-01 and later, if
Dynamic Tracking of FC Devices is enabled, the kernext_handle field must be set for all scsi_buf
calls that are sent to the the adapter driver. Failure to do so results in a failure with an adapter status of
SCSI_ADAPTER_SFW_FAILURE.

v The version field contains the version of this scsi_buf structure. Beginning with AIX 5.2, this field
should be set to a value of SCSI_VERSION_1. The version field of the scsi_buf structure should be
consistent with the version of the scsi_sciolst argument used for the SCIOLSTART ioctl operation.

Other FCP and iSCSI Design Considerations
The following topics cover design considerations of device and adapter device drivers:

v Responsibilities of the Device Driver

v Options to the openx Subroutine

v Using the SC_FORCED_OPEN Option

v Using the SC_RETAIN_RESERVATION Option

v Using the SC_DIAGNOSTIC Option

v Using the SC_NO_RESERVE Option

v Using the SC_SINGLE Option

v Closing the Device

v Error Processing

v Length of Data Transfer for Commands

v Device Driver and Adapter Device Driver Interfaces

v Performing Dumps

Responsibilities of the Device Driver
FCP and iSCSI device drivers are responsible for the following actions:

v Interfacing with block I/O and logical-volume device-driver code in the operating system.

260 Kernel Extensions and Device Support Programming Concepts

v Translating I/O requests from the operating system into commands suitable for the particular device.
These commands are then given to the adapter device driver for execution.

v Issuing any and all commands to the attached device. The adapter device driver sends no commands
except those it is directed to send by the calling device driver.

v Managing device reservations and releases. In the operating system, it is assumed that other initiators
might be active on the transport layer. Usually, the device driver reserves the device at open time and
releases it at close time (except when told to do otherwise through parameters in the device driver
interface). Once the device is reserved, the device driver must be prepared to reserve the device again
whenever a Unit Attention condition is reported through the request-sense data.

Options to the openx Subroutine
Device drivers must support eight defined extended options in their open routine (that is, an openx
subroutine). Additional extended options to the open are also allowed, but they must not conflict with
predefined open options. The defined extended options are bit flags in the ext open parameter. These
options can be specified singly or in combination with each other. The required ext options are defined in
the /usr/include/sys/scsi.h header file and can have one of the following values:

SC_FORCED_OPEN
Do not honor device reservation-conflict status.

SC_RETAIN_RESERVATION
Do not release device on close.

SC_DIAGNOSTIC
Enter diagnostic mode for this device.

SC_NO_RESERVE
Prevents the reservation of the device during an openx subroutine call to that device. Allows
multiple hosts to share a device.

SC_SINGLE
Places the selected device in Exclusive Access mode.

SC_RESV_04
Reserved for future expansion.

SC_RESV_05
Reserved for future expansion.

SC_RESV_06
Reserved for future expansion.

SC_RESV_07
Reserved for future expansion.

SC_RESV_08
Reserved for future expansion.

Using the SC_FORCED_OPEN Option
The SC_FORCED_OPEN option causes the device driver to call the adapter device driver’s transport
Device Reset ioctl (SCIOLRESET) operation on the first open. This forces the device to release another
initiator’s reservation. After the SCIOLRESET command is completed, other commands are sent as in a
normal open. If any of the commands fail due to a reservation conflict, the open registers the failure as an
EBUSY status. This is also the result if a reservation conflict occurs during a normal open. The device
driver should require the caller to have appropriate authority to request the SC_FORCED_OPEN option
because this request can force a device to drop a reservation. If the caller attempts to initiate this system
call without the proper authority, the device driver should return a value of -1, with the errno global
variable set to a value of EPERM.

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 261

Using the SC_RETAIN_RESERVATION Option
The SC_RETAIN_RESERVATION option causes the device driver not to issue the release command
during the close of the device. This guarantees a calling program control of the device (using reservation)
through open and close cycles. For shared devices (for example, disk or CD-ROM), the device driver must
OR together this option for all opens to a given device. If any caller requests this option, the close routine
does not issue the release even if other opens to the device do not set SC_RETAIN_RESERVATION. The
device driver should require the caller to have appropriate authority to request the
SC_RETAIN_RESERVATION option because this request can allow a program to monopolize a device (for
example, if this is a nonshared device). If the caller attempts to initiate this system call without the proper
authority, the device driver should return a value of -1, with the errno global variable set to a value of
EPERM.

Using the SC_DIAGNOSTIC Option
The SC_DIAGNOSTIC option causes the device driver to enter Diagnostic mode for the given device. This
option directs the device driver to perform only minimal operations to open a logical path to the device. No
commands should be sent to the device in the open or close routine when the device is in Diagnostic
mode. One or more ioctl operations should be provided by the device driver to allow the caller to issue
commands to the attached device for diagnostic purposes.

The SC_DIAGNOSTIC option gives the caller an exclusive open to the selected device. This option
requires appropriate authority to run. If the caller attempts to execute this system call without the proper
authority, the device driver should return a value of -1, with the errno global variable set to a value of
EPERM. The SC_DIAGNOSTIC option may be executed only if the device is not already opened for normal
operation. If this ioctl operation is attempted when the device is already opened, or if an openx call with
the SC_DIAGNOSTIC option is already in progress, a return value of -1 should be passed, with the errno
global variable set to a value of EACCES. Once successfully opened with the SC_DIAGNOSTIC flag, the
device driver is placed in Diagnostic mode for the selected device.

Using the SC_NO_RESERVE Option
The SC_NO_RESERVE option causes the device driver not to issue the reserve command during the
opening of the device and not to issue the release command during the close of the device. This allows
multiple hosts to share the device. The device driver should require the caller to have appropriate authority
to request the SC_NO_RESERVE option, because this request allows other hosts to modify data on the
device. If a caller does this kind of request then the caller must ensure data integrity between multiple
hosts. If the caller attempts to execute this system call without the proper authority, the device driver
should return a value of -1, with the errno global variable set to a value of EPERM.

Using the SC_SINGLE Option
The SC_SINGLE option causes the device driver to issue a normal open, but does not allow another caller
to issue another open until the first caller has closed the device. This request gives the caller an exclusive
open to the selected device. If this openx is attempted when the device is already open, a return value of
-1 is passed, with the errno global variable set to a value of EBUSY.

Once successfully opened, the device is placed in Exclusive Access mode. If another caller tries to do any
type of open, a return value of -1 is passed, with the errno global variable set to a value of EACCES.

The remaining options for the ext parameter are reserved for future requirements.

The following table shows how the various combinations of ext options should be handled in the device
driver.

262 Kernel Extensions and Device Support Programming Concepts

EXT OPTIONS
openx ext option

Device Driver Action

Open Close

none normal normal

diag no commands no commands

diag + force issue SCIOLRESET; otherwise, no
commands issued

no commands

diag + force + no_reserve issue SCIOLRESET; otherwise, no
commands issued

no commands

diag + force + no_reserve + single issue SCIOLRESET; otherwise, no
commands issued.

no commands

diag + force + retain issue SCIOLRESET; otherwise, no
commands issued

no commands

diag + force + retain + no_reserve issue SCIOLRESET; otherwise, no
commands issued

no commands

diag + force + retain + no_reserve +
single

issue SCIOLRESET; otherwise, no
commands issued

no commands

diag + force + retain + single issue SCIOLRESET; otherwise, no
commands issued

no commands

diag + force + single issue SCIOLRESET; otherwise, no
commands issued

no commands

diag + no_reserve no commands no commands

diag + retain no commands no commands

diag + retain + no_reserve no commands no commands

diag + retain + no_reserve + single no commands no commands

diag + retain + single no commands no commands

diag + single no commands no commands

diag + single + no_reserve no commands no commands

force normal, except SCIOLRESET issued
prior to any commands.

normal

force + no_reserve normal, except SCIOLRESET issued
prior to any commands. No
RESERVE command issued

normal except no RELEASE

force + retain normal, except SCIOLRESET issued
prior to any commands

no RELEASE

force + retain + no_reserve normal except SCIOLRESET issued
prior to any commands. No
RESERVE command issued.

no RELEASE

force + retain + no_reserve + single normal, except SCIOLRESET issued
prior to any commands. No
RESERVE command issued.

no RELEASE

force + retain + single normal, except SCIOLRESET issued
prior to any commands.

no RELEASE

force + single normal, except SCIOLRESET issued
prior to any commands.

normal

force + single + no_reserve normal, except SCIOLRESET issued
prior to any commands. No
RESERVE command issued

no RELEASE

no_reserve no RESERVE no RELEASE

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 263

EXT OPTIONS
openx ext option

Device Driver Action

Open Close

retain normal no RELEASE

retain + no_reserve no RESERVE no RELEASE

retain + single normal no RELEASE

retain + single + no_reserve normal, except no RESERVE
command issued

no RELEASE

single normal normal

single + no_reserve no RESERVE no RELEASE

Closing the Device
When a device driver is preparing to close a device through the adapter device driver, it must ensure that
all transactions are complete. When the adapter device driver receives a SCIOLSTOP ioctl operation and
there are pending I/O requests, the ioctl operation does not return until all have completed. New requests
received during this time are rejected from the adapter device driver’s ddstrategy routine.

Error Processing
It is the responsibility of the device driver to process check conditions and other returned errors properly.
The adapter device driver only passes commands without otherwise processing them and is not
responsible for device error recovery.

Length of Data Transfer for Commands
Commands initiated by the device driver internally or as subordinates to a transaction from above must
have data phase transfers of 256 bytes or less to prevent DMA/CPU memory conflicts. The length
indicates to the adapter device driver that data phase transfers are to be handled internally in its address
space. This is required to prevent DMA/CPU memory conflicts for the device driver. The adapter device
driver specifically interprets a byte count of 256 or less as an indication that it can not perform data-phase
DMA transfers directly to or from the destination buffer.

The actual DMA transfer goes to a dummy buffer inside the adapter device driver and then is block-copied
to the destination buffer. Internal device driver operations that typically have small data-transfer phases are
control-type commands, such as Mode select, Mode sense, and Request sense. However, this discussion
applies to any command received by the adapter device driver that has a data-phase size of 256 bytes or
less.

Internal commands with data phases larger than 256 bytes require the device driver to allocate specifically
the required memory on the process level. The memory pages containing this memory cannot be
accessed in any way by the CPU (that is, the device driver) from the time the transaction is passed to the
adapter device driver until the device driver receives the iodone call for the transaction.

Device Driver and Adapter Device Driver Interfaces
The device drivers can have both character (raw) and block special files in the /dev directory. The adapter
device driver has only character (raw) special files in the /dev directory and has only the ddconfig,
ddopen, ddclose, dddump, and ddioctl entry points available to operating system programs. The ddread
and ddwrite entry points are not implemented.

Internally, the devsw table has entry points for the ddconfig, ddopen, ddclose, dddump, ddioctl, and
ddstrat routines. The device drivers pass their commands to the adapter device driver by calling the
adapter device driver ddstrat routine. (This routine is unavailable to other operating system programs due
to the lack of a block-device special file.)

264 Kernel Extensions and Device Support Programming Concepts

Access to the adapter device driver’s ddconfig, ddopen, ddclose, dddump, ddioctl, and ddstrat entry
points by the device drivers is performed through the kernel services provided. These include such
services as fp_opendev, fp_close, fp_ioctl, devdump, and devstrat.

Performing Dumps
A adapter device driver must have a dddump entry point if it is used to access a system dump device. A
device driver must have a dddump entry point if it drives a dump device. Examples of dump devices are
disks and tapes.

Note: Adapter-device-driver writers should be aware that system services providing interrupt and
timer services are unavailable for use in the dump routine. Kernel DMA services are assumed to be
available for use by the dump routine. The adapter device driver should be designed to ignore extra
DUMPINIT and DUMPSTART commands to the dddump entry point.

The DUMPQUERY option should return a minimum transfer size of 0 bytes, and a maximum transfer size
equal to the maximum transfer size supported by the adapter device driver.

Calls to the adapter device driver DUMPWRITE option should use the arg parameter as a pointer to the
scsi_buf structure to be processed. Using this interface, a write command can be executed on a
previously started (opened) target device. The uiop parameter is ignored by the adapter device driver
during the DUMPWRITE command. Spanned, or consolidated, commands are not supported using the
DUMPWRITE option. Gathered write commands are also not supported using the DUMPWRITE option.
No queuing of scsi_buf structures is supported during dump processing because the dump routine runs
essentially as a subroutine call from the caller’s dump routine. Control is returned when the entire
scsi_buf structure has been processed.

Note: Also, both adapter-device-driver and device-driver writers should be aware that any error occurring
during the DUMPWRITE option is considered unsuccessful. Therefore, no error recovery is
employed during the DUMPWRITE. Return values from the call to the dddump routine indicate the
specific nature of the failure.

Successful completion of the selected operation is indicated by a 0 return value to the subroutine.
Unsuccessful completion is indicated by a return code set to one of the following values for the errno
global variable. The various scsi_buf status fields, including the b_error field, are not set by the adapter
device driver at completion of the DUMPWRITE command. Error logging is, of necessity, not supported
during the dump.

v An errno value of EINVAL indicates that a request that was not valid passed to the adapter device driver,
such as to attempt a DUMPSTART command before successfully executing a DUMPINIT command.

v An errno value of EIO indicates that the adapter device driver was unable to complete the command
due to a lack of required resources or an I/O error.

v An errno value of ETIMEDOUT indicates that the adapter did not respond with completion status before
the passed command time-out value expired.

Required FCP and iSCSI Adapter Device Driver ioctl Commands
Various ioctl operations must be performed for proper operation of the adapter device driver. The ioctl
operations described here are the minimum set of commands the adapter device driver must implement to
support device drivers. Other operations might be required in the adapter device driver to support, for
example, system management facilities and diagnostics. Device driver writers also need to understand
these ioctl operations.

Every adapter device driver must support the IOCINFO ioctl operation. The structure to be returned to the
caller is the devinfo structure, including the union definition for the adapter, which can be found in the
/usr/include/sys/devinfo.h file. The device driver should request the IOCINFO ioctl operation (probably
during its open routine) to get the maximum transfer size of the adapter.

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 265

Note: The adapter device driver ioctl operations can only be called from the process level. They cannot
be executed from a call on any more favored priority levels. Attempting to call them from a more
favored priority level can result in a system crash.

Initiator-Mode ioctl Commands
The following SCIOLSTART and SCIOLSTOP operations must be sent by the device driver (for the open
and close routines, respectively) for each device. They cause the adapter device driver to allocate and
initialize internal resources. The SCIOLHALT ioctl operation is used to abort pending or running
commands, usually after signal processing by the device driver. This might be used by a device driver to
end an operation instead of waiting for completion or a time out. The SCIOLRESET operation is provided
for clearing device hard errors and competing initiator reservations during open processing by the device
driver.

The following information is provided on the various ioctl operations:

v SCIOLSTART

v SCIOLSTOP

v SCIOLHALT

v SCIOLRESET

v SCIOLCMD

v SCIOLNMSRV

v SCIOLQWWN

v SCIOLPAYLD

v SCIOLCHBA

v SCIOLPASSTHRUHBA

For more information on these ioctl operations, see “FCP and iSCSI Adapter ioctl Operations” on
page 233.

Initiator-Mode ioctl Command used by FCP Device Drivers

SCIOLEVENT
For initiator mode, the FCP device driver can issue an SCIOLEVENT ioctl operation to register for
receiving asynchronous event status from the FCP adapter device driver for a particular device instance.
This is an optional call for the FCP device driver, and is optionally supported for the FCP adapter device
driver. A failing return code from this command, in the absence of any programming error, indicates it is
not supported. If the FCP device driver requires this function, it must check the return code to verify the
FCP adapter device driver supports it.

Only a kernel process or device driver can invoke these ioctls. If attempted by a user process, the ioctl will
fail, and the errno global variable will be set to EPERM.

The event registration performed by this ioctl operation is allowed once per device session. Only the first
SCIOLEVENT ioctl operation is accepted after the device session is opened. Succeeding SCIOLEVENT
ioctl operations will fail, and the errno global variable will be set to EINVAL. The event registration is
canceled automatically when the device session is closed.

The arg parameter to the SCIOLEVENT ioctl operation should be set to the address of an
scsi_event_struct structure, which is defined in the /usr/include/sys/scsi_buf.h file. The following
parameters are supported:

266 Kernel Extensions and Device Support Programming Concepts

scsi_id
The caller sets id to the SCSI ID or SCSI ID alias of the attached target device for initiator-mode.
For target-mode, the caller sets the id to the SCSI ID or SCSI ID alias of the attached initiator
device.

lun_id The caller sets the lun field to the LUN of the attached target device for initiator-mode. For
target-mode, the caller sets the lun field to 0.

mode Identifies whether the initiator-mode or target-mode device is being registered. These values are
possible:

SC_IM_MODE
This is an initiator-mode device.

SC_TM_MODE
This is a target-mode device.

async_correlator
The caller places in this optional field a value, which is saved by the FCP adapter device driver
and returned when an event occurs in this field in the scsi_event_info structure. This structure is
defined in the /user/include/sys/scsi_buf.h.

async_func
The caller fills in the address of a pinned routine which the FCP adapter device driver calls
whenever asynchronous event status is available. The FCP adapter device driver passes a pointer
to a scsi_event_info structure to the caller’s async_func routine.

world_wide_name
For FCP devices, the caller sets the world_wide_name field to the World Wide Name of the
attached target device for initiator-mode.

node_name
For FCP devices, the caller sets the node_name field to the Node Name of the attached target
device for initiator-mode.

Note: All reserved fields should be set to 0 by the caller.

The following values for the errno global variable are supported:

0 Indicates successful completion.
EINVAL An SCIOLSTART has not been issued to this device instance, or this device is already registered

for async events.
EPERM Indicates the caller is not running in kernel mode, which is the only mode allowed to execute this

operation.

Related Information
Logical File System Kernel Services.

scdisk FCP Device Driver and FCP Adapter Device Driver in AIX 5L Version 5.2 Technical Reference:
Kernel and Subsystems Volume 2.

Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem 267

268 Kernel Extensions and Device Support Programming Concepts

Chapter 14. Integrated Device Electronics (IDE) Subsystem

This overview describes the interface between an Integrated Device Electronics (IDE) device driver and an
IDE adapter device driver. It is directed toward those designing and writing an IDE device driver that
interfaces with an existing IDE adapter device driver. It is also meant for those designing and writing an
IDE adapter device driver that interfaces with existing IDE device drivers.

The main topics covered in this overview are:

v Responsibilities of the IDE Adapter Device Driver

v Responsibilities of the IDE Device Driver

v Communication Between IDE Device Drivers and IDE Adapter Device Drivers

This section frequently refers to both an IDE device driver and an IDE adapter device driver. These two
distinct device drivers work together in a layered approach to support attachment of a range of IDE
devices. The IDE adapter device driver is the lower device driver of the pair, and the IDE device driver is
the upper device driver.

Responsibilities of the IDE Adapter Device Driver
The IDE adapter device driver is the software interface to the system hardware. This hardware includes
the IDE bus hardware plus any other system I/O hardware required to run an I/O request. The IDE adapter
device driver hides the details of the I/O hardware from the IDE device driver. The design of the software
interface allows a user with limited knowledge of the system hardware to write the upper device driver.

The IDE adapter device driver manages the IDE bus, but not the IDE devices. It can send and receive IDE
commands, but it cannot interpret the contents of the command. The lower driver also provides recovery
and logging for errors related to the IDE bus and system I/O hardware. Management of the device
specifics is left to the IDE device driver. The interface of the two drivers allows the upper driver to
communicate with different IDE bus adapters without requiring special code paths for each adapter.

Responsibilities of the IDE Device Driver
The IDE device driver provides the rest of the operating system with the software interface to a given IDE
device or device class. The upper layer recognizes which IDE commands are required to control a
particular IDE device or device class. The IDE device driver builds I/O requests containing device IDE
commands and sends them to the IDE adapter device driver in the sequence needed to operate the
device successfully. The IDE device driver cannot manage adapter resources. Specifics about the adapter
and system hardware are left to the lower layer.

The IDE device driver also provides command retries and logging for errors related to the IDE device it
controls.

The operating system provides several kernel services allowing the IDE device driver to communicate with
IDE adapter device driver entry points without having the actual name or address of those entry points.
See “Logical File System Kernel Services” on page 55 for more information.

Communication Between IDE Device Drivers and IDE Adapter Device
Drivers
The interface between the IDE device driver and the IDE adapter device driver is accessed through calls
to the IDE adapter device driver open, close, ioctl, and strategy subroutines. I/O requests are queued to
the IDE adapter device driver through calls to its strategy subroutine entry point.

© Copyright IBM Corp. 1997, 2003 269

Communication between the IDE device driver and the IDE adapter device driver for a particular I/O
request uses the ataide_buf structure, which is passed to and from the strategy subroutine in the same
way a standard driver uses a struct buf structure. The ataide_buf.ata structure represents the ATA or
ATAPI command that the adapter driver must send to the specified IDE device. The
ataide_buf.status_validity field in the ataide_buf.ata structure contains completion status returned to
the IDE device driver.

IDE Error Recovery
If an error, such as a check condition or hardware failure occurs, the transaction active during the error is
returned with the ataide_buf.bufstruct.b_error field set to EIO. The IDE device driver will process the
error by gathering hardware and software status. In many cases, the IDE device driver only needs to retry
the unsuccessful operation.

The IDE adapter driver should never retry an IDE command on error after the command has successfully
been given to the adapter. The consequences for the adapter driver retrying an IDE command at this point
range from minimal to catastrophic, depending upon the type of device. Commands for certain devices
cannot be retried immediately after a failure (for example, tapes and other sequential access devices). If
such an error occurs, the failed command returns an appropriate error status with an iodone call to the
IDE device driver for error recovery. Only the IDE device driver that originally issued the command knows
if the command can be retried on the device. The IDE adapter driver must only retry commands that were
never successfully transferred to the adapter. In this case, if retries are successful, the ataide_buf status
should not reflect an error. However, the IDE adapter driver should perform error logging on the retried
condition.

Analyzing Returned Status
The following order of precedence should be followed by IDE device drivers when analyzing the returned
status:

1. If the ataide_buf.bufstruct.b_flags field has the B_ERROR flag set, then an error has occurred and
the ataide_buf.bufstruct.b_error field contains a valid errno value.

If the b_error field contains the ENXIO value, either the command needs to be restarted or it was
canceled at the request of the IDE device driver.

If the b_error field contains the EIO value, then either one or no flag is set in the
ataide_buf.status_validity field. If a flag is set, an error in either the ata.status or ata.errval field
is the cause.

2. If the ataide_buf.bufstruct.b_flags field does not have the B_ERROR flag set, then no error is being
reported. However, the IDE device driver should examine the b_resid field to check for cases where
less data was transferred than expected. For some IDE commands, this occurrence might not
represent an error. The IDE device driver must determine if an error has occurred.

There is a special case when b_resid will be nonzero. The DMA service routine might not be able to
map all virtual to real memory pages for a single DMA transfer. This might occur when sending close
to the maximum amount of data that the adapter driver supports. In this case, the adapter driver
transfers as much of the data that can be mapped by the DMA service. The unmapped size is returned
in the b_resid field, and the status_validity will have the ATA_IDE_DMA_NORES bit set. The IDE
device driver is expected to send the data represented by the b_resid field in a separate request.

If a nonzero b_resid field does represent an error condition, recovering is the responsibility of the IDE
device driver.

A Typical IDE Driver Transaction Sequence
A simplified sequence of events for a transaction between an IDE device driver and an IDE adapter driver
follows. In this sequence, routine names preceded by a dd_ are part of the IDE device driver, while those
preceded by an eide_ are part of the IDE adapter driver.

270 Kernel Extensions and Device Support Programming Concepts

1. The IDE device driver receives a call to its dd_strategy routine; any required internal queuing occurs
in this routine. The dd_strategy entry point then triggers the operation by calling the dd_start entry
point. The dd_start routine invokes the eide_strategy entry point by calling the devstrat kernel
service with the relevant ataide_buf structure as a parameter.

2. The eide_strategy entry point initially checks the ataide_buf structure for validity. These checks
include validating the devno field, matching the IDE device ID to internal tables for configuration
purposes, and validating the request size.

3. The IDE adapter driver does not queue transactions. Only a single transaction is accepted per device
(one master, one slave). If no transaction is currently active, the eide_strategy routine immediately
calls the eide_start routine with the new transaction. If there is a current transaction for the same
device, the new transaction is returned with an error indicated in the ataide_buf structure. If there is a
current transaction for the other device, the new transaction is queued to the inactive device.

4. At each interrupt, the eide_intr interrupt handler verifies the current status. The IDE adapter driver fills
in the ataide_buf status_validity field, updating the ata.status and ata.errval fields as required.
The IDE adapter driver also fills in the bufstruct.b_resid field with the number of bytes not
transferred from the transaction. If all the data was transferred, the b_resid field is set to a value of 0.
When a transaction completes, the eide_intr routine causes the ataide_buf entry to be removed from
the device queue and calls the iodone kernel service, passing the just dequeued ataide_buf structure
for the device as the parameter. The eide_start routine is then called again to process the next
transaction on the device queue. The iodone kernel service calls the IDE device driver dd_iodone
entry point, signaling the IDE device driver that the particular transaction has completed.

5. The IDE device driver dd_iodone routine investigates the I/O completion codes in the ataide_buf
status entries and performs error recovery, if required. If the operation completed correctly, the IDE
device driver dequeues the original buffer structures. It calls the iodone kernel service with the original
buffer pointers to notify the originator of the request.

IDE Device Driver Internal Commands
During initialization, error recovery, and open or close operations, IDE device drivers initiate some
transactions not directly related to an operating system request. These transactions are called internal
commands and are relatively simple to handle.

Internal commands differ from operating system-initiated transactions in several ways. The primary
difference is that the IDE device driver is required to generate a struct buf that is not related to a specific
request. Also, the actual IDE commands are typically more control oriented than data transfer related.

The only special requirement for commands is that the IDE device driver must have pinned the transfer
data buffers. However, due to system hardware considerations, additional precautions must be taken for
data transfers into system memory pages. The problem is that any system memory area with a DMA data
operation in progress causes the entire memory page that contains it to become inaccessible.

As a result, an IDE device driver that initiates an internal command must have preallocated and pinned an
area of some multiple of system page size. The driver must not place in this area any other data that it
might need to access while I/O is being performed into or out of that page. Memory pages allocated must
be avoided by the device driver from the moment the transaction is passed to the adapter driver until the
device driver iodone routine is called for the transaction.

Execution of I/O Requests
During normal processing, many transactions are queued in the IDE device driver. As the IDE device
driver processes these transactions and passes them to the IDE adapter driver, the IDE device driver
moves them to the in-process queue. When the IDE adapter device driver returns through the iodone
service with one of these transactions, the IDE device driver either recovers any errors on the transaction
or returns using the iodone kernel service to the calling level.

Chapter 14. Integrated Device Electronics (IDE) Subsystem 271

The IDE device driver can send only one ataide_buf structure per call to the IDE adapter driver. Thus, the
ataide_buf.bufstruct.av_forw pointer must be null when given to the IDE adapter driver, which indicates
that this is the only request. The IDE adapter driver does not support queuing multiple requests to the
same device.

Spanned (Consolidated) Commands
Some kernel operations might be composed of sequential operations to a device. For example, if
consecutive blocks are written to disk, blocks might or might not be in physically consecutive buffer pool
blocks.

To enhance IDE bus performance, the IDE device driver should consolidate multiple queued requests
when possible into a single IDE command. To allow the IDE adapter driver the ability to handle the scatter
and gather operations required, the ataide_buf.bp should always point to the first buf structure entry for
the spanned transaction. A null-terminated list of additional struct buf entries should be chained from the
first field through the buf.av_forw field to give the IDE adapter driver enough information to perform the
DMA scatter and gather operations required. This information must include at least the buffer’s starting
address, length, and cross-memory descriptor.

The spanned requests should always be for requests in either the read or write direction but not both,
because the IDE adapter driver must be given a single IDE command to handle the requests. The
spanned request should always consist of complete I/O requests (including the additional struct buf
entries). The IDE device driver should not attempt to use partial requests to reach the maximum transfer
size.

The maximum transfer size is actually adapter-dependent. The IOCINFO ioctl operation can be used to
discover the IDE adapter driver’s maximum allowable transfer size. If a transfer size larger than the
supported maximum is attempted, the IDE adapter driver returns a value of EINVAL in the
ataide_buf.bufstruct.b_error field.

Due to system hardware requirements, the IDE device driver must consolidate only commands that are
memory page-aligned at both their starting and ending addresses. Specifically, this applies to the
consolidation of memory buffers. The ending address of the first buffer and the starting address of all
subsequent buffers should be memory page-aligned. However, the starting address of the first memory
buffer and the ending address of the last do not need to be aligned.

The purpose of consolidating transactions is to decrease the number of IDE commands and bus phases
required to perform the required operation. The time required to maintain the simple chain of buf structure
entries is significantly less than the overhead of multiple (even two) IDE bus transactions.

Fragmented Commands
Single I/O requests larger than the maximum transfer size must be divided into smaller requests by the
IDE device driver. For calls to an IDE device driver’s character I/O (read/write) entry points, the uphysio
kernel service can be used to break up these requests. For a fragmented command such as this, the
ataide_buf.bp field should be NULL so that the IDE adapter driver uses only the information in the
ataide_buf structure to prepare for the DMA operation.

ataide_buf Structure
The ataide_buf structure is used for communication between the IDE device driver and the IDE adapter
driver during an initiator I/O request. This structure is passed to and from the strategy routine in the same
way a standard driver uses a struct buf structure.

272 Kernel Extensions and Device Support Programming Concepts

Fields in the ataide_buf Structure
The ataide_buf structure contains certain fields used to pass an IDE command and associated
parameters to the IDE adapter driver. Other fields within this structure are used to pass returned status
back to the IDE device driver. The ataide_buf structure is defined in the /usr/include/sys/ide.h file.

Fields in the ataide_buf structure are used as follows:

1. Reserved fields should be set to a value of 0, except where noted.

2. The bufstruct field contains a copy of the standard buf buffer structure that documents the I/O
request. Included in this structure, for example, are the buffer address, byte count, and transfer
direction. The b_work field in the buf structure is reserved for use by the IDE adapter driver. The
current definition of the buf structure is in the /usr/include/sys/buf.h include file.

3. The bp field points to the original buffer structure received by the IDE device driver from the caller, if
any. This can be a chain of entries in the case of spanned transfers (IDE commands that transfer
data from or to more than one system-memory buffer). A null pointer indicates a nonspanned transfer.
The null value specifically tells the IDE adapter driver all the information needed to perform the DMA
data transfer is contained in the bufstruct fields of the ataide_buf structure. If the bp field is set to a
non-null value, the ataide_buf.sg_ptr field must have a value of null, or else the operation is not
allowed.

4. The ata field, defined as an ata_cmd structure, contains the IDE command (ATA or ATAPI), status,
error indicator, and a flag variable:

a. The flags field contains the following bit flags:

ATA_CHS_MODE
Execute the command in cylinder head sector mode.

ATA_LBA_MODE
Execute the command in logical block addressing mode.

ATA_BUS_RESET

Reset the ATA bus, ignore the current command.

b. The command field is the IDE ATA command opcode. For ATAPI packet commands, this field must
be set to ATA_ATAPI_PACKET_COMMAND (0xA0).

c. The device field is the IDE indicator for either the master (0) or slave (1) IDE device.

d. The sector_cnt_cmd field is the number of sectors affected by the command. A value of zero
usually indicates 256 sectors.

e. The startblk field is the starting LBA or CHS sector.

f. The feature field is the ATA feature register.

g. The status field is a return parameter indicating the ending status for the command. This field is
updated by the IDE adapter driver upon completion of a command.

h. The errval field is the error type indicator when the ATA_ERROR bit is set in the status field. This
field has slightly different interpretations for ATA and ATAPI commands.

i. The sector_cnt_ret field is the number of sectors not processed by the device.

j. The endblk field is the completion LBA or CHS sector.

k. The atapi field is defined as an atapi_command structure, which contains the IDE ATAPI
command. The 12 or 16 bytes of a single ATAPI command are stored in consecutive bytes, with
the opcode identified individually. The atapi_command structure contains the following fields:

l. The length field is the number of bytes in the actual ATAPI command. This is normally 12 or 16
(decimal).

m. The packet.op_code field specifies the standard ATAPI opcode for this command.

n. The packet.bytes field contains the remaining command-unique bytes of the ATAPI command
block. The actual number of bytes depends on the value in the length field.

Chapter 14. Integrated Device Electronics (IDE) Subsystem 273

o. The ataide_buf.bufstruct.b_un.b_addr field normally contains the starting system-buffer
address and is ignored and can be altered by the IDE adapter driver when the ataide_buf is
returned. The ataide_buf.bufstruct.b_bcount field should be set by the caller to the total transfer
length for the data.

p. The timeout_value field specifies the time-out limit (in seconds) to be used for completion of this
command. A time-out value of 0 means no time-out is applied to this I/O request.

q. The status_validity field contains an output parameter that can have the following bit flags as a
value:

ATA_IDE_STATUS
The ata.status field is valid.

ATA_ERROR_VALID
The ata.errval field contains a valid error indicator.

ATA_CMD_TIMEOUT
The IDE adapter driver caused the command to time out.

ATA_NO_DEVICE_RESPONSE
The IDE device is not ready.

ATA_IDE_DMA_ERROR
The IDE adapter driver encountered a DMA error.

ATA_IDE_DMA_NORES
The IDE adapter driver was not able to transfer entire request. The bufstruct.b_resid
contains the count not transferred.

If an error is detected while an IDE command is being processed, and the error prevented the IDE
command from actually being sent to the IDE bus by the adapter, then the error should be processed or
recovered, or both, by the IDE adapter driver.

If it is recovered successfully by the IDE adapter driver, the error is logged, as appropriate, but is not
reflected in the ata.errval byte. If the error cannot be recovered by the IDE adapter driver, the
appropriate ata.errval bit is set and the ataide_buf structure is returned to the IDE device driver for
further processing.

If an error is detected after the command was actually sent to the IDE device, then the adapter driver will
return the command to the device driver for error processing and possible retries.

For error logging, the IDE adapter driver logs IDE bus- and adapter-related conditions, where as the IDE
device driver logs IDE device-related errors. In the following description, a capital letter ″A″ after the error
name indicates that the IDE adapter driver handles error logging. A capital letter ″H″ indicates that the IDE
device driver handles error logging.

Some of the following error conditions indicate an IDE device failure. Others are IDE bus- or
adapter-related.

ATA_IDE_DMA_ERROR (A)
The system I/O bus generated or detected an error during a DMA transfer.

ATA_ERROR_VALID (H)
The request sent to the device failed.

ATA_CMD_TIMEOUT (A) (H)
The command timed out before completion.

ATA_NO_DEVICE_RESPONSE (A)
The target device did not respond.

274 Kernel Extensions and Device Support Programming Concepts

ATA_IDE_BUS_RESET (A)
The adapter indicated the IDE bus reset failed.

Other IDE Design Considerations
The following topics cover design considerations of IDE device and adapter drivers:

v IDE Device Driver Tasks

v Closing the IDE Device

v IDE Error Processing

v Device Driver and adapter driver Interfaces

v Performing IDE Dumps

IDE Device Driver Tasks
IDE device drivers are responsible for the following actions:

v Interfacing with block I/O and logical volume device driver code in the operating system.

v Translating I/O requests from the operating system into IDE commands suitable for the particular IDE
device. These commands are then given to the IDE adapter driver for execution.

v Issuing any and all IDE commands to the attached device. The IDE adapter driver sends no IDE
commands except those it is directed to send by the calling IDE device driver.

Closing the IDE Device
When an IDE device driver is preparing to close a device through the IDE adapter driver, it must ensure
that all transactions are complete. When the IDE adapter driver receives an IDEIOSTOP ioctl operation
and there are pending I/O requests, the ioctl operation does not return until all have completed. New
requests received during this time are rejected from the adapter driver’s ddstrategy routine.

IDE Error Processing
It is the responsibility of the IDE device driver to properly process IDE check conditions and other returned
device errors. The IDE adapter driver only passes IDE commands to the device without otherwise
processing them and is not responsible for device error recovery.

Device Driver and Adapter Driver Interfaces
The IDE device drivers can have both character (raw) and block special files in the /dev directory. The IDE
adapter driver has only character (raw) special files in the /dev directory and has only the ddconfig,
ddopen, ddclose, dddump, and ddioctl entry points available to operating system programs. The ddread
and ddwrite entry points are not implemented.

Internally, the devsw table has entry points for the ddconfig, ddopen, ddclose, dddump, ddioctl, and
ddstrategy routines. The IDE device drivers pass their IDE commands to the IDE adapter driver by calling
the IDE adapter driver ddstrategy routine. (This routine is unavailable to other operating system programs
due to the lack of a block-device special file.)

Access to the IDE adapter driver’s ddconfig, ddopen, ddclose, dddump, ddioctl, and ddstrategy entry
points by the IDE device drivers is performed through the kernel services provided. These include such
kernel services as fp_opendev, fp_close, fp_ioctl, devdump, and devstrat.

Performing IDE Dumps
An IDE adapter driver must have a dddump entry point if it is used to access a system dump device. An
IDE device driver must have a dddump entry point if it drives a dump device. Examples of dump devices
are disks and tapes.

Chapter 14. Integrated Device Electronics (IDE) Subsystem 275

Note: IDE adapter driver writers should be aware that system services providing interrupt and timer
services are unavailable for use while executing the dump routine. Kernel DMA services are
assumed to be available for use by the dump routine. The IDE adapter driver should be designed
to ignore extra DUMPINIT and DUMPSTART commands to the dddump entry point while
processing the dump routine.

The DUMPQUERY option should return a minimum transfer size of 0 bytes, and a maximum transfer size
equal to the maximum transfer size supported by the IDE adapter driver.

Calls to the IDE adapter driver DUMPWRITE option should use the arg parameter as a pointer to the
ataide_buf structure to be processed. Using this interface, an IDE write command can be executed on a
previously started (opened) target device. The uiop parameter is ignored by the IDE adapter driver during
the DUMPWRITE command. Spanned or consolidated commands are not supported using the
DUMPWRITE option. Gathered write commands are also not supported using the DUMPWRITE option. No
queuing of ataide_buf structures is supported during dump processing because the dump routine runs
essentially as a subroutine call from the caller’s dump routine. Control is returned when the entire
ataide_buf structure has been processed.

Note: No error recovery techniques are used during the DUMPWRITE option because any error occurring
during DUMPWRITE is a real problem as the system is already unstable. Return values from the
call to the dddump routine indicate the specific nature of the failure.

Successful completion of the selected operation is indicated by a 0 return value to the subroutine.
Unsuccessful completion is indicated by a return code set to one of the following values for the errno
global variable. The various ataide_buf status fields, including the b_error field, are not set by the IDE
adapter driver at completion of the DUMPWRITE command. Error logging is, of necessity, not supported
during the dump.

v An errno value of EINVAL indicates that an invalid request (unknown command or bad parameter) was
passed to the IDE adapter driver, such as to attempt a DUMPSTART command before successfully
executing a DUMPINIT command.

v An errno value of EIO indicates that the IDE adapter driver was unable to complete the command due
to a lack of required resources or an I/O error.

v An errno value of ETIMEDOUT indicates that the adapter did not respond to a command that was put
in its register before the passed command time-out value expired.

Required IDE Adapter Driver ioctl Commands

Various ioctl operations must be performed for proper operation of the IDE adapter driver. The ioctl
operations described here are the minimum set of commands the IDE adapter driver must implement to
support IDE device drivers. Other operations might be required in the IDE adapter driver to support, for
example, system management facilities. IDE device driver writers also need to understand these ioctl
operations.

Every IDE adapter driver must support the IOCINFO ioctl operation. The structure to be returned to the
caller is the devinfo structure, including the ide union definition for the IDE adapter found in the
/usr/include/sys/devinfo.h file. The IDE device driver should request the IOCINFO ioctl operation
(probably during its open routine) to get the maximum transfer size of the adapter.

Note: The IDE adapter driver ioctl operations can only be called from the process level. They cannot be
executed from a call on any more favored priority levels. Attempting to call them from a more
favored priority level can result in a system crash.

276 Kernel Extensions and Device Support Programming Concepts

ioctl Commands
The following IDEIOSTART and IDEIOSTOP operations must be sent by the IDE device driver (for the
open and close routines, respectively) for each device. They cause the IDE adapter driver to allocate and
initialize internal resources. The IDEIORESET operation is provided for clearing device hard errors.

Except where noted otherwise, the arg parameter for each of the ioctl operations described here must
contain a long integer. In this field, the least significant byte is the IDE device ID value. (The upper three
bytes are reserved and should be set to 0.) This provides the information required to allocate or deallocate
resources and perform IDE bus operations for the ioctl operation requested.

The following information is provided on the various ioctl operations:

IDEIOSTART
This operation allocates and initializes IDE device-dependent information local to the IDE adapter
driver. Run this operation only on the first open of a device. Subsequent IDEIOSTART commands
to the same device fail unless an intervening IDEIOSTOP command is issued.

For more information, see IDEIOSTART (Start IDE) IDE Adapter Device Driver ioctl Operation in
AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

IDEIOSTOP
This operation deallocates resources local to the IDE adapter driver for this IDE device. This
should be run on the last close of an IDE device. If an IDEIOSTART operation has not been
previously issued, this command is unsuccessful.

For more information, see IDEIOSTOP (Stop) IDE Adapter Device Driver ioctl Operation in AIX 5L
Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

IDEIORESET
This operation causes the IDE adapter driver to send an ATAPI device reset to the specified IDE
device ID.

The IDE device driver should use this command only when directed to do a forced open. This
occurs in for the situation when the device needs to be reset to clear an error condition.

Note: In normal system operation, this command should not be issued, as it would reset all
devices connected to the controller. If an IDEIOSTART operation has not been previously
issued, this command is unsuccessful.

IDEIOINQU
This operation allows the caller to issue an IDE device inquiry command to a selected device.

For more information, see IDEIOINQU (Inquiry) IDE Adapter Device Driver ioctl Operation in AIX
5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

IDEIOSTUNIT
This operation allows the caller to issue an IDE Start Unit command to a selected IDE device. For
the IDEIOSTUNIT operation, the arg parameter operation is the address of an ide_startunit
structure. This structure is defined in the /usr/include/sys/ide.h file.

For more information, see IDEIOSTUNIT (Start Unit) IDE Adapter Device Driver ioctl Operation in
AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

IDEIOTUR
This operation allows the caller to issue an IDE Test Unit Ready command to a selected IDE
device.

For more information, see IDEIOTUR (Test Unit Ready) IDE Adapter Device Driver ioctl Operation
in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

Chapter 14. Integrated Device Electronics (IDE) Subsystem 277

IDEIOREAD
This operation allows the caller to issue an IDE device read command to a selected device.

For more information, see IDEIOREAD (Read) IDE Adapter Device Driver ioctl Operation in AIX 5L
Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

IDEIOIDENT
This operation allows the caller to issue an IDE identify device command to a selected device.

For more information, see IDEIOIDENT (Identify Device) IDE Adapter Device Driver ioctl Operation
in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

Related Information
Logical File System Kernel Services

Technical References
The ddconfig, ddopen, ddclose, dddump, ddioctl, ddread, ddstrategy, ddwrite entry points in AIX 5L
Version 5.2 Technical Reference: Kernel and Subsystems Volume 2.

The fp_opendev, fp_close, fp_ioctl, devdump, devstrat kernel services in AIX 5L Version 5.2 Technical
Reference: Kernel and Subsystems Volume 2.

IDE Adapter Device Driver, idecdrom IDE Device Driver, idedisk IDE Device Driver, IDEIOIDENT (Identify
Device) IDE Adapter Device Driver ioctl Operation, IDEIOINQU (Inquiry) IDE Adapter Device Driver ioctl
Operation, IDEIOREAD (Read) IDE Adapter Device Driver ioctl Operation, IDEIOSTART (Start IDE)
Adapter Device Driver ioctl Operation, IDEIOSTOP (Stop) Device IDE Adapter Device Driver ioctl
Operation, IDEIOSTUNIT (Start Unit) IDE Adapter Device Driver ioctl Operation, and IDEIOTUR (Test Unit
Ready) IDE Adapter Device Driver ioctl Operation in AIX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 2.

278 Kernel Extensions and Device Support Programming Concepts

Chapter 15. Serial Direct Access Storage Device Subsystem

With sequential access to a storage device, such as with tape, a system enters and retrieves data based
on the location of the data, and on a reference to information previously accessed. The closer the physical
location of information on the storage device, the quicker the information can be processed.

In contrast, with direct access, entering and retrieving information depends only on the location of the data
and not on a reference to data previously accessed. Because of this, access time for information on direct
access storage devices (DASDs) is effectively independent of the location of the data.

Direct access storage devices (DASDs) include both fixed and removable storage devices. Typically, these
devices are hard disks. A fixed storage device is any storage device defined during system configuration to
be an integral part of the system DASD. If a fixed storage device is not available at some time during
normal operation, the operating system detects an error.

A removable storage device is any storage device you define during system configuration to be an optional
part of the system DASD. Removable storage devices can be removed from the system at any time during
normal operation. As long as the device is logically unmounted before you remove it, the operating system
does not detect an error.

The following types of devices are not considered DASD and are not supported by the logical volume
manager (LVM):

v Diskettes

v CD-ROM (compact disk read-only memory)

v DVD-ROM (DVD read-only memory)

v WORM (write-once read-mostly)

DASD Device Block Level Description
The DASD device block (or sector) level is the level at which a processing unit can request low-level
operations on a device block address basis. Typical low-level operations for DASD are read-sector,
write-sector, read-track, write-track, and format-track.

By using direct access storage, you can quickly retrieve information from random addresses as a stream
of one or more blocks. Many DASDs perform best when the blocks to be retrieved are close in physical
address to each other.

A DASD consists of a set of flat, circular rotating platters. Each platter has one or two sides on which data
is stored. Platters are read by a set of nonrotating, but positionable, read or read/write heads that move
together as a unit.

The following terms are used when discussing DASD device block operations:

sector An addressable subdivision of a track used to record one block of a program or data. On a DASD,
this is a contiguous, fixed-size block. Every sector of every DASD is exactly 512 bytes.

track A circular path on the surface of a disk on which information is recorded and from which recorded
information is read; a contiguous set of sectors. A track corresponds to the surface area of a single
platter swept out by a single head while the head remains stationary.

A DASD contains at least 17 sectors per track. Otherwise, the number of sectors per track is not
defined architecturally and is device-dependent. A typical DASD track can contain 17, 35, or 75
sectors.

A DASD can contain 1024 tracks. The number of tracks per DASD is not defined architecturally and
is device-dependent.

© Copyright IBM Corp. 1997, 2003 279

head A head is a positionable entity that can read and write data from a given track located on one side of
a platter. Usually a DASD has a small set of heads that move from track to track as a unit.

There must be at least 43 heads on a DASD. Otherwise, the number is not defined architecturally
and is device-dependent. A typical DASD has 8 heads.

cylinder The tracks of a DASD that can be accessed without repositioning the heads. If a DASD has n
number of vertically aligned heads, a cylinder has n number of vertically aligned tracks.

Related Information
Programming in the Kernel Environment Overview

Understanding Physical Volumes and the Logical Volume Device Driver

Special Files Overview in AIX 5L Version 5.2 Files Reference.

Serial DASD Subsystem Device Driver, scdisk SCSI Device Driver in AIX 5L Version 5.2 Technical
Reference: Kernel and Subsystems Volume 2.

280 Kernel Extensions and Device Support Programming Concepts

Chapter 16. Debug Facilities

This chapter provides information about the available procedures for debugging a device driver that is
under development. The procedures discussed include:

v Error logging records device-specific hardware or software abnormalities.

v The Debug and Performance Tracing monitors entry and exit of device drivers and selectable system
events.

v The Memory Overlay Detection System (MODS) helps detect memory overlay problems in the kernel,
kernel extensions, and device drivers.

System Dump Facility
Your system generates a system dump when a severe error occurs. System dumps can also be
user-initiated by users with root user authority. A system dump creates a picture of your system’s memory
contents. System administrators and programmers can generate a dump and analyze its contents when
debugging new applications.

If your system stops with an 888 number flashing in the operator panel display, the system has generated
a dump and saved it to a dump device.

To generate a system dump see:

v Configure a Dump Device

v Start a System Dump

v Check the Status of a System Dump

v Copy a System Dump

v Increase the Size of a Dump Device

In AIX Version 4, some of the error log and dump commands are delivered in an optionally installable
package called bos.sysmgt.serv_aid. System dump commands included in the bos.sysmgt.serv_aid
include the sysdumpstart command. See the Software Service Aids Package for more information.

Configuring a Dump Device
When an unexpected system halt occurs, the system dump facility automatically copies selected areas of
kernel data to the primary dump device. These areas include kernel segment 0 as well as other areas
registered in the Master Dump Table by kernel modules or kernel extensions. An attempt is made to dump
to the secondary dump device if it has been defined.

When you install the operating system, the dump device is automatically configured for you. By default, the
primary device is /dev/hd6, which is a paging logical volume, and the secondary device is
/dev/sysdumpnull.

Note: If your system has 4 GB or more of memory, the default dump device is /dev/lg_dumplv, and is a
dedicated dump device.

If a dump occurs to paging space, the system will automatically copy the dump when the system is
rebooted. By default, the dump is copied to a directory in the root volume group, /var/adm/ras. See the
sysdumpdev command for details on how to control dump copying.

Note: Diskless systems automatically configure a remote dump device.

© Copyright IBM Corp. 1997, 2003 281

If you are using AIX 4.3.2 or later, compressing your system dumps before they are written to the dump
device will reduce the size needed for dump devices. Refer to the sysdumpdev command for more
details.

Starting with AIX 5.1, the dumpcheck facility will notify you if your dump device needs to be larger, or the
file system containing the copy directory is too small. It will also automatically turn compression on if this
will alleviate these conditions. This notification appears in the system error log. If you need to increase the
size of your dump device, refer to the article in this publication, “Increasing the Size of a Dump Device” on
page 288.

For maximum effectiveness, dumpcheck should be run when the system is most heavily loaded. At such
times, the system dump is most likely to be at its maximum size. Also, even with dumpcheck watching the
dump size, it may still happen that the dump won’t fit on the dump device or in the copy directory at the
time it happens. This could occur if there is a peak in system load right at dump time.

Including Device Driver Data
To have your device driver data areas included in a system dump, you must register the data areas in the
master dump table. In AIX 5.1, use the dmp_ctl kernel service to add an entry to the master dump table
or to delete an entry. The syntax is as follows:
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dump.h>

int dmp_ctl(op, data)
int op;
struct dmpctl_data *data;

Before AIX 5.1, use the dmp_add kernel service. For more information, see dmp_add Kernel Service in
AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

Starting a System Dump

Attention: Do not start a system dump if the flashing 888 number shows in your operator panel display.
This number indicates your system has already created a system dump and written the information to your
primary dump device. If you start your own dump before copying the information in your dump device, your
new dump will overwrite the existing information. For more information, see “Checking the Status of a
System Dump” on page 284.

A user-initiated dump is different from a dump initiated by an unexpected system halt because the user
can designate which dump device to use. When the system halts unexpectedly, a system dump is initiated
automatically to the primary dump device.

You can start a system dump by using one of the methods listed below.

You have access to the sysdumpstart command and can start a dump using one of these methods:

v Using the Command Line

v Using SMIT

v Using the Reset Button

v Using Special Key Sequences

Using the Command Line
Use the following steps to choose a dump device, initiate the system dump, and determine the status of
the system dump:

Note: You must have root user authority to start a dump by using the sysdumpstart command.

282 Kernel Extensions and Device Support Programming Concepts

1. Check which dump device is appropriate for your system (the primary or secondary device) by using
the following sysdumpdev command:
sysdumpdev -l

This command lists the current dump devices. You can use the sysdumpdev command to change
device assignments.

2. Start the system dump by entering the following sysdumpstart command:
sysdumpstart -p

This command starts a system dump on the default primary dump device. You can use the -s flag to
specify the secondary dump device.

3. If a code shows in the operator panel display, refer to “Checking the Status of a System Dump” on
page 284. If the operator panel display is blank, the dump was not started. Try again using the Reset
button.

Using SMIT
Use the following SMIT commands to choose a dump device and start the system dump:

Note: You must have root user authority to start a dump using SMIT. SMIT uses the sysdumpstart
command to start a system dump.

1. Check which dump device is appropriate for your system (the primary or secondary device) by using
the following SMIT fast path command:
smit dump

2. Choose the Show Current Dump Devices option and write the available devices on notepaper.

3. Enter the following SMIT fast path command again:
smit dump

4. Choose either the primary (the first example option) or secondary (the second example option) dump
device to hold your dump information:
Start a Dump to the Primary Dump Device

OR
Start a Dump to the Secondary Dump Device

Base your decision on the list of devices you made in step 2.

5. Refer to “Checking the Status of a System Dump” on page 284 if a value shows in the operator panel
display. If the operator panel display is blank, the dump was not started. Try again using the Reset
button.

Note: To start a dump with the reset button or a key sequence you must have the key switch, or mode
switch, in the Service position, or have set the Always Allow System Dump value to true. To do
this:

a. Use the following SMIT fast path command:
smit dump

b. Set the Always Allow System Dump value to true. This is essential on systems that do not
have a mode switch.

Using the Reset Button
Start a system dump with the Reset button by doing the following (this procedure works for all system
configurations and will work in circumstances where other methods for starting a dump will not):

1. Turn your machine’s mode switch to the Service position, or set Always Allow System Dump to true.

2. Press the Reset button.

Your system writes the dump information to the primary dump device.

Chapter 16. Debug Facilities 283

Note: The procedure for using the reset button can vary, depending upon your hardware configuration.

Using Special Key Sequences
Start a system dump with special key sequences by doing the following:

1. Turn your machine’s mode switch to the Service position, or set Always Allow System Dump to true.

2. Press the Ctrl-Alt 1 key sequence to write the dump information to the primary dump device, or press
the Ctrl-Alt 2 key sequence to write the dump information to the secondary dump device..

Note: You can start a system dump by this method only on the native keyboard.

Checking the Status of a System Dump
When a system dump is taking place, status and completion codes are displayed in the operator panel
display on the operator panel. When the dump is complete, a 0cx status code displays if the dump was
user initiated, a flashing 888 displays if the dump was system initiated.

You can check whether the dump was successful, and if not, what caused the dump to fail. If a 0cx is
displayed, see “Status Codes” below.

Note: If the dump fails and upon reboot you see an error log entry with the label DSI_PROC or ISI_PROC,
and the Detailed Data area shows an EXVAL of 000 0005, this is probably a paging space I/O error.
If the paging space (probably/dev/hd6) is the dump device or on the same hard drive as the dump
device, your dump may have failed due to a problem with that hard drive. You should run
diagnostics against that disk.

Status Codes
Find your status code in the following list, and follow the instructions:

000 The kernel debugger is started. If there is an ASCII terminal attached to one of the native serial ports, enter q
dump at the debugger prompt (>) on that terminal and then wait for flashing 888s to appear in the operator
panel display. After the flashing 888 appears, go to “Checking the Status of a System Dump”.

0c0 The dump completed successfully. Go to “Copying a System Dump” on page 285.
0c1 An I/O error occurred during the dump. Go to “System Dump Facility” on page 281.
0c2 A user-requested dump is not finished. Wait at least 1 minute for the dump to complete and for the operator

panel display value to change. If the operator panel display value changes, find the new value on this list. If
the value does not change, then the dump did not complete due to an unexpected error.

0c4 The dump ran out of space . A partial dump was written to the dump device, but there is not enough space
on the dump device to contain the entire dump. To prevent this problem from occurring again, you must
increase the size of your dump media. Go to “Increase the Size of a Dump Device” on page 287.

0c5 The dump failed due to an internal error.
0c7 A network dump is in progress, and the host is waiting for the server to respond. The value in the operator

panel display should alternate between 0c7 and 0c2 or 0c9. If the value does not change, then the dump did
not complete due to an unexpected error.

0c8 The dump device has been disabled. The current system configuration does not designate a device for the
requested dump. Enter the sysdumpdev command to configure the dump device.

0c9 A dump started by the system did not complete. Wait at least 1 minute for the dump to complete and for the
operator panel display value to change. If the operator panel display value changes, find the new value on
the list. If the value does not change, then the dump did not complete due to an unexpected error.

0cc An error occured dumping to the primary device; the dump has switched over to the secondary device. Wait
at least 1 minute for the dump to complete and for the three-digit display value to change. If the three-digit
display value changes, find the new value on this list. If the value does not change, then the dump did not
complete due to an unexpected error.

c20 The kernel debugger exited without a request for a system dump. Enter the quit dump subcommand. Read
the new three-digit value from the LED display.

284 Kernel Extensions and Device Support Programming Concepts

Copying a System Dump
Your dump device holds the information that a system dump generates, whether generated by the system
or a user. You can copy this information to tape and deliver the material to your service department for
analysis.

Note: If you intend to use a tape to send a snap image to IBM for software support. The tape must be
one of the following formats: 8mm, 2.3 Gb capacity, 8mm, 5.0 Gb capacity, or 4mm, 4.0 Gb
capacity. Using other formats will prevent or delay software support from being able to examine the
contents.

There are two procedures for copying a system dump, depending on whether you’re using a dataless
workstation or a non-dataless machine:

v Copying a System Dump on a Dataless Workstation

v Copying a System Dump on a Non-Dataless Machine

Copying a System Dump on a Dataless Workstation
On a dataless workstation, the dump is copied to the server when the workstation is rebooted after the
dump. The dump may not be available to the dataless machine.

Copy a system dump on a dataless workstation by performing the following tasks:

1. Reboot in Normal mode

2. Locate the System Dump

3. Copy the System Dump from the Server.

Reboot in Normal mode: To reboot in normal mode:

1. Switch off the power on your machine.

2. Turn the mode switch to the Normal position.

3. Switch on the power on your machine.

Locate the System Dump: To locate the dump:

1. Log on to the server .

2. Use the lsnim command to find the dump object for the workstation. (For this example, the
workstation’s object name on the server is worker .)
lsnim -l worker

The dump object appears on the line:
dump = dumpobject

3. Use the lsnim command again to determine the path of the object:
lsnim -l dumpobject

The path name displayed is the directory containing the dump. The dump usually has the same name
as the object for the dataless workstation.

Copy the System Dump from the Server: The dump is copied like any other file. To copy the dump to
tape, use the tar command:
tar -c

or, to copy to a tape other than /dev/rmt0:
tar -cftapedevice

To copy the dump back from the external media (such as a tape drive), use the tar command. Enter the
following to copy the dump from /dev/rmt0:

Chapter 16. Debug Facilities 285

tar -x

To copy the dump from any other media, enter:
tar -xftapedevice

Copying a System Dump on a Non-Dataless Machine
Copy a system dump on a non-dataless machine by performing the following tasks:

1. Reboot Your Machine

2. Copy the System Dump using one of the following methods:

v Copy a System Dump after Rebooting in Normal Mode

v Copy a System Dump after Booting from Maintenance Mode

Reboot Your Machine: Reboot in Normal mode using the following steps:

1. Switch off the power on your machine.

2. Turn the mode switch to the Normal position.

3. Switch on the power on your machine.

If your system brings up the login prompt, go to “Copy a System Dump after Rebooting in Normal Mode”.

If your system stops with a number in the operator panel display instead of bringing up the login prompt,
reboot your machine from Maintenance mode, then go to “Copy a System Dump after Booting from
Maintenance Mode”.

Copy a System Dump after Rebooting in Normal Mode: After rebooting in Normal mode, copy a
system dump by doing the following:

1. Log in to your system as root user.

2. Copy the system dump to tape using the following snap command:
/usr/sbin/snap -gfkD -o /dev/rmt#

where # (pound sign) is the number of your available tape device (the most common is /dev/rmt0) .
To find the correct number, enter the following lsdev command, and look for the tape device listed as
Available:
lsdev -C -c tape -H

Note: If your dump went to a paging space logical volume, it has been copied to a directory in your
root volume group, /var/adm/ras. See Configure a Dump Device and the sysdumpdev
command for more details. These dumps are still copied by the snap command. The
sysdumpdev -L command lists the exact location of the dump.

3. To copy the dump back from the external media (such as a tape drive), use the pax command. Enter
the following to copy the dump from /dev/rmt0:
pax -rf/dev/rmt0

To copy the dump from any other media, enter:
tar -xftapedevice

Copy a System Dump after Booting from Maintenance Mode:

Note: Use this procedure only if you cannot boot your machine in Normal mode.

1. After booting from Maintenance mode, copy a system dump or tape using the following snap
command:
/usr/sbin/snap -gfkD -o /dev/rmt#

286 Kernel Extensions and Device Support Programming Concepts

2. To copy the dump back from the external media (such as a tape drive), use the tar command. Enter
the following to copy the dump from /dev/rmt0:
tar -x

To copy the dump from any other media, enter:
tar -xftapedevice

Increase the Size of a Dump Device
Refer to the following to determine the appropriate size for your dump logical volume and to increase the
size of either a logical volume or a paging space logical volume.

v Determining the Size of a Dump Device

v Determining the Type of Logical Volume

v Increasing the Size of a Dump Device

Determining the Size of a Dump Device
The size required for a dump is not a constant value because the system does not dump paging space;
only data that resides in real memory can be dumped. Paging space logical volumes will generally hold
the system dump. However, because an incomplete dump may not be usable, follow the procedure below
to make sure that you have enough dump space.

When a system dump occurs, all of the kernel segment that resides in real memory is dumped (the kernel
segment is segment 0). Memory resident user data (such as u-blocks) are also dumped.

The minimum size for the dump space can best be determined using the sysdumpdev -e command. This
gives an estimated dump size taking into account the memory currently in use by the system. If dumps are
being compressed, then the estimate shown is for the compressed size of thedump, not the original size.
In general, compressed dump size estimates will be much higher than the actual size. This occurs
because of the unpredictability of the compression algorithm’s efficiency. You should still ensure your dump
device is large enough to hold the estimated size in order to avoid losing dump data.

For example, enter:
sysdumpdev -e

If sysdumpdev -e returns the message, Estimated dump size in bytes: 9830400, then the dump device
should be at least 9830400 bytes or 12MB (if you are using three 4MB partitions for the disk).

Note: When a client dumps to a remote dump server, the dumps are stored as files on the server. For
example, the /export/dump/kakrafon/dump file will contain kakrafon’s dump. Therefore, the file
system used for the /export/dump/kakrafon directory must be large enough to hold the client
dumps.

Determining the Type of Logical Volume
1. Enter the sysdumpdev command to list the dump devices. The logical volume of the primary dump

device will probably be /dev/hd6 or /dev/hd7.

Note: You can also determine the dump devices using SMIT. Select the Show Current Dump
Devices option from the System Dump SMIT menu.

2. Determine your logical volume type by using SMIT. Enter the SMIT fast path smit lvm or smitty lvm.
You will go directly to Logical Volumes. Select the List all Logical Volumes by Volume Group option.

Find your dump volume in the list and note its Type (in the second column). For example, this might be
paging in the case of hd6 or sysdump in the case of hd7.

Chapter 16. Debug Facilities 287

Increasing the Size of a Dump Device
If you have confirmed that your dump device is a paging space, refer to Changing or Removing a Paging
Space in AIX 5L Version 5.2 System Management Guide: Operating System and Devices for more
information.

If you have confirmed that your dump device type is sysdump, refer to the extendlv command for more
information.

Error Logging
The error facility records device-driver entries in the system error log. These error log entries record any
software or hardware failures that need to be available either for informational purposes or for fault
detection and corrective action. The device driver, using the errsave kernel service, adds error records to
the /dev/error special file.

The errdemon daemon picks up the error record and creates an error log entry. When you access the
error log either through SMIT (System Management Interface Tool) or with the errpt command, the error
record is formatted according to the error template in the error template repository and presented in either
a summary or detailed report.

Before initiating the error logging process, determine what services are available to developers, and what
services are available to the customer, service personnel, and defect personnel.

v Determine the Importance of the Error: Use system resources for logging only information that is
important or helpful to the intended audience. Work with the hardware developer, if possible, to identify
detectable errors and the information that should be relayed concerning those errors.

v Determine the Text of the Message: Use regular national language support (NLS) XPG/4 messages
instead of the codepoints. For more information about NLS messages, see Message Facility in AIX 5L
Version 5.2 National Language Support Guide and Reference.

v Determine the Correct Level of Thresholding: Each software or hardware error to be logged, can be
limited by thresholding to avoid filling the error log with duplicate information. Side effects of runaway
error logging include overwriting existing error log entries and unduly alarming the end user. The error
log is limited in size. When its size limit is reached, the log wraps. If a particular error is repeated
needlessly, existing information is overwritten, which might cause inaccurate diagnostic analyses. The
end user or service person can perceive a situation as more serious or pervasive than it is if they see
hundreds of identical or nearly identical error entries.

You are responsible for implementing the proper level of thresholding in the device driver code.

The size of the error is 1 MB. As shipped, it cleans up any entries older than 30 days. To ensure that
your error log entries are informative, noticed, and remain intact, test your driver thoroughly.

Setting up Error Logging
To begin error logging, do the following:

1. Select the error text.

2. Construct error record templates.

3. Add error logging calls into the device driver code.

Step 1: Selecting the Error Text
Browse the contents of the system message file. Either all of the desired messages for the new errors
exist in the message file, none of the messages exist, or a combination of errors exists.

v If the messages required already exist in the system message file, make a note of the four-digit
hexadecimal identification number, as well as the message-set identification letter. For instance, an error
description might be:
SET E
E859 "The wagon wheel is broken."

288 Kernel Extensions and Device Support Programming Concepts

v If none of the system error messages meet your requirements, and if you are responsible for developing
a product for general distribution, you can either contact your supplier to allocate new messages or
follow the procedures that your organization uses to request new messages. If you are creating an
in-house product, use the errmsg command to write suitable error messages and use the errinstall
command to install them. For more information, see Software Product Packaging in AIX 5L Version 5.2
General Programming Concepts: Writing and Debugging Programs. Make sure that you do not overwrite
other error messages.

v You can use a combination of existing messages and new messages within the same error record
template definition.

Step 2: Constructing Error Record Templates
Construct your error record templates, which define the text that displays in the error report. Each error
record template has the following general form:
Error Record Template

+LABEL:
Comment =
Class =
Log =
Report =
Alert =
Err_Type =
Err_Desc =
Probable_Causes =
User_Causes =
User_Actions =
Inst_Causes =
Inst_Actions =
Fail_Causes =
Fail_Actions =
Detail_Data = <data_len>, <data_id>, <data_encoding>

Each field in this stanza has well-defined criteria for input values. For more information, see the errupdate
command. The fields are as follows:

Label Requires a unique label for each entry to be added. The label must follow C language rules for
identifiers and must not exceed 16 characters in length.

Comment
Indicates that this is a comment field. You must enclose the comment in double quotation marks,
and it cannot exceed 40 characters.

Class Requires class values of H (hardware), S (software), or U (Undetermined).

Log Requires values True or False. If failure occurs, the errors are logged only if this field value is set
to True. When this value is False the Report and Alert fields are ignored.

Report Requires values True or False. If the logged error is to be displayed using error report, the value
of this field must be True.

Alert Requires values True or False. Set this field to True for errors that are alertable. For errors that
are not alertable, set this field to False.

Err_Type

Describes the severity of the failure that occurred. Possible values for Err_Type are as follows:

INFO The error log entry is informational and was not the result of an error.

PEND A condition in which the loss of availability of a device or component is imminent.

PERF A condition in which the performance of a device or component was degraded below an
acceptable level.

Chapter 16. Debug Facilities 289

PERM A permanent failure is defined as a condition that was not recoverable. For example, an
operation was retried a prescribed number of times without success.

TEMP Recovery from this temporary failure was successful, yet the number of unsuccessful
recovery attempts exceeded a predetermined threshold.

UNKN A condition in which it is not possible to assess the severity of a failure.

Err_Desc
Describes the failure that occurred. Proper input for this field is the four-digit hexadecimal identifier
of the error description message to be displayed from SET E in the message file.

Prob_Causes
Describes one or more probable causes for the failure that occurred. You can specify a list of up to
four Prob_Causes identifiers separated by commas. A Prob_Causes identifier displays a probable
cause text message from SET P in the message file. List probable causes in the order of
decreasing probability. At least one probable cause identifier is required.

User_Causes
Specifies a condition that an operator can resolve without contacting any service organization. You
can specify a list of up to four User_Causes identifiers separated by commas. A User_Causes
identifier displays a text message from SET U in the message file. List user causes in the order of
decreasing probability. Leave this field blank if it does not apply to the failure that occurred. If this
field is blank, either the Inst_Causes or the Fail_Causes field must not be blank.

User_Actions
Describes recommended actions for correcting a failure that resulted from a user cause. You can
specify a list of up to four recommended User_Actions identifiers separated by commas. A
recommended User_Actions identifier displays a recommended action text message, SET R in the
message file. You must leave this field blank if the User_Causes field is blank.

The order in which the recommended actions are listed is determined by the expense of the action
and the probability that the action corrects the failure. Actions that have little or no cost and little or
no impact on system operation should always be listed first. When actions for which the probability
of correcting the failure is equal or nearly equal, list the least expensive action first. List remaining
actions in order of decreasing probability.

Inst_Causes
Describes a condition that resulted from the initial installation or setup of a resource. You can
specify a list of up to four Inst_Causes identifiers separated by commas. An Inst_Causes identifier
displays a text message, SET I in the message file. List the install causes in the order of
decreasing probability. Leave this field blank if it is not applicable to the failure that occurred. If this
field is blank, either the User_Causes or the Failure_Causes field must not be blank.

Inst_Actions
Describes recommended actions for correcting a failure that resulted from an install cause. You
can specify a list of up to four recommended Inst_actions identifiers separated by commas. A
recommended Inst_actions identifier identifies a recommended action text message, SET R in the
message file. Leave this field blank if the Inst_Causes field is blank. The order in which the
recommended actions are listed is determined by the expense of the action and the probability
that the action corrects the failure. See the User_Actions field for the list criteria.

Fail_Causes
Describes a condition that resulted from the failure of a resource. You can specify a list of up to
four Fail_Causes identifiers separated by commas. A Fail_Causes identifier displays a failure
cause text message, SET F in the message file. List the failure causes in the order of decreasing
probability. Leave this field blank if it is not applicable to the failure that occurred. If you leave this
field blank, either the User_Causes or the Inst_Causes field must not be blank.

Fail_Actions
Describes recommended actions for correcting a failure that resulted from a failure cause. You can

290 Kernel Extensions and Device Support Programming Concepts

specify a list of up to four recommended action identifiers separated by commas. The
Fail_Actions identifiers must correspond to recommended action messages found in SET R of the
message file. Leave this field blank if the Fail_Causes field is blank. Refer to the description of the
User_Actions field for criteria in listing these recommended actions.

Detail_Data
Describes the detailed data that is logged with the error when the failure occurs. The Detail_data
field includes the name of the detecting module, sense data, or return codes. Leave this field blank
if no detailed data is logged with the error.

You can repeat the Detail_Data field. The amount of data logged with an error must not exceed
the maximum error record length defined in the sys/err_rec.h header file. Save failure data that
cannot be contained in an error log entry elsewhere, for example in a file. The detailed data in the
error log entry contains information that can be used to correlate the failure data to the error log
entry. Three values are required for each detail data entry:

data_len
Indicates the number of bytes of data to be associated with the data_id value. The data_len value
is interpreted as a decimal value.

data_id
Identifies a text message to be printed in the error report in front of the detailed data. These
identifiers refer to messages in SET D of the message file.

data_encoding
Describes how the detailed data is to be printed in the error report. Valid values for this field are:

ALPHA
The detailed data is a printable ASCII character string.

DEC The detailed data is the binary representation of an integer value, the decimal equivalent
is to be printed.

HEX The detailed data is to be printed in hexadecimal.

Sample Error Record Template
An example of an error record template is:
+& MISC_ERR:

Comment = "Interrupt: I/O bus timeout or channel check"
Class = H
Log = TRUE
Report = TRUE
Alert = FALSE
Err_Type = UNKN
Err_Desc = E856
Prob_Causes = 3300, 6300
User_Causes =
User_Actions =
Inst_Causes =
Inst_Actions =
Fail_Causes = 3300, 6300
Fail_Actions = 0000
Detail_Data = 4, 8119, HEX *IOCC bus number
Detail_Data = 4, 811A, HEX *Bus Status Register
Detail_Data = 4, 811B, HEX *Misc. Interrupt Register

Construct the error templates for all new errors to be added in a file suitable for entry with the errupdate
command. Run the errupdate command with the -h flag and the input file. The new errors are now part of
the error record template repository. A new header file is also created (file.h) in the same directory in
which the errupdate command was run. This header file must be included in the device driver code at
compile time. Note that the errupdate command has a built-in syntax checker for the new stanza that can
be called with the -c flag.

Chapter 16. Debug Facilities 291

Adding Error Logging Calls into the Code
The third step in coding error logging is to put the error logging calls into the device driver code. The
errsave kernel service allows the kernel and kernel extensions to write to the error log. Typically, you
define a routine in the device driver that can be called by other device driver routines when a loggable
error is encountered. This function takes the data passed to it, puts it into the proper structure and calls
the errsave kernel service. The syntax for the errsave kernel service is:
#include <sys/errids.h>
void errsave(buf, cnt)
char *buf;
unsigned int cnt;

where:

buf Specifies a pointer to a buffer that contains an error record as described in the sys/errids.h header file.
cnt Specifies a number of bytes in the error record contained in the buffer pointed to by the buf parameter.

The following sample code is an example of a device driver error logging routine. This routine takes data
passed to it from some part of the main body of the device driver. This code simply fills in the structure
with the pertinent information, then passes it on using the errsave kernel service.
void
errsv_ex (int err_id, unsigned int port_num,

int line, char *file, uint data1, uint data2)
{

dderr log;
char errbuf[255];
ddex_dds *p_dds;

p_dds = dds_dir[port_num];
log.err.error_id = err_id;

if (port_num = BAD_STATE) {
sprintf(log.err.resource_name, "%s :%d",

p_dds->dds_vpd.adpt_name, data1);
data1 = 0;

}

else
sprintf(log.err.resource_name,"%s",p_dds->dds_vpd.devname);

sprintf(errbuf, "line: %d file: %s", line, file);
strncpy(log.file, errbuf, (size_t)sizeof(log.file));

log.data1 = data1;
log.data2 = data2;

errsave(&log, (uint)sizeof(dderr)); /* run actual logging */
} /* end errlog_ex */

The data to be passed to the errsave kernel service is defined in the dderr structure, which is defined in a
local header file, dderr.h. The definition for dderr is:
typedef struct dderr {

struct err_rec0 err;
int data1; /* use data1 and data2 to show detail */
int data2; /* data in the errlog report. Define */

/* these fields in the errlog template */
/* These fields may not be used in all */
/* cases. */

} dderr;

292 Kernel Extensions and Device Support Programming Concepts

The first field of the dderr.h header file is comprised of the err_rec0 structure, which is defined in the
sys/err_rec.h header file. This structure contains the ID (or label) and a field for the resource name. The
two data fields hold the detail data for the error log report. As an alternative, you could simply list the fields
within the function.

You can also log a message into the error log from the command line. To do this, use the errlogger
command.

After you add the templates using the errupdate command, compile the device driver code along with the
new header file. Simulate the error and verify that it was written to the error log correctly. Some details to
check for include:

v Is the error demon running? This can be verified by running the ps -ef command and checking for
/usr/lib/errdemon as part of the output.

v Is the error part of the error template repository? Verify this by running the errpt -at command.

v Was the new header file, which was created by the errupdate command and which contains the error
label and unique error identification number, included in the device driver code when it was compiled?

Debug and Performance Tracing
The trace facility is useful for observing a running device driver and system. The trace facility captures a
sequential flow of time-stamped system events, providing a fine level of detail on system activity. Events
are shown in time sequence and in the context of other events. The trace facility is useful in expanding
the trace event information to understand who, when, how, and even why the event happened.

Introduction
The operating system is shipped with permanent trace event points. These events provide general visibility
to system execution. You can extend the visibility into applications by inserting additional events and
providing formatting rules.

The collection of trace data was designed so that system performance and flow would be minimally
altered by activating trace. Because of this, the facility is extremely useful as a performance analysis tool
and as a problem determination tool.

The trace facility is more flexible than traditional system monitor services that access and present
statistics maintained by the system. With traditional monitor services, data reduction (conversion of system
events to statistics) is largely coupled to the system instrumentation. For example, the system can
maintain the minimum, maximum, and average elapsed time observed for runs of a task and permit this
information to be extracted.

The trace facility does not strongly couple data reduction to instrumentation but provides a stream of
system events. It is not required to presuppose what statistics are needed. The statistics or data reduction
are to a large degree separated from the instrumentation.

You can choose to develop the minimum, maximum, and average time for task A from the flow of events.
But it is also possible to extract the average time for task A when called by process B, extract the average
time for task A when conditions XYZ are met, develop a standard deviation for task A, or even decide that
some other task, recognized by a stream of events, is more meaningful to summarize. This flexibility is
invaluable for diagnosing performance or functional problems.

The trace facility generates large volumes of data. This data cannot be captured for extended periods of
time without overflowing the storage device. This allows two practical ways that the trace facility can be
used natively.

Chapter 16. Debug Facilities 293

First, the trace facility can be triggered in multiple ways to capture small increments of system activity. It is
practical to capture seconds to minutes of system activity in this way for post-processing. This is sufficient
time to characterize major application transactions or interesting sections of a long task.

Second, the trace facility can be configured to direct the event stream to standard output. This allows a
real-time process to connect to the event stream and provide data reduction in real-time, thereby creating
a long term monitoring capability. A logical extension for specialized instrumentation is to direct the data
stream to an auxiliary device that can either store massive amounts of data or provide dynamic data
reduction.

You can start the system trace from:

v The command line

v SMIT

v Software

The trace facility causes predefined events to be written to a trace log. The tracing action is then stopped.

Tracing from a command line is discussed in “Controlling trace” on page 295. Tracing from a software
application is discussed and an example is presented in “Examples of Coding Events and Formatting
Events” on page 310.

After a trace is started and stopped, you must format it before viewing it.

To format the trace events that you have defined, you must provide a stanza that describes how the trace
formatter is to interpret the data that has been collected. This is described in “Syntax for Stanzas in the
trace Format File” on page 297.

The trcrpt command provides a general purpose report facility. The report facility provides little data
reduction, but converts the raw binary event stream to a readable ASCII listing of the event stream. Data
can be visually extracted by a reader, or tools can be developed to further reduce the data.

For an event to be traced, you must write an event hook (sometimes called a trace hook) into the code
that you want to trace. Tracing can be done on either the system channel (channel 0) or on a generic
channel (channels 1-7). All preshipped trace points are output to the system channel.

Usually, when you want to show interaction with other system routines, use the system channel. The
generic channels are provided so that you can control how much data is written to the trace log. Only your
data is written to one of the generic channels.

For more information on trace hooks, see “Macros for Recording trace Events” on page 295.

Using the trace Facility
The following sections describe the use of the trace facility.

Configuring and Starting trace Data Collection
The trace command configures the trace facility and starts data collection. You can start trace from the
command line or with a trcstart subroutine call. The trcstart subroutine is in the librts.a library. The
syntax of the trcstart subroutine is:
int trcstart(char *args)

where args is simply the options list desired that you would enter using the trace command if starting a
system trace (channel 0). If starting a generic trace, include a -g option in the args string. On successful
completion, trcstart returns the channel ID. For generic tracing this channel ID can be used to record to
the private generic channel.

294 Kernel Extensions and Device Support Programming Concepts

For an example of the trcstart routine, see “Examples of Coding Events and Formatting Events” on
page 310.

When compiling a program using this subroutine, you must request the link to the librts.a library. Use -l
rts as a compile option.

Controlling trace
Basic controls for the trace facility exist as trace subcommands, standalone commands, and subroutines.

If you configure the trace routine to run asynchronously (the -a option), you can control the trace facility
with the following commands:

trcon Turns collection of trace data on.
trcoff Turns collection of trace data off.
trcstop Stops collection of trace data (like trcoff) and terminates the trace routine.

Producing a trace Report

The trace report facility formats and displays the collected event stream in readable form. This report
facility displays text and data for each event according to rules provided in the trace format file. The
default trace format file is /etc/trcfmt and contains a stanza for each event ID. The stanza for the event
provides the report facility with formatting rules for that event. This technique allows you to add your own
events to programs and insert corresponding event stanzas in the format file to have their new events
formatted.

This report facility does not attempt to extract summary statistics (such as CPU utilization and disk
utilization) from the event stream. This can be done in several other ways. To create simple summaries,
consider using awk scripts to process the output obtained from the trcrpt command.

Defining trace Events
The operating system is shipped with predefined trace hooks (events). You need only activate trace to
capture the flow of events from the operating system. You might want to define trace events in your code
during development for tuning purposes. This provides insight into how the program is interacting with the
system. The following sections provide the information that is required to do this.

Possible Forms of a trace Event Record
A trace event can take several forms. An event consists of the following:

v Hookword

v Data words (optional)

v A TID, or thread identifier

v Timestamp (optional)

An event record should be as short as possible. Many system events use only the hookword and
timestamp. There is another event type you should seldom use because it is less efficient. It is a long
format that allows you to record a variable length data. In this long form, the 16-bit data field of the
hookword is converted to a length field that describes the length of the event record.

Macros for Recording trace Events
The following macros should always be used to generate trace data. Do not call the tracing functions
directly. There is a macro to record each possible type of event record. The macros are defined in the
sys/trcmacros.h header file. The event IDs are defined in the sys/trchkid.h header file. Include these two
header files in any program that is recording trace events.

The macros to record system (channel 0) events with a time stamp are:

Chapter 16. Debug Facilities 295

v TRCHKL0T (hw)

v TRCHKL1T (hw,D1)

v TRCHKL2T (hw,D1,D2)

v TRCHKL3T (hw,D1,D2,D3)

v TRCHKL4T (hw,D1,D2,D3,D4)

v TRCHKL5T (hw,D1,D2,D3,D4,D5)

Similarly, to record non-time stamped system events (channel 0), use the following macros:

v TRCHKL0 (hw)

v TRCHKL1 (hw,D1)

v TRCHKL2 (hw,D1,D2)

v TRCHKL3 (hw,D1,D2,D3)

v TRCHKL4 (hw,D1,D2,D3,D4)

v TRCHKL5 (hw,D1,D2,D3,D4,D5)

There are only two macros to record events to one of the generic channels (channels 1-7). These are:

v TRCGEN (ch,hw,d1,len,buf)

v TRCGENT (ch,hw,d1,len,buf)

These macros record a hookword (hw), a data word (d1) and a length of data (len) specified in bytes from
the user’s data segment at the location specified (buf) to the event stream specified by the channel (ch).

Use of Event IDs (hookids)
Event IDs are 12 bits (or 3-digit hexadecimal), for a possibility of 4096 IDs. Event IDs that are permanently
left in and shipped with code need to be permanently assigned. Permanently assigned event IDs are
defined in the sys/trchkid.h header file.

To allow you to define events in your environments or during development, a range of event IDs exist for
temporary use. The range of event IDs for temporary use is hex 010 through hex 0FF. No permanent
(shipped) events are assigned in this range. You can freely use this range of IDs in your own environment.
If you do use IDs in this range, do not let the code leave your environment.

Permanent events must have event IDs assigned by the current owner of the trace component. To obtain
a trace event id, send a note with a subject of help to aixras@austin.ibm.com.

You should conserve event IDs because they are limited. Event IDs can be extended by the data field. The
only reason to have a unique ID is that an ID is the level at which collection and report filtering is available
in the trace facility. An ID can be collected or not collected by the trace collection process and reported or
not reported by the trace report facility. Whole applications can be instrumented using only one event ID.
The only restriction is that the granularity on choosing visibility is to choose whether events for that
application are visible.

A new event can be formatted by the trace report facility (trcrpt command) if you create a stanza for the
event in the trace format file. The trace format file is an editable ASCII file. The syntax for a format stanzas
is shown in Syntax for Stanzas in the trace Format File. All permanently assigned event IDs should have
an appropriate stanza in the default trace format file shipped with the base operating system.

Suggested Locations and Data for Permanent Events
The intent of permanent events is to give an adequate level of visibility to determine execution, and data
flow and have an adequate accounting for how CPU time is being consumed. During code development, it
can be desirable to make very detailed use of trace for a component. For example, you can choose to
trace the entry and exit of every subroutine in order to understand and tune path length. However, this
would generally be an excessive level of instrumentation to ship for a component.

296 Kernel Extensions and Device Support Programming Concepts

Consult a performance analyst for decisions regarding what events and data to capture as permanent
events for a new component. The following paragraphs provide some guidelines for these decisions.

Events should capture execution flow and data flow between major components or major sections of a
component. For example, there are existing events that capture the interface between the virtual memory
manager and the logical volume manager. If work is being queued, data that identifies the queued item (a
handle) should be recorded with the event. When a queue element is being processed, the ″dequeue″
event should provide this identifier as data also, so that the queue element being serviced is identified.

Data or requests that are identified by different handles at different levels of the system should have
events and data that allow them to be uniquely identified at any level. For example, a read request to the
physical file system is identified by a file descriptor and a current offset in the file. To a virtual memory
manager, the same request is identified by a segment ID and a virtual page address. At the disk device
driver level, this request is identified as a pointer to a structure that contains pertinent data for the request.

The file descriptor or segment information is not available at the device driver level. Events must provide
the necessary data to link these identifiers so that, for example, when a disk interrupt occurs for incoming
data, the identifier at that level (which can simply be the buffer address for where the data is to be copied)
can be linked to the original user request for data at some offset into a file.

Events should provide visibility to major protocol events such as requests, responses, acknowledgements,
errors, and retries. If a request at some level is fragmented into multiple requests, a trace event should
indicate this and supply linkage data to allow the multiple requests to be tracked from that point. If multiple
requests at some level are coalesced into a single request, a trace event should also indicate this and
provide appropriate data to track the new request.

Use events to give visibility to resource consumption. Whenever resources are claimed, returned, created,
or deleted an event should record the fact. For example, claiming or returning buffers to a buffer pool or
growing or shrinking the number of buffers in the pool.

The following guidelines can help you determine where and when you should have trace hooks in your
code:

v Tracing entry and exit points of every function is not necessary. Provide only key actions and data.

v Show linkage between major code blocks or processes.

v If work is queued, associate a name (handle) with it and output it as data.

v If a queue is being serviced, the trace event should indicate the unique element being serviced.

v If a work request or response is being referenced by different handles as it passes through different
software components, trace the transactions so the action or receipt can be identified.

v Place trace hooks so that requests, responses, errors, and retries can be observed.

v Identify when resources are claimed, returned, created, or destroyed.

Also note that:

v A trace ID can be used for a group of events by ″switching″ on one of the data fields. This means that a
particular data field can be used to identify from where the trace point was called. The trace format
routine can be made to format the trace data for that unique trace point.

v The trace hook is the level at which a group of events can be enabled or disabled. Note that trace
hooks can be grouped in SMIT. For more information, see “Trace Event Groups” on page 312.

Syntax for Stanzas in the trace Format File
The intent of the trace format file is to provide rules for presentation and display of the expected data for
each event ID. This allows new events to be formatted without changing the report facility. Rules for new
events are simply added to the format file. The syntax of the rules provide flexibility in the presentation of
the data.

Chapter 16. Debug Facilities 297

A trace format stanza can be as long as required to describe the rules for any particular event. The stanza
can be continued to the next line by terminating the present line with a backslash (\). The fields are:

event_id
Each stanza begins with the three-digit hexadecimal event ID that the stanza describes, followed
by a space.

V.R This field describes the version (V) and release (R) that the event was first assigned. Any integers
work for V and R, and you might want to keep your own tracking mechanism.

L= The text description of an event can begin at various indentation levels. This improves the
readability of the report output. The indentation levels correspond to the level at which the system
is running. The recognized levels are:

APPL Application level

SVC Transitioning system call

KERN Kernel level

INT Interrupt

event_label
The event_label is an ASCII text string that describes the overall use of the event ID. This is used
by the -j option of the trcrpt command to provide a listing of events and their first level description.
The event label also appears in the formatted output for the event unless the event_label field
starts with an @ character.

\n The event stanza describes how to parse, label, and present the data contained in an event
record. You can insert a \n (newline) in the event stanza to continue data presentation of the data
on a new line. This allows the presentation of the data for an event to be several lines long.

\t The \t (tab) function inserts a tab at the point it is encountered in parsing the description. This is
similar to the way the \n function inserts new lines. Spacing can also be inserted by spaces in the
data_label or match_label fields.

starttimer(#,#)
The starttimer and endtimer fields work together. The (#,#) field is a unique identifier that
associates a particular starttimer value with an endtimer that has the same identifier. By
convention, if possible, the identifiers should be the ID of starting event and the ID of the ending
event.

When the report facility encounters a start timer directive while parsing an event, it associates the
starting events time with the unique identifier. When an end timer with the same identifier is
encountered, the report facility outputs the delta time (this appears in brackets) that elapsed
between the starting event and ending event. The begin and end system call events make use of
this capability. On the return from system call event, a delta time is shown that indicates how long
the system call took.

endtimer(#,#)
See the starttimer field in the preceding paragraph.

data_descriptor
The data_descriptor field is the fundamental field that describes how the report facility consumes,
labels, and presents the data.

The various subfields of the data_descriptor field are:

data_label
The data label is an ASCII string that can optionally precede the output of data consumed
by the following format field.

format
You can think of the report facility as having a pointer into the data portion of an event.

298 Kernel Extensions and Device Support Programming Concepts

This data pointer is initialized to point to the beginning of the event data (the 16-bit data
field in the hookword). The format field describes how much data the report facility
consumes from this point and how the data is considered. For example, a value of Bm.n
tells the report facility to consume m bytes and n bits of data and to consider it as binary
data.

The possible format fields are described in the following section. If this field is not followed
by a comma, the report facility outputs the consumed data in the format specified. If this
field is followed by a comma, it signifies that the data is not to be displayed but instead
compared against the following match_vals field. The data descriptor associated with the
matching match_val field is then applied to the remainder of the data.

match_val
The match value is data of the same format described by the preceding format fields. Several
match values typically follow a format field that is being matched. The successive match fields are
separated by commas. The last match value is not followed by a comma. Use the character string
* as a pattern-matching character to match anything. A pattern-matching character is frequently
used as the last element of the match_val field to specify default rules if the preceding match_val
field did not occur.

match_label
The match label is an ASCII string that is output for the corresponding match.

Each of the possible format fields is described in the comments of the /etc/trcfmt file. The following
shows several possibilities:

Format field descriptions

In most cases, the data length part of the specifier can also be the letter ″W″ which indicates that the word size of the
trace hook is to be used. For example, XW will format 4 or 8 bytes into hexadecimal, depending upon whether the
trace hook comes from a 32 or 64 bit environment.
Am.n This value specifies that m bytes of data are consumed as ASCII text, and that it is displayed

in an output field that is n characters wide. The data pointer is moved m bytes.
S1, S2, S4 Left justified string. The length of the field is defined as 1 byte (S1), 2 bytes (S2), or 4 bytes

(S4) and so on. The data pointer is moved accordingly. SW indicates that the word size for the
trace event is to be used.

Bm.n Binary data of m bytes and n bits. The data pointer is moved accordingly.
Xm Hexadecimal data of m bytes. The data pointer is moved accordingly.
D2, D4 Signed decimal format. Data length of 2 (D2) bytes or 4 (D4) bytes is consumed.
U2, U4 Unsigned decimal format. Data length of 2 or 4 bytes is consumed.
F4, F8 Floating point of 4 or 8 bytes.
Gm.n Positions the data pointer. It specifies that the data pointer is positioned m bytes and n bits

into the data.
Om.n Skip or omit data. It omits m bytes and n bits.
Rm Reverse the data pointer m bytes.
Wm Position DATA_POINTER at word m. The word size is either 4 or 8 bytes, depending upon

whether or not this is a 32 or 64 bit format trace. This bares no relation to the %W format
specifier.

Chapter 16. Debug Facilities 299

Some macros are provided that can be used as format fields to quickly access data. For example:

$D1, $D2, $D3, $D4, $D5 These macros access data words 1 through 5 of the event record
without moving the data pointer. The data accessed by a macro is
hexadecimal by default. A macro can be cast to a different data type (X,
D, U, B) by using a % character followed by the new format code. For
example, the following macro causes data word one to be accessed,
but to be considered as 2 bytes and 3 bits of binary data:

$D1%B2.3
$HD This macro accesses the first 16 bits of data contained in the hookword,

in a similar manner as the $D1 through $D5 macros access the various
data words. It is also considered as hexadecimal data, and also can be
cast.

You can define other macros and use other formatting techniques in the trace format file. This is shown in
the following trace format file example.

Example Trace Format File
@(#)65 1.142 src/bos/usr/bin/trcrpt/trcfmt, cmdtrace, bos43N, 9909A_43N 2/12/99 13:15:34
COMPONENT_NAME: CMDTRACE system trace logging and reporting facility
#
FUNCTIONS: template file for trcrpt
#
ORIGINS: 27, 83
#
(C) COPYRIGHT International Business Machines Corp. 1988, 1993
All Rights Reserved
Licensed Materials - Property of IBM
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
LEVEL 1, 5 Years Bull Confidential Information
#

I. General Information
#
The formats shown below apply to the data placed into the
trcrpt format buffer. These formats in general mirror the binary
format of the data in the trace stream. The exceptions are
hooks from a 32-bit application on a 64-bit kernel, and hooks from a
64-bit application on a 32-bit kernel. These exceptions are noted
below as appropriate.
#
Trace formatting templates should not use the thread id or time
stamp from the buffer. The thread id should be obtained with the
$TID macro. The time stamp is a raw timer value used by trcrpt to
calculate the elapsed and delta times. These values are either
4 or 8 bytes depending upon the system the trace was run on, not upon
the environment from which the hook was generated.
The system environment, 32 or 64 bit, and the hook’s
environment, 32 or 64 bit, are obtained from the $TRACEENV and $HOOKENV
macros discussed below.
#
To interpret the time stamp, it is necessary to get the values from
hook 0x00a, subhook 0x25c, used to convert it to nanoseconds.
The 3 data words of interest are all 8 bytes in length and are in
the generic buffer, see the template for hook 00A.
The first data word gives the multiplier, m, and the second word

300 Kernel Extensions and Device Support Programming Concepts

is the divisor, d. These values should be set to 1 if the
third word doesn’t contain a 2. The nanosecond time is then
calculated with nt = t * m / d where t is the time from the trace.
#
Also, on a 64-bit system, there will be a header on the trace stream.
This header serves to identify the stream as coming from a
64-bit system. There is no such header on the data stream on a
32-bit system. This data stream, on both systems, is produced with
the "-o -" option of the trace command.
This header consists only of a 4-byte magic number, 0xEFDF1114.
#
A. Binary format for the 32-bit trace data
TRCHKL0 MMMTDDDDiiiiiiii
TRCHKL0T MMMTDDDDiiiiiiiitttttttt
TRCHKL1 MMMTDDDD11111111iiiiiiii
TRCHKL1T MMMTDDDD11111111iiiiiiiitttttttt
Note that trchkg covers TRCHKL2-TRCHKL5.
trchkg MMMTDDDD1111111122222222333333334444444455555555iiiiiiii
trchkgt MMMTDDDD1111111122222222333333334444444455555555 i... t...
trcgent MMMTLLLL11111111vvvvvvvvvvvvvvvvvvvvvvvvvvxxxxxx i... t...
#
legend:
MMM = hook id
T = hooktype
D = hookdata
i = thread id, 4 bytes on a 32 byte system and 8 bytes on a 64-bit
system. The thread id starts on a 4 or 8 byte boundary.
t = timestamp, 4 bytes on a 32-bit system or 8 on a
64-bit system.
1 = d1 (see trchkid.h for calling syntax for the tracehook routines)
2 = d2, etc.
v = trcgen variable length buffer
L = length of variable length data in bytes.
#
The DATA_POINTER starts at the third byte in the event, ie.,
at the 16 bit hookdata DDDD.
The trcgen() is an exception. The DATA_POINTER starts at
the fifth byte, ie., at the ’d1’ parameter 11111111.
#
Note that a generic trace hook with a hookid of 0x00b is
produced for 64-bit data traced from a 64-bit app running on
a 32-bit kernel. Since this is produced on a 32-bit system, the
thread id and time stamp will be 4 bytes in the data stream.
#
B. 64-bit trace hook format
#
TRCHK64L0 ffffllllhhhhssss iiiiiiiiiiiiiiii
TRCHK64L0T ffffllllhhhhssss iiiiiiiiiiiiiiii tttttttttttttttt
TRCHK64L1 ffffllllhhhhssss 1111111111111111 i...
...
TRCGEN ffffllllhhhhssss dddddddddddddddd "string" i...
TRCGENt ffffllllhhhhssss dddddddddddddddd "string" i... t...
#
Legend
f - flags
tgbuuuuuuuuuuuuu: t - time stamped, g - generic (trcgen),
b - 32-bit data, u - unused.
l - length, number of bytes traced.
For TRCHKL0 llll = 0,
for TRCHKL5T llll = 40, 0x28 (5 8-byte words)

Chapter 16. Debug Facilities 301

h - hook id
s - subhook id
1 - data word 1, ...
d - generic trace data word.
i - thread id, 8 bytes on a 64-bit system, 4 on a 32-bit system.
The thread id starts on an 8-byte boundary.
t - time stamp, 8 bytes on a 64-bit system, 4 on a 32-bit system.
#
For non-generic entries, the data pointer starts at the
subhook id, offset 6. This is compatible with the 32-bit
hook format shown above.
For generic (trcgen) hooks, the g flag above is on. The
length shows the number of variable bytes traced and does not include
the data word.
The data pointer starts at the 64-bit data word.
Note that the data word is 64 bits here.
#
C. Trace environments
The trcrpt, trace report, utility must be able to tell whether
the trace it’s formatting came from a 32 or a 64 bit system.
This is accomplished by the log file header’s magic number.
In addition, we need to know whether 32 or 64 bit data was traced.
It is possible to run a 32-bit application on a 64-bit kernel,
and a 64-bit application on a 32-bit kernel.
In the case of a 32-bit app on a 64-bit kernel, the "b" flag
shown under item B above is set on. The trcrpt program will
then present the data as if it came from a 32-bit kernel.
In the second case, if the reserved hook id 00b is seen, the data
traced by the 32-bit kernel is made to look as if it came
from a 64-bit trace. Thus the templates need not be kernel aware.
#
For example, if a 32-bit app uses
TRCHKL5T(0x50000005, 1, 2, 3, 4, 5)
and is running on a 64-bit kernel, the data actually traced
will look like:
ffffllllhhhhssss 1111111111111111 2222222222222222 3333333333333333
a000001450000005 0000000100000002 0000000300000004 0000000500000000 i t
Here, the flags have the T and B bits set (a000) which says
the hook is timestamped and from a 32-bit app.
The length is 0x14 bytes, 5 4-byte registers 00000001 through
00000005.
The hook id is 0x5000.
The subhook id is 0x0005.
i and t refer to the 8-byte thread id and time stamp.
#
This would be reformatted as follows before being processed
by the corresponding template:
500e0005 00000001 00000002 00000003 00000004 00000005
Note this is how the data would look if traced on a 32-bit kernel.
Note also that the data would be followed by an 8-byte thread id and
time stamp.
#
Similarly, consider the following hook traced by a 64-bit app
on a 32-bit kernel:
TRCHKL5T(0x50000005, 1, 2, 3, 4, 5)
The data traced would be:
00b8002c 80000028 50000005 0000000000000001 ... 0000000000000005 i t
Note that this is a generic trace entry, T = 8.
In the generic entry, we’re using the 32-bit data word for the flags
and length.

302 Kernel Extensions and Device Support Programming Concepts

The trcrpt utility would reformat this before processing by
the template as follows:
8000002850000005 0000000000000001 ... 0000000000000005 i8 t8
#
The thread id and time stamp in the data stream will be 4 bytes,
because the hook came from a 32-bit system.
#
If a 32-bit app traces generic data on a 64-bit kernel, the b
bit will be set on in the data stream, and the entry will be formatted
like it came from a 32-bit environment, i.e. with a 32-bit data word.
For the case of a 64-bit app on a 32-bit kernel, generic trace
data is handled in the same manner, with the flags placed
into the data word.
For example, if the app issues
TRCGEN(1, 0x50000005, 1, 6, "hello")
The 32-bit kernel trace will generate
00b00012 40000006 50000005 0000000000000001 "hello"
This will be reformatted by trcrpt into
4000000650000005 0000000000000001 "hello"
with the data pointer starting at the data word.
#
Note that the string "hello" could have been 4096 bytes. Therefore
this generic entry must be able to violate the 4096 byte length
restriction.
#
D. Indentation levels
The left margin is set per template using the ’L=XXXX’ command.
The default is L=KERN, the second column.
L=APPL moves the left margin to the first column.
L=SVC moves the left margin to the second column.
L=KERN moves the left margin to the third column.
L=INT moves the left margin to the fourth column.
The command if used must go just after the version code.
#
Example usage:
#113 1.7 L=INT "stray interrupt" ... \
#
E. Continuation code and delimiters.
A ’\’ at the end of the line must be used to continue the template
on the next line.
Individual strings (labels) can be separated by one or more blanks
or tabs. However, all whitespace is squeezed down to 1 blank on
the report. Use ’\t’ for skipping to the next tabstop, or use
A0.X format (see below) for variable space.
#
#
II. FORMAT codes
#
A. Codes that manipulate the DATA_POINTER
Gm.n
"Goto" Set DATA_POINTER to byte.bit location m.n
#
Om.n
"Omit" Advance DATA_POINTER by m.n byte.bits
#
Rm
"Reverse" Decrement DATA_POINTER by m bytes. R0 byte aligns.
#
Wm
Position DATA_POINTER at word m. The word size is either 4 or 8

Chapter 16. Debug Facilities 303

bytes, depending upon whether or not this is a 32 or 64 bit format
trace. This bares no relation to the %W format specifier.
#
B. Codes that cause data to be output.
Am.n
Left justified ascii.
m=length in bytes of the binary data.
n=width of the displayed field.
The data pointer is rounded up to the next byte boundary.
Example
DATA_POINTER|
V
xxxxxhello world\0xxxxxx
#
i. A8.16 results in: |hello wo |
DATA_POINTER--------|
V
xxxxxhello world\0xxxxxx
#
ii. A16.16 results in: |hello world |
DATA_POINTER----------------|
V
xxxxxhello world\0xxxxxx
#
iii. A16 results in: |hello world|
DATA_POINTER----------------|
V
xxxxxhello world\0xxxxxx
#
iv. A0.16 results in: | |
DATA_POINTER|
V
xxxxxhello world\0xxxxxx
#
Sm (m = 1, 2, 4, or 8)
Left justified ascii string.
The length of the string is in the first m bytes of
the data. This length of the string does not include these bytes.
The data pointer is advanced by the length value.
SW specifies the length to be 4 or 8 bytes, depending upon whether
this is a 32 or 64 bit hook.
Example
DATA_POINTER|
V
xxxxxBhello worldxxxxxx (B = hex 0x0b)
#
i. S1 results in: |hello world|
DATA_POINTER-----------|
V
xxxxBhello worldxxxxxx
#
$reg%S1
A register with the format code of ’Sx’ works "backwards" from
a register with a different type. The format is Sx, but the length
of the string comes from $reg instead of the next n bytes.
#
Bm.n
Binary format.
m = length in bytes
n = length in bits

304 Kernel Extensions and Device Support Programming Concepts

The length in bits of the data is m * 8 + n. B2.3 and B0.19 are the same.
Unlike the other printing FORMAT codes, the DATA_POINTER
can be bit aligned and is not rounded up to the next byte boundary.
#
Xm
Hex format.
m = length in bytes. m=0 thru 16
X0 is the same as X1, except that no trailing space is output after
the data. Therefore X0 can be used with a LOOP to output an
unbroken string of data.
The DATA_POINTER is advanced by m (1 if m = 0).
XW will format either 4 or 8 bytes of data depending upon whether
this is a 32 or 64 bit hook. The DATA_POINTER is advanced
by 4 or 8 bytes.
#
Dm (m = 2, 4, or 8)
Signed decimal format.
The length of the data is m bytes.
The DATA_POINTER is advanced by m.
DW will format either 4 or 8 bytes of data depending upon whether
this is a 32 or 64 bit hook. The DATA_POINTER is advanced
by 4 or 8 bytes.
#
Um (m = 2, 4, or 8)
Unsigned decimal format.
The length of the data is m bytes.
The DATA_POINTER is advanced by m.
UW will format either 4 or 8 bytes of data depending upon whether
this is a 32 or 64 bit hook. The DATA_POINTER is advanced
by 4 or 8 bytes.
#
om (m = 2, 4, or 8)
Octal format.
The length of the data is m bytes.
The DATA_POINTER is advanced by m.
ow will format either 4 or 8 bytes of data depending upon whether
this is a 32 or 64 bit hook. The DATA_POINTER is advanced
by 4 or 8 bytes.
#
F4
Floating point format. (like %0.4E)
The length of the data is 4 bytes.
The format of the data is that of C type ’float’.
The DATA_POINTER is advanced by 4.
#
F8
Floating point format. (like %0.4E)
The length of the data is 8 bytes.
The format of the data is that of C type ’double’.
The DATA_POINTER is advanced by 8.
#
HB
Number of bytes in trcgen() variable length buffer.
The DATA_POINTER is not changed.
#
HT
32-bit hooks:
The hooktype. (0 - E)
trcgen = 0, trchk = 1, trchl = 2, trchkg = 6
trcgent = 8, trchkt = 9, trchlt = A, trchkgt = E

Chapter 16. Debug Facilities 305

HT & 0x07 masks off the timestamp bit
This is used for allowing multiple, different trchook() calls with
the same template.
The DATA_POINTER is not changed.
64-bit hooks
This is the flags field.
0x8000 - hook is time stamped.
0x4000 - This is a generic trace.
#
Note that if the hook was reformatted as discussed under item
I.C above, HT is set to reflect the flags in the new format.
#
C. Codes that interpret the data in some way before output.
Tm (m = 4, or 8)
Output the next m bytes as a data and time string,
in GMT timezone format. (as in ctime(&seconds))
The DATA_POINTER is advanced by m bytes.
Only the low-order 32-bits of the time are actually used.
TW will format either 4 or 8 bytes of data depending upon whether
this is a 32 or 64 bit hook. The DATA_POINTER is advanced
by 4 or 8 bytes.
#
Em (m = 1, 2, 4, or 8)
Output the next m bytes as an ’errno’ value, replacing
the numeric code with the corresponding #define name in
/usr/include/sys/errno.h
The DATA_POINTER is advanced by 1, 2, 4, or 8.
EW will format either 4 or 8 bytes of data depending upon whether
this is a 32 or 64 bit hook. The DATA_POINTER is advanced
by 4 or 8 bytes.
#
Pm (m = 4, or 8)
Use the next m bytes as a process id (pid), and
output the pathname of the executable with that process id.
Process ids and their pathnames are acquired by the trace command
at the start of a trace and by trcrpt via a special EXEC tracehook.
The DATA_POINTER is advanced by 4 or 8 bytes.
PW will format either 4 or 8 bytes of data depending upon whether
this is a 32 or 64 bit hook.
#
\t
Output a tab. \t\t\t outputs 3 tabs. Tabs are expanded to spaces,
using a fixed tabstop separation of 8. If L=0 indentation is used,
the first tabstop is at 3.
#
\n
Output a newline. \n\n\n outputs 3 newlines.
The newline is left-justified according to the INDENTATION LEVEL.
#
$macro
Undefined macros have the value of 0.
The DATA_POINTER is not changed.
An optional format can be used with macros:
$v1%X8 will output the value $v1 in X8 format.
$zz%B0.8 will output the value $v1 in 8 bits of binary.
Understood formats are: X, D, U, B and W. Others default to X2.
#
The W format is used to mask the register.
Wm.n masks off all bits except bits m through n, then shifts the
result right m bits. For example, if $ZZ = 0x12345678, then

306 Kernel Extensions and Device Support Programming Concepts

$zz%W24.27 yields 2. Note the bit numbering starts at the right,
with 0 being the least significant bit.
#
"string" ’string’ data type
Output the characters inside the double quotes exactly. A string
is treated as a descriptor. Use "" as a NULL string.
#
`string format $macro` If a string is backquoted, it is expanded
as a quoted string, except that FORMAT codes and $registers are
expanded as registers.
#
III. SWITCH statement
A format code followed by a comma is a SWITCH statement.
Each CASE entry of the SWITCH statement consists of
1. a ’matchvalue’ with a type (usually numeric) corresponding to
the format code.
2. a simple ’string’ or a new ’descriptor’ bounded by braces.
A descriptor is a sequence of format codes, strings, switches,
and loops.
3. and a comma delimiter.
The switch is terminated by a CASE entry without a comma delimiter.
The CASE entry selected is the first entry whose matchvalue
is equal to the expansion of the format code.
The special matchvalue ’*’ is a wildcard and matches anything.
The DATA_POINTER is advanced by the format code.
#
#
IV. LOOP statement
The syntax of a ’loop’ is
LOOP format_code { descriptor }
The descriptor is executed N times, where N is the numeric value
of the format code.
The DATA_POINTER is advanced by the format code plus whatever the
descriptor does.
Loops are used to output binary buffers of data, so descriptor is
usually simply X1 or X0. Note that X0 is like X1 but does not
supply a space separator ’ ’ between each byte.
#
#
V. macro assignment and expressions
’macros’ are temporary (for the duration of that event) variables
that work like shell variables.
They are assigned a value with the syntax:
{{ $xxx = EXPR }}
where EXPR is a combination of format codes, macros, and constants.
Allowed operators are + - / *
For example:
#{{ $dog = 7 + 6 }} {{ $cat = $dog * 2 }} $dog $cat
#
will output:
#000D 001A
#
Macros are useful in loops where the loop count is not always
just before the data:
#G1.5 {{ $count = B0.5 }} G11 LOOP $count {X0}
#
Up to 255 macros can be defined per template.
#
#
VI. Special macros:

Chapter 16. Debug Facilities 307

$HOOKENV This is either "32" or "64" depending upon
whether this is a 32 or 64 bit trace hook.
This can be used to interpret the HT value.
$TRACEENV This is either "32" or "64" depending upon
whether this is a 32 or 64 bit trace, i.e., whether the
#

trace was generated by a 32 or 64 bit kernel.
Since hooks will be formatted according to the environment
they came from, $HOOKENV should normally be used.
$RELLINENO line number for this event. The first line starts at 1.
$D1 - $D5 dataword 1 through dataword 5. No change to datapointer.
The data word is either 4 or 8 bytes.
$L1 - $L5 Long dataword 1,5(64 bits). No change to datapointer.
$HD hookdata (lower 16 bits)
For a 32-bit generic hook, $HD is the length of the
generic data traced.
For 32 or 64 bit generic hooks, use $HL.
$HL Hook data length. This is the length in bytes of the hook
data. For generic entries it is the length of the
variable length buffer and doesn’t include the data word.
$WORDSIZE Contains the word size, 4 or 8 bytes, of the current
entry, (i.e.) $HOOKENV / 8.
$GENERIC specifies whether the entry is a generic entry. The
value is 1 for a generic entry, and 0 if not generic.
$GENERIC is especially useful if the hook can come from
either a 32 or 64 bit environment, since the types (HT)
have different formats.
$TOTALCPUS Output the number of CPUs in the system.
$TRACEDCPUS Output the number of CPUs that were traced.
$REPORTEDCPUS Output the number of CPUs active in this report.
This can decrease as CPUs stop tracing when, for example,
the single-buffer trace, -f, was used and the buffers for
each CPU fill up.
$LARGEDATATYPES This is set to 1 if the kernel is supporting large data
types for 64-bit applications.
$SVC Output the name of the current SVC
$EXECPATH Output the pathname of the executable for current process.
$PID Output the current process id.
$TID Output the current thread id.
$CPUID Output the current processor id.
$PRI Output the current process priority
$ERROR Output an error message to the report and exit from the
template after the current descriptor is processed.
The error message supplies the logfile, logfile offset of the
start of that event, and the traceid.
$LOGIDX Current logfile offset into this event.
$LOGIDX0 Like $LOGIDX, but is the start of the event.
$LOGFILE Name of the logfile being processed.
$TRACEID Traceid of this event.
$DEFAULT Use the DEFAULT template 008
$STOP End the trace report right away
$BREAK End the current trace event
$SKIP Like break, but don’t print anything out.
$DATAPOINTER The DATA_POINTER. It can be set and manipulated
like other user-macros.
{{ $DATAPOINTER = 5 }} is equivalent to G5
#
Note: For generic trace hooks, $DATAPOINTER points to the
data word. This means it is 0x4 for 32-bit hooks, and 0x8 for
64-bit hooks.

308 Kernel Extensions and Device Support Programming Concepts

For non-generic hooks, $DATAPOINTER is set to 2 for 32-bit hooks
and to 6 for 64 bit trace hooks. This means it always
points to the subhook id.
#
$BASEPOINTER Usually 0. It is the starting offset into an event. The actual
offset is the DATA_POINTER + BASE_POINTER. It is used with
template subroutines, where the parts on an event have the
same structure, and can be printed by the same template, but
might have different starting points into an event.
$IPADDR IP address of this machine, 4 bytes.
$BUFF Buffer allocation scheme used, 1=kernel heap, 2=separate segment.
#
VII. Template subroutines
If a macro name consists of 3 hex digits, it is a "template subroutine".
The template whose traceid equals the macro name is inserted in place
of the macro.
#
The data pointer is where it was when the template
substitution was encountered. Any change made to the data pointer
by the template subroutine remains in affect when the template ends.
#
Macros used within the template subroutine correspond to those in the
calling template. The first definition of a macro in the called template
is the same variable as the first in the called. The names are not
related.
#
NOTE: Nesting of template subroutines is supported to 10 levels.
#
Example:
Output the trace label ESDI STRATEGY.
The macro ’$stat’ is set to bytes 2 and 3 of the trace event.
Then call template 90F to interpret a buf header. The macro ’$return’
corresponds to the macro ’$rv’, because they were declared in the same
order. A macro definition with no ’=’ assignment just declares the name
like a place holder. When the template returns, the saved special
status word is output and the returned minor device number.
#
#900 1.0 "ESDI STRATEGY" {{ $rv = 0 }} {{ $stat = X2 }} \
$90F \n\
#special_esdi_status=$stat for minor device $rv
#
#90F 1.0 "" G4 {{ $return }} \
block number X4 \n\
byte count X4 \n\
B0.1, 1 B_FLAG0 \
B0.1, 1 B_FLAG1 \
B0.1, 1 B_FLAG2 \
G16 {{ $return = X2 }}
#
#
Note: The $DEFAULT reserved macro is the same as $008
#
VIII. BITFLAGS statement
The syntax of a ’bitflags’ is
BITFLAGS [format_code|register],
flag_value string {optional string if false}, or
’&’ mask field_value string,
...
#
This statement simplifies expanding state flags, because it looks

Chapter 16. Debug Facilities 309

a lot like a series of #defines.
The ’&’ mask is used for interpreting bit fields.
The mask is anded to the register and the result is compared to
the field_value. If a match, the string is printed.
The base is 16 for flag_values and masks.
The DATA_POINTER is advanced if a format code is used.
Note: the default base for BITFLAGS is 16. If the mask or field value
has a leading "o", the number is octal. 0x or 0X makes the number hexadecimal.

Examples of Coding Events and Formatting Events
There are five basic steps involved in generating a trace from your software program.

Step 1: Enable the trace: Enable and disable the trace from your software that has the trace hooks
defined. The following code shows the use of trace events to time the running of a program loop.
#include <sys/trcctl.h>
#include <sys/trcmacros.h>
#include <sys/trchkid.h>

char *ctl_file = "/dev/systrctl";
int ctlfd;
int i;

main()
{

printf("configuring trace collection \n");
if (trcstart("-ad")){

perror("trcstart");
exit(1);

}
printf("turning trace on \n");
if(trcon(0)){

perror("TRCON");
exit(1);

}
/* here is the code that is being traced */
for(i=1;i<11;i++){

TRCHKL1T(HKWD_USER1,i);
/* sleep(1) */
/* you can uncomment sleep to make the loop
/* take longer. If you do, you will want to
/* filter the output or you will be */
/* overwhelmed with 11 seconds of data */

}
/* stop tracing code */
printf("turning trace off\n");
if(trcstop(0)){

perror("TRCOFF");
exit(1);

}

Step 2: Compile your program: When you compile the sample program, you need to link to the librts.a
library:
cc -o sample sample.c -l rts

Step 3: Run the program: Run the program. In this case, it can be done with the following command:
./sample

Step 4: Add a stanza to the format file: This provides the report generator with the information to
correctly format your file. The report facility does not know how to format the HKWD_USER1 event, unless
you provide rules in the trace format file.

310 Kernel Extensions and Device Support Programming Concepts

The following is an example of a stanza for the HKWD_USER1 event. The HKWD_USER1 event is event
ID 010 hexadecimal. You can verify this by looking at the sys/trchkid.h header file.
User event HKWD_USER1 Formatting Rules Stanza
An example that will format the event usage of the sample program
010 1.0 L=APPL "USER EVENT - HKWD_USER1" O2.0 \n\

"The # of loop iterations =" U4\n\
"The elapsed time of the last loop = "\
endtimer(0x010,0x010) starttimer(0x010,0x010)

Note: When entering the example stanza, do not modify the master format file /etc/trcfmt. Instead, make
a copy and keep it in your own directory. This allows you to always have the original trace format
file available. If you are going to ship your formatting stanzas, the trcupdate command is used to
add your stanzas to the default trace format file. See the trcupdate command in AIX 5L Version 5.2
Commands Reference, Volume 5 for information about how to code the input stanzas.

Step 5: Run the format/filter program: Filter the output report to get only your events. To do this, run
the trcrpt command:
trcrpt -d 010 -t mytrcfmt -O exec=on -o sample.rpt

The formatted trace results are:

ID PROC NAME I ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT
010 sample 0.000105984 0.105984 USER HOOK 1

The data field for the user hook = 1
010 sample 0.000113920 0.007936 USER HOOK 1

The data field for the user hook = 2 [7 usec]
010 sample 0.000119296 0.005376 USER HOOK 1

The data field for the user hook = 3 [5 usec]
010 sample 0.000124672 0.005376 USER HOOK 1

The data field for the user hook = 4 [5 usec]
010 sample 0.000129792 0.005120 USER HOOK 1

The data field for the user hook = 5 [5 usec]
010 sample 0.000135168 0.005376 USER HOOK 1

The data field for the user hook = 6 [5 usec]
010 sample 0.000140288 0.005120 USER HOOK 1

The data field for the user hook = 7 [5 usec]
010 sample 0.000145408 0.005120 USER HOOK 1

The data field for the user hook = 8 [5 usec]
010 sample 0.000151040 0.005632 USER HOOK 1

The data field for the user hook = 9 [5 usec]
010 sample 0.000156160 0.005120 USER HOOK 1

The data field for the user hook = 10 [5 usec]

Usage Hints
The following sections provide some examples and suggestions for use of the trace facility.

Viewing trace Data
Including several optional columns of data in the trace output can cause the output to exceed 80 columns.
It is best to view the report on an output device that supports 132 columns. You can also use the -O
2line=on option to produce a more narrow report.

Bracketing Data Collection
Trace data accumulates rapidly. Bracket the data collection as closely around the area of interest as
possible. One technique for doing this is to issue several commands on the same command line. For
example, the command
trace -a; cp /etc/trcfmt /tmp/junk; trcstop

captures the total execution of the copy command.

Chapter 16. Debug Facilities 311

Note: This example is more educational if the source file is not already cached in system memory. The
trcfmt file can be in memory if you have been modifying it or producing trace reports. In that case,
choose as the source file some other file that is 50 to 100 KB and has not been touched.

Reading a trace Report
The trace facility displays system activity. It is a useful learning tool to observe how the system actually
performs. The previous output is an interesting example to browse. To produce a report of the copy, use
the following:
trcrpt -O "exec=on,pid=on" > cp.rpt

In the cp.rpt file you can see the following activities:

v The fork, exec, and page fault activities of the cp process.

v The opening of the /etc/trcfmt file for reading and the creation of the /tmp/junk file.

v The successive read and write subroutines to accomplish the copy.

v The cp process becoming blocked while waiting for I/O completion, and the wait process being
dispatched.

v How logical volume requests are translated to physical volume requests.

v The files are mapped rather than buffered in traditional kernel buffers. The read accesses cause page
faults that must be resolved by the virtual memory manager.

v The virtual memory manager senses sequential access and begins to prefetch the file pages.

v The size of the prefetch becomes larger as sequential access continues.

v The writes are delayed until the file is closed (unless you captured execution of the sync daemon that
periodically forces out modified pages).

v The disk device driver coalesces multiple file requests into one I/O request to the drive when possible.

Effective Filtering of the trace Report
The full detail of the trace data might not be required. You can choose specific events of interest to be
shown. For example, it is sometimes useful to find the number of times a certain event occurred. Answer
the question, ″How many opens occurred in the copy example?″ First, find the event ID for the open
subroutine:
trcrpt -j | pg

You can see that event ID 15b is the open event. Now, process the data from the copy example (the data
is probably still in the log file) as follows:
trcrpt -d 15b -O "exec=on"

The report is written to standard output and you can determine the number of opens that occurred. If you
want to see only the opens that were performed by the cp process, run the report command again using:
trcrpt -d 15b -p cp -O "exec=on"

This command shows only the opens performed by the cp process.

Trace Event Groups
Combining multiple trace hooks into a trace event group allows all hooks to be turned on or off at once
when starting a trace.

Trace event groups should only be manipulated using either the trcevgrp command, or SMIT. The
trcevgrp command allows groups to be created, modified, removed, and listed.

Reserved event groups may not be changed or removed by the trcevgrp command. These are generally
groups used to perform system support. A reserved event group must be created using the ODM facilities.
Such a group will have three attributes as shown below:

312 Kernel Extensions and Device Support Programming Concepts

SWservAt:
attribute = "(name)_trcgrp"
default = " "
value = "(list-of-hooks)"

SWservAt:
attribute = "(name)_trcgrpdesc"
default = " "
value = "description"

SWservAt:
attribute = "(name)_trcgrptype"
default = " "
value = "reserved"

The hook IDs must be enclosed in double quotation marks (″) and separated by commas.

Memory Overlay Detection System (MODS)

Some of the most difficult types of problems to debug are what are generally called ″memory overlays.″
Memory overlays include the following:

v Writing to memory that is owned by another program or routine

v Writing past the end (or before the beginning) of declared variables or arrays

v Writing past the end (or before the beginning) of dynamically allocated memory

v Writing to or reading from freed memory

v Freeing memory twice

v Calling memory allocation routines with incorrect parameters or under incorrect conditions.

In the kernel environment (including the kernel, kernel extensions, and device drivers), memory overlay
problems have been especially difficult to debug because tools for finding them have not been available.
Starting with AIX 4.2.1, however, the Memory Overlay Detection System (MODS) helps detect memory
overlay problems in the kernel, kernel extensions, and device drivers.

Note: This feature does not detect problems in application code; it only monitors kernel and kernel
extension code.

bosdebug command
The bosdebug command turns the MODS facility on and off. Only the root user can run the bosdebug
command.

To turn on the base MODS support, type:
bosdebug -M

For a description of all the available options, type:
bosdebug -?

Once you have run bosdebug with the options you want, run the bosboot -a command, then shut down
and reboot your system (using the shutdown -r command). If you need to make any changes to your
bosdebug settings, you must run bosboot -a and shutdown -r again.

When to use the MODS feature
This feature is useful in the following circumstances:

v When developing your own kernel extensions or device drivers and you want to test them thoroughly.

Chapter 16. Debug Facilities 313

v When asked to turn this feature on by IBM technical support service to help in further diagnosing a
problem that you are experiencing.

How MODS works
The primary goal of the MODS feature is to produce a dump file that accurately identifies the problem.

MODS works by turning on additional checking to help detect the conditions listed above. When any of
these conditions is detected, your system crashes immediately and produces a dump file that points
directly at the offending code. (In previous versions, a system dump might point to unrelated code that
happened to be running later when the invalid situation was finally detected.)

If your system crashes while the MODS is turned on, then MODS has most likely done its job.

The xmalloc subcommand provides details on exactly what memory address (if any) was involved in the
situation, and displays mini-tracebacks for the allocation or free records of this memory.

Similarly, the netm command displays allocation and free records for memory allocated using the
net_malloc kernel service (for example, mbufs, mclusters, etc.).

You can use these commands, as well as standard crash techniques, to determine exactly what went
wrong.

MODS limitations
There are limitations to the Memory Overlay Detection System. Although it significantly improves your
chances, MODS cannot detect all memory overlays. Also, turning MODS on has a small negative impact
on overall system performance and causes somewhat more memory to be used in the kernel and the
network memory heaps. If your system is running at full CPU utilization, or if you are already near the
maximums for kernel memory usage, turning on the MODS may cause performance degradation and/or
system hangs.

Practical experience with the MODS, however, suggests that the great majority of customers will be able to
use it with minimal impact to their systems.

MODS benefits
You will see these benefits from using the MODS:

v You can more easily test and debug your own kernel extensions and devicedrivers.

v Difficult problems that once required multiple attempts to recreate and debug them will generally require
many fewer such attempts.

Related Information
Software Product Packaging in AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs

Changing or Removing a Paging Space in AIX 5L Version 5.2 System Management Guide: Operating
System and Devices

Commands References
The errinstall command, errlogger command, errmsg command, errupdate command, extendlv
command in AIX 5L Version 5.2 Commands Reference, Volume 2.

The sysdumpdev command, sysdumpstart command, trace command, trcrpt command in AIX 5L
Version 5.2 Commands Reference, Volume 5.

314 Kernel Extensions and Device Support Programming Concepts

Technical References
errsave kernel service in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

Chapter 16. Debug Facilities 315

316 Kernel Extensions and Device Support Programming Concepts

Chapter 17. KDB Kernel Debugger and Command

This document describes the KDB Kernel Debugger and kdb command. It is important to understand that
the KDB Kernel Debugger and the kdb command are two separate entities. The KDB Kernel Debugger is
a debugger for use in debugging the kernel, device drivers, and other kernel extensions. The kdb
command is primarily a tool for viewing data contained in system image dumps. However, the kdb
command can be run on an active system to view system data.

The reason that the KDB Kernel Debugger and kdb command are covered together is that they share a
large number of subcommands. This provides for ease of use when switching from between the kernel
debugger and command. Most subcommands for viewing kernel data structures are included in both.
However, the KDB Kernel Debugger includes additional subcommands for execution control (breakpoints,
step commands, etc...) and processor control (start/stop CPUs, reboot, etc...). The kdb command also has
subcommands that are unique; these involve manipulation of system image dumps.

The following sections outline how to invoke the KDB Kernel Debugger and kdb command.

v The kdb Command

v KDB Kernel Debugger

v Debugging Multiprocessor Systems

The kdb Command
The kdb command is an interactive tool that allows examination of an operating system image. An
operating system image is held in a system dump file; either as a file or on the dump device. The kdb
command can also be used on an active system for viewing the contents of system structures. This is a
useful tool for device driver development and debugging. The syntax for invoking the kdb command is:
kdb [SystemImageFile [KernelFile]]

The SystemImageFile parameter specifies the file that contains the system image. The default
SystemImageFile is /dev/pmem. The KernelFile parameter contains the kernel symbol definitions. The
default for the KernelFile is /unix.

Root permissions are required for execution of the kdb command on the active system. This is required
because the special file /dev/pmem is used. To run the kdb command on the active system, type:
kdb

To invoke the kdb command on a system image file, type:
kdb SystemImageFile

where SystemImageFile is either a file name or the name of the dump device. When invoked to view data
from a SystemImageFile the kdb command sets the default thread to the thread running at the time the
SystemImageFile was created.

Note:

1. When using the kdb command a kernel file must be available.

2. Stack tracing of the current process on a running system does not work

The complete list of subcommands available for the KDB Kernel Debugger and kdb command are
included in “Subcommands for the KDB Kernel Debugger and kdb Command” on page 343.

© Copyright IBM Corp. 1997, 2003 317

KDB Kernel Debugger
The KDB Kernel Debugger is used for debugging the kernel, device drivers, and other kernel extensions.
The KDB Kernel Debugger provides the following functions:

v Setting breakpoints within the kernel or kernel extensions

v Execution control through various forms of step commands

v Formatted display of selected kernel data structures

v Display and modification of kernel data

v Display and modification of kernel instructions

v Modification of the state of the machine through alteration of system registers

When the KDB Kernel Debugger is invoked, it is the only running program. All processes are stopped and
interrupts are disabled. The KDB Kernel Debugger runs with its own Machine State Save Area (mst) and a
special stack. In addition, the KDB Kernel Debugger does not run operating system routines. Though this
requires that kernel code be duplicated within KDB, it is possible to break anywhere within the kernel
code. When exiting the KDB Kernel Debugger, all processes continue to run unless the debugger was
entered via a system halt.

Commands
The KDB Kernel debugger must be loaded and started before it can accept commands. Once in the
debugger, use the commands to investigate and make alterations. See “Subcommands for the KDB Kernel
Debugger and kdb Command” on page 343 for lists and descriptions of the subcommands.

Registers
Register values can be referenced by the KDB Kernel Debugger and kdb command. Register values can
be used in subcommands by preceding the register name with an ″@″ character. This character is also
used to dereference addresses as described in “Expressions” on page 319. The list of registers that can
be referenced include:

asr Address space register

cr Condition register

ctr Count register

dar Data address register

dec Decrementer

dsisr Data storage interrupt status register

fp0-fp31 Floating point registers 0 through 31

fpscr Floating point status and control register

iar Instruction address register

lr Link register

mq Multiply quotient

msr Machine State register

r0-r31 General Purpose Registers 0 through 31

rtcl Real Time clock (nanoseconds)

rtcu Real Time clock (seconds)

s0-s15 Segment registers

sdr0 Storage description register 0

sdr1 Storage description register 1

318 Kernel Extensions and Device Support Programming Concepts

srr0 Machine status save/restore 0

srr1 Machine status save/restore 1

tbl Time base register, lower

tbu Time base register, upper

tid Transaction register (fixed point)

xer Exception register (fixed point)

Other special purposes registers that can be referenced, if supported on the hardware, include: sprg0,
sprg1, sprg2, sprg3, pir, fpecr, ear, pvr, hid0, hid1, iabr, dmiss, imiss, dcmp, icmp, hash1, hash2, rpa,
buscsr, l2cr, l2sr, mmcr0, mmcr1, pmc1-pmc8, sia, and sda.

Expressions
The KDB Kernel Debugger and kdb command do not provide full expression processing. Expressions can
only contain symbols, hexadecimal constants, references to register or memory locations, and operators.
Furthermore, symbols are only allowed as the first operand of an expression. Supported operators include:

Operator Definition

+ Addition

- Subtraction

* Multiplication

/ Division

@ Dereferencing

The dereference operator indicates that the value at the location indicated by the next operand is to be
used in the calculation of the expression. For example, @f000 would indicate that the value at address
0x0000f000 should be used in evaluation of the expression. The dereference operator is also used to
access the contents of register. For example, @r1 references the contents of general purpose register 1.
Recursive dereferencing is allowed. As an example, @@r1 references the value at the address pointed to by
the value at the address contained in general purpose register 1.

Expressions are processed from left to right only. There is no operator precedence.

Valid Expressions Results

dw @r1 displays data at the location pointed to by r1

dw @@r1 displays data at the location pointed to by value at location pointed to by r1

dw open displays data at the address beginning of the open routine

dw open+12 displays data twelve bytes past the beginning of the open routine

Invalid Expressions Problem

dw @r1+open symbols can only be the first operand

dw r1 must include @ to reference the contents of r1, if a symbol r1 existed this
would be valid

dw @r1+(4*3) parentheses are not supported

Loading and Starting the KDB Kernel Debugger in AIX 4.3.3
The KDB Kernel Debugger must be loaded at boot time. This requires that a boot image be created with
the debugger enabled. To enable the KDB Kernel Debugger, the bosboot command must be invoked with
a KDB kernel specified and options set to enable the KDB Kernel Debugger. KDB kernels are shipped as

Chapter 17. KDB Kernel Debugger and Command 319

/usr/lib/boot/unix_kdb for UP systems and /usr/lib/boot/unix_mp_kdb for MP systems; as opposed to the
normal kernels of /usr/lib/boot/unix_up and /usr/lib/boot/unix_mp. The specific kernel to be used in creation
of the boot image can be specified using the -k option of bosboot. The kernel debugger must also be
enabled using either the -I or -D options of bosboot.

Example bosboot commands:

v bosboot -a -d /dev/ipldevice -k /usr/lib/boot/unix_kdb

v bosboot -a -d /dev/ipldevice -D -k /usr/lib/boot/unix_kdb

v bosboot -a -d /dev/ipldevice -I -k /usr/lib/boot/unix_kdb

The previous commands build boot images using the KDB Kernel for a UP system having the following
characteristics:

v KDB Kernel debugger is disabled

v KDB Kernel Debugger is enabled but is not invoked during system initialization

v KDB Kernel Debugger is enabled and is invoked during system initialization

Execution of bosboot builds the boot image only; the boot image is not used until the machine is
restarted. The file /usr/lib/boot/unix_mp_kdb would be used instead of /usr/lib/boot/unix_kdb for an MP
system.

Note:

1. External interrupts are disabled while the KDB Kernel Debugger is active

2. If invoked during system initialization the g subcommand must be issued to continue the
initialization process.

The links /usr/lib/boot/unix and /unix are not changed by bosboot. However, these links are used by user
commands such as sar and others to read symbol information for the kernel. Therefore, if these
commands are to be used with a KDB boot image /unix and /usr/lib/boot/unix must point to the kernel
specified for bosboot. This can be done by removing and recreating the links. This must be done as root.
For the previous bosboot examples, the following would set up the links correctly:

1. rm /unix

2. ln -s /usr/lib/boot/unix_kdb /unix

3. rm /usr/lib/boot/unix

4. ln -s /usr/lib/boot/unix_kdb /usr/lib/boot/unix

Similarly, if you chose to quit using a KDB Kernel then the links for /unix and /usr/lib/boot/unix should be
modified to point to the kernel specified to bosboot.

Note that /unix is the default kernel used by bosboot. Therefore, if this link is changed to point to a KDB
kernel, following bosboot commands which do not have a kernel specified will use the KDB kernel unless
this link is changed.

Loading and Starting the KDB Kernel Debugger in AIX 5.1 and
Subsequent Releases
For AIX 5.1 and subsequent releases, the KDB Kernel Debugger is the standard kernel debugger and is
included in the unix_up and unix_mp kernels, which may be found in /usr/lib/boot.

The KDB Kernel Debugger must be loaded at boot time. This requires that a boot image be created with
the debugger enabled. To enable the KDB Kernel Debugger, the bosboot command must be invoked with
options set to enable the KDB Kernel Debugger. The kernel debugger can be enabled using either the -I
or -D options of bosboot.

320 Kernel Extensions and Device Support Programming Concepts

Examples of bosboot commands:

v bosboot -a -d /dev/ipldevice

v bosboot -a -d /dev/ipldevice -D

v bosboot -a -d /dev/ipldevice -I

The previous commands build boot images using the KDB Kernel Debugger having the following
characteristics:

v KDB Kernel debugger is disabled

v KDB Kernel Debugger is enabled but is not invoked during system initialization

v KDB Kernel Debugger is enabled and is invoked during system initialization

Execution of bosboot builds the boot image only; the boot image is not used until the machine is
restarted.

Note:

1. External interrupts are disabled while the KDB Kernel Debugger is active.

2. If invoked during system initialization, the g subcommand must be issued to continue the
initialization process.

Entering the KDB Kernel Debugger
It is possible to enter the KDB Kernel Debugger using one of the following procedures:

v From a native keyboard, press Ctrl-Alt-Numpad4.

v From a tty keyboard, press Ctrl-4 (IBM 3151 terminals) or Ctrl-\ (BQ 303, BQ 310C, and WYSE 50).

v The system can enter the debugger if a breakpoint is set. To do this, use one of the Breakpoints/Steps
Subcommands.

v The system can also enter the debugger by calling the brkpoint subroutine from C code. The syntax for
calling this subroutine is:
brkpoint();

v The system can also enter the debugger if a system halt is caused by a fatal system error. In such a
case, the system creates a log entry in the system log and if the KDB Kernel Debugger is available, it is
called. A system dump might be generated on exit from the debugger.

If the kernel debug program is not available (nothing happens when you type in the previous key
sequence), you must load it. To do this, refer to Loading and Starting the KDB Kernel Debugger in AIX
4.3.3 or Loading and Starting the KDB Kernel Debugger in AIX 5.1 and Subsequent Releases.

Note: You can use the kdb command to determine whether the KDB Kernel Debugger is available. Use
the dw subcommand:
kdb
(0)> dw kdb_avail
(0)> dw kdb_wanted

If either of the previous dw subcommands returns a 0, the KDB Kernel Debugger is not available.

Once the KDB Kernel Debugger has been invoked, the subcommands detailed in Subcommands for the
KDB Kernel Debugger and kdb Command are available.

Using a Terminal with the KDB Kernel Debugger

Note: If you are using the Hardware Management Console, KDB can accessed using a virtual teminal.
For more information, see Hardware Management Console Installation and Operations Guide.

Chapter 17. KDB Kernel Debugger and Command 321

The KDB Kernel Debugger opens an asynchronous ASCII terminal when it is first started, and
subsequently upon being started due to a system halt. Native serial ports are checked sequentially starting
with port 0 (zero). Each port is configured at 9600 bps, 8 bits, and no parity. If carrier detect is asserted
within 1/10 seconds, then the port is used. Otherwise, the next available native port is checked. This
process continues until a port is opened or until every native port available on the machine has been
checked. If no native serial port is opened successfully, then the result is unpredictable.

The KDB Kernel Debugger only supports display to an ASCII terminal connected to a native serial port.
Displays connected to graphics adapters are not supported. The KDB Kernel Debugger has its own device
driver for handling the display terminal. It is possible to connect a serial line between two machines and
define the serial line port as the port for the console. In that case, the cu command can be used to
connect to the target machine and run the KDB Kernel Debugger.

Attention: If a serial device, other than a terminal connected to a native serial port, is selected by the
kernel debugger, the system might appear to hang up.

Debugging Multiprocessor Systems
On multiprocessor systems, entering the KDB Kernel Debugger stops all processors (except the current
processor running the debug program itself). The prompt on multiprocessor systems indicates the current
processor. For example:

v KDB(0)>- Indicates processor 0 is the current processor

v KDB(5)>- Indicates processor 5 is the current processor

In addition to the change in the prompt for multiprocessor systems, there are also subcommands that are
unique to these systems. Refer to SMP Subcommands for details.

Using KDB to Perform a Trace
The trcpeek feature of KDB allows users to perform a system trace. It allows users to break into KDB and
start, stop and display a system trace. For more information on system trace, see Trace Facility in AIX 5L
Version 5.2 General Programming Concepts: Writing and Debugging Programs.

Note: trcpeek is only available through KDB, it is not available through the kdb command.

If the system is in a working state, it is best to use the system trace facility and the trace command.
trcpeek is most useful when the system is hung and will not respond to terminal input, or when the
system is initializing and the trace kernel extension has not been loaded. trcpeek can be useful to
determine where the kernel code is looping. It is also helpful in early system initialization debugging. For
more information, see the trace command in AIX 5L Version 5.2 Commands Reference, Volume 5.

Only one trace event can be active at a time. A trace can be started from either the system trace facility at
the shell prompt, or from KBD at the KDB debugger prompt. If a trace is started from KDB and the system
crashes, trace information can be extracted from the dump using the trcdead command. For more
information, see the trcdead command in AIX 5L Version 5.2 Commands Reference, Volume 5.

trcpeek consists of the trcstart, trcstop and trace subcommands. For more information, see “trcstart
Subcommand” on page 367, “trcstop Subcommand” on page 368, and “trace Subcommand” on page 457.

Using the KDB Kernel Debug Program
This section contains the following sections:

v Example Files

v Generating Maps and Listings

v Setting Breakpoints

322 Kernel Extensions and Device Support Programming Concepts

v Viewing and Modifying Global Data

v Stack Trace

The example files provide a demonstration kernel extension and a program to load, execute, and unload
the extension. These programs may be compiled, linked, and executed as indicated in the following
material. Note, to use these programs to follow the examples you need a machine with a C compiler, a
console, and running with a KDB kernel enabled for debugging. To use the KDB Kernel Debugger you will
need exclusive use of the machine.

Examples using the KDB Kernel Debugger with the demonstration programs are included in each of the
following sections. The examples are shown in tables which contain two columns. The first column of the
table contains an indication of the system prompt and the user input to perform each step. The second
column of each table explains the function of the command and includes example output, where
applicable. In the examples, since only the console is used, the demo program is switched between the
background and the foreground as needed.

Example Files
The files listed below are used in examples throughout this section.

v demo.c - Source program to load, execute, and unload a demonstration kernel extension.

v demokext.c - Source for a demonstration kernel extension

v demo.h - Include file used by demo.c and demokext.c

v demokext.exp - Export file for linking demokext

v comp_link - Example script to build demonstration program and kernel extension

To build the demonstration programs:

v Save each of the above files in a directory

v As the root user, execute the comp_link script

This script produces:

v An executable file demo

v An executable file demokext

v A list file demokext.lst

v A map file demokext.map

The following sections describe compilation and link options used in the comp_link script in more detail
and also cover using the map and list files.

demo.c Example File
#include <sys/types.h>
#include <sys/sysconfig.h>
#include <memory.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include "demo.h"

/* Extension loading data */
struct cfg_load cfg_load;
extern int sysconfig();
extern int errno;

#define NAME_SIZE 256
#define LIBPATH_SIZE 256

Chapter 17. KDB Kernel Debugger and Command 323

main(argc,argv)
int argc;
char *argv[];

{
char path[NAME_SIZE];
char libpath[LIBPATH_SIZE];
char buf[BUFLEN];
struct cfg_kmod cfg_kmod;
struct extparms extparms = {argc,argv,buf,BUFLEN};
int option = 1;
int status = 0;

/*
* Load the demo kernel extension.
*/
memset(path, 0, sizeof(path));
memset(libpath, 0, sizeof(libpath));
strcpy(path, "./demokext");
cfg_load.path = path;
cfg_load.libpath = libpath;
if (sysconfig(SYS_KLOAD, &cfg_load, sizeof(cfg_load)) == CONF_SUCC)

{
printf("Kernel extension ./demokext was succesfully loaded, kmid=%x\n",

cfg_load.kmid);
}

else
{
printf("Encountered errno=%d loading kernel extension %s\n",

errno, cfg_load.path);
exit(1);
}

/*
* Loop alterantely allocating and freeing 16K from memory.
*/
option = 1;
while (option != 0)

{
printf("\n\n");
printf("0. Quit and unload kernel extension\n");
printf("1. Configure kernel extension - increment counter\n");
printf("2. Configure kernel extension - decrement counter\n");
printf("\n");
printf("Enter choice: ");
scanf("%d", &option);
switch (option)

{
case 0:

break;
case 1:

bzero(buf,BUFLEN);
strcpy(buf,"sample string");
cfg_kmod.kmid = cfg_load.kmid;
cfg_kmod.cmd = 1;
cfg_kmod.mdiptr = (char *)&extparms;
cfg_kmod.mdilen = sizeof(extparms);
if (sysconfig(SYS_CFGKMOD,&cfg_kmod, sizeof(cfg_kmod))==CONF_SUCC)

{
printf("Kernel extension %s was successfully configured\n",

cfg_load.path);
}

else
{
printf("errno=%d configuring kernel extension %s\n",

errno, cfg_load.path);
}

break;

324 Kernel Extensions and Device Support Programming Concepts

case 2:
bzero(buf,BUFLEN);
strcpy(buf,"sample string");
cfg_kmod.kmid = cfg_load.kmid;
cfg_kmod.cmd = 2;
cfg_kmod.mdiptr = (char *)&extparms;
cfg_kmod.mdilen = sizeof(extparms);
if (sysconfig(SYS_CFGKMOD,&cfg_kmod, sizeof(cfg_kmod))==CONF_SUCC)

{
printf("Kernel extension %s was successfully configured\n",

cfg_load.path);
}

else
{
printf("errno=%d configuring kernel extension %s\n",

errno, cfg_load.path);
}

break;
default:

printf("\nUnknown option\n");
break;

}
}

/*
* Unload the demo kernel extension.
*/

if (sysconfig(SYS_KULOAD, &cfg_load, sizeof(cfg_load)) == CONF_SUCC)
{
printf("Kernel extension %s was successfully unloaded\n", cfg_load.path);
}

else
{
printf("errno=%d unloading kernel extension %s\n", errno, cfg_load.path);
}

}

demokext.c Example File
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/uio.h>
#include <sys/dump.h>
#include <sys/errno.h>
#include <sys/uprintf.h>
#include <fcntl.h>
#include "demo.h"

/* Log routine prototypes */
int open_log(char *path, struct file **fpp);
int write_log(struct file *fpp, char *buf, int *bytes_written);
int close_log(struct file *fpp);

/* Unexported symbol */
int demokext_i = 9;
/* Exported symbol */
int demokext_j = 99;

/*
* Kernel extension entry point, called at config. time.
*
* input:
* cmd - unused (typically 1=config, 2=unconfig)
* uiop - points to the uio structure.
*/
int

Chapter 17. KDB Kernel Debugger and Command 325

demokext(int cmd, struct uio *uiop)
{
int rc;
char *bufp;
struct file *fpp;
int fstat;
char buf[100];
int bytes_written;
static int j = 0;

/*
* Open the log file.
*/
strcpy(buf, "./demokext.log");
fstat = open_log(buf, &fpp);
if (fstat != 0) return(fstat);

/*
* Put a message out to the log file.
*/
strcpy(buf, "demokext was called for configuration\n");
fstat = write_log(fpp, buf, &bytes_written);
if (fstat != 0) return(fstat);

/*
* Increment or decrement j and demokext_j based on
* the input value for cmd.
*/
{
switch (cmd)

{
case 1: /* Increment */

sprintf(buf, "Before increment: j=%d demokext_j=%d\n",
j, demokext_j);

write_log(fpp, buf, &bytes_written);
demokext_j++;
j++;
sprintf(buf, "After increment: j=%d demokext_j=%d\n",

j, demokext_j);
write_log(fpp, buf, &bytes_written);
break;

case 2: /* Decrement */
sprintf(buf, "Before decrement: j=%d demokext_j=%d\n",

j, demokext_j);
write_log(fpp, buf, &bytes_written);
demokext_j--;
j--;
sprintf(buf, "After decrement: j=%d demokext_j=%d\n",

j, demokext_j);
write_log(fpp, buf, &bytes_written);
break;

default: /* Unknown command value */
sprintf(buf, "Received unknown command of %d\n", cmd);
write_log(fpp, buf, &bytes_written);
break;

}
}

/*
* Close the log file.
*/
fstat = close_log(fpp);
if (fstat !=0) return(fstat);
return(0);

}

326 Kernel Extensions and Device Support Programming Concepts

/***
* Routines for logging debug information: *
* open_log - Opens a log file *
* write_log - Output a string to a log file *
* close_log - Close a log file *
***/
int open_log (char *path, struct file **fpp)

{
int rc;
rc = fp_open(path, O_CREAT | O_APPEND | O_WRONLY,

S_IRUSR | S_IWUSR, 0, SYS_ADSPACE, fpp);
return(rc);
}

int write_log(struct file *fpp, char *buf, int *bytes_written)
{
int rc;
rc = fp_write(fpp, buf, strlen(buf), 0, SYS_ADSPACE, bytes_written);
return(rc);
}

int close_log(struct file *fpp)
{
int rc;
rc = fp_close(fpp);
return(rc);
}

demo.h Example File
#ifndef _demo
#define _demo

/*
* Parameter structure
*/
struct extparms {

int argc;
char **argv;
char *buf; /* Message buffer */
size_t len; /* length */

};

#define BUFLEN 4096 /* Test msg buffer length */

#endif /* _demo */

demokext.exp Example File
#!/unix
* export value from demokext
demokext_j

comp_link Example File
#! /bin/ksh
Script to build the demo executable and the demokext kernel extension.
cc -o demo demo.c
cc -c -DEBUG -D_KERNEL -DIBMR2 demokext.c -qsource -qlist
ld -o demokext demokext.o -edemokext -bimport:/lib/syscalls.exp -bimport:/lib/kernex.exp -lcsys -bexport:demokext.exp -bmap:demokext.map

Generating Maps and Listings
Assembler listing and map files are useful tools for debugging using the KDB Kernel Debugger. In order to
create the assembler list file during compilation, use the -qlist option. Also use the -qsource option to get
the C source listing in the same file:
cc -c -DEBUG -D_KERNEL -DIBMR2 demokext.c -qsource -qlist

Chapter 17. KDB Kernel Debugger and Command 327

In order to obtain a map file, use the -bmap:FileName option for the link editor. The following example
creates a map file of demokext.map:
ld -o demokext demokext.o -edemokext -bimport:/lib/syscalls.exp \
-bimport:/lib/kernex.exp -lcsys -bexport:demokext.exp -bmap:demokext.map

Compiler Listing
The assembler and source listing is used to correlate any C source line with the corresponding assembler
lines. The following is a portion of the list file, created by the cc command used earlier, for the
demonstration kernel extension. This information is included in the compilation listing because of the
-qsource option for the cc command. The left column is the line number in the source code:

.

.
63 | case 1: /* Increment */
64 | sprintf(buf, "Before increment: j=%d demokext_j=%d\n",
65 | j, demokext_j);
66 | write_log(fpp, buf, &bytes_written);
67 | demokext_j++;
68 | j++;
69 | sprintf(buf, "After increment: j=%d demokext_j=%d\n",
70 | j, demokext_j);
71 | write_log(fpp, buf, &bytes_written);
72 | break;
.
.

The following is the assembler listing for the corresponding C code shown above. This information was
included in the compilation listing because of the -qlist option used on the cc command earlier.
.
.
64| 0000B0 l 80BF0030 2 L4A gr5=j(gr31,48)
64| 0000B4 l 83C20008 1 L4A gr30=.demokext_j(gr2,0)
64| 0000B8 l 80DE0000 2 L4A gr6=demokext_j(gr30,0)
64| 0000BC ai 30610048 1 AI gr3=gr1,72
64| 0000C0 ai 309F005C 1 AI gr4=gr31,92
64| 0000C4 bl 4BFFFF3D 0 CALL gr3=sprintf,4,buf",gr3,""5",gr4-gr6,sprintf",gr1,cr[01567]",gr0",gr4"-gr12",fp0"-fp13"
64| 0000C8 cror 4DEF7B82 1
66| 0000CC l 80610040 1 L4A gr3=fpp(gr1,64)
66| 0000D0 ai 30810048 1 AI gr4=gr1,72
66| 0000D4 ai 30A100AC 1 AI gr5=gr1,172
66| 0000D8 bl 4800018D 0 CALL gr3=write_log,3,gr3,buf",gr4,bytes_written",gr5,write_log",gr1,cr[01567]",gr0",gr4"-gr12",fp0"-fp13"
66| 0000DC cal 387E0000 2 LR gr3=gr30
67| 0000E0 l 80830000 1 L4A gr4=demokext_j(gr3,0)
67| 0000E4 ai 30840001 2 AI gr4=gr4,1
67| 0000E8 st 90830000 1 ST4A demokext_j(gr3,0)=gr4
68| 0000EC l 809F0030 1 L4A gr4=j(gr31,48)
68| 0000F0 ai 30A40001 2 AI gr5=gr4,1
68| 0000F4 st 90BF0030 1 ST4A j(gr31,48)=gr5
69| 0000F8 l 80C30000 1 L4A gr6=demokext_j(gr3,0)
69| 0000FC ai 30610048 1 AI gr3=gr1,72
69| 000100 ai 309F0084 1 AI gr4=gr31,132
69| 000104 bl 4BFFFEFD 0 CALL gr3=sprintf,4,buf",gr3,""6",gr4-gr6,sprintf",gr1,cr[01567]",gr0",gr4"-gr12",fp0"-fp13"
69| 000108 cror 4DEF7B82 1
71| 00010C l 80610040 1 L4A gr3=fpp(gr1,64)
71| 000110 ai 30810048 1 AI gr4=gr1,72
71| 000114 ai 30A100AC 1 AI gr5=gr1,172
71| 000118 bl 4800014D 0 CALL gr3=write_log,3,gr3,buf",gr4,bytes_written",gr5,write_log",gr1,cr[01567]",gr0",gr4"-gr12",fp0"-fp13"
72| 00011C b 48000098 1 B CL.8,-1
.
.

With both the assembler listing and the C source listing, the assembly instructions associated with each C
statement may be found. As an example, consider the C source line at line 67 of the demonstration kernel
extension:

67 | demokext_j++;

The corresponding assembler instructions are:
67| 0000E0 l 80830000 1 L4A gr4=demokext_j(gr3,0)
67| 0000E4 ai 30840001 2 AI gr4=gr4,1
67| 0000E8 st 90830000 1 ST4A demokext_j(gr3,0)=gr4

328 Kernel Extensions and Device Support Programming Concepts

The offsets of these instructions within the demonstration kernel extension (demokext) are 0000E0,
0000E4, and 0000E8.

Map File
The binder map file is a symbol map in address order format. Each symbol listed in the map file has a
storage class (CL) and a type (TY) associated with it.

Storage classes correspond to the XMC_XX variables defined in the syms.h file. Each storage class
belongs to one of the following section types:

.text Contains read-only data (instructions). Addresses listed in this section use the beginning of the
.text section as origin. The .text section can contain one of the following storage class (CL) values:

DB Debug Table. Identifies a class of sections that has the same characteristics as read only
data.

GL Glue Code. Identifies a section that has the same characteristics as a program code. This
type of section has code to interface with a routine in another module. Part of the interface
code requirement is to maintain TOC addressability across the call.

PR Program Code. Identifies the sections that provide executable instructions for the module.

R0 Read Only Data. Identifies the sections that contain constants that are not modified during
execution.

TB Reserved.

TI Reserved.

XO Extended Op. Identifies a section of code that is to be treated as a pseudo-machine
instruction.

.data Contains read-write initialized data. Addresses listed in this section use the beginning of the .data
section as origin. The .data section can contain one of the following storage class (CL) values:

DS Descriptor. Identifies a function descriptor. This information is used to describe function
pointers in languages such as C and Fortran.

RW Read Write Data. Identifies a section that contains data that is known to require change
during execution.

SV SVC. Identifies a section of code that is to be treated as a supervisory call.

T0 TOC Anchor. Used only by the predefined TOC symbol. Identifies the special symbol TOC.
Used only by the TOC header.

TC TOC Entry. Identifies address data that will reside in the TOC.

TD TOC Data Entry. Identifies data that will reside in the TOC.

UA Unclassified. Identifies data that contains data of an unknown storage class.

.bss Contains read-write uninitialized data. Addresses listed in this section use the beginning of the
.data section as origin. The .bss section contain one of the following storage class (CL) values:

BS BSS class. Identifies a section that contains uninitialized data.

UC Unnamed Fortran Common. Identifies a section that contains read write data.

Types correspond to the XTY_XX variables defined in the syms.h file. The type (TY) can be one of the
following values:

ER External Reference
LD Label Definition
SD Section Definition

Chapter 17. KDB Kernel Debugger and Command 329

CM BSS Common Definition

The following is the map file for the demonstration kernel extension. This file was created because of the
-bmap:demokext.map option of the ld command shown earlier.
1 ADDRESS MAP FOR demokext
2 *IE ADDRESS LENGTH AL CL TY Sym# NAME SOURCE-FILE(OBJECT) or IMPORT-FILE{SHARED-OBJECT}
3 --- -------- ------ -- -- -- ----- ------------------------- ---
4 I ER S1 _system_configuration /lib/syscalls.exp{/unix}
5 I ER S2 fp_open /lib/kernex.exp{/unix}
6 I ER S3 fp_close /lib/kernex.exp{/unix}
7 I ER S4 fp_write /lib/kernex.exp{/unix}
8 I ER S5 sprintf /lib/kernex.exp{/unix}
9 00000000 000360 2 PR SD S6 <> demokext.c(demokext.o)
10 00000000 PR LD S7 .demokext
11 00000210 PR LD S8 .close_log
12 00000264 PR LD S9 .write_log
13 000002F4 PR LD S10 .open_log
14 00000360 000108 5 PR SD S11 .strcpy strcpy.s(/usr/lib/libcsys.a[strcpy.o])
15 00000468 000028 2 GL SD S12 <.sprintf> glink.s(/usr/lib/glink.o)
16 00000468 GL LD S13 .sprintf
17 00000490 000028 2 GL SD S14 <.fp_close> glink.s(/usr/lib/glink.o)
18 00000490 GL LD S15 .fp_close
19 000004C0 0000F8 5 PR SD S16 .strlen strlen.s(/usr/lib/libcsys.a[strlen.o])
20 000005B8 000028 2 GL SD S17 <.fp_write> glink.s(/usr/lib/glink.o)
21 000005B8 GL LD S18 .fp_write
22 000005E0 000028 2 GL SD S19 <.fp_open> glink.s(/usr/lib/glink.o)
23 000005E0 GL LD S20 .fp_open
24 00000000 0000F9 3 RW SD S21 <_$STATIC> demokext.c(demokext.o)
25 E 000000FC 000004 2 RW SD S22 demokext_j demokext.c(demokext.o)
26 * 00000100 00000C 2 DS SD S23 demokext demokext.c(demokext.o)
27 0000010C 000000 2 T0 SD S24 <TOC>
28 0000010C 000004 2 TC SD S25 <_$STATIC>
29 00000110 000004 2 TC SD S26 <_system_configuration>
30 00000114 000004 2 TC SD S27 <demokext_j>
31 00000118 000004 2 TC SD S28 <sprintf>
32 0000011C 000004 2 TC SD S29 <fp_close>
33 00000120 000004 2 TC SD S30 <fp_write>
34 00000124 000004 2 TC SD S31 <fp_open>

In the above map file, the .data section starts at the statement for line 24:
24 00000000 0000F9 3 RW SD S21 <_$STATIC> demokext.c(demokext.o)

The TOC (Table Of Contents) starts at the statement for line 27:
27 0000010C 000000 2 T0 SD S24 <TOC>

Setting Breakpoints
The KDB Kernel Debugger creates a table of breakpoints that it maintains. When a breakpoint is set, the
debugger temporarily replaces the corresponding instruction with the trap instruction. The instruction
overlaid by the breakpoint operates when you issue any subcommand that would cause that instruction to
be initiated.

For more information on setting or clearing breakpoints and execution control, see “Breakpoints and Steps
Subcommands” on page 368.

Setting a breakpoint is essential for debugging kernel extensions. To set a breakpoint, use the following
sequence of steps:

1. Locate the assembler instruction corresponding to the C statement.

2. Get the offset of the assembler instruction from the listing.

3. Locate the address where the kernel extension is loaded.

4. Add the address of the assembler instruction to the address where kernel extension is loaded.

330 Kernel Extensions and Device Support Programming Concepts

5. Set the breakpoint with the KDB b (break) subcommand.

The process of locating the assembler instruction and getting its offset is explained in the previous section.
To continue with the demokext example, we will set a break at the C source line 67, which increments the
variable demokext_j. The list file indicates that this line starts at an offset of 0xE0. So the next step is to
determine the address where the kernel extension is loaded.

Determine the Location of your Kernel Extension
To determine the address at which a kernel extension has been loaded, use the following procedure. First,
find the load point (the entry point) of the executable kernel extension. This is a label supplied with the -e
option for the ld command. In the example, this is the demokext routine.

Use one of the following methods to locate the address of this load point and set a breakpoint at the
appropriate offset from this point.

The following examples use the demo and demokext routines compiled earlier.

Note: The following must be run as the root user. For these examples, assume that a break is to be set at
line 67, which has an offset from the beginning of demokext of 0xE0.

To load the demokext kernel extension:

1. Run the demo program by typing ./demo on the command line. This loads the demokext extension.
Take note of the value printed for kmid, this is used later in this example.

Note: The default prompt at this time is $.

2. Stop the demo program by entering Ctrl+Z on the keyboard.

3. Put the demo program in the background by typing bg on the command line.

4. Activate KDB using the appropriate key sequence for your configuration. You should have a KDB
prompt on completion of this step.

Note: The default KDB propmt is KDB(0)>.

To unload the demokext kernel extension:

1. At the $ prompt, bring the demo program to the foreground by typing fg on the command line. At this
point, the prompt changes to ./demo.

2. Enter 0 to unload and exit, 1 to increment counters, or 2 decrement counters. The prompt will not be
redisplayed, because it was shown prior to stopping the program and placing it in the background. For
the purposes of this example, enter 0 to indicate that the kernel extension is to be unloaded and that
the demo program is to terminate.

Method 1: Using the b Subcommand
Normally, with the KDB Kernel Debugger a breakpoint can be set directly by using the b subcommand in
conjunction with the routine name and the offset. For example, b demokext+4 will set a break at the
instruction 4 bytes from the beginning of the demokext subroutine.

Note: The default prompt is KDB(0)>.

1. Set a breakpoint using the symbol demokext. This is the easiest and most common way of setting a
breakpoint within KDB. KDB responds with an indication of the address where the break is set. To do
this, type the following on the command line:
b demokext+E0

2. To view the list all active breakpoints type b on the command line.

3. To clear the list all active breakpoints ca on the command line.

4. To verfiy that there are no longer any active breakpoints type b on the command line.

Chapter 17. KDB Kernel Debugger and Command 331

Method 2: Using the lke Subcommand
The KDB lke subcommand displays a list of loaded kernel extensions. To find the address of the modules
for a particular extension use the KDB subcommand lke entry_number, where entry_number is the
extension number of interest. In the displayed data is a list of Process Trace Backs which shows the
beginning addresses of routines contained in the extension.

Note: The default prompt is KDB(0)>.

1. List all loaded extensions by typing lke on the command line. The results should be similar to the
following:

ADDRESS FILE FILESIZE FLAGS MODULE NAME

1 04E17F80 01303F00 000007F0 00000272 ./demokext
2 04E17E80 0503A000 00000E88 00000248 /unix
3 04E17C00 04FA3000 00071B34 00000272 /usr/lib/drivers/nfs.ext
4 04E17A80 05021000 00000E88 00000248 /unix
5 04E17800 01303B98 00000348 00000272 /usr/lib/drivers/nfs_kdes.ext
6 04E17B80 04F96000 00000E34 00000248 /unix
7 04E17500 01301A10 0000217C 00000272 /etc/drivers/blockset64

.

.

Enter Ctrl+C to exit the KDB Kernel Debugger paging function. Pressing Enter displays the next page
of data; pressing the Spacebar displays the next line of data. The number of lines per page can be
changed yb typing set screen_size nn on the command line; where nn is the number of lines per
page.

2. List detailed information about the extension of interest. The parameter to the lke subcommand is the
slot number for the ./demokext entry from the previous step. To display information for slot 1, type the
following on the command line:
lke 1

The output from this command will be similar to:
ADDRESS FILE FILESIZE FLAGS MODULE NAME

1 04E17F80 01303F00 000007F0 00000272 ./demokext
le_flags....... TEXT KERNELEX DATAINTEXT DATA DATAEXISTS
le_next........ 04E17E80 le_fp.......... 00000000
le_filename.... 04E17FD8 le_file........ 01303F00
le_filesize.... 000007F0 le_data........ 013045C8
le_tid......... 00000000 le_datasize.... 00000128
le_usecount.... 00000003 le_loadcount... 00000001
le_ndepend..... 00000001 le_maxdepend... 00000001
le_ule......... 0502E000 le_deferred.... 00000000
le_exports..... 0502E000 le_de.......... 6C696263
le_searchlist.. B0000420 le_dlusecount.. 00000000
le_dlindex..... 00002F6C le_lex......... 00000000
le_fh.......... 00000000 le_depend.... @ 04E17FD4
TOC@........... 013046D4

<PROCESS TRACE BACKS>
.demokext 01304040 .close_log 013041FC
.write_log 01304240 .open_log 013042B4

.strcpy 01304320 .sprintf.glink 01304428
.fp_close.glink 01304450 .strlen 01304480
.fp_write.glink 01304578 .fp_open.glink 013045A0

From the PROCESS TRACE BACKS we see that the first instruction of demokext is at 01304040. So
the break for line 67 would be at this address plus E0.

3. Set the break at the desired location, by typing the following on the command line:
b 01304040+e0

KDB dispalys the address at which the breakpoint is located.

332 Kernel Extensions and Device Support Programming Concepts

4. Clear all breakpoints by typing:
ca

Method 3: Using the nm demokext Subcommand
If the kernel extension is not stripped, the KDB Kernel Debugger can be used to locate the address of the
load point by name. For example, the nm demokext subcommand returns the address of the demokext
routine after it is loaded. This address may then be used to set a breakpoint.

Note: The default prompt is KDB(0)>.

1. To translate a symbol to an effective address, type the following on the command line:
nm demokext

The output will be similar to the following:
Symbol Address : 01304040

TOC Address : 013046D4

The value of the symbol demokext is the address of the first instruction of the demokext routine. This
value can be used to set a breakpoint.

2. Set the break at the desired location by typing:
b 01304040+e0

KDB displays the address at which the breakpoint is set.

3. Display the word at the breakpoint by typing:
dw 01304040+e0

The results will look similar to the following:
01304120: 80830000 30840001 90830000 809F00300..........0

This can then be checked against the assembly code in the listing to verify that the break is set to the
correct location.

4. Clear all breakpoints by typing:
ca

Method 4: Using the kmid Pointer
Another method to locate the address of the entry point for a kernel extension is to use the value of the
kmid pointer returned by the sysconfig(SYS_KLOAD) subroutine when the kernel extension is loaded.
The kmid pointer points to the address of the load point routine. Hence to get the address of the load
point, print the kmid value during the sysconfig call from the configuration method; in the current
example, this is the demo.c module. Then go into the KDB Kernel Debugger and display the value pointed
to by kmid.

Note: The default prompt is KDB(0)>.

1. Display the memory at the address returned as the kmid from the sysconfig subroutine at the
beginning of this example, by typing:
dw 1304748

KDB responds with something similar to:
demokext+000000: 01304040 01304754 00000000 01304648 .0@@.0GT.....0FH

The first word of data displayed is the address of the first instruction of the demokext routine. Note,
the data displayed is at the location demokext+000000. This corresponds to line 26 of the map
presented earlier. However, the most important thing to note is that demokext+000000 and
.demokext+000000 are not the same address. The location .demokext+000000 corresponds to line 10 of
the map and is the address of the first instruction for the demokext routine.

Chapter 17. KDB Kernel Debugger and Command 333

2. Set the break at the location indicated from the previous command plus the offset to get to line 67.
KDB responds with an indication of the address that the breakpoint is at.
b 01304040+e0

3. Clear all breakpoints, by typing:
ca

Method 5: Using the devsw Subcommand
If the kernel extension is a device driver, use the KDB devsw subcommand to locate the desired address.
The devsw subcommand lists all the function addresses for the device driver (that are in the dev switch
table). Usually the config subroutine will be the load point routine. For example,
MAJ#010 OPEN CLOSE READ WRITE

0123DE04 0123DC04 0123DB20 0123DA3C
IOCTL STRATEGY TTY SELECT
0123D090 01244DF0 00000000 00059774
CONFIG PRINT DUMP MPX
0123E8C8 00059774 00059774 00059774
REVOKE DSDPTR SELPTR OPTS
00059774 00000000 00000000 00000002

Note: The default prompt is KDB(0)>.

To set a breakpoint:

1. Display the device switch table for the first entry, by typing:
devsw 1

The KDB devsw command displays data similar to:
Slot address 50006040
MAJ#001 OPEN CLOSE READ WRITE

.syopen .nulldev .syread .sywrite
IOCTL STRATEGY TTY SELECT
.syioctl .nodev 00000000 .syselect
CONFIG PRINT DUMP MPX
.nodev .nodev .nodev .nodev
REVOKE DSDPTR SELPTR OPTS
.nodev 00000000 00000000 00000012

Note: The demonstration program that is being used is not a device driver; so this example uses the
addresses of the first device driver in the device switch table and is not related in any way to
the demonstration program.

2. Set a breakpoint at an offset of 0x20 from the beginning of the open routine for the first device driver in
the device switch table, by typing:
b .syopen+20

KDB displays the location of the break.

3. Clear all breakpoints:
ca

4. Turn off symbolic name translation:
ns

5. Display the device switch table for the first device driver again:
devsw 1

This time, with symbolic name translation turned off addresses instead of names will be displayed. The
output from this subcommand is similar to:
Slot address 50006040
MAJ#001 OPEN CLOSE READ WRITE

00208858 00059750 002086D4 0020854C

334 Kernel Extensions and Device Support Programming Concepts

IOCTL STRATEGY TTY SELECT
00208290 00059774 00000000 00208224
CONFIG PRINT DUMP MPX

6. Set a break at an offset of 0x20 from the beginning of the open routine for the first device driver in the
device switch table, by typing:
b 00208858+20

This will set the same break that was set at the beginning of this example. KDB displays the location
of the break.

7. Toggle symbolic name translation on:
ns

8. Clear all breaks:
ca

9. Exit the KDB Kernel Debugger and let the system resume normal execution, by typing:
g

Viewing and Modifying Global Data
Global data can be accessed using several methods. The demo and demokext programs continue to be
used in the examples in this section. In particular, the variable demokext_j (which is exported) is used in
the examples.

The first method presented demonstrates the simpliest method of access for global data. The second
method presented demonstrates accessing global data using the TOC and the map file. This method
requires that the system is stopped in the KDB Kernel Debugger within a procedure of the kernel
extension to be debugged. Finally, the third method demonstrates a way to access global data using the
map file, but without using the TOC.

Before trying any of the following examples, use the following procedure to load the demokext kernel
extension:

1. Run the demo program by typing ./demo on the command line. This loads the demokext extension.

Note: The default prompt at this time is $.

2. Stop the demo program by entering Ctrl+Z on the keyboard.

3. Put the demo program in the background by typing bg on the command line.

4. Activate KDB using the appropriate key sequence for your configuration. You should have a KDB
prompt on completion of this step.

Note: The default KDB propmt is KDB(0)>.

Method 1: Using the dw Subcommand
Access of global variables within KDB is very simple. The variables can be accessed directly by name. For
example, the dw demokext_j subcommand can be used to display the value of demokext_j. If demokext_j
is an array, a specific value can be viewed by adding the appropriate offset, for example, dw
demokext_j+20. Access to individual elements of a structure is accomplished by adding the proper offset to
the base address for the variable.

Note: The default prompt is KDB(0)>.

1. Display a word at the address of the demokext_j variable:
dw demokext_j

Because the kernel extension was just loaded this variable should have a value of 99 and the KDB
Kernel Debugger should display that value. The data displayed should be similar to the following:

Chapter 17. KDB Kernel Debugger and Command 335

demokext_j+000000: 00000063 01304040 01304754 00000000 ...c.0@@.0GT....

2. Turn off symbolic name translation:
ns

3. To display the word at the address of the demokext_j variable, type:
dw demokext_j

With symbolic name translation turned off, the data displayed should be similar to:
01304744: 00000063 01304040 01304754 00000000 ...c.0@@.0GT....

4. Turn symbolic name translation on, by typing:
ns

5. Modify the word at the address of the demokext_j variable by typing:
mw demokext_j

The KDB Kernel Debugger displays the current value of the word and waits for user input to change
the value. The data displayed should be similar to the following:
01304744: 00000063 =

A new value can now be entered. After a new value is entered, the next word of memory is displayed
for possible modification. To end memory modification a period (.) is entered. To complete this step,
enter a value of 64 (100 decimal) for the first address and then enter a period to end modification.

Method 2: Using the TOC and Map File
To locate the address of global data using the address of the TOC and the map requires that the system
be stopped in the KDB Kernel Debugger within a routine of the kernel extension to be debugged. This can
be accomplished by setting a breakpoint within the kernel extension. For more information, see “Setting
Breakpoints” on page 330.

When the KDB Kernel Debugger is invoked, general purpose register number 2 points to the address of
the TOC. From the map file the offset from the start of the TOC to the desired TOC entry can be
calculated. Knowing this offset and the address at which the TOC starts allows the address of the TOC
entry for the desired global variable to be calculated. Then the address of the TOC entry for the desired
variable can be examined to determine the address of the data.

For example, assume that the KDB Kernel Debugger has been invoked because of a breakpoint at line 67
of the demokext routine, and that the value for general purpose register number 2 is 0x01304754.

To find the address of the demokext_j data complete the following:

1. Calculate the offset from the beginning of the TOC to the TOC entry for demokext_j. From the map file,
the TOC starts at 0x0000010C and the TOC entry for demokext_j is at 0x00000114. Therefore, the offset
from the beginning of the TOC to the entry of interest is:
0x00000114 - 0x0000010C = 0x00000008

2. Calculate the address of the TOC entry for demokext_j. This is the current value of general purpose
register 2 plus the offset calculated in the preceding step:
0x01304754 + 0x00000008 = 0x0130475C

3. Display the data at 0x0130475C. The data displayed is the address of the data for demokext_j.

To view and modify global data:

1. At the KDB(0) prompt, set a break at line 67 of the demokext routine (see the examples in the
previous section), by typing:
b demokext+e0

336 Kernel Extensions and Device Support Programming Concepts

Breaking at this location will insure that the KDB Kernel Debugger is invoked while within the
demokext routines. Then we can get the value of General Purpose Register 2, to determine the
address of the TOC.

2. Exit the KDB Kernel Debugger by typing g on the command line. This exits the debugger and we can
then bring the demo program to the foreground and choose a selection to cause the demokext
routine to be called for configuration. Since a break has been set this will cause the KDB Kernel
Debugger to be invoked.

Note: At this point, the prompt changes to a dollar sign ($).

3. Bring the demo program to the foreground by typing:
fg

Note: At this point, the prompt changes to ./demo.

4. Enter a value of 1 to select the option to increment the counters within the demokext kernel
extension. This causes a break at line 67 of demokext and the prompt to change to KDB(0).

5. Display the general purpose registers by typing:
dr

The data displayed should be similar to the following:
r0 : 0130411C r1 : 2FF3B210 r2 : 01304754 r3 : 01304744 r4 : 0047B180
r5 : 0047B230 r6 : 000005FB r7 : 000DD300 r8 : 000005FB r9 : 000DD300
r10 : 00000000 r11 : 00000000 r12 : 013042F4 r13 : DEADBEEF r14 : 00000001
r15 : 2FF22D80 r16 : 2FF22D88 r17 : 00000000 r18 : DEADBEEF r19 : DEADBEEF
r20 : DEADBEEF r21 : DEADBEEF r22 : DEADBEEF r23 : DEADBEEF r24 : 2FF3B6E0
r25 : 2FF3B400 r26 : 10000574 r27 : 22222484 r28 : E3001E30 r29 : E6001800
r30 : 01304744 r31 : 01304648

Using the map, the offset to the TOC entry for demokext_j from the start of the TOC was 0x00000008
(see the above text concerning Method 2). Adding this offset to the value displayed for r2 indicates
that the TOC entry of interest is at: 0x0130475C. Note, the KDB Kernel Debugger may be used to
perform the addition. In this case the subcommand to use would be hcal @r2+8.

6. Display the TOC entry for demokext_j by typing:
dw 0130475C

This entry will contain the address of the data for demokext_j. The data displayed should be similar
to:
TOC+000008: 01304744 000BCB34 00242E94 001E0518 .0GD...4.$......

The value for the first word displayed is the address of the data for the demokext_j variable.

7. Display the data for demokext_j by typing:
dw 01304744

The data displayed should indicate that the value for demokext_j is still 0x0000064, which we set it to
earlier. This is because the breakpoint set was in the demokext routine prior to demokext_j being
incremented. The data displayed should be similar to:
demokext_j+000000: 00000064 01304040 01304754 00000000 ...d.0@@.0GT....

8. Clear all breakpoints:
ca

9. Exit the kernel debugger by typing g on the command line. Be careful here, when we exit, the demo
program will still be in the foreground and there will be a prompt for the next option. Also note that the
kernel extension is going to run and increment demokext_j; so next time it should have a value of
0x00000065.

10. Enter Ctrl+Z to stop the demo program. At this point the prompt changes to a dollar sign ($).

Chapter 17. KDB Kernel Debugger and Command 337

11. Place the demo program in the background by typing:
bg

Method 3: Using the Map File
Unlike the procedure outlined in method 2, this method can be used at any time. This method requires that
the map file and the address at which the kernel extension has been loaded.

Note: This method works because of the manner in which a kernel extension is loaded. Therefore, this
method might not work if the procedure for loading a kernel extension changes.

This method relies on the assumption that the address of a global variable can be found by using the
following formula:
Addr of variable = Addr of the last function before the variable in the map +

Length of the function +
Offset of the variable

To illustrate this calculation, refer to the following section of the map file for the demokext kernel extension.
20 000005B8 000028 2 GL SD S17 <.fp_write> glink.s(/usr/lib/glink.o)
21 000005B8 GL LD S18 .fp_write
22 000005E0 000028 2 GL SD S19 <.fp_open> glink.s(/usr/lib/glink.o)
23 000005E0 GL LD S20 .fp_open
24 00000000 0000F9 3 RW SD S21 <_$STATIC> demokext.c(demokext.o)
25 E 000000FC 000004 2 RW SD S22 demokext_j demokext.c(demokext.o)
26 * 00000100 00000C 2 DS SD S23 demokext demokext.c(demokext.o)
27 0000010C 000000 2 T0 SD S24 <TOC>
28 0000010C 000004 2 TC SD S25 <_$STATIC>
29 00000110 000004 2 TC SD S26 <_system_configuration>

The last function in the .text section is at lines 22-23. The offset of this function from the map is
0x000005E0 (line 22, column 2). The length of the function is 0x000028 (Line 22, column 3). The offset of
the demokext_j variable is 0x000000FC (line 25, column 2). So the offset from the load point value to
demokext_j is:
0x000005E0 + 0x000028 + 0x000000FC = 0x00000704

Adding this offset to the load point value of the demokext kernel extension yields the address of the data
for demokext_j. Assuming a load point value of 0x01304040 (as used in previous examples), this would
indicate that the data for demokext_j was located at:
0x01304040 + 0x00000704 = 0x01304744

Note: In Method 2, the address of the address of the data for demokext_j was calculated; while in Method
3 simply the address of the data for demokext_j was found. Also note that Method 1 is the primary
method of accessing global data when using the KDB Kernel Debugger. The other methods are
described to show alternatives and to allow the use of additional KDB subcommands in the
following examples.

To view global data:

1. Activate KDB, use the appropriate key sequence for your configuration. You should have a KDB
prompt on completion of this step.

2. Display the data for the demokext_j variable by typing:
dw demokext+704

The 704 value is calculated from the map using the procedure listed above. This offset is then added
to the load point of the demokext routine. Though there are numerous ways to find this address, in this
case it is easiest to use the symbolic name. For other methods, see “Setting Breakpoints” on
page 330. The value for demokext_j should now be 0x00000065. The data displayed should be similar
to:

338 Kernel Extensions and Device Support Programming Concepts

demokext_j+000000: 00000065 01304040 01304754 00000000 ...e.0@@.0GT....

3. Exit the KDB Kernel Debugger by typing g on the command line. At this point, the prompt changes to a
dollar sign ($).

4. Bring the demo program to the foreground:
fg

At this point, the prompt changes to ./demo.

5. Enter 0 to unload the demokext kernel extension and exit.

Stack Trace
The stack trace gives the stack history. This provides the sequence of procedure calls leading to the
current IAR. The Saved LR is the address of the instruction calling this procedure. You can use the map
file to locate the name of the procedure. Note that the first stack frame shown is almost always useless,
since data either has not been saved yet, or is from a previous call. The last function preceding the Saved
LR is the function that called the procedure.

The following is a concise view of the stack:
Low | |Stack grows at
Addresses | |this end.

|--------------------|
Callee’s stack -> 0 | Back chain |
pointer 4 | Saved CR |

8 | Saved LR |
12-16 | Reserved |<---LINK AREA (callee)

20 | SAVED TOC |
|--------------------|

Space for P1-P8 | P1 | OUTPUT ARGUMENT AREA
is always reserved | ... |<---(Used by callee to

| Pn | construct argument
| Callee’s |
| stack | <--- LOCAL STACK AREA
area

-8*nfprs-4*ngprs --> | Caller’s GPR | Rfirst = R13 for full
save | save area | save

| max 19 words | R31
|--------------------|

-8*nfprs --> | Caller’s FPR | Ffirst = F14 for a
| save area | full save
| max 18 dblwds | F31
|--------------------|

Caller’s stack -> 0 | Back chain |
pointer 4 | Saved CR |

8 | Saved LR |
12-16 | Reserved |<---LINK AREA (caller)

20 | Saved TOC |
|--------------------|

Space for P1-P8 24 | P1 | INPUT PARAMETER AREA
is always reserved | ... | <---(Callee’s input

| Pn | parameters found
|--------------------| here. Is also
| Caller’s | caller’s arg area.)
| stack |

High | area |
Addresses |

To illustrate some of the capabilities of the KDB Kernel Debugger for viewing the stack use the demo
program and demokext kernel extension. This time a break will be set in the write_log routine.

Chapter 17. KDB Kernel Debugger and Command 339

Before trying any of the following examples, use the following procedure to load the demokext kernel
extension:

1. Run the demo program by typing ./demo on the command line. This loads the demokext extension.

Note: The default prompt at this time is $.

2. Stop the demo program by entering Ctrl+Z on the keyboard.

3. Put the demo program in the background by typing bg on the command line.

4. Activate KDB using the appropriate key sequence for your configuration. You should have a KDB
prompt on completion of this step.

Note: The default KDB propmt is KDB(0)>.

To set and execute to a breakpoint in write_log:

1. Set a break at line 117 of demokext.c; this is the first line of write_log by typing:
b demokext+280

Note: The offset of 0x00000280 was determined from the list file as described in earlier sections.

2. Exit the KDB Kernel Debugger by typing g on the command line. At this point the default prompt
becomes a $.

3. Bring the demo program to the foreground:
fg

At this point the default prompt changes to ./demo.

4. Select option 1 to increment the counters in the kernel extension demokext. This causes the KDB
Kernel Debugger to be invoked; stopped at the breakpoint set in write_log.

To view the stack:

1. Display the stack for the current process, which was the the demo program calling the demokext
kernel extension (since there was a break set), by typing:
stack

The stack trace back displays the routines called and traces back through system calls. The
displayed data should be similar to:
thread+001800 STACK:
[013042C0]write_log+00001C (10002040, 2FF3B258, 2FF3B2BC)
[013040B0]demokext+000070 (00000001, 2FF3B338)
[001E3BF4]config_kmod+0000F0 (??, ??, ??)
[001E3FA8]sysconfig+000140 (??, ??, ??)
[000039D8].sys_call+000000 ()
[10000570]main+000280 (??, ??)
[10000188]__start+000088 ()

2. To step back 4 instructions, type:
s 4

This should get into a strlen call. If it doesn’t, continue stepping until strlen is entered.

3. Reexamine the stack by typing:
stack

It should now include the strlen call and should look similar to:
thread+001800 STACK:
[01304500]strlen+000000 ()
[013042CC]write_log+000028 (10002040, 2FF3B258, 2FF3B2BC)
[013040B0]demokext+000070 (00000001, 2FF3B338)
[001E3BF4]config_kmod+0000F0 (??, ??, ??)

340 Kernel Extensions and Device Support Programming Concepts

[001E3FA8]sysconfig+000140 (??, ??, ??)
[000039D8].sys_call+000000 ()
[10000570]main+000280 (??, ??)
[10000188]__start+000088 ()

4. Toggle the KDB Kernel Debugger option to display the top (lower addresses) 64 bytes for each stack
frame by typing:
set display_stack_frames

5. Redisplay the stack with the display_stack_frames option turned on by typing:
stack

The output should be similar to:
thread+001800 STACK:
[01304510]strlen+000000 ()
===
2FF3B1C0: 2FF3 B210 2FF3 B380 0130 4364 0000 0000 /.../....0Cd....
2FF3B1D0: 2FF3 B230 0130 4754 0023 AD5C 2222 2082 /..0.0GT.#.\"" .
2FF3B1E0: 0012 0000 2FF3 B400 0000 0480 0000 510C/.........Q.
2FF3B1F0: 2FF3 B260 4A22 2860 001D CEC8 0000 153C /..`J"(`.......<
===
[013042CC]write_log+000028 (10002040, 2FF3B258, 2FF3B2BC)
===
2FF3B210: 2FF3 B2E0 0000 0003 0130 40B4 0000 0000 /........0@.....
2FF3B220: 0000 0000 2FF3 B380 1000 2040 2FF3 B258/..... @/..X
2FF3B230: 2FF3 B2BC 0000 0000 001E 5968 0000 0000 /.........Yh....
2FF3B240: 0000 0000 0027 83E8 0048 5358 007F FFFF’...HSX....
===
[013040B0]demokext+000070 (00000001, 2FF3B338)
===
2FF3B2E0: 2FF3 B370 2233 4484 001E 3BF8 0000 0000 /..p"3D...;.....
2FF3B2F0: 0000 0000 0027 83E8 0000 0001 2FF3 B338’....../..8
2FF3B300: E300 1E30 0000 0020 2FF1 F9F8 2FF1 F9FC ...0... /.../...
2FF3B310: 8000 0000 0000 0001 2FF1 F780 0000 3D20/.....=
[001E3BF4]config_kmod+0000F0 (??, ??, ??)
===
2FF3B370: 2FF3 B3C0 0027 83E8 001E 3FAC 2FF2 2FF8 /....’....?././.
2FF3B380: 0000 0002 2FF3 B400 F014 8912 0000 0FFE/...........
2FF3B390: 2FF3 B388 0000 153C 0000 0001 2000 7758 /......<.... .wX
2FF3B3A0: 0000 0000 0000 09B4 0000 0FFE 0000 0000
===
[001E3FA8]sysconfig+000140 (??, ??, ??)
===
2FF3B3C0: 2FF2 1AA0 0002 D0B0 0000 39DC 2222 2022 /.........9."" "
2FF3B3D0: 0000 3E7C 0000 0000 2000 9CF8 2000 9D08 ..>|....
2FF3B3E0: 2000 A1D8 0000 0000 0000 0000 0000 0000
2FF3B3F0: 0000 0000 0024 FA90 0000 0000 0000 0000$..........
===
[000039D8].sys_call+000000 ()
===
2FF21AA0: 2FF2 2D30 0000 0000 1000 0574 0000 0000 /.-0.......t....
2FF21AB0: 0000 0000 2000 0B14 2000 08AC 2FF2 1AE0/...
2FF21AC0: 0000 000E F014 992D 6F69 6365 3A20 0000-oice: ..
2FF21AD0: FFFF FFFF D012 D1C0 0000 0000 0000 0000
===
[10000570]main+000280 (??, ??)
===
2FF22D30: 0000 0000 0000 0000 1000 018C 0000 0000
2FF22D40: 0000 0000 0000 0000 0000 0000 0000 0000
2FF22D50: 0000 0000 0000 0000 0000 0000 0000 0000
2FF22D60: 0000 0000 0000 0000 0000 0000 0000 0000
===
[10000188]__start+000088 ()

The displayed data can be interpreted using the diagram presented at the first of this section.

Chapter 17. KDB Kernel Debugger and Command 341

6. Toggle the display_stack_frames option off by typing:
set display_stack_frames

7. Toggle the KDB Kernel Debugger option to display the registers saved in each stack frame by typing:
set display_stacked_regs

8. Redisplay the stack with the display_stacked_regs option activated by typing:
stack

The display should be similar to:
thread+001800 STACK:
[01304510]strlen+000010 ()
[013042CC]write_log+000028 (10002040, 2FF3B258, 2FF3B2BC)

r30 : 00000000 r31 : 01304648
[013040B0]demokext+000070 (00000001, 2FF3B338)

r30 : 00000000 r31 : 00000000
[001E3BF4]config_kmod+0000F0 (??, ??, ??)

r30 : 00000005 r31 : 2FF21AF8
[001E3FA8]sysconfig+000140 (??, ??, ??)

r30 : 04DAE000 r31 : 00000000
[000039D8].sys_call+000000 ()
[10000570]main+000280 (??, ??)

r25 : DEADBEEF r26 : DEADBEEF r27 : DEADBEEF r28 : DEADBEEF r29 : DEADBEEF
r30 : DEADBEEF r31 : DEADBEEF

[10000188]__start+000088 ()

9. Toggle the display_stacked_regs option off by typing:
set display_stacked_regs

10. Display the stack in raw format by typing:
dw @r1 90

Note: The address for the stack is in general purpose register 1, so that can be used. The address
could also have been obtained from the output when the display_stack_frames option was
set.

This subcommand displays 0x90 words of the stack in hex and ascii. The output should be similar to
the following:
2FF3B1C0: 2FF3B210 2FF3B380 01304364 00000000 /.../....0Cd....
2FF3B1D0: 2FF3B230 01304754 0023AD5C 22222082 /..0.0GT.#.\"" .
2FF3B1E0: 00120000 2FF3B400 00000480 0000510C/.........Q.
2FF3B1F0: 2FF3B260 4A222860 001DCEC8 0000153C /..`J"(`.......<
2FF3B200: 00000000 00000000 00000000 013046480FH
2FF3B210: 2FF3B2E0 00000003 013040B4 00000000 /........0@.....
2FF3B220: 00000000 2FF3B380 10002040 2FF3B258/..... @/..X
2FF3B230: 2FF3B2BC 00000000 001E5968 00000000 /.........Yh....
2FF3B240: 00000000 002783E8 00485358 007FFFFF’...HSX....
2FF3B250: 10002040 00000000 64656D6F 6B657874 .. @....demokext
2FF3B260: 20776173 2063616C 6C656420 666F7220 was called for
2FF3B270: 636F6E66 69677572 6174696F 6E0A0000 configuration...
2FF3B280: 00000000 00000000 00001000 2FF3B390/...
2FF3B290: 2FF3B2E0 00040003 001CE9EC 314C0000 /...........1L..
2FF3B2A0: 2FF3B2E0 002783E8 2FF3B338 00000000 /....’../..8....
2FF3B2B0: 00000000 2E746578 74000000 10000100text.......
2FF3B2C0: 10000100 00000710 00000100 00000000
2FF3B2D0: 00000000 2FF3B380 00000000 00000000/...........
2FF3B2E0: 2FF3B370 22334484 001E3BF8 00000000 /..p"3D...;.....
2FF3B2F0: 00000000 002783E8 00000001 2FF3B338’....../..8
2FF3B300: E3001E30 00000020 2FF1F9F8 2FF1F9FC ...0... /.../...
2FF3B310: 80000000 00000001 2FF1F780 00003D20/.....=
2FF3B320: 2FF21AE8 00000010 01304748 00000001 /........0GH....
2FF3B330: 2FF21AE8 00000010 2FF3B320 FFFFFFFF /......./..
2FF3B340: 00000001 00000000 00000000 00000000
2FF3B350: 00000010 00001C08 00000000 00000000
2FF3B360: 00000031 82222824 00000005 2FF21AF8 ...1."($..../...
2FF3B370: 2FF3B3C0 002783E8 001E3FAC 2FF22FF8 /....’....?././.

342 Kernel Extensions and Device Support Programming Concepts

2FF3B380: 00000002 2FF3B400 F0148912 00000FFE/...........
2FF3B390: 2FF3B388 0000153C 00000001 20007758 /......<.... .wX
2FF3B3A0: 00000000 000009B4 00000FFE 00000000
2FF3B3B0: 00000010 E6001800 04DAE000 00000000
2FF3B3C0: 2FF21AA0 0002D0B0 000039DC 22222022 /.........9."" "
2FF3B3D0: 00003E7C 00000000 20009CF8 20009D08 ..>|....
2FF3B3E0: 2000A1D8 00000000 00000000 00000000
2FF3B3F0: 00000000 0024FA90 00000000 00000000$..........

This portion of the stack may be interpreted using the diagram at the beginning of this section.

11. Clear all breakpoints by typing:
ca

12. Exit the kernel debugger by typing g on the command line. Upon exitting the debugger the prompt
from the demo program is be displayed. The default prompt is ./demo.

13. Enter an choice of 0 to unload the kernel extension and quit.

Subcommands for the KDB Kernel Debugger and kdb Command
View a list of the KDB Kernel Debug Subcommands grouped by:

v Alphabetical order

v Task Category

Alphabetical List of KDB Kernel Debug Program Subcommands
The following table shows the KDB Kernel Debug Program subcommands in alphabetical order:

Subcommand Function Task Category

ames VMM address map entries VMM

apt VMM APT entries VMM

asc Display ascsi SCSI

B step on branch Breakpoints/Steps

b set/list break point(s) Breakpoints/Steps

bt set/list trace point(s) Trace

btac branch target btac/BRAT

buffer Display buffer File System

c clear break point Breakpoints/Steps

ca clear all break points Breakpoints/Steps

cat clear all trace points Trace

cbtac clear branch target btac/BRAT

cdt Display cdt Basic

clk Display complex lock System Table

cpu Switch to cpu SMP

ct clear trace point Trace

ctx switch to KDB context Basic

cw clear watch Watch

d display byte data Dumps/Display/Decode

dbat display dbats bat/Block Address Translation

dc display code Dumps/Display/Decode

dcal calc/conv a decimal expr Calculator Converter

Chapter 17. KDB Kernel Debugger and Command 343

Subcommand Function Task Category

dd display double word data Dumps/Display/Decode

ddpb display device byte Dumps/Display/Decode

ddpd display device double word Dumps/Display/Decode

ddph display device half word Dumps/Display/Decode

ddpw display device word Dumps/Display/Decode

ddvb display device byte Dumps/Display/Decode

ddvd display device double word Dumps/Display/Decode

ddvh display device half word Dumps/Display/Decode

ddvw display device word Dumps/Display/Decode

debug enable/disable debug Miscellaneous

devsw Display devsw table System Table

devnode Display devnode File System

di decode the hexadecimal instruction word Dumps/Display/Decode

dp display byte data Dumps/Display/Decode

dpc display code Dumps/Display/Decode

dpd display double word data Dumps/Display/Decode

dpw display word data Dumps/Display/Decode

dr display registers Dumps/Display/Decode

dw display word data Dumps/Display/Decode

e exit Basic

exp list export tables Kernel Extension Loader

ext extract pattern Dumps/Display/Decode

extp extract pattern Dumps/Display/Decode

f stack frame trace Basic

fbuffer Display freelist File System

fifono Display fifonode File System

file Display file File System

find find pattern Dumps/Display/Decode

findp find pattern Dumps/Display/Decode

gfs Display gfs File System

gnode Display gnode File System

gt go until address Breakpoints/Steps

h help Basic

hbuffer Display buffehash File System

hcal calc/conv a hexa expr Calculator Converter

heap Display kernel heap Memory Allocator

hinode Display inodehash File System

his print history Basic

hnode isplay hnodehash File System

ibat display ibats bat/Block Address Translation

icache Display icache list File System

344 Kernel Extensions and Device Support Programming Concepts

Subcommand Function Task Category

ifnet Display interface NET

inode Display inode File System

intr @Display int handler Process

ipc IPC information VMM

ipl Display ipl proc info System Table

kmbucket Display kmembuckets Memory Allocator

kmstats Display kmemstats Memory Allocator

lb set/list local bp(s) Breakpoints/Steps

lbtac local branch target btac/BRAT

lc clear local bp Breakpoints/Steps

lcbtac clear local br target btac/BRAT

lcw clear local watch Watch

lke list loaded extensions Kernel Extension Loader

lockanch VMM lock anchor/tblock VMM

lockhash VMM lock hash VMM

lockword VMM lock word VMM

lvol Display logical vol LVM

lwr local stop on read data Watch

lwrw local stop on r/w data Watch

lww local stop on write data Watch

m modify sequential bytes Modify Memory

mbuf Display mbuf NET

md modify sequential double word Modify Memory

mdbat modify dbats bat/Block Address Translation

mdpb modify device byte Modify Memory

mdpd modify device double word Modify Memory

mdph modify device half Modify Memory

mdpw modify device word Modify Memory

mdvb modify device byte Modify Memory

mdvd modify device double word Modify Memory

mdvh modify device half Modify Memory

mdvw modify device word Modify Memory

mibat modify ibats bat/Block Address Translation

mp modify sequential bytes Modify Memory

mpd modify sequential double word Modify Memory

mpw modify sequential word Modify Memory

mr modify registers Modify Memory

mst Display mst area Process

mw modify sequential word Modify Memory

n next instruction Breakpoints/Steps

ndd display network and device driver statistics Net

Chapter 17. KDB Kernel Debugger and Command 345

Subcommand Function Task Category

netm display the net_malloc event records Net

netstat display network status Net

nm translate symbol to eaddr Namelist/Symbol

ns no symbol mode (toggle) Namelist/Symbol

pbuf Display physical buf LVM

pdt VMM paging device table VMM

pfhdata VMM control variables VMM

pft VMM PFT entries VMM

ppda Display per processor data area Process

print Print a formatted structure at an address Namelist/Symbol

proc Display proc table Process

pta VMM PTA segment VMM

pte VMM PTE entries VMM

pvol Display physical vol LVM

r go to end of function Breakpoints/Steps

reboot reboot the machine Miscellanous

rmap VMM RMAP VMM

rmst remove symbol table Kernel Extension Loader

rnode Display rnode File System

s single step Breakpoints/Steps

S step on bl/blr Breakpoints/Steps

scb VMM segment control blocks VMM

scd Display scdisk SCSI

segst64 VMM SEGSTATE VMM

set display/update kdb toggles Basic

slk Display simple lock System Table

sock Display socket NET

sockinfo Display socket info by address NET

specnode Display specnode File System

sr64 VMM SEG REG VMM

start Start cpu SMP

stat system status message Machine Status

stbl list loaded symbol tables Kernel Extension Loader

ste VMM STAB VMM

stop Stop cpu SMP

switch switch thread Machine Status

symptom Display symptom string for a dump Machine Status

tcb Display TCBs NET

tcpcb Display TCP CB NET

test bt condition Conditional

time display elapsed time Miscellaneous

346 Kernel Extensions and Device Support Programming Concepts

Subcommand Function Task Category

thread Display thread table Process

tpid Display thread pid Process

tr translate to real address Address Translation

trace Display trace buffer System Table

trb Display system timer request blocks System Table

trcstart Starts the system trace Trace

trcstop Stops the system trace Trace

ts translate eaddr to symbol Namelist/Symbol

ttid Display thread tid Process

tv display MMU translation Address Translation

udb Display UDBs NET

user Display u_area Process

var Display var System Table

vfs Display vfs File System

vmdmap VMM disk map VMM

vmlocks VMM spin locks VMM

vmaddr VMM Addresses VMM

vmker VMM kernel segment data VMM

vmlog VMM error log VMM

vmstat VMM statistics VMM

vmwait VMM wait status VMM

vnode Display vnode File System

volgrp Display volume group LVM

vrld VMM reload xlate table VMM

vsc Display vscsi SCSI

which Display name of kernel source file Namelist/Symbol

wr stop on read data Watch

wrw stop on r/w data Watch

ww stop on write data Watch

xm Display heap debug Memory Allocator

zproc VMM zeroing kproc VMM

Task Category List of KDB Kernel Debug Program Subcommands
The kernel debug program subcommands can be grouped into the following task categories:

v Basic Subcommands

v Trace Subcommands

v Breakpoints/Steps Subcommands

v Dumps/Display/Decode Subcommands

v Modify Memory Subcommands

v Namelist/Symbol Subcommands

v Watch Break Point Subcommands

Chapter 17. KDB Kernel Debugger and Command 347

v Miscellaneous Subcommands

v Conditional Subcommands

v Calculator Converter Subcommands

v Machine Status Subcommands

v Kernel Extension Loader Subcommands

v Address Translation Subcommands

v Process Subcommands

v LVM Subcommands

v SCSI Subcommands

v Memory Allocator Subcommands

v File System Subcommands

v System Table Subcommands

v Net Subcommands

v VMM Subcommands

v SMP Subcommands

v bat/Block Address Translation Subcommands

v btac/BRAT Subcommands

Basic Subcommands

Subcommand Function

h help

his print history

e exit

set display/update kdb toggles

f stack frame trace

ctx switch to KDB context

cdt Display cdt

Trace Subcommands

Subcommand Function

bt set/list trace point(s)

ct clear trace point

cat clear all trace points

trcstart start the system trace

trcstop stop the system trace

Breakpoints/Steps Subcommands

Subcommand Function

b set/list break point(s)

lb set/list local bp(s)

c clear break point

lc clear local bp

ca clear all break points

348 Kernel Extensions and Device Support Programming Concepts

Subcommand Function

r go to end of function

gt go until address

n next instruction

s single step

S step on bl/blr

B step on branch

Dumps/Display/Decode Subcommands

Subcommand Function

d display byte data

di decode the hexadecimal instruction word

dw display word data

dd display double word data

dp display byte data

dpw display word data

dpd display double word data

dc display code

dpc display code

dr display registers

ddvb display device byte

ddvh display device half word

ddvw display device word

ddvd display device double word

ddpb display device byte

ddph display device half word

ddpw display device word

ddpd display device double word

find find pattern

findp find pattern

ext extract pattern

extp extract pattern

Modify Memory Subcommands

Subcommand Function

m modify sequential bytes

mw modify sequential word

md modify sequential double word

mp modify sequential bytes

mpw modify sequential word

mpd modify sequential double word

Chapter 17. KDB Kernel Debugger and Command 349

Subcommand Function

mr modify registers

mdvb modify device byte

mdvh modify device half

mdvw modify device word

mdvd modify device double word

mdpb modify device byte

mdph modify device half

mdpw modify device word

mdpd modify device double word

Namelist/Symbol Subcommands

Subcommand Function

nm translate symbol to eaddr

ns no symbol mode (toggle)

ts translate eaddr to symbol

print Print a formatted structure at an address

which display name of kernel source file

Watch Break Point Subcommands

Subcommand Function

wr stop on read data

ww stop on write data

wrw stop on r/w data

cw clear watch

lwr local stop on read data

lww local stop on write data

lwrw local stop on r/w data

lcw clear local watch

Miscellaneous Subcommands

Subcommand Function

time display elapsed time

debug enable/disable debug

reboot Reboot the machine

Conditional Subcommands

Subcommand Function

test bt condition

350 Kernel Extensions and Device Support Programming Concepts

Calculator Converter Subcommands

Subcommand Function

hcal calc/conv a hexa expr

dcal calc/conv a decimal expr

Machine Status Subcommands

Subcommand Function

stat system status message

switch switch thread

symptom display symptom string for a dump

Kernel Extension Loader Subcommands

Subcommand Function

lke list loaded extensions

stbl list loaded symbol tables

rmst remove symbol table

exp list export tables

Address Translation Subcommands

Subcommand Function

tr translate to real address

tv display MMU translation

Process Subcommands

Subcommand Function

ppda Display per processor data area

intr @Display int handler

mst Display mst area

proc Display proc table

thread Display thread table

ttid Display thread tid

tpid Display thread pid

user Display u_area

LVM Subcommands

Subcommand Function

pbuf Display physical buf

volgrp Display volume group

pvol Display physical vol

lvol Display logical vol

Chapter 17. KDB Kernel Debugger and Command 351

SCSI Subcommands

Subcommand Function

asc Display ascsi

vsc Display vscsi

scd Display scdisk

Memory Allocator Subcommands

Subcommand Function

heap Display kernel heap

xm Display heap debug

kmbucket Display kmembuckets

kmstats Display kmemstats

File System Subcommands

Subcommand Function

buffer Display buffer

hbuffer Display buffehash

fbuffer Display freelist

gnode Display gnode

gfs Display gfs

file Display file

inode Display inode

hinode Display inodehash

icache Display icache list

rnode Display rnode

vnode Display vnode

vfs Display vfs

specnode Display specnode

devnode Display devnode

fifonode Display fifonode

hnode Display hnodehash

System Table Subcommands

Subcommand Function

var Display var

devsw Display devsw table

trb Display system timer request blocks

slk Display simple lock

clk Display complex lock

ipl Display ipl proc info

trace Display trace buffer

352 Kernel Extensions and Device Support Programming Concepts

Net Subcommands

Subcommand Function

ifnet Display interface

ndd Display network device driver statistics

netm Display the net_malloc event records

netstat Display network status

tcb Display TCBs

udb Display UDBs

sock Display socket

sockinfo Display socket information

tcpcb Display TCP CB

mbuf Display mbuf

VMM Subcommands

Subcommand Alias

vmker VMM kernel segment data

rmap VMM RMAP

pfhdata VMM control variables

vmstat VMM statistics

vmaddr VMM Addresses

pdt VMM paging device table

scb VMM segment control blocks

pft VMM PFT entries

pte VMM PTE entries

pta VMM PTA segment

ste VMM STAB

sr64 VMM SEG REG

segst64 VMM SEGSTATE

apt VMM APT entries

vmwait VMM wait status

ames VMM address map entries

zproc VMM zeroing kproc

vmlog VMM error log

vrld VMM reload xlate table

ipc IPC information

lockanch VMM lock anchor/tblock

lockhash VMM lock hash

lockword VMM lock word

vmdmap VMM disk map

vmlocks VMM spin locks

Chapter 17. KDB Kernel Debugger and Command 353

SMP Subcommands

Subcommand Function

start Start cpu

stop Stop cpu

cpu Switch to cpu

bat/Block Address Translation Subcommands

Subcommand Function

dbat Display dbats

ibat Display ibats

mdbat Modify dbats

mibat Modify ibats

btac/BRAT Subcommands

Subcommand Function

btac Branch target

cbtac Clear branch target

lbtac Local branch target

lcbtac Clear local branch target

Basic Subcommands

h Subcommand
Display the list of valid subcommands. The help subcommand can be reduced at only one category. The
list of categories is:

v basic subcommands [exit-setup-stack frame]

v trace break point subcommands [break and continue]

v break points/steps subcommands [break and prompt]

v dumps/display/decode/search subcommands [show memory-registers]

v modify memory subcommands [alter memory-registers]

v namelists/symbols subcommands [symbol name<->address]

v watch subcommands [data break point]

v misc subcommands [internal KDB debug features]

v conditional subcommands [how to set conditional break point]

v calculator converter subcommands [hex<->dec]

v machine status subcommands [status-thread switching]

v loader subcommands [show kernel extension-export table]

v address translation subcommands [V to R mapping]

v process subcommands [processor-interrupt-process-thread]

v lvm subcommands [show logical volume manager info]

v scsi subcommands [show disk driver queues]

v memory allocator subcommands [kernel heap-kmem bucket]

v file system subcommands [buffer-kernel heap-LFS-VFS-SPECFS]

354 Kernel Extensions and Device Support Programming Concepts

v system table subcommands [timer-lock-trace hooks-]

v net subcommands [ifnet-tcb-udb-socket-mbuf]

v vmm subcommands [segment-page-paging device-disk map...]

v SMP subcommands [start-stop-CPU status]

v bat/Block Address Translation subcommands [show-alter BAT register]

v btac/BRAT subcommands [branch break point]

Syntax:

h [topic]

Aliases:

v ?

v help

Example:
KDB(0)> ? ?
help topics:

basic subcommands
trace subcommands
break points/steps
dumps/display/decode
modify memory
namelists/symbols
kdbx subcommands (do not use directly)
watch subcommands
conditional subcommand
calculator converter
machine status
loader subcommands
address translation
system table
net subcommands
vmm subcommands
trampolin subcommands
SMP subcommands
bat/Block Address Translation
btac/BRAT subcommand
machdep subcommands

KDB(7)> ? step
CMD ALIAS ALIAS FUNCTION ARG

*** break points/steps ***

b brk set/list break point(s) [-p/-v] [addr]
lb lbrk set/list local bp(s) [-p/-v] [addr]
c cl clear break point [slot|[-p/-v] addr]
lc lcl clear local bp [slot|[-p/-v] addr [ctx]]
ca clear all break points
r return go to end of function
gt go until address [-p/-v] addr
n nexti next instruction [count]
s stepi single step [count]
S step on bl/blr
B step on branch

Chapter 17. KDB Kernel Debugger and Command 355

his Subcommand
The his subcommand prints a history of user input. An argument can be used to specify the number of
historical entries to display. Each historical entry can be recalled and edited for use with the usual control
characters (as in emacs).

Syntax:

his [?] [value]

v value - a decimal value or expression indicating the number of previous user entries to display

v ? - display help, including editing characters

Aliases:

v hi

v hist

Example:
KDB(3)> his ?
Usage: hist [line count]
...... CTRL_A go to beginning of the line
...... CTRL_B one char backward
...... CTRL_D delete one char
...... CTRL_E go to end of line
...... CTRL_F one char forward
...... CTRL_N next command
...... CTRL_P previous command
...... CTRL_U kill line
KDB(3)> his
tpid
f
s 11
r
n 11
p proc+001680
c
dc .kforkx+30 11
mw .kforkx+000040
48005402
.
his ?
KDB(3)>

e Subcommand
The exit subcommand exits the kdb command and KDB Kernel Debugger. For the KDB Kernel Debugger,
this subcommand exits the debugger with all breakpoints installed in memory. To exit the KDB Kernel
Debugger without breakpoints, the ca subcommand should be invoked to clear all breakpoints prior to
leaving the debugger.

The exit subcommand leaves KDB session and returns to the system; all breakpoints are installed in
memory. To leave KDB without breakpoints, the clear all subcommand must be invoked.

Syntax:

e [dump]

Arguments:

v dump - this argument indicates that a system dump will be created when exiting the KDB Kernel
Debugger. The optional dump argument is only applicable to the KDB kernel debugger. The dump
argument can be specified to force an operating system dump. The method used to force a dump
depends on how the debugger was invoked.

356 Kernel Extensions and Device Support Programming Concepts

panic If the debugger was invoked by the panic call, force the dump by entering q dump. If another
processor enters KDB after that (for example, a spin-lock timeout), exit the debugger.

halt_display
If the debugger was invoked by a halt display (C20 on the LED), enter q

soft_reset
If the debugger was invoked by a soft reset (pressing the reset button once), first move the key
on the server. If the key was in the SERVICE position at boot time, move it to the NORMAL
position; otherwise, move the key to the SERVICE position.

Note: Forcing a dump using this method requires that you know what the key position was at
boot time.

Then enter quit once for each CPU.

break in
You cannot create a dump if the debugger was invoked with the break method (^\).

When the dump is in progress, _0c9 displays on the LEDs while the dump is copied on disk (either on
hd7 or hd6). If you entered the debugger through a panic call, control is returned to the debugger when
the dump is over, and the LEDs show xxxx. If you entered the debugger through halt_display, the
LEDs show 888 102 700 0c0 when the dump is complete.

Aliases:

v q

v g

set Subcommand
The set subcommand can be used to list and set kdb toggles.

Syntax:

set [toggle]

v option number - decimal number indicating the option to be toggled or set

v option name - name of the option to be toggled or set

v value - decimal number or expression indicating the value to be set for an option

Current list of toggles is:

v no_symbol to suppressed the symbol table management.

v mst_wanted to display all mst items in the stack trace subcommand, every time an interrupt is detected
in the stack. To have shorter display, disable this toggle.

v screen_size can be set to change the integrated more window size.

v power_pc_syntax is used in the disassembler package to display old POWER family or new
POWER-based platform instruction mnemonics.

v hardware_target is also used in the disassembler package to detect invalid op-code on the specified
target. Allowed targets are POWER 601, 603, 604, 620 (toggle value: 601, 603, 604, 620) and POWER
RS1 RS2 (toggle value: 1, 2).

v unix_symbol_start_from is the lowest effective address from which symbol search is started. To force
other values to be displayed in hexadecimal, set this toggle.

v hexadecimal_wanted applies to thread and process subcommand. It is possible to have information in
decimal.

v screen_previous applies to display subcommand. When it is true, the display subcommand continues
(when typing enter) with decreasing addresses.

Chapter 17. KDB Kernel Debugger and Command 357

v display_stack_frames applies to stack display subcommand. When it is true, the stack display
subcommand prints a part of the stack in binary mode.

v display_stacked_regs applies to stack display subcommand. When it is true, the stack display
subcommand prints register values saves in the stack.

v 64_bit is used to print 64-bit registers on 64-bit architecture. By default only 32-bit formats are printed.

v ldr_segs_wanted Toggle to turn off/on interpretation of effective addresses in segment 11 (0xbxxxxxxx)
and segment 13 (0xdxxxxxxx) as references to loader data.

v trace_back_lookup should be set to process trace back information on user code (text or shared-lib)
and kernext code. It can be used to see function names. By default it is not set.

v origin Sets the origin variable to the value of the specified expression. Origins are used to match
addresses with assembly language listings (which express addresses as offsets from the start of the
file).

v edit provides command line editing features similar to those provided by the Korn Shell. The mode
specified provides editing features similar to similar editors, such as vi, emacs, and gmacs. For
example, to turn on vi-style command line editing, type the following at the kdb prompt: set edit vi.

v logfile enables, by specifying a log file name, or disables logging. If logfile is invoked without a
parameter specifying a file name, logging is disabled.

v loglevel allows the granularity for logging to be chosen. Valid choices will are:

– 0 - off

– 1 - Log commands only

– 2 - Log commands and output.

The default loglevel is 2.

Toggles display_stack_frames and display_stacked_regs can be used to find arguments of routines.
Arguments are saved in non-volatile registers or in the current stack. It is an easy way to look for them.

The following options apply only to the KDB Kernel Debugger, not the kdb command:

v Thread/Cpu attached local breakpoint Toggle to choose whether local breakpoints are thread or CPU
based. By default, on POWER RS1 local breakpoints are CPU based, and on the POWER-based
platform they are thread based. Note, this toggle must be access via the option number; it cannot be
toggled by name.

v Emacs window Toggle to turn off/on suppression of extra line feeds for execution under emacs.

v KDB stops all processors Toggle to select whether all or a single processor is stopped upon
invocation of the KDB Kernel debugger (from break points, panic, keyboard, ...).

v kext_IF_active Toggle to disable/enable subcommands added to the KDB Kernel Debugger via kernel
extensions. By default all subcommands registered by kernel extensions are not active.

Aliases: setup

Example:
KDB(1)> set
No toggle name current value

1 no_symbol false
2 mst_wanted true
3 screen_size 24
4 power_pc_syntax true
5 hardware_target 604
6 Unix symbols start from 3500
7 hexadecimal_wanted true
8 screen_previous false
9 display_stack_frames false
10 display_stacked_regs false
11 64_bit false
12 emacs_window false
13 Thread attached local breakpoint

358 Kernel Extensions and Device Support Programming Concepts

14 KDB stops all processors
15 tweq_r1_r1 true
16 kext_IF_active true
17 kext_IF_active false
18 origin 00000000
19 edit vi
20 logfile none
21 loglevel 2

KDB(1)> dw 000034CC display memory
000034CC: 00000002 00000008 00010006 00000020
KDB(1)> set 6 1000 toggle change
Unix symbols start from 1000
KDB(1)> dw 000034CC display memory
_system_configuration+000000: 00000002 00000008 00010006 00000020

KDB(4)> sw 464
Switch to thread: <thread+015C00>
KDB(4)> sw u to see user code
KDB(4)> dc 1000A14C
1000A14C bl <1000A1A4>
KDB(4)> set 17
trace_back_lookup is true
KDB(4)> dc 1000A14C
.get_superblk+00007C bl <.validate_super>

KDB(0)> set origin 002C5338
origin = 002C5338
KDB(0)> b init_heap1
.init_heap1+000000 (real address:002C55F4) permanent & global
KDB(0)> e
Breakpoint
.init_heap1+000000 (ORG+000002BC) stmw r24,FFFFFFE0(stkp) <.mainstk+001EB8> r24=00003A60,FFFFFFE0(stkp)=00384B74
KDB(0)>
In the listing you can see ...

| 000000 PDEF init_heap1
0| PROC heap_addr,numpages,flags,heapx,pages,gr3-gr8
0| 0002BC stm BF01FFE0 8 STM #stack(gr1,-32)=gr24-gr31

...

f Subcommand
The f subcommand displays all the stack frames from the current instruction as deep as possible.
Interrupts and system calls are crossed and the user stack is also displayed. In the user space, trace back
allows display of symbolic names. But KDB can not directly access these symbols. Use the +x toggle to
have hex addresses displayed (for example, to put a break point on one of these addresses). If invoked
with no argument the stack for the current thread is displayed. The stack for a particular thread can be
displayed by specifying its slot number or address.

Note: The amount of data displayed can be controlled through the mst_wanted and
display_stack_wanted options of the set subcommand. For more information, see “set
Subcommand” on page 357.

Syntax:

f [+x | -x] [th {slot | Address}]

v +x - Includes hex addresses as well as symbolic names for calls on the stack. This option remains set
for future invocations of the stack subcommand, until changed via the -x flag.

v -x - Suppresses display of hex addresses for functions on the stack. This option remains in effect for
future invocations of the stack subcommand, until changed via the +x flag.

v slot - Decimal value indicating the thread slot number

v Address - Hex address, hex expression, or symbol indicating the effective address for a thread slot

Aliases:

v stack

v where

Chapter 17. KDB Kernel Debugger and Command 359

For some compilation options, specifically -O, routine parameters are not saved in the stack. KDB warns
about this by displaying [??] at the end of the line. In this case, the displayed routine arguments might be
wrong.

Example:

v how to find information in registers

v how to find information in the stack

In the following example, we set a break point on v_gettlock, and when the break point is encountered,
the stack is displayed. Then we try to display the first argument of the open() syscall. Looking at the code,
we can see that argument is saved by copen() in register R31, and this register is saved in the stack by
openpath(). Looking at memory pointed by register R31, argument is found: /dev/ptc
KDB(2)> f show the stack
thread+012540 STACK:
[0004AC84]v_gettlock+000000 (00012049, C0011E80, 00000080, 00000000 [??]) <-- Optimized code, note [??]
[00085C18]v_pregettlock+0000B4 (??, ??, ??, ??)
[000132E8]isync_vcs1+0000D8 (??, ??)
____ Exception (2FF3B400) ____
[000131FC].backt+000000 (00012049, C0011E80 [??]) <-- Optimized code, note [??]
[0004B220]vm_gettlock+000020 (??, ??)
[0019A64C]iwrite+00013C (??)
[0019D194]finicom+0000A0 (??, ??)
[0019D4F0]comlist+0001CC (??, ??)
[0019D5BC]_commit+000030 (00000000, 00000001, 09C6E9E8, 399028AA,
0000A46F, 0000E2AA, 2D3A4EAA, 2FF3A730)
[001E1B18]jfs_setattr+000258 (??, ??, ??, ??, ??, ??)
[001A5ED4]vnop_setattr+000018 (??, ??, ??, ??, ??, ??)
[001E9008]spec_setattr+00017C (??, ??, ??, ??, ??, ??)
[001A5ED4]vnop_setattr+000018 (??, ??, ??, ??, ??, ??)
[01B655C8]pty_vsetattr+00002C (??, ??, ??, ??, ??, ??)
[01B6584C]pty_setname+000084 (??, ??, ??, ??, ??, ??)
[01B60810]pty_create_ptp+0002C4 (??, ??, ??, ??, ??)
[01B60210]pty_open_comm+00015C (??, ??, ??, ??)
[01B5FFC0]call_pty_open_comm+0000B8 (??, ??, ??, ??)
[01B6526C]ptm_open+000140 (??, ??, ??, ??, ??)
(2)> more (^C to quit) ?
[01A9A124]open_wrapper+0000D0 (??)
[01A8DF74]csq_protect+000258 (??, ??, ??, ??, ??, ??)
[01A96348]osr_open+0000BC (??)
[01A9C1C8]pse_clone_open+000164 (??, ??, ??, ??)
[001ADCC8]spec_clone+000178 (??, ??, ??, ??, ??)
[001B3FC4]openpnp+0003AC (??, ??, ??, ??, ??)
[001B4178]openpath+000064 (??, ??, ??, ??, ??, ??)
[001B43E8]copen+000130 (??, ??, ??, ??, ??)
[001B44BC]open+000014 (??, ??, ??)
[000037D8].sys_call+000000 ()
[10002E74]doit+00003C (??, ??, ??)
[10003924]main+0004CC (??, ??)
[1000014C].__start+00004C ()
KDB(2)> set 10 show saved registers
display_stacked_regs is true
KDB(2)> f show the stack
thread+012540 STACK:
[0004AC84]v_gettlock+000000 (00012049, C0011E80, 00000080, 00000000 [??])
...
[001B3FC4]openpnp+0003AC (??, ??, ??, ??, ??)
r24 : 2FF3B6E0 r25 : 2FF3B400 r26 : 10002E78 r27 : 00000000 r28 : 00000002
r29 : 2FF3B3C0 r30 : 00000000 r31 : 20000510
[001B4178]openpath+000064 (??, ??, ??, ??, ??, ??)
[001B43E8]copen+000130 (??, ??, ??, ??, ??)
r27 : 2A22A424 r28 : E3014000 r29 : E6012540 r30 : 0C87B000 r31 : 00000000
[001B44BC]open+000014 (??, ??, ??)
...
KDB(2)> dc open 6 look for argument R3
.open+000000 stwu stkp,FFFFFFC0(stkp)

360 Kernel Extensions and Device Support Programming Concepts

.open+000004 mflr r0

.open+000008 addic r7,stkp,38

.open+00000C stw r0,48(stkp)

.open+000010 li r6,0

.open+000014 bl <.copen>
KDB(2)> dc copen 9 look for argument R3
.copen+000000 stmw r27,FFFFFFEC(stkp)
.copen+000004 addi r28,r4,0
.copen+000008 mflr r0
.copen+00000C lwz r4,D5C(toc) D5C(toc)=audit_flag
.copen+000010 stw r0,8(stkp)
.copen+000014 stwu stkp,FFFFFFA0(stkp)
.copen+000018 cmpi cr0,r4,0
.copen+00001C mtcrf cr5,r28
.copen+000020 addi r31,r3,0
KDB(2)> d 20000510 display memory location @R31
20000510: 2F64 6576 2F70 7463 0000 0000 416C 6C20 /dev/ptc....All

In the following example, the problem is to find what is lsfs subcommand waiting for. The answer is given
with getfssize arguments, and these are saved in the stack.
ps -ef|grep lsfs
root 63046 39258 0 Apr 01 pts/1 0:00 lsfs
kdb
Preserving 587377 bytes of symbol table
First symbol sys_resource
PFT:
id....................0007
raddr.............01000000 eaddr.............B0000000
size..............01000000 align.............01000000
valid..1 ros....0 holes..0 io.....0 seg....0 wimg...2

PVT:
id....................0008
raddr.............003BC000 eaddr.............B2000000
size..............001FFDA0 align.............00001000
valid..1 ros....0 holes..0 io.....0 seg....0 wimg...2
(0)> dcal 63046 print hexa value of PID
Value decimal: 63046 Value hexa: 0000F646
(0)> tpid 0000F646 show threads of this PID

SLOT NAME STATE TID PRI CPUID CPU FLAGS WCHAN

thread+025440 795 lsfs SLEEP 31B31 03C 000 00000004 057DB5BC
(0)> sw 795 set current context on this thread
Switch to thread: <thread+025440>
(0)> f show the stack
thread+025440 STACK:
[000205C0]e_block_thread+000250 ()
[00020B1C]e_sleep_thread+000040 (??, ??, ??)
[0002AAA0]iowait+00004C (??)
[0002B40C]bread+0000DC (??, ??)
[0020AF4C]readblk+0000AC (??, ??, ??, ??)
[001E90D8]spec_rdwr+00007C (??, ??, ??, ??, ??, ??, ??, ??)
[001A6328]vnop_rdwr+000070 (??, ??, ??, ??, ??, ??, ??, ??)
[00198278]rwuio+0000CC (??, ??, ??, ??, ??, ??, ??, ??)
[001986AC]rdwr+000184 (??, ??, ??, ??, ??, ??)
[001984D4]kreadv+000064 (??, ??, ??, ??)
[000037D8].sys_call+000000 ()
[D0046A18]read+000028 (??, ??, ??)
[1000A0E4]get_superblk+000054 (??, ??, ??)
[100035F8]read_super+000024 (??, ??, ??, ??)
[10005C00]getfssize+0000A0 (??, ??, ??)
[10002D18]prnt_stanza+0001E8 (??, ??, ??)
[1000349C]do_ls+000294 (??, ??)
[10000524]main+0001E8 (??, ??)
[1000014C].__start+00004C ()
(0)> sw u enable user context of the thread

Chapter 17. KDB Kernel Debugger and Command 361

(0)> dc 10005C00-a0 8 look for arguments R3, R4, R5
10005B60 mflr r0
10005B64 stw r31,FFFFFFFC(stkp)
10005B68 stw r0,8(stkp)
10005B6C stwu stkp,FFFFFEE0(stkp)
10005B70 stw r3,108(stkp)
10005B74 stw r4,104(stkp)
10005B78 stw r5,10C(stkp)
10005B7C addi r3,r4,0
(0)> set 9 print stack frame
display_stack_frames is true
(0)> f show the stack
thread+025440 STACK:
[000205C0]e_block_thread+000250 ()
...
[100035F8]read_super+000024 (??, ??, ??, ??)
===
2FF225D0: 2FF2 26F0 2A20 2429 1000 5C04 F071 71C0 /.&.* $)..\..qq.
2FF225E0: 2FF2 2620 2000 4D74 D000 4E18 F071 F83C /.& .Mt..N..q.<
2FF225F0: F075 2FF8 F074 36A4 F075 0FE0 F075 1FF8 .u/..t6..u...u..
2FF22600: F071 AE80 8080 8080 0000 0004 0000 0006 .q..............
===
[10005C00]getfssize+0000A0 (??, ??, ??)
...
(0)> dw 2FF225D0+104 print arguments (offset 0x104 0x108 0x10c)
2FF226D4: 2000DCC8 2000DC78 00000000 00000004
(0)> d 2000DC78 20 print first argument
2000DC78: 2F74 6D70 2F73 7472 6970 655F 6673 2E32 /tmp/stripe_fs.2
2000DC88: 3433 3632 0000 0000 0000 0000 0000 0004 4362............
(0)> d 2000DCC8 20 print second argument
2000DCC8: 2F64 6576 2F73 6C76 3234 3336 3200 0000 /dev/slv24362...
2000DCD8: 0000 0000 0000 0000 0000 0000 0000 0004
(0)> q leave debugger
#

ctx Subcommand
The ctx subcommand is used to analyze a system memory dump.

Note: This subcommand is only available within the kdb command; it is not included in the KDB Kernel
Debugger.

Syntax:

cpu decimal

v decimal - decimal value or expression indicating a CPU number

Aliases: context

By default, the kdb command shows the current OS context. But it is possible to elect the current kernel
KDB context, and to see more information in stack trace subcommand. For instance, the complete stack of
a kernel panic may be seen. A CPU number may be given as an argument. If no argument is specified the
initial context is restored.

Note: KDB context is available only if the running kernel is booted with KDB.

Example:
$ kdb dump unix dump analysis
Preserving 628325 bytes of symbol table
First symbol sys_resource
Component Names:
1) proc
2) thrd
3) errlg

362 Kernel Extensions and Device Support Programming Concepts

4) bos
5) vmm
6) bscsi
7) scdisk
8) lvm
9) tty
10) netstat
11) lent_dd

PFT:
id....................0007
raddr.....0000000001000000 eaddr.....0000000001000000
size..............00800000 align.............00800000
valid..1 ros....0 holes..0 io.....0 seg....1 wimg...2

PVT:
id....................0008
raddr.....00000000004B8000 eaddr.....00000000004B8000
size..............000FFD60 align.............00001000
valid..1 ros....0 holes..0 io.....0 seg....1 wimg...2
Dump analysis on POWER_PC POWER_604 machine with 8 cpu(s)
Processing symbol table...
.......................done
(0)> stat machine status
RS6K_SMP_MCA POWER_PC POWER_604 machine with 8 cpu(s)
.......... SYSTEM STATUS
sysname... AIX nodename.. jumbo32
release... 3 version... 4
machine... 00920312A0 nid....... 920312A0
time of crash: Tue Jul 22 09:46:22 1997
age of system: 1 day, 0 min., 35 sec.
.......... PANIC STRING
assert(v_lookup(sid,pno) == -1)
.......... SYSTEM MESSAGES

AIX 4.3
Starting physical processor #1 as logical #1... done.
Starting physical processor #2 as logical #2... done.
Starting physical processor #3 as logical #3... done.
Starting physical processor #4 as logical #4... done.
Starting physical processor #5 as logical #5... done.
Starting physical processor #6 as logical #6... done.
Starting physical processor #7 as logical #7... done.
[v_lists.c #727]
<- end_of_buffer
(0)> ctx 0 KDB context of CPU 0
Switch to KDB context of cpu 0
(0)> dr iar current instruction
iar : 00009414
.unlock_enable+000110 lwz r0,8(stkp) r0=0,8(stkp)=mststack+00AD18
(0)> ctx 1 KDB context of CPU 1
Switch to KDB context of cpu 1
(1)> dr iar current instruction
iar : 000BDB68
.kunlockl+000118 blr <.ld_usecount+0005BC> r3=0000000B
(1)> ctx 2 KDB context of CPU 2
Switch to KDB context of cpu 2
(2)> dr iar current instruction
iar : 00027634
.tstart+000284 blr <.sys_timer+000964> r3=00000005
(2)> ctx 3 KDB context of CPU 3
Switch to KDB context of cpu 3
(3)> dr iar current instruction
iar : 01B6A580
01B6A580 ori r3,r31,0 <00000089> r3=50001000,r31=00000089
(3)> ctx 4 KDB context of CPU 4
Switch to KDB context of cpu 4

Chapter 17. KDB Kernel Debugger and Command 363

(4)> dr iar current instruction
iar : 00014BFC
.panic_trap+000004 bl <.panic_dump> r3=_$STATIC+000294
(4)> f current stack
__kdb_thread+0002F0 STACK:
[00014BFC].panic_trap+000004 ()
[0003ACAC]v_inspft+000104 (??, ??, ??)
[00048DA8]v_inherit+0004A0 (??, ??, ??)
[000A7ECC]v_preinherit+000058 (??, ??, ??)
[00027BFC]begbt_603_patch_2+000008 (??, ??)

Machine State Save Area [2FF3B400]
iar : 00027AEC msr : 000010B0 cr : 22222222 lr : 00243E58
ctr : 00000000 xer : 00000000 mq : 00000000
r0 : 000A7E74 r1 : 2FF3B220 r2 : 002EBC70 r3 : 00013350 r4 : 00000000
r5 : 00000100 r6 : 00009030 r7 : 2FF3B400 r8 : 00000106 r9 : 00000000
r10 : 00243E58 r11 : 2FF3B400 r12 : 000010B0 r13 : 000C1C80 r14 : 2FF22A88
r15 : 20022DB8 r16 : 20006A98 r17 : 20033128 r18 : 00000000 r19 : 0008AD56
r20 : B02A6038 r21 : 0000006A r22 : 00000000 r23 : 0000FFFF r24 : 00000100
r25 : 00003262 r26 : 00000000 r27 : B02B8AEC r28 : B02A9F70 r29 : 00000001
r30 : 00003350 r31 : 00013350
s0 : 00000000 s1 : 007FFFFF s2 : 0000864B s3 : 007FFFFF s4 : 007FFFFF
s5 : 007FFFFF s6 : 007FFFFF s7 : 007FFFFF s8 : 007FFFFF s9 : 007FFFFF
s10 : 007FFFFF s11 : 00001001 s12 : 00002002 s13 : 6001F01F s14 : 00004004
s15 : 007FFFFF
prev 00000000 kjmpbuf 00000000 stackfix 00000000 intpri 0B
curid 0008AD56 sralloc E01E0000 ioalloc 00000000 backt 00
flags 00 tid 00000000 excp_type 00000000
fpscr 00000000 fpeu 01 fpinfo 00 fpscrx 00000000
o_iar 00000000 o_toc 00000000 o_arg1 00000000
excbranch 00000000 o_vaddr 00000000 mstext 00000000
Except :
csr 00000000 dsisr 40000000 bit set: DSISR_PFT
srval 6000864B dar 2FF22FF8 dsirr 00000106

[00027AEC].backt+000000 (00013350, 00000000 [??])
[00243E54]vms_delete+0004DC (??)
[00256838]shmfreews+0000B0 ()
[000732B4]freeuspace+000010 ()
[00072EAC]kexitx+000688 (??)
(4)> ctx AIX context of CPU 4
Restore initial context
(4)> f current stack
thread+031920 STACK:
[00027AEC].backt+000000 (00013350, 00000000 [??])
[00243E54]vms_delete+0004DC (??)
[00256838]shmfreews+0000B0 ()
[000732B4]freeuspace+000010 ()
[00072EAC]kexitx+000688 (??)
(4)>

cdt Subcommand
The cdt subcommand is used to view data in a system memory dump.

Note: This subcommand is only available within the kdb command; it is not included in the KDB Kernel
Debugger.

Syntax:

cdt [?]

v -d - flag indicating that the dump routines in the /usr/lib/ras/dmprtns directory are to be used for
display of data from component dump tables

v index - decimal value indicating the component dump table to be viewed

v entry - decimal value indicating the data area of the indicated component that is to be viewed

364 Kernel Extensions and Device Support Programming Concepts

Any component dump area can be displayed. With no arguments all component dump table headers are
displayed. If an index is specified the component dump table header and associated entries are displayed.
If both an index and an entry are specified, the data for the indicated area is displayed in both hex and
ASCII. If the -d flag is specified, the dump formatting routines (if any) for the specified component are
invoked to format the data in the components data areas.

Example:
(0)> cdt
1) CDT head name proc, len 001D80E8, entries 96676
2) CDT head name thrd, len 003ABE4C, entries 192489
3) CDT head name errlg, len 00000054, entries 3
4) CDT head name bos, len 00000040, entries 2
5) CDT head name vmm, len 000003D8, entries 30
6) CDT head name sscsidd, len 0000007C, entries 5
7) CDT head name dptSR, len 00000054, entries 3
8) CDT head name scdisk, len 00000130, entries 14
9) CDT head name lvm, len 00000040, entries 2
10) CDT head name SSAGS, len 000000A4, entries 7
11) CDT head name SSAES, len 00000054, entries 3
12) CDT head name ssagateway, len 0000007C, entries 5
13) CDT head name tty, len 00000068, entries 4
14) CDT head name sio_dd, len 00000054, entries 3
15) CDT head name netstat, len 000000E0, entries 10
16) CDT head name ent2104x, len 00000054, entries 3
17) CDT head name cstokdd, len 0000007C, entries 5
18) CDT head name atm_dd_charm, len 00000040, entries 2
19) CDT head name ssadisk, len 000002AC, entries 33
20) CDT head name SSADS, len 00000040, entries 2
21) CDT head name osi_frame, len 0000002C, entries 1
(0)> cdt 12
12) CDT head name ssagateway, len 0000007C, entries 5
CDT 1 name HashTbl addr 0000000001A25CF0, len 00000040
CDT 2 name CfgdAdap addr 0000000001A0E044, len 00000004
CDT 3 name OpenAdap addr 0000000001A0E048, len 00000004
CDT 4 name LockWord addr 0000000001A0E04C, len 00000004
CDT 5 name ssa0 addr 0000000001A2D000, len 00000B88
(0)> cdt -d 12 4
12) CDT head name ssagateway, len 0000007C, entries 5
CDT 4 name LockWord addr 0000000001A0E04C, len 00000004
01A0E04C: FFFFFFFF

Trace Subcommands

Note: Trace subcommands are specific to the KDB Kernel Debugger. They are not available in the kdb
command.

bt Subcommand
The trace point subcommand bt can be used to trace each execution of a specified address.

Note: This subcommand is only available within the KDB Kernel Debugger; it is not included in the kdb
command.

Syntax:

bt [-p | -v] [Address [script]]

v -p - Indicates that the trace address is a real address.

v -v - Indicates that the trace address is an virtual address.

v Address - Specifies the address of the trace point. This may either be a virtual (effective) or physical
address. Symbols, hexadecimal values, or hexadecimal expressions may be used in specifying an
address.

Chapter 17. KDB Kernel Debugger and Command 365

v script - A list of subcommands to be executed each time the indicated trace point is executed. The script
is delimited by quote (″) characters and commands within the script are delimited by semicolons (;).

Each time a trace point is encountered during execution, a message is displayed indicating that the trace
point has been encountered. The displayed message indicates the first entry from the stack. However, this
can be changed by using the script argument.

If invoked with no arguments the current list of break and trace points is displayed. The number of
combined active trace and break points is limited to 32.

It is possible to specify whether the trace address is a physical or virtual address with the -p and -v
options. By default KDB chooses the current state of the machine: if the subcommand is entered before
VMM initialization, the address is physical (real address), else virtual (effective address).

The segment id (sid) is always used to identify a trace point since effective addresses could have multiple
translations in several virtual spaces. When execution is resumed following a trace point being
encountered, kdb must reinstall the correct instruction. During this short time (one step if no interrupt is
encountered) it is possible to miss the trace on other processors.

The script argument allows a set of kdb subcommands to be executed when a trace point is hit. The set
of subcommands comprising the script must be delimited by double quote characters (″). Individual
subcommands within the script must be terminated by a semicolon (;). One of the most useful
subcommands that can be used in a script is the test subcommand. If this subcommand is included in the
script, each time the trace point is hit, the condition of the test subcommand is checked and if it is true a
break occurs.

Examples: Basic use of the bt subcommand:
KDB(0)> bt open enable trace on open()
KDB(0)> bt display current active traces
0: .open+000000 (sid:00000000) trace {hit: 0}
KDB(0)> e exit debugger
...
open+00000000 (2FF7FF2B, 00000000, DEADBEEF)
open+00000000 (2FF7FF2F, 00000000, DEADBEEF)
open+00000000 (2FF7FF33, 00000000, DEADBEEF)
open+00000000 (2FF7FF37, 00000000, DEADBEEF)
open+00000000 (2FF7FF3B, 00000000, DEADBEEF)
...
KDB(0)> bt display current active traces
0: .open+000000 (sid:00000000) trace {hit: 5}
KDB(0)>

Open routine is traced with a script to display iar and lr registers and to show what is pointed to by r3, the
first parameter. Here open() is called on ″sbin″ from svc_flih().

KDB(0)> bt open "dr iar; dr lr; d @r3" enable trace on open()
KDB(0)> bt display current active traces
0: .open+000000 (sid:00000000) trace {hit: 0} {script: dr iar; dr lr;d @r3}
KDB(0)> e exit debugger
iar : 001C5BA0
.open+000000 mflr r0 <.svc_flih+00011C>
lr : 00003B34
.svc_flih+00011C lwz toc,4108(0) toc=TOC,4108=g_toc
2FF7FF3F: 7362 696E 0074 6D70 0074 6F74 6F00 7500 sbin.tmp.toto.u.
KDB(0)> bt display current active traces
0: .open+000000 (sid:00000000) trace {hit: 1} {script: dr iar; dr lr;d @r3}
KDB(0)> ct open clear trace on open
KDB(0)>

This example shows how to trace and stop when a condition is true. Here we are waiting for time global
data to be greater than the specified value, and 923 hits have been necessary to reach this condition.

366 Kernel Extensions and Device Support Programming Concepts

KDB(0)> bt sys_timer "[@time >= 2b8c8c00] " enable trace on sys_timer()
KDB(0)> e exit debugger
...
Enter kdb [@time >= 2b8c8c00]
KDB(0) bt display current active traces
0: .sys_timer+000000 (sid:00000000) trace {hit: 923} {script: [@time >= 2b8c8c00] }
KDB(0)> cat clear all traces

ct and cat Subcommands
The cat and ct subcommands erase all and individual trace points, respectively.

Note: This subcommand is only available within the KDB Kernel Debugger; it is not included in the kdb
command.

Syntax:

cat

ct slot | [-p | -v] Address

v -p - flag to indicate that the trace address is a real address.

v -v - flag to indicate that the trace address is an virtual address.

v slot - slot number for a trace point. This argument must be a decimal value.

v Address - address of the trace point. This may either be a virtual (effective) or physical address.
Symbols, hexadecimal values, or hexadecimal expressions may be used in specifying an address.

The trace point cleared by the ct subcommand can be specified either by a slot number or an address. It
is possible to specify if the address is physical or virtual with -p and -v options. By default KDB chooses
the current state of the machine: if the subcommand is entered before VMM initialisation, the address is
physical (real address), else virtual (effective address).

Note: Slot numbers are not fixed. To clear slot 1 and slot 2 enter ct 2; ct 1 or ct 1; ct 1, do not enter
ct 1; ct 2.

Example:
KDB(0)> bt open enable trace on open()
KDB(0)> bt close enable trace on close()
KDB(0)> bt readlink enable trace on readlink()
KDB(0)> bt display current active traces
0: .open+000000 (sid:00000000) trace {hit: 0}
1: .close+000000 (sid:00000000) trace {hit: 0}
2: .readlink+000000 (sid:00000000) trace {hit: 0}
KDB(0)> ct 1 clear trace slot 1
KDB(0)> bt display current active traces
0: .open+000000 (sid:00000000) trace {hit: 0}
1: .readlink+000000 (sid:00000000) trace {hit: 0}
KDB(0)> cat clear all active traces
KDB(0)> bt display current active traces
No breakpoints are set.
KDB(0)>

trcstart Subcommand
The trcstart subcommand starts system trace using the kdb command. For more information and to see
an example, see “trace Subcommand” on page 457.

Syntax:

trcstart -[f | l] -j event1,eventN -k event1, eventN -p

v -f - Logs only the first buffer of the collected trace data.

Chapter 17. KDB Kernel Debugger and Command 367

v -l - Logs only the last buffer of collected trace data.

v -j event1,eventN - Collects trace data only for the events in list.

v -k event1,eventN - Does not collect trace data for the events in list.

v -p - Puts CPU_ID in the trace hooks (64-bit trace only).

trcstop Subcommand
The trcstop subcommand stops the system trace that was started using the kdb command. For more
information and to see an example, see “trace Subcommand” on page 457.

Syntax:

trcstop

Breakpoints and Steps Subcommands

Note: Breakpoints and steps subcommands are specific to the KDB Kernel Debugger. They are not
available in the kdb command.

b Subcommand
The b subcommand sets a permanent global breakpoint in the code. KDB checks that a valid instruction
will be trapped. If an invalid instruction is detected a warning message is displayed. If the warning
message is displayed the breakpoint should be removed; otherwise, memory can be corrupted.

Note: This subcommand is only available within the KDB Kernel Debugger, it is not included in the kdb
command.

Syntax:

b [-p | -v] [Address]

v -p - Indicates that the breakpoint address is a real address.

v -v - Indicates that the breakpoint address is an virtual address.

v Address - Specifies the address of the breakpoint. This may either be a virtual (effective) or physical
address. Symbols, hexadecimal values, or hexadecimal expressions may be used in specification of the
address.

Aliases: brk

It is possible to specify whether the address is physical or virtual with -p and -v options. By default KDB
chooses the current state of the machine: if the subcommand is entered before VMM initialization, the
address is physical (real address), else virtual (effective address). After VMM is setup, the -p flag must be
used to set breakpoints in real-mode code that is not mapped V=R, otherwise KDB expects a virtual
address and translates the address.

If no arguments are supplied to the b subcommand all of the current break and trace points are displayed.

Example before VMM setup:
KDB(0)> b vsi set break point on vsi()
.vsi+000000 (real address:002AA5A4) permanent & global
KDB(0)> e exit debugger
...
Breakpoint
.vsi+000000 stmw r29,FFFFFFF4(stkp) <.mainstk+001EFC> r29=isync_sc1+000040,FFFFFFF4(stkp)=.mainstk+001EFC

Example after VMM setup:

368 Kernel Extensions and Device Support Programming Concepts

KDB(0)> b display current active break points
No breakpoints are set.
KDB(0)> b 0 set break point at address 0
WARNING: break point at 00000000 on invalid instruction (00000000)
00000000 (sid:00000000) permanent & global
KDB(0)> c 0 remove break point at address 0
KDB(0)> b vmvcs set break point on vmvcs()
.vmvcs+000000 (sid:00000000) permanent & global
KDB(0)> b i_disable set break point on i_disable()
.i_disable+000000 (sid:00000000) permanent & global
KDB(0)> e exit debugger
...
Breakpoint
.i_disable+000000 mfmsr r7 <start+001008> r7=DEADBEEF
KDB(0)> b display current active break points
0: .vmvcs+000000 (sid:00000000) permanent & global
1: .i_disable+000000 (sid:00000000) permanent & global
KDB(0)> c 1 remove break point slot 1
KDB(0)> b display current active break points
0: .vmvcs+000000 (sid:00000000) permanent & global
KDB(0)> e exit debugger
...
Breakpoint
.vmvcs+000000 mflr r10 <.initcom+000120>
KDB(0)> ca remove all break points

lb Subcommand
The local breakpoint lb subcommand sets a permanent local breakpoint in the code for a specific context.
The context can either be CPU or thread based. Whether CPU or thread based context is to be used is
controllable through a set option. Each lb subcommand executed associates one context with the local
breakpoint. Up to 8 different contexts are setable for each local breakpoint. The context is the effective
address of the current thread entry in the thread table or the current processor number.

Note: This subcommand is only available within the KDB Kernel Debugger, it is not included in the kdb
command.

Syntax:

lb [-p | -v] [Address]

v -p - Indicates that the breakpoint address is a real address.

v -v - Indicates that the breakpoint address is an virtual address.

v Address - Specifies the address of the breakpoint. This may either be a virtual (effective) address.
Symbols, hexadecimal values, or hexadecimal expressions may be used in specification of the address.

Aliases: lbrk

If the lb subcommand is entered with no arguments, all current trace and break points are displayed.

If an address is specified, the break is set with the context of the current thread or CPU. To set a break
using a context other than the current thread or CPU, the current context can be changed using the switch
and cpu subcommands.

If a local breakpoint is hit with a context that has not been specified, a message is displayed, but a break
does not occur.

It is possible to specify whether the address is physical or virtual with the -p and -v options. By default
KDB chooses the current state of the machine: if the subcommand is entered before VMM initialization,
the address is physical (real address), else virtual (effective address). After VMM is setup, the -p must be
used to set a breakpoint in real-mode code that is not mapped V=R, otherwise KDB expects a virtual
address and translates the address.

Chapter 17. KDB Kernel Debugger and Command 369

Example:
KDB(0)> b execv set break point on execv()
Assumed to be [External data]: 001F4200 execve
Ambiguous: [Ext func]
001F4200 .execve
.execve+000000 (sid:00000000) permanent & global
KDB(0)> e exit debugger
...
Breakpoint
.execve+000000 mflr r0 <.svc_flih+00011C>
KDB(0)> ppda print current processor data area

Per Processor Data Area [00086E40]

csa......................2FEE0000 mstack...................0037CDB0
fpowner..................00000000 curthread................E60008C0
...
KDB(0)> lb kexit set local break point on kexit()
.kexit+000000 (sid:00000000) permanent & local < ctx: thread+0008C0 >
KDB(0)> b display current active break points
0: .execve+000000 (sid:00000000) permanent & global
1: .kexit+000000 (sid:00000000) permanent & local < ctx: thread+0008C0 >
KDB(0)> e exit debugger
...
Warning, breakpoint ignored (context mismatched):
.kexit+000000 mflr r0 <._exit+000020>
Breakpoint
.kexit+000000 mflr r0 <._exit+000020>
KDB(0)> ppda print current processor data area

Per Processor Data Area [00086E40]

csa......................2FEE0000 mstack...................0037CDB0
fpowner..................00000000 curthread................E60008C0
...
KDB(0)> lc 1 thread+0008C0 remove local break point slot 1

r and gt Subcommands
A non-permanent breakpoint can be set using the r and gt subcommands. These subcommands set local
breakpoints which are cleared after they have been hit. The r subcommand sets a breakpoint on the
address found in the lr register. In SMP environment, it is possible to hit this breakpoint on another
processor, so it is important to have thread/process local break point.

The gt subcommand performs the same as the r subcommand except that the breakpoint address must
be specified.

Note: This subcommand is only available within the KDB Kernel Debugger, it is not included in the kdb
command.

Syntax:

r

gt [-p | -v] [Address]

v -p - Indicates that the breakpoint address is a real address.

v -v - Indicates that the breakpoint address is an virtual address.

v Address - Specifies the address of the breakpoint. This may either be a virtual (effective) or physical
address. Symbols, hexadecimal values, or hexadecimal expressions may be used in specification of the
address.

370 Kernel Extensions and Device Support Programming Concepts

It is possible to specify whether the address is physical or virtual with the -p and -v options. By default
KDB chooses the current state of the machine: if the subcommand is entered before VMM initialization,
the address is physical (real address), else virtual (effective address). After VMM is initialized, the -p flag
must be used to set a breakpoint in real-mode code that is not mapped V=R, otherwise KDB expects a
virtual address and translates the address.

Aliases: r - return

Example:

KDB(2)> b _iput enable break point on _iput()
._iput+000000 (sid:00000000) permanent & global
KDB(2)> e exit debugger
...
Breakpoint
._iput+000000 stmw r29,FFFFFFF4(stkp) <2FF3B1CC> r29=0A4C6C20,FFFFFFF4(stkp)=2FF3B1CC
KDB(6)> f
thread+014580 STACK:
[0021632C]_iput+000000 (0A4C6C20, 0571A808 [??])
[00263EF4]jfs_rele+0000B4 (??)
[00220B58]vnop_rele+000018 (??)
[00232178]vno_close+000058 (??)
[002266C8]closef+0000C8 (??)
[0020C548]closefd+0000BC (??, ??)
[0020C70C]close+000174 (??)
[000037C4].sys_call+000000 ()
[D000715C]fclose+00006C (??)
[10000580]10000580+000000 ()
[10000174]__start+00004C ()
KDB(6)> r go to the end of the function
...
.jfs_rele+0000B8 b <.jfs_rele+00007C> r3=0
KDB(7)> e exit debugger
...
Breakpoint
._iput+000000 stmw r29,FFFFFFF4(stkp) <2FF3B24C> r29=09D75BD0,FFFFFFF4(stkp)=2FF3B24C
KDB(3)> gt @lr go to the link register value
.jfs_rele+0000B8 (sid:00000000) step < ctx: thread+001680 >
...
.jfs_rele+0000B8 b <.jfs_rele+00007C> r3=0
KDB(1)>

c, lc, and ca Subcommands
Breakpoints are cleared using one of the following subcommands: c, lc, or ca. The ca subcommand
erases all breakpoints. The c and lc subcommands erase only the specified breakpoint. The c
subcommand clears all contexts for a specified breakpoint. The lc subcommand can be used to clear a
single context for a breakpoint. If a specific context is not specified, the current context is used to
determine which local breakpoint context to remove.

Note: This subcommand is only available within the KDB Kernel Debugger, it is not included in the kdb
command.

Syntax:

c [slot | [-p | -v] Address]

lc [slot | [-p | -v] Address [ctx]]

ca

Chapter 17. KDB Kernel Debugger and Command 371

v -p - Indicates that the breakpoint address is a real address.

v -v - Indicates that the breakpoint address is an virtual address.

v slot - Specifies the slot number of the breakpoint. This argument must be a decimal value.

v Address - Specifies the address of the breakpoint. This may either be a virtual (effective) or physical
address. Symbols, hexadecimal values, or hexadecimal expressions may be used in specification of the
address.

v ctx - Specifies the context to be cleared for a local break. The context may either be a CPU or thread
specification.

Aliases:

v c - cl

v lc - lcl

It is possible to specify whether the address is physical or virtual with the -p and -v options. By default
KDB chooses the current state of the machine: if the subcommand is entered before VMM initialization,
the address is physical (real address), if the subcommand is entered after VMM initialization, the address
is virtual (effective address).

Note: Slot numbers are not fixed. To clear slot 1 and slot 2 enter c 2; c 1 or c 1; c 1, do not enter c 1;
c 2.

Example:
KDB(1)> b list breakpoints
0: .halt_display+000000 (sid:00000000) permanent & global
1: .v_exception+000000 (sid:00000000) permanent & global
2: .v_loghalt+000000 (sid:00000000) permanent & global
3: .p_slih+000000 (sid:00000000) trace {hit: 0}
KDB(1)> c 2 clear breakpoint slot 2
0: .halt_display+000000 (sid:00000000) permanent & global
1: .v_exception+000000 (sid:00000000) permanent & global
2: .p_slih+000000 (sid:00000000) trace {hit: 0}
KDB(1)> c v_exception clear breakpoint set on v_exception
0: .halt_display+000000 (sid:00000000) permanent & global
1: .p_slih+000000 (sid:00000000) trace {hit: 0}
KDB(1)> ca clear all breakpoints
0: .p_slih+000000 (sid:00000000) trace {hit: 0}

n, s, S, and B Subcommands
The n and s subcommands provide step functions. The s subcommand allows the processor to single step
to the next instruction. The n subcommand also single steps, but it steps over subroutine calls as though
they were a single instruction. A count can specify how many steps are executed before returning to the
KDB prompt.

The S subcommand single steps but stops only on bl and br instructions. With that, you can see every
call and return of routines. A count can also be used to specify how many times KDB continues before
stopping.

The B subcommand steps stopping at each branch instruction.

Note: This subcommand is only available within the KDB Kernel Debugger, it is not included in the kdb
command.

Syntax:

n [count]

s [count]

372 Kernel Extensions and Device Support Programming Concepts

S [count]

B [count]

v count - Specifies the number of executions the subcommand performs.

Aliases:

v n - nexti

v s - stepi

On POWER RS1 machine, steps are implemented with non-permanent local breakpoints. On
POWER-based machine, steps are implemented with the SE bit of the msr status register of the
processor. This bit is automatically associated with the thread or process context and can migrate from
one processor to another.

A step subcommand can be interrupted by typing the DEL key. Every time KDB executes a step the DEL
key is tested. This allows breaking into the debugger if a step command is stepping over routine calls, but
the call is taking an inordinate amount of time.

If no intervening subcommands have been executed, any of the step commands can be repeated by using
the Enter key.

Be aware that when you single step a program, this makes an exception to the processor for each of the
debugged program’s instruction. One side-effect of exceptions is to break reservations. This is why stcwx
will never succeed if any breakpoint occurred since the last larwx. The net effect is that lock and atomic
routines are not stepable. If you do it anyway, you will loop in the lock routine. If that happens, you may
″return″ from the lock routine to the caller, and if the lock is free, you will get it.

Some instructions are broken by exceptions. For example, rfi, moves to and from srr0 srr1. KDB tries to
prevent against this by printing a warning message.

The S subcommand of KDB (which single-steps the program until the next sub-routine call/return) will
silently and endlessly fail to go through the atomic lock routines. To watch out for this, you will get the KDB
prompt again with a warning message.

When you want to take control of a sleeping thread, it is possible to step in the context of this thread. To
do that, switch to the sleeping thread (with sw subcommand) and type the s subcommand. The step is set
inside the thread context, and when the thread runs again, the step breakpoint occurs.

Example:
KDB(1)> b .vno_close+00005C enable break point on vno_close+00005C
vno_close+00005C (sid:00000000) permanent & global
KDB(1)> e exit debugger
Breakpoint
.vno_close+00005C lwz r11,30(r4) r11=0,30(r4)=xix_vops+000030
KDB(1)> s 10 single step 10 instructions
.vno_close+000060 lwz r5,68(stkp) r5=FFD00000,68(stkp)=2FF97DD0
.vno_close+000064 lwz r4,0(r5) r4=xix_vops,0(r5)=file+0000C0
.vno_close+000068 lwz r5,14(r5) r5=file+0000C0,14(r5)=file+0000D4
.vno_close+00006C bl <._ptrgl> r3=05AB620C
._ptrgl+000000 lwz r0,0(r11) r0=.closef+0000F4,0(r11)=xix_close
._ptrgl+000004 stw toc,14(stkp) toc=TOC,14(stkp)=2FF97D7C
._ptrgl+000008 mtctr r0 <.xix_close+000000>
._ptrgl+00000C lwz toc,4(r11) toc=TOC,4(r11)=xix_close+000004
._ptrgl+000010 lwz r11,8(r11) r11=xix_close,8(r11)=xix_close+000008
._ptrgl+000014 bcctr <.xix_close>
KDB(1)> <CR/LF> repeat last single step command
.xix_close+000000 mflr r0 <.vno_close+000070>
.xix_close+000004 stw r31,FFFFFFFC(stkp) r31=_vno_fops$$,FFFFFFFC(stkp)=2FF97D64

Chapter 17. KDB Kernel Debugger and Command 373

.xix_close+000008 stw r0,8(stkp) r0=.vno_close+000070,8(stkp)=2FF97D70

.xix_close+00000C stwu stkp,FFFFFFA0(stkp) stkp=2FF97D68,FFFFFFA0(stkp)=2FF97D08

.xix_close+000010 lwz r31,12B8(toc) r31=_vno_fops$$,12B8(toc)=_xix_close$$

.xix_close+000014 stw r3,78(stkp) r3=05AB620C,78(stkp)=2FF97D80

.xix_close+000018 stw r4,7C(stkp) r4=00000020,7C(stkp)=2FF97D84

.xix_close+00001C lwz r3,12BC(toc) r3=05AB620C,12BC(toc)=xclosedbg

.xix_close+000020 lwz r3,0(r3) r3=xclosedbg,0(r3)=xclosedbg

.xix_close+000024 lwz r4,12C0(toc) r4=00000020,12C0(toc)=pfsdbg
KDB(1)> r return to the end of function
.vno_close+000070 lwz toc,14(stkp) toc=TOC,14(stkp)=2FF97D7C
KDB(1)> S 4
.vno_close+000088 bl <._ptrgl> r3=05AB620C
.xix_rele+00010C bl <.vn_free> r3=05AB620C
.vn_free+000140 bl <.gpai_free> r3=gpa_vnode
.gpai_free+00002C br <.vn_free+000144>
KDB(1)> <CR/LF> repeat last command
.vn_free+00015C br <.xix_rele+000110>
.xix_rele+000118 bl <.iput> r3=058F9360
.iput+0000A4 bl <.iclose> r3=058F9360
.iclose+000148 br <.iput+0000A8>
KDB(1)> <CR/LF> repeat last command
.iput+0001A4 bl <.insque2> r3=058F9360
.insque2+00004C br <.iput+0001A8>
.iput+0001D0 br <.xix_rele+00011C>
.xix_rele+000164 br <.vno_close+00008C>
KDB(1)> r return to the end of function
.vno_close+00008C lwz toc,14(stkp) toc=TOC,14(stkp)=2FF97D7C
KDB(1)>

Dumps, Display, and Decode Subcommands

d, dw, dd, dp, dpw, dpd Subcommands
The d (display bytes), dw (display words), and dd (display double words) subcommands can be used to
dump memory areas starting at a specified effective address. Access is done in real mode.

The dp (display bytes), dpw (display words), and dpd (display double words) subcommands can be used
to dump memory areas starting at a specified real address.

Syntax:

d symbol | EffectiveAddress [count]

dw symbol | EffectiveAddress [count]

dd symbol | EffectiveAddress [count]

dp symbol | PhysicalAddress [count]

dpw symbol | PhysicalAddress [count]

dpd symbol | PhysicalAddress [count]

v Address - Specifies the starting address of the area to be dumped. This can either be a virtual
(effective) or physical address depending on which subcommand is used. Symbols, hexadecimal values,
or hexadecimal expressions can be used in specification of the address.

v count - Specifies the number of bytes (d, dp), words (dw, dpw), or double words (dd, dpd) to be
displayed. The count argument is a hexadecimal value.

Aliases:

v d - dump

374 Kernel Extensions and Device Support Programming Concepts

The display memory subcommands allow read or write access in virtual or real mode, using either an
effective address or a real address as input:

v d subcommand: real mode access with an effective address as argument.

v dp subcommand: real mode access with a real address as argument.

v ddv subcommand: virtual mode access with an effective address as argument.

v ddp subcommand: virtual mode access with a real address as argument.

The count argument can be used to specify the amount of data to be displayed. If no count is specified, 16
bytes of data is displayed.

Any of the display subcommands can be continued from the last address displayed by using the Enter key.

Example:
KDB(0)> d utsname 40 print utsname byte per byte
utsname+000000: 4149 5820 0000 0000 0000 0000 0000 0000 AIX.............
utsname+000010: 0000 0000 0000 0000 0000 0000 0000 0000
utsname+000020: 3030 3030 3030 3030 4130 3030 0000 0000 00000000A000....
utsname+000030: 0000 0000 0000 0000 0000 0000 0000 0000
KDB(0)> <CR/LF> repeat last command
utsname+000040: 3100 0000 0000 0000 0000 0000 0000 0000 1...............
utsname+000050: 0000 0000 0000 0000 0000 0000 0000 0000
utsname+000060: 3400 0000 0000 0000 0000 0000 0000 0000 4...............
utsname+000070: 0000 0000 0000 0000 0000 0000 0000 0000
KDB(0)> <CR/LF> repeat last command
utsname+000080: 3030 3030 3030 3030 4130 3030 0000 0000 00000000A000....
utsname+000090: 0000 0000 0000 0000 0000 0000 0000 0000
xutsname+000000: 0000 0000 0000 0000 0000 0000 0000 0000
devcnt+000000: 0000 0100 0000 0000 0001 239C 0001 23A8#...#.
KDB(0)> dw utsname 10 print utsname word per word
utsname+000000: 41495820 00000000 00000000 00000000 AIX.............
utsname+000010: 00000000 00000000 00000000 00000000
utsname+000020: 30303030 30303030 41303030 00000000 00000000A000....
utsname+000030: 00000000 00000000 00000000 00000000
KDB(0)> tr utsname find utsname physical address
Physical Address = 00027E98
KDB(0)> dp 00027E98 40 print utsname using physical address
00027E98: 4149 5820 0000 0000 0000 0000 0000 0000 AIX.............
00027EA8: 0000 0000 0000 0000 0000 0000 0000 0000
00027EB8: 3030 3030 3030 3030 4130 3030 0000 0000 00000000A000....
00027EC8: 0000 0000 0000 0000 0000 0000 0000 0000
KDB(0)> dpw 00027E98 print utsname using physical address
00027E98: 41495820 00000000 00000000 00000000 AIX.............
KDB(0)>

ddvb, ddvh, ddvw, ddvd, ddpd, ddph, and ddpw Subcommands
The ddvb, ddvh, ddvw and ddvd subcommands can be used to access these areas in translated mode,
using an effective address already mapped. On a 64-bit machine, double words correctly aligned are
accessed (ddvd) in a single load (ld) instruction.

The ddpb, ddph, ddpw and ddpd subcommands can be used to access these areas in translated mode,
using a physical address that will be mapped. On a 64-bit machine, double words correctly aligned are
accessed (ddpd) in a single load (ld) instruction. DBAT interface is used to translate this address in cache
inhibited mode.

Note: These subcommands are only available within the KDB Kernel Debugger, they are not included in
the kdb command.

Syntax:

ddvb EffectiveAddress [count]

Chapter 17. KDB Kernel Debugger and Command 375

ddvh EffectiveAddress [count]

ddvw EffectiveAddress [count]

ddvd EffectiveAddress [count]

ddpd PhysicalAddress [count]

ddph PhysicalAddress [count]

ddpw PhysicalAddress [count]

v Address - Specifies the address of the starting memory area to display. This can either be a effective or
real address, dependent on the subcommand used. Symbols, hexadecimal values, or hexadecimal
expressions can be used in specification of the address.

v count - Specifies the number of bytes (ddvb, ddpb), half words (ddvh, ddph), words (ddvw, ddpw), or
double words (ddvd, ddpd) to display. The count argument is a hexadecimal value.

Aliases:

v ddvb - diob

v ddvh - dioh

v ddvw - diow

v ddvd - diod

I/O space memory (Direct Store Segment (T=1)) can not be accessed when translation is disabled. bat
mapped areas must also be accessed with translation enabled, else cache controls are ignored.

Access can be done in bytes, half words, words or double words.

Note: The subcommands using effective addresses (ddv.) assume that mapping to real addresses is
currently valid. No check is done by KDB. The subcommands using real addresses (ddp.) can be
used to let KDB perform the mapping (attach and detach).

Example on PowerPC 601 RISC Microprocessor:

Note: The PowerPC 601 RISC Microprocessor is only available on AIX 5.1 and earlier.
KDB(0)> tr fff19610 show current mapping
BAT mapping for FFF19610
DBAT0 FFC0003A FFC0005F
bepi 7FE0 brpn 7FE0 bl 001F v 1 wim 3 ks 1 kp 0 pp 2 s 0
eaddr = FFC00000, paddr = FFC00000 size = 4096 KBytes
KDB(0)> ddvb fff19610 10 print 10 bytes using data relocate mode enable
FFF19610: 0041 96B0 6666 CEEA 0041 A0B0 0041 AAB0 .A..ff...A...A..
KDB(0)> ddvw fff19610 4 print 4 words using data relocate mode enable
FFF19610: 004196B0 76763346 0041A0B0 0041AAB0
KDB(0)>

Example on a PCI machine:
KDB(0)> ddpw 80000cfc print one word at physical address 80000cfc
80000CFC: D0000080 Read is done in relocated mode, cache inhibited
KDB(0)>

dc and dpc Subcommands
The display code subcommands, dc and dpc are used to decode instructions. The address argument for
the dc subcommand is an effective address. The address argument for the dpc subcommand is a physical
address.

376 Kernel Extensions and Device Support Programming Concepts

Syntax:

dc symbol | EffectiveAddress [count]

dpc PhysicalAddress [count]

v Address - Specifies the address of the code to disassemble. This can either be a virtual (effective) or
physical address, depending on the subcommand used. Symbols, hexadecimal values, or hexadecimal
expressions can be used in specification of the address.

v count - Indicates the number of instructions to be disassembled. The value specified must be a decimal
value or decimal expression.

Aliases:

v dc - dis

Example:
KDB(0)> set 4
power_pc_syntax is true
KDB(0)> dc resume_pc 10 prints 10 instructions
.resume_pc+000000 lbz r0,3454(0) 3454=Trconflag
.resume_pc+000004 mfsprg r15,0
.resume_pc+000008 cmpi cr0,r0,0
.resume_pc+00000C lwz toc,4208(0) toc=TOC,4208=g_toc
.resume_pc+000010 lwz r30,4C(r15)
.resume_pc+000014 lwz r14,40(r15)
.resume_pc+000018 lwz r31,8(r30)
.resume_pc+00001C bne- cr0.eq,<.resume_pc+0001BC>
.resume_pc+000020 lha r28,2(r30)
.resume_pc+000024 lwz r29,0(r14)
KDB(0)> dc mttb 5 prints mttb function
.mttb+000000 li r0,0
.mttb+000004 mttbl X r0 X shows that these instructions
.mttb+000008 mttbu X r3 are not supported by the current architecture
.mttb+00000C mttbl X r4 POWER PC 601 processor
.mttb+000010 blr
KDB(0)> set 4 set toggle for POWER family RS syntax
power_pc_syntax is false
KDB(0)> dc resume_pc 10 prints 10 instructions
.resume_pc+000000 lbz r0,3454(0) 3454=Trconflag
.resume_pc+000004 mfspr r15,110
.resume_pc+000008 cmpi cr0,r0,0
.resume_pc+00000C l toc,4208(0) toc=TOC,4208=g_toc
.resume_pc+000010 l r30,4C(r15)
.resume_pc+000014 l r14,40(r15)
.resume_pc+000018 l r31,8(r30)
.resume_pc+00001C bne cr0.eq,<.resume_pc+0001BC>
.resume_pc+000020 lha r28,2(r30)
.resume_pc+000024 l r29,0(r14)

KDB(4)> dc scdisk_pm_handler
.scdisk_pm_handler+000000 stmw r26,FFFFFFE8(stkp)
KDB(4)> tr scdisk_pm_handler
Physical Address = 1D7CA1C0
KDB(4)> dpc 1D7CA1C0
1D7CA1C0 stmw r26,FFFFFFE8(stkp)

di Subcommand
The di subcommand is used to decode the given hexadecimal instruction word. The hexadecimal
instruction word displays the actual instruction, with the opcode and the operands, of the given
hexadecimal instruction. That is, the di subcommand accepts a user input hexadecimal instruction word
and decodes it into the actual instruction word in the form of the opcode and the operands.

Syntax:

Chapter 17. KDB Kernel Debugger and Command 377

di hexadecimal_instruction

v hexadecimal_instruction - Specifies the hexadecimal instruction word to be decoded.

Example:
KDB(0)> di 7Ce6212e
stwx r7,r6,r4
KDB(0)>

dr Subcommand
The display registers subcommand can be used to display general purpose, segment, special, or floating
point registers. Individual registers can also be displayed. The current context is used to locate the values
to display. The switch subcommand can be used to change context to other threads. For more information
see “sw Subcommand” on page 395.

Syntax:

dr [gp | sr | sp | fp | reg_name]

v gp - Displays general purpose registers.

v sr - Displays segment registers.

v sp - Displays special purpose registers.

v fp - Displays floating point registers.

v reg_name - Displays a specific register, by name.

If no argument is given, the general purpose registers are displayed. If an invalid register name is
specified, a list of all of the register names is displayed.

For BAT registers, the dbat and ibat subcommands must be used. FOr more information, see “bat/Block
Address Translation Subcommands” on page 354.

Example:
KDB(0)> dr ? print usage
is not a valid register name
Usage: dr [sp|sr|gp|fp|<reg. name>]
sp reg. name: iar msr cr lr ctr xer mq tid asr
............. dsisr dar dec sdr0 sdr1 srr0 srr1 dabr rtcu rtcl
............. tbu tbl sprg0 sprg1 sprg2 sprg3 pir fpecr ear pvr
............. hid0 hid1 iabr dmiss imiss dcmp icmp hash1 hash2 rpa
............. buscsr l2cr l2sr mmcr0 mmcr1 pmc1 pmc2 pmc3 pmc4 pmc5
............. pmc6 pmc7 pmc8 sia sda
sr reg. name: s0 s1 s2 s3 s4 s5 s6 s7 s8 s9
............. s10 s11 s12 s13 s14 s15
gp reg. name: r0 r1 r2 r3 r4 r5 r6 r7 r8 r9
............. r10 r11 r12 r13 r14 r15 r16 r17 r18 r19
............. r20 r21 r22 r23 r24 r25 r26 r27 r28 r29
............. r30 r31
fp reg. name: f0 f1 f2 f3 f4 f5 f6 f7 f8 f9
............. f10 f11 f12 f13 f14 f15 f16 f17 f18 f19
............. f20 f21 f22 f23 f24 f25 f26 f27 f28 f29
............. f30 f31 fpscr
KDB(0)> dr print general purpose registers
r0 : 00003730 r1 : 2FEDFF88 r2 : 00211B6C r3 : 00000000 r4 : 00000003
r5 : 007FFFFF r6 : 0002F930 r7 : 2FEAFFFC r8 : 00000009 r9 : 20019CC8
r10 : 00000008 r11 : 00040B40 r12 : 0009B700 r13 : 2003FC60 r14 : DEADBEEF
r15 : 00000000 r16 : DEADBEEF r17 : 2003FD28 r18 : 00000000 r19 : 20009168
r20 : 2003FD38 r21 : 2FEAFF3C r22 : 00000001 r23 : 2003F700 r24 : 2FEE02E0
r25 : 2FEE0000 r26 : D0005454 r27 : 2A820846 r28 : E3000E00 r29 : E60008C0
r30 : 00353A6C r31 : 00000511
KDB(0)> dr sp print special registers
iar : 10001C48 msr : 0000F030 cr : 28202884 lr : 100DAF18
ctr : 100DA1D4 xer : 00000003 mq : 00000DF4

378 Kernel Extensions and Device Support Programming Concepts

dsisr : 42000000 dar : 394A8000 dec : 007DDC00
sdr1 : 00380007 srr0 : 10001C48 srr1 : 0000F030
dabr : 00000000 rtcu : 2DC05E64 rtcl : 2E993E00
sprg0 : 000A5740 sprg1 : 00000000 sprg2 : 00000000 sprg3 : 00000000
pid : 00000000 fpecr : 00000000 ear : 00000000 pvr : 00010001
hid0 : 8101FBC1 hid1 : 00004000 iabr : 00000000
KDB(0)> dr sr print segment registers
s0 : 60000000 s1 : 60001377 s2 : 60001BDE s3 : 60001B7D s4 : 6000143D
s5 : 60001F3D s6 : 600005C9 s7 : 007FFFFF s8 : 007FFFFF s9 : 007FFFFF
s10 : 007FFFFF s11 : 007FFFFF s12 : 007FFFFF s13 : 60000A0A s14 : 007FFFFF
s15 : 600011D2
KDB(0)> dr fp print floating point registers
f0 : C027C28F5C28F5C3 f1 : 000333335999999A f2 : 3FE3333333333333
f3 : 3FC9999999999999 f4 : 7FF0000000000000 f5 : 00100000C0000000
f6 : 4000000000000000 f7 : 000000009A068000 f8 : 7FF8000000000000
f9 : 00000000BA411000 f10 : 0000000000000000 f11 : 0000000000000000
f12 : 0000000000000000 f13 : 0000000000000000 f14 : 0000000000000000
f15 : 0000000000000000 f16 : 0000000000000000 f17 : 0000000000000000
f18 : 0000000000000000 f19 : 0000000000000000 f20 : 0000000000000000
f21 : 0000000000000000 f22 : 0000000000000000 f23 : 0000000000000000
f24 : 0000000000000000 f25 : 0000000000000000 f26 : 0000000000000000
f27 : 0000000000000000 f28 : 0000000000000000 f29 : 0000000000000000
f30 : 0000000000000000 f31 : 0000000000000000 fpscr : BA411000
KDB(0)> dr ctr print CTR register
ctr : 100DA1D4
100DA1D4 cmpi cr0,r3,E7 r3=2FEAB008
KDB(0)> dr msr print MSR register
msr : 0000F030 bit set: EE PR FP ME IR DR
KDB(0)> dr cr
cr : 28202884 bits set in CR0 : EQ
..............................CR1 : LT
..............................CR2 : EQ
..............................CR4 : EQ
..............................CR5 : LT
..............................CR6 : LT
..............................CR7 : GT
KDB(0)> dr xer print XER register
xer : 00000003 comparison byte: 0 length: 3
KDB(0)> dr iar print IAR register
iar : 10001C48
10001C48 stw r12,4(stkp) r12=28202884,4(stkp)=2FEAAFD4
KDB(0)> set 11 enable 64 bits display on 620 machine
64_bit is true
KDB(0)> dr display 620 general purpose registers
r0 : 0000000000244CF0 r1 : 0000000000259EB4 r2 : 000000000025A110
r3 : 00000000000A4B60 r4 : 0000000000000001 r5 : 0000000000000001
r6 : 00000000000000F0 r7 : 0000000000001090 r8 : 000000000018DAD0
r9 : 000000000015AB20 r10 : 000000000018D9D0 r11 : 0000000000000000
r12 : 000000000023F05C r13 : 00000000000001C8 r14 : 00000000000000BC
r15 : 0000000000000040 r16 : 0000000000000040 r17 : 00000000080300F0
r18 : 0000000000000000 r19 : 0000000000000000 r20 : 0000000000225A48
r21 : 0000000001FF3E00 r22 : 00000000002259D0 r23 : 000000000025A12C
r24 : 0000000000000001 r25 : 0000000000000001 r26 : 0000000001FF42E0
r27 : 0000000000000000 r28 : 0000000001FF4A64 r29 : 0000000001FF4000
r30 : 00000000000034CC r31 : 0000000001FF4A64
KDB(0)> dr sp display 620 special registers
iar : 000000000023F288 msr : 0000000000021080 cr : 42000440
lr : 0000000000245738 ctr : 0000000000000000 xer : 00000000
mq : 00000000 asr : 0000000000000000
dsisr : 42000000 dar : 00000000000000EC dec : C3528E2F
sdr1 : 01EC0000 srr0 : 000000000023F288 srr1 : 0000000000021080
dabr : 0000000000000000 tbu : 00000002 tbl : AF33287B
sprg0 : 00000000000A4C00 sprg1 : 0000000000000040
sprg2 : 0000000000000000 sprg3 : 0000000000000000
pir : 0000000000000000 ear : 00000000 pvr : 00140201
hid0 : 7001C080 iabr : 0000000000000000

Chapter 17. KDB Kernel Debugger and Command 379

buscsr : 00000000008DC800 l2cr : 000000000000421A l2sr : 0000000000000000
mmcr0 : 00000000 pmc1 : 00000000 pmc2 : 00000000
sia : 0000000000000000 sda : 0000000000000000
KDB(0)>

Example on a PCI machine:
KDB(0)> ddpw 80000cfc print one word at physical address 80000cfc
80000CFC: D0000080 Read is done in relocated mode, cache inhibited
KDB(0)>

find and findp Subcommands
The find and findp subcommands can be used to search for a specific pattern in memory. The find
subcommand requires an effective address for the address argument, whereas the findp subcommand
requires a real address.

Syntax:

find symbol | EffectiveAddress pattern [mask | delta]

findp PhysicalAddress pattern [mask | delta]

v -s - Indicates the pattern to be searched for is an ASCII string

v Address - Specifies the address where the search is to begin. This can either be a virtual (effective) or
physical address, depending on the subcommand used. Symbols, hexadecimal values, or hexadecimal
expressions can be used in specification of the address.

v string - Specifies the ASCII string to search for if the -s option is specified.

v pattern - Specifies the hexadecimal value of the pattern to search for. The pattern is limited to one word
in length.

v mask - If a pattern is specified, a mask can be specified to eliminate bits from consideration for
matching purposes. This argument is a one word hexadecimal value.

v delta - Specifies the increment to move forward after an unsuccessful match. This argument is a one
word hexadecimal value.

The pattern that is searched for can either be an ASCII string, if the -s option is used, or a one word hex
value. If the search is for an ASCII string the period (.) can be used to match any character.

A mask argument can be used if the search is for a hex value. The mask is used to eliminate bits from
consideration. When checking for matches, the value from memory is ended with the mask and then
compared to the specified pattern for matching. For example, a mask of 7fffffff would indicate that the
high bit is not to be considered. If the specified pattern was 0000000d and the mask was 7fffffff the
values 0000000d and 8000000d would both be considered matches.

An argument can also be specified to indicate the delta to be applied to determine the next address to be
checked for a match. This allows ensuring that the matching pattern occur on specific boundaries. For
example, if it is desired to find the pattern 0f0000ff aligned on a 64-byte boundary the following
subcommand could be used:
find 0f0000ff ffffffff 40

The default delta is one byte for matching stings (-s option) and one word for matching a specified hex
pattern.

The -s option can be used to enter string of characters. The period (.) is used to match any character.

If the find or findp subcommands find the specified pattern, the data and address are displayed. The
search can then be continued starting from that point by using the Enter key.

Example:

380 Kernel Extensions and Device Support Programming Concepts

KDB(0)> tpid print current thread
SLOT NAME STATE TID PRI CPUID CPU FLAGS WCHAN

thread+002F40 63*nfsd RUN 03F8F 03C 000 00000000
KDB(0)> find lock_pinned 03F8F 00ffffff 20 search TID in the lock area

compare only 24 low bits, on cache aligned addresses (delta 0x20)
lock_pinned+00D760: 00003F8F 00000000 00000005 00000000
KDB(0)> <CR/LF> repeat last command
Invalid address E800F000, skip to (^C to interrupt)
............... E8800000
Invalid address E8840000, skip to (^C to interrupt)
............... E9000000
Invalid address E9012000, skip to (^C to interrupt)
............... F0000000
KDB(0)> findp 0 E819D200 search in physical memory
00F97C7C: E819D200 00000000 00000000 00000000
KDB(0)> <CR/LF> repeat last command
05C4FB18: E819D200 00000000 00000000 00000000
KDB(0)> <CR/LF> repeat last command
0F7550F0: E819D200 00000000 E60009C0 00000000
KDB(0)> <CR/LF> repeat last command
0F927EE8: E819D200 00000000 05E62D28 00000000
KDB(0)> <CR/LF> repeat last command
0FAE16E8: E819D200 00000000 05D3B528 00000000
KDB(0)> <CR/LF> repeat last command
kdb_get_real_memory: Out of range address 1FFFFFFF
KDB(0)>

Example:
KDB(0)>find -s 01A86260 pse search "pse" in pse text code
01A86ED4: 7073 655F 6B64 6200 8062 0518 8063 0000 pse_kdb..b...c..
KDB(0)> <CR/LF> repeat last command
01A92952: 7073 6562 7566 6361 6C6C 735F 696E 6974 psebufcalls_init
KDB(0)> <CR/LF> repeat last command
01A939AE: 7073 655F 6275 6663 616C 6C00 0000 BF81 pse_bufcall.....
KDB(0)> <CR/LF> repeat last command
01A94F5A: 7073 655F 7265 766F 6B65 BEA1 FFD4 7D80 pse_revoke....}.
KDB(0)> <CR/LF> repeat last command
01A9547E: 7073 655F 7365 6C65 6374 BE41 FFC8 7D80 pse_select.A..}.
KDB(0)> find -s 01A86260 pse_....._thread how to use ’.’
01A9F586: 7073 655F 626C 6F63 6B5F 7468 7265 6164 pse_block_thread
KDB(0)> <CR/LF> repeat last command
01A9F6EA: 7073 655F 736C 6565 705F 7468 7265 6164 pse_sleep_thread

ext and extp Subcommands
The ext and extp subcommands can be used to display a specific area from a structure. If an array exists,
it can be traversed displaying the specified area for each entry of the array. These subcommands can also
be used to traverse a linked list displaying the specified area for each entry.

Syntax:

ext symbol EffectiveAddress delta [size | count]

extp

v -p - Indicates that the delta argument is the offset to a pointer to the next area.

v Address - Specifies the address at which to begin displaying values. This can either be a virtual
(effective) or physical address depending on the subcommand used. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

v delta - Specifies the offset to the next area to be displayed or offset from the beginning of the current
area to a pointer to the next area. This argument is a hexadecimal value.

v size - Specifies the hexadecimal value specifying the number of words to display.

v count - Specifies the hexadecimal value specifying the number of entries to traverse.

Chapter 17. KDB Kernel Debugger and Command 381

For the ext subcommand the Address argument specifies an effective address. For the extp subcommand
the address argument specifies a physical address.

If the -p flag is not specified, these subcommands display the number of words indicated in the size
argument. They then increment the address by the delta and display the data at that location. This
procedure is repeated for the number of times indicated in the count argument.

If the -p flag is specified, these subcommands display the number of words indicated in the size argument.
The next address from which data is to be displayed is then determined by using the value at the current
address plus the offset indicated in the delta argument (for example, *(addr+delta)). This procedure is
repeated for the number of times indicated in the count argument.

Example:
(0)> ext thread+7c 0000C0 1 20 extract scheduler information from threads
thread+00007C: 00021001
thread+00013C: 00024800 ..H.
thread+0001FC: 00007F01
thread+0002BC: 00017F01
thread+00037C: 00027F01
thread+00043C: 00037F01
thread+0004FC: 00021001
thread+0005BC: 00012402 ..$.
thread+00067C: 00002502 ..%.
thread+00073C: 00002502 ..%.
thread+0007FC: 00002502 ..%.
thread+0008BC: 00032502 ..%.
thread+00097C: 00002502 ..%.
thread+000A3C: 00033C00 ..<.
...
KDB(0)> extp 0 4000000 4 100 extract memory using real address
00000000: 00000000 00000000 00000000 00000000
04000000: 00004001 00000000 00000000 00000000 ..@.............
08000000: 00008001 00000000 00000000 00000000
0C000000: D0071128 F010EA08 F010EA68 F010F028 ...(.......h...(
10000000: 00000000 00000000 00000000 00000000
14000000: 746C2E63 2C206C69 62636673 2C20626F tl.c, libcfs, bo
18000000: 20005924 0000031D 20001B04 20005924 .Y$....Y$
1C000000: 000C000D 000E000F 00100011 00120013
20000000: kdb_get_real_memory: Out of range address 20000000

The -p option specifies that delta is offset of the field giving the next address. A list can be printed by this
way.

Example:
(0)> ext -p proc+500 14 8 10 print siblings of a process
proc+000500: 07000000 00000303 00000000 00000000
proc+000510: 00000000 E3000400 E3000500 00000000

proc+000400: 07000000 00000303 00000000 00000000
proc+000410: 00000000 E3000300 E3000400 00000000

proc+000300: 07000000 00000303 00000000 00000000
proc+000310: 00000000 E3000200 E3000300 00000000

proc+000200: 07000000 00000303 00000000 00000000
proc+000210: 00000000 00000000 E3000200 00000000

Modify Memory Subcommands

Note: Modify memory subcommands are specific to the KDB Kernel Debugger. They are not available in
the kdb command.

382 Kernel Extensions and Device Support Programming Concepts

m, mw, md, mp, mpw, and mpd Subcommands
The m (modify bytes), mw (modify words), and md (modify double words) subcommands can be used to
modify memory starting at a specified effective address.

Note: These subcommands are only available within the KDB Kernel Debugger; they are not included in
the kdb command.

Syntax:

m symbol EffectiveAddress

mw symbol EffectiveAddress

md symbol EffectiveAddress

mp PhysicalAddress

mpw PhysicalAddress

mpd PhysicalAddress

v Address - Specifies the starting address to be modified. This can either be a virtual (effective) or
physical address. Symbols, hexadecimal values, or hexadecimal expressions can be used in
specification of the address.

Read or write access can be in virtual or real mode, using an effective address or a real address as input:

v m subcommands: real mode access with an effective address as argument.

v mp subcommands: real mode access with a real address as argument.

v mdv subcommands: virtual mode access with an effective address as argument.

v mdp subcommands: virtual mode access with a real address as argument.

These subcommands are interactive; each modification is entered one by one. The first unexpected input
stops modification. A period (.), for example, can be used as <eod>. The following example shows how to
do a patch.

If a break point is set at the same address, use the mw subcommand to keep break point coherency.

Note: Symbolic expressions are not allowed as input.

Example:
KDB(0)> dc @iar print current instruction
.open+000000 mflr r0
KDB(0)> mw @iar nop current instruction
.open+000000: 7C0802A6 = 60000000
.open+000004: 93E1FFFC = . end of input
KDB(0)> dc @iar print current instruction
.open+000000 ori r0,r0,0
KDB(0)> m @iar restore current instruction byte per byte
.open+000000: 60 = 7C
.open+000001: 00 = 08
.open+000002: 00 = 02
.open+000003: 00 = A6
.open+000004: 93 = . end of input
KDB(0)> dc @iar print current instruction
.open+000000 mflr r0
KDB(0)> tr @iar physical address of current instruction
Physical Address = 001C5BA0
KDB(0)> mwp 001C5BA0 modify with physical address
001C5BA0: 7C0802A6 = <CR/LF>

Chapter 17. KDB Kernel Debugger and Command 383

001C5BA4: 93E1FFFC = <CR/LF>
001C5BA8: 90010008 = <CR/LF>
001C5BAC: 9421FF40 = 60000000
001C5BB0: 83E211C4 = . end of input
KDB(0)> dc @iar 5 print instructions
.open+000000 mflr r0
.open+000004 stw r31,FFFFFFFC(stkp)
.open+000008 stw r0,8(stkp)
.open+00000C ori r0,r0,0
.open+000010 lwz r31,11C4(toc) 11C4(toc)=_open$$
KDB(0)> mw open+c restore instruction
.open+00000C: 60000000 = 9421FF40
.open+000010: 83E211C4 = . end of input
KDB(0)> dc open+c print instruction
.open+00000C stwu stkp,FFFFFF40(stkp)
KDB(0)>

mdvb, mdvh, mdvw, mdvd, mdpb, mdph, mdpw, mdpd Subcommands
The subcommands mdvb, mdvh, mdvw and mdvd can be used to access these areas in translated
mode, using an effective address already mapped. On a 64-bit machine, double words correctly aligned
are accessed (mdvd) in a single store instruction.

The subcommands mdpb, mdph, mdpw and mdpd can be used to access these areas in translated
mode, using a physical address that will be mapped. On 64-bit machine, double words correctly aligned
are accessed (mdpd) in a single store instruction. DBAT interface is used to translate this address in
cache inhibited mode.

Note: These subcommands are only available within the KDB Kernel Debugger, they are not included in
the kdb command.

Syntax:

mdvb dev EffectiveAddress

mdvh dev EffectiveAddress

mdvw dev EffectiveAddress

mdvd dev EffectiveAddress

mdpb dev PhysicalAddress

mdph dev PhysicalAddress

mdpw dev PhysicalAddress

mdpd dev PhysicalAddress

v Address - Specifies the address of the memory to modify. This can either be a virtual (effective) or
physical address, dependent on the subcommand used. Symbols, hexadecimal values, or hexadecimal
expressions can be used in specification of the address.

Aliases:

v mdvb - miob

v mdvh - mioh

v mdvw - miow

v mdvd - miod

384 Kernel Extensions and Device Support Programming Concepts

These subcommands are available to write in I/O space memory. To avoid bad effects, memory is not read
before, only the specified write is performed with translation enabled.

Access can be in bytes, half words, words or double words.

The Address attribute can be an effective address or a real address.

Note: The subcommands using effective addresses (mdv.) assume that mapping to real addresses is
currently valid. No check is done by KDB. The subcommands using real addresses (mdp.) can be
used to let KDB perform the mapping (attach and detach).

Example on PowerPC 601 RISC Microprocessor:

Note: The PowerPC 601 RISC Microprocessor is only supported on AIX 5.1 and earlier.
KDB(0)> tr FFF19610 print physical mapping
BAT mapping for FFF19610
DBAT0 FFC0003A FFC0005F
bepi 7FE0 brpn 7FE0 bl 001F v 1 wim 3 ks 1 kp 0 pp 2 s 0
eaddr = FFC00000, paddr = FFC00000 size = 4096 KBytes
KDB(0)> mdvb fff19610 byte modify with data relocate enable
FFF19610: ?? = 00
FFF19611: ?? = 00
FFF19612: ?? = . end of input
KDB(0)> mdvw fff19610 word modify with data relocate enable
FFF19610: ???????? = 004196B0
FFF19614: ???????? = . end of input
KDB(0)>

Example on a PCI machine:
KDB(0)> mdpw 80000cf8 change one word at physical address 80000cf8
80000CF8: ???????? = 84000080
80000CFC: ???????? = .Write is done in relocated mode, cache inhibited
KDB(0)> ddpw 80000cfc print one word at physical address 80000cfc
80000CFC: D2000000
KDB(0)> mdpw 80000cfc change one word at physical address 80000cfc
80000CFC: ???????? = d0000000
80000D00: ???????? = .
KDB(0)> mdpw 80000cf8 change one word at physical address 80000cf8
80000CF8: ???????? = 8c000080
80000CFC: ???????? = .
KDB(0)> ddpw 80000cfc print one word at physical address 80000cfc
80000CFC: D2000080

mr Subcommand
The mr subcommand can be used to modify general purpose, segment, special, or floating point registers.

Syntax:

mr [gp | sr | sp | fp | reg_name]

v gp - Modifies general purpose registers.

v sr - Modifies segment registers.

v sp - Modifies special purpose registers.

v fp - Modifies floating point registers.

v reg_name - Modifies a specific register, by name.

Individual registers can also be selected for modification by register name. The current thread context is
used to locate the register values to be modified. The switch subcommand can be used to change context

Chapter 17. KDB Kernel Debugger and Command 385

to other threads. When the register being modified is in the mst context, KDB alters the mst. When the
register being modified is a special one, the register is altered immediately. Symbolic expressions are
allowed as input.

If the gp, sr, sp, or fp options are used, modification of all of the registers in the group is allowed. The
current value for a single register is shown and modification is allowed. Then the value for the next register
is displayed for modification. Entry of an invalid character, such as a period (.), ends modification of the
registers. If the value for a register is to be left unmodified, press the Enter key to continue to the next
register for modification.

Example:
KDB(0)> dc @iar print current instruction
.open+000000 mflr r0
KDB(0)> mr iar modify current instruction address
iar : 001C5BA0 = @iar+4
KDB(0)> dc @iar print current instruction
.open+000004 stw r31,FFFFFFFC(stkp)
KDB(0)> mr iar restore current instruction address
iar : 001C5BA4 = @iar-4
KDB(0)> dc @iar print current instruction
.open+000000 mflr r0
KDB(0)> mr sr modify first invalid segment register
s0 : 00000000 = <CR/LF>
s1 : 60000323 = <CR/LF>
s2 : 20001E1E = <CR/LF>
s3 : 007FFFFF = 0
s4 : 007FFFFF = . end of input
KDB(0)> dr s3 print segment register 3
s3 : 00000000
KDB(0)> mr s3 restore segment register 3
s3 : 00000000 = 007FFFFF
KDB(0)> mr f29 modify floating point register f29
f29 : 0000000000000000 = 000333335999999A
KDB(0)> dr f29
f29 : 000333335999999A
KDB(0)> u
Uthread [2FF3B400]:

save@......2FF3B400 fpr@.......2FF3B550
...
KDB(0)> dd 2FF3B550 20
__ublock+000150: C027C28F5C28F5C3 000333335999999A .’..\(....33Y...
__ublock+000160: 3FE3333333333333 3FC9999999999999 ?.333333?.......
__ublock+000170: 7FF0000000000000 00100000C0000000
__ublock+000180: 4000000000000000 000000009A068000 @...............
__ublock+000190: 7FF8000000000000 00000000BA411000A..
__ublock+0001A0: 0000000000000000 0000000000000000
__ublock+0001B0: 0000000000000000 0000000000000000
__ublock+0001C0: 0000000000000000 0000000000000000
__ublock+0001D0: 0000000000000000 0000000000000000
__ublock+0001E0: 0000000000000000 0000000000000000
__ublock+0001F0: 0000000000000000 0000000000000000
__ublock+000200: 0000000000000000 0000000000000000
__ublock+000210: 0000000000000000 0000000000000000
__ublock+000220: 0000000000000000 0000000000000000
__ublock+000230: 0000000000000000 000333335999999A33Y...
__ublock+000240: 0000000000000000 0000000000000000
KDB(0)>

386 Kernel Extensions and Device Support Programming Concepts

Namelist and Symbol Subcommands

nm and ts Subcommands
The nm subcommand translates symbols to addresses.

The ts subcommand translates addresses to symbolic representations.

Syntax:

nm symbol

ts EffectiveAddress

v symbol - Specifies the symbol name.

v Address - Specifies the effective address to be translated. This argument can be a hexadecimal value
or an expression.

Example:
KDB(0)> nm __ublock print symbol value
Symbol Address : 2FF3B400
KDB(0)> ts E3000000 print symbol name
proc+000000

ns Subcommand
The ns subcommand toggles symbolic name translation on and off.

Syntax:

ns

Example:
KDB(0)> set 2 do not print context
mst_wanted is false
KDB(0)> f print stack frame
thread+00D080 STACK:
[000095A4].simple_lock+0000A4 ()
[0007F4A0]v_prefreescb+000038 (??, ??)
[00017AC4]isync_vcs3+000004 (??, ??)
____ Exception (2FF40000) ____
[00009414].unlock_enable+000110 ()
[00009410].unlock_enable+00010C ()
[0000CDD0]as_det+0000A8 (??, ??)
[001B33F8]shm_freespace+000080 (??, ??)
[001F6A04]rmmapseg+0000D0 (??)
[001E41DC]vm_map_entry_delete+00023C (??, ??)
[001E4828]vm_map_delete+000158 (??, ??, ??)
[001E5034]vm_map_remove+000064 (??, ??, ??)
[001E6514]munmap+0000C0 (??, ??)
[000036FC].sys_call+000000 ()
KDB(0)> ns enable no symbol printing
Symbolic name translation off
KDB(0)> f print stack frame
E600D080 STACK:
000095A4 ()
0007F4A0 (??, ??)
00017AC4 (??, ??)
____ Exception (2FF40000) ____
00009414 ()
00009410 ()
0000CDD0 (??, ??)
001B33F8 (??, ??)
001F6A04 (??)

Chapter 17. KDB Kernel Debugger and Command 387

001E41DC (??, ??)
001E4828 (??, ??, ??)
001E5034 (??, ??, ??)
001E6514 (??, ??)
000036FC ()
KDB(0)> ns disable no symbol printing
Symbolic name translation on
KDB(0)>

which Subcommand
The which subcommand displays the name of the kernel source file containing symbol or addr.

Note: The which subcommand is only available in the kdb command.

Syntax:

which symbol | addr

v symbol - Locates kernel source file containing symbol and displays the corresponding address of the
symbol and the kernel source file name containing the symbol.

v addr - Locates kernel source file containing symbol at addr and displays the following:

– The symbol corresponding to the address

– The start address of the symbol

– The kernel source file name containing the symbol

Alias: wf

Example:
> which main

Addr: 0022A700 Symbol: .main
Name: ../../../../../src/bos/kernel/si/main.c

print Subcommand
Helps to interprete a dump of memory by formatting it into a given C language data structure and
displaying it. The print subcommand prints arrays, follows link lists, and displays the lists of loaded
symbols. It also draws the data structure information from a debug object file that has been built using the
-g -qdbxextra flags. For example, a symbol file to print the LFS structures can be built as follows:

$ echo ’#include <sys/vnode.h>’ > symbols.c
$ echo ’main() { ; }’ >> symbols.c
$ cc -g -o symbols symbols.c -qdbxextra /* for 32 bit kernel */
$ cc -g -q64 -o symbols symbols.c -qdbxextra /* for 64 bit kernel */

Although the usage is same, the method for loading this symbol file is different for kdb command and KDB
debugger. For the kdb command, the symbol file is passed by setting the KDBSYM environmental
variable as follows:

$ KDBSYM=`/bin/pwd`/symbols ; export KDBSYM
$ kdb dump unix
(0)> print vnode 012345

For the kdb command, the symbol file can be generated automatically when KDB is run using -i flag. For
example, the vnode structure at 0x012345 can also be printed, as follows:

$ kdb -i /usr/include/sys/vnode.h
(0)> print vnode 0x012345

For the KDB debugger, the symbol file must be created and loaded into the kernel ahead of time, that is,
before breaking into the KDB debugger. Use the bosdebug command to create the symbol file, as follows:

$ bosdebug -l symbols
Now you may break into kdb debugger and print structures
(0)> print vnode 0x012345

388 Kernel Extensions and Device Support Programming Concepts

In the KDB debugger, multiple symbol files can be loaded, but it is responsibility of the user to ensure that
the symbols are consistent. Symbols can be flushed out from the kernel memory as follows:

$ bosdebug -f

Syntax: print [-l offset | name [-e end_val][type] address] [[-a count] [type] address] [-d default_type] [
-p pattern_type]

v print -d type - sets default type for formatting

v print address - creates a formatted dump of memory at address, using default type.

v print [-l offset | name [-e end_val][type] address] - Creates a formatted dump of memory, as above, but
follows a linked list, which is specified by offset words or the name member. The list terminates at
end_val or 0 (NULL) if end_val is not specified. The offset variable is specified in decimal format, as
follows:
(0)> print -e 1F800000 -l i_forw inode 134D43D8

v print [-a count] [type] address] - Creates a formatted array of memory. The count variable is the
number of elements in the array and is in decimal format. For example:
(0)> print -a 2 pvthread pvthread

v print [-p pattern_type] - Searches for symbols. For example:
(0)> print -p *node
(0)> print -p node*
(0)> print -p *

Example:
> print pathlook 0x010000
struct pathlook {

uint hash = 0x48002569;
uint length = 0x880f0008;
struct pathlook *next = 0x2c000001;
struct file *fp = 0x2c800005;
time_t pl_timestamp = 0x418200bc;
uint64 pl_filesize = 0x7c8e7008888f008b;
unsigned char type = 0x88;
unsigned char pl_flags = 0xaf ’ ’;
unsigned char name[0] = 00;

} foo;

symptom Subcommand
Displays the symptom string for a dump. The symptom subcommand is not valid on a running system.
The optional -e flag will create an error log entry containing the symptom string, and is normally only used
by the system and not entered manually. The symptom string can be used to identify duplicate problems.

Note: The symptom subcommand is only available in the kdb command.

Syntax:

symptom [-e]

v No arguments - Displays the symptom string on the standard output.

v -e - Writes the symptom string and the stack trace to the system errlog. The symptom string is
displayed on the standard output.

Example 1:

The following example demonstrates the kdb command running on a dump:
<0> symptom
PIDS/5765C3403 LVLS/430 PCSS/SPI1 MS/300 FLDS/uiocopyin VALU/7ce621ae
FLDS/uiomove VALU/13c

Example 2:

Chapter 17. KDB Kernel Debugger and Command 389

The following example demontrates the kdb command running on a dump with symptom invoked with -e
flag.

<0> symptom -e
PIDS/5765C3403 LVLS/430 PCSS/SPI1 MS/300 FLDS/uiocopyin VALU/7ce621ae
FLDS/uiomove VALU/13c

The corresponding system errlog entry is similar to the following:
LABEL: SYSDUMP_SYMP

....
Detail Data
DUMP STATUS
LED:300
csa:2ff3b400
uiocopyin_ppc 1c4
uiomove 13c
....

Watch Break Point Subcommands

Note: Watch break point subcommands are specific to the KDB Kernel Debugger. They are not available
in the kdb command.

wr, ww, wrw, cw, lwr, lww, lwrw, and lcw Subcommands
A watch register can be used on the DABR Data Address Breakpoint Register or HID5 on PowerPC 601
RISC Microprocessor to enter KDB when a specified effective address is accessed. The register holds a
double-word effective address and bits to specify load and store operation. The wr subcommand can be
used to stop on a load instruction. The ww subcommand can be used to stop on store instruction. The
wrw subcommand can be used to stop on a load or store instruction. With no argument, the subcommand
prints the current active watch subcommand. The cw subcommand can be used to clear the last watch
subcommand. These subcommands are global to all processors. The local subcommands lwr, lww, lwrw,
and lcw allow establishing a watchpoint for a specific processor. If no size is specified, the default size is 8
bytes and the address is double word aligned. Otherwise KDB checks the faulting address with the
specified range and continues execution if it does not match.

Note: These subcommands are only available within the KDB Kernel Debugger, they are not included in
the kdb command.

Syntax:

wr [[-e | -p | -v] Address [size]]

ww [[-e | -p | -v] Address [size]]

wrw [[-e | -p | -v] Address [size]]

cw

lwr [[-e | -p | -v] Address [size]]

lww [[-e | -p | -v] Address [size]]

lwrw [[-e | -p | -v] Address [size]]

lcw

v -p - Indicates that the address argument is a physical address.

v -v - Indicates that the address argument is a virtual address.

v -e - Indicates that the address argument is an effective address.

390 Kernel Extensions and Device Support Programming Concepts

v Address - Specifies the address to be watched. Symbols, hexadecimal values, or hexadecimal
expressions can be used in specification of the address.

v size - Indicates the number of bytes that are to be watched. This argument is a decimal value.

It is possible to specify whether the address is physical, virtual, or effective with the -p, -v, and -e options.
If the address type is not specified it is assumed to be an effective address.

Aliases:

v wr - stop-r

v ww - stop-w

v wrw - stop-rw

v cw - stop-cl

v lwr - lstop-r

v lww - lstop-w

v lwrw - lstop-rw

v lcw - lstop-cl

Example:
KDB(0)> ww -p emulate_count set a data break point (physical address, write mode)
KDB(0)> ww print current data break points
CPU 0: emulate_count+000000 paddr=00238360 size=8 hit=0 mode=W
CPU 1: emulate_count+000000 paddr=00238360 size=8 hit=0 mode=W
KDB(0)> e exit the debugger
...
Watch trap: 00238360 <emulate_count+000000>
power_asm_emulate+00013C stw r28,0(r30) r28=0000003A,0(r30)=emulate_count
KDB(0)> ww print current data break points
CPU 0: emulate_count+000000 paddr=00238360 size=8 hit=1 mode=W
CPU 1: emulate_count+000000 paddr=00238360 size=8 hit=0 mode=W
KDB(0)> wr sysinfo set a data break point (read mode)
KDB(0)> wr print current data break points
CPU 0: sysinfo+000000 eaddr=003BA9D0 vsid=00000000 size=8 hit=0 mode=R
CPU 1: sysinfo+000000 eaddr=003BA9D0 vsid=00000000 size=8 hit=0 mode=R
KDB(0)> e exit the debugger
...
Watch trap: 003BA9D4 <sysinfo+000004>
.fetch_and_add+000008 lwarx r3,0,r6 r3=sysinfo+000004,r6=sysinfo+000004
KDB(0)> cw clear data break points

Miscellaneous Subcommands

time and debug Subcommands
The time command can be used to determine the elapsed time from the last time the KDB Kernel
Debugger was left to the time it was entered.

The debug subcommand may be used to print additional information during KDB execution, the primary
use of this subcommand is to aid in ensuring that the debugger is functioning properly. If invoked with no
arguments the currently active debug options are displayed.

Note: The time subcommand is only available within the KDB Kernel Debugger, it is not included in the
kdb command.

Syntax:

time

debug [?]

Chapter 17. KDB Kernel Debugger and Command 391

v ? - Displays help about debug options.

v option - Specifies the debug option to be turned on or off. Possible values may be viewed by specifying
the ? flag.

Example:
KDB(4)> debug ? debug help
vmm HW lookup debug... on with arg ’dbg1++’, off with arg ’dbg1--’
vmm tr/tv cmd debug... on with arg ’dbg2++’, off with arg ’dbg2--’
vmm SW lookup debug... on with arg ’dbg3++’, off with arg ’dbg3--’
symbol lookup debug... on with arg ’dbg4++’, off with arg ’dbg4--’
stack trace debug..... on with arg ’dbg5++’, off with arg ’dbg5--’
BRKPT debug (list).... on with arg ’dbg61++’, off with arg ’dbg61--’
BRKPT debug (instr)... on with arg ’dbg62++’, off with arg ’dbg62--’
BRKPT debug (suspend). on with arg ’dbg63++’, off with arg ’dbg63--’
BRKPT debug (phantom). on with arg ’dbg64++’, off with arg ’dbg64--’
BRKPT debug (context). on with arg ’dbg65++’, off with arg ’dbg65--’
DABR debug (address).. on with arg ’dbg71++’, off with arg ’dbg71--’
DABR debug (register). on with arg ’dbg72++’, off with arg ’dbg72--’
DABR debug (status)... on with arg ’dbg73++’, off with arg ’dbg73--’
BRAT debug (address).. on with arg ’dbg81++’, off with arg ’dbg81--’
BRAT debug (register). on with arg ’dbg82++’, off with arg ’dbg82--’
BRAT debug (status)... on with arg ’dbg83++’, off with arg ’dbg83--’
BRKPT debug (context). on this debug feature is enable
KDB(4)> debug dbg5++ enable debug mode
stack trace debug..... on
KDB(4)> f stack frame in debug mode
thread+000180 STACK:
=== Look for traceback at 0x00015278
=== Got traceback at 0x00015280 (delta = 0x00000008)
=== has_tboff = 1, tb_off = 0xD8
=== Trying to find Stack Update Code from 0x000151A8 to 0x00015278
=== Found 0x9421FFA0 at 0x000151B8
=== Trying to find Stack Restore Code from 0x000151A8 to 0x0001527C
=== Trying to find Registers Save Code from 0x000151A8 to 0x00015278
[00015278]waitproc+0000D0 ()
=== Look for traceback at 0x00015274
=== Got traceback at 0x00015280 (delta = 0x0000000C)
=== has_tboff = 1, tb_off = 0xD8
[00015274]waitproc+0000CC ()
=== Look for traceback at 0x0002F400
=== Got traceback at 0x0002F420 (delta = 0x00000020)
=== has_tboff = 1, tb_off = 0x30
[0002F400]procentry+000010 (??, ??, ??, ??)

/# ls Invoke command from command line that calls open
Breakpoint
0024FDE8 stwu stkp,FFFFFFB0(stkp) stkp=2FF3B3C0,FFFFFFB0(stkp)=2FF3B370
KDB(0)> time Report time from leaving the debugger till the break
Command: time Aliases:
Elapsed time since last leaving the debugger:
2 seconds and 121211136 nanoseconds.
KDB(0)>

reboot Subcommand
The reboot subcommand can be used to reboot the machine. This subcommand issues a prompt for
confirmation that a reboot is desired before executing the reboot. If the reboot request is confirmed, the
soft reboot interface is called (sr_slih(1)).

Note: This subcommand is only available within the KDB Kernel Debugger, it is not included in the kdb
command.

Syntax:

reboot

392 Kernel Extensions and Device Support Programming Concepts

Example:
KDB(0)> reboot reboot the machine
Do you want to continue system reboot? (y/[n]):> y
Rebooting ...

Conditional Subcommands

test Subcommand
The test subcommand can be used in conjunction with the bt subcommand to break at a specified
address when a condition becomes true. This is done by including the test subcommand in a script that is
executed when a trace point set by the bt command is hit. When included in a script, the test command
evaluates the specified condition, and if true causes a break.

Syntax:

test cond

v cond - Specifies the conditional expression that evaluates to a value of true or false.

Aliases: [

The conditional test requires two operands and a single operator. Values that can be used as operands in
a test subcommand include symbols, hexadecimal values, and hexadecimal expressions. Comparison
operators that are supported include: ==, !=, >=, <=, >, and <. Additionally, the bitwise operators ^
(exclusive OR), & (AND), and | (OR) are supported. When bitwise operators are used, any non-zero result
is considered to be true.

Note: The syntax for the test subcommand requires that the operands and operator be delimited by
spaces. This is very important to remember if the [alias is used. For example the subcommand
test kernel_heap != 0 can be written as [kernel_heap != 0]. However, this would not be a
valid command if kernel_heap, !=, and 0 were not preceded by and followed by spaces.

Example:
KDB(0)> bt open "[@sysinfo >= 3d]" stop on open() if condition true
KDB(0)> e exit debugger
...
Enter kdb [@sysinfo >= 3d]
KDB(1)> bt display current active trace break points
0: .open+000000 (sid:00000000) trace {hit: 1} {script: [@sysinfo >= 3d]}
KDB(1)> dw sysinfo 1 print sysinfo value
sysinfo+000000: 0000004A

Calculator Converter Subcommands

hcal and dcal Subcommands
The hcal subcommand evaluates hexadecimal expressions and displays the result in both hex and
decimal.

The dcal subcommand evaluates decimal expressions and displays the result in both hex and decimal.

Syntax:

hcal HexadecimalExpression

dcal DecimalExpression

v Expression - Specifies the decimal or hexadecimal expression, dependent on the subcommand, to be
evaluated.

Chapter 17. KDB Kernel Debugger and Command 393

Aliases:

v hcal - cal

Example:
KDB(0)> hcal 0x10000 convert a single value
Value hexa: 00010000 Value decimal: 65536
KDB(0)> dcal 1024*1024 convert an expression
Value decimal: 1048576 Value hexa: 00100000
KDB(0)> set 11 64 bits printing
64_bit is true
KDB(0)> hcal 0-1 convert -1
Value hexa: FFFFFFFFFFFFFFFF Value decimal: -1 Unsigned: 18446744073709551615
KDB(0)> set 11 32 bits printing
64_bit is false
KDB(0)> hcal 0-1 convert -1
Value hexa: FFFFFFFF Value decimal: -1 Unsigned: 4294967295

Machine Status Subcommands

stat Subcommand
The stat subcommand displays system statistics, including the last kernel printf() messages, still in
memory. The following information is displayed for a processor that has crashed:

v Processor logical number

v Current Save Area (CSA) address

v LED value

For the KDB Kernel Debugger this subcommand also displays the reason why the debugger was entered.
There is one reason per processor.

Syntax:

stat

Example:
KDB(6)> stat machine status got with kdb kernel
RS6K_SMP_MCA POWER_PC POWER_604 machine with 8 cpu(s)
SYSTEM STATUS:
sysname: AIX
nodename: jumbo32
release: 2
version: 4
machine: 00920312A000
nid: 920312A0
Illegal Trap Instruction Interrupt in Kernel
age of system: 1 day, 5 hr., 59 min., 50 sec.

SYSTEM MESSAGES

AIX 4.2
Starting physical processor #1 as logical #1... done.
Starting physical processor #2 as logical #2... done.
Starting physical processor #3 as logical #3... done.
Starting physical processor #4 as logical #4... done.
Starting physical processor #5 as logical #5... done.
Starting physical processor #6 as logical #6... done.
Starting physical processor #7 as logical #7... done.
<- end_of_buffer
CPU 6 CSA 00427EB0 at time of crash, error code for LEDs: 70000000

(0)> stat machine status got with kdb running on the dump file
RS6K_SMP_MCA POWER_PC POWER_604 machine with 4 cpu(s)

394 Kernel Extensions and Device Support Programming Concepts

.......... SYSTEM STATUS
sysname... AIX nodename.. zoo22
release... 3 version... 4
machine... 00989903A6 nid....... 989903A6
time of crash: Sat Jul 12 12:34:32 1997
age of system: 1 day, 2 hr., 3 min., 49 sec.
.......... SYSTEM MESSAGES

AIX 4.3
Starting physical processor #1 as logical #1... done.
Starting physical processor #2 as logical #2... done.
Starting physical processor #3 as logical #3... done.
<- end_of_buffer
.......... CPU 0 CSA 004ADEB0 at time of crash, error code for LEDs: 30000000
thread+01B438 STACK:
[00057F64]v_sync+0000E4 (B01C876C, 0000001F [??])
[000A4FA0]v_presync+000050 (??, ??)
[0002B05C]begbt_603_patch_2+000008 (??, ??)

Machine State Save Area [2FF3B400]
iar : 0002AF4C msr : 000010B0 cr : 24224220 lr : 0023D474
ctr : 00000004 xer : 20000008 mq : 00000000
r0 : 000A4F50 r1 : 2FF3A600 r2 : 002E62B8 r3 : 00000000 r4 : 07D17B60
r5 : E601B438 r6 : 00025225 r7 : 00025225 r8 : 00000106 r9 : 00000004
r10 : 0023D474 r11 : 2FF3B400 r12 : 000010B0 r13 : 000C0040 r14 : 2FF229A0
r15 : 2FF229BC r16 : DEADBEEF r17 : DEADBEEF r18 : DEADBEEF r19 : 00000000
r20 : 0048D4C0 r21 : 0048D3E0 r22 : 07D6EE90 r23 : 00000140 r24 : 07D61360
r25 : 00000148 r26 : 0000014C r27 : 07C75FF0 r28 : 07C75FFC r29 : 07C75FF0
r30 : 07D17B60 r31 : 07C76000
s0 : 00000000 s1 : 007FFFFF s2 : 00001DD8 s3 : 007FFFFF s4 : 007FFFFF
s5 : 007FFFFF s6 : 007FFFFF s7 : 007FFFFF s8 : 007FFFFF s9 : 007FFFFF
s10 : 007FFFFF s11 : 00000101 s12 : 0000135B s13 : 00000CC5 s14 : 00000404
s15 : 6000096E
prev 00000000 kjmpbuf 2FF3A700 stackfix 00000000 intpri 0B
curid 00003C60 sralloc E01E0000 ioalloc 00000000 backt 00
flags 00 tid 00000000 excp_type 00000000
fpscr 00000000 fpeu 00 fpinfo 00 fpscrx 00000000
o_iar 00000000 o_toc 00000000 o_arg1 00000000
excbranch 00000000 o_vaddr 00000000 mstext 00000000
Except :
csr 00000000 dsisr 40000000 bit set: DSISR_PFT
srval 00000000 dar 07CA705C dsirr 00000106

[0002AF4C].backt+000000 (00000000, 07D17B60 [??])
[0023D470]ilogsync+00014C (??)
[002894B8]logsync+000090 (??)
[0028899C]logmvc+000124 (??, ??, ??, ??)
[0023AB68]logafter+000100 (??, ??, ??)
[0023A46C]commit2+0001EC (??)
[0023BF50]finicom+0000BC (??, ??)
[0023C2CC]comlist+0001F0 (??, ??)
[0029391C]jfs_rename+000794 (??, ??, ??, ??, ??, ??, ??)
[00248220]vnop_rename+000038 (??, ??, ??, ??, ??, ??, ??)
[0026A168]rename+000380 (??, ??)
(0)>

sw Subcommand
By default, KDB shows the virtual space for the current thread. The sw subcommand allows selection of
the thread to be considered the current thread. Threads can be specified by slot number or address. The
current thread can be reset to its initial context by entering the sw subcommand with no arguments. For
the KDB Kernel Debugger, the initial context is also restored whenever exiting the debugger.

Syntax:

sw [th {th_slot | th_Address} | {u | k}]

Chapter 17. KDB Kernel Debugger and Command 395

v u - Switches to user address space for the current thread.

v k - Switches to kernel address space for the current thread.

v th_slot - Specifies a thread slot number. This argument must be a decimal value.

v th_Address - Specifies the address of a thread slot. Symbols, hexadecimal values, or hexadecimal
expressions can be used in specification of the address.

Aliases: switch

The -u and -k flags can be used to switch between the user and kernel address space for the current
thread.

Example:
KDB(0)> sw 12 switch to thread slot 12
Switch to thread: <thread+000900>
KDB(0)> f print stack trace
thread+000900 STACK:
[000215FC]e_block_thread+000250 ()
[00021C48]e_sleep_thread+000070 (??, ??, ??)
[000200F4]errread+00009C (??, ??)
[001C89B4]rdevread+000120 (??, ??, ??, ??)
[0023A61C]cdev_rdwr+00009C (??, ??, ??, ??, ??, ??, ??)
[00216324]spec_rdwr+00008C (??, ??, ??, ??, ??, ??, ??, ??)
[001CEA3C]vnop_rdwr+000070 (??, ??, ??, ??, ??, ??, ??, ??)
[001BDB0C]rwuio+0000CC (??, ??, ??, ??, ??, ??, ??, ??)
[001BDF40]rdwr+000184 (??, ??, ??, ??, ??, ??)
[001BDD68]kreadv+000064 (??, ??, ??, ??)
[000037D8].sys_call+000000 ()
[D0046B68]read+000028 (??, ??, ??)
[1000167C]child+000120 ()
[10001A84]main+0000E4 (??, ??)
[1000014C].__start+00004C ()
KDB(0)> dr sr display segment registers
s0 : 00000000 s1 : 007FFFFF s2 : 00000AB7 s3 : 007FFFFF s4 : 007FFFFF
s5 : 007FFFFF s6 : 007FFFFF s7 : 007FFFFF s8 : 007FFFFF s9 : 007FFFFF
s10 : 007FFFFF s11 : 007FFFFF s12 : 007FFFFF s13 : 6000058B s14 : 00000204
s15 : 60000CBB
KDB(0)> sw u switch to user context
KDB(0)> dr sr display segment registers
s0 : 60000000 s1 : 600009B1 s2 : 60000AB7 s3 : 007FFFFF s4 : 007FFFFF
s5 : 007FFFFF s6 : 007FFFFF s7 : 007FFFFF s8 : 007FFFFF s9 : 007FFFFF
s10 : 007FFFFF s11 : 007FFFFF s12 : 007FFFFF s13 : 6000058B s14 : 007FFFFF
s15 : 60000CBB
Now it is possible to look at user code
For example, find how read() is called by child()
KDB(0)> dc 1000167C print child() code (seg 1 is now valid)
1000167C bl <1000A1BC>
KDB(0)> dc 1000A1BC 6 print child() code
1000A1BC lwz r12,244(toc)
1000A1C0 stw toc,14(stkp)
1000A1C4 lwz r0,0(r12)
1000A1C8 lwz toc,4(r12)
1000A1CC mtctr r0
1000A1D0 bcctr
... find stack pointer of child() routine with ’set 9; f’
[D0046B68]read+000028 (??, ??, ??)
===
2FF22B50: 2FF2 2D70 2000 9910 1000 1680 F00F 3130 /.-p10
2FF22B60: F00F 1E80 2000 4C54 0000 0003 0000 4503LT......E.
2FF22B70: 2FF2 2B88 0000 D030 0000 0000 6000 0000 /.+....0....`...
2FF22B80: 6000 09B1 0000 0000 0000 0002 0000 0002 `...............
===
[1000167C]child+000120 ()
...
(0)> dw 2FF22B50+14 1 - stw toc,14(stkp)

396 Kernel Extensions and Device Support Programming Concepts

2FF22B64: 20004C54 toc address
(0)> dw 20004C54+244 1 - lwz r12,244(toc)
20004E98: F00BF5C4 function descriptor address
(0)> dw F00BF5C4 2 - lwz r0,0(r12) - lwz toc,4(r12)
F00BF5C4: D0046B40 F00C1E9C function descriptor (code and toc)
(0)> dc D0046B40 11 - bcctr will execute:
D0046B40 mflr r0
D0046B44 stw r31,FFFFFFFC(stkp)
D0046B48 stw r0,8(stkp)
D0046B4C stwu stkp,FFFFFFB0(stkp)
D0046B50 stw r5,3C(stkp)
D0046B54 stw r4,38(stkp)
D0046B58 stw r3,40(stkp)
D0046B5C addic r4,stkp,38
D0046B60 li r5,1
D0046B64 li r6,0
D0046B68 bl <D00ADC68> read+000028

The following example shows some of the differences between kernel and user
mode for 64-bit process

(0)> sw k kernel mode
(0)> dr msr kernel machine status register
msr : 000010B0 bit set: ME IR DR
(0)> dr r1 kernel stack pointer
r1 : 2FF3B2A0 2FF3B2A0
(0)> f stack frame (kernel MST)
thread+002A98 STACK:
[00031960]e_block_thread+000224 ()
[00041738]nsleep+000124 (??, ??)
[01CFF0F4]nsleep64_+000058 (0FFFFFFF, F0000001, 00000001, 10003730, 1FFFFEF0, 1FFFFEF8)
[000038B4].sys_call+000000 ()
[80000010000867C]080000010000867C (??, ??, ??, ??)
[80000010001137C]nsleep+000094 (??, ??)
[800000100058204]sleep+000030 (??)
[100000478]main+0000CC (0000000100000001, 00000000200FEB78)
[10000023C]__start+000044 ()
(0)> sw u user mode
(0)> dr msr user machine status register
msr : 800000004000D0B0 bit set: EE PR ME IR DR
(0)> dr r1 user stack pointer
r1 : 0FFFFFFFFFFFFF00 0FFFFFFFFFFFFF00
(0)> f stack frame (kernel MST extension)
thread+002A98 STACK:
[8000001000581D4]sleep+000000 (0000000000000064 [??])
[100000478]main+0000CC (0000000100000001, 00000000200FEB78)
[10000023C]__start+000044 ()

Kernel Extension Loader Subcommands

lke, stbl, and rmst Subcommands
The subcommands lke and stbl can be used to display current state of loaded kernel extensions.

Syntax:

lke [?] [-l] [pslot | symbol | Address]

stbl [pslot | symbol | Address]

rmst [pslot | symbol | Address]

v -l - Lists the current entries in the name list cache.

Chapter 17. KDB Kernel Debugger and Command 397

v Address - Specifies the effective address for the text or data area for a loader entry. The specified entry
is displayed and the name list cache is loaded with data for that entry. The Address can be specified as
a hexadecimal value, a symbol, or a hexadecimal expression.

v -a Address - Displays and load the name list cache with the loader entry at the specified address. The
Address can be a hexadecimal value, a symbol, or a hexadecimal expression.

v -p pslot - Displays the shared library loader entries for the process slot indicated. The value for pslot
must be a decimal process slot number.

v -l32 - Displays loader entries for 32-bit shared libraries.

v -l64 - Displays loader entries for 64-bit shared libraries.

v slot - Specifies the slot number. The value must be a decimal number.

During boot phase, KDB is called to load extension symbol tables. A message is printed to indicated what
happens. In the following example, /unix and one driver have symbol tables. If the kernel extension is
stripped, the symbol table is not loaded in memory. The lke subcommand can be used to build a new
symbol table with the traceback table.

A symbol table can be removed from KDB using the rmst subcommand. This subcommand requires that
either a slot number or the effective address for the loader entry of the symbol table be specified.

A symbol name cache is managed inside KDB. The cache is filled with function names with lke slot, lke
-a addr, and lke addr subcommands. This cache is a circular buffer, old entries will be removed by new
ones when the cache is full.

If the lke subcommand is invoked without arguments a summary of the kernel loader entries is displayed.
The lke subcommand arguments -l32 and -l64 can be used to list the loader entries for 32-bit and 64-bit
shared libraries, respectively. Details can be viewed for individual loader entries by specifying the slot
number, address of the loader entry (-a option), or an address within the text or data area for a loader
entry.

The name lists currently contained in the name list cache area can be reviewed by using the -l option.

The symbol tables that are available to KDB can be listed with the stbl subcommand. If this subcommand
is invoked without arguments a summary of all symbol tables is displayed. Details about a particular
symbol table can be obtained by supplying a slot number or the effective address of the loader entry to the
stbl subcommand.

Example:
... during boot phase

no symbol [/etc/drivers/mddtu_load]
no symbol [/etc/drivers/fd]
Preserving 14280 bytes of symbol table [/etc/drivers/rsdd]
no symbol [/etc/drivers/posixdd]
no symbol [/etc/drivers/dtropendd]
...
KDB(4)> stbl list symbol table entries

LDRENTRY TEXT DATA TOC MODULE NAME
1 00000000 00000000 00000000 00207EF0 /unix
2 0B04C400 0156F0F0 015784F0 01578840 /etc/drivers/rsdd

KDB(4)> rmst 2 ignore second entry
KDB(4)> stbl list symbol table entries

LDRENTRY TEXT DATA TOC MODULE NAME
1 00000000 00000000 00000000 00207EF0 /unix

KDB(4)> stbl 1 list a symbol table entry
LDRENTRY TEXT DATA TOC MODULE NAME

1 00000000 00000000 00000000 00207EF0 /unix
st_desc addr.... 00153920
symoff.......... 002A9EB8
nb_sym.......... 0000551E

398 Kernel Extensions and Device Support Programming Concepts

...
(0)> lke ? help
A KERNEXT FUNCTION NAME CACHE exists
with 1024 entries max (circular buffer)
Usage: lke <entry> to populate the cache
Usage: lke -a <address> to populate the cache
Usage: lke -l to list the cache
(0)> lke list loaded kernel extensions

ADDRESS FILE FILESIZE FLAGS MODULE NAME

1 055ADD00 014620C0 000076CC 00000262 /usr/lib/drivers/pse/psekdb
2 055AD780 05704000 000702D0 00000272 /usr/lib/drivers/nfs.ext
3 055AD880 05781000 00000D74 00000248 /unix
4 055AD380 01461D58 00000348 00000272 /usr/lib/drivers/nfs_kdes.ext
5 055AD800 056F7000 00000D20 00000248 /unix
6 055AD600 01455140 0000CC0C 00000262 /etc/drivers/ptydd
7 055AD500 01451400 00003D2C 00000272 /usr/lib/drivers/if_en
8 055AD580 05656000 00000D20 00000248 /unix
9 055AD400 055FB000 0004E038 00000272 /usr/lib/drivers/netinet

...
39 05518200 0135FA60 00006EFC 00000262 /etc/drivers/bscsidd
40 05518300 0135F5B8 0000049C 00000272 /etc/drivers/lsadd
41 05518180 04F7D000 00000CCC 00000248 /unix
42 05518280 0135E020 00001590 00000262 /etc/drivers/mca_ppc_busdd
43 04F61100 00326BF8 00000000 00000256 /unix
44 04F61158 04F62000 00000CCC 00000248 /unix
(0)> lke 40 print slot 40 and process traceback table

ADDRESS FILE FILESIZE FLAGS MODULE NAME

40 05518300 0135F5B8 0000049C 00000272 /etc/drivers/lsadd
le_flags....... TEXT KERNELEX DATAINTEXT DATA DATAEXISTS
le_next........ 05518180 le_fp.......... 00000000
le_filename.... 05518358 le_file........ 0135F5B8
le_filesize.... 0000049C le_data........ 0135F988
le_tid......... 00000000 le_datasize.... 000000CC
le_usecount.... 00000008 le_loadcount... 00000001
le_ndepend..... 00000001 le_maxdepend... 00000001
le_ule......... 04F86000 le_deferred.... 00000000
le_exports..... 04F86000 le_de.......... 632E6100
le_searchlist.. C0000420 le_dlusecount.. 00000000
le_dlindex..... 0000622F le_lex......... 00000000
TOC@........... 0135FA10

<PROCESS TRACE BACKS>
.lsa_pos_unlock 0135F6B4 .lsa_pos_lock 0135F6E4

.lsa_config 0135F738 .lockl.glink 0135F86C
.pincode.glink 0135F894 .lock_alloc.glink 0135F8BC

.simple_lock_init.glink 0135F8E4 .unpincode.glink 0135F90C
.lock_free.glink 0135F934 .unlockl.glink 0135F95C

(0)> lke -a 0135E51C using a kernext address as argument
ADDRESS FILE FILESIZE FLAGS MODULE NAME

1 05518280 0135E020 00001590 00000262 /etc/drivers/mca_ppc_busdd
le_flags....... TEXT DATAINTEXT DATA DATAEXISTS
le_next........ 04F61100 le_fp.......... 00000000
le_filename.... 055182D8 le_file........ 0135E020
le_filesize.... 00001590 le_data........ 0135F380
le_tid......... 00000000 le_datasize.... 00000230
le_usecount.... 00000001 le_loadcount... 00000001
le_ndepend..... 00000001 le_maxdepend... 00000001
le_ule......... 00000000 le_deferred.... 00000000
le_exports..... 00000000 le_de.......... 6366672E
le_searchlist.. C0000420 le_dlusecount.. 00000000
le_dlindex..... 00006C69 le_lex......... 00000000
TOC@........... 0135F4F8

<PROCESS TRACE BACKS>
.mca_ppc_businit 0135E120 .complete_error 0135E38C

.d_protect_ppc 0135E51C .d_move_ppc 0135E608

Chapter 17. KDB Kernel Debugger and Command 399

.d_bflush_ppc 0135E630 .d_cflush_ppc 0135E65C
.d_complete_ppc 0135E688 .d_master_ppc 0135E7B4

.d_slave_ppc 0135E974 .d_unmask_ppc 0135EBA4
.d_mask_ppc 0135EC40 .d_clear_ppc 0135ECD8
.d_init_ppc 0135ED8C .vm_att.glink 0135EF88

.lock_alloc.glink 0135EFB0 .simple_lock_init.glink 0135EFD8
.vm_det.glink 0135F000 .pincode.glink 0135F028

.bcopy 0135F060 .copystr 0135F238
.errsave.glink 0135F2E0 .xmemdma_ppc.glink 0135F308
.xmemqra.glink 0135F330 .xmemacc.glink 0135F358

(0)> lke -l list current name cache
KERNEXT FUNCTION NAME CACHE

.lsa_pos_unlock 0135F6B4 .lsa_pos_lock 0135F6E4
.lsa_config 0135F738 .lockl.glink 0135F86C

.pincode.glink 0135F894 .lock_alloc.glink 0135F8BC
.simple_lock_init.glink 0135F8E4 .unpincode.glink 0135F90C

.lock_free.glink 0135F934 .unlockl.glink 0135F95C

.mca_ppc_businit 0135E120 .complete_error 0135E38C
.d_protect_ppc 0135E51C .d_move_ppc 0135E608
.d_bflush_ppc 0135E630 .d_cflush_ppc 0135E65C

.d_complete_ppc 0135E688 .d_master_ppc 0135E7B4
.d_slave_ppc 0135E974 .d_unmask_ppc 0135EBA4
.d_mask_ppc 0135EC40 .d_clear_ppc 0135ECD8
.d_init_ppc 0135ED8C .vm_att.glink 0135EF88

.lock_alloc.glink 0135EFB0 .simple_lock_init.glink 0135EFD8
.vm_det.glink 0135F000 .pincode.glink 0135F028

.bcopy 0135F060 .copystr 0135F238
.errsave.glink 0135F2E0 .xmemdma_ppc.glink 0135F308
.xmemqra.glink 0135F330 .xmemacc.glink 0135F358

00 KERNEXT FUNCTION range [0135F6B4 0135F974] 10 entries
01 KERNEXT FUNCTION range [0135E120 0135F370] 24 entries
(0)> dc .lsa_ if name is not unique
Ambiguous: [kernext function name cache]
0135F6B4 .lsa_pos_unlock
0135F6E4 .lsa_pos_lock
0135F738 .lsa_config
(0)> expected symbol or address
(0)> dc .lsa_config 11 display code
.lsa_config+000000 stmw r29,FFFFFFF4(stkp)
.lsa_config+000004 mflr r0
.lsa_config+000008 ori r31,r3,0
.lsa_config+00000C stw r0,8(stkp)
.lsa_config+000010 stwu stkp,FFFFFFB0(stkp)
.lsa_config+000014 li r30,0
.lsa_config+000018 lwz r3,C(toc)
.lsa_config+00001C li r4,0
.lsa_config+000020 bl <.lockl.glink>
.lsa_config+000024 lwz toc,14(stkp)
.lsa_config+000028 lwz r29,14(toc)
(0)> dc .lockl.glink 6 display glink code

.lockl.glink+000000 lwz r12,10(toc)

.lockl.glink+000004 stw toc,14(stkp)

.lockl.glink+000008 lwz r0,0(r12)

.lockl.glink+00000C lwz toc,4(r12)

.lockl.glink+000010 mtctr r0

.lockl.glink+000014 bcctr

exp Subcommand
The exp subcommand can be used to look for an exported symbol or to display the entire export list.

Syntax:

exp [symbol]

v symbol - Specifies the symbol name to locate in the export list. This is an ASCII string.

400 Kernel Extensions and Device Support Programming Concepts

If no argument is specified the entire export list is printed. If a symbol name is specified as an argument,
then all symbols which begin with the input string are displayed.

Example:
KDB(0)> exp list export table
000814D4 pio_assist
019A7708 puthere
0007BE90 vmminfo
00081FD4 socket
01A28A50 tcp_input
01A28BFC in_pcb_hash_del
019A78E8 adjmsg
0000BAB8 execexit
00325138 loif
01980874 lvm_kp_tid
000816E4 ns_detach
019A7930 mps_wakeup
01A28C50 ip_forward
00081E60 ksettickd
000810AC uiomove
000811EC blkflush
0018D97C setpriv
01A5CD38 clntkudp_init
000820D0 soqremque
00178824 devtosth
00081984 rtinithead
01A5CD8C xdr_rmtcall_args
(0)> more (^C to quit) ? ^C interrupt
KDB(0)> exp send search in export table
00081F5C sendmsg
00081F80 sendto
00081F74 send
KDB(0)>

Address Translation Subcommands

tr and tv Subcommands
The tr and tv subcommands can be used to display address translation information. The tr subcommand
provides a short format; the tv subcommand a detailed format.

Syntax:

tr Address

tv Address

v Address - Specifies the effective address for which translation details are to be displayed. Symbols,
hexadecimal values, or hexadecimal expressions can be used in specification of the address.

For the tv subcommand, all double hashed entries are dumped, when the entry matches the specified
effective address, corresponding physical address and protections are displayed. Page protection (K and
PP bits) is displayed according to the current segment register and machine state register values.

Example:
KDB(0)> tr @iar physical address of current instruction
Physical Address = 001C5BA0
KDB(0)> tv @iar physical mapping of current instruction
vaddr 1C5BA0 sid 0 vpage 1C5 hash1 1C5
pte_cur_addr B0007140 valid 1 vsid 0 hsel 0 avpi 0
rpn 1C5 refbit 1 modbit 1 wim 1 key 0
____ 001C5BA0 ____ K = 0 PP = 00 ==> read/write
pte_cur_addr B0007148 valid 1 vsid 101 hsel 0 avpi 0
rpn 3C4 refbit 0 modbit 0 wim 1 key 0

Chapter 17. KDB Kernel Debugger and Command 401

vaddr 1C5BA0 sid 0 vpage 1C5 hash2 1E3A
Physical Address = 001C5BA0
KDB(0)> tv __ublock physical mapping of current U block
vaddr 2FF3B400 sid 9BC vpage FF3B hash1 687
ppcpte_cur_addr B001A1C0 valid 1 sid 300 hsel 0 avpi 1
rpn 13F4 refbit 1 modbit 1 wimg 2 key 1
ppcpte_cur_addr B001A1C8 valid 1 sid 9BC hsel 0 avpi 3F
rpn BFD refbit 1 modbit 1 wimg 2 key 0
____ 00BFD400 ____ K = 0 PP = 00 ==> read/write

vaddr 2FF3B400 sid 9BC vpage FF3B hash2 978
ppcpte_cur_addr B0025E08 valid 1 sid 643 hsel 0 avpi 3F
rpn 18D3 refbit 1 modbit 1 wimg 2 key 0
Physical Address = 00BFD400
KDB(0)> tv fffc1960 physical mapping thru BATs
BAT mapping for FFFC1960
DBAT0 FFC0003A FFC0005F
bepi 7FE0 brpn 7FE0 bl 001F v 1 wim 3 ks 1 kp 0 pp 2 s 0
eaddr = FFC00000, paddr = FFC00000 size = 4096 KBytes
KDB(0)> tv abcdef00 invalid mapping
Invalid Sid = 007FFFFF
KDB(0)> tv eeee0000 invalid mapping
vaddr EEEE0000 sid 505 vpage EEE0 hash1 BE5

vaddr EEEE0000 sid 505 vpage EEE0 hash2 141A
Invalid Address EEEE0000 !!!

On 620 machine
KDB(0)> set 11 64 bits printing
64_bit is true
KDB(0)> tv 2FF3AC88 physical mapping of a stack address
eaddr 2FF3AC88 sid F9F vpage FF3A hash1 A5
p64pte_cur_addr B0005280 sid_h 0 sid_l 0 avpi 0 hsel 0 valid 1
rpn_h 0 rpn_l A5 refbit 1 modbit 1 wimg 2 key 0
p64pte_cur_addr B0005290 sid_h 0 sid_l 81 avpi 0 hsel 0 valid 1
rpn_h 0 rpn_l 824 refbit 1 modbit 0 wimg 2 key 0
p64pte_cur_addr B00052A0 sid_h 0 sid_l 285 avpi 0 hsel 0 valid 1
rpn_h 0 rpn_l 5BE refbit 1 modbit 1 wimg 2 key 0
p64pte_cur_addr B00052B0 sid_h 0 sid_l F9F avpi 1F hsel 0 valid 1
rpn_h 0 rpn_l 1EC2 refbit 1 modbit 1 wimg 2 key 0
____ 0000000001EC2C88 ____ K = 0 PP = 00 ==> read/write

eaddr 2FF3AC88 sid F9F vpage FF3A hash2 F5A
Physical Address = 0000000001EC2C88

Example: The following example applies on POWER RS1 architecture.
KDB(0)> tr __ublock physical address of current U block
Physical Address = 0779F000
KDB(0)> tv __ublock physical mapping of current U block
vaddr 2FF98000 sid 4008 vpage FF98 hash BF90 hat_addr B102FE40
pft_cur_addr B00779F0 nfr 779F sidpno 20047 valid 1 refbit 1 modbit 1 key 0
Physical Address = 0779F000
K = 0 PP = 00 ==> read/write
KDB(0)>

Process Subcommands

ppda Subcommand
The ppda subcommand displays a summary for all ppda areas with the * argument. Otherwise, details for
the current or specified processor ppda are displayed.

Syntax:

402 Kernel Extensions and Device Support Programming Concepts

ppda [* | cpu | Address]

v * - Displays a summary for all CPUs.

v cpu - Displays the ppda data for the specified CPU. This argument must be a decimal value.

v Address - Specifies the effective address of a ppda structure to display. Symbols, hexadecimal values,
or hexadecimal expressions can be used in specification of the address.

Example:
KDB(1)> ppda *

SLT CSA CURTHREAD SRR1 SRR0

ppda+000000 0 004ADEB0 thread+000178 4000D030 1002DC74
ppda+000300 1 004B8EB0 thread+000234 00009030 .ld_usecount+00045C
ppda+000600 2 004C3EB0 thread+0002F0 0000D030 D00012F0
ppda+000900 3 004CEEB0 thread+0003AC 0000D030 D00012F0
ppda+000C00 4 004D9EB0 thread+000468 0000F030 D00012F0
ppda+000F00 5 004E4EB0 thread+000524 0000D030 10019870
ppda+001200 6 004EFEB0 thread+0005E0 0000D030 D00012F0
ppda+001500 7 004FAEB0 thread+00069C 0000D030 D00012F0

KDB(1)> ppda current processor data area

Per Processor Data Area [000C0300]

csa......................004B8EB0 mstack...................004B7EB0
fpowner..................00000000 curthread................E6000234
syscall..................0001879B intr.....................E0100080
i_softis.....................0000 i_softpri....................4000
prilvl...................05CB1000
ppda_pal[0]..............00000000 ppda_pal[1]..............00000000
ppda_pal[2]..............00000000 ppda_pal[3]..............00000000
phy_cpuid....................0001 ppda_fp_cr...............28222881
flih save[0].............00000000 flih save[1].............2FF3B338
flih save[2].............002E65E0 flih save[3].............00000003
flih save[4].............00000002 flih save[5].............00000006
flih save[6].............002E6750 flih save[7].............00000000
dsisr....................40000000 dsi_flag.................00000003
dar......................2FF9F884
dssave[0]................2FF3B2A0 dssave[1]................002E65E0
dssave[2]................00000000 dssave[3]................002A4B1C
dssave[4]................E6001ED8 dssave[5]................00002A33
dssave[6]................00002A33 dssave[7]................00000001
dssrr0...................0027D5AC dssrr1...................00009030
dssprg1..................2FF9F880 dsctr....................00000000
dslr.....................0027D4CC dsxer....................20000000
dsmq.....................00000000 pmapstk..................00212C80
pmapsave64...............00000000 pmapcsa..................00000000
schedtail[0].............00000000 schedtail[1].............00000000
schedtail[2].............00000000 schedtail[3].............00000000
cpuid....................00000001 stackfix.................00000000
lru......................00000000 vmflags..................00010000
sio............................00 reservation....................01
hint...........................00 lock...........................00
no_vwait.................00000000
scoreboard[0]............00000000
scoreboard[1]............00000000
scoreboard[2]............00000000
scoreboard[3]............00000000
scoreboard[4]............00000000
scoreboard[5]............00000000
scoreboard[6]............00000000
scoreboard[7]............00000000
intr_res1................00000000 intr_res2................00000000
mpc_pend.................00000000 iodonelist...............00000000
affinity.................00000000 TB_ref_u.................003DC159
TB_ref_l.................28000000 sec_ref..................33CDD7B0

Chapter 17. KDB Kernel Debugger and Command 403

nsec_ref.................13EF2000 _ficd....................00000000
decompress...............00000000 ppda_qio.................00000000
cs_sync..................00000000
ppda_perfmon_sv[0].......00000000 ppda_perfmon_sv[1].......00000000
thread_private...........00000000 cpu_priv_seg.............60017017
fp flih save[0]..........00000000 fp flih save[1]..........00000000
fp flih save[2]..........00000000 fp flih save[3]..........00000000
fp flih save[4]..........00000000 fp flih save[5]..........00000000
fp flih save[6]..........00000000 fp flih save[7]..........00000000
TIMER....................
t_free...................00000000 t_active.................05CB9080
t_freecnt................00000000 trb_called...............00000000
systimer.................05CB9080 ticks_its................00000051
ref_time.tv_sec..........33CDD7B1 ref_time.tv_nsec.........01DCDA38
time_delta...............00000000 time_adjusted............05CB9080
wtimer.next..............05767068 wtimer.prev..............0B30B81C
wtimer.func..............000F2F0C wtimer.count.............00000000
wtimer.restart...........00000000 w_called.................00000000
trb_lock.................000C04F0 slock/slockp 00000000
KDB......................
flih_llsave[0]...........00000000 flih_llsave[1]...........2FF22FB8
flih_llsave[2]...........00000000 flih_llsave[3]...........00000000
flih_llsave[4]...........00000000 flih_llsave[5]...........00000000
flih_save[0].............00000000 flih_save[1].............00000000
flih_save[2].............00000000 csa......................001D4800
KDB(3)>

intr Subcommand
The intr subcommand prints a summary for entries in the interrupt handler table if no argument or a slot
number is entered.

Syntax:

intr [slot | symbol | Address]

v slot - Specifies the slot number in the interrupt handler table. This value must be a decimal value.

v Address - Specifies the effective address of an interrupt handler. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

If no argument is entered, the summary contains information for all entries. If a slot number is specified,
only the selected entries are displayed. If an address argument is entered, detailed information is
displayed for the specified interrupt handler.

Example:
KDB(0)> intr interrupt handler table

SLT INTRADDR HANDLER TYPE LEVEL PRIO BID FLAGS

i_data+000068 1 055DF0A0 00000000 0000 00000003 0000 00000000 0000
i_data+000068 1 00364F88 00090584 0000 00000001 0000 00000000 0000
i_data+000068 1 003685B0 00090584 0001 00000008 0000 82000000 0000
i_data+000068 1 019E7D48 019E7BF0 0000 00000001 0000 820C0020 0010
i_data+0000E0 16 055DF060 00000000 0001 00000001 0000 82000080 0000
i_data+0000E0 16 00368718 000A24D8 0001 00000000 0000 82000080 0000
i_data+0000F0 18 055DF100 00000000 0001 00000000 0001 82080060 0010
i_data+0000F0 18 05B3BC00 01A55018 0001 00000002 0001 82080060 0010
i_data+000120 24 055DF0C0 00000000 0001 00000004 0000 82000000 0000
i_data+000120 24 003685B0 00090584 0001 00000008 0000 82000000 0000
i_data+000120 24 019E7D48 019E7BF0 0000 00000001 0000 820C0020 0010
i_data+000140 28 055DF160 00000000 0001 00000001 0003 820C0060 0010
i_data+000140 28 0A145000 01A741AC 0001 0000000C 0003 820C0060 0010
i_data+000150 30 055DF0E0 00000000 0001 00000000 0003 820C0020 0010
i_data+000150 30 055FC000 019E7AA8 0001 0000000E 0003 820C0020 0010
i_data+000160 32 055DF080 00000000 0001 00000002 0000 82100080 0000
i_data+000160 32 00368734 000A24D8 0001 00000000 0000 82100080 0000

404 Kernel Extensions and Device Support Programming Concepts

i_data+0004E0 144 055DF020 00000000 0002 00000000 0000 00000000 0011
i_data+0004E0 144 00368560 000903B0 0002 00000002 0000 00000000 0011
i_data+000530 154 055DF040 00000000 0002 FFFFFFFF 000A 00000000 0011
i_data+000530 154 00368580 000903B0 0002 00000002 000A 00000000 0011
KDB(0)> intr 1 interrupt handler slot 1

SLT INTRADDR HANDLER TYPE LEVEL PRIO BID FLAGS

i_data+000068 1 055DF0A0 00000000 0000 00000003 0000 00000000 0000
i_data+000068 1 00364F88 00090584 0000 00000001 0000 00000000 0000
i_data+000068 1 003685B0 00090584 0001 00000008 0000 82000000 0000
i_data+000068 1 019E7D48 019E7BF0 0000 00000001 0000 820C0020 0010
KDB(0)> intr 00368560 interrupt handler address ..
addr.......... 00368560 handler....... 000903B0 i_hwassist_int+000000
bid........... 00000000 bus_type...... 00000002 PLANAR
next.......... 00000000 flags......... 00000011 NOT_SHARED MPSAFE
level......... 00000002 priority...... 00000000 INTMAX
i_count....... 00000014
KDB(0)>

mst Subcommand
The mst subcommand prints the current context (Machine State Save Area) or the specified one.

Syntax:

mst [slot] [[-a] symbol | Address]]

v -a - Indicates that the following argument is to be interpreted as an effective address.

v slot - Specifies the thread slot number. This value must be a decimal value.

v Address - Specifies the effective address of an mst to display. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

If a thread slot number is specified, the mst for the specified slot is displayed. If an effective address is
entered, it is assumed to be the address of the mst and the data at that address is displayed. The -a flag
can be used to ensure that the following argument is interpreted as an address. This is only required if the
value following the -a flag could be interpreted as a slot number or an address.

Example:
KDB(0)> mst current mst

Machine State Save Area
iar : 0002599C msr : 00009030 cr : 20000000 lr : 000259B8
ctr : 000258EC xer : 00000000 mq : 00000000
r0 : 00000000 r1 : 2FF3B338 r2 : 002E65E0 r3 : 00000003 r4 : 00000002
r5 : 00000006 r6 : 002E6750 r7 : 00000000 r8 : DEADBEEF r9 : DEADBEEF
r10 : DEADBEEF r11 : 00000000 r12 : 00009030 r13 : DEADBEEF r14 : DEADBEEF
r15 : DEADBEEF r16 : DEADBEEF r17 : DEADBEEF r18 : DEADBEEF r19 : DEADBEEF
r20 : DEADBEEF r21 : DEADBEEF r22 : DEADBEEF r23 : DEADBEEF r24 : DEADBEEF
r25 : DEADBEEF r26 : DEADBEEF r27 : DEADBEEF r28 : 000034E0 r29 : 000C6158
r30 : 000C0578 r31 : 00005004
s0 : 00000000 s1 : 007FFFFF s2 : 0000F00F s3 : 007FFFFF s4 : 007FFFFF
s5 : 007FFFFF s6 : 007FFFFF s7 : 007FFFFF s8 : 007FFFFF s9 : 007FFFFF
s10 : 007FFFFF s11 : 007FFFFF s12 : 007FFFFF s13 : 0000C00C s14 : 00004004
s15 : 007FFFFF
prev 00000000 kjmpbuf 00000000 stackfix 00000000 intpri 0B
curid 00000306 sralloc E01E0000 ioalloc 00000000 backt 00
flags 00 tid 00000000 excp_type 00000000
fpscr 00000000 fpeu 00 fpinfo 00 fpscrx 00000000
o_iar 00000000 o_toc 00000000 o_arg1 00000000
excbranch 00000000 o_vaddr 00000000 mstext 00000000
Except :
csr 2FEC6B78 dsisr 40000000 bit set: DSISR_PFT
srval 000019DD dar 2FEC6B78 dsirr 00000106
KDB(0)> mst 1 slot 1 is thread+0000A0

Chapter 17. KDB Kernel Debugger and Command 405

Machine State Save Area
iar : 00038ED0 msr : 00001030 cr : 2A442424 lr : 00038ED0
ctr : 002BCC00 xer : 00000000 mq : 00000000
r0 : 60017017 r1 : 2FF3B300 r2 : 002E65E0 r3 : 00000000 r4 : 00000002
r5 : E60000BC r6 : 00000109 r7 : 00000000 r8 : 000C0300 r9 : 00000001
r10 : 2FF3B380 r11 : 00000000 r12 : 00001030 r13 : 00000001 r14 : 2FF22F54
r15 : 2FF22F5C r16 : DEADBEEF r17 : DEADBEEF r18 : 0000040F r19 : 00000000
r20 : 00000000 r21 : 00000003 r22 : 01000001 r23 : 00000001 r24 : 00000000
r25 : E600014C r26 : 000D1A08 r27 : 00000000 r28 : E3000160 r29 : E60000BC
r30 : 00000004 r31 : 00000004
s0 : 00000000 s1 : 007FFFFF s2 : 0000A00A s3 : 007FFFFF s4 : 007FFFFF
s5 : 007FFFFF s6 : 007FFFFF s7 : 007FFFFF s8 : 007FFFFF s9 : 007FFFFF
s10 : 007FFFFF s11 : 007FFFFF s12 : 007FFFFF s13 : 6001F01F s14 : 00004004
s15 : 60004024
prev 00000000 kjmpbuf 00000000 stackfix 2FF3B300 intpri 00
curid 00000001 sralloc E01E0000 ioalloc 00000000 backt 00
flags 00 tid 00000000 excp_type 00000000
fpscr 00000000 fpeu 00 fpinfo 00 fpscrx 00000000
o_iar 00000000 o_toc 00000000 o_arg1 00000000
excbranch 00000000 o_vaddr 00000000 mstext 00000000
Except :
csr 30002F00 dsisr 40000000 bit set: DSISR_PFT
srval 6000A00A dar 20022000 dsirr 00000106

KDB(0)> set 11 64-bit printing mode
64_bit is true
KDB(0)> sw u select user context
KDB(0)> mst print user context

Machine State Save Area
iar : 08000001000581D4 msr : 800000004000D0B0 cr : 84002222
lr : 000000010000047C ctr : 08000001000581D4 xer : 00000000
mq : 00000000 asr : 0000000013619001
r0 : 08000001000581D4 r1 : 0FFFFFFFFFFFFF00 r2 : 080000018007BC80
r3 : 0000000000000064 r4 : 0000000000989680 r5 : 0000000000000000
r6 : 800000000000D0B0 r7 : 0000000000000000 r8 : 000000002FF9E008
r9 : 0000000013619001 r10 : 000000002FF3B010 r11 : 0000000000000000
r12 : 0800000180076A98 r13 : 0000000110003730 r14 : 0000000000000001
r15 : 00000000200FEB78 r16 : 00000000200FEB88 r17 : BADC0FFEE0DDF00D
r18 : BADC0FFEE0DDF00D r19 : BADC0FFEE0DDF00D r20 : BADC0FFEE0DDF00D
r21 : BADC0FFEE0DDF00D r22 : BADC0FFEE0DDF00D r23 : BADC0FFEE0DDF00D
r24 : BADC0FFEE0DDF00D r25 : BADC0FFEE0DDF00D r26 : BADC0FFEE0DDF00D
r27 : BADC0FFEE0DDF00D r28 : BADC0FFEE0DDF00D r29 : BADC0FFEE0DDF00D
r30 : BADC0FFEE0DDF00D r31 : 0000000110000688
s0 : 60000000 s1 : 007FFFFF s2 : 60010B68 s3 : 007FFFFF s4 : 007FFFFF
s5 : 007FFFFF s6 : 007FFFFF s7 : 007FFFFF s8 : 007FFFFF s9 : 007FFFFF
s10 : 007FFFFF s11 : 007FFFFF s12 : 007FFFFF s13 : 007FFFFF s14 : 007FFFFF
s15 : 007FFFFF
prev 00000000 kjmpbuf 00000000 stackfix 2FF3B2A0 intpri 00
curid 00006FBC sralloc A0000000 ioalloc 00000000 backt 00
flags 00 tid 00000000 excp_type 00000000
fpscr 00000000 fpeu 00 fpinfo 00 fpscrx 00000000
o_iar 00000000 o_toc 00000000 o_arg1 00000000
excbranch 00000000 o_vaddr 00000000 mstext 00062C08
Except : dar 08000001000581D4

KDB(0)>

proc Subcommand
The proc subcommand displays process table entries. The * argument displays a summary of all process
table entries.

Syntax:

proc

406 Kernel Extensions and Device Support Programming Concepts

v * - Displays a summary for all processes.

v -s flag - Displays only processes with a process state matching that specified by flag. The allowable
values for flag are: SNONE, SIDLE, SZOMB, SSTOP, SACTIVE, and SSWAP.

v slot - Specifies the process slot number. This value must be a decimal value.

v Address - Specifies the effective address of a process table entry. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

If no argument is specified details for the current process are displayed. Detailed information for a specific
process table entry can be displayed by specifying a slot number or the effective address of a process
table entry.

The PID, PPID, PGRP, UID, and EUID fields can either be displayed in decimal or hexadecimal. This can
be set via the set subcommand hexadecimal_wanted option. The current process is indicated by an
asterisk (*).

Aliases: p

Example:
KDB(0)> p * print proc table

SLOT NAME STATE PID PPID PGRP UID EUID ADSPACE CL #THS

proc+000000 0 swapper ACTIVE 00000 00000 00000 00000 00000 00001C07 00 0001
proc+000100 1 init ACTIVE 00001 00000 00000 00000 00000 00001405 00 0001
proc+000200 2*wait ACTIVE 00204 00000 00000 00000 00000 00002008 00 0001
proc+000300 3 wait ACTIVE 00306 00000 00000 00000 00000 00002409 00 0001
proc+000400 4 wait ACTIVE 00408 00000 00000 00000 00000 0000280A 00 0001
proc+000500 5 wait ACTIVE 0050A 00000 00000 00000 00000 00002C0B 00 0001
proc+000600 6 wait ACTIVE 0060C 00000 00000 00000 00000 0000300C 00 0001
proc+000700 7 wait ACTIVE 0070E 00000 00000 00000 00000 0000340D 00 0001
proc+000800 8 wait ACTIVE 00810 00000 00000 00000 00000 0000380E 00 0001
proc+000900 9 wait ACTIVE 00912 00000 00000 00000 00000 00003C0F 00 0001
proc+000A00 10 lrud ACTIVE 00A14 00000 00000 00000 00000 00004010 00 0001
proc+000B00 11 netm ACTIVE 00B16 00000 00000 00000 00000 00001806 00 0001
proc+000C00 12 gil ACTIVE 00C18 00000 00000 00000 00000 00004C13 00 0001
proc+000F00 15 lvmb ACTIVE 00F70 00000 00D68 00000 00000 00004832 00 0005
proc+001000 16 biod ACTIVE 01070 02066 02066 00000 00000 000021A8 00 0001
proc+001100 17 biod ACTIVE 0116E 02066 02066 00000 00000 000011A4 00 0001
proc+001200 18 errdemon ACTIVE 01220 00001 01220 00000 00000 00001104 00 0001
proc+001300 19 dump ACTIVE 01306 00001 00ECC 00000 00000 00005C77 00 0001
proc+001400 20 syncd ACTIVE 01418 00001 00ECC 00000 00000 00000D03 00 0001
proc+001500 21 biod ACTIVE 0156C 02066 02066 00000 00000 000001A0 00 0001
KDB(0)> p 21 print process slot 21

SLOT NAME STATE PID PPID PGRP UID EUID ADSPACE CL #THS

proc+001500 21 biod ACTIVE 0156C 02066 02066 00000 00000 000001A0 00 0001

NAME....... biod
STATE...... stat :07...... xstat :0000
FLAGS...... flag :00040001 LOAD ORPHANPGRP
........... int :00000000
........... atomic:00000000
LINKS...... child :00000000
........... siblings :E3001800 proc+001800
........... uidl :E3001500 proc+001500
........... ganchor :00000000
THREAD..... threadlist :E6001200 thread+001200
........... threadcount:0001................. active :0001
........... suspended :0000................. terminating:0000
........... local :0000
SCHEDULE... nice : 20 sched_pri :127
DISPATCH... pevent :00000000
........... synch :FFFFFFFF class :00 "nyc"

Chapter 17. KDB Kernel Debugger and Command 407

IDENTIFIER. uid :00000000............. suid :00000000
........... pid :0000156C............. ppid :00002066
(0)> more (^C to quit) ? continue
........... sid :00002066............. pgrp :00002066
MISC....... lock :00000000............. kstackseg :007FFFFF
........... adspace :000001A0............. ipc :00000000
........... pgrpl :E3001800 proc+001800
........... ttyl :00000000
........... dblist :00000000
........... dbnext :00000000
SIGNAL..... pending :
........... sigignore: URG IO WINCH PWR
........... sigcatch : TERM USR1 USR2
STATISTICS. page size :00000000............. pctcpu :00000000
........... auditmask :00000000
........... minflt :00000004............. majflt :00000000
SCHEDULER.. repage :00000000............. sched_count:00000000
........... sched_next :00000000
........... sched_back :00000000
........... cpticks :0000................. msgcnt :0000
........... majfltsec :00000000

THE FOLLOWING EXAMPLE SHOWS HOW TO FIND A THREAD THRU THE PROCESS TABLE.
The initial problem was that many threads are waiting forever.
This example shows how to point the failing process:

KDB(6)> th -w WPGIN threads waiting for VMM resources
SLOT NAME STATE TID PRI CPUID CPU FLAGS WCHAN

thread+000780 10 lrud SLEEP 00A15 010 000 00001004 vmmdseg+69C84D0
thread+0012C0 25 dtlogin SLEEP 01961 03C 000 00000000 vmmdseg+69C8670
thread+001500 28 cnsview SLEEP 01C71 03C 000 00000004 vmmdseg+69C8670
thread+00B1C0 237 jfsz SLEEP 0EDCD 032 000 00001000 vm_zqevent+000000
thread+00C240 259 jfsc SLEEP 10303 01E 000 00001000 _$STATIC+000110
thread+00E940 311 rm SLEEP 137C3 03C 000 00000000 vmmdseg+69C8670
thread+012300 388 touch SLEEP 1843B 03C 000 00000000 vmmdseg+69C8670
...
thread+0D0F80 4458 link_fil SLEEP 116A39 03C 000 00000000 vmmdseg+69C9C74
thread+0DC140 4695 sync SLEEP 1257BB 03C 000 00000000 vmmdseg+69C8670
thread+0DD280 4718 touch SLEEP 126E57 03C 000 00000000 vmmdseg+69C8670
thread+0E5A40 4899 renamer SLEEP 132315 03C 000 00000000 vmmdseg+69C8670
thread+0EE140 5079 renamer SLEEP 13D7C3 03C 000 00000000 vmmdseg+69C8670
thread+0F03C0 5125 renamer SLEEP 1405B7 03C 000 00000000 vmmdseg+69C8670
thread+0FC540 5383 renamer SLEEP 15072F 03C 000 00000000 vmmdseg+69C8670
thread+101AC0 5497 renamer SLEEP 157909 03C 000 00000000 vmmdseg+69C8670
thread+10D280 5742 rm SLEEP 166E37 03C 000 00000000 vmmdseg+69C8670
KDB(6)> vmwait vmmdseg+69C8670 VMM resource
VMM Wait Info
Waiting on transactions to end to forward the log
KDB(6)> vmwait vmmdseg+69C9C74 VMM resource
VMM Wait Info
Waiting on transaction block number 00000057
KDB(6)> tblk 87 print transaction block number

@tblk[87] vmmdseg +69C9C3C
logtid.... 002C77CF next...... 00000064 tid....... 00000057 flag...... 00000000
cpn....... 00000000 ceor...... 00000000 cxor...... 00000000 csn....... 00000000
waitsid... 00000000 waitline.. 00000000 locker.... 00000000 lsidx..... 00000AB3
logage.... 00B71704 gcwait.... FFFFFFFF waitors... E60D0F80 cqnext.... 00000000

TID is registered in __ublock, at page offset 0x6a0.
Search in physical memory TID 0x00000057.
The search is limited at this page offset.

KDB(6)> findp 6A0 00000057 ffffffff 1000 physical search
0AFC86A0: 00000057 00000000 00000000 00000000
KDB(6)> pft 1 print page frame information
Enter the page frame number (in hex): 0AFC8

408 Kernel Extensions and Device Support Programming Concepts

VMM PFT Entry For Page Frame 0AFC8 of 7FF67

pte = B066F458, pvt = B202BF20, pft = B3A0F580
h/w hashed sid : 000164EA pno : 0000FF3B key : 0
source sid : 000164EA pno : 0000FF3B key : 0

> in use
> on scb list
> valid (h/w)
> referenced (pft/pvt/pte): 0/1/1
> modified (pft/pvt/pte): 0/1/1
page number in scb (pagex) : 0000FF3B
disk block number (dblock) : 00000000
next page on scb list (sidfwd) : FFFFFFFF
prev page on scb list (sidbwd) : 00051257
freefwd/waitlist (freefwd): 00000000
freebwd/logage/pincnt (freebwd): 00010000
out of order I/O (nonfifo): 0000
next frame i/o list (nextio) : 00000000
storage attributes (wimg) : 2
xmem hide count (xmemcnt): 0
next page on s/w hash (next) : FFFFFFFF
List of alias entries (alist) : 0000FFFF
index in PDT (devid) : 0000

The Segment ID of __ublock is the ADSPACE of the process

KDB(6)> find proc 000164EA search this SID in the proc table
proc+10EB58: 000164EA E3173F00 00000000 00000000
KDB(6)> proc proc+10EB00 print the process entry

SLOT NAME STATE PID PPID PGRP UID EUID ADSPACE CL #THS

proc+10EB00 4331 renamer ACTIVE 10EB98 D6282 065DE 00000 00000 000164EA 00 0001
NAME....... renamer
STATE...... stat :07...... xstat :0000
FLAGS...... flag :00000001 LOAD
........... int :00000000
........... atomic:00000000
LINKS...... child :00000000
........... siblings :E3173F00 proc+173F00
........... uidl :E310EB00 proc+10EB00
........... ganchor :00000000
THREAD..... threadlist :E60F2640 thread+0F2640
...
KDB(6)> sw thread+0F2640 switch to this thread
Switch to thread: <thread+0F2640>
KDB(6)> f look at the stack
thread+0F2640 STACK:
[000D4950]slock_instr_ppc+00045C (C0042BDF, 00000002 [??])
[000095AC].simple_lock+0000AC ()
[00202370]logmvc+00004C (??, ??, ??, ??)
[001C23F4]logafter+000108 (??, ??, ??)
[001C1CEC]commit2+0001FC (??)
[001C386C]finicom+0000C0 (??, ??)
[001C3BC0]comlist+0001CC (??, ??)
[0020D938]jfs_rename+0006EC (??, ??, ??, ??, ??, ??, ??)
[001CE794]vnop_rename+000038 (??, ??, ??, ??, ??, ??, ??)
[001DEFA4]rename+000398 (??, ??)
[000037D8].sys_call+000000 ()
[100004B4]main+0002DC (00000006, 2FF22A20)
[10000174].__start+00004C ()

thread Subcommand
The thread subcommand displays thread table entries.

Syntax:

Chapter 17. KDB Kernel Debugger and Command 409

v * - Displays a summary for all thread table entries.

v -w - Displays a summary of all thread table entries with a wtype matching the one specified by the flag
argument. Valid values for the flag argument include: NOWAIT, WEVENT, WLOCK, WTIMER, WCPU,
WPGIN, WPGOUT, WPLOCK, WFREEF, WMEM, WLOCKREAD, WUEXCEPT, and WZOMB.

v slot - Specifies the thread slot number. This must be a decimal value.

v Address - Specifies the effective address of a thread table entry. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

The * argument displays a summary of all thread table entries. If no argument is specified, details for the
current thread are displayed. Details for a specific thread table entry can be displayed by specifying a slot
number or the effective address of a thread table entry. The -w flag option can be used to display a
summary of all threads with the specified thread wtype.

The TID, PRI, CPUID, and CPU fields can either be displayed in decimal or hexadecimal. This can be set
using the set subcommand using the hexadecimal_wanted option. The current thread is indicated by an
asterisk (*).

Aliases: th

Example:
KDB(0)> th * print thread table

SLOT NAME STATE TID PRI CPUID CPU FLAGS WCHAN

thread+000000 0 swapper SLEEP 00003 010 078 00001400
thread+0000A0 1 init SLEEP 001F3 03C 000 00000400
thread+000140 2 wait RUN 00205 07F 00000 078 00001004
thread+0001E0 3 wait RUN 00307 07F 00001 078 00001004
thread+000280 4 netm SLEEP 00409 024 000 00001004
thread+000320 5 gil SLEEP 0050B 025 000 00001004
thread+0003C0 6 gil SLEEP 0060D 025 000 00001004 netisr_servers+000000
thread+000460 7 gil SLEEP 0070F 025 000 00001004 netisr_servers+000000
thread+000500 8 gil SLEEP 00811 025 001 00001004 netisr_servers+000000
thread+0005A0 9 gil SLEEP 00913 025 000 00001004 netisr_servers+000000
thread+0006E0 11 errdemon SLEEP 00B01 03C 000 00000000 errc+000008
thread+000780 12 syncd SLEEP 00CF9 03C 005 00000000
thread+000820 13 lvmb SLEEP 00D97 03C 000 00001004
thread+0008C0 14 cpio SLEEP 00EC3 040 007 00000000 054FB000
thread+000960 15 sh SLEEP 00FAF 03C 000 00000400
thread+000A00 16 getty SLEEP 01065 03C 000 00000420 0563525C
thread+000AA0 17 ksh SLEEP 01163 03C 000 00000420 05BA0E44
thread+000B40 18 sh SLEEP 01279 03C 000 00000400
thread+000BE0 19 find SLEEP 013B1 041 001 00000000
thread+000C80 20 ksh SLEEP 014FB 040 000 00000400
KDB(0)> th print current thread

SLOT NAME STATE TID PRI CPUID CPU FLAGS WCHAN

thread+0159C0 461*ksh RUN 1CDC9 03D 003 00000000

NAME................ ksh
FLAGS...............
WTYPE............... NOWAIT
............stackp64 :00000000stackp :2FF1E5A0
...............state :00000002wtype :00000000
.............suspend :00000001flags :00000000
..............atomic :00000000
DATA................
...............procp :E3014400 <proc+014400>
...............userp :2FF3B6C0 <__ublock+0002C0>
............uthreadp :2FF3B400 <__ublock+000000>
THREAD LINK.........

410 Kernel Extensions and Device Support Programming Concepts

..........prevthread :E60159C0 <thread+0159C0>

..........nextthread :E60159C0 <thread+0159C0>
SLEEP LOCK.........
............ulock64 :00000000ulock :00000000
...............wchan :00000000wchan1 :00000000
...........wchan1sid :00000000wchan1offset :00000000
(3)> more (^C to quit) ? continue
..............wchan2 :00000000swchan :00000000
...........eventlist :00000000result :00000000
.............polevel :00000000pevent :00000000
.............wevent :00000000slist :00000000
...........lockcount :00000002
DISPATCH............
...............ticks :00000000prior :E60159C0
................next :E60159C0synch :FFFFFFFF
..............dispct :00000003fpuct :00000000
SCHEDULER...........
...............cpuid :FFFFFFFFscpuid :FFFFFFFF
............affinity :00000001pri :0000003C
..............policy :00000000cpu :00000000
.............lockpri :0000003Dwakepri :0000007F
................time :000000FFsav_pri :0000003C
SIGNAL..............
..............cursig :00000000
......(pending) sig :
............sigmask :
...............scp64 :00000000scp :00000000
MISC................
............graphics :00000000cancel :00000000
(3)> more (^C to quit) ? continue
...........lockowner :00000000boosted :00000000
..............tsleep :FFFFFFFF
..........userdata64 :00000000userdata :00000000
KDB(0)> th -w print -w usage
Missing wtype:
NOWAIT
WEVENT
WLOCK
WTIMER
WCPU
WPGIN
WPGOUT
WPLOCK
WFREEF
WMEM
WLOCKREAD
WUEXCEPT
KDB(0)> th -w WPGIN print threads waiting for page-in

SLOT NAME STATE TID PRI CPUID CPU FLAGS WCHAN

thread+000600 8 lrud SLEEP 00811 010 000 00001004 vmmdseg+69C84D0
thread+000E40 19 syncd SLEEP 01329 03D 003 00000000 vmmdseg+69D1630
thread+013440 411 oracle SLEEP 19B75 03D 002 00000000 vmmdseg+69F171C
thread+013500 412 oracle SLEEP 19C77 03F 006 00000000 vmmdseg+69F13A8
thread+022740 735 rts32 SLEEP 2DF7F 03F 007 00000000 vmmdseg+3A9A5B8
KDB(0)> vmwait vmmdseg+69C84D0 print VMM resource the thread is waiting for
VMM Wait Info
Waiting on lru daemon anchor
KDB(0)> vmwait vmmdseg+69D1630 print VMM resource the thread is waiting for
VMM Wait Info
Waiting on segment I/O level (v_iowait), sidx = 00000124
KDB(0)> vmwait vmmdseg+69F171C print VMM resource the thread is waiting for
VMM Wait Info
Waiting on segment I/O level (v_iowait), sidx = 000008AF

Chapter 17. KDB Kernel Debugger and Command 411

KDB(0)> vmwait vmmdseg+69F13A8 print VMM resource the thread is waiting for
VMM Wait Info
Waiting on segment I/O level (v_iowait), sidx = 000008A2
KDB(0)> vmwait vmmdseg+3A9A5B8 print VMM resource the thread is waiting for
VMM Wait Info
Waiting on page frame number 0000DE1E

KDB(1)> th -w WLOCK print threads waiting for locks
SLOT NAME STATE TID PRI CPUID CPU FLAGS WCHAN

thread+0000C0 1 init SLEEP 001BD 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+000900 12 cron SLEEP 00C57 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+000B40 15 inetd SLEEP 00FB7 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+000CC0 17 mirrord SLEEP 01107 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+000F00 20 sendmail SLEEP 014A5 03C 000 00000004 cred_lock+000000 lockhsque+000020
thread+013F80 426 getty SLEEP 1AA6F 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+014340 431 diagd SLEEP 1AF8F 03C 000 00000000 proc_tbl_lock+000000 lockhsque+0000F8
thread+014400 432 pd_watch SLEEP 1B091 03C 000 00000000 proc_tbl_lock+000000 lockhsque+0000F8
thread+015000 448 stress_m SLEEP 1C08B 028 000 00000000 cred_lock+000000 lockhsque+000020
thread+018780 522 stresser SLEEP 20AF1 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+018CC0 529 pcomp SLEEP 21165 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+01B6C0 585 EXP_TEST SLEEP 24943 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+01C2C0 601 cres SLEEP 25957 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+022500 732 rsh SLEEP 2DC25 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+02A240 899 rcp SLEEP 383FB 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+02C580 946 ps SLEEP 3B223 03C 000 00000000 proc_tbl_lock+000000 lockhsque+0000F8
thread+02D900 972 rsh SLEEP 3CC29 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+02DD80 978 xlCcode SLEEP 3D227 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+02ED40 999 tty_benc SLEEP 3E7A7 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+02F100 1004 tty_benc SLEEP 3ECF3 03C 000 00000000 cred_lock+000000 lockhsque+000020
(1)> more (^C to quit) ? continue

SLOT NAME STATE TID PRI CPUID CPU FLAGS WCHAN

thread+02F400 1008 tty_benc SLEEP 3F097 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+02F700 1012 ksh SLEEP 3F403 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+02F940 1015 tty_benc SLEEP 3F745 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+02FA00 1016 tty_benc SLEEP 3F869 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+02FE80 1022 tty_benc SLEEP 3FECB 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+02FF40 1023 tty_benc SLEEP 3FFF5 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+030240 1027 rshd SLEEP 403F3 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+030300 1028 bsh SLEEP 404FF 03C 000 00000000 cred_lock+000000 lockhsque+000020
thread+0303C0 1029 sh SLEEP 40505 03C 000 00000000 cred_lock+000000 lockhsque+000020
KDB(1)> slk cred_lock+000000 print lock information
Simple lock name: cred_lock

_slock: 400401FD WAITING thread_owner: 00401FD
KDB(1)> slk proc_tbl_lock+000000 print lock information
Simple lock name: proc_tbl_lock

_slock: 400401FD WAITING thread_owner: 00401FD
KDB(1)>

ttid and tpid Subcommands
The ttid subcommand displays the thread table entry selected by thread ID.

The tpid subcommand displays all thread entries selected by a process ID.

Syntax:

ttid [tid]

tpid [pid]

412 Kernel Extensions and Device Support Programming Concepts

v tid - Specifies the thread ID. This value must either be a decimal or hexadecimal value depending on
the setting of the hexadecimal_wanted toggle. The hexadecimal_wanted toggle can be changed via
the set subcommand.

v pid - Specifies the process ID. This value must either be a decimal or hexadecimal value depending on
the setting of the hexadecimal_wanted toggle. The hexadecimal_wanted toggle can be changed via
the set subcommand.

If no argument is entered for the ttid subroutine, data for the current thread is displayed; otherwise, data
for the specified thread is displayed.

If no argument is entered for the tpid subroutine, all thread table entries for the current process are
displayed; otherwise, data for the thread table entries associated with the specified process are displayed.

Aliases:

v ttid - th_tid

v tpid - th_pid

Example:
KDB(4)> p * print process table

SLOT NAME STATE PID PPID PGRP UID EUID ADSPACE
...
proc+000100 1 init ACTIVE 00001 00000 00000 00000 00000 0000A005
...
proc+000C00 12 gil ACTIVE 00C18 00000 00000 00000 00000 00026013
...
KDB(4)> tpid 1 print thread(s) of process pid 1

SLOT NAME STATE TID PRI CPUID CPU FLAGS WCHAN

thread+0000C0 1 init SLEEP 001D9 03C 000 00000400
KDB(4)> tpid 00C18 print thread(s) of process pid 0xc18

SLOT NAME STATE TID PRI CPUID CPU FLAGS WCHAN

thread+000900 12 gil SLEEP 00C19 025 000 00001004
thread+000C00 16 gil SLEEP 01021 025 00000 000 00003004 netisr_servers+000000
thread+000B40 15 gil SLEEP 00F1F 025 00000 000 00003004 netisr_servers+000000
thread+000A80 14 gil SLEEP 00E1D 025 00000 000 00003004 netisr_servers+000000
thread+0009C0 13 gil SLEEP 00D1B 025 00000 000 00003004 netisr_servers+000000
KDB(4)> ttid 001D9 print thread with tid 0x1d9

SLOT NAME STATE TID PRI CPUID CPU FLAGS WCHAN

thread+0000C0 1 init SLEEP 001D9 03C 000 00000400

NAME................ init
FLAGS............... WAKEONSIG
WTYPE............... WEVENT
............stackp64 :00000000stackp :2FF22DC0
...............state :00000003wtype :00000001
.............suspend :00000001flags :00000400
..............atomic :00000000
DATA................
...............procp :E3000100 <proc+000100>
...............userp :2FF3B6C0 <__ublock+0002C0>
............uthreadp :2FF3B400 <__ublock+000000>
THREAD LINK.........
..........prevthread :E60000C0 <thread+0000C0>
..........nextthread :E60000C0 <thread+0000C0>
SLEEP LOCK.........
............ulock64 :00000000ulock :00000000
...............wchan :00000000wchan1 :00000000
...........wchan1sid :00000000wchan1offset :01AB5A58
(4)> more (^C to quit) ? continue
..............wchan2 :00000000swchan :00000000

Chapter 17. KDB Kernel Debugger and Command 413

...........eventlist :00000000result :00000000

.............polevel :000000AFpevent :00000000

.............wevent :00000004slist :00000000

...........lockcount :00000000
DISPATCH............
...............ticks :00000000prior :E60000C0
................next :E60000C0synch :FFFFFFFF
..............dispct :000008F6fpuct :00000000
SCHEDULER...........
...............cpuid :FFFFFFFFscpuid :FFFFFFFF
............affinity :00000001pri :0000003C
..............policy :00000000cpu :00000000
.............lockpri :0000003Dwakepri :0000007F
................time :000000FFsav_pri :0000003C
SIGNAL..............
..............cursig :00000000
......(pending) sig :
............sigmask :
...............scp64 :00000000scp :00000000
MISC................
............graphics :00000000cancel :00000000
(4)> more (^C to quit) ? continue
...........lockowner :E60042C0boosted :00000000
..............tsleep :FFFFFFFF
..........userdata64 :00000000userdata :00000000

user Subcommand
The user subcommand displays u-block information for the current process if no slot number or Address is
specified.

Syntax:

user

v -ad - Displays adspace information only.

v -cr - Displays credential information only.

v -f - Displays file information only.

v -s - Displays signal information only.

v -ru - Displays profiling/resource/limit information only.

v -t - Displays timer information only.

v -ut - Displays thread information only.

v -64 - Displays 64-bit user information only.

v -mc - Displays miscellaneous user information only.

v slot - Specifies the slot number of a thread table entry. This argument must be a decimal value.

v Address - Specifies the effective address of a thread table entry. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

If a slot number or Address are specified, u-block information is displayed for the specified thread.

The information displayed can be limited to specific sections through the use of option flags. If no option
flag is specified all information is displayed. Only one option flag is allowed for each invocation of the user
subcommand.

Aliases: u

Example:
KDB(0)> u -ut print current user thread block
User thread context [2FF3B400]:

save.... @ 2FF3B400 fpr..... @ 2FF3B550

414 Kernel Extensions and Device Support Programming Concepts

Uthread System call state:
msr64......00000000 msr........0000D0B0
errnopp64..00000000 errnopp....200FEFE8 error......00
scsave[0]..2004A474 scsave[1]..00000020 scsave[2]..20007B48
scsave[3]..2FF22AA0 scsave[4]..00000014 scsave[5]..20006B68
scsave[6]..2004A7B4 scsave[7]..2004A474
kstack.....2FF3B400 audsvc.....00000000
flags:

Uthread Miscellaneous stuff:
fstid.....00000000 ioctlrv...00000000 selchn....00000000
link......00000000 loginfo...00000000
fselchn...00000000 selbuc........0000
context64.00000000 context...00000000
sigssz64..00000000 sigssz....00000000
stkb64....00000000 stkb......00000000
jfscr.....00000000

Uthread Signal management:
sigsp64...00000000 sigsp.....00000000
code......00000000 oldmask...0000000000000000

Thread timers:
timer[0].................00000000

KDB(0)> u -64 print current 64-bit user part of ublock

64-bit process context [2FF7D000]:
stab.......... @ 2FF7D000

STAB: esid vsid esid vsid
0 09000000000000B0 000000000714E000 1 0000000000000000 0000000000000000
16 00000000200000B0 000000000AA75000 17 0000000000000000 0000000000000000
80 09001000A00000B0 000000000CA99000 81 0000000000000000 0000000000000000
104 00000000D00000B0 000000000D95B000 105 0000000000000000 0000000000000000
128 00000001000000B0 0000000004288000 129 0000000000000000 0000000000000000
136 00000001100000B0 000000000C298000 137 0000000000000000 0000000000000000
160 09002001400000B0 000000000E15C000 161 08002001400000B0 0000000008290000
248 09FFFFFFF00000B0 0000000002945000 249 08FFFFFFF00000B0 0000000001A83000
250 0FFFFFFFF00000B0 000000000BA97000 251 0000000000000000 0000000000000000
254 0000000000000000 0000000000000000 255 0000000000000000 0000000000000000

stablock...... @ 2FF7E000 stablock.........00000000
mstext.mst64.. @ 2FF7E008 mstext.remaps. @ 2FF7E140

SNODE... @ 2FF7E3C8
origin...28020000 freeind..FFFFFFFF nextind..00000002
maxind...0006DD82 size.....00000094

UNODE... @ 2FF7E3E0
origin...2BFA1000 freeind..FFFFFFFF nextind..0000000E
maxind...000D4393 size.....0000004C

maxbreak...00000001100005B8 minbreak...00000001100005B8
maxdata....0000000000000000 exitexec...00000000
brkseg.....00000011 stkseg.....FFFFFFFF

KDB(0)> u -f 18 print file decriptor table of thread slot 18
fdfree[0].00000000 fdfree[1].00000000 fdfree[2].00000000
maxofile..00000008 freefile..00000000
fd_lock...2FF3C188 slock/slockp 00000000

File descriptor table at..2FF3C1A0:
fd 3 fp..100000C0 count..00000000 flags. ALLOCATED
fd 4 fp..10000180 count..00000001 flags. ALLOCATED
fd 5 fp..100003C0 count..00000000 flags. ALLOCATED
fd 6 fp..100005A0 count..00000000 flags. ALLOCATED
fd 7 fp..10000600 count..00000000 flags. FDLOCK ALLOCATED
Rest of File Descriptor Table empty or paged out.

Chapter 17. KDB Kernel Debugger and Command 415

LVM Subcommands

pbuf Subcommand
The pbuf subcommand prints physical buffer information.

Syntax:

pbuf [*] [symbol | EffectiveAddress]

v * - Displays a summary for physical buffers. This displays one line of information for each buffer in a
linked list of physical buffers, starting at the specified address.

v Address - Specifies the effective address of the physical buffer. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

Example:
(0)> pbuf 0ACA4500
PBUF............. 0ACA4500
pb@............. 0ACA4500 pb_lbuf........ 0A5B8318
pb_sched........ 01B64880 pb_pvol........ 05770000
pb_bad.......... 00000000 pb_start....... 00133460
pb_mirror....... 00000000 pb_miravoid.... 00000000
pb_mirbad....... 00000000 pb_mirdone..... 00000000
pb_swretry...... 00000000 pb_type........ 00000000
pb_bbfixtype.... 00000000 pb_bbop........ 00000000
pb_bbstat....... 00000000 pb_whl_stop.... 00000000
pb_part......... 00000000 pb_bbcount..... 00000000
pb_forw......... 0ACA45A0 pb_back........ 0ACA4460
stripe_next..... 0ACA4500 stripe_status.. 00000000
orig_addr....... 0C149000 orig_count..... 00001000
partial_stripe.. 00000000 first_issued... 00000001
orig_bflags..... 000C0000

(0)> buf 0A5B8318
DEV VNODE BLKNO FLAGS

0 0A5B8318 000A000B 00000000 0007A360 DONE MPSAFE MPSAFE_INITIAL

forw 0000C4C1 back 00000000 av_forw 0A5B98C0 av_back 00000000
blkno 0007A360 addr 0C149000 bcount 00001000 resid 00000000
error 00000000 work 00080000 options 00000000 event 00000000
iodone: v_pfend+000000
start.tv_sec 00000000 start.tv_nsec 00000000
xmemd.aspace_id 00000000 xmemd.xm_flag 00000000 xmemd.xm_version 00000000
xmemd.subspace_id 0080CC5B xmemd.subspace_id2 00000000 xmemd.uaddr 00000000

(0)> pbuf * 0ACA4500
PBUF@ LBUF@ PVOL@ DEV START STRIPE OR_ADDR OR_COUNT

0ACA4500 0A5B8318 05770000 00120006 00133460 0ACA4500 0C149000 00001000
0ACA45A0 0AA64898 0A7DB000 00120000 001C71F0 0ACA45A0 0003E000 00001000
0ACA4640 0A323D10 05766000 00120004 00082FC0 0ACA4640 0A997000 00001000
0ACA46E0 0A5B97B8 05770000 00120006 001338C8 0AC95320 0C15C000 00001000
0ACB9400 0AA62630 0A7DB000 00120000 001851A0 0ACB9400 00054000 00001000
0ACB94A0 0AA65398 0A7BC000 00120001 001AD750 0ACB94A0 083E9000 00001000
0ACB9540 0AA62DC0 0A7DB000 00120000 00181150 0ACB9540 00000000 00002000
0ACA0000 0AA6CA20 0A7BC000 00120001 000F72BC 0ACA0000 00000000 00000800
0ACCD800 0AA64478 0A7DB000 00120000 001C7260 0ACCD800 00000000 00001000
0ACCD8A0 0A5B86E0 05770000 00120006 00133BA8 0ACCD8A0 0B796000 00002000
0ACCD940 0A31F210 05766000 00120004 0013B100 0ACCD940 00840000 00002000
0ACCD9E0 0AA6ADE8 0A7BC000 00120001 0006925C 0ACCD9E0 00000000 00000800
0ACCDA80 0AA6C028 0A7BC000 00120001 000DA29C 0ACCDA80 003FF000 00000800
0ACCDB20 0A324DE8 05766000 00120004 0008ACE8 0ACCDB20 0C151000 00001000
0ACCDBC0 0AA638C0 0A7DB000 00120000 00186228 0ACCDBC0 00000000 00001000
...

416 Kernel Extensions and Device Support Programming Concepts

volgrp Subcommand
The volgrp subcommand displays volume group information. volgrp addresses are registered in the
devsw table, in the DSDPTR field.

Syntax:

volgrp [symbol | EffectiveAddress]

v Address - Specifies the effective address of the volgrp structure to display. Symbols, hexadecimal
values, or hexadecimal expressions can be used in specification of the address.

Example:
(0)> devsw 0a

Slot address 0571E280
MAJOR: 00A

open: 01B44DE4
close: 01B44470
read: 01B43CD0
write: 01B43C04
ioctl: 01B42B18
strategy: .hd_strategy
tty: 00000000
select: .nodev
config: 01B413A0
print: .nodev
dump: .hd_dump
mpx: .nodev
revoke: .nodev
dsdptr: 05762000
selptr: 00000000
opts: 0000000A DEV_DEFINED DEV_MPSAFE

(0)> volgrp 05762000
VOLGRP............. 05762000
vg_lock.................. FFFFFFFF partshift............... 0000000D
open_count............... 00000013 flags................... 00000000
tot_io_cnt............... 00000000 lvols@.................. 05762010
pvols@................... 05762410 major_num............... 0000000A
vg_id.................... 00920045 005BDB00 00000000 00000000
nextvg................... 00000000 opn_pin@................ 057624A8
von_pid.................. 00000E78 nxtactvg................ 00000000
ca_freepvw............... 00000000 ca_pvwmem............... 00000000
ca_hld@.................. 057624D8 ca_pv_wrt@.............. 057624E0
ca_inflt_cnt............. 00000000 ca_size................. 00000000
ca_pvwblked.............. 00000000 mwc_rec................. 00000000
ca_part2................. 00000000 ca_lst.................. 00000000
ca_hash@................. 057624F4 bcachwait............... FFFFFFFF
ecachwait................ FFFFFFFF wait_cnt................ 00000000
quorum_cnt............... 00000002 wheel_idx............... 00000000
whl_seq_num.............. 00000000 sa_act_lst.............. 00000000
sa_hld_lst............... 00000000 vgsa_ptr................ 05776000
config_wait.............. FFFFFFFF sa_lbuf@................ 05762534
sa_pbuf@................. 0576258C sa_intlock@............. 0576262C
sa_intlock............... E8003B80
conc_flags............... 00000000 conc_msglock............ 00000000
vgsa_ts_prev.tv_sec...... 00000000 vgsa_ts_prev.tv_nsec.... 00000000
vgsa_ts_merged.tv_sec.... 00000000 vgsa_ts_merged.tv_nsec.. 00000000
vgsa_spare_ptr........... 00000000 intr_notify............. 00000000
intr_ok.................. 00000000 intr_tries.............. 00000000
resv_tries............... 00000000 sa_updated.............. 00000000
re_lbuf@................. 05762660 re_pbuf@................ 057626B8
re_idx................... 00000000 re_finish............... 00000000
re_twice................. 00000000 re_marks................ 00000000
re_saved_marks........... 00000000 refresh_Q@.............. 05762768
concsync_wd_pass@........ 05762770 concsync_wd_init@....... 05762788
concsync_wd_intr@........ 057627A0 concsync_terminate_Q@... 05762810

Chapter 17. KDB Kernel Debugger and Command 417

concsync_lockpart........ 00000000
concconfig_lbuf@......... 0576281C concconfig_wd@.......... 05762874
concconfig_wd_intr@...... 0576288C concconfig_nodes........ 00000000
concconfig_acknodes...... 00000000 concconfig_nacknodes.... 00000000
concconfig_event......... 00000000 concconfig_timeout...... 00000000
llc.flags................ 00000000 llc.ack................. 00000000
llc.nak.................. 00000000 llc.timeout............. 00000000
llc.contention........... 00000000 llc.awakened............ 00000000
llc.wd@.................. 05762920 llc.event............... 00000000
llc.arb_intlock.......... 00000000 llc.arb_intlock@........ 0576293C
dd_conc_reset............ 00000000 @timer_intlock.......... 05762944
timer_intlock............ 00000000
@vg_intlock.............. 05762948 vg_intlock.............. E8003BA0
LVOL............ 05CC8400
work_Q.......... 00000000 lv_status...... 00000000
lv_options...... 00000001 nparts......... 00000001
i_sched......... 00000000 nblocks........ 00040000
parts[0]........ 05706A00 pvol@ 05766000 dev 00120004 start 00000000
parts[1]........ 00000000
parts[2]........ 00000000
maxsize......... 00000000 tot_rds........ 00000000
complcnt........ 00000000 waitlist....... FFFFFFFF
stripe_exp...... 00000000 striping_width. 00000000
lvol_intlock.... 00000000 lvol_intlock@.. 05CC8434
LVOL............ 05CC8440
work_Q.......... 05780D00 lv_status...... 00000002
lv_options...... 00000190 nparts......... 00000001
i_sched......... 00000000 nblocks........ 00044000
parts[0]........ 05706000 pvol@ 05766000 dev 00120004 start 00065100
parts[1]........ 00000000
parts[2]........ 00000000
maxsize......... 00000200 tot_rds........ 00000000
complcnt........ 00000000 waitlist....... FFFFFFFF
stripe_exp...... 00000000 striping_width. 00000000
lvol_intlock.... 00000000 lvol_intlock@.. 05CC8474
WORK_Q@ BUF@ FLAGS DEV BLKNO BADDR BCOUNT RESID SID

05780D28 0A323580 000C8001 000A0001 00004A08 0FF3A000 00001000 00001000 0080C919
WORK_Q@ BUF@ FLAGS DEV BLKNO BADDR BCOUNT RESID SID

05780D90 0A323738 000C0000 000A0001 00022420 0B783000 00001000 00001000 0080CC5B
05780D90 0A323D10 000C0000 000A0001 00022408 0B782000 00001000 00001000 0080CC5B
...
LVOL............ 0A752440
work_Q.......... 0A82DD00 lv_status...... 00000002
lv_options...... 00000000 nparts......... 00000001
i_sched......... 00000000 nblocks........ 00002000
parts[0]........ 057222F0 pvol@ 0576C000 dev 00120005 start 000C7100
parts[1]........ 00000000
parts[2]........ 00000000
maxsize......... 00000200 tot_rds........ 00000000
complcnt........ 00000000 waitlist....... FFFFFFFF
stripe_exp...... 00000000 striping_width. 00000000
lvol_intlock.... E80279C0 lvol_intlock@.. 0A752474

pvol Subcommand

Syntax:

pvol [symbol | EffectiveAddress]

v Address - Specifies the effective address of the pvol structure to display. Symbols, hexadecimal values,
or hexadecimal expressions can be used in specification of the address.

Example:
(0)> pvol 05766000
PVOL............... 05766000
dev............... 00120004 xfcnt............ 00000003

418 Kernel Extensions and Device Support Programming Concepts

armpos............ 00000000 pvstate.......... 00000000
pvnum............. 00000000 vg_num........... 0000000A
fp................ 00429258 flags............ 00000000
num_bbdir_ent..... 00000000 fst_usr_blk...... 00001100
beg_relblk........ 001F5A7A next_relblk...... 001F5A7A
max_relblk........ 001F5B79 defect_tbl....... 05705500
ca_pv@............ 0576602C sa_area[0]@...... 05766034
sa_area[1]@....... 0576603C pv_pbuf@......... 05766044
conc_func......... 00000000 conc_msgseq...... 00000000
conc_msglen....... 00000000 conc_msgbuf@..... 057660F0
mirror_tur_cmd@... 057660F8 mirror_wait_list. 00000000
ref_cmd@.......... 057661A8 user_cmd@........ 05766254
refresh_intr@..... 05766300
concsync_cmd@..... 05766370 synchold_cmd@.... 0576641C
wd_cmd@........... 057664C8 concsync_intr.... 00000000
concsync_intr_next 00000000
config_cmd@....... 0576657C ack_cmd@......... 05766628
ack_idx........... 00000000 nak_cmd@......... 05767BAC
nak_idx........... 00000000 llc_cmd@......... 05769130
ppCmdTail......... 00000000 send_cmd_lock.... 00000000
send_cmd_lock@.... 057691E0

lvol Subcommand
The lvol subcommand prints logical volume information.

Syntax:

lvol [symbol | EffectiveAddress]

v Address - Specifies the effective address of the lvol structure to display. Symbols, hexadecimal values,
or hexadecimal expressions can be used in specification of the address.

Example:
(0)> lvol 05CC8440
LVOL............ 05CC8440
work_Q.......... 05780D00 lv_status...... 00000002
lv_options...... 00000190 nparts......... 00000001
i_sched......... 00000000 nblocks........ 00044000
parts[0]........ 05706000 pvol@ 05766000 dev 00120004 start 00065100
parts[1]........ 00000000
parts[2]........ 00000000
maxsize......... 00000200 tot_rds........ 00000000
complcnt........ 00000000 waitlist....... FFFFFFFF
stripe_exp...... 00000000 striping_width. 00000000
lvol_intlock.... 00000000 lvol_intlock@.. 05CC8474
WORK_Q@ BUF@ FLAGS DEV BLKNO BADDR BCOUNT RESID SID
05780D28 0A323580 000C8001 000A0001 00004A08 0FF3A000 00001000 00001000 0080C919
WORK_Q@ BUF@ FLAGS DEV BLKNO BADDR BCOUNT RESID SID
05780D90 0A323738 000C0000 000A0001 00022420 0B783000 00001000 00001000 0080CC5B
05780D90 0A323D10 000C0000 000A0001 00022408 0B782000 00001000 00001000 0080CC5B

SCSI Subcommands

asc Subcommand
The asc subcommand prints adapter information.

Syntax:

asc [slot | symbol | Address]

v slot - Specifies the slot number of the adp_ctrl entry to be displayed. The adp_ctrl list must previously
have been loaded by executing the asc subcommand with no argument to use this option. This value
must be a decimal number.

Chapter 17. KDB Kernel Debugger and Command 419

v Address - Specifies the effective address of an adapter_info structure to display. Symbols, hexadecimal
values, or hexadecimal expressions can be used in specification of the address.

If no argument is specified the asc subcommand loads the slot numbers with addresses from the adp_ctrl
structure. If the symbol adp_ctrl cannot be located to load these values, the user is prompted for the
address of the structure. This address may be obtained by locating the data address for the ascsiddpin
kernel extension and adding the offset to the adp_ctrl structure (obtained from a map) to that value.

A specific adapter_info structure may be displayed by specifying either a slot number or the effective
address of the entry. To use a slot number, the slots must have previously been loaded by executing the
asc subcommand with no arguments.

Aliases: ascsi

Example:
KDB(4)> lke 88 print kernel extension information

ADDRESS FILE FILESIZE FLAGS MODULE NAME

88 05630600 01A2A640 00008680 00000262 /etc/drivers/ascsiddpin
le_flags........ TEXT DATAINTEXT DATA DATAEXISTS
le_fp........... 00000000
le_loadcount.... 00000000
le_usecount..... 00000001
le_data/le_tid.. 01A32760 <--- this address and the offset to
le_datasize..... 00000560 the adp_ctrl structure (from a map)
le_exports...... 0BC6B800 are used to initialize the slots for
le_lex.......... 00000000 the asc subcommand.
le_defered...... 00000000
le_filename..... 05630644
le_ndepend...... 00000001
le_maxdepend.... 00000001
le_de........... 00000000
KDB(4)> d 01A32760 80 print data
01A32760: 01A3 175C 01A3 1758 01A3 1754 01A3 1750 ...\...X...T...P
01A32770: 01A3 174C 01A3 1748 01A3 1744 01A3 1740 ...L...H...D...@
01A32780: 01A3 17A0 01A3 17E0 01A3 1820 01A3 1860`
01A32790: 01A3 18A0 01A3 18E0 01A3 1920 01A3 1960`
01A327A0: 01A3 19A0 01A3 19E0 01A3 1A20 01A3 1A60`
01A327B0: 01A3 1AA0 01A3 1AE0 01A3 1B20 01A3 1B60`
01A327C0: 0000 0000 0000 0002 0000 0002 0564 6000d`.
01A327D0: 0564 7000 0000 0000 0000 0000 0000 0000 .dp.............
KDB(4)> asc print adapter scsi table
Unable to find <adp_ctrl>
Enter the adp_ctrl address (in hex): 01A327C0
Adapter control [01A327C0]
semaphore............00000000
num_of_opens.........00000002
num_of_cfgs..........00000002
ap_ptr[0]...........05646000
ap_ptr[1]...........05647000
ap_ptr[2]...........00000000
ap_ptr[3]...........00000000
ap_ptr[4]...........00000000
ap_ptr[5]...........00000000
ap_ptr[6]...........00000000
ap_ptr[7]...........00000000
ap_ptr[8]...........00000000
ap_ptr[9]...........00000000
ap_ptr[10]...........00000000
ap_ptr[11]...........00000000
ap_ptr[12]...........00000000
ap_ptr[13]...........00000000
ap_ptr[14]...........00000000
ap_ptr[15]...........00000000

420 Kernel Extensions and Device Support Programming Concepts

KDB(4)> asc 0 print adapter slot 0
Adapter info [05646000]
ddi.resource_name..... ascsi0
intr.next.............00000000 intr.handler..........01A329EC
intr.bus_type.........00000001 intr.flags............00000050
intr.level............0000000E intr.priority.........00000003
intr.bid..............820C0020 intr.i_count..........00129C8D
ndd...................0564701C
seq_number............00000000
next..................00000000
local.eq_sf...........0565871C local.eq_ef...........05658FF7
local.eq_se...........056586E8 local.eq_top..........05658FF7
local.eq_end..........05658FFF local.dq_ee...........056591B0
local.dq_se...........056591B0 local.dq_top..........05659FF7
local.eq_wrap.........00000000 local.dq_wrap.........00000000
local.eq_status.......00000000 local.dq_status.......00000200
ddi.bus_id............820C0020 ddi.bus_type..........00000001
ddi.slot..............00000004 ddi.base_addr.........00003540
ddi.battery_backed....00000000 ddi.dma_lvl...........00000003
ddi.int_lvl...........0000000E ddi.int_prior.........00000003
ddi.ext_bus_data_rate.0000000A ddi.tcw_start_addr....00150000
ddi.tcw_length........00202000 ddi.tm_tcw_length.....00010000
ddi.tm_tcw_start_addr.00352000 ddi.i_card_scsi_id....00000007
ddi.e_card_scsi_id....00000007 ddi.int_wide_ena......00000001
(4)> more (^C to quit) ? continue
ddi.ext_wide_ena......00000001
active_head...........00000000 active_tail...........00000000
wait_head.............00000000 wait_tail.............00000000
num_cmds_queued.......00000000 num_cmds_active.......00000000
adp_pool..............0565B128
surr_ctl.eq_ssf.......0565B000 surr_ctl.eq_ssf_IO....00153000
surr_ctl.eq_ses.......0565B002 surr_ctl.eq_ses_IO....00153002
surr_ctl.dq_sse.......0565B004 surr_ctl.dq_sse_IO....00153004
surr_ctl.dq_sds.......0565B006 surr_ctl.dq_sds_IO....00153006
surr_ctl.dq_ssf.......0565B080 surr_ctl.dq_ssf_IO....00153080
surr_ctl.dq_ses.......0565B082 surr_ctl.dq_ses_IO....00153082
surr_ctl.eq_sse.......0565B084 surr_ctl.eq_sse_IO....00153084
surr_ctl.eq_sds.......0565B086 surr_ctl.eq_sds_IO....00153086
surr_ctl.pusa.........0565B100 surr_ctl.pusa_IO......00153100
surr_ctl.ausa.........0565B104 surr_ctl.ausa_IO......00153104
sta.in_use[0]........00000000 sta.stap[0]..........0565A000
sta.in_use[1]........00000000 sta.stap[1]..........0565A100
sta.in_use[2]........00000000 sta.stap[2]..........0565A200
sta.in_use[3]........00000000 sta.stap[3]..........0565A300
sta.in_use[4]........00000000 sta.stap[4]..........0565A400
sta.in_use[5]........00000000 sta.stap[5]..........0565A500
sta.in_use[6]........00000000 sta.stap[6]..........0565A600
(4)> more (^C to quit) ? continue
sta.in_use[7]........00000000 sta.stap[7]..........0565A700
sta.in_use[8]........00000000 sta.stap[8]..........0565A800
sta.in_use[9]........00000000 sta.stap[9]..........0565A900
sta.in_use[10]........00000000 sta.stap[10]..........0565AA00
sta.in_use[11]........00000000 sta.stap[11]..........0565AB00
sta.in_use[12]........00000000 sta.stap[12]..........0565AC00
sta.in_use[13]........00000000 sta.stap[13]..........0565AD00
sta.in_use[14]........00000000 sta.stap[14]..........0565AE00
sta.in_use[15]........00000000 sta.stap[15]..........0565AF00
time_s.tv_sec.........00000000 time_s.tv_nsec........00000000
tcw_table.............0565BF9C
opened................00000001
adapter_mode..........00000001
adp_uid...............00000004 peer_uid..............00000000
sysmem................05658000 sysmem_end............0565BFAD
busmem................00150000 busmem_end............00154000
tm_tcw_table..........00000000
eq_raddr..............00150000 dq_raddr..............00151000
eq_vaddr..............05658000 dq_vaddr..............05659000

Chapter 17. KDB Kernel Debugger and Command 421

sta_raddr.............00152000 sta_vaddr.............0565A000
bufs..................00154000
tm_sysmem.............00000000
(4)> more (^C to quit) ? continue
wdog.dog.next.........05646360 wdog.dog.prev.........0009A5C4
wdog.dog.func.........01A32B28 wdog.dog.count........00000000
wdog.dog.restart......0000001E wdog.ap...............05646000
wdog.reason...........00000004
tm.dog.next...........05647344 tm.dog.prev...........05646344
tm.dog.func...........01A32B28 tm.dog.count..........00000000
tm.dog.restart........00000000 tm.ap.................05646000
tm.reason.............00000004
delay_trb.to_next.....00000000 delay_trb.knext.......00000000
delay_trb.kprev.......00000000 delay_trb.id..........00000000
delay_trb.cpunum......00000000 delay_trb.flags.......00000000
delay_trb.timerid.....00000000 delay_trb.eventlist...00000000
delay_trb.timeout.it_interval.tv_sec....00000000 tv_nsec...00000000
delay_trb.timeout.it_value.tv_sec.......00000000 tv_nsec...00000000
delay_trb.func........00000000 delay_trb.func_data...00000000
delay_trb.ipri........00000000 delay_trb.tof.........00000000
xmem.aspace_id........FFFFFFFF xmem.xm_flag..........FFFFFFFF
xmem.xm_version.......FFFFFFFF dma_channel...........10001000
mtu...................00141000 num_tcw_words.........00000011
shift.................0000001C tcw_word..............00000002
resvd1................00000000 cfg_close.............00000000
vpd_close.............00000000 locate_state..........00000004
(4)> more (^C to quit) ? continue
locate_event..........FFFFFFFF rir_event.............FFFFFFFF
vpd_event.............FFFFFFFF eid_event.............FFFFFFFF
ebp_event.............FFFFFFFF eid_lock..............FFFFFFFF
recv_fn...............01A3C54C tm_recv_fn............00000000
tm_buf_info...........00000000 tm_head...............00000000
tm_tail...............00000000 tm_recv_buf...........00000000
tm_bufs_tot...........00000000 tm_bufs_at_adp........00000000
tm_buf................00000000 tm_raddr..............00000000
proto_tag_e...........0565D000 proto_tag_i...........00000000
adapter_check.........00000000 eid@..................0564642C
limbo_start_time......00000000 dev_eid.@.............056464B0
tm_dev_eid@...........056468B0 pipe_full_cnt.........00000000
dump_state............00000000 pad...................00000000
adp_cmd_pending.......00000000 reset_pending.........00000000
epow_state............00000000 mm_reset_in_prog......00000000
sleep_pending.........00000000 bus_reset_in_prog.....00000000
first_try.............00000001 devs_in_use_I.........00000000
devs_in_use_E.........00000002 num_buf_cmds..........00000000
next_id...............000000D4 next_id_tm............00000000
resvd4................00000000 ebp_flag..............00000000
tm_bufs_blocked.......00000000 tm_enable_threshold...00000000
limbo.................00000000

vsc Subcommand
The vsc subcommand prints virtual SCSI information.

Syntax:

vsc [slot | symbol | Address]

v slot - Specifies the slot number of the vsc_scsi_ptrs entry to be displayed. The vsc_scsi_ptrs list must
previously have been loaded by executing the vsc subcommand with no argument to use this option.
This value must be a decimal number.

v Address - Specifies the effective address of a scsi_info structure to display. Symbols, hexadecimal
values, or hexadecimal expressions can be used in specification of the address.

If no argument is specified, the vsc subcommand loads the slot numbers with addresses from the
vsc_scsi_ptrs structure. If the symbol vsc_scsi_ptrs cannot be located to load these values, the user is

422 Kernel Extensions and Device Support Programming Concepts

prompted for the address of the structure. This address can be obtained by locating the data address for
the vscsiddpin kernel extension and adding the offset to the vsc_scsi_ptrs structure (obtained from a
map) to that value.

A specific scsi_info entry can be displayed by specifying either a slot number or the effective address of
the entry. To use a slot number, the slots must have previously been loaded by executing the vsc
subcommand with no arguments.

Aliases: vscsi

Example:
KDB(4)> lke 84 print kernel extension information

ADDRESS FILE FILESIZE FLAGS MODULE NAME

84 05630780 01A36C00 00005A04 00000262 /etc/drivers/vscsiddpin
le_flags........ TEXT DATAINTEXT DATA DATAEXISTS
le_fp........... 00000000
le_loadcount.... 00000000
le_usecount..... 00000001
le_data/le_tid.. 01A3C3A0 <--- this address plus the offset to
le_datasize..... 00000264 the vsc_scsi_ptrs array (from a map)
le_exports...... 0565E000 are used to initialize the slots for
le_lex.......... 00000000 the vsc subcommand.
le_defered...... 00000000
le_filename..... 056307C4
le_ndepend...... 00000001
le_maxdepend.... 00000001
le_de........... 00000000
KDB(4)> d 01A3C3A0 100 print data
01A3C3A0: 01A3 B9DC 01A3 B9D8 01A3 B9D4 01A3 B9D0
01A3C3B0: 01A3 B9CC 01A3 B9C8 01A3 B9C4 01A3 B9C0
01A3C3C0: 01A3 BA20 01A3 BA60 01A3 BAA0 01A3 BAE0`........
01A3C3D0: 01A3 BB20 01A3 BB60 01A3 BBA0 01A3 BBE0`........
01A3C3E0: 01A3 BC20 01A3 BC60 01A3 BCA0 01A3 BCE0`........
01A3C3F0: 01A3 BD20 01A3 BD60 01A3 BDA0 01A3 BDE0`........
01A3C400: 7673 6373 6900 0000 0000 0000 4028 2329 vscsi.......@(#)
01A3C410: 3434 0931 2E31 3620 2073 7263 2F62 6F73 44.1.16 src/bos
01A3C420: 2F6B 6572 6E65 7874 2F73 6373 692F 7673 /kernext/scsi/vs
01A3C430: 6373 6964 6462 2E63 2C20 7379 7378 7363 csiddb.c, sysxsc
01A3C440: 7369 2C20 626F 7334 3230 2C20 3936 3133 si, bos420, 9613
01A3C450: 5420 332F 322F 3935 2031 313A 3030 3A30 T 3/2/95 11:00:0
01A3C460: 3500 0000 0000 0000 0564 F000 0565 D000 5........d...e..
01A3C470: 0565 F000 0566 5000 0000 0000 0000 0000 .e...fP.........
01A3C480: 0000 0000 0000 0000 0000 0000 0000 0000
01A3C490: 0000 0000 0000 0000 0000 0000 0000 0000
KDB(4)> vsc print virtual scsi table
Unable to find <vsc_scsi_ptrs>
Enter the vsc_scsi_ptrs address (in hex): 01A3C468
Scsi pointer [01A3C468]
slot 0...........0564F000
slot 1...........0565D000
slot 2...........0565F000
slot 3...........05665000
slot 4...........00000000
slot 5...........00000000
slot 6...........00000000
slot 7...........00000000
slot 8...........00000000
slot 9...........00000000
slot 10...........00000000
slot 11...........00000000
slot 12...........00000000
slot 13...........00000000
slot 14...........00000000
slot 15...........00000000

Chapter 17. KDB Kernel Debugger and Command 423

slot 16...........00000000
slot 17...........00000000
slot 18...........00000000
slot 19...........00000000
slot 20...........00000000
(4)> more (^C to quit) ? continue
slot 21...........00000000
slot 22...........00000000
slot 23...........00000000
slot 24...........00000000
slot 25...........00000000
slot 26...........00000000
slot 27...........00000000
slot 28...........00000000
slot 29...........00000000
slot 30...........00000000
slot 31...........00000000
KDB(4)> vsc 1 print virtual scsi slot 1
Scsi info [0565D000]
ddi.resource_name..... vscsi1
ddi.parent_lname...... ascsi0
ddi.cmd_delay.........00000007 ddi.num_tm_bufs.......00000010
ddi.parent_unit_no....00000000 ddi.intr_priority.....00000003
ddi.sc_im_entity_id...00000008 ddi.sc_tm_entity_id...00000009
ddi.bus_scsi_id.......00000007 ddi.wide_enabled......00000001
ddi.location..........00000001 ddi.num_cmd_elems.....00000028
cdar_wdog.dog.next....0C3AB264 cdar_wdog.dog.prev....0009AE64
cdar_wdog.dog.func....01A3C534 cdar_wdog.dog.count...00000000
cdar_wdog.dog.restart.00000007 cdar_wdog.scsi........0565D000
cdar_wdog.index.......00000000 cdar_wdog.timer_id....00000001
cdar_wdog.save_time...00000000
reset_wdog.dog.next...0C50F000 reset_wdog.dog.prev...0009AB84
reset_wdog.dog.func...01A3C534 reset_wdog.dog.count..00000000
reset_wdog.dog.restart00000008 reset_wdog.scsi.......0565D000
reset_wdog.index......00000000 reset_wdog.timer_id...00000004
reset_wdog.save_time..00000000
RESET_CMD_ELEM.REPLY.
header.format.........00000000 header.length.........00000000
header.options........00000000 header.reserved.......00000000
header.src_unit.......00000000 header.src_entity.....00000000
header.dest_unit......00000000 header.dest_entity....00000000
(4)> more (^C to quit) ? continue
header.correlation_id.00000000 adap_status...........00000000
resid_count...........00000000 resid_addr............00000000
cmd_status............00000000 scsi_status...........00000000
cmd_error_code........00000000 device_error_code.....00000000
RESET_CMD_ELEM.CTL_ELEM
next..................00000000 prev..................00000000
flags.................00000003 key...................00000000
status................00000000 num_pd_info...........00000000
pds_data_len..........00000000 reply_elem............0565D07C
reply_elem_len........0000002C ctl_elem..............0565D0D4
pd_info...............00000000
RESET_CMD_ELEM.REQUEST.
header.format.........00000000 header.length.........00000054
header.options........00000046 header.reserved.......00000000
header.src_unit.......00000000 header.src_entity.....00000000
header.dest_unit......00000000 header.dest_entity....00000000
header.correlation_id.0565D0A8 type2_pd.desc_number..00000000
type2_pd.ctl_info.....00008280 type2_pd.word1........00000001
type2_pd.word2........00000000 type2_pd.word3........00000000
type1_pd.desc_number..00000000 type1_pd.ctl_info.....00000180
type1_pd.word1........00000054 type1_pd.word2........00000000
type1_pd.word3........00000000 scsi_cdb.next_addr1...00000000
(4)> more (^C to quit) ? continue
scsi_cdb.next_addr2...00000000 scsi_cdb.scsi_id......00000000
scsi_cdb.scsi_lun.....00000000 scsi_cdb.media_flags..0000C400

424 Kernel Extensions and Device Support Programming Concepts

RESET_CMD_ELEM.REQUEST.SCSI_CDB.
scsi_cmd_blk.scsi_op_code..00000000 scsi_cmd_blk.lun...........00000000
scsi_cmd_blk.scsi_bytes@...0565D116 scsi_extra.................00000000
scsi_data_length...........00000000
RESET_CMD_ELEM.PD_INFO1.
next..................00000000 buf_type..............00000000
pd_ctl_info...........00000000 mapped_addr...........00000000
total_len.............00000000 num_tcws..............00000000
p_buf_list............00000000
RESET_CMD_ELEM.
bp....................00000000 scsi..................0565D000
cmd_type..............00000004 cmd_state.............00000000
preempt...............00000000 tag...................00000000

status_filter.type....00000129 status_filter.mask....0565D001
status_filter.sid.....00000000
scsi_lock.............FFFFFFFF ioctl_lock............E801AD40
devno.................00110001 open_event............00000000
ioctl_event...........FFFFFFFF free_cmd_list@........0565D170
shared................05628100 dev@..................0565D194
(4)> more (^C to quit) ? continue
tm@...................0565D994 head_free.............00000000
b_pool................00000000 read_bufs.............00000000
cmd_pool..............0C6CC000 next..................00000000
head_gw_free..........00000000 tail_gw_free..........00000000
proc_results..........00000000 proc_sleep_id.........00000000
dump_state............00000000 opened................00000001
num_tm_devices........00000000 any_waiting...........00000000
pending_err...........00000000
DEV_INFO 0 [0C7A5600]
head_act..............00000000 tail_act..............00000000
head_pend.............00000000 tail_pend.............00000000
cmd_save_ptr..........00000000 async_func............00000000
async_correlator......00000000 dev_event.............FFFFFFFF
num_act_cmds..........00000000 trace_enabled.........00000000
qstate................00000000 stop_pending..........00000000
dev_queuing...........00000001 need_resume_set.......00000000
cc_error_state........00000000 waiting...............00000000
need_to_resume_queue..00000000
DEV_INFO 96 [0C50F000]
head_act..............0A048960 tail_act..............0A0488B0
head_pend.............00000000 tail_pend.............00000000
cmd_save_ptr..........00000000 async_func............00000000
(4)> more (^C to quit) ? continue
async_correlator......00000000 dev_event.............FFFFFFFF
num_act_cmds..........00000000 trace_enabled.........00000000
qstate................00000000 stop_pending..........00000000
dev_queuing...........00000001 need_resume_set.......00000000
cc_error_state........00000000 waiting...............00000000
need_to_resume_queue..00000000
KDB(4)> buf 0A048960 print head buffer (head_act)

DEV VNODE BLKNO FLAGS

0 0A048960 00100001 00000000 000DA850 MPSAFE MPSAFE_INITIAL

forw 00000000 back 00000000 av_forw 0A048800 av_back 00000000
blkno 000DA850 addr 00000000 bcount 00001000 resid 00000000
error 00000000 work 0A057424 options 00000000 event FFFFFFFF
iodone: 018F371C
start.tv_sec 00000000 start.tv_nsec 00000000
xmemd.aspace_id 00000000 xmemd.xm_flag 00000000 xmemd.xm_version 00000000
xmemd.subspace_id 00803D0F xmemd.subspace_id2 00000000 xmemd.uaddr 00000000

KDB(4)> buf 0A048800 print next buffer (av_forw)
DEV VNODE BLKNO FLAGS

0 0A048800 00100001 00000000 000DAC38 MPSAFE MPSAFE_INITIAL

Chapter 17. KDB Kernel Debugger and Command 425

forw 00000000 back 00000000 av_forw 0A0488B0 av_back 0A048960
blkno 000DAC38 addr 0003A000 bcount 00001000 resid 00000000
error 00000000 work 0A0574F8 options 00000000 event FFFFFFFF
iodone: 018F371C
start.tv_sec 00000000 start.tv_nsec 00000000
xmemd.aspace_id 00000000 xmemd.xm_flag 00000000 xmemd.xm_version 00000000
xmemd.subspace_id 00803D0F xmemd.subspace_id2 00000000 xmemd.uaddr 00000000

KDB(4)> buf 0A0488B0 print next buffer (av_forw)
DEV VNODE BLKNO FLAGS

0 0A0488B0 00100001 00000000 00069AE0 READ SPLIT MPSAFE MPSAFE_INITIAL

forw 00000000 back 00000000 av_forw 00000000 av_back 0A048800
blkno 00069AE0 addr 003E5000 bcount 00001000 resid 00000000
error 00000000 work 0A0575CC options 00000000 event FFFFFFFF
iodone: 018F371C
start.tv_sec 00000000 start.tv_nsec 00000000
xmemd.aspace_id 00000000 xmemd.xm_flag 00000000 xmemd.xm_version 00000000
xmemd.subspace_id 00800802 xmemd.subspace_id2 00000000 xmemd.uaddr 00000000
KDB(4)> buf 0A0480B0 print next buffer (av_forw)

DEV VNODE BLKNO FLAGS

0 0A0480B0 00100001 00000000 0010BBB8 READ SPLIT MPSAFE MPSAFE_INITIAL

forw 00000000 back 00000000 av_forw 0A048160 av_back 00000000
blkno 0010BBB8 addr 0029C000 bcount 00001000 resid 00000000
error 00000000 work 0A0570D4 options 00000000 event FFFFFFFF
iodone: 018F371C
start.tv_sec 00000000 start.tv_nsec 00000000
xmemd.aspace_id 00000000 xmemd.xm_flag 00000000 xmemd.xm_version 00000000
xmemd.subspace_id 008052D0 xmemd.subspace_id2 00000000 xmemd.uaddr 00000000

KDB(4)> buf 0A048160 print next buffer (av_forw)
DEV VNODE BLKNO FLAGS

0 0A048160 00100001 00000000 000ECE70 READ SPLIT MPSAFE MPSAFE_INITIAL

forw 00000000 back 00000000 av_forw 0A048000 av_back 0A0480B0
blkno 000ECE70 addr 00388000 bcount 00001000 resid 00000000
error 00000000 work 0A05727C options 00000000 event FFFFFFFF
iodone: 018F371C
start.tv_sec 00000000 start.tv_nsec 00000000
xmemd.aspace_id 00000000 xmemd.xm_flag 00000000 xmemd.xm_version 00000000
xmemd.subspace_id 00800802 xmemd.subspace_id2 00000000 xmemd.uaddr 00000000

KDB(4)> buf 0A048000 print next buffer (av_forw)
DEV VNODE BLKNO FLAGS

0 0A048000 00100001 00000000 000F4D68 READ SPLIT MPSAFE MPSAFE_INITIAL

forw 00000000 back 00000000 av_forw 00000000 av_back 0A048160
blkno 000F4D68 addr 002D3000 bcount 00001000 resid 00000000
error 00000000 work 0A057350 options 00000000 event FFFFFFFF
iodone: 018F371C
start.tv_sec 00000000 start.tv_nsec 00000000
xmemd.aspace_id 00000000 xmemd.xm_flag 00000000 xmemd.xm_version 00000000
xmemd.subspace_id 00800802 xmemd.subspace_id2 00000000 xmemd.uaddr 00000000

KDB(4)> buf 0A04F560 print next buffer (av_forw)
DEV VNODE BLKNO FLAGS

0 0A04F560 00100001 00000000 0017E7C0 READ SPLIT MPSAFE MPSAFE_INITIAL

forw 00000000 back 00000000 av_forw 0A04F400 av_back 00000000
blkno 0017E7C0 addr 0029C000 bcount 00001000 resid 00000000

426 Kernel Extensions and Device Support Programming Concepts

error 00000000 work 0A057000 options 00000000 event FFFFFFFF
iodone: 018F371C
start.tv_sec 00000000 start.tv_nsec 00000000
xmemd.aspace_id 00000000 xmemd.xm_flag 00000000 xmemd.xm_version 00000000
xmemd.subspace_id 00807F5F xmemd.subspace_id2 00000000 xmemd.uaddr 00000000

KDB(4)> buf 0A04F560 print next buffer (av_forw)
DEV VNODE BLKNO FLAGS

0 0A04F560 00100001 00000000 0017E7C0 READ SPLIT MPSAFE MPSAFE_INITIAL

forw 00000000 back 00000000 av_forw 0A04F400 av_back 00000000
blkno 0017E7C0 addr 0029C000 bcount 00001000 resid 00000000
error 00000000 work 0A057000 options 00000000 event FFFFFFFF
iodone: 018F371C
start.tv_sec 00000000 start.tv_nsec 00000000
xmemd.aspace_id 00000000 xmemd.xm_flag 00000000 xmemd.xm_version 00000000
xmemd.subspace_id 00807F5F xmemd.subspace_id2 00000000 xmemd.uaddr 00000000

KDB(4)> buf 0A04F400 print next buffer (av_forw)
DEV VNODE BLKNO FLAGS

0 0A04F400 00100001 00000000 00172CC0 READ SPLIT MPSAFE MPSAFE_INITIAL

forw 00000000 back 00000000 av_forw 00000000 av_back 0A04F560
blkno 00172CC0 addr 0029C000 bcount 00001000 resid 00000000
error 00000000 work 0A0571A8 options 00000000 event FFFFFFFF
iodone: 018F371C
start.tv_sec 00000000 start.tv_nsec 00000000
xmemd.aspace_id 00000000 xmemd.xm_flag 00000000 xmemd.xm_version 00000000
xmemd.subspace_id 00802CAC xmemd.subspace_id2 00000000 xmemd.uaddr 00000000

scd Subcommand
scd [slot | symbol | Address]

Syntax:

scd

v slot - Specifies the slot number of the scdisk entry to be displayed. The scdisk list must previously have
been loaded by executing the scd subcommand with no argument to use this option. This value must
be a decimal number.

v Address - Specifies the effective address of an scdisk_diskinfo structure to display. Symbols,
hexadecimal values, or hexadecimal expressions can be used in specification of the address.

If no argument is specified, the scd subcommand loads the slot numbers with addresses from the
scdisk_list array. If the symbol scdisk_list cannot be located to load these values, the user is prompted
for the address of the scdisk_list array. This address can be obtained by locating the data address for the
scdiskpin kernel extension and adding the offset to the scdisk_list array (obtained from a map) to that
value.

A specific scdisk_list entry can be displayed by specifying either a slot number or the effective address of
the entry. To use a slot number, the slots must have previously been loaded by executing the scd
subcommand with no arguments.

Aliases: scdisk

Example:
KDB(4)> lke 80 print kernel extension information

ADDRESS FILE FILESIZE FLAGS MODULE NAME

80 05630900 01A57E60 0000979C 00000262 /etc/drivers/scdiskpin

Chapter 17. KDB Kernel Debugger and Command 427

le_flags........ TEXT DATAINTEXT DATA DATAEXISTS
le_fp........... 00000000
le_loadcount.... 00000000
le_usecount..... 00000001
le_data/le_tid.. 01A61320 <--- this address plus the offset to
le_datasize..... 000002DC the scdisk_list array (from a map)
le_exports...... 0565E400 are used to initialize the slots for
le_lex.......... 00000000 the scd subcommand.
le_defered...... 00000000
le_filename..... 05630944
le_ndepend...... 00000001
le_maxdepend.... 00000001
le_de........... 00000000
KDB(4)> d 01A61320 100 print data
01A61320: 0000 000B 0000 0006 FFFF FFFF 0562 7C00b|.
01A61330: 0000 0000 0000 0000 0000 0000 0000 0000
01A61340: 01A6 08DC 01A6 08D8 01A6 08D4 01A6 08D0
01A61350: 01A6 08CC 01A6 08C8 01A6 08C4 01A6 08C0
01A61360: 01A6 0920 01A6 0960 01A6 09A0 01A6 09E0`........
01A61370: 01A6 0A20 01A6 0A60 01A6 0AA0 01A6 0AE0`........
01A61380: 01A6 0B20 01A6 0B60 01A6 0BA0 01A6 0BE0`........
01A61390: 01A6 0C20 01A6 0C60 01A6 0CA0 01A6 0CE0`........
01A613A0: 7363 696E 666F 0000 6366 676C 6973 7400 scinfo..cfglist.
01A613B0: 6F70 6C69 7374 0000 4028 2329 3435 2020 oplist..@(#)45
01A613C0: 312E 3139 2E36 2E31 3620 2073 7263 2F62 1.19.6.16 src/b
01A613D0: 6F73 2F6B 6572 6E65 7874 2F64 6973 6B2F os/kernext/disk/
01A613E0: 7363 6469 736B 622E 632C 2073 7973 7864 scdiskb.c, sysxd
01A613F0: 6973 6B2C 2062 6F73 3432 302C 2039 3631 isk, bos420, 961
01A61400: 3354 2031 2F38 2F39 3620 3233 3A34 313A 3T 1/8/96 23:41:
01A61410: 3538 0000 0000 0000 0567 4000 0567 5000 58.......g@..gP.
KDB(4)> scd print scsi disk table
Unable to find <scdisk_list>
Enter the scdisk_list address (in hex): 01A61418
Scsi pointer [01A61418]
slot 0...........05674000
slot 1...........05675000
slot 2...........0566C000
slot 3...........0566D000
slot 4...........0566E000
slot 5...........0566F000
slot 6...........05670000
slot 7...........05671000
slot 8...........05672000
slot 9...........05673000
slot 10...........0C40D000
slot 11...........00000000
slot 12...........00000000
slot 13...........00000000
slot 14...........00000000
slot 15...........00000000

KDB(4)> scd 0 print scsi disk slot 0
Scdisk info [05674000]
next......................00000000 next_open.................00000000
devno.....................00120000 adapter_devno.............00100000
watchdog_timer.watch.@....05674010 watchdog_timer.pointer....05674000
scsi_id...................00000000 lun_id....................00000000
reset_count...............00000000 dk_cmd_q_head.............00000000
dk_cmd_q_tail.............00000000 ioctl_cmd@................05674034
cmd_pool..................05628400 pool_index................00000000
open_event................FFFFFFFF checked_cmd...............00000000
writev_err_cmd............00000000 reassign_err_cmd..........00000000
reset_cmd@................056740FC reqsns_cmd@...............056741AC
writev_cmd@...............0567425C q_recov_cmd@..............0567430C
reassign_cmd@.............056743BC dmp_cmd@..................0567446C
dk_bp_queue@..............0567451C mode......................00000001
disk_intrpt...............00000000 raw_io_intrpt.............00000000

428 Kernel Extensions and Device Support Programming Concepts

ioctl_chg_mode_flg........00000000 m_sense_status............00000000
opened....................00000001 cmd_pending...............00000000
errno.....................00000000 retain_reservation........00000000
q_type....................00000000 q_err_value...............00000001
clr_q_on_error............00000001 buffer_ratio..............00000000
cmd_tag_q.................00000000 q_status..................00000000
q_clr.....................00000000 timer_status..............00000000
restart_unit..............00000000 retry_flag................00000000
(4)> more (^C to quit) ? continue
safe_relocate.............00000000 async_flag................00000000
dump_inited...............00000001 extended_rw...............00000001
reset_delay...............00000002 starting_close............00000000
reset_failures............00000000 wprotected................00000000
reserve_lock..............00000001 prevent_eject.............00000000
cfg_prevent_ej............00000000 cfg_reserve_lck...........00000001
load_eject_alt............00000000 pm_susp_bdr...............00000000
dev_type..................00000001 ioctl_pending.............00000000
play_audio................00000000 overide_pg_e..............00000000
cd_mode1_code.............00000000 cd_mode2_form1_code.......00000000
cd_mode2_form2_code.......00000000 cd_da_code................00000000
current_cd_code...........00000000 current_cd_mode...........00000001
multi_session.............00000000 valid_cd_modes............00000000
mult_of_blksize...........00000001 play_audio_started........00000000
rw_timeout................0000001E fmt_timeout...............00000000
start_timeout.............0000003C reassign_timeout..........00000078
queue_depth...............00000001 cmds_out..................00000000
raw_io_cmd................00000000 currbuf...................0A0546E0
low.......................0A14E3C0 block_size................00000200
cfg_block_size............00000200 last_ses_pvd_lba..........00000000
max_request...............00040000 max_coalesce..............00010000
lock......................FFFFFFFF fp........................00414348
(4)> more (^C to quit) ? continue
error_rec@................05674598 stats@....................05674648
mode_data_length..........0000003D disc_info@................0567465C
mode_buf@.................05674660 sense_buf@................05674760
ch_data@..................05674860 df_data@..................05674960
def_list_header@..........05674A60 ioctl_buf@................05674A64
mode_page_e@..............05674B63 dd@.......................05674B6C
df@.......................05674BB4 ch@.......................05674BFC
cd@.......................05674C44 ioctl_req_sense@..........05674C8C
capacity@.................05674CA4 def_list@.................05674CAC
dkstat@...................05674CB4
spin_lock@................05674CF8 spin_lock.................E80039A0
pmh@......................05674CFC pm_pending................00000000
pm_reserve@...............05674D41 pm_device_id..............00100000
pm_event..................FFFFFFFF pm_timer@.................05674D4C
KDB(4)> file 00414348 print file (fp)

COUNT OFFSET DATA TYPE FLAGS

18 file+000330 1 0000000000000000 0BC4A950 GNODE WRITE

f_flag......... 00000002 f_count........ 00000001
f_msgcount......... 0000 f_type............. 0003
f_data......... 0BC4A950 f_offset... 0000000000000000
f_dir_off...... 00000000 f_cred......... 00000000
f_lock@........ 00414368 f_lock......... E88007C0
f_offset_lock@. 0041436C f_offset_lock.. E88007E0
f_vinfo........ 00000000 f_ops.......... 001F3CD0 gno_fops+000000
GNODE.......... 0BC4A950
gn_seg....... 007FFFFF gn_mwrcnt.... 00000000 gn_mrdcnt.... 00000000
gn_rdcnt..... 00000000 gn_wrcnt..... 00000002 gn_excnt..... 00000000
gn_rshcnt.... 00000000 gn_ops....... 00000000 gn_vnode..... 00000000
gn_reclk..... 00000000 gn_rdev...... 00100000
gn_chan...... 00000000 gn_filocks... 00000000 gn_data...... 0BC4A940
gn_type...... BLK gn_flags.....
KDB(4)> buf 0A0546E0 print current buffer (currbuf)

DEV VNODE BLKNO FLAGS

Chapter 17. KDB Kernel Debugger and Command 429

0 0A0546E0 00120000 00000000 00070A58 READ SPLIT MPSAFE MPSAFE_INITIAL

forw 00000000 back 00000000 av_forw 0A05DC60 av_back 0A14E3C0
blkno 00070A58 addr 00626000 bcount 00001000 resid 00000000
error 00000000 work 00000000 options 00000000 event FFFFFFFF
iodone: 019057D4
start.tv_sec 00000000 start.tv_nsec 00000000
xmemd.aspace_id 00000000 xmemd.xm_flag 00000000 xmemd.xm_version 00000000
xmemd.subspace_id 00800802 xmemd.subspace_id2 00000000 xmemd.uaddr 00000000

Memory Allocator Subcommands

heap Subcommand
The heap subcommand displays information about heaps.

Syntax:

heap Address

v Address - Specifies the effective address of the heap. Symbols, hexadecimal values, or hexadecimal
expressions may be used in specification of the address.

If no argument is specified information is displayed for the kernel heap. Information can be displayed for
other heaps by specifying an address of a heap_t structure.

Aliases: hp

Example:
KDB(2)> hp print kernel heap information
Pinned heap 0FFC4000
sanity..... 48454150 base....... F11B7000
lock@...... 0FFC4008 lock....... 00000000
alt........ 00000001 numpages... 0000EE49
amount..... 002D2750 pinflag.... 00000001
newheap.... 00000000 protect.... 00000000
limit...... 00000000 heap64..... 00000000
vmrelflag.. 00000000 rhash...... 00000000
pagtot..... 00000000 pagused.... 00000000
frtot[00].. 00000000 [01].. 00000000 [02].. 00000000 [03].. 00000000
frtot[04].. 00000000 [05].. 00000000 [06].. 00000000 [07].. 00000000
frtot[08].. 00000000 [09].. 00000000 [10].. 00000000 [11].. 00000000
frused[00]. 00000000 [01].. 00000000 [02].. 00000000 [03].. 00000000
frused[04]. 00000000 [05].. 00000000 [06].. 00000000 [07].. 00000000
frused[08]. 00000000 [09].. 00000000 [10].. 00000000 [11].. 00000000
fr[00]..... 00FFFFFF [01].. 00FFFFFF [02].. 00FFFFFF [03].. 00FFFFFF
fr[04]..... 00003C22 [05].. 00004167 [06].. 00004A05 [07].. 00004845
fr[08]..... 000043B5 [09].. 00000002 [10].. 0000443A [11].. 00004842
Kernel heap 0FFC40B8
sanity..... 48454150 base....... F11B6F48
lock@...... 0FFC40C0 lock....... 00000000
alt........ 00000000 numpages... 0000EE49
amount..... 04732CF0 pinflag.... 00000000
newheap.... 00000000 protect.... 00000000
limit...... 00000000 heap64..... 00000000
vmrelflag.. 00000000 rhash...... 00000000
pagtot..... 00000000 pagused.... 00000000
frtot[00].. 00000000 [01].. 00000000 [02].. 00000000 [03].. 00000000
frtot[04].. 00000000 [05].. 00000000 [06].. 00000000 [07].. 00000000
frtot[08].. 00000000 [09].. 00000000 [10].. 00000000 [11].. 00000000
frused[00]. 00000000 [01].. 00000000 [02].. 00000000 [03].. 00000000
frused[04]. 00000000 [05].. 00000000 [06].. 00000000 [07].. 00000000
frused[08]. 00000000 [09].. 00000000 [10].. 00000000 [11].. 00000000
fr[00]..... 00FFFFFF [01].. 00FFFFFF [02].. 00FFFFFF [03].. 00FFFFFF

430 Kernel Extensions and Device Support Programming Concepts

fr[04]..... 000049E9 [05].. 00003C26 [06].. 0000484E [07].. 00004737
fr[08]..... 00003C0A [09].. 00004A07 [10].. 00004855 [11].. 00004A11
addr...... 0000000000000000 maxpages.......... 00000000
peakpage.......... 00000000 limit_callout..... 00000000
newseg_callout.... 00000000 pagesoffset....... 0FFC4194
pages_sid......... 00000000
Heap anchor
... 0FFC4190 pageno FFFFFFFF pages.type.. 00 allocpage offset... 00004A08
Heap Free list
... 0FFD69B4 pageno 00004A08 pages.type.. 02 freepage offset... 00004A0C
... 0FFD69C4 pageno 00004A0C pages.type.. 03 freerange offset... 00004A17
... 0FFD69C8 pageno 00004A0D pages.type.. 04 freesize size..... 00000005
... 0FFD69D4 pageno 00004A10 pages.type.. 05 freerangeend offset... 00004A0C
... 0FFD69F0 pageno 00004A17 pages.type.. 03 freerange offset... NO_PAGE
... 0FFD69F4 pageno 00004A18 pages.type.. 04 freesize size..... 0000A432
... 0FFFFAB4 pageno 0000EE48 pages.type.. 05 freerangeend offset... 00004A17
Heap Alloc list
... 0FFC41B0 pageno 00000007 pages.type.. 01 allocrange offset... NO_PAGE
... 0FFC41B4 pageno 00000008 pages.type.. 06 allocsize size..... 00001E00
... 0FFCB9AC pageno 00001E06 pages.type.. 07 allocrangeend offset... 00000007
... 0FFCB9B0 pageno 00001E07 pages.type.. 01 allocrange offset... NO_PAGE
... 0FFCB9B4 pageno 00001E08 pages.type.. 06 allocsize size..... 00001E00
... 0FFD31AC pageno 00003C06 pages.type.. 07 allocrangeend offset... 00001E07
... 0FFD31B4 pageno 00003C08 pages.type.. 01 allocrange offset... 00003C42
... 0FFD31B8 pageno 00003C09 pages.type.. 06 allocsize size..... 00000002
... 0FFD31C4 pageno 00003C0C pages.type.. 01 allocrange offset... NO_PAGE
... 0FFD31C8 pageno 00003C0D pages.type.. 06 allocsize size..... 00000009
... 0FFD31E4 pageno 00003C14 pages.type.. 07 allocrangeend offset... 00003C0C
... 0FFD31E8 pageno 00003C15 pages.type.. 01 allocrange offset... NO_PAGE
... 0FFD31EC pageno 00003C16 pages.type.. 06 allocsize size..... 00000009
... 0FFD3208 pageno 00003C1D pages.type.. 07 allocrangeend offset... 00003C15
... 0FFD320C pageno 00003C1E pages.type.. 01 allocrange offset... NO_PAGE
...
KDB(3)> dw msg_heap 8 look at message heap
msg_heap+000000: 0000A02A CFFBF0B8 0000B02B CFFBF0B8 ...*.......+....
msg_heap+000010: 0000C02C CFFBF0B8 0000D02D CFFBF0B8 ...,.......-....
KDB(3)> mr s12 set SR12 with message heap SID
s12 : 007FFFFF = 0000A02A
KDB(3)> heap CFFBF0B8 print message heap
Heap CFFBF000
sanity..... 48454150 base....... F0041000
lock@...... CFFBF008 lock....... 00000000
alt........ 00000001 numpages... 0000FFBF
amount..... 00000000 pinflag.... 00000000
newheap.... 00000000 protect.... 00000000
limit...... 00000000 heap64..... 00000000
vmrelflag.. 00000000 rhash...... 00000000
pagtot..... 00000000 pagused.... 00000000
frtot[00].. 00000000 [01].. 00000000 [02].. 00000000 [03].. 00000000
frtot[04].. 00000000 [05].. 00000000 [06].. 00000000 [07].. 00000000
frtot[08].. 00000000 [09].. 00000000 [10].. 00000000 [11].. 00000000
frused[00]. 00000000 [01].. 00000000 [02].. 00000000 [03].. 00000000
frused[04]. 00000000 [05].. 00000000 [06].. 00000000 [07].. 00000000
frused[08]. 00000000 [09].. 00000000 [10].. 00000000 [11].. 00000000
fr[00]..... 00FFFFFF [01].. 00FFFFFF [02].. 00FFFFFF [03].. 00FFFFFF
fr[04]..... 00FFFFFF [05].. 00FFFFFF [06].. 00FFFFFF [07].. 00FFFFFF
fr[08]..... 00FFFFFF [09].. 00FFFFFF [10].. 00FFFFFF [11].. 00FFFFFF
Heap CFFBF0B8
sanity..... 48454150 base....... F0040F48
lock@...... CFFBF0C0 lock....... 00000000
alt........ 00000000 numpages... 0000FFBF
amount..... 00000100 pinflag.... 00000000
newheap.... 00000000 protect.... 00000000
limit...... 00000000 heap64..... 00000000
vmrelflag.. 00000000 rhash...... 00000000
pagtot..... 00000000 pagused.... 00000000
frtot[00].. 00000000 [01].. 00000000 [02].. 00000000 [03].. 00000000

Chapter 17. KDB Kernel Debugger and Command 431

frtot[04].. 00000000 [05].. 00000000 [06].. 00000000 [07].. 00000000
frtot[08].. 00000000 [09].. 00000000 [10].. 00000000 [11].. 00000000
frused[00]. 00000000 [01].. 00000000 [02].. 00000000 [03].. 00000000
frused[04]. 00000000 [05].. 00000000 [06].. 00000000 [07].. 00000000
frused[08]. 00000000 [09].. 00000000 [10].. 00000000 [11].. 00000000
fr[00]..... 00FFFFFF [01].. 00FFFFFF [02].. 00FFFFFF [03].. 00FFFFFF
fr[04]..... 00FFFFFF [05].. 00FFFFFF [06].. 00FFFFFF [07].. 00FFFFFF
fr[08]..... 00000000 [09].. 00FFFFFF [10].. 00FFFFFF [11].. 00FFFFFF
addr...... 0000000000000000 maxpages.......... 00000000
peakpage.......... 00000000 limit_callout..... 00000000
newseg_callout.... 00000000 pagesoffset....... 00000194
pages_sid......... 00000000
Heap anchor
... CFFBF190 pageno FFFFFFFF pages.type.. 00 allocpage offset... 00000001
Heap Free list
... CFFBF198 pageno 00000001 pages.type.. 03 freerange offset... NO_PAGE
... CFFBF19C pageno 00000002 pages.type.. 04 freesize size..... 0000FFBE
... CFFFF08C pageno 0000FFBE pages.type.. 05 freerangeend offset... 00000001
Heap Alloc list
KDB(3)> mr s12 reset SR12
s12 : 0000A02A = 007FFFFF

xmalloc Subcommand
The xmalloc subcommand may be used to display memory allocation information.

The xmalloc subcommand can be used to find the memory location of any heap record using the page
index (pageno) or to find the heap record using the allocated memory location.

Syntax:

xm [-?]

v -s - Displays allocation records matching addr. If Address is not specified, the value of the symbol
Debug_addr is used.

v -h - Displays free list records matching addr. If Address is not specified, the value of the symbol
Debug_addr is used.

v -l - Enables verbose output. Applicable only with flags -f, -a, and -p.

v -f - Displays records on the free list, from the first freed to the last freed.

v -a - Displays allocation records.

v -p page - Displays page information for the specified page. The page number is specified as a
hexadecimal value.

v -d - Displays the allocation record hash chain associated with the record hash value for Address. If
Address is not specified, the value of the symbol Debug_addr is used.

v -v - Verifies allocation trailers for allocated records and free fill patterns for free records.

v -u - Displays heap statistics.

v -S - Displays heap locks and per-cpu lists. Note, the per-cpu lists are only used for the kernel heaps.

v Address - Specifies the effective address for which information is to be displayed. Symbols,
hexadecimal values, or hexadecimal expressions can be used in specification of the address.

v heap_addr - Specifies the effective address of the heap for which information is displayed. If heap_addr
is not specified, information is displayed for the kernel heap. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

Other than the -u option, these subcommands require that the Memory Overlay Detection System (MODS)
is active. For options requiring a memory address, if no value is specified the value of the symbol
Debug_addr is used. This value is updated by MODS if a system crash is caused by detection of a
problem within MODS. The default heap reported on is the kernel heap. This can be overridden by
specifying the address of another heap, where appropriate.

432 Kernel Extensions and Device Support Programming Concepts

Aliases: xm

Example:
(0)> stat
RS6K_SMP_MCA POWER_PC POWER_604 machine with 8 cpu(s)
.......... SYSTEM STATUS
sysname... AIX nodename.. jumbo32
release... 3 version... 4
machine... 00920312A0 nid....... 920312A0
time of crash: Fri Jul 11 08:07:01 1997
age of system: 1 day, 20 hr., 31 min., 17 sec.
.......... PANIC STRING
Memdbg: *w == pat

(0)> xm -s Display debug xmalloc status
Debug kernel error message: The xmfree service has found data written beyond the
end of the memory buffer that is being freed.
Address at fault was 0x09410200

(0)> xm -h 0x09410200 Display debug xmalloc records associated with addr
0B78DAB0: addr......... 09410200 req_size..... 128 freed unpinned
0B78DAB0: pid.......... 00043158 comm......... bcross
Trace during xmalloc() Trace during xmfree()
002329E4(.xmalloc+0000A8) 002328F0(.xmfree+0000FC)
00235CD4(.dlistadd+000040) 00234F04(.setbitmaps+0001BC)
00235520(.newblk+00006C) 00236894(.finicom+0001A4)

0B645120: addr......... 09410200 req_size..... 128 freed unpinned
0B645120: pid.......... 0007DCAC comm......... bcross
Trace during xmalloc() Trace during xmfree()
002329E4(.xmalloc+0000A8) 002328F0(.xmfree+0000FC)
00235CD4(.dlistadd+000040) 00236614(.logdfree+0001E8)
00236574(.logdfree+000148) 00236720(.finicom+000030)

0B7A3750: addr......... 09410200 req_size..... 128 freed unpinned
0B7A3750: pid.......... 000010BA comm......... syncd
Trace during xmalloc() Trace during xmfree()
002329E4(.xmalloc+0000A8) 002328F0(.xmfree+0000FC)
00235CD4(.dlistadd+000040) 00234F04(.setbitmaps+0001BC)
00235520(.newblk+00006C) 00236894(.finicom+0001A4)

0B52B330: addr......... 09410200 req_size..... 128 freed unpinned
0B52B330: pid.......... 00058702 comm......... bcross
Trace during xmalloc() Trace during xmfree()
002329E4(.xmalloc+0000A8) 002328F0(.xmfree+0000FC)
00235CD4(.dlistadd+000040) 00236698(.logdfree+00026C)
00236510(.logdfree+0000E4) 00236720(.finicom+000030)

07A33840: addr......... 09410200 req_size..... 133 freed unpinned
07A33840: pid.......... 00042C24 comm......... ksh
Trace during xmalloc() Trace during xmfree()
002329E4(.xmalloc+0000A8) 002328F0(.xmfree+0000FC)
00271F28(.ld_pathopen+000160) 00271D24(.ld_pathclear+00008C)
0027FB6C(.ld_getlib+000074) 002ABF04(.ld_execload+00075C)

0B796480: addr......... 09410200 req_size..... 133 freed unpinned
0B796480: pid.......... 0005C2E0 comm......... ksh
Trace during xmalloc() Trace during xmfree()
002329E4(.xmalloc+0000A8) 002328F0(.xmfree+0000FC)
00271F28(.ld_pathopen+000160) 00271D24(.ld_pathclear+00008C)
0027FB6C(.ld_getlib+000074) 002ABF04(.ld_execload+00075C)

07A31420: addr......... 09410200 req_size..... 135 freed unpinned
07A31420: pid.......... 0007161A comm......... ksh
Trace during xmalloc() Trace during xmfree()
002329E4(.xmalloc+0000A8) 002328F0(.xmfree+0000FC)

Chapter 17. KDB Kernel Debugger and Command 433

00271F28(.ld_pathopen+000160) 00271D24(.ld_pathclear+00008C)
0027FB6C(.ld_getlib+000074) 002ABF04(.ld_execload+00075C)

07A38630: addr......... 09410200 req_size..... 125 freed unpinned
07A38630: pid.......... 0001121E comm......... ksh
Trace during xmalloc() Trace during xmfree()
002329E4(.xmalloc+0000A8) 002328F0(.xmfree+0000FC)
00271F28(.ld_pathopen+000160) 00271D24(.ld_pathclear+00008C)
0027FB6C(.ld_getlib+000074) 002ABF04(.ld_execload+00075C)

07A3D240: addr......... 09410200 req_size..... 133 freed unpinned
07A3D240: pid.......... 0000654C comm......... ksh
Trace during xmalloc() Trace during xmfree()
002329E4(.xmalloc+0000A8) 002328F0(.xmfree+0000FC)
00271F28(.ld_pathopen+000160) 00271D24(.ld_pathclear+00008C)
0027FB6C(.ld_getlib+000074) 002ABF04(.ld_execload+00075C)

Example:
(0)> heap
...
Heap Alloc list
... 0FFC41B0 pageno 00000007 pages.type.. 01 allocrange offset... NO_PAGE
... 0FFC41B4 pageno 00000008 pages.type.. 06 allocsize size..... 00001E00
... 0FFCB9AC pageno 00001E06 pages.type.. 07 allocrangeend offset... 00000007
... 0FFCB9B0 pageno 00001E07 pages.type.. 01 allocrange offset... NO_PAGE
... 0FFCB9B4 pageno 00001E08 pages.type.. 06 allocsize size..... 00001E00
... 0FFD31AC pageno 00003C06 pages.type.. 07 allocrangeend offset... 00001E07
... 0FFD31B4 pageno 00003C08 pages.type.. 01 allocrange offset... 00003C42
... 0FFD31B8 pageno 00003C09 pages.type.. 06 allocsize size..... 00000002
... 0FFD31C4 pageno 00003C0C pages.type.. 01 allocrange offset... NO_PAGE
... 0FFD31C8 pageno 00003C0D pages.type.. 06 allocsize size..... 00000009
... 0FFD31E4 pageno 00003C14 pages.type.. 07 allocrangeend offset... 00003C0C
...
(0)> xm -l -p 00001E07 how to find memory address of heap index 00001E07
type..................... 1 (P_allocrange)
page_addr................ 02F82000 pinned................... 0
size..................... 00000000 offset................... 00FFFFFF
page_descriptor_address.. 0FFCB9B0
(0)> xm -l 02F82000 how to find page index in kernel heap of 02F82000
P_allocrange (range of 2 or more allocated full pages)
page........... 00001E07 start.......... 02F82000 page_cnt....... 00001E00
allocated_size. 01E00000 pinned......... unknown
(0)> xm -l -p 00003C08 how to find memory address of heap index 00003C08
type..................... 1 (P_allocrange)
page_addr................ 04D83000 pinned................... 0
size..................... 00000000 offset................... 00003C42
page_descriptor_address.. 0FFD31B4
(0)> xm -l 04D83000 ow to find page index in kernel heap of 04D83000
P_allocrange (range of 2 or more allocated full pages)
page........... 00003C08 start.......... 04D83000 page_cnt....... 00000002
allocated_size. 00002000 pinned......... unknown

kmbucket Subcommand
The kmbucket subcommand prints kernel memory allocator buckets.

Syntax:

kmbucket [?] [-l] [-c cpu] [-i index] [Address]

v -l - Displays the bucket free list.

v -c cpu - Displays only buckets for the specified CPU. The cpu is specified as a decimal value.

v -i index - Displays only the bucket for the specified index. The index is specified as a decimal value.

v Address - Displays the allocator bucket at the specified effective address. Symbols, hexadecimal values,
or hexadecimal expressions may be used in specification of the address.

434 Kernel Extensions and Device Support Programming Concepts

If no arguments are specified information is displayed for all allocator buckets for all CPUs. Output can be
limited to allocator buckets for a particular CPU, a specific index, or a specific bucket through the -c, -i,
and address specification options.

Aliases: bucket

Example:
KDB(0)> bucket -l -c 4 -i 13 print processor 4 8K bytes buckets

displaying kmembucket for cpu 4 offset 13 size 0x00002000
address..................00376404
b_next..(x)..............0659F000
b_calls..(x).............0000AEBB
b_total..(x).............00000003
b_totalfree..(x).........00000003
b_elmpercl..(x)..........00000001
b_highwat..(x)...........0000000A
b_couldfree (sic)..(x)...00000000
b_failed..(x)............00000000
lock..(x)................00000000

Bucket free list.....
1 next...0659F000, kmemusage...09B57268 [000D 0001 00000004]
2 next...0619E000, kmemusage...09B55260 [000D 0001 00000004]
3 next...06687000, kmemusage...09B579A8 [000D 0001 00000004]

KDB(0)> bucket -c 3 print all processor 3 buckets

displaying kmembucket for cpu 3 offset 0 size 0x00000002
address..................00375F3C
b_next..(x)..............00000000
b_calls..(x).............00000000
b_total..(x).............00000000
b_totalfree..(x).........00000000
b_elmpercl..(x)..........00001000
b_highwat..(x)...........00005000
b_couldfree (sic)..(x)...00000000
b_failed..(x)............00000000
lock..(x)................00000000

displaying kmembucket for cpu 3 offset 1 size 0x00000004
address..................00375F60
b_next..(x)..............00000000
b_calls..(x).............00000000
b_total..(x).............00000000
b_totalfree..(x).........00000000
b_elmpercl..(x)..........00000800
b_highwat..(x)...........00002800
b_couldfree (sic)..(x)...00000000
(0)> more (^C to quit) ? continue
b_failed..(x)............00000000
lock..(x)................00000000

...
displaying kmembucket for cpu 3 offset 8 size 0x00000100
address..................0037605C
b_next..(x)..............062A2700
b_calls..(x).............00B3F6EA
b_total..(x).............00000330
b_totalfree..(x).........00000031
b_elmpercl..(x)..........00000010
b_highwat..(x)...........00000180
b_couldfree (sic)..(x)...00000000
b_failed..(x)............00000000
lock..(x)................00000000

displaying kmembucket for cpu 3 offset 9 size 0x00000200

Chapter 17. KDB Kernel Debugger and Command 435

address..................00376080
b_next..(x)..............05D30000
b_calls..(x).............0000A310
b_total..(x).............00000010
b_totalfree..(x).........0000000C
b_elmpercl..(x)..........00000008
b_highwat..(x)...........00000028
b_couldfree (sic)..(x)...00000000
b_failed..(x)............00000000
lock..(x)................00000000
...

displaying kmembucket for cpu 3 offset 20 size 0x00200000
(0)> more (^C to quit) ? continue
address..................0037620C
b_next..(x)..............00000000
b_calls..(x).............00000000
b_total..(x).............00000000
b_totalfree..(x).........00000000
b_elmpercl..(x)..........00000001
b_highwat..(x)...........0000000A
b_couldfree (sic)..(x)...00000000
b_failed..(x)............00000000
lock..(x)................00000000
KDB(0)>

kmstats Subcommands
The kmstats subcommand prints kernel allocator memory statistics.

Syntax:

kmstats [symbol | Address]

v Address - Specifies the effective address of the kernel allocator memory statistics entry to display.
Symbols, hexadecimal values, or hexadecimal expressions can be used in specification of the address.

If no address is specified, all kernel allocator memory statistics are displayed. If an address is entered,
only the specified statistics entry is displayed.

Example:
KDB(0)> kmstats print allocator statistics

displaying kmemstats for offset 0 free
address..................0025C120
inuse..(x)...............00000000
calls..(x)...............00000000
memuse..(x)..............00000000
limit blocks..(x)........00000000
map blocks..(x)..........00000000
maxused..(x).............00000000
limit..(x)...............02666680
failed..(x)..............00000000
lock..(x)................00000000

displaying kmemstats for offset 1 mbuf
address..................0025C144
inuse..(x)...............0000000D
calls..(x)...............002C4E54
memuse..(x)..............00000D00
limit blocks..(x)........00000000
map blocks..(x)..........00000000
maxused..(x).............0001D700
limit..(x)...............02666680
(0)> more (^C to quit) ? continue
failed..(x)..............00000000

436 Kernel Extensions and Device Support Programming Concepts

lock..(x)................00000000

displaying kmemstats for offset 2 mcluster
address..................0025C168
inuse..(x)...............00000002
calls..(x)...............00023D4E
memuse..(x)..............00000900
limit blocks..(x)........00000000
map blocks..(x)..........00000000
maxused..(x).............00079C00
limit..(x)...............02666680
failed..(x)..............00000000
lock..(x)................00000000

...

displaying kmemstats for offset 48 kalloc
address..................0025C7E0
inuse..(x)...............00000000
calls..(x)...............00000000
memuse..(x)..............00000000
limit blocks..(x)........00000000
map blocks..(x)..........00000000
maxused..(x).............00000000
limit..(x)...............02666680
failed..(x)..............00000000
lock..(x)................00000000

displaying kmemstats for offset 49 temp
address..................0025C804
inuse..(x)...............00000007
calls..(x)...............00000007
memuse..(x)..............00003500
(0)> more (^C to quit) ? continue
limit blocks..(x)........00000000
map blocks..(x)..........00000000
maxused..(x).............00003500
limit..(x)...............02666680
failed..(x)..............00000000
lock..(x)................00000000
KDB(0)>

File System Subcommands

buffer Subcommand
The buffer subcommand prints buffer cache headers.

Syntax:

buffer

v slot - Specifies the buffer pool slot number. This argument must be a decimal value.

v Address - Specifies the effective address of a buffer pool entry. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

If no argument is specified a summary is printed. Details for a particular buffer can be displayed by
selecting the buffer using a slot number or by address.

Aliases: buf

Example:

Chapter 17. KDB Kernel Debugger and Command 437

KDB(0)> buf print buffer pool
1 057E4000 nodevice 00000000 00000000
2 057E4058 nodevice 00000000 00000000
3 057E40B0 nodevice 00000000 00000000
4 057E4108 nodevice 00000000 00000000
5 057E4160 nodevice 00000000 00000000

...
18 057E45D8 nodevice 00000000 00000000
19 057E4630 000A0011 00000000 00000100 READ DONE STALE MPSAFE MPSAFE_INITIAL
20 057E4688 000A0011 00000000 00000008 READ DONE STALE MPSAFE MPSAFE_INITIAL
KDB(0) buf 19 print buffer slot 19

DEV VNODE BLKNO FLAGS

19 057E4630 000A0011 00000000 00000100 READ DONE STALE MPSAFE MPSAFE_INITIAL

forw 0562F0CC back 0562F0CC av_forw 057E45D8 av_back 057E4688
blkno 00000100 addr 0580C000 bcount 00001000 resid 00000000
error 00000000 work 80000000 options 00000000 event FFFFFFFF
iodone: biodone+000000
start.tv_sec 00000000 start.tv_nsec 00000000
xmemd.aspace_id 00000000 xmemd.xm_flag 00000000 xmemd.xm_version 00000000
xmemd.subspace_id 00000000 xmemd.subspace_id2 00000000 xmemd.uaddr 00000000
KDB(0)> pdt 17 print paging device slot 17 (the 1st FS)

PDT address B69C0440 entry 17 of 511, type: FILESYSTEM
next pdt on i/o list (nextio) : FFFFFFFF
dev_t or strategy ptr (device) : 000A0007
last frame w/pend I/O (iotail) : FFFFFFFF
free buf_struct list (bufstr) : 056B2108
total buf structs (nbufs) : 005D
available (PAGING) (avail) : 0000
JFS disk agsize (agsize) : 0800
JFS inode agsize (iagsize) : 0800
JFS log SCB index (logsidx) : 00035
JFS fragments per page(fperpage): 1
JFS compression type (comptype): 0
JFS log2 bigalloc mult(bigexp) : 0
disk map srval (dmsrval) : 00002021
i/o’s not finished (iocnt) : 00000000
lock (lock) : E8003200
KDB(0)> buf 056B2108 print paging device first free buffer

DEV VNODE BLKNO FLAGS

0 056B2108 000A0007 00000000 00000048 DONE SPLIT MPSAFE MPSAFE_INITIAL

forw 0007DAB3 back 00000000 av_forw 056B20B0 av_back 00000000
blkno 00000048 addr 00000000 bcount 00001000 resid 00000000
error 00000000 work 00400000 options 00000000 event 00000000
iodone: v_pfend+000000
start.tv_sec 00000000 start.tv_nsec 00000000
xmemd.aspace_id 00000000 xmemd.xm_flag 00000000 xmemd.xm_version 00000000
xmemd.subspace_id 0083E01F xmemd.subspace_id2 00000000 xmemd.uaddr 00000000

hbuffer Subcommand
The hbuffer subcommand displays buffer cache hash list headers.

Syntax:

hbuffer

v bucket - Specifies the bucket number. This argument must be a decimal value.

v Address - Specifies the effective address of a buffer cache hash list entry. Symbols, hexadecimal
values, or hexadecimal expressions can be used in specification of the address.

438 Kernel Extensions and Device Support Programming Concepts

If no argument is specified, a summary for all entries is displayed. A specific entry can be displayed by
identifying the entry by bucket number or entry address.

Aliases: hb

Example:
KDB(0)> hb print buffer cache hash lists

BUCKET HEAD COUNT

0562F0CC 18 057E4630 1
0562F12C 26 057E4688 1
KDB(0)> hb 26 print buffer cache hash list bucket 26

DEV VNODE BLKNO FLAGS

20 057E4688 000A0011 00000000 00000008 READ DONE STALE MPSAFE MPSAFE_INITIAL

fbuffer Subcommand
The fbuffer subcommand displays buffer cache freelist headers.

Syntax:

fbuffer

v bucket - Specifies the bucket number. This argument must be a decimal value.

v Address - Specifiea the effective address a buffer cache freelist entry. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

If no argument is specified, a summary for all entries is displayed. A specific entry can be displayed by
identifying the entry by bucker number or entry address.

Aliases: fb

Example:
KDB(0)> fb print free list buffer buckets

BUCKET HEAD COUNT

bfreelist+000000 0001 057E4688 20
KDB(0)> fb 1 print free list buffer bucket 1

DEV VNODE BLKNO FLAGS

20 057E4688 000A0011 00000000 00000008 READ DONE STALE MPSAFE MPSAFE_INITIAL
19 057E4630 000A0011 00000000 00000100 READ DONE STALE MPSAFE MPSAFE_INITIAL
18 057E45D8 nodevice 00000000 00000000
17 057E4580 nodevice 00000000 00000000
...

2 057E4058 nodevice 00000000 00000000
1 057E4000 nodevice 00000000 00000000

gnode Subcommand
The gnode subcommand displays the generic node structure at the specified address.

Syntax:

gnode

v Address - Specifies the effective address of a generic node structure. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

Aliases: gno

Example:

Chapter 17. KDB Kernel Debugger and Command 439

(0)> gno 09D0FD68 print gnode
GNODE............ 09D0FD68
gn_type....... 00000002 gn_flags...... 00000000 gn_seg........ 0001A3FA
gn_mwrcnt..... 00000000 gn_mrdcnt..... 00000000 gn_rdcnt...... 00000000
gn_wrcnt...... 00000000 gn_excnt...... 00000000 gn_rshcnt..... 00000000
gn_vnode...... 09D0FD28 gn_rdev....... 000A0010 gn_ops........ jfs_vops
gn_chan....... 00000000 gn_reclk_lock. 00000000 gn_reclk_lock@ 09D0FD9C
gn_reclk_event FFFFFFFF gn_filocks.... 00000000 gn_data....... 09D0FD58
gn_type....... DIR

gfs Subcommand
The gfs subcommand displays the generic file system structure at the specified address.

Syntax:

gfs [symbol | Address]

v Address - Specifies the address of a generic file system structure. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

Example:
(0)> gfs gfs print gfs slot 1
gfs_data. 00000000 gfs_flag. INIT VERSION4 VERSION42 VERSION421
gfs_ops.. jfs_vfsops gn_ops... jfs_vops gfs_name. jfs
gfs_init. jfs_init gfs_rinit jfs_rootinit gfs_type. JFS
gfs_hold. 00000012
(0)> gfs gfs+30 print gfs slot 2
gfs_data. 00000000 gfs_flag. INIT VERSION4 VERSION42 VERSION421
gfs_ops.. spec_vfsops gn_ops... spec_vnops gfs_name. sfs
gfs_init. spec_init gfs_rinit nodev gfs_type. SFS
gfs_hold. 00000000
(0)> gfs gfs+60 print gfs slot 3
gfs_data. 00000000 gfs_flag. REMOTE VERSION4
gfs_ops.. 01D2ABF8 gn_ops... 01D2A328 gfs_name. nfs
gfs_init. 01D2B5F0 gfs_rinit 00000000 gfs_type. NFS
gfs_hold. 0000000E

file Subcommand
The file subcommand displays file table entries.

Syntax:

file [symbol | Address]

v slot - Specifies the slot number of a file table entry. This argument must be a decimal value.

v Address - Specifies the effective address of a file table entry. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

If no argument is entered all file table entries are displayed in a summary. Used files are displayed first
(count > 0), then others. Detailed information can be displayed for individual file table entries by specifying
the entry. The entry can be specified either by slot number or address.

Example:
(0)> file print file table

COUNT OFFSET DATA TYPE FLAGS

1 file+000000 1 0000000000000100 09CD90C8 VNODE EXEC
2 file+000030 1 0000000000000100 09CC4DE8 VNODE EXEC
3 file+000060 1452 000000000019B084 09CC2B50 VNODE READ RSHARE
4 file+000090 2 0000000000000100 09CFCD80 VNODE EXEC
5 file+0000C0 2 0000000000000000 056CE008 VNODE READ WRITE
6 file+0000F0 1 0000000000000000 056CE008 VNODE READ WRITE
7 file+000120 1 0000000000000680 09CFF680 VNODE READ WRITE

440 Kernel Extensions and Device Support Programming Concepts

8 file+000150 1 0000000000000100 0B97BE0C VNODE EXEC
9 file+000180 2 0000000000000000 056CE070 VNODE READ NONBLOCK
10 file+0001B0 323 000000000000061C 09CC4F30 VNODE READ RSHARE
11 file+0001E0 1 0000000000000000 0B7E8700 READ WRITE
12 file+000210 16 000000000000061C 09CC5AB8 VNODE READ RSHARE
13 file+000240 1 0000000000000000 0B221950 GNODE WRITE
14 file+000270 1 0000000000000000 0B221A20 GNODE WRITE
15 file+0002A0 2 000000000000055C 09CFFCE8 VNODE READ RSHARE
16 file+0002D0 2 0000000000000000 09CFE9B0 VNODE WRITE
17 file+000300 1 0000000000000000 0B7E8600 READ WRITE
18 file+000330 1 0000000000000000 056CE008 VNODE READ
19 file+000360 1 0000000000000000 09CFBB90 VNODE WRITE
20 file+000390 3 000000000000284A 0B99A60C VNODE READ

(0)> more (^C to quit) ? Interrupted
(0)> file 3 print file slot 3

COUNT OFFSET DATA TYPE FLAGS

3 file+000060 1474 000000000019B084 09CC2B50 VNODE READ RSHARE

f_flag......... 00001001 f_count........ 000005C2
f_msgcount......... 0000 f_type............. 0001
f_data......... 09CC2B50 f_offset... 000000000019B084
f_dir_off...... 00000000 f_cred......... 056D0E58
f_lock@........ 004AF098 f_lock......... 00000000
f_offset_lock@. 004AF09C f_offset_lock.. 00000000
f_vinfo........ 00000000 f_ops.......... 00250FC0 vnodefops+000000
VNODE.......... 09CC2B50
v_flag.... 00000000 v_count... 00000002 v_vfsgen.. 00000000
v_lock.... 00000000 v_lock@... 09CC2B5C v_vfsp.... 056D18A4
v_mvfsp... 00000000 v_gnode... 09CC2B90 v_next.... 00000000
v_vfsnext. 09CC2A08 v_vfsprev. 09CC3968 v_pfsvnode 00000000
v_audit... 00000000

inode Subcommand
The inode subcommand displays inode table entries.

Syntax:

inode

v slot - Specifies the slot number of an inode table entry. This argument must be a decimal value.

v Address - Specifies the effective address of an inode table entry. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

If no argument is entered a summary for used (hashed) inode table entries is displayed (count > 0).
Unused inodes (icache list) can be displayed with the fino subcommand. Detailed information can be
displayed for individual inode table entries by specifying the entry. The entry can be specified either by slot
number or address.

Aliases: ino

Example:
(0)> ino print inode table

DEV NUMBER CNT GNODE IPMNT TYPE FLAGS

1 0A2A4968 00330003 10721 1 0A2A4978 09F79510 DIR
2 0A2A9790 00330003 10730 1 0A2A97A0 09F79510 REG
3 0A321E90 00330006 2948 1 0A321EA0 09F7A990 DIR
4 0A32ECD8 00330006 2965 1 0A32ECE8 09F7A990 DIR
5 0A38EBC8 00330006 3173 1 0A38EBD8 09F7A990 DIR
6 0A3CC280 00330006 3186 1 0A3CC290 09F7A990 REG
7 09D01570 000A0005 14417 1 09D01580 09CC1990 REG
8 09D7CE68 000A0005 47211 1 09D7CE78 09CC1990 REG ACC
9 09D1A530 000A0005 6543 1 09D1A540 09CC1990 REG

Chapter 17. KDB Kernel Debugger and Command 441

10 09D19C38 000A0005 6542 1 09D19C48 09CC1990 REG
11 09CFFD18 000A0005 71811 1 09CFFD28 09CC1990 REG
12 09D00238 000A0005 63718 1 09D00248 09CC1990 REG
13 09D70918 000A0005 6746 1 09D70928 09CC1990 REG
14 09D01800 000A0005 15184 1 09D01810 09CC1990 REG
15 09F9B450 00330003 4098 1 09F9B460 09F79510 DIR
16 09F996D8 00330003 4097 1 09F996E8 09F79510 DIR
17 0A5C6548 00330006 4110 1 0A5C6558 09F7A990 DIR
18 09FB30D8 00330005 4104 1 09FB30E8 09F79F50 DIR CHG UPD FSYNC DIRTY
19 09FAB868 00330003 4117 1 09FAB878 09F79510 REG
20 0A492AB8 00330003 4123 1 0A492AC8 09F79510 REG

(0)> more (^C to quit) ? Interrupted
(0)> ino 09F79510 print mount table inode (IPMNT)

DEV NUMBER CNT GNODE IPMNT TYPE FLAGS

09F79510 00330003 0 1 09F79520 09F79510 NON CMNEW

forw 09F78C18 back 09F7A5B8 next 09F79510 prev 09F79510
gnode@ 09F79520 number 00000000 dev 00330003 ipmnt 09F79510
flag 00000000 locks 00000000 bigexp 00000000 compress 00000000
cflag 00000002 count 00000001 event FFFFFFFF movedfrag 00000000
openevent FFFFFFFF id 000052AB hip 09C9C330 nodelock 00000000
nodelock@ 09F79590 dquot[USR]00000000 dquot[GRP]00000000 dinode@ 09F7959C
cluster 00000000 size 0000000000000000

GNODE............ 09F79520
gn_type....... 00000000 gn_flags...... 00000000 gn_seg........ 00000000
gn_mwrcnt..... 00000000 gn_mrdcnt..... 00000000 gn_rdcnt...... 00000000
gn_wrcnt...... 00000000 gn_excnt...... 00000000 gn_rshcnt..... 00000000
gn_vnode...... 09F794E0 gn_rdev....... 00000000 gn_ops........ jfs_vops
gn_chan....... 00000000 gn_reclk_lock. 00000000 gn_reclk_lock@ 09F79554
gn_reclk_event FFFFFFFF gn_filocks.... 00000000 gn_data....... 09F79510
gn_type....... NON

di_gen 32B69977 di_mode 00000000 di_nlink 00000000
di_acct 00000000 di_uid 00000000 di_gid 00000000
di_nblocks 00000000 di_acl 00000000
di_mtime 00000000 di_atime 00000000 di_ctime 00000000
di_size_hi 00000000 di_size_lo 00000000

VNODE........... 09F794E0
v_flag.... 00000000 v_count... 00000000 v_vfsgen.. 00000000
v_lock.... 00000000 v_lock@... 09F794EC v_vfsp.... 00000000
v_mvfsp... 00000000 v_gnode... 09F79520 v_next.... 00000000
v_vfsnext. 00000000 v_vfsprev. 00000000 v_pfsvnode 00000000
v_audit... 00000000

di_iplog 09F77F48 di_ipinode 09F798E8 di_ipind 09F797A0
di_ipinomap 09F79A30 di_ipdmap 09F79B78 di_ipsuper 09F79658
di_ipinodex 09F79CC0 di_jmpmnt 0B8E0B00
di_agsize 00004000 di_iagsize 00000800 di_logsidx 00000547
di_fperpage 00000008 di_fsbigexp 00000000 di_fscompress 00000001

(0)> ino 09F77F48 print log inode (di_iplog)
DEV NUMBER CNT GNODE IPMNT TYPE FLAGS

09F77F48 00330001 0 5 09F77F58 09F77F48 NON CMNEW

forw 09C9C310 back 09F785B0 next 09F77F48 prev 09F77F48
gnode@ 09F77F58 number 00000000 dev 00330001 ipmnt 09F77F48
flag 00000000 locks 00000000 bigexp 00000000 compress 00000000
cflag 00000002 count 00000005 event FFFFFFFF movedfrag 00000000
openevent FFFFFFFF id 0000529A hip 09C9C310 nodelock 00000000
nodelock@ 09F77FC8 dquot[USR]00000000 dquot[GRP]00000000 dinode@ 09F77FD4
cluster 00000000 size 0000000000000000

442 Kernel Extensions and Device Support Programming Concepts

GNODE............ 09F77F58
gn_type....... 00000000 gn_flags...... 00000000 gn_seg........ 00007547
gn_mwrcnt..... 00000000 gn_mrdcnt..... 00000000 gn_rdcnt...... 00000000
gn_wrcnt...... 00000000 gn_excnt...... 00000000 gn_rshcnt..... 00000000
gn_vnode...... 09F77F18 gn_rdev....... 00000000 gn_ops........ jfs_vops
gn_chan....... 00000000 gn_reclk_lock. 00000000 gn_reclk_lock@ 09F77F8C
gn_reclk_event FFFFFFFF gn_filocks.... 00000000 gn_data....... 09F77F48
gn_type....... NON

di_gen 32B69976 di_mode 00000000 di_nlink 00000000
di_acct 00000000 di_uid 00000000 di_gid 00000000
di_nblocks 00000000 di_acl 00000000
di_mtime 00000000 di_atime 00000000 di_ctime 00000000
di_size_hi 00000000 di_size_lo 00000000

VNODE........... 09F77F18
v_flag.... 00000000 v_count... 00000000 v_vfsgen.. 00000000
v_lock.... 00000000 v_lock@... 09F77F24 v_vfsp.... 00000000
v_mvfsp... 00000000 v_gnode... 09F77F58 v_next.... 00000000
v_vfsnext. 00000000 v_vfsprev. 00000000 v_pfsvnode 00000000
v_audit... 00000000

di_logptr 0000015A di_logsize 00000C00 di_logend 00000FF8
di_logsync 0005A994 di_nextsync 0013BBFC di_logxor 6C868513
di_llogeor 00000FE0 di_llogxor 6CE29103 di_logx 0BB13200
di_logdgp 0B7E5BC0 di_loglock 4004B9EF di_loglock@ 09F7804C
logxlock 00000000 logxlock@ 0BB13200 logflag 00000001
logppong 00000195 logcq.head B69CAB7C logcq.tail 0BB13228
logcsn 00001534 logcrtc 0000000C loglcrt B69CA97C
logeopm 00000001 logeopmc 00000002
logeopmq[0]@ 0BB13228 logeopmq[1]@ 0BB13268

hinode Subcommand
The hinode subcommand displays inode hash list entries.

Syntax:

hinode

v bucket - Specifies the bucket number. This argument must be a decimal value.

v Address - Specifies the effective address of an inode hash list entry. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

If no argument is entered, the hash list is displayed. The entries for a specific hash table entry can be
viewed by specifying a bucket number or the address of a hash list bucket.

Aliases: hino

Example:
(0)> hino print hash inode buckets

BUCKET HEAD TIMESTAMP LOCK COUNT

09C86000 1 0A285470 00000005 00000000 4
09C86010 2 0A284E08 00000006 00000000 3
09C86020 3 0A2843C8 00000006 00000000 3
09C86030 4 0A287EB8 00000006 00000000 3
09C86040 5 0A287330 00000005 00000000 3
09C86050 6 0A2867A8 00000006 00000000 4
09C86060 7 0A285FF8 00000007 00000000 3
09C86070 8 0A289D78 00000006 00000000 4
09C86080 9 0A289858 00000006 00000000 4
09C86090 10 0A33E2D8 00000005 00000000 4
09C860A0 11 0A33E7F8 00000005 00000000 4

Chapter 17. KDB Kernel Debugger and Command 443

09C860B0 12 0A33EE60 00000005 00000000 4
09C860C0 13 0A33F758 00000005 00000000 4
09C860D0 14 0A28AE20 00000005 00000000 3
09C860E0 15 0A28A670 00000005 00000000 3
09C860F0 16 0A33CE58 00000005 00000000 4
09C86100 17 0A33D9E0 00000006 00000000 4
09C86110 18 0A5FF6D0 00000008 00000000 4
09C86120 19 0A5FD060 00000009 00000000 4
09C86130 20 0A5FC390 00000009 00000000 4
(0)> more (^C to quit) ? Interrupted
(0)> hino 18 print hash inode bucket 18
HASH ENTRY(18): 09C86110

DEV NUMBER CNT GNODE IPMNT TYPE FLAGS

0A5FF6D0 00330003 2523 0 0A5FF6E0 09F79510 REG
0A340E68 00330004 2524 0 0A340E78 09F78090 REG
0A28CA50 00330003 10677 0 0A28CA60 09F79510 DIR
0A1AFCA0 00330006 2526 0 0A1AFCB0 09F7A990 REG

icache Subcommand
The icache subcommand displays inode cache list entries.

Syntax:

icache

v slot - Specifies the slot number of an inode cache list entry. This argument must be a decimal value.

v Address - Specifies the effective address of an inode cache list entry. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

If no argument is entered a summary is displayed. Detailed information for a particular entry can be
obtained by specifying the entry to display. An entry can be selected by slot number or by address.

Aliases: fino

Example:
(0)> fino print free inode cache

DEV NUMBER CNT GNODE IPMNT TYPE FLAGS

1 09CABFA0 DEADBEEF 0 0 09CABFB0 09CA7178 CHR CMNOLINK
2 0A8D3A70 DEADBEEF 0 0 0A8D3A80 09F7A990 REG CMNOLINK
3 0A8F2528 DEADBEEF 0 0 0A8F2538 09CC6528 REG CMNOLINK
4 0A7C66E0 DEADBEEF 0 0 0A7C66F0 09F7A990 REG CMNOLINK
5 0A7BA568 DEADBEEF 0 0 0A7BA578 09F79F50 REG CMNOLINK
6 0A78EC68 DEADBEEF 0 0 0A78EC78 09F78090 REG CMNOLINK
7 0A7AF9B8 DEADBEEF 0 0 0A7AF9C8 09F79F50 REG CMNOLINK
8 0A7B9230 DEADBEEF 0 0 0A7B9240 09F79F50 REG CMNOLINK
9 0A8BDCA8 DEADBEEF 0 0 0A8BDCB8 09F79F50 LNK CMNOLINK
10 0A8BE978 DEADBEEF 0 0 0A8BE988 09F7A990 REG CMNOLINK
11 0A7C58C8 DEADBEEF 0 0 0A7C58D8 09F7A990 REG CMNOLINK
12 0A78D6A0 DEADBEEF 0 0 0A78D6B0 09F78090 REG CMNOLINK
13 0A7C4BF8 DEADBEEF 0 0 0A7C4C08 09F7A990 REG CMNOLINK
14 0A78ADA0 DEADBEEF 0 0 0A78ADB0 09F78090 REG CMNOLINK
15 0A7B8A80 DEADBEEF 0 0 0A7B8A90 09F79F50 REG CMNOLINK
16 0A8BC970 DEADBEEF 0 0 0A8BC980 09F7A990 REG CMNOLINK
17 0A8D1CF8 DEADBEEF 0 0 0A8D1D08 09F7A990 REG CMNOLINK
18 0A7AE160 DEADBEEF 0 0 0A7AE170 09F79F50 REG CMNOLINK
19 0A8EF998 DEADBEEF 0 0 0A8EF9A8 09CC6528 REG CMNOLINK
20 0A7C41B8 DEADBEEF 0 0 0A7C41C8 09F7A990 REG CMNOLINK

(0)> more (^C to quit) ? Interrupted
(0)> fino 1 print free inode slot 1

DEV NUMBER CNT GNODE IPMNT TYPE FLAGS

09CABFA0 DEADBEEF 0 0 09CABFB0 09CA7178 CHR CMNOLINK

444 Kernel Extensions and Device Support Programming Concepts

forw 09CABFA0 back 09CABFA0 next 0A8EF708 prev 0042AE60
gnode@ 09CABFB0 number 00000000 dev DEADBEEF ipmnt 09CA7178
flag 00000000 locks 00000000 bigexp 00000000 compress 00000000
cflag 00000004 count 00000000 event FFFFFFFF movedfrag 00000000
openevent FFFFFFFF id 00000045 hip 00000000 nodelock 00000000
nodelock@ 09CAC020 dquot[USR]00000000 dquot[GRP]00000000 dinode@ 09CAC02C
cluster 00000000 size 0000000000000000

GNODE............ 09CABFB0
gn_type....... 00000004 gn_flags...... 00000000 gn_seg........ 00000000
gn_mwrcnt..... 00000000 gn_mrdcnt..... 00000000 gn_rdcnt...... 00000000
gn_wrcnt...... 00000000 gn_excnt...... 00000000 gn_rshcnt..... 00000000
gn_vnode...... 09CABF70 gn_rdev....... 00030000 gn_ops........ jfs_vops
gn_chan....... 00000000 gn_reclk_lock. 00000000 gn_reclk_lock@ 09CABFE4
gn_reclk_event FFFFFFFF gn_filocks.... 00000000 gn_data....... 09CABFA0
gn_type....... CHR

di_gen 00000000 di_mode 00000000 di_nlink 00000000
di_acct 00000000 di_uid 00000000 di_gid 00000000
di_nblocks 00000000 di_acl 00000000
di_mtime 32B67A97 di_atime 32B67A97 di_ctime 32B67B4B
di_size_hi 00000000 di_size_lo 00000000
di_rdev 00030000

VNODE........... 09CABF70
v_flag.... 00000000 v_count... 00000000 v_vfsgen.. 00000000
v_lock.... 00000000 v_lock@... 09CABF7C v_vfsp.... 00000000
v_mvfsp... 00000000 v_gnode... 09CABFB0 v_next.... 00000000
v_vfsnext. 09CABE28 v_vfsprev. 00000000 v_pfsvnode 00000000
v_audit... 00000000

rnode Subcommand
The rnode subcommand displays the remote node structure at the specified address.

Syntax:

rnode

v Address - Specifies the effective address of a remote node structure. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

Aliases: rno

Example:
KDB(0)> rno 0A55D400 print rnode
RNODE............ 0A55D400
freef........ 00000000 freeb....... 00000000
hash......... 0A59A400 @vnode...... 0A55D40C
@gnode....... 0A55D43C @fh......... 0A55D480
fh[0]....... 0033000300000003 000A0000381F2F54
fh[16]....... A3FA0000000A0000 08002F53C1030000
flags........ 000001A0 error....... 00000000
lastr........ 00000000 cred........ 0A5757F8
altcred...... 00000000 unlcred..... 00000000
unlname...... 00000000 unldvp...... 00000000
size......... 001C3A90 @attr....... 0A55D4C0
@attrtime.... 0A55D520 sdname...... 00000000
sdvp......... 00000000 vh.......... 00000885
sid.......... 00000885 acl......... 00000000
aclsz........ 00000000 pcl......... 00000000
pclsz........ 00000000 @lock....... 0A55D548
rmevent...... FFFFFFFF
flags........ RWVP ACLINVALID PCLINVALID

Chapter 17. KDB Kernel Debugger and Command 445

vnode Subcommand
The vnode subcommand displays virtual node (vnode) table entries.

Syntax:

v slot - Specifies the slot number of an virtual node table entry. This argument must be a decimal value.

v Address - Specifies the effective address of an virtual node table entry. Symbols, hexadecimal values,
or hexadecimal expressions can be used in specification of the address.

If no argument is entered a summary is displayed, one line per table entry. Detailed information can be
displayed for individual vnode table entries by specifying the entry. The entry can be specified either by
slot number or address.

Aliases: vno

Example:
(0)> vnode print vnode table

COUNT VFSGEN GNODE VFSP DATAPTR TYPE FLAGS

106 09D227B0 3 0 09D227F0 056D183C 00000000 REG
126 09D1AB68 1 0 09D1ABA8 056D183C 00000000 REG
130 09D196E8 1 0 09D19728 056D183C 00000000 REG
135 09D18B60 1 0 09D18BA0 056D183C 05CC2D00 SOCK
140 09D17E90 1 0 09D17ED0 056D183C 05D3F300 SOCK
143 09D17970 1 0 09D179B0 056D183C 05CC2A00 SOCK
148 09D17078 1 0 09D170B8 056D183C 05CC2800 SOCK
154 09D14DE0 1 0 09D14E20 056D183C 00000000 REG
162 09D13818 1 0 09D13858 056D183C 05D30E00 SOCK
165 09D0D948 1 0 09D0D988 056D183C 00000000 DIR
166 09D0D800 1 0 09D0D840 056D183C 00000000 DIR
167 09D0D6B8 1 0 09D0D6F8 056D183C 00000000 DIR
168 09D0D570 1 0 09D0D5B0 056D183C 00000000 DIR
170 09D0D2E0 1 0 09D0D320 056D183C 00000000 DIR
171 09D0D198 1 0 09D0D1D8 056D183C 00000000 DIR
172 09D0D050 1 0 09D0D090 056D183C 00000000 DIR
173 09D0CF08 1 0 09D0CF48 056D183C 00000000 DIR
174 09D0CDC0 1 0 09D0CE00 056D183C 00000000 DIR
175 09D0CC78 1 0 09D0CCB8 056D183C 00000000 DIR
176 09D0CB30 1 0 09D0CB70 056D183C 00000000 DIR

(0)> more (^C to quit) ? Interrupted
(0)> vnode 106 print vnode slot 106

COUNT VFSGEN GNODE VFSP DATAPTR TYPE FLAGS

106 09D227B0 3 0 09D227F0 056D183C 00000000 REG
v_flag.... 00000000 v_count... 00000003 v_vfsgen.. 00000000
v_lock.... 00000000 v_lock@... 09D227BC v_vfsp.... 056D183C
v_mvfsp... 00000000 v_gnode... 09D227F0 v_next.... 00000000
v_vfsnext. 09D22668 v_vfsprev. 09D22B88 v_pfsvnode 00000000
v_audit... 00000000

vfs Subcommand
The vfs subcommand displays entries of the virtual file system table.

Syntax:

vfs [slot | symbol | Address]

v slot - Specifies the slot number of a virtual file system table entry. This argument must be a decimal
value.

v Address - Specifies the address of a virtual file system table entry. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

446 Kernel Extensions and Device Support Programming Concepts

If no argument is entered a summary is displayed with one line for each entry. Detailed information can be
obtained for an entry by identifying the entry of interest. Individual entries can be identified either by a slot
number or the address of the entry.

Aliases: mount

Example:
(0)> vfs print vfs table

GFS MNTD MNTDOVER VNODES DATA TYPE FLAGS

1 056D183C 0024F268 09CC08B8 00000000 0A5AADA0 0B221F68 JFS DEVMOUNT
... /dev/hd4 mounted over /

2 056D18A4 0024F268 09CC2258 09CC0B48 0A545270 0B221F00 JFS DEVMOUNT
... /dev/hd2 mounted over /usr

3 056D1870 0024F268 09CC3820 09CC2DE0 09D913A8 0B221E30 JFS DEVMOUNT
... /dev/hd9var mounted over /var

4 056D1808 0024F268 09CC6DF0 09CC6120 0A7DC1E8 0B221818 JFS DEVMOUNT
... /dev/hd3 mounted over /tmp

5 056D18D8 0024F268 09D0BFA8 09D0B568 09D95500 0B2412F0 JFS DEVMOUNT
... /dev/hd1 mounted over /home

6 056D190C 0024F2C8 0B243C0C 09D0C238 0B9F6A0C 0B230500 NFS READONLY REMOTE
... /pvt/tools mounted over /pvt/tools

7 056D1940 0024F2C8 0B7E440C 09D0CB30 0B985C0C 0B230A00 NFS READONLY REMOTE
... /pvt/base mounted over /pvt/base

8 056D1974 0024F2C8 0B7E4A0C 09D0CC78 0B7E4A0C 0B230C00 NFS READONLY REMOTE
... /pvt/periph mounted over /pvt/periph

9 056D19A8 0024F2C8 0B7E4E0C 09D0CDC0 0B89000C 0B230E00 NFS READONLY REMOTE
... /nfs mounted over /nfs
10 056D19DC 0024F2C8 0B89020C 09D0CF08 0B89840C 0B230000 NFS READONLY REMOTE
... /tcp mounted over /tcp
(0)> vfs 5 print vfs slot 5

GFS MNTD MNTDOVER VNODES DATA TYPE FLAGS

5 056D18D8 0024F268 09D0BFA8 09D0B568 09D95500 0B2412F0 JFS DEVMOUNT
... /dev/hd1 mounted over /home

vfs_next..... 056D190C vfs_count.... 00000001 vfs_mntd..... 09D0BFA8
vfs_mntdover. 09D0B568 vfs_vnodes... 09D95500 vfs_count.... 00000001
vfs_number... 00000009 vfs_bsize.... 00001000 vfs_mdata.... 0B7E8E80
vmt_revision. 00000001 vmt_length... 00000070 vfs_fsid..... 000A0008 00000003
vmt_vfsnumber 00000009 vfs_date..... 32B67BFF vfs_flag..... 00000004
vmt_gfstype.. 00000003 @vmt_data.... 0B7E8EA4 vfs_lock..... 00000000
vfs_lock@.... 056D1904 vfs_type..... 00000003 vfs_ops...... jfs_vfsops

VFS_GFS.. gfs+000000
gfs_data. 00000000 gfs_flag. INIT VERSION4 VERSION42 VERSION421
gfs_ops.. jfs_vfsops gn_ops... jfs_vops gfs_name. jfs
gfs_init. jfs_init gfs_rinit jfs_rootinit gfs_type. JFS
gfs_hold. 00000013

VFS_MNTD.. 09D0BFA8
v_flag.... 00000001 v_count... 00000001 v_vfsgen.. 00000000
v_lock.... 00000000 v_lock@... 09D0BFB4 v_vfsp.... 056D18D8
v_mvfsp... 00000000 v_gnode... 09D0BFE8 v_next.... 00000000
v_vfsnext. 00000000 v_vfsprev. 09D730A0 v_pfsvnode 00000000
v_audit... 00000000 v_flag.... ROOT

VFS_MNTDOVER.. 09D0B568
v_flag.... 00000000 v_count... 00000001 v_vfsgen.. 00000000
v_lock.... 00000000 v_lock@... 09D0B574 v_vfsp.... 056D183C
v_mvfsp... 056D18D8 v_gnode... 09D0B5A8 v_next.... 00000000
v_vfsnext. 09D0A230 v_vfsprev. 09D0C0F0 v_pfsvnode 00000000
v_audit... 00000000

VFS_VNODES LIST...
COUNT VFSGEN GNODE VFSP DATAPTR TYPE FLAGS

Chapter 17. KDB Kernel Debugger and Command 447

1 09D95500 0 0 09D95540 056D18D8 00000000 REG
2 09D94AC0 0 0 09D94B00 056D18D8 00000000 DIR
3 09D91DE8 0 0 09D91E28 056D18D8 00000000 REG
4 09D91A10 0 0 09D91A50 056D18D8 00000000 DIR
5 09D8EFC8 0 0 09D8F008 056D18D8 00000000 REG
6 09D8EBF0 0 0 09D8EC30 056D18D8 00000000 DIR
7 09D8C580 0 0 09D8C5C0 056D18D8 00000000 REG
8 09D8C060 0 0 09D8C0A0 056D18D8 00000000 DIR
9 09D8A058 0 0 09D8A098 056D18D8 00000000 REG
10 09D89C80 0 0 09D89CC0 056D18D8 00000000 DIR
11 09D89240 0 0 09D89280 056D18D8 00000000 REG

...
COUNT VFSGEN GNODE VFSP DATAPTR TYPE FLAGS

63 09D73478 0 0 09D734B8 056D18D8 00000000 REG
64 09D730A0 0 0 09D730E0 056D18D8 00000000 DIR
65 09D0BFA8 1 0 09D0BFE8 056D18D8 00000000 DIR ROOT

specnode Subcommand
The specnode subcommand displays the special device node structure at the specified address.

Syntax:

specnode

v Address - Specifies the effective address of a special device node structure. Symbols, hexadecimal
values, or hexadecimal expressions can be used in specification of the address.

Aliases: specno

Example:
(0)> file file+002880 print file entry

COUNT OFFSET DATA TYPE FLAGS

217 file+002880 6 000000000002818F 056CE314 VNODE READ WRITE

f_flag......... 00000003 f_count........ 00000006
f_msgcount......... 0000 f_type............. 0001
f_data......... 056CE314 f_offset... 000000000002818F
f_dir_off...... 00000000 f_cred......... 0B988E58
f_lock@........ 004B18B8 f_lock......... 00000000
f_offset_lock@. 004B18BC f_offset_lock.. 00000000
f_vinfo........ 00000000 f_ops.......... 00250FC0 vnodefops+000000
VNODE.......... 056CE314
v_flag.... 00000000 v_count... 00000002 v_vfsgen.. 00000000
v_lock.... 00000000 v_lock@... 056CE320 v_vfsp.... 01AC9840
v_mvfsp... 00000000 v_gnode... 0B2215C8 v_next.... 00000000
v_vfsnext. 00000000 v_vfsprev. 00000000 v_pfsvnode 09CD5D88
v_audit... 00000000
(0)> gno 0B2215C8 print gnode entry
GNODE............ 0B2215C8
gn_type....... 00000004 gn_flags...... 00000000 gn_seg........ 007FFFFF
gn_mwrcnt..... 00000000 gn_mrdcnt..... 00000000 gn_rdcnt...... 00000000
gn_wrcnt...... 00000000 gn_excnt...... 00000000 gn_rshcnt..... 00000000
gn_vnode...... 056CE314 gn_rdev....... 000E0000 gn_ops........ spec_vnops
gn_chan....... 00000000 gn_reclk_lock. 00000000 gn_reclk_lock@ 0B2215FC
gn_reclk_event FFFFFFFF gn_filocks.... 00000000 gn_data....... 0B2215B8
gn_type....... CHR
(0)> specno 0B2215B8 print special node entry
SPECNODE........ 0B2215B8
sn_next...... 00000000 sn_count..... 00000001 sn_lock...... 00000000
sn_gnode..... 0B2215C8 sn_pfsgnode.. 09CD5DC8 sn_attr...... 00000000
sn_dev....... 000E0000 sn_chan...... 00000000 sn_vnode..... 056CE314
sn_ops....... 00275518 sn_devnode... 0B221C80 sn_type...... CHR

448 Kernel Extensions and Device Support Programming Concepts

SN_VNODE........ 056CE314
v_flag.... 00000000 v_count... 00000002 v_vfsgen.. 00000000
v_lock.... 00000000 v_lock@... 056CE320 v_vfsp.... 01AC9840
v_mvfsp... 00000000 v_gnode... 0B2215C8 v_next.... 00000000
v_vfsnext. 00000000 v_vfsprev. 00000000 v_pfsvnode 09CD5D88
v_audit... 00000000

SN_GNODE......... 0B2215C8
gn_type....... 00000004 gn_flags...... 00000000 gn_seg........ 007FFFFF
gn_mwrcnt..... 00000000 gn_mrdcnt..... 00000000 gn_rdcnt...... 00000000
gn_wrcnt...... 00000000 gn_excnt...... 00000000 gn_rshcnt..... 00000000
gn_vnode...... 056CE314 gn_rdev....... 000E0000 gn_ops........ spec_vnops
gn_chan....... 00000000 gn_reclk_lock. 00000000 gn_reclk_lock@ 0B2215FC
gn_reclk_event FFFFFFFF gn_filocks.... 00000000 gn_data....... 0B2215B8
gn_type....... CHR

SN_PFSGNODE...... 09CD5DC8
gn_type....... 00000004 gn_flags...... 00000000 gn_seg........ 00000000
gn_mwrcnt..... 00000000 gn_mrdcnt..... 00000000 gn_rdcnt...... 00000000
gn_wrcnt...... 00000000 gn_excnt...... 00000000 gn_rshcnt..... 00000000
gn_vnode...... 09CD5D88 gn_rdev....... 000E0000 gn_ops........ jfs_vops
gn_chan....... 00000000 gn_reclk_lock. 00000000 gn_reclk_lock@ 09CD5DFC
gn_reclk_event FFFFFFFF gn_filocks.... 00000000 gn_data....... 09CD5DB8
gn_type....... CHR

devnode Subcommand
The devnode subcommand displays device node (devnode) table entries.

Syntax:

devnode

v slot - Specifies the slot number of an device node table entry. This argument must be a decimal value.

v Address - Specifies the effective address of a device node table entry. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

If no argument is entered a summary is displayed with one line per table entry. Detailed information can be
displayed for individual devnode table entries by specifying the entry. The entry can be specified either by
slot number or address.

Aliases: devno

Example:
(0)> devno print device node table

DEV CNT SPECNODE GNODE LASTR PDATA TYPE

1 0B241758 00300000 1 0B2212E0 0B241768 00000000 05CB4E00 CHR
2 0B221C18 00100000 1 00000000 0B221C28 00000000 00000000 CHR
3 0B221940 00110000 2 00000000 0B221950 00000000 00000000 BLK
4 0B221870 00020000 1 0B221140 0B221880 00000000 00000000 CHR
5 0B7E5A10 00120001 2 00000000 0B7E5A20 00000000 00000000 BLK
6 0B241070 00020001 1 0B8A3EF0 0B241080 00000000 00000000 CHR
7 0B2219A8 00020002 1 0B221008 0B2219B8 00000000 00000000 CHR
8 0B2218D8 00130000 1 00000000 0B2218E8 00000000 00000000 CHR
9 0B7E5BB0 00330001 1 00000000 0B7E5BC0 00000000 00000000 BLK
10 0B221A10 00130001 1 00000000 0B221A20 00000000 00000000 CHR
11 0B241008 00330002 1 00000000 0B241018 00000000 00000000 BLK
12 0B7E59A8 00130002 1 00000000 0B7E59B8 00000000 00000000 CHR
13 0B7E5C18 00330003 1 00000000 0B7E5C28 00000000 00000000 BLK
14 0B7E5808 00130003 1 00000000 0B7E5818 00000000 00000000 CHR
15 0B7E5A78 00330004 1 00000000 0B7E5A88 00000000 00000000 BLK
16 0B7E5C80 00330005 1 00000000 0B7E5C90 00000000 00000000 BLK
17 0B7E5CE8 00330006 1 00000000 0B7E5CF8 00000000 00000000 BLK

Chapter 17. KDB Kernel Debugger and Command 449

18 0B2416F0 00040000 1 0B2211A8 0B241700 00000000 00000000 MPC
19 0B221BB0 00150000 3 0B221688 0B221BC0 00000000 05CC3E00 CHR
20 0B2410D8 00060000 1 0B221480 0B2410E8 00000000 00000000 CHR

(0)> more (^C to quit) ? Interrupted
(0)> devno 3 print device node slot 3

DEV CNT SPECNODE GNODE LASTR PDATA TYPE

3 0B221940 00110000 2 00000000 0B221950 00000000 00000000 BLK

forw...... 00DD6CD8 back...... 00DD6CD8 lock...... 00000000

GNODE............ 0B221950
gn_type....... 00000003 gn_flags...... 00000000 gn_seg........ 007FFFFF
gn_mwrcnt..... 00000000 gn_mrdcnt..... 00000000 gn_rdcnt...... 00000000
gn_wrcnt...... 00000002 gn_excnt...... 00000000 gn_rshcnt..... 00000000
gn_vnode...... 00000000 gn_rdev....... 00110000 gn_ops........ 00000000
gn_chan....... 00000000 gn_reclk_lock. 00000000 gn_reclk_lock@ 0B221984
gn_reclk_event 00000000 gn_filocks.... 00000000 gn_data....... 0B221940
gn_type....... BLK

SPECNODES....... 00000000

fifonode Subcommand
The fifonode subcommand displays fifo node table entries.

Syntax:

fifonode [slot | symbol | Address]

v slot - Specifies the slot number of a fifo node table entry. This argument must be a decimal value.

v Address - Specifies the effective address of a fifo node table entry. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

If no argument is entered a summary is displayed, one line per entry. Detailed information can be
displayed for individual entries by specifying the entry. The entry can be specified either by slot number or
address.

Aliases: fifono

Example:
(0)> fifono print fifo node table

PFSGNODE SPECNODE SIZE RCNT WCNT TYPE FLAG

1 056D1C08 09D15EC8 0B2210D8 00000000 1 1 FIFO WWRT
2 056D1CA8 09D1BB08 0B7E5070 00000000 1 1 FIFO RBLK WWRT

(0)> fifono 1 print fifo node slot 1
PFSGNODE SPECNODE SIZE RCNT WCNT TYPE FLAG

1 056D1C08 09D15EC8 0B2210D8 00000000 1 1 FIFO WWRT

ff_forw.... 00DD6D44 ff_back.... 00DD6D44 ff_dev..... FFFFFFFF
ff_poll.... 00000001 ff_rptr.... 00000000 ff_wptr.... 00000000
ff_revent.. FFFFFFFF ff_wevent.. FFFFFFFF ff_buf..... 056D1C34

SPECNODE........ 0B2210D8
sn_next...... 00000000 sn_count..... 00000001 sn_lock...... 00000000
sn_gnode..... 0B2210E8 sn_pfsgnode.. 09D15EC8 sn_attr...... 00000000
sn_dev....... FFFFFFFF sn_chan...... 00000000 sn_vnode..... 056CE070
sn_ops....... 002751B0 sn_devnode... 056D1C08 sn_type...... FIFO

SN_VNODE........ 056CE070
v_flag.... 00000000 v_count... 00000002 v_vfsgen.. 00000000
v_lock.... 00000000 v_lock@... 056CE07C v_vfsp.... 01AC9810
v_mvfsp... 00000000 v_gnode... 0B2210E8 v_next.... 00000000

450 Kernel Extensions and Device Support Programming Concepts

v_vfsnext. 00000000 v_vfsprev. 00000000 v_pfsvnode 09D15E88
v_audit... 00000000

SN_GNODE......... 0B2210E8
gn_type....... 00000008 gn_flags...... 00000000 gn_seg........ 007FFFFF
gn_mwrcnt..... 00000000 gn_mrdcnt..... 00000000 gn_rdcnt...... 00000000
gn_wrcnt...... 00000000 gn_excnt...... 00000000 gn_rshcnt..... 00000000
gn_vnode...... 056CE070 gn_rdev....... FFFFFFFF gn_ops........ fifo_vnops
gn_chan....... 00000000 gn_reclk_lock. 00000000 gn_reclk_lock@ 0B22111C
gn_reclk_event 00000000 gn_filocks.... 00000000 gn_data....... 0B2210D8
gn_type....... FIFO

SN_PFSGNODE...... 09D15EC8
gn_type....... 00000008 gn_flags...... 00000000 gn_seg........ 00000000
gn_mwrcnt..... 00000000 gn_mrdcnt..... 00000000 gn_rdcnt...... 00000000
gn_wrcnt...... 00000000 gn_excnt...... 00000000 gn_rshcnt..... 00000000
gn_vnode...... 09D15E88 gn_rdev....... 000A0005 gn_ops........ jfs_vops
gn_chan....... 00000000 gn_reclk_lock. 00000000 gn_reclk_lock@ 09D15EFC
gn_reclk_event FFFFFFFF gn_filocks.... 00000000 gn_data....... 09D15EB8
gn_type....... FIFO

hnode Subcommand
The hnode subcommand displays hash node table entries.

Syntax:

v bucket - Specifies the bucket number within the hash node table. This argument must be a decimal
value.

v Address - Specifies the effective address of a bucket in the hash node table. Symbols, hexadecimal
values, or hexadecimal expressions can be used in specification of the address.

If no argument is entered, a summary containing one line per hash bucket is displayed. The entries for a
specific bucket can be displayed by specifying the bucket number or the address of the bucket.

Aliases: hno

Example:
(0)> hno print hash node table

BUCKET HEAD LOCK COUNT

hnodetable+000000 1 0B241758 00000000 2
hnodetable+0000C0 17 0B221940 00000000 1
hnodetable+00012C 26 056D1C08 00000000 1
hnodetable+000180 33 0B221870 00000000 1
hnodetable+00018C 34 0B7E5A10 00000000 2
hnodetable+000198 35 0B2219A8 00000000 1
hnodetable+000240 49 0B2218D8 00000000 1
hnodetable+00024C 50 0B7E5BB0 00000000 2
hnodetable+000258 51 0B241008 00000000 2
hnodetable+000264 52 0B7E5C18 00000000 2
hnodetable+000270 53 0B7E5A78 00000000 1
hnodetable+00027C 54 0B7E5C80 00000000 1
hnodetable+000288 55 0B7E5CE8 00000000 1
hnodetable+000300 65 0B2416F0 00000000 1
hnodetable+0003C0 81 0B221BB0 00000000 1
hnodetable+000480 97 0B2410D8 00000000 1
hnodetable+00048C 98 0B221B48 00000000 1
hnodetable+000540 113 0B7E5AE0 00000000 1
hnodetable+00054C 114 0B7E5EF0 00000000 1
hnodetable+000600 129 0B7E5B48 00000000 1
(0)> more (^C to quit) ? Interrupted
(0)> hno 34 print hash node bucket 34
HASH ENTRY(34): 00DD6DA4

DEV CNT SPECNODE GNODE LASTR PDATA TYPE

Chapter 17. KDB Kernel Debugger and Command 451

1 0B7E5A10 00120001 2 00000000 0B7E5A20 00000000 00000000 BLK
2 0B241070 00020001 1 0B8A3EF0 0B241080 00000000 00000000 CHR

System Table Subcommands

var Subcommand
The var subcommand prints the var structure and the system configuration of the machine.

Syntax:

var

Example:
KDB(7)> var print var information
var_hdr.var_vers..... 00000000 var_hdr.var_gen...... 00000045
var_hdr.var_size..... 00000030
v_iostrun............ 00000001 v_leastpriv.......... 00000000
v_autost............. 00000001 v_memscrub........... 00000000
v_maxup.............. 200
v_bufhw.............. 20 v_mbufhw............. 32768
v_maxpout............ 0 v_minpout............ 0
v_clist.............. 16384 v_fullcore........... 00000000
v_ncpus.............. 8 v_ncpus_cfg.......... 8
v_initlvl............ 0 0 0 0
v_lock............... 200 ve_lock.............. 00D3FA18 flox+003200
v_file............... 2303 ve_file.............. 0042EFE8 file+01AFD0
v_proc............... 131072 ve_proc.............. E305D000 proc+05D000
vb_proc.............. E3000000 proc+000000
v_thread............. 262144 ve_thread............ E6046F80 thread+046F80
vb_thread............ E6000000 thread+000000

VMM Tunable Variables:

minfree.............. 120 maxfree.............. 128
minperm.............. 12872 maxperm.............. 51488
pfrsvdblks........... 13076
(7)> more (^C to quit) ? continue
npswarn.............. 512 npskill.............. 128
minpgahead........... 2 maxpgahead........... 8
maxpdtblks........... 4 numsched............. 4
htabscale............ FFFFFFFF aptscale............. 00000000
pd_npages............ 00080000

_SYSTEM_CONFIGURATION:

architecture..... 00000002 POWER_PC
implementation... 00000010 POWER_604
version.......... 00040004
width............ 00000020 ncpus............ 00000008
cache_attrib..... 00000001 CACHE separate I and D
icache_size...... 00004000 dcache_size...... 00004000
icache_asc....... 00000004 dcache_asc....... 00000004
icache_block..... 00000020 dcache_block..... 00000020
icache_line...... 00000040 dcache_line...... 00000040
L2_cache_size.... 00100000 L2_cache_asc..... 00000001
tlb_attrib....... 00000001 TLB separate I and D
itlb_size........ 00000040 dtlb_size........ 00000040
itlb_asc......... 00000002 dtlb_asc......... 00000002
priv_lck_cnt..... 00000000 prob_lck_cnt..... 00000000
resv_size........ 00000020 rtc_type......... 00000002
virt_alias....... 00000000 cach_cong........ 00000000
model_arch....... 00000001 model_impl....... 00000002
Xint............. 000000A0 Xfrac............ 00000003

452 Kernel Extensions and Device Support Programming Concepts

devsw Subcommand
The devsw subcommand display device switch table entries.

Syntax:

v major - Indicates the specific device switch table entry to be displayed by the major number. This is a
hexadecimal value.

v Address - Specifies the effective address of a driver. The device switch table entry with the driver
closest to the indicated address is displayed; and the specific driver is indicated. Symbols, hexadecimal
values, or hexadecimal expressions can be used in specification of the address.

If no argument is specified, all entries are displayed. A major number can be specified to view the device
switch table entry for the device; or an effective address can be specified to find the device switch table
entry and driver that is closest to the address.

Aliases: dev

Example:
KDB(0)> dev
Slot address 054F5040
MAJ#001 OPEN CLOSE READ WRITE

.syopen .nulldev .syread .sywrite
IOCTL STRATEGY TTY SELECT
.syioctl .nodev 00000000 .syselect
CONFIG PRINT DUMP MPX
.nodev .nodev .nodev .nodev
REVOKE DSDPTR SELPTR OPTS
.nodev 00000000 00000000 00000002

Slot address 054F5080
MAJ#002 OPEN CLOSE READ WRITE

.nulldev .nulldev .mmread .mmwrite
IOCTL STRATEGY TTY SELECT
.nodev .nodev 00000000 .nodev
CONFIG PRINT DUMP MPX
.nodev .nodev .nodev .nodev
REVOKE DSDPTR SELPTR OPTS
.nodev 00000000 00000000 00000002

(0)> more (^C to quit) ? ^C quit
KDB(0)> devsw 4 device switch of major 0x4
Slot address 05640100
MAJ#004 OPEN CLOSE READ WRITE

.conopen .conclose .conread .conwrite
IOCTL STRATEGY TTY SELECT
.conioctl .nodev 00000000 .conselect
CONFIG PRINT DUMP MPX
.conconfig .nodev .nodev .conmpx
REVOKE DSDPTR SELPTR OPTS
.conrevoke 00000000 00000000 00000006

trb Subcommand
The trb subcommand displays Timer Request Block (TRB) information.

Syntax:

trb

v * - selects display of Timer Request Block (TRB) information for TRBs on all CPUs. The information
displayed will be summary information for some options. To see detailed information select a specific
CPU and option.

Chapter 17. KDB Kernel Debugger and Command 453

v cpu x - selects display of TRB information for the specified CPU. Note, the characters ″cpu″ must be
included in the input. The value x is a hexadecimal number.

v option - the option number indicating the data to be displayed. The available option numbers can be
viewed by entering the trb subcommand with no arguments.

If this subcommand is entered without arguments a menu is displayed allowing selection of the data to be
displayed. The data displayed in this case is for the current CPU.

The trb subcommand provides arguments to specify that data is to be displayed for all CPUs (*) or for a
specific CPU (cpu x). If data is to be displayed for all CPUs, the display might be a summary, depending
on the option selected.

Note: To display TRB data for a specific CPU, the argument must consist of the string cpu followed by the
CPU number.

Aliases: timer

Example:
KDB(4)> trb timer request block subcommand usage
Usage: trb [CPU selector] [1-9]
CPU selector is ’*’ for all CPUs, ’cpu n’ for CPU n, default is current CPU

Timer Request Block Information Menu
1. TRB Maintenance Structure - Routine Addresses
2. System TRB
3. Thread Specified TRB
4. Current Thread TRB’s
5. Address Specified TRB
6. Active TRB Chain
7. Free TRB Chain
8. Clock Interrupt Handler Information
9. Current System Time - System Timer Constants

Please enter an option number: <CR/LF>
KDB(4)> trb * 6 print all active timer request blocks

CPU #0 Active List
CPU PRI ID SECS NSECS DATA FUNC

05689080 0000 0005 FFFFFFFE 00003BBA 23C3B080 05689080 sys_timer+000000
05689600 0000 0003 FFFFFFFE 00003BBA 27DAC680 00000000 pffastsched+000000
05689580 0000 0003 FFFFFFFE 00003BBA 2911BD80 00000000 pfslowsched+000000
0B05A600 0000 0005 00001751 00003BBA 2ADBC480 0B05A618 rtsleep_end+000000
05689500 0000 0003 FFFFFFFE 00003BBB 23186B00 00000000 if_slowsched+000000
0B05A480 0000 0003 FFFFFFFE 00003BBF 2D5B4980 00000000 01B633F0

CPU #1 Active List
CPU PRI ID SECS NSECS DATA FUNC

05689100 0001 0005 FFFFFFFE 00003BBA 23C38E80 05689100 sys_timer+000000

CPU #2 Active List
CPU PRI ID SECS NSECS DATA FUNC

05689180 0002 0005 FFFFFFFE 00003BBA 23C37380 05689180 sys_timer+000000
0B05A500 0002 0005 00001525 00003BE6 0CFF9500 0B05A518 rtsleep_end+000000

CPU #3 Active List
CPU PRI ID SECS NSECS DATA FUNC

05689200 0003 0005 FFFFFFFE 00003BBA 23C39F80 05689200 sys_timer+000000
(4)> more (^C to quit) ? continue
05689880 0003 0005 00000003 00003BBB 01B73180 00000000 sched_timer_post+000000
0B05A580 0003 0005 00000001 00003BBB 0BCA7300 0000000E interval_end+000000

CPU #4 Active List
CPU PRI ID SECS NSECS DATA FUNC

05689280 0004 0005 FFFFFFFE 00003BBA 23C3A980 05689280 sys_timer+000000

454 Kernel Extensions and Device Support Programming Concepts

CPU #5 Active List
CPU PRI ID SECS NSECS DATA FUNC

05689300 0005 0005 FFFFFFFE 00003BBA 23C39800 05689300 sys_timer+000000
05689780 0005 0005 FFFFFFFF 00003BBF 1B052C00 05C62C40 01ADD6FC

CPU #6 Active List
CPU PRI ID SECS NSECS DATA FUNC

05689380 0006 0005 FFFFFFFE 00003BBA 23C3C200 05689380 sys_timer+000000

CPU #7 Active List
CPU PRI ID SECS NSECS DATA FUNC

05689400 0007 0005 FFFFFFFE 00003BBA 23C38180 05689400 sys_timer+000000
05689680 0007 0003 FFFFFFFE 00003BBA 2DDD3480 00000000 threadtimer+000000
KDB(4)> trb cpu 1 6 print active list of processor 1
CPU #1 TRB #1 on Active List
Timer address......................05689100
trb->to_next.......................00000000
trb->knext.........................00000000
trb->kprev.........................00000000
Owner id (-1 for dev drv)..........FFFFFFFE
Owning processor...................00000001
Timer flags........................00000013 PENDING ACTIVE INCINTERVAL
trb->timerid.......................00000000
trb->eventlist.....................FFFFFFFF
trb->timeout.it_interval.tv_sec....00000000
trb->timeout.it_interval.tv_nsec...00000000
Next scheduled timeout (secs)......00003BBA
Next scheduled timeout (nanosecs)..23C38E80
Completion handler.................000B3BA4 sys_timer+000000
Completion handler data............05689100
Int. priority00000005
Timeout function...................00000000 00000000
KDB(4)>

slk and clk Subcommands
The slk and clk subcommands print the specified simple or complex lock.

Syntax:

slk [-q] [symbol | Address]

clk [-q] [symbol | Address]

v Address - Specifies the effective address of the lock to be displayed. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

If instrumentation is enabled at boot time, then instrumentation information is displayed. If either
subcommand is entered without arguments, the current state of a predefined list of locks is displayed.

Aliases:

v slk - spl

v clk - cpl

Example:
KDB(1)> slk B69F2DF0 print simple lock
Simple Lock Instrumented: vmmdseg+69F2DF0

_slock: 00011C99 thread_owner: 0011C99
.....acquisitions number: 16
...........misses number: 0
..sleeping misses number: 0
................lockname: 00FA097D flox+206165
...link register of lock: 0007CFCC .pfget+00023C

Chapter 17. KDB Kernel Debugger and Command 455

..........caller of lock: 00011C99

..........cpu id of lock: 00000002

.link register of unlock: 0007D8EC .pfget+000B5C

........caller of unlock: 00011C99

........cpu id of unlock: 00000002
KDB(0)> clk ndd_lock print complex lock
Complex Lock Instrumented: ndd_lock
...._clock.status: 20001553 _clock.flags 0000 _clock.rdepth 0000
...........status: WANT_WRITE
.....thread_owner: 0001553
.....acquisitions number: 2
...........misses number: 0
..sleeping misses number: 0
................lockname: 00D2FFFF file+8BDFE7
...link register of lock: 00047874 .ns_init+00002C
..........caller of lock: 00000003
..........cpu id of lock: 00000000
.link register of unlock: 00000000 00000000
........caller of unlock: 00000000
........cpu id of unlock: 00000000
KDB(1)>

ipl Subcommand
The ipl subcommand displays information about IPL control blocks.

Syntax:

ipl [* | cpu index]

v * - Displays summary information for all CPUs.

v cpu - Specifies the CPU number for the IPL control block to be displayed. The CPU is specified as a
decimal value.

If no argument is specified, detailed information is displayed for the current CPU. If a CPU number is
specified, detailed information is displayed for that CPU. A summary for all CPUs can be displayed by
using the * option.

Aliases: iplcb

Example:
KDB(4)> ipl * print ipl control blocks

INDEX PHYS_ID INT_AREA ARCHITEC IMPLEMEN VERSION

0038ECD0 0 00000000 FF100000 00000002 00000008 00010005
0038ED98 1 00000001 FF100080 00000002 00000008 00010005
0038EE60 2 00000002 FF100100 00000002 00000008 00010005
0038EF28 3 00000003 FF100180 00000002 00000008 00010005
0038EFF0 4 00000004 FF100200 00000002 00000008 00010005
0038F0B8 5 00000005 FF100280 00000002 00000008 00010005
0038F180 6 00000006 FF100300 00000002 00000008 00010005
0038F248 7 00000007 FF100380 00000002 00000008 00010005
KDB(4)> ipl print current processor information

Processor Info 4 [0038EFF0]

num_of_structs.........00000008 index..................00000004
struct_size............000000C8 per_buc_info_offset....0001D5D0
proc_int_area..........FF100200 proc_int_area_size.....00000010
processor_present......00000001 test_run...............0000006A
test_stat..............00000000 link...................00000000
link_address...........00000000 phys_id................00000004
architecture...........00000002 implementation.........00000008
version................00010005 width..................00000020
cache_attrib...........00000003 coherency_size.........00000020

456 Kernel Extensions and Device Support Programming Concepts

resv_size..............00000020 icache_block...........00000020
dcache_block...........00000020 icache_size............00008000
dcache_size............00008000 icache_line............00000040
dcache_line............00000040 icache_asc.............00000008
dcache_asc.............00000008 L2_cache_size..........00100000
L2_cache_asc...........00000001 tlb_attrib.............00000003
itlb_size..............00000100 dtlb_size..............00000100
itlb_asc...............00000002 dtlb_asc...............00000002
slb_attrib.............00000000 islb_size..............00000000
dslb_size..............00000000 islb_asc...............00000000
(4)> more (^C to quit) ? continue
dslb_asc...............00000000 priv_lck_cnt...........00000000
prob_lck_cnt...........00000000 rtc_type...............00000001
rtcXint................00000000 rtcXfrac...............00000000
busCfreq_HZ............00000000 tbCfreq_HZ.............00000000

System info [0038E534]
num_of_procs...........00000008 coherency_size.........00000020
resv_size..............00000020 arb_cr_addr............00000000
phys_id_reg_addr.......00000000 num_of_bsrr............00000000
bsrr_addr..............00000000 tod_type...............00000000
todr_addr..............FF0000C0 rsr_addr...............FF62006C
pksr_addr..............FF620064 prcr_addr..............FF620060
sssr_addr..............FF001000 sir_addr...............FF100000
scr_addr...............00000000 dscr_addr..............00000000
nvram_size.............00022000 nvram_addr.............FF600000
vpd_rom_addr...........00000000 ipl_rom_size...........00100000
ipl_rom_addr...........07F00000 g_mfrr_addr............FF107F80
g_tb_addr..............00000000 g_tb_type..............00000000
g_tb_mult..............00000000 SP_Error_Log_Table.....0001C000
pcccr_addr.............00000000 spocr_addr.............FF620068
pfeivr_addr............FF00100C access_id_waddr........00000000
loc_waddr..............00000000 access_id_raddr........00000000
(4)> more (^C to quit) ? continue
loc_raddr..............00000000 architecture...........00000001
implementation.........00000002 pkg_descriptor.........rs6ksmp
KDB(4)>

trace Subcommand
The trace subcommand displays data in the kernel trace buffers or data in the trace buffers collected
using the trcstart subcommand. For more information on the trcstart sucommand, see “trcstart
Subcommand” on page 367.

Syntax:

trace [-h] [hook[:subhook]]... [#data]... [-c channel]

trace -K [-j event1, eventN -k event1, eventN]

v -h - Displays trace headers.

v -c chan - Selects the trace channel for which the contents are to be monitored. The value for chan
must be a decimal constant in the range 0 to 7. If no channel is specified, it will be prompted for.

v hook - Specifies the hexadecimal value of the hook IDs on which to report.

v :subhook - Specifies subhooks, if needed. The subhooks are specified as hexadecimal values. Note, if
subhooks are used the complete syntax must include both the hook and subhook IDs separated by a
colon. For example, assume a trace of hook 1D1, subhook 2D is desired, the complete hook
specification would be 1d1:2d.

v -K - Displays the trace gathered using the trcstart subcommand. Trace hooks are displayed in reverse
order.

v -j event1, eventN - Displays trace data only for the events in the list.

v -k event1, eventN - Does not display trace data for the events in list. The -j and -k flags are mutually
exclusive.

Chapter 17. KDB Kernel Debugger and Command 457

Data is entered into these buffers using the shell subcommand trace. If the shell subcommand has not
been invoked prior to using the trace subcommand then the trace buffers will be empty.

The trace subcommand is not meant to replace the shell trcrpt command, which formats the data in more
detail. The trace subcommand is a facility for viewing system trace data in the event of a system crash
before the data has been written to disk.

Example:
KDB(0)> trcstart
Kernel Trace initialiized successfully
Quit out of kdb, for tracing to continue
KDB(0)> q
Debugger entered via keyboard.
.waitproc_find_run_queue+00009C li r3,0 <0000000000000000> r3=0000000000000040
KDB(0)> trcstop
Kernel trace stopped successfully
KDB(0)> trace -K
Current entry is #1522 of 1522 at F100009E1460D088

Hook ID: KERN_SLIH (00000102) Hook Type: 0
ThreadIdent: 0000A00B
Subhook ID/HookData: 0000
Data Length: 0008 bytes
D0: 0049BDF0

Current entry is #1521 of 1522 at F100009E1460D068
Hook ID: KERN (00000100) Hook Type: Timestamped 8000
ThreadIdent: 0000A00B
Subhook ID/HookData: 0005
Data Length: 0008 bytes
D0: 00028B10

Current entry is #1520 of 1522 at F100009E1460D050
Hook ID: KERN_SLIH (00000102) Hook Type: 0
ThreadIdent: 00008009
Subhook ID/HookData: 0000
Data Length: 0008 bytes
D0: 0049BDF0

(0)> more (^C to quit) ?
Current entry is #1519 of 1522 at F100009E1460D038

Hook ID: KERN_SLIH (00000102) Hook Type: 0
ThreadIdent: 00006007
Subhook ID/HookData: 0000
Data Length: 0008 bytes
D0: 0049BDF0

Current entry is #1518 of 1522 at F100009E1460D018
Hook ID: KERN (00000100) Hook Type: Timestamped 8000
ThreadIdent: 00008009
Subhook ID/HookData: 0005
Data Length: 0008 bytes
D0: 00028BB8

Current entry is #1517 of 1522 at F100009E1460CFF8
Hook ID: KERN (00000100) Hook Type: Timestamped 8000
ThreadIdent: 00006007
Subhook ID/HookData: 0005
Data Length: 0008 bytes
D0: 00028BC0

Current entry is #1516 of 1522 at F100009E1460CFB8

Net Subcommands

ifnet Subcommand
The ifnet subcommand prints interface information.

Syntax:

ifnet [slot | symbol | Address]

458 Kernel Extensions and Device Support Programming Concepts

v slot - Specifies the slot number within the ifnet table for which data is to be displayed. This value must
be a decimal number.

v Address - Specifies the effective address of an ifnet entry to display. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

If no argument is specified, information is displayed for each entry in the ifnet table. Data for individual
entries can be displayed by specifying either a slot number or the address of the entry.

Example:
KDB(0)> ifnet display interface
SLOT 1 ---- IFNET INFO ----(@ 30AFE000)----

name........ en0 unit........ 00000000 mtu......... 000005DC
flags....... 4E080863

(UP|BROADCAST|NOTRAILERS|RUNNING|SIMPLEX|NOECHO|BPF|GROUP_ROUTING...
...|64BIT|CANTCHANGE|MULTICAST)

timer....... 00000000 metric...... 00000000
address: 9.3.149.88 dist address: 9.3.149.95
netmask: 0.0.255.255 bk-ptr: 30AFE000
rtentry: 0 ifa_flags: 1
ifa_refcnt: 4 ifa_rtrequest: 543F624

init()...... 00000000 output().... 0184C10C start()..... 00000000
done()...... 00000000 ioctl()..... 0184C118 reset()..... 00000000
watchdog().. 00000000 ipackets.... 0000082D ierrors..... 00000000
opackets.... 000000E9 oerrors..... 00000000 collisions.. 00000000
next........ 007434B0 type........ 00000006 addrlen..... 00000006
hdrlen...... 0000000E index....... 00000002
lastchange.. 3CCDA92F sec 0002BA9E usec
ibytes...... 00094203 obytes...... 00013F64 imcasts..... 00000000
omcasts..... 00000019 iqdrops..... 00000000 noproto..... 00000000
baudrate.... 06400000 arpdrops.... 00000000 ifbufminsize 00000000
devno....... 00000000 chan........ 00000000 multiaddrs.. 7012D514
tap()....... 00000000 tapctl...... 00000000 arpres().... 0184C124
arprev().... 0184C130 arpinput().. 0184C13C ifq_head.... 00000000
ifq_tail.... 00000000 ifq_len..... 00000000 ifq_maxlen.. 00000000
ifq_drops... 00000000 ifq_slock... 00000000 slock....... 00000000
multi_lock.. 00000000 6_multi_lock 00000000 addrlist_lck 00000000
gidlist..... 00000000 ip6tomcast() 0184C148 ndp_bcopy(). 0184C154
ndp_bcmp().. 0184C160 ndtype...... 02032000 multiaddrs6. 00000000

SLOT 2 ---- IFNET INFO ----(@ 007434B0)----
name........ lo0 unit........ 00000000 mtu......... 00004200
flags....... 0E08084B

(UP|BROADCAST|LOOPBACK|RUNNING|SIMPLEX|NOECHO|BPF|GROUP_ROUTING...
...|64BIT|CANTCHANGE|MULTICAST)

timer....... 00000000 metric...... 00000000
address: 127.0.0.1 dist address: 127.255.255.255
netmask: 0.0.255.0 bk-ptr: 7434B0
rtentry: 0 ifa_flags: 1
ifa_refcnt: 3 ifa_rtrequest: 543F624

init()...... 00000000 output().... 0019AF58 start()..... 00000000
done()...... 00000000 ioctl()..... 0019AF4C reset()..... 00000000
watchdog().. 00000000 ipackets.... 0000008D ierrors..... 00000000
opackets.... 0000009F oerrors..... 00000000 collisions.. 00000000
next........ 00000000 type........ 00000018 addrlen..... 00000000
hdrlen...... 00000000 index....... 00000001
lastchange.. 3CCDA918 sec 00058673 usec
ibytes...... 00002FD2 obytes...... 000031CA imcasts..... 00000000
omcasts..... 00000000 iqdrops..... 00000000 noproto..... 00000012
baudrate.... 00000000 arpdrops.... 00000000 ifbufminsize 00000000
devno....... 00000000 chan........ 00000000 multiaddrs.. 7007A714
tap()....... 00000000 tapctl...... 00000000 arpres().... 00000000
arprev().... 00000000 arpinput().. 00000000 ifq_head.... 00000000
ifq_tail.... 00000000 ifq_len..... 00000000 ifq_maxlen.. 00000032
ifq_drops... 00000000 ifq_slock... 00000000 slock....... 00000000

Chapter 17. KDB Kernel Debugger and Command 459

multi_lock.. 00000000 6_multi_lock 00000000 addrlist_lck 00000000
gidlist..... 00000000 ip6tomcast() 00000000 ndp_bcopy(). 00000000
ndp_bcmp().. 00000000 ndtype...... 01000000 multiaddrs6. 7007F400

ndd Subcommand
The ndd subcommand displays the network device driver statistics.

Syntax:

ndd [symb/eaddr]

v symb - symbol name

v eaddr - effective address from where the ndd structure will be read.

Example:
<0> ndd 0x3006f020
---------------------- NDD INFO -----(@0x3006f020)----------
name: ent0 alias: en0 ndd_next:0x307c9020

ndd_open(): 0x01a96918 ndd_close():0x01a96960 ndd_output():0x01a9696c
ndd_ctl(): 0x01a96978 ndd_stat(): 0x01a999d4 receive(): 0x01a999c8
ndd_correlator: 0x3006f000 ndd_refcnt: 1
ndd_mtu: 1514 ndd_mintu: 60
ndd_addrlen: 6 ndd_hdrlen: 14
ndd_physaddr: 0004ac49f6f5 ndd_type: 7 (802.3 Ethernet)

ndd_demuxer: 0x01a99aa8 ndd_nsdemux: 0x7005c000
ndd_specdemux: 0x70066000 ndd_demuxsource: 0
ndd_demux_lock: 0x00000000 ndd_lock: 0x00000000
ndd_trace: 0x00000000 ndd_trace_arg: 0x00000000
ndd_specstats: 0x3006f380 ndd_speclen: 140

ndd_ipackets: 1810994 ndd_opackets: 48786
ndd_ierrors: 0 ndd_oerrors: 0
ndd_ibytes: 317413361 ndd_obytes: 19779122
ndd_recvintr: 1810133 ndd_xmitintr: 0
ndd_ipackets_drop: 0 ndd_nobufs: 0
ndd_xmitque_max: 42 ndd_xmitque_ovf: 0

netm Subcommand
The netm subcommand displays the net_malloc event records that are stored in kernel. It is only
available after the net_malloc_police attribute is turned on. The display is started from the latest event.
The netm subroutine displays up to 16 stack traces in the net_malloc event.

Syntax: netm [-c display_count]|[-a [addr]]|[-i starting_index]|[-e [outstand_mem]]

-c display_count Display last display_count number of records of net_malloc events.

-a [addr] If no addr variable is supplied for the -a flag, the netm subroutine displays all records of
the net_malloc events; otherwise, it only displays the net_malloc events associated with
the specified address.

-i [starting_index] Displays the net_malloc events started from the events record index.

-e [outstand_mem] If the outstand_mem variable is not specified, a list of net_malloc memory addresses that
have not been freed are displayed. If the outstand_mem variable is specified, net_malloc
events related to the outstanding memory are displayed.

netstat Subcommand
The netstat subcommand symbolically displays the contents of various network-related data structures for
active connections. The Interval parameter, specified in seconds, continuously displays information

460 Kernel Extensions and Device Support Programming Concepts

regarding packet traffic on the configured network interfaces. The Interval parameter takes no flags. The
System parameter specifies the memory used by the current kernel. Unless you are looking at a dump file,
the System parameter should be set to /unix.

Note: The netstat subcommand is available only in the kdb command.

Syntax:

netstat [-n] [-D] [-c] [-P] [-m | -s | -ss | -u | -v] [{ -A -a } | { -r -C -i -I Interface }]
[-f AddressFamily][-p Protocol] [-Zc | -Zi | -Zm | -Zs] [Interval] [System]

Table 1.

-A Shows the address of any protocol control blocks associated with the sockets. This flag
acts with the default display and is used for debugging purposes.

- a Shows the state of all sockets. Without this flag, sockets used by server processes are
not shown.

- c Shows the statistics of the Network Buffer Cache.

- C Shows the routing tables, including the user-configured and current costs of each route.

- D Shows the number of packets received, transmitted, and dropped in the
communications subsystem.

- f AddressFamily Limits reports of statistics or address control blocks to those items specified by the
AddressFamily variable. The following address families are recognized:

v inet - Indicates the AF_INET address family

v inet6 - Indicates the AF_INET6 address family

v ns - Indicates the AF_NS address family

v unix - Indicates the AF_UNIX address family.

- i Shows the state of all configured interfaces.

- I Interface Shows the state of the configured interface specified by the Interface variable.

- m Shows statistics recorded by the memory management routines.

- n Shows network addresses as numbers. When the -n flag is not specified, the netstat
command interprets addresses where possible and displays them symbolically. This flag
can be used with any of the display formats.

- p Protocol Shows statistics about the value specified for the Protocol variable, which is either a
well-known name for a protocol or an alias for it. Protocol names and aliases are listed
in the /etc/protocols file. A null response means that there are no numbers to report.
The program report of the value specified for the Protocol variable is unknown if there is
no statistics routine for it.

- P Shows the statistics of the Data Link Provider Interface (DLPI).

- r Shows the routing tables. Shows routing statistics when used with the -s.

- s Shows statistics for each protocol.

- ss Displays all the non-zero protocol statistics and provides a concise display.

- u Displays information about domain sockets.

- v Shows statistics for CDLI-based communications adapters. This flag causes the netstat
command to run the statistics commands for the entstat, tokstat, and fddistat
commands. No flags are issued to these device driver commands.

- Zc Clears network buffer cache statistics.

- Zi Clears interface statistics.

- Zm Clears network memory allocator statistics.

Chapter 17. KDB Kernel Debugger and Command 461

Table 1. (continued)

- Zs Clears protocol statistics. To clear statistics for a specific protocol, use -p Protocol. For
example, to clear TCP statistics, type the following on the command line:

netstat -Zs -p tcp

Example:
<0>netstat -r

Route Tree for Protocol Family 2 (Internet):
default advantis.in.ibm.c UGc 0 0 en0 - -
freezer.austin.i 9.184.199.232 UGHMW 0 1 en0 - 1
9.184.192/21 shakti.in.ibm.com U 20 40546 en0 - -
mqet2.in.ibm.com 9.184.199.12 UGHMW 0 958 en0 - 1
127/8 localhost U 2 249 lo0 - -

Route Tree for Protocol Family 24 (Internet v6):
::1 ::1 UH 0 0 lo0 16896 -

tcb Subcommand
The tcb subcommand prints TCP block information.

Syntax:

tcb [slot | symbol | Address]

v slot - Specifies the slot number within the tcb table for which data is to be displayed. This value must be
a decimal number.

v Address - Specifies the effective address of a tcb entry to display. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

If no argument is specified, information is displayed for each entry in the tcb table. Data for individual
entries can be displayed by specifying either a slot number or the address of the entry.

Example:
KDB(0)> tcb display TCP blocks
SLOT 1 TCB --------- INPCB INFO ----(@0x05F4AB00)----

next:0x05CD0E80 prev:0x01C033B8 head:0x01C033B8
ppcb:0x05F9FF00 inp_socket:0x05FA4C00
lport: 23 laddr:0x96B70114
fport: 3972 faddr:0x81B7600D

---- SOCKET INFO ----(@05FA4C00)----
type...... 0001 (STREAM)
opts...... 010C (REUSEADDR|KEEPALIVE|OOBINLINE)
linger...... 0000 state...... 0182 (ISCONNECTED|PRIV|NBIO)
pcb... 05F4AB00 proto... 01C01F80 lock... 05FB1680 head... 00000000
q0...... 00000000 q...... 00000000 dq...... 00000000 q0len...... 0000
qlen...... 0000 qlimit...... 0000 dqlen...... 0000 timeo...... 0000
error...... 0000 special... 0808 pgid... 00000000 oobmark. 00000000

snd:cc...... 00000000 hiwat... 00004000 mbcnt... 00000000 mbmax... 00010000
lowat... 00001000 mb...... 00000000 sel... 00000000 events...... 0000
iodone.. 00000000 ioargs.. 00000000 lastpkt. 05FA9D00 wakeone. FFFFFFFF
timer... 00000000 timeo... 00000000 flags...... 0000 ()
wakeup.. 00000000 wakearg. 00000000 lock... 05FB1684

rcv:cc...... 00000000 hiwat... 00004000 mbcnt... 00000000 mbmax... 00010000
lowat... 00000001 mb...... 00000000 sel... 00000000 events...... 0004
iodone.. 00000000 ioargs.. 00000000 lastpkt. 05FA4900 wakeone. FFFFFFFF
timer... 00000000 timeo... 00000000 flags...... 0008 (SEL)
wakeup.. 00000000 wakearg. 00000000 lock... 05FB1688

(0)> more (^C to quit) ? ^C quit
KDB(0)>

462 Kernel Extensions and Device Support Programming Concepts

udb Subcommand
The udb subcommand prints UDP block information.

Syntax:

udb [slot | symbol | Address]

v slot - Specifies the slot number within the udb table for which data is to be displayed. This value must
be a decimal number.

v Address - Specifies the effective address of a udb entry to display. Symbols, hexadecimal values, or
hexadecimal expressions can be used in specification of the address.

If no argument is specified, information is displayed for each entry in the udb table. Data for individual
entries can be displayed by specifying either a slot number or the address of the entry.

Example:
KDB(0)> udb display UDP blocks
SLOT 1 UDB --------- INPCB INFO ----(@0x05F31300)----

next:0x05D21A00 prev:0x01C07170 head:0x01C07170
ppcb:0x00000000 inp_socket:0x05F2D200
lport: 1595 laddr:0x00000000
fport: 0 faddr:0x00000000

---- SOCKET INFO ----(@05F2D200)----
type...... 0002 (DGRAM)
opts...... 0000 ()
linger...... 0000 state...... 0080 (PRIV)
pcb... 05F31300 proto... 01C01F48 lock... 05F2F900 head... 00000000
q0...... 00000000 q...... 00000000 dq...... 00000000 q0len...... 0000
qlen...... 0000 qlimit...... 0000 dqlen...... 0000 timeo...... 0000
error...... 0000 special... 0808 pgid... 00000000 oobmark. 00000000

snd:cc...... 00000000 hiwat... 00010000 mbcnt... 00000000 mbmax... 00020000
lowat... 00001000 mb...... 00000000 sel... 00000000 events...... 0000
iodone.. 00000000 ioargs.. 00000000 lastpkt. 00000000 wakeone. FFFFFFFF
timer... 00000000 timeo... 00000000 flags...... 0000 ()
wakeup.. 00000000 wakearg. 00000000 lock... 05F2F904

rcv:cc...... 00000000 hiwat... 00010000 mbcnt... 00000000 mbmax... 00020000
lowat... 00000001 mb...... 00000000 sel... 00000000 events...... 0000
iodone.. 00000000 ioargs.. 00000000 lastpkt. 05D3DD00 wakeone. FFFFFFFF
timer... 00000000 timeo... 0000005E flags...... 0000 ()
wakeup.. 00000000 wakearg. 00000000 lock... 05F2F908

(0)> more (^C to quit) ? ^C quit
KDB(0)>

sock Subcommand
The sock subcommand prints socket information for TCP/UDP blocks.

Syntax:

sock [tcp | udp] [symbol | Address]

v tcp - Displays socket information for TCP blocks only.

v udp - Displays socket information for UDP blocks only.

v Address - Specifies the effective address of a socket structure to be displayed. Symbols, hexadecimal
values, or hexadecimal expressions can be used in specification of the address.

If no argument is specified socket information is displayed for all TCP and UDP blocks. Output can be
limited to either TCP or UDP sockets through the use of the tcp and udp flags. A single socket structure
can be displayed by specifying the address of the structure.

Example:

Chapter 17. KDB Kernel Debugger and Command 463

KDB(0)> sock tcp display TCP sockets
---- TCP ----(inpcb: @0x05F4AB00)----
---- SOCKET INFO ----(@05FA4C00)----

type...... 0001 (STREAM)
opts...... 010C (REUSEADDR|KEEPALIVE|OOBINLINE)
linger...... 0000 state...... 0182 (ISCONNECTED|PRIV|NBIO)
pcb... 05F4AB00 proto... 01C01F80 lock... 05FB1680 head... 00000000
q0...... 00000000 q...... 00000000 dq...... 00000000 q0len...... 0000
qlen...... 0000 qlimit...... 0000 dqlen...... 0000 timeo...... 0000
error...... 0000 special... 0808 pgid... 00000000 oobmark. 00000000

snd:cc...... 00000002 hiwat... 00004000 mbcnt... 00000100 mbmax... 00010000
lowat... 00001000 mb...... 05F2D600 sel... 00000000 events...... 0000
iodone.. 00000000 ioargs.. 00000000 lastpkt. 05F2D600 wakeone. FFFFFFFF
timer... 00000000 timeo... 00000000 flags...... 0000 ()
wakeup.. 00000000 wakearg. 00000000 lock... 05FB1684

rcv:cc...... 00000000 hiwat... 00004000 mbcnt... 00000000 mbmax... 00010000
lowat... 00000001 mb...... 00000000 sel... 00000000 events...... 0005
iodone.. 00000000 ioargs.. 00000000 lastpkt. 05E1A200 wakeone. FFFFFFFF
timer... 00000000 timeo... 00000000 flags...... 0008 (SEL)
wakeup.. 00000000 wakearg. 00000000 lock... 05FB1688

---- TCP ----(inpcb: @0x05CD0E80)----
---- SOCKET INFO ----(@05CABA00)----

type...... 0001 (STREAM)
(0)> more (^C to quit) ? ^C quit
KDB(0)>

sockinfo Command
The sockinfo command displays socket structure, socket buffer content, the data left in the send/receive
buffer, file descriptor, and owner’s process status.

Syntax:

sockinfo [Address] [TypeOfAddress]

v Address - specifies where the data is to be displayed.

v TypeOfAddress - Valid address types are socket, inpcb, rawcb, unpcb, and ripcb.

For TCP sockets, inpcb and tcpcb structures are also shown. For UDP sockets, its inpcb structure is
displayed. For ROUTING sockets, rawcb structure is shown. For UNIX sockets, its unpcb structure is
shown.

Aliases: si

Examples:

v To see socket related information from a socket address, type:
sockinfo 0x70150400 socket

You don’t need to specify the type of the socket. It can TCP, UDP, RAW, or ROUTING socket.

v To see socket related information from an inpcb address, type:
sockinfo 0x70150644 inpcb

v To see socket related information from a rawcb address, type:
sockinfo 0x70150644 rawcb

v To see socket related information from a unpcb address, type:
sockinfo 0x7009bd40 unpcb

v To see socket related information from a ripcb address, type:
sockinfo 0x7009bd40 ripcb

Sample sockinfo output in CRASH

464 Kernel Extensions and Device Support Programming Concepts

------------------------ TCPCB ----------------------
seg_next 0x7003aadc seg_prev 0x7003aadc t_state 0x01 (LISTEN)
timers: TCPT_REXMT:0 TCPT_PERSIST:0 TCPT_KEEP:0 TCPT_2MSL:0
t_txtshift 0 t_txtcur 12 t_dupacks 0 t_maxseg 512 t_force 0
flags:0x0000 ()
t_template 0x00000000 inpcb 0x7003aa44

snd_wnd:00000 max_sndwnd:00000
snd_cwnd:1073725440 snd_ssthresh:1073725440
iss: 0 snd_una: 0 snd_nxt: 0
last_ack_sent: 0
snd_up= 0

rcv_wnd:00000
rcv_irs: 0 rcv_nxt: 0 rcv_adv: 0
rcv_up: 0

snd=wl1= 0 snd_wl2= 0
t_idle=-30093 t_rtt=00000 t_rtseq= 0 t_srtt=00000 t_rttvar=00024
t_softerror:00000 t_oobflags=0x00 ()

-------------------- INPCB INFO -------------------
next:0x7003ae44 prev:0x7003e644 head:0x04de2f80
ppcb:0x7003aadc inp_socket:0x7003a800
ifaddr:0x00000000 rcvif:0x00000000
inp_tos: 0 inp_ttl: 60 inp_refcnt: 1
inp_options:0x00000000
lport:32771 laddr:0x00000000 (NONE)
fport: 0 faddr:0x00000000 (NONE)

7003a800: --------------------- SOCKET INFO -------------------
type:0x0001 (STREAM) opts:0x0002 (ACCEPTCONN)
state:0x0080 (PRIV) linger:0x0000
pcb:0x7003aa44 proto:0x04de0d08 q0:0x00000000 q0len:0
q:0x00000000 qlen:0 qlimit:5 head:0x00000000
timeo:0 error:0 oobmark:0 pgid:0

------------------------- PROC/FD INFO -------------------
fd: 4
SLT ST PID PPID PGRP UID EUID TCNT NAME
28 a 1c3a e4a 1c3a 0 0 1 dpid2

FLAGS: swapped_in orphanpgrp execed

----------------- SOCKET SND/RCV BUFFER INFO -------------------
rcv: cc:0 hiwat:16384 mbcnt:0 mbmax:65536

lowat:1 mb:0x00000000 events:0x0001
iodone:0x00000000 ioargs:0x00000000 flags:0x0008 (SEL)
timeo:0 lastpkt:0x00000000

----------------- SOCKET SND/RCV BUFFER INFO -------------------
snd: cc:0 hiwat:16384 mbcnt:0 mbmax:65536

lowat:4096 mb:0x00000000 events:0x0000
iodone:0x00000000 ioargs:0x00000000 flags:0x0000 ()
timeo:0 lastpkt:0x00000000

Sample sockinfo output in KDB
(0)> sockinfo 700576dc tcpcb
tcp:0x700576DC inp:0x70057644 so:0x70057400
---- TCPCB ----(@ 700576DC)----

seg_next...... 700576DC seg_prev...... 700576DC
t_softerror... 00000000 t_state....... 00000001 (LISTEN)
t_timer....... 00000000 (TCPT_REXMT)
t_timer....... 00000000 (TCPT_PERSIST)

Chapter 17. KDB Kernel Debugger and Command 465

t_timer....... 00000000 (TCPT_KEEP)
t_timer....... 00000000 (TCPT_2MSL)
t_rxtshift.... 00000000 t_rxtcur...... 0000000C t_dupacks..... 00000000
t_maxseg...... 00000200 t_force....... 00000000
t_flags....... 00000004 (NODELAY)
t_oobflags.... 00000000 ()
t_iobc........ 00000000 t_template.... 70057704 t_inpcb....... 70057644
t_timestamp... 5B230E01 snd_una....... 00000000 snd_nxt....... 00000000
snd_up........ 00000000 snd_wl1....... 00000000 snd_wl2....... 00000000
iss........... 00000000 snd_wnd....... 00000000 rcv_wnd....... 00000000
rcv_nxt....... 00000000 rcv_up........ 00000000 irs........... 00000000
snd_wnd_scale. 00000000 rcv_wnd_scale. 00000000 req_scale_sent 00000000
req_scale_rcvd 00000000 last_ack_sent. 00000000 timestamp_rec. 00000000
timestamp_age. 00005CA8 rcv_adv....... 00000000 snd_max....... 00000000
snd_cwnd...... 3FFFC000 snd_ssthresh.. 3FFFC000 t_idle........ 00005CA7
t_rtt......... 00000000 t_rtseq....... 00000000 t_srtt........ 00000000
t_rttvar...... 00000018 t_rttmin...... 00000002 max_rcvd...... 00000000
max_sndwnd.... 00000000 t_peermaxseg.. 00000200

-------- TCB --------- INPCB INFO ----(@ 70057644)----
next........ 7003D644 prev........ 04DE0F80 head........ 04DE0F80
socket...... 70057400 ppcb........ 700576DC proto....... 00000000
route_6... @ 70057688 iflowinfo... 00000000 oflowinfo... 00000000
fatype...... 00000000 fport....... 00000000 faddr_6... @ 70057654
latype...... 00000001 lport....... 0000C03D laddr_6... @ 7005766C
ifa......... 00000000 rcvif....... 00000000
flags....... 00000400 tos......... 00000000
ttl......... 0000003C rcvttl...... 00000000
options..... 00000000 refcnt...... 00000001
lock........ 00000000 rc_lock..... 00000000 moptions.... 00000000
hash.next... 04DFE964 hash.prev... 04DFE964
timewait.nxt 00000000 timewait.prv 00000000

---- SOCKET INFO ----(@ 70057400)----
type........ 0001 (STREAM)
opts........ 009E (ACCEPTCONN|REUSEADDR|KEEPALIVE|DONTROUTE|LINGER)
linger...... 000A state....... 0080 (PRIV)
pcb..... 70057644 proto... 04DDED08 lock.... 7004BA00 head.... 00000000
q0...... 00000000 q....... 00000000 dq...... 00000000 q0len....... 0000
qlen........ 0000 qlimit...... 0400 dqlen....... 0000 timeo....... 0000
error....... 0000 special..... 0E08 pgid.... 00000000 oobmark. 00000000
tpcb.... 00000000 fdev_ch. 00000000 sec_info 00000000 qos..... 00000000
gidlist. 00000000 private. 00000000 uid..... 00000000 bufsize. 00000000
threadcnt00000000 nextfree 00000000 siguid.. 00000000 sigeuid. 00000000
sigpriv. 00000000
sndtime. 00000000 sec 00000000 usec
rcvtime. 00000000 sec 00000000 usec

snd:cc...... 00000000 hiwat... 00004000 mbcnt... 00000000 mbmax... 00010000
lowat... 00001000 mb...... 00000000 sel..... 00000000 events...... 0000
iodone.. 00000000 ioargs.. 00000000 lastpkt. 00000000 wakeone. FFFFFFFF
timer... 00000000 timeo... 00000000 flags....... 0000 ()
wakeup.. 00000000 wakearg. 00000000 lock.... 7004BA04

rcv:cc...... 00000000 hiwat... 00004000 mbcnt... 00000000 mbmax... 00010000
lowat... 00000001 mb...... 00000000 sel..... 00000000 events...... 0000
iodone.. 00000000 ioargs.. 00000000 lastpkt. 00000000 wakeone. FFFFFFFF
timer... 00000000 timeo... 00000000 flags....... 0000 ()
wakeup.. 00000000 wakearg. 00000000 lock.... 7004BA08

fd: 3
SLOT NAME STATE PID PPID PGRP UID EUID ADSPACE CL

proc+004780 44*httpdlit ACTIVE 02C58 00001 02852 000C8 000C8 00001775 00

466 Kernel Extensions and Device Support Programming Concepts

tcpcb Subcommand
The tcpcb subcommand prints tcpcb information for TCP/UDP blocks.

Syntax:

tcpcb [tcp | udp] [symbol | Address]

v tcp - Displays tcpcb information for TCP blocks only.

v udp - Displays tcpcb information for UDP blocks only.

v Address - Specifies the effective address of a tcpcb structure to be displayed. Symbols, hexadecimal
values, or hexadecimal expressions can be used in specification of the address.

If no argument is specified tcpcb information is displayed for all TCP and UDP blocks. Output can be
limited to either TCP or UDP blocks through the use of the tcp and udp flags. A single tcpcb structure can
be displayed by specifying the address of the structure.

Example:
KDB(0)> tcpcb display TCB control blocks
---- TCP ----(inpcb: @0x05B17F80)----
---- TCPCB ----(@0x05B26C00)----

seg_next 0x05B26C00 seg_prev 0x05B26C00 t_state 0x04 (ESTABLISHED)
timers: TCPT_REXMT:3 TCPT_PERSIST:0 TCPT_KEEP:14400 TCPT_2MSL:0
t_txtshift 0 t_txtcur 3 t_dupacks 0 t_maxseg 1460 t_force 0
flags:0x0000 ()
t_template 0x00000000 inpcb 0x00000000
snd_cwnd: 0x00009448 snd_ssthresh:0x3FFFC000
snd_una: 0x1EADFCA0 snd_nxt: 0x1EADFCA2 snd_up: 0x1EADFCA0
snd=wl1: 0xE3BDEEAF snd_wl2: 0x1EADFCA0 iss: 0x1EAD8401
snd_wnd: 16060 rcv_wnd: 16060
t_idle: 0x00000000 t_rtt: 0x00000001 t_rtseq: 0x1EADFCA0
t_srtt: 0x00000007 t_rttvar: 0x00000003
max_sndwnd:16060 t_iobc:0x00 t_oobflags:0x00 ()

---- TCP ----(inpcb: @0x05B2D000)----
---- TCPCB ----(@0x05B28300)----

seg_next 0x05B28300 seg_prev 0x05B28300 t_state 0x04 (ESTABLISHED)
timers: TCPT_REXMT:0 TCPT_PERSIST:0 TCPT_KEEP:4719 TCPT_2MSL:0
t_txtshift 0 t_txtcur 3 t_dupacks 0 t_maxseg 1460 t_force 0
flags:0x0000 ()
t_template 0x00000000 inpcb 0x00000000
snd_cwnd: 0x0000111C snd_ssthresh:0x3FFFC000

(0)> more (^C to quit) ?^C quit
KDB(0)>

mbuf Subcommand
The mbuf subcommand prints mbuf information.

Syntax:

mbuf [-p | [-a][-n][-d]] [symbol | Address]

v -p - Prints the private mbuf structure pool information

v -a - Follows the packet chain

v -n - Follows the mbuf structure chain within a packet

v -d - Supresses printing of the mbuf structure data (Prints only the mbuf structure header)

v Address - Specifies the effective address of a mbuf structure to be displayed. Symbols, hexadecimal
values, or hexadecimal expressions can be used in specification of the address.

A single mbuf structure can be displayed by specifying the address of the structure. The packet chain and
mbuf structure chains wihtin packets can be displayed via the -a and -n options. The -d option supresses

Chapter 17. KDB Kernel Debugger and Command 467

printing of the mbuf structure data, which is helpful when only the mbuf structure header information is
required. These options are only available when an mbuf address is specified as an argument.

Example:
KDB(1)> mbuf -p

total cluster pools............00000001

cluster pool @..........700F8D40 p_next..................00000000
p_size..................0000000A p_inuse.................00000001
m_outcnt................00000001 m_maxoutcnt.............00000002
next....................70168F00 tail....................70110F00
p_lock..................004A7EE4 p_debug @...............70EF6600
failed..................00000000

KDB(1)> mbuf 70168F00

m.......................70168F00 m_next..................00000000
m_nextpkt...............71210F00 m_data..................71164800
m_len...................00000010
m_type.......... 0001 DATA
m_flags......... 0041 (M_EXT|M_EXT2)
ext_buf.................71164800 ext_free................0026C058
ext_size................00000400 ext_arg.................700F8D40
ext_forw................70168F2C ext_back................70168F2C
ext_hasxm...............00000000 ext_xmemd.....@.........70168F38
ext_debug.....@.........70EF6750
--
71164800: 7116 4400 3172 D58C 0000 0000 0000 0000 q.D.1r..........

VMM Subcommands
Many of the VMM subcommands can be used without an argument; this generally results in display of all
entries for the subcommand. Details for individual entries can by displayed by supplying an argument
identifying the entry of interest.

vmker Subcommand
The vmker subcommand displays virtual memory kernel data.

Syntax:

vmker

Example:
KDB(4)> vmker display virtual memory kernel data

VMM Kernel Data:

vmm srval (vmmsrval) : 00000801
pgsp map srval (dmapsrval) : 00001803
ram disk srval (ramdsrval) : 00000000
kernel ext srval (kexsrval) : 00002004
iplcb vaddr (iplcbptr) : 0045A000
hashbits (hashbits) : 00000010
hash shift amount (stoibits) : 0000000B
rsvd pgsp blks (psrsvdblks) : 00000500
total page frames (nrpages) : 0001FF58
bad page frames (badpages) : 00000000
free page frames (numfrb) : 000198AF
max perm frames (maxperm) : 000195E0
num perm frames (numperm) : 0000125A
total pgsp blks (numpsblks) : 00050000
free pgsp blks (psfreeblks) : 0004CE2C
base config seg (bconfsrval) : 0000580B

468 Kernel Extensions and Device Support Programming Concepts

rsvd page frames (pfrsvdblks) : 00006644
fetch protect (nofetchprot): 00000000
shadow srval (ukernsrval) : 60000000
num client frames (numclient) : 00000014
max client frames (maxclient) : 000195E0
kernel srval (kernsrval) : 00000000
STOI/ITOS mask (stoimask) : 0000001F
STOI/ITOS sid mask(stoinio) : 00000000
max file pageout (maxpout) : 00000000
min file pageout (minpout) : 00000000
repage table size (rptsize) : 00010000
next free in rpt (rptfree) : 00000000
repage decay rate (rpdecay) : 0000005A
global repage cnt (sysrepage) : 00000000
swhashmask (swhashmask) : 0000FFFF
hashmask (hashmask) : 0000FFFF
cachealign (cachealign) : 00001000
overflows (overflows) : 00000000
reloads (reloads) : 0000078E
pmap_lock_addr (pmap_lock_addr): 00000000
compressed segs (numcompress): 00000000
compressed files (noflush) : 00000000
extended iplcb (iplcbxptr) : 00000000
alias hash mask (ahashmask) : 000000FF
max pgs to delete (pd_npages) : 00080000
vrld xlate hits (vrldhits) : 00000000
vrld xlate misses (vrldmisses) : 0000004C
vmm 1 swpft (...srval) : 00003006
vmm 2 swpft (...srval) : 00003807
vmm 3 swpft (...srval) : 00004008
vmm 4 swpft (...srval) : 00004809
vmm swhat (...srval) : 00002805
of ptasegments (numptasegs) : 00000001
vmkerlock (vmkerlock) : E8000100
ame srval(s) (amesrval[0] : 0000600C
ptaseg(s) (ptasegs[1] : 00001002

rmap Subcommand
The rmap subcommand displays the real address range mapping table.

Syntax:

rmap [*] [slot]

v * - Displays all real address range mappings.

v slot - Displays the real address range mapping for the specified slot. This value must be a hexadecimal
value.

If an argument of * is specified, a summary of all entries is displayed. If a slot number is specified, only
that entry is displayed. If no argument is specified, the user is prompted for a slot number, and data for
that and all higher slots is displayed, as well as the page intervals utilized by VMM.

Example:
KDB(2)> rmap * display real address range mappings

SLOT RADDR SIZE ALIGN WIMG <name>

vmrmap+000028 0001 0000000000000000 00458D51 00000000 0002 Kernel
vmrmap+000048 0002 000000001FF20000 00028000 00000000 0002 IPL control block
vmrmap+000068 0003 0000000000459000 00058000 00001000 0002 MST
vmrmap+000088 0004 00000000008BF000 001ABCE0 00000000 0002 RAMD
vmrmap+0000A8 0005 0000000000A6B000 00025001 00000000 0002 BCFG
vmrmap+0000E8 0007 0000000000C00000 00400000 00400000 0002 PFT
vmrmap+000108 0008 00000000004B1000 0007FD60 00001000 0002 PVT

Chapter 17. KDB Kernel Debugger and Command 469

vmrmap+000128 0009 0000000000531000 00200000 00001000 0002 PVLIST
vmrmap+000148 000A 0000000001000000 0067DDE0 00001000 0002 s/w PFT
vmrmap+000168 000B 0000000000731000 00040000 00001000 0002 s/w HAT
vmrmap+000188 000C 0000000000771000 00001000 00001000 0002 APT
vmrmap+0001A8 000D 0000000000772000 00000200 00001000 0002 AHAT
vmrmap+0001C8 000E 0000000000773000 00080000 00001000 0002 RPT
vmrmap+0001E8 000F 00000000007F3000 00020000 00001000 0002 RPHAT
vmrmap+000208 0010 0000000000813000 0000D000 00001000 0002 PDT
vmrmap+000228 0011 0000000000820000 00001000 00001000 0002 PTAR
vmrmap+000248 0012 0000000000821000 00002000 00001000 0002 PTAD
vmrmap+000268 0013 0000000000823000 00003000 00001000 0002 PTAI
vmrmap+000288 0014 0000000000826000 00001000 00001000 0002 DMAP
vmrmap+0002C8 0016 00000000FF000000 00000100 00000000 0005 SYSREG
vmrmap+0002E8 0017 00000000FF100000 00000600 00000000 0005 SYSINT
vmrmap+000308 0018 00000000FF600000 00022000 00000000 0005 NVRAM
vmrmap+000328 0019 000000001FD00000 00080000 00000000 0006 TCE
vmrmap+000348 001A 000000001FC00000 00080000 00000000 0006 TCE
vmrmap+000368 001B 00000000FF001000 00000014 00000000 0005 System Specific Reg.
vmrmap+000388 001C 00000000FF180000 00000004 00000000 0005 APR

KDB(2)> rmap 16 display real address range mappings of slot 16
RMAP entry 0016 of 001F: SYSREG
> valid
> range is in I/O space
Real address : 00000000FF000000
Effective address : 00000000E0000000
Size : 00000100
Alignment : 00000000
WIMG bits : 5

KDB(2)> rmap display page intervals utilized by the VMM
VMM RMAP, usage: rmap [*][<slot>]
Enter the RMAP index (0-001F): 20 out of range slot

Interval entry 0 of 5
.... Memory holes (1 intervals)

0 : [01FF58,100000)
Interval entry 1 of 5
.... Fixed kernel memory (4 intervals)

0 : [000000,0000F8)
1 : [0000F7,00011A)
2 : [000119,000125)
3 : [0002E6,0002E9)

Interval entry 2 of 5
.... Released kernel memory (1 intervals)

0 : [00011A,000124)
Interval entry 3 of 5
.... Fixed common memory (2 intervals)

0 : [000488,000495)
1 : [000494,000495)

Interval entry 4 of 5
.... Page replacement skips (6 intervals)

0 : [000000,000827)
1 : [000C00,00167E)
2 : [01FC00,01FC80)
3 : [01FD00,01FD80)
4 : [01FF20,01FF48)
5 : [01FF58,100000)

Interval entry 5 of 5
.... Debugger skips (3 intervals)

0 : [0004B1,000731)
1 : [000C00,001000)
2 : [01FF58,100000)

470 Kernel Extensions and Device Support Programming Concepts

pfhdata Subcommand
The pfhdata subcommand displays virtual memory control variables.

Syntax:

pfhdata

Example:
KDB(2)> pfhdata display virtual memory control variables

VMM Control Variables: B69C8000 vmmdseg +69C8000

1st non-pinned page (firstnf) : 00000000
1st free sid entry (sidfree) : 000003F0
1st delete pending (sidxmem) : 00000000
highest sid entry (hisid) : 0000040C
fblru page-outs (numpout) : 00000000
fblru remote pg-outs (numremote) : 00000000
frames not pinned (pfavail) : 0001E062
next lru candidate (lruptr) : 00000000
v_sync cursor (syncptr) : 00000000
last pdt on i/o list (iotail) : FFFFFFFF
num of paging spaces (npgspaces) : 00000002
PDT last alloc from (pdtlast) : 00000001
max pgsp PDT index (pdtmaxpg) : 00000001
PDT index of server (pdtserver) : 00000000
fblru minfree (minfree) : 00000078
fblru maxfree (maxfree) : 00000080
scb serial num (nxtscbnum) : 00000338
comp repage cnt (rpgcnt[RPCOMP]) : 00000000
file repage cnt (rpgcnt[RPFILE]) : 00000000
num of comp replaces (nreplaced[RPCOMP]): 00000000
num of file replaces (nreplaced[RPFILE]): 00000000
num of comp repages (nrepaged[RPCOMP]) : 00000000
num of file repages (nrepaged[RPFILE]) : 00000000
minperm (minperm) : 00006578
min page-ahead (minpgahead) : 00000002
max page-ahead (maxpgahead) : 00000008
sysbr protect key (kerkey) : 00000000
non-ws page-outs (numpermio) : 00000000
free frame wait (freewait) : 00000000
device i/o wait (devwait) : 00000000
extend XPT wait (extendwait) : 00000000
buf struct wait (bufwait) : 00000000
inh/delete wait (deletewait) : 00000000
SIGDANGER level (npswarn) : 00002800
SIGKILL level (npskill) : 00000A00
next warn level (nextwarn) : 00002800
next kill level (nextkill) : 00000A00
adj warn level (adjwarn) : 00000008
adj kill level (adjkill) : 00000008
cur pdt alloc (npdtblks) : 00000003
max pdt alloc (maxpdtblks) : 00000004
num i/o sched (numsched) : 00000004
freewake (freewake) : 00000000
disk quota wait (dqwait) : 00000000
1st free ame entry (amefree) : FFFFFFFF
1st del pending ame (amexmem) : 00000000
highest ame entry (hiame) : 00000000
pag space free wait (pgspwait) : 00000000
index in int array (lruidx) : 00000000
next memory hole (skiplru) : 00000000
first free apt entry (aptfree) : 00000056
next apt entry (aptlru) : 00000000
sid index of logs (logsidx) @ B01C80CC

Chapter 17. KDB Kernel Debugger and Command 471

lru request (lrurequested) : 00000000
lru daemon wait anchor (lrudaemon) : E6000758
global vmap lock @ B01C8514 E80001C0
global ame lock @ B01C8554 E8000200
global rpt lock @ B01C8594 E8000240
global alloc lock @ B01C85D4 E8000280
apt freelist lock @ B01C8614 E80002C0

vmstat Subcommand
The vmstat subcommand displays virtual memory statistics.

Syntax:

vmstat

Example:
KDB(6)> vmstat display virtual memory statistics

VMM Statistics:

page faults (pgexct) : 0CE0A83D
page reclaims (pgrclm) : 00000000
lockmisses (lockexct) : 00000000
backtracks (backtrks) : 0025D779
pages paged in (pageins) : 002D264A
pages paged out (pageouts) : 00E229D1
paging space page ins (pgspgins) : 0001F9C8
paging space page outs (pgspgouts): 0003B20E
start I/Os (numsios) : 00B4786A
iodones (numiodone): 00B478F7
zero filled pages (zerofills): 0225E1A4
executable filled pages (exfills) : 000090C4
pages examined by clock (scans) : 008F32DF
clock hand cycles (cycles) : 0000008F
page steals (pgsteals) : 004E986F
free frame waits (freewts) : 023449E5
extend XPT waits (extendwts): 000008C9
pending I/O waits (pendiowts): 0022C5E3

VMM Statistics:

ping-pongs: source => alias (pings) : 00000000
ping-pongs: alias => source (pongs) : 00000000
ping-pongs: alias => alias (pangs) : 00000000
ping-pongs: alias page del (dpongs): 00000000
ping-pongs: alias page write(wpongs): 00000000
ping-pong cache flushes (cachef): 00000000
ping-pong cache invalidates (cachei): 00000000

vmaddr Subcommand
The vmaddr subcommand displays addresses of VMM structures.

Syntax:

vmaddr

Example:
KDB(1)> vmaddr display virtual memory addresses

VMM Addresses

H/W PTE : 00C00000 [real address]
H/W PVT : 004B1000 [real address]
H/W PVLIST : 00531000 [real address]

472 Kernel Extensions and Device Support Programming Concepts

S/W HAT : A0000000 A0000000
S/W PFT : 60000000 60000000
AHAT : B0000000 vmmdseg +000000
APT : B0020000 vmmdseg +020000
RPHAT : B0120000 vmmdseg +120000
RPT : B0140000 vmmdseg +140000
PDT : B01C0000 vmmdseg +1C0000
PFHDATA : B01C8000 vmmdseg +1C8000
LOCKANCH : B01C8654 vmmdseg +1C8654
SCBs : B01CC87C vmmdseg +1CC87C
LOCKWORDS : B45CC87C vmmdseg +45CC87C
AMEs : D0000000 ameseg +000000
LOCK:
PMAP : 00000000 00000000

pdt Subcommand
The pdt subcommand displays entries of the paging device table.

Syntax:

pdt [*] [slot]

v * - Displays all entries of the paging device table.

v slot - Specifies the slot number within the paging device table to be displayed. This value must be a
hexadecimal value.

An argument of * results in all entries being displayed in a summary. Details for a specific entry can be
displayed by specifying the slot number in the paging device table. If no argument is specified, the user is
prompted for the PDT index to be displayed. Detailed data is then displayed for the entered slot and all
higher slot numbers.

Example:
KDB(3)> pdt * display paging device table

SLOT NEXTIO DEVICE IOTAIL DMSRVAL IOCNT <name>

vmmdseg+1C0000 0000 FFFFFFFF 000A0001 FFFFFFFF 00000000 00000000 paging
vmmdseg+1C0040 0001 FFFFFFFF 000A000E FFFFFFFF 00000000 00000000 paging
vmmdseg+1C0080 0002 FFFFFFFF 000A000F FFFFFFFF 00000000 00000000 paging
vmmdseg+1C0440 0011 FFFFFFFF 000A0007 FFFFFFFF 0001B07B 00000000 filesystem
vmmdseg+1C0480 0012 FFFFFFFF 000A0003 FFFFFFFF 00000000 00000000 log
vmmdseg+1C04C0 0013 FFFFFFFF 000A0004 FFFFFFFF 00005085 00000000 filesystem
vmmdseg+1C0500 0014 FFFFFFFF 000A0005 FFFFFFFF 0000B08B 00000000 filesystem
vmmdseg+1C0540 0015 FFFFFFFF 000A0006 FFFFFFFF 0000E0AE 00000000 filesystem
vmmdseg+1C0580 0016 FFFFFFFF 000A0008 FFFFFFFF 0000F14F 00000000 filesystem
vmmdseg+1C05C0 0017 FFFFFFFF 0B5C7308 FFFFFFFF 00000000 00000000 remote
vmmdseg+1C0600 0018 FFFFFFFF 0B5C75B4 FFFFFFFF 00000000 00000000 remote

KDB(3)> pdt 13 display paging device table slot 13

PDT address B01C04C0 entry 0013 of 01FF, type: FILESYSTEM
next pdt on i/o list (nextio) : FFFFFFFF
dev_t or strategy ptr (device) : 000A0004
last frame w/pend I/O (iotail) : FFFFFFFF
free buf_struct list (bufstr) : 0B23A0B0
total buf structs (nbufs) : 005D
available (PAGING) (avail) : 0000
JFS disk agsize (agsize) : 0400
JFS inode agsize (iagsize) : 0800
JFS log SCB index (logsidx) : 0007A
JFS fragments per page(fperpage): 1
JFS compression type (comptype): 0

Chapter 17. KDB Kernel Debugger and Command 473

JFS log2 bigalloc mult(bigexp) : 0
disk map srval (dmsrval) : 00005085
i/o’s not finished (iocnt) : 00000000
logical volume lock (lock) :@B01C04E4 00000000

scb Subcommand
The scb subcommand provides options for display of information about VMM segment control blocks.

Syntax:

scb [?]

v menu options - Menu options and parameters can be entered along with the subcommand to avoid
display of menus and prompts.

If this subcommand is invoked without arguments, menus and prompts are used to determine the data to
be displayed. If the menu selections and required values are known they may be entered as subcommand
arguments.

Example:
KDB(2)> scb display VMM segment control block
VMM SCBs
Select the scb to display by:
1) index
2) sid
3) srval
4) search on sibits
5) search on npsblks
6) search on npages
7) search on npseablks
8) search on lock
9) search on segment type

Enter your choice: 2 sid
Enter the sid (in hex): 00000401 value

VMM SCB Addr B69CC8C0 Index 00000001 of 00003A2F Segment ID: 00000401

WORKING STORAGE SEGMENT
parent sid (parent) : 00000000
left child sid (left) : 00000000
right child sid (right) : 00000000
extent of growing down (minvpn) : 0000ABBD
last page user region (sysbr) : FFFFFFFF
up limit (uplim) : 00007FFF
down limit (downlim) : 00008000
number of pgsp blocks (npsblks) : 00000008
number of epsa blocks (npseablks): 00000000

segment info bits (_sibits) : A004A000
default storage key (_defkey) : 2
> (_segtype)..... working segment
> (_segtype)..... segment is valid
> (_system)...... system segment
> (_chgbit)...... segment modified
> (_compseg)..... computational segment
next free list/mmap cnt (free) : 00000000

non-fblu pageout count (npopages): 0000
xmem attach count (xmemcnt) : 0000
address of XPT root (vxpto) : C00C0400
pages in real memory (npages) : 0000080E
page frame at head (sidlist) : 00006E66
max assigned page number (maxvpn) : 00006AC3
lock (lock) : E80001C0

474 Kernel Extensions and Device Support Programming Concepts

KDB(2)> scb display VMM segment control block
VMM SCBs
Select the scb to display by:
1) index
2) sid
3) srval
4) search on sibits
5) search on npsblks
6) search on npages
7) search on npseablks
8) search on lock
9) search on segment type
Enter your choice: 8 search on lock

Find all scbs currently locked
sidx 00000012 locked: 00044EEF
sidx 00000D63 locked: 000412F7
sidx 00000FB5 locked: 00044EEF
sidx 00001072 locked: 000280E7
sidx 000034B4 locked: 0002EC61

5 (dec) scb locked
KDB(2)> scb 1 display VMM segment control block by index
Enter the index (in hex): 000034B4 index

VMM SCB Addr B6AAC84C Index 000034B4 of 00003A2F Segment ID: 000064B4

WORKING STORAGE SEGMENT
parent sid (parent) : 00000000
left child sid (left) : 00000000
right child sid (right) : 00000000
extent of growing down (minvpn) : 00010000
last page user region (sysbr) : 00010000
up limit (uplim) : 0000FFFF
down limit (downlim) : 00010000
number of pgsp blocks (npsblks) : 0000000A
number of epsa blocks (npseablks): 00000000

segment info bits (_sibits) : A0002080
default storage key (_defkey) : 2
> (_segtype)..... working segment
> (_segtype)..... segment is valid
> (_compseg)..... computational segment
> (_sparse)...... sparse segment
next free list/mmap cnt (free) : 00000000
non-fblu pageout count (npopages): 0000
xmem attach count (xmemcnt) : 0000
address of XPT root (vxpto) : C0699C00
pages in real memory (npages) : 00000011
page frame at head (sidlist) : 00004C5C
max assigned page number (maxvpn) : 000001C1
lock (lock) : E80955E0

pft Subcommand
The pft subcommand provides options for display of information about the VMM page frame table.

Syntax:

pft [?]

v menu options - Menu options and parameters can be entered along with the subcommand to avoid
display of menus and prompts.

If this subcommand is invoked without arguments, menus and prompts are used to determine the data to
be displayed. If the menu selections and required values are known they can by entered as subcommand
arguments.

Chapter 17. KDB Kernel Debugger and Command 475

Example:
KDB(5)> pft display VMM page frame
VMM PFT
Select the PFT entry to display by:
1) page frame #
2) h/w hash (sid,pno)
3) s/w hash (sid,pno)
4) search on swbits
5) search on pincount
6) search on xmemcnt
7) scb list
8) io list

Enter your choice: 7 scb list
Enter the sid (in hex): 00005555 sid value

VMM PFT Entry For Page Frame 0EB87 of 0FF67

pte = B0155520, pvt = B203AE1C, pft = B3AC2950
h/w hashed sid : 00005555 pno : 00000001 key : 1
source sid : 00005555 pno : 00000001 key : 1

> in use
> on scb list
> valid (h/w)
> referenced (pft/pvt/pte): 0/0/1
> modified (pft/pvt/pte): 0/0/0
page number in scb (pagex) : 00000001
disk block number (dblock) : 00000AC6
next page on scb list (sidfwd) : 0000E682
prev page on scb list (sidbwd) : FFFFFFFF
freefwd/waitlist (freefwd): 00000000
freebwd/logage/pincnt (freebwd): 00000000
out of order I/O (nonfifo): 0000
next frame i/o list (nextio) : 00000000
storage attributes (wimg) : 2
xmem hide count (xmemcnt): 0
next page on s/w hash (next) : FFFFFFFF
List of alias entries (alist) : 0000FFFF
index in PDT (devid) : 0014

VMM PFT Entry For Page Frame 0E682 of 0FF67

pte = B01555F0, pvt = B2039A08, pft = B3AB3860
h/w hashed sid : 00005555 pno : 00000002 key : 1
source sid : 00005555 pno : 00000002 key : 1

> in use
> on scb list
> valid (h/w)
> referenced (pft/pvt/pte): 0/0/1
> modified (pft/pvt/pte): 0/0/0
page number in scb (pagex) : 00000002
disk block number (dblock) : 00000AC7
next page on scb list (sidfwd) : 0000EB7B
prev page on scb list (sidbwd) : 0000EB87
freefwd/waitlist (freefwd): 00000000
freebwd/logage/pincnt (freebwd): 00000000
out of order I/O (nonfifo): 0000
next frame i/o list (nextio) : 00000000
storage attributes (wimg) : 2
xmem hide count (xmemcnt): 0
next page on s/w hash (next) : FFFFFFFF
List of alias entries (alist) : 0000FFFF
index in PDT (devid) : 0014

VMM PFT Entry For Page Frame 0EB7B of 0FF67

476 Kernel Extensions and Device Support Programming Concepts

pte = B0155558, pvt = B203ADEC, pft = B3AC2710
h/w hashed sid : 00005555 pno : 00000000 key : 1
source sid : 00005555 pno : 00000000 key : 1

> in use
> on scb list
> valid (h/w)
> referenced (pft/pvt/pte): 0/0/1
> modified (pft/pvt/pte): 0/0/0
page number in scb (pagex) : 00000000
disk block number (dblock) : 00000AC5
next page on scb list (sidfwd) : FFFFFFFF
prev page on scb list (sidbwd) : 0000E682
freefwd/waitlist (freefwd): 00000000
freebwd/logage/pincnt (freebwd): 00000000
out of order I/O (nonfifo): 0000
next frame i/o list (nextio) : 00000000
storage attributes (wimg) : 2
xmem hide count (xmemcnt): 0
next page on s/w hash (next) : FFFFFFFF
List of alias entries (alist) : 0000FFFF
index in PDT (devid) : 0014

Pages on SCB list
npages.......... 00000003
on sidlist...... 00000003
pageout_pagein.. 00000000
free............ 00000000
KDB(0)> pft 8 io list
Enter the page frame number (in hex): 00002749 first page frame

VMM PFT Entry For Page Frame 02749 of 0FF67

pte = B00C9280, pvt = B2009D24, pft = B3875DB0
h/w hashed sid : 0080324A pno : 00000000 key : 1
source sid : 0000324A pno : 00000000 key : 1

> page out
> on scb list
> ok to write to home
> valid (h/w)
> referenced (pft/pvt/pte): 0/1/0
> modified (pft/pvt/pte): 1/1/0
page number in scb (pagex) : 00000000
disk block number (dblock) : 0000420D
next page on scb list (sidfwd) : 0000EE94
prev page on scb list (sidbwd) : 00002E11
freefwd/waitlist (freefwd): E6096C00
freebwd/logage/pincnt (freebwd): 00000000
out of order I/O (nonfifo): 0001
index in PDT (devid) : 0033
next frame i/o list (nextio) : 000043EB
storage attributes (wimg) : 2
xmem hide count (xmemcnt): 0
next page on s/w hash (next) : FFFFFFFF
List of alias entries (alist) : 0000FFFF

VMM PFT Entry For Page Frame 043EB of 0FF67 next frame i/o list

pte = B01580C0, pvt = B2010FAC, pft = B38CBC10
h/w hashed sid : 008055FC pno : 000003FF key : 1
source sid : 000055FC pno : 000003FF key : 1

> page out
> on scb list
> ok to write to home
> valid (h/w)

Chapter 17. KDB Kernel Debugger and Command 477

> referenced (pft/pvt/pte): 0/1/0
> modified (pft/pvt/pte): 1/1/0
page number in scb (pagex) : 000003FF
disk block number (dblock) : 00044D47
next page on scb list (sidfwd) : 00005364
prev page on scb list (sidbwd) : 000043EB
freefwd/waitlist (freefwd): 00000000
freebwd/logage/pincnt (freebwd): 00000000
out of order I/O (nonfifo): 0001
index in PDT (devid) : 0031
next frame i/o list (nextio) : 00004405
storage attributes (wimg) : 2
xmem hide count (xmemcnt): 0
next page on s/w hash (next) : 00002789
List of alias entries (alist) : 0000FFFF

...

VMM PFT Entry For Page Frame 02E11 of 0FF67

pte = B00C90C0, pvt = B200B844, pft = B388A330
h/w hashed sid : 0080324A pno : 00000009 key : 1
source sid : 0000324A pno : 00000009 key : 1

> page out
> on scb list
> ok to write to home
> valid (h/w)
> referenced (pft/pvt/pte): 0/1/0
> modified (pft/pvt/pte): 1/1/0
page number in scb (pagex) : 00000009
disk block number (dblock) : 000042C0
next page on scb list (sidfwd) : 00002749
prev page on scb list (sidbwd) : 00002FCB
freefwd/waitlist (freefwd): 00000000
freebwd/logage/pincnt (freebwd): 00000000
out of order I/O (nonfifo): 0001
index in PDT (devid) : 0033
next frame i/o list (nextio) : 00002749
storage attributes (wimg) : 2
xmem hide count (xmemcnt): 0
next page on s/w hash (next) : FFFFFFFF
List of alias entries (alist) : 0000FFFF

Pages on iolist...... 00000091

pte Subcommand
The pte subcommand provides options for display of information about the VMM page table entries.

Syntax:

pte [?]

v menu options - Menu options and parameters can be entered along with the subcommand to avoid
display of menus and prompts.

If this subcommand is invoked without arguments, menus and prompts are used to determine the data to
be displayed. If the menu selections and required values are known they can be entered as subcommand
arguments.

Example:
KDB(1)> pte display VMM page table entry
VMM PTE
Select the PTE to display by:
1) index

478 Kernel Extensions and Device Support Programming Concepts

2) sid,pno
3) page frame
4) PTE group
Enter your choice: 2 sid,pno
Enter the sid (in hex): 802 sid value
Enter the pno (in hex): 0 pno value

PTEX v SID h avpi RPN r c wimg pp
004010 1 000802 0 00 007CD 1 1 0002 00
KDB(1)> pte 4 display VMM page table group
Enter the sid (in hex): 802 sid value
Enter the pno (in hex): 0 pno value

PTEX v SID h avpi RPN r c wimg pp
004010 1 000802 0 00 007CD 1 1 0002 00
004011 1 000803 0 00 090FF 0 0 0002 03
004012 0 000000 0 00 00000 0 0 0000 00
004013 0 000000 0 00 00000 0 0 0000 00
004014 0 000000 0 00 00000 0 0 0000 00
004015 0 000000 0 00 00000 0 0 0000 00
004016 0 000000 0 00 00000 0 0 0000 00
004017 0 000000 0 00 00000 0 0 0000 00

PTEX v SID h avpi RPN r c wimg pp
03BFE8 1 00729E 0 01 0DC55 0 0 0002 01
03BFE9 1 007659 0 00 07BC6 1 0 0002 02
03BFEA 0 000000 0 00 00000 0 0 0000 00
03BFEB 0 000000 0 00 00000 0 0 0000 00
03BFEC 0 000000 0 00 00000 0 0 0000 00
03BFED 0 000000 0 00 00000 0 0 0000 00
03BFEE 0 000000 0 00 00000 0 0 0000 00
03BFEF 0 000000 0 00 00000 0 0 0000 00

pta Subcommand
The pta subcommand displays data from the VMM PTA segment.

Syntax:

pta [?]

v -r - Displays XPT root data.

v -d - Displays XPT direct block data.

v -a - Displays the Area Page Map.

v -v - Displays map blocks.

v -x - Displays XPT fields.

v -f - Prompts for the sid/pno for which the XPT fields are to be displayed

v sid - Specifies the segment ID. Symbols, hexadecimal values, or hexadecimal expressions may be used
for this argument.

v idx - Specifies the index for the specified area. Symbols, hexadecimal values, or hexadecimal
expressions may be used for this argument.

The optional arguments listed above determine the data that is displayed.

Example:
KDB(3)> pta ? display usage
VMM PTA segment @ C0000000
Usage: pta

pta -r[oot] [sid] to print XPT root
pta -d[blk] [sid] to print XPT direct blocks
pta -a[pm] [idx] to print Area Page Map
pta -v[map] [idx] to print map blocks
pta -x[pt] xpt to print XPT fields

Chapter 17. KDB Kernel Debugger and Command 479

KDB(3)> pta display PTA information
VMM PTA segment @ C0000000
pta_root....... @ C0000000 pta_hiapm...... : 00000200
pta_vmapfree... : 00010FCB pta_usecount... : 0004D000
pta_anchor[0].. : 00000107 pta_anchor[1].. : 00000000
pta_anchor[2].. : 00000102 pta_anchor[3].. : 00000000
pta_anchor[4].. : 00000000 pta_anchor[5].. : 00000000
pta_freecnt.... : 0000000A pta_freetail... : 000001FF
pta_apm(1rst).. @ C0000600 pta_xptdblk.... @ C0080000

KDB(1)> pta -a 2 display area page map for 1K bucket
VMM PTA segment @ C0000000
INDEX XPT1K
pta_apm @ C0000810 pmap... : D0000000 fwd.... : 00F7 bwd.... : 0000
pta_apm @ C00007B8 pmap... : B0000000 fwd.... : 00EE bwd.... : 0102
pta_apm @ C0000770 pmap... : E0000000 fwd.... : 00FA bwd.... : 00F7
pta_apm @ C00007D0 pmap... : 30000000 fwd.... : 0112 bwd.... : 00EE
pta_apm @ C0000890 pmap... : B0000000 fwd.... : 010A bwd.... : 00FA
pta_apm @ C0000850 pmap... : B0000000 fwd.... : 0111 bwd.... : 0112
pta_apm @ C0000888 pmap... : 50000000 fwd.... : 00F5 bwd.... : 010A
pta_apm @ C00007A8 pmap... : A0000000 fwd.... : 010E bwd.... : 0111
pta_apm @ C0000870 pmap... : 10000000 fwd.... : 00F6 bwd.... : 00F5
pta_apm @ C00007B0 pmap... : D0000000 fwd.... : 010C bwd.... : 010E
pta_apm @ C0000860 pmap... : 30000000 fwd.... : 0114 bwd.... : 00F6
pta_apm @ C00008A0 pmap... : 10000000 fwd.... : 0108 bwd.... : 010C
pta_apm @ C0000840 pmap... : E0000000 fwd.... : 010D bwd.... : 0114
pta_apm @ C0000868 pmap... : D0000000 fwd.... : 0106 bwd.... : 0108
pta_apm @ C0000830 pmap... : 50000000 fwd.... : 0000 bwd.... : 010D

ste Subcommand
The ste subcommand provides options for display of information about segment table entries for 64-bit
processes.

Syntax:

ste [?]

v menu options - Menu options and parameters can be entered along with the subcommand to avoid
display of menus and prompts.

If this subcommand is invoked without arguments, menus and prompts are used to determine the data to
be displayed. If the menu selections and required values are known they can be entered as subcommand
arguments.

Example:
KDB(0)> ste display segment table
Segment Table (STAB)
Select the STAB entry to display by:
1) esid
2) sid
3) dump hash class (input=esid)
4) dump entire stab

Enter your choice: 4 display entire stab
000000002FF9D000: ESID 0000000080000000 VSID 0000000000024292 V Ks Kp
000000002FF9D010: ESID 0000000000000000 VSID 0000000000000000 V Ks Kp
000000002FF9D020: ESID 0000000000000000 VSID 0000000000000000
000000002FF9D030: ESID 0000000000000000 VSID 0000000000000000
000000002FF9D040: ESID 0000000000000000 VSID 0000000000000000
...

(0)> f stack frame
thread+002A98 STACK:
[00031960]e_block_thread+000224 ()
[00041738]nsleep+000124 (??, ??)

480 Kernel Extensions and Device Support Programming Concepts

[01CFF0F4]nsleep64_+000058 (0FFFFFFF, F0000001, 00000001, 10003730,
1FFFFEF0, 1FFFFEF8)

[000038B4].sys_call+000000 ()
[80000010000867C]080000010000867C (??, ??, ??, ??)
[80000010001137C]nsleep+000094 (??, ??)
[800000100058204]sleep+000030 (??)
[100000478]main+0000CC (0000000100000001, 00000000200FEB78)
[10000023C]__start+000044 ()

(0)> ste display segment table
Segment Table (STAB)
Select the STAB entry to display by:
1) esid
2) sid
3) dump hash class (input=esid)
4) dump entire stab
Enter your choice: 3 hash class
Hash Class to dump (in hex) [esid ok here]: 08000010 input=esid

PRIMARY HASH GROUP
000000002FF9D800: ESID 0000000000000010 VSID 0000000000002BC1 V Ks Kp
000000002FF9D810: ESID 0000000080000010 VSID 0000000000014AEA V Ks Kp
000000002FF9D820: ESID 0000000000000000 VSID 0000000000000000
000000002FF9D830: ESID 0000000000000000 VSID 0000000000000000
000000002FF9D840: ESID 0000000000000000 VSID 0000000000000000
000000002FF9D850: ESID 0000000000000000 VSID 0000000000000000
000000002FF9D860: ESID 0000000000000000 VSID 0000000000000000
000000002FF9D870: ESID 0000000000000000 VSID 0000000000000000

SECONDARY HASH GROUP
000000002FF9D780: ESID 0000000000000000 VSID 0000000000000000
000000002FF9D790: ESID 0000000000000000 VSID 0000000000000000
000000002FF9D7A0: ESID 0000000000000000 VSID 0000000000000000
000000002FF9D7B0: ESID 0000000000000000 VSID 0000000000000000
000000002FF9D7C0: ESID 0000000000000000 VSID 0000000000000000
000000002FF9D7D0: ESID 0000000000000000 VSID 0000000000000000
000000002FF9D7E0: ESID 0000000000000000 VSID 0000000000000000
000000002FF9D7F0: ESID 0000000000000000 VSID 0000000000000000
000000002FF9DFF0: ESID 0000000000000000 VSID 0000000000000000

(0)> ste 1 display esid entry in segment table
Enter the esid (in hex): 0FFFFFFFF
000000002FF9DF80: ESID 00000000FFFFFFFF VSID 00000000000325F9 V Ks Kp

sr64 Subcommand
The sr64 subcommand displays segment registers for a 64-bit process.

Syntax:

sr64

v -p pid - Specifies the process ID of a 64-bit process. This must be a decimal or hexadecimal value
depending on the setting of the hexadecimal_wanted switch.

v esid - Specifies the first segment register to display (lower register numbers are ignored). This argument
must be a hexadecimal value.

v size - Specifies the value to be added to esid to determine the last segment register to display. This
argument must be a hexadecimal value.

If no arguments are entered, the current process is used. Another process may be specified by using the
-p pid flag. Additionally, the esid and size arguments may be used to limit the segment registers displayed.
The esid value determines the first segment register to display. The value of esid + size determines the
last segment register to display.

Chapter 17. KDB Kernel Debugger and Command 481

The registers are displayed in groups of 16, so the esid value is rounded down to a multiple of 16 (if
necessary) and the size is rounded up to a multiple of 16 (if necessary). For example: sr64 11 11 will
display the segment registers 10 through 2f.

Example:
KDB(0)> sr64 ? display help
Usage: sr64 [-p pid] [esid] [size]
KDB(0)> sr64 display all segment registers
SR00000000: 60000000 SR00000002: 60002B45 SR0000000D: 6000614C
SR00000010: 6000520A SR00000011: 6000636C
SR8001000A: 60003B47
SR80020014: 6000B356
SR8FFFFFFF: 60000340
SR90000000: 60001142
SR9FFFFFFF: 60004148
SRFFFFFFFF: 6000B336
KDB(0)> sr64 11 display up to 16 SRs from 10
Segment registers for address space of Pid: 000048CA
SR00000010: 6000E339 SR00000011: 6000B855
KDB(0)> sr64 0 100 display up to 256 SRs from 0
Segment registers for address space of Pid: 000048CA
SR00000000: 60000000 SR00000002: 60002B45 SR0000000D: 6000614C
SR00000010: 6000520A SR00000011: 6000636C

segst64 Subcommand
The segst64 subcommand displays segment state information for a 64-bit process.

Syntax:

segst64

v -p pid - Specifies the process ID of a 64-bit process. This must be a decimal or hexadecimal value
depending on the setting of the hexadecimal_wanted swtich.

v -e esid - Specifies the first segment register to display (lower register numbers are ignored). This
argument must be a hexadecimal value.

v -s seg - Specifies the limit display to only segment register with a segment state that matches seg.
Possible values for seg are: SEG_AVAIL, SEG_SHARED, SEG_MAPPED, SEG_MRDWR,
SEG_DEFER, SEG_MMAP, SEG_WORKING, SEG_RMMAP, SEG_OTHER, SEG_EXTSHM, and
SEG_TEXT.

v value - Sets the limit to display only segments with the specified value for the segfileno field. This
argument must be a hexadecimal value.

If no argument is specified information is displayed for the current process. Another process may be
selected by using the -p pid option. Output can be limited by the -e and -s options.

The -e option indicates that all segment registers prior to the indicated register are not to be displayed.

The -s option limits display to only those segments matching the specified state. This can be limited
further by requiring that the value for the segfileno field be a specific value.

Example:
KDB(0)> segst64 display
snode base last nvalid sfwd sbwd
00000000 00000003 FFFFFFFE 00000010 00000001 FFFFFFFF
ESID segstate segflag num_segs fno/shmp/srval/nsegs
SR00000003>[0] SEG_AVAIL 00000000 0000000A
SR0000000D>[1] SEG_OTHER 00000001 00000001
SR0000000E>[2] SEG_AVAIL 00000000 00000001
SR0000000F>[3] SEG_OTHER 00000001 00000001
SR00000010>[4] SEG_TEXT 00000001 00000001

482 Kernel Extensions and Device Support Programming Concepts

SR00000011>[5] SEG_WORKING 00000001 00000000
SR00000012>[6] SEG_AVAIL 00000000 8000FFF8
SR8001000A>[7] SEG_WORKING 00000001 00000000
SR8001000B>[8] SEG_AVAIL 00000000 00010009
SR80020014>[9] SEG_WORKING 00000001 00000000
SR80020015>[10] SEG_AVAIL 00000000 0FFDFFEA
SR8FFFFFFF>[11] SEG_WORKING 00000001 00000000
SR90000000>[12] SEG_TEXT 00000001 00000001
SR90000001>[13] SEG_AVAIL 00000000 0FFFFFFE
SR9FFFFFFF>[14] SEG_TEXT 00000001 00000001
SRA0000000>[15] SEG_AVAIL 00000000 5FFFFFFF
snode base last nvalid sfwd sbwd
00000001 FFFFFFFF FFFFFFFF 00000001 FFFFFFFF 00000000
ESID segstate segflag num_segs fno/shmp/srval/nsegs
SRFFFFFFFF>[0] SEG_WORKING 00000001 00000000

apt Subcommand
The apt subcommand provides options for display of information from the alias page table.

Syntax:

apt [?]

v menu options - Menu options and parameters can be entered along with the subcommand to avoid
display of menus and prompts.

If this subcommand is invoked without arguments, menus and prompts are used to determine the data to
be displayed. If the menu selections and required values are known they can be entered as subcommand
arguments.

Example:
KDB(4)> apt display alias page table entry
VMM APT
Select the APT to display by:
1) index
2) sid,pno
3) page frame
Enter your choice: 1 index
Enter the index (in hex): 0 value

VMM APT Entry 00000000 of 0000FF67
> valid
> pinned
segment identifier (sid) : 00001004
page number (pno) : 0000
page frame (nfr) : FF000
protection key (key) : 0
storage control attr (wimg) : 5
next on hash (next) : FFFF
next on alias list (anext): 0000
next on free list (free) : FFFF

KDB(4)> apt 2 display alias page table entry
Enter the sid (in hex): 1004 sid value
Enter the pno (in hex): 100 pno value

VMM APT Entry 00000001 of 0000FF67
> valid
> pinned
segment identifier (sid) : 00001004
page number (pno) : 0100
page frame (nfr) : FF100
protection key (key) : 0

Chapter 17. KDB Kernel Debugger and Command 483

storage control attr (wimg) : 5
next on hash (next) : 0000
next on alias list (anext): 0000
next on free list (free) : FFFF

vmwait Subcommand
The vmwait subcommand displays VMM wait status.

Syntax:

vmwait

v Address - effective address for a wait channel. Symbols, hexadecimal values, or hexadecimal
expressions can be used in specification of the address.

If no argument is entered, the user is prompted for the wait address.

Example:
KDB(6)> th -w WPGIN display threads waiting for VMM

SLOT NAME STATE TID PRI CPUID CPU FLAGS WCHAN

thread+000780 10 lrud SLEEP 00A15 010 000 00001004 vmmdseg+69C84D0
thread+0012C0 25 dtlogin SLEEP 01961 03C 000 00000000 vmmdseg+69C8670
thread+001500 28 cnsview SLEEP 01C71 03C 000 00000004 vmmdseg+69C8670
thread+00B1C0 237 jfsz SLEEP 0EDCD 032 000 00001000 vm_zqevent+000000
thread+00C240 259 jfsc SLEEP 10303 01E 000 00001000 _$STATIC+000110
thread+00E940 311 rm SLEEP 137C3 03C 000 00000000 vmmdseg+69C8670
thread+012300 388 touch SLEEP 1843B 03C 000 00000000 vmmdseg+69C8670
thread+014700 436 rm SLEEP 1B453 03C 000 00000000 vmmdseg+69C8670
thread+0165C0 477 rm SLEEP 1DD8D 03C 000 00000000 vmmdseg+69C8670
thread+0177C0 501 cres SLEEP 1F529 03C 000 00000000 vmmdseg+69C8670
thread+01C980 610 lslv SLEEP 262AF 028 000 00000000 vmmdseg+69C8670
thread+01D7C0 629 touch SLEEP 27555 03C 000 00000000 vmmdseg+69C8670
thread+021840 715 vmmmp9 SLEEP 2CBC7 03C 000 00400000 vmmdseg+69C8670
thread+023640 755 cres1 SLEEP 2F3DF 03C 000 00000000 vmmdseg+69C8670
thread+027540 839 xlC SLEEP 34779 03C 000 00000000 vmmdseg+69C8670
thread+032B80 1082 rm SLEEP 43AAB 03C 000 00000000 vmmdseg+69C8670
thread+033900 1100 rm SLEEP 44CD9 03C 000 00000000 vmmdseg+69C8670
thread+038D00 1212 ksh SLEEP 4BC45 029 000 00000000 vmmdseg+69C8670
thread+03FA80 1358 cres SLEEP 54EDD 03C 000 00000000 vmmdseg+69C8670
thread+049140 1559 touch SLEEP 617F7 03C 000 00000000 vmmdseg+69C8670
thread+04A880 1590 rm SLEEP 6365D 03C 000 00000000 vmmdseg+69C8670
thread+053AC0 1785 rm SLEEP 6F9A5 03C 000 00000000 vmmdseg+69C8670
thread+05BA40 1955 rm SLEEP 7A3BB 03C 000 00000000 vmmdseg+69C8670
thread+05FC40 2043 cres SLEEP 7FBB5 03C 000 00000000 vmmdseg+69C8670
thread+065DC0 2173 touch SLEEP 87D35 03C 000 00000000 vmmdseg+69C8670
thread+0951C0 3181 ksh SLEEP C6DE9 03C 000 00000000 vmmdseg+69C8670
thread+0AD040 3691 renamer SLEEP E6B93 03C 000 00000000 vmmdseg+69C8670
thread+0AD7C0 3701 renamer SLEEP E751F 03C 000 00000000 vmmdseg+69C8670
thread+0B8E00 3944 ksh SLEEP F6839 03C 000 00000000 vmmdseg+69C8670
thread+0C1B00 4132 touch SLEEP 10243D 03C 000 00000000 vmmdseg+69C8670
thread+0C2E80 4158 renamer SLEEP 103EA9 03C 000 00000000 vmmdseg+69C8670
thread+0CF480 4422 renamer SLEEP 1146F1 03C 000 00000000 vmmdseg+69C8670
thread+0D0F80 4458 link_fil SLEEP 116A39 03C 000 00000000 vmmdseg+69C9C74
thread+0DC140 4695 sync SLEEP 1257BB 03C 000 00000000 vmmdseg+69C8670
thread+0DD280 4718 touch SLEEP 126E57 03C 000 00000000 vmmdseg+69C8670
thread+0E5A40 4899 renamer SLEEP 132315 03C 000 00000000 vmmdseg+69C8670
thread+0EE140 5079 renamer SLEEP 13D7C3 03C 000 00000000 vmmdseg+69C8670
thread+0F03C0 5125 renamer SLEEP 1405B7 03C 000 00000000 vmmdseg+69C8670
thread+0FC540 5383 renamer SLEEP 15072F 03C 000 00000000 vmmdseg+69C8670
thread+101AC0 5497 renamer SLEEP 157909 03C 000 00000000 vmmdseg+69C8670
thread+10D280 5742 rm SLEEP 166E37 03C 000 00000000 vmmdseg+69C8670
KDB(6)> sw 4458 switch to thread slot 4458
Switch to thread: <thread+0D0F80>
KDB(6)> f display stack frame

484 Kernel Extensions and Device Support Programming Concepts

thread+0D0F80 STACK:
[00017380].backt+000000 (0000EA07, C00C2A00 [??])
[000524F4]vm_gettlock+000020 (??, ??)
[001C0D28]iwrite+0001E4 (??)
[001C3860]finicom+0000B4 (??, ??)
[001C3BC0]comlist+0001CC (??, ??)
[001C3C8C]_commit+000030 (00000000, 00000002, 0A1A06C0, 0A1ACFE8,

2FF3B400, E88C7C80, 34EF6655, 2FF3AE20)
[0020BD60]jfs_link+0000C4 (??, ??, ??, ??)
[001CED6C]vnop_link+00002C (??, ??, ??, ??)
[001D5F7C]link+000270 (??, ??)
[000037D8].sys_call+000000 ()
[10000270]main+000098 (0000000C, 2FF229A4)
[10000174].__start+00004C ()
KDB(6)> vmwait vmmdseg+69C9C74 display waiting channel
VMM Wait Info
Waiting on transaction block number 00000057
KDB(6)> tblk 87 display transaction block

@tblk[87] vmmdseg +69C9C3C
logtid.... 002C77CF next...... 00000064 tid....... 00000057 flag...... 00000000
cpn....... 00000000 ceor...... 00000000 cxor...... 00000000 csn....... 00000000
waitsid... 00000000 waitline.. 00000000 locker.... 00000000 lsidx..... 00000AB3
logage.... 00B71704 gcwait.... FFFFFFFF waitors... E60D0F80 cqnext.... 00000000

ames Subcommand
The ames subcommand provides options for display of the process address map for either the current or
a specified process.

Syntax:

ames [?]

v menu options - Menu options and parameters can be entered along with the subcommand to avoid
display of menus and prompts.

If this subcommand is invoked without arguments, menus and prompts are used to determine the data to
be displayed. If the menu selections and required values are known they can be entered as subcommand
arguments.

Example:
KDB(4)> ames display current process address map
VMM AMEs
Select the ame to display by:
1) current process
2) specified process
Enter your choice: 1 current process

VMM address map, address BADCD23C

previous entry (vme_prev) : BADCC9FC
next entry (vme_next) : BADCC9FC
minimum offset (min_offset) : 30000000
maximum offset (max_offset) : D0000000
number of entries (nentries) : 00000001
size (size) : 00001000
reference count (ref_count) : 00000001
hint (hint) : BADCC9FC
first free hint (first_free) : BADCC9FC
entries pageable (entries_pageable): 00000000

VMM map entry, address BADCC9FC

> copy-on-write
> needs-copy
previous entry (vme_prev) : BADCD23C

Chapter 17. KDB Kernel Debugger and Command 485

next entry (vme_next) : BADCD23C
start address (vme_start) : 60000000
end address (vme_end) : 60001000
object (vnode ptr) (object) : 09D7EB88
page num in object (obj_pno) : 00000000
cur protection (protection) : 00000003
max protection (max_protection): 00000007
inheritance (inheritance) : 00000001
wired_count (wired_count) : 00000000
source sid (source_sid) : 0000272A
mapping sid (mapping_sid) : 000040B4
paging sid (paging_sid) : 000029CE
original page num (orig_obj_pno) : 00000000
xmem attach count (xmattach_count): 00000000
KDB(4)> scb 2 display mapping sid
Enter the sid (in hex): 000040B4 sid value

VMM SCB Addr B6A1384C Index 000010B4 of 00003A2F Segment ID: 000040B4

MAPPING SEGMENT
ame start address (start): 60000000
ame hint (ame) : BADCC9FC

segment info bits (_sibits) : 10000000
default storage key (_defkey) : 0
> (_segtype)..... mapping segment
> (_segtype)..... segment is valid
next free list/mmap cnt (free) : 00000001
non-fblu pageout count (npopages): 0000
xmem attach count (xmemcnt) : 0000
address of XPT root (vxpto) : 00000000
pages in real memory (npages) : 00000000
page frame at head (sidlist) : FFFFFFFF
max assigned page number (maxvpn) : FFFFFFFF
lock (lock) : E8038520

zproc Subcommand
The zproc subcommand displays information about the VMM zeroing kproc.

Syntax:

zproc

Example:
KDB(1)> zproc display VMM zeroing kproc

VMM zkproc pid = 63CA tid = 63FB
Current queue info

Queue resides at 0x0009E3E8 with 10 elements
Requests 16800 processed 16800 failed 0
Elements

sid pno npg pno npg
0 - 007FFFFF FFFFFFFF 00000000 FFFFFFFF 00000000
1 - 007FFFFF FFFFFFFF 00000000 FFFFFFFF 00000000
2 - 007FFFFF FFFFFFFF 00000000 FFFFFFFF 00000000
3 - 007FFFFF FFFFFFFF 00000000 FFFFFFFF 00000000
4 - 007FFFFF FFFFFFFF 00000000 FFFFFFFF 00000000
5 - 007FFFFF FFFFFFFF 00000000 FFFFFFFF 00000000
6 - 007FFFFF FFFFFFFF 00000000 FFFFFFFF 00000000
7 - 007FFFFF FFFFFFFF 00000000 FFFFFFFF 00000000
8 - 007FFFFF FFFFFFFF 00000000 FFFFFFFF 00000000
9 - 007FFFFF FFFFFFFF 00000000 FFFFFFFF 00000000

486 Kernel Extensions and Device Support Programming Concepts

vmlog Subcommand
The vmlog subcommand displays the current VMM error log entry.

Syntax:

vmlog

Example:
KDB(0)> vmlog display VMM error log entry
Most recent VMM errorlog entry
Error id = DSI_PROC
Exception DSISR/ISISR = 40000000
Exception srval = 007FFFFF
Exception virt addr = FFFFFFFF
Exception value = 0000000E
KDB(0)> dr iar display current instruction
iar : 01913DF0
01913DF0 lwz r0,0(r3) r0=00001030,0(r3)=FFFFFFFF
KDB(0)>

vrld Subcommand
The vrld subcommand displays the VMM reload xlate table. This information is only used on SMP
POWER-based machine, to prevent VMM reload dead-lock.

Syntax:

vrld

Example:
KDB(0)> vrld

freepno: 0A, initobj: 0008DAA8, *initobj: FFFFFFFF

[00] sid: 00000000, anch: 00
{00} spno:00000000, epno:00000097, nfr:00000000, next:01
{01} spno:00000098, epno:000000AB, nfr:00000098, next:02
{02} spno:FFFFFFFF, epno:000001F6, nfr:000001DD, next:03
{03} spno:000001F7, epno:000001FA, nfr:000001F7, next:04
{04} spno:0000038C, epno:000003E3, nfr:00000323, next:FF

[01] sid: 00000041, anch: 06
{06} spno:00003400, epno:0000341F, nfr:000006EF, next:05
{05} spno:00003800, epno:00003AFE, nfr:000003F0, next:08
{08} spno:00006800, epno:00006800, nfr:0000037C, next:07
{07} spno:00006820, epno:00006820, nfr:0000037B, next:09
{09} spno:000069C0, epno:000069CC, nfr:0000072F, next:FF

[02] sid: FFFFFFFF, anch: FF

[03] sid: FFFFFFFF, anch: FF

KDB(0)>

ipc Subcommand
The ipc subcommand reports interprocess communication facility information.

Syntax:

ipc [?]

v menu options - Menu options and parameters can be entered along with the subcommand to avoid
display of menus and prompts.

Chapter 17. KDB Kernel Debugger and Command 487

If this subcommand is invoked without arguments, menus and prompts are used to determine the data to
be displayed. If the menu selections and required values are known they can be entered as subcommand
arguments.

Example:
KDB(0)> ipc
IPC info
Select the display:
1) Message Queues
2) Shared Memory
3) Semaphores

Enter your choice: 1
1) all msqid_ds
2) select one msqid_ds
3) struct msg

Enter your choice: 1
Message Queue id 00000000 @ 019E6988
uid........... 00000000 gid........... 00000009
cuid.......... 00000000 cgid.......... 00000009
mode.......... 000083B0 seq........... 0000
key........... 4107001C msg_first..... 00000000
msg_last...... 00000000 msg_cbytes.... 00000000
msg_qnum...... 00000000 msg_qbytes.... 0000FFFF
msg_lspid..... 00000000 msg_lrpid..... 00000000
msg_stime..... 00000000 msg_rtime..... 00000000
msg_ctime..... 3250C406 msg_rwait..... 0000561D
msg_wwait..... FFFFFFFF msg_reqevents. 0000
Message Queue id 00000001 @ 019E69D8
uid........... 00000000 gid........... 00000000
cuid.......... 00000000 cgid.......... 00000000
mode.......... 000083B6 seq........... 0000
key........... 77020916 msg_first..... 00000000
msg_last...... 00000000 msg_cbytes.... 00000000
msg_qnum...... 00000000 msg_qbytes.... 0000FFFF
msg_lspid..... 00000000 msg_lrpid..... 00000000
msg_stime..... 00000000 msg_rtime..... 00000000
msg_ctime..... 3250C40B msg_rwait..... 00006935
msg_wwait..... FFFFFFFF msg_reqevents. 0000

lockanch Subcommand
The lockanch subcommand displays VMM lock anchor data and data for the transaction blocks in the
transaction block table. Individual entries of the transaction block table can be selected for display by
including a slot number or effective address as arguments.

Syntax:

lockanch

v slot - Specifies the slot number in the transaction block table to be displayed. This argument must be a
decimal value.

v Address - Specifies the effective address of an entry in the transaction block table. Symbols,
hexadecimal values, or hexadecimal expressions can be used in specification of the address.

Aliases:

v lka

v tblk

Example:
KDB(4)> lka display VMM lock anchor

VMM LOCKANCH vmmdseg +69C8654

488 Kernel Extensions and Device Support Programming Concepts

nexttid................ : 003AB65A
freetid................ : 0000009A
maxtid................. : 000000B8
lwptr.................. : BEDCD000
freelock............... : 0000027B
morelocks.............. : BEDD4000
syncwait............... : 00000000
tblkwait............... : 00000000
freewait............... : 00000000

@tblk[1] vmmdseg +69C86BC
logtid.... 003AB611 next...... 000002CF tid....... 00000001 flag...... 00000000
cpn....... 00000000 ceor...... 00000000 cxor...... 00000000 csn....... 00000000
waitsid... 00006A78 waitline.. 00000009 locker.... 00000015 lsidx..... 0000096C
logage.... 00B84FEC gcwait.... FFFFFFFF waitors... 00000000 cqnext.... 00000000

@tblk[2] vmmdseg +69C86FC
logtid.... 003AB61A next...... 00000000 tid....... 00000002 flag...... 00000000
cpn....... 00000000 ceor...... 00000000 cxor...... 00000000 csn....... 00000000
waitsid... 00000000 waitline.. 00000000 locker.... 00000000 lsidx..... 0000096C
logage.... 00B861B8 gcwait.... FFFFFFFF waitors... 00000000 cqnext.... 00000000

@tblk[3] vmmdseg +69C873C tblk[3].cqnext vmmdseg +69C8D3C
logtid.... 003AB625 next...... 0000010D tid....... 00000003 flag...... 00000007
cpn....... 00000B8B ceor...... 00000198 cxor...... 37A17C95 csn....... 00000342
waitsid... 00000000 waitline.. 00000000 locker.... 00000000 lsidx..... 0000096C
logage.... 00B2AFC8 gcwait.... 00031825 waitors... E6012300 cqnext.... B69C8D3C
flag...... QUEUE READY COMMIT

@tblk[4] vmmdseg +69C877C
logtid.... 003AB649 next...... 00000301 tid....... 00000004 flag...... 00000000
cpn....... 00000000 ceor...... 00000000 cxor...... 00000000 csn....... 00000000
waitsid... 00000000 waitline.. 00000000 locker.... 00000000 lsidx..... 0000096C
logage.... 00B35FB8 gcwait.... FFFFFFFF waitors... 00000000 cqnext.... 00000000

@tblk[5] vmmdseg +69C87BC
logtid.... 003AB418 next...... 00000000 tid....... 00000005 flag...... 00000000
cpn....... 00000000 ceor...... 00000000 cxor...... 00000000 csn....... 00000000
waitsid... 00007E7D waitline.. 00000014 locker.... 0000002D lsidx..... 0000096C
logage.... 00B46244 gcwait.... FFFFFFFF waitors... 00000000 cqnext.... 00000000

@tblk[6] vmmdseg +69C87FC
logtid.... 003AB5AD next...... 0000003D tid....... 00000006 flag...... 00000000
cpn....... 00000000 ceor...... 00000000 cxor...... 00000000 csn....... 00000000
waitsid... 00007E7D waitline.. 0000001C locker.... 00000046 lsidx..... 0000096C
logage.... 00B2BF9C gcwait.... FFFFFFFF waitors... E603CE40 cqnext.... 00000000

@tblk[7] vmmdseg +69C883C
logtid.... 003AB1EC next...... 000001A3 tid....... 00000007 flag...... 00000000
cpn....... 00000000 ceor...... 00000000 cxor...... 00000000 csn....... 00000000
waitsid... 00000000 waitline.. 00000000 locker.... 00000000 lsidx..... 0000096C
logage.... 00B11F74 gcwait.... FFFFFFFF waitors... 00000000 cqnext.... 00000000
(4)> more (^C to quit) ?

lockhash Subcommand
The lockhash subcommand displays the contents of the VMM lock hash list. The entries for a particular
hash chain may be viewed by specifying the slot number or effective address of an entry in the VMM lock
hash list.

Syntax:

lockhash

v slot - Specifies the slot number in the VMM lock hash list. This argument must be a decimal value.

v Address - Specifies the effective address of a VMM lock hash list entry. Symbols, hexadecimal values,
or hexadecimal expressions can be used in specification of the address.

Aliases: lkh

Example:

Chapter 17. KDB Kernel Debugger and Command 489

KDB(4)> lkh display VMM lock hash list
BUCKET HEAD COUNT

vmmdseg +69CC67C 1 00000144 3
vmmdseg +69CC680 2 0000019D 3
vmmdseg +69CC684 3 0000028E 2
vmmdseg +69CC688 4 00000179 2
vmmdseg +69CC68C 5 00000275 4
vmmdseg +69CC690 6 00000249 1
vmmdseg +69CC694 7 000000D4 2
vmmdseg +69CC698 8 00000100 2
vmmdseg +69CC69C 9 0000005E 2
vmmdseg +69CC6A0 10 00000171 2
vmmdseg +69CC6A4 11 00000245 2
vmmdseg +69CC6AC 13 00000136 2
vmmdseg +69CC6B4 15 000002F1 3
vmmdseg +69CC6B8 16 00000048 1
vmmdseg +69CC6BC 17 00000344 2
vmmdseg +69CC6C4 19 000001E9 2
vmmdseg +69CC6C8 20 0000021C 4
vmmdseg +69CC6D0 22 00000239 1
vmmdseg +69CC6D4 23 00000008 2
vmmdseg +69CC6D8 24 00000304 2
vmmdseg +69CC6DC 25 00000228 6
vmmdseg +69CC6E8 28 0000008A 2
vmmdseg +69CC6EC 29 000002F8 3
vmmdseg +69CC6F0 30 0000005F 1
vmmdseg +69CC6F4 31 000001FB 1
vmmdseg +69CC6FC 33 00000107 1
vmmdseg +69CC700 34 0000032A 2
vmmdseg +69CC704 35 00000326 1
vmmdseg +69CC708 36 0000006B 2
vmmdseg +69CC70C 37 000002CF 1
vmmdseg +69CC710 38 00000034 1
vmmdseg +69CC718 40 000000CC 2
vmmdseg +69CC71C 41 000001A4 1
vmmdseg +69CC728 44 000000C5 2
vmmdseg +69CC72C 45 000001C8 1
vmmdseg +69CC730 46 00000075 3
vmmdseg +69CC734 47 00000347 2
vmmdseg +69CC738 48 000001C0 2
vmmdseg +69CC73C 49 00000321 4
vmmdseg +69CC740 50 0000033C 3
vmmdseg +69CC744 51 00000201 3
vmmdseg +69CC750 54 000002CE 3
vmmdseg +69CC754 55 00000325 1
vmmdseg +69CC758 56 00000263 2
vmmdseg +69CC75C 57 0000014D 3
vmmdseg +69CC760 58 000001FE 6
...
KDB(4)> lkh 58 display VMM lock hash list 58
HASH ENTRY(58): B69CC760

NEXT TIDNXT SID PAGE TID FLAGS

510 vmmdseg +EDD0FC0 695 445 0061BA 0103 0013 WRITE
695 vmmdseg +EDD26E0 478 817 007E7D 00C4 000C WRITE FREE
478 vmmdseg +EDD0BC0 669 778 006A78 00C1 009E WRITE FREE
669 vmmdseg +EDD23A0 449 204 00326E 0057 004C WRITE
449 vmmdseg +EDD0820 593 782 00729E 0527 0007 WRITE BIGALLOC
593 vmmdseg +EDD1A20 0 815 00729E 0127 0007 WRITE BIGALLOC

lockword Subcommand
The lockword subcommand displays VMM lock words.

Syntax:

490 Kernel Extensions and Device Support Programming Concepts

lockword

v slot - Specifies the slot number of an entry in the VMM lock word table. This argument must be a
decimal value.

v Address - Specifies the effective address of an entry in the VMM lock word table. Symbols, hexadecimal
values, or hexadecimal expressions may be used in specification of the address.

If no argument is entered a summary of the entries in the VMM lock word table is displayed, one line per
entry. If an argument identifying a particular entry is entered, details are shown for that entry and the
following entries on the transaction ID chain.

Aliases: lkw

Example:
KDB(4)> lkw display VMM lock words

NEXT TIDNXT SID PAGE TID FLAGS

0 vmmdseg +EDCD000 0 0 000000 0000 0000
1 vmmdseg +EDCD020 620 679 00729E 0104 004C WRITE FREE BIGALLOC
2 vmmdseg +EDCD040 365 460 00729E 0169 00B7 WRITE FREE BIGALLOC
3 vmmdseg +EDCD060 222 650 00729E 0163 00B7 WRITE FREE BIGALLOC
4 vmmdseg +EDCD080 501 BEDCD140 0025A3 0000 0188
5 vmmdseg +EDCD0A0 748 115 00729E 0557 0025 WRITE FREE BIGALLOC
6 vmmdseg +EDCD0C0 145 534 0061BA 0103 0046 WRITE FREE
7 vmmdseg +EDCD0E0 79 586 006038 0080 0024 WRITE FREE
8 vmmdseg +EDCD100 97 439 00224A 005C 0091 WRITE FREE
9 vmmdseg +EDCD120 38 33 00729E 047F 00B7 WRITE FREE BIGALLOC
10 vmmdseg +EDCD140 4 BEDD1820 0025A3 0000 0184
11 vmmdseg +EDCD160 BEDCDD20 BEDCEA40 006B1B 0000 0070
12 vmmdseg +EDCD180 684 440 00729E 0062 004C WRITE FREE BIGALLOC
13 vmmdseg +EDCD1A0 736 402 00729E 0467 00B7 WRITE FREE BIGALLOC
14 vmmdseg +EDCD1C0 0 BEDD3300 006B1B 0000 008C
15 vmmdseg +EDCD1E0 0 BEDCEAE0 006B1B 0000 0004
16 vmmdseg +EDCD200 BEDCDAE0 BEDD0840 007B3B 0000 0020
17 vmmdseg +EDCD220 109 78 001E85 0065 005D WRITE FREE
18 vmmdseg +EDCD240 0 0 005A74 007C 00A3 WRITE
19 vmmdseg +EDCD260 563 797 00729E 0511 004C WRITE FREE BIGALLOC
20 vmmdseg +EDCD280 0 BEDCEB20 002D89 0000 001C
21 vmmdseg +EDCD2A0 0 0 000D86 0000 0047 WRITE
22 vmmdseg +EDCD2C0 0 BEDD1460 007B3B 0000 0034
23 vmmdseg +EDCD2E0 505 234 00729E 009E 0007 WRITE BIGALLOC
24 vmmdseg +EDCD300 30 614 00729E 0221 00B7 WRITE FREE BIGALLOC
25 vmmdseg +EDCD320 660 244 007E7D 0101 0074 WRITE FREE
26 vmmdseg +EDCD340 143 821 00729E 013C 00B7 WRITE FREE BIGALLOC
27 vmmdseg +EDCD360 0 593 00729E 028D 0007 WRITE BIGALLOC
28 vmmdseg +EDCD380 0 BEDD06A0 006B1B 0000 00B4
29 vmmdseg +EDCD3A0 701 407 00729E 016D 00B7 WRITE FREE BIGALLOC
30 vmmdseg +EDCD3C0 75 24 00729E 0392 00B7 WRITE FREE BIGALLOC
31 vmmdseg +EDCD3E0 0 BEDD0E00 006B1B 0000 0088
32 vmmdseg +EDCD400 477 BEDD1300 0025A3 0000 0144
33 vmmdseg +EDCD420 9 151 00729E 04D5 00B7 WRITE FREE BIGALLOC
34 vmmdseg +EDCD440 178 589 001221 0075 0063 WRITE FREE
35 vmmdseg +EDCD460 304 794 00729E 03D3 0025 WRITE FREE BIGALLOC
36 vmmdseg +EDCD480 314 BEDCFBA0 0025A3 0000 0150
37 vmmdseg +EDCD4A0 682 149 006038 0082 00A1 WRITE FREE
38 vmmdseg +EDCD4C0 555 9 00729E 021E 00B7 WRITE FREE BIGALLOC
39 vmmdseg +EDCD4E0 218 322 00729E 0416 00B7 WRITE FREE BIGALLOC
40 vmmdseg +EDCD500 207 66 006A78 005A 0030 WRITE FREE
41 vmmdseg +EDCD520 244 307 005376 0000 0074 WRITE FREE
42 vmmdseg +EDCD540 549 626 00729E 0420 004C WRITE FREE BIGALLOC
43 vmmdseg +EDCD560 155 830 00619C 0000 0081 WRITE FREE
44 vmmdseg +EDCD580 118 BEDCFA80 00499A 0000 016C
45 vmmdseg +EDCD5A0 BEDD1280 BEDD3160 006B1B 0000 0068

...
KDB(4)> lkw 45 display VMM lock word 45

Chapter 17. KDB Kernel Debugger and Command 491

NEXT TIDNXT SID PAGE TID FLAGS
45 vmmdseg +EDCD5A0 BEDD1280 BEDD3160 006B1B 0000 0068

bits........... 1000154A log............ 1000154B
home........... 10001540 extmem......... 100015C0
next........... BEDD1280 vmmdseg +EDD1280
tidnxt......... BEDD3160 vmmdseg +EDD3160

NEXT TIDNXT SID PAGE TID FLAGS
779 vmmdseg +EDD3160 BEDCE660 BEDD0C20 006B1B 0000 0064

bits........... 10001480 log............ 10001483
home........... 10001500 extmem......... 10001501
next........... BEDCE660 vmmdseg +EDCE660
tidnxt......... BEDD0C20 vmmdseg +EDD0C20

NEXT TIDNXT SID PAGE TID FLAGS
481 vmmdseg +EDD0C20 BEDCFAA0 BEDD1FA0 006B1B 0000 0060

bits........... 10001484 log............ 10001485
home........... 10001486 extmem......... 10001482
next........... BEDCFAA0 vmmdseg +EDCFAA0
tidnxt......... BEDD1FA0 vmmdseg +EDD1FA0

NEXT TIDNXT SID PAGE TID FLAGS
637 vmmdseg +EDD1FA0 BEDD2200 BEDD1220 006B1B 0000 0040

bits........... 100012A3 log............ 100012A4
home........... 10001299 extmem......... 1000131C
next........... BEDD2200 vmmdseg +EDD2200
tidnxt......... BEDD1220 vmmdseg +EDD1220

NEXT TIDNXT SID PAGE TID FLAGS
529 vmmdseg +EDD1220 BEDCF980 BEDD31A0 006B1B 0000 0028

bits........... 10001187 log............ 10001189
home........... 100011A3 extmem......... 1000118B
next........... BEDCF980 vmmdseg +EDCF980
tidnxt......... BEDD31A0 vmmdseg +EDD31A0

NEXT TIDNXT SID PAGE TID FLAGS
781 vmmdseg +EDD31A0 BEDCD2C0 BEDCFB40 006B1B 0000 0014

bits........... 10001166 log............ 10001167
home........... 1000115A extmem......... 10001157
next........... BEDCD2C0 vmmdseg +EDCD2C0
tidnxt......... BEDCFB40 vmmdseg +EDCFB40

NEXT TIDNXT SID PAGE TID FLAGS
346 vmmdseg +EDCFB40 0 BEDCFFC0 006B1B 0000 0058

bits........... 100013C1 log............ 100013C2
home........... 100013C3 extmem......... 10001400
tidnxt......... BEDCFFC0 vmmdseg +EDCFFC0

NEXT TIDNXT SID PAGE TID FLAGS
382 vmmdseg +EDCFFC0 0 BEDD15C0 006B1B 0000 005C

bits........... 10001403 log............ 10001488
home........... 10001489 extmem......... 1000148A
tidnxt......... BEDD15C0 vmmdseg +EDD15C0

NEXT TIDNXT SID PAGE TID FLAGS
558 vmmdseg +EDD15C0 0 BEDCFC40 006B1B 0000 0050

(4)> more (^C to quit) ?
bits........... 10001386 log............ 10001387
home........... 10001389 extmem......... 1000138C
tidnxt......... BEDCFC40 vmmdseg +EDCFC40

NEXT TIDNXT SID PAGE TID FLAGS
354 vmmdseg +EDCFC40 0 BEDD36E0 006B1B 0000 0054

bits........... 1000138A log............ 1000138B
home........... 10001382 extmem......... 10001385
tidnxt......... BEDD36E0 vmmdseg +EDD36E0

NEXT TIDNXT SID PAGE TID FLAGS
823 vmmdseg +EDD36E0 0 BEDD1D20 006B1B 0000 0010

bits........... 10001548 log............ 10001546
home........... 10001544 extmem......... 10001547
tidnxt......... BEDD1D20 vmmdseg +EDD1D20

NEXT TIDNXT SID PAGE TID FLAGS
617 vmmdseg +EDD1D20 0 BEDD2D40 006B1B 0000 0030

bits........... 100011A7 log............ 100011FC
home........... 100011FD extmem......... 100011E8
tidnxt......... BEDD2D40 vmmdseg +EDD2D40

492 Kernel Extensions and Device Support Programming Concepts

NEXT TIDNXT SID PAGE TID FLAGS
746 vmmdseg +EDD2D40 0 BEDD16A0 006B1B 0000 000C
bits........... 10001553 log............ 10001554
home........... 10001545 extmem......... 10001541
tidnxt......... BEDD16A0 vmmdseg +EDD16A0

NEXT TIDNXT SID PAGE TID FLAGS
565 vmmdseg +EDD16A0 0 BEDD2C20 006B1B 0000 0020
bits........... 10001159 log............ 10001141
home........... 1000115D extmem......... 1000115C
tidnxt......... BEDD2C20 vmmdseg +EDD2C20

NEXT TIDNXT SID PAGE TID FLAGS
737 vmmdseg +EDD2C20 0 BEDCDAE0 006B1B 0000 0048
bits........... 1000130B log............ 1000131D
home........... 1000131A extmem......... 1000131B
tidnxt......... BEDCDAE0 vmmdseg +EDCDAE0

NEXT TIDNXT SID PAGE TID FLAGS
87 vmmdseg +EDCDAE0 0 BEDD2E80 006B1B 0000 0000

bits........... 1000108F log............ 10001110
home........... 1000114E extmem......... 1000114F
tidnxt......... BEDD2E80 vmmdseg +EDD2E80

NEXT TIDNXT SID PAGE TID FLAGS
756 vmmdseg +EDD2E80 0 BEDD0960 006B1B 0000 004C
bits........... 1000132B log............ 1000132C
home........... 10001342 extmem......... 10001388
tidnxt......... BEDD0960 vmmdseg +EDD0960

NEXT TIDNXT SID PAGE TID FLAGS
459 vmmdseg +EDD0960 0 BEDD1140 006B1B 0000 0034
bits........... 100011CF log............ 100011E2
home........... 100011D0 extmem......... 100011D1
tidnxt......... BEDD1140 vmmdseg +EDD1140
(4)> more (^C to quit) ?

NEXT TIDNXT SID PAGE TID FLAGS
522 vmmdseg +EDD1140 0 BEDCE580 006B1B 0000 0024
bits........... 10001188 log............ 10001184
home........... 10001186 extmem......... 1000118A
tidnxt......... BEDCE580 vmmdseg +EDCE580

NEXT TIDNXT SID PAGE TID FLAGS
172 vmmdseg +EDCE580 0 BEDCEC60 006B1B 0000 001C
bits........... 100011A0 log............ 1000119E
home........... 100011F1 extmem......... 100011F2
tidnxt......... BEDCEC60 vmmdseg +EDCEC60

NEXT TIDNXT SID PAGE TID FLAGS
227 vmmdseg +EDCEC60 0 BEDCD1E0 006B1B 0000 0008
bits........... 10001549 log............ 10001543
home........... 10001542 extmem......... 10001552
tidnxt......... BEDCD1E0 vmmdseg +EDCD1E0

NEXT TIDNXT SID PAGE TID FLAGS
15 vmmdseg +EDCD1E0 0 BEDCEAE0 006B1B 0000 0004

bits........... 10001155 log............ 10001173
home........... 10001140 extmem......... 10001156
tidnxt......... BEDCEAE0 vmmdseg +EDCEAE0

NEXT TIDNXT SID PAGE TID FLAGS
215 vmmdseg +EDCEAE0 0 BEDCE0E0 006B1B 0000 003C
bits........... 100011E4 log............ 100011E5
home........... 10001297 extmem......... 10001298
tidnxt......... BEDCE0E0 vmmdseg +EDCE0E0

NEXT TIDNXT SID PAGE TID FLAGS
135 vmmdseg +EDCE0E0 0 BEDCE440 006B1B 0000 0044
bits........... 10001318 log............ 1000133B
home........... 1000133C extmem......... 1000130F
tidnxt......... BEDCE440 vmmdseg +EDCE440

NEXT TIDNXT SID PAGE TID FLAGS
162 vmmdseg +EDCE440 0 BEDCF160 006B1B 0000 002C
bits........... 100011A4 log............ 100011A5
home........... 100011A6 extmem......... 10001185
tidnxt......... BEDCF160 vmmdseg +EDCF160

NEXT TIDNXT SID PAGE TID FLAGS

Chapter 17. KDB Kernel Debugger and Command 493

267 vmmdseg +EDCF160 0 BEDCF2E0 006B1B 0000 0038
bits........... 100011EA log............ 100011EB
home........... 100011C8 extmem......... 100011D5
tidnxt......... BEDCF2E0 vmmdseg +EDCF2E0

NEXT TIDNXT SID PAGE TID FLAGS
279 vmmdseg +EDCF2E0 0 0 006B1B 0000 0018

bits........... 10001117 log............ 10001168
home........... 10001169 extmem......... 10001158
KDB(4)>

vmdmap Subcommand
The vmdmap subcommand displays VMM disk maps.

Syntax:

vmdmap [slot | symbol | Address]

v slot - Specifies the Page Device Table (pdt) slot number. This argument must be a decimal value.

If no arguments are entered all paging and file system disk maps are displayed. To look at other disk
maps it is necessary to initialize segment register 13 with the corresponding srval. To view a single disk
map, a PDT slot number can be entered to identify the map to be viewed.

Example:
KDB(1)> vmdmap display VMM disk maps
PDT slot [0000] Vmdmap [D0000000] dmsrval [00000C03] <--- paging space 0
mapsize................00007400 freecnt................00004D22
agsize.................00000800 agcnt..................00000007
totalags...............0000000F lastalloc..............00003384
maptype................00000003 clsize.................00000001
clmask.................00000080 version................00000000
agfree@................D0000030 tree@..................D00000A0
spare1@................D00001F4 mapsorsummary@.........D0000200
PDT slot [0001] Vmdmap [D0800000] dmsrval [00000C03] <--- paging space 1
mapsize................00005400 freecnt................00003CF6
agsize.................00000800 agcnt..................00000007
totalags...............0000000B lastalloc..............000047F4
maptype................00000003 clsize.................00000001
clmask.................00000080 version................00000000
agfree@................D0800030 tree@..................D08000A0
spare1@................D08001F4 mapsorsummary@.........D0800200
PDT slot [0002] Vmdmap [D1000000] dmsrval [00000C03] <--- paging space 2
mapsize................00005800 freecnt................0000418C
agsize.................00000800 agcnt..................00000007
totalags...............0000000B lastalloc..............000047A8
maptype................00000003 clsize.................00000001
clmask.................00000080 version................00000000
agfree@................D1000030 tree@..................D10000A0
spare1@................D10001F4 mapsorsummary@.........D1000200
PDT slot [0011] Vmdmap [D0000000] dmsrval [00003C2F] <--- file system
mapsize................00006400 freecnt................000057CC
agsize.................00000800 agcnt..................00000007
totalags...............0000000D lastalloc..............00001412
maptype................00000001 clsize.................00000008
clmask.................000000FF version................00000000
agfree@................D0000030 tree@..................D00000A0
spare1@................D00001F4 mapsorsummary@.........D0000200
PDT slot [0013] Vmdmap [D0000000] dmsrval [00005455] <--- file system
mapsize................00000800 freecnt................0000030A
agsize.................00000400 agcnt..................00000002
totalags...............00000002 lastalloc..............0000011A
maptype................00000001 clsize.................00000020
clmask.................00000000 version................00000001
agfree@................D0000030 tree@..................D00000A0
spare1@................D00001F4 mapsorsummary@.........D0000200

494 Kernel Extensions and Device Support Programming Concepts

...
KDB(1)> vmdmap 21 display VMM disk map slot 0x21
PDT slot [0021] Vmdmap [D0000000] dmsrval [000075BC]
mapsize................00000800 freecnt................000006B4
agsize.................00000800 agcnt..................00000001
totalags...............00000001 lastalloc..............00000060
maptype................00000001 clsize.................00000008
clmask.................000000FF version................00000000
agfree@................D0000030 tree@..................D00000A0
spare1@................D00001F4 mapsorsummary@.........D0000200

vmlocks Subcommand
The vmlocks subcommand displays VMM spin lock data.

Syntax:

vmlocks

Aliases:

v vmlock

v vl

Example:
KDB(1)> vl display VMM spin locks

GLOBAL LOCKS

pmap lock at @ 00000000 FREE
vmker lock at @ 0009A1AC LOCKED by thread: 0039AED
pdt lock at @ B69C84D4 FREE
vmap lock at @ B69C8514 FREE
ame lock at @ B69C8554 FREE
rpt lock at @ B69C8594 FREE
alloc lock at @ B69C85D4 FREE
apt lock at @ B69C8614 FREE
lw lock at @ B69C8678 FREE

SCOREBOARD

scoreboard cpu 0 :
hint.....................00000000
00: empty
01: empty
02: empty
03: empty
04: empty
05: empty
06: empty
07: empty
scoreboard cpu 1 :
hint.....................00000000
00: lock@ B6A31E60 lockword E804F380
01: empty
02: empty
03: empty
04: empty
05: empty
06: empty
07: empty
scoreboard cpu 2 :
hint.....................00000002
00: lock@ B6A2851C lockword E8048B60
01: empty
02: empty

Chapter 17. KDB Kernel Debugger and Command 495

03: empty
04: empty
05: empty
06: empty
07: empty
scoreboard cpu 3 :
hint.....................00000005
00: empty
(1)> more (^C to quit) ?
01: empty
02: empty
03: empty
04: lock@ B6AB04D8 lockword E8096E20
05: lock@ B69F2E54 lockword E8022760
06: empty
07: empty
scoreboard cpu 4 :
hint.....................00000000
00: lock@ B6AAC380 lockword E8095740
01: empty
02: empty
03: empty
04: empty
05: empty
06: empty
07: empty
scoreboard cpu 5 :
hint.....................00000001
00: lock@ B6A7BBE0 lockword E805CC40
01: lock@ B69CCD84 lockword E8000C80
02: empty
03: empty
04: empty
05: empty
06: empty
07: empty
scoreboard cpu 6 :
hint.....................00000000
00: empty
01: empty
02: empty
03: empty
04: empty
05: empty
06: empty
07: empty
scoreboard cpu 7 :
hint.....................00000001
00: empty
01: lock@ B6AA8FF8 lockword E807CA00
02: empty
03: empty
04: empty
05: empty
06: empty
07: empty
KDB(1)>

SMP Subcommands

Note: The subcommands in this section are only valid for SMP machines.

KDB processor states are:

v running, outside kdb

v stopped, after a stop subcommand

496 Kernel Extensions and Device Support Programming Concepts

v switched, after a cpu subcommand

v debug waiting, after a break point

v debug, inside kdb

start and stop Subcommands
The stop subcommand can be used to stop all or a specific processor. The start subcommand can be
used to start all or a specific processor. When a processor is stopped, it is looping inside KDB. A state of
stopped means that the processor does not go back to the operating system.

Note: These subcommands are only available within the KDB Kernel Debugger; they are not included in
the kdb command.

Syntax:

start cpu number | all

stop cpu number | all

v all - Indicates that all processors are to be started or stopped.

v cpu number - Specifies the CPU number to start or stop. This argument must be a decimal value.

Example:
KDB(1)> stop 0 stop processor 0
KDB(1)> cpu display processors status
cpu 0 status VALID STOPPED action STOP
cpu 1 status VALID DEBUG
KDB(1)> start 0 start processor 0
KDB(1)> cpu display processors status
cpu 0 status VALID action START
cpu 1 status VALID DEBUG
KDB(1)> b sy_decint set break point
KDB(1)> e exit the debugger
Breakpoint
.sy_decint+000000 mflr r0 <.dec_flih+000014>
KDB(0)> cpu display processors status
cpu 0 status VALID DEBUG action RESUME
cpu 1 status VALID DEBUGWAITING
KDB(0)> cpu 1 switch to processor 1
Breakpoint
.sy_decint+000000 mflr r0 <.dec_flih+000014>
KDB(1)> cpu display processors status
cpu 0 status VALID SWITCHED action SWITCH
cpu 1 status VALID DEBUG
KDB(1)> cpu 0 switch to processor 0
KDB(0)> cpu display processors status
cpu 0 status VALID DEBUG
cpu 1 status VALID SWITCHED action SWITCH
KDB(0)> q exit the debugger

cpu Subcommand
The cpu subcommand can be used to switch from the current processor to the specified processor.

Syntax:

cpu [cpu number | any]

v cpu number - Specifies the CPU number. This value must be a decimal value.

Chapter 17. KDB Kernel Debugger and Command 497

Without an argument, the cpu subcommand prints processor status. For the KDB Kernel Debugger the
processor status indicates the current state of the processor (i.e. stopped, switched, debug, etc...). For the
kdb command, the processor status displays the address of the PPDA for the processor, the current
thread for the processor, and the CSA address.

For the KDB Kernel Debugger, a switched processor is blocked until next start or cpu subcommand.
Switching between processors does not change processor state.

Note: If a selected processor can not be reached, it is possible to go back to the previous one by typing
^\\ twice.

Example:
KDB(4)> cpu display processors status
cpu 0 status VALID SWITCHED action SWITCH
cpu 1 status VALID SWITCHED action SWITCH
cpu 2 status VALID SWITCHED action SWITCH
cpu 3 status VALID SWITCHED action SWITCH
cpu 4 status VALID DEBUG action RESUME
cpu 5 status VALID SWITCHED action SWITCH
cpu 6 status VALID SWITCHED action SWITCH
cpu 7 status VALID SWITCHED action SWITCH
KDB(4)> cpu 7 switch to processor 7
Debugger entered via keyboard.
.waitproc+0000B0 lbz r0,0(r30) r0=0,0(r30)=ppda+0014D0
KDB(7)> cpu display processors status
cpu 0 status VALID SWITCHED action SWITCH
cpu 1 status VALID SWITCHED action SWITCH
cpu 2 status VALID SWITCHED action SWITCH
cpu 3 status VALID SWITCHED action SWITCH
cpu 4 status VALID SWITCHED action SWITCH
cpu 5 status VALID SWITCHED action SWITCH
cpu 6 status VALID SWITCHED action SWITCH
cpu 7 status VALID DEBUG
KDB(7)>

Block Address Translation (bat) Subcommands

dbat Subcommand
On POWER-based machine, the dbat subcommand may be used to display dbat registers.

Syntax:

dbat [index]

v index - Indicates the specific dbat register to display. Valid values are 0 through 3.

If no argument is specified all dbat registers are displayed. If an index is entered, just the specified dbat
register is displayed.

Example:
KDB(3)> dbat display POWER 601 BAT registers
BAT0 00000000 00000000
bepi 0000 brpn 0000 bl 0000 v 0 ks 0 kp 0 wimg 0 pp 0

BAT1 00000000 00000000
bepi 0000 brpn 0000 bl 0000 v 0 ks 0 kp 0 wimg 0 pp 0
BAT2 00000000 00000000
bepi 0000 brpn 0000 bl 0000 v 0 ks 0 kp 0 wimg 0 pp 0
BAT3 00000000 00000000
bepi 0000 brpn 0000 bl 0000 v 0 ks 0 kp 0 wimg 0 pp 0

KDB(1)> dbat display POWER 604 data BAT registers
DBAT0 00000000 00000000

498 Kernel Extensions and Device Support Programming Concepts

bepi 0000 brpn 0000 bl 0000 vs 0 vp 0 wimg 0 pp 0
DBAT1 00000000 00000000
bepi 0000 brpn 0000 bl 0000 vs 0 vp 0 wimg 0 pp 0
DBAT2 00000000 00000000
bepi 0000 brpn 0000 bl 0000 vs 0 vp 0 wimg 0 pp 0
DBAT3 00000000 00000000
bepi 0000 brpn 0000 bl 0000 vs 0 vp 0 wimg 0 pp 0

KDB(0)> dbat display POWER 620 data BAT registers
DBAT0 0000000000000000 000000000000001A
bepi 000000000000 brpn 000000000000 bl 0000 vs 0 vp 0 wimg 3 pp 2
DBAT1 0000000000000000 00000000C000002A
bepi 000000000000 brpn 000000006000 bl 0000 vs 0 vp 0 wimg 5 pp 2
DBAT2 0000000000000000 000000008000002A
bepi 000000000000 brpn 000000004000 bl 0000 vs 0 vp 0 wimg 5 pp 2
DBAT3 0000000000000000 00000000A000002A
bepi 000000000000 brpn 000000005000 bl 0000 vs 0 vp 0 wimg 5 pp 2

ibat Subcommand
On POWER-based machine, the ibat subcommand can be used to display ibat registers.

Syntax:

ibat [index]

v index - Indicates the specific ibat register to display. Valid values are 0 through 3.

If no argument is specified all ibat registers are displayed. If an index is entered, just the specified ibat
register is displayed.

Example:
KDB(0)> ibat display POWER 601 BAT registers
BAT0 00000000 00000000
bepi 0000 brpn 0000 bl 0000 v 0 ks 0 kp 0 wimg 0 pp 0
BAT1 00000000 00000000
bepi 0000 brpn 0000 bl 0000 v 0 ks 0 kp 0 wimg 0 pp 0
BAT2 00000000 00000000
bepi 0000 brpn 0000 bl 0000 v 0 ks 0 kp 0 wimg 0 pp 0
BAT3 00000000 00000000
bepi 0000 brpn 0000 bl 0000 v 0 ks 0 kp 0 wimg 0 pp 0

KDB(2)> ibat display POWER 604 instruction BAT registers
IBAT0 00000000 00000000
bepi 0000 brpn 0000 bl 0000 vs 0 vp 0 wimg 0 pp 0
IBAT1 00000000 00000000
bepi 0000 brpn 0000 bl 0000 vs 0 vp 0 wimg 0 pp 0
IBAT2 00000000 00000000
bepi 0000 brpn 0000 bl 0000 vs 0 vp 0 wimg 0 pp 0
IBAT3 00000000 00000000
bepi 0000 brpn 0000 bl 0000 vs 0 vp 0 wimg 0 pp 0

KDB(0)> ibat display POWER 620 instruction BAT registers
IBAT0 0000000000000000 0000000000000000
bepi 000000000000 brpn 000000000000 bl 0000 vs 0 vp 0 wimg 0 pp 0
IBAT1 0000000000000000 0000000000000000
bepi 000000000000 brpn 000000000000 bl 0000 vs 0 vp 0 wimg 0 pp 0
IBAT2 0000000000000000 0000000000000000
bepi 000000000000 brpn 000000000000 bl 0000 vs 0 vp 0 wimg 0 pp 0
IBAT3 0000000000000000 0000000000000000
bepi 000000000000 brpn 000000000000 bl 0000 vs 0 vp 0 wimg 0 pp 0

mdbat Subcommand
The mdbat subcommand is used to modify the dbat register. The processor data bat register is modified
immediately. KDB takes care of the valid bit, the word containing the valid bit is set last.

Chapter 17. KDB Kernel Debugger and Command 499

Syntax:

mdbat [index]

v index - Indicates the specific dbat register to modify. Valid values are 0 through 3.

If no argument is entered, the user is prompted for the values for all dbat registers. If an argument is
specified for the mdbat subcommand, the user is only prompted for the new values for the specified dbat
register.

The user can input both the upper and lower values for each dbat register or can press Enter for these
values. If the upper and lower values for the register are not entered, the user is prompted for the values
for the individual fields of the dbat register. The entry of values may be terminated by entering a period (.)
at any prompt.

Example:
On POWER 601 processor
KDB(0)> dbat 2 display bat register 2
BAT2: 00000000 00000000
bepi 0000 brpn 0000 bl 0000 v 0 wimg 0 ks 0 kp 0 pp 0
KDB(0)> mdbat 2 alter bat register 2
BAT register, enter <RC> twice to select BAT field, enter <.> to quit
BAT2 upper 00000000 = <CR/LF>
BAT2 lower 00000000 = <CR/LF>
BAT field, enter <RC> to select field, enter <.> to quit
BAT2.bepi: 00000000 = 00007FE0
BAT2.brpn: 00000000 = 00007FE0
BAT2.bl : 00000000 = 0000001F
BAT2.v : 00000000 = 00000001
BAT2.ks : 00000000 = 00000001
BAT2.kp : 00000000 = <CR/LF>
BAT2.wimg: 00000000 = 00000003
BAT2.pp : 00000000 = 00000002
BAT2: FFC0003A FFC0005F
bepi 7FE0 brpn 7FE0 bl 001F v 1 wimg 3 ks 1 kp 0 pp 2
eaddr = FFC00000, paddr = FFC00000 size = 4096 KBytes
KDB(0)> mdbat 2 clear bat register 2
BAT register, enter <RC> twice to select BAT field, enter <.> to quit
BAT2 upper FFC0003A = 0
BAT2 lower FFC0005F = 0
BAT2 00000000 00000000
bepi 0000 brpn 0000 bl 0000 v 0 wimg 0 ks 0 kp 0 pp 0

On POWER 604 processor
KDB(0)> mdbat 2 alter bat register 2
BAT register, enter <RC> twice to select BAT field, enter <.> to quit
DBAT2 upper 00000000 =
DBAT2 lower 00000000 =
BAT field, enter <RC> to select field, enter <.> to quit
DBAT2.bepi: 00000000 = 00007FE0
DBAT2.brpn: 00000000 = 00007FE0
DBAT2.bl : 00000000 = 0000001F
DBAT2.vs : 00000000 = 00000001
DBAT2.vp : 00000000 = <CR/LF>
DBAT2.wimg: 00000000 = 00000003
DBAT2.pp : 00000000 = 00000002
DBAT2 FFC0007E FFC0001A
bepi 7FE0 brpn 7FE0 bl 001F vs 1 vp 0 wimg 3 pp 2
eaddr = FFC00000, paddr = FFC00000 size = 4096 KBytes [Supervisor state]
KDB(0)> mdbat 2 clear bat register 2
BAT register, enter <RC> twice to select BAT field, enter <.> to quit
DBAT2 upper FFC0007E = 0
DBAT2 lower FFC0001A = 0
DBAT2 00000000 00000000
bepi 0000 brpn 0000 bl 0000 vs 0 vp 0 wimg 0 pp 0

500 Kernel Extensions and Device Support Programming Concepts

mibat Subcommand
The mibat subcommand is used to modify the ibat register. The processor instruction bat register is
modified immediately.

Syntax:

mibat [index]

v index - Indicates the specific ibat register to modify. Valid values are 0 through 3.

If no argument is entered, the user is prompted for the values for all ibat registers. If an argument is
specified for the mibat subcommand, the user is only prompted for the new values for the specified ibat
register.

The user can input both the upper and lower values for each ibat register or can press Enter for these
values. If the upper and lower values for the register are not entered, the user is prompted for the values
for the individual fields of the ibat register. The entry of values may be terminated by entering a period (.)
at any prompt.

Example:
On POWER 601 processor
KDB(0)> ibat 2 display bat register 2
BAT2: 00000000 00000000
bepi 0000 brpn 0000 bl 0000 v 0 wimg 0 ks 0 kp 0 pp 0
KDB(0)> mibat 2 alter bat register 2
BAT register, enter <RC> twice to select BAT field, enter <.> to quit
BAT2 upper 00000000 = <CR/LF>
BAT2 lower 00000000 = <CR/LF>
BAT field, enter <RC> to select field, enter <.> to quit
BAT2.bepi: 00000000 = 00007FE0
BAT2.brpn: 00000000 = 00007FE0
BAT2.bl : 00000000 = 0000001F
BAT2.v : 00000000 = 00000001
BAT2.ks : 00000000 = 00000001
BAT2.kp : 00000000 = <CR/LF>
BAT2.wimg: 00000000 = 00000003
BAT2.pp : 00000000 = 00000002
BAT2: FFC0003A FFC0005F
bepi 7FE0 brpn 7FE0 bl 001F v 1 wimg 3 ks 1 kp 0 pp 2
eaddr = FFC00000, paddr = FFC00000 size = 4096 KBytes
KDB(0)> mibat 2 clear bat register 2
BAT register, enter <RC> twice to select BAT field, enter <.> to quit
BAT2 upper FFC0003A = 0
BAT2 lower FFC0005F = 0
BAT2 00000000 00000000
bepi 0000 brpn 0000 bl 0000 v 0 wimg 0 ks 0 kp 0 pp 0

On POWER 604 processor
KDB(0)> mibat 2
BAT register, enter <RC> twice to select BAT field, enter <.> to quit
IBAT2 upper 00000000 = <CR/LF>
IBAT2 lower 00000000 = <CR/LF>
BAT field, enter <RC> to select field, enter <.> to quit
IBAT2.bepi: 00000000 = <CR/LF>
IBAT2.brpn: 00000000 = <CR/LF>
IBAT2.bl : 00000000 = 3ff
IBAT2.vs : 00000000 = 1
IBAT2.vp : 00000000 = <CR/LF>
IBAT2.wimg: 00000000 = 2
IBAT2.pp : 00000000 = 2
IBAT2 00000FFE 00000012
bepi 0000 brpn 0000 bl 03FF vs 1 vp 0 wimg 2 pp 2
eaddr = 00000000, paddr = 00000000 size = 131072 KBytes [Supervisor state]

Chapter 17. KDB Kernel Debugger and Command 501

btac and BRAT Subcommands

Note: btac and BRAT subcommands are specific to the KDB Kernel Debugger. They are not available in
the kdb command.

btac, cbtac, lbtac, lcbtac Subcommands
A hardware register can be used (called HID2 on PowerPC 601 RISC Microprocessor) to enter KDB when
a specified effective address is decoded. The HID2 register holds the effective address, and the HID1
register specifies full branch target address compare and trap to address vector 0x1300 (0x2000 on
PowerPC 601 RISC Microprocessor). The btac subcommand can be used to stop when Branch Target
Address Compare is true. The cbtac subcommand can be used to clear the last btac subcommand. This
subcommand is global to all processors. Each processor can have different addresses specified or cleared
using the local subcommands lbtac and lcbtac.

Note: PowerPC 601 RISC Microprocessor is only available on AIX 5.1 and earlier.

Note: These subcommands are only available within the KDB Kernel Debugger; they are not included in
the kdb command.

Syntax:

btac [?] [-e | -p | -v] Address

cbtac [?]

lbtac [?] [-e | -p | -v] Address

lcbtac[?]

v -p - Indicates that the Address argument is considered to be a physical address.

v -v - Indicates that the Address argument is considered to be an effective address.

v Address - Specifies the address of the branch target. This can either be a virtual (effective) or physical
address. Symbols, hexadecimal values, or hexadecimal expressions can be used in specification of the
address.

It is possible to specify whether the address is physical or virtual with -p and -v options. By default KDB
chooses the current state of the machine. If the subcommand is entered before VMM initialization, the
address is physical (real address), otherwise the address is virtual (effective address).

Example:
KDB(7)> btac open set BRAT on open function
KDB(7)> btac display current BRAT status
CPU 0: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
CPU 1: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
CPU 2: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
CPU 3: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
CPU 4: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
CPU 5: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
CPU 6: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
CPU 7: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
KDB(7)> e exit the debugger
...
Branch trap: 001B5354 <.open+000000>
.sys_call+000000 bcctrl <.open>
KDB(5)> btac display current BRAT status
CPU 0: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
CPU 1: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
CPU 2: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
CPU 3: .open+000000 eaddr=001B5354 vsid=00000000 hit=0

502 Kernel Extensions and Device Support Programming Concepts

CPU 4: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
CPU 5: .open+000000 eaddr=001B5354 vsid=00000000 hit=1
CPU 6: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
CPU 7: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
KDB(5)> lbtac close set local BRAT on close function
KDB(5)> e exit the debugger
...
Branch trap: 001B5354 <.open+000000>
.sys_call+000000 bcctrl <.open>
KDB(7)> e exit the debugger
...
Branch trap: 00197D40 <.close+000000>
.sys_call+000000 bcctrl <.close>
KDB(5)> e exit the debugger
...
Branch trap: 001B5354 <.open+000000>
.sys_call+000000 bcctrl <.open>
KDB(6)> btac display current BRAT status
CPU 0: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
CPU 1: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
CPU 2: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
CPU 3: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
CPU 4: .open+000000 eaddr=001B5354 vsid=00000000 hit=0
CPU 5: .close+000000 eaddr=00197D40 vsid=00000000 hit=1
CPU 6: .open+000000 eaddr=001B5354 vsid=00000000 hit=1
CPU 7: .open+000000 eaddr=001B5354 vsid=00000000 hit=1
KDB(6)> cbtac reset all BRAT registers

Chapter 17. KDB Kernel Debugger and Command 503

504 Kernel Extensions and Device Support Programming Concepts

Chapter 18. Loadable Authentication Module Programming
Interface

Overview
The loadable authentication module interface provides a means for extending identification and
authentication (I&A) for new technologies. The interface implements a set of well-defined functions for
performing user and group account access and management.

The degree of integration with the system administrative commands is limited by the amount of
functionality provided by the module. When all of the functionality is present, the administrative commands
are able to create, delete, modify and view user and group accounts.

The security library and loadable authentication module communicate through the secmethod_table
interface. The secmethod_table structure contains a list of subroutine pointers. Each subroutine pointer
performs a well-defined operation. These subroutine are used by the security library to perform the
operations which would have been performed using the local security database files.

Load Module Interfaces
Each loadable module defines a number of interface subroutines. The interface subroutines which must be
present are determined by how the loadable module is to be used by the system. A loadable module may
be used to provide identification (account name and attribute information), authentication (password
storage and verification) or both. All modules may have additional support interfaces for initializing and
configuring the loadable module, creating new user and group accounts, and serializing access to
information. This table describes the purpose of each interface. Interfaces may not be required if the
loadable module is not used for the purpose of the interface. For example, a loadable module which only
performs authentication functions is not required to have interfaces which are only used for identification
operations.

Method Interface Types

Name Type Required

method_attrlist Support No

method_authenticate Authentication No [3]

method_chpass Authentication Yes

method_close Support No

method_commit Support No

method_delgroup Support No

method_deluser Support No

method_getentry Identification [1] No

method_getgracct Identification No

method_getgrgid Identification Yes

method_getgrnam Identification Yes

method_getgrset Identification Yes

method_getgrusers Identification No

method_getpasswd Authentication No

method_getpwnam Identification Yes

© Copyright IBM Corp. 1997, 2003 505

Method Interface Types

Name Type Required

method_getpwuid Identification Yes

method_lock Support No

method_newgroup Support No

method_newuser Support No

method_normalize Authentication No

method_open Support No

method_passwdexpired Authentication [2] No

method_passwdrestrictions Authentication [2] No

method_putentry Identification [1] No

method_putgrent Identification No

method_putgrusers Identification No

method_putpwent Identification No

method_unlock Support No

Notes:

1. Any module which provides a method_attrlist() interface must also provide this interface.

2. Attributes which are related to password expiration or restrictions should be reported by the
method_attrlist() interface.

3. If this interface is not provided the method_getpasswd() interface must be provided.

Several of the functions make use of a table parameter to select between user, group and system
identification information. The table parameter has one of the following values:

Identification Table Names

Value Description

″user″ The table containing user account information, such as
user ID, full name, home directory and login shell.

″group″ The table containing group account information, such as
group ID and group membership list.

″system″ The table containing system information, such as user or
group account default values.

When a table parameter is used by an authentification interface, ″user″ is the only valid value.

Authentication Interfaces
Authentication interfaces perform password validation and modification. The authentication interfaces verify
that a user is allowed access to the system. The authentication interfaces also maintain the authentication
information, typically passwords, which are used to authorize user access.

The method_authenticate Interface
int method_authenticate (char *user, char *response,

int **reenter, char **message);

506 Kernel Extensions and Device Support Programming Concepts

The user parameter points to the requested user. The response parameter points to the user response to
the previous message or password prompt. The reenter parameter points to a flag. It is set to a non-zero
value when the contents of the message parameter must be used as a prompt and the user’s response
used as the response parameter when this method is re-invoked. The initial value of the reenter flag is
zero. The message parameter points to a character pointer. It is set to a message which is output to the
user when an error occurs or an additional prompt is required.

method_authenticate verifies that a named user has the correct authentication information, typically a
password, for a user account.

method_authenticate is called indirectly as a result of calling the authenticate subroutine. The grammar
given in the SYSTEM attribute normally specifies the name of the loadable authentication module, but it is
not required to do so.

method_authenticate returns AUTH_SUCCESS with a reenter value of zero on success. On failure a value
of AUTH_FAILURE, AUTH_UNAVAIL or AUTH_NOTFOUND is returned.

The method_chpass Interface
int method_chpass (char *user, char *oldpassword,

char *newpassword, char **message);

The user parameter points to the requested user. The oldpassword parameter points to the user’s current
password. The newpassword parameter points to the user’s new password. The message parameter
points to a character pointer. It will be set to a message which is output to the user.

method_chpass changes the authentication information for a user account.

method_chpass is called indirectly as a result of calling the chpass subroutine. The security library will
examine the registry attribute for the user and invoke the method_chpass interface for the named
loadable authentication module.

method_chpass returns zero for success or -1 for failure. On failure the message parameter should be
initialized with a user message.

The method_getpasswd Interface
char *method_getpasswd (char *user);

The user parameter points to the requested user.

method_getpasswd provides the encrypted password string for a user account. The encrypted password
string consists of two salt characters and 11 encrypted password characters. The crypt subroutine is used
to create this string and encrypt the user-supplied password for comparison.

method_getpasswd is called when method_authenticate would have been called, but is undefined. The
result of this call is compared to the result of a call to the crypt subroutine using the response to the
password prompt. See the description of the method_authenticate interface for a description of the
response parameter.

method_getpasswd returns a pointer to an encrypted password on success. On failure a NULL pointer is
returned and the global variable errno is set to indicate the error. A value of ENOSYS is used when the
module cannot return an encrypted password. A value of EPERM is used when the caller does not have
the required permissions to retrieve the encrypted password. A value of ENOENT is used when the
requested user does not exist.

Chapter 18. Loadable Authentication Module Programming Interface 507

The method_normalize Interface
int method_normalize (char *longname, char *shortname);

The longname parameter points to a fully-qualified user name for modules which include domain or
registry information in a user name. The shortname parameter points to the shortened name of the user,
without the domain or registry information.

method_normalize determines the shortened user name which corresponds to a fully-qualified user name.
The shortened user name is used for user account queries by the security library. The fully-qualified user
name is only used to perform initial authentication.

If the fully-qualified user name is successfully converted to a shortened user name, a non-zero value is
returned. If an error occurs a zero value is returned.

The method_passwdexpired Interface
int method_passwdexpired (char *user, char **message);

The user parameter points to the requested user. The message parameter points to a character pointer. It
will be set to a message which is output to the user.

method_passwdexpired determines if the authentication information for a user account is expired. This
method distinguishes between conditions which allow the user to change their information and those which
require administrator intervention. A message is returned which provides more information to the user.

method_passwdexpired is called as a result of calling the passwdexpired subroutine.

method_passwdexpired returns 0 when the password has not expired, 1 when the password is expired
and the user is permitted to change their password and 2 when the password has expired and the user is
not permitted to change their password. A value of -1 is returned when an error has occurred, such as the
user does not exist.

The method_passwdrestrictions Interface
int method_passwdrestrictions (char *user, char *newpassword,

char *oldpassword, char **message);

The user parameter points to the requested user. The newpassword parameter points to the user’s new
password. The oldpassword parameter points to the user’s current password. The message parameter
points to a character pointer. It will be set to a message which is output to the user.

method_passwdrestrictions determines if new password meets the system requirements. This method
distinguishes between conditions which allow the user to change their password by selecting a different
password and those which prevent the user from changing their password at the present time. A message
is returned which provides more information to the user.

method_passwdrestrictions is called as a result of calling the security library subroutine passwdrestrictions.

method_passwdrestrictions returns a value of 0 when newpassword meets all of the requirements, 1 when
the password does not meet one or more requirements and 2 when the password may not be changed. A
value of -1 is returned when an error has occurred, such as the user does not exist.

Identification Interfaces
Identification interfaces perform user and group identity functions. The identification interfaces store and
retrieve user and group identifiers and account information.

508 Kernel Extensions and Device Support Programming Concepts

The identification interfaces divide information into three different categories: user, group and system. User
information consists of the user name, user and primary group identifiers, home directory, login shell and
other attributes specific to each user account. Group information consists of the group identifier, group
member list, and other attributes specific to each group account. System information consists of default
values for user and group accounts, and other attributes about the security state of the current system.

The method_getentry Interface
int method_getentry (char *key, char *table, char *attributes[],

attrval_t results[], int size);

The key parameter refers to an entry in the named table. The table parameter refers to one of the three
tables. The attributes parameter refers to an array of pointers to attribute names. The results parameter
refers to an array of value return data structures. Each value return structure contains either the value of
the corresponding attribute or a flag indicating a cause of failure. The size parameter is the number of
array elements.

method_getentry retrieves user, group and system attributes. One or more attributes may be retrieved for
each call. Success or failure is reported for each attribute.

method_getentry is called as a result of calling the getuserattr, getgroupattr and getconfattr subroutines.

method_getentry returns a value of 0 if the key entry was found in the named table. When the entry does
not exist in the table, the global variable errno must be set to ENOENT. If an error in the value of table or
size is detected, the errno variable must be set to EINVAL. Individual attribute values have additional
information about the success or failure for each attribute. On failure a value of -1 is returned.

The method_getgracct Interface
struct group *method_getgracct (void *id, int type);

The id parameter refers to a group name or GID value, depending upon the value of the type parameter.
The type parameters indicates whether the id parameter is to be interpreted as a (char *) which
references the group name, or (gid_t) for the group.

method_getgracct retrieves basic group account information. The id parameter may be a group name or
identifier, as indicated by the type parameter. The basic group information is the group name and identifier.
The group member list is not returned by this interface.

method_getgracct may be called as a result of calling the IDtogroup subroutine.

method_getgracct returns a pointer to the group’s group file entry on success. The group file entry may not
include the list of members. On failure a NULL pointer is returned.

The method_getgrgid Interface
struct group *method_getgrgid (gid_t gid);

The gid parameter is the group identifier for the requested group.

method_getgrgid retrieves group account information given the group identifier. The group account
information consists of the group name, identifier and complete member list.

method_getgrgid is called as a result of calling the getgrgid subroutine.

method_getgrgid returns a pointer to the group’s group file structure on success. On failure a NULL
pointer is returned.

Chapter 18. Loadable Authentication Module Programming Interface 509

The method_getgrnam Interface
struct group *method_getgrnam (char *group);

The group parameter points to the requested group.

method_getgrnam retrieves group account information given the group name. The group account
information consists of the group name, identifier and complete member list.

method_getgrnam is called as a result of calling the getgrnam subroutine. This interface may also be
called if method_getentry is not defined.

method_getgrnam returns a pointer to the group’s group file structure on success. On failure a NULL
pointer is returned.

The method_getgrset Interface
char *method_getgrset (char *user);

The user parameter points to the requested user.

method_getgrset retrieves supplemental group information given a user name. The supplemental group
information consists of a comma separated list of group identifiers. The named user is a member of each
listed group.

method_getgrset is called as a result of calling the getgrset subroutine.

method_getgrset returns a pointer to the user’s concurrent group set on success. On failure a NULL
pointer is returned.

The method_getgrusers Interface
int method_getgrusers (char *group, void *result,

int type, int *size);

The group parameter points to the requested group. The result parameter points to a storage area which
will be filled with the group members. The type parameters indicates whether the result parameter is to be
interpreted as a (char **) which references a user name array, or (uid_t) array. The size parameter is a
pointer to the number of users in the named group. On input it is the size of the result field.

method_getgrusers retrieves group membership information given a group name. The return value may be
an array of user names or identifiers.

method_getgrusers may be called by the security library to obtain the group membership information for a
group.

method_getgrusers returns 0 on success. On failure a value of -1 is returned and the global variable errno
is set. The value ENOENT must be used when the requested group does not exist. The value ENOSPC
must be used when the list of group members does not fit in the provided array. When ENOSPC is
returned the size parameter is modified to give the size of the required result array.

The method_getpwnam Interface
struct passwd *method_getpwnam (char *user);

The user parameter points to the requested user.

510 Kernel Extensions and Device Support Programming Concepts

method_getpwnam retrieves user account information given the user name. The user account information
consists of the user name, identifier, primary group identifier, full name, login directory and login shell.

method_getpwnam is called as a result of calling the getpwnam subroutine. This interface may also be
called if method_getentry is not defined.

method_getpwnam returns a pointer to the user’s password structure on success. On failure a NULL
pointer is returned.

The method_getpwuid Interface
struct passwd *method_getpwuid (uid_t uid);

The uid parameter points to the user ID of the requested user.

method_getpwuid retrieves user account information given the user identifier. The user account information
consists of the user name, identifier, primary group identifier, full name, login directory and login shell.

method_getpwuid is called as a result of calling the getpwuid subroutine.

method_getpwuid returns a pointer to the user’s password structure on success. On failure a NULL pointer
is returned.

The method_putentry Interface
int method_putentry (char *key, char *table, char *attributes,

attrval_t values[], int size);

The key parameter refers to an entry in the named table. The table parameter refers to one of the three
tables. The attributes parameter refers to an array of pointers to attribute names. The values parameter
refers to an array of value structures which correspond to the attributes. Each value structure contains a
flag indicating if the attribute was output. The size parameter is the number of array elements.

method_putentry stores user, group and system attributes. One or more attributes may be retrieved for
each call. Success or failure is reported for each attribute. Values will be saved until method_commit is
invoked.

method_putentry is called as a result of calling the putuserattr, putgroupattr and putconfattr subroutines.

method_putentry returns 0 when the attributes have been updated. On failure a value of -1 is returned and
the global variable errno is set to indicate the cause. A value of ENOSYS is used when updating
information is not supported by the module. A value of EPERM is used when the invoker does not have
permission to create the group. A value of ENOENT is used when the entry does not exist. A value of
EROFS is used when the module was not opened for updates.

The method_putgrent Interface
int method_putgrent (struct group *entry);

The entry parameter points to the structure to be output. The account name is contained in the structure.

method_putgrent stores group account information given a group entry. The group account information
consists of the group name, identifier and complete member list. Values will be saved until method_commit
is invoked.

method_putgrent may be called as a result of calling the putgroupattr subroutine.

Chapter 18. Loadable Authentication Module Programming Interface 511

method_putgrent returns 0 when the group has been successfully updated. On failure a value of -1 is
returned and the global variable errno is set to indicate the cause. A value of ENOSYS is used when
updating groups is not supported by the module. A value of EPERM is used when the invoker does not
have permission to update the group. A value of ENOENT is used when the group does not exist. A value
of EROFS is used when the module was not opened for updates.

The method_putgrusers Interface
int method_putgrusers (char *group, char *users);

The group parameter points to the requested group. The users parameter points to a NUL character
separated, double NUL character terminated, list of group members.

method_putgrusers stores group membership information given a group name. Values will be saved until
method_commit is invoked.

method_putgrusers may be called as a result of calling the putgroupattr subroutine.

method_putgrusers returns 0 when the group has been successfully updated. On failure a value of -1 is
returned and the global variable errno is set to indicate the cause. A value of ENOSYS is used when
updating groups is not supported by the module. A value of EPERM is used when the invoker does not
have permission to update the group. A value of ENOENT is used when the group does not exist. A value
of EROFS is used when the module was not opened for updates.

The method_putpwent Interface
int method_putpwent (struct passwd *entry);

The entry parameter points to the structure to be output. The account name is contained in the structure.

method_putpwent stores user account information given a user entry. The user account information
consists of the user name, identifier, primary group identifier, full name, login directory and login shell.
Values will be saved until method_commit is invoked.

method_putpwent may be called as a result of calling the putuserattr subroutine.

method_putpwent returns 0 when the user has been successfully updated. On failure a value of -1 is
returned and the global variable errno is set to indicate the cause. A value of ENOSYS is used when
updating users is not supported by the module. A value of EPERM is used when the invoker does not
have permission to update the user. A value of ENOENT is used when the user does not exist. A value of
EROFS is used when the module was not opened for updates.

Support Interfaces
Support interfaces perform functions such as initiating and terminating access to the module, creating and
deleting accounts, and serializing access to information.

The method_attrlist Interface
attrtab **method_attrlist (void);

This interface does not require any parameters.

method_attrlist provides a means of defining additional attributes for a loadable module.
Authentication-only modules may use this interface to override attributes which would normally come from
the identification module half of a compound load module.

512 Kernel Extensions and Device Support Programming Concepts

method_attrlist is called when a loadable module is first initialized. The return value will be saved for use
by later calls to various identification and authentication functions.

The method_close Interface
void method_close (void *token);

The token parameter is the value of the corresponding method_open call.

method_close indicates that access to the loadable module has ended and all system resources may be
freed. The loadable module must not assume this interface will be invoked as a process may terminate
without calling this interface.

method_close is called when the session count maintained by enduserdb reaches zero.

There are no defined error return values. It is expected that the method_close interface handle common
programming errors, such as being invoked with an invalid token, or repeatedly being invoked with the
same token.

The method_commit Interface
int method_commit (char *key, char *table);

The key parameter refers to an entry in the named table. If it is NULL it refers to all entries in the table.
The table parameter refers to one of the three tables.

method_commit indicates that the specified pending modifications are to be made permanent. An entire
table or a single entry within a table may be specified. method_lock will be called prior to calling
method_commit. method_unlock will be called after method_commit returns.

method_commit is called when putgroupattr or putuserattr are invoked with a Type parameter of
SEC_COMMIT. The value of the Group or User parameter will be passed directly to method_commit.

method_commit returns a value of 0 for success. A value of -1 is returned to indicate an error and the
global variable errno is set to indicate the cause. A value of ENOSYS is used when the load module does
not support modification requests for any users. A value of EROFS is used when the module is not
currently opened for updates. A value of EINVAL is used when the table parameter refers to an invalid
table. A value of EIO is used when a potentially temporary input-output error has occurred.

The method_delgroup Interface
int method_delgroup (char *group);

The group parameter points to the requested group.

method_delgroup removes a group account and all associated information. A call to method_commit is not
required. The group will be removed immediately.

method_delgroup is called when putgroupattr is invoked with a Type parameter of SEC_DELETE. The
value of the Group and Attribute parameters will be passed directly to method_delgroup.

method_delgroup returns 0 when the group has been successfully removed. On failure a value of -1 is
returned and the global variable errno is set to indicate the cause. A value of ENOSYS is used when
deleting groups is not supported by the module. A value of EPERM is used when the invoker does not
have permission to delete the group. A value of ENOENT is used when the group does not exist. A value
of EROFS is used when the module was not opened for updates. A value of EBUSY is used when the
group has defined members.

Chapter 18. Loadable Authentication Module Programming Interface 513

The method_deluser Interface
int method_deluser (char *user);

The user parameter points to the requested user.

method_delgroup removes a user account and all associated information. A call to method_commit is not
required. The user will be removed immediately.

method_deluser is called when putuserattr is invoked with a Type parameter of SEC_DELETE. The value
of the User and Attribute parameters will be passed directly to method_deluser.

method_deluser returns 0 when the user has been successfully removed. On failure a value of -1 is
returned and the global variable errno is set to indicate the cause. A value of ENOSYS is used when
deleting users is not supported by the module. A value of EPERM is used when the invoker does not have
permission to delete the user. A value of ENOENT is used when the user does not exist. A value of
EROFS is used when the module was not opened for updates.

The method_lock Interface
void *method_lock (char *key, char *table, int wait);

The key parameter refers to an entry in the named table. If it is NULL it refers to all entries in the table.
The table parameter refers to one of the three tables. The wait parameter is the number of second to wait
for the lock to be acquired. If the wait parameter is zero the call returns without waiting if the entry cannot
be locked immediately.

method_lock informs the loadable modules that access to the underlying mechanisms should be serialized
for a specific table or table entry.

method_lock is called by the security library when serialization is required. The return value will be saved
and used by a later call to method_unlock when serialization is no longer required.

The method_newgroup Interface
int method_newgroup (char *group);

The group parameter points to the requested group.

method_newgroup creates a group account. The basic group account information must be provided with
calls to method_putgrent or method_putentry. The group account information will not be made permanent
until method_commit is invoked.

method_newgroup is called when putgroupattr is invoked with a Type parameter of SEC_NEW. The value
of the Group parameter will be passed directly to method_newgroup.

method_newgroup returns 0 when the group has been successfully created. On failure a value of -1 is
returned and the global variable errno is set to indicate the cause. A value of ENOSYS is used when
creating group is not supported by the module. A value of EPERM is used when the invoker does not have
permission to create the group. A value of EEXIST is used when the group already exists. A value of
EROFS is used when the module was not opened for updates. A value of EINVAL is used when the group
has an invalid format, length or composition.

The method_newuser Interface
int method_newuser (char *user);

The user parameter points to the requested user.

514 Kernel Extensions and Device Support Programming Concepts

method_newuser creates a user account. The basic user account information must be provided with calls
to method_putpwent or method_putentry. The user account information will not be made permanent until
method_commit is invoked.

method_newuser is called when putuserattr is invoked with a Type parameter of SEC_NEW. The value of
the User parameter will be passed directly to method_newuser.

method_newuser returns 0 when the user has been successfully created. On failure a value of -1 is
returned and the global variable errno is set to indicate the cause. A value of ENOSYS is used when
creating users is not supported by the module. A value of EPERM is used when the invoker does not have
permission to create the user. A value of EEXIST is used when the user already exists. A value of EROFS
is used when the module was not opened for updates. A value of EINVAL is used when the user has an
invalid format, length or composition.

The method_open Interface
void *method_open (char *name, char *domain,

int mode, char *options);

The name parameter is a pointer to the stanza name in the configuration file. The domain parameter is the
value of the domain= attribute in the configuration file. The mode parameter is either O_RDONLY or
O_RDWR. The options parameter is a pointer to the options= attribute in the configuration file.

method_open prepares a loadable module for use. The domain and options attributes are passed to
method_open.

method_open is called by the security library when the loadable module is first initialized and when
setuserdb is first called after method_close has been called due to an earlier call to enduserdb. The return
value will be saved for a future call to method_close.

The method_unlock Interface
void method_unlock (void *token);

The token parameter is the value of the corresponding method_lock call.

method_unlock informs the loadable modules that an earlier need for access serialization has ended.

method_unlock is called by the security library when serialization is no longer required. The return value
from the earlier call to method_lock be used.

Configuration Files
The security library uses the /usr/lib/security/methods.cfg file to control which modules are used by the
system. A stanza exists for each loadable module which is to be used by the system. Each stanza
contains a number of attributes used to load and initialize the module. The loadable module may use this
information to configure its operation when the method_open() interface is invoked immediately after the
module is loaded.

The options Attribute
The options attribute will be passed to the loadable module when it is initialized. This string is a
comma-separated list of Flag and Flag=Value entries. The entire value of the options attribute is passed to
the method_open() subroutine when the module is first initialized. Five pre-defined flags control how the
library uses the loadable module.

Chapter 18. Loadable Authentication Module Programming Interface 515

auth=module Module will be used to perform authentication functions for the current loadable authentication
module. Subroutine entry points dealing with authentication-related operations will use method
table pointers from the named module instead of the module named in the program= or
program_64= attribute.

authonly The loadable authentication module only performs authentication operations. Subroutine entry
points which are not required for authentication operations, or general support of the loadable
module, will be ignored.

db=module Module will be used to perform identification functions for the current loadable authentication
module. Subroutine entry points dealing with identification related operations will use method
table pointers from the name module instead of the module named in the program= or
program_64= attribute.

dbonly The loadable authentication module only provides user and group identification information.
Subroutine entry points which are not required for identification operations, or general support
of the loadable module, will be ignored.

noprompt The initial password prompt for authentication operations is suppressed. Password prompts are
normally performed prior to a call to method_authenticate(). method_authenticate() must be
prepared to receive a NULL pointer for the response parameter and set the reenter parameter
to TRUE to indicate that the user must be prompted with the contents of the message
parameter prior to method_authenticate() being re-invoked. See the description of
method_authenticate for more information on these parameters.

Compound Load Modules
Compound load modules are created with the auth= and db= attributes. The security library is responsible
for constructing a new method table to perform the compound function.

Interfaces are divided into three categories: identification, authentication and support. Identification
interfaces are used when a compound module is performing an identification operation, such as the
getpwnam() subroutine. Authentication interfaces are used when a compound module is performing an
authentication operation, such as the authenticate() subroutine. Support subroutines are used when
initializing the loadable module, creating or deleting entries, and performing other non-data operations. The
table Method Interface Types describes the purpose of each interface. The table below describes which
support interfaces are called in a compound module and their order of invocation.

Support Interface Invocation

Name Invocation Order

method_attrlist Identification, Authentication

method_close Identification, Authentication

method_commit Identification, Authentication

method_deluser Authentication, Identification

method_lock Identification, Authentication

method_newuser Identification, Authentication

method_open Identification, Authentication

method_unlock Authentication, Identification

Related Information
Identification and Authentication Subroutines

516 Kernel Extensions and Device Support Programming Concepts

/usr/lib/security/methods.cfg File

Chapter 18. Loadable Authentication Module Programming Interface 517

518 Kernel Extensions and Device Support Programming Concepts

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Dept. LRAS/Bldg. 003
11400 Burnet Road
Austin, TX 78758-3498
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

© Copyright IBM Corp. 1997, 2003 519

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
(c) (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. (c)
Copyright IBM Corp. _enter the year or years_. All rights reserved.

Trademarks
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

AIX

IBM

PowerPC

RS/6000

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

520 Kernel Extensions and Device Support Programming Concepts

Index

Numerics
32-bit 22

kernel extension 22
64-bit

kernel extension 19, 20

A
accented characters 176
asynchronous I/O subsystem

changing attributes in 80
subroutines 79
subroutines affected by 80

ataide_buf structure (IDE) 272
fields 273

ATM LAN Emulation device driver 104
close 110
configuration parameters 106
data reception 110
data transmission 110
entry points 109
open 109
trace and error logging 115

ATM LANE
clients

adding 105
ATM MPOA client

tracing and error logging 117
atmle_ctl 111
ATMLE_MIB_GET 111
ATMLE_MIB_QUERY 111
atomic operations 55
attributes 92

B
block (physical volumes) 179
block device drivers

I/O kernel services 45
block I/O buffer cache

managing 48
supporting user access to device drivers 48
using write routines 48

block I/O buffer cache kernel services 45
bootlist command

altering list of boot devices 95

C
cfgmgr command

configuring devices 89, 95
character I/O kernel services 46
chdev command

changing device characteristics 95
configuring devices 89

child devices 91
CIO_ASYNC_STATUS 101

CIO_HALT_DONE 100
CIO_LOST_STATUS 100
CIO_NULL_BLK 100
CIO_START_DONE 100
CIO_TX_DONE 100
clients

ATM LANE
adding 105

commands
errinstall 289
errlogger 293
errmsg 288
errpt 288, 293
errupdate 289, 291, 293
trcrpt 294, 295

communications device handlers
common entry points 98
common status and exception codes 99
common status blocks 99
interface kernel services 66
kernel-mode interface 97
mbuf structures 98
types

Ethernet 145
Fiber Distributed Data Interface (FDDI) 117
Forum Compliant ATM LAN Emulation 104
Multiprotocol (MPQP) 101
PCI Token-Ring device drivers 136
SOL (serial optical link) 102
Token-Ring (8fa2) 129
Token-Ring (8fc8) 121

user-mode interface 97
communications I/O subsystem

physical device handler model 98
compiling

when using trace 310
complex locks 54
configuration

low function terminal interface 173
cross-memory kernel services 59

D
DASD subsystem

device block level description 279
device block operation

cylinder 280
head 280
sector 279
track 279

data flushing 61
dataless workstations, copying a system dump on 285
DDS 93
debug 293
debugger 281, 317
device attributes

accessing 92
modifying 93

© Copyright IBM Corp. 1997, 2003 521

device configuration database
configuring 85
customized database 85
predefined database 85, 90

device configuration manager
configuration hierarchy 86
configuration rules 86
device dependencies graph 86
device methods 88
invoking 87

device configuration subroutines 95
device configuration subsystem 85, 86

adding unsupported devices 90
configuration commands 95
configuration database structure 84
configuration subroutines 95
database configuration procedures 85
device classifications 83
device dependencies 91
device method level 84
device types 87
high-level perspective 84
low-level perspective 85
object classes in 87
run-time configuration commands 89
scope of support 83
writing device methods for 88

Device control operations 156
NDD_CLEAR_STATS 158
NDD_DISABLE_ADAPTER 159
NDD_DISABLE_ADDRESS 157
NDD_DISABLE_MULTICAST 158
NDD_DUMP_ADDR 159
NDD_ENABLE_ADAPTER 159
NDD_ENABLE_ADDRESS 157
NDD_ENABLE_MULTICAST 158
NDD_GET_ALL_STATS 158
NDD_GET_STATS 156
NDD_MIB_ADDR 158
NDD_MIB_GET 157
NDD_MIB_QUERY 157
NDD_PROMISCUOUS_OFF 159
NDD_PROMISCUOUS_ON 158
NDD_SET_LINK_STATUS 159
NDD_SET_MAC_ADDR 160

Device Control Operations
NDD_CLEAR_STATS 127
NDD_DISABLE_ADDRESS 127
NDD_ENABLE_ADDRESS 126
NDD_GET_ALL_STATS 127
NDD_GET_STATS 126
NDD_MIB_ADDR 127
NDD_MIB_GET 126
NDD_MIB_QUERY 126

device dependent structure
format 94
updating

using the Change method 93
device driver

including in a system dump 282
device driver management kernel services 51

device drivers
adding 91
device dependent structure 93
display 175
entry points 174
interface 174
pseudo

low function terminal 174
device methods

adding devices 91
Change method and device dependent structure 93
changing device states 89
Configure method and device dependent

structure 93
for changing the database and not device state 90
interfaces 88
interfaces to

run-time commands 89
invoking 88
method types 88
source code examples of 88
writing 88

device states 89
devices

child 91
dependencies 91
SCSI 193

diacritics 176
diagnostics

low function terminal interface 175
direct access storage device subsystem 179
diskless systems

configuring dump device 281
dump device for 281

display device driver 175
interface 175

DMA management
accessing data in progress 50
hiding data 50
setting up transfers 50

DMA management kernel services 47
dump 281

configuring dump devices 281
copying from dataless machines 285
copying to other media 285
starting 282
system dump facility 281

dump device
determining the size of 287
determining the type of logical volume 287
increasing the size of 287, 288

dump devices 281

E
encapsulation 66
entry points

communications physical device handler 98
device driver 174
IDE adapter driver 275
IDE device driver 275

522 Kernel Extensions and Device Support Programming Concepts

entry points (continued)
logical volume device driver 183
MPQP device handler 101
SCSI adapter device driver 211
SCSI device driver 211
SOL device handler 102

errinstall command 289
errlogger command 293
errmsg command 288
error conditions

SCSI_ADAPTER_HDW_FAILURE 256
SCSI_ADAPTER_SFW_FAILURE 256
SCSI_CMD_TIMEOUT 256
SCSI_FUSE_OR_TERMINAL_PWR 256
SCSI_HOST_IO_BUS_ERR 256
SCSI_NO_DEVICE_RESPONSE 256
SCSI_TRANSPORT_BUSY 257
SCSI_TRANSPORT_DEAD 257
SCSI_TRANSPORT_FAULT 256
SCSI_TRANSPORT_RESET 256
SCSI_WW_NAME_CHANGE 256

error logging 288
adding logging calls 292
coding steps 288
determining the importance 288
determining the text of the error message 288
error record template, sample 291
error record templates 289
thresholding level 288

error messages
determining the text of 288

error record template 289
sample of 291

errpt command 288, 293
errsave kernel service 288, 292
errupdate command 289, 291, 293
Ethernet device driver 145

asynchronous status 155
configuration parameters 146
device control operations 156
entry points 152
NDD_CLEAR_STATS 158
NDD_DISABLE_ADAPTER 159
NDD_DISABLE_ADDRESS 157
NDD_DISABLE_MULTICAST 158
NDD_DUMP_ADDR 159
NDD_ENABLE_ADAPTER 159
NDD_ENABLE_ADDRESS 157
NDD_ENABLE_MULTICAST 158
NDD_GET_ALL_STATS 158
NDD_GET_STATS 156
NDD_MIB_ADDR 158
NDD_MIB_GET 157
NDD_MIB_QUERY 157
NDD_PROMISCUOUS_OFF 159
NDD_PROMISCUOUS_ON 158
NDD_SET_LINK_STATUS 159
NDD_SET_MAC_ADDR 160

events
management of 67

exception codes
communications device handlers 99

exception handlers
implementing

in kernel-mode 15, 17, 18
in user-mode 18

registering 67
exception handling

interrupts and exceptions 14
modes

kernel 15
user 18

processing exceptions
basic requirements 15
default mechanism 14
kernel-mode 15

exception management kernel services 66
execution environments

interrupt 6
process 6

F
FCP

adapter device driver interfaces 264
asynchronous event handling 247, 248
autosense data 249
closing the device 264
command tag queuing 254
consolidated commands 253
data transfer for commands 264
device driver interfaces 264
driver transaction sequence 252
dumps 265
error processing 264
error recovery 249
fragmented commands 254
initiator I/O requests 253
initiator-mode recovery 249, 250
interfaces 264
internal commands 252
NACA=1 error 249
openx subroutine options 261
recovery from failure 248
returned status 251
SC_CHECK_CONDITION 251
scsi_buf structure 254
spanned commands 253

FCP Adapter device driver
initiator-mode ioctl commands 266
ioctl commands, required 265

FCP device driver
responsibilities 260
SC_DIAGNOSTIC 262
SC_FORCED_OPEN 261
SC_NO_RESERVE 262
SC_RETAIN_RESERVATION 262
SC_SINGLE 262
SCIOLEVENT 266

FDDI device driver 117
configuration parameters 117

Index 523

FDDI device driver (continued)
entry points 118
trace and error logging 119

Fiber Distributed Data Interface device driver 117
file descriptor 55
file systems

logical file system 39
virtual file system 40

files
/dev/error 288
/dev/systrctl 295
/etc/trcfmt 295, 311
sys/erec.h 291
sys/err_rec.h 293
sys/errids.h 292
sys/trchkid.h 295, 296, 311
sys/trcmacros.h 295

filesystem 39
fine granularity timer services 71
Forum Compliant ATM LAN Emulation device

driver 104

G
g-nodes 41
getattr subroutine

modifying attributes 93
graphic input device 167

H
hardware interrupt kernel services 46

I
I/O kernel services

block I/O 45
buffer cache 45
character I/O 46
DMA management 47
interrupt management 46
memory buffer (mbuf) 46

IDE subsystem
adapter driver

entry points 275
ioctl commands 276, 277
performing dumps 275

consolidated commands 272
device communication

initiator-mode support 269
error processing 275
error recovery

analyzing returned status 270
initiator mode 270

fragmented commands 272
IDE device driver

design requirements 275
entry points 275
internal commands 271
responsibilities relative to adapter device

driver 269

IDE subsystem (continued)
IDEIOIDENT 278
IDEIOINQU 277
IDEIOREAD 277
IDEIORESET 277
IDEIOSTART 277
IDEIOSTOP 277
IDEIOSTUNIT 277
IDEIOTUR 277
initiator I/O request execution 271
spanned commands 272
structures

ataide_buf structure 272
typical adapter transaction sequence 270

input device, subsystem 167
input ring mechanism 174
interface

low function terminal subsystem 173
interrupt execution environment 6
interrupt management

defining levels 49
setting priorities 49

interrupt management kernel services 49
interrupts

management services 46
INTSTOLLONG macro 27
ioctl commands

SCIOCMD 218
iSCSI

autosense data 249
command tag queuing 254
consolidated commands 253
error recovery 249
fragmented commands 254
initiator I/O requests 253
initiator-mode recovery 249, 250
NACA=1 error 249
openx subroutine options 261
returned status 251
SC_CHECK_CONDITION 251
scsi_buf structure 254
spanned commands 253

K
KDB Kernel Debugger 317

example files 323, 325, 327
introduction 317
subcommands 343

kernel data
accessing in a system call 24

kernel debugger 317
kernel environment 1

base kernel services 2
creation of kernel processes 8
exception handling 14
execution environments

interrupt 6
process 6

libraries
libcsys 4

524 Kernel Extensions and Device Support Programming Concepts

kernel environment (continued)
libraries (continued)

libsys 5
loading kernel extensions 3
private routines 3
programming

kernel threads 6
kernel environment, runtime 45
kernel extension binding

adding symbols to the /unix name space 2
using existing libraries 4

kernel extension considerations
32-bit 22

kernel extension development
64-bit 19

kernel extension libraries
libcsys 4
libsys 5

kernel extension programming environment
64-bit 20

kernel extensions
accessing user-mode data

using cross-memory services 12
using data transfer services 12

interrupt priority
service times 49

loading 3
loading and binding services 51
management services 52
serializing access to data structures 13
unloading 3
using with system calls 2

kernel processes
accessing data from 9
comparison to user processes 9
creating 10, 66
executing 10
handling exceptions 11
handling signals 11
obtaining cross-memory descriptors 10
preempting 10
terminating 10
using system calls 11

kernel protection domain 8, 9, 23
kernel services 45

address family domain 64
atomic operations 55
categories

I/O 45, 46, 47
memory 57, 58, 59

communications device handler interface 66
complex locks 54
device driver management 51, 52
errsave 288, 292
exception management 66
fine granularity 70
interface address 65
loading 3
lock allocation 53
locking 52
logical file system 55

kernel services (continued)
loopback 65
management 51, 52
memory 57
message queue 63
multiprocessor-safe timer service 71
network 64
network interface device driver 64
process level locks 54
process management 66
protocol 65
Reliability Availability Serviceability (RAS) 69
routing 65
security 69
simple locks 53
time-of-day 70
timer 70, 71
unloading kernel extensions 3
virtual file system 72

kernel structures
encapsulation 66

kernel symbol resolution
using private routines 3

kernel threads
creating 7, 66
executing 7
terminating 7

L
lft 173
LFT

accented characters 176
libraries

libcsys 4
libsys 5

locking
conventional locks 13
kernel-mode strategy 14
serializing access to a predefined data structure

and 13
locking kernel services 52
lockl locks 54
locks

allocation 53
atomic operations 55
complex 54
lockl 54
simple 53

logical file system 55
component structure 40

file routines 40
v-nodes 40

file system role 39
logical volume device driver

bottom half 183
data structures 183
physical device driver interface 184
pseudo-device driver role 182
top half 183

Index 525

logical volume manager
DASD support 179

logical volume subsystem
bad block processing 185
logical volume device driver 182
physical volumes

comparison with logical volumes 179
reserved sectors 180

LONG32TOLONG64 macro 26
loopback kernel services 65
low function terminal

configuration commands 174
functional description 173
interface 173

components 174
configuration 173
device driver entry points 174
ioctls 174
terminal emulation 173
to display device drivers 174
to system keyboard 174

low function terminal interface
AIXwindows support 174

low function terminal subsystem 173
accented characters supported 176

lsattr command
displaying attribute characteristics of devices 95

lscfg command
displaying device diagnostic information 95

lsconn command
displaying device connections 95

lsdev command
displaying device information 95

lsparent command
displaying information about parent devices 95

M
macros

INTSTOLLONG 27
LONG32TOLONG64 26
memory buffer (mbuf) 47

management kernel services 51
management services

file descriptor 55
mbuf structures

communications device handlers 98
memory buffer (mbuf) kernel services 46
memory buffer (mbuf) macros 47
memory kernel services

memory management 57
memory pinning 57
user memory access 57

message queue kernel services 63
mkdev command

adding devices to the system 95
configuring devices 89

MODS 281, 313
MPQP device handlers

binary synchronous communication
message types 101

MPQP device handlers (continued)
binary synchronous communication (continued)

receive errors 102
entry points 101

multiprocessor-safe timer services 71
Multiprotocol device handlers 101

N
NACA=1 error 249
NDD_ADAP_CHECK 124
NDD_AUTO_RMV 124
NDD_BUS_ERR 124
NDD_CLEAR_STATS 112, 127, 158
NDD_CMD_FAIL 124
NDD_DEBUG_TRACE 113
NDD_DISABLE_ADAPTER 159
NDD_DISABLE_ADDRESS 112, 127, 157
NDD_DISABLE_MULTICAST 112, 158
NDD_DUMP_ADDR 159
NDD_ENABLE_ADAPTER 159
NDD_ENABLE_ADDRESS 112, 126, 157
NDD_ENABLE_MULTICAST 113, 158
NDD_GET_ALL_STATS 113, 127, 158
NDD_GET_STATS 114, 126, 156
NDD_MIB_ADDR 114, 127, 158
NDD_MIB_GET 114, 126, 157
NDD_MIB_QUERY 114, 126, 157
NDD_PIO_FAIL 123
NDD_PROMISCUOUS_OFF 159
NDD_PROMISCUOUS_ON 158
NDD_SET_LINK_STATUS 159
NDD_SET_MAC_ADDR 160
NDD_TX_ERROR 124
NDD_TX_TIMEOUT 124
network kernel services

address family domain 64
communications device handler interface 66
interface address 65
loopback 65
network interface device driver 64
protocol 65
routing 65

O
object data manager 90
ODM 90
odmadd command

adding devices to predefined database 90
openx subroutine 261

SC_DIAGNOSTIC 261
SC_FORCED_OPEN 261
SC_NO_RESERVE 261
SC_RESV_04 261
SC_RESV_05 261
SC_RESV_06 261
SC_RESV_07 261
SC_RESV_08 261
SC_RETAIN_RESERVATION 261
SC_SINGLE 261

526 Kernel Extensions and Device Support Programming Concepts

optical link device handlers 102

P
parameters

long 26
long long 27
scalar 26
signed long 26
uintptr_t 27

partition (physical volumes) 180
PCI Token-Ring Device Driver

trace and error logging 141
PCI Token-Ring High Device Driver

entry points 137
PCI Token-Ring High Performance

configuration parameters 136
performance tracing 281
physical volumes

block 179
comparison with logical volumes 179
limitations 180
partition 180
reserved sectors 180
sector layout 180

pinning
memory 57

predefined attributes object class
accessing 92
modifying 93

printer addition management subsystem
adding a printer definition 190
adding a printer formatter 191
adding a printer type 189
defining embedded references in attribute

strings 191
modifying printer attributes 190

printer formatter
defining embedded references 191

printers
unsupported types 189

private routines 3
process execution environment 6
process management kernel services 66
processes

creating 66
protection domains

kernel 23
understanding 23
user 23

pseudo device driver
low function terminal 174

putattr subroutine
modifying attributes 93

R
RCM 175
referenced routines

for memory pinning 63
to support address space operations 62

referenced routines (continued)
to support cross-memory operations 63
to support pager back ends 63

Reliability Availability Serviceability (RAS) kernel
services 69

remote dump device for diskless systems 281
rendering context manager 174, 175
restbase command

restoring customized information to configuration
database 95

rmdev command
configuring devices 89
removing devices from the system 95

runtime kernel environment 45

S
sample code

trace format file 300
savebase command

saving customized information to configuration
database 95

sc_buf structure (SCSI) 202
scalar parameters 26
SCIOCMD 218
SCSI subsystem

adapter device driver
entry points 211
initiator-mode ioctl commands 217
ioctl operations 215, 218, 219, 220, 221, 222
performing dumps 211
responsibilities relative to SCSI device driver 193
target-mode ioctl commands 220

asynchronous event handling 194
command tag queuing 202
device communication

initiator-mode support 194
target-mode support 194

error processing 211
error recovery

initiator mode 196
target mode 199

initiator I/O request execution
fragmented commands 201
gathered write commands 201
spanned or consolidated commands 200

initiator-mode adapter transaction sequence 199
SCSI device driver

asynchronous event-handling routine 196
closing a device 210
design requirements 207
entry points 211
internal commands 199
responsibilities relative to adapter device

driver 193
using openx subroutine options 207

structures
sc_buf structure 202
tm_buf structure 210, 215

target-mode interface 212, 214, 216
interaction with initiator-mode interface 212

Index 527

SCSI_ADAPTER_HDW_FAILURE 256
SCSI_ADAPTER_SFW_FAILURE 256
scsi_buf structure 254

fields 254
SCSI_CMD_TIMEOUT 256
SCSI_FUSE_OR_TERMINAL_PWR 256
SCSI_HOST_IO_BUS_ERR 256
SCSI_NO_DEVICE_RESPONSE 256
SCSI_TRANSPORT_BUSY 257
SCSI_TRANSPORT_DEAD 257
SCSI_TRANSPORT_FAULT 256
SCSI_TRANSPORT_RESET 256
SCSI_WW_NAME_CHANGE 256
security kernel services 69
serial optical link device handlers 102
signal management 67
Small Computer Systems Interface subsystem 193
SOL device handlers

changing device attributes 104
configuring physical and logical devices 103
entry points 102, 103
special files interfaces 103

status and exception codes 99
status blocks

communications device handler
CIO_ASYNC_STATUS 101
CIO_HALT_DONE 100
CIO_LOST_STATUS 100
CIO_NULL_BLK 100
CIO_START_DONE 100
CIO_TX_DONE 100

communications device handlers and 99
status codes

communications device handlers and 99
status codes, system dump 284
storage 179
stream-based tty subsystem 173
structures

scsi_buf 254
subcommands, KDB Debugger

[393
address translation 401
ames 485
apt 483
asc 419
ascsi 419
b 368
B 372
bat 498
BRAT 502
breakpoint 368
brk 368
bt 365
btac 502
bucket 434
buf 437
buffer 437
c 371
ca 371
cal 393
calculator 393

subcommands, KDB Debugger (continued)
cat 367
cbtac 502
cdt 364
cl 371
clk 455
conditional 393
context 362
cpl 455
cpu 497
ct 367
ctx 362
cw 390
d 374
dbat 498
dc 376
dcal 393
dd 374
ddpd 375
ddph 375
ddpw 375
ddvd 375
ddvh 375
ddvw 375
debug 391
decode 374
dev 453
devno 449
devnode 449
devsw 453
diob 375
diod 375
dioh 375
diow 375
dis 376
display 374
dp 374
dpc 376
dpd 374
dpw 374
dr 378
dump 374
dw 374
e 356
exit 356
exp 400
ext 381
extp 381
f 359
fb 439
fbuffer 439
fifono 450
fifonode 450
file 440
file system 437
find 380
findp 380
fino 444
g 356
gfs 440
gno 439

528 Kernel Extensions and Device Support Programming Concepts

subcommands, KDB Debugger (continued)
gnode 439
gt 370
h 354
hb 438
hbuffer 438
hcal 393
heap 430
help 354
hi 356
hino 443
hinode 443
his 356
hist 356
hno 451
hnode 451
hp 430
ibat 499
icache 444
ifnet 458
ino 441
inode 441
intr 404
ipc 487
ipl 456
iplcb 456
kernel extension loader 397
kmbucket 434
kmstats 436
lb 369
lbrk 369
lbtac 502
lc 371
lcbtac 502
lcl 371
lcw 390
lka 488
lke 397
lkh 489
lkw 490
lockanch 488
lockhash 489
lockword 490
lstop-cl 390
lstop-r 390
lstop-rw 390
lstop-w 390
LVM 416
lvol 419
lwr 390
lwrw 390
lww 390
m 383
machine status 394
mbuf 467
md 383
mdbat 499
mdpb 384
mdpd 384
mdph 384
mdpw 384

subcommands, KDB Debugger (continued)
mdvb 384
mdvd 384
mdvh 384
mdvw 384
memory allocator 430
mibat 501
miob 384
miod 384
mioh 384
miow 384
mount 446
mp 383
mpd 383
mpw 383
mr 385
mst 405
mw 383
n 372
namelist 387
ndd 460
net 458
netm 460
netstat 460
nexti 372
nm 387
ns 387
p 406
pbuf 416
pdt 473
pfhdata 471
pft 475
ppda 402
print 388
proc 406
process 402
pta 479
pte 478
pvol 418
q 356
r 370
reboot 392
return 370
rmap 469
rmst 397
rno 445
rnode 445
s 372
S 372
scb 474
scd 427
scdisk 427
SCSI 419
segst64 482
set 357
setup 357
si 464
slk 455
SMP 496
sock 463
sockinfo 464

Index 529

subcommands, KDB Debugger (continued)
specno 448
specnode 448
spl 455
sr64 481
stack 359
start 497
stat 394
stbl 397
ste 480
step 368
stepi 372
stop 497
stop-cl 390
stop-r 390
stop-rw 390
stop-w 390
sw 395
switch 395
symbol 387
symptom 389
system table 452
tblk 488
tcb 462
tcpcb 467
test 393
th 409
th_pid 412
th_tid 412
thread 409
time 391
timer 453
tpid 412
tr 401
trace 365, 457
trb 453
ts 387
ttid 412
tv 401
u 414
udb 463
user 414
var 452
vfs 446
vl 495
vmaddr 472
vmdmap 494
vmker 468
vmlock 495
vmlocks 495
vmlog 487
VMM 468
vmstat 472
vmwait 484
vno 446
vnode 446
volgrp 417
vrld 487
vsc 422
vscsi 422
watch 390

subcommands, KDB Debugger (continued)
where 359
which 388
wr 390
wrw 390
ww 390
xm 432
xmalloc 432
zproc 486

subroutines
close 167
ioctl 167
open 167
read 167
write 167

subsystem
graphic input device 167
low function terminal 173
streams-based tty 173

system calls
accessing kernel data in 24
asynchronous signals 33
error information 35
exception handling 33, 34
execution 24
in kernel protection domain 23
in user protection domain 23
nesting for kernel-mode use 34
page faulting 34
passing parameters 25
preempting 32
services for all kernel extensions 35
services for kernel processes only 35
setjmpx kernel service 33
signal handling in 32
stacking saved contexts 33
using with kernel extensions 2
wait termination 33

system dump
checking status 284
configuring dump devices 281
copy from server 285
copying from dataless machines 285
copying on a non-dataless machine 286
copying to other media 285
including device driver data 282
locating 285
reboot in normal mode 285
starting 282

system dump facility 281

T
terminal emulation

low function terminal 173
threads

creating 66
time-of-day kernel services 70
timer kernel services

coding the timer function 71
compatibility 70

530 Kernel Extensions and Device Support Programming Concepts

timer kernel services (continued)
determining the timer service to use 71
fine granularity 70
reading time into time structure 71
watchdog 71

timer service
multiprocessor-safe 71

tm_buf structure (SCSI) 210
TOK_ADAP_INIT 124
TOK_ADAP_OPEN 124
TOK_DMA_FAIL 125
TOK_RECOVERY_THRESH 123
TOK_RING_SPEED 125
TOK_RMV_ADAP 125
TOK_WIRE_FAULT 125
Token-Ring (8fa2) device driver 129

asynchronous state 131
configuration parameters 129
data reception 130
data transmission 130
device driver close 130
device driver open 130
trace and error logging 134

Token-Ring (8fc8) device 121
Token-Ring (8fc8) device driver

configuration parameters 121
trace and error logging 127

trace
controlling 295

trace events
defining 295
event IDs 296

determining location of 296
format file example 300
format file stanzas 297
forms of 295
macros 295

trace facility 293
configuring 294
controlling 295
controlling using commands 295
defining events 295
event IDs 296
events, forms of 295
hookids 296
reports 295
starting 294
using 294

trace report
filtering 312
producing 295
reading 312

tracing 293
configuring 294
starting 294

trcrpt command 294, 295

U
user commands

configuration 174

user protection domain 23

V
v-nodes 40
virtual file system 39

configuring 43
data structures 42
file system role 40
generic nodes (g-nodes) 41
header files 42
interface requirements 41
mount points 40
virtual nodes (v-nodes) 40

virtual file system kernel services 72
virtual memory management

addressing data 60
data flushing 61
discarding data 61
executable data 61
installing pager backends 61
moving data 61
objects 60
protecting data 61
referenced routines

for manipulating objects 62
virtual memory management kernel services 58
virtual memory manager 60
vm_uiomove 59, 61, 62

Index 531

532 Kernel Extensions and Device Support Programming Concepts

Vos remarques sur ce document / Technical publication remark form

Titre / Title : Bull AIX 5L Kernel Extensions and Device Support Programming Concepts

Nº Reférence / Reference Nº : 86 A2 37EF 02 Daté / Dated : May 2003

ERREURS DETECTEES / ERRORS IN PUBLICATION

AMELIORATIONS SUGGEREES / SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Vos remarques et suggestions seront examinées attentivement.
Si vous désirez une réponse écrite, veuillez indiquer ci-après votre adresse postale complète.

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please furnish your complete mailing address below.

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

Remettez cet imprimé à un responsable BULL ou envoyez-le directement à :

Please give this technical publication remark form to your BULL representative or mail to:

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Technical Publications Ordering Form
Bon de Commande de Documents Techniques

To order additional publications, please fill up a copy of this form and send it via mail to:
Pour commander des documents techniques, remplissez une copie de ce formulaire et envoyez-la à :

BULL CEDOC
ATTN / Mr. L. CHERUBIN
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Phone / Téléphone : +33 (0) 2 41 73 63 96
FAX / Télécopie +33 (0) 2 41 73 60 19
E–Mail / Courrier Electronique : srv.Cedoc@franp.bull.fr

Or visit our web sites at: / Ou visitez nos sites web à:
http://www.logistics.bull.net/cedoc
http://www–frec.bull.com http://www.bull.com

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

[_ _] : no revision number means latest revision / pas de numéro de révision signifie révision la plus récente

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

PHONE / TELEPHONE : FAX :

E–MAIL :

For Bull Subsidiaries / Pour les Filiales Bull :

Identification:

For Bull Affiliated Customers / Pour les Clients Affiliés Bull :

Customer Code / Code Client :

For Bull Internal Customers / Pour les Clients Internes Bull :

Budgetary Section / Section Budgétaire :

For Others / Pour les Autres :

Please ask your Bull representative. / Merci de demander à votre contact Bull.

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

86 A2 37EF 02
ORDER REFERENCE

P
LA

C
E

 B
A

R
 C

O
D

E
 IN

 L
O

W
E

R
LE

F
T

 C
O

R
N

E
R

Utiliser les marques de découpe pour obtenir les étiquettes.
Use the cut marks to get the labels.

AIX

86 A2 37EF 02

AIX 5L Kernel
Extensions and
Device Support
Programming

Concepts

AIX

86 A2 37EF 02

AIX 5L Kernel
Extensions and
Device Support
Programming

Concepts

AIX

86 A2 37EF 02

AIX 5L Kernel
Extensions and
Device Support
Programming

Concepts

	Contents
	About This Book
	Who Should Use This Book
	How to Use This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	Related Publications

	Chapter 1. Kernel Environment
	Understanding Kernel Extension Symbol Resolution
	Exporting Kernel Services and System Calls
	Using Kernel Services
	Using System Calls with Kernel Extensions
	Using Private Routines
	Understanding Dual-Mode Kernel Extensions
	Using Libraries

	Understanding Execution Environments
	Process Environment
	Interrupt Environment

	Understanding Kernel Threads
	Kernel Threads, Kernel Only Threads, and User Threads
	Kernel Data Structures
	Thread Creation, Execution, and Termination
	Thread Scheduling
	Thread Signal Handling

	Using Kernel Processes
	Introduction to Kernel Processes
	Accessing Data from a Kernel Process
	Cross-Memory Services
	Kernel Process Creation, Execution, and Termination
	Kernel Process Preemption
	Kernel Process Signal and Exception Handling
	Kernel Process Use of System Calls

	Accessing User-Mode Data While in Kernel Mode
	Data Transfer Services
	Using Cross-Memory Kernel Services

	Understanding Locking
	Lockl Locks
	Simple Locks
	Complex Locks
	Types of Critical Sections
	Priority Promotion
	Locking Strategy in Kernel Mode

	Understanding Exception Handling
	Exception Processing
	Kernel-Mode Exception Handling
	Implementing Kernel Exception Handlers
	User-Mode Exception Handling

	Using Kernel Extensions to Support 64–bit Processes
	64-bit Kernel Extension Programming Environment
	C Language Data Model
	Kernel Data Structures
	Function Prototypes
	Compiler Options
	Conditional Compilation
	Kernel Extension Libraries
	Kernel Execution Mode
	Kernel Address Space

	32-bit Kernel Extension Considerations
	Related Information
	Subroutine References
	Commands References
	Technical References

	Chapter 2. System Calls
	Differences Between a System Call and a User Function
	Understanding Protection Domains
	User Protection Domain
	Kernel Protection Domain

	Understanding System Call Execution
	Accessing Kernel Data While in a System Call
	Passing Parameters to System Calls
	Passing Scalar Parameters to System Calls
	64-bit Application Support on the 64-bit Kernel
	32-bit Application Support on the 32-bit Kernel
	64-bit Application Support on the 32-bit Kernel
	Returning 64-bit Values from System Calls
	Passing Structure Parameters to System Calls

	Preempting a System Call
	Handling Signals While in a System Call
	Delivery of Signals to a System Call
	Asynchronous Signals and Wait Termination
	Stacking Saved Contexts for Nested setjmpx Calls

	Handling Exceptions While in a System Call
	Alternative Exception Handling Using the setjmpx Kernel Service

	Understanding Nesting and Kernel-Mode Use of System Calls
	Page Faulting within System Calls
	Returning Error Information from System Calls
	System Calls Available to Kernel Extensions
	System Calls Available to All Kernel Extensions
	System Calls Available to Kernel Processes Only

	Related Information
	Subroutine References
	Technical References

	Chapter 3. Virtual File Systems
	Logical File System Overview
	Component Structure of the Logical File System

	Virtual File System Overview
	Understanding Virtual Nodes (V-nodes)
	Understanding Generic I-nodes (G-nodes)
	Understanding the Virtual File System Interface

	Understanding Data Structures and Header Files for Virtual File Systems
	Configuring a Virtual File System
	Related Information
	Subroutine References
	Files References
	Technical References

	Chapter 4. Kernel Services
	Categories of Kernel Services
	I/O Kernel Services
	Block I/O Kernel Services
	Buffer Cache Kernel Services
	Character I/O Kernel Services
	Interrupt Management Services
	Memory Buffer (mbuf) Kernel Services
	DMA Management Kernel Services

	Block I/O Buffer Cache Kernel Services: Overview
	Managing the Buffer Cache
	Using the Buffer Cache write Services

	Understanding Interrupts
	Interrupt Priorities

	Understanding DMA Transfers
	Hiding DMA Data
	Accessing Data While the DMA Operation Is in Progress

	Kernel Extension and Device Driver Management Services
	Kernel Extension Loading and Unloading Services
	Other Kernel Extension and Device Driver Management Services
	List of Kernel Extension and Device Driver Management Kernel Services

	Locking Kernel Services
	Lock Allocation and Other Services
	Simple Locks
	Complex Locks
	Lockl Locks
	Atomic Operations

	File Descriptor Management Services
	Logical File System Kernel Services
	Other Considerations
	List of Logical File System Kernel Services

	Programmed I/O (PIO) Kernel Services
	Memory Kernel Services
	Memory Management Kernel Services
	Memory Pinning Kernel Services
	User-Memory-Access Kernel Services
	Virtual Memory Management Kernel Services
	Cross-Memory Kernel Services

	Understanding Virtual Memory Manager Interfaces
	Virtual Memory Objects
	Addressing Data
	Moving Data to or from a Virtual Memory Object
	Data Flushing
	Discarding Data
	Protecting Data
	Executable Data
	Installing Pager Backends
	Referenced Routines
	Services that Support 64-bit Processes on the 32-bit Kernel
	Services that Support 64-bit Processes

	Message Queue Kernel Services
	Network Kernel Services
	Address Family Domain and Network Interface Device Driver Kernel Services
	Routing and Interface Address Kernel Services
	Loopback Kernel Services
	Protocol Kernel Services
	Communications Device Handler Interface Kernel Services

	Process and Exception Management Kernel Services
	Creating Kernel Processes
	Creating Kernel Threads
	Kernel Structures Encapsulation
	Registering Exception Handlers
	Signal Management
	Events Management
	List of Process, Thread, and Exception Management Kernel Services

	RAS Kernel Services
	Security Kernel Services
	Timer and Time-of-Day Kernel Services
	Time-Of-Day Kernel Services
	Fine Granularity Timer Kernel Services
	Timer Kernel Services for Compatibility
	Watchdog Timer Kernel Services

	Using Fine Granularity Timer Services and Structures
	Timer Services Data Structures
	Coding the Timer Function

	Using Multiprocessor-Safe Timer Services
	Virtual File System (VFS) Kernel Services
	Related Information
	Subroutine References
	Commands References
	Technical References

	Chapter 5. Asynchronous I/O Subsystem
	How Do I Know if I Need to Use AIO?
	SMP Systems
	How Many AIO Servers Am I Currently Using?
	How Many AIO Servers Do I Need?
	Prerequisites

	Functions of Asynchronous I/O
	Large File-Enabled Asynchronous I/O
	Nonblocking I/O
	Notification of I/O Completion
	Cancellation of I/O Requests

	Asynchronous I/O Subroutines
	Order and Priority of Asynchronous I/O Calls

	Subroutines Affected by Asynchronous I/O
	Changing Attributes for Asynchronous I/O
	64-bit Enhancements
	Related Information
	Subroutine References
	Commands References

	Chapter 6. Device Configuration Subsystem
	Scope of Device Configuration Support
	Device Configuration Subsystem Overview
	General Structure of the Device Configuration Subsystem
	High-Level Perspective
	Device Method Level
	Low-Level Perspective

	Device Configuration Database Overview
	Basic Device Configuration Procedures Overview
	Device Configuration Manager Overview
	Devices Graph
	Configuration Rules
	Invoking the Configuration Manager

	Device Classes, Subclasses, and Types Overview
	Writing a Device Method
	Invoking Methods
	Example Methods

	Understanding Device Methods Interfaces
	Configuration Manager
	Run-Time Configuration Commands

	Understanding Device States
	Adding an Unsupported Device to the System
	Modifying the Predefined Database
	Adding Device Methods
	Adding a Device Driver
	Using installp Procedures

	Understanding Device Dependencies and Child Devices
	Accessing Device Attributes
	Modifying an Attribute Value

	Device Dependent Structure (DDS) Overview
	How the Change Method Updates the DDS
	Guidelines for DDS Structure
	Example of DDS

	List of Device Configuration Commands
	List of Device Configuration Subroutines
	Related Information
	Subroutine References
	Commands References
	Technical References

	Chapter 7. Communications I/O Subsystem
	User-Mode Interface to a Communications PDH
	Kernel-Mode Interface to a Communications PDH
	CDLI Device Drivers
	Communications Physical Device Handler Model Overview
	Use of mbuf Structures in the Communications PDH
	Common Communications Status and Exception Codes

	Status Blocks for Communications Device Handlers Overview
	CIO_START_DONE
	CIO_HALT_DONE
	CIO_TX_DONE
	CIO_NULL_BLK
	CIO_LOST_STATUS
	CIO_ASYNC_STATUS

	MPQP Device Handler Interface Overview for the ARTIC960Hx PCI Adapter
	Binary Synchronous Communication (BSC) with the PCI MPQP Adapter
	Description of the PCI MPQP Card

	Serial Optical Link Device Handler Overview
	Special Files
	Entry Points

	Configuring the Serial Optical Link Device Driver
	Physical and Logical Devices
	Changeable Attributes of the Serial Optical Link Subsystem

	Forum-Compliant ATM LAN Emulation Device Driver
	Adding ATM LANE Clients
	Configuration Parameters for the ATM LANE Device Driver
	Device Driver Configuration and Unconfiguration
	Device Driver Open
	Device Driver Close
	Data Transmission
	Data Reception
	Asynchronous Status
	Device Control Operations
	Tracing and Error Logging in the ATM LANE Device Driver
	Adding an ATM MPOA Client
	Configuration Parameters for ATM MPOA Client
	Tracing and Error Logging in the ATM MPOA Client
	Getting Client Status

	Fiber Distributed Data Interface (FDDI) Device Driver
	Configuration Parameters for FDDI Device Driver
	FDDI Device Driver Configuration and Unconfiguration
	Device Driver Open
	Device Driver Close
	Data Transmission
	Data Reception
	Reliability, Availability, and Serviceability for FDDI Device Driver

	High-Performance (8fc8) Token-Ring Device Driver
	Configuration Parameters for Token-Ring Device Driver
	Device Driver Configuration and Unconfiguration
	Device Driver Open
	Device Driver Close
	Data Transmission
	Data Reception
	Asynchronous Status
	Device Control Operations
	Trace Points and Error Log Templates for 8fc8 Token-Ring Device Driver

	High-Performance (8fa2) Token-Ring Device Driver
	Configuration Parameters for 8fa2 Token-Ring Device Driver
	Device Driver Configuration and Unconfiguration
	Device Driver Open
	Device Driver Close
	Data Transmission
	Data Reception
	Asynchronous Status
	Device Control Operations
	Trace Points and Error Log Templates for 8fa2 Token-Ring Device Driver

	PCI Token-Ring Device Drivers
	Configuration Parameters
	Device Driver Configuration and Unconfiguration
	Device Driver Open
	Device Driver Close
	Data Transmission
	Data Reception
	Asynchronous Status
	Device Control Operations
	Reliability, Availability, and Serviceability (RAS)

	Ethernet Device Drivers
	Configuration Parameters
	Interface Entry Points
	Asynchronous Status
	Device Control Operations
	Trace
	Error Logging

	Related Information
	Subroutine References
	Commands References
	Technical References

	Chapter 8. Graphic Input Devices Subsystem
	open and close Subroutines
	read and write Subroutines
	ioctl Subroutines
	Keyboard
	Mouse
	Tablet
	GIO (Graphics I/O) Adapter
	Dials
	LPFK

	Input Ring
	Management of Multiple Keyboard Input Rings
	Event Report Formats
	Mouse (Extended Format)
	Keyboard Service Vector
	Special Keyboard Sequences

	Chapter 9. Low Function Terminal Subsystem
	Low Function Terminal Interface Functional Description
	Configuration
	Terminal Emulation
	IOCTLS Needed for AIXwindows Support
	Low Function Terminal to System Keyboard Interface
	Low Function Terminal to Display Device Driver Interface
	Low Function Terminal Device Driver Entry Points

	Components Affected by the Low Function Terminal Interface
	Configuration User Commands
	Display Device Driver
	Rendering Context Manager
	Diagnostics

	Accented Characters
	List of Diacritics Supported by the HFT LFT Subsystem

	Related Information
	Commands References

	Chapter 10. Logical Volume Subsystem
	Direct Access Storage Devices (DASDs)
	Physical Volumes
	Physical Volume Implementation Limitations
	Physical Volume Layout
	Reserved Sectors on a Physical Volume
	Sectors Reserved for the Logical Volume Manager (LVM)

	Understanding the Logical Volume Device Driver
	Data Structures
	Top Half of LVDD
	Bottom Half of the LVDD
	Interface to Physical Disk Device Drivers

	Understanding Logical Volumes and Bad Blocks
	Relocating Bad Blocks
	Detecting and Correcting Bad Blocks

	Related Information
	Subroutine References
	Files Reference
	Technical References

	Chapter 11. Printer Addition Management Subsystem
	Printer Types Currently Supported
	Printer Types Currently Unsupported
	Adding a New Printer Type to Your System
	Additional Steps for Adding a New Printer Type
	Modifying Printer Attributes

	Adding a Printer Definition
	Adding a Printer Formatter to the Printer Backend
	Understanding Embedded References in Printer Attribute Strings
	Related Information
	Subroutine References
	Commands References

	Chapter 12. Small Computer System Interface Subsystem
	SCSI Subsystem Overview
	Responsibilities of the SCSI Adapter Device Driver
	Responsibilities of the SCSI Device Driver
	Communication between SCSI Devices

	Understanding SCSI Asynchronous Event Handling
	Defined Events and Recovery Actions
	Asynchronous Event-Handling Routine

	SCSI Error Recovery
	SCSI Initiator-Mode Recovery When Not Command Tag Queuing
	SCSI Initiator-Mode Recovery During Command Tag Queuing
	Analyzing Returned Status
	Target-Mode Error Recovery

	A Typical Initiator-Mode SCSI Driver Transaction Sequence
	Understanding SCSI Device Driver Internal Commands
	Understanding the Execution of Initiator I/O Requests
	Spanned (Consolidated) Commands
	Fragmented Commands
	Gathered Write Commands

	SCSI Command Tag Queuing
	Understanding the sc_buf Structure
	Fields in the sc_buf Structure

	Other SCSI Design Considerations
	Responsibilities of the SCSI Device Driver
	SCSI Options to the openx Subroutine
	Using the SC_FORCED_OPEN Option
	Using the SC_RETAIN_RESERVATION Option
	Using the SC_DIAGNOSTIC Option
	Using the SC_NO_RESERVE Option
	Using the SC_SINGLE Option
	Closing the SCSI Device
	SCSI Error Processing
	Device Driver and Adapter Device Driver Interfaces
	Performing SCSI Dumps

	SCSI Target-Mode Overview
	Configuring and Using SCSI Target Mode
	Managing Receive-Data Buffers
	Understanding Target-Mode Data Pacing
	Understanding the SCSI Target Mode Device Driver Receive Buffer Routine
	Understanding the tm_buf Structure
	Understanding the Running of SCSI Target-Mode Requests

	Required SCSI Adapter Device Driver ioctl Commands
	Initiator-Mode ioctl Commands
	Target-Mode ioctl Commands
	Target- and Initiator-Mode ioctl Commands

	Related Information
	Technical References

	Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem
	Programming FCP and iSCSI Device Drivers
	FCP and iSCSI Device Drivers
	FCP and iSCSI Adapter Device Driver
	FCP and iSCSI Adapter and Device Interface
	FCP and iSCSI Adapter Device Driver Routines
	FCP and iSCSI Adapter ioctl Operations

	FCP and iSCSI Subsystem Overview
	Responsibilities of the Adapter Device Driver
	Responsibilities of the Device Driver
	Communication between Devices
	Initiator-Mode Support

	Understanding FCP and iSCSI Asynchronous Event Handling
	Defined Events and Recovery Actions
	Asynchronous Event-Handling Routine

	FCP and iSCSI Error Recovery
	Autosense Data
	NACA=1 error recovery

	FCP and iSCSI Initiator-Mode Recovery When Not Command Tag Queuing
	Initiator-Mode Recovery During Command Tag Queuing
	Analyzing Returned Status

	A Typical Initiator-Mode FCP and iSCSI Driver Transaction Sequence
	Understanding FCP and iSCSI Device Driver Internal Commands
	Understanding the Execution of FCP and iSCSI Initiator I/O Requests
	Spanned (Consolidated) Commands
	Fragmented Commands

	FCP and iSCSI Command Tag Queuing
	Understanding the scsi_buf Structure
	Fields in the scsi_buf Structure

	Other FCP and iSCSI Design Considerations
	Responsibilities of the Device Driver
	Options to the openx Subroutine
	Using the SC_FORCED_OPEN Option
	Using the SC_RETAIN_RESERVATION Option
	Using the SC_DIAGNOSTIC Option
	Using the SC_NO_RESERVE Option
	Using the SC_SINGLE Option
	Closing the Device
	Error Processing
	Length of Data Transfer for Commands
	Device Driver and Adapter Device Driver Interfaces
	Performing Dumps

	Required FCP and iSCSI Adapter Device Driver ioctl Commands
	Initiator-Mode ioctl Commands
	Initiator-Mode ioctl Command used by FCP Device Drivers

	Related Information

	Chapter 14. Integrated Device Electronics (IDE) Subsystem
	Responsibilities of the IDE Adapter Device Driver
	Responsibilities of the IDE Device Driver
	Communication Between IDE Device Drivers and IDE Adapter Device Drivers
	IDE Error Recovery
	Analyzing Returned Status

	A Typical IDE Driver Transaction Sequence
	IDE Device Driver Internal Commands
	Execution of I/O Requests
	Spanned (Consolidated) Commands
	Fragmented Commands

	ataide_buf Structure
	Fields in the ataide_buf Structure

	Other IDE Design Considerations
	IDE Device Driver Tasks
	Closing the IDE Device
	IDE Error Processing
	Device Driver and Adapter Driver Interfaces
	Performing IDE Dumps

	Required IDE Adapter Driver ioctl Commands
	ioctl Commands

	Related Information
	Technical References

	Chapter 15. Serial Direct Access Storage Device Subsystem
	DASD Device Block Level Description
	Related Information

	Chapter 16. Debug Facilities
	System Dump Facility
	Configuring a Dump Device
	Starting a System Dump
	Checking the Status of a System Dump
	Status Codes
	Copying a System Dump
	Increase the Size of a Dump Device

	Error Logging
	Setting up Error Logging

	Debug and Performance Tracing
	Introduction
	Using the trace Facility
	Controlling trace
	Producing a trace Report
	Defining trace Events
	Usage Hints
	Trace Event Groups

	Memory Overlay Detection System (MODS)
	bosdebug command
	When to use the MODS feature
	How MODS works
	MODS limitations
	MODS benefits

	Related Information
	Commands References
	Technical References

	Chapter 17. KDB Kernel Debugger and Command
	The kdb Command
	KDB Kernel Debugger
	Commands
	Registers
	Expressions
	Loading and Starting the KDB Kernel Debugger in AIX 4.3.3
	Loading and Starting the KDB Kernel Debugger in AIX 5.1 and Subsequent Releases
	Entering the KDB Kernel Debugger
	Using a Terminal with the KDB Kernel Debugger
	Debugging Multiprocessor Systems
	Using KDB to Perform a Trace

	Using the KDB Kernel Debug Program
	Example Files
	Generating Maps and Listings
	Compiler Listing
	Map File

	Setting Breakpoints
	Determine the Location of your Kernel Extension

	Viewing and Modifying Global Data
	Method 1: Using the dw Subcommand
	Method 2: Using the TOC and Map File
	Method 3: Using the Map File

	Stack Trace
	Subcommands for the KDB Kernel Debugger and kdb Command
	Alphabetical List of KDB Kernel Debug Program Subcommands
	Task Category List of KDB Kernel Debug Program Subcommands
	Basic Subcommands
	Trace Subcommands
	Breakpoints and Steps Subcommands
	Dumps, Display, and Decode Subcommands
	Modify Memory Subcommands
	Namelist and Symbol Subcommands
	Watch Break Point Subcommands
	Miscellaneous Subcommands
	Conditional Subcommands
	Calculator Converter Subcommands
	Machine Status Subcommands
	Kernel Extension Loader Subcommands
	Address Translation Subcommands
	Process Subcommands
	LVM Subcommands
	SCSI Subcommands
	Memory Allocator Subcommands
	File System Subcommands
	System Table Subcommands
	Net Subcommands
	VMM Subcommands
	SMP Subcommands
	Block Address Translation (bat) Subcommands
	btac and BRAT Subcommands

	Chapter 18. Loadable Authentication Module Programming Interface
	Overview
	Load Module Interfaces
	Authentication Interfaces
	The method_authenticate Interface
	The method_chpass Interface
	The method_getpasswd Interface
	The method_normalize Interface
	The method_passwdexpired Interface
	The method_passwdrestrictions Interface

	Identification Interfaces
	The method_getentry Interface
	The method_getgracct Interface
	The method_getgrgid Interface
	The method_getgrnam Interface
	The method_getgrset Interface
	The method_getgrusers Interface
	The method_getpwnam Interface
	The method_getpwuid Interface
	The method_putentry Interface
	The method_putgrent Interface
	The method_putgrusers Interface
	The method_putpwent Interface

	Support Interfaces
	The method_attrlist Interface
	The method_close Interface
	The method_commit Interface
	The method_delgroup Interface
	The method_deluser Interface
	The method_lock Interface
	The method_newgroup Interface
	The method_newuser Interface
	The method_open Interface
	The method_unlock Interface

	Configuration Files
	The options Attribute

	Compound Load Modules
	Related Information

	Appendix. Notices
	Trademarks

	Index

