
Bull
AIX 5L Technical Reference

Communications

AIX

86 A2 80EM 02

ORDER REFERENCE

Bull
AIX 5L Technical Reference

Communications

AIX

Software

October 2005

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

86 A2 80EM 02

ORDER REFERENCE

The following copyright notice protects this book under the Copyright laws of the United States of America

and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and

making derivative works.

Copyright Bull S.A. 1992, 2005

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of

this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you

are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX� is a registered trademark of International Business Machines Corporation, and is being used under

licence.

UNIX is a registered trademark in the United States of America and other countries licensed exclusively through

the Open Group.

Linux is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Bull will not be liable for errors contained

herein, or for incidental or consequential damages in connection with the use of this material.

Contents

About This Book . xi

Highlighting . xi

Case-Sensitivity in AIX . xi

ISO 9000 . xi

32-Bit and 64-Bit Support for the Single UNIX Specification xii

Related Publications . xii

Chapter 1. Simple Network Management Protocol (SNMP) 1

getsmuxEntrybyname or getsmuxEntrybyidentity Subroutine 1

isodetailor Subroutine . 2

ll_hdinit, ll_dbinit, _ll_log, or ll_log Subroutine . 3

o_number, o_integer, o_string, o_igeneric, o_generic, o_specific, or o_ipaddr Subroutine 5

oid_cmp, oid_cpy, oid_free, sprintoid, str2oid, ode2oid, oid2ode, oid2ode_aux, prim2oid, or oid2prim

Subroutine . 7

oid_extend or oid_normalize Subroutine . 9

readobjects Subroutine . 10

s_generic Subroutine . 11

smux_close Subroutine . 12

smux_error Subroutine . 13

smux_free_tree Subroutine . 14

smux_init Subroutine . 15

smux_register Subroutine . 16

smux_response Subroutine . 17

smux_simple_open Subroutine . 18

smux_trap Subroutine . 20

smux_wait Subroutine . 21

text2inst, name2inst, next2inst, or nextot2inst Subroutine 22

text2oid or text2obj Subroutine . 23

Chapter 2. Sockets . 25

_getlong Subroutine . 25

_getshort Subroutine . 26

_putlong Subroutine . 27

_putshort Subroutine . 28

accept Subroutine . 29

arpresolve_common Subroutine . 30

arpupdate Subroutine . 31

bind Subroutine . 33

connect Subroutine . 34

CreateIoCompletionPort Subroutine . 36

dn_comp Subroutine . 38

dn_expand Subroutine . 39

endhostent Subroutine . 41

endhostent_r Subroutine . 41

endnetent Subroutine . 42

endnetent_r Subroutine . 43

endnetgrent_r Subroutine . 44

endprotoent Subroutine . 44

endprotoent_r Subroutine . 45

endservent Subroutine . 46

endservent_r Subroutine . 47

ether_ntoa, ether_aton, ether_ntohost, ether_hostton, or ether_line Subroutine 47

FrcaCacheCreate Subroutine . 49

© Copyright IBM Corp. 1997, 2005 iii

FrcaCacheDelete Subroutine . 50

FrcaCacheLoadFile Subroutine . 51

FrcaCacheUnloadFile Subroutine . 53

FrcaCtrlCreate Subroutine . 54

FrcaCtrlDelete Subroutine . 57

FrcaCtrlLog Subroutine . 58

FrcaCtrlStart Subroutine . 59

FrcaCtrlStop Subroutine . 60

freeaddrinfo Subroutine . 61

getaddrinfo Subroutine . 61

get_auth_method Subroutine . 64

getdomainname Subroutine . 65

gethostbyaddr Subroutine . 66

gethostbyaddr_r Subroutine . 67

gethostbyname Subroutine . 68

gethostbyname_r Subroutine . 70

gethostent Subroutine . 72

gethostent_r Subroutine . 72

gethostid Subroutine . 73

gethostname Subroutine . 74

getnameinfo Subroutine . 75

getnetbyaddr Subroutine . 76

getnetbyaddr_r Subroutine . 77

getnetbyname Subroutine . 78

getnetbyname_r Subroutine . 79

getnetent Subroutine . 80

getnetent_r Subroutine . 81

getnetgrent_r Subroutine . 82

getpeername Subroutine . 83

getprotobyname Subroutine . 85

getprotobyname_r Subroutine . 86

getprotobynumber Subroutine . 87

getprotobynumber_r Subroutine . 88

getprotoent Subroutine . 89

getprotoent_r Subroutine . 90

GetQueuedCompletionStatus Subroutine . 91

getservbyname Subroutine . 92

getservbyname_r Subroutine . 93

getservbyport Subroutine . 94

getservbyport_r Subroutine . 96

getservent Subroutine . 97

getservent_r Subroutine . 98

getsockname Subroutine . 99

getsockopt Subroutine . 100

htonl Subroutine . 107

htons Subroutine . 107

if_freenameindex Subroutine . 108

if_indextoname Subroutine . 109

if_nameindex Subroutine . 110

if_nametoindex Subroutine . 110

inet6_opt_append Subroutine . 111

inet6_opt_find Subroutine . 112

inet6_opt_finish Subroutine . 113

inet6_opt_get_val Subroutine . 113

inet6_opt_init Subroutine . 114

inet6_opt_next Subroutine . 115

iv Technical Reference: Communications, Volume 2

inet6_opt_set_val Subroutine . 116

inet6_rth_add Subroutine . 116

inet6_rth_getaddr Subroutine . 117

inet6_rth_init Subroutine . 117

inet6_rth_reverse Subroutine . 118

inet6_rth_segments Subroutine . 119

inet6_rth_space Subroutine . 120

inet_addr Subroutine . 120

inet_lnaof Subroutine . 123

inet_makeaddr Subroutine . 124

inet_net_ntop Subroutine . 125

inet_net_pton Subroutine . 126

inet_netof Subroutine . 127

inet_network Subroutine . 128

inet_ntoa Subroutine . 130

inet_ntop Subroutine . 131

inet_pton Subroutine . 132

innetgr, getnetgrent, setnetgrent, or endnetgrent Subroutine 133

ioctl Socket Control Operations . 135

isinet_addr Subroutine . 141

kvalid_user Subroutine . 143

listen Subroutine . 144

ntohl Subroutine . 145

ntohs Subroutine . 146

PostQueuedCompletionStatus Subroutine . 147

rcmd Subroutine . 148

rcmd_af Subroutine . 150

ReadFile Subroutine . 151

recv Subroutine . 153

recvfrom Subroutine . 155

recvmsg Subroutine . 157

res_init Subroutine . 158

res_mkquery Subroutine . 159

res_ninit Subroutine . 162

res_query Subroutine . 164

res_search Subroutine . 166

res_send Subroutine . 168

rexec Subroutine . 169

rexec_af Subroutine . 171

rresvport Subroutine . 172

rresvport_af Subroutine . 173

ruserok Subroutine . 174

sctp_opt_info Subroutine . 176

sctp_peeloff Subroutine . 177

sctpctrl Subroutine . 178

send Subroutine . 179

sendmsg Subroutine . 181

sendto Subroutine . 183

send_file Subroutine . 185

set_auth_method Subroutine . 190

setdomainname Subroutine . 191

sethostent Subroutine . 192

sethostent_r Subroutine . 193

sethostid Subroutine . 194

sethostname Subroutine . 195

setnetent Subroutine . 196

Contents v

setnetent_r Subroutine . 197

setnetgrent_r Subroutine . 197

setprotoent Subroutine . 198

setprotoent_r Subroutine . 199

setservent Subroutine . 200

setservent_r Subroutine . 201

setsockopt Subroutine . 202

shutdown Subroutine . 210

SLPAttrCallback Subroutine . 211

SLPClose Subroutine . 212

SLPEscape Subroutine . 213

SLPFindAttrs Subroutine . 214

SLPFindScopes Subroutine . 215

SLPFindSrvs Subroutine . 215

SLPFindSrvTypes Subroutine . 216

SLPFree Subroutine . 217

SLPGetProperty Subroutine . 218

SLPOpen Subroutine . 218

SLPParseSrvURL Subroutine . 220

SLPSrvTypeCallback Subroutine . 220

SLPSrvURLCallback Subroutine . 221

SLPUnescape Subroutine . 222

socket Subroutine . 223

socketpair Subroutine . 225

socks5_getserv Subroutine . 226

/etc/socks5c.conf File . 228

socks5tcp_accept Subroutine . 229

socks5tcp_bind Subroutine . 231

socks5tcp_connect Subroutine . 233

socks5udp_associate Subroutine . 235

socks5udp_sendto Subroutine . 237

splice Subroutine . 239

WriteFile Subroutine . 240

Chapter 3. Streams . 243

adjmsg Utility . 243

allocb Utility . 243

backq Utility . 244

bcanput Utility . 245

bufcall Utility . 245

canput Utility . 247

clone Device Driver . 247

copyb Utility . 248

copymsg Utility . 248

datamsg Utility . 249

dlpi STREAMS Driver . 250

dupb Utility . 251

dupmsg Utility . 251

enableok Utility . 252

esballoc Utility . 253

flushband Utility . 254

flushq Utility . 254

freeb Utility . 255

freemsg Utility . 256

getadmin Utility . 256

getmid Utility . 257

vi Technical Reference: Communications, Volume 2

getmsg System Call . 257

getpmsg System Call . 260

getq Utility . 261

insq Utility . 262

ioctl Streams Device Driver Operations . 263

I_ATMARK streamio Operation . 274

I_CANPUT streamio Operation . 274

I_CKBAND streamio Operation . 275

I_FDINSERT streamio Operation . 275

I_FIND streamio Operation . 276

I_FLUSH streamio Operation . 277

I_FLUSHBAND streamio Operation . 277

I_GETBAND streamio Operation . 278

I_GETCLTIME streamio Operation . 278

I_GETSIG streamio Operation . 279

I_GRDOPT streamio Operation . 279

I_LINK streamio Operation . 279

I_LIST streamio Operation . 280

I_LOOK streamio Operation . 281

I_NREAD streamio Operation . 281

I_PEEK streamio Operation . 282

I_PLINK streamio Operation . 282

I_POP streamio Operation . 283

I_PUNLINK streamio Operation . 284

I_PUSH streamio Operation . 284

I_RECVFD streamio Operation . 285

I_SENDFD streamio Operation . 286

I_SETCLTIME streamio Operation . 286

I_SETSIG streamio Operation . 287

I_SRDOPT streamio Operation . 288

I_STR streamio Operation . 289

I_UNLINK streamio Operation . 290

isastream Function . 291

linkb Utility . 291

mi_bufcall Utility . 292

mi_close_comm Utility . 293

mi_next_ptr Utility . 294

mi_open_comm Utility . 295

msgdsize Utility . 296

noenable Utility . 297

OTHERQ Utility . 297

pfmod Packet Filter Module . 298

pullupmsg Utility . 301

putbq Utility . 302

putctl1 Utility . 302

putctl Utility . 303

putmsg System Call . 304

putnext Utility . 306

putpmsg System Call . 306

putq Utility . 307

qenable Utility . 309

qreply Utility . 309

qsize Utility . 310

RD Utility . 310

rmvb Utility . 311

rmvq Utility . 311

Contents vii

sad Device Driver . 312

splstr Utility . 315

splx Utility . 315

srv Utility . 315

str_install Utility . 317

streamio Operations . 321

strlog Utility . 323

strqget Utility . 324

t_accept Subroutine for Transport Layer Interface . 325

t_alloc Subroutine for Transport Layer Interface . 327

t_bind Subroutine for Transport Layer Interface . 329

t_close Subroutine for Transport Layer Interface . 331

t_connect Subroutine for Transport Layer Interface . 332

t_error Subroutine for Transport Layer Interface . 334

t_free Subroutine for Transport Layer Interface . 335

t_getinfo Subroutine for Transport Layer Interface . 336

t_getstate Subroutine for Transport Layer Interface . 339

t_listen Subroutine for Transport Layer Interface . 340

t_look Subroutine for Transport Layer Interface . 342

t_open Subroutine for Transport Layer Interface . 343

t_optmgmt Subroutine for Transport Layer Interface 345

t_rcv Subroutine for Transport Layer Interface . 347

t_rcvconnect Subroutine for Transport Layer Interface 348

t_rcvdis Subroutine for Transport Layer Interface . 350

t_rcvrel Subroutine for Transport Layer Interface . 352

t_rcvudata Subroutine for Transport Layer Interface 353

t_rcvuderr Subroutine for Transport Layer Interface 354

t_snd Subroutine for Transport Layer Interface . 355

t_snddis Subroutine for Transport Layer Interface . 357

t_sndrel Subroutine for Transport Layer Interface . 358

t_sndudata Subroutine for Transport Layer Interface 359

t_sync Subroutine for Transport Layer Interface . 361

t_unbind Subroutine for Transport Layer Interface . 362

testb Utility . 363

timeout Utility . 364

timod Module . 365

tirdwr Module . 367

unbufcall Utility . 368

unlinkb Utility . 368

untimeout Utility . 369

unweldq Utility . 370

wantio Utility . 371

wantmsg Utility . 372

weldq Utility . 374

WR Utility . 375

xtiso STREAMS Driver . 375

t_accept Subroutine for X/Open Transport Interface 377

t_alloc Subroutine for X/Open Transport Interface . 379

t_bind Subroutine for X/Open Transport Interface . 381

t_close Subroutine for X/Open Transport Interface . 384

t_connect Subroutine for X/Open Transport Interface 385

t_error Subroutine for X/Open Transport Interface . 387

t_free Subroutine for X/Open Transport Interface . 388

t_getinfo Subroutine for X/Open Transport Interface 390

t_getprotaddr Subroutine for X/Open Transport Interface 392

t_getstate Subroutine for X/Open Transport Interface 393

viii Technical Reference: Communications, Volume 2

t_listen Subroutine for X/Open Transport Interface . 394

t_look Subroutine for X/Open Transport Interface . 396

t_open Subroutine for X/Open Transport Interface . 397

t_optmgmt Subroutine for X/Open Transport Interface 401

t_rcv Subroutine for X/Open Transport Interface . 407

t_rcvconnect Subroutine for X/Open Transport Interface 409

t_rcvdis Subroutine for X/Open Transport Interface . 411

t_rcvrel Subroutine for X/Open Transport Interface . 412

t_rcvudata Subroutine for X/Open Transport Interface 413

t_rcvuderr Subroutine for X/Open Transport Interface 415

t_snd Subroutine for X/Open Transport Interface . 416

t_snddis Subroutine for X/Open Transport Interface 418

t_sndrel Subroutine for X/Open Transport Interface 419

t_sndudata Subroutine for X/Open Transport Interface 421

t_strerror Subroutine for X/Open Transport Interface 422

t_sync Subroutine for X/Open Transport Interface . 423

t_unbind Subroutine for X/Open Transport Interface 424

Options for the X/Open Transport Interface . 425

Chapter 4. Packet Capture Library Subroutines . 431

Index . 435

Contents ix

x Technical Reference: Communications, Volume 2

About This Book

This book provides experienced C programmers with complete detailed information about Simple Network

Management Protocol, sockets, streams, and packet capture library subroutines for the AIX® operating

system. To use the book effectively, you should be familiar with commands, system calls, subroutines, file

formats, and special files. This publication is also available on the documentation CD that is shipped with

the operating system.

This book is part of the six-volume technical reference set, AIX 5L Version 5.3 Technical Reference, that

provides information on system calls, kernel extension calls, and subroutines in the following volumes:

v AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 1 and AIX 5L

Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2 provide information

on system calls, subroutines, functions, macros, and statements associated with base operating system

runtime services.

v AIX 5L Version 5.3 Technical Reference: Communications Volume 1 and AIX 5L Version 5.3 Technical

Reference: Communications Volume 2 provide information on entry points, functions, system calls,

subroutines, and operations related to communications services.

v AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 1 and AIX 5L Version 5.3

Technical Reference: Kernel and Subsystems Volume 2 provide information about kernel services,

device driver operations, file system operations, subroutines, the configuration subsystem, the

communications subsystem, the low function terminal (LFT) subsystem, the logical volume subsystem,

the M-audio capture and playback adapter subsystem, the printer subsystem, the SCSI subsystem, and

the serial DASD subsystem.

Highlighting

The following highlighting conventions are used in this book:

 Bold Identifies commands, subroutines, keywords, files,

structures, directories, and other items whose names are

predefined by the system. Also identifies graphical objects

such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to

be supplied by the user.

Monospace Identifies examples of specific data values, examples of

text similar to what you might see displayed, examples of

portions of program code similar to what you might write

as a programmer, messages from the system, or

information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between

uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the

system responds that the command is ″not found.″ Likewise, FILEA, FiLea, and filea are three distinct file

names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,

always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 1997, 2005 xi

32-Bit and 64-Bit Support for the Single UNIX Specification

Beginning with Version 5.2, the operating system is designed to support The Open Group’s Single UNIX

Specification Version 3 (UNIX 03) for portability of UNIX-based operating systems. Many new interfaces,

and some current ones, have been added or enhanced to meet this specification, making Version 5.2 even

more open and portable for applications, while remaining compatible with previous releases of AIX.

To determine the proper way to develop a UNIX 03-portable application, you may need to refer to The

Open Group’s UNIX 03 specification, which can be accessed online or downloaded from

http://www.unix.org/ .

Related Publications

The following books contain information about or related to application programming interfaces:

v AIX 5L Version 5.3 System Management Guide: Operating System and Devices

v AIX 5L Version 5.3 System Management Guide: Communications and Networks

v AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

v AIX 5L Version 5.3 Communications Programming Concepts

v AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts

v AIX 5L Version 5.3 Files Reference

xii Technical Reference: Communications, Volume 2

Chapter 1. Simple Network Management Protocol (SNMP)

getsmuxEntrybyname or getsmuxEntrybyidentity Subroutine

Purpose

Retrieves SNMP multiplexing (SMUX) peer entries from the /etc/snmpd.peers file or the local

snmpd.peers file.

Library

SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

struct smuxEntry *getsmuxEntrybyname (name)

char *name;

struct smuxEntry *getsmuxEntrybyidentity (identity)

OID identity;

Description

The getsmuxEntrybyname and getsmuxEntrybyidentity subroutines read the snmpd.peers file and

retrieve information about the SMUX peer. The sample peers file is /etc/snmpd.peers. However, these

subroutines can also retrieve the information from a copy of the file that is kept in the local directory. The

snmpd.peers file contains entries for the SMUX peers defined for the network. Each SMUX peer entry

should contain:

v The name of the SMUX peer.

v The SMUX peer object identifier.

v An optional password to be used on connection initiation. The default password is a null string.

v The optional priority to register the SMUX peer. The default priority is 0.

The getsmuxEntrybyname subroutine searches the file for the specified name. The

getsmuxEntrybyidentity subroutine searches the file for the specified object identifier.

These subroutines are part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

 name Points to a character string that names the SMUX peer.

identity Specifies the object identifier for a SMUX peer.

Return Values

If either subroutine finds the specified SMUX entry, that subroutine returns a structure containing the entry.

Otherwise, a null entry is returned.

Files

 /etc/snmpd.peers Contains the SMUX peer definitions for the network.

© Copyright IBM Corp. 1997, 2005 1

Related Information

List of Network Manager Programming References.

SNMP Overview for Programmers in AIX 5L Version 5.3 Communications Programming Concepts.

isodetailor Subroutine

Purpose

Initializes variables for various logging facilities.

Library

ISODE Library (libisode.a)

Syntax

#include <isode/tailor.h>

void isodetailor (myname, wantuser)

char * myname;

int wantuser;

Description

The ISODE library contains internal logging facilities. Some of the facilities need to have their variables

initialized. The isodetailor subroutine sets default or user-defined values for the logging facility variables.

The logging facility variables are listed in the usr/lpp/snmpd/smux/isodetailor file.

The isodetailor subroutine first reads the /etc/isodetailor file. If the wantuser parameter is set to 0, the

isodetailor subroutine ignores the myname parameter and reads the /etc/isodetailor file. If the wantuser

parameter is set to a value greater than 0, the isodetailor subroutine searches the current user’s home

directory ($HOME) and reads a file based on the myname parameter. If the myname parameter is

specified, the isodetailor subroutine reads a file with the name in the form .myname_tailor. If the myname

parameter is null, the isodetailor subroutine reads a file named .isode_tailor. The _tailor file contents

must be in the following form:

#comment

<variable> : <value> # comment

<variable> : <value> # comment

<variable> : <value> # comment

The comments are optional. The isodetailor subroutine reads the file and changes the values. The latest

entry encountered is the final value. The subroutine reads /etc/isodetailor first and then the $HOME

directory, if told to do so. A complete list of the variables is in the /usr/lpp/snmpd/smux/isodetailor

sample file.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

 myname Contains a character string describing the SNMP multiplexing (SMUX) peer.

wantuser Indicates that the isodetailor subroutine should check the $HOME directory for a isodetailor file if

the value is greater than 0. If the value of the wantuser parameter is set to 0, the $HOME directory is

not checked, and the myname parameter is ignored.

2 Technical Reference: Communications, Volume 2

Files

 /etc/isodetailor Location of user’s copy of the

/usr/lpp/snmpd/smux/isodetailor file.

/usr/lpp/snmpd/smux/isodetailor Contains a complete list of all the logging parameters.

Related Information

The ll_hdinit, ll_dbinit, _ll_log, or ll_log subroutine.

SNMP Overview for Programmers in AIX 5L Version 5.3 Communications Programming Concepts.

ll_hdinit, ll_dbinit, _ll_log, or ll_log Subroutine

Purpose

Reports errors to log files.

Library

ISODE Library (libisode.a)

Syntax

#include <isode/logger.h>

void ll_hdinit (lp, prefix)

register LLog * lp;

char * prefix;

void ll_dbinit (lp, prefix)

register LLog *lp;

char *prefix;

int _ll_log (lp, event, ap)

register LLog *lp;

int event;

va_list ap;

int ll_log (va_alist)

va_dcl

Description

The ISODE library provides logging subroutines to put information into log files. The LLog data structure

contains the log file information needed to control the associated log. The SMUX peer provides the log file

information to the subroutines.

The LLog structure contains the following fields:

 typedef struct ll_struct

 {

 char *ll_file; /* path name to logging file */

 char *ll_hdr; /* text to put in opening line */

 char *ll_dhdr; /* dynamic header - changes */

 int ll_events; /* loggable events */

 int ll_syslog; /* loggable events to send to syslog */

 /* takes same values as ll_events */

 int ll_msize; /* max size for log, in Kbytes */

 /* If ll_msize < 0, then no checking */

 int ll_stat; /* assorted switches */

 int ll_fd; /* file descriptor */

 } LLog;

Chapter 1. Simple Network Management Protocol (SNMP) 3

The possible values for the ll_events and ll_syslog fields are:

 LLOG_NONE 0 /* No logging is performed */

 LLOG_FATAL 0x01 /* fatal errors */

 LLOG_EXCEPTIONS 0x02 /* exceptional events */

 LLOG_NOTICE 0x04 /* informational notices */

 LLOG_PDUS 0x08 /* PDU printing */

 LLOG_TRACE 0x10 /* program tracing */

 LLOG_DEBUG 0x20 /* full debugging */

 LLOG_ALL 0xff /* All of the above logging */

The possible values for the ll_stat field are:

 LLOGNIL 0x00 /* No status information */

 LLOGCLS 0x01 /* keep log closed, except writing */

 LLOGCRT 0x02 /* create log if necessary */

 LLOGZER 0x04 /* truncate log when limits reach */

 LLOGERR 0x08 /* log closed due to (soft) error */

 LLOGTTY 0x10 /* also log to stderr */

 LLOGHDR 0x20 /* static header allocated/filled */

 LLOGDHR 0x40 /* dynamic header allocated/filled */

The ll_hdinit subroutine fills the ll_hdr field of the LLog record. The subroutine allocates the memory of

the static header and creates a string with the information specified by the prefix parameter, the current

user’s name, and the process ID of the SMUX peer. It also sets the static header flag in the ll_stat field.

If the prefix parameter value is null, the header flag is set to the ″unknown″ string.

The ll_dbinit subroutine fills the ll_file field of the LLog record. If the prefix parameter is null, the

ll_file field is not changed. The ll_dbinit subroutine also calls the ll_hdinit subroutine with the same lp

and prefix parameters. The ll_dbinit subroutine sets the log messages to stderr and starts the logging

facility at its highest level.

The _ll_log and ll_log subroutines are used to print to the log file. When the LLog structure for the log file

is set up, the _ll_log or ll_log subroutine prints the contents of the string format, with all variables filled in,

to the log specified in the lp parameter. The LLog structure passes the name of the target log to the

subroutine.

The expected parameter format for the _ll_log and ll_log subroutines is:

v _ll_log(lp, event, what), string_format, ...);

v ll_log(lp, event, what, string_format, ...);

The difference between the _ll_log and the ll_log subroutine is that the _ll_log uses an explicit listing of

the LLog structure and the event parameter. The ll_log subroutine handles all the variables as a variable

list.

The event parameter specifies the type of message being logged. This value is checked against the

events field in the log record. If it is a valid event for the log, the other LLog structure variables are written

to the log.

The what parameter variable is a string that explains what actions the subroutines have accomplished.

The rest of the variables should be in the form of a printf statement, a string format and the variables to

fill the various variable placeholders in the string format. The final output of the logging subroutine is in the

following format:

mm/dd hh:mm:ss ll_hdr ll_dhdr string_format what: system_error

where:

 Variable Description

mm/dd Specifies the date.

4 Technical Reference: Communications, Volume 2

Variable Description

hh:mm:ss Specifies the time.

ll_hdr Specifies the value of the ll_hdr field of the LLog structure.

ll_dhdr Specifies the value of the ll_dhdr field of the LLog structure.

string_format Specifies the string format passed to the ll_log subroutine, with the extra variables filled in.

what Specifies the variable that tells what has occurred. The what variable often contains the

reason for the failure. For example if the memory device, /dev/mem, fails, the what variable

contains the name of the /dev/mem device.

system_error Contains the string for the errno value, if it exists.

These subroutines are part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

 lp Contains a pointer to a structure that describes a log file. The lp parameter is used to describe things

entered into the log, the file name, and headers.

prefix Contains a character string that is used to represent the name of the SMUX peer in the ll_hdinit

subroutine. In the ll_dbinit subroutine, the prefix parameter represents the name of the log file to be

used. The new log file name will be ./prefix.log.

event Specifies the type of message to be logged.

ap Provides a list of variables that is used to print additional information about the status of the logging

process. The first argument needs to be a character string that describes what failed. The following

arguments are expected in a format similar to the printf operation, which is a string format with the

variables needed to fill the format variable places.

va_alist Provides a variable list of parameters that includes the lp, event, and ap variables.

Return Values

The ll_dbinit and ll_hdinit subroutines have no return values. The _ll_log and ll_log subroutines return

OK on success and NOTOK on failure.

Related Information

The isodetailor subroutine.

Examples of SMUX Error Logging Routines, and SNMP Overview for Programmers in AIX 5L Version 5.3

Communications Programming Concepts.

o_number, o_integer, o_string, o_igeneric, o_generic, o_specific, or

o_ipaddr Subroutine

Purpose

Encodes values retrieved from the Management Information Base (MIB) into the specified variable binding.

Library

SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/objects.h>

#include <isode/pepsy/SNMP-types.h>

#include <sys/types.h>

#include <netinet/in.h>

Chapter 1. Simple Network Management Protocol (SNMP) 5

int o_number (oi, v, number)

OI oi;

register struct type_SNMP_VarBind *v;

int number;

#define o_integer (oi, v, number) o_number ((oi), (v), (number))

int o_string (oi, v, base, len)

OI oi;

register struct type_SNMP_VarBind *v;

char *base;

int len;

int o_igeneric (oi, v, offset)

OI oi;

register struct type_SNMP_VarBind *v;

int offset;

int o_generic (oi, v, offset)

OI oi;

register struct type_SNMP_VarBind *v;

int offset;

int o_specific (oi, v, value)

OI oi;

register struct type_SNMP_VarBind *v;

caddr_t value;

int o_ipaddr (oi, v, netaddr)

OI oi;

register struct type_SNMP_VarBind *v;

struct sockaddr_in *netaddr;

Description

The o_number subroutine assigns a number retrieved from the MIB to the variable binding used to

request it. Once an MIB value has been retrieved, the value must be stored in the binding structure

associated with the variable requested. The o_number subroutine places the integer number into the v

parameter, which designates the binding for the variable. The value parameter type is defined by the oi

parameter and is used to specify the encoding subroutine that stores the value. The oi parameter

references a specific MIB variable and should be the same as the variable specified in the v parameter.

The encoding functions are defined for each type of variable and are contained in the object identifier (OI)

structure.

The o_integer macro is defined in the /usr/include/snmp/objects.h file. This macro casts the number

parameter as an integer. Use the o_integer macro for types that are not integers but have integer values.

The o_string subroutine assigns a string that has been retrieved for a MIB variable to the variable binding

used to request the string. Once a MIB variable has been retrieved, the value is stored in the binding

structure associated with the variable requested. The o_string subroutine places the string, specified with

the base parameter, into the variable binding in the v parameter. The length of the string represented in

the base parameter equals the value of the len parameter. The length is used to define how much of the

string is copied in the binding parameter of the variable. The value parameter type is defined by the oi

parameter and is used to specify the encoding subroutine that stores the value. The oi parameter

references a specific MIB variable and should be the same as the variable specified in the v parameter.

The encoding subroutines are defined for each type of variable and are contained in the OI structure.

The o_generic and o_igeneric subroutines assign results that are already in the customer’s MIB

database. These two subroutines do not retrieve values from any other source. These subroutines check

6 Technical Reference: Communications, Volume 2

whether the MIB database has information on how and what to encode as the value. The o_generic and

o_igeneric subroutines also ensure that the variable requested is an instance. If the variable is an

instance, the subroutines encode the value and return OK. The subroutine has an added set of return

codes. If there is not any information about the variable, the subroutine returns NOTOK on a get_next

request and int_SNMP_error__status_noSuchName for the get and set requests. The difference

between the o_generic and the o_igeneric subroutine is that the o_igeneric subroutine provides a

method for users to define a generic subroutine.

The o_specific subroutine sets the binding value for a MIB variable with the value in a character pointer.

The o_specific subroutine ensures that the data-encoding procedure is defined. The encode subroutine is

always checked by all of the o_ subroutines. The o_specific subroutine returns the normal values.

The o_ipaddr subroutine sets the binding value for variables that are network addresses. The o_ipaddr

subroutine uses the sin_addr field of the sockaddr_in structure to get the address. The subroutine does

the normal checking and returns the results like the rest of the subroutines.

These subroutines are part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

 oi Contains the OI data structure for the variable whose value is to be recorded into the binding structure.

v Specifies the variable binding parameter, which is of type type_SNMP_VarBind. The v parameter

contains a name and a value field. The value field contents are supplied by the o_ subroutines.

number Contains an integer to store in the value field of the v (variable bind) parameter.

base Points to the character string to store in the value field of the v parameter.

len Designates the length of the integer character string to copy. The character string is described by the

base parameter.

offset Contains an integer value of the current type of request, for example:

type_SNMP_PDUs_get__next__request

value Contains a character pointer to a value.

netaddr Points to a sockaddr_in structure. The subroutine only uses the sin_addr field of this structure.

Return Values

The return values for these subroutines are:

 Value Description

int_SNMP_error__status_genErr Indicates an error occurred when setting the v parameter

value.

int_SNMP_error__status_noErr Indicates no errors found.

Related Information

List of Network Manager Programming References.

SNMP Overview for Programmers, and Working with Management Information Base (MIB) Variables in AIX

5L Version 5.3 Communications Programming Concepts.

oid_cmp, oid_cpy, oid_free, sprintoid, str2oid, ode2oid, oid2ode,

oid2ode_aux, prim2oid, or oid2prim Subroutine

Purpose

Manipulates the object identifier data structure.

Chapter 1. Simple Network Management Protocol (SNMP) 7

Library

ISODE Library (libisode.a)

Syntax

#include <isode/psap.h>

int oid_cmp (p, q)

OID p, q;

OID oid_cpy (oid)

OID oid;

void oid_free (oid)

OID oid;

char *sprintoid (oid)

OID oid;

OID str2oid (s)

char * s;

OID ode2oid (descriptor)

char * descriptor;

char *oid2ode (oid)

OID oid;

OID *oid2ode_aux (descriptor, quote)

char *descriptor;

int quote;

OID prim2oid (pe)

PE pe;

PE oid2prim (oid)

OID oid;

Description

These subroutines are used to manipulate and translate object identifiers. The object identifier data (OID)

structure and these subroutines are defined in the /usr/include/isode/psap.h file.

The oid_cmp subroutine compares two OID structures. The oid_cpy subroutine copies the object

identifier, specified by the oid parameter, into a new structure. The oid_free procedure frees the object

identifier and does not have any return parameters.

The sprintoid subroutine takes an object identifier and returns the dot-notation description as a string. The

string is in static storage and must be copied to other user storage if it is to be maintained. The sprintoid

subroutine takes the object data and converts it without checking for the existence of the oid parameter.

The str2oid subroutine takes a character string specifying an object identifier in dot notation (for example,

1.2.3.6.1.2) and converts it into an OID structure. The space is static. To get a permanent copy of the

OID structure, use the oid_cpy subroutine.

The oid2ode subroutine is identical to the sprintoid subroutine except that the oid2ode subroutine

checks whether the oid parameter is in the isobjects database. The oid2ode subroutine is implemented

as a macro call to the oid2ode_aux subroutine. The oid2ode_aux subroutine is similar to the oid2ode

subroutine except for an additional integer parameter that specifies whether the string should be enclosed

by quotes. The oid2ode subroutine always encloses the string in quotes.

8 Technical Reference: Communications, Volume 2

The ode2oid subroutine retrieves an object identifier from the isobjects database.

These subroutines are part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

 p Specifies an OID structure.

q Specifies an OID structure.

descriptor Contains the object identifier descriptor data.

oid Contains the object identifier data.

s Contains a character string that defines an object identifier in dot notation.

descriptor Contains the object identifier descriptor data.

quote Specifies an integer that indicates whether a string should be enclosed in quotes. A value of 1

adds quotes; a value of 0 does not add quotes.

pe Contains a presentation element in which the OID structure is encoded (as with the oid2prim

subroutine) or decoded (as with the prim2oid subroutine).

Return Values

The oid_cmp subroutine returns a 0 if the structures are identical, -1 if the first object is less than the

second, and a 1 if any other conditions are found. The oid_cpy subroutine returns a pointer to the

designated object identifier when the subroutine is successful.

The oid2ode subroutine returns the dot-notation description as a string in quotes. The sprintoid

subroutine returns the dot-notation description as a string without quotes.

The ode2oid subroutine returns a static pointer to the object identifier. If the ode2oid and oid_cpy

subroutines are not successful, the NULLOID value is returned.

Related Information

The oid_extend subroutine, oid_normalize subroutine.

List of Network Manager Programming References.

SNMP Overview for Programmers in AIX 5L Version 5.3 Communications Programming Concepts.

oid_extend or oid_normalize Subroutine

Purpose

Extends the base ISODE library subroutines.

Library

SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/objects.h>

OID oid_extend (q, howmuch)

OID q;

integer howmuch;

Chapter 1. Simple Network Management Protocol (SNMP) 9

OID oid_normalize (q, howmuch, initial)

OID q;

integer howmuch, initial;

Description

The oid_extend subroutine is used to extend the current object identifier data (OID) structure. The OID

structure contains an integer number of entries and an array of integers. The oid_extend subroutine

creates a new, extended OID structure with an array of the size specified in the howmuch parameter plus

the original array size specified in the q parameter. The original values are copied into the first entries of

the new structure. The new values are uninitialized. The entries of the OID structure are used to represent

the values of an Management Information Base (MIB) tree in dot notation. Each entry represents a level in

the MIB tree.

The oid_normalize subroutine extends and adjusts the values of the OID structure entries. The

oid_normalize subroutine extends the OID structure and then decrements all nonzero values by 1. The

new values are initialized to the value of the initial parameter. This subroutine stores network address and

netmask information in the OID structure.

These subroutines do not free the q parameter.

These subroutines are part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

 q Specifies the size of the original array.

howmuch Specifies the size of the array for the new OID structure.

initial Indicates the initialized value of the OID structure extensions.

Return Values

Both subroutines, when successful, return the pointer to the new object identifier structure. If the

subroutines fail, the NULLOID value is returned.

Related Information

The oid_cmp, oid_cpy, oid_free, sprintoid, str2oid, ode2oid, oid2ode, oid2ode_aux, prim2oid, or

oid2prim subroutine.

SNMP Overview for Programmers in AIX 5L Version 5.3 Communications Programming Concepts.

readobjects Subroutine

Purpose

Allows the SNMP multiplexing (SMUX) peer to read the Management Information Base (MIB) variable

structure.

Library

SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/objects.h>

10 Technical Reference: Communications, Volume 2

int

readobjects (file)

char *file;

Description

The readobjects subroutine reads the file given in the file parameter. This file must contain the MIB

variable descriptions that the SMUX peer supports. The SNMP library functions require basic information

about the MIB tree supported by the SMUX peer. These structures are supplied from information in the

readobjects file. The text2oid subroutine receives a string description and uses the object identifier

information retrieved with the readobjects subroutine to return a MIB object identifier. The file designated

in the file parameter must be in the following form:

<MIB directory> <MIB position>

<MIB name> <MIB position> <MIB type> <MIB access> <MIB required?>

<MIB name> <MIB position> <MIB type> <MIB access> <MIB required?>

...

An example of a file that uses this format is /etc/mib.defs. The /etc/mib.defs file defines the MIBII tree

used in the SNMP agent.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

 file Contains the name of the file to be read. If the value is NULL, the /etc/mib.defs file is read.

Return Values

If the subroutine is successful, OK is returned. Otherwise, NOTOK is returned.

Related Information

The text2oid subroutine.

RFC 1155 describes the basic MIB structure.

SNMP Overview for Programmers in AIX 5L Version 5.3 Communications Programming Concepts.

s_generic Subroutine

Purpose

Sets the value of the Management Information Base (MIB) variable in the database.

Library

The SNMP Library (libsnmp.a)

Syntax

#include <isode/objects.h>

int s_generic

(oi, v, offset)

OI oi;

register struct type_SNMP_VarBind *v;

int offset;

Chapter 1. Simple Network Management Protocol (SNMP) 11

Description

The s_generic subroutine sets the database value of the MIB variable. The subroutine retrieves the

information it needs from a value in a variable binding within the Protocol Data Unit (PDU). The s_generic

subroutine sets the MIB variable, specified by the object identifier oi parameter, to the value field specified

by the v parameter.

The offset parameter is used to determine the stage of the set process. If the offset parameter value is

type_SNMP_PDUs_set__reque st, the value is checked for validity and the value in the ot_save field in

the OI structure is set. If the offset parameter value is type_SNMP_PDUs_commit, the value in the

ot_save field is freed and moved to the MIB ot_info field. If the offset parameter value is

type_SNMP_PDUs_rollback, the value in the ot_save field is freed and no new value is written.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

 oi Designates the OI structure representing the MIB variable to be set.

v Specifies the variable binding that contains the value to be set.

offset Contains the stage of the set. The possible values for the offset parameter are

type_SNMP_PDUs_commit, type_SNMP_PDUs_rollback, or type_SNMP_PDUs_set__request.

Return Values

If the subroutine is successful, a value of int_SNMP_error__status_noError is returned. Otherwise, a

value of int_SNMP_error__status_badValue is returned.

Related Information

The o_number, o_integer, o_string, o_specific, o_igeneric, o_generic, or o_ipaddr subroutines.

SNMP Overview for Programmers, and Understanding SNMP Daemon Processing in AIX 5L Version 5.3

Communications Programming Concepts.

smux_close Subroutine

Purpose

Ends communications with the SNMP agent.

Library

SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

int smux_close (reason)

int reason;

Description

The smux_close subroutine closes the transmission control protocol (TCP) connection from the SNMP

multiplexing (SMUX) peer. The smux_close subroutine sends the close protocol data unit (PDU) with the

error code set to the reason value. The subroutine closes the TCP connection and frees the socket. This

subroutine also frees information it was maintaining for the connection.

12 Technical Reference: Communications, Volume 2

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

 reason Indicates an integer value denoting the reason the close PDU message is being sent.

Return Values

If the subroutine is successful, OK is returned. Otherwise, NOTOK is returned.

Error Codes

If the subroutine returns NOTOK, the smux_errno global variable is set to one of the following values:

 Value Description

invalidOperation Indicates that the smux_init subroutine has not been executed successfully.

congestion Indicates that memory could not be allocated for the close PDU. The TCP connection

is closed.

youLoseBig Indicates that the SNMP code has a problem. The TCP connection is closed.

Related Information

The smux_error subroutine, smux_init subroutine, smux_register subroutine, smux_response

subroutine, smux_simple_open subroutine, smux_trap subroutine, smux_wait subroutine.

RFC 1227, SNMP MUX Protocol and MIB.

SNMP Overview for Programmers in AIX 5L Version 5.3 Communications Programming Concepts.

smux_error Subroutine

Purpose

Creates a readable string from the smux_errno global variable value.

Library

SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

char *smux_error (error)

int error;

Description

The smux_error subroutine creates a readable string from error code values in the smux_errno global

variable in the smux.h file. The smux global variable, smux_errno, is set when an error occurs. The

smux_error subroutine can also get a string that interprets the value of the smux_errno variable. The

smux_error subroutine can be used to retrieve any numbers, but is most useful interpreting the integers

returned in the smux_errno variable.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Chapter 1. Simple Network Management Protocol (SNMP) 13

Parameters

 error Contains the error to interpret. Usually called with the value of the smux_errno variable, but can be called

with any error that is an integer.

Return Values

If the subroutine is successful, a pointer to a static string is returned. If an error occurs, a string of the type

SMUX error %s(%d) is returned. The %s value is a string representing the explanation of the error. The %d is

the number used to reference that error.

Related Information

The smux_close subroutine, smux_init subroutine, smux_register subroutine, smux_response

subroutine, smux_simple_open subroutine, smux_trap subroutine, smux_wait subroutine.

RFC 1227, SNMP MUX Protocol and MIB.

SNMP Overview for Programmers in AIX 5L Version 5.3 Communications Programming Concepts.

smux_free_tree Subroutine

Purpose

Frees the object tree when a smux tree is unregistered.

Library

SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

void smux_free_tree (parent, child)

char *parent;

char *child;

Description

The smux_free_tree subroutine frees elements in the Management Information Base (MIB) list within an

SNMP multiplexing (SMUX) peer. If the SMUX peer implements the MIB list with the readobjects

subroutine, a list of MIBs is created and maintained. These MIBs are kept in the object tree (OT) data

structures.

Unlike the smux_register subroutine, the smux_free_tree subroutine frees the MIB elements even if the

tree is unregistered by the snmpd daemon. This functionality is not performed by the smux_register

routine because the OT list is created independently of registering a tree with the snmpd daemon. The

unregistered objects should be removed as the user deems appropriate. Remove the unregistered objects

if the smux peer is highly dynamic. If the peer registers and unregisters many trees, it might be

reasonable to add and delete the OT MIB list on the fly. The smux_free_tree subroutine expects the

parent of the MIB tree in the local OT list to delete unregistered objects.

This subroutine does not return values or error codes.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

14 Technical Reference: Communications, Volume 2

Parameters

 parent Contains a character string holding the immediate parent of the tree to be deleted.

child Contains a character string holding the beginning of the tree to be deleted.

The character strings are names or dot notations representing object identifiers.

Related Information

The snmpd command.

The readobjects subroutine, smux_register subroutine.

SNMP Overview for Programmers in AIX 5L Version 5.3 Communications Programming Concepts.

smux_init Subroutine

Purpose

Initiates the transmission control protocol (TCP) socket that the SNMP multiplexing (SMUX) agent uses

and clears the basic SMUX data structures.

Library

SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

int smux_init (debug)

int debug;

Description

The smux_init subroutine initializes the TCP socket used by the SMUX agent to talk to the SNMP

daemon. The subroutine assumes that loopback will be used to define the path to the SNMP daemon. The

subroutine also clears the base structures the SMUX code uses. This subroutine also sets the debug level

that is used when running the SMUX subroutines.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

 debug Indicates the level of debug to be printed during SMUX subroutines.

Return Values

If the subroutine is successful, the socket descriptor is returned. Otherwise, the value of NOTOK is

returned and the smux_errno global variable is set.

Chapter 1. Simple Network Management Protocol (SNMP) 15

Error Codes

Possible values for the smux_errno global variable are:

 Value Description

congestion Indicates memory allocation problems

youLoseBig Signifies problem with SNMP library code

systemError Indicates TCP connection failure.

These are defined in the /usr/include/isode/snmp/smux.h file.

Related Information

The smux_close subroutine, smux_error subroutine, smux_register subroutine, smux_response

subroutine, smux_simple_open subroutine, smux_trap subroutine, smux_wait subroutine.

RFC 1227, SNMP MUX Protocol and MIB.

SNMP Overview for Programmers in AIX 5L Version 5.3 Communications Programming Concepts.

smux_register Subroutine

Purpose

Registers a section of the Management Information Base (MIB) tree with the Simple Network Management

Protocol (SNMP) agent.

Library

SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

int smux_register (subtree, priority, operation)

OID subtree;

int priority;

int operation;

Description

The smux_register subroutine registers the section of the MIB tree for which the SMUX peer is

responsible with the SNMP agent. Using the smux_register subroutine, the SMUX peer informs the

SNMP agent of both the level of responsibility the SMUX peer has and the sections of the MIB tree for

which it is responsible. The level of responsibility (priority) the SMUX peer sends determines which

requests it can answer. Lower priority numbers correspond to higher priority.

If a tree is registered more than once, the SNMP agent sends requests to the registered SMUX peer with

the highest priority. If the priority is set to -1, the SNMP agent attempts to give the SMUX peer the highest

available priority. The operation parameter defines whether the MIB tree is added with readOnly or

readWrite permissions, or if it should be deleted from the list of register trees. The SNMP agent returns an

acknowledgment of the registration. The acknowledgment indicates the success of the registration and the

actual priority received.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

16 Technical Reference: Communications, Volume 2

Parameters

 subtree Indicates an object identifier that contains the root of the MIB tree to be registered.

priority Indicates the level of responsibility that the SMUX peer has on the MIB tree. The priority levels

range from 0 to (2^31 - 2). The lower the priority number, the higher the priority. A priority of -1 tells

the SNMP daemon to assign the highest priority currently available.

operation Specifies the operation for the SNMP agent to apply to the MIB tree. Possible values are delete,

readOnly, or readWrite. The delete operation removes the MIB tree from the SMUX peers in the

eyes of the SNMP agent. The other two values specify the operations allowed by the SMUX peer

on the MIB tree that is being registered with the SNMP agent.

Return Values

The values returned by this subroutine are OK on success and NOTOK on failure.

Error Codes

If the subroutine is unsuccessful, the smux_errno global variable is set to one of the following values:

 Value Description

parameterMissing Indicates a parameter was null. When the parameter is fixed, the smux_register

subroutine can be reissued.

invalidOperation Indicates that the smux_register subroutine is trying to perform this operation before

a smux_init operation has successfully completed. Start over with a new smux_init

subroutine call.

congestion Indicates a memory problem occurred. The TCP connection is closed. Start over with

a new smux_init subroutine call.

youLoseBig Indicates an SNMP code problem has occurred. The TCP connection is closed. Start

over with a new smux_init subroutine call.

Related Information

The smux_close subroutine, smux_error subroutine, smux_init subroutine, smux_response subroutine,

smux_simple_open subroutine, smux_trap subroutine, smux_wait subroutine.

RFC1227, SNMP MUX Protocol and MIB.

SNMP Overview for Programmers in AIX 5L Version 5.3 Communications Programming Concepts.

smux_response Subroutine

Purpose

Sends a response to a Simple Network Management Protocol (SNMP) agent.

Library

SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

int smux_response (event)

struct type_SNMP_GetResponse__PDU *event;

Chapter 1. Simple Network Management Protocol (SNMP) 17

Description

The smux_response subroutine sends a protocol data unit (PDU), also called an event, to the SNMP

agent. The subroutine does not check whether the Management Information Base (MIB) tree is properly

registered. The subroutine checks only to see whether a Transmission Control Protocol (TCP) connection

to the SNMP agent exists and ensures that the event parameter is not null.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

 event Specifies a type_SNMP_GetResponse__PDU variable that contains the response PDU to send to the

SNMP agent.

Return Values

If the subroutine is successful, OK is returned. Otherwise, NOTOK is returned.

Error Codes

If the subroutine is unsuccessful, the smux_errno global variable is set to one of the following values:

 Value Description

parameterMissing Indicates the parameter was null. When the parameter is fixed, the subroutine can be

reissued.

invalidOperation Indicates the subroutine was attempted before the smux_init subroutine successfully

completed. Start over with the smux_init subroutine.

youLoseBig Indicates a SNMP code problem has occurred and the TCP connection is closed.

Start over with the smux_init subroutine.

Related Information

The smux_close subroutine, smux_error subroutine, smux_init subroutine, smux_register subroutine,

smux_simple_open subroutine, smux_trap subroutine, smux_wait subroutine.

RFC 1227, SNMP MUX Protocol and MIB.

SNMP Overview for Programmers in AIX 5L Version 5.3 Communications Programming Concepts.

smux_simple_open Subroutine

Purpose

Sends the open protocol data unit (PDU) to the Simple Network Management Protocol (SNMP) daemon.

Library

SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

int smux_simple_open (identity, description, commname, commlen)

OID identity;

char * description;

char * commname;

int commlen;

18 Technical Reference: Communications, Volume 2

Description

Following the smux_init command, the smux_simple_open subroutine alerts the SNMP daemon that

incoming messages are expected. Communication with the SNMP daemon is accomplished by sending an

open PDU to the SNMP daemon. The smux_simple_open subroutine uses the identity object-identifier

parameter to identify the SNMP multiplexing (SMUX) peer that is starting to communicate. The description

parameter describes the SMUX peer. The commname and the commlen parameters supply the password

portion of the open PDU. The commname parameter is the password used to authenticate the SMUX

peer. The SNMP daemon finds the password in the /etc/snmpd.conf file. The SMUX peer can store the

password in the /etc/snmpd.peers file. The commlen parameter specifies the length of the commname

parameter value.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

 identity Specifies an object identifier that describes the SMUX peer.

description Contains a string of characters that describes the SMUX peer. The description parameter value

cannot be longer than 254 characters.

commname Contains the password to be sent to the SNMP agent. Can be a null value.

commlen Indicates the length of the community name (commname parameter) to be sent to the SNMP

agent. The value for this parameter must be at least 0.

Return Values

The subroutine returns an integer value of OK on success or NOTOK on failure.

Error Codes

If the subroutine is unsuccessful, the smux_errno global variable is set one of the following values:

 Value Description

parameterMissing Indicates that a parameter was null. The commname parameter can be null, but the

commlen parameter value should be at least 0.

invalidOperation Indicates that the smux_init subroutine did not complete successfully before the

smux_simple_open subroutine was attempted. Correct the parameters and reissue

the smux_simple_open subroutine.

inProgress Indicates that the smux_init call has not completed the TCP connection. The

smux_simple_open can be reissued.

systemError Indicates the TCP connection was not completed. Do not reissue this subroutine

without restarting the process with a smux_init subroutine call.

congestion Indicates a lack of available memory space. Do not reissue this subroutine without

restarting the process with a smux_init subroutine call.

youLoseBig The SNMP code is having problems. Do not reissue this subroutine without

restarting the process with a smux_init subroutine call.

Related Information

The smux_close subroutine, smux_error subroutine, smux_init subroutine, smux_register subroutine,

smux_response subroutine, smux_trap subroutine, smux_wait subroutine.

List of Network Manager Programming References.

RFC 1227, SNMP MUX Protocol and MIB.

SNMP Overview for Programmers in AIX 5L Version 5.3 Communications Programming Concepts.

Chapter 1. Simple Network Management Protocol (SNMP) 19

smux_trap Subroutine

Purpose

Sends SNMP multiplexing (SMUX) peer traps to the Simple Network Management Protocol (SNMP) agent.

Library

SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

int smux_trap (generic, specific, bindings)

int generic;

int specific;

struct type_SNMP_VarBindList *bindings;

Description

The smux_trap subroutine allows the SMUX peer to generate traps and send them to the SNMP agent.

The subroutine sets the generic and specific fields in the trap packet to values specified by the

parameters. The subroutine also allows the SMUX peer to send a list of variable bindings to the SNMP

agent. The variable bindings are values associated with specific variables. If the trap is to return a set of

variables, the variables are sent in the variable binding list.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

 generic Contains an integer specifying the generic trap type. The value must be one of the following:

0 Specifies a cold start.

1 Specifies a warm start.

2 Specifies a link down.

3 Specifies a link up.

4 Specifies an authentication failure.

5 Specifies an EGP neighbor loss.

6 Specifies an enterprise-specific trap type.

specific Contains an integer that uniquely identifies the trap. The unique identity is typically assigned by the

registration authority for the enterprise owning the SMUX peer.

bindings Indicates the variable bindings to assign to the trap protocol data unit (PDU).

Return Values

The subroutine returns NOTOK on failure and OK on success.

Error Codes

If the subroutine is unsuccessful, the smux_errno global variable is set to one of the following values:

 Value Description

invalidOperation Indicates the Transmission Control Protocol (TCP) connection was not completed.

congestion Indicates memory is not available. The TCP connection was closed.

youLoseBig Indicates an error occurred in the SNMP code. The TCP connection was closed.

20 Technical Reference: Communications, Volume 2

Related Information

The smux_close subroutine, smux_error subroutine, smux_init subroutine, smux_register subroutine,

smux_response subroutine, smux_simple_open subroutine, smux_wait subroutine.

RFC 1227, SNMP MUX Protocol and MIB.

SNMP Overview for Programmers in AIX 5L Version 5.3 Communications Programming Concepts.

smux_wait Subroutine

Purpose

Waits for a message from the Simple Network Management Protocol (SNMP) agent.

Library

SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/smux.h>

int smux_wait (event, isecs)

struct type_SMUX_PDUs **event;

int isecs;

Description

The smux_wait subroutine waits for a period of seconds, designated by the value of the isecs parameter,

and returns the protocol data unit (PDU) received. The smux_wait subroutine waits on the socket

descriptor that is initialized in a smux_init subroutine and maintained in the SMUX subroutines. The

smux_wait subroutine waits up to isecs seconds. If the value of the isecs parameter is 0, the smux_wait

subroutine returns only the first packet received. If the value of the isecs parameter is less than 0, the

smux_wait subroutine waits indefinitely for the next message or returns a message already received. If no

data is received, the smux_wait subroutine returns an error message of NOTOK and sets the

smux_errno variable to the inProgress value. If the smux_wait subroutine is successful, it returns the

first PDU waiting to be received. If a close PDU is received, the subroutine will automatically close the

TCP connection and return OK.

This subroutine is part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

 event Points to a pointer of type_SMUX_PDUs. This holds the PDUs received by the smux_wait subroutine.

isecs Specifies an integer value equal to the number of seconds to wait for a message.

Return Values

If the subroutine is successful, the value OK is returned. Otherwise, the return value is NOTOK.

Chapter 1. Simple Network Management Protocol (SNMP) 21

Error Codes

If the subroutine is unsuccessful, the smux_errno global variable is set to one of the following values:

 Value Description

parameterMissing Indicates that the event parameter value was null.

inProgress Indicates that there was nothing for the subroutine to receive.

invalidOperation Indicates that the smux_init subroutine was not called or failed to operate.

youLoseBig Indicates an error occurred in the SNMP code. The TCP connection was closed.

Related Information

The smux_close subroutine, smux_error subroutine, smux_init subroutine, smux_register subroutine,

smux_response subroutine, smux_simple_open subroutine, smux_trap subroutine.

RFC1227, SNMP MUX Protocol and MIB.

SNMP Overview for Programmers in AIX 5L Version 5.3 Communications Programming Concepts.

text2inst, name2inst, next2inst, or nextot2inst Subroutine

Purpose

Retrieves instances of variables from various forms of data.

Library

SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/objects.h>

OI text2inst (text)

char *text;

OI name2inst (oid)

OID oid;

OI next2inst (oid)

OID oid;

OI nextot2inst (oid, ot)

OID oid;

OT ot;

Description

These subroutines return pointers to the actual objects in the database. When supplied with a way to

identify the object, the subroutines return the corresponding object.

The text2inst subroutine takes a character string object identifier from the text parameter. The object’s

database is then examined for the specified object. If the specific object is not found, the NULLOI value is

returned.

The name2inst subroutine uses an object identifier structure specified in the oid parameter to specify

which object is desired. If the object cannot be found, a NULLOI value is returned.

22 Technical Reference: Communications, Volume 2

The next2inst and nextot2inst subroutines find the next object in the database given an object identifier.

The next2inst subroutine starts at the root of the tree, while the nextot2inst subroutine starts at the

object given in the ot parameter. If another object cannot be found, the NULLOI value will be returned.

These subroutines are part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

 text Specifies the character string used to identify the object wanted in the text2inst subroutine.

oid Specifies the object identifier structure used to identify the object wanted in the name2inst, next2inst, and

nextot2inst subroutines.

ot Specifies an object in the database used as a starting point for the nextot2inst subroutine.

Return Values

If the subroutine is successful, an OI value is returned. OI is a pointer to an object in the database. On a

failure, a NULLOI value is returned.

Related Information

The text2oid subroutine, text2obj subroutine.

SNMP Overview for Programmers in AIX 5L Version 5.3 Communications Programming Concepts.

text2oid or text2obj Subroutine

Purpose

Converts a text string into some other value.

Library

SNMP Library (libsnmp.a)

Syntax

#include <isode/snmp/objects.h>

OID text2oid (text)

char *text;

OT text2obj (text)

char *text;

Description

The text2oid subroutine takes a character string and returns an object identifier. The string can be a

name, a name.numbers, or dot notation. The returned object identifier is in memory-allocation storage and

should be freed when the operation is completed with the oid_free subroutine.

The text2obj subroutine takes a character string and returns an object. The string needs to be the name

of a specific object. The subroutine returns a pointer to the object.

These subroutines are part of the SNMP Application Programming Interface in the TCP/IP facility.

Parameters

 text Contains a text string used to specify the object identifier or object to be returned.

Chapter 1. Simple Network Management Protocol (SNMP) 23

Return Values

On a successful execution, these subroutines return completed data structures. If a failure occurs, the

text2oid subroutine returns a NULLOID value and the text2obj returns a NULLOT value.

Related Information

The malloc subroutine, oid_free subroutine, text2inst subroutine.

SNMP Overview for Programmers in AIX 5L Version 5.3 Communications Programming Concepts.

24 Technical Reference: Communications, Volume 2

Chapter 2. Sockets

_getlong Subroutine

Purpose

Retrieves long byte quantities.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

unsigned long _getlong (MessagePtr)

u_char *MessagePtr;

Description

The _getlong subroutine gets long quantities from the byte stream or arbitrary byte boundaries.

The _getlong subroutine is one of a set of subroutines that form the resolver, a set of functions that

resolves domain names. Global information used by the resolver subroutines is kept in the _res data

structure. The /usr/include/resolv.h file contains the _res structure definition.

All applications containing the _getlong subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

All applications containing the _getlong subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 MessagePtr Specifies a pointer into the byte stream.

Return Values

The _getlong subroutine returns an unsigned long (32-bit) value.

Files

 /etc/resolv.conf

 Lists name server and domain names.

Related Information

The dn_comp subroutine, dn_expand subroutine, _getshort subroutine, putlong subroutine, putshort

subroutine, res_init subroutine, res_mkquery subroutine, “res_ninit Subroutine” on page 162, res_query

subroutine, res_search subroutine, res_send subroutine.

© Copyright IBM Corp. 1997, 2005 25

Sockets Overview, and Understanding Domain Name Resolution in AIX 5L Version 5.3 Communications

Programming Concepts.

_getshort Subroutine

Purpose

Retrieves short byte quantities.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

unsigned short getshort (MessagePtr)

u_char *MessagePtr;

Description

The _getshort subroutine gets quantities from the byte stream or arbitrary byte boundaries.

The _getshort subroutine is one of a set of subroutines that form the resolver, a set of functions that

resolve domain names. Global information used by the resolver subroutines is kept in the _res data

structure. The /usr/include/resolv.h file contains the _res structure definition.

All applications containing the _getshort subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 MessagePtr Specifies a pointer into the byte stream.

Return Values

The _getshort subroutine returns an unsigned short (16-bit) value.

Files

 /etc/resolv.conf

 Defines name server and domain names.

Related Information

The dn_comp subroutine, dn_expand subroutine, _getlong subroutine, putlong subroutine, putshort

subroutine, res_init subroutine, res_mkquery subroutine, “res_ninit Subroutine” on page 162res_send

subroutine.

Sockets Overview, and Understanding Domain Name Resolution in AIX 5L Version 5.3 Communications

Programming Concepts.

26 Technical Reference: Communications, Volume 2

_putlong Subroutine

Purpose

Places long byte quantities into the byte stream.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

void _putlong (Long, MessagePtr)

unsigned long Long;

u_char *MessagePtr;

Description

The _putlong subroutine places long byte quantities into the byte stream or arbitrary byte boundaries.

The _putlong subroutine is one of a set of subroutines that form the resolver, a set of functions that

resolve domain names. Global information used by the resolver subroutines is kept in the _res data

structure. The /usr/include/resolv.h file contains the _res structure definition.

All applications containing the _putlong subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Long Represents a 32-bit integer.

MessagePtr Represents a pointer into the byte stream.

Files

 /etc/resolv.conf

 Lists the name server and domain name.

Related Information

The dn_comp subroutine, dn_expand subroutine, _getlong subroutine, _getshort subroutine, putshort

subroutine, res_init subroutine, res_mkquery subroutine, “res_ninit Subroutine” on page 162, res_query

subroutine, res_search subroutine, res_send subroutine.

Sockets Overview and Understanding Domain Name Resolution in AIX 5L Version 5.3 Communications

Programming Concepts.

Chapter 2. Sockets 27

_putshort Subroutine

Purpose

Places short byte quantities into the byte stream.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

void _putshort (Short, MessagePtr)

unsigned short Short;

u_char *MessagePtr;

Description

The _putshort subroutine puts short byte quantities into the byte stream or arbitrary byte boundaries.

The _putshort subroutine is one of a set of subroutines that form the resolver, a set of functions that

resolve domain names. Global information used by the resolver subroutines is kept in the _res data

structure. The /usr/include/resolv.h file contains the _res structure definition.

All applications containing the _putshort subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Short Represents a 16-bit integer.

MessagePtr Represents a pointer into the byte stream.

Files

 /etc/resolv.conf

 Lists the name server and domain name.

Related Information

The dn_comp subroutine, dn_expand subroutine, _getlong subroutine, _getshort subroutine, putlong

subroutine, res_init subroutine, res_mkquery subroutine, “res_ninit Subroutine” on page 162, res_send

subroutine.

Sockets Overview and Understanding Domain Name Resolution in AIX 5L Version 5.3 Communications

Programming Concepts.

28 Technical Reference: Communications, Volume 2

accept Subroutine

Purpose

Accepts a connection on a socket to create a new socket.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

int accept (Socket, Address, AddressLength)

int Socket;

struct sockaddr *Address;

socklen_t *AddressLength;

Description

The accept subroutine extracts the first connection on the queue of pending connections, creates a new

socket with the same properties as the specified socket, and allocates a new file descriptor for that socket.

If the listen queue is empty of connection requests, the accept subroutine:

v Blocks a calling socket of the blocking type until a connection is present.

v Returns an EWOULDBLOCK error code for sockets marked nonblocking.

The accepted socket cannot accept more connections. The original socket remains open and can accept

more connections.

The accept subroutine is used with SOCK_STREAM and SOCK_CONN_DGRAM socket types.

For SOCK_CONN_DGRAM socket type and ATM protocol, a socket is not ready to transmit/receive data

until SO_ATM_ACCEPT socket option is called. This allows notification of an incoming connection to the

application, followed by modification of appropriate parameters and then indicate that a connection can

become fully operational.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure

BSD 4.3 compatible. For more details refer to socket.h.

Parameters

 Socket Specifies a socket created with the socket subroutine that is bound to an address with the

bind subroutine and has issued a successful call to the listen subroutine.

Address Specifies a result parameter that is filled in with the address of the connecting entity as

known to the communications layer. The exact format of the Address parameter is

determined by the domain in which the communication occurs.

AddressLength Specifies a parameter that initially contains the amount of space pointed to by the Address

parameter. Upon return, the parameter contains the actual length (in bytes) of the address

returned. The accept subroutine is used with SOCK_STREAM socket types.

Return Values

Upon successful completion, the accept subroutine returns the nonnegative socket descriptor of the

accepted socket.

Chapter 2. Sockets 29

If the accept subroutine is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the specific error, into the ernno global variable.

Error Codes

The accept subroutine is unsuccessful if one or more of the following is true:

 EBADF The Socket parameter is not valid.

EINTR The accept function was interrupted by a signal that was caught before a valid

connection arrived.

EINVAL The socket referenced by s is not currently a listen socket or has been shutdown with

shutdown. A listen must be done before an accept is allowed.

EMFILE The system limit for open file descriptors per process has already been reached

(OPEN_MAX).

ENFILE The maximum number of files allowed are currently open.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP The referenced socket is not of type SOCK_STREAM.

EFAULT The Address parameter is not in a writable part of the user address space.

EWOULDBLOCK The socket is marked as nonblocking, and no connections are present to be accepted.

ENETDOWN The network with which the socket is associated is down.

ENOTCONN The socket is not in the connected state.

ECONNABORTED The client aborted the connection.

Examples

As illustrated in this program fragment, once a socket is marked as listening, a server process can accept

a connection:

struct sockaddr_in from;

.

.

.

fromlen = sizeof(from);

newsock = accept(socket, (struct sockaddr*)&from, &fromlen);

Related Information

The connect subroutine, getsockname subroutine, listen subroutine, socket subroutine.

Accepting UNIX® Stream Connections Example Program, Binding Names to Sockets, Sockets Overview,

Understanding Socket Connections, and Understanding Socket Creation in AIX 5L Version 5.3

Communications Programming Concepts.

arpresolve_common Subroutine

Purpose

Reads or creates new arp entries so that hardware addresses can be resolved.

Syntax

int arpresolve_common (ac, m, arpwhohas, dst, hwaddr, szhwaddr, extra, if_dependent)

 register struct arpcom *ac;

 struct mbuf *m;

 int (*arpwhohas)(register struct arpcom *ac,

 struct in_addr *addr, int skipbestif, void *extra),

 struct sockaddr_in *dst;

30 Technical Reference: Communications, Volume 2

u_char * hwaddr;

 int szhwaddr;

 void *extra;

 union if_dependent *if_dependent;

Description

The arpresolve_common subroutine reads or creates new arp entries so that hardware addresses can be

resolved. It is called by arpresolve from the IF layer of the interface. If the arp entry is complete, then

arpresolve_common returns the address pointed to by hwaddr and the data pointed to by if_dependent if

if_dependent is true. If the arp entry is not complete, then this subroutine adds the memory buffer pointed

to by mbuf to at_hold. at_hold holds one or more packets that are waiting for the arp entry to complete

so they can be transmitted.

If an arp entry does not exist, arpresolve_common creates a new entry by calling arptnew and then

adds the memory buffer pointed to by mbuf to at_hold. This subroutine calls arpwhohas when it creates a

new arp entry or when the timer for the incomplete arp entry (with the IP address that is pointed to by dst)

has expired.

Parameters

 ac Points to the arpcom structure.

m Points to the memory buffer (mbuf), which will be added to the list awaiting completion

of the arp table entry.

arpwhohas Points to the arpwhohas subroutine.

addr Points to the in_addr structure’s address.

extra A void pointer that can be used in the future so that IF layers can pass extra structures

to arpwhohas.

dst Points to the sockaddr_in structure. This structure has the destination IP address.

hwaddr Points to the buffer. This buffer contains the hardware address if it finds a completed

entry.

szhwaddr Size of the buffer pointed to by hwaddr.

if_dependent Pointer to the if_dependent structure. arpresolve_common uses this to pass the

if_dependent data, which is part of the arptab entry, to the calling function.

Return Values

 ARP_MBUF The arp entry is not complete.

ARP_HWADDR The hwaddr buffer is filled with the hardware address.

ARP_FLG_NOARP The arp entry does not exist, and the IFF_NOARP flag is set only if the value of

if_type is IFT_ETHER.

Related Information

“arpupdate Subroutine”

arpupdate Subroutine

Purpose

Updates arp entries for a given IP address.

Chapter 2. Sockets 31

Syntax

int arpupdate (ac, m, hp, action, prm)

 register struct arpcom *ac;

 struct mbuf *m;

 caddr_t hp;

 int action;

 struct arpupdate_parm *prm;

Description

The arpupdate subroutine updates arp entries for a given IP address. It is called by arpinput from the IF

layer of the interface. This subroutine searches the arp table for an entry that matches the IP address. It

then updates the arp entry for the given IP address. The arpupdate subroutine also performs reverse arp

lookups.

The arpupdate subroutine enters a new address in arptab, pushing out the oldest entry from the bucket if

there is no room. This subroutine always succeeds because no bucket can be completely filled with

permanent entries (except when arpioctl tests whether another permanent entry can fit).

Depending on the action specified, the prm IP addresses isaddr, itaddr, and myaddr are used by the

arpupdate subroutine.

Parameters

 ac Points to the arpcom structure.

m Points to the memory buffer (mbuf), that contains the arp response packet received by

the interface.

hp Points to the buffer that is passed by the interrupt handler.

action Returns a value that indicates which action is taken:

LOOK Looks for the isaddr IP address in the arp table and returns the hardware

address and if_dependent structure.

LKPUB

Looks for the isaddr IP address in the arp table and returns the hardware

address and if_dependent structure only if the ATF_PUBL is set.

UPDT Updates the arp entry for an IP address (isaddr). If no arp entry is there,

creates a new one and updates the if_dependent structure using the ptr

function passed in the prm structure.

REVARP

Reverses the arp request. hwaddr contains the hardware address, szhwaddr

indicates its size, and saddr returns the IP address if an entry is found.

prm Points to the arpudpate_parm structure. The values are:

LOOK or LKPUB

itaddr and myaddr are ignored. isaddr is used for arp table lookup.

UPDTE isaddr points to the sender protocol address. itaddr points to the target

protocol address. myaddr points to the protocol address of the interface that

received the packet.

Return Values

 ARP_OK Lookup or update was successful.

ARP_FAIL Lookup or update failed.

ARP_NEWF New arp entry could not be created.

32 Technical Reference: Communications, Volume 2

Related Information

“arpresolve_common Subroutine” on page 30

bind Subroutine

Purpose

Binds a name to a socket.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

int bind (Socket, Name, NameLength)

int Socket;

const struct sockaddr *Name;

socklen_t NameLength;

Description

The bind subroutine assigns a Name parameter to an unnamed socket. Sockets created by the socket

subroutine are unnamed; they are identified only by their address family. Subroutines that connect sockets

either assign names or use unnamed sockets.

In the case of a UNIX domain socket, a connect call only succeeds if the process that calls connect has

read and write permissions on the socket file created by the bind call. Permissions are determined by the

umask value of the process that created the file.

An application program can retrieve the assigned socket name with the getsockname subroutine.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure

BSD 4.3 compatible. For more details refer to socket.h.

Binding a name in the UNIX domain creates a socket in the file system that must be deleted by the caller

when it is no longer needed.

Parameters

 Socket Specifies the socket descriptor (an integer) of the socket to be bound.

Name Points to an address structure that specifies the address to which the socket should be bound.

The /usr/include/sys/socket.h file defines the sockaddr address structure. The sockaddr

structure contains an identifier specific to the address format and protocol provided in the socket

subroutine.

NameLength Specifies the length of the socket address structure.

Return Values

Upon successful completion, the bind subroutine returns a value of 0.

If the bind subroutine is unsuccessful, the subroutine handler performs the following actions:

v Returns a value of -1 to the calling program.

Chapter 2. Sockets 33

v Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable see ″Error Notification Object Class″ in AIX 5L Version 5.3 Communications

Programming Concepts.

Error Codes

The bind subroutine is unsuccessful if any of the following errors occurs:

 Value Description

EACCES The requested address is protected, and the current user does not have permission

to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available from the local machine.

EAFNOSUPPORT The specified address is not a valid address for the address family of the specified

socket.

EBADF The Socket parameter is not valid.

EDESTADDRREQ The address argument is a null pointer.

EFAULT The Address parameter is not in a writable part of the UserAddress space.

EINVAL The socket is already bound to an address.

ENOBUF Insufficient buffer space available.

ENODEV The specified device does not exist.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP The socket referenced by Socket parameter does not support address binding.

Examples

The following program fragment illustrates the use of the bind subroutine to bind the name ″/tmp/zan/″ to

a UNIX domain socket.

#include <sys/un.h>

.

.

.

struct sockaddr_un addr;

.

.

.

strcpy(addr.sun_path, "/tmp/zan/");

addr.sun_len = strlen(addr.sun_path);

addr.sun_family = AF_UNIX;

bind(s,(struct sockaddr*)&addr, SUN_LEN(&addr));

Related Information

The connect subroutine, getsockname subroutine, listen subroutine, socket subroutine.

Binding Names to Sockets, Reading UNIX Datagrams Example Program, Sockets Overview,

Understanding Socket Connections, and Understanding Socket Creation in AIX 5L Version 5.3

Communications Programming Concepts.

connect Subroutine

Purpose

Connects two sockets.

Library

Standard C Library (libc.a

34 Technical Reference: Communications, Volume 2

Syntax

#include <sys/socket.h>

int connect (Socket, Name, NameLength)

int Socket;

const struct sockaddr *Name;

socklen_t NameLength;

Description

The connect subroutine requests a connection between two sockets. The kernel sets up the

communication link between the sockets; both sockets must use the same address format and protocol.

If a connect subroutine is issued on an unbound socket, the system automatically binds the socket. The

connect subroutine can be used to connect a socket to itself. This can be done, for example, by binding a

socket to a local port (using bind) and then connecting it to the same port with a local IP address (using

connect).

The connect subroutine performs a different action for each of the following two types of initiating sockets:

v If the initiating socket is SOCK_DGRAM, the connect subroutine establishes the peer address. The

peer address identifies the socket where all datagrams are sent on subsequent send subroutines. No

connections are made by this connect subroutine.

v If the initiating socket is SOCK_STREAM or SOCK_CONN_DGRAM, the connect subroutine attempts

to make a connection to the socket specified by the Name parameter. Each communication space

interprets the Name parameter differently. For SOCK_CONN_DGRAM socket type and ATM protocol,

some of the ATM parameters may have been modified by the remote station, applications may query

new values of ATM parameters using the appropriate socket options.

v In the case of a UNIX domain socket, a connect call only succeeds if the process that calls connect

has read and write permissions on the socket file created by the bind call. Permissions are determined

by the umask< value of the process that created the file.

Implementation Specifics

Parameters

 Socket Specifies the unique name of the socket.

Name Specifies the address of target socket that will form the other end of the communication line

NameLength Specifies the length of the address structure.

Return Values

Upon successful completion, the connect subroutine returns a value of 0.

If the connect subroutine is unsuccessful, the system handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable.

Error Codes

The connect subroutine is unsuccessful if any of the following errors occurs:

 Value Description

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available from the local machine.

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

Chapter 2. Sockets 35

Value Description

EALREADY The socket is specified with O_NONBLOCK or O_NDLAY, and a previous connecttion

attempt has not yet completed.

EINTR The attempt to establish a connection was interrupted by delivery of a signal that was

caught; the connection will be established asynchronously.

EACCESS Search permission is denied on a component of the path prefix or write access to the

named socket is denied.

ENOBUFS The system ran out of memory for an internal data structure.

EOPNOTSUPP The socket referenced by Socket parameter does not support connect.

EWOULDBLOCK The range allocated for TCP/UDP ephemeral ports has been exhausted.

EBADF The Socket parameter is not valid.

ECONNREFUSED The attempt to connect was rejected.

EFAULT The Address parameter is not in a writable part of the user address space.

EINPROGRESS The socket is marked as nonblocking. The connection cannot be immediately completed.

The application program can select the socket for writing during the connection process.

EINVAL The specified path name contains a character with the high-order bit set.

EISCONN The socket is already connected.

ENETDOWN The specified physical network is down.

ENETUNREACH No route to the network or host is present.

ENOSPC There is no space left on a device or system table.

ENOTCONN The socket could not be connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

ETIMEDOUT The establishment of a connection timed out before a connection was made.

Examples

The following program fragment illustrates the use of the connect subroutine by a client to initiate a

connection to a server’s socket.

struct sockaddr_un server;

.

.

.

connect(s,(struct sockaddr*)&server, sun_len(&server));

Related Information

The accept subroutine, bind subroutine, getsockname subroutine, send subroutine, socket, subroutine,

socks5tcp_connect subroutine.

Initiating UNIX Stream Connections Example Program, Sockets Overview, and Understanding Socket

Connections in AIX 5L Version 5.3 Communications Programming Concepts.

CreateIoCompletionPort Subroutine

Purpose

Creates an I/O completion port with no associated file or associates an opened file with an existing or

newly created I/O completion port.

Syntax

#include <iocp.h>

int CreateIoCompletionPort (FileDescriptor, CompletionPort, CompletionKey, ConcurrentThreads)

HANDLE FileDescriptor, CompletionPort;

DWORD CompletionKey, ConcurrentThreads;

36 Technical Reference: Communications, Volume 2

Description

The CreateIoCompletionPort subroutine creates an I/O completion port or associates an open file

descriptor with an existing or newly created I/O completion port. When creating a new I/O completion port,

the CompletionPort parameter is set to NULL, the FileDescriptor parameter is set to

INVALID_HANDLE_VALUE (-1), and the CompletionKey parameter is ignored.

The CreateIoCompletionPort subroutine returns a descriptor (an integer) to the I/O completion port

created or modified.

The CreateIoCompletionPort subroutine is part of the I/O Completion Port (IOCP) kernel extension.

Note: This subroutine only works to a socket file descriptor. It does not work with files or other file

descriptors.

Parameters

 FileDescriptor Specifies a valid file descriptor obtained from a call to the

socket or accept subroutines.

CompletionPort Specifies a valid I/O completion port descriptor. Specifying

a CompletionPort parameter value of NULL causes the

CreateIoCompletionPort subroutine to create a new I/O

completion port.

CompletionKey Specifies an integer to serve as the identifier for

completion packets generated from a particular

file-completion port set.

ConcurrentThreads This parameter is not implemented and is present only for

compatibility purposes.

Return Values

Upon successful completion, the CreateIoCompletionPort subroutine returns an integer (the I/O

completion port descriptor).

If the CreateIoCompletionPort is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of NULL to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable, see the link in the Related Information section of this document.

Error Codes

The CreateIoCompletionPort subroutine is unsuccessful if either of the following errors occur:

 EBADF The I/O completion port descriptor is invalid.

EINVAL The file descriptor is invalid.

Examples

The following program fragment illustrates the use of the CreateIoCompletionPort subroutine to create a

new I/O completion port with no associated file descriptor:

c = CreateIoCompletionPort (INVALID_HANDLE_VALUE, NULL, 0, 0);

The following program fragment illustrates the use of the CreateIoCompletionPort subroutine to associate

file descriptor 34 (which has a newly created I/O completion port) with completion key 25:

c = CreateIoCompletionPort (34, NULL, 25, 0);

Chapter 2. Sockets 37

The following program fragment illustrates the use of the CreateIoCompletionPort subroutine to associate

file descriptor 54 (which has an existing I/O completion port) with completion key 15:

c = CreateIoCompletionPort (54, 12, 15, 0);

Related Information

The “socket Subroutine” on page 223, “accept Subroutine” on page 29, “ReadFile Subroutine” on page

151, “WriteFile Subroutine” on page 240, “GetQueuedCompletionStatus Subroutine” on page 91, and

“PostQueuedCompletionStatus Subroutine” on page 147.

For further explanation of the errno variable, see Error Notification Object Class in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs

dn_comp Subroutine

Purpose

Compresses a domain name.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int dn_comp (ExpDomNam, CompDomNam, Length, DomNamPtr, LastDomNamPtr)

u_char * ExpDomNam, * CompDomNam;

int Length;

u_char ** DomNamPtr, ** LastDomNamPtr;

Description

The dn_comp subroutine compresses a domain name to conserve space. When compressing names, the

client process must keep a record of suffixes that have appeared previously. The dn_comp subroutine

compresses a full domain name by comparing suffixes to a list of previously used suffixes and removing

the longest possible suffix.

The dn_comp subroutine compresses the domain name pointed to by the ExpDomNam parameter and

stores it in the area pointed to by the CompDomNam parameter. The dn_comp subroutine inserts labels

into the message as the name is compressed. The dn_comp subroutine also maintains a list of pointers

to the message labels and updates the list of label pointers.

v If the value of the DomNamPtr parameter is null, the dn_comp subroutine does not compress any

names. The dn_comp subroutine translates a domain name from ASCII to internal format without

removing suffixes (compressing). Otherwise, the DomNamPtr parameter is the address of pointers to

previously compressed suffixes.

v If the LastDomNamPtr parameter is null, the dn_comp subroutine does not update the list of label

pointers.

The dn_comp subroutine is one of a set of subroutines that form the resolver. The resolver is a set of

functions that perform a translation between domain names and network addresses. Global information

used by the resolver subroutines resides in the _res data structure. The /usr/include/resolv.h file contains

the _res data structure definition.

38 Technical Reference: Communications, Volume 2

All applications containing the dn_comp subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 ExpDomNam Specifies the address of an expanded domain name.

CompDomNam Points to an array containing the compressed domain name.

Length Specifies the size of the array pointed to by the CompDomNam parameter.

DomNamPtr Specifies a list of pointers to previously compressed names in the current message.

LastDomNamPtr Points to the end of the array specified to by the CompDomNam parameter.

Return Values

Upon successful completion, the dn_comp subroutine returns the size of the compressed domain name.

If unsuccessful, the dn_comp subroutine returns a value of -1 to the calling program.

Files

 /usr/include/resolv.h Contains global information used by the resolver subroutines.

Related Information

The named daemon.

The dn_expand subroutine, _getlong subroutine, _getshort subroutine, putlong subroutine, putshort

subroutine, res_init subroutine, res_mkquery subroutine, “res_ninit Subroutine” on page 162, res_query

subroutine, res_search subroutine, res_send subroutine.

TCP/IP Name Resolution in AIX 5L Version 5.3 System Management Guide: Communications and

Networks.

Sockets Overview, and Understanding Domain Name Resolution in AIX 5L Version 5.3 Communications

Programming Concepts

dn_expand Subroutine

Purpose

Expands a compressed domain name.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

Chapter 2. Sockets 39

int dn_expand (MessagePtr, EndofMesOrig, CompDomNam, ExpandDomNam, Length)

u_char * MessagePtr, * EndOfMesOrig;

u_char * CompDomNam, * ExpandDomNam;

int Length;

Description

The dn_expand subroutine expands a compressed domain name to a full domain name, converting the

expanded names to all uppercase letters. A client process compresses domain names to conserve space.

Compression consists of removing the longest possible previously occurring suffixes. The dn_expand

subroutine restores a domain name compressed by the dn_comp subroutine to its full size.

The dn_expand subroutine is one of a set of subroutines that form the resolver. The resolver is a set of

functions that perform a translation between domain names and network addresses. Global information

used by the resolver subroutines resides in the _res data structure. The /usr/include/resolv.h file contains

the _res data structure definition.

All applications containing the dn_expand subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 MessagePtr Specifies a pointer to the beginning of a message.

EndOfMesOrig Points to the end of the original message that contains the compressed domain name.

CompDomNam Specifies a pointer to a compressed domain name.

ExpandDomNam Specifies a pointer to a buffer that holds the resulting expanded domain name.

Length Specifies the size of the buffer pointed to by the ExpandDomNam parameter.

Return Values

Upon successful completion, the dn_expand subroutine returns the size of the expanded domain name.

If unsuccessful, the dn_expand subroutine returns a value of -1 to the calling program.

Files

 /etc/resolv.conf

 Defines name server and domain name constants, structures, and values.

Related Information

The dn_comp subroutine, _getlong subroutine, getshort subroutine, putlong subroutine, putshort

subroutine, res_init subroutine, res_mkquery subroutine, “res_ninit Subroutine” on page 162, res_query

subroutine, res_search subroutine, res_send subroutine.

TCP/IP Name Resolution in AIX 5L Version 5.3 System Management Guide: Communications and

Networks.

Sockets Overview, and Understanding Domain Name Resolution in AIX 5L Version 5.3 Communications

Programming Concepts.

40 Technical Reference: Communications, Volume 2

endhostent Subroutine

Purpose

Closes the /etc/hosts file.

Library

Standard C Library (libc.a)

(libbind)

(libnis)

(liblocal)

Syntax

#include <netdb.h>

endhostent ()

Description

When using the endhostent subroutine in DNS/BIND name service resolution, endhostent closes the

TCP connection which the sethostent subroutine set up.

When using the endhostent subroutine in NIS name resolution or to search the /etc/hosts file,

endhostent closes the /etc/hosts file.

Note: If a previous sethostent subroutine is performed and the StayOpen parameter does not equal 0,

the endhostent subroutine closes the /etc/hosts file. Run a second sethostent subroutine with the

StayOpen value equal to 0 in order for a following endhostent subroutine to succeed. Otherwise,

the /etc/hosts file closes on an exit subroutine call .

Files

 /etc/hosts Contains the host name database.

/etc/netsvc.conf Contains the name service ordering.

/usr/include/netdb.h Contains the network database structure.

Related Information

The gethostbyaddr subroutine, gethostbyname subroutine, sethostent subroutine gethostent

subroutine.

Sockets Overview and Network Address Translation in AIX 5L Version 5.3 Communications Programming

Concepts.

endhostent_r Subroutine

Purpose

Closes the /etc/hosts file.

Library

Standard C Library (libc.a)

(libbind)

(libnis)

(liblocal)

Chapter 2. Sockets 41

Syntax

#include <netdb.h>

void endhostent_r (struct hostent_data *ht_data);

Description

When using the endhostent_r subroutine in DNS/BIND name service resolution, endhostent_r closes the

TCP connection which the sethostent_r subroutine set up.

When using the endhostent_r subroutine in NIS name resolution or to search the /etc/hosts file,

endhostent_r closes the /etc/hosts file.

Note: If a previous sethostent_r subroutine is performed and the StayOpen parameter does not equal 0,

then the endhostent_r subroutine closes the /etc/hosts file. Run a second sethostent_r

subroutine with the StayOpen value equal to 0 in order for a following endhostent_r subroutine to

succeed. Otherwise, the /etc/hosts file closes on an exit subroutine call .

Parameters

 ht_data Points to the hostent_data structure

Files

 /etc/hosts Contains the host name database.

/etc/netsvc.conf Contains the name service ordering.

/usr/include/netdb.h Contains the network database structure.

Related Information

“gethostbyaddr_r Subroutine” on page 67, “gethostbyname_r Subroutine” on page 70, “sethostent_r

Subroutine” on page 193, and“gethostent_r Subroutine” on page 72.

endnetent Subroutine

Purpose

Closes the /etc/networks file.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

void endnetent ()

Description

The endnetent subroutine closes the /etc/networks file. Calls made to the getnetent, getnetbyaddr, or

getnetbyname subroutine open the /etc/networks file.

All applications containing the endnetent subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

42 Technical Reference: Communications, Volume 2

Return Values

If a previous setnetent subroutine has been performed and the StayOpen parameter does not equal 0,

then the endnetent subroutine will not close the /etc/networks file. Also, the setnetent subroutine does

not indicate that it closed the file. A second setnetent subroutine has to be issued with the StayOpen

parameter equal to 0 in order for a following endnetent subroutine to succeed. If this is not done, the

/etc/networks file must be closed with the exit subroutine.

Examples

To close the /etc/networks file, type:

endnetent();

Files

 /etc/networks Contains official network names.

Related Information

The exit subroutine, getnetbyaddr subroutine, getnetbyname subroutine, getnetent subroutine,

setnetent subroutine.

Sockets Overview, Understanding Network Address Translation, and List of Socket Programming

References in AIX 5L Version 5.3 Communications Programming Concepts.

endnetent_r Subroutine

Purpose

Closes the /etc/networks file.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

void endnetent_r (net_data)

struct netent_data *net_data;

Description

The endnetent_r subroutine closes the /etc/networks file. Calls made to the getnetent_r,

getnetbyaddr_r, or getnetbyname_r subroutine open the /etc/networks file.

Parameters

 net_data Points to the netent_data structure.

Files

 /etc/networks Contains official network names.

Chapter 2. Sockets 43

Related Information

“getnetbyaddr_r Subroutine” on page 77, “getnetbyname_r Subroutine” on page 79, “getnetent_r

Subroutine” on page 81, and“setnetent_r Subroutine” on page 197.

endnetgrent_r Subroutine

Purpose

Handles the group network entries.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

 void endnetgrent_r (void **ptr)

Description

The setnetgrent_r subroutine establishes the network group from which the getnetgrent_r subroutine will

obtain members, and also restarts calls to the getnetgrent_r subroutine from the beginnning of the list. If

the previous setnetgrent_r call was to a different network group, an endnetgrent_r call is implied.

The endnetgrent_r subroutine frees the space allocated during the getnetgrent_r calls.

Parameters

 ptr Keeps the function threadsafe.

Files

 /etc/netgroup Contains network groups recognized by the system.

/usr/include/netdb.h Contains the network database structures.

Related Information

“getnetgrent_r Subroutine” on page 82, and“setnetgrent_r Subroutine” on page 197.

endprotoent Subroutine

Purpose

Closes the /etc/protocols file.

Library

Standard C Library (libc.a)

Syntax

void endprotoent (void)

Description

The endprotoent subroutine closes the /etc/protocols file.

44 Technical Reference: Communications, Volume 2

Calls made to the getprotoent subroutine, getprotobyname subroutine, or getprotobynumber subroutine

open the /etc/protocols file. An application program can use the endprotoent subroutine to close the

/etc/protocols file.

All applications containing the endprotoent subroutine must be compiled with _BSD set to a specific

value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Return Values

If a previous setprotoent subroutine has been performed and the StayOpen parameter does not equal 0,

the endprotoent subroutine will not close the /etc/protocols file. Also, the setprotoent subroutine does

not indicate that it closed the file. A second setprotoent subroutine has to be issued with the StayOpen

parameter equal to 0 in order for a following endprotoent subroutine to succeed. If this is not done, the

/etc/protocols file closes on an exit subroutine.

Examples

To close the /etc/protocols file, type:

endprotoent();

Files

 /etc/protocols Contains protocol names.

Related Information

The exit subroutine, getprotobynumber subroutine, getprotobyname subroutine, getprotoent

subroutine, setprotoent subroutine.

Sockets Overview, and Understanding Network Address Translation in AIX 5L Version 5.3 Communications

Programming Concepts.

endprotoent_r Subroutine

Purpose

Closes the /etc/protocols file.

Library

Standard C Library (libc.a)

Syntax

void endprotoent_r(proto_data);

struct protoent_data *proto_data;

Description

The endprotoent_r subroutine closes the /etc/protocols file, which is opened by the calls made to the

getprotoent_r subroutine, getprotobyname_r subroutine, or getprotobynumber_r subroutine.

Parameters

 proto_data Points to the protoent_data structure

Chapter 2. Sockets 45

Files

 /etc/protocols Contains protocol names.

Related Information

“getprotobynumber_r Subroutine” on page 88, “getprotobyname_r Subroutine” on page 86, “getprotoent_r

Subroutine” on page 90, and “setprotoent_r Subroutine” on page 199.

endservent Subroutine

Purpose

Closes the /etc/services file.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

void endservent ()

Description

The endservent subroutine closes the /etc/services file. A call made to the getservent subroutine,

getservbyname subroutine, or getservbyport subroutine opens the /etc/services file. An application

program can use the endservent subroutine to close the /etc/services file.

All applications containing the endservent subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Return Values

If a previous setservent subroutine has been performed and the StayOpen parameter does not equal 0,

then the endservent subroutine will not close the /etc/services file. Also, the setservent subroutine does

not indicate that it closed the file. A second setservent subroutine has to be issued with the StayOpen

parameter equal to 0 in order for a following endservent subroutine to succeed. If this is not done, the

/etc/services file closes on an exit subroutine.

Examples

To close the /etc/services file, type:

endservent ();

Files

 /etc/services Contains service names.

Related Information

The endprotoent subroutine, exit subroutine, getprotobyname subroutine, getprotobynumber

subroutine, getprotoent subroutine, getservbyname subroutine, getservbyport subroutine, getservent

subroutine, setprotoent subroutine, setservent subroutine.

46 Technical Reference: Communications, Volume 2

Sockets Overview, Understanding Network Address Translation, and List of Socket Programming

References in AIX 5L Version 5.3 Communications Programming Concepts.

endservent_r Subroutine

Purpose

Closes the /etc/services file.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

void endservent_r(serv_data)

struct servent_data *serv_data;

Description

The endservent_r subroutine closes the /etc/services file, which is opend by a call made to the

getservent_r subroutine, getservbyname_r subroutine, or getservbyport_r subroutine opens the

/etc/services file.

Parameters

 serv_data Points to the servent_data structure

Examples

To close the /etc/services file, type:

endservent_r(serv_data);

Files

 /etc/services Contains service names.

Related Information

“setservent_r Subroutine” on page 201, “getservent_r Subroutine” on page 98, “getservbyport Subroutine”

on page 94, and “getservbyname_r Subroutine” on page 93.

ether_ntoa, ether_aton, ether_ntohost, ether_hostton, or ether_line

Subroutine

Purpose

Maps 48-bit Ethernet numbers.

Library

Standard C Library (libc.a)

Chapter 2. Sockets 47

Syntax

#include <sys/types.h>

#include <sys/socket.h>

#include <net/if.h>

#include <netinet/in.h>

#include <netinet/if_ether.h>

char *ether_ntoa (EthernetNumber)

struct ether_addr * EthernetNumber;

struct ether_addr *other_aton(String);

char *string

int *ether_ntohost (HostName, EthernetNumber)

char * HostName;

struct ether_addr *EthernetNumber;

int *ether_hostton (HostName, EthernetNumber)

char *HostName;

struct ether_addr *EthernetNumber;

int *ether_line (Line, EthernetNumber, HostName)

char * Line, *HostName;

struct ether_addr *EthernetNumber;

Description

Attention: Do not use the ether_ntoa or ether_aton subroutine in a multithreaded environment.

The ether_ntoa subroutine maps a 48-bit Ethernet number pointed to by the EthernetNumber parameter

to its standard ASCII representation. The subroutine returns a pointer to the ASCII string. The

representation is in the form x:x:x:x:x:x: where x is a hexadecimal number between 0 and ff. The

ether_aton subroutine converts the ASCII string pointed to by the String parameter to a 48-bit Ethernet

number. This subroutine returns a null value if the string cannot be scanned correctly.

The ether_ntohost subroutine maps a 48-bit Ethernet number pointed to by the EthernetNumber

parameter to its associated host name. The string pointed to by the HostName parameter must be long

enough to hold the host name and a null character. The ether_hostton subroutine maps the host name

string pointed to by the HostName parameter to its corresponding 48-bit Ethernet number. This subroutine

modifies the Ethernet number pointed to by the EthernetNumber parameter.

The ether_line subroutine scans the line pointed to by line and sets the hostname pointed to by the

HostName parameter and the Ethernet number pointed to by the EthernetNumber parameter to the

information parsed from LINE.

Parameters

 EthernetNumber Points to an Ethernet number.

String Points to an ASCII string.

HostName Points to a host name.

Line Points to a line.

Return Values

 0 Indicates that the subroutine was successful.

non-zero Indicates that the subroutine was not successful.

48 Technical Reference: Communications, Volume 2

Files

 /etc/ethers Contains information about the known (48-bit) Ethernet addresses of hosts on the Internet.

Related Information

Subroutines Overview and List of Multithread Subroutines in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

FrcaCacheCreate Subroutine

Purpose

Creates a cache instance within the scope of a Fast Response Cache Accelerator (FRCA) instance.

Library

FRCA Library (libfrca.a)

Syntax

#include <frca.h>

int32_t FrcaCacheCreate (CacheHandle, FrcaHandle, CacheSpec);

int32_t * CacheHandle;

int32_t FrcaHandle;

frca_cache_create_t * CacheSpec;

Description

The FrcaCacheCreate subroutine creates a cache instance for an FRCA instance that has already been

configured. Multiple caches can be created for an FRCA instance. Cache handles are unique only within

the scope of the FRCA instance.

Parameters

 CacheHandle Returns a handle that is required by the other cache-related subroutines of the FRCA API to

refer to the newly created FRCA cache instance.

FrcaHandle Identifies the FRCA instance for which the cache is created.

CacheSpec Points to a frca_ctrl_create_t structure, which specifies the characteristics of the cache to be

created. The structure contains the following members:

 uint32_t cacheType;

uint32_t nMaxEntries;

Note: Structure members do not necessarily appear in this order.

cacheType

Specifies the type of the cache instance. This field must be set to

FCTRL_SERVERTYPE_HTTP.

nMaxEntries

Specifies the maximum number of entries allowed for the cache instance.

Return Values

 0 The subroutine completed successfully.

Chapter 2. Sockets 49

-1 The subroutine failed. The global variable errno is set to

indicate the specific type of error.

Error Codes

 EINVAL The CacheHandle or the CacheSpec parameter is zero or

the CacheSpec parameter is not of the correct type

FCTRL_CACHETYPE_HTTP.

EFAULT The CacheHandle or the CacheSpec point to an invalid

address.

ENOENT The FrcaHandle parameter is invalid.

Related Information

The FrcaCacheDelete subroutine, the FrcaCacheLoadFile subroutine, the FrcaCacheUnloadFile

subroutine, the FrcaCtrlCreate subroutine, the FrcaCtrlDelete subroutine, the FrcaCtrlLog subroutine,

the FrcaCtrlStart subroutine, the FrcaCtrlStop subroutine.

FrcaCacheDelete Subroutine

Purpose

Deletes a cache instance within the scope of a Fast Response Cache Accelerator (FRCA) instance.

Library

FRCA Library (libfrca.a)

Syntax

#include <frca.h>

int32_t FrcaCacheDelete (CacheHandle, FrcaHandle);

int32_t CacheHandle;

int32_t FrcaHandle;

Description

The FrcaCacheDelete subroutine deletes a cache instance and releases any associated resources.

Parameters

 CacheHandle Identifies the cache instance that is to be deleted.

FrcaHandle Identifies the FRCA instance to which the cache instance belongs.

Return Values

 0 The subroutine completed successfully.

-1 The subroutine failed. The global variable errno is set to

indicate the specific type of error.

Error Codes

 ENOENT The CacheHandle or the FrcaHandle parameter is invalid.

50 Technical Reference: Communications, Volume 2

Related Information

The FrcaCacheCreate subroutine, the FrcaCacheLoadFile subroutine, the FrcaCacheUnloadFile

subroutine, the FrcaCtrlCreate subroutine, the FrcaCtrlDelete subroutine, the FrcaCtrlLog subroutine,

the FrcaCtrlStart subroutine, the FrcaCtrlStop subroutine.

FrcaCacheLoadFile Subroutine

Purpose

Loads a file into a cache associated with a Fast Response Cache Accelerator (FRCA) instance.

Library

FRCA Library (libfrca.a)

Syntax

#include <frca.h>

int32_t FrcaCacheLoadFile (CacheHandle, FrcaHandle, FileSpec, AssocData);

int32_t CacheHandle;

int32_t FrcaHandle;

frca_filespec_t * FileSpec;

frca_assocdata_t * AssocData;

Description

The FrcaCacheLoadFile subroutine loads a file into an existing cache instance for an previously

configured FRCA instance.

Parameters

 CacheHandle Identifies the cache instance to which the new entry should be added.

FrcaHandle Identifies the FRCA instance to which the cache instance belongs.

Chapter 2. Sockets 51

FileSpec Points to a frca_loadfile_t structure, which specifies characteristics used to identify the cache

entry that is to be loaded into the given cache. The structure contains the following members:

 uint32_t cacheEntryType;

char * fileName;

char * virtualHost;

char * searchKey;

Note: Structure members do not necessarily appear in this order.

cacheEntryType

Specifies the type of the cache entry. This field must be set to

FCTRL_CET_HTTPFILE.

fileName

Specifies the absolute path to the file that is providing the contents for the new cache

entry.

virtualHost

Specifies a virtual host name that is being served by the FRCA instance.

searchKey

Specifies the key that the cache entry can be found under by the FRCA instance when

it processes an intercepted request. For the HTTP GET engine, the search key is

identical to the abs_path part of the HTTP URL according to section 3.2.2 of RFC

2616. For example, the search key corresponding to the URL

http://www.mydomain/welcome.html is /welcome.html.

Note: If a cache entry with the same type, file name, virtual host, and search key already

exists and the file has not been modified since the existing entry was created, the load request

succeeds without any effect. If the entry exists and the file’s contents have been modified since

being loaded into the cache, the cache entry is updated. If the entry exists and the file’s

contents have not changed, but any of the settings of the HTTP header fields change, the

existing entry must be unloaded first.

AssocData Points to a frca_assocdata_t structure, which specifies additional information to be associated

with the contents of the given cache entry. The structure contains the following members:

 uint32_t assocDataType;

char * cacheControl;

char * contentType;

char * contentEncoding;

char * contentLanguage;

char * contentCharset;

Note: Structure members do not necessarily appear in this order.

assocDataType

Specifies the type of data that is associated with the given cache entry.

cacheControl

Specifies the settings of the corresponding HTTP header field according to RFC 2616.

contentType

Specifies the settings of the corresponding HTTP header field according to RFC 2616.

contentEncoding

Specifies the settings of the corresponding HTTP header field according to RFC 2616.

contentLanguage

Specifies the settings of the corresponding HTTP header field according to RFC 2616.

contentCharset

Specifies the settings of the corresponding HTTP header field according to RFC 2616.

52 Technical Reference: Communications, Volume 2

Return Values

 0 The subroutine completed successfully.

-1 The subroutine failed. The global variable errno is set to

indicate the specific type of error.

Error Codes

 EINVAL The FileSpec or the AssocData parameter is zero or are

not of the correct type or any of the fileName or the

searchKey components are zero or the size of the file is

zero.

EFAULT The FileSpec or the AssocData parameter or one of their

components points to an invalid address.

ENOMEM The FRCA or NBC subsystem is out of memory.

EFBIG The content of the cache entry failed to load into the NBC.

Check network options nbc_limit, nbc_min_cache, and

nbc_max_cache.

ENOTREADY The kernel extension is currently being loaded or

unloaded.

ENOENT The CacheHandle or the FrcaHandle parameter is invalid.

Related Information

The FrcaCacheCreate subroutine, FrcaCacheDelete subroutine, FrcaCacheUnloadFile subroutine,

FrcaCtrlCreate subroutine, FrcaCtrlDelete subroutine, FrcaCtrlLog subroutine, FrcaCtrlStart subroutine,

FrcaCtrlStop subroutine.

FrcaCacheUnloadFile Subroutine

Purpose

Removes a cache entry from a cache that is associated with a Fast Response Cache Accelerator (FRCA)

instance.

Library

FRCA Library (libfrca.a)

Syntax

#include <frca.h>

int32_t FrcaCacheUnoadFile (CacheHandle, FrcaHandle, FileSpec);

int32_t CacheHandle;

int32_t FrcaHandle;

frca_filespec_t * FileSpec;

Description

The FrcaCacheUnoadFile subroutine removes a cache entry from an existing cache instance for an

previously configured FRCA instance.

Parameters

 CacheHandle Identifies the cache instance from which the entry should be removed.

FrcaHandle Identifies the FRCA instance to which the cache instance belongs.

Chapter 2. Sockets 53

FileSpec Points to a frca_loadfile_t structure, which specifies characteristics used to identify the cache

entry that is to be removed from the given cache. The structure contains the following

members:

 uint32_t cacheEntryType;

char * fileName;

char * virtualHost;

char * searchKey;

Note: Structure members do not necessarily appear in this order.

cacheEntryType

Specifies the type of the cache entry. This field must be set to

FCTRL_CET_HTTPFILE.

fileName

Specifies the absolute path to the file that is to be removed from the cache.

virtualHost

Specifies a virtual host name that is being served by the FRCA instance.

searchKey

Specifies the key under which the cache entry can be found.

Note: The FrcaCacheUnoadFile subroutine succeeds if a cache entry with the same type, file name,

virtual host, and search key does not exist. This subroutine fails if the file associated with fileName

does not exist or if the calling process does not have sufficient access permissions.

Return Values

 0 The subroutine completed successfully.

-1 The subroutine failed. The global variable errno is set to

indicate the specific type of error.

Error Codes

 EINVAL The FileSpec parameter is zero or the cacheEntryType

component is not set to FCTRL_CET_HTTPFILE or the

searchKey component is zero or the fileName is ’/’ or the

fileName is not an absolute path.

EFAULT The FileSpec parameter or one of the components points

to an invalid address.

EACCES Access permission is denied on the fileName.

Related Information

The FrcaCacheCreate subroutine, the FrcaCacheDelete subroutine, the FrcaCacheLoadFile subroutine,

the FrcaCtrlCreate subroutine, the FrcaCtrlDelete subroutine, the FrcaCtrlLog subroutine, the

FrcaCtrlStart subroutine, the FrcaCtrlStop subroutine.

FrcaCtrlCreate Subroutine

Purpose

Creates a Fast Response Cache Accelerator (FRCA) control instance.

54 Technical Reference: Communications, Volume 2

Library

FRCA Library (libfrca.a)

Syntax

#include <frca.h>

int32_t FrcaCtrlCreate (FrcaHandle, InstanceSpec);

int32_t * FrcaHandle;

frca_ctrl_create_t * InstanceSpec;

Description

The FrcaCtrlCreate subroutine creates and configures an FRCA instance that is associated with a

previously configured TCP listen socket. TCP connections derived from the TCP listen socket are

intercepted by the FRCA instance and, if applicable, adequate responses are generated by the in-kernel

code on behalf of the user-level application.

The only FRCA instance type that is currently supported handles static GET requests as part of the

Hypertext Transfer Protocol (HTTP).

Parameters

 FrcaHandle Returns a handle that is required by the other FRCA API subroutines to refer to the newly

configured FRCA instance.

Chapter 2. Sockets 55

InstanceSpec Points to a frca_ctrl_create_t structure, which specifies the parameters used to configure the

newly created FRCA instance. The structure contains the following members:

 uint32_t serverType;

char * serverName;

uint32_t nListenSockets;

uint32_t * ListenSockets;

uint32_t flags;

uint32_t nMaxConnections;

uint32_t nLogBufs;

char * logFile;

Note: Structure members do not necessarily appear in this order.

serverType

Specifies the type for the FRCA instance. This field must be set to

FCTRL_SERVERTYPE_HTTP.

serverName

Specifies the value to which the HTTP header field is set.

nListenSocket

Specifies the number of listen socket descriptors pointed to by listenSockets.

listenSocket

Specifies the TCP listen socket that the FRCA instance should be configured to intercept.

Note: The TCP listen socket must exist and the SO_KERNACCEPT socket option must

be set at the time of calling the FrcaCtrlCreate subroutine.

flags Specifies the logging format, the initial state of the logging subsystem, and whether

responses generated by the FRCA instance should include the Server: HTTP header field.

The valid flags are as follows:

FCTRL_KEEPALIVE

FCTRL_LOGFORMAT

FCTRL_LOGFORMAT_ECLF

FCTRL_LOGFORMAT_VHOST

FCTRL_LOGMODE

FCTRL_LOGMODE_ON

FCTRL_SENDSERVERHEADER

nMaxConnections

Specifies the maximum number of intercepted connections that are allowed at any given

point in time.

nLogBufs

Specifies the number of preallocated logging buffers used for logging information about

HTTP GET requests that have been served successfully.

logFile Specifies the absolute path to a file used for appending logging information. The HTTP

GET engine uses logFile as a base name and appends a sequence number to it to

generate the actual file name. Whenever the size of the current log file exceeds the

threshold of approximately 1 gigabyte, the sequence number is incremented by 1 and the

logging subsystem starts appending to the new log file.

Note: The FRCA instance creates the log file, but not the path to it. If the path does not

exist or is not accessible, the FRCA instance reverts to the default log file /tmp/frca.log.

Return Values

 0 The subroutine completed successfully.

56 Technical Reference: Communications, Volume 2

-1 The subroutine failed. The global variable errno is set to

indicate the specific type of error.

Error Codes

 EINVAL The FrcaHandle or the InstanceSpec parameter is zero or

is not of the correct type or the listenSockets components

do not specify any socket descriptors.

EFAULT The FrcaHandle or the InstanceSpec or a component of

the InstanceSpec points to an invalid address.

ENOTREADY The kernel extension is currently being loaded or

unloaded.

ENOTSOCK A TCP listen socket does not exist.

Related Information

The FrcaCacheCreate subroutine, the FrcaCacheDelete subroutine, the FrcaCacheLoadFile subroutine,

the FrcaCacheUnloadFile subroutine, the FrcaCtrlDelete subroutine, the FrcaCtrlLog subroutine, the

FrcaCtrlStart subroutine, the FrcaCtrlStop subroutine.

FrcaCtrlDelete Subroutine

Purpose

Deletes a Fast Response Cache Accelerator (FRCA) control instance.

Library

FRCA Library (libfrca.a)

Syntax

#include <frca.h>

int32_t FrcaCtrlDelete (FrcaHandle);

int32_t * FrcaHandle;

Description

The FrcaCtrlDelete subroutine deletes an FRCA instance and releases any associated resources.

The only FRCA instance type that is currently supported handles static GET requests as part of the

Hypertext Transfer Protocol (HTTP).

Parameters

 FrcaHandle Identifies the FRCA instance on which this operation is performed.

Return Values

 0 The subroutine completed successfully.

-1 The subroutine failed. The global variable errno is set to

indicate the specific type of error.

Chapter 2. Sockets 57

Error Codes

 ENOENT The FrcaHandle parameter is invalid.

ENOTREADY The FRCA control instance is in an undefined state.

Related Information

The FrcaCacheCreate subroutine, the FrcaCacheDelete subroutine, the FrcaCacheLoadFile subroutine,

the FrcaCacheUnloadFile subroutine, the FrcaCtrlCreate subroutine, the FrcaCtrlLog subroutine, the

FrcaCtrlStart subroutine, the FrcaCtrlStop subroutine.

FrcaCtrlLog Subroutine

Purpose

Modifies the behavior of the logging subsystem.

Library

FRCA Library (libfrca.a)

Syntax

#include <frca.h>

int32_t FrcaCtrlLog (FrcaHandle, Flags);

int32_t FrcaHandle;

uint32_t Flags;

Description

The FrcaCtrlLog subroutine modifies the behavior of the logging subsystem for the Fast Response Cache

Accelerator (FRCA) instance specified. Modifiable attributes are the logging mode, which can be turned on

or off, and the logging format, which defaults to the HTTP Common Log Format (CLF). The logging format

can be changed to Extended Common Log Format (ECLF) and can be set to include virtual host

information.

The only FRCA instance type that is currently supported handles static GET requests as part of the

Hypertext Transfer Protocol (HTTP).

Parameters

 FrcaHandle Returns a handle that is required by the other FRCA API subroutines to refer to the newly

configured FRCA instance.

Flags Specifies the behavior of the logging subsystem. The parameter value is constructed by logically

ORing single flags. The valid flags are as follows:

FCTRL_LOGFORMAT

FCTRL_LOGFORMAT_ECLF

FCTRL_LOGFORMAT_VHOST

FCTRL_LOGMODE

FCTRL_LOGMODE_ON

58 Technical Reference: Communications, Volume 2

Return Values

 0 The subroutine completed successfully.

-1 The subroutine failed. The global variable errno is set to

indicate the specific type of error.

Error Codes

 ENOTREADY The kernel extension is currently being loaded or unloaded.

Related Information

The FrcaCacheCreate subroutine, the FrcaCacheDelete subroutine, the FrcaCacheLoadFile subroutine,

the FrcaCacheUnloadFile subroutine, the FrcaCtrlCreate subroutine, the FrcaCtrlDelete subroutine, the

FrcaCtrlStart subroutine, the FrcaCtrlStop subroutine.

FrcaCtrlStart Subroutine

Purpose

Starts the interception of TCP data connections for a previously configured Fast Response Cache

Accelerator (FRCA) instance.

Library

FRCA Library (libfrca.a)

Syntax

#include <frca.h>

int32_t FrcaCtrlStart (FrcaHandle);

int32_t * FrcaHandle;

Description

The FrcaCtrlStart subroutine starts the interception of TCP data connections for an FRCA instance. If the

FRCA instance cannot handle the data on that connection, it passes the data to the user-level application

that has established the listen socket.

The only FRCA instance type that is currently supported handles static GET requests as part of the

Hypertext Transfer Protocol (HTTP).

Parameters

 FrcaHandle Identifies the FRCA instance on which this operation is performed.

Return Values

 0 The subroutine completed successfully.

-1 The subroutine failed. The global variable errno is set to

indicate the specific type of error.

Chapter 2. Sockets 59

Error Codes

 ENOENT The FrcaHandle parameter is invalid.

ENOTREADY The FRCA control instance is in an undefined state.

ENOTSOCK A TCP listen socket that was passed in with the

FrcaCtrlCreate cannot be intercepted because it does not

exist.

Related Information

The FrcaCacheCreate subroutine, the FrcaCacheDelete subroutine, the FrcaCacheLoadFile subroutine,

the FrcaCacheUnloadFile subroutine, the FrcaCtrlCreate subroutine, the FrcaCtrlDelete subroutine, the

FrcaCtrlLog subroutine, the FrcaCtrlStop subroutine.

FrcaCtrlStop Subroutine

Purpose

Stops the interception of TCP data connections for a Fast Response Cache Accelerator (FRCA) instance.

Library

FRCA Library (libfrca.a)

Syntax

#include <frca.h>

int32_t FrcaCtrlStop (FrcaHandle);

int32_t * FrcaHandle;

Description

The FrcaCtrlStop subroutine stops the interception of newly arriving TCP data connections for a

previously configured FRCA instance. Connection requests are passed to the user-level application that

has established the listen socket.

The only FRCA instance type that is currently supported handles static GET requests as part of the

Hypertext Transfer Protocol (HTTP).

Parameters

 FrcaHandle Identifies the FRCA instance on which this operation is performed.

Return Values

 0 The subroutine completed successfully.

-1 The subroutine failed. The global variable errno is set to

indicate the specific type of error.

Error Codes

 ENOENT The FrcaHandle parameter is invalid.

ENOTREADY The FRCA control instance has not been started yet.

60 Technical Reference: Communications, Volume 2

Related Information

The FrcaCacheCreate subroutine, the FrcaCacheDelete subroutine, the FrcaCacheLoadFile subroutine,

the FrcaCacheUnloadFile subroutine, the FrcaCtrlCreate subroutine, the FrcaCtrlDelete subroutine, the

FrcaCtrlLog subroutine, the FrcaCtrlStart subroutine.

freeaddrinfo Subroutine

Purpose

Frees memory allocated by the “getaddrinfo Subroutine.”

Library

The Standard C Library (<libc.a>)

Syntax

#include <sys/socket.h>

#include <netdb.h>

void freeaddrinfo (struct addrinfo *ai)

Description

The freeaddrinfo subroutine frees one or more addrinfo structures returned by the getaddrinfo

subroutine, along with any additional storage associated with those structures. If the ai_next field of the

structure is not NULL, the entire list of structures is freed.

Parameters

 ai Points to dynamic storage allocated by the getaddrinfo subroutine

Related Information

“getaddrinfo Subroutine,” and “getnameinfo Subroutine” on page 75.

The gai_strerror Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and

Extensions Volume 1.

getaddrinfo Subroutine

Purpose

Protocol-independent hostname-to-address translation.

Library

Library (libc.a)

Syntax

#include <sys/socket.h>

#include <netdb.h>

int getaddrinfo (hostname, servname, hints, res)

const char *hostname;

const char *servname;

const struct addrinfo *hints;

struct addrinfo **res;

Chapter 2. Sockets 61

Description

The hostname and servname parameters describe the hostname and/or service name to be referenced.

Zero or one of these arguments may be NULL. A non-NULL hostname may be either a hostname or a

numeric host address string (a dotted-decimal for IPv4 or hex for IPv6). A non-NULL servname may be

either a service name or a decimal port number.

The hints parameter specifies hints concerning the desired return information. The hostname and

servname parameters are pointers to null-terminated strings or NULL. One or both of these arguments

must be a non-NULL pointer. In a normal client scenario, both the hostname and servname parameters

are specified. In the normal server scenario, only the servname parameter is specified. A non-NULL

hostname string can be either a host name or a numeric host address string (for example, a

dotted-decimal IPv4 address or an IPv6 hex address). A non-NULL servname string can be either a

service name or a decimal port number.

The caller can optionally pass an addrinfo structure, pointed to by the hints parameter, to provide hints

concerning the type of socket that the caller supports. In this hints structure, all members other than

ai_flags, ai_family, ai_socktype, and ai_protocol must be zero or a NULL pointer. A value of

PF_UNSPEC for ai_family means the caller will accept any protocol family. A value of zero for

ai_socktype means the caller will accept any socket type. A value of zero for ai_protocol means the

caller will accept any protocol. For example, if the caller handles only TCP and not UDP, the ai_socktype

member of the hints structure should be set to SOCK_STREAM when the getaddrinfo subroutine is

called. If the caller handles only IPv4 and not IPv6, the ai_family member of the hints structure should be

set to PF_INET when getaddrinfo is called. If the hints parameter in getaddrinfo is a NULL pointer, it is

the same as if the caller fills in an addrinfo structure initialized to zero with ai_family set to PF_UNSPEC.

Upon successful return, a pointer to a linked list of one or more addrinfo structures is returned through

the res parameter. The caller can process each addrinfo structure in this list by following the ai_next

pointer, until a NULL pointer is encountered. In each returned addrinfo structure the three members

ai_family, ai_socktype, and ai_protocol are the corresponding arguments for a call to the socket

subroutine. In each addrinfo structure, the ai_addr member points to a filled-in socket address structure

whose length is specified by the ai_addrlen member.

If the AI_PASSIVE bit is set in the ai_flags member of the hints structure, the caller plans to use the

returned socket address structure in a call to the bind subroutine. If the hostname parameter is a NULL

pointer, the IP address portion of the socket address structure will be set to INADDR_ANY for an IPv4

address or IN6ADDR_ANY_INIT for an IPv6 address.

If the AI_PASSIVE bit is not set in the ai_flags member of the hints structure, the returned socket address

structure will be ready for a call to the connect subroutine (for a connection-oriented protocol) or the

connect, sendto, or sendmsg subroutine (for a connectionless protocol). If the hostname parameter is a

NULL pointer, the IP address portion of the socket address structure will be set to the loopback address.

If the AI_CANONNAME bit is set in the ai_flags member of the hints structure, upon successful return the

ai_canonname member of the first addrinfo structure in the linked list will point to a NULL-terminated

string containing the canonical name of the specified hostname.

If the AI_NUMERICHOST flag is specified, a non-NULL nodename string supplied is a numeric host

address string. Otherwise, an (EAI_NONAME) error is returned. This flag prevents any type of name

resolution service (such as, DNS) from being invoked.

If the AI_NUMERICSERV flag is specified, a non-NULL servname string supplied is a numeric port string.

Otherwise, an (EAI_NONAME) error is returned. This flag prevents any type of name resolution service

(such as, NIS+) from being invoked.

62 Technical Reference: Communications, Volume 2

If the AI_V4MAPPED flag is specified along with an ai_family value of AF_INET6, the getaddrinfo

subroutine returns IPv4-mapped IPv6 addresses when no matching IPv6 addresses (ai_addrlen is 16) are

found. For example, when using DNS, if no AAAA or A6 records are found, a query is made for A records.

Any found are returned as IPv4-mapped IPv6 addresses. The AI_V4MAPPED flag is ignored unless

ai_family equals AF_INET6.

If the AI_ALL flag is used with the AI_V4MAPPED flag, the getaddrinfo subroutine returns all matching

IPv6 and IPv4 addresses. For example, when using DNS, a query is first made for AAAA/A6 records. If

successful, those IPv6 addresses are returned. Another query is made for A records, and any IPv4

addresses found are returned as IPv4-mapped IPv6 addresses. The AI_ALL flag without the

AI_V4MAPPED flag is ignored.

Note: When ai_family is not specified (AF_UNSPEC), AI_V4MAPPED and AI_ALL flags will only be used

if AF_INET6 is supported.

If the AI_ADDRCONFIG flag is specified, a query for AAAA or A6 records should occur only if the node

has at least one IPv6 source address configured. A query for A records should occur only if the node has

at least one IPv4 source address configured. The loopback address is not considered valid as a

configured source address.

All of the information returned by the getaddrinfo subroutine is dynamically allocated: the addrinfo

structures, the socket address structures, and canonical host name strings pointed to by the addrinfo

structures. To return this information to the system, “freeaddrinfo Subroutine” on page 61 is called.

The addrinfo structure is defined as:

struct addrinfo {

 int ai_flags; /* AI_PASSIVE, AI_CANONNAME */

 int ai_family; /* PF_xxx */

 int ai_socktype; /* SOCK_xxx */

 int ai_protocol; /* 0 or IP=PROTO_xxx for IPv4 and IPv6 */

 size_t ai_addrlen; /* length of ai_addr */

 char *ai_canonname; /* canoncial name for hostname */

 struct sockaddr *ai_addr; /* binary address */

 struct addrinfo *ai_next; /* next structure in linked list */

}

Return Values

If the query is successful, a pointer to a linked list of one or more addrinfo structures is returned via the

res parameter. A zero return value indicates success. If the query fails, a non-zero error code will be

returned.

Error Codes

The following names are the non-zero error codes. See netdb.h for further definition.

 EAI_ADDRFAMILY Address family for hostname not supported

EAI_AGAIN Temporary failure in name resolution

EAI_BADFLAGS Invalid value for ai_flags

EAI_FAIL Non-recoverable failure in name resolution

EAI_FAMILY ai_family not supported

EAI_MEMORY Memory allocation failure

EAI_NODATA No address associated with hostname

EAI_NONAME No hostname nor servname provided, or not known

EAI_SERVICE servname not supported for ai_socktype

EAI_SOCKTYPE ai_socktype not supported

EAI_SYSTEM System error returned in errno

Chapter 2. Sockets 63

Related Information

“freeaddrinfo Subroutine” on page 61, and “getnameinfo Subroutine” on page 75.

The gai_strerror Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and

Extensions Volume 1.

get_auth_method Subroutine

Purpose

Returns the list of authentication methods for the secure rcmds.

Library

Authentication Methods Library (libauthm.a)

Syntax

Description

This method returns the authentication methods currently configured in the order in which they should be

attempted in the unsigned integer pointer the user passed in.

The list in the unsigned integer pointer is either NULL (on an error) or is an array of unsigned integers

terminated by a zero. Each integer identifies an authentication method. The order that a client should

attempt to authenticate is defined by the order of the list.

Note: The calling routine is responsible for freeing the memory in which the list is contained.

The flags identifying the authentication methods are defined in the /usr/include/authm.h file.

Parameter

 authm Points to an array of unsigned integers. The list of authentication methods is returned in the zero

terminated list.

Return Values

Upon successful completion, the get_auth_method subroutine returns a zero.

Upon unsuccessful completion, the get_auth_method subroutine returns an errno.

Related Information

The chauthent command, ftp command, lsauthent command, rcp command, rlogin command, rsh

command, telnet, tn, or tn3270 command.

The set_auth_method subroutine.

Network Overview in AIX 5L Version 5.3 System Management Guide: Communications and Networks.

Secure Rcmds in AIX 5L Version 5.3 System User’s Guide: Communications and Networks.

64 Technical Reference: Communications, Volume 2

getdomainname Subroutine

Purpose

Gets the name of the current domain.

Library

Standard C Library (libc.a)

Syntax

int getdomainname (Name, Namelen)

char *Name;

int Namelen;

Description

The getdomainname subroutine returns the name of the domain for the current processor as previously

set by the setdomainname subroutine. The returned name is null-terminated unless insufficient space is

provided.

The purpose of domains is to enable two distinct networks that may have host names in common to

merge. Each network would be distinguished by having a different domain name. Only the Network

Information Service (NIS) and the sendmail command make use of domains.

All applications containing the getdomainname subroutine must be compiled with _BSD set to a specific

value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Note: Domain names are restricted to 256 characters.

Parameters

 Name Specifies the domain name to be returned.

Namelen Specifies the size of the array pointed to by the Name parameter.

Return Values

If the call succeeds, a value of 0 is returned. If the call is unsuccessful, a value of -1 is returned and an

error code is placed in the errno global variable.

Error Codes

The following error may be returned by this subroutine:

 Value Description

EFAULT The Name parameter gave an invalid address.

Related Information

The gethostname subroutine, setdomainname subroutine, sethostname subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

Chapter 2. Sockets 65

gethostbyaddr Subroutine

Purpose

Gets network host entry by address.

Library

Standard C Library (libc.a)

(libbind)

(libnis)

(liblocal)

Syntax

#include <netdb.h>

struct hostent *gethostbyaddr (Address, Length, Type)

const void *Address, size_t Length, int Type;

Description

The gethostbyaddr subroutine is threadsafe in AIX 4.3 and later. However, the return value points to

static data that is overwritten by subsequent calls. This data must be copied to be saved for use by

subsequent calls.

The gethostbyaddr subroutine retrieves information about a host using the host address as a search key.

Unless specified, the gethostbyaddr subroutine uses the default name services ordering, that is, it will

query DNS/BIND, NIS, then the local /etc/hosts file.

When using DNS/BIND name service resolution, if the file /etc/resolv.conf exists, the gethostbyaddr

subroutine queries the domain name server. The gethostbyaddr subroutine recognizes domain name

servers as described in RFC 883.

When using NIS for name resolution, if the getdomainname subroutine is successful and yp_bind

indicates NIS is running, then the gethostbyaddr subroutine queries NIS.

The gethostbyaddr subroutine also searches the local /etc/hosts file when indicated to do so.

The gethostbyaddr returns a pointer to a hostent structure, which contains information obtained from one

of the name resolutions services. The hostent structure is defined in the netdb.h file.

The environment variable, NSORDER can be set to override the default name services ordering and the

order specified in the /etc/netsvc.conf file.

Parameters

 Address Specifies a host address. The host address is passed as a pointer to the binary format address.

Length Specifies the length of host address.

Type Specifies the domain type of the host address. It can be either AF_INET or AF_INET6.

Return Values

The gethostbyaddr subroutine returns a pointer to a hostent structure upon success.

If an error occurs or if the end of the file is reached, the gethostbyaddr subroutine returns a NULL pointer

and sets h_errno to indicate the error.

66 Technical Reference: Communications, Volume 2

Error Codes

The gethostbyaddr subroutine is unsuccessful if any of the following errors occur:

 Error Description

HOST_NOT_FOUND The host specified by the Name parameter is not found.

TRY_AGAIN The local server does not receive a response from an authoritative server. Try

again later.

NO_RECOVERY This error code indicates an unrecoverable error.

NO_ADDRESS The requested Address parameter is valid but does not have a name at the

name server.

SERVICE_UNAVAILABLE None of the name services specified are running or available.

Files

 /etc/hosts Contains the host-name database.

/etc/resolv.conf Contains the name server and domain name information.

/etc/netsvc.conf Contains the name of the services ordering.

/usr/include/netdb.h Contains the network database structure.

Related Information

The endhostent subroutine, gethostbyname subroutine, sethostent subroutine, gethostent subroutine,

inet_addr subroutine.

Sockets Overview, and Network Address Translation in AIX 5L Version 5.3 Communications Programming

Concepts.

gethostbyaddr_r Subroutine

Purpose

Gets network host entry by address.

Library

Standard C Library (libc.a)

(libbind)

(libnis)

(liblocal)

Syntax

#include <netdb.h>

int gethostbyadd_r(Addr, Len, Type, Htent, Ht_data)

const char *Addr, size_t Len, int Type, struct hostent *Htent, struct hostent_data *Ht_data;

Description

This function internally calls the gethostbyaddr subroutine and stores the value returned by the

gethostbyaddr subroutine to the hostent structure.

Parameters

 Addr Points to the host address that is a pointer to the binary format address.

Len Specifies the length of the address.

Chapter 2. Sockets 67

Type Specifies the domain type of the host address. It can be either AF_INET or

AF_INET6.

Htent Points to a hostent structure which is used to store the return value of the

gethostaddr subroutine.

Ht_data Points to a hostent_data structure.

Return Values

The function returns a 0 if successful and a -1 if unsuccessful.

Note: The return value of the gethostbyaddr subroutine points to static data that is overwritten by

subsequent calls. This data must be copied at every call to be saved for use by subsequent calls.

The gethostbyaddr_r subroutine solves this problem.

If the Name parameter is a hostname, this subroutine searches for a machine with that name as an IP

address. Because of this, use the gethostbyname_r subroutine.

Error Codes

The gethostbyaddr_r subroutine is unsuccessful if any of the following errors occur:

 HOST_NOT_FOUND The host specified by the Name parameter was not found.

TRY_AGAIN The local server did not receive a response from an authoritative server. Try again

later.

NO_RECOVERY Indicates an unrecoverable error occured.

NO_ADDRESS The requested Name parameter is valid but does not have an Internet address at

the name server.

SERVICE_UNAVAILABLE None of the name services specified are running or available.

EINVAL The hostent pointer is NULL

Files

 /etc/hosts Contains the host name data base.

/etc/resolv.conf Contains the name server and domain name.

/etc/netsvc.conf Contains the name services ordering.

/usr/include/netdb.h Contains the network database structure.

Related Information

“endhostent_r Subroutine” on page 41, “gethostbyaddr_r Subroutine” on page 67, “gethostent_r

Subroutine” on page 72, and “sethostent_r Subroutine” on page 193.

gethostbyname Subroutine

Purpose

Gets network host entry by name.

Library

Standard C Library (libc.a)

(libbind)

(libnis)

(liblocal)

68 Technical Reference: Communications, Volume 2

Syntax

#include <netdb.h>

struct hostent *gethostbyname (Name)

char *Name;

Description

The gethostbyname subroutine is threadsafe in AIX 4.3 and later. However, the return value points to

static data that is overwritten by subsequent calls. This data must be copied to be saved for use by

subsequent calls.

The gethostbyname subroutine retrieves host address and name information using a host name as a

search key. Unless specified, the gethostbyname subroutine uses the default name services ordering,

that is, it queries DNS/BIND, NIS or the local /etc/hosts file for the name.

When using DNS/BIND name service resolution, if the /etc/resolv.conf file exists, the gethostbyname

subroutine queries the domain name server. The gethostbyname subroutine recognizes domain name

servers as described in RFC883.

When using NIS for name resolution, if the getdomaninname subroutine is successful and yp_bind

indicates yellow pages are running, then the gethostbyname subroutine queries NIS for the name.

The gethostbyname subroutine also searches the local /etc/hosts file for the name when indicated to do

so.

The gethostbyname subroutine returns a pointer to a hostent structure, which contains information

obtained from a name resolution services. The hostent structure is defined in the netdb.h header file.

Parameters

 Name Points to the host name.

Return Values

The gethostbyname subroutine returns a pointer to a hostent structure on success.

If the parameter Name passed to gethostbyname is actually an IP address, gethostbyname will return a

non-NULL hostent structure with an IP address as the hostname without actually doing a lookup.

Remember to call inet_addr subroutine to make sure Name is not an IP address before calling

gethostbyname. To resolve an IP address call gethostbyaddr instead.

If an error occurs or if the end of the file is reached, the gethostbyname subroutine returns a null pointer

and sets h_errno to indicate the error.

The environment variable, NSORDER can be set to overide the default name services ordering and the

order specified in the /etc/netsvc.conf file.

By default, resolver routines first attempt to resolve names through the DNS/BIND, then NIS and the

/etc/hosts file. The /etc/netsvc.conf file may specify a different search order. The environment variable

NSORDER overrides both the /etc/netsvc.conf file and the default ordering. Services are ordered as

hosts = value, value, value in the /etc/netsvc.conf file where at least one value must be specified from

the list bind, nis, local. NSORDER specifies a list of values.

Chapter 2. Sockets 69

Error Codes

The gethostbyname subroutine is unsuccessful if any of the following errors occur:

 Error Description

HOST_NOT_FOUND The host specified by the Name parameter was not found.

TRY_AGAIN The local server did not receive a response from an authoritative

server. Try again later.

NO_RECOVERY This error code indicates an unrecoverable error.

NO_ADDRESS The requested Name is valid but does not have an Internet address

at the name server.

SERVICE_UNAVAILABLE None of the name services specified are running or available.

Examples

The following program fragment illustrates the use of the gethostbyname subroutine to look up a

destination host:

hp=gethostbyname(argv[1]);

if(hp = = NULL) {

 fprintf(stderr, "rlogin: %s: unknown host\n", argv[1]);

 exit(2);

}

Files

 /etc/hosts Contains the host name data base.

/etc/resolv.conf Contains the name server and domain name.

/etc/netsvc.conf Contains the name services ordering.

/usr/include/netdb.h Contains the network database structure.

Related Information

The endhostent subroutine, gethostbyaddr subroutine, gethostent subroutine, sethostent subroutine,

inet_addr subroutine.

Sockets Overview and Network Address Translation in AIX 5L Version 5.3 Communications Programming

Concepts.

gethostbyname_r Subroutine

Purpose

Gets network host entry by name.

Library

Standard C Library (libc.a)

(libbind)

(libnis)

(liblocal)

Syntax

#include netdb.h>

int gethostbyname_r(Name, Htent, Ht_data)

const char *Name, struct hostent *Htent, struct hostent_data *Ht_data;

70 Technical Reference: Communications, Volume 2

Description

This function internally calls the gethostbyname subroutine and stores the value returned by the

gethostbyname subroutine to the hostent structure.

Parameters

 Name Points to the host name (which is a constant).

Htent Points to a hostent structure in which the return value of

the gethostbyname subroutine is stored.

Ht_data Points to a hostent_data structure.

Return Values

The function returns a 0 if successful and a -1 if unsuccessful.

Note:

The return value of the gethostbyname subroutine points to static data that is overwritten by

subsequent calls. This data must be copied at every call to be saved for use by subsequent calls.

The gethostbyname_r subroutine solves this problem.

If the Name parameter is an IP address, this subroutine searches for a machine with that IP address as a

name. Because of this, use the gethostbyaddr_r subroutine instead of the gethostbyname_r subroutine

if the Name parameter is an IP address.

Error Codes

The gethostbyname_r subroutine is unsuccessful if any of the following errors occurs:

 HOST_NOT_FOUND The host specified by the Name parameter was not found.

TRY_AGAIN The local server did not receive a response from an

authoritative server. Try again later.

NO_RECOVERY An unrecoverable error occurred.

NO_ADDRESS The requested Name is valid but does not have an

Internet address at the name server.

SERVICE_UNAVAILABLE None of the name services specified are running or

available.

EINVAL The hostent pointer is NULL.

Files

 /etc/hosts Contains the host name data base.

/etc/resolv.conf Contains the name server and domain name.

/etc/netsvc.conf Contains the name services ordering.

/usr/include/netdb.h Contains the network database structure.

Related Information

“endhostent_r Subroutine” on page 41, “gethostbyaddr_r Subroutine” on page 67, “gethostent_r

Subroutine” on page 72, and “sethostent_r Subroutine” on page 193.

Chapter 2. Sockets 71

gethostent Subroutine

Purpose

Retrieves a network host entry.

Library

Standard C Library (libc.a)

(libbind)

(libnis)

(liblocal)

Syntax

#include <netdb.h>

struct hostent *gethostent ()

Description

The gethostent subroutine is threadsafe in AIX 4.3 and later. However, the return value points to static

data that is overwritten by subsequent calls. This data must be copied to be saved for use by subsequent

calls.

When using DNS/BIND name service resolution, the gethostent subroutine is not defined.

When using NIS name service resolution or searching the local /etc/hosts file, the gethostent subroutine

reads the next line of the /etc/hosts file, opening the file if necessary.

The gethostent subroutine returns a pointer to a hostent structure, which contains the equivalent fields

for a host description line in the /etc/hosts file. The hostent structure is defined in the netdb.h file.

Return Values

Upon successful completion, the gethostent subroutine returns a pointer to a hostent structure.

If an error occurs or the end of the file is reached, the gethostent subroutine returns a null pointer.

Files

 /etc/hosts Contains the host name database.

/etc/netsvc.conf Contains the name services ordering.

/usr/include/netdb.h Contains the network database structure.

Related Information

The gethostbyaddr subroutine, gethostbyname subroutine, sethostent subroutine endhostent

subroutine.

Sockets Overview and Network Address Translation in AIX 5L Version 5.3 Communications Programming

Concepts.

gethostent_r Subroutine

Purpose

Retrieves a network host entry.

72 Technical Reference: Communications, Volume 2

Library

Standard C Library (libc.a)

(libbind)

(libnis)

(liblocal)

Syntax

#include <netdb.h>

int gethostent_r (htent, ht_data)

struct hostent *htent;

struct hostent_data *ht_data;

Description

When using DNS/BIND name service resolution, the gethostent_r subroutine is not defined.

When using NIS name service resolution or searching the local /etc/hosts file, the gethostent_r

subroutine reads the next line of the /etc/hosts file, and opens the file if necessary.

The gethostent_r subroutine internally calls the gethostent subroutine, and stores the values in the htent

and ht_data structures.

The gethostent subroutine overwrites the static data returned in subsequent calls. The gethostent_r

subroutine does not.

Parameters

 htent Points to the hostent structure

ht_data Points to the hostent_data structure

Return Values

This subroutine returns a 0 if successful, and a -1 if unsuccessful.

Files

 /etc/hosts Contains the host name database.

/etc/netsvc.conf Contains the name services ordering.

/usr/include/netdb.h Contains the network database structure.

Related Information

“gethostbyaddr_r Subroutine” on page 67, “gethostbyname_r Subroutine” on page 70, “sethostent_r

Subroutine” on page 193, and “endhostent_r Subroutine” on page 41.

gethostid Subroutine

Purpose

Gets the unique identifier of the current host.

Library

Standard C Library (libc.a)

Chapter 2. Sockets 73

Syntax

#include <unistd.h>

int gethostid ()

Description

The gethostid subroutine allows a process to retrieve the 32-bit identifier for the current host. In most

cases, the host ID is stored in network standard byte order and is a DARPA Internet address for a local

machine.

All applications containing the gethostid subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Return Values

Upon successful completion, the gethostid subroutine returns the identifier for the current host.

If the gethostid subroutine is unsuccessful, the system handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable see ″Error Notification Object Class″ in AIX 5L Version 5.3 Communications

Programming Concepts.

Related Information

The gethostname subroutine, sethostid subroutine, sethostname subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

gethostname Subroutine

Purpose

Gets the name of the local host.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

int gethostname (Name, NameLength)

char *Name;

size_t NameLength;

Description

The gethostname subroutine retrieves the standard host name of the local host. If excess space is

provided, the returned Name parameter is null-terminated. If insufficient space is provided, the returned

name is truncated to fit in the given space. System host names are limited to 256 characters.

The gethostname subroutine allows a calling process to determine the internal host name for a machine

on a network.

74 Technical Reference: Communications, Volume 2

All applications containing the gethostname subroutine must be compiled with _BSD set to a specific

value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Name Specifies the address of an array of bytes where the host name is to be stored.

NameLength Specifies the length of the Name array.

Return Values

Upon successful completion, the system returns a value of 0.

If the gethostname subroutine is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable.

Error Codes

The gethostname subroutine is unsuccessful if the following is true:

 Error Description

EFAULT The Name parameter or NameLength parameter gives an invalid address.

Related Information

The gethostid subroutine, sethostid subroutine, sethostname subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

getnameinfo Subroutine

Purpose

Address-to-host name translation [given the binary address and port].

Note: This is the reverse functionality of the “getaddrinfo Subroutine” on page 61 host-to-address

translation.

 Attention: This is not a POSIX (1003.1g) specified function.

Library

Library (libc.a)

Syntax

#include <sys/socket.h>

#include <netdb.h>

int

getnameinfo (sa, salen, host, hostlen, serv, servlen, flags)

const struct sockaddr *sa;

char *host;

size_t hostlen;

char *serv;

size_t servlen;

int flags;

Chapter 2. Sockets 75

Description

The sa parameter points to either a sockaddr_in structure (for IPv4) or a sockaddr_in6 structure (for

IPv6) that holds the IP address and port number. Thesalen parameter gives the length of the sockaddr_in

or sockaddr_in6 structure.

Note: A reverse lookup is performed on the IP address and port number provided in sa.

The host parameter is a buffer where the hostname associated with the IP address is copied. The hostlen

parameter provides the length of this buffer. The service name associated with the port number is copied

into the buffer pointed to by the serv parameter. The servlen parameter provides the length of this buffer.

The flags parameter defines flags that may be used to modify the default actions of this function. By

default, the fully-qualified domain name (FQDN) for the host is looked up in DNS and returned.

 NI_NOFQDN If set, return only the hostname portion of the FQDN. If

cleared, return the FQDN.

NI_NUMERICHOST If set, return the numeric form of the host address. If

cleared, return the name.

NI_NAMEREQD If set, return an error if the host’s name cannot be

determined. If cleared, return the numeric form of the

host’s address (as if NI_NUMERICHOST had been set).

NI_NUMERICSERV If set, return the numeric form of the desired service. If

cleared, return the service name.

NI_DGRAM If set, consider the desired service to be a datagram

service, (for example, call getservbyport with an

argument of udp). If clear, consider the desired service to

be a stream service (for example, call getserbyport with

an argument of tcp).

Return Values

A zero return value indicates successful completion; a non-zero value indicates failure. If successful, the

strings for hostname and service name are copied into the host and serv buffers, respectively. If either the

host or service name cannot be located, the numeric form is copied into the host and serv buffers,

respectively.

Related Information

“getaddrinfo Subroutine” on page 61, and “freeaddrinfo Subroutine” on page 61.

The gai_strerror Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and

Extensions Volume 1.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

getnetbyaddr Subroutine

Purpose

Gets network entry by address.

Library

Standard C Library (libc.a)

76 Technical Reference: Communications, Volume 2

Syntax

#include <netdb.h>

struct netent *getnetbyaddr (Network, Type)

long Network;

int Type;

Description

The getnetbyaddr subroutine is threadsafe in AIX 4.3 and later. However, the return value points to static

data that is overwritten by subsequent calls. This data must be copied to be saved for use by subsequent

calls.

The getnetbyaddr subroutine retrieves information from the /etc/networks file using the network address

as a search key. The getnetbyaddr subroutine searches the file sequentially from the start of the file until

it encounters a matching net number and type or until it reaches the end of the file.

The getnetbyaddr subroutine returns a pointer to a netent structure, which contains the equivalent fields

for a network description line in the /etc/networks file. The netent structure is defined in the netdb.h file.

Use the endnetent subroutine to close the /etc/networks file.

All applications containing the getnetbyaddr subroutine must be compiled with _BSD set to a specific

value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Network Specifies the number of the network to be located.

Type Specifies the address family for the network. The only supported value is AF_INET.

Return Values

Upon successful completion, the getnetbyaddr subroutine returns a pointer to a netent structure.

If an error occurs or the end of the file is reached, the getnetbyaddr subroutine returns a null pointer.

Files

 /etc/networks Contains official network names.

Related Information

The endnetent subroutine, getnetbyname subroutine, getnetent subroutine, setnetent subroutine.

Sockets Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

getnetbyaddr_r Subroutine

Purpose

Gets network entry by address.

Chapter 2. Sockets 77

Library

Standard C Library (libc.a)

Syntax

#include<netdb.h>

int getnetbyaddr_r(net, type, netent, net_data)

register in_addr_t net;

register int type;

struct netent *netent;

struct netent_data *net_data;

Description

The getnetbyaddr_r subroutine retrieves information from the /etc/networks file using the Name

parameter as a search key.

The getnetbyaddr_r subroutine internally calls the getnetbyaddr subroutine and stores the information in

the structure data.

The getnetbyaddr subroutine overwrites the static data returned in subsequent calls. The getnetbyaddr_r

subroutine does not.

Use the endnetent_r subroutine to close the /etc/networks file.

Parameters

 Net Specifies the number of the network to be located.

Type Specifies the address family for the network. The only

supported values are AF_INET, and AF_INET6.

netent Points to the netent structure.

net_data Points to the net_data structure.

Return Values

The function returns a 0 if successful and a -1 if unsuccessful.

Files

 /etc/networks Contains official network names.

Related Information

“endnetent_r Subroutine” on page 43, “getnetbyname_r Subroutine” on page 79, “getnetent_r Subroutine”

on page 81, and “setnetent_r Subroutine” on page 197.

getnetbyname Subroutine

Purpose

Gets network entry by name.

Library

Standard C Library (libc.a)

78 Technical Reference: Communications, Volume 2

Syntax

#include <netdb.h>

struct netent *getnetbyname (Name)

char *Name;

Description

The getnetbyname subroutine is threadsafe in AIX 4.3 and later. However, the return value points to static

data that is overwritten by subsequent calls. This data must be copied to be saved for use by subsequent

calls.

The getnetbyname subroutine retrieves information from the /etc/networks file using the Name parameter

as a search key. The getnetbyname subroutine searches the /etc/networks file sequentially from the start

of the file until it encounters a matching net name or until it reaches the end of the file.

The getnetbyname subroutine returns a pointer to a netent structure, which contains the equivalent fields

for a network description line in the /etc/networks file. The netent structure is defined in the netdb.h file.

Use the endnetent subroutine to close the /etc/networks file.

All applications containing the getnetbyname subroutine must be compiled with _BSD set to a specific

value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Name Points to a string containing the name of the network.

Return Values

Upon successful completion, the getnetbyname subroutine returns a pointer to a netent structure.

If an error occurs or the end of the file is reached, the getnetbyname subroutine returns a null pointer.

Files

 /etc/networks Contains official network names.

Related Information

The endnetent subroutine, getnetbyaddr subroutine, getnetent subroutine, setnetent subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

getnetbyname_r Subroutine

Purpose

Gets network entry by name.

Library

Standard C Library (libc.a)

Chapter 2. Sockets 79

Syntax

#include <netdb.h>

int getnetbyname_r(Name, netent, net_data)

register const char *Name;

struct netent *netent;

struct netent_data *net_data;

Description

The getnetbyname_r subroutine retrieves information from the /etc/networks file using the Name

parameter as a search key.

The getnetbyname_r subroutine internally calls the getnetbyname subroutine and stores the information

in the structure data.

The getnetbyname subroutine overwrites the static data returned in subsequent calls. The

getnetbyname_r subroutine does not.

Use the endnetent_r subroutine to close the /etc/networks file.

Parameters

 Name Points to a string containing the name of the network.

netent Points to the netent structure.

net_data Points to the net_data structure.

Return Values

The function returns a 0 if successful and a -1 if unsuccessful.

Note: If an error occurs or the end of the file is reached, the getnetbyname_r subroutine returns a -1 to

indicate error.

Files

 /etc/networks Contains official network names.

Related Information

“endnetent_r Subroutine” on page 43, “getnetbyaddr_r Subroutine” on page 77, “getnetent_r Subroutine”

on page 81, and “setnetent_r Subroutine” on page 197.

getnetent Subroutine

Purpose

Gets network entry.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

struct netent *getnetent ()

80 Technical Reference: Communications, Volume 2

Description

The getnetent subroutine is threadsafe in AIX 4.3 and later. However, the return value points to static data

that is overwritten by subsequent calls. This data must be copied to be saved for use by subsequent calls.

The getnetent subroutine retrieves network information by opening and sequentially reading the

/etc/networks file.

The getnetent subroutine returns a pointer to a netent structure, which contains the equivalent fields for a

network description line in the /etc/networks file. The netent structure is defined in the netdb.h file.

Use the endnetent subroutine to close the /etc/networks file.

All applications containing the getnetent subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Return Values

Upon successful completion, the getnetent subroutine returns a pointer to a netent structure.

If an error occurs or the end of the file is reached, the getnetent subroutine returns a null pointer.

Files

 /etc/networks Contains official network names.

Related Information

The endnetent subroutine, getnetbyaddr subroutine, getnetbyname subroutine, setnetent subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

getnetent_r Subroutine

Purpose

Gets network entry.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

int getnetent_r(netent, net_data)

struct netent *netent;

struct netent_data *net_data;

Description

The getnetent_r subroutine retrieves network information by opening and sequentially reading the

/etc/networks file. This subroutine internally calls the getnetent subroutine and stores the values in the

hostent structure.

The getnetent subroutine overwrites the static data returned in subsequent calls. The getnetent_r

subroutine does not. Use the endnetent_r subroutine to close the /etc/networks file.

Chapter 2. Sockets 81

Parameters

 netent Points to the netent structure.

net_data Points to the net_data structure.

Return Values

The function returns a 0 if successful and a -1 if unsuccessful.

Note: If an error occurs or the end of the file is reached, the getnetent_r subroutine returns a -1 to

indicate error.

Files

 /etc/networks Contains official network names.

Related Information

“endnetent_r Subroutine” on page 43, “getnetbyaddr_r Subroutine” on page 77, “getnetbyname_r

Subroutine” on page 79, and “setnetent_r Subroutine” on page 197.

getnetgrent_r Subroutine

Purpose

Handles the group network entries.

Library

Standard C Library (libc.a)

Syntax

#include<netdb.h>

int getnetgrent_r(machinep, namep, domainp, ptr)

 char **machinep, **namep, **domainp;

void **ptr;

Description

The getnetgrent_r subroutine internally calls the getnetgrent subroutine and stores the information in the

structure data. This subroutine returns 1 or 0, depending if netgroup contains the machine, user, and

domain triple as a member. Any of these three strings can be NULL, in which case it signifies a wild card.

The getnetgrent_r subroutine returns the next member of a network group. After the call, the machinep

parameter contains a pointer to a string containing the name of the machine part of the network group

member. The namep and domainp parameters contain similar pointers. If machinep, namep, or domainp is

returned as a NULL pointer, it signifies a wild card.

The getnetgrent subroutine overwrites the static data returned in subsequent calls. The getnetgrent_r

subroutine does not.

Parameters

 machinep Points to the string containing the machine part of the

network group.

82 Technical Reference: Communications, Volume 2

namep Points to the string containing the user part of the network

group.

domainp Points to the string containing the domain name.

ptr Keeps the function threadsafe.

Return Values

The function returns a 0 if successful and a -1 if unsuccessful.

Files

 /etc/netgroup Contains network groups recognized by the system.

/usr/include/netdb.h Contains the network database structures.

Related Information

“endnetgrent_r Subroutine” on page 44, and “setnetgrent_r Subroutine” on page 197.

getpeername Subroutine

Purpose

Gets the name of the peer socket.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

int getpeername (Socket, Name, NameLength)

int Socket;

struct sockaddr *Name;

socklen_t *NameLength;

Description

The getpeername subroutine retrieves the Name parameter from the peer socket connected to the

specified socket. The Name parameter contains the address of the peer socket upon successful

completion.

A process created by another process can inherit open sockets. The created process may need to identify

the addresses of the sockets it has inherited. The getpeername subroutine allows a process to retrieve

the address of the peer socket at the remote end of the socket connection.

Note: The getpeername subroutine operates only on connected sockets.

A process can use the getsockname subroutine to retrieve the local address of a socket.

All applications containing the getpeername subroutine must be compiled with _BSD set to a specific

value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Chapter 2. Sockets 83

Parameters

 Socket Specifies the descriptor number of a connected socket.

Name Points to a sockaddr structure that contains the address of the destination socket upon

successful completion. The /usr/include/sys/socket.h file defines the sockaddr structure.

NameLength Points to the size of the address structure. Initializes the NameLength parameter to indicate the

amount of space pointed to by the Name parameter. Upon successful completion, it returns the

actual size of the Name parameter returned.

Return Values

Upon successful completion, a value of 0 is returned and the Name parameter holds the address of the

peer socket.

If the getpeername subroutine is unsuccessful, the system handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable.

Error Codes

The getpeername subroutine is unsuccessful if any of the following errors occurs:

 Error Description

EBADF The Socket parameter is not valid.

EINVAL The socket has been shut down.

ENOTSOCK The Socket parameter refers to a file, not a socket.

ENOTCONN The socket is not connected.

ENOBUFS Insufficient resources were available in the system to complete the call.

EFAULT The Address parameter is not in a writable part of the user address space.

Examples

The following program fragment illustrates the use of the getpeername subroutine to return the address of

the peer connected on the other end of the socket:

struct sockaddr_in name;

int namelen = sizeof(name);

.

.

.

if(getpeername(0,(struct sockaddr*)&name, &namelen)<0){

 syslog(LOG_ERR,"getpeername: %m");

 exit(1);

} else

 syslog(LOG_INFO,"Connection from %s",inet_ntoa(name.sin_addr));

.

.

.

Related Information

The accept subroutine, bind subroutine, getsockname subroutine, socket subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

84 Technical Reference: Communications, Volume 2

getprotobyname Subroutine

Purpose

Gets protocol entry from the /etc/protocols file by protocol name.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

struct protoent *getprotobyname (Name)

char *Name;

Description

The getprotobyname subroutine is threadsafe in AIX 4.3 and later. However, the return value points to

static data that is overwritten by subsequent calls. This data must be copied to be saved for use by

subsequent calls.

The getprotobyname subroutine retrieves protocol information from the /etc/protocols file by protocol

name. An application program can use the getprotobyname subroutine to access a protocol name, its

aliases, and protocol number.

The getprotobyname subroutine searches the protocols file sequentially from the start of the file until it

finds a matching protocol name or until it reaches the end of the file. The subroutine returns a pointer to a

protoent structure, which contains fields for a line of information in the /etc/protocols file. The netdb.h

file defines the protoent structure.

Use the endprotoent subroutine to close the /etc/protocols file.

All applications containing the getprotobyname subroutine must be compiled with _BSD set to a specific

value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Name Specifies the protocol name.

Return Values

Upon successful completion, the getprotobyname subroutine returns a pointer to a protoent structure.

If an error occurs or the end of the file is reached, the getprotbyname subroutine returns a null pointer.

Related Information

The endprotoent subroutine, getprotobynumber subroutine, getprotoent subroutine, setprotoent

subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

Chapter 2. Sockets 85

getprotobyname_r Subroutine

Purpose

Gets protocol entry from the /etc/protocols file by protocol name.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

int getprotobyname_r(Name, protoent, proto_data)

register const char *Name;

struct protoent *protoent;

struct protoent_data *proto_data;

Description

The getprotobyname_r subroutine retrieves protocol information from the /etc/protocols file by protocol

name.

An application program can use the getprotobyname_r subroutine to access a protocol name, aliases,

and protocol number.

The getprotobyname_r subroutine searches the protocols file sequentially from the start of the file until it

finds a matching protocol name or until it reaches the end of the file. The subroutine writes the protoent

structure, which contains fields for a line of information in the /etc/protocols file.

The netdb.h file defines the protoent structure.

The getprotobyname subroutine overwrites any static data returned in subsequent calls. The

getprotobyname_r subroutine does not.

Use the endprotoent_r subroutine to close the /etc/protocols file.

Parameters

 Name Specifies the protocol name.

protoent Points to the protoent structure.

proto_data Points to the proto_data structure.

Return Values

The function returns a 0 if successful and a -1 if unsuccessful.

Note: If an error occurs or the end of the file is reached, the getprotobyname_r subroutine returns a -1

to indicate error.

Related Information

“endprotoent_r Subroutine” on page 45, “getprotobynumber_r Subroutine” on page 88, “getprotoent_r

Subroutine” on page 90, and “setprotoent_r Subroutine” on page 199.

86 Technical Reference: Communications, Volume 2

getprotobynumber Subroutine

Purpose

Gets a protocol entry from the /etc/protocols file by number.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

struct protoent *getprotobynumber (Protocol)

int Protocol;

Description

The getprotobynumber subroutine is threadsafe in AIX 4.3 and later. However, the return value points to

static data that is overwritten by subsequent calls. This data must be copied to be saved for use by

subsequent calls.

The getprotobynumber subroutine retrieves protocol information from the /etc/protocols file using a

specified protocol number as a search key. An application program can use the getprotobynumber

subroutine to access a protocol name, its aliases, and protocol number.

The getprotobynumber subroutine searches the /etc/protocols file sequentially from the start of the file

until it finds a matching protocol name or protocol number, or until it reaches the end of the file. The

subroutine returns a pointer to a protoent structure, which contains fields for a line of information in the

/etc/protocols file. The netdb.h file defines the protoent structure.

Use the endprotoent subroutine to close the /etc/protocols file.

All applications containing the getprotobynumber subroutine must be compiled with _BSD set to a

specific value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD

libbsd.a library.

Parameters

 Protocol Specifies the protocol number.

Return Values

Upon successful completion, the getprotobynumber subroutine, returns a pointer to a protoent structure.

If an error occurs or the end of the file is reached, the getprotobynumber subroutine returns a null

pointer.

Files

 /etc/protocols Contains protocol information.

Chapter 2. Sockets 87

Related Information

The endprotoent subroutine, getprotobyname subroutine, getprotoent subroutine, setprotoent

subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

getprotobynumber_r Subroutine

Purpose

Gets a protocol entry from the /etc/protocols file by number.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

int getprotobynumber_r(proto, protoent, proto_data)

register int proto;

struct protoent *protoent;

struct protoent_data *proto_data;

Description

The getprotobynumber_r subroutine retrieves protocol information from the /etc/protocols file using a

specified protocol number as a search key.

An application program can use the getprotobynumber_r subroutine to access a protocol name, aliases,

and number.

The getprotobynumber_r subroutine searches the /etc/protocols file sequentially from the start of the file

until it finds a matching protocol name, protocol number, or until it reaches the end of the file.

The subroutine writes the protoent structure, which contains fields for a line of information in the

/etc/protocols file.

The netdb.h file defines the protoent structure.

The getprotobynumber subroutine overwrites static data returned in subsequent calls. The

getprotobynumber_r subroutine does not.

Use the endprotoent_r subroutine to close the /etc/protocols file.

Parameters

 proto Specifies the protocol number.

protoent Points to the protoent structure.

proto_data Points to the proto_data structure.

Return Values

The function returns a 0 if successful and a -1 if unsuccessful.

Note: If an error occurs or the end of the file is reached, the getprotobynumber_r subroutine sets the

protoent parameter to NULL and returns a -1 to indicate error.

88 Technical Reference: Communications, Volume 2

Files

 /etc/protocols Contains protocol information.

Related Information

“endprotoent_r Subroutine” on page 45, “getprotobyname_r Subroutine” on page 86, “getprotoent_r

Subroutine” on page 90, and “setprotoent_r Subroutine” on page 199.

getprotoent Subroutine

Purpose

Gets protocol entry from the /etc/protocols file.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

struct protoent *getprotoent ()

Description

The getprotoent subroutine is threadsafe in AIX 4.3 and later. However, the return value points to static

data that is overwritten by subsequent calls. This data must be copied to be saved for use by subsequent

calls.

The getprotoent subroutine retrieves protocol information from the /etc/protocols file. An application

program can use the getprotoent subroutine to access a protocol name, its aliases, and protocol number.

The getprotoent subroutine opens and performs a sequential read of the /etc/protocols file. The

getprotoent subroutine returns a pointer to a protoent structure, which contains the fields for a line of

information in the /etc/protocols file. The netdb.h file defines the protoent structure.

Use the endprotoent subroutine to close the /etc/protocols file.

All applications containing the getprotoent subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Return Values

Upon successful completion, the getprotoent subroutine returns a pointer to a protoent structure.

If an error occurs or the end of the file is reached, the getprotoent subroutine returns a null pointer.

Files

 /etc/protocols Contains protocol information.

Related Information

The endprotoent subroutine, getprotobyname subroutine, getprotobynumber subroutine, setprotoent

subroutine.

Chapter 2. Sockets 89

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

getprotoent_r Subroutine

Purpose

Gets protocol entry from the /etc/protocols file.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

int getprotoent_r(protoent, proto_data)

struct protoent *protoent;

struct protoent_data *proto_data;

Description

The getprotoent_r subroutine retrieves protocol information from the /etc/protocols file. An application

program can use the getprotoent_r subroutine to access a protocol name, its aliases, and protocol

number. The getprotoent_r subroutine opens and performs a sequential read of the /etc/protocols file.

This subroutine writes to the protoent structure, which contains the fields for a line of information in the

/etc/protocols file.

The netdb.h file defines the protoent structure.

Use the endprotoent_r subroutine to close the /etc/protocols file. Static data is overwritten in subsequent

calls when using the getprotoent subroutine. The getprotoent_r subroutine does not overwrite.

Parameters

 protoent Points to the protoent structure.

proto_data Points to the proto_data structure.

Return Values

The function returns a 0 if successful and a -1 if unsuccessful.

Note: If an error occurs or the end of the file is reached, the getprotoent_r subroutine sets the protoent

parameter to NULL.

Files

 /etc/protocols Contains protocol information.

Related Information

“endprotoent_r Subroutine” on page 45, “setprotoent_r Subroutine” on page 199, “getprotobyname_r

Subroutine” on page 86, “getprotobynumber_r Subroutine” on page 88, and “setprotoent_r Subroutine” on

page 199.

90 Technical Reference: Communications, Volume 2

GetQueuedCompletionStatus Subroutine

Purpose

Dequeues a completion packet from a specified I/O completion port.

Syntax

#include <iocp.h>

boolean_t GetQueuedCompletionStatus (CompletionPort, TransferCount, CompletionKey, Overlapped, Timeout)

HANDLE CompletionPort;

LPDWORD TransferCount, CompletionKey;

LPOVERLAPPED Overlapped; DWORD Timeout;

Description

The GetQueuedCompletionStatus subroutine attempts to dequeue a completion packet from the

CompletionPort parameter. If there is no completion packet to be dequeued, this subroutine waits a

predetermined amount of time as indicated by the Timeout parameter for a completion packet to arrive.

The GetQueuedCompletionStatus subroutine returns a boolean indicating whether or not a completion

packet has been dequeued.

The GetQueuedCompletionStatus subroutine is part of the I/O Completion Port (IOCP) kernel extension.

Note: This subroutine only works to a socket file descriptor. It does not work with files or other file

descriptors.

Parameters

 CompletionPort Specifies the completion port that this subroutine will attempt to access.

TransferCount Specifies the number of bytes transferred. This parameter is set by the

subroutine from the value received in the completion packet.

CompletionKey Specifies the completion key associated with the file descriptor used in the

transfer request. This parameter is set by the subroutine from the value

received in the completion packet.

Overlapped Specifies the overlapped structure used in the transfer request. This parameter

is set by the subroutine from the value received in the completion packet.

Timeout Specifies the amount of time in milliseconds the subroutine is to wait for a

completion packet. If this parameter is set to INFINITE, the subroutine will

never timeout.

Return Values

Upon successful completion, the GetQueuedCompletionStatus subroutine returns a boolean indicating its

success.

If the GetQueuedCompletionStatus subroutine is unsuccessful, the subroutine handler performs the

following functions:

v Returns a value of 0 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable, see the link in the Related Information section of this document.

Chapter 2. Sockets 91

Error Codes

The subroutine is unsuccessful if any of the following errors occur:

 ETIMEDOUT No completion packet arrived to be dequeued and the Timeout parameter

has elapsed.

EINVAL The CompletionPort parameter was invalid.

EAGAIN Resource temporarily unavailable. If a sleep is interrupted by a signal,

EAGAIN may be returned.

ENOTCONN Socket is not connected. The ENOTCONN return can happen for two

reasons. One is if a request is made, the fd is then closed, then the request

is returned back to the process. The error will be ENOTCONN. The other is if

the socket drops while the fd is still open, the requests after the socket drops

(disconnects) will return ENOTCONN.

Examples

The following program fragment illustrates the use of the GetQueuedCompletionStatus subroutine to

dequeue a completion packet.

int transfer_count, completion_key

LPOVERLAPPED overlapped;

c = GetQueuedCompletionStatus (34, &transfer_count, &completion_key, &overlapped, 1000);

Related Information

The “socket Subroutine” on page 223, “accept Subroutine” on page 29, “ReadFile Subroutine” on page

151, “WriteFile Subroutine” on page 240, “CreateIoCompletionPort Subroutine” on page 36, and

“PostQueuedCompletionStatus Subroutine” on page 147.

For further explanation of the errno variable, see Error Notification Object Class in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs

getservbyname Subroutine

Purpose

Gets service entry by name.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

struct servent *getservbyname (Name, Protocol)

char *Name, *Protocol;

Description

The getservbyname subroutine is threadsafe in AIX 4.3 and later. However, the return value points to

static data that is overwritten by subsequent calls. This data must be copied to be saved for use by

subsequent calls.

The getservbyname subroutine retrieves an entry from the /etc/services file using the service name as a

search key.

92 Technical Reference: Communications, Volume 2

An application program can use the getservbyname subroutine to access a service, service aliases, the

protocol for the service, and a protocol port number for the service.

The getservbyname subroutine searches the /etc/services file sequentially from the start of the file until it

finds one of the following:

v Matching name and protocol number

v Matching name when the Protocol parameter is set to 0

v End of the file

Upon locating a matching name and protocol, the getservbyname subroutine returns a pointer to the

servent structure, which contains fields for a line of information from the /etc/services file. The netdb.h

file defines the servent structure and structure fields.

Use the endservent subroutine to close the /etc/services file.

All applications containing the getservbyname subroutine must be compiled with _BSD set to a specific

value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Name Specifies the name of a service.

Protocol Specifies a protocol for use with the specified service.

Return Values

The getservbyname subroutine returns a pointer to a servent structure when a successful match occurs.

Entries in this structure are in network byte order.

If an error occurs or the end of the file is reached, the getservbyname subroutine returns a null pointer.

Files

 /etc/services Contains service names.

Related Information

The endprotoent subroutine, endservent subroutine, getprotobyname subroutine, getprotobynumber

subroutine, getprotoent subroutine, getservbyport subroutine, getservent subroutine, setprotoent

subroutine, setservent subroutine.

Sockets Overview, and Understanding Network Address Translation in AIX 5L Version 5.3 Communications

Programming Concepts.

getservbyname_r Subroutine

Purpose

Gets service entry by name.

Library

Standard C Library (libc.a)

Chapter 2. Sockets 93

Syntax

#include <netdb.h>

int getservbyname_r(name, proto, servent, serv_data)

const char *Name, proto;

struct servent *servent;

struct servent_data *serv_data;

Description

An application program can use the getservbyname_r subroutine to access a service, service aliases, the

protocol for the service, and a protocol port number for the service.

The getservbyname_r subroutine searches the /etc/services file sequentially from the start of the file until

it finds one of the following:

v Matching name and protocol number.

v Matching name when the Protocol parameter is set to 0.

v End of the file.

Upon locating a matching name and protocol, the getservbyname_r subroutine stores the values to the

servent structure. The getservbyname subroutine overwrites the static data it returns in subsequent calls.

The getservbyname_r subroutine does not.

Use the endservent_r subroutine to close the /etc/hosts file.

Parameters

 name Specifies the name of a service.

proto Specifies a protocol for use with the specified service.

servent Points to the servent structure.

serv_data Points to the serv_data structure.

Return Values

The function returns a 0 if successful and a -1 if unsuccessful. The getservbyname subroutine returns a

pointer to a servent structure when a successful match occurs. Entries in this structure are in network byte

order.

Note: If an error occurs or the end of the file is reached, the getservbyname_r returns a -1.

Files

 /etc/services Contains service names.

Related Information

“endservent_r Subroutine” on page 47, “setservent_r Subroutine” on page 201, “getservent_r Subroutine”

on page 98, and “getservbyport_r Subroutine” on page 96.

getservbyport Subroutine

Purpose

Gets service entry by port.

94 Technical Reference: Communications, Volume 2

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

struct servent *getservbyport (Port, Protocol)

int Port;char *Protocol;

Description

The getservbyport subroutine is threadsafe in AIX 4.3 and later. However, the return value points to static

data that is overwritten by subsequent calls. This data must be copied to be saved for use by subsequent

calls.

The getservbyport subroutine retrieves an entry from the /etc/services file using a port number as a

search key.

An application program can use the getservbyport subroutine to access a service, service aliases, the

protocol for the service, and a protocol port number for the service.

The getservbyport subroutine searches the services file sequentially from the beginning of the file until it

finds one of the following:

v Matching protocol and port number

v Matching protocol when the Port parameter value equals 0

v End of the file

Upon locating a matching protocol and port number or upon locating a matching protocol only if the Port

parameter value equals 0, the getservbyport subroutine returns a pointer to a servent structure, which

contains fields for a line of information in the /etc/services file. The netdb.h file defines the servent

structure and structure fields.

Use the endservent subroutine to close the /etc/services file.

All applications containing the getservbyport subroutine must be compiled with _BSD set to a specific

value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Port Specifies the port where a service resides.

Protocol Specifies a protocol for use with the service.

Return Values

Upon successful completion, the getservbyport subroutine returns a pointer to a servent structure.

If an error occurs or the end of the file is reached, the getservbyport subroutine returns a null pointer.

Files

 /etc/services Contains service names.

Chapter 2. Sockets 95

Related Information

The endprotoent subroutine, endservent subroutine, getprotobyname subroutine, getprotobynumber

subroutine, getprotoent subroutine, getservbyname subroutine, getservent subroutine, setprotoent

subroutine, setservent subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

getservbyport_r Subroutine

Purpose

Gets service entry by port.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

int getservbyport_r(Port, Proto, servent, serv_data)

int Port;

const char *Proto;

struct servent *servent;

struct servent_data *serv_data;

Description

The getservbyport_r subroutine retrieves an entry from the /etc/services file using a port number as a

search key. An application program can use the getservbyport_r subroutine to access a service, service

aliases, the protocol for the service, and a protocol port number for the service.

The getservbyport_r subroutine searches the services file sequentially from the beginning of the file until

it finds one of the following:

v Matching protocol and port number

v Matching protocol when the Port parameter value equals 0

v End of the file

Upon locating a matching protocol and port number or upon locating a matching protocol where the Port

parameter value equals 0, the getservbyport_r subroutine returns a pointer to a servent structure, which

contains fields for a line of information in the /etc/services file. The netdb.h file defines the servent

structure, the servert_data structure, and their fields.

The getservbyport routine overwrites static data returned on subsequent calls. The getservbyport_r

routine does not.

Use the endservent_r subroutine to close the /etc/services file.

Parameters

 Port Specifies the port where a service resides.

Proto Specifies a protocol for use with the service.

servent Points to the servent structure.

serv_data Points to the serv_data structure.

96 Technical Reference: Communications, Volume 2

Return Values

The function returns a 0 if successful and a -1 if unsuccessful.

Note: If an error occurs or the end of the file is reached, the getservbyport_r subroutine returns a -1 to

indicate error.

Files

 /etc/services Contains service names.

Related Information

“endservent_r Subroutine” on page 47, “setservent_r Subroutine” on page 201, “getservent_r Subroutine”

on page 98, and “getservbyname_r Subroutine” on page 93.

getservent Subroutine

Purpose

Gets services file entry.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

struct servent *getservent ()

Description

The getservent subroutine is threadsafe in AIX 4.3 and later. However, the return value points to static

data that is overwritten by subsequent calls. This data must be copied to be saved for use by subsequent

calls.

The getservent subroutine opens and reads the next line of the /etc/services file.

An application program can use the getservent subroutine to retrieve information about network services

and the protocol ports they use.

The getservent subroutine returns a pointer to a servent structure, which contains fields for a line of

information from the /etc/services file. The servent structure is defined in the netdb.h file.

The /etc/services file remains open after a call by the getservent subroutine. To close the /etc/services

file after each call, use the setservent subroutine. Otherwise, use the endservent subroutine to close the

/etc/services file.

All applications containing the getservent subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Return Values

The getservent subroutine returns a pointer to a servent structure when a successful match occurs.

If an error occurs or the end of the file is reached, the getservent subroutine returns a null pointer.

Chapter 2. Sockets 97

Files

 /etc/services Contains service names.

Related Information

The endprotoent subroutine, endservent subroutine, getprotobyname subroutine, getprotobynumber

subroutine, getprotoent subroutine, getservbyname subroutine, getservbyport subroutine, setprotoent

subroutine, setservent subroutine.

Sockets Overview, and Understanding Network Address Translation in AIX 5L Version 5.3 Communications

Programming Concepts.

getservent_r Subroutine

Purpose

Gets services file entry.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

int getservent_r(servent, serv_data)

struct servent *servent;

struct servent_data *serv_data;

Description

The getservent_r subroutine opens and reads the next line of the /etc/services file.An application

program can use the getservent_r subroutine to retrieve information about network services and the

protocol ports they use.

The /etc/services file remains open after a call by the getservent_r subroutine. To close the /etc/services

file after each call, use the setservent_r subroutine. Otherwise, use the endservent_r subroutine to close

the /etc/services file.

Parameters

 servent Points to the servent structure.

serv_data Points to the serv_data structure.

Return Values

The getservent_r fails when a successful match occurs. Thegetservent subroutine overwrites static data

returned on subsequent calls. The getservent_r subroutine does not.

Files

 /etc/services Contains service names.

98 Technical Reference: Communications, Volume 2

Related Information

“endservent_r Subroutine” on page 47, “setservent_r Subroutine” on page 201, “getservbyport_r

Subroutine” on page 96, and “getservbyname_r Subroutine” on page 93.

getsockname Subroutine

Purpose

Gets the socket name.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

int getsockname (Socket, Name, NameLength)

int Socket;

struct sockaddr * Name;

socklen_t * NameLength;

Description

The getsockname subroutine retrieves the locally bound address of the specified socket. The socket

address represents a port number in the Internet domain and is stored in the sockaddr structure pointed

to by the Name parameter. The sys/socket.h file defines the sockaddr data structure.

Note: The getsockname subroutine does not perform operations on UNIX domain sockets.

A process created by another process can inherit open sockets. To use the inherited socket, the created

process needs to identify their addresses. The getsockname subroutine allows a process to retrieve the

local address bound to the specified socket.

A process can use the getpeername subroutine to determine the address of a destination socket in a

socket connection.

All applications containing the getsockname subroutine must be compiled with _BSD set to a specific

value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Socket Specifies the socket for which the local address is desired.

Name Points to the structure containing the local address of the specified socket.

NameLength Specifies the size of the local address in bytes. Initializes the value pointed to by the

NameLength parameter to indicate the amount of space pointed to by the Name parameter.

Return Values

Upon successful completion, a value of 0 is returned, and the NameLength parameter points to the size of

the socket address.

If the getsockname subroutine is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of -1 to the calling program.

Chapter 2. Sockets 99

v Moves an error code, indicating the specific error, into the errno global variable.

Error Codes

The getsockname subroutine is unsuccessful if any of the following errors occurs:

 Error Description

EBADF The Socket parameter is not valid.

ENOTSOCK The Socket parameter refers to a file, not a socket.

ENOBUFS Insufficient resources are available in the system to complete the call.

EFAULT The Address parameter is not in a writable part of the user address space.

Related Information

The accept subroutine, bind subroutine, getpeername subroutine, socket subroutine.

Checking for Pending Connections Example Program, Reading Internet Datagrams Example Program, and

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

getsockopt Subroutine

Purpose

Gets options on sockets.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

int getsockopt (Socket, Level, OptionName, OptionValue, OptionLength)

int Socket, Level, OptionName;

void * OptionValue;

socklen_t * OptionLength;

Description

The getsockopt subroutine allows an application program to query socket options. The calling program

specifies the name of the socket, the name of the option, and a place to store the requested information.

The operating system gets the socket option information from its internal data structures and passes the

requested information back to the calling program.

Options can exist at multiple protocol levels. They are always present at the uppermost socket level. When

retrieving socket options, specify the level where the option resides and the name of the option.

All applications containing the getsockopt subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Socket Specifies the unique socket name.

100 Technical Reference: Communications, Volume 2

Level Specifies the protocol level where the option resides. Options can be retrieved at the following

levels:

Socket level

Specifies the Level parameter as the SOL_SOCKET option.

Other levels

Supplies the appropriate protocol number for the protocol controlling the option. For

example, to indicate that an option will be interpreted by the TCP protocol, set the Level

parameter to the protocol number of TCP, as defined in the netinet/in.h file.

OptionName Specifies a single option. The OptionName parameter and any specified options are passed

uninterpreted to the appropriate protocol module for interpretation. The sys/socket.h file contains

definitions for socket level options. The netinet/tcp.h file contains definitions for TCP protocol level

options. Socket-level options can be enabled or disabled; they operate in a toggle fashion. The

sys/atmsock.h file contains definitions for ATM protocol level options.

The following list defines socket protocol level options found in the sys/socket.h file:

SO_DEBUG

Specifies the recording of debugging information. This option enables or disables

debugging in the underlying protocol modules.

SO_BROADCAST

Specifies whether transmission of broadcast messages is supported. The option enables

or disables broadcast support.

SO_CKSUMREV

Enables performance enhancements in the protocol layers. If the protocol supports this

option, enabling causes the protocol to defer checksum verification until the user’s data is

moved into the user’s buffer (on recv, recvfrom, read, or recvmsg thread). This can

cause applications to be awakened when no data is available, in the case of a checksum

error. In this case, EAGAIN is returned. Applications that set this option must handle the

EAGAIN error code returned from a receive call.

SO_REUSEADDR

Specifies that the rules used in validating addresses supplied by a bind subroutine should

allow reuse of a local port. A particular IP address can only be bound once to the same

port. This option enables or disables reuse of local ports.

 SO_REUSEADDR allows an application to explicitly deny subsequent bind subroutine to

the port/address of the socket with SO_REUSEADDR set. This allows an application to

block other applications from binding with the bind subroutine.

SO_REUSEPORT

Specifies that the rules used in validating addresses supplied by a bind subroutine should

allow reuse of a local port/address combination. Each binding of the port/address

combination must specify the SO_REUSEPORT socket option. This option enables or

disables the reuse of local port/address combinations.

SO_KEEPALIVE

Monitors the activity of a connection by enabling or disabling the periodic transmission of

ACK messages on a connected socket. The idle interval time can be designated using the

TCP/IP no command. Broken connections are discussed in ″Understanding Socket Types

and Protocols″ in AIX 5L Version 5.3 Communications Programming Concepts.

Chapter 2. Sockets 101

SO_DONTROUTE

Indicates outgoing messages should bypass the standard routing facilities. Does not apply

routing on outgoing messages. Directs messages to the appropriate network interface

according to the network portion of the destination address. This option enables or

disables routing of outgoing messages.

SO_LINGER

Lingers on a close subroutine if data is present. This option controls the action taken

when an unsent messages queue exists for a socket, and a process performs a close

subroutine on the socket.

 If the SO_LINGER option is set, the system blocks the process during the close

subroutine until it can transmit the data or until the time expires. If the SO_LINGER option

is not specified, and a close subroutine is issued, the system handles the call in a way

that allows the process to continue as quickly as possible.

 The sys/socket.h file defines the linger structure that contains the l_linger value for

specifying linger time interval. If linger time is set to anything but 0, the system tries to

send any messages queued on the socket. The maximum value that l_linger can be set to

is 65535.

SO_OOBINLINE

Leaves received out-of-band data (data marked urgent) in line. This option enables or

disables the receipt of out-of-band data.

SO_SNDBUF

Retrieves buffer size information.

SO_RCVBUF

Retrieves buffer size information.

SO_SNDLOWAT

Retrieves send buffer low-water mark information.

SO_RCVLOWAT

Retrieves receive buffer low-water mark information.

SO_SNDTIMEO

Retrieves time-out information. This option is settable, but currently not used.

SO_RCVTIMEO

Retrieves time-out information. This option is settable, but currently not used.

SO_PEERID

Retrieves the credential information of the process associated with a peer UNIX domain

socket. This information includes the process ID, effective user ID, and effective group ID.

The peercred_struct structure must be used in order to get the credential information.

This structure is defined in the sys/socket.h file.

SO_ERROR

Retrieves information about error status and clears.

The following list defines TCP protocol level options found in the netinet/tcp.h file:

TCP_RFC1323

Indicates whether RFC 1323 is enabled or disabled on the specified socket. A non-zero

OptionValue returned by the getsockopt subroutine indicates the RFC is enabled.

TCP_NODELAY

Specifies whether TCP should follow the Nagle algorithm for deciding when to send data.

By default TCP will follow the Nagle algorithm. To disable this behavior, applications can

enable TCP_NODELAY to force TCP to always send data immediately. A non-zero

OptionValue returned by the getsockopt subroutine indicates TCP_NODELAY is enabled.

For example, TCP_NODELAY should be used when there is an appliciation using TCP for

a request/response.

102 Technical Reference: Communications, Volume 2

The following list defines ATM protocol level options found in the sys/atmsock.h file:

SO_ATM_PARM

Retrieves all ATM parameters. This socket option can be used instead of using individual

sockets options described below. It uses the connect_ie structure defined in sys/call_ie.h

file.

SO_ATM_AAL_PARM

Retrieves ATM AAL (Adaptation Layer) parameters. It uses the aal_parm structure defined

in sys/call_ie.h file.

SO_ATM_TRAFFIC_DES

Retrieves ATM Traffic Descriptor values. It uses the traffic_desc structure defined in

sys/call_ie.h file.

SO_ATM_BEARER

Retrieves ATM Bearer capability information. It uses the bearer structure defined in

sys/call_ie.h file.

SO_ATM_BHLI

Retrieves ATM Broadband High Layer Information. It uses the bhli structure defined in

sys/call_ie.h file.

SO_ATM_BLLI

Retrieves ATM Broadband Low Layer Information. It uses the blli structure defined in

sys/call_ie.h file.

SO_ATM_QoS

Retrieves ATM Ouality Of Service values. It uses the qos_parm structure defined in

sys/call_ie.h file.

SO_ATM_TRANSIT_SEL

Retrieves ATM Transit Selector Carrier. It uses the transit_sel structure defined in

sys/call_ie.h file.

SO_ATM_MAX_PEND

Retrieves the number of outstanding transmit buffers that are permitted before an error

indication is returned to applications as a result of a transmit operation. This option is only

valid for non best effort types of virtual circuits.

SO_ATM_CAUSE

Retrieves cause for the connection failure. It uses the cause_t structure defined in the

sys/call_ie.h file.

OptionValue Specifies a pointer to the address of a buffer. The OptionValue parameter takes an integer

parameter. The OptionValue parameter should be set to a nonzero value to enable a Boolean

option or to a value of 0 to disable the option. The following options enable and disable in the same

manner:

v SO_DEBUG

v SO_REUSEADDR

v SO_KEEPALIVE

v SO_DONTROUTE

v SO_BROADCAST

v SO_OOBINLINE

v TCP_RFC1323

OptionLength Specifies the length of the OptionValue parameter. The OptionLength parameter initially contains

the size of the buffer pointed to by the OptionValue parameter. On return, the OptionLength

parameter is modified to indicate the actual size of the value returned. If no option value is supplied

or returned, the OptionValue parameter can be 0.

Options at other protocol levels vary in format and name.

Chapter 2. Sockets 103

IP level (IPPROTO_IP level) options are defined as follows:

 IP_DONTFRAG Get current IP_DONTFRAG option value.

IP_FINDPMTU Get current PMTU value.

IP_PMTUAGE Get current PMTU time out value.

In the case of TCP protocol sockets:

 IP_DONTGRAG Not supported.

IP_FINDPMTU Get current PMTU value.

IP_PMTUAGE Not supported.

IPV6 level (IPPROTO_IPV6 level) options are defined as follows:

 IPV6_V6ONLY Determines whether the socket is restricted to IPV6 communications only.

Option Type: int (boolean interpretation)

IPV6_UNICAST_HOPS Allows the user to determine the outgoing hop limit value for unicast IPV6 packets.

Option Type: int

IPV6_MULTICAST_HOPS Allows the user to determine the outgoing hop limit value for multicast IPV6 packets.

Option Type: int

IPV6_MULTICAST_IF Allows the user to determine the interface being used for outgoing multicast packets.

Option Type: unsigned int

IPV6_MULTICAST_LOOP If a multicast datagram is sent to a group that the sending host belongs, a copy of

the datagram is looped back by the IP layer for local delivery (if the option is set to

1). If the option is set to 0, a copy is not looped back.

Option Type: unsigned int

IPV6_RECVPKTINFO Determines whether the destination IPv6 address and arriving interface index of

incoming IPv6 packets are being received as ancillary data on UDP and raw

sockets.

Option Type: int (boolean interpretation)

IPV6_RECVHOPLIMIT Determines whether the hop limit of incoming IPv6 packets is being received as

ancillary data on UDP and raw sockets.

Option Type: int (boolean interpretation)

IPV6_RECVTCLASS Determines whether the traffic class of incoming IPv6 packets is being received as

ancillary data on UDP and raw sockets.

Option Type: int (boolean interpretation)

IPV6_RECVRTHDR Determines whether the routing header of incoming IPv6 packets is being received

as ancillary data on UDP and raw sockets.

Option Type: int (boolean interpretation)

IPV6_RECVHOPOPTS Determine whether the hop-by-hop options header of incoming IPv6 packets is

being received as ancillary data on UDP and raw sockets.

Option Type: int (boolean interpretation)

IPV6_RECVDSTOPTS Determines whether the destination options header of incoming IPv6 packets is

being received as ancillary data on UDP and raw sockets.

Option Type: int (boolean interpretation)

IPV6_PKTINFO Determines the source IPv6 address and outgoing interface index for all IPv6

packets being sent on this socket.

Option Type: struct in6_pktinfo defined in the netinet/in.h file.

104 Technical Reference: Communications, Volume 2

IPV6_NEXTHOP Determines the next hop being used for outgoing IPv6 datagrams on this socket.

Option Type: struct sockaddr_in6 defined in the netinet/in.h file.

IPV6_TCLASS Determines the traffic class for outgoing IPv6 datagrams on this socket.

Option Type: int

IPV6_RTHDR Determines the routing header to be used for outgoing IPv6 datagrams on this

socket.

Option Type: struct ip6_rthdr defined in the netinet/ip6.h file.

IPV6_HOPOPTS Determines the hop-by-hop options header to be used for outgoing IPv6 datagrams

on this socket.

Option Type: struct ip6_hbh defined in the netinet/ip6.h file.

IPV6_DSTOPTS Determines the destination options header to be used for outgoing IPv6 datagrams

on this socket. This header will follow a routing header (if present) and will also be

used when there is no routing header specified.

Option Type: struct ip6_dest defined in the netinet/ip6.h file.

IPV6_RTHDRDSTOPTS Determines the destination options header to be used for outgoing IPv6 datagrams

on this socket. This header will precede a routing header (if present). If no routing

header is specified, this option will be silently ignored.

Option Type: struct ip6_dest defined in the netinet/ip6.h file.

IPV6_USE_MIN_MTU Determines how IPv6 path MTU discovery is being controlled for this socket.

Option Type: int

IPV6_DONTFRAG Determines whether fragmentation of outgoing IPv6 packets has been disabled on

this socket.

Option Type: int (boolean interpretation)

IPV6_RECVPATHMTU Determines whether IPV6_PATHMTU messages are being received as ancillary data

on this socket.

Option Type: int (boolean interpretation)

IPV6_PATHMTU Determines the current Path MTU for a connected socket.

Option Type: struct ip6_mtuinfo defined in the netinet/in.h file.

ICMPV6 level (IPPROTO_ICMPV6 level) options are defined as follows:

 ICMP6_FILTER Allows the user to filter ICMPV6 messages by the ICMPV6 type field. If no filter was

set, the default kernel filter will be returned.

Option Type: The icmp6_filter structure defined in the netinet/icmp6.h file.

Return Values

Upon successful completion, the getsockopt subroutine returns a value of 0.

If the getsockopt subroutine is unsuccessful, the subroutine handler performs the following actions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable.

Upon successful completion of the IPPROTO_IP option IP_PMTUAGE the returns are:

Prior to AIX 5.3:

v OptionValue 0 if PMTU discovery is not enabled.

v OptionValue -1 if PMTU discovery is not complete.

Chapter 2. Sockets 105

v Positive non-zero OptionValue if PMTU is available.

Beginning with AIX 5.3:

v Positive non-zero OptionValue.

Upon successful completion of TCP protocol sockets option IP_FINDPMTU the returns are:

Prior to AIX 5.3:

v OptionValue 0 if PMTU discovery (tcp_pmtu_discover) is not enabled.

v OptionValue -1 if PMTU discovery is not complete/not available.

v Positive non-zero OptionValue if PMTU is available.

Beginning with AIX 5.3:

v OptionValue 0 if PMTU discovery (tcp_pmtu_discover) is not enabled/not available.

v Positive non-zero OptionValue if PMTU is available.

Error Codes

The getsockopt subroutine is unsuccessful if any of the following errors occurs:

 EBADF The Socket parameter is not valid.

EFAULT The address pointed to by the OptionValue parameter is not in a valid (writable) part of the

process space, or the OptionLength parameter is not in a valid part of the process address

space.

EINVAL The Level, OptionName, or OptionLength is invalid.

ENOBUF Insufficient resources are available in the system to complete the call.

ENOTSOCK The Socket parameter refers to a file, not a socket.

ENOPROTOOPT The option is unknown.

EOPNOTSUPP The option is not supported by the socket family or socket type.

Examples

The following program fragment illustrates the use of the getsockopt subroutine to determine an existing

socket type:

#include <sys/types.h>

#include <sys/socket.h>

int type, size;

size = sizeof(int);

if(getsockopt(s, SOL_SOCKET, SO_TYPE, (char*)&type,&size)<0){

.

.

.

}

Related Information

The no command.

The bind subroutine, close subroutine, endprotoent subroutine, getprotobynumber subroutine,

getprotoent subroutine, setprotoent subroutine, setsockopt subroutine, socket subroutine.

Sockets Overview, Understanding Socket Options, and Understanding Socket Types and Protocols in AIX

5L Version 5.3 Communications Programming Concepts.

106 Technical Reference: Communications, Volume 2

htonl Subroutine

Purpose

Converts an unsigned long integer from host byte order to Internet network byte order.

Library

ISODE Library (libisode.a)

Syntax

#include <sys/types.h>

#include <netinet/in.h>

unsigned long htonl (HostLong)

unsigned long HostLong;

Description

The htonl subroutine converts an unsigned long (32-bit) integer from host byte order to Internet network

byte order.

The Internet network requires addresses and ports in network standard byte order. Use the htonl

subroutine to convert the host integer representation of addresses and ports to Internet network byte order.

The htonl subroutine is defined in the net/nh.h file as a macro.

All applications containing the htonl subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 HostLong Specifies a 32-bit integer in host byte order.

Return Values

The htonl subroutine returns a 32-bit integer in Internet network byte order (most significant byte first).

Related Information

The htons subroutine, ntohl subroutine, ntohs subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

htons Subroutine

Purpose

Converts an unsigned short integer from host byte order to Internet network byte order.

Library

ISODE Library (libisode.a)

Chapter 2. Sockets 107

Syntax

#include <sys/types.h>

#include <netinet/in.h>

unsigned short htons (HostShort)

unsigned short HostShort;

Description

The htons subroutine converts an unsigned short (16-bit) integer from host byte order to Internet network

byte order.

The Internet network requires ports and addresses in network standard byte order. Use the htons

subroutine to convert addresses and ports from their host integer representation to network standard byte

order.

The htons subroutine is defined in the net/nh.h file as a macro.

All applications containing the htons subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 HostShort Specifies a 16-bit integer in host byte order that is a host address or port.

Return Values

The htons subroutine returns a 16-bit integer in Internet network byte order (most significant byte first).

Related Information

The htonl subroutine, ntohl subroutine, ntohs subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

if_freenameindex Subroutine

Purpose

Frees the dynamic memory that was allocated by the “if_nameindex Subroutine” on page 110.

Library

Library (libc.a)

Syntax

#include <net/if.h>

void if_freenameindex (struct if_nameindex *ptr);

Description

The ptr parameter is a pointer returned by the if_nameindex subroutine. After the if_freenameindex

subroutine has been called, the application must not use the array of which ptr is the address.

108 Technical Reference: Communications, Volume 2

Parameters

 ptr Pointer returned by the if_nameindex subroutine

Related Information

“if_nametoindex Subroutine” on page 110, “if_indextoname Subroutine,” and “if_nameindex Subroutine” on

page 110.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

if_indextoname Subroutine

Purpose

Maps an interface index into its corresponding name.

Library

Standard C Library <libc.a>

Syntax

#include <net/if.h>

char *if_indextoname(unsigned int ifindex, char *ifname);

Description

When the if_indextoname subroutine is called, the ifname parameter points to a buffer of at least

IF_NAMESIZE bytes. The if_indextoname subroutine places the name of the interface in this buffer with

the ifindex index.

Note: IF_NAMESIZE is also defined in <net/if.h> and its value includes a terminating null byte at the end

of the interface name.

If ifindex is an interface index, the if_indextoname Subroutine returns the ifname value, which points to a

buffer containing the interface name. Otherwise, it returns a NULL pointer and sets the errno global value

to indicate the error.

If there is no interface corresponding to the specified index, the errno global value is set to ENXIO. If a

system error occurs (such as insufficient memory), the errno global value is set to the proper value (such

as, ENOMEM).

Parameters

 ifindex Possible interface index

ifname Possible name of an interface

Error Codes

 ENXIO There is no interface corresponding to the specified index

ENOMEM Insufficient memory

Chapter 2. Sockets 109

Related Information

“if_nametoindex Subroutine,” “if_indextoname Subroutine” on page 109, and “if_nameindex Subroutine.”

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

if_nameindex Subroutine

Purpose

Retrieves index and name information for all interfaces.

Library

The Standard C Library (<libc.a>)

Syntax

#include <net/if.h>

struct if_nameindex *if_nameindex(void)

struct if_nameindex {

unsigned int if_index; /* 1, 2, ... */

char *if_name; /* null terminated name: "le0", ... */

};

Description

The if_nameindex subroutine returns an array of if_nameindex structures (one per interface).

The memory used for this array of structures is obtained dynamically. The interface names pointed to by

the if_name members are obtained dynamically as well. This memory is freed by the if_freenameindex

subroutine.

The function returns a NULL pointer upon error, and sets the errno global value to the appropriate value.

If successful, the function returns an array of structures. The end of an array of structures is indicated by a

structure with an if_index value of 0 and an if_name value of NULL.

Related Information

“if_nametoindex Subroutine,” “if_indextoname Subroutine” on page 109, and “if_freenameindex Subroutine”

on page 108.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

if_nametoindex Subroutine

Purpose

Maps an interface name to its corresponding index.

Library

Standard C Library (libc.a)

110 Technical Reference: Communications, Volume 2

Syntax

#include <net/if.h>

unsigned int if_nametoindex(const char *ifname);

Description

If the ifname parameter is the name of an interface, the if_nametoindex subroutine returns the interface

index corresponding to the ifname name. If the ifname parameter is not the name of an interface, the

if_nametoindex subroutine returns a 0 and the errno global variable is set to the appropriate value.

Parameters

 ifname Possible name of an interface.

Related Information

“if_indextoname Subroutine” on page 109, “if_nameindex Subroutine” on page 110, and “if_freenameindex

Subroutine” on page 108.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

inet6_opt_append Subroutine

Purpose

Returns the updated total length of the extension header.

Syntax

int inet6_opt_append(void *extbuf, socklen_t extlen, int offset,

 uint8_t type, socklen_t len, uint_t align,

 void **databufp);

Description

The inet6_opt_append subroutine returns the updated total length of the extension header, taking into

account adding an option with length len and alignment align. If extbuf is not NULL, then, in addition to

returning the length, the subroutine inserts any needed pad option, initializes the option (setting the type

and length fields), and returns a pointer to the location for the option content in databufp. After

inet6_opt_append() has been called, the application can use the databuf directly, or use

inet6_opt_set_val() to specify the content of the option.

Parameters

 extbuf If NULL, inet6_opt_append will return only the updated

length. If extbuf is not NULL, in addition to returning the

length, the function inserts any needed pad option,

initializes the option (setting the type and length fields)

and returns a pointer to the location for the option content

in databufp.

extlen Size of the buffer pointed to by extbuf.

offset The length returned by inet6_opt_init() or a previous

inet6_opt_append().

type 8-bit option type. Must have a value from 2 to 255,

inclusive. (0 and 1 are reserved for the Pad1 and PadN

options, respectively.)

Chapter 2. Sockets 111

len Length of the option data (excluding the option type and

option length fields). Must be a value between 0 and 255,

inclusive, and is the length of the option data that follows.

align Alignment of the option data. Must be a value of 1, 2, 4,

or 8. The align value can not exceed the value of len.

databufp Specifies the content of the option.

Return Values

 -1 Option content does not fit in the extension header buffer.

integer value Updated total length of the extension header.

Related Information

“inet6_opt_find Subroutine,” “inet6_opt_finish Subroutine” on page 113, “inet6_opt_get_val Subroutine” on

page 113, “inet6_opt_init Subroutine” on page 114, “inet6_opt_next Subroutine” on page 115,

“inet6_opt_set_val Subroutine” on page 116, “inet6_rth_add Subroutine” on page 116, “inet6_rth_getaddr

Subroutine” on page 117, “inet6_rth_init Subroutine” on page 117, “inet6_rth_reverse Subroutine” on page

118, “inet6_rth_segments Subroutine” on page 119, “inet6_rth_space Subroutine” on page 120

inet6_opt_find Subroutine

Purpose

Looks for a specified option in the extension header.

Syntax

int inet6_opt_find(void *extbuf, socklen_t extlen, int offset,

 uint8_t *typep, socklen_t *lenp,

 void **databufp);

Description

The inet6_opt_find subroutine is similar to the inet6_opt_next() function, except this subroutine lets the

caller specify the option type to be searched for, instead of always returning the next option in the

extension header.

Parameters

 extbuf Specifies the extension header.

extlen Size of the buffer pointed to by extbuf.

offset Specifies the position where scanning of the extension

buffer can continue. Should either be 0 (for the first

option) or the length returned by a previous call to

inet6_opt_next() or inet6_opt_find().

typep Stores the option type.

lenp Stores the length of the option data (excluding the option

type and option length fields).

databufp Points to the data field of the option.

Return Values

The inet6_opt_find subroutine returns the updated ″previous″ total length computed by advancing past

the option that was returned and past any options that did not match the type. This returned ″previous″

112 Technical Reference: Communications, Volume 2

length can then be passed to subsequent calls to inet6_opt_find() for finding the next occurrence of the

same option type.

 –1 The option cannot be located, there are no more options, or the option extension header is malformed.

Related Information

“inet6_opt_append Subroutine” on page 111, “inet6_opt_finish Subroutine,” “inet6_opt_get_val Subroutine,”

“inet6_opt_init Subroutine” on page 114, “inet6_opt_next Subroutine” on page 115, “inet6_opt_set_val

Subroutine” on page 116, “inet6_rth_add Subroutine” on page 116, “inet6_rth_getaddr Subroutine” on page

117, “inet6_rth_init Subroutine” on page 117, “inet6_rth_reverse Subroutine” on page 118,

“inet6_rth_segments Subroutine” on page 119, “inet6_rth_space Subroutine” on page 120

inet6_opt_finish Subroutine

Purpose

Returns the final length of an extension header.

Syntax

int inet6_opt_finish(void *extbuf, socklen_t extlen, int offset);

Description

The inet6_opt_finish subroutine returns the final length of an extension header, taking into account the

final padding of the extension header to make it a multiple of 8 bytes.

Parameters

 extbuf If NULL, inet6_opt_finish will only return the final length.

If extbuf is not NULL, in addition to returning the length,

the function initializes the option by inserting a Pad1 or

PadN option of the proper length.

extlen Size of the buffer pointed to by extbuf.

offset The length returned by inet6_opt_init() or a previous

inet6_opt_append().

Return Values

 -1 The necessary pad does not fit in the extension header buffer.

integer value Final length of the extension header.

Related Information

“inet6_opt_append Subroutine” on page 111, “inet6_opt_find Subroutine” on page 112, “inet6_opt_get_val

Subroutine,” “inet6_opt_init Subroutine” on page 114, “inet6_opt_next Subroutine” on page 115,

“inet6_opt_set_val Subroutine” on page 116, “inet6_rth_add Subroutine” on page 116, “inet6_rth_getaddr

Subroutine” on page 117, “inet6_rth_init Subroutine” on page 117, “inet6_rth_reverse Subroutine” on page

118, “inet6_rth_segments Subroutine” on page 119, “inet6_rth_space Subroutine” on page 120

inet6_opt_get_val Subroutine

Purpose

Extracts data items of various sizes in the data portion of the option.

Chapter 2. Sockets 113

Syntax

int inet6_opt_get_val(void *databuf, int offset, void *val,

 socklen_t vallen);

Description

The inet6_opt_get_val subroutine extracts data items of various sizes in the data portion of the option. It

is expected that each field is aligned on its natural boundaries, but the subroutine will not rely on the

alignment.

Parameters

 databuf Pointer to the data content returned by inet6_opt_next() or inet6_opt_find().

offset Specifies where in the data portion of the option the value should be extracted. The first

byte after the option type and length is accessed by specifying an offset of 0.

val Pointer to the destination for the extracted data.

vallen Specifies the size of the data content to be extracted.

Return Values

The inet6_opt_get_val subroutine returns the offset for the next field (that is, offset + vallen), which can

be used when extracting option content with multiple fields.

Related Information

“inet6_opt_append Subroutine” on page 111, “inet6_opt_find Subroutine” on page 112, “inet6_opt_finish

Subroutine” on page 113, “inet6_opt_init Subroutine,” “inet6_opt_next Subroutine” on page 115,

“inet6_opt_set_val Subroutine” on page 116, “inet6_rth_add Subroutine” on page 116, “inet6_rth_getaddr

Subroutine” on page 117, “inet6_rth_init Subroutine” on page 117, “inet6_rth_reverse Subroutine” on page

118, “inet6_rth_segments Subroutine” on page 119, “inet6_rth_space Subroutine” on page 120

inet6_opt_init Subroutine

Purpose

Returns the number of bytes needed for an empty extension header.

Syntax

int inet6_opt_init(void *extbuf, socklen_t extlen);

Description

The inet6_opt_init subroutine returns the number of bytes needed for the empty extension header (that is,

a header without any options).

Parameters

 extbuf Specifies NULL for an empty header. If extbuf is not NULL, it initializes the extension header to

have the correct length field.

extlen Specifies the size of the extension header. The value of extlen must be a positive value that is

a multiple of 8.

Return Values

 -1 The value of extlen is not a positive (non-zero) multiple of 8.

114 Technical Reference: Communications, Volume 2

integer value Number of bytes needed for an empty extension header.

Related Information

“inet6_opt_append Subroutine” on page 111, “inet6_opt_find Subroutine” on page 112, “inet6_opt_finish

Subroutine” on page 113, “inet6_opt_get_val Subroutine” on page 113, “inet6_opt_next Subroutine,”

“inet6_opt_set_val Subroutine” on page 116, “inet6_rth_add Subroutine” on page 116, “inet6_rth_getaddr

Subroutine” on page 117, “inet6_rth_init Subroutine” on page 117, “inet6_rth_reverse Subroutine” on page

118, “inet6_rth_segments Subroutine” on page 119, “inet6_rth_space Subroutine” on page 120

inet6_opt_next Subroutine

Purpose

Parses received option extension headers returning the next option.

Syntax

int inet6_opt_next(void *extbuf, socklen_t extlen, int offset,

 uint8_t *typep, socklen_t *lenp,

 void **databufp);

Description

The inet6_opt_next subroutine parses received option extension headers, returning the next option. The

next option is returned by updating the typep, lenp, and databufp parameters.

Parameters

 extbuf Specifies the extension header.

extlen Size of the buffer pointed to by extbuf.

offset Specifies the position where scanning of the extension

buffer can continue. Should either be 0 (for the first

option) or the length returned by a previous call to

inet6_opt_next() or inet6_opt_find().

typep Stores the option type.

lenp Stores the length of the option data (excluding the option

type and option length fields).

databufp Points to the data field of the option.

Return Values

The inet6_opt_next subroutine returns the updated ″previous″ length computed by advancing past the

option that was returned. This returned ″previous″ length can then be passed to subsequent calls to

inet6_opt_next(). This function does not return any PAD1 or PADN options.

 –1 There are no more options or the option extension header is malformed.

Related Information

“inet6_opt_append Subroutine” on page 111, “inet6_opt_find Subroutine” on page 112, “inet6_opt_finish

Subroutine” on page 113, “inet6_opt_get_val Subroutine” on page 113, “inet6_opt_init Subroutine” on page

114, “inet6_opt_set_val Subroutine” on page 116, “inet6_rth_add Subroutine” on page 116,

“inet6_rth_getaddr Subroutine” on page 117, “inet6_rth_init Subroutine” on page 117, “inet6_rth_reverse

Subroutine” on page 118, “inet6_rth_segments Subroutine” on page 119, “inet6_rth_space Subroutine” on

page 120

Chapter 2. Sockets 115

inet6_opt_set_val Subroutine

Purpose

Inserts data items into the data portion of an option.

Syntax

int inet6_opt_set_val(void *databuf, int offset, void *val,

 socklen_t vallen);

Description

The inet6_opt_set_val subroutine inserts data items of various sizes into the data portion of the option.

The caller must ensure that each field is aligned on its natural boundaries. However, even when the

alignment requirement is not satisfied, inet6_opt_set_val will just copy the data as required.

Parameters

 databuf Pointer to the data area returned by inet6_opt_append().

offset Specifies where in the data portion of the option the value should be inserted; the first byte

after the option type and length is accessed by specifying an offset of 0.

val Pointer to the data content to be inserted.

vallen Specifies the size of the data content to be inserted.

Return Values

The function returns the offset for the next field (that is, offset + vallen), which can be used when

composing option content with multiple fields.

Related Information

“inet6_opt_append Subroutine” on page 111, “inet6_opt_find Subroutine” on page 112, “inet6_opt_finish

Subroutine” on page 113, “inet6_opt_get_val Subroutine” on page 113, “inet6_opt_init Subroutine” on page

114, “inet6_opt_next Subroutine” on page 115, “inet6_rth_add Subroutine,” “inet6_rth_getaddr Subroutine”

on page 117, “inet6_rth_init Subroutine” on page 117, “inet6_rth_reverse Subroutine” on page 118,

“inet6_rth_segments Subroutine” on page 119, “inet6_rth_space Subroutine” on page 120

inet6_rth_add Subroutine

Purpose

Adds an IPv6 address to the end of the Routing header being constructed.

Syntax

int inet6_rth_add(void *bp, const struct in6_addr *addr);

Description

The inet6_rth_add subroutine adds the IPv6 address pointed to by addr to the end of the Routing header

being constructed.

Parameters

 bp Points to the buffer of the Routing header.

addr Specifies which IPv6 address is to be added.

116 Technical Reference: Communications, Volume 2

Return Values

 0 Success. The segleft member of the Routing Header is updated to account for the new address in the

Routing header.

–1 The new address could not be added.

Related Information

“inet6_opt_append Subroutine” on page 111, “inet6_opt_find Subroutine” on page 112, “inet6_opt_finish

Subroutine” on page 113, “inet6_opt_get_val Subroutine” on page 113, “inet6_opt_init Subroutine” on page

114, “inet6_opt_next Subroutine” on page 115, “inet6_opt_set_val Subroutine” on page 116,

“inet6_rth_getaddr Subroutine,” “inet6_rth_init Subroutine,” “inet6_rth_reverse Subroutine” on page 118,

“inet6_rth_segments Subroutine” on page 119, “inet6_rth_space Subroutine” on page 120

inet6_rth_getaddr Subroutine

Purpose

Returns a pointer to a specific IPv6 address in a Routing header.

Syntax

struct in6_addr *inet6_rth_getaddr(const void *bp, int index);

Description

The inet6_rth_getaddr subroutine returns a pointer to the IPv6 address specified by index in the Routing

header described by bp. An application should first call inet6_rth_segments() to obtain the number of

segments in the Routing header.

Parameters

 bp Points to the Routing header.

index Specifies the index of the IPv6 address that must be returned. The value of index must be

between 0 and one less than the value returned by inet6_rth_segments().

Return Values

 NULL The inet6_rth_getaddr subroutine failed.

Valid pointer Pointer to the address indexed by index.

Related Information

“inet6_opt_append Subroutine” on page 111, “inet6_opt_find Subroutine” on page 112, “inet6_opt_finish

Subroutine” on page 113, “inet6_opt_get_val Subroutine” on page 113, “inet6_opt_init Subroutine” on page

114, “inet6_opt_next Subroutine” on page 115, “inet6_opt_set_val Subroutine” on page 116, “inet6_rth_add

Subroutine” on page 116, “inet6_rth_init Subroutine,” “inet6_rth_reverse Subroutine” on page 118,

“inet6_rth_segments Subroutine” on page 119, “inet6_rth_space Subroutine” on page 120

inet6_rth_init Subroutine

Purpose

Initializes a buffer to contain a Routing header.

Chapter 2. Sockets 117

Syntax

void *inet6_rth_init(void *bp, socklen_t bp_len, int type,

 int segments);

Description

The inet6_rth_init subroutine initializes the buffer pointed to by bp to contain a Routing header of the

specified type and sets ip6r_len based on the segments parameter. bp_len is only used to verify that the

buffer is large enough. The ip6r_segleft field is set to 0; inet6_rth_add() increments it.

When the application uses ancillary data, the application must initialize any cmsghdr fields. The caller

must allocate the buffer, and the size of the buffer can be determined by calling inet6_rth_space().

Parameters

 bp Points to the buffer to be initialized.

bp_len Size of the buffer pointed to by bp.

type Specifies the type of Routing header to be held.

segments Specifies the number of addresses within the Routing header.

Return Values

Upon success, the return value is the pointer to the buffer (bp), and this is then used as the first argument

to the inet6_rth_add() function.

 NULL The buffer could not be initialized.

Related Information

“inet6_opt_append Subroutine” on page 111, “inet6_opt_find Subroutine” on page 112, “inet6_opt_finish

Subroutine” on page 113, “inet6_opt_get_val Subroutine” on page 113, “inet6_opt_init Subroutine” on page

114, “inet6_opt_next Subroutine” on page 115, “inet6_opt_set_val Subroutine” on page 116, “inet6_rth_add

Subroutine” on page 116, “inet6_rth_getaddr Subroutine” on page 117, “inet6_rth_reverse Subroutine,”

“inet6_rth_segments Subroutine” on page 119, “inet6_rth_space Subroutine” on page 120

inet6_rth_reverse Subroutine

Purpose

Writes a new Routing header that sends datagrams along the reverse route of a Routing header extension

header.

Syntax

int inet6_rth_reverse(const void *in, void *out);

Description

The inet6_rth_reverse subroutine takes a Routing header extension header (pointed to by the first

argument) and writes a new Routing header that sends datagrams along the reverse of that route. The

function reverses the order of the addresses and sets the segleft member in the new Routing header to

the number of segments. Both arguments are allowed to point to the same buffer (that is, the reversal can

occur in place).

118 Technical Reference: Communications, Volume 2

Parameters

 in Points to the original Routing header extension header.

out Points to the new Routing header route that reverses the route of in.

Return Values

 0 The reverse Routing header was successfully created.

–1 The reverse Routing header could not be created.

Related Information

“inet6_opt_append Subroutine” on page 111, “inet6_opt_find Subroutine” on page 112, “inet6_opt_finish

Subroutine” on page 113, “inet6_opt_get_val Subroutine” on page 113, “inet6_opt_init Subroutine” on page

114, “inet6_opt_next Subroutine” on page 115, “inet6_opt_set_val Subroutine” on page 116, “inet6_rth_add

Subroutine” on page 116, “inet6_rth_getaddr Subroutine” on page 117, “inet6_rth_init Subroutine” on page

117, “inet6_rth_segments Subroutine,” “inet6_rth_space Subroutine” on page 120

inet6_rth_segments Subroutine

Purpose

Returns the number of segments (addresses) contained in a Routing header.

Syntax

int inet6_rth_segments(const void *bp);

Description

The inet6_rth_segments subroutine returns the number of segments (addresses) contained in the

Routing header described by bp.

Parameters

 bp Points to the Routing header.

Return Values

 0 (or greater) The number of addresses in the Routing header was returned.

–1 The number of addresses of the Routing header could not be returned.

Related Information

“inet6_opt_append Subroutine” on page 111, “inet6_opt_find Subroutine” on page 112, “inet6_opt_finish

Subroutine” on page 113, “inet6_opt_get_val Subroutine” on page 113, “inet6_opt_init Subroutine” on page

114, “inet6_opt_next Subroutine” on page 115, “inet6_opt_set_val Subroutine” on page 116, “inet6_rth_add

Subroutine” on page 116, “inet6_rth_getaddr Subroutine” on page 117, “inet6_rth_init Subroutine” on page

117, “inet6_rth_reverse Subroutine” on page 118, “inet6_rth_space Subroutine” on page 120

Chapter 2. Sockets 119

inet6_rth_space Subroutine

Purpose

Returns the required number of bytes to hold a Routing header.

Syntax

socklen_t inet6_rth_space(int type, int segments);

Description

The inet6_rth_space subroutine returns the number of bytes required to hold a Routing header of the

specified type containing the specified number of segments (addresses). For an IPv6 Type 0 Routing

header, the number of segments must be between 0 and 127, inclusive. The return value is simply the

space for the Routing header. When the application uses ancillary data, the application must pass the

returned length to CMSG_SPACE() in order to determine how much memory is needed for the ancillary

data object (including the cmsghdr structure).

Note: Although inet6_rth_space returns the size of the ancillary data, it does not allocate the space

required for the ancillary data. This allows an application to allocate a larger buffer, so that other

ancillary data objects can be added, because all the ancillary data objects must be specified to

sendmsg() as a single msg_control buffer.

Parameters

 type Specifies the type of Routing header to be held.

segments Specifies the number of addresses within the Routing header.

Return Values

 0 Either the type of the Routing header is not supported by this implementation or the

number of segments is invalid for this type of Routing header.

length Determines how much memory is needed for the ancillary data object.

Related Information

“inet6_opt_append Subroutine” on page 111, “inet6_opt_find Subroutine” on page 112, “inet6_opt_finish

Subroutine” on page 113, “inet6_opt_get_val Subroutine” on page 113, “inet6_opt_init Subroutine” on page

114, “inet6_opt_next Subroutine” on page 115, “inet6_opt_set_val Subroutine” on page 116, “inet6_rth_add

Subroutine” on page 116, “inet6_rth_getaddr Subroutine” on page 117, “inet6_rth_init Subroutine” on page

117, “inet6_rth_reverse Subroutine” on page 118, “inet6_rth_segments Subroutine” on page 119

inet_addr Subroutine

Purpose

Converts Internet addresses to Internet numbers.

Library

Standard C Library (libc.a)

120 Technical Reference: Communications, Volume 2

Syntax

#include <sys/socket.h>

#include <sys/socketvar.h>

#include <netinet/in.h>

#include <arpa/inet.h>

in_addr_t inet_addr (CharString)

register const char *CharString;

Description

The inet_addr subroutine converts an ASCII string containing a valid Internet address using dot notation

into an Internet address number typed as an unsigned integer value. An example of dot notation is

120.121.5.123. The inet_addr subroutine returns an error value if the Internet address notation in the

ASCII string supplied by the application is not valid.

Note: Although they both convert Internet addresses in dot notation to Internet numbers, the inet_addr

subroutine and inet_network process ASCII strings differently. When an application gives the

inet_addr subroutine a string containing an Internet address value without a delimiter, the

subroutine returns the logical product of the value represented by the string and 0xFFFFFFFF. For

any other Internet address, if the value of the fields exceeds the previously defined limits, the

inet_addr subroutine returns an error value of -1.

When an application gives the inet_network subroutine a string containing an Internet address

value without a delimiter, the inet_network subroutine returns the logical product of the value

represented by the string and 0xFF. For any other Internet address, the subroutine returns an error

value of -1 if the value of the fields exceeds the previously defined limits.

All applications containing the inet_addr subroutine must be compiled with _BSD set to a specific

value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD

libbsd.a library.

Sample return values for each subroutine are as follows:

 Application String inet_addr Returns inet_network Returns

0x1234567890abcdef

0x1234567890abcdef.

256.257.258.259

0x090abcdef 0xFFFFFFFF (= -1)

0xFFFFFFFF (= -1)

0x000000ef 0x0000ef00 0x00010203

The ASCII string for the inet_addr subroutine must conform to the following format:

string::= field | field delimited_field^1-3 | delimited_field^1-3

delimited_field::= delimiter field | delimiter

delimiter::= .

field::= 0X | 0x | 0Xhexadecimal* | 0x hexadecimal* | decimal* | 0 octal

hexadecimal::= decimal |a|b|c|d|e|f|A|B|C|D|E|F

decimal::= octal |8|9

octal::= 0|1|2|3|4|5|6|7

Notes:

1. ^n indicates n repetitions of a pattern.

2. ^n-m indicates n to m repetitions of a pattern.

3. * indicates 0 or more repetitions of a pattern, up to environmental limits.

4. The Backus Naur form (BNF) description states the space character, if one is used. Text indicates text,

not a BNF symbol.

Chapter 2. Sockets 121

The inet_addr subroutine requires an application to terminate the string with a null terminator (0x00) or a

space (0x30). The string is considered invalid if the application does not end it with a null terminator or a

space. The subroutine ignores characters trailing a space.

The following describes the restrictions on the field values for the inet_addr subroutine:

 Format Field Restrictions (in decimal)

a Value_a < 4,294,967,296

a.b Value_a < 256; Value_b < 16,777,216

a.b.c Value_a < 256; Value_b < 256; Value_c < 65536

a.b.c.d Value_a < 256; Value_b < 256; Value_c < 256; Value_d < 256

Applications that use the inet_addr subroutine can enter field values exceeding these restrictions. The

subroutine accepts the least significant bits up to an integer in length, then checks whether the truncated

value exceeds the maximum field value. For example, if an application enters a field value of

0x1234567890 and the system uses 16 bits per integer, then the inet_addr subroutine uses bits 0 -15.

The subroutine returns 0x34567890.

Applications can omit field values between delimiters. The inet_addr subroutine interprets empty fields as

0.

Notes:

1. The inet_addr subroutine does not check the pointer to the ASCII string. The user must ensure the

validity of the address in the ASCII string.

2. The application must verify that the network and host IDs for the Internet address conform to either a

Class A, B, or C Internet address. The inet_attr subroutine processes any other number as a Class C

address.

Parameters

 CharString Represents a string of characters in the Internet address form.

Return Values

For valid input strings, the inet_addr subroutine returns an unsigned integer value comprised of the bit

patterns of the input fields concatenated together. The subroutine places the first pattern in the most

significant position and appends any subsequent patterns to the next most significant positions.

The inet_addr subroutine returns an error value of -1 for invalid strings.

Note: An Internet address with a dot notation value of 255.255.255.255 or its equivalent in a different

base format causes the inet_addr subroutine to return an unsigned integer value of 4294967295.

This value is identical to the unsigned representation of the error value. Otherwise, the inet_addr

subroutine considers 255.255.255.255 a valid Internet address.

Files

 /etc/hosts

 Contains host names.

/etc/networks

 Contains network names.

122 Technical Reference: Communications, Volume 2

Related Information

The endhostent subroutine, endnetent subroutine, gethostbyaddr subroutine, gethostbyname

subroutine, getnetbyaddr subroutine, getnetbyname subroutine, getnetent subroutine, inet_Inaof

subroutine, inet_makeaddr subroutine, inet_netof subroutine, inet_network subroutine, inet_ntoa

subroutine, sethostent subroutine, setnetent subroutine.

Sockets Overview and Understanding Network Address Translation in AIX 5L Version 5.3 Communications

Programming Concepts.

inet_lnaof Subroutine

Purpose

Returns the host ID of an Internet address.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

int inet_Inaof (InternetAddr)

struct in_addr InternetAddr;

Description

The inet_lnaof subroutine masks off the host ID of an Internet address based on the Internet address

class. The calling application must enter the Internet address as an unsigned long value.

All applications containing the inet_lnaof subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Note: The application must verify that the network and host IDs for the Internet address conform to either

a Class A, B, or C Internet address. The inet_lnaof subroutine processes any other number as a

Class C address.

Parameters

 InternetAddr Specifies the Internet address to separate.

Return Values

The return values of the inet_lnaof subroutine depend on the class of Internet address the application

provides:

 Value Description

Class A The logical product of the Internet address and 0x00FFFFFF.

Class B The logical product of the Internet address and 0x0000FFFF.

Class C The logical product of the Internet address and 0x000000FF.

Chapter 2. Sockets 123

Files

 /etc/hosts

 Contains host names.

Related Information

The endhostent subroutine, endnetent subroutine, gethostbyaddr subroutine, gethostbyname

subroutine, getnetbyaddr subroutine, getnetbyname subroutine, getnetent subroutine, inet_addr

subroutine, inet_makeaddr subroutine, inet_netof subroutine, inet_network subroutine, inet_ntoa

subroutine, sethostent subroutine. setnetent subroutine.

Sockets Overview and Understanding Network Address Translation in AIX 5L Version 5.3 Communications

Programming Concepts.

inet_makeaddr Subroutine

Purpose

Returns a structure containing an Internet address based on a network ID and host ID provided by the

application.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

struct in_addr inet_makeaddr (Net, LocalNetAddr)

int Net, LocalNetAddr;

Description

The inet_makeaddr subroutine forms an Internet address from the network ID and Host ID provided by

the application (as integer types). If the application provides a Class A network ID, the inet_makeaddr

subroutine forms the Internet address using the net ID in the highest-order byte and the logical product of

the host ID and 0x00FFFFFF in the 3 lowest-order bytes. If the application provides a Class B network ID,

the inet_makeaddr subroutine forms the Internet address using the net ID in the two highest-order bytes

and the logical product of the host ID and 0x0000FFFF in the lowest two ordered bytes. If the application

does not provide either a Class A or Class B network ID, the inet_makeaddr subroutine forms the Internet

address using the network ID in the 3 highest-order bytes and the logical product of the host ID and

0x0000FFFF in the lowest-ordered byte.

The inet_makeaddr subroutine ensures that the Internet address format conforms to network order, with

the first byte representing the high-order byte. The inet_makeaddr subroutine stores the Internet address

in the structure as an unsigned long value.

The application must verify that the network ID and host ID for the Internet address conform to class A, B,

or C. The inet_makeaddr subroutine processes any nonconforming number as a Class C address.

124 Technical Reference: Communications, Volume 2

The inet_makeaddr subroutine expects the in_addr structure to contain only the Internet address field. If

the application defines the in_addr structure otherwise, then the value returned in in_addr by the

inet_makeaddr subroutine is undefined.

All applications containing the inet_makeaddr subroutine must be compiled with _BSD set to a specific

value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Net Contains an Internet network number.

LocalNetAddr Contains a local network address.

Return Values

Upon successful completion, the inet_makeaddr subroutine returns a structure containing an Internet

address.

If the inet_makeaddr subroutine is unsuccessful, the subroutine returns a -1.

Files

 /etc/hosts

 Contains host names.

Related Information

The endhostent subroutine, endnetent subroutine, gethostbyaddr subroutine, gethostbyname

subroutine, getnetbyaddr subroutine, getnetbyname subroutine, getnetent subroutine, inet_addr

subroutine, inet_lnaof subroutine, inet_netof subroutine, inet_network subroutine, inet_ntoa subroutine,

sethostent subroutine, setnetent subroutine.

Sockets Overview and Understanding Network Address Translation in AIX 5L Version 5.3 Communications

Programming Concepts.

inet_net_ntop Subroutine

Purpose

Converts between binary and text address formats.

Library

Library (libc.a)

Syntax

char *inet_net_ntop (af, src, bits, dst, size)

int af;

const void *src;

int bits;

char *dst;

size_t size;

Chapter 2. Sockets 125

Description

This function converts a network address and the number of bits in the network part of the address into

the CIDR format ascii text (for example, 9.3.149.0/24). The af parameter specifies the family of the

address. The src parameter points to a buffer holding an IPv4 address if the af parameter is AF_INET. The

bits parameter is the size (in bits) of the buffer pointed to by the src parameter. The dst parameter points

to a buffer where the function stores the resulting text string. The size parameter is the size (in bytes) of

the buffer pointed to by the dst parameter.

Parameters

 af Specifies the family of the address.

src Points to a buffer holding and IPv4 address if the af parameter is AF_INET.

bits Specifies the size of the buffer pointed to by the src parameter.

dst Points to a buffer where the resulting text string is stored.

size Specifies the size of the buffer pointed to by the dst parameter.

Return Values

If successful, a pointer to a buffer containing the text string is returned. If unsuccessful, NULL is returned.

Upon failure, errno is set to EAFNOSUPPORT if the af parameter is invalid or ENOSPC if the size of the

result buffer is inadequate.

Related Information

“inet_net_pton Subroutine,” “inet_ntop Subroutine” on page 131, and “inet_pton Subroutine” on page 132.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

inet_net_pton Subroutine

Purpose

Converts between text and binary address formats.

Library

Library (libc.a)

Syntax

int inet_net_pton (af, src, dst, size)

int af;

const char *src;

void *dst;

size_t size;

Description

This function converts a network address in ascii into the binary network address. The ascii representation

can be CIDR-based (for example, 9.3.149.0/24) or class-based (for example, 9.3.149.0). The af parameter

specifies the family of the address. The src parameter points to the string being passed in. The dst

parameter points to a buffer where the function will store the resulting numeric address. The size

parameter is the size (in bytes) of the buffer pointed to by the dst parameter.

126 Technical Reference: Communications, Volume 2

Parameters

 af Specifies the family of the address.

src Points to the string being passed in.

dst Points to a buffer where the resulting numeric address is stored.

size Specifies the size (in bytes) of the buffer pointed to by the dst parameter.

Return Values

If successful, the number of bits, either inputted classfully or specified with /CIDR, is returned. If

unsuccessful, a -1 (negative one) is returned (check errno). ENOENT means it was not a valid network

specification.

Related Information

“inet_net_ntop Subroutine” on page 125, “inet_ntop Subroutine” on page 131, and “inet_pton Subroutine”

on page 132.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

inet_netof Subroutine

Purpose

Returns the network id of the given Internet address.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

#include <sys/socketvar.h>

#include <netinet/in.h>

#include <arpa/inet.h>

int inet_netof (InternetAddr)

struct in_addr InternetAddr;

Description

The inet_netof subroutine returns the network number from the specified Internet address number typed

as unsigned long value. The inet_netof subroutine masks off the network number and the host number

from the Internet address based on the Internet address class.

All applications containing the inet_netof subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Note: The application assumes responsibility for verifying that the network number and the host number

for the Internet address conforms to a class A or B or C Internet address. The inet_netof

subroutine processes any other number as a class C address.

Chapter 2. Sockets 127

Parameters

 InternetAddr

 Specifies the Internet address to separate.

Return Values

Upon successful completion, the inet_netof subroutine returns a network number from the specified long

value representing the Internet address. If the application gives a class A Internet address, the inet_lnoaf

subroutine returns the logical product of the Internet address and 0xFF000000. If the application gives a

class B Internet address, the inet_lnoaf subroutine returns the logical product of the Internet address and

0xFFFF0000. If the application does not give a class A or B Internet address, the inet_lnoaf subroutine

returns the logical product of the Internet address and 0xFFFFFF00.

Files

 /etc/hosts

 Contains host names.

/etc/networks

 Contains network names.

Related Information

The endhostent subroutine, endnetent subroutine, gethostbyaddr subroutine, gethostbyname

subroutine, getnetbyaddr subroutine, getnetbyname subroutine, getnetent subroutine, inet_addr

subroutine, inet_lnaof subroutine, inet_makeaddr subroutine, inet_network subroutine, inet_ntoa

subroutine, sethostent subroutine, setnetent subroutine.

Sockets Overview and Understanding Network Address Translation in AIX 5L Version 5.3 Communications

Programming Concepts.

inet_network Subroutine

Purpose

Converts an ASCII string containing an Internet network addressee in . (dot) notation to an Internet

address number.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

in_addr_t inet_network (CharString)

register const char *CharString;

Description

The inet_network subroutine converts an ASCII string containing a valid Internet address using . (dot)

notation (such as, 120.121.122.123) to an Internet address number formatted as an unsigned integer

128 Technical Reference: Communications, Volume 2

value. The inet_network subroutine returns an error value if the application does not provide an ASCII

string containing a valid Internet address using . notation.

The input ASCII string must represent a valid Internet address number, as described in ″TCP/IP

Addressing″ in AIX 5L Version 5.3 System Management Guide: Communications and Networks. The input

string must be terminated with a null terminator (0x00) or a space (0x30). The inet_network subroutine

ignores characters that follow the terminating character.

The input string can express an Internet address number in decimal, hexadecimal, or octal format. In

hexadecimal format, the string must begin with 0x. The string must begin with 0 to indicate octal format. In

decimal format, the string requires no prefix.

Each octet of the input string must be delimited from another by a period. The application can omit values

between delimiters. The inet_network subroutine interprets missing values as 0.

The following examples show valid strings and their output values in both decimal and hexadecimal

notation:

 Examples of valid strings

Input String Output Value (in decimal) Output Value (in hex)

...1 1 0x00000001

.1.. 65536 0x00010000

1 1 0x1

0xFFFFFFFF 255 0x000000FF

1. 256 0x100

1.2.3.4 66048 0x010200

0x01.0X2.03.004 16909060 0x01020304

1.2. 3.4 16777218 0x01000002

9999.1.1.1 251724033 0x0F010101

The following examples show invalid input strings and the reasons they are not valid:

 Examples of invalid strings

Input String Reason

1.2.3.4.5 Excessive fields.

1.2.3.4. Excessive delimiters (and therefore fields).

1,2 Bad delimiter.

1p String not terminated by null terminator nor space.

{empty string} No field or delimiter present.

Typically, the value of each octet of an Internet address cannot exceed 246. The inet_network subroutine

can accept larger values, but it uses only the eight least significant bits for each field value. For example, if

an application passes 0x1234567890.0xabcdef, the inet_network subroutine returns 37103 (0x000090EF).

The application must verify that the network ID and host ID for the Internet address conform to class A,

class B, or class C. The inet_makeaddr subroutine processes any nonconforming number as a class C

address.

The inet_network subroutine does not check the pointer to the ASCII input string. The application must

verify the validity of the address of the string.

Chapter 2. Sockets 129

All applications containing the inet_network subroutine must be compiled with _BSD set to a specific

value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 CharString Represents a string of characters in the Internet address form.

Return Values

For valid input strings, the inet_network subroutine returns an unsigned integer value that comprises the

bit patterns of the input fields concatenated together. The inet_network subroutine places the first pattern

in the leftmost (most significant) position and appends subsequent patterns if they exist.

For invalid input strings, the inet_network subroutine returns a value of -1.

Files

 /etc/hosts

 Contains host names.

/etc/networks

 Contains network names.

Related Information

The endhostent subroutine, endnetent subroutine, gethostbyaddr subroutine, gethostbyname

subroutine, getnetbyaddr subroutine, getnetbyname subroutine, getnetent subroutine, inet_addr

subroutine, inet_lnaof subroutine, inet_makeaddr subroutine, inet_netof subroutine, inet_ntoa

subroutine, sethostent subroutine, setnetent subroutine.

Sockets Overview and Understanding Network Address Translation in AIX 5L Version 5.3 Communications

Programming Concepts.

inet_ntoa Subroutine

Purpose

Converts an Internet address into an ASCII string.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

char *inet_ntoa (InternetAddr)

struct in_addr InternetAddr;

Description

The inet_ntoa subroutine takes an Internet address and returns an ASCII string representing the Internet

address in dot notation. All Internet addresses are returned in network order, with the first byte being the

high-order byte.

130 Technical Reference: Communications, Volume 2

Use C language integers when specifying each part of a dot notation.

All applications containing the inet_ntoa subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 InternetAddr Contains the Internet address to be converted to ASCII.

Return Values

Upon successful completion, the inet_ntoa subroutine returns an Internet address.

If the inet_ntoa subroutine is unsuccessful, the subroutine returns a -1.

Files

 /etc/hosts

 Contains host names.

/etc/networks

 Contains network names.

Related Information

The endhostent subroutine, endnetent subroutine, gethostbyaddr subroutine, gethostbyname

subroutine, getnetbyaddr subroutine, getnetbyname subroutine, getnetent subroutine, inet_addr

subroutine, inet_lnaof subroutine, inet_makeaddr subroutine, inet_network subroutine, sethostent

subroutine, setnetent subroutine.

Sockets Overview and Understanding Network Address Translation in AIX 5L Version 5.3 Communications

Programming Concepts.

inet_ntop Subroutine

Purpose

Converts a binary address into a text string suitable for presentation.

Library

Library (libc.a)

Syntax

const char *inet_ntop (af, src, dst, size)

int af;

const void *src;

char *dst;

size_t size;

Description

This function converts from an address in binary format (as specified by the src parameter) to standard

text format, and places the result in the dst parameter (if size, which specifies the space available in the

dst parameter, is sufficient). The af parameter specifies the family of the address. This can be AF_INET or

AF_INET6.

Chapter 2. Sockets 131

The src parameter points to a buffer holding an IPv4 address if the af parameter is AF_INET, or an IPv6

address if the af parameter is AF_INET6. The dst parameter points to a buffer where the function will store

the resulting text string. The size parameter specifies the size of this buffer (in bytes). The application must

specify a non-NULL dst parameter. For IPv6 addresses, the buffer must be at least INET6_ADDRSTRLEN

bytes. For IPv4 addresses, the buffer must be at least INET_ADDRSTRLEN bytes.

In order to allow applications to easily declare buffers of the proper size to store IPv4 and IPv6 addresses

in string form, the following two constants are defined in the <netinet/in.h> library:

#define INET_ADDRSTRLEN 16

#define INET6_ADDRSTRLEN 46

Parameters

 af Specifies the family of the address. This can be AF_INET or AF_INET6.

src Points to a buffer holding an IPv4 address if the af parameter is set to AF_INET, or an

IPv6 address if the af parameter is set to AF_INET6.

dst Points to a buffer where the resulting text string is stored.

size Specifies the size (in bytes) of the buffer pointed to by the dst parameter.

Return Values

If successful, a pointer to the buffer containing the converted address is returned. If unsuccessful, NULL is

returned. Upon failure, the errno global variable is set to EAFNOSUPPORT if the specified address family

(af) is unsupported, or to ENOSPC if the size parameter indicates the destination buffer is too small.

Related Information

“inet_net_ntop Subroutine” on page 125, “inet_net_pton Subroutine” on page 126, and “inet_pton

Subroutine.”

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

inet_pton Subroutine

Purpose

Converts an address in its standard text form into its numeric binary form.

Library

Library (libc.a)

Syntax

int inet_pton (af, src, dst)

int af;

const char *src;

void *dst;

Description

This function converts an address in its standard text format into its numeric binary form. The af parameter

specifies the family of the address.

Note: Only the AF_INET and AF_INET6 address families are supported.

132 Technical Reference: Communications, Volume 2

The src parameter points to the string being passed in. The dst parameter points to a buffer where the

function stores the numeric address. The address is returned in network byte order.

Parameters

 af Specifies the family of the address. This can be AF_INET or AF_INET6.

src Points to a buffer holding an IPv4 address if the af parameter is set to AF_INET, or an

IPv6 address if the af parameter is set to AF_INET6.

dst Points to a buffer where the resulting text string is stored.

Return Values

If successful, one is returned. If unsuccessful, zero is returned if the input is not a valid IPv4

dotted-decimal string or a valid IPv6 address string; or a negative one with the errno global variable set to

EAFNOSUPPORT if the af parameter is unknown. The calling application must ensure that the buffer

referred to by the dst parameter is large enough to hold the numeric address (4 bytes for AF_INET or 16

bytes for AF_INET6).

If the af parameter is AF_INET, the function accepts a string in the standard IPv4 dotted-decimal form.

ddd.ddd.ddd.ddd

Where ddd is a one to three digit decimal number between 0 and 255.

Note: Many implementations of the existing inet_addr and inet_aton functions accept nonstandard input

such as octal numbers, hexadecimal numbers, and fewer than four numbers. inet_pton does not

accept these formats.

If the af parameter is AF_INET6, then the function accepts a string in one of the standard IPv6 text forms

defined in the addressing architecture specification.

Related Information

“inet_net_ntop Subroutine” on page 125, “inet_net_pton Subroutine” on page 126, and “inet_ntop

Subroutine” on page 131.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

innetgr, getnetgrent, setnetgrent, or endnetgrent Subroutine

Purpose

Handles the group network entries.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

innetgr (NetGroup, Machine, User, Domain)

char * NetGroup, * Machine, * User, * Domain;

getnetgrent (MachinePointer, UserPointer, DomainPointer)

char ** MachinePointer, ** UserPointer, ** DomainPointer;

Chapter 2. Sockets 133

void setnetgrent (NetGroup)

char *NetGroup

void endnetgrent ()

Description

The innetgr subroutine is threadsafe in AIX 4.3 and later. However, the return value points to static data

that is overwritten by subsequent calls. This data must be copied to be saved for use by subsequent calls.

The innetgr subroutine returns 1 or 0, depending on if netgroup contains the machine, user, domain triple

as a member. Any of these three strings; machine, user, or domain, can be NULL, in which case it

signifies a wild card.

The getnetgrent subroutine returns the next member of a network group. After the call, machinepointer

will contain a pointer to a string containing the name of the machine part of the network group member,

and similarly for userpointer and domainpointer. If any of machinepointer, userpointer, or domainpointer is

returned as a NULL pointer, it signifies a wild card. The getnetgrent subroutine uses malloc to allocate

space for the name. This space is released when the endnetgrent subroutine is called. getnetgrent

returns 1 if it succeeded in obtaining another member of the network group or 0 when it has reached the

end of the group.

The setnetgrent subroutine establishes the network group from which the getnetgrent subroutine will

obtain members, and also restarts calls to the getnetgrent subroutine from the beginnning of the list. If the

previous setnetgrent() call was to a different network group, an endnetgrent() call is implied.

endnetgrent() frees the space allocated during the getnetgrent() calls.

Parameters

 Domain Specifies the domain.

DomainPointer Points to the string containing Domain part of the network group.

Machine Specifies the machine.

MachinePointer Points to the string containing Machine part of the network group.

NetGroup Points to a network group.

User Specifies a user.

UserPointer Points to the string containing User part of the network group.

Return Values

 1 Indicates that the subroutine was successful in obtaining a member.

0 Indicates that the subroutine was not successful in obtaining a member.

Files

 /etc/netgroup Contains network groups recognized by the system.

/usr/include/netdb.h Contains the network database structures.

Related Information

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

134 Technical Reference: Communications, Volume 2

ioctl Socket Control Operations

Purpose

Performs network related control operations.

Syntax

#include <sys/ioctl.h>

int ioctl (fd, cmd, .../* arg */)

int fd;

int cmd;

int ... /* arg */

Description

The socket ioctl commands perform a variety of network-related control. The fd argument is a socket

descriptor. For non-socket descriptors, the functions performed by this call are unspecified.

The cmd argument and an optional third argument (with varying type) are passed to and interpreted by the

socket ioctl function to perform an appropriate control operation specified by the user.

The socket ioctl control operations can be in the following control operations categories:

v Socket

v Routing table

v ARP table

v Global network parameters

v Interface

Parameters

 fd Open file descriptor that refers to a socket created using socket or accept calls.

cmd Selects the control function to be performed.

.../* arg */ Represents additional information that is needed to perform the requested function. The type of

arg depends on the particular control request, but it is either an integer or a pointer to a

socket-specific data structure.

Socket Control Operations

The following ioctl commands operate on sockets:

 ioctl command Description

SIOCATMARK Determines whether the read pointer is currently pointing to the logical mark in the data

stream. The logical mark indicates the point at which the out-of-band data is sent.

ioctl(fd, SIOCATMARK,&atmark);

int atmark;

If atmark is set to 1 on return, the read pointer points to the mark and the next read returns

data after the mark. If atmark is set to 0 on return, (assuming out-of-band data is present on

the data stream), the next read returns data sent prior to the out-of-band mark.

Note: The out-of-band data is a logically independent data channel that is delivered to the

user independently of normal data; in addition, a signal is also sent because of the

immediate attention required. Ctrl-C characters are an example.

Chapter 2. Sockets 135

ioctl command Description

SIOCSPGRP
SIOCGPGRP

SIOCSPGRP sets the process group information for a socket. SIOCGPGRP gets the

process group ID associated with a socket.

ioctl (fd, cmd, (int)&pgrp);

int pgrp;

cmd Set to SIOCSPGRP or SIOCGPGRP.

pgrp Specifies the process group ID for the socket.

Routing Table Control Operations

The following ioctl commands operate on the kernel routing table:

 ioctl command Description

SIOCADDRT
SIOCDELRT

SIOCADDRT adds a route entry in the routing table. SIOCDELRT deletes a route entry from

the routing table.

ioctl(fd, cmd, (caddr_t)&route);

struct ortentry route;

cmd Set to SIOCADDRT or SIOCDELRT.

The route entry information is passed in the ortentry structure.

SIOUPDROUTE Updates the routing table using the information passed in the ifreq structure.

ioctl (fd, SIOUPDROUTE, (caddr_t)&ifr);

struct ifreq ifr;

Note: SIOUPDROUTE is available beginning with AIX 5100-002 (maintenance level 2) and

later.

ARP Table Control Operations

The following ioctl commands operate on the kernel ARP table. The net/if_arp.h header file must be

included.

 ioctl command Description

SIOCSARP
SIOCDARP
SIOCGARP

SIOCSARP adds or modifies an ARP entry in the ARP table. SIOCDARP deletes an ARP

entry from the ARP table. SIOCGARP gets an ARP entry from the ARP table.

ioctl(fd, cmd, (caddr_t)&ar);

struct arpreq ar;

cmd Set to SIOCSARP, SIOCDARP, or SIOCGARP.

The ARP entry information is passed in the arpreq structure.

136 Technical Reference: Communications, Volume 2

Global Network Parameters Control Operations

The following ioctl commands operate as global network parameters:

 ioctl command Description

SIOCSNETOPT
SIOCGNETOPT
SIOCDNETOPT
SIOCGNETOPT1

SIOCSNETOPT sets the value of a network option. SIOCGNETOPT gets the value of a

network option. SIOCDNETOPT sets the default values of a network option.

ioctl(fd, cmd, (caddr_t)&oreq);

struct optreq oreq;

cmd Set to SIOCSNETOPT, SIOCGNETOPT, or SIOCDNETOPT.

The network option value is stored in the optreq structure.

SIOCGNETOPT1 gets the current value, default value, and the range of a network option.

ioctl(fd, SIOCGNETOPT1, (caddr_t)&oreq);

struct optreq1 oreq;

The network option information is stored in the optreq1 structure upon return The optreq

and optreq1 structures are defined in net/netopt.h.

Note: SIOCGNETOPT1 is available beginning with AIX 5.2 and later.

SIOCGNMTUS
SIOCGETMTUS
SIOCADDMTU
SIOCDELMTU

SIOCGNMTUS gets the number of MTUs maintained in the list of common MTUs.

SIOCADDMTU adds an MTU in the list of common MTUs. SIOCDELMTU deletes an MTU

from the list of common MTUs.

ioctl(fd, cmd, (caddr_t)&nmtus);

int nmtus;

cmd Set to SIOCGNMTUS, SIOCADDMTU, or SIOCDELMTU.

SIOCGETMTUS gets the MTUs maintained in the list of common MTUs.

ioctl(fd, SIOCGETMTUS, (caddr_t)&gm);

struct get_mtus gm;

The get_mtus structure is defined in netinet/in.h.

Interface Control Operations

The following ioctl commands operate on interfaces. The net/if.h header file must be included.

 ioctl command Description

SIOCSIFADDR
SIOCAIFADDR
SIOCDIFADDR
SIOCGIFADDR

SIOCSIFADDR sets an interface address. SIOCAIFADDR adds or changes an interface

address. SIOCDIFADDR deletes an interface address. The interface address is specified in

the ifr.ifr_addr field. SIOCGIFADDR gets an interface address. The address is returned in

the ifr.ifr_addr field.

ioctl(fd, cmd, (caddr_t)&ifr, sizeof(struct ifreq));

struct ifreq ifr;

cmd Set to SIOCSIFADDR, SIOCAIFADDR, SIOCDIFADDR, or SIOCGIFADDR.

SIOCGIFADDRS Gets the list of addresses associated with an interface.

ioctl (fd, SIOCGIFADDRS, (caddr_t)ifaddrsp);

struct ifreqaddrs *ifaddrsp;

The interface name is passed in the ifaddrsp->ifr_name field. The addresses associated

with the interface are stored in ifaddrsp->ifrasu[] array on return.

Note: The ifreqaddrs structure contains space for storing only one

sockaddr_in/sockaddr_in6 structure (array of one sockaddr_in/sockaddr_in6 element).

In order to get n addresses associated with an interface, the caller of the ioctl command

must allocate space for {sizeof (struct ifreqaddrs) + (n * sizeof (struct sockaddr_in)} bytes.

Note: SIOCGIFADDRS is available beginning with AIX 5.3 and later.

Chapter 2. Sockets 137

ioctl command Description

SIOCSIFDSTADDR
SIOCGIFDSTADDR

SIOCSIFDSTADDR sets the point-to-point address for an interface specified in the

ifr.ifr_dstaddr field. SIOCGIFDSTADDR gets the point-to-point address associated with an

interface. The address is stored in the ifr.ifr_dstaddr field on return.

ioctl(fd, cmd, (caddr_t)&ifr, sizeof(struct ifreq));

struct ifreq ifr;

cmd Set to SIOCSIFDSTADDR or SIOCGIFDSTADDR.

SIOCSIFNETMASK
SIOCGIFNETMASK

SIOCSIFNETMASK sets the interface netmask specified in the ifr.ifr_addr field.

SIOCGIFNETMASK gets the interface netmask.

ioctl(fd, cmd, (caddr_t)&ifr, sizeof(struct ifreq));

struct ifreq ifr;

cmd Set to SIOCSIFNETMASK or SIOCGIFNETMASK.

SIOCSIFBRDADDR
SIOCGIFBRDADDR

SIOCSIFBRDADDR sets the interface broadcast address specified in the ifr.ifr_broadaddr

field. SIOCGIFBRDADDR gets the interface broadcast address. The broadcast address is

placed in the ifr.ifr_broadaddr field.

ioctl(fd, cmd, (caddr_t)&ifr, sizeof(struct ifreq));

struct ifreq ifr;

cmd Set to SIOCSIFBRDADDR or SIOCGIFBRDADDR.

SIOCGSIZIFCONF Gets the size of memory required to get configuration information for all interfaces returned

by SIOCGIFCONF.

ioctl(fd, cmd, (caddr_t)&ifconfsize);

int ifconfsize;

SIOCGIFCONF Returns configuration information for all the interfaces configured on the system.

ioctl(fd, SIOCGIFCONF, (caddr_t)&ifc);

struct ifconf ifc;

The configuration information is returned in a list of ifreq structures pointed to by the

ifc.ifc_req field, with one ifreq structure per interface.

Note: The caller of the ioctl command must allocate sufficient space to store the

configuration information, returned as a list of ifreq structures for all of the interfaces

configured on the system. For example, if n interfaces are configured on the system,

ifc.ifc_req must point to {n * sizeof (struct ifreq)} bytes of space allocated.

Note: Alternatively, the SIOCGSIZIFCONF ioctl command can be used for this purpose.

SIOCSIFFLAGS
SIOCGIFFLAGS

SIOCSIFFLAGS sets the interface flags. SIOCGIFFLAGS gets the interface flags.

ioctl(fd, cmd, (caddr_t)&ifr);

struct ifreq ifr;

Refer to /usr/include/net/if.h for the interface flags, denoted by IFF_xxx.

Note: The IFF_BROADCAST, IFF_POINTTOPOINT, IFF_SIMPLEX, IFF_RUNNING,

IFF_OACTIVE, and IFF_MULTICAST flags cannot be changed using ioctl.

SIOCSIFMETRIC
SIOCGIFMETRIC

SIOCSIFMETRIC sets the interface metric specified in the ifr.ifr_metric field.

SIOCGIFMETRIC gets the interface metric. The interface metric is placed in the ifr.ifr_metric

field on return.

ioctl(fd, cmd, (caddr_t)&ifr);

struct ifreq ifr;

cmd Set to SIOCSIFMETRIC or SIOCGIFMETRIC.

SIOCSIFSUBCHAN
SIOCGIFSUBCHAN

SIOCSIFSUBCHAN sets the subchannel address specified in the ifr.ifr_flags field.

SIOCGIFSUBCHAN gets the subchannel address in the ifr.ifr_flags field.

ioctl(fd, SIOCSIFSUBCHAN, (caddr_t)&ifr);

struct ifreq ifr;

138 Technical Reference: Communications, Volume 2

ioctl command Description

SIOCSIFOPTIONS
SIOCGIFOPTIONS

SIOCSIFOPTIONS sets the interface options. SIOCGIFOPTIONS gets the interface options.

ioctl(fd, SIOCSIFOPTIONS, (caddr_t)&ifr);

struct ifreq ifr;

The interface options are stored in the ifr_flags field of the ifreq structure. Refer to

/usr/include/net/if.h file for the list of interface options denoted by IFO_xxx.

 ioctl command Description

SIOCADDMULTI
SIOCDELMULTI

SIOCADDMULTI adds an address to the list of multicast addresses for an interface.

SIOCDELMULTI deletes a multicast address from the list of multicast addresses for an

interface.

ioctl(fd, cmd, (caddr_t)&ifr);

struct ifreq ifr;

cmd Set to SIOCADDMULTI or SIOCDELMULTI.

The multicast address information is specified in the ifr_addr structure.

SIOCGETVIFCNT Gets the packet count information for a virtual interface. The information is specified in

the sioc_vif_req structure.

ioctl (fd, SIOCGETVIFCNT, (caddr_t)&v_req);

struct sioc_vif_req v_req;

SIOCGETSGCNT Gets the packet count information for the source group specified. The information is

stored in the sioc_sg_req structure on return.

ioctl(fd, SIOCGETSGCNT, (caddr_t)&v_req);

struct sioc_sg_req v_req;

SIOCSIFMTU
SIOCGIFMTU

SIOCSIFMTU sets the interface maximum transmission unit (MTU). SIOCGIFMTU gets

the interface MTU.

ioctl(fd, cmd, (caddr_t)&ifr);

struct ifreq ifr;

The MTU value is stored in ifr.ifr_mtu field.

Note: The range of valid values for MTU varies for an interface depending on the

interface type.

SIOCIFATTACH
SIOCIFDETACH

SIOCIFATTACH attaches an interface. This initializes and adds an interface in the

network interface list. SIOCIFDETACH detaches an interface broadcast address. This

removes the interface from the network interface list. The interface name is specified in

the ifr.ifr_name field.

ioctl(fd, cmd, (caddr_t)&ifr);

struct ifreq ifr;

SIOCSIFGIDLIST
SIOCGIFGIDLIST

SIOCSIFGIDLIST adds or deletes the list of group IDs specified in the ifrg.ifrg_gidlist

field to the gidlist interface. The interface name is specified in the ifrg.ifrg_name field. An

operation code, ADD_GRP/DEL_GRP, specified in the ifrg.ifrg_gidlist field indicates whether

the specified list of group IDs must be added to or deleted from the gidlist interface.

SIOCGIFGIDLIST gets the list of group IDs associated with an interface. The group IDs

are placed in the ifrg.ifrg_gidlist field on return.

ioctl(fd, cmd, (caddr_t)&ifrg);

struct ifgidreq ifrg;

Chapter 2. Sockets 139

ioctl command Description

SIOCIF_ATM_UBR
SIOCIF_ATM_SNMPARP
SIOCIF_ATM_DUMPARP
SIOCIF_ATM_IDLE
SIOCIF_ATM_SVC
SIOCIF_ATM_DARP
SIOCIF_ATM_GARP
SIOCIF_ATM_SARP

SIOCIF_ATM_UBR sets the UBR rate for an ATM interface.

SIOCIF_ATM_SNMPARP gets the SNMP ATM ARP entries.

SIOCIF_ATM_DUMPARP gets the specified number of ATM ARP entries.

SIOCIF_ATM_DARP deletes an ATM ARP entry from the ARP table.

SIOCIF_ATM_GARP gets an ATM ARP entry to the ARP table.

SIOCIF_ATM_SARP adds an ATM ARP entry. The ARP information is specified in the

atm_arpreq structure.

SIOCIF_ATM_SVC specifies whether this interface supports Permanent Virtual Circuit

(PVC) and Switched Virtual Circuit (SVC) types of virtual connections. It also specifies

whether this interface will be an ARP client or an ARP server for this Logical IP

Subnetwork (LIS) based on the flag set in the ifatm_svc_arg structure.

SIOCIF_ATM_IDLE specifies the idle time limit on the interface.

SIOCSISNO
SIOCGISNO

SIOCSISNO sets interface specific network options for an interface. SIOCGISNO gets

interface specific network options associated with an interface.

ioctl(fd, cmd, (caddr_t)&ifr);

struct ifreq ifr;

cmd Set to SIOCSISNO or SIOCGISNO.

The interface specific network options are stored in ifr.ifr_isno structure. Refer to

/usr/include/net/if.h file for the list of interface specific network options denoted by

ISNO_xxx.

SIOCGIFBAUDRATE Gets the value of the interface baud rate in the ifr_baudrate field.

ioctl(fd, SIOCGIFBAUDRATE, (caddr_t)&ifr);

struct ifreq ifr;

The baud rate is stored in the ifr.ifr_baudrate field.

SIOCADDIFVIPA
SIOCDELIFVIPA
SIOCLISTIFVIPA

SIOCADDIFVIPA associates the specified list of interfaces pointed to by ifrv.ifrv_ifname

with the virtual interface specified by ifrv.ifrv_name. This causes the source address for

all outgoing packets on these interfaces to be set to the virtual interface address.

SIOCDELIFVIPA removes the list of specified interfaces pointed to by ifrv.ifrv_ifname,

that are associated with the virtual interface specified by ifrv.ifrv_name, using

SIOCADDIFVIPA.
SIOCLISTIFVIPA lists all the interfaces associated with the virtual interface specified by

ifrv.ifrv_name.

ioctl(fd, SIOCADDIFVIPA, (caddr_t)&ifrv);

struct ifvireq ifrv;

The virtual interface information is stored in the ifvireq structure.

Note: These flags operate on a virtual interface only. Also, these flags are available

beginning with AIX 5.2 and later.

Return Values

Upon successful completion, ioctl returns 0. Otherwise, it returns -1 and sets errno to indicate the error.

Error Codes

The ioctl commands fail under the following general conditions:

 EBADF The file descriptor fd is not a valid open socket file descriptor.

EINTR A signal was caught during ioctl operation.

EINVAL An invalid command or argument was specified.

If the underlying operation specified by the ioctl command cmd failed, ioctl fails with one of the following

error codes:

140 Technical Reference: Communications, Volume 2

EACCES Permission denied for the specified operation.

EADDRNOTAVAIL Specified address not available for interface.

EAFNOSUPPORT Operation not supported on sockets.

EBUSY Resource is busy.

EEXIST An entry or file already exists.

EFAULT Argument references an inaccessible memory area.

EIO I/O error.

ENETUNREACH Gateway unreachable.

ENOBUFS Routing table overflow.

ENOCONNECT No connection.

ENOMEM Not enough memory available.

ENOTCONN The operation is only defined on a connected socket, but the socket was not connected.

ENXIO Device does not exist.

ESRCH No such process.

Related Information

Socket Overview.

The ioctl subroutine.

“ioctl Streams Device Driver Operations” on page 263.

isinet_addr Subroutine

Purpose

Determines if the given ASCII string contains an Internet address using dot notation.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <netinet/in.h>

u_long isinet_addr (name)

char * name;

Description

The isinet_addr subroutine determines if the given ASCII string contains an Internet address using dot

notation (for example, ″120.121.122.123″). The isaddr_inet subroutine considers Internet address strings

as a valid string, and considers any other string type as an invalid strings.

The isinet_addr subrountine expects the ASCII string to conform to the following format:

string ::= field | field delimited_field^1-3

delimited_field ::= delimiter field

delimiter ::= .

field ::= 0 X | 0 x | 0 X hexadecimal* | 0 x hexadecimal* | decimal* | 0 octal*

hexadecimal ::= decimal | a | b | c | d | e | f | A | B | C | D | E | F

decimal ::= octal | 8 | 9

octal ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Chapter 2. Sockets 141

Value Description

A^n Indicates n repetitions of pattern A.

A^n-m Indicates n to m repetitions of pattern A.

A* Indicates zero or more repetitions of pattern A, up to environmental limits.

The BNF description explicitly states the space character (’ ’), if used.

 Value Description

{text} Indicates text, not a BNF symbol.

The isinet_addr subrountine allows the application to terminate the string with a null terminator (0x00) or

a space (0x30). It ignores characters trailing the space character and considers the string invalid if the

application does not terminate the string with a null terminator (0x00) or space (0x30).

The following describes the restrictions on the field values:

 Address Format Field Restrictions (values in decimal base)

a a < 4294967296.

a.b a < 256; b < 16777216.

a.b.c a < 256; b < 256; c < 16777216.

a.b.c.d a < 256; b < 2^8; c < 256; d < 256.

The isinet_addr subrountine applications can enter field values exceeding the field value restrictions

specified previously; isinet_addr accepts the least significant bits up to an integer in length. The

isinet_addr subroutine still checks to see if the truncated value exceeds the maximum field value. For

example, if an application gives the string 0.0;0;0xFF00000001 then isinet_addr interprets the string as

0.0.0.0x00000001 and considers the string as valid.

isinet_addr applications cannot omit field values between delimiters and considers a string with

successive periods as invalid.

Examples of valid strings:

 Input String Comment

1 isinet_addr uses a format.

1.2 isinet_addr uses a.b format.

1.2.3.4 isinet_addr uses a.b.c.d format.

0x01.0X2.03.004 isinet_addr uses a.b.c.d format.

1.2 3.4 isinet_addr uses a.b format; and ignores ″3.4″.

Examples of invalid strings:

 Input String Reason

... No explicit field values specified.

1.2.3.4.5 Excessive fields.

1.2.3.4. Excessive delimiters and fields.

1,2 Bad delimiter.

1p String not terminated by null terminator nor space.

{empty string} No field or delimiter present.

9999.1.1.1 Value for field a exceeds limit.

142 Technical Reference: Communications, Volume 2

Notes:

1. The isinet_addr subroutine does not check the pointer to the ASCII string; the user takes responsibility

for ensuring validity of the address of the ASCII string.

2. The application assumes responsibility for verifying that the network number and host number for the

Internet address conforms to a class A or B or C Internet address; any other string is processed as a

class C address.

All applications using isinet_addr must compile with _BSD defined. Also, all socket applications must

include the BSD library libbsd when applicable.

Parameters

 name Address of ASCII string buffer.

Return Values

The isinet_addr subroutine returns 1 for valid input strings and 0 for invalid input strings. isinet_addr

returns the value as an unsigned long type.

Files

#include <ctype.h>

#include <sys/types.h>

Related Information

Internet address conversion subroutines: inet_addr subroutine, inet_lnaof subroutine, inet_makeaddr

subroutine, inet_netof subroutine, inet_network subroutine, inet_ntoa subroutine.

Host information retrieval subroutines: endhostent subroutine, gethostbyaddr subroutine,

gethostbyname subroutine, sethostent subroutine.

Network information retrieval subroutines: getnetbyaddr subroutine, getnetbyname subroutine, getnetent

subroutine, setnetent subroutine.

kvalid_user Subroutine

Purpose

This routine maps the DCE principal to the local user account and determines if the DCE principal is

allowed access to the account.

Library

Valid User Library (libvaliduser.a)

Syntax

Description

This routine is called when Kerberos 5 authentication is configured to determine if the incoming Kerberos 5

ticket should allow access to the local account.

This routine determines whether the DCE principal, specified by the princ_name parameter, is allowed

access to the user’s account identified by the local_user parameter. The routine accesses the

$HOME/.k5login file for the users account. It looks for the string pointed to by princ_name in that file.

Chapter 2. Sockets 143

Access is granted if one of two things is true.

1. The $HOME/.k5login file exists and the princ_name is in it.

2. The $HOME/.k5login file does NOT exist and the DCE principal name is the same as the local user’s

name.

Parameters

 princ_name This parameter is a single-string representation of the Kerberos 5 principal. The Kerberos 5

libraries have two services, krb5_unparse_name and krb5_parse_name, which convert a

krb5_principal structure to and from a single-string format. This routine expects the princ_name

parameter to be a single-string form of the krb5_principal structure.

local_user This parameter is the character string holding the name of the local account.

Return Values

If the user is allowed access to the account, the kvalid_user routine returns TRUE.

If the user is NOT allowed access to the account or there was an error, the kvalid_user routine returns

FALSE.

Related Information

The ftp command, rcp command, rlogin command, rsh command, telnet, tn, or tn3270 command.

Using a .k5login file.

Network Overview in AIX 5L Version 5.3 System Management Guide: Communications and Networks.

Secure Rcmds in AIX 5L Version 5.3 System User’s Guide: Communications and Networks.

listen Subroutine

Purpose

Listens for socket connections and limits the backlog of incoming connections.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

int listen (Socket, Backlog)

int Socket, Backlog;

Description

The listen subroutine performs the following activities:

1. Identifies the socket that receives the connections.

2. Marks the socket as accepting connections.

3. Limits the number of outstanding connection requests in the system queue.

144 Technical Reference: Communications, Volume 2

The outstanding connection request queue length limit is specified by the parameter backlog per listen call.

A no parameter - somaxconn - defines the maximum queue length limit allowed on the system, so the

effective queue length limit will be either backlog or somaxconn, whichever is smaller.

All applications containing the listen subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Socket Specifies the unique name for the socket.

Backlog Specifies the maximum number of outstanding connection requests.

Return Values

Upon successful completion, the listen subroutine returns a value 0.

If the listen subroutine is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable.

Error Codes

The subroutine is unsuccessful if any of the following errors occurs:

 Error Description

EBADF The Socket parameter is not valid.

ECONNREFUSED The host refused service, usually due to a server process missing at the requested name or

the request exceeding the backlog amount.

EINVAL The socket is already connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP The referenced socket is not a type that supports the listen subroutine.

Examples

The following program fragment illustrates the use of the listen subroutine with 5 as the maximum number

of outstanding connections which may be queued awaiting acceptance by the server process.

listen(s,5)

Related Information

The accept subroutine, connect subroutine, socket subroutine.

Accepting Internet Stream Connections Example Program, Sockets Overview, Understanding Socket

Connections in AIX 5L Version 5.3 Communications Programming Concepts.

ntohl Subroutine

Purpose

Converts an unsigned long integer from Internet network standard byte order to host byte order.

Library

ISODE Library (libisode.a)

Chapter 2. Sockets 145

Syntax

#include <sys/types.h>

#include <netinet/in.h>

unsigned long ntohl (NetLong)

unsigned long NetLong;

Description

The ntohl subroutine converts an unsigned long (32-bit) integer from Internet network standard byte order

to host byte order.

Receiving hosts require addresses and ports in host byte order. Use the ntohl subroutine to convert

Internet addresses and ports to the host integer representation.

The ntohl subroutine is defined in the net/nh.h file as a macro.

All applications containing the ntohl subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 NetLong Requires a 32-bit integer in network byte order.

Return Values

The ntohl subroutine returns a 32-bit integer in host byte order.

Related Information

The endhostent subroutine, endservent subroutine, gethostbyaddr subroutine, gethostbyname

subroutine, getservbyname subroutine, getservbyport subroutine, getservent subroutine, htonl

subroutine, htons subroutine, ntohs subroutine, sethostent subroutine, setservent subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

ntohs Subroutine

Purpose

Converts an unsigned short integer from Internet network byte order to host byte order.

Library

ISODE Library (libisode.a)

Syntax

#include <sys/types.h>

#include <netinet/in.h>

unsigned short ntohs (NetShort)

unsigned short NetShort;

146 Technical Reference: Communications, Volume 2

Description

The ntohs subroutine converts an unsigned short (16-bit) integer from Internet network byte order to the

host byte order.

Receiving hosts require Internet addresses and ports in host byte order. Use the ntohs subroutine to

convert Internet addresses and ports to the host integer representation.

The ntohs subroutine is defined in the net/nh.h file as a macro.

All applications containing the ntohs subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 NetShort Requires a 16-bit integer in network standard byte order.

Return Values

The ntohs subroutine returns the supplied integer in host byte order.

Related Information

The endhostent subroutine, endservent subroutine, gethostbyaddr subroutine, gethostbyname

subroutine, getservbyname subroutine, getservbyport subroutine, getservent subroutine, htonl

subroutine, htons subroutine, ntohl subroutine, sethostent subroutine, setservent subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

PostQueuedCompletionStatus Subroutine

Purpose

Post a completion packet to a specified I/O completion port.

Syntax

#include <iocp.h>

boolean_t PostQueuedCompletionStatus (CompletionPort, TransferCount, CompletionKey, Overlapped,)

HANDLE CompletionPort;

DWORD TransferCount, CompletionKey;

LPOVERLAPPED Overlapped;

Description

The PostQueuedCompletionStatus subroutine attempts to post a completion packet to CompletionPort

with the values of the completion packet populated by the TransferCount, CompletionKey, and Overlapped

parameters.

The PostQueuedCompletionStatus subroutine returns a boolean indicating whether or not a completion

packet has been posted.

The PostQueuedCompletionStatus subroutine is part of the I/O Completion Port (IOCP) kernel

extension.

Note: This subroutine only works to a socket file descriptor. It does not work with files or other file

descriptors.

Chapter 2. Sockets 147

Parameters

 CompletionPort Specifies the completion port that this subroutine will attempt to access.

TransferCount Specifies the number of bytes transferred.

CompletionKey Specifies the completion key.

Overlapped Specifies the overlapped structure.

Return Values

Upon successful completion, the PostQueuedCompletionStatus subroutine returns a boolean indicating

its success.

If the PostQueuedCompletionStatus subroutine is unsuccessful, the subroutine handler performs the

following functions:

v Returns a value of 0 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable, see the link in the Related Information section of this document.

Error Codes

The subroutine is unsuccessful if either of the following errors occur:

 EBADF The CompletionPort parameter was NULL.

EINVAL The CompletionPort parameter was invalid.

Examples

The following program fragment illustrates the use of the PostQueuedCompletionStatus subroutine to

post a completion packet.

c = GetQueuedCompletionStatus (34, 128, 25, struct overlapped);

Related Information

The “socket Subroutine” on page 223, “accept Subroutine” on page 29, “ReadFile Subroutine” on page

151, “WriteFile Subroutine” on page 240, “GetQueuedCompletionStatus Subroutine” on page 91, and

“CreateIoCompletionPort Subroutine” on page 36.

For further explanation of the errno variable, see Error Notification Object Class in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs

rcmd Subroutine

Purpose

Allows execution of commands on a remote host.

Library

Standard C Library (libc.a)

Syntax

int rcmd (Host,

Port, LocalUser, RemoteUser, Command, ErrFileDesc)

char ** Host;

u_short Port;

char * LocalUser;

148 Technical Reference: Communications, Volume 2

char * RemoteUser;

char * Command;

int * ErrFileDesc;

Description

The rcmd subroutine allows execution of certain commands on a remote host that supports rshd, rlogin,

and rpc among others.

Only processes with an effective user ID of root user can use the rcmd subroutine. An authentication

scheme based on remote port numbers is used to verify permissions. Ports in the range between 0 and

1023 can only be used by a root user. The application must pass in Port, which must be in the range 512

to 1023.

The rcmd subroutine looks up a host by way of the name server or if the local name server isn’t running,

in the /etc/hosts file.

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is returned to the

calling process and given to the remote command as standard input (stdin) and standard output (stdout).

Always specify the Host parameter. If the local domain and remote domain are the same, specifying the

domain parts is optional.

All applications containing the rcmd subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Host Specifies the name of a remote host that is listed in the /etc/hosts

file. If the specified name of the host is not found in this file, the rcmd

subroutine is unsuccessful.

Port Specifies the well-known port to use for the connection. The

/etc/services file contains the DARPA Internet services, their ports,

and socket types.

LocalUser and RemoteUser Points to user names that are valid at the local and remote host,

respectively. Any valid user name can be given.

Command Specifies the name of the command to be started at the remote host.

ErrFileDesc Specifies an integer controlling the set up of communication channels.

Integer options are as follows:

Non-zero

Indicates an auxiliary channel to a control process is set up,

and the ErrFileDesc parameter points to the file descriptor for

the channel. The control process provides diagnostic output

from the remote command on this channel and also accepts

bytes as signal numbers to be forwarded to the process

group of the command.

0 Indicates the standard error (stderr) of the remote command

is the same as standard output (stdout). No provision is

made for sending arbitrary signals to the remote process.

However, it is possible to send out-of-band data to the

remote command.

Return Values

Upon successful completion, the rcmd subroutine returns a valid socket descriptor.

Chapter 2. Sockets 149

Upon unsuccessful completion, the rcmd subroutine returns a value of -1. The subroutine returns a -1, if

the effective user ID of the calling process is not root user or if the subroutine is unsuccessful to resolve

the host.

Files

 /etc/services Contains the service names, ports, and socket type.

/etc/hosts Contains host names and their addresses for hosts in

a network.

/etc/resolv.conf Contains the name server and domain name.

Related Information

The rlogind command, rshd command.

The named daemon.

The gethostname subroutine, rresvport subroutine, ruserok subroutine, sethostname subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

rcmd_af Subroutine

Purpose

Allows execution of commands on a remote host.

Syntax

int rcmd_af(char **ahost, unsigned short rport,

 const char *locuser, const char *remuser,

 const char *cmd, int *fd2p, int af)

Description

The rcmd_af subroutine allows execution of certain commands on a remote host that supports rshd,

rlogin, and rpc among others. It behaves the same as the existing rcmd() function, but instead of creating

only an AF_INET TCP socket, it can also create an AF_INET6 TCP socket. The existing rcmd() function

cannot transparently use AF_INET6 sockets because an application would not be prepared to handle

AF_INET6 addresses returned by subroutines such as getpeername() on the file descriptor created by

rcmd().

Only processes with an effective user ID of root user can use the rcmd_af subroutine. An authentication

scheme based on remote port numbers is used to verify permissions. Ports in the range between 0 and

1023 can only be used by a root user.

The rcmd_af subroutine looks up a host by way of the name server or if the local name server is not

running, in the /etc/hosts file.

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is returned to the

calling process and given to the remote command as standard input (stdin) and standard output (stdout).

Always specify the ahost parameter. If the local domain and remote domain are the same, specifying the

domain parts is optional.

150 Technical Reference: Communications, Volume 2

Parameters

 ahost Specifies the name of a remote host that is listed in the /etc/hosts file. If the specified name of

the host is not found in this file, the rcmd_af subroutine is unsuccessful.

rport Specifies the well-known port to use for the connection. The /etc/services file contains the

DARPA Internet services, their ports, and socket types.

locuser Points to user names that are valid at the local host. Any valid user name can be given.

remuser Points to user names that are valid at the remote host. Any valid user name can be given.

cmd Specifies the name of the command to be started at the remote host.

fd2p Specifies an integer controlling the set up of communication channels. Integer options are as

follows:

Non-zero

Indicates an auxiliary channel to a control process is set up, and the fd2p parameter

points to the file descriptor for the channel. The control process provides diagnostic

output from the remote command on this channel and also accepts bytes as signal

numbers to be forwarded to the process group of the command.

0 Indicates the standard error (stderr) of the remote command is the same as standard

output (stdout). No provision is made for sending arbitrary signals to the remote

process. However, it is possible to send out-of-band data to the remote command.

af The family argument is AF_INET, AF_INET6, or AF_UNSPEC. When either AF_INET or

AF_INET6 is specified, this function will create a socket of the specified address family. When

AF_UNSPEC is specified, it will try all possible address families until a connection can be

established, and will return the associated socket of the connection.

Return Values

Upon successful completion, the rcmd_af subroutine returns a valid socket descriptor. Upon unsuccessful

completion, the rcmd_af subroutine returns a value of –1. The subroutine returns a –1 if the effective user

ID of the calling process is not the root user or if the subroutine is unsuccessful to resolve the host.

Files

 /etc/services Contains the service names, ports, and socket type.

/etc/hosts Contains host names and their addresses for hosts in

a network.

/etc/resolv.conf Contains the name server and domain name.

Related Information

“rcmd Subroutine” on page 148, “rexec_af Subroutine” on page 171, “rresvport_af Subroutine” on page

173

ReadFile Subroutine

Purpose

Reads data from a socket.

Syntax

#include <iocp.h>

boolean_t ReadFile (FileDescriptor, Buffer, ReadCount, AmountRead, Overlapped)

HANDLE FileDescriptor;

LPVOID Buffer;

DWORD ReadCount;

LPDWORD AmountRead;

LPOVERLAPPED Overlapped;

Chapter 2. Sockets 151

Description

The ReadFile subroutine reads the number of bytes specified by the ReadCount parameter from the

FileDescriptor parameter into the buffer indicated by the Buffer parameter. The number of bytes read is

saved in the AmountRead parameter. The Overlapped parameter indicates whether or not the operation

can be handled asynchronously.

The ReadFile subroutine returns a boolean (an integer) indicating whether or not the request has been

completed.

The ReadFile subroutine is part of the I/O Completion Port (IOCP) kernel extension.

Note: This subroutine only works to a socket file descriptor. It does not work with files or other file

descriptors.

Parameters

 FileDescriptor Specifies a valid file descriptor obtained from a call to the socket or accept

subroutines.

Buffer Specifies the buffer from which the data will be read.

ReadCount Specifies the maximum number of bytes to read.

AmountRead Specifies the number of bytes read. The parameter is set by the subroutine.

Overlapped Specifies an overlapped structure indicating whether or not the request can be

handled asynchronously.

Return Values

Upon successful completion, the ReadFile subroutine returns a boolean indicating the request has been

completed.

If the ReadFile subroutine is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of 0 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable, see the link in the Related Information section of this document.

Error Codes

The subroutine is unsuccessful if any of the following errors occur:

 EINPROGRESS The read request can not be immediately satisfied and will be handled asynchronously.

A completion packet will be sent to the associated completion port upon completion.

EAGAIN The read request cannot be immediately satisfied and cannot be handled

asynchronously.

EINVAL The FileDescriptor parameter is invalid.

Examples

The following program fragment illustrates the use of the ReadFile subroutine to synchronously read data

from a socket:

void buffer;

int amount_read;

b = ReadFile (34, &buffer, 128, &amount_read, NULL);

The following program fragment illustrates the use of the ReadFile subroutine to asynchronously read data

from a socket:

152 Technical Reference: Communications, Volume 2

void buffer;

int amount_read;

LPOVERLAPPED overlapped;

b = ReadFile (34, &buffer, 128, &amount_read, overlapped);

Note: The request will only be handled asynchronously if it cannot be immediately satisfied.

Related Information

The “socket Subroutine” on page 223, “accept Subroutine” on page 29, “CreateIoCompletionPort

Subroutine” on page 36, “WriteFile Subroutine” on page 240, “GetQueuedCompletionStatus Subroutine” on

page 91, and “PostQueuedCompletionStatus Subroutine” on page 147.

For further explanation of the errno variable, see Error Notification Object Class in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs

recv Subroutine

Purpose

Receives messages from connected sockets.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

int recv (Socket,

Buffer, Length, Flags)

int Socket;

void * Buffer;

size_t Length;

int Flags;

Description

The recv subroutine receives messages from a connected socket. The recvfrom and recvmsg

subroutines receive messages from both connected and unconnected sockets. However, they are usually

used for unconnected sockets only.

The recv subroutine returns the length of the message. If a message is too long to fit in the supplied

buffer, excess bytes may be truncated depending on the type of socket that issued the message.

If no messages are available at the socket, the recv subroutine waits for a message to arrive, unless the

socket is nonblocking. If a socket is nonblocking, the system returns an error.

Use the select subroutine to determine when more data arrives.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure

BSD 4.3 compatible. For more details refer to socket.h.

Parameters

 Socket Specifies the socket descriptor.

Buffer Specifies an address where the message should be placed.

Chapter 2. Sockets 153

Length Specifies the size of the Buffer parameter.

Flags Points to a value controlling the message reception. The /usr/include/sys/socket.h file defines the Flags

parameter. The argument to receive a call is formed by logically ORing one or more of the following

values:

MSG_OOB

Processes out-of-band data. The significance of out-of-band data is protocol-dependent.

MSG_PEEK

Peeks at incoming data. The data continues to be treated as unread and will be read by the

next call to recv() or a similar function.

MSG_WAITALL

Requests that the function not return until the requested number of bytes have been read. The

function can return fewer than the requested number of bytes only if a signal is caught, the

connection is terminated, or an error is pending for the socket.

Return Values

Upon successful completion, the recv subroutine returns the length of the message in bytes.

If the recv subroutine is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of -1 to the calling program.

v Returns a 0 if the connection disconnects.

v Moves an error code, indicating the specific error, into the errno global variable.

Error Codes

The recv subroutine is unsuccessful if any of the following errors occurs:

 Error Description

EBADF The Socket parameter is not valid.

ECONNRESET The remote peer forces the connection to be closed.

EFAULT The data was directed to be received into a nonexistent or protected part of the process

address space. The Buffer parameter is not valid.

EINTR A signal interrupted the recv subroutine before any data was available.

EINVAL The MSG_OOB flag is set and no out-of-band data is available.

ENOBUF Insufficient resources are available in the system to perform the operation.

ENOTCONN A receive is attempted on a SOCK_STREAM socket that is not connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP MSG_OOB flag is set for a SOCK_DGRAM socket, or MSG_OOB flag is set for any AF_UNIX

socket.

ETIMEDOUT The connection timed out during connection establishment, or there was a transmission timeout

on an active connection.

EWOULDBLOCK The socket is marked nonblocking, and no connections are present to be accepted.

Related Information

The fgets subroutine, fputs subroutine, read subroutine, recvfrom subroutine, recvmsg subroutine,

select subroutine, send subroutine, sendmsg subroutine, sendto subroutine, shutdown subroutine,

socket subroutine, write subroutine.

Sockets Overview and Understanding Socket Data Transfer in AIX 5L Version 5.3 Communications

Programming Concepts.

154 Technical Reference: Communications, Volume 2

recvfrom Subroutine

Purpose

Receives messages from sockets.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

ssize_t recvfrom

(Socket, Buffer, Length, Flags, From, FromLength)

int Socket;

void * Buffer;

size_t Length,

int Flags;

struct sockaddr * From;

socklen_t * FromLength;

Description

The recvfrom subroutine allows an application program to receive messages from unconnected sockets.

The recvfrom subroutine is normally applied to unconnected sockets as it includes parameters that allow

the calling program to specify the source point of the data to be received.

To return the source address of the message, specify a nonnull value for the From parameter. The

FromLength parameter is a value-result parameter, initialized to the size of the buffer associated with the

From parameter. On return, the recvfrom subroutine modifies the FromLength parameter to indicate the

actual size of the stored address. The recvfrom subroutine returns the length of the message. If a

message is too long to fit in the supplied buffer, excess bytes may be truncated depending on the type of

socket that issued the message.

If no messages are available at the socket, the recvfrom subroutine waits for a message to arrive, unless

the socket is nonblocking. If the socket is nonblocking, the system returns an error.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure

BSD 4.3 compatible. For more details refer to socket.h.

Parameters

 Socket Specifies the socket descriptor.

Buffer Specifies an address where the message should be placed.

Length Specifies the size of the Buffer parameter.

Chapter 2. Sockets 155

Flags Points to a value controlling the message reception. The argument to receive a call is formed by

logically ORing one or more of the values shown in the following list:

MSG_OOB

Processes out-of-band data. The significance of out-of-band data is protocol-dependent.

MSG_PEEK

Peeks at incoming data. The data continues to be treated as unread and will be read by

the next call to recv() or a similar function.

MSG_WAITALL

Requests that the function not return until the requested number of bytes have been

read. The function can return fewer than the requested number of bytes only if a signal

is caught, the connection is terminated, or an error is pending for the socket.

From Points to a socket structure, filled in with the source’s address.

FromLength Specifies the length of the sender’s or source’s address.

Return Values

If the recvfrom subroutine is successful, the subroutine returns the length of the message in bytes.

If the call is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable.

Error Codes

The recvfrom subroutine is unsuccessful if any of the following errors occurs:

 Error Description

EBADF The Socket parameter is not valid.

ECONNRESET The remote peer forces the connection to be closed.

EFAULT The data was directed to be received into a nonexistent or protected part of the process

address space. The buffer is not valid.

EINTR The receive is interrupted by a signal delivery before any data is available.

EINVAL The MSG_OOB flag is set but no out-of-band data is available.

ENOBUF Insufficient resources are available in the system to perform the operation.

ENOPROTOOPT The protocol is not 64-bit supported.

ENOTCONN A receive is attempted on a SOCK_STREAM socket that is not connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP MSG_OOB flag is set for a SOCK_DGRAM socket, or MSG_OOB flag is set for any AF_UNIX

socket.

ETIMEDOUT The connection timed out during connection establishment, or there was a transmission timeout

on an active connection.

EWOULDBLOCK The socket is marked nonblocking, and no connections are present to be accepted.

Related Information

The fgets subroutine, fputs subroutine, read subroutine, recv subroutine, recvmsg subroutine, select

subroutine, send subroutine, sendmsg subroutine, sendto subroutine, shutdown subroutine, socket

subroutine, write subroutine.

Sockets Overview and Understanding Socket Data Transfer in AIX 5L Version 5.3 Communications

Programming Concepts.

156 Technical Reference: Communications, Volume 2

recvmsg Subroutine

Purpose

Receives a message from any socket.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

int recvmsg (Socket, Message, Flags)

int Socket;

struct msghdr Message [];

int Flags;

Description

The recvmsg subroutine receives messages from unconnected or connected sockets. The recvmsg

subroutine returns the length of the message. If a message is too long to fit in the supplied buffer, excess

bytes may be truncated depending on the type of socket that issued the message.

If no messages are available at the socket, the recvmsg subroutine waits for a message to arrive. If the

socket is nonblocking and no messages are available, the recvmsg subroutine is unsuccessful.

Use the select subroutine to determine when more data arrives.

The recvmsg subroutine uses a msghdr structure to decrease the number of directly supplied

parameters. The msghdr structure is defined in thesys/socket.h file. In BSD 4.3 Reno, the size and

members of the msghdr structure have been modified. Applications wanting to start the old structure need

to compile with COMPAT_43 defined. The default behavior is that of BSD 4.4.

All applications containing the recvmsg subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Socket Specifies the unique name of the socket.

Message Points to the address of the msghdr structure, which contains both the address for the incoming

message and the space for the sender address.

Flags Permits the subroutine to exercise control over the reception of messages. The Flags parameter used

to receive a call is formed by logically ORing one or more of the values shown in the following list:

MSG_OOB

Processes out-of-band data. The significance of out-of-band data is protocol-dependent.

MSG_PEEK

Peeks at incoming data. The data continues to be treated as unread and will be read by the

next call to recv() or a similar function.

MSG_WAITALL

Requests that the function not return until the requested number of bytes have been read. The

function can return fewer than the requested number of bytes only if a signal is caught, the

connection is terminated, or an error is pending for the socket.

The /sys/socket.h file contains the possible values for the Flags parameter.

Chapter 2. Sockets 157

Return Values

Upon successful completion, the length of the message in bytes is returned.

If the recvmsg subroutine is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable.

Error Codes

The recvmsg subroutine is unsuccessful if any of the following error codes occurs:

 Error Description

EBADF The Socket parameter is not valid.

ECONNRESET The remote peer forces the connection to be closed.

EFAULT The Address parameter is not in a writable part of the user address space.

EINTR The recvmsg subroutine was interrupted by delivery of a signal before any data was available

for the receive.

EINVAL The length of the msghdr structure is invalid, or the MSG_OOB flag is set and no out-of-band

data is available.

EMSGSIZE The msg_iovlen member of the msghdr structure pointed to by Message is less than or equal

to 0, or is greater than IOV_MAX.

ENOBUF Insufficient resources are available in the system to perform the operation.

ENOPROTOOPT The protocol is not 64-bit supported.

ENOTCONN A receive is attempted on a SOCK_STREAM socket that is not connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP MSG_OOB flag is set for a SOCK_DGRAM socket, or MSG_OOB flag is set for any AF_UNIX

socket.

ETIMEDOUT The connection timed out during connection establishment, or there was a transmission timeout

on an active connection.

EWOULDBLOCK The socket is marked nonblocking, and no connections are present to be accepted.

Related Information

The no command.

The recv subroutine, recvfrom subroutine, select subroutine, send subroutine, sendmsg subroutine,

sendto subroutine, shutdown subroutine, socket subroutine.

Sockets Overview and Understanding Socket Data Transfer in AIX 5L Version 5.3 Communications

Programming Concepts.

res_init Subroutine

Purpose

Searches for a default domain name and Internet address.

Library

Standard C Library (libc.a)

158 Technical Reference: Communications, Volume 2

Syntax

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

void res_init ()

Description

The res_init subroutine reads the /etc/resolv.conf file for the default domain name and the Internet

address of the initial hosts running the name server.

Note: If the /etc/resolv.conf file does not exist, the res_init subroutine attempts name resolution using

the local /etc/hosts file. If the system is not using a domain name server, the /etc/resolv.conf file

should not exist. The /etc/hosts file should be present on the system even if the system is using a

name server. In this instance, the file should contain the host IDs that the system requires to

function even if the name server is not functioning.

The res_init subroutine is one of a set of subroutines that form the resolver, a set of functions that

translate domain names to Internet addresses. All resolver subroutines use the /usr/include/resolv.h file,

which defines the _res structure. The res_init subroutine stores domain name information in the _res

structure. Three environment variables, LOCALDOMAIN, RES_TIMEOUT, and RES_RETRY, affect

default values related to the _res structure.

All applications containing the res_init subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

For more information on the _res structure, see ″Understanding Domain Name Resolution″ in AIX 5L

Version 5.3 Communications Programming Concepts.

Files

 /etc/resolv.conf

 Contains the name server and domain name.

/etc/hosts

 Contains host names and their addresses for hosts in a network. This file is used to

resolve a host name into an Internet address.

Related Information

The dn_comp subroutine, dn_expand subroutine, _getlong subroutine, _getshort subroutine, putlong

subroutine, putshort subroutine, res_mkquery subroutine, “res_ninit Subroutine” on page 162, res_query

subroutine, res_search subroutine, res_send subroutine.

Sockets Overview and Understanding Domain Name Resolution in AIX 5L Version 5.3 Communications

Programming Concepts.

res_mkquery Subroutine

Purpose

Makes query messages for name servers.

Chapter 2. Sockets 159

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int res_mkquery (Operation, DomName, Class, Type, Data, DataLength)

int res_mkquery (Reserved, Buffer, BufferLength)

int Operation;

char * DomName;

int Class, Type;

char * Data;

int DataLength;

struct rrec * Reserved;

char * Buffer;

int BufferLength;

Description

The res_mkquery subroutine creates packets for name servers in the Internet domain. The subroutine

also creates a standard query message. The Buffer parameter determines the location of this message.

The res_mkquery subroutine is one of a set of subroutines that form the resolver, a set of functions that

resolve domain names. Global information used by the resolver subroutines is kept in the _res data

structure. The /usr/include/resolv.h file contains the _res structure definition.

All applications containing the res_mkquery subroutine must be compiled with _BSD set to a specific

value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Operation Specifies a query type. The usual type is QUERY, but the parameter can be set to any of the

query types defined in the arpa/nameser.h file.

DomName Points to the name of the domain. If the DomName parameter points to a single label and the

RES_DEFNAMES structure is set, as it is by default, the subroutine appends the DomName

parameter to the current domain name. The current domain name is defined by the name

server in use or in the /etc/resolv.conf file.

Class Specifies one of the following parameters:

C_IN Specifies the ARPA Internet.

C_CHAOS

Specifies the Chaos network at MIT.

160 Technical Reference: Communications, Volume 2

Type Requires one of the following values:

T_A Host address

T_NS Authoritative server

T_MD Mail destination

T_MF Mail forwarder

T_CNAME

Canonical name

T_SOA Start-of-authority zone

T_MB Mailbox-domain name

T_MG Mail-group member

T_MR Mail-rename name

T_NULL

Null resource record

T_WKS

Well-known service

T_PTR Domain name pointer

T_HINFO

Host information

T_MINFO

Mailbox information

T_MX Mail-routing information

T_UINFO

User (finger command) information

T_UID User ID

T_GID Group ID

Data Points to the data that is sent to the name server as a search key. The data is stored as a

character array.

DataLength Defines the size of the array pointed to by the Data parameter.

Reserved Specifies a reserved and currently unused parameter.

Buffer Points to a location containing the query message.

BufferLength Specifies the length of the message pointed to by the Buffer parameter.

Return Values

Upon successful completion, the res_mkquery subroutine returns the size of the query. If the query is

larger than the value of the BufferLength parameter, the subroutine is unsuccessful and returns a value of

-1.

Files

 /etc/resolv.conf

 Contains the name server and domain name.

Related Information

The finger command.

Chapter 2. Sockets 161

The dn_comp subroutine, dn_expand subroutine, _getlong subroutine, _getshort subroutine, putlong

subroutine, putshort subroutine, res_init subroutine, “res_ninit Subroutine,” res_query subroutine,

res_search subroutine, res_send subroutine.

Sockets Overview and Understanding Domain Name Resolution in AIX 5L Version 5.3 Communications

Programming Concepts.

res_ninit Subroutine

Purpose

Sets the default values for the members of the _res structure.

Library

Standard C Library (libc.a)

Syntax

#include <resolv.h>

int res_ninit (statp)

res_state statp;

Description

Reads the /etc/resolv.conf configuration file to get the default domain name, search list, and internet

address of the local name server(s). It does this in order to re-initialize the resolver context for a given

thread in a multi-threaded environment.

The res_ninit subroutine sets the default values for the members of the _res structure (defined in the

/usr/include/resolv.h file) after reading the /etc/resolv.conf configuration file to get default domain name,

search list, Internet address of the local name server(s), sort list, and options (for details, please refer to

the /etc/resolv.conf file). If no name server is configured, the server address is set to INADDR_ANY and

the default domain name is obtained from the gethostname subroutine. It also allows the user to override

retrans, retry, and local domain definition using three environment variables RES_TIMEOUT, RES_RETRY,

and LOCALDOMAIN, respectively.

Using this subroutine, each thread can have unique local resolver context. Since the configuration file is

read each time the subroutine is called, it is capable of tracking dynamic changes to the resolver state file.

Changes include, addition or removal of the configuration file or any other modifications to this file and

reflect the same for a given thread. The res_ninit subroutine can also be used in single-threaded

applications to detect dynamic changes to the resolver file even while the program is running (See the

example section below). For more information on the _res structure, see Understanding Domain Name

Resolution in AIX 5L Version 5.3 Communications Programming Concepts.

Parameters

 statp Specifies the state to be initialized.

Examples

cat /etc/resolv.conf

domain in.ibm.com

nameserver 9.184.192.240

The following two examples use the gethostbyname system call to retrieve the host address of a system

(florida.in.ibm.com) continuously. In the first example, gethostbyname is called (by a thread ’resolver’) in a

162 Technical Reference: Communications, Volume 2

multi-threaded environment. The second example is not. Before each call to gethostbyname, the

res_ninit subroutine is called to reflect dynamic changes to the configuration file.

1) #include <stdio.h>

 #include <netdb.h>

 #include <resolv.h>

 #include <pthread.h>

 void *resolver (void *arg);

 main() {

 pthread_t thid;

 if (pthread_create(&thid, NULL, resolver, NULL)) {

 printf("error in thread creation\n");

 exit(); }

 pthread_exit(NULL);

 }

 void *resolver (void *arg) {

 struct hostent *hp;

 struct sockaddr_in client;

 while(1) {

 res_ninit(&_res); /* res_init() with RES_INIT unset would NOT work here */

 hp = (struct hostent *) gethostbyname("florida.in.ibm.com");

 bcopy(hp->h_addr_list[0],&client.sin_addr,sizeof(client.sin_addr));

 printf("hostname: %s\n",inet_ntoa(client.sin_addr));

 }

 }

If the /etc/resolv.conf file is present when the thread ’resolver’ is invoked, the hostname will be resolved

for that thread (using the nameserver 9.184.192.210) and the output will be hostname: 9.182.21.151.

If /etc/resolv.conf is not present, the output will be hostname: 0.0.0.0.

2) The changes to /etc/resolv.conf file are reflected even while the program is running

 #include <stdio.h>

 #include <resolv.h>

 #include <sys.h>

 #include <netdb.h>

 #include <string.h>

 main() {

 struct hostent *hp;

 struct sockaddr_in client;

 while (1) {

 res_ninit(&_res);

 hp = (struct hostent *) gethostbyname("florida.in.ibm.com");

 bcopy(hp->h_addr_list[0],&client.sin_addr,sizeof(client.sin_addr));

 printf("hostname: %s\n",inet_ntoa(client.sin_addr));

 }

 }

If /etc/resolv.conf is present while the program is running, the hostname will be resolved (using the

nameserver 9.184.192.240) and the output will be hostname: 9.182.21.151.

If the /etc/resolv.conf file is not present, the output of the program will be hostname: 0.0.0.0.

Note: In the second example, the res_init subroutine with _res.options = ~RES_INIT can be used

instead of the res_ninit subroutine.

Chapter 2. Sockets 163

Files

The /etc/resolv.conf and /etc/hosts files.

Related Information

The “dn_comp Subroutine” on page 38, “dn_expand Subroutine” on page 39, “_getshort Subroutine” on

page 26, “_getlong Subroutine” on page 25, “_putlong Subroutine” on page 27, “_putshort Subroutine” on

page 28, “res_init Subroutine” on page 158, “res_mkquery Subroutine” on page 159, “res_query

Subroutine,” “res_search Subroutine” on page 166, “res_send Subroutine” on page 168. Understanding

Domain Name resolution

Understanding Domain Name Resolution in AIX 5L Version 5.3 Communications Programming Concepts.

res_query Subroutine

Purpose

Provides an interface to the server query mechanism.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int res_query (DomName, Class, Type, Answer, AnswerLength)

char * DomName;

int Class;

int Type;

u_char * Answer;

int AnswerLength;

Description

The res_query subroutine provides an interface to the server query mechanism. It constructs a query,

sends it to the local server, awaits a response, and makes preliminary checks on the reply. The query

requests information of the specified type and class for the fully-qualified domain name specified in the

DomName parameter. The reply message is left in the answer buffer whose size is specified by the

AnswerLength parameter, which is supplied by the caller.

The res_query subroutine is one of a set of subroutines that form the resolver, a set of functions that

resolve domain names. The _res data structure contains global information used by the resolver

subroutines. The /usr/include/resolv.h file contains the _res structure definition.

All applications containing the res_query subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

164 Technical Reference: Communications, Volume 2

Parameters

 DomName Points to the name of the domain. If the DomName parameter points to a single-component

name and the RES_DEFNAMES structure is set, as it is by default, the subroutine appends

the default domain name to the single-component name. The current domain name is defined

by the name server in use or is specified in the /etc/resolv.conf file.

Class Specifies one of the following values:

C_IN Specifies the ARPA Internet.

C_CHAOS

Specifies the Chaos network at MIT.

Type Requires one of the following values:

T_A Host address

T_NS Authoritative server

T_MD Mail destination

T_MF Mail forwarder

T_CNAME

Canonical name

T_SOA Start-of-authority zone

T_MB Mailbox-domain name

T_MG Mail-group member

T_MR Mail-rename name

T_NULL

Null resource record

T_WKS

Well-known service

T_PTR Domain name pointer

T_HINFO

Host information

T_MINFO

Mailbox information

T_MX Mail-routing information

T_UINFO

User (finger command) information

T_UID User ID

T_GID Group ID

Answer Points to an address where the response is stored.

AnswerLength Specifies the size of the answer buffer.

Return Values

Upon successful completion, the res_query subroutine returns the size of the response. Upon

unsuccessful completion, the res_query subroutine returns a value of -1 and sets the h_errno value to

the appropriate error.

Files

 /etc/resolv.conf

 Contains the name server and domain name.

Chapter 2. Sockets 165

Related Information

The finger command.

The dn_comp subroutine, dn_expand subroutine, _getlong subroutine, _getshort subroutine, putlong

subroutine, putshort subroutine, res_init subroutine, res_mkquery subroutine, “res_ninit Subroutine” on

page 162, res_search subroutine, res_send subroutine.

Sockets Overview and Understanding Domain Name Resolution in AIX 5L Version 5.3 Communications

Programming Concepts.

res_search Subroutine

Purpose

Makes a query and awaits a response.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int res_search (DomName, Class, Type, Answer, AnswerLength)

char * DomName;

int Class;

int Type;

u_char * Answer;

int AnswerLength;

Description

The res_search subroutine makes a query and awaits a response like the res_query subroutine.

However, it also implements the default and search rules controlled by the RES_DEFNAMES and

RES_DNSRCH options.

The res_search subroutine is one of a set of subroutines that form the resolver, a set of functions that

resolve domain names. The _res data structure contains global information used by the resolver

subroutines. The /usr/include/resolv.h file contains the _res structure definition.

All applications containing the res_search subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

166 Technical Reference: Communications, Volume 2

Parameters

 DomName Points to the name of the domain. If the DomName parameter points to a single-component

name and the RES_DEFNAMES structure is set, as it is by default, the subroutine appends

the default domain name to the single-component name. The current domain name is defined

by the name server in use or is specified in the /etc/resolv.conf file.

If the RES_DNSRCH bit is set, as it is by default, the res_search subroutine searches for

host names in both the current domain and in parent domains.

Class Specifies one of the following values:

C_IN Specifies the ARPA Internet.

C_CHAOS

Specifies the Chaos network at MIT.

Type Requires one of the following values:

T_A Host address

T_NS Authoritative server

T_MD Mail destination

T_MF Mail forwarder

T_CNAME

Canonical name

T_SOA Start-of-authority zone

T_MB Mailbox-domain name

T_MG Mail-group member

T_MR Mail-rename name

T_NULL

Null resource record

T_WKS

Well-known service

T_PTR Domain name pointer

T_HINFO

Host information

T_MINFO

Mailbox information

T_MX Mail-routing information

T_UINFO

User (finger command) information

T_UID User ID

T_GID Group ID

Answer Points to an address where the response is stored.

AnswerLength Specifies the size of the answer buffer.

Return Values

Upon successful completion, the res_search subroutine returns the size of the response. Upon

unsuccessful completion, the res_search subroutine returns a value of -1 and sets the h_errno value to

the appropriate error.

Chapter 2. Sockets 167

Files

 /etc/resolv.conf

 Contains the name server and domain name.

Related Information

The finger command.

The dn_comp subroutine, dn_expand subroutine, _getlong subroutine, _getshort subroutine, putlong

subroutine, putshort subroutine, res_init subroutine, res_mkquery subroutine, “res_ninit Subroutine” on

page 162, res_query subroutine, res_send subroutine.

Sockets Overview and Understanding Domain Name Resolution in AIX 5L Version 5.3 Communications

Programming Concepts.

res_send Subroutine

Purpose

Sends a query to a name server and retrieves a response.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int res_send (MessagePtr, MessageLength, Answer, AnswerLength)

char * MsgPtr;

int MsgLength;

char * Answer;

int AnswerLength;

Description

The res_send subroutine sends a query to name servers and calls the res_init subroutine if the

RES_INIT option of the _res structure is not set. This subroutine sends the query to the local name server

and handles time outs and retries.

The res_send subroutine is one of a set of subroutines that form the resolver, a set of functions that

resolve domain names. Global information used by the resolver subroutines is kept in the _res structure.

The /usr/include/resolv.h file contains the _res structure definition.

All applications containing the res_send subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 MessagePtr Points to the beginning of a message.

MessageLength Specifies the length of the message.

168 Technical Reference: Communications, Volume 2

Answer Points to an address where the response is stored.

AnswerLength Specifies the size of the answer area.

Return Values

Upon successful completion, the res_send subroutine returns the length of the message.

If the res_send subroutine is unsuccessful, the subroutine returns a -1.

Files

 /etc/resolv.conf

 Contains general name server and domain name information.

Related Information

The dn_comp subroutine, dn_expand subroutine, _getlong subroutine, _getshort subroutine, putlong

subroutine, putshort subroutine, res_init subroutine, res_mkquery subroutine, “res_ninit Subroutine” on

page 162, res_query subroutine, res_search subroutine.

Sockets Overview and Understanding Domain Name Resolution in AIX 5L Version 5.3 Communications

Programming Concepts.

rexec Subroutine

Purpose

Allows command execution on a remote host.

Library

Standard C Library (libc.a)

Syntax

int rexec (Host, Port, User, Passwd, Command, ErrFileDescParam)

char **Host;

int Port;

char *User, *Passwd,

*Command;

int *ErrFileDescParam;

Description

The rexec subroutine allows the calling process to start commands on a remote host.

If the rexec connection succeeds, a socket in the Internet domain of type SOCK_STREAM is returned to

the calling process and is given to the remote command as standard input and standard output.

All applications containing the rexec subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Chapter 2. Sockets 169

Parameters

 Host Contains the name of a remote host that is listed in the /etc/hosts file or

/etc/resolv.config file. If the name of the host is not found in either file, the rexec

subroutine is unsuccessful.

Port Specifies the well-known DARPA Internet port to use for the connection. A pointer to

the structure that contains the necessary port can be obtained by issuing the

following library call:

getservbyname("exec","tcp")

User and Passwd Points to a user ID and password valid at the host. If these parameters are not

supplied, the rexec subroutine takes the following actions until finding a user ID and

password to send to the remote host:

1. Searches the current environment for the user ID and password on the remote

host.

2. Searches the user’s home directory for a file called $HOME/.netrc that contains a

user ID and password.

3. Prompts the user for a user ID and password.

Command Points to the name of the command to be executed at the remote host.

ErrFileDescParam Specifies one of the following values:

Non-zero

Indicates an auxiliary channel to a control process is set up, and a descriptor

for it is placed in the ErrFileDescParam parameter. The control process

provides diagnostic output from the remote command on this channel and

also accepts bytes as signal numbers to be forwarded to the process group

of the command. This diagnostic information does not include remote

authorization failure, since this connection is set up after authorization has

been verified.

0 Indicates the standard error of the remote command is the same as standard

output, and no provision is made for sending arbitrary signals to the remote

process. In this case, however, it may be possible to send out-of-band data

to the remote command.

Return Values

Upon successful completion, the system returns a socket to the remote command.

If the rexec subroutine is unsuccessful, the system returns a -1 indicating that the specified host name

does not exist.

Files

 /etc/hosts Contains host names and their addresses for hosts in

a network. This file is used to resolve a host name

into an Internet address.

/etc/resolv.conf Contains the name server and domain name.

$HOME/.netrc Contains automatic login information.

Related Information

The getservbyname subroutine, rcmd subroutine, rresvport subroutine, ruserok subroutine.

The rexecd daemon.

The TCP/IP Overview for System Management in AIX 5L Version 5.3 System Management Guide:

Communications and Networks.

170 Technical Reference: Communications, Volume 2

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

rexec_af Subroutine

Purpose

Allows command execution on a remote host.

Syntax

int rexec_af(char **ahost, unsigned short rport, const char *name,

 const char *pass, const char *cmd, int *fd2p, int af)

Description

The rexec_af subroutine allows the calling process to start commands on a remote host. It behaves the

same as the existing rexec() function, but instead of creating only an AF_INET TCP socket, it can also

create an AF_INET6 TCP socket.

The rexec_af subroutine is useful because the existing rexec() function cannot transparently use

AF_INET6 sockets. This is because an application would not be prepared to handle AF_INET6 addresses

returned by functions such as getpeername() on the file descriptor created by rexec().

If the rexec_af connection succeeds, a socket in the Internet domain of type SOCK_STREAM is returned

to the calling process and is given to the remote command as standard input and standard output.

All applications containing the rexec_af subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 ahost Contains the name of a remote host that is listed in the /etc/hosts file or /etc/resolv.config file.

If the name of the host is not found in either file, the rexec subroutine is unsuccessful.

rport Specifies the well-known DARPA Internet port to use for the connection. A pointer to the

structure that contains the necessary port can be obtained by issuing the following library call:

getservbyname("exec","tcp")

name and pass Points to a valid user ID and password at the host. If these parameters are not supplied, the

rexec_af subroutine takes the following actions until it finds a user ID and password to send to

the remote host:

1. Searches the current environment for the user ID and password on the remote host.

2. Searches the user’s home directory for a file called $HOME/.netrc that contains a user ID

and password.

3. Prompts the user for a user ID and password.

cmd Points to the name of the command to be executed at the remote host.

Chapter 2. Sockets 171

fd2p Specifies one of the following values:

Non-zero

Indicates that an auxiliary channel to a control process is set up, and a descriptor for it

is placed in the fd2p parameter. The control process provides diagnostic output from

the remote command on this channel and also accepts bytes as signal numbers to be

forwarded to the process group of the command. This diagnostic information does not

include remote authorization failure, since this connection is set up after authorization

has been verified.

0 Indicates that the standard error of the remote command is the same as standard

output, and no provision is made for sending arbitrary signals to the remote process.

In this case, however, it might be possible to send out-of-band data to the remote

command.

af The family argument is AF_INET, AF_INET6, or AF_UNSPEC. When either AF_INET or

AF_INET6 is specified, this subroutine will create a socket of the specified address family.

When AF_UNSPEC is specified, it will try all possible address families until a connection can be

established, and will return the associated socket of the connection.

Return Values

Upon successful completion, the system returns a socket to the remote command. If the rexec_af

subroutine is unsuccessful, the system returns a –1, indicating that the specified host name does not exist.

Files

 /etc/hosts Contains host names and their addresses for hosts in

a network. This file is used to resolve a host name

into an Internet address.

/etc/resolv.conf Contains the name server and domain name.

$HOME/.netrc Contains automatic login information.

Related Information

“rcmd_af Subroutine” on page 150, “rexec Subroutine” on page 169, “rresvport_af Subroutine” on page

173.

rresvport Subroutine

Purpose

Retrieves a socket with a privileged address.

Library

Standard C Library (libc.a)

Syntax

int rresvport (Port)

int *Port;

Description

The rresvport subroutine obtains a socket with a privileged address bound to the socket. A privileged

Internet port is one that falls in a range between 0 and 1023.

Only processes with an effective user ID of root user can use the rresvport subroutine. An authentication

scheme based on remote port numbers is used to verify permissions.

172 Technical Reference: Communications, Volume 2

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is returned to the

calling process.

All applications containing the rresvport subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Port Specifies the port to use for the connection.

Return Values

Upon successful completion, the rresvport subroutine returns a valid, bound socket descriptor.

If the rresvport subroutine is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable.

Error Codes

The rresvport subroutine is unsuccessful if any of the following errors occurs:

 Error Description

EAGAIN All network ports are in use.

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

EMFILE Two hundred file descriptors are currently open.

ENFILE The system file table is full.

ENOBUFS Insufficient buffers are available in the system to complete the subroutine.

Files

 /etc/services Contains the service names.

Related Information

The rcmd subroutine, ruserok subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

rresvport_af Subroutine

Purpose

Retrieves a socket with a privileged address.

Syntax

 int rresvport_af(int *port, int family);

Description

The rresvport_af subroutine obtains a socket with a privileged address bound to the socket. A privileged

Internet port is one that falls in a range between 0 and 1023.

Chapter 2. Sockets 173

This subroutine is similar to the existing rresvport() subroutine, except that rresvport_af also takes and

address family as an argument. This function is capable of creating either an AF_INET/TCP or an

AF_INET6/TCP socket.

Only processes with an effective user ID of root user can use the rresvport subroutine. An authentication

scheme based on remote port numbers is used to verify permissions.

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is returned to the

calling process.

All applications containing the rresvport subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 port Specifies the port to use for the connection.

family Specifies either AF_INET or AF_INET6 to accommodate the appropriate version.

Return Values

Upon successful completion, the rresvport_af subroutine returns a valid, bound socket descriptor.

If the rresvport_af subroutine is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable.

Error Codes

 EAFNOSUPPORT The address family is not supported.

EAGAIN All network ports are in use.

EMFILE Two hundred file descriptors are currently open.

ENFILE The system file table is full.

ENOBUFS Insufficient buffers are available in the system to complete the subroutine.

Files

 /etc/services Contains the service names.

Related Information

“rcmd_af Subroutine” on page 150, “rexec_af Subroutine” on page 171, “rresvport Subroutine” on page

172.

ruserok Subroutine

Purpose

Allows servers to authenticate clients.

Library

Standard C Library (libc.a)

174 Technical Reference: Communications, Volume 2

Syntax

int ruserok (Host, RootUser, RemoteUser, LocalUser)

char * Host;

int RootUser;

char * RemoteUser,

* LocalUser;

Description

The ruserok subroutine allows servers to authenticate clients requesting services.

Always specify the host name. If the local domain and remote domain are the same, specifying the domain

parts is optional. To determine the domain of the host, use the gethostname subroutine.

All applications containing the ruserok subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Host Specifies the name of a remote host. The ruserok subroutine checks for this host in the

/etc/host.equiv file. Then, if necessary, the subroutine checks a file in the user’s home directory

at the server called /$HOME/.rhosts for a host and remote user ID.

RootUser Specifies a value to indicate whether the effective user ID of the calling process is a root user. A

value of 0 indicates the process does not have a root user ID. A value of 1 indicates that the

process has local root user privileges, and the /etc/hosts.equiv file is not checked.

RemoteUser Points to a user name that is valid at the remote host. Any valid user name can be specified.

LocalUser Points to a user name that is valid at the local host. Any valid user name can be specified.

Return Values

The ruserok subroutine returns a 0, if the subroutine successfully locates the name specified by the Host

parameter in the /etc/hosts.equiv file or the IDs specified by the Host and RemoteUser parameters are

found in the /$HOME/.rhosts file.

If the name specified by the Host parameter was not found, the ruserok subroutine returns a -1.

Files

 /etc/services Contains service names.

/etc/host.equiv Specifies foreign host names.

/$HOME/.rhosts Specifies the remote users of a local user account.

Related Information

The rlogind command, rshd command.

The gethostname subroutine, rcmd subroutine, rresvport subroutine, sethostname subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

Chapter 2. Sockets 175

sctp_opt_info Subroutine

Purpose

Passes information both into and out of SCTP stack.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <sctpapi.h>

int sctp_opt_info(sd, id, opt, *arg_size, *size);

int sd;

sctp_assoc_t id;

int opt;

void *arg_size;

size_t *size;

Description

Applications use the sctp_opt_info subroutine to get information about various SCTP socket options from

the stack. For the sockets with multiple associations, the association ID can be specified to apply the

operation on any particular association of a socket. Because an SCTP association supports multihoming,

this operation can be used to specify any particular peer address using a sockaddr_storage structure. In

this case, the result of the operation will be applied to only that particular peer address.

Implementation Specifics

The sctp_opt_info subroutine is part of Base Operating System (BOS) Runtime.

Parameters

 sd Specifies the UDP style socket descriptor returned from the socket system call.

id Specifies the identifier of the association to query.

opt Specifies the socket option to get.

arg_size Specifies an option specific structure buffer provided by the caller.

size Specifies the size of the option returned.

Return Values

Upon successful completion, the sctp_opt_info subroutine returns 0.

If the sctp_opt_info subroutine is unsuccessful, the subroutine handler returns a value of -1 to the calling

program and sets errno to the appropriate error code.

Error Codes

The sctp_opt_info subroutine is unsuccessful if any of the following errors occurs:

 EFAULT Indicates that the user has insufficient authority to access the data, or the

address specified in the uaddr parameter is not valid.

EIO Indicates that a permanent I/O error occurred while referencing data.

ENOMEM Indicates insufficient memory for the required paging operation.

176 Technical Reference: Communications, Volume 2

ENOSPC Indicates insufficient file system or paging space.

ENOBUFS Insufficient resources were available in the system to complete the call.

ENOPROTOOPT Protocol not available.

ENOTSOCK Indicates that the user has tried to do a socket operation on a non-socket.

Related Information

The “sctpctrl Subroutine” on page 178, “sctp_peeloff Subroutine.”

SCTP General Documentation.

sctp_peeloff Subroutine

Purpose

Branches off an association into a separate socket.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <sctpapi.h>

int sctp_peeloff(sd, *assoc_id);

int sd;

sctp_assoc_t *assoc_id;

Description

An application uses the sctp_peeloff subroutine when it wants to branch-off an existing association into a

separate socket/file descriptor. It returns a new socket descriptor, which in turn can be used to send and

receive subsequent SCTP packets. After it has been branched off, an association becomes completely

independent of the original socket. Any subsequent data or control operations to that association must be

passed using the new socket descriptor. Also, a close on the original socket descriptor will not close the

new socket descriptor branched out of the association.

All the associations under the same socket share the same socket buffer space of the socket that they

belong to. If an association gets branched off to a new socket using sctp_peeloff, then it inherits the

socket buffer space associated with the new socket descriptor. This way, the association that got peeled

off keeps more buffer space.

Implementation Specifics

The sctp_peeloff subroutine is part of Base Operating System (BOS) Runtime.

Parameters

 sd Specifies the UDP style socket descriptor returned from the socket system call.

assoc_id Specifies the identifier of the association that is to be branched-off to a separate socket

descriptor.

Chapter 2. Sockets 177

Return Values

Upon successful completion, the sctp_peeloff subroutine returns the nonnegative socket descriptor of the

branched-off socket.

If the sctp_peeloff subroutine is unsuccessful, the subroutine handler returns a value of -1 to the calling

program and moves an error code to the errno global variable.

Error Codes

The sctp_peeloff subroutine is unsuccessful if any of the following errors occurs:

 EINVAL Invalid argument.

EBADF Bad file descriptor.

EAFNOSUPPORT The addresses in the specified address family cannot be used with this

socket.

ESOCKTNOSUPPORT The socket in the specified address family is not supported.

EMFILE The per-process descriptor table is full.

ENOBUFS Insufficient resources were available in the system to complete the call.

ECONNABORTED The client aborted the connection.

Related Information

“sctpctrl Subroutine,” “sctp_opt_info Subroutine” on page 176

SCTP General Documentation.

sctpctrl Subroutine

Purpose

Controls and configures SCTP.

Syntax

sctpctrl {load|unload|set}

sctpctrl stats [reset] [interval]

sctpctrl set {name=value|default [name]}

sctpctrl get [name]

Description

The sctpctrl subroutine controls and configures the SCTP kernel extension. This subroutine can be used

to load and unload the SCTP kernel extension. It can also be used to dump SCTP data, and set and

retrieve various SCTP tunables. In addition, the sctpctrl subroutine can be used to read and reset the

SCTP specific network statistics.

Parameters

 load Loads the SCTP kernel extension if not loaded.

unload Unloads the SCTP kernel extension if loaded.

stats [reset] [interval] Displays SCTP statistics. The optional reset command will clear (0) the statistics. If the

interval parameter (in seconds) is added, the program does not exit; instead, it outputs the

statistics every interval seconds.

178 Technical Reference: Communications, Volume 2

set {name=value|default

[name]}

Sets the SCTP tunable to a value. If default is specified, all the tunables are set to their

default values. If optional [name] is specified followed by default, the tunable described by

name is set to its default value.

get [name] Gets the value of the tunable described by its optional name parameter. If the name

parameter is not specified, get gets the values of all the tunables.

Examples

1. To load the sctp kernel extension, enter:

sctpctrl load

2. To unload the sctp kernel extension, enter:

sctpctrl unload

3. To reset the SCTP statistics, enter:

sctpctrl stats reset

This command will zero-out all the SCTP statistics.

4. To get the values of the SCTP tunable, enter:

sctpctrl get

This will list all the SCTP tunables and their values. Here is a sample output.

 sctp_assoc_maxerr = 10

 sctp_cookie_life = 60

 sctp_delack_timer = 4

 sctp_dontdelayack = 1

 sctp_ecn = 1

 sctp_ephemeral_high = 65535

 sctp_ephemeral_low = 32768

 sctp_instreams = 2048

 sctp_maxburst = 8

 sctp_outstreams = 10

 sctp_path_maxerr = 5

 sctp_pmtu_discover = 1

 sctp_rttmax = 60

 sctp_rttmin = 1

 sctp_recvspace = 65536

 sctp_sendspace = 65536

 sctp_send_fewsacks = 0

5. To set sctp_path_maxerr to a value of 6, enter:

sctpctrl set sctp_path_maxerr=6

Files

 /usr/sbin/sctpctrl Contains the sctpctrl command.

/usr/lib/drivers/sctp Contains the SCTP kernel extension.

Related Information

The “sctp_peeloff Subroutine” on page 177, “sctp_opt_info Subroutine” on page 176.

SCTP General Documentation.

send Subroutine

Purpose

Sends messages from a connected socket.

Chapter 2. Sockets 179

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <sys/socketvar.h>

#include <sys/socket.h>

int send (Socket,

Message, Length, Flags)

int Socket;

const void * Message;

size_t Length;

int Flags;

Description

The send subroutine sends a message only when the socket is connected. This subroutine on a socket is

not thread safe. The sendto and sendmsg subroutines can be used with unconnected or connected

sockets.

To broadcast on a socket, first issue a setsockopt subroutine using the SO_BROADCAST option to gain

broadcast permissions.

Specify the length of the message with the Length parameter. If the message is too long to pass through

the underlying protocol, the system returns an error and does not transmit the message.

No indication of failure to deliver is implied in a send subroutine. A return value of -1 indicates some

locally detected errors.

If no space for messages is available at the sending socket to hold the message to be transmitted, the

send subroutine blocks unless the socket is in a nonblocking I/O mode. Use the select subroutine to

determine when it is possible to send more data.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure

BSD 4.3 compatible. For more details refer to socket.h.

Parameters

 Socket Specifies the unique name for the socket.

Message Points to the address of the message to send.

Length Specifies the length of the message in bytes.

Flags Allows the sender to control the transmission of the message. The Flags parameter used to send a call

is formed by logically ORing one or both of the values shown in the following list:

MSG_OOB

Processes out-of-band data on sockets that support SOCK_STREAM communication.

MSG_DONTROUTE

Sends without using routing tables.

MSG_MPEG2

Indicates that this block is a MPEG2 block. This flag is valid SOCK_CONN_DGRAM types of

sockets only.

180 Technical Reference: Communications, Volume 2

Return Values

Upon successful completion, the send subroutine returns the number of characters sent.

If the send subroutine is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable.

Error Codes

The subroutine is unsuccessful if any of the following errors occurs:

 Error Description

EACCES Write access to the named socket is denied, or the socket trying to send a broadcast packet

does not have broadcast capability.

EADDRNOTAVAIL The specified address is not a valid address.

EAFNOSUPPORT The specified address is not a valid address for the address family of this socket.

EBADF The Socket parameter is not valid.

ECONNRESET A connection was forcibly closed by a peer.

EDESTADDRREQ The socket is not in connection-mode and no peer address is set.

EFAULT The Address parameter is not in a writable part of the user address space.

EHOSTUNREACH The destination host cannot be reached.

EINTR A signal interrupted send before any data was transmitted.

EINVAL The Length parameter is invalid.

EISCONN A SOCK_DGRAM socket is already connected.

EMSGSIZE The message is too large to be sent all at once, as the socket requires.

ENETUNREACH The destination network is not reachable.

ENOBUFS Insufficient resources were available in the system to perform the operation.

ENOENT The path name does not name an existing file, or the path name is an empty string.

ENOMEM The available data space in memory is not large enough to hold group/ACL information.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP The socket argument is associated with a socket that does not support one or more of the

values set in Flags.

EPIPE An attempt was made to send on a socket that was connected, but the connection has been

shut down either by the remote peer or by this side of the connection. If the socket is of type

SOCK_STREAM, the SIGPIPE signal is generated to the calling process.

EWOULDBLOCK The socket is marked nonblocking, and no connections are present to be accepted.

Related Information

The connect subroutine, getsockopt subroutine, recv subroutine, recvfrom subroutine, recvmsg

subroutine, select subroutine, sendmsg subroutine, sendto subroutine, setsockopt subroutine.

shutdown subroutine, socket subroutine.

Sockets Overview and Understanding Socket Data Transfer in AIX 5L Version 5.3 Communications

Programming Concepts.

sendmsg Subroutine

Purpose

Sends a message from a socket using a message structure.

Library

Standard C Library (libc.a)

Chapter 2. Sockets 181

Syntax

#include <sys/types.h>

#include <sys/socketvar.h>

#include <sys/socket.h>

int sendmsg (Socket, Message, Flags)

int Socket;

const struct msghdr Message [];

int Flags;

Description

The sendmsg subroutine sends messages through connected or unconnected sockets using the msghdr

message structure. The /usr/include/sys/socket.h file contains the msghdr structure and defines the

structure members. In BSD 4.4, the size and members of the msghdr message structure have been

modified. Applications wanting to start the old structure need to compile with COMPAT_43 defined. The

default behaviour is that of BSD 4.4.

To broadcast on a socket, the application program must first issue a setsockopt subroutine using the

SO_BROADCAST option to gain broadcast permissions.

The sendmsg subroutine supports only 15 message elements.

All applications containing the sendmsg subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

The sendmsg routine supports IPv6 ancillary data elements as defined in the Advanced Sockets API for

IPv6.

 Parameters

 Socket Specifies the socket descriptor.

Message Points to the msghdr message structure containing the message to be sent.

Flags Allows the sender to control the message transmission. The sys/socket.h file contains the Flags

parameter. The Flags parameter used to send a call is formed by logically ORing one or both of the

following values:

MSG_OOB

Processes out-of-band data on sockets that support SOCK_STREAM.

Note: The following value is not for general use. It is an administrative tool used for debugging or for

routing programs.

MSG_DONTROUTE

Sends without using routing tables.

MSG_MPEG2

Indicates that this block is a MPEG2 block. It only applies to SOCK_CONN_DGRAM types of

sockets only.

Return Values

Upon successful completion, the sendmsg subroutine returns the number of characters sent.

If the sendmsg subroutine is unsuccessful, the system handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable.

182 Technical Reference: Communications, Volume 2

Error Codes

The sendmsg subroutine is unsuccessful if any of the following errors occurs:

 Error Description

EACCES Write access to the named socket is denied, or the socket trying to send a broadcast packet

does not have broadcast capability.

EADDRNOTAVAIL The specified address is not a valid address.

EAFNOSUPPORT The specified address is not a valid address for the address family of this socket.

EBADF The Socket parameter is not valid.

ECONNRESET A connection was forcibly closed by a peer.

EDESTADDRREQ The socket is not in connection-mode and does not have its peer address set.

EFAULT The Address parameter is not in a writable part of the user address space.

EHOSTUNREACH The destination host cannot be reached.

EINTR A signal interrupted sendmsg before any data was transmitted.

EINVAL The length of the msghdr structure is invalid.

EISCONN A SOCK_DGRAM socket is already connected.

EMSGSIZE The message is too large to be sent all at once (as the socket requires), or the msg_iovlen

member of the msghdr structure pointed to by Message is less than or equal to 0 or is greater

than IOV_MAX.

ENOENT The path name does not name an existing file, or the path name is an empty string.

ENETUNREACH The destination network is not reachable.

ENOBUFS The system ran out of memory for an internal data structure.

ENOMEM The available data space in memory is not large enough to hold group/ACL information.

ENOPROTOOPT The protocol is not 64-bit supported.

ENOTCONN The socket is in connection-mode but is not connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP The socket argument is associated with a socket that does not support one or more of the

values set in flags.

EPIPE An attempt was made to send on a socket that was connected, but the connection has been

shut down either by the remote peer or by this side of the connection. If the socket is of type

SOCK_STREAM, the SIGPIPE signal is generated to the calling process.

EWOULDBLOCK The socket is marked nonblocking, and no connections are present to be accepted.

Related Information

The no command.

The connect subroutine, getsockopt subroutine, recv subroutine, recvfrom subroutine, recvmsg

subroutine, select subroutine, send subroutine, sendto subroutine, setsockopt subroutine. shutdown

subroutine, socket subroutine.

Sockets Overview and Understanding Socket Data Transfer in AIX 5L Version 5.3 Communications

Programming Concepts.

sendto Subroutine

Purpose

Sends messages through a socket.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

Chapter 2. Sockets 183

int sendto

(Socket, Message, Length,

Flags, To, ToLength)

int Socket;

const void * Message;

size_t Length;

int Flags;

const struct sockaddr * To;

socklen_t ToLength;

Description

The sendto subroutine allows an application program to send messages through an unconnected socket

by specifying a destination address.

To broadcast on a socket, first issue a setsockopt subroutine using the SO_BROADCAST option to gain

broadcast permissions.

Provide the address of the target using the To parameter. Specify the length of the message with the

Length parameter. If the message is too long to pass through the underlying protocol, the error EMSGSIZE

is returned and the message is not transmitted.

If the sending socket has no space to hold the message to be transmitted, the sendto subroutine blocks

the message unless the socket is in a nonblocking I/O mode.

Use the select subroutine to determine when it is possible to send more data.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure

BSD 4.3 compatible. For more details refer to socket.h.

Parameters

 Socket Specifies the unique name for the socket.

Message Specifies the address containing the message to be sent.

Length Specifies the size of the message in bytes.

Flags Allows the sender to control the message transmission. The Flags parameter used to send a call is

formed by logically ORing one or both of the following values:

MSG_OOB

Processes out-of-band data on sockets that support SOCK_STREAM.

Note:

MSG_DONTROUTE

Sends without using routing tables.

The /usr/include/sys/socket.h file defines the Flags parameter.

To Specifies the destination address for the message. The destination address is a sockaddr structure

defined in the /usr/include/sys/socket.h file.

ToLength Specifies the size of the destination address.

Return Values

Upon successful completion, the sendto subroutine returns the number of characters sent.

If the sendto subroutine is unsuccessful, the system returns a value of -1, and the errno global variable is

set to indicate the error.

184 Technical Reference: Communications, Volume 2

Error Codes

The subroutine is unsuccessful if any of the following errors occurs:

 Error Description

EACCES Write access to the named socket is denied, or the socket trying to send a broadcast packet

does not have broadcast capability.

EADDRNOTAVAIL The specified address is not a valid address.

EAFNOSUPPORT The specified address is not a valid address for the address family of this socket.

EBADF The Socket parameter is not valid.

ECONNRESET A connection was forcibly closed by a peer.

EDESTADDRREQ The socket is not in connection-mode and no peer address is set.

EFAULT The Address parameter is not in a writable part of the user address space.

EHOSTUNREACH The destination host cannot be reached.

EINTR A signal interrupted sendto before any data was transmitted.

EINVAL The Length or ToLength parameter is invalid.

EISCONN A SOCK_DGRAM socket is already connected.

EMSGSIZE The message is too large to be sent all at once as the socket requires.

ENETUNREACH The destination network is not reachable.

ENOBUFS The system ran out of memory for an internal data structure.

ENOENT The path name does not name an existing file, or the path name is an empty string.

ENOMEM The available data space in memory is not large enough to hold group/ACL information.

ENOPROTOOPT The protocol is not 64-bit supported.

ENOTCONN The socket is in connection-mode but is not connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EOPNOTSUPP The socket argument is associated with a socket that does not support one or more of the

values set in Flags.

EPIPE An attempt was made to send on a socket that was connected, but the connection has been

shut down either by the remote peer or by this side of the connection. If the socket is of type

SOCK_STREAM, the SIGPIPE signal is generated to the calling process.

EWOULDBLOCK The socket is marked nonblocking, and no connections are present to be accepted.

Related Information

The getsockopt subroutine, recv subroutine, recvfrom subroutine, recvmsg subroutine, select

subroutine, send subroutine, sendmsg subroutine, setsockopt subroutine. shutdown subroutine, socket

subroutine.

Sending UNIX Datagrams Example Program, Sending Internet Datagrams Example Program, Sockets

Overview, Understanding Socket Data Transfer in AIX 5L Version 5.3 Communications Programming

Concepts.

send_file Subroutine

Purpose

Sends the contents of a file through a socket.

Library

Standard C Library (libc.a)

Syntax

#include < sys/socket.h >

ssize_t send_file(Socket_p, sf_iobuf, flags)

Chapter 2. Sockets 185

int * Socket_p;

struct sf_parms * sf_iobuf;

uint_t flags;

Description

The send_file subroutine sends data from the opened file specified in the sf_iobuf parameter, over the

connected socket pointed to by the Socket_p parameter.

Note: Currently, the send_file only supports the TCP/IP protocol (SOCK_STREAM socket in AF_INET).

An error will be returned when this function is used on any other types of sockets.

Parameters

 Socket_p Points to the socket descriptor of the socket which the file will be sent to.

Note: This is different from most of the socket functions.

186 Technical Reference: Communications, Volume 2

sf_iobuf Points to a sf_parms structure defined as follows:

/*

 * Structure for the send_file system call

 */

#ifdef __64BIT__

#define SF_INT64(x) int64_t x;

#define SF_UINT64(x) uint64_t x;

#else

#ifdef _LONG_LONG

#define SF_INT64(x) int64_t x;

#define SF_UINT64(x) uint64_t x;

#else

#define SF_INT64(x) int filler_##x; int x;

#define SF_UINT64(x) int filler_##x; uint_t x;

#endif

#endif

struct sf_parms {

 /* --------- header parms ---------- */

 void *header_data; /* Input/Output. Points to header buf */

 uint_t header_length; /* Input/Output. Length of the header */

 /* --------- file parms ------------ */

 int file_descriptor; /* Input. File descriptor of the file */

 SF_UINT64(file_size) /* Output. Size of the file */

 SF_UINT64(file_offset) /* Input/Output. Starting offset */

 SF_INT64(file_bytes) /* Input/Output. number of bytes to send */

 /* --------- trailer parms --------- */

 void *trailer_data; /* Input/Output. Points to trailer buf */

 uint_t trailer_length; /* Input/Output. Length of the trailer */

 /* --------- return info ----------- */

 SF_UINT64(bytes_sent) /* Output. number of bytes sent */

};

header_data

Points to a buffer that contains header data which is to be sent before the file data. May be a

NULL pointer if header_length is 0. This field will be updated by send_file when header is

transmitted - that is, header_data + number of bytes of the header sent.

header_length

Specifies the number of bytes in the header_data. This field must be set to 0 to indicate that

header data is not to be sent. This field will be updated by send_file when header is transmitted

- that is, header_length - number of bytes of the header sent.

file_descriptor

Specifies the file descriptor for a file that has been opened and is readable. This is the

descriptor for the file that contains the data to be transmitted. The file_descriptor is ignored

when file_bytes = 0. This field is not updated by send_file.

file_size

Contains the byte size of the file specified by file_descriptor. This field is filled in by the kernel.

file_offset

Specifies the byte offset into the file from which to start sending data. This field is updated by

the send_file when file data is transmitted - that is, file_offset + number of bytes of the file

data sent.

Chapter 2. Sockets 187

file_bytes

Specifies the number of bytes from the file to be transmitted. Setting file_bytes to -1 transmits

the entire file from the file_offset. When this field is not set to -1, it is updated by send_file

when file data is transmitted - that is, file_bytes - number of bytes of the file data sent.

trailer_data

Points to a buffer that contains trailer data which is to be sent after the file data. May be a NULL

pointer if trailer_length is 0. This field will be updated by send_file when trailer is transmitted -

that is, trailer_data + number of bytes of the trailer sent.

trailer_length

Specifies the number of bytes in the trailer_data. This field must be set to 0 to indicate that

trailer data is not to be sent. This field will be updated by send_file when trailer is transmitted -

that is, trailer_length - number of bytes of the trailer sent.

bytes_sent

Contains number of bytes that were actually sent in this call to send_file. This field is filled in by

the kernel.

All fields marked with Input in the sf_parms structure requires setup by an application prior to the

send_file calls. All fields marked with Output in the sf_parms structure adjusts by send_file when it

successfully transmitted data, that is, either the specified data transmission is partially or completely

done.

The send_file subroutine attempts to write header_length bytes from the buffer pointed to by

header_data, followed by file_bytes from the file associated with file_descriptor, followed by trailer_length

bytes from the buffer pointed to by trailer_data, over the connection associated with the socket pointed to

by Socket_p.

As the data is sent, the kernel updates the parameters pointed by sf_iobuf so that if the send_file has to

be called multiple times (either due to interruptions by signals, or due to non-blocking I/O mode) in order

to complete a file data transmission, the application can reissue the send_file command without setting

or re-adjusting the parameters over and over again.

If the application sets file_offset greater than the actual file size, or file_bytes greater than (the actual file

size - file_offset), the return value will be -1 with errno EINVAL.

188 Technical Reference: Communications, Volume 2

flags Specifies the following attributes:

SF_CLOSE

Closes the socket pointed to by Socket_p after the data has been successfully sent or queued

for transmission.

SF_REUSE

Prepares the socket for reuse after the data has been successfully sent or queued for

transmission and the existing connection closed.

Note: This option is currently not supported on this operating system.

SF_DONT_CACHE

Does not put the specified file in the Network Buffer Cache.

SF_SYNC_CACHE

Verifies/Updates the Network Buffer Cache for the specified file before transmission.

When the SF_CLOSE flag is set, the connected socket specified by Socket_p will be disconnected and

closed by send_file after the requested transmission has been successfully done. The socket descriptor

pointed to by Socket_p will be set to -1. This flag won’t take effect if send_file returns non-0.

The flag SF_REUSE currently is not supported by AIX. When this flag is specified, the socket pointed by

Socket_p will be closed and returned as -1. A new socket needs to be created for the next connection.

send_file will take advantage of a Network Buffer Cache in kernel memory to dynamically cache the

output file data. This will help to improve the send_file performance for files which are:

1. accessed repetitively through network and

2. not changed frequently.

Applications can exclude the specified file from being cached by using the SF_DONT_CACHE flag.

send_file will update the cache every so often to make sure that the file data in cache is valid for a

certain time period. The network option parameter ″send_file_duration″ controlled by the no command

can be modified to configure the interval of the send_file cache validation, the default is 300 (in

seconds). Applications can use the SF_SYNC_CACHE flag to ensure that a cache validation of the

specified file will occur before the file is sent by send_file, regardless the value of the

″send_file_duration″. Other Network Buffer Cache related parameters are ″nbc_limit″, nbc_max_cache″,

and nbc_min_cache″. For additional infromation, see the no command.

Return Value

There are three possible return values from send_file:

 Value Description

-1 an error has occurred, errno contains the error code.

0 the command has completed successfully.

1 the command was completed partially, some data has been transmitted but the command has to return for

some reason, for example, the command was interrupted by signals.

The fields marked with Output in the sf_parms structure (pointed to by sf_iobuf) is updated by send_file

when the return value is either 0 or 1. The bytes_sent field contains the total number of bytes that were

sent in this call. It is always true that bytes_sent (Output) <= header_length(Input) + file_bytes(Input) +

trailer_length (Input).

The send_file supports the blocking I/O mode and the non-blocking I/O mode. In the blocking I/O mode,

send_file blocks until all file data (plus the header and the trailer) is sent. It adjusts the sf_iobuf to reflect

the transmission results, and return 0. It is possible that send_file can be interrupted before the request is

fully done, in that case, it adjusts the sf_iobuf to reflect the transmission progress, and return 1.

In the non-blocking I/O mode, the send_file transmits as much as the socket space allows, adjusts the

sf_iobuf to reflect the transmission progress, and returns either 0 or 1. When there is no socket space in

Chapter 2. Sockets 189

the system to buffer any of the data, the send_file returns -1 and sets errno to EWOULDBLOCK. select

or poll can be used to determine when it is possible to send more data.

 Possible errno returned:

EBADF Either the socket or the file descriptor parameter is not valid.

ENOTSOCK The socket parameter refers to a file, not a socket.

EPROTONOSUPPORT Protocol not supported.

EFAULT The addresses specified in the HeaderTailer parameter is not in a

writable part of the user-address space.

EINTR The operation was interrupted by a signal before any data was sent.

(If some data was sent, send_file returns the number of bytes sent

before the signal, and EINTR is not set).

EINVAL The offset, length of the HeaderTrailer, or flags parameter is invalid.

ENOTCONN A send_file on a socket that is not connected, a send_file on a

socket that has not completed the connect sequence with its peer,

or is no longer connected to its peer.

EWOULDBLOCK The socket is marked non-blocking and the requested operation

would block.

ENOMEM No memory is available in the system to perform the operation.

PerformanceNote

By taking advantage of the Network Buffer Cache, send_file provides better performance and network

throughput for file transmission. It is recommanded for files bigger than 4K bytes.

Related Information

The connect subroutine, getsockopt subroutine, recv subroutine, recvfrom subroutine, recvmsg

subroutine, select subroutine, sendmsg subroutine, sendto subroutine, setsockopt subroutine,

shutdown subroutine, socket subroutine.

Sockets Overview and Understanding Socket Data Transfer in AIX 5L Version 5.3 Communications

Programming Concepts.

set_auth_method Subroutine

Purpose

Sets the authentication methods for the rcmds for this system.

Library

Authentication Methods Library (libauthm.a)

Syntax

Description

This method configures the authentication methods for the system. The authentication methods should be

passed to the function in the order in which they should be attempted in the unsigned integer pointer in

which the user passed.

The list is an array of unsigned integers terminated by a zero. Each integer identifies an authentication

method. The order that a client should attempt to authenticate is defined by the order of the list.

The flags identifying the authentication methods are defined in the /usr/include/authm.h file.

190 Technical Reference: Communications, Volume 2

Any undefined bits in the input parameter invalidate the entire command. If the same authentication

method is specified twice or if any authentication method is specified after Standard AIX, the command

fails.

The user must have root authority or this method fails.

Parameter

 authm Points to an array of unsigned integers. The list of authentication methods to be set is terminated by a

zero.

Return Values

Upon successful completion, the set_auth_method subroutine returns a zero.

Upon unsuccessful completion, the set_auth_method subroutine returns an errno.

Related Information

The chauthent command, ftp command, lsauthent command, rcp command, rlogin command, rsh

command, telnet, tn, or tn3270 command.

The get_auth_method subroutine.

Network Overview in AIX 5L Version 5.3 System Management Guide: Communications and Networks.

Secure Rcmds in AIX 5L Version 5.3 System User’s Guide: Communications and Networks.

setdomainname Subroutine

Purpose

Sets the name of the current domain.

Library

Standard C Library (libc.a)

Syntax

int setdomainname (Name, Namelen)

char *Name;

int Namelen;

Description

The setdomainname subroutine sets the name of the domain for the host machine. It is normally used

when the system is bootstrapped. You must have root user authority to run this subroutine.

The purpose of domains is to enable two distinct networks that may have host names in common to

merge. Each network would be distinguished by having a different domain name. At the current time, only

Network Information Service (NIS) makes use of domains set by this subroutine.

All applications containing the setdomainname subroutine must be compiled with _BSD set to a specific

value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Chapter 2. Sockets 191

Note: Domain names are restricted to 256 characters.

Parameters

 Name Specifies the domain name to be set.

Namelen Specifies the size of the array pointed to by the Name parameter.

Return Values

If the call succeeds, a value of 0 is returned. If the call is unsuccessful, a value of -1 is returned and an

error code is placed in the errno global variable.

Error Codes

The following errors may be returned by this subroutine:

 Error Description

EFAULT The Name parameter gave an invalid address.

EPERM The caller was not the root user.

Related Information

The getdomainname subroutine, gethostname subroutine, sethostname subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

sethostent Subroutine

Purpose

Opens network host file.

Library

Standard C Library (libc.a)

(libbind)

libnis)

(liblocal)

Syntax

#include <netdb.h>

sethostent (StayOpen)

int StayOpen;

Description

When using the sethostent subroutine in DNS/BIND name service resolution, sethostent allows a request

for the use of a connected socket using TCP for queries. If the StayOpen parameter is non-zero, this sets

the option to send all queries to the name server using TCP and to retain the connection after each call to

gethostbyname or gethostbyaddr.

When using the sethostent subroutine to search the /etc/hosts file, sethostent opens and rewinds the

/etc/hosts file. If the StayOpen parameter is non-zero, the hosts database is not closed after each call to

gethostbyname or gethostbyaddr.

192 Technical Reference: Communications, Volume 2

Parameters

 StayOpen When used in NIS name resolution and to search the local /etc/hosts file, it contains a value used to

indicate whether to close the host file after each call to gethostbyname and gethostbyaddr. A

non-zero value indicates not to close the host file after each call and a zero value allows the file to

be closed.

 When used in DNS/BIND name resolution, a non-zero value retains the TCP connection after each

call to gethostbyname and gethostbyaddr . A value of zero allows the connection to be closed.

Files

 /etc/hosts Contains the host name database.

/etc/netsvc.conf Contains the name services ordering.

/etc/include/netdb.h Contains the network database structure.

Related Information

The endhostent subroutine, gethostbyaddr subroutine, gethostbyname subroutine, gethostent

subroutine.

Sockets Overview and Network Address Translation in AIX 5L Version 5.3 Communications Programming

Concepts.

sethostent_r Subroutine

Purpose

Opens network host file.

Library

Standard C Library (libc.a)

(libbind)

libnis)

(liblocal)

Syntax

#include <netdb.h>

sethostent_r (StayOpenflag, ht_data)

int StayOpenflag;

struct hostent_data *ht_data;

Description

When using the sethostent_r subroutine in DNS/BIND name service resolution, sethostent_r allows a

request for the use of a connected socket using TCP for queries. If the StayOpen parameter is non-zero,

this sets the option to send all queries to the name server using TCP and to retain the connection after

each call to gethostbyname_r or gethostbyaddr_r.

When using the sethostent_r subroutine to search the /etc/hosts file, sethostent_r opens and rewinds

the /etc/hosts file. If the StayOpen parameter is non-zero, the hosts database is not closed after each call

to gethostbyname_r or gethostbyaddr_r. It internally runs the sethostent command.

Chapter 2. Sockets 193

Parameters

 StayOpenflag When used in NIS name resolution and to search the local /etc/hosts file, it contains a value

used to indicate whether to close the host file after each call to the gethostbyname and

gethostbyaddr subroutines. A non-zero value indicates not to close the host file after each call,

and a zero value allows the file to be closed.

When used in DNS/BIND name resolution, a non-zero value retains the TCP connection after

each call to gethostbyname and gethostbyaddr. A value of zero allows the connection to be

closed.

ht_data Points to the hostent_data structure.

Files

 /etc/hosts Contains the host name database.

/etc/netsvc.conf Contains the name services ordering.

/etc/include/netdb.h Contains the network database structure.

Related Information

“endhostent_r Subroutine” on page 41, “gethostbyname_r Subroutine” on page 70, “gethostbyaddr_r

Subroutine” on page 67, and “gethostent_r Subroutine” on page 72.

sethostid Subroutine

Purpose

Sets the unique identifier of the current host.

Library

Standard C Library (libc.a)

Syntax

int sethostid (HostID)

int HostID;

Description

The sethostid subroutine allows a calling process with a root user ID to set a new 32-bit identifier for the

current host. The sethostid subroutine enables an application program to reset the host ID.

All applications containing the sethostid subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 HostID Specifies the unique 32-bit identifier for the current host.

Return Values

Upon successful completion, the sethostid subroutine returns a value of 0.

If the sethostid subroutine is unsuccessful, the subroutine handler performs the following functions:

194 Technical Reference: Communications, Volume 2

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable see Error Notification Object Class in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

Error Codes

The sethostid subroutine is unsuccessful if the following is true:

 Error Description

EPERM The calling process did not have an effective user ID of root user.

Related Information

The getsockname subroutine, gethostid subroutine, gethostname subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

sethostname Subroutine

Purpose

Sets the name of the current host.

Library

Standard C Library (libc.a)

Syntax

int sethostname (Name, NameLength)

char *Name;

int NameLength;

Description

The sethostname subroutine sets the name of a host machine. Only programs with a root user ID can

use this subroutine.

The sethostname subroutine allows a calling process with root user authority to set the internal host

name of a machine on a network.

All applications containing the sethostname subroutine must be compiled with _BSD set to a specific

value. Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Name Specifies the name of the host machine.

NameLength Specifies the length of the Name array.

Return Values

Upon successful completion, the system returns a value of 0.

If the sethostname subroutine is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of -1 to the calling program.

Chapter 2. Sockets 195

v Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable see Error Notification Object Class in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

Error Codes

The sethostname subroutine is unsuccessful if any of the following errors occurs:

 Error Description

EFAULT The Name parameter or NameLength parameter gives an address that is not valid.

EPERM The calling process did not have an effective root user ID.

Related Information

The gethostid subroutine, gethostname subroutine, sethostid subroutine.

Sockets Overview and Understanding Network Address Translation in AIX 5L Version 5.3 Communications

Programming Concepts.

setnetent Subroutine

Purpose

Opens the /etc/networks file and sets the file marker.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

void setnetent (StayOpen)

int StayOpen;

Description

The setnetent subroutine is threadsafe in AIX 4.3 and later. However, the return value points to static data

that is overwritten by subsequent calls. This data must be copied to be saved for use by subsequent calls.

The setnetent subroutine opens the /etc/networks file and sets the file marker at the beginning of the file.

All applications containing the setnetent subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 StayOpen Contains a value used to indicate when to close the /etc/networks file.

Specifying a value of 0 closes the /etc/networks file after each call to the getnetent subroutine.

Specifying a nonzero value leaves the /etc/networks file open after each call.

Return Values

If an error occurs or the end of the file is reached, the setnetent subroutine returns a null pointer.

196 Technical Reference: Communications, Volume 2

Files

 /etc/networks Contains official network names.

Related Information

The endnetent subroutine, getnetbyaddr subroutine, getnetbyname subroutine, getnetent subroutine.

Sockets Overview and Understanding Network Address Translation in AIX 5L Version 5.3 Communications

Programming Concepts.

setnetent_r Subroutine

Purpose

Opens the /etc/networks file and sets the file marker.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

int setnetent_r(StayOpenflag, net_data)

struct netent_data *net_data;

int StayOpenflag;

Description

The setnetent_r subroutine opens the /etc/networks file and sets the file marker at the beginning of the

file.

Parameters

 StayOpenflag Contains a value used to indicate when to close the /etc/networks file.

Specifying a value of 0 closes the /etc/networks file after each call to the

getnetent subroutine. Specifying a nonzero value leaves the /etc/networks file

open after each call.

net_data Points to the netent_data structure.

Files

 /etc/networks Contains official network names.

Related Information

“endnetent_r Subroutine” on page 43, “getnetbyaddr_r Subroutine” on page 77, “getnetbyname_r

Subroutine” on page 79, and “getnetent_r Subroutine” on page 81.

setnetgrent_r Subroutine

Purpose

Handles the group network entries.

Chapter 2. Sockets 197

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

int setnetgrent_r(NetGroup,ptr)

char *NetGroup;

void **ptr;

Description

The setnetgrent_r subroutine functions the same as the setnetgrent subroutine.

The setnetgrent_r subroutine establishes the network group from which the getnetgrent_r subroutine will

obtain members. This subroutine also restarts calls to the getnetgrent_r subroutine from the beginnning of

the list. If the previous setnetgrent_r call was to a different network group, an endnetgrent_r call is

implied. The endnetgrent_r subroutine frees the space allocated during the getnetgrent_r calls.

Parameters

 NetGroup Points to a network group.

ptr Keeps the function threadsafe.

Return Values

The setnetgrent_r subroutine returns a 0 if successful and a -1 if unsuccessful.

Files

 /etc/netgroup Contains network groups recognized by the system.

/usr/include/netdb.h Contains the network database structures.

Related Information

“getnetgrent_r Subroutine” on page 82, and “endnetgrent_r Subroutine” on page 44.

setprotoent Subroutine

Purpose

Opens the /etc/protocols file and sets the file marker.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

void setprotoent (StayOpen)

int StayOpen;

198 Technical Reference: Communications, Volume 2

Description

The setprotoent subroutine is threadsafe in AIX 4.3 and later. However, the return value points to static

data that is overwritten by subsequent calls. This data must be copied to be saved for use by subsequent

calls.

The setprotoent subroutine opens the /etc/protocols file and sets the file marker to the beginning of the

file.

All applications containing the setprotoent subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 StayOpen Indicates when to close the /etc/protocols file.

Specifying a value of 0 closes the file after each call to getprotoent.

Specifying a nonzero value allows the /etc/protocols file to remain open after each subroutine.

Return Values

The return value points to static data that is overwritten by subsequent calls.

Files

 /etc/protocols Contains the protocol names.

Related Information

The endprotoent subroutine, getprotobyname subroutine, getprotobynumber subroutine, getprotoent

subroutine.

Sockets Overview and Understanding Network Address Translation in AIX 5L Version 5.3 Communications

Programming Concepts.

setprotoent_r Subroutine

Purpose

Opens the /etc/protocols file and sets the file marker.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

int setprotoent_r(StayOpenflag, proto_data);

int StayOpenflag;

struct protoent_data *proto_data;

Chapter 2. Sockets 199

Description

The setprotoent_r subroutine opens the /etc/protocols file and sets the file marker to the beginning of

the file.

Parameters

 StayOpenflag Indicates when to close the /etc/protocols file.

Specifying a value of 0 closes the file after each call to getprotoent. Specifying a nonzero

value allows the /etc/protocols file to remain open after each subroutine.

Files

 /etc/protocols Contains the protocol names.

Related Information

“endprotoent_r Subroutine” on page 45, “getprotobyname_r Subroutine” on page 86, “getprotobynumber_r

Subroutine” on page 88, and “getprotoent_r Subroutine” on page 90.

setservent Subroutine

Purpose

Opens /etc/services file and sets the file marker.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

void setservent (StayOpen)

int StayOpen;

Description

The setservent subroutine is threadsafe in AIX 4.3 and later. However, the return value points to static

data that is overwritten by subsequent calls. This data must be copied to be saved for use by subsequent

calls.

The setservent subroutine opens the /etc/services file and sets the file marker at the beginning of the

file.

All applications containing the setservent subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 StayOpen Indicates when to close the /etc/services file.

Specifying a value of 0 closes the file after each call to the getservent subroutine.

Specifying a nonzero value allows the file to remain open after each call.

200 Technical Reference: Communications, Volume 2

Return Values

If an error occurs or the end of the file is reached, the setservent subroutine returns a null pointer.

Files

 /etc/services Contains service names.

Related Information

The endprotoent subroutine, endservent subroutine, getprotobyname subroutine, getprotobynumber

subroutine, getprotoent subroutine, getservbyname subroutine, getservbyport subroutine, getservent

subroutine, setprotoent subroutine.

Sockets Overview and Understanding Network Address Translation in AIX 5L Version 5.3 Communications

Programming Concepts.

setservent_r Subroutine

Purpose

Opens /etc/services file and sets the file marker.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

int setservent_r(StayOpenflag, serv_data)

int StayOpenflag;

struct servent_data serv_data;

Description

The setservent_r subroutine opens the /etc/services file and sets the file marker at the beginning of the

file.

Parameters

 StayOpenflag Indicates when to close the /etc/services file.

Specifying a value of 0 closes the file after each call to the getservent subroutine. Specifying

a nonzero value allows the file to remain open after each call.

serv_data Points to the servent_data structure.

Files

 /etc/services Contains service names.

Related Information

“endservent_r Subroutine” on page 47, “getservbyport_r Subroutine” on page 96, “getservent_r Subroutine”

on page 98, and “getservbyname_r Subroutine” on page 93.

Chapter 2. Sockets 201

setsockopt Subroutine

Purpose

Sets socket options.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/socketvar.h>

#include <sys/atmsock.h> /*Needed for SOCK_CONN_DGRAM socket type

only*/

int setsockopt

(Socket, Level, OptionName, OptionValue, OptionLength)

int Socket, Level, OptionName;

const void * OptionValue;

size_t OptionLength;

Description

The setsockopt subroutine sets options associated with a socket. Options can exist at multiple protocol

levels. The options are always present at the uppermost socket level.

The setsockopt subroutine provides an application program with the means to control a socket

communication. An application program can use the setsockopt subroutine to enable debugging at the

protocol level, allocate buffer space, control time outs, or permit socket data broadcasts. The

/usr/include/sys/socket.h file defines all the options available to the setsockopt subroutine.

When setting socket options, specify the protocol level at which the option resides and the name of the

option.

Use the parameters OptionValue and OptionLength to access option values for the setsockopt

subroutine. These parameters identify a buffer in which the value for the requested option or options is

returned.

All applications containing the setsockopt subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 Socket Specifies the unique socket name.

Level Specifies the protocol level at which the option resides. To set options at:

Socket level

Specifies the Level parameter as SOL_SOCKET.

Other levels

Supplies the appropriate protocol number for the protocol controlling the option. For

example, to indicate that an option will be interpreted by the TCP protocol, set the Level

parameter to the protocol number of TCP, as defined in the netinet/in.h file. Similarly, to

indicate that an option will be interpreted by ATM protocol, set the Level parameter to

NDDPROTO_ATM, as defined in sys/atmsock.h.

202 Technical Reference: Communications, Volume 2

OptionName Specifies the option to set. The OptionName parameter and any specified options are passed

uninterpreted to the appropriate protocol module for interpretation. The sys/socket.h file defines

the socket protocol level options. The netinet/tcp.h file defines the TCP protocol level options. The

socket level options can be enabled or disabled; they operate in a toggle fashion.

The following list defines socket protocol level options found in the sys/socket.h file:

SO_DEBUG

Turns on recording of debugging information. This option enables or disables debugging in

the underlying protocol modules. Set this option in one of the following ways at the

command level:

v Use the sodebug command, which turns on or off this option for existing sockets.

v Specify |DEBUG[=level] in the wait/nowait field of a service in inetd.conf in order to

turn on this option for the specific service.

v Set the sodebug_env parameter to no, and specify SODEBUG=level in the process

environment. This turns on or off this option for all subsequent sockets created by the

process.

The value for level can be either min, normal, or detail.

SO_REUSEADDR

Specifies that the rules used in validating addresses supplied by a bind subroutine should

allow reuse of a local port.

 SO_REUSEADDR allows an application to explicitly deny subsequent bind subroutine to

the port/address of the socket with SO_REUSEADDR set. This allows an application to

block other applications from binding with the bind subroutine.

SO_REUSEPORT

Specifies that the rules used in validating addresses supplied by a bind subroutine should

allow reuse of a local port/address combination. Each binding of the port/address

combination must specify the SO_REUSEPORT socket option

SO_CKSUMREV

Enables performance enhancements in the protocol layers. If the protocol supports this

option, enabling causes the protocol to defer checksum verification until the user’s data is

moved into the user’s buffer (on recv, recvfrom, read, or recvmsg thread). This can

cause applications to be awakened when no data is available, in the case of a checksum

error. In this case, EAGAIN is returned. Applications that set this option must handle the

EAGAIN error code returned from a receive call.

SO_KEEPALIVE

Monitors the activity of a connection by enabling or disabling the periodic transmission of

ACK messages on a connected socket. The idle interval time can be designated using the

TCP/IP no command. Broken connections are discussed in ″Understanding Socket Types

and Protocols″ in AIX 5L Version 5.3 Communications Programming Concepts.

SO_DONTROUTE

Does not apply routing on outgoing messages. Indicates that outgoing messages should

bypass the standard routing facilities. Instead, they are directed to the appropriate network

interface according to the network portion of the destination address.

Chapter 2. Sockets 203

SO_BROADCAST

Permits sending of broadcast messages.

SO_LINGER

Lingers on a close subroutine if data is present. This option controls the action taken

when an unsent messages queue exists for a socket, and a process performs a close

subroutine on the socket.

 If SO_LINGER is set, the system blocks the process during the close subroutine until it

can transmit the data or until the time expires. If SO_LINGER is not specified and a close

subroutine is issued, the system handles the call in a way that allows the process to

continue as quickly as possible.

 The sys/socket.h file defines the linger structure that contains the l_linger value for

specifying linger time interval. If linger time is set to anything but 0, the system tries to

send any messages queued on the socket. The maximum value that l_linger can be set to

is 65535.

SO_OOBINLINE

Leaves received out-of-band data (data marked urgent) in line.

SO_SNDBUF

Sets send buffer size.

SO_RCVBUF

Sets receive buffer size.

SO_SNDLOWAT

Sets send low-water mark.

SO_RCVLOWAT

Sets receive low-water mark.

SO_SNDTIMEO

Sets send time out. This option is setable, but currently not used.

SO_RCVTIMEO

Sets receive time out. This option is setable, but currently not used.

SO_ERROR

Sets the retrieval of error status and clear.

SO_TYPE

Sets the retrieval of a socket type.

204 Technical Reference: Communications, Volume 2

The following list defines TCP protocol level options found in the netinet/tcp.h file:

TCP_KEEPCNT

Specifies the maximum number of keepalive packets to be sent to validate a connection.

This socket option value is inherited from the parent socket. The default is 8.

TCP_KEEPIDLE

Specifies the number of seconds of idle time on a connection after which TCP sends a

keepalive packet. This socket option value is inherited from the parent socket from the

accept system call. The default value is 7200 seconds (14400 half seconds).

TCP_KEEPINTVL

Specifies the interval of time between keepalive packets. It is measured in seconds. This

socket option value is inherited from the parent socket from the accept system call. The

default value is 75 seconds (150 half seconds).

TCP_NODELAY

Specifies whether TCP should follow the Nagle algorithm for deciding when to send data.

By default, TCP will follow the Nagle algorithm. To disable this behavior, applications can

enable TCP_NODELAY to force TCP to always send data immediately. For example,

TCP_NODELAY should be used when there is an application using TCP for a

request/response.

TCP_RFC1323

Enables or disables RFC 1323 enhancements on the specified TCP socket. An application

might contain the following lines to enable RFC 1323:

 int on=1;

setsockopt(s,IPPROTO_TCP,TCP_RFC1323,&on,sizeof(on));

TCP_STDURG

Enables or disables RFC 1122 compliant urgent point handling. By default, TCP

implements urgent pointer behavior compliant with the 4.2 BSD operating system, i.e., this

option defaults to 0.

Chapter 2. Sockets 205

Beginning at AIX 4.3.2, TCP protocol level socket options are inherited from listening sockets to

new sockets. Prior to 4.3.2, only the TCP_RFC1323 option was inherited.

The following list defines ATM protocol level options found in the sys/atmsock.h file:

SO_ATM_PARAM

Sets all ATM parameters. This socket option can be used instead of using individual

sockets options described below. It uses the connect_ie structure defined in sys/call_ie.h

file.

SO_ATM_AAL_PARM

Sets ATM AAL(Adaptation Layer) parameters. It uses the aal_parm structure defined in

sys/call_ie.h file.

SO_ATM_TRAFFIC_DES

Sets ATM Traffic Descriptor values. It uses the traffic structure defined in sys/call_ie.h

file.

SO_ATM_BEARER

Sets ATM Bearer capability. It uses the bearer structure defined in sys/call_ie.h file.

SO_ATM_BHLI

Sets ATM Broadband High Layer Information. It uses the bhli structure defined in

sys/call_ie.h file.

SO_ATM_BLLI

Sets ATM Broadband Low Layer Information. It uses the blli structure defined in

sys/call_ie.h file.

SO_ATM_QOS

Sets ATM Quality Of Service values. It uses the qos_parm structure defined in

sys/call_ie.h file.

SO_ATM_TRANSIT_SEL

Sets ATM Transit Selector Carrier. It uses the transit_sel structure defined in

sys/call_ie.h file.

SO_ATM_ACCEPT

Indicates acceptance of an incoming ATM call, which was indicated to the application via

ACCEPT system call. This must be issues for the incoming connection to be fully

established. This allows negotiation of ATM parameters.

SO_ATM_MAX_PEND

Sets the number of outstanding transmit buffers that are permitted before an error

indication is returned to applications as a result of a transmit operation. This option is only

valid for non best effort types of virtual circuits. OptionValue/OptionLength point to a byte

which contains the value that this parameter will be set to.

OptionValue The OptionValue parameter takes an Int parameter. To enable a Boolean option, set the

OptionValue parameter to a nonzero value. To disable an option, set the OptionValue parameter to

0.

The following options enable and disable in the same manner:

v SO_DEBUG

v SO_REUSEADDR

v SO_KEEPALIVE

v SO_DONTROUTE

v SO_BROADCAST

v SO_OOBINLINE

v SO_LINGER

v TCP_RFC1323

OptionLength The OptionLength parameter contains the size of the buffer pointed to by the OptionValue

parameter.

206 Technical Reference: Communications, Volume 2

Options at other protocol levels vary in format and name.

IP level (IPPROTO_IP level) options are defined as follows:

 IP_DONTFRAG Sets DF bit from now on for every packet in the IP header. Beginning with AIX 5.3, to detect

decreases in Path MTU, UDP applications will always need to set this option.

IP_FINDPMTU Sets enable/disable PMTU discovery for this path. Protocol level path MTU discovery should be

enabled for the discovery to happen.

IP_PMTUAGE Sets the age of PMTU. Specifies the frequency of PMT reductions discovery for the session.

Setting it to 0 (zero) implies infinite age and PMTU reduction discovery will not be attempted.

This will replace the previously set PMTU age. The new PMTU age will become effective after

the currently set timer expires. Beginning with AIX 5.3, this option is unused because UDP

applications will always need to set the IP_DONTFRAG socket option to detect decreases in

PMTU immediately.

IP_TTL Sets the time-to-live field in the IP header for every packet. However, for raw sockets, the

default MAXTTL value will be used while sending the messages irrespective of the value set

using the setsockopt subroutine.

IP_HDRINCL This option allows users to build their own IP header. It indicates that the complete IP header is

included with the data and can be used only for raw sockets.

IPV6 level (IPPROTO_IPV6 level) options are defined as follows:

 IPV6_V6ONLY Restricts AF_INET6 sockets to IPV6 communications only.

Option Type: int (boolean interpretation)

IPV6_UNICAST_HOPS Allows the user to set the outgoing hop limit for unicast IPV6 packets.

Option Type: int (x)

Option Value: x < -1 Error EINVAL

x == -1 Use kernel default

0 <= x

<= 255

Use x

x >=

256

Error EINVAL

IPV6_MULTICAST_HOPS Allows the user to set the outgoing hop limit for multicast IPV6 packets.

Option Type: int (x)

Option Value: Interpretation is the same as IPV6_UNICAST_HOPS (listed above).

IPV6_MULTICAST_IF Allows the user to specify the interface being used for outgoing multicast packets. If

specified as 0, the system selects the outgoing interface.

Option Type: unsigned int (index of interface to use)

IPV6_MULTICAST_LOOP If a multicast datagram is sent to a group that the sending host belongs to, a copy of the

datagram is looped back by the IP layer for local delivery (if the option is set to 1). If the

option is set to 0, a copy is not looped back.

Option Type: unsigned int

IPV6_JOIN_GROUP Joins a multicast group on a specified local interface. If the interface index is specified as

0, the kernel chooses the local interface.

Option Type: struct ipv6_mreq as defined in the netinet/in.h file

IPV6_LEAVE_GROUP Leaves a multicast group on a specified interface.

Option Type: struct ipv6_mreq as defined in the netinet/in.h file

Chapter 2. Sockets 207

IPV6_CHECKSUM Specifies that the kernel computes checksums over the data and the pseudo-IPv6

header for a raw socket. The kernel will compute the checksums for outgoing packets as

well as verify checksums for incoming packets on that socket. Incoming packets with

incorrect checksums will be discarded. This option is disabled by default.

Option Type: int

Option Value: Offsets into the user data where the checksum result must be

stored. This must be a positive even value. Setting the value to -1

will disable the option.

IPV6_RECVPKTINFO Causes the destination IPv6 address and arriving interface index of incoming IPv6

packets to be received as ancillary data on UDP and raw sockets.

Option Type: int (boolean interpretation)

IPV6_RECVHOPLIMIT Causes the hop limit of incoming IPv6 packets to be received as ancillary data on UDP

and raw sockets.

Option Type: int (boolean interpretation)

IPV6_RECVTCLASS Causes the traffic class of incoming IPv6 packets to be received as ancillary data on

UDP and raw sockets.

Option Type: int (boolean interpretation)

IPV6_RECVRTHDR Causes the routing header (if any) of incoming IPv6 packets to be received as ancillary

data on UDP and raw sockets.

Option Type: int (boolean interpretation)

IPV6_RECVHOPOPTS Causes the hop-by-hop options header (if any) of incoming IPv6 packets to be received

as ancillary data on UDP and raw sockets.

Option Type: int (boolean interpretation)

IPV6_RECVDSTOPTS Causes the destination options header (if any) of incoming IPv6 packets to be received

as ancillary data on UDP and raw sockets.

Option Type: int (boolean interpretation)

IPV6_PKTINFO Sets the source IPv6 address and outgoing interface index for all IPv6 packets being

sent on this socket. This option can be cleared by doing a regular setsockopt with

ipi6_addr being in6addr_any and ipi6_ifindex being 0.

Option Type: struct in6_pktinfo defined in the netinet/in.h file.

IPV6_NEXTHOP Sets the next hop for outgoing IPv6 datagrams on this socket. This option can be cleared

by doing a regular setsockopt with a 0 length. Note that a memory pointer must still be

supplied for the option value in this case.

Option Type: struct sockaddr_in6 defined in the netinet/in.h file.

IPV6_TCLASS Sets the traffic class for outgoing IPv6 datagrams on this socket. To clear this option, the

application can specify -1 as the value.

Option Type: int (x)

Option Value: x < -1 Error EINVAL
x == -1 Use kernel default
0 <= x <= 255 Use x
x >= 256 Error EINVAL

IPV6_RTHDR Sets the routing header to be used for outgoing IPv6 datagrams on this socket. This

option can be cleared by doing a regular setsockopt with a 0 length. Note that a

memory pointer must still be supplied for the option value in this case.

Option Type: struct ip6_rthdr defined in the netinet/ip6.h file.

IPV6_HOPOPTS Sets the hop-by-hop options header to be used for outgoing IPv6 datagrams on this

socket. This option can be cleared by doing a regular setsockopt with a 0 length. Note

that a memory pointer must still be supplied for the option value in this case.

Option Type: struct ip6_hbh defined in the netinet/ip6.h file.

208 Technical Reference: Communications, Volume 2

IPV6_DSTOPTS Sets the destination options header to be used for outgoing IPv6 datagrams on this

socket. This header will follow a routing header (if present) and will also be used when

there is no routing header specified. This option can be cleared by doing a regular

setsockopt with a 0 length. Note that a memory pointer must still be supplied for the

option value in this case.

Option Type: struct ip6_dest defined in the netinet/ip6.h file.

IPV6_RTHDRDSTOPTS Sets the destination options header to be used for outgoing IPv6 datagrams on this

socket. This header will precede a routing header (if present). If no routing header is

specified, this option will be silently ignored. This option can be cleared by doing a

regular setsockopt with a 0 length. Note that a memory pointer must still be supplied for

the option value in this case.

Option Type: struct ip6_dest defined in the netinet/ip6.h file.

IPV6_USE_MIN_MTU Sets this option to control IPv6 path MTU discovery.

Option Type: int

Option Value: -1 Performs path MTU discovery for unicast destinations, but does

not perform it for multicast destinations.
0 Always performs path MTU discovery.
1 Always disables path MTU discovery and sends packets at the

minimum MTU.

IPV6_DONTFRAG Setting this option prevents fragmentation of outgoing IPv6 packets on this socket. If a

packet is being sent that is larger than the outgoing interface MTU, the packet will be

discarded.

Option Type: int (boolean interpretation)

IPV6_RECVPATHMTU Enables the receipt of IPV6_PATHMTU ancillary data items by setting this option.

Option Type: int (boolean interpretation)

ICMPV6 level (IPPROTO_ICMPV6 level) options are defined as follows:

 ICMP6_FILTER Allows the user to filter ICMPV6 messages by the ICMPV6 type field. In order to clear an

existing filter, issue a setsockopt call with zero length.

Option Type: The icmp6_filter structure defined in the netinet/icmp6.h file.

The following values (defined in the /usr/include/netint/tcp.h file) are used by the setsockopt subroutine

to configure the dacinet functions.

Note: The DACinet facility is available only in a CAPP/EAL4+ configured AIX system.
tcp.h:#define TCP_ACLFLUSH 0x21 /* clear all DACinet ACLs */

tcp.h:#define TCP_ACLCLEAR 0x22 /* clear DACinet ACL */

tcp.h:#define TCP_ACLADD 0x23 /* Add to DACinet ACL */

tcp.h:#define TCP_ACLDEL 0x24 /* Delete from DACinet ACL */

tcp.h:#define TCP_ACLLS 0x25 /* List DACinet ACL */

tcp.h:#define TCP_ACLBIND 0x26 /* Set port number for TCP_ACLLS */

tcp.h:#define TCP_ACLGID 0x01 /* id being added to ACL is a gid */

tcp.h:#define TCP_ACLUID 0x02 /* id being added to ACL is a gid */

tcp.h:#define TCP_ACLSUBNET 0x04 /* address being added to ACL is a subnet */

tcp.h:#define TCP_ACLDENY 0x08 /* this ACL entry is for denying access */

Return Values

Upon successful completion, a value of 0 is returned.

If the setsockopt subroutine is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of -1 to the calling program.

Chapter 2. Sockets 209

v Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable see Error Notification Object Class in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

Error Codes

The setsockopt subroutine is unsuccessful if any of the following errors occurs:

 EBADF The Socket parameter is not valid.

EFAULT The Address parameter is not in a writable part of the user address space.

EINVAL The OptionValue parameter or the OptionLength parameter is invalid or the socket has been

shutdown.

ENOBUFS There is insufficient memory for an internal data structure.

ENOTSOCK The Socket parameter refers to a file, not a socket.

ENOPROTOOPT The option is unknown.

EOPNOTSUPP The option is not supported by the socket family or socket type.

Examples

To mark a socket for broadcasting:

int on=1;

setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof(on));

Related Information

The no command.

The bind subroutine, endprotoent subroutine, getprotobynumber subroutine, getprotoent subroutine,

getsockopt subroutine, setprotoent subroutine, socket subroutine.

Sockets Overview, Understanding Socket Options, Understanding Socket Types and Protocols in AIX 5L

Version 5.3 Communications Programming Concepts.

shutdown Subroutine

Purpose

Shuts down all socket send and receive operations.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

int shutdown (Socket, How)

int Socket, How;

Description

The shutdown subroutine disables all receive and send operations on the specified socket.

All applications containing the shutdown subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

210 Technical Reference: Communications, Volume 2

Parameters

 Socket Specifies the unique name of the socket.

How Specifies the type of subroutine shutdown. Use the following values:

0 Disables further receive operations.

1 Disables further send operations.

2 Disables further send operations and receive operations.

Return Values

Upon successful completion, a value of 0 is returned.

If the shutdown subroutine is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable see Error Notification Object Class in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

Error Codes

The shutdown subroutine is unsuccessful if any of the following errors occurs:

 Error Description

EBADF The Socket parameter is not valid.

EINVAL The How parameter is invalid.

ENOTCONN The socket is not connected.

ENOTSOCK The Socket parameter refers to a file, not a socket.

Files

 /usr/include/sys/socket.h Contains socket definitions.

/usr/include/sys/types.h Contains definitions of unsigned data types.

Related Information

The getsockopt subroutine, recv subroutine, recvfrom subroutine, recvmsg subroutine, read subroutine,

select subroutine, send subroutine, sendto subroutine, setsockopt subroutine, socket subroutine, write

subroutine.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

SLPAttrCallback Subroutine

Purpose

Returns the same callback type as the SLPFindAttrs() function.

Syntax

 typedef SLPBoolean SLPAttrCallback(SLPHandle hSLP,

 const char* pcAttrList,

 SLPError errCode,

 void *pvCookie);

Chapter 2. Sockets 211

Description

The SLPAttrCallback type is the type of the callback function parameter to the SLPFindAttrs() function.

The pcAttrList parameter contains the requested attributes as a comma-separated list (or is empty if no

attributes matched the original tag list).

Parameters

 hSLP The SLPHandle used to initiate the operation.

pcAttrList A character buffer containing a comma-separated, null-terminated list of attribute

ID/value assignments, in SLP wire format: "(attr-id=attr-value-list)"

errCode An error code indicating if an error occurred during the operation. The callback

should check this error code before processing the parameters. If the error code is

other than SLP_OK, then the API library can choose to terminate the outstanding

operation.

pvCookie Memory passed down from the client code that called the original API function,

starting the operation. Can be NULL.

Return Values

The client code should return SLP_TRUE if more data is desired; otherwise SLP_FALSE is returned.

Related Information

“SLPClose Subroutine,” “SLPEscape Subroutine” on page 213, “SLPFindAttrs Subroutine” on page 214,

“SLPFindScopes Subroutine” on page 215, “SLPFindSrvs Subroutine” on page 215, “SLPFindSrvTypes

Subroutine” on page 216, “SLPFree Subroutine” on page 217, “SLPGetProperty Subroutine” on page 218,

“SLPOpen Subroutine” on page 218, “SLPParseSrvURL Subroutine” on page 220, “SLPSrvTypeCallback

Subroutine” on page 220, “SLPSrvURLCallback Subroutine” on page 221, “SLPUnescape Subroutine” on

page 222

The /etc/slp.conf File.

The Service Location Protocol (SLP) API.

SLPClose Subroutine

Purpose

Frees all resources associated with the handle.

Syntax

void SLPClose(SLPHandle hSLP);

Description

The SLPClose subroutine frees all resources associated with the handle. If the handle was invalid, the

function returns silently. Any outstanding synchronous or asynchronous operations are cancelled so that

their callback functions will not be called any further.

Parameters

 hSLP The SLPHandle handle returned from a call to SLPOpen().

212 Technical Reference: Communications, Volume 2

Related Information

“SLPAttrCallback Subroutine” on page 211, “SLPEscape Subroutine,” “SLPFindAttrs Subroutine” on page

214, “SLPFindScopes Subroutine” on page 215, “SLPFindSrvs Subroutine” on page 215,

“SLPFindSrvTypes Subroutine” on page 216, “SLPFree Subroutine” on page 217, “SLPGetProperty

Subroutine” on page 218, “SLPOpen Subroutine” on page 218, “SLPParseSrvURL Subroutine” on page

220, “SLPSrvTypeCallback Subroutine” on page 220, “SLPSrvURLCallback Subroutine” on page 221,

“SLPUnescape Subroutine” on page 222

The /etc/slp.conf File.

The Service Location Protocol (SLP) API.

SLPEscape Subroutine

Purpose

Processes an input string and escapes any characters reserved for SLP.

Syntax

SLPError SLPEscape(const char* pcInbuf,

 char** ppcOutBuf,

 SLPBoolean isTag);

Description

The SLPEscape subroutine processes the input string in pcInbuf and escapes any characters reserved for

SLP. If the isTag parameter is SLPTrue, SLPEscape looks for bad tag characters and signals an error if

any are found by returning the SLP_PARSE_ERROR code. The results are put into a buffer allocated by

the API library and returned in the ppcOutBuf parameter. This buffer should be deallocated using

SLPFree() when the memory is no longer needed.

Parameters

 pcInbuf Pointer to the input buffer to process for escape characters.

ppcOutBuf Pointer to a pointer for the output buffer with the characters reserved for SLP

escaped. Must be freed using SLPFree() when the memory is no longer needed.

isTag When true, the input buffer is checked for bad tag characters.

Return Values

The SLPEscape subroutine returns SLP_PARSE_ERROR if any characters are bad tag characters and

the isTag flag is true; otherwise, it returns SLP_OK, or the appropriate error code if another error occurs.

Related Information

“SLPAttrCallback Subroutine” on page 211, “SLPClose Subroutine” on page 212, “SLPFindAttrs

Subroutine” on page 214, “SLPFindScopes Subroutine” on page 215, “SLPFindSrvs Subroutine” on page

215, “SLPFindSrvTypes Subroutine” on page 216, “SLPFree Subroutine” on page 217, “SLPGetProperty

Subroutine” on page 218, “SLPOpen Subroutine” on page 218, “SLPParseSrvURL Subroutine” on page

220, “SLPSrvTypeCallback Subroutine” on page 220, “SLPSrvURLCallback Subroutine” on page 221,

“SLPUnescape Subroutine” on page 222

The /etc/slp.conf File.

The Service Location Protocol (SLP) API.

Chapter 2. Sockets 213

SLPFindAttrs Subroutine

Purpose

Returns service attributes that match the attribute IDs for the indicated service URL or service type.

Syntax

SLPError SLPFindAttrs(SLPHandle hSLP,

 const char *pcURLOrServiceType,

 const char *pcScopeList,

 const char *pcAttrIds,

 SLPAttrCallback callback,

 void *pvCookie);

Description

The SLPFindAttrs subroutine returns service attributes matching the attribute IDs for the indicated service

URL or service type. If pcURLOrServiceType is a service URL, the attribute information returned is for

that particular advertisement in the language locale of the SLPHandle.

If pcURLOrServiceType is a service type name (including naming authority if any), then the attributes for

all advertisements of that service type are returned regardless of the language of registration. Results are

returned through the callback.

The result is filtered with an SLP attribute request filter string parameter. If the filter string is the empty

string (""), all attributes are returned.

Parameters

 hSLP The SLPHandle on which to search for attributes.

pcURLOrServiceType The service URL or service type. Cannot be the empty string.

pcScopeList A pointer to a char containing a comma-separated list of scope names. Cannot be

the empty string, "".

pcAttrIds The filter string indicating which attribute values to return. Use the empty string ("")

to indicate all values. Wildcards matching all attribute IDs having a particular prefix

or suffix are also possible.

callback A callback function through which the results of the operation are reported.

pvCookie Memory passed to the callback code from the client. Can be NULL.

Return Values

If SLPFindAttrs is successful, it returns SLP_OK. If an error occurs in starting the operation, one of the

SLPError codes is returned.

Related Information

“SLPAttrCallback Subroutine” on page 211, “SLPClose Subroutine” on page 212, “SLPEscape Subroutine”

on page 213, “SLPFindScopes Subroutine” on page 215, “SLPFindSrvs Subroutine” on page 215,

“SLPFindSrvTypes Subroutine” on page 216, “SLPFree Subroutine” on page 217, “SLPGetProperty

Subroutine” on page 218, “SLPOpen Subroutine” on page 218, “SLPParseSrvURL Subroutine” on page

220, “SLPSrvTypeCallback Subroutine” on page 220, “SLPSrvURLCallback Subroutine” on page 221,

“SLPUnescape Subroutine” on page 222

The /etc/slp.conf File.

The Service Location Protocol (SLP) API.

214 Technical Reference: Communications, Volume 2

SLPFindScopes Subroutine

Purpose

Sets the ppcScopeList parameter to point to a comma-separated list that includes all available scope

values.

Syntax

SLPError SLPFindScopes(SLPHandle hSLP,

 char** ppcScopeList);

Description

The SLPFindScopes subroutine sets the ppcScopeList parameter to point to a comma-separated list that

includes all available scope values. If there is any order to the scopes, preferred scopes are listed before

less desirable scopes. There is always at least one name in the list, the default scope, DEFAULT.

Parameters

 hSLP The SLPHandle on which to search for scopes.

ppcScopeList A pointer to a char pointer into which the buffer pointer is placed upon return. The

buffer is null terminated. The memory should be freed by calling SLPFree().

Return Values

If no error occurs, SLPFindScopes returns SLP_OK; otherwise, it returns the appropriate error code.

Related Information

“SLPAttrCallback Subroutine” on page 211, “SLPClose Subroutine” on page 212, “SLPEscape Subroutine”

on page 213, “SLPFindAttrs Subroutine” on page 214, “SLPFindSrvs Subroutine,” “SLPFindSrvTypes

Subroutine” on page 216, “SLPFree Subroutine” on page 217, “SLPGetProperty Subroutine” on page 218,

“SLPOpen Subroutine” on page 218, “SLPParseSrvURL Subroutine” on page 220, “SLPSrvTypeCallback

Subroutine” on page 220, “SLPSrvURLCallback Subroutine” on page 221, “SLPUnescape Subroutine” on

page 222

The /etc/slp.conf File.

The Service Location Protocol (SLP) API.

SLPFindSrvs Subroutine

Purpose

Issues the query for services on the language-specific SLPHandle and returns the results through the

callback.

Syntax

SLPError SLPFindSrvs(SLPHandle hSLP,

 const char *pcServiceType,

 const char *pcScopeList,

 const char *pcSearchFilter,

 SLPSrvURLCallback callback,

 void *pvCookie);

Chapter 2. Sockets 215

Description

The SLPFindSrvs subroutine issues the query for services on the language-specific SLPHandle and

returns the results through the callback. The parameters determine the results

Parameters

 hSLP The language-specific SLPHandle on which to search for services.

pcServiceType The Service Type String, including authority string if any, for the request, which can

be discovered using SLPSrvTypes(). This could be, for example,

"service:printer:lpr" or "service:nfs". This cannot be the empty string ("").

pcScopeList A pointer to a char containing a comma-separated list of scope names. This cannot

be the empty string ("").

pcSearchFilter A query formulated of attribute pattern matching expressions in the form of a

LDAPv3 Search Filter. If this filter is empty (""), all services of the requested type in

the specified scopes are returned.

callback A callback function through which the results of the operation are reported.

pvCookie Memory passed to the callback code from the client. Can be NULL.

Return Values

If SLPFindSrvs is successful, it returns SLP_OK. If an error occurs in starting the operation, one of the

SLPError codes is returned.

Related Information

“SLPAttrCallback Subroutine” on page 211, “SLPClose Subroutine” on page 212, “SLPEscape Subroutine”

on page 213, “SLPFindAttrs Subroutine” on page 214, “SLPFindScopes Subroutine” on page 215,

“SLPFindSrvTypes Subroutine,” “SLPFree Subroutine” on page 217, “SLPGetProperty Subroutine” on page

218, “SLPOpen Subroutine” on page 218, “SLPParseSrvURL Subroutine” on page 220,

“SLPSrvTypeCallback Subroutine” on page 220, “SLPSrvURLCallback Subroutine” on page 221,

“SLPUnescape Subroutine” on page 222

The /etc/slp.conf File.

The Service Location Protocol (SLP) API.

SLPFindSrvTypes Subroutine

Purpose

Issues an SLP service type request.

Syntax

SLPError SLPFindSrvTypes(SLPHandle hSLP,

 const char *pcNamingAuthority,

 const char *pcScopeList,

 SLPSrvTypeCallback callback,

 void *pvCookie);

Description

The SLPFindSrvType() subroutine issues an SLP service type request for service types in the scopes

indicated by the pcScopeList. The results are returned through the callback parameter. The service types

are independent of language locale, but only for services registered in one of the scopes and for the

naming authority indicated by pcNamingAuthority.

216 Technical Reference: Communications, Volume 2

If the naming authority is "*", then results are returned for all naming authorities. If the naming authority is

the empty string, "", then the default naming authority, "IANA", is used. "IANA" is not a valid naming

authority name, and it returns a PARAMETER_BAD error when it is included explicitly.

The service type names are returned with the naming authority intact. If the naming authority is the default

(that is, the empty string), then it is omitted, as is the separating ".". Service type names from URLs of

the service: scheme are returned with the "service:" prefix intact.

Parameters

 hSLP The SLPHandle on which to search for types.

pcNamingAuthority The naming authority to search. Use "*" for all naming authorities and the empty

string, "", for the default naming authority.

pcScopeList A pointer to a char containing a comma-separated list of scope names to search for

service types. Cannot be the empty string, "".

callback A callback function through which the results of the operation are reported.

pvCookie Memory passed to the callback code from the client. Can be NULL.

Return Values

If SLPFindSrvTypes is successful, it returns SLP_OK. If an error occurs in starting the operation, one of

the SLPError codes is returned.

Related Information

“SLPAttrCallback Subroutine” on page 211, “SLPClose Subroutine” on page 212, “SLPEscape Subroutine”

on page 213, “SLPFindAttrs Subroutine” on page 214, “SLPFindScopes Subroutine” on page 215,

“SLPFindSrvs Subroutine” on page 215, “SLPFree Subroutine,” “SLPGetProperty Subroutine” on page

218, “SLPOpen Subroutine” on page 218, “SLPParseSrvURL Subroutine” on page 220,

“SLPSrvTypeCallback Subroutine” on page 220, “SLPSrvURLCallback Subroutine” on page 221,

“SLPUnescape Subroutine” on page 222

The /etc/slp.conf File.

The Service Location Protocol (SLP) API.

SLPFree Subroutine

Purpose

Frees memory returned from SLPParseSrvURL(), SLPFindScopes(), SLPEscape(), and

SLPUnescape().

Syntax

void SLPFree(void* pvMem);

Description

The SLPFree subroutine frees memory returned from SLPParseSrvURL(), SLPFindScopes(),

SLPEscape(), and SLPUnescape().

Parameters

 pvMem A pointer to the storage allocated by the SLPParseSrvURL(), SLPEscape(),

SLPUnescape(), or SLPFindScopes() function. Ignored if NULL.

Chapter 2. Sockets 217

Related Information

“SLPAttrCallback Subroutine” on page 211, “SLPClose Subroutine” on page 212, “SLPEscape Subroutine”

on page 213, “SLPFindAttrs Subroutine” on page 214, “SLPFindScopes Subroutine” on page 215,

“SLPFindSrvs Subroutine” on page 215, “SLPFindSrvTypes Subroutine” on page 216, “SLPGetProperty

Subroutine,” “SLPOpen Subroutine,” “SLPParseSrvURL Subroutine” on page 220, “SLPSrvTypeCallback

Subroutine” on page 220, “SLPSrvURLCallback Subroutine” on page 221, “SLPUnescape Subroutine” on

page 222

The /etc/slp.conf File.

The Service Location Protocol (SLP) API.

SLPGetProperty Subroutine

Purpose

Returns the value of the corresponding SLP property name.

Syntax

const char* SLPGetProperty(const char* pcName);

Description

The SLPGetProperty subroutine returns the value of the corresponding SLP property name. The returned

string is owned by the library and must not be freed.

Parameters

 pcName Null-terminated string with the property name.

Return Values

If no error, the SLPGetProperty subroutine returns a pointer to a character buffer containing the property

value. If the property was not set, the subroutine returns the default value. If an error occurs, it returns

NULL. The returned string must not be freed.

Related Information

“SLPAttrCallback Subroutine” on page 211, “SLPClose Subroutine” on page 212, “SLPEscape Subroutine”

on page 213, “SLPFindAttrs Subroutine” on page 214, “SLPFindScopes Subroutine” on page 215,

“SLPFindSrvs Subroutine” on page 215, “SLPFindSrvTypes Subroutine” on page 216, “SLPFree

Subroutine” on page 217, “SLPOpen Subroutine,” “SLPParseSrvURL Subroutine” on page 220,

“SLPSrvTypeCallback Subroutine” on page 220, “SLPSrvURLCallback Subroutine” on page 221,

“SLPUnescape Subroutine” on page 222

The /etc/slp.conf File.

The Service Location Protocol (SLP) API.

SLPOpen Subroutine

Purpose

Returns an SLPHandle handle that encapsulates the language locale for SLP requests.

218 Technical Reference: Communications, Volume 2

Syntax

SLPError SLPOpen(const char *pcLang, SLPBoolean isAsync, SLPHandle

 *phSLP);

Description

The SLPOpen subroutine returns an SLPHandle handle in the phSLP parameter for the language locale

passed in as the pcLang parameter. The client indicates if operations on the handle are to be synchronous

or asynchronous through the isAsync parameter. The handle encapsulates the language locale for SLP

requests issued through the handle, and any other resources required by the implementation. However,

SLP properties are not encapsulated by the handle; they are global. The return value of the function is an

SLPError code indicating the status of the operation. Upon failure, the phSLP parameter is NULL.

Implementation Specifics

An SLPHandle can only be used for one SLP API operation at a time. If the original operation was started

asynchronously, any attempt to start an additional operation on the handle while the original operation is

pending results in the return of an SLP_HANDLE_IN_USE error from the API function. The SLPClose()

API function terminates any outstanding calls on the handle. If an implementation is unable to support an

asynchronous (resp. synchronous) operation, because of memory constraints or lack of threading support,

the SLP_NOT_IMPLEMENTED flag might be returned when the isAsync flag is SLP_TRUE (resp.

SLP_FALSE).

Parameters

 pcLang A pointer to an array of characters (AIX supports ″en″ only).

isAsync An SLPBoolean indicating whether the SLPHandle should be opened for

asynchronous operation or not. AIX supports synchronous operation only.

phSLP A pointer to an SLPHandle, in which the open SLPHandle is returned. If an error

occurs, the value upon return is NULL.

Return Values

If SLPOpen is successful, it returns SLP_OK and an SLPHandle handle in the phSLP parameter for the

language locale passed in as the pcLang parameter.

Error Codes

 SLPError Indicates the status of the operation

Related Information

“SLPAttrCallback Subroutine” on page 211, “SLPClose Subroutine” on page 212, “SLPEscape Subroutine”

on page 213, “SLPFindAttrs Subroutine” on page 214, “SLPFindScopes Subroutine” on page 215,

“SLPFindSrvs Subroutine” on page 215, “SLPFindSrvTypes Subroutine” on page 216, “SLPFree

Subroutine” on page 217, “SLPGetProperty Subroutine” on page 218, “SLPParseSrvURL Subroutine” on

page 220, “SLPSrvTypeCallback Subroutine” on page 220, “SLPSrvURLCallback Subroutine” on page 221,

“SLPUnescape Subroutine” on page 222

The /etc/slp.conf File.

The Service Location Protocol (SLP) API.

Chapter 2. Sockets 219

SLPParseSrvURL Subroutine

Purpose

Parses the URL passed in as the argument into a service URL structure and returns it in the ppSrvURL

pointer.

Syntax

SLPError SLPParseSrvURL(char *pcSrvURL

 SLPSrvURL** ppSrvURL);

Description

The SLPParseSrvURL subroutine parses the URL passed in as the argument into a service URL structure

and returns it in the ppSrvURL pointer. If a parse error occurs, returns SLP_PARSE_ERROR. The input

buffer pcSrvURL is destructively modified during the parse and used to fill in the fields of the return

structure. The structure returned in ppSrvURL should be freed with SLPFreeURL(). If the URL has no

service part, the s_pcSrvPart string is the empty string (""), not NULL. If pcSrvURL is not a service:

URL, then the s_pcSrvType field in the returned data structure is the URL’s scheme, which might not be

the same as the service type under which the URL was registered. If the transport is IP, the

s_pcTransport field is the empty string. If the transport is not IP or there is no port number, the s_iPort

field is 0.

Parameters

 pcSrvURL A pointer to a character buffer containing the null-terminated URL string to parse. It

is destructively modified to produce the output structure.

ppSrvURL A pointer to a pointer for the SLPSrvURL structure to receive the parsed URL. The

memory should be freed by a call to SLPFree() when no longer needed.

Return Values

If no error occurs, the return value is SLP_OK. Otherwise, the appropriate error code is returned.

Related Information

“SLPAttrCallback Subroutine” on page 211, “SLPClose Subroutine” on page 212, “SLPEscape Subroutine”

on page 213, “SLPFindAttrs Subroutine” on page 214, “SLPFindScopes Subroutine” on page 215,

“SLPFindSrvs Subroutine” on page 215, “SLPFindSrvTypes Subroutine” on page 216, “SLPFree

Subroutine” on page 217, “SLPGetProperty Subroutine” on page 218, “SLPOpen Subroutine” on page 218,

“SLPSrvTypeCallback Subroutine,” “SLPSrvURLCallback Subroutine” on page 221, “SLPUnescape

Subroutine” on page 222

The /etc/slp.conf File.

The Service Location Protocol (SLP) API.

SLPSrvTypeCallback Subroutine

Purpose

Returns the same callback type as the SLPFindSrvTypes() function.

220 Technical Reference: Communications, Volume 2

Syntax

typedef SLPBoolean SLPSrvTypeCallback(SLPHandle hSLP,

 const char* pcSrvTypes,

 SLPError errCode,

 void *pvCookie);

Description

The SLPSrvTypeCallback type is the type of the callback function parameter to the SLPFindSrvTypes()

function.

Parameters

 hSLP The SLPHandle used to initiate the operation.

pcSrvTypes A character buffer containing a comma-separated, null-terminated list of service

types.

errCode An error code indicating if an error occurred during the operation. The callback

should check this error code before processing the parameters. If the error code is

other than SLP_OK, then the API library can choose to terminate the outstanding

operation.

pvCookie Memory passed down from the client code that called the original API function,

starting the operation. Can be NULL.

Return Values

The client code should return SLP_TRUE if more data is desired; otherwise SLP_FALSE is returned.

Related Information

“SLPAttrCallback Subroutine” on page 211, “SLPClose Subroutine” on page 212, “SLPEscape Subroutine”

on page 213, “SLPFindAttrs Subroutine” on page 214, “SLPFindScopes Subroutine” on page 215,

“SLPFindSrvs Subroutine” on page 215, “SLPFindSrvTypes Subroutine” on page 216, “SLPFree

Subroutine” on page 217, “SLPGetProperty Subroutine” on page 218, “SLPOpen Subroutine” on page 218,

“SLPParseSrvURL Subroutine” on page 220, “SLPSrvURLCallback Subroutine,” “SLPUnescape

Subroutine” on page 222

The /etc/slp.conf File.

The Service Location Protocol (SLP) API.

SLPSrvURLCallback Subroutine

Purpose

Returns the same callback type as the SLPFindSrvs() function.

Syntax

typedef SLPBoolean SLPSrvURLCallback(SLPHandle hSLP,

 const char* pcSrvURL,

 unsigned short sLifetime,

 SLPError errCode,

 void *pvCookie);

Description

The SLPSrvURLCallback type is the type of the callback function parameter to the SLPFindSrvs()

function.

Chapter 2. Sockets 221

Parameters

 hSLP The SLPHandle used to initiate the operation.

pcSrvURL A character buffer containing the returned service URL.

sLifetime An unsigned short giving the lifetime of the service advertisement, in seconds. The

value must be an unsigned integer less than or equal to

SLP_LIFETIME_MAXIMUM.

errCode An error code indicating if an error occurred during the operation. The callback

should check this error code before processing the parameters. If the error code is

other than SLP_OK, then the API library can choose to terminate the outstanding

operation.

pvCookie Memory passed down from the client code that called the original API function,

starting the operation. Can be NULL.

Return Values

The client code should return SLP_TRUE if more data is desired; otherwise SLP_FALSE is returned.

Related Information

“SLPAttrCallback Subroutine” on page 211, “SLPClose Subroutine” on page 212, “SLPEscape Subroutine”

on page 213, “SLPFindAttrs Subroutine” on page 214, “SLPFindScopes Subroutine” on page 215,

“SLPFindSrvs Subroutine” on page 215, “SLPFindSrvTypes Subroutine” on page 216, “SLPFree

Subroutine” on page 217, “SLPGetProperty Subroutine” on page 218, “SLPOpen Subroutine” on page 218,

“SLPParseSrvURL Subroutine” on page 220, “SLPSrvTypeCallback Subroutine” on page 220,

“SLPUnescape Subroutine”

The /etc/slp.conf File.

The Service Location Protocol (SLP) API.

SLPUnescape Subroutine

Purpose

Processes an input string and unescapes any characters reserved for SLP.

Syntax

SLPError SLPUnescape(const char* pcInbuf,

 char** ppcOutBuf,

 SLPBoolean isTag);

Description

The SLPUnescape subroutine processes the input string in pcInbuf and unescapes any characters

reserved for SLP. If the isTag parameter is SLPTrue, SLPUnescape looks for bad tag characters and

signals an error if any are found by returning the SLP_PARSE_ERROR code. No transformation is

performed if the input string is opaque. The results are put into a buffer allocated by the API library and

returned in the ppcOutBuf parameter. This buffer should be deallocated using SLPFree() when the

memory is no longer needed.

Parameters

 pcInbuf Pointer to the input buffer to process for escape characters.

ppcOutBuf Pointer to a pointer for the output buffer with the characters reserved for SLP

escaped. Must be freed using SLPFree() when the memory is no longer needed.

222 Technical Reference: Communications, Volume 2

isTag When true, the input buffer is checked for bad tag characters.

Return Values

The SLPUnescape subroutine returns SLP_PARSE_ERROR if any characters are bad tag characters and

the isTag flag is true; otherwise, it returns SLP_OK, or the appropriate error code if another error occurs.

Related Information

“SLPAttrCallback Subroutine” on page 211, “SLPClose Subroutine” on page 212, “SLPEscape Subroutine”

on page 213, “SLPFindAttrs Subroutine” on page 214, “SLPFindScopes Subroutine” on page 215,

“SLPFindSrvs Subroutine” on page 215, “SLPFindSrvTypes Subroutine” on page 216, “SLPFree

Subroutine” on page 217, “SLPGetProperty Subroutine” on page 218, “SLPOpen Subroutine” on page 218,

“SLPParseSrvURL Subroutine” on page 220, “SLPSrvTypeCallback Subroutine” on page 220,

“SLPSrvURLCallback Subroutine” on page 221

The /etc/slp.conf File.

The Service Location Protocol (SLP) API.

socket Subroutine

Purpose

Creates an end point for communication and returns a descriptor.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/socketvar.h>

int socket (AddressFamily, Type, Protocol)

int AddressFamily, Type, Protocol;

Description

The socket subroutine creates a socket in the specified AddressFamily and of the specified type. A

protocol can be specified or assigned by the system. If the protocol is left unspecified (a value of 0), the

system selects an appropriate protocol from those protocols in the address family that can be used to

support the requested socket type.

The socket subroutine returns a descriptor (an integer) that can be used in later subroutines that operate

on sockets.

Socket level options control socket operations. The getsockopt and setsockopt subroutines are used to

get and set these options, which are defined in the /usr/include/sys/socket.h file.

Chapter 2. Sockets 223

Parameters

 AddressFamily Specifies an address family with which addresses specified in later socket operations

should be interpreted. The /usr/include/sys/socket.h file contains the definitions of the

address families. Commonly used families are:

AF_UNIX

Denotes the operating system path names.

AF_INET

Denotes the ARPA Internet addresses.

AF_NS Denotes the XEROX Network Systems protocol.

Type Specifies the semantics of communication. The /usr/include/sys/socket.h file defines the

socket types. The operating system supports the following types:

SOCK_STREAM

Provides sequenced, two-way byte streams with a transmission mechanism for

out-of-band data.

SOCK_DGRAM

Provides datagrams, which are connectionless messages of a fixed maximum

length (usually short).

SOCK_RAW

Provides access to internal network protocols and interfaces. This type of socket is

available only to the root user.

SOCK_SEQPACKET

Provides sequenced, reliable, and unduplicated flow of information. This type of

socket is used for UDP-style socket creation in case of Stream Control

Transmission Protocol.

Protocol Specifies a particular protocol to be used with the socket. Specifying the Protocol

parameter of 0 causes the socket subroutine to default to the typical protocol for the

requested type of returned socket. For SCTP sockets, the protocol parameter will be

IPPROTO_SCTP.

Return Values

Upon successful completion, the socket subroutine returns an integer (the socket descriptor).

If the socket subroutine is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable see Error Notification Object Class in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

Error Codes

The socket subroutine is unsuccessful if any of the following errors occurs:

 Error Description

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

EMFILE The per-process descriptor table is full.

ENOBUFS Insufficient resources were available in the system to complete the call.

ESOCKTNOSUPPORT The socket in the specified address family is not supported.

Examples

The following program fragment illustrates the use of the socket subroutine to create a datagram socket

for on-machine use:

224 Technical Reference: Communications, Volume 2

s = socket(AF_UNIX, SOCK_DGRAM,0);

Implementation Specifics

The socket subroutine is part of Base Operating System (BOS) Runtime.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure

BSD 4.3 compatible. For more details refer to socket.h.

Related Information

The accept subroutine, bind subroutine, connect subroutine, getsockname subroutine, getsockopt

subroutine, ioctl subroutine, listen subroutine, recv subroutine, recvfrom subroutine, recvmsg

subroutine, select subroutine, send subroutine, sendmsg subroutine, sendto subroutine, setsockopt

subroutine, shutdown subroutine, socketpair subroutine.

Initiating Internet Stream Connections Example Program, Sockets Overview, Understanding Socket

Creation in AIX 5L Version 5.3 Communications Programming Concepts.

socketpair Subroutine

Purpose

Creates a pair of connected sockets.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

int socketpair (Domain, Type, Protocol, SocketVector[0])

int Domain, Type, Protocol;

int SocketVector[2];

Description

The socketpair subroutine creates an unnamed pair of connected sockets in a specified domain, of a

specified type, and using the optionally specified protocol. The two sockets are identical.

Note: Create sockets with this subroutine only in the AF_UNIX protocol family.

The descriptors used in referencing the new sockets are returned in the SocketVector[0] and

SocketVector[1] parameters.

The /usr/include/sys/socket.h file contains the definitions for socket domains, types, and protocols.

All applications containing the socketpair subroutine must be compiled with _BSD set to a value of 43 or

44. Socket applications must include the BSD libbsd.a library.

Parameters

 Domain Specifies the communications domain within which the sockets are created. This subroutine

does not create sockets in the Internet domain.

Type Specifies the communications method, whether SOCK_DGRAM or SOCK_STREAM, that the

socket uses.

Chapter 2. Sockets 225

Protocol Points to an optional identifier used to specify which standard set of rules (such as UDP/IP

and TCP/IP) governs the transfer of data.

SocketVector Points to a two-element vector that contains the integer descriptors of a pair of created

sockets.

Return Values

Upon successful completion, the socketpair subroutine returns a value of 0.

If the socketpair subroutine is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable.

Error Codes

If the socketpair subroutine is unsuccessful, it returns one of the following errors codes:

 Error Description

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

EFAULT The SocketVector parameter is not in a writable part of the user address space.

EMFILE This process has too many descriptors in use.

ENFILE The maximum number of files allowed are currently open.

ENOBUFS Insufficient resources were available in the system to perform the operation.

EOPNOTSUPP The specified protocol does not allow the creation of socket pairs.

EPROTONOSUPPORT The specified protocol cannot be used on this system.

EPROTOTYPE The socket type is not supported by the protocol.

Related Information

The socket subroutine.

Socketpair Communication Example Program, Sockets Overview, and Understanding Socket Creation in

AIX 5L Version 5.3 Communications Programming Concepts.

socks5_getserv Subroutine

Purpose

Return the address of the SOCKSv5 server (if any) to use when connecting to a given destination.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <sys/socket.h>

#include <socks5_api.h>

struct sockaddr * socks5_getserv (Dst, DstLen)

struct sockaddr *Dst;

size_t DstLen;

Description

The socks5_getserv subroutine determines which (if any) SOCKSv5 server should be used as an

intermediary when connecting to the address specified in Dst.

226 Technical Reference: Communications, Volume 2

The address returned in Dst may be IPv4 or IPv6 or some other family. The user should check the

address family before using the returned data.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure

BSD 4.3 compatible. For more details refer to socket.h.

Parameters

 Dst Specifies the external address of the target socket to use as a key for looking up the appropriate

SOCKSv5 server.

DstLength Specifies the length of the address structure in Dst.

Return Values

v Upon successful lookup, the socks_getserv subroutine returns a reference to a sockaddr struct.

v If the socks5tcp_connect subroutine is unsuccessful in finding a server, for any reason, a value of

NULL is returned. If an error occurred, an error code, indicating the generic system error, is moved into

the errno global variable.

Error Codes (placed in errno)

The socks5_getserv subroutine is unsuccessful if no server is indicated or if any of the following errors

occurs:

 Error Description

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

EFAULT The Dst parameter is not in a writable part of the user address space.

EINVAL One or more of the specified arguments is invalid.

ENOMEM The Dst parameter is not large enough to hold the server address.

Examples

The following program fragment illustrates the use of the socks5_getserv subroutine by a client to request

a connection from a server’s socket.

struct sockaddr_in6 dst;

struct sockaddr *srv;

.

.

.

srv = socks5_getserv((struct sockaddr*)&dst, sizeof(dst));

if (srv !=NULL) {

 /* Success: srv should be used as the socks5 server */

} else {

 /* Failure: no server could be returned. check errno */

}

Related Information

The socks5tcp_connect subroutine, socks5tcp_bind subroutine, socks5tcp_accept subroutine,

socks5udp_associate subroutine, socks5udp_sendto subroutine, /etc/socks5c.conf file, connect

subroutine.

Sockets Overview and Understanding Socket Connections in AIX 5L Version 5.3 Communications

Programming Concepts.

Chapter 2. Sockets 227

SOCKS5C_CONFIG Environment Variable in AIX 5L Version 5.3 Files Reference.

/etc/socks5c.conf File

Purpose

Contains mappings between network destinations and SOCKSv5 servers.

Description

The /etc/socks5c.conf file contains basic mappings between network destinations (hosts or networks) and

SOCKSv5 servers to use when accessing those destinations. This is an ASCII file that contains records for

server mappings. Text following a pound character (’#’) is ignored until the end of line. Each record

appears on a single line and is the following format:

<destination>[/<prefixlength>] <server>[:<port>]

You must separate fields with whitespace. Records are separated by new-line characters. The fields and

modifiers in a record have the following values:

 destination Specifies a network destination; destination may be either a name fragment or a numeric

address (with optional prefixlength). If destination is an address, it may be either IPv4 or

IPv6.

prefixlength If specified, indicates the number of leftmost (network order) bits of an address to use when

comparing to this record. Only valid if destination is an address.

If not specified, all bits are used in comparisons.

server Specifies the SOCKSv5 server associated with destination. If server is ″NONE″ (must be all

uppercase), this record indicates that target addresses matching destination should not use

any SOCKSv5 server, but rather be contacted directly.

 port If specified, indicates the port to use when contacting server. If not specified, the default of

1080 is assumed.

Note: Server address in IPv6 format must be followed by a port number.

If a name fragment destination is present in /etc/socks5c.conf, all target addresses is SOCKSv5

operations will be converted into hostnames for name comparison (in addition to numeric comparisons with

numeric records). The resulting hostname is considered to match if the last characters in the hostname

match the specified name fragment.

When using this configuration information to determine the address of the appropriate SOCKSv5 server for

a target destination, the ″best″ match is used. The ″best″ match is defined as:

 destination is numeric Most bits in comparison (i.e. largest prefixlength)

destination is a name fragment Most characters in name fragment.

When both name fragment and numeric addresses are present, all name fragment entries are ″better″

than numeric address entries.

Two implicit records:

0.0.0.0/0 NONE #All IPv4 destinations; no associated server.

::/0 NONE #All IPv6 destinations; no associated server.

are assumed as defaults for all destinations not specified in /etc/socks5c.conf.

228 Technical Reference: Communications, Volume 2

Security

Access Control: This file should grant read (r) access to all users and grant write (w) access only to the

root user.

Examples

#Sample socks5c.conf file

9.0.0.0/8 NONE #Direct communication with all hosts in the 9 network.

129.35.0.0/16 sox1.austin.ibm.com

ibm.com NONE #Direct communication will all hosts matching "ibm.com" (e.g. "aguila.austin.ibm.com")

Related Information

The sock5tcp_connect subroutine, socks5tcp_bind subroutine, socks5tcp_accept subroutine,

socks5udp_associate subroutine, socks5udp_sendto subroutine, socks5_getserv subroutine, connect

subroutine.

socks5tcp_accept Subroutine

Purpose

Awaits an incoming connection to a socket from a previous socks5tcp_bind() call.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <sys/socket.h>

#include <socks5_api.h>

int socks5tcp_accept(Socket, Dst, DstLen, Svr, SvrLen)

int Socket;

struct sockaddr *Dst;

size_t DstLen;

struct sockaddr *Svr;

size_t SrvLen;

Description

The socks5tcp_accept subroutine blocks until an incoming connection is established on a listening socket

that was requested in a previous call to socks5tcp_bind. Upon success, subsequent writes to and reads

from Socket will be relayed through Svr.

Socket must be an open socket descriptor of type SOCK_STREAM.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure

BSD 4.3 compatible. For more details refer to socket.h.

Parameters

 Socket Specifies the unique name of the socket.

Dst If non-NULL, buffer for receiving the address of the remote client which initiated an incoming

connection

DstLength Specifies the length of the address structure in Dst.

Chapter 2. Sockets 229

Svr If non-NULL, specifies the address of the SOCKSv5 server to use to request the relayed

connection; on success, this space will be overwritten with the server-side address of the incoming

connection.

SvrLength Specifies the length of the address structure in Svr.

Return Values

Upon successful completion, the socks5tcp_accept subroutine returns a value of 0, and modifies Dst and

Svr to reflect the actual endpoints of the incoming external socket.

If the socks5tcp_accept subroutine is unsuccessful, the system handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the generic system error, into the errno global variable.

v Moves an error code, indicating the specific SOCKSv5 error, into the socks5_errno global variable.

Error Codes (placed in errno; inherited from underlying call to

connect())

The socks5tcp_bindaccept subroutine is unsuccessful if any of the following errors occurs:

 Error Description

EBADF The Socket parameter is not valid.

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

ENETUNREACH No route to the network or host is present.

EFAULT The Dst or Svr parameter is not in a writable part of the user address space.

EINVAL One or more of the specified arguments is invalid.

ENETDOWN The specified physical network is down.

ENOSPC There is no space left on a device or system table.

ENOTCONN The socket could not be connected.

Error Codes (placed in socks5_errno; SOCKSv5-specific errors)

The socks5tcp_connect subroutine is unsuccessful if any of the following errors occurs:

 Error Description

S5_ESRVFAIL General SOCKSv5 server failure.

S5_EPERM SOCKSv5 server ruleset rejection.

S5_ENETUNREACH SOCKSv5 server could not reach target network.

S5_EHOSTUNREACH SOCKSv5 server could not reach target host.

S5_ECONNREFUSED SOCKSv5 server connection request refused by target host.

S5_ETIMEDOUT SOCKSv5 server connection failure due to TTL expiry.

S5_EOPNOTSUPP Command not supported by SOCKSv5 server.

S5_EAFNOSUPPORT Address family not supported by SOCKSv5 server.

S5_EADDRINUSE Requested bind address is already in use (at the SOCKSv5 server).

S5_ENOSERV No server found.

Examples

The following program fragment illustrates the use of the socks5tcp_accept and socks5tcp_bind

subroutines by a client to request a listening socket from a server and wait for an incoming connection on

the server side.

struct sockaddr_in svr;

struct sockaddr_in dst;

.

.

.

230 Technical Reference: Communications, Volume 2

socks5tcp_bind(s,(struct sockaddr*)&dst, sizeof(dst), (struct sockaddr *)&svr, sizeof(svr), &res, sizeof(svr));

.

.

.

socks5tcp_accept(s, (struct sockaddr *)&dst, sizeof(dst), (struct sockaddr *)&svr, sizeof(svr));

Related Information

The socks5tcp_connect subroutine, socks5tcp_bind subroutine, socks5udp_associate subroutine,

socks5udp_sendto subroutine, socks5_getserv subroutine, /etc/socks5c.conf file, accept subroutine,

bind subroutine, getsockname subroutine, send subroutine, socket subroutine.

Initiating UNIX Stream Connections Example Program, Sockets Overview, and Understanding Socket

Connections in AIX 5L Version 5.3 Communications Programming Concepts.

SOCKS5C_CONFIG Environment Variable in AIX 5L Version 5.3 Files Reference.

socks5tcp_bind Subroutine

Purpose

Connect to a SOCKSv5 server and request a listening socket for incoming remote connections.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <sys/socket.h>

#include <socks5_api.h>

int socks5tcp_bind(Socket, Dst, DstLen, Svr, SvrLen)

Int Socket;

struct sockaddr *Dst;

size_t DstLen;

struct sockaddr *Svr;

size_t SrvLen;

Description

The socks5tcp_bind subroutine requests a listening socket on the SOCKSv5 server specified in Svr, in

preparation for an incoming connection from a remote destination, specified by Dst. Upon success, Svr will

be overwritten with the actual address of the newly bound listening socket, and Socket may be used in a

subsequent call to socks5tcp_accept.

Socket must be an open socket descriptor of type SOCK_STREAM.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure

BSD 4.3 compatible. For more details refer to socket.h.

Parameters

 Socket Specifies the unique name of the socket.

Dst Specifies the address of the SOCKSv5 server to use to request the relayed connection; on

success, this space will be overwritten with the actual bound address on the server.

DstLength Specifies the length of the address structure in Dst.

Svr If non-NULL, specifies the address of the SOCKSv5 server to use to request the relayed

connection; on success, this space will be overwritten with the actual bound address on the server.

SvrLength Specifies the length of the address structure in Svr.

Chapter 2. Sockets 231

Return Values

Upon successful completion, the socks5tcp_bind subroutine returns a value of 0, and modifies Svr to

reflect the actual address of the newly bound listener socket.

If the socks5tcp_bind subroutine is unsuccessful, the system handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the generic system error, into the errno global variable.

v Moves an error code, indicating the specific SOCKSv5 error, into the socks5_errno global variable.

Error Codes (placed in errno; inherited from underlying call to

connect())

The socks5tcp_bindaccept subroutine is unsuccessful if any of the following errors occurs:

 Error Description

EBADF The Socket parameter is not valid.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EADDRNOTAVAIL The specified address is not available from the local machine.

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

EISCONN The socket is already connected.

ETIMEDOUT The establishment of a connection timed out before a connection was made.

ECONNREFUSED The attempt to connect was rejected.

ENETUNREACH No route to the network or host is present.

EADDRINUSE The specified address is already in use.

EFAULT The Address parameter is not in a writable part of the user address space.

EINPROGRESS The socket is marked as nonblocking. The connection cannot be immediately completed.

The application program can select the socket for writing during the connection process.

EINVAL One or more of the specified arguments is invalid.

ENETDOWN The specified physical network is down.

ENOSPC There is no space left on a device or system table.

ENOTCONN The socket could not be connected.

Error Codes (placed in socks5_errno; SOCKSv5-specific errors)

The socks5tcp_connect subroutine is unsuccessful if any of the following errors occurs:

 Error Description

S5_ESRVFAIL General SOCKSv5 server failure.

S5_EPERM SOCKSv5 server ruleset rejection.

S5_ENETUNREACH SOCKSv5 server could not reach target network.

S5_EHOSTUNREACH SOCKSv5 server could not reach target host.

S5_ECONNREFUSED SOCKSv5 server connection request refused by target host.

S5_ETIMEDOUT SOCKSv5 server connection failure due to TTL expiry.

S5_EOPNOTSUPP Command not supported by SOCKSv5 server.

S5_EAFNOSUPPORT Address family not supported by SOCKSv5 server.

S5_EADDRINUSE Requested bind address is already in use (at the SOCKSv5 server).

S5_ENOERV No server found.

Examples

The following program fragment illustrates the use of the socks5tcp_bind subroutine by a client to

request a listening socket from a server.

232 Technical Reference: Communications, Volume 2

struct sockaddr_in svr;

struct sockaddr_in dst;

.

.

.

socks5tcp_bind(s, (struct sockaddr *)&dst, sizeof(dst), (structsockaddr *)&svr, sizeof(svr));

Related Information

The socks5tcp_accept subroutine, socks5tcp_connect subroutine, socks5_getserv subroutine,

/etc/socks5c.conf file, accept subroutine, bind subroutine, getsockname subroutine, send subroutine,

socket subroutine.

Sockets Overview and Understanding Socket Connections in AIX 5L Version 5.3 Communications

Programming Concepts.

SOCKS5C_CONFIG Environment Variable in AIX 5L Version 5.3 Files Reference.

socks5tcp_connect Subroutine

Purpose

Connect to a SOCKSv5 server and request a connection to an external destination.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <sys/socket.h>

#include <socks5_api.h>

int socks5tcp_connect (Socket, Dst, DstLen, Svr, SvrLen)

int Socket;

struct sockaddr *Dst;

size_t DstLen;

struct sockaddr *Svr;

size_t SrvLen;

Description

The socks5tcp_connect subroutine requests a connection to Dst from the SOCKSv5 server specified in

Svr. If successful, Dst and Svr will be overwritten with the actual addresses of the external connection and

subsequent writes to and reads from Socket will be relayed through Svr.

Socket must be an open socket descriptor of type SOCK_STREAM; Dst and Svr may be either IPv4 or

IPv6 addresses.

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure

BSD 4.3 compatible. For more details refer to socket.h.

Parameters

 Socket Specifies the unique name of the socket.

Dst Specifies the external address of the target socket to which the SOCKSv5 server will attempt to

connect.

DstLength Specifies the length of the address structure in Dst.

Chapter 2. Sockets 233

Svr If non-NULL, specifies the address of the SOCKSv5 server to use to request the relayed

connection.

SvrLength Specifies the length of the address structure in Svr.

Return Values

Upon successful completion, the socks5tcp_connect subroutine returns a value of 0, and modifies Dst

and Svr to reflect the actual endpoints of the created external socket.

If the socks5tcp_connect subroutine is unsuccessful, the system handler performs the following

functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the generic system error, into the errno global variable.

v Moves an error code, indicating the specific SOCKSv5 error, into the socks5_errno global variable.

v Dst and Svr are left unmodified.

Error Codes (placed in errno; inherited from underlying call to

connect())

The socks5tcp_connect subroutine is unsuccessful if any of the following errors occurs:

 Error Description

EBADF The Socket parameter is not valid.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EADDRNOTAVAIL The specified address is not available from the local machine.

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

EISCONN The socket is already connected.

ETIMEDOUT The establishment of a connection timed out before a connection was made.

ECONNREFUSED The attempt to connect was rejected.

ENETUNREACH No route to the network or host is present.

EADDRINUSE The specified address is already in use.

EFAULT The Address parameter is not in a writable part of the user address space.

EINPROGRESS The socket is marked as nonblocking. The connection cannot be immediately completed.

The application program can select the socket for writing during the connection process.

EINVAL One or more of the specified arguments is invalid.

ENETDOWN The specified physical network is down.

ENOSPC There is no space left on a device or system table.

ENOTCONN The socket could not be connected.

Error Codes (placed in socks5_errno; SOCKSv5-specific errors)

The socks5tcp_connect subroutine is unsuccessful if any of the following errors occurs:

 Error Description

S5_ESRVFAIL General SOCKSv5 server failure.

S5_EPERM SOCKSv5 server ruleset rejection.

S5_ENETUNREACH SOCKSv5 server could not reach target network.

S5_EHOSTUNREACH SOCKSv5 server could not reach target host.

S5_ECONNREFUSED SOCKSv5 server connection request refused by target host.

S5_ETIMEDOUT SOCKSv5 server connection failure due to TTL expiry.

S5_EOPNOTSUPP Command not supported by SOCKSv5 server.

S5_EAFNOSUPPORT Address family not supported by SOCKSv5 server.

S5_ENOSERV No server found.

234 Technical Reference: Communications, Volume 2

Examples

The following program fragment illustrates the use of the socks5tcp_connect subroutine by a client to

request a connection from a server’s socket.

struct sockaddr_in svr;

struct sockaddr_in6 dst;

.

.

.

socks5tcp_connect(s,(struct sockaddr*)&dst, sizeof(dst), (struct sockaddr *)&svr, sizeof(svr));

Related Information

The socks5_getserv subroutine, /etc/socks5c.conf file, connect subroutine, accept subroutine, bind

subroutine, getsockname subroutine, send subroutine, socket subroutine.

Initiating UNIX Stream Connections Example Program, Sockets Overview, and Understanding Socket

Connections in AIX 5L Version 5.3 Communications Programming Concepts.

SOCKS5C_CONFIG Environment Variable in AIX 5L Version 5.3 Files Reference.

socks5udp_associate Subroutine

Purpose

Connects to a SOCKSv5 server, and requests a UDP association for subsequent UDP socket

communications.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <sys/socket.h>

#include <socks5_api.h>

int socks5udp_associate (Socket, Dst, DstLen, Svr, SvrLen)

int Socket;

const struct sockaddr *Dst;

size_t DstLen;

const struct sockaddr *Svr;

size_t SrvLen;

Description

The socks5udp_associate subroutine requests a UDP association for Dst on the SOCKSv5 server

specified in Svr. Upon success, Dst is overwritten with a rendezvous address to which subsequent UDP

packets should be sent for relay by Svr.

 Socket must be an open socket descriptor of type SOCK_STREAM; Dst and Svr may be either IPv4 or

IPv6 addresses.

Note that Socket cannot be used to send subsequent UDP packets (a second socket of type

SOCK_DGRAM must be created).

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure

BSD 4.3 compatible. For more details refer to socket.h.

Chapter 2. Sockets 235

Parameters

 Socket Specifies the unique name of the socket.

Dst Specifies the external address of the target socket to which the SOCKSv5 client expects to send

UDP packets.

DstLength Specifies the length of the address structure in Dst.

Svr Specifies the address of the SOCKSv5 server to use to request the association.

SvrLength Specifies the length of the address structure in Svr.

Return Values

Upon successful completion, the socks5udp_associate subroutine returns a value of 0 and overwrites

Dst with the rendezvous address.

If the socks5udp_associate subroutine is unsuccessful, the system handler performs the following

functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the generic system error, into the errno global variable.

v Moves an error code, indicating the specific SOCKSv5 error, into the socks5_errno global variable.

Error Codes (placed in errno; inherited from underlying call to

connect())

The socks5udp_associate subroutine is unsuccessful if any of the following errors occurs:

 Error Description

EBADF The Socket parameter is not valid.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EADDRNOTAVAIL The specified address is not available from the local machine.

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

EISCONN The socket is already connected.

ETIMEDOUT The establishment of a connection timed out before a connection was made.

ECONNREFUSED The attempt to connect was rejected.

ENETUNREACH No route to the network or host is present.

EADDRINUSE The specified address is already in use.

EFAULT The Address parameter is not in a writable part of the user address space.

EINPROGRESS The socket is marked as nonblocking. The connection cannot be immediately completed.

The application program can select the socket for writing during the connection process.

EINVAL One or more of the specified arguments is invalid.

ENETDOWN The specified physical network is down.

ENOSPC There is no space left on a device or system table.

ENOTCONN The socket could not be connected.

Error Codes (placed in socks5_errno; SOCKSv5-specific errors)

The socks5tcp_connect subroutine is unsuccessful if any of the following errors occurs:

 Error Description

S5_ESRVFAIL General SOCKSv5 server failure.

S5_EPERM SOCKSv5 server ruleset rejection.

S5_ENETUNREACH SOCKSv5 server could not reach target network.

S5_EHOSTUNREACH SOCKSv5 server could not reach target host.

S5_ECONNREFUSED SOCKSv5 server connection request refused by target host.

S5_ETIMEDOUT SOCKSv5 server connection failure due to TTL expiry.

S5_EOPNOTSUPP Command not supported by SOCKSv5 server.

236 Technical Reference: Communications, Volume 2

Error Description

S5_EAFNOSUPPORT Address family not supported by SOCKSv5 server.

S5_ENOSERV No server found.

Examples

The following program fragment illustrates the use of the socks5udp_associate subroutine by a client to

request an association on a server.

struct sockaddr_in svr;

struct sockaddr_in6 dst;

.

.

.

socks5udp_associate(s,(struct sockaddr*)&dst, sizeof(dst), (struct sockaddr *)&svr, sizeof(svr));

Related Information

The socks5udp_sendto subroutine, socks5_getserv subroutine, /etc/socks5c.conf file, connect

subroutine, accept subroutine, bind subroutine, getsockname subroutine, send subroutine, socket

subroutine.

Initiating UNIX Stream Connections Example Program, Sockets Overview, and Understanding Socket

Connections in AIX 5L Version 5.3 Communications Programming Concepts.

SOCKS5C_CONFIG Environment Variable in AIX 5L Version 5.3 Files Reference.

socks5udp_sendto Subroutine

Purpose

Send UDP packets through a SOCKSv5 server.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <sys/socket.h>

#include <socks5_api.h>

int socks5udp_sendto (Socket, Message, MsgLen, Flags, Dst, DstLen, Svr, SvrLen)

int Socket;

void *Message;

size_t MsgLen;

int Flags;

struct sockaddr *Dst;

size_t DstLen;

struct sockaddr *Svr;

size_t SrvLen;

Description

The socks5udp_sendto subroutine sends a UDP packet to Svr for relay to Dst. Svr must be the

rendezvous address returned from a previous call to socks5udp_associate.

 Socket must be an open socket descriptor of type SOCK_DGRAM; Dst and Svr may be either IPv4 or

IPv6 addresses.

Chapter 2. Sockets 237

The socket applications can be compiled with COMPAT_43 defined. This will make the sockaddr structure

BSD 4.3 compatible. For more details refer to socket.h.

Parameters

 Socket Specifies the unique name of the socket.

Message Specifies the address containing the message to be sent.

MsgLen Specifies the size of the message in bytes.

Flags Allows the sender to control the message transmission. See the description in the sendto

subroutine for more specific details.

Dst Specifies the external address to which the SOCKSv5 server will attempt to relay the UDP packet.

DstLength Specifies the length of the address structure in Dst.

Svr Specifies the address of the SOCKSv5 server to send the UDP packet for relay.

SvrLength Specifies the length of the address structure in Svr.

Return Values

Upon successful completion, the socks5udp_sendto subroutine returns a value of 0.

If the socks5udp_sendto subroutine is unsuccessful, the system handler performs the following functions:

v Returns a value of -1 to the calling program.

v Moves an error code, indicating the generic system error, into the errno global variable.

v Moves an error code, indicating the specific SOCKSv5 error, into the socks5_errno global variable.

Error Codes (placed in errno; inherited from underlying call to

sendto())

The socks5tcp_connect subroutine is unsuccessful if any of the following errors occurs:

 Error Description

EBADF The Socket parameter is not valid.

ENOTSOCK The Socket parameter refers to a file, not a socket.

EAFNOSUPPORT The addresses in the specified address family cannot be used with this socket.

ENETUNREACH No route to the network or host is present.

EINVAL One or more of the specified arguments is invalid.

ENETDOWN The specified physical network is down.

ENOSPC There is no space left on a device or system table.

Error Codes (placed in socks5_errno; SOCKSv5-specific errors)

The socks5tcp_connect subroutine is unsuccessful if any of the following errors occurs:

 Error Description

S5_ESRVFAIL General SOCKSv5 server failure.

S5_EPERM SOCKSv5 server ruleset rejection.

S5_ENETUNREACH SOCKSv5 server could not reach target network.

S5_EHOSTUNREACH SOCKSv5 server could not reach target host.

S5_ECONNREFUSED SOCKSv5 server connection request refused by target host.

S5_ETIMEDOUT SOCKSv5 server connection failure due to TTL expiry.

S5_EOPNOTSUPP Command not supported by SOCKSv5 server.

S5_EAFNOSUPPORT Address family not supported by SOCKSv5 server.

S5_ENOSERV No server found.

238 Technical Reference: Communications, Volume 2

Examples

The following program fragment illustrates the use of the socks5udp_sendto subroutine by a client to

request a connection from a server’s socket.

void *message;

size_t msglen;

int flags;

struct sockaddr_in svr;

struct sockaddr_in6 dst;

.

.

.

socks5udp_associate(s,(struct sockaddr*)&dst, sizeof(dst), (struct sockaddr *)&svr, sizeof(svr));

.

.

.

socks5udp_sendto(s, message, msglen, flags (struct sockaddr*)&dst, sizeof(dst), (struct sockaddr *)&svr, sizeof(svr));

Related Information

The socks5udp_associate subroutine, socks5_getserv subroutine, /etc/socks5c.conf file, bind

subroutine, getsockname subroutine, sendto subroutine, socket subroutine.

Initiating UNIX Stream Connections Example Program, Sockets Overview, and Understanding Socket

Connections in AIX 5L Version 5.3 Communications Programming Concepts.

SOCKS5C_CONFIG Environment Variable in AIX 5L Version 5.3 Files Reference.

splice Subroutine

Purpose

Lets the protocol stack manage two sockets that use TCP.

Syntax

#include <sys/types.h>

#include <sys/socket.h>

int splice(socket1, socket2, flags)

 int socket1, socket2;

 int flags;

Description

The splice subroutine will let TCP manage two sockets that are in connected state thus relieving the caller

from moving data from one socket to another. After the splice subroutine returns successfully, the caller

needs to close the two sockets.

The two sockets should be of type SOCK_STREAM and protocol IPPROTO_TCP. Specifying a protocol of

zero will also work.

Parameters

 socket1, socket2 Specifies a socket that had gone through a successful connect() or accept().

flags Set to zero. Currently ignored.

Chapter 2. Sockets 239

Return Values

 0 Indicates a successful completion.

-1 Indicates an error. The specific error is indicated by errno.

Error Codes

 EBADF socket1 or socket2 is not valid.

ENOTSOCK socket1 or socket2 refers to a file, not a socket.

EOPNOTSUPP socket1 or socket2 is not of type SOCK_STREAM.

EINVAL The parameters are invalid.

EEXIST socket1 or socket2 is already spliced.

ENOTCONN socket1 or socket2 is not in connected state.

EAFNOSUPPORT socket1 or socket2 address family is not supported for this subroutine.

WriteFile Subroutine

Purpose

Writes data to a socket.

Syntax

#include <iocp.h>

boolean_t WriteFile (FileDescriptor, Buffer, WriteCount, AmountWritten, Overlapped)

HANDLE FileDescriptor;

LPVOID Buffer;

DWORD WriteCount;

LPDWORD AmountWritten;

LPOVERLAPPED Overlapped;

Description

The WriteFile subroutine writes the number of bytes specified by the WriteCount parameter from the

buffer indicated by the Buffer parameter to the FileDescriptor parameter. The number of bytes written is

saved in the AmountWritten parameter. The Overlapped parameter indicates whether or not the operation

can be handled asynchronously.

The WriteFile subroutine returns a boolean (an integer) indicating whether or not the request has been

completed.

The WriteFile subroutine is part of the I/O Completion Port (IOCP) kernel extension.

Note: This subroutine only works to a socket file descriptor. It does not work with files or other file

descriptors.

Parameters

 FileDescriptor Specifies a valid file descriptor obtained from a call to the socket or accept

subroutines.

Buffer Specifies the buffer from which the data will be written.

WriteCount Specifies the maximum number of bytes to write.

AmountWritten Specifies the number of bytes written. The parameter is set by the subroutine.

Overlapped Specifies an overlapped structure indicating whether or not the request can be

handled asynchronously.

240 Technical Reference: Communications, Volume 2

Return Values

Upon successful completion, the WriteFile subroutine returns a boolean indicating the request has been

completed.

If the WriteFile subroutine is unsuccessful, the subroutine handler performs the following functions:

v Returns a value of 0 to the calling program.

v Moves an error code, indicating the specific error, into the errno global variable. For further explanation

of the errno variable, see the link in the Related Information section of this document.

Error Codes

 EINPROGRESS The write request can not be immediately satisfied and will be handled asynchronously. A

completion packet will be sent to the associated completion port upon completion.

EAGAIN The write request cannot be immediately satisfied and cannot be handled asynchronously.

EINVAL The FileDescriptor is invalid.

Examples

The following program fragment illustrates the use of the WriteFile subroutine to synchronously write data

to a socket:

void buffer;

int amount_written;

b=WriteFile (34, &buffer, 128, &amount_written, NULL);

The following program fragment illustrates the use of the WriteFile subroutine to asynchronously write

data to a socket:

void buffer;

int amount_written;

LPOVERLAPPED overlapped;

b = ReadFile (34, &buffer, 128, &amount_written, overlapped);

Note: The request will only be handled asynchronously if it cannot be immediately satisfied.

Related Information

The “socket Subroutine” on page 223, “accept Subroutine” on page 29, “CreateIoCompletionPort

Subroutine” on page 36, “ReadFile Subroutine” on page 151, “GetQueuedCompletionStatus Subroutine” on

page 91, and “PostQueuedCompletionStatus Subroutine” on page 147.

For further explanation of the errno variable, see Error Notification Object Class in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs

Chapter 2. Sockets 241

242 Technical Reference: Communications, Volume 2

Chapter 3. Streams

adjmsg Utility

Purpose

Trims bytes in a message.

Syntax

int adjmsg (mp, len)

mblk_t * mp;

register int len;

Description

The adjmsg utility trims bytes from either the head or tail of the message specified by the mp parameter.

It only trims bytes across message blocks of the same type. The adjmsg utility is unsuccessful if the mp

parameter points to a message containing fewer than len bytes of similar type at the message position

indicated.

This utility is part of STREAMS Kernel Extensions.

Parameters

 mp Specifies the message to be trimmed.

len Specifies the number of bytes to remove from the message.

If the value of the len parameter is greater than 0, the adjmsg utility removes the number of bytes

specified by the len parameter from the beginning of the mp message. If the value of the len parameter is

less than 0, it removes len bytes from the end of the mp message. If the value of the len parameter is 0,

the adjmsg utility does nothing.

Return Values

On successful completion, the adjmsg utility returns a value of 1. Otherwise, it returns a value of 0.

Related Information

The msgdsize utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

allocb Utility

Purpose

Allocates message and data blocks.

Syntax

struct msgb *

allocb(size, pri)

register int size;

uint pri;

© Copyright IBM Corp. 1997, 2005 243

Description

The allocb utility allocates blocks for a message. When a message is allocated in this manner, the b_band

field of the mblk_t structure is initially set to a value of 0. Modules and drivers can set this field.

This utility is part of STREAMS Kernel Extensions.

Parameters

 size Specifies the minimum number of bytes needed in the data buffer.

pri Specifies the relative importance of the allocated blocks to the module. The possible values are:

v BPRI_LO

v BPRI_MED

v BPRI_HI

Return Values

The allocb utility returns a pointer to a message block of type M_DATA in which the data buffer contains

at least the number of bytes specified by the size parameter. If a block cannot be allocated as requested,

the allocb utility returns a null pointer.

Related Information

The esballoc utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

backq Utility

Purpose

Returns a pointer to the queue behind a given queue.

Syntax

queue_t *

backq(q)

register queue_t * q;

Description

The backq utility returns a pointer to the queue preceding a given queue. If no such queue exists (as

when the q parameter points to a stream end), the backq utility returns a null pointer.

This utility is part of STREAMS Kernel Extensions.

Parameters

 q Specifies the queue from which to begin.

Return Values

The backq utility returns a pointer to the queue behind a given queue. If no such queue exists, the backq

utility returns a null pointer.

244 Technical Reference: Communications, Volume 2

Related Information

The RD utility, WR utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

bcanput Utility

Purpose

Tests for flow control in the given priority band.

Syntax

int

bcanput(q, pri)

register queue_t * q;

unsigned char pri;

Description

The bcanput utility provides modules and drivers with a way to test flow control in the given priority band.

The bcanput (q, 0) call is equivalent to the canput (q) call.

This utility is part of STREAMS Kernel Extensions.

Parameters

 q Specifies the queue from which to begin to test.

pri Specifies the priority band to test.

Return Values

The bcanput utility returns a value of 1 if a message of the specified priority can be placed on the queue.

It returns a value of 0 if the priority band is flow-controlled and sets the QWANTW flag to 0 band (the

QB_WANTW flag is set to nonzero band). If the band does not yet exist on the queue in question, it

returns a value of 1.

Related Information

List of Streams Programming References, Understanding STREAMS Flow Control in AIX 5L Version 5.3

Communications Programming Concepts.

bufcall Utility

Purpose

Recovers from a failure of the allocb utility.

Syntax

#include <sys/stream.h>

int

bufcall(size, pri, func, arg)

uint size;

Chapter 3. Streams 245

int pri;

void (* func)();

long arg;

Description

The bufcall utility assists in the event of a block-allocation failure. If the allocb utility returns a null,

indicating a message block is not currently available, the bufcall utility may be invoked.

The bufcall utility arranges for (*func)(arg) call to be made when a buffer of the number of bytes specified

by the size parameter is available. The pri parameter is as described in the allocb utility. When the

function specified by the func parameter is called, it has no user context. It cannot reference the u_area

and must return without sleeping. The bufcall utility does not guarantee that the desired buffer will be

available when the function specified by the func parameter is called since interrupt processing may

acquire it.

On an unsuccessful return, the function specified by the func parameter will never be called. A failure

indicates a temporary inability to allocate required internal data structures.

On multiprocessor systems, the function specified by the func parameter should be interrupt-safe.

Otherwise, the STR_QSAFETY flag must be set when installing the module or driver with the str_install

utility.

This utility is part of STREAMS Kernel Extensions.

Note: The stream.h header file must be the last included header file of each source file using the stream

library.

Parameters

 size Specifies the number of bytes needed.

pri Specifies the relative importance of the allocated blocks to the module. The possible values are:

v BPRI_LO

v BPRI_MED

v BPRI_HI

 func Specifies the function to be called.

arg Specifies an argument passed to the function.

Return Values

The bufcall utility returns a value of 1 when the request is successfully recorded. Otherwise, it returns a

value of 0.

Related Information

The allocb utility, unbufcall utility, mi_bufcall utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

Understanding STREAMS Synchronization in AIX 5L Version 5.3 Communications Programming Concepts.

246 Technical Reference: Communications, Volume 2

canput Utility

Purpose

Tests for available room in a queue.

Syntax

int

canput(q)

register queue_t * q;

Description

The canput utility determines if there is room left in a message queue. If the queue does not have a

service procedure, the canput utility searches farther in the same direction in the stream until it finds a

queue containing a service procedure. This is the first queue on which the passed message can actually

be queued. If such a queue cannot be found, the search terminates on the queue at the end of the

stream.

The canput utility only takes into account normal data flow control.

This utility is part of STREAMS Kernel Extensions.

Parameters

 q Specifies the queue at which to begin the search.

Return Values

The canput utility tests the queue found by the search. If the message queue in this queue is not full, the

canput utility returns a value of 1. This return indicates that a message can be put to the queue. If the

message queue is full, the canput utility returns a value of 0. In this case, the caller is generally referred

to as ″blocked″.

Related Information

List of Streams Programming References, Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

clone Device Driver

Purpose

Opens an unused minor device on another STREAMS driver.

Description

The clone device driver is a STREAMS software driver that finds and opens an unused minor device on

another STREAMS driver. The minor device passed to the clone device driver during the open routine is

interpreted as the major device number of another STREAMS driver for which an unused minor device is

to be obtained. Each such open operation results in a separate stream to a previously unused minor

device.

The clone device driver consists solely of an open subroutine. This open function performs all of the

necessary work so that subsequent subroutine calls (including the close subroutine) require no further

involvement of the clone device driver.

Chapter 3. Streams 247

The clone device driver generates an ENXIO error, without opening the device, if the minor device number

provided does not correspond to a valid major device, or if the driver indicated is not a STREAMS driver.

Note: Multiple opens of the same minor device cannot be done through the clone interface. Executing the

stat subroutine on the file system node for a cloned device yields a different result from executing

the fstat subroutine using a file descriptor obtained from opening the node.

Related Information

The close subroutine, fstat subroutine, open subroutine, stat subroutine.

Understanding STREAMS Drivers and Modules and Understanding the log Device Driver in AIX 5L

Version 5.3 Communications Programming Concepts.

copyb Utility

Purpose

Copies a message block.

Syntax

mblk_t *

copyb(bp)

register mblk_t * bp;

Description

The copyb utility copies the contents of the message block pointed to by the bp parameter into a newly

allocated message block of at least the same size. The copyb utility allocates a new block by calling the

allocb utility. All data between the b_rptr and b_wptr pointers of a message block are copied to the new

block, and these pointers in the new block are given the same offset values they had in the original

message block.

This utility is part of STREAMS Kernel Extensions.

Parameters

 bp Contains a pointer to the message block to be copied.

Return Values

On successful completion, the copyb utility returns a pointer to the new message block containing the

copied data. Otherwise, it returns a null value. The copy is rounded to a fullword boundary.

Related Information

The allocb utility, copymsg utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

copymsg Utility

Purpose

Copies a message.

248 Technical Reference: Communications, Volume 2

Syntax

mblk_t *

copymsg(bp)

register mblk_t * bp;

Description

The copymsg utility uses the copyb utility to copy the message blocks contained in the message pointed

to by the bp parameter to newly allocated message blocks. It then links the new message blocks to form

the new message.

This utility is part of STREAMS Kernel Extensions.

Parameters

 bp Contains a pointer to the message to be copied.

Return Values

On successful compilation, the copymsg utility returns a pointer to the new message. Otherwise, it returns

a null value.

Related Information

The copyb utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

datamsg Utility

Purpose

Tests whether message is a data message.

Syntax

#define datamsg(type) ((type) == M_DATA | | (type) == M_PROTO | | (type) ==

M_PCPROTO | | (type) == M_DELAY)

Description

The datamsg utility determines if a message is a data-type message. It returns a value of True if

mp->b_datap->db_type (where mp is declared as mblk_t *mp) is a data-type message. The possible data

types are M_DATA, M_PROTO, M_PCPROTO, and M_DELAY.

This utility is part of STREAMS Kernel Extensions.

Parameters

 type Specifies acceptable data types.

Return Values

The datamsg utility returns a value of True if the message is a data-type message. Otherwise, it returns a

value of False.

Chapter 3. Streams 249

Related Information

List of Streams Programming References, Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

dlpi STREAMS Driver

Purpose

Provides an interface to the data link provider.

Description

The dlpi driver is a STREAMS-based pseudo-driver that provides a Data Link Provider Interface (DLPI)

style 2 interface to the data link providers in the operating system.

This driver is part of STREAMS Kernel Extensions.

The data link provider interface supports both the connectionless and connection-oriented modes of

service, using the DL_UNITDATA_REQ and DL_UNITDATA_IND primitives. See Data Link Provider

Interface Information in AIX 5L Version 5.3 Communications Programming Concepts.

Refer to the ″STREAMS Overview″ in AIX 5L Version 5.3 Communications Programming Concepts for

related publications about the DLPI.

File System Name

Each provider supported by the dlpi driver has a unique name in the file system. The supported interfaces

are:

 Driver Name Interface

/dev/dlpi/en Ethernet

/dev/dlpi/et 802.3

/dev/dlpi/tr 802.5

/dev/dlpi/fi FDDI

Physical Point of Attachment

The PPA is used to identify one of several of the same type of interface in the system. It should be a

nonnegative integer in the range 0 through 99.

The dlpi drivers use the network interface drivers to access the communication adapter drivers. For

example, the /dev/dlpi/tr file uses the network interface driver if_tr (interface tr0, tr1, tr2, . . .) to access

the token-ring adapter driver. The PPA value used attaches the device open instance with the

corresponding network interface. For example, opening to the /dev/dlpi/en device and then performing an

attach with PPA value of 1 attaches this open instance to the network interface en1. Therefore, choosing a

PPA value selects a network interface. The specific network interface should be active before a certain

PPA value is used.

Examples of client and server dlpi programs are located in the /usr/samples/dlpi directory.

Files

 /dev/dlpi/* Contains names of supported protocols.

/usr/samples/dlpi Contains client and server dlpi sample programs.

250 Technical Reference: Communications, Volume 2

Related Information

The ifconfig command, strload command.

Understanding STREAMS Drivers and Modules, Obtaining Copies of the DLPI and TPI Specification, Data

Link Provider Interface Information, in AIX 5L Version 5.3 Communications Programming Concepts.

dupb Utility

Purpose

Duplicates a message-block descriptor.

Syntax

mblk_t *

dupb(bp)

register mblk_t * bp;

Description

The dupb utility duplicates the message block descriptor (mblk_t) pointed to by the bp parameter by

copying the descriptor into a newly allocated message-block descriptor. A message block is formed with

the new message-block descriptor pointing to the same data block as the original descriptor. The reference

count in the data-block descriptor (dblk_t) is then incremented. The dupb utility does not copy the data

buffer, only the message-block descriptor.

Message blocks that exist on different queues can reference the same data block. In general, if the

contents of a message block with a reference count greater than 1 are to be modified, the copymsg utility

should be used to create a new message block. Only the new message block should be modified to

ensure that other references to the original message block are not invalidated by unwanted changes.

This utility is part of STREAMS Kernel Extensions.

Parameters

 bp Contains a pointer to the message-block descriptor to be copied.

Return Values

On successful compilation, the dupb utility returns a pointer to the new message block. If the dupb utility

cannot allocate a new message-block descriptor, it returns a null pointer.

Related Information

The copymsg utility, dupmsg utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

dupmsg Utility

Purpose

Duplicates a message.

Chapter 3. Streams 251

Syntax

mblk_t *

dupmsg(bp)

register mblk_t * bp;

Description

The dupmsg utility calls the dupb utility to duplicate the message pointed to by the bp parameter by

copying all individual message block descriptors and then linking the new message blocks to form the new

message. The dupmsg utility does not copy data buffers, only message-block descriptors.

This utility is part of STREAMS Kernel Extensions.

Parameters

 bp Specifies the message to be copied.

Return Values

On successful completion, the dupmsg utility returns a pointer to the new message. Otherwise, it returns

a null pointer.

Related Information

The dupb utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

enableok Utility

Purpose

Enables a queue to be scheduled for service.

Syntax

void

enableok(q)

queue_t * q;

Description

The enableok utility cancels the effect of an earlier noenable utility on the same queue. It allows a queue

to be scheduled for service that had previously been excluded from queue service by a call to the

noenable utility.

This utility is part of STREAMS Kernel Extensions.

Parameters

 q Specifies the queue to be enabled.

Related Information

The noenable utility.

252 Technical Reference: Communications, Volume 2

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

esballoc Utility

Purpose

Allocates message and data blocks.

Syntax

mblk_t *

esballoc(base, size, pri, free_rtn)

unsigned char * base;

int size, pri;

frn_t * free_rtn;

Description

The esballoc utility allocates message and data blocks that point directly to a client-supplied buffer. The

esballoc utility sets the db_base, b_rptr, and b_wptr fields to the value specified in the base parameter

(data buffer size) and the db_lim field to the base value plus the size value. The pointer to the free_rtn

structure is placed in the db_freep field of the data block.

The success of the esballoc utility depends on the success of the allocb utility and also that the base,

size, and free_rtn parameters are not null. If successful, the esballoc utility returns a pointer to a message

block. If an error occurs, the esballoc utility returns a null pointer.

This utility is part of STREAMS Kernel Extensions.

Parameters

 base Specifies the data buffer size.

size Specifies the number of bytes.

pri Specifies the relative importance of this block to the module. The possible values are:

v BPRI_LO

v BPRI_MED

v BPRI_HI

The pri parameter is currently unused and is maintained only for compatibility with applications

developed prior to UNIX System V Release 4.0.

free_rtn Specifies the function and argument to be called when the message is freed.

Return Values

On successful completion, the esballoc utility returns a pointer to a message block. Otherwise, it returns a

null pointer.

Related Information

The allocb utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

Chapter 3. Streams 253

flushband Utility

Purpose

Flushes the messages in a given priority band.

Syntax

void flushband(q, pri, flag)

register queue_t * q;

unsigned char pri;

int flag;

Description

The flushband utility provides modules and drivers with the capability to flush the messages associated in

a given priority band. The flag parameter is defined the same as in the flushq utility. Otherwise, messages

are flushed from the band specified by the pri parameter according to the value of the flag parameter.

This utility is part of STREAMS Kernel Extensions.

Parameters

 q Specifies the queue to flush.

pri Specifies the priority band to flush. If the value of the pri parameter is 0, only ordinary messages are flushed.

flag Specifies which messages to flush from the queue. Possible values are:

FLUSHDATA

Discards all M_DATA, M_PROTO, M_PCPROTO, and M_DELAY messages, but leaves all other

messages on the queue.

FLUSHALL

Discards all messages from the queue.

Related Information

The flushq utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

flushq Utility

Purpose

Flushes a queue.

Syntax

void flushq(q, flag)

register queue_t * q;

int flag;

Description

The flushq utility removes messages from the message queue specified by the q parameter and then

frees them using the freemsg utility.

254 Technical Reference: Communications, Volume 2

If a queue behind the q parameter is blocked, the flushq utility may enable the blocked queue, as

described in the putq utility.

This utility is part of STREAMS Kernel Extensions.

Parameters

 q Specifies the queue to flush.

flag Specifies the types of messages to flush. Possible values are:

FLUSHDATA

Discards all M_DATA, M_PROTO, M_PCPROTO, and M_DELAY messages, but leaves all other

messages on the queue.

FLUSHALL

Discards all messages from the queue.

Related Information

The freemsg utility, putq utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

freeb Utility

Purpose

Frees a single message block.

Syntax

void freeb(bp)

register struct msgb * bp;

Description

The freeb utility frees (deallocate) the message-block descriptor pointed to by the bp parameter. It also

frees the corresponding data block if the reference count (see the dupb utility) in the data-block descriptor

(datab structure) is equal to 1. If the reference count is greater than 1, the freeb utility does not free the

data block, but decrements the reference count instead.

If the reference count is 1 and if the message was allocated by the esballoc utility, the function specified

by the db_frtnp->free_func pointer is called with the parameter specified by the db_frtnp->free_arg

pointer.

The freeb utility cannot be used to free a multiple-block message (see the freemsg utility). Results are

unpredictable if the freeb utility is called with a null argument. Always ensure that the pointer is nonnull

before using the freeb utility.

This utility is part of STREAMS Kernel Extensions.

Parameters

 bp Contains a pointer to the message-block descriptor that is to be freed.

Chapter 3. Streams 255

Related Information

The dupb utility, esballoc utility, freemsg utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

freemsg Utility

Purpose

Frees all message blocks in a message.

Syntax

void freemsg(bp)

register mblk_t * bp;

Description

The freemsg utility uses the freeb utility to free all message blocks and their corresponding data blocks

for the message pointed to by the bp parameter.

This utility is part of STREAMS Kernel Extensions.

Parameters

 bp Contains a pointer to the message that is to be freed.

Related Information

The freeb utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

getadmin Utility

Purpose

Returns a pointer to a module.

Syntax

int

(*getadmin(mid))()

ushort mid;

Description

The getadmin utility returns a pointer to the module identified by the mid parameter.

This utility is part of STREAMS Kernel Extensions.

Parameters

 mid Identifies the module to locate.

256 Technical Reference: Communications, Volume 2

Return Values

On successful completion, the getadmin utility returns a pointer to the specified module. Otherwise, it

returns a null pointer.

Related Information

List of Streams Programming References, Understanding STREAMS Drivers and Modules in AIX 5L

Version 5.3 Communications Programming Concepts.

getmid Utility

Purpose

Returns a module ID.

Syntax

ushort

getmid(name)

char name;

Description

The getmid utility returns the module ID for the module identified by the name parameter.

This utility is part of STREAMS Kernel Extensions.

Parameters

 name Specifies the module to be identified.

Return Values

On successful completion, the getmid utility returns the module ID. Otherwise, it returns a value of 0.

Related Information

List of Streams Programming References, Understanding STREAMS Drivers and Modules in AIX 5L

Version 5.3 Communications Programming Concepts.

getmsg System Call

Purpose

Gets the next message off a stream.

Syntax

#include <stropts.h>

int getmsg (fd, ctlptr, dataptr, flags)

int fd;

struct strbuf * ctlptr;

struct strbuf * dataptr;

int * flags;

Chapter 3. Streams 257

Description

The getmsg system call retrieves from a STREAMS file the contents of a message located at the

stream-head read queue, and places the contents into user-specified buffers. The message must contain

either a data part, a control part, or both. The data and control parts of the message are placed into

separate buffers, as described in the ″Parameters″ section. The semantics of each part are defined by the

STREAMS module that generated the message.

This system call is part of the STREAMS Kernel Extensions.

Parameters

 fd Specifies a file descriptor referencing an open stream.

ctlptr Holds the control part of the message.

dataptr Holds the data part of the message.

flags Indicates the type of message to be retrieved. Acceptable values are:

0 Process the next message of any type.

RS_HIPRI

Process the next message only if it is a priority message.

The ctlptr and dataptr parameters each point to a strbuf structure that contains the following members:

int maxlen; /* maximum buffer length */

int len; /* length of data */

char *buf; /* ptr to buffer */

In the strbuf structure, the maxlen field indicates the maximum number of bytes this buffer can hold, the

len field contains the number of bytes of data or control information received, and the buf field points to a

buffer in which the data or control information is to be placed.

If the ctlptr (or dataptr) parameter is null or the maxlen field is -1, the following events occur:

v The control part of the message is not processed. Thus, it is left on the stream-head read queue.

v The len field is set to -1.

If the maxlen field is set to 0 and there is a zero-length control (or data) part, the following events occur:

v The zero-length part is removed from the read queue.

v The len field is set to 0.

If the maxlen field is set to 0 and there are more than 0 bytes of control (or data) information, the following

events occur:

v The information is left on the read queue.

v The len field is set to 0.

If the maxlen field in the ctlptr or dataptr parameter is less than, respectively, the control or data part of the

message, the following events occur:

v The maxlen bytes are retrieved.

v The remainder of the message is left on the stream-head read queue.

v A nonzero return value is provided.

By default, the getmsg system call processes the first priority or nonpriority message available on the

stream-head read queue. However, a user may choose to retrieve only priority messages by setting the

flags parameter to RS_HIPRI. In this case, the getmsg system call processes the next message only if it

258 Technical Reference: Communications, Volume 2

is a priority message. When the integer pointed to by flagsp is 0, any message will be retrieved. In this

case, on return, the integer pointed to by flagsp will be set to RS_HIPRI if a high-priority message was

retrieved, or 0 otherwise.

If the O_NDELAY or O_NONBLOCK flag has not been set, the getmsg system call blocks until a

message of the types specified by the flags parameter (priority only or either type) is available on the

stream-head read queue. If the O_DELAY or O_NONBLOCK flag has been set and a message of the

specified types is not present on the read queue, the getmsg system call fails and sets the errno global

variable to EAGAIN.

If a hangup occurs on the stream from which messages are to be retrieved, the getmsg system call

continues to operate until the stream-head read queue is empty. Thereafter, it returns 0 in the len fields of

both the ctlptr and dataptr parameters.

Return Values

Upon successful completion, the getmsg system call returns a nonnegative value. The possible values

are:

 Value Description

0 Indicates that a full message was read successfully.

MORECTL Indicates that more control information is waiting for retrieval.

MOREDATA Indicates that more data is waiting for retrieval.

MORECTL|.MOREDATA Indicates that both types of information remain. Subsequent getmsg calls retrieve

the remainder of the message.

If the high priority control part of the message is consumed, the message will be placed back on the

queue as a normal message of band 0. Subsequent getmsg system calls retrieve the remainder of the

message. If, however, a priority message arrives or already exists on the STREAM head, the subsequent

call to getmsg retrieves the higher-priority message before retrieving the remainder of the message that

was put back.

On return, the len field contains one of the following:

v The number of bytes of control information or data actually received

v 0 if there is a zero-length control or data part

v -1 if no control information or data is present in the message.

If information is retrieved from a priority message, the flags parameter is set to RS_HIPRI on return.

Upon failure, getmsg returns -1 and sets errno to indicate the error.

Error Codes

The getmsg system call fails if one or more of the following is true:

 Error Description

EAGAIN The O_NDELAY flag is set, and no messages are available.

EBADF The fd parameter is not a valid file descriptor open for reading.

EBADMSG Queued message to be read is not valid for the getmsg system call.

EFAULT The ctlptr, dataptr, or flags parameter points to a location outside the allocated address space.

EINTR A signal was caught during the getmsg system call.

EINVAL An illegal value was specified in the flags parameter or else the stream referenced by the fd parameter

is linked under a multiplexer.

ENOSTR A stream is not associated with the fd parameter.

Chapter 3. Streams 259

The getmsg system call can also fail if a STREAMS error message had been received at the stream head

before the call to the getmsg system call. The error returned is the value contained in the STREAMS error

message.

Files

 /lib/pse.exp Contains the STREAMS export symbols.

Related Information

The poll subroutine, read subroutine, write subroutine.

The getpmsg system call, putmsg system call, putpmsg system call.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

getpmsg System Call

Purpose

Gets the next priority message off a stream.

Syntax

#include <stropts.h>

int getpmsg (fd, ctlptr, dataptr, bandp, flags)

int fd;

struct strbuf * ctlptr;

struct strbuf * dataptr;

int * bandp;

int * flags;

Description

The getpmsg system call is identical to the getmsg system call, except that the message priority can be

specified.

This system call is part of the STREAMS Kernel Extensions.

Parameters

 fd Specifies a file descriptor referencing an open stream.

ctlptr Holds the control part of the message.

dataptr Holds the data part of the message.

bandp Specifies the priority band of the message. If the value of the bandp parameter is set to 0, then the

priority band is not limited.

260 Technical Reference: Communications, Volume 2

flags Indicates the type of message priority to be retrieved. Acceptable values are:

MSG_ANY

Process the next message of any type.

MSG_BAND

Process the next message only if it is of the specified priority band.

MSG_HIPRI

Process the next message only if it is a priority message.

If the value of the flags parameter is MSG_ANY or MSG_HIPRI, then the bandp parameter must be set

to 0.

Related Information

The poll subroutine, read subroutine, write subroutine.

The getmsg system call, putmsg system call, putpmsg system call.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

getq Utility

Purpose

Gets a message from a queue.

Syntax

mblk_t *

getq(q)

register queue_t * q;

Description

The getq utility gets the next available message from the queue pointed to by the q parameter. The getq

utility returns a pointer to the message and removes that message from the queue. If no message is

queued, the getq utility returns null.

The getq utility, and certain other utility routines, affect flow control in the Stream as follows: If the getq

utility returns null, the queue is marked with the QWANTR flag so that the next time a message is placed

on it, it will be scheduled for service (that is, enabled - see the qenable utility). If the data in the enqueued

messages in the queue drops below the low-water mark, as specified by the q_lowat field, and if a queue

behind the current queue has previously attempted to place a message in the queue and failed, (that is,

was blocked - see the canput utility), then the queue behind the current queue is scheduled for service.

The queue count is maintained on a per-band basis. Priority band 0 (normal messages) uses the q_count

and q_lowat fields. Nonzero priority bands use the fields in their respective qband structures (the qb_count

and qb_lowat fields). All messages appear on the same list, linked according to their b_next pointers.

The q_count field does not reflect the size of all messages on the queue; it only reflects those messages

in the normal band of flow.

This utility is part of STREAMS Kernel Extensions.

Chapter 3. Streams 261

Parameters

 q Specifies the queue from which to get the message.

Return Values

On successful completion, the getq utility returns a pointer to the message. Otherwise, it returns a null

value.

Related Information

The canput utility, qenable utility, rmvq utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

insq Utility

Purpose

Puts a message at a specific place in a queue.

Syntax

int

insq(q, emp, mp)

register queue_t * q;

register mblk_t * emp;

register mblk_t * mp;

Description

The insq utility places the message pointed to by the mp parameter in the message queue pointed to by

the q parameter, immediately before the already-queued message pointed to by the emp parameter.

If an attempt is made to insert a message out of order in a queue by using the insq utility, the message

will not be inserted and the routine is not successful.

This utility is part of STREAMS Kernel Extensions.

The queue class of the new message is ignored. However, the priority band of the new message must

adhere to the following format:

emp->b_prev->b_band >= mp->b_band >= emp->b_band.

Parameters

 q Specifies the queue on which to place the message.

emp Specifies the existing message before which the new message is to be placed.

If the emp parameter has a value of null, the message is placed at the end of the queue. If the emp parameter

is nonnull, it must point to a message that exists on the queue specified by the q parameter, or undesirable

results could occur.

mp Specifies the message that is to be inserted on the queue.

Return Values

On successful completion, the insq utility returns a value of 1. Otherwise, it returns a value of 0.

262 Technical Reference: Communications, Volume 2

Related Information

The getq utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

ioctl Streams Device Driver Operations

(As defined in X/Open Common Application Environment (CAE) Specification: System Interfaces and

Headers, Issue 5 (2/97).)

Purpose

Controls a STREAMS device.

Syntax

#include <stropts.h>

int ioctl (fd, request, .../*arg*/)

int fd;

int request;

int .../*arg*/;

Description

The ioctl operation performs a variety of control functions on STREAMS devices. For non-STREAMS

devices, the functions performed by this call are unspecified. The request argument and an optional third

argument (with varying type) are passed to and interpreted by the appropriate part of the STREAM

associated with fd.

Using the ioctl operation on a file descriptor obtained from a call to the shm_open subroutine fails with

ENOTTY.

Parameters

 fd An open file descriptor that refers to a device.

request Selects the control function to be performed and will depend on the STREAMS device being

addressed.

.../*arg*/ Represents additional information that is needed by this specific STREAMS device to perform the

requested function. The type of arg depends on the particular control request, but it is either an

integer or a pointer to a device-specific data structure.

The following ioctl commands, with error values indicated, are applicable to all STREAMS files:

 I_PUSH Pushes the module whose name is pointed to by arg onto the top of the current STREAM, just

below the STREAM head. It then calls the open function of the newly-pushed module.

The ioctl function with the I_PUSH command will fail if:

[EINVAL]

Invalid module name.

[ENXIO]

Open function of new module failed.

[ENXIO]

Hangup received on fd.

Chapter 3. Streams 263

I_POP Removes the module just below the STREAM head of the STREAM pointed to by fd. The arg

argument should be 0 in an I_POP request.

The ioctl function with the I_POP command will fail if:

[EINVAL]

No module present in the STREAM.

[ENXIO]

Hangup received on fd.

I_LOOK Retrieves the name of the module just below the STREAM head of the STREAM pointed to by

fd, and places it in a character string pointed to by arg. The buffer pointed to by arg should be

at least FMNAMESZ+1 bytes long, where FMNAMESZ is defined in <stropts.h>.

The ioctl function with the I_LOOK command will fail if:

[EINVAL]

No module present in the STREAM.

I_FLUSH This request flushes read and/or write queues, depending on the value of arg. Valid arg values

are:

FLUSHR

Flush all read queues.

FLUSHW

Flush all write queues.

FLUSHRW

Flush all read and all write queues.

The ioctl function with the I_FLUSH command will fail if:

[EINVAL]

Invalid arg argument.

[EAGAIN] or [ENOSR]

Unable to allocate buffers for flush messages.

[ENXIO]

Hangup received on fd.

I_FLUSHBAND Flushes a particular band of messages. The arg argument points to a bandinfo structure. The

bi_flag member may be one of FLUSHR, FLUSHW, OR FLUSHRW as described above. The

bi_pri member determines the priority band to be flushed.

264 Technical Reference: Communications, Volume 2

I_SETSIG Request that the STREAMS implementation send the SIGPOLL signal to the calling process

when a particular event has occurred on the STREAM associated with fd. I_SETSIG supports

an asynchronous processing capability in STREAMS. The value of arg is a bitmask that

specifies the events for which the process should be signaled. It is the bitwise-OR of an

combination of the following constants:

S_RDNORM

A normal (priority band set to 0) message has arrived at the head of a STREAM head

read queue. A signal will be generated even if the message is of zero length.

S_RDBAND

A message with a nonzero priority band has arrived at the head of a STREAM head

read queue. A signal will be generated even if the message is of zero length.

S_INPUT

A message, other than a high-priority message, has arrived at the head of a STREAM

head read queue. A signal will be generated even if the message is of zero length.

S_HIPRI

A high-priority message is present on a STREAM head read queue. A signal will be

generated even if the message is of zero length.

S_OUTPUT

The write queue for normal data (priority band 0) just below the STREAM head is no

longer full. This notifies the process that there is room on the queue for sending (or

writing) normal data downstream.

S_WRNORM

Same as S_OUTPUT.

S_WRBAND

The write queue for a nonzero priority band just below the STREAM head is no

longer full. This notifies the process that there is room on the queue for sending (or

writing) priority data downstream.

S_MSG

A STREAMS signal message that contains the SIGPOLL signal has reached the front

of the STREAM head read queue.

S_ERROR

Notification of an error condition has reached the STREAM head.

S_HANGUP

Notification of a hangup has reached the STREAM head.

S_BANDURG

When used in conjunction with S_RDBAND, SIGURG is generated instead of

SIGPOLL when a priority message reaches the front of the STREAM head read

queue.

If arg is 0, the calling process will be unregistered and will not receive further SIGPOLL signals

for the stream associated with fd.

Processes that wish to receive SIGPOLL signals must explicitly register to receive them using

I_SETSIG. If several processes register to receive this signal for the same event on the same

STREAM, each process will be signaled when the event occurs.

The ioctl function with the I_SETSIG command will fail if:

[EINVAL]

The value of arg is invalid.

[EINVAL]

The value of arg is 0 and the calling process is not registered to receive the

SIGPOLL signal.

[EAGAIN]

There were insufficient resources to store the signal request.

Chapter 3. Streams 265

I_GETSIG Returns the events for which the calling process is currently registered to be sent a SIGPOLL

signal. The events are returned as a bitmask in an int pointed to by arg, where the events are

those specified in the description of I_SETSIG above.

The ioctl function with the I_GETSIG command will fail if:

[EINVAL]

Process is not registered to receive the SIGPOLL signal.

I_FIND The request compares the names of all modules currently present in the STREAM to the

name pointed to by arg, and returns 1 if the named module is present in the STREAM, or

returns 0 if the named module is not present.

The ioctl function with the I_FIND command will fail if:

[EINVAL]

arg does not contain a valid module name.

I_PEEK This request allows a process to retrieve the information in the first message on the STREAM

head read queue without taking the message off the queue. It is analogous to getmsg except

that this command does not remove the message from the queue. The arg argument points to

a strpeek structure.

The maxlen member in the ctlbuf and databuf strbuf structures must be set to the number of

bytes of control information and/or data information, respectively, to retrieve. The flags

member may be marked RS_HIPRI or 0, as described by getmsg. If the process sets flags to

RS_HIPRI, for example, I_PEEK will only look for a high-priority message on the STREAM

head read queue.

I_PEEK returns 1 if a message was retrieved, and returns 0 if no message was found on the

STREAM head read queue, or if the RS_HIPRI flag was set in flags and a high-priority

message was not present on the STREAM head read queue. It does not wait for a message

to arrive. On return, ctlbuf specifies information in the control buffer, databuf specifies

information in the data buffer, and flags contains the value RS_HIPRI or 0.

I_SRDOPT Sets the read mode using the value of the argument arg. Read modules are described in read.

Valid arg flags are:

RNORM

Byte-stream mode, the default.

RMSGD

Message-discard mode.

RMSGN

Message-nondiscard mode.

The bitwise inclusive OR of RMSGD and RMSGN will return [EINVAL]. The bitwise inclusive

OR of RNORM and either RMSGD or RMSGN will result in the other flag overriding RNORM

which is the default.

In addition, treatment of control messages by the STREAM head may be changed by setting

any of the following flags in arg:

RPROTNORM

Fail read with [EBADMSG] if a message containing a control part is at the front of the

STREAM head read queue.

RPROTDAT

Deliver the control part of a message as data when a process issues a read.

RPROTDIS

Discard the control part of a message, delivering any data portion, when a process

issues a read.

I_GRDOPT Returns the current read mode setting as, described above, in an int pointed to by the

argument arg. Read modes are described in read.

266 Technical Reference: Communications, Volume 2

I_NREAD Counts the number of data bytes in the data part of the first message on the STREAM head

read queue and places this value in the int pointed to by arg. The return value for the

command is the number of messages on the STREAM head read queue. For example, if 0 is

returned in arg, but the ioctl return value is greater than 0, this indicates that a zero-length

message is next on the queue.

I_FDINSERT Creates a message from a specified buffer(s), adds information about another STREAM, and

sends the message downstream. The message contains a control part and an optional data

part. The data and control parts to be sent are distinguished by placement in separate buffers,

as described below. The arg argument points to a strfdinsert structure.

The len member in the ctlbuf strbuf structure must be set to the size of a t_uscalar_t plus

the number of bytes of control information to be sent with the message. The fd member

specifies the file descriptor of the other STREAM, and the offset member, which must be

suitably aligned for use as a t_uscalar_t, specifies the offset from the start of the control

buffer where I_FDINSERT will store a t_uscalar_t whose interpretation is specific to the

STREAM end. The len member in the databuf strbuf structure must be set to the number of

bytes of data information to be sent with the message, or to 0 if no data part is to be sent.

The flags member specifies the type of message to be created. A normal message is created

if flags is set to 0, and a high-priority message is created if flags is set to RS_HIPRI. For

non-priority messages, I_FDINSERT will block if the STREAM write queue is full due to

internal flow control conditions. For priority messages, I_FDINSERT does not block on this

condition. For non-priority messages, I_FDINSERT does not block when the write queue is full

and O_NONBLOCK is set. Instead, it fails and sets errno to [EAGAIN].

I_FDINSERT also blocks, unless prevented by lack of internal resources, waiting for the

availability of message blocks in the STREAM, regardless of priority or whether O_NONBOCK

has been specified. No partial message is sent.

The ioctl function with the I_FDINSERT command will fail if:

[EAGAIN]

A non-priority message is specified, the O_NONBLOCK flag is set, and the STREAM

write queue is full due to internal flow control conditions.

[EAGAIN] or [ENOSR]

Buffers cannot be allocated for the message that is to be created.

[EINVAL]

One of the following:

v The fd member of the strfdinsert structure is not a valid, open STREAM file

descriptor.

v The size of a t_uscalar_t plus offset is greater than the len member for the buffer

specified through ctlptr.

v The offset member does not specify a properly-aligned location in the data buffer.

v An undefined value is stored in flags.

[ENXIO]

Hangup received on the STREAM identified by either the fd argument or the fd

member of the strfdinsert structure.

[ERANGE]

The len member for the buffer specified through databuf does not fall within the range

specified by the maximum and minimum packet sizes of the topmost STREAM

module or the len member for the buffer specified through databuf is larger than the

maximum configured size of the data part of a message; or the len member for the

buffer specified through ctlbuf is larger than the maximum configured size of the

control message.

Chapter 3. Streams 267

I_STR Constructs an internal STREAMS ioctl message from the data pointed to by arg, and sends

that message downstream.

This mechanism is provided to send ioctl requests to downstream modules and drivers. It

allows information to be sent with ioctl, and returns to the process any information sent

upstream by the downstream recipient. I_STR blocks until the system responds with either a

positive or negative acknowledgment message, or until the request ″times out″ after some

period of time. If the request times out, it fails with errno set to [ETIME].

At most, one I_STR can be active on a STREAM. Further I_STR calls will block until the active

I_STR completes at the STREAM head. The default timeout interval for these requests is 15

seconds. The O_NONBLOCK flag has no effect on this call.

To send requests downstream, arg must point to a strioctl structure.

The ic_cmd member is the internal ioctl command intended for a downstream module or

driver and ic_timeout is the number of seconds:

-1 = Infinite.

0 = Use implementation-dependent timeout interval.

>0 = As specified.

an I_STR request will wait for acknowledgment before timing out. ic_len is the number of

bytes in the data argument, and ic_dp is a pointer to the data argument. The ic_len member

has two uses:

v On input, it contains the length of the data argument passed on.

v On return from the command, it contains the number of bytes being returned to the process

(the buffer pointed to by ic_dp should be large enough to contain the maximum amount of

data that any module or the driver in the STREAM can return).

The ioctl function with the I_STR command will fail if:

[EAGAIN] or [ENOSR]

Unable to allocate buffers for the ioctl message.

[EINVAL]

The ic_len member is less than 0 or larger than the maximum configured size of the

data part of a message, or ictimeout is less than -1.

[ENXIO]

Hangup received on fd.

[ETIME]

A downstream ioctl timed out before acknowledgment was received.

An I_STR can also fail while waiting for an acknowledgment if a message indicating an error

or a hangup is received at the STREAM head. In addition, an error code can be returned in

the positive or negative acknowledgment message, in the event the ioctl command sent

downstream fails. For these cases, I_STR fails with errno set to the value in the message.

I_SWROPT Sets the write mode using the value of the argument arg. Valid bit settings for arg are:

SNDZERO

Send a zero-length message downstream when a write of 0 bytes occurs. To not

send a zero-length message when a write of 0 bytes occurs, this bit must not be set

in arg (for example, arg would be set to 0).

The ioctl function with the I_SWROPT command will fail if:

[EINVAL]

arg is not the above value.

I_GWROPT Returns the current write mode setting, as described above, in the int that is pointed to by the

argument arg.

268 Technical Reference: Communications, Volume 2

I_SENDFD I_SENDFD creates a new reference to the open file description, associated with the file

descriptor arg, and writes a message on the STREAMS-based pipe fd containing this

reference, together with the user ID and group ID of the calling process.

The ioctl function with the I_SENDFD command will fail if:

[EAGAIN]

The sending STREAM is unable to allocate a message block to contain the file

pointer; or the read queue of the receiving STREAM head is full and cannot accept

the message sent by I_SENDFD.

[EBADF]

The arg argument is not a valid, open file descriptor.

[EINVAL]

The fd argument is not connected to a STREAM pipe.

[ENXIO]

Hangup received on fd.

I_RECVFD Retrieves the reference to an open file description from a message written to a

STREAMS-based pipe using the I_SENDFD command, and allocates a new file descriptor in

the calling process that refers to this open file description. The arg argument is a pointer to an

strrecvfd data structure as defined in stropts.h.

The fd member is a file descriptor. The uid and gid members are the effective user ID and

group ID, respectively, of the sending process.

If O_NONBLOCK is not set, I_RECVFD blocks until a message is present at the STREAM

head. If O_NONBLOCK is set, I_RECVFD fails with errno set to [EAGAIN] if no message is

present at the STREAM head.

If the message at the STREAM head is a message sent by an I_SENDFD, a new file

descriptor is allocated for the open file descriptor referenced in the message. The new file

descriptor is placed in the fd member of the strrecfd structure pointed to by arg.

The ioctl function with the I_RECVFD command will fail it:

[EAGAIN]

A message is not present at the STREAM head read queue and the O_NONBLOCK

flag is set.

[EBADMSG]

The message at the STREAM head read queue is not a message containing a

passed file descriptor.

[EMFILE]

The process has the maximum number of file descriptors currently open that is

allowed.

[ENXIO]

Hangup received on fd.

Chapter 3. Streams 269

I_LIST This request allows the process to list all the module names on the STREAM, up to an

including the topmost driver name. If arg is a null pointer, the return value is the number of

modules, including the driver, that are on the STREAM pointed to by fd. This lets the process

allocate enough space for the module names. Otherwise, it should point to an str_list

structure.

The sl_nmods member indicates the number of entries that process has allocated in the

array. Upon return, the sl_modlist member of the str_list structure contains the list of module

names, and the number of entries that have been filled into the sl_modlist array is found in

the sl_nmods member (the number includes the number of modules including the driver)>

The return value from ioctl is 0. The entries are filled in starting at the top of the STREAM and

continuing downstream until either the end of the STREAM is reached, or the number of

requested modules (sl_nmods) is satisfied.

The ioctl function with the I_LIST command will fail it:

[EINVAL]

The sl_nmods member is less than 1.

[EAGAIN] or [ENOSR]

Unable to allocate buffers.

I_ATMARK This request allows the process to see if the message at the head of the STREAM head read

queue is marked by some module downstream. The arg argument determines how the

checking is done when there may be multiple marked messages on the STREAM head read

queue. It may take on the following values:

ANYMARK

Check if the message is marked.

LASTMARK

Check if the message is the last one marked on the queue.

The bitwise inclusive OR of the flags ANYMARK and LASTMARK is permitted.

The return value is 1 if the mark condition is satisfied and 0 otherwise.

The ioctl function with the I_ATMARK command will fail if:

[EINVAL]

Invalid arg value.

I_CKBAND Check if the message of given priority band exists on the STREAM head read queue. This

returns 1 if a message of the given priority exists, 0 if no such message exists, or -1 on error.

arg should be of type int.

The ioctl function with the I_CKBAND command will fail if:

[EINVAL]

Invalid arg value.

I_GETBAND Return the priority band of the first message on the STREAM head read queue in the integer

referenced by arg.

The ioctl function with the I_GETBAND command will fail if:

[ENODATA]

No message on the STREAM head read queue.

I_CANPUT Check if a certain band is writable. arg is set to the priority band in question. The return value

is 0 if the band is flow-controlled, 1 if the band is writable, or -1 on error.

The ioctl function with the I_CANPUT command will fail if:

[EINVAL]

Invalid arg value.

270 Technical Reference: Communications, Volume 2

I_SETCLTIME This request allows the process to set the time the STREAM head will delay when a STREAM

is closing and there is no data on the write queues. Before closing each module or driver, if

there is data on its write queue, the STREAM head will delay for the specified amount of time

to allow the data to drain. If, after the delay, data is still present, they will be flushed. The arg

argument is a pointer to an integer specifying the number of milliseconds to delay, rounded up

to the nearest valid value. If I_SETCLTIME is not performed on a STREAM, an

implementation-dependent default timeout interval is used.

The ioctl function with the I_SETCLTIME command will fail if:

[EINVAL]

Invalid arg value.

I_GETCLTIME This request returns the close time delay in the integer pointed to by arg.

Multiplexed STREAMS Configurations

The following four commands are used for connecting and disconnecting multiplexed STREAMS

configurations. These commands use an implementation-dependent default timeout interval.

 I_LINK Connects two STREAMS, where fd is the file descriptor of the STREAM connected to the

multiplexing driver, and arg is the file descriptor of the STREAM connected to another driver. The

STREAM designated by arg gets connected below the multiplexing driver. I_LINK requires the

multiplexing driver to send an acknowledgment message to the STREAM head regarding the

connection. This call returns a multiplexer ID number (an identifier used to disconnect the

multiplexer; see I_UNLINK) on success, and -1 on failure.

The ioctl function with the I_LINK command will fail if:

[ENXIO]

Hangup received on fd.

[ETIME]

Time out before acknowledgment message was received at STREAM head.

[EAGAIN] or [ENOSR]

Unable to allocate STREAMS storage to perform the I_LINK.

[EINVAL]

The fd argument does not support multiplexing; or arg is not a STREAM or is already

connected downstream from a multiplexer; or the specified I_LINK operation would

connect the STREAM head in more than one place in the multiplexed STREAM.

An I_LINK can also fail while waiting for the multiplexing driver to acknowledge the request, if a

message indicating an error or a hangup is received at the STREAM head of fd. In addition, an

error code can be returned in the positive or negative acknowledgment message. For these cases,

I_LINK fails with errno set to the value in the message.

Chapter 3. Streams 271

I_UNLINK Disconnects the two STREAMS specified by fd and arg. fd is the file descriptor of the STREAM

connected to the multiplexing driver. The arg argument is the multiplexer ID number that was

returned by the I_LINK ioctl command when a STREAM was connected downstream from the

multiplexing driver. If arg is MUXID_ALL, then all STREAMS that were connected to fd are

disconnected. As in I_LINK, this command requires acknowledgment.

The ioctl function with the I_UNLINK command will fail if:

[ENXIO]

Hangup received on fd.

[ETIME]

Time out before acknowledgment message was received at STREAM head.

[EAGAIN] or [ENOSR]

Unable to allocate buffers for the acknowledgment message.

[EINVAL]

Invalid multiplexer ID number.

An I_UNLINK can also fail while waiting for the multiplexing driver to acknowledge the request is a

message indicating an error or a hangup is received at the STREAM head of fd. In addition, an

error code can be returned in the positive or negative acknowledgment message. For these cases,

I_UNLINK fails with errno set to the value in the message.

I_PLINK Creates a persistent connection between two STREAMS, where fd is the file descriptor of the

STREAM connected to the multiplexing driver, and arg is the file descriptor of the STREAM

connected to another driver. This call creates a persistent connection which can exist even if the

file descriptor fd associated with the upper STREAM to the multiplexing driver is closed. The

STREAM designated by arg gets connected via a persistent connection below the multiplexing

driver. I_PLINK requires the multiplexing driver to send an acknowledgment to the STREAM head.

This call returns a multiplexer ID number (an identifier that may be used to disconnect the

multiplexer; see I_PUNLINK) on success, and -1 on failure.

The ioctl function with the I_PLINK command will fail if:

[ENXIO]

Hangup received on fd.

[ETIME]

Time out before acknowledgment message was received at STREAM head.

[EAGAIN] or [ENOSR]

Unable to allocate STREAMS storage to perform the I_PLINK.

[EINVAL]

The fd argument does not support multiplexing; or arg is not a STREAM or is already

connected downstream from a multiplexer; or the specified I_PLINK operation would

connect the STREAM head in more than one place in the multiplexed STREAM.

An I_PLINK can also fail while waiting for the multiplexing driver to acknowledge the request, if a

message indicating an error or a hangup is received at the STREAM head of fd. In addition, an

error code can be returned in the positive or negative acknowledgment message. For these cases,

I_PLINK fails with errno set to the value in the message.

272 Technical Reference: Communications, Volume 2

I_PUNLINK Disconnects the two STREAMS specified by fd and arg from a persistent connection. The fd

argument is the file descriptor of the STREAM connected to the multiplexing driver. The arg

argument is the multiplexer ID number that was returned by the I_PLINK ioctl command when a

STREAM was connected downstream from the multiplexing driver. If arg is MUXID_ALL than all

STREAMS which are persistent conditions to fd are disconnected. As in I_PLINK, this command

requires the multiplexing driver to acknowledge the request.

The ioctl function with the I_PUNLINK command will fail if:

[ENXIO]

Hangup received on fd.

[ETIME]

Time out before acknowledgment message was received at STREAM head.

[EAGAIN] or [ENOSR]

Unable to allocate buffers for the acknowledgment message.

[EINVAL]

Invalid multiplexer ID number.

An I_PUNLINK can also fail while waiting for the multiplexing driver to acknowledge the request if a

message indicating an error or a hangup is received at the STREAM head of fd. In addition, an

error code can be returned in the positive or negative acknowledgment message. For these cases,

I_PUNLINK fails with errno set to the value in the message.

Return Value

Upon successful completion, ioctl returns a value other than -1 that depends upon the STREAMS device

control function. Otherwise, it returns -1 and sets errno to indicate the error.

Errors

Under the following general conditions, ioctl will fail if:

 [EBADF] The fd argument is not a valid open file descriptor.

[EINTR] A signal was caught during the ioctl operation.

[EINVAL] The STREAM or a multiplexer referenced by fd is linked (directly or indirectly) downstream from a

multiplexer.

If an underlying device driver detects an error, then ioctl will fail if:

 [EINVAL] The request or arg argument is not valid for this device.

[EIO] Some physical I/O error has occurred.

[ENOTTY] The fd argument is not associated with a STREAMS device that accepts control functions. A file

descriptor was obtained from a call to the shm_open subroutine.

[ENXIO] The request and arg arguments are valid for this device driver, but the service requested cannot be

performed on this particular sub-device.

[ENODEV] The fd argument refers to a valid STREAMS device, but the corresponding device driver does not

support the ioctl function.

If a STREAM is connected downstream from a multiplexer, and ioctl command except I_UNLINK and

I_PUNLINK will set errno to [EINVAL].

Application Usage

The implementation-dependent timeout interval for STREAMS has historically been 15 seconds.

Chapter 3. Streams 273

Related Information

The close subroutine, getmsg system call, open subroutine, poll subroutine, putmsg system call, read

subroutine, write subroutine

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

I_ATMARK streamio Operation

Purpose

Checks to see if a message is marked.

Description

The I_ATMARK operation shows the user if the current message on the stream-head read queue is

marked by a downstream module. The arg parameter determines how the checking is done when there

are multiple marked messages on the stream-head read queue. The possible values for the arg parameter

are:

 Value Description

ANYMARK Read to determine if the message is marked by a downstream module.

LASTMARK Read to determine if the message is the last one marked on the queue by a downstream module.

The I_ATMARK operation returns a value of 1 if the mark condition is satisfied. Otherwise, it returns a

value of 0.

This operation is part of STREAMS Kernel Extensions.

Error Codes

If unsuccessful, the errno global variable is set to the following value:

 Value Description

EINVAL The value of the arg parameter could not be used.

I_CANPUT streamio Operation

Purpose

Checks if a given band is writable.

Description

The I_CANPUT operation checks a given priority band to see if it can be written on. The arg parameter

contains the priority band to be checked.

Return Values

The return value is set to one of the following:

 Value Description

0 The band is flow controlled.

1 The band is writable.

-1 An error occurred.

274 Technical Reference: Communications, Volume 2

Error Codes

If unsuccessful, the errno global variable is set to the following value:

 Value Description

EINVAL The value in the arg parameter is invalid.

I_CKBAND streamio Operation

Purpose

Checks if a message of a particular band is on the stream-head read queue.

Description

The I_CKBAND operation checks to see if a message of a given priority band exists on the stream-head

read queue. The arg parameter is an integer containing the value of the priority band being searched for.

The I_CKBAND operation returns a value of 1 if a message of the given band exists. Otherwise, it returns

a value of -1.

This operation is part of STREAMS Kernel Extensions.

Error Codes

If unsuccessful, the errno global variable is set to the following value:

 Value Description

EINVAL The value in the arg parameter is not valid.

I_FDINSERT streamio Operation

Purpose

Creates a message from user-specified buffers, adds information about another stream and sends the

message downstream.

Description

The I_FDINSERT operation creates a message from user-specified buffers, adds information about

another stream, and sends the message downstream. The message contains a control part and an

optional data part. The data and control parts transmitted are identified by their placement in separate

buffers. The arg parameter points to a strfdinsert structure that contains the following elements:

struct strbuf ctlbuf;

struct strbuf databuf;

long flags;

int fildes;

int offset;

The len field in the strbuf structure must be set to the size of a pointer plus the number of bytes of control

information sent with the message. The fildes field in the strfdinsert structure specifies the file descriptor

of the other stream. The offset field, which must be word-aligned, specifies the number of bytes beyond

the beginning of the control buffer to store a pointer. This pointer will be the address of the read queue

structure of the driver for the stream corresponding to the fildes field in the strfdinsert structure. The len

field in the strbuf structure of the databuf field must be set to the number of bytes of data information sent

with the message or to 0 if no data part is sent.

Chapter 3. Streams 275

The flags field specifies the type of message created. There are two valid values for the flags field:

 Value Description

0 Creates a nonpriority message.

RS_HIPRI Creates a priority message.

For nonpriority messages, the I_FDINSERT operation blocks if the stream write queue is full due to

internal flow-control conditions. For priority messages, the I_FDINSERT operation does not block on this

condition. For nonpriority messages, the I_FDINSERT operation does not block when the write queue is

full and the O_NDELAY flag is set. Instead, the operation fails and sets the errno global variable to

EAGAIN.

The I_FDINSERT operation also blocks unless prevented by lack of internal resources, while it is waiting

for the availability of message blocks in the stream, regardless of priority or whether the O_NDELAY flag

has been specified. No partial message is sent.

This operation is part of STREAMS Kernel Extensions.

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

EAGAIN A nonpriority message was specified, the O_NDELAY flag is set, and the stream write queue is full due

to internal flow-control conditions.

ENOSR Buffers could not be allocated for the message that was to be created due to insufficient STREAMS

memory resources.

EFAULT The arg parameter points to an area outside the allocated address space, or the buffer area specified in

the ctlbuf or databuf field is outside this space.

EINVAL One of the following conditions has occurred:

The fildes field in the strfdinsert structure is not a valid, open stream file descriptor.

The size of a pointer plus the value of the offset field is greater than the len field for the buffer specified

through the ctlptr field.

The offset parameter does not specify a properly aligned location in the data buffer.

An undefined value is stored in the flags parameter.

ENXIO Hangup received on the fildes parameter of the ioctl call or the fildes field in the strfdinsert structure.

ERANGE The len field for the buffer specified through the databuf field does not fall within the range specified by

the maximum and minimum packet sizes of the topmost stream module; or the len field for the buffer

specified through the databuf field is larger than the maximum configured size of the data part of a

message; or the len field for the buffer specified through the ctlbuf field is larger than the maximum

configured size of the control part of a message.

The I_FDINSERT operation is also unsuccessful if an error message is received by the stream head

corresponding to the fildes field in the strfdinsert structure. In this case, the errno global variable is set

to the value in the message.

I_FIND streamio Operation

Purpose

Compares the names of all modules currently present in the stream to a specified name.

276 Technical Reference: Communications, Volume 2

Description

The I_FIND operation compares the names of all modules currently present in the stream to the name

pointed to by the arg parameter, and returns a value of 1 if the named module is present in the stream. It

returns a value of 0 if the named module is not present.

This operation is part of STREAMS Kernel Extensions.

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

EFAULT The arg parameter points outside the allocated address space.

EINVAL The arg parameter does not contain a valid module name.

I_FLUSH streamio Operation

Purpose

Flushes all input or output queues.

Description

The I_FLUSH operation flushes all input or output queues, depending on the value of the arg parameter.

Legal values for the arg parameter are:

 Value Description

FLUSHR Flush read queues.

FLUSHW Flush write queues.

FLUSHRW Flush read and write queues.

This operation is part of STREAMS Kernel Extensions.

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

ENOSR Unable to allocate buffers for flush message due to insufficient STREAMS memory resources.

EINVAL Invalid value for the arg parameter.

ENXIO Hangup received on the fildes parameter.

I_FLUSHBAND streamio Operation

Purpose

Flushes all messages from a particular band.

Description

The I_FLUSHBAND operation flushes all messages of a given priority band from all input or output

queues. The arg parameter points to a bandinfo structure that contains the following elements:

unsigned char bi_pri;

int bi_flag;

Chapter 3. Streams 277

The elements are defined as follows:

 Element Description

bi_pri Specifies the band to be flushed.

bi_flag Specifies the queues to be pushed. Legal values for the bi_flag field are:

FLUSHR

Flush read queues.

FLUSHW

Flush write queues.

FLUSHRW

Flush read and write queues.

This operation is part of STREAMS Kernel Extensions.

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

ENOSR Unable to allocate buffers for flush message due to insufficient STREAMS memory resources.

EINVAL Invalid value for the arg parameter.

ENXIO Hangup received on the fildes parameter.

I_GETBAND streamio Operation

Purpose

Gets the band of the first message on the stream-head read queue.

Description

The I_GETBAND operation returns the priority band of the first message on the stream-head read queue

in the integer referenced by the arg parameter.

This operation is part of STREAMS Kernel Extensions.

Error Codes

If unsuccessful, the errno global variable is set to the following value:

 Value Description

ENODATA No message is on the stream-head read queue.

I_GETCLTIME streamio Operation

Purpose

Returns the delay time.

Description

The I_GETCLTIME operation returns the delay time, in milliseconds, that is pointed to by the arg

parameter.

278 Technical Reference: Communications, Volume 2

This operation is part of STREAMS Kernel Extensions.

I_GETSIG streamio Operation

Purpose

Returns the events for which the calling process is currently registered to be sent a SIGPOLL signal.

Description

The I_GETSIG operation returns the events for which the calling process is currently registered to be sent

a SIGPOLL signal. The events are returned as a bitmask pointed to by the arg parameter, where the

events are those specified in the description of the I_SETSIG operation.

This operation is part of STREAMS Kernel Extensions.

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

EINVAL Process not registered to receive the SIGPOLL signal.

EFAULT The arg parameter points outside the allocated address space.

I_GRDOPT streamio Operation

Purpose

Returns the current read mode setting.

Description

The I_GRDOPT operation returns the current read mode setting in an int parameter pointed to by the arg

parameter. Read modes are described in the read subroutine description.

This operation is part of STREAMS Kernel Extensions.

Error Codes

If unsuccessful, the errno global variable is set to the following value:

 Value Description

EFAULT The arg parameter points outside the allocated address space.

I_LINK streamio Operation

Purpose

Connects two specified streams.

Description

The I_LINK operation is used for connecting multiplexed STREAMS configurations.

The I_LINK operation connects two streams, where the fildes parameter is the file descriptor of the stream

connected to the multiplexing driver, and the arg parameter is the file descriptor of the stream connected

to another driver. The stream designated by the arg parameter gets connected below the multiplexing

Chapter 3. Streams 279

driver. The I_LINK operation requires the multiplexing driver to send an acknowledgment message to the

stream head regarding the linking operation. This call returns a multiplexer ID number (an identifier used to

disconnect the multiplexer; see the I_UNLINK operation) on success, and a value of -1 on failure.

This operation is part of STREAMS Kernel Extensions.

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

ENXIO Hangup received on the fildes field.

ETIME Time out before acknowledgment message was received at stream head.

EAGAIN Temporarily unable to allocate storage to perform the I_LINK operation.

ENOSR Unable to allocate storage to perform the I_LINK operation due to insufficient STREAMS memory

resources.

EBADF The arg parameter is not a valid, open file descriptor.

EINVAL The specified link operation would cause a cycle in the resulting configuration; that is, if a given stream

head is linked into a multiplexing configuration in more than one place.

An I_LINK operation can also fail while waiting for the multiplexing driver to acknowledge the link request,

if a message indicating an error or a hangup is received at the stream head of the fildes parameter. In

addition, an error code can be returned in the positive or negative acknowledgment message. For these

cases, the I_LINK operation fails with the errno global variable set to the value in the message.

I_LIST streamio Operation

Purpose

Lists all the module names on a stream.

Description

The I_LIST operation lists all of the modules present on a stream, including the topmost driver name. If

the value of the arg parameter is null, the I_LIST operation returns the number of modules on the stream

pointed to by the fildes parameter. If the value of the arg parameter is nonnull, it points to an str_list

structure that contains the following elements:

int sl_nmods;

struct str_mlist *sl_modlist;

The str_mlist structure contains the following element:

char l_name[FMNAMESZ+1];

The fields are defined as follows:

 Field Description

sl_nmods Specifies the number of entries the user has allocated in the array.

sl_modlist Contains the list of module names (on return).

This operation is part of STREAMS Kernel Extensions.

280 Technical Reference: Communications, Volume 2

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

EAGAIN Unable to allocate buffers.

EINVAL The sl_nmods member is less than 1.

I_LOOK streamio Operation

Purpose

Retrieves the name of the module just below the stream head.

Syntax

#include <sys/conf.h>

#include <stropts.h>

int ioctl (fildes, command, arg)

int fildes, command;

Description

The I_LOOK operation retrieves the name of the module just below the stream head of the stream pointed

to by the fildes parameter and places it in a null terminated character string pointed at by the arg

parameter. The buffer pointed to by the arg parameter should be at least FMNAMESMZ + 1 bytes long.

This operation is part of STREAMS Kernel Extensions.

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

EFAULT The arg parameter points outside the allocated address space.

EINVAL No module is present in stream.

I_NREAD streamio Operation

Purpose

Counts the number of data bytes in data blocks in the first message on the stream-head read queue, and

places this value in a specified location.

Description

The I_NREAD operation counts the number of data bytes in data blocks in the first message on the

stream-head read queue, and places this value in the location pointed to by the arg parameter.

This operation is part of STREAMS Kernel Extensions.

Return Values

The return value for the operation is the number of messages on the stream-head read queue. For

example, if a value of 0 is returned in the arg parameter, but the ioctl operation return value is greater

than 0, this indicates that a zero-length message is next on the queue.

Chapter 3. Streams 281

Error Codes

If unsuccessful, the errno global variable is set to the following value:

 Value Description

EFAULT The arg parameter points outside the allocated address space.

I_PEEK streamio Operation

Purpose

Allows a user to retrieve the information in the first message on the stream-head read queue without

taking the message off the queue.

Description

The I_PEEK operation allows a user to retrieve the information in the first message on the stream-head

read queue without taking the message off the queue. The arg parameter points to a strpeek structure

that contains the following elements:

struct strbuf ctlbuff;

struct strbuf databuf;

long flags;

The maxlen field in the strbuf structures of the ctlbuf and databuf fields must be set to the number of

bytes of control information or data information, respectively, to retrieve. If the user sets the flags field to

RS_HIPRI, the I_PEEK operation looks for a priority message only on the stream-head read queue.

The I_PEEK operation returns a value of 1 if a message was retrieved, and returns a value of 0 if no

message was found on the stream-head read queue, or if the RS_HIPRI flag was set in the flags field

and a priority message was not present on the stream-head read queue. It does not wait for a message to

arrive.

On return, the fields contain the following data:

 Data Description

ctlbuf Specifies information in the control buffer.

databuf Specifies information in the data buffer.

flags Contains the value of 0 or RS_HIPRI.

 This operation is part of STREAMS Kernel Extensions.

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

EFAULT The arg parameter points, or the buffer area specified in the ctlbuf or databuf field is outside the

allocated address space.

EBADMSG Queued message is not valid for the I_PEEK operation.

I_PLINK streamio Operation

Purpose

Connects two specified streams.

282 Technical Reference: Communications, Volume 2

Description

The I_PLINK operation is used for connecting multiplexed STREAMS configurations with a permanent link.

This operation is part of STREAMS Kernel Extensions.

The I_PLINK operation connects two streams, where the fildes parameter is the file descriptor of the

stream connected to the multiplexing driver, and the arg parameter is the file descriptor of the stream

connected to another driver. The stream designated by the arg parameter gets connected by a permanent

link below the multiplexing driver. The I_PLINK operation requires the multiplexing driver to send an

acknowledgment message to the stream head regarding the linking operation. This call creates a

permanent link which can exist even if the file descriptor associated with the upper stream to the

multiplexing driver is closed. This call returns a multiplexer ID number (an identifier used to disconnect the

multiplexer; see the I_PUNLINK operation) on success, and a value of -1 on failure.

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

ENXIO Hangup received on the fildes field.

ETIME Time out occurred before acknowledgment message was received at stream head.

EAGAIN Unable to allocate storage to perform the I_PLINK operation.

EBADF The arg parameter is not a valid, open file descriptor.

EINVAL The fildes parameter does not support multiplexing.

OR

The fildes parameter is the file descriptor of a pipe or FIFO.

OR

The arg parameter is not a stream or is already linked under a multiplexer.

OR

The specified link operation would cause a cycle in the resulting configuration; that is, if a given stream

head is linked into a multiplexing configuration in more than one place.

An I_PLINK operation can also be unsuccessful while waiting for the multiplexing driver to acknowledge

the link request, if a message indicating an error or a hangup is received at the stream head of the fildes

parameter. In addition, an error code can be returned in the positive or negative acknowledgment

message. For these cases, the I_PLINK operation is unsuccessful with the errno global variable set to the

value in the message.

I_POP streamio Operation

Purpose

Removes the module just below the stream head.

Description

The I_POP operation removes the module just below the stream head of the stream pointed to by the

fildes parameter. The value of the arg parameter should be 0 in an I_POP request.

This operation is part of STREAMS Kernel Extensions.

Chapter 3. Streams 283

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

EINVAL No module is present in the stream.

ENXIO Hangup received on the fildes parameter.

I_PUNLINK streamio Operation

Purpose

Disconnects the two specified streams.

Description

The I_PUNLINK operation is used for disconnecting Multiplexed STREAMS configurations connected by a

permanent link.

The I_PUNLINK operation disconnects the two streams specified by the fildes parameter and the arg

parameter that are connected with a permanent link. The fildes parameter is the file descriptor of the

stream connected to the multiplexing driver. The arg parameter is the multiplexer ID number that was

returned by the I_PLINK operation. If the value of the arg parameter is MUXID_ALL, then all streams

which are permanently linked to the stream specified by the fildes parameter are disconnected. As in the

I_PLINK operation, this operation requires the multiplexing driver to acknowledge the unlink.

This operation is part of STREAMS Kernel Extensions.

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

ENXIO Hangup received on the fildes parameter.

ETIME Time out occurred before acknowledgment message was received at stream head.

EINVAL The arg parameter is an invalid multiplexer ID number.

OR

The fildes parameter is the file descriptor of a pipe or FIFO.

An I_PUNLINK operation can also be unsuccessful while waiting for the multiplexing driver to

acknowledge the link request, if a message indicating an error or a hangup is received at the stream head

of the fildes parameter. In addition, an error code can be returned in the positive or negative

acknowledgment message. For these cases, the I_PUNLINK operation is unsuccessful and the errno

global variable is set to the value in the message.

I_PUSH streamio Operation

Purpose

Pushes a module onto the top of the current stream.

Description

The I_PUSH operation pushes the module whose name is pointed to by the arg parameter onto the top of

the current stream, just below the stream head. It then calls the open routine of the newly-pushed module.

284 Technical Reference: Communications, Volume 2

This operation is part of STREAMS Kernel Extensions.

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

EINVAL Incorrect module name.

EFAULT The arg parameter points outside the allocated address space.

ENXIO Open routine of new module failed.

ENXIO Hangup received on the fildes parameter.

I_RECVFD streamio Operation

Purpose

Retrieves the file descriptor associated with the message sent by an I_SENDFD operation over a stream

pipe.

Description

The I_RECVFD operation retrieves the file descriptor associated with the message sent by an I_SENDFD

operation over a stream pipe. The arg parameter is a pointer to a data buffer large enough to hold an

strrecvfd data structure containing the following elements:

int fd;

unsigned short uid;

unsigned short gid;

char fill[8];

The fields of the strrecvfd structure are defined as follows:

 Field Description

fd Specifies an integer file descriptor.

uid Specifies the user ID of the sending stream.

gid Specifies the group ID of the sending stream.

If the O_NDELAY flag is not set, the I_RECVFD operation blocks until a message is present at the stream

head. If the O_NDELAY flag is set, the I_RECVFD operation fails with the errno global variable set to

EAGAIN if no message is present at the stream head.

If the message at the stream head is a message sent by an I_SENDFD operation, a new user file

descriptor is allocated for the file pointer contained in the message. The new file descriptor is place in the

fd field of the strrecvfd structure. The structure is copied into the user data buffer pointed to by the arg

parameter.

This operation is part of STREAMS Kernel Extensions.

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

EAGAIN A message was not present at the stream head read queue, and the O_NDELAY flag is set.

EBADMSG The message at the stream head read queue was not a message containing a passed file descriptor.

EFAULT The arg parameter points outside the allocated address space.

EMFILE The NOFILES file descriptor is currently open.

Chapter 3. Streams 285

Value Description

ENXIO Hangup received on the fildes parameter.

I_SENDFD streamio Operation

Purpose

Requests a stream to send a message to the stream head at the other end of a stream pipe.

Description

The I_SENDFD operation requests the stream associated with the fildes field to send a message,

containing a file pointer, to the stream head at the other end of a stream pipe. The file pointer corresponds

to the arg parameter, which must be an integer file descriptor.

The I_SENDFD operation converts the arg parameter into the corresponding system file pointer. It

allocates a message block and inserts the file pointer in the block. The user ID and group ID associated

with the sending process are also inserted. This message is placed directly on the read queue of the

stream head at the other end of the stream pipe to which it is connected.

This operation is part of STREAMS Kernel Extensions.

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

EAGAIN The sending stream is unable to allocate a message block to contain the file pointer.

EAGAIN The read queue of the receiving stream head is full and cannot accept the message sent by the

I_SENDFD operation.

EBADF The arg parameter is not a valid, open file descriptor.

EINVAL The fildes parameter is not connected to a stream pipe.

ENXIO Hangup received on the fildes parameter.

I_SETCLTIME streamio Operation

Purpose

Sets the time that the stream head delays when a stream is closing.

Description

The I_SETCLTIME operation sets the time that the stream head delays when a stream is closing and

there is data on the write queues. Before closing each module and driver, the stream head delays closing

for the specified length of time to allow the data to be written. Any data left after the delay is flushed.

The arg parameter contains a pointer to the number of milliseconds to delay. This number is rounded up to

the nearest legal value on the system. The default delay time is 15 seconds.

This operation is part of STREAMS Kernel Extensions.

286 Technical Reference: Communications, Volume 2

Error Codes

If unsuccessful, the errno global variable is set to the following value:

 Value Description

EINVAL The value in the arg parameter is invalid.

I_SETSIG streamio Operation

Purpose

Informs the stream head that the user wishes the kernel to issue the SIGPOLL signal when a particular

event occurs on the stream.

Description

The I_SETSIG operation informs the stream head that the user wishes the kernel to issue the SIGPOLL

signal (see the signal and sigset subroutines) when a particular event has occurred on the stream

associated with the fildes parameter. The I_SETSIG operation supports an asynchronous processing

capability in STREAMS. The value of the arg parameter is a bit mask that specifies the events for which

the user should be signaled. It is the bitwise-OR of any combination of the following constants:

 Constant Description

S_INPUT A nonpriority message has arrived on a stream-head read queue, and no other messages existed on

that queue before this message was placed there. This is set even if the message is of zero length.

S_HIPRI A priority message is present on the stream-head read queue. This is set even if the message is of

zero length.

S_OUTPUT The write queue just below the stream head is no longer full. This notifies the user that there is room

on the queue for sending (or writing) data downstream.

S_MSG A STREAMS signal message that contains the SIGPOLL signal has reached the front of the

stream-head read queue.

A user process may choose to be signaled only by priority messages by setting the arg bit mask to the

value S_HIRPI.

Processes that wish to receive SIGPOLL signals must explicitly register to receive them using I_SETSIG.

If several processes register to receive this signal for the same event on the same stream, each process

will be signaled when the event occurs.

If the value of the arg parameter is 0, the calling process is unregistered and does not receive further

SIGPOLL signals.

This operation is part of STREAMS Kernel Extensions.

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

EINVAL The value for the arg parameter is invalid or 0 and process is not registered to receive the SIGPOLL

signal.

EAGAIN The allocation of a data structure to store the signal request is unsuccessful.

Chapter 3. Streams 287

I_SRDOPT streamio Operation

Purpose

Sets the read mode.

Description

The I_SRDOPT operation sets the read mode using the value of the arg parameter. Legal values for the

arg parameter are:

 Value Description

RNORM Byte-stream mode. This is the default mode.

RMSGD Message-discard mode.

RMSGN Message-nondiscard mode.

RFILL Read mode. This mode prevents completion of any read request until one of three conditions occurs:

v The entire user buffer is filled.

v An end of file occurs.

v The stream head receives an M_MI_READ_END message.

Several control messages support the RFILL mode. They are used by modules to manipulate data being

placed in user buffers at the stream head. These messages are multiplexed under a single M_MI message

type. The message subtype, pointed to by the b_rptr parameter, is one of the following:

M_MI_READ_SEEK

Provides random access data retrieval. An application and a cooperating module can gather large

data blocks from a slow, high-latency, or unreliable link, while minimizing the number of system

calls required, and relieving the protocol modules of large buffering requirements.

 The M_MI_READ_SEEK message subtype is followed by two long words, as in a standard seek

call. The first word is an origin indicator as follows:

0 Start of buffer

1 Current position

2 End of buffer

The second word is a signed offset from the specified origin.

M_MI_READ_RESET

Discards any data previously delivered to partially satisfy an RFILL mode read request.

M_MI_READ_END

Completes the current RFILL mode read request with whatever data has already been delivered.

In addition, treatment of control messages by the stream head can be changed by setting the following

flags in the arg parameter:

 Flag Description

RPROTNORM Causes the read routine to be unsuccessful if a control message is at the front of the stream-head

read queue.

RPROTDAT Delivers the control portion of a message as data.

RPROTDIS Discards the control portion of a message, delivering any data portion.

This operation is part of STREAMS Kernel Extensions.

288 Technical Reference: Communications, Volume 2

Error Codes

If unsuccessful, the errno global variable is set to the following value:

 Value Description

EINVAL The value of the arg parameter is not one of the above legal values.

I_STR streamio Operation

Purpose

Constructs an internal STREAMS ioctl message.

Description

The I_STR operation constructs an internal STREAMS ioctl message from the data pointed to by the arg

parameter and sends that message downstream.

This mechanism is provided to send user ioctl requests to downstream modules and drivers. It allows

information to be sent with the ioctl and returns to the user any information sent upstream by the

downstream recipient. The I_STR operation blocks until the system responds with either a positive or

negative acknowledgment message or until the request times out after some period of time. If the request

times out, it fails with the errno global variable set to ETIME.

At most, one I_STR operation can be active on a stream. Further I_STR operation calls block until the

active I_STR operation completes at the stream head. The default timeout interval for this request is 15

seconds. The O_NDELAY flag has no effect on this call.

To send a request downstream, the arg parameter must point to a strioctl structure that contains the

following elements:

int ic_cmd; /* downstream operation */

int ic_timeout; /* ACK/NAK timeout */

int ic_len: /* length of data arg */

char *ic_dp; /* ptr to data arg */

The elements of the strioctl structure are described as follows:

 Element Description

ic_cmd The internal ioctl operation intended for a downstream module or driver.

ic_timout The number of seconds an I_STR request waits for acknowledgment before timing out:

-1 Waits an infinite number of seconds.

0 Uses default value.

> 0 Waits the specified number of seconds.

ic_len The number of bytes in the data argument. The ic_len field has two uses:

v On input, it contains the length of the data argument passed in.

v On return from the operation, it contains the number of bytes being returned to the user (the

buffer pointed to by the ic_dp field should be large enough to contain the maximum amount of

data that any module or the driver in the stream can return).

ic_dp A pointer to the data parameter.

The stream head converts the information pointed to by the strioctl structure to an internal ioctl operation

message and sends it downstream.

This operation is part of STREAMS Kernel Extensions.

Chapter 3. Streams 289

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

EAGAIN The value of ic_len is greater than the maximum size of a message block returned by the STREAMS

allocb utility, or there is insufficient memory for a message block.

ENOSR Unable to allocate buffers for the ioctl message due to insufficient STREAMS memory resources.

EFAULT The area pointed to by the arg parameter or the buffer area specified by the ic_dp and ic_len fields (for

data sent and data returned, respectively) is outside of the allocated address space.

EINVAL The value of the ic_len field is less than 0 or greater than the maximum configured size of the data part

of a message, or the value of the ic_timout field is less than -1.

ENXIO Hangup received on the fildes field.

ETIME A downstream streamio operation timed out before acknowledgment was received.

An I_STR operation can also be unsuccessful while waiting for an acknowledgment if a message

indicating an error or a hangup is received at the stream head. In addition, an error code can be returned

in the positive or negative acknowledgment messages, in the event that the streamio operation sent

downstream fails. For these cases, the I_STR operation is unsuccessful and the errno global variable is

set to the value in the message.

I_UNLINK streamio Operation

Purpose

Disconnects the two specified streams.

Description

The I_UNLINK operation is used for disconnecting multiplexed STREAMS configurations.

This operation is part of STREAMS Kernel Extensions.

The I_UNLINK operation disconnects the two streams specified by the fildes parameter and the arg

parameter. The fildes parameter is the file descriptor of the stream connected to the multiplexing driver.

The fildes parameter must correspond to the stream on which the ioctl I_LINK operation was issued to

link the stream below the multiplexing driver. The arg parameter is the multiplexer ID number that was

returned by the I_LINK operation. If the value of the arg parameter is -1, then all streams that were linked

to the fildes parameter are disconnected. As in the I_LINK operation, this operation requires the

multiplexing driver to acknowledge the unlink.

Error Codes

If unsuccessful, the errno global variable is set to one of the following values:

 Value Description

ENXIO Hangup received on the fildes parameter.

ETIME Time out before acknowledgment message was received at stream head.

ENOSR Unable to allocate storage to perform the I_UNLINK operation due to insufficient STREAMS memory

resources.

EINVAL The arg parameter is an invalid multiplexer ID number or the fildes parameter is not the stream on which

the I_LINK operation that returned the arg parameter was performed.

An I_UNLINK operation can also fail while waiting for the multiplexing driver to acknowledge the link

request, if a message indicating an error or a hangup is received at the stream head of the fildes

290 Technical Reference: Communications, Volume 2

parameter. In addition, an error code can be returned in the positive or negative acknowledgment

message. For these cases, the I_UNLINK operation fails and the errno global variable is set to the value

in the message.

Related Information

The I_LINK streamio operation, I_PUNLINK streamio operation.

List of Streams Programming References, Understanding streamio (STREAMS ioctl) Operations,

Understanding STREAMS Drivers and Modules, Understanding STREAMS Messages in AIX 5L Version

5.3 Communications Programming Concepts.

isastream Function

Purpose

Tests a file descriptor.

Library

Standard C Library (libc.a)

Syntax

int isastream(int fildes);

Description

The isastream subroutine determines if a file descriptor represents a STREAMS file.

Parameters

 fildes Specifies which open file to check.

Return Values

On successful completion, the isastream subroutine returns a value of 1 if the fildes parameter represents

a STREAMS file, or a value of 0 if not. Otherwise, it returns a value of -1 and sets the errno global

variable to indicate the error.

Error Codes

If unsuccessful, the errno global variable is set to the following value:

 Value Description

EBADF The fildes parameter does not specify a valid open file.

Related Information

streamio operations.

List of Streams Programming References in AIX 5L Version 5.3 Communications Programming Concepts.

linkb Utility

Purpose

Concatenates two messages into one.

Chapter 3. Streams 291

Syntax

void link(mp, bp)

register mblk_t * mp;

register mblk_t * bp;

Description

The linkb utility puts the message pointed to by the bp parameter at the tail of the message pointed to by

the mp parameter. This results in a single message.

This utility is part of STREAMS Kernel Extensions.

Parameters

 mp Specifies the message to which the second message is to be linked.

bp Specifies the message that is to be linked to the end of first message.

Related Information

The unlinkb utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

mi_bufcall Utility

Purpose

Provides a reliable alternative to the bufcall utility.

Syntax

#include <pse/mi.h>

#include <sys/stream.h>

void mi_bufcall (Queue, Size, Priority)

queue_t *Queue;

int Size;

int Priortity;

Description

The mi_bufcall utility provides a reliable alternative to the bufcall utility. The standard STREAMS bufcall

utility is intended to be called when the allocb utility is unable to allocate a block for a message, and

invokes a specified callback function (typically the qenable utility) with a given queue when a large enough

block becomes available. This can cause system problems if the stream closes so that the queue

becomes invalid before the callback function is invoked.

The mi_bufcall utility is a reliable alternative, as the queue is not deallocated until the call is complete.

This utility uses the standard bufcall mechanism with its own internal callback routine. The callback

routine either invokes the qenable utility with the specified Queue parameter, or simply deallocates the

instance data associated with the stream if the queue has already been closed.

The mi_bufcall utility is part of STREAMS kernel extensions.

Note: The stream.h header file must be the last included header file of each source file using the stream

library.

292 Technical Reference: Communications, Volume 2

Parameters

 Queue Specifies the queue which is to be passed to the qenable utility.

Size Specifies the required buffer size.

Priority Specifies the priority as used by the standard STREAMS bufcall mechanism.

Related Information

List of Streams Programming References in AIX 5L Version 5.3 Communications Programming Concepts .

STREAMS Overview in AIX 5L Version 5.3 Communications Programming Concepts .

The bufcall utility, mi_close_comm utility, mi_next_ptr utility, mi_open_comm utility.

mi_close_comm Utility

Purpose

Performs housekeeping during STREAMS driver or module close operations.

Syntax

#include <pse/mi.h>

#include <sys/stream.h>

int mi_close_comm (StaticPointer, Queue)

caddr_t *StaticPointer;

queue_t *Queue;

Description

The mi_close_comm utility performs housekeeping during STREAMS driver or module close operations.

It is intended to be called by the driver or module close routine. It releases the memory allocated by the

corresponding call to the mi_open_comm utility, and frees the minor number for reuse.

If an mi_bufcall operation is outstanding, module resources are not freed until the mi_buffcall operation

is complete.

The mi_close_comm utility is part of STREAMS kernel extensions.

Notes:

1. Each call to the mi_close_comm utility must have a corresponding call to the mi_open_comm utility.

Executing one of these utilities without making a corresponding call to the other will lead to

unpredictable results.

2. The stream.h header file must be the last included header file of each source file using the stream

library.

Parameters

 StaticPointer Specifies the address of the static pointer which was passed to the corresponding call to

the mi_open_comm utility to store the address of the module’s list of open streams.

Queue Specifies the Queue parameter which was passed to the corresponding call to the

mi_open_comm utility.

Chapter 3. Streams 293

Return Values

The mi_close_comm utility always returns a value of zero.

Related Information

List of Streams Programming References in AIX 5L Version 5.3 Communications Programming Concepts .

STREAMS Overview in AIX 5L Version 5.3 Communications Programming Concepts .

The mi_open_comm utility, mi_next_ptr utility, mi_bufcall utility.

mi_next_ptr Utility

Purpose

Traverses a STREAMS module’s linked list of open streams.

Syntax

#include <pse/mi.h>

#include <sys/stream.h>

caddr_t mi_next_ptr (Origin)

caddr_t Origin;

Description

The mi_next_ptr utility traverses a module’s linked list of open streams. The Origin argument specifies the

address of a per-instance list item, and the return value indicates the address of the next item. The first

time the mi_next_ptr utility is called, the Origin parameter should be initialized with the value of the static

pointer which was passed to the mi_open_comm utility. Subsequent calls to the mi_next_ptr utility

should pass the address which was returned by the previous call, until a NULL address is returned,

indicating that the end of the queue has been reached.

The mi_next_ptr utility is part of STREAMS kernel extensions.

Note: The stream.h header file must be the last included header file of each source file using the stream

library.

Parameter

 Origin Specifies the address of the current list item being examined.

Return Values

The mi_next_ptr utility returns the address of the next list item, or NULL if the end of the list has been

reached.

Related Information

List of Streams Programming References in AIX 5L Version 5.3 Communications Programming Concepts .

STREAMS Overview in AIX 5L Version 5.3 Communications Programming Concepts .

The mi_close_comm utility, mi_open_comm utility, mi_bufcall utility.

294 Technical Reference: Communications, Volume 2

mi_open_comm Utility

Purpose

Performs housekeeping during STREAMS driver or module open operations.

Syntax

#include <pse/mi.h>

#include <sys/stream.h>

int mi_open_comm (StaticPointer, Size, Queue, Device, Flag, SFlag, credp)

caddr_t *StaticPointer;

uint Size;

queue_t *Queue;

dev_t *Device;

int Flag;

int SFlag;

cred_t *credp;

Description

The mi_open_comm subroutine performs housekeeping during STREAMS driver or module open

operations. It is intended to be called by the driver or module open routine. It assigns a minor device

number to the stream (as specified by the SFlag parameter), allocates the requested per-stream data, and

sets the q_ptr fields of the stream being opened.

The mi_open_comm subroutine is part of STREAMS kernel extensions.

Notes:

1. Each call to the mi_open_comm subroutine must have a corresponding call to the mi_close_comm

subroutine. Executing one of these utilities without making a corresponding call to the other will lead to

unpredictable results.

2. The stream.h header file must be the last included header file of each source file using the stream

library.

Parameters

 StaticPointer Specifies the address of a static pointer which will be used internally by the

mi_open_comm and related utilities to store the address of the module’s list of open

streams. This pointer should be initialized to NULL.

Size Specifies the amount of memory the module needs for its per-stream data. It is usually the

size of the local structure which contains the module’s instance data.

Queue Specifies the address of a queue_t structure. The q_ptr field of the of this structure, and of

the corresponding read queue structure (if Queue points to a write queue) or write queue

structure (if Queue points to a read queue), are filled in with the address of the queue_t

structure being initialized.

Device Specifies the address of a dev_t structure. The use of this parameter depends on the value

of the SFlag parameter.

Flag Unused.

Chapter 3. Streams 295

SFlag Specifies how the Device parameter is to be used. The SFlag parameter may take one of

the following values:

DEVOPEN

The minor device number specified by the Device argument is used.

MODOPEN

The Device parameter is NULL. This value should be used if the mi_open_com

subroutine is called from the open routine of a STREAMS module rather than a

STREAMS driver.

CLONEOPEN

A unique minor device number above 5 is assigned (minor numbers 0-5 are

reserved as special access codes).

credp Unused

Return Values

On successful completion, the mi_open_comm subroutine returns a value of zero, otherwise one of the

following codes is returned:

 Code Description

ENXIO Indicates an invalid parameter.

EAGAIN Indicates that an internal structure could not be allocated, and that the call should be retried.

Related Information

List of Streams Programming References in AIX 5L Version 5.3 Communications Programming Concepts .

STREAMS Overview in AIX 5L Version 5.3 Communications Programming Concepts .

The mi_close_comm subroutine, mi_next_ptr subroutine, mi_bufcall subroutine.

msgdsize Utility

Purpose

Gets the number of data bytes in a message.

Syntax

int

msgdsize(bp)

register mblk_t * bp;

Description

The msgdsize utility returns the number of bytes of data in the message pointed to by the bp parameter.

Only bytes included in data blocks of type M_DATA are included in the total.

This utility is part of STREAMS Kernel Extensions.

Parameters

 bp Specifies the message from which to get the number of bytes.

296 Technical Reference: Communications, Volume 2

Return Values

The msgdsize utility returns the number of bytes of data in a message.

Related Information

List of Streams Programming References, Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

noenable Utility

Purpose

Prevents a queue from being scheduled.

Syntax

void noenable(q)

queue_t * q;

Description

The noenable utility prevents the queue specified by the q parameter from being scheduled for service

either by the putq or putbq utility, when these routines queue an ordinary priority message, or by the

insq utility when it queues any message. The noenable utility does not prevent the scheduling of queues

when a high-priority message is queued, unless the message is queued by the insq utility.

This utility is part of STREAMS Kernel Extensions.

Parameters

 q Specifies the queue to disable.

Related Information

The enableok utility, insq utility, putbq utility, putq utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

OTHERQ Utility

Purpose

Returns the pointer to the mate queue.

Syntax

#define OTHERQ(q) ((q)->flag&QREADER? (q)+1: (q)-1)

Description

The OTHERQ utility returns a pointer to the mate queue of the q parameter.

This utility is part of STREAMS Kernel Extensions.

Chapter 3. Streams 297

Parameters

 q Specifies that queue whose mate is to be returned.

Return Values

If the q parameter specifies the read queue for the module, the OTHERQ utility returns a pointer to the

module’s write queue. If the q parameter specifies the write queue for the module, this utility returns a

pointer to the read queue.

Related Information

The RD utility, WR utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

pfmod Packet Filter Module

Purpose

Selectively removes upstream data messages on a Stream.

Synopsis

#include <stropts.h>

#include <sys/pfmod.h>

ioctl(fd, I_PUSH, "pfmod");

Description

The pfmod module implements a programmable packet filter facility that may be pushed over any stream.

Every data message that pfmod receives on its read side is subjected to a filter program. If the filter

program accepts a message, it will be passed along upstream, and will otherwise be freed. If no filter

program has been set (as is the case when pfmod is first pushed), all messages are accepted. Non-data

messages (for example, M_FLUSH, M_PCPROTO, M_IOCACK) are never examined and always

accepted. The write side is not filtered.

Data messages are defined as either M_PROTO or M_DATA. If an M_PROTO message is received,

pfmod will skip over all the leading blocks until it finds an M_DATA block. If none is found, the message is

accepted. The M_DATA portion of the message is then made contiguous with pullupmsg(), if necessary, to

ensure the data area referenced by the filter program can be accessed in a single mblk_t.

IOCTLs

The following ioctls are defined for this module. All other ioctls are passed downstream without

examination.

PFIOCSETF

Install a new filter program, replacing any previous program. It uses the following data structure:

typedef struct packetfilt {

 uchar Pf_Priority;

 uchar Pf_FilterLen;

 ushort Pf_Filter[MAXFILTERS];

} pfilter_t;

298 Technical Reference: Communications, Volume 2

Pf_Priority is currently ignored, and should be set to zero. Pf_FilterLen indicates the number of

shortwords in the Pf_Filter array. Pf_Filter is an array of shortwords that comprise the filter program.

See ″Filters″ for details on how to write filter programs.

This ioctl may be issued either transparently or as an I_STR. It will return 0 on success, or -1 on failure,

and set errno to one of:

 Value Description

ERANGE The length of the M_IOCTL message data was not exactly size of (pfilter_t). The data structure is not

variable length, although the filter program is.

EFAULT The ioctl argument points out of bounds.

Filters

A filter program consists of a linear array of shortword instructions. These instructions operate upon a

stack of shortwords. Flow of control is strictly linear; there are no branches or loops. When the filter

program completes, the top of the stack is examined. If it is non-zero, or if the stack is empty, the packet

being examined is passed upstream (accepted), otherwise the packet is freed (rejected).

Instructions are composed of three portions: push command PF_CMD(), argument PF_ARG(), and

operation PF_OP(). Each instruction optionally pushes a shortword onto the stack, then optionally performs

a binary operation on the top two elements on the stack, leaving its result on the stack. If there are not at

least two elements on the stack, the operation will immediately fail and the packet will be rejected. The

argument portion is used only by certain push commands, as documented below.

The following push commands are defined:

 Command Description

PF_NOPUSH Nothing is pushed onto the stack.

PF_PUSHZERO Pushes 0x0000.

PF_PUSHONE Pushes 0x0001.

PF_PUSHFFFF Pushes 0xffff.

PF_PUSHFF00 Pushes 0xff00.

PF_PUSH00FF Pushes 0x00ff.

PF_PUSHLIT Pushes the next shortword in the filter program as literal data. Execution resumes with the

next shortword after the literal data.

PF_PUSHWORD+N Pushes shortword N of the message onto the data stack. N must be in the range 0-255, as

enforced by the macro PF_ARG().

The following operations are defined. Each operation pops the top two elements from the stack, and

pushes the result of the operation onto the stack. The operations below are described in terms of v1 and

v2. The top of stack is popped into v2, then the new top of stack is popped into v1. The result of v1 op v2

is then pushed onto the stack.

 Operation Description

PF_NOP The stack is unchanged; nothing is popped.

PF_EQ v1 == v2

PF_NEQ v1 != v2

PF_LT v1 < v2

PF_LE v1 <= v2

PF_GT v1 > v2

PF_GE v1 >= v2

PF_AND v1 & v2; bitwise

PF_OR v1 | v2; bitwise

PF_XOR v1 ^ v2; bitwise

Chapter 3. Streams 299

The remaining operations are ″short-circuit″ operations. If the condition checked for is found, then the filter

program terminates immediately, either accepting or rejecting the packet as specified, without examining

the top of stack. If the condition is not found, the filter program continues. These operators do not push

any result onto the stack.

 Operation Description

PF_COR If v1 == v2, accept.

PF_CNOR If v1 == v2, reject.

PF_CAND If v1 != v2, reject.

PF_CNAND If v1 != v2, accept.

If an unknown push command or operation is specified, the filter program terminates immediately and the

packet is rejected.

Configuration

Before using pfmod, it must be loaded into the kernel. This may be accomplished with the strload

command, using the following syntax:

strload -m pfmod

This command will load the pfmod into the kernel and make it available to I_PUSH. Note that attempting to

I_PUSH pfmod before loading it will result in an EINVAL error code.

Example

The following program fragment will push pfmod on a stream, then program it to only accept messages

with an Ethertype of 0x8137. This example assumes the stream is a promiscuous DLPI ethernet stream

(see dlpi for details).

#include <stddef.h>

#include <sys/types.h>

#include <netinet/if_ether.h>

#define scale(x) ((x)/sizeof(ushort))

setfilter(int fd)

{

 pfilter_t filter;

 ushort *fp, offset;

 if (ioctl(fd, I_PUSH, "pfmod"))

 return -1;

 offset = scale(offsetof(struct ether_header, ether_type));

 fp = filter.Pf_Filter;

 /* the filter program */

 *fp++ = PF_PUSHLIT;

 *fp++ = 0x8137;

 *fp++ = PF_PUSHWORD + offset;

 *fp++ = PF_EQ;

 filter.Pf_FilterLen = fp - filter.Pf_Filter;

 if (ioctl(fd, PFIOCSETF, &filter))

 return -1;

 return 0;

}

This program may be shortened by combining the operation with the push command:

 *fp++ = PF_PUSHLIT;

 *fp++ = 0x8137;

 *fp++ = (PF_PUSHWORD + offset) | PF_EQ;

300 Technical Reference: Communications, Volume 2

The following filter will accept 802.3 frames addressed to either the Netware raw sap 0xff or the 802.2 sap

0xe0:

offset = scale(offsetof(struct ie3_hdr, llc));

fp++ = PF_PUSHWORD + offset; / get ssap, dsap */

fp++ = PF_PUSH00FF | PF_AND; / keep only dsap */

fp++ = PF_PUSH00FF | PF_COR; / is dsap == 0xff? */

fp++ = PF_PUSHWORD + offset; / get ssap, dsap again */

fp++ = PF_PUSH00FF | PF_AND; / keep only dsap */

fp++ = PF_PUSHLIT | PF_CAND; / is dsap == 0xe0? */

*fp++ = 0x00e0;

Note the use of PF_COR in this example. If the dsap is 0xff, then the frame is accepted immediately,

without continuing the filter program.

pullupmsg Utility

Purpose

Concatenates and aligns bytes in a message.

Syntax

int

pullupmsg(mp, len)

register struct msgb * mp;

register int len;

Description

The pullupmsg utility concatenates and aligns the number of data bytes specified by the len parameter of

the passed message into a single, contiguous message block. Proper alignment is hardware-dependent.

The pullupmsg utility only concatenates across message blocks of similar type. It fails if the mp

parameter points to a message of less than len bytes of similar type. If the len parameter contains a value

of -1, the pullupmsg utility concatenates all blocks of the same type at the beginning of the message

pointed to by the mp parameter.

As a result of the concatenation, the contents of the message pointed to by the mp parameter may be

altered.

This utility is part of STREAMS Kernel Extensions.

Parameters

 mp Specifies the message that is to be aligned.

len Specifies the number of bytes to align.

Return Values

On success, the pullupmsg utility returns a value of 1. On failure, it returns a value of 0.

Related Information

List of Streams Programming References, Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

Chapter 3. Streams 301

putbq Utility

Purpose

Returns a message to the beginning of a queue.

Syntax

int

putbq(q, bp)

register queue_t * q;

register mblk_t * bp;

Description

The putbq utility puts the message pointed to by the bp parameter at the beginning of the queue pointed

to by the q parameter, in a position in accordance with the message type. High-priority messages are

placed at the head of the queue, followed by priority-band messages and ordinary messages. Ordinary

messages are placed after all high-priority and priority-band messages, but before all other ordinary

messages already on the queue. The queue is scheduled in accordance with the rules described in the

putq utility. This utility is typically used to replace a message on the queue from which it was just

removed.

This utility is part of STREAMS Kernel Extensions.

Note: A service procedure must never put a high-priority message back on its own queue, as this would

result in an infinite loop.

Parameters

 q Specifies the queue on which to place the message.

bp Specifies the message to place on the queue.

Return Values

The putbq utility returns a value of 1 on success. Otherwise, it returns a value of 0.

Related Information

The putq utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

putctl1 Utility

Purpose

Passes a control message with a one-byte parameter.

Syntax

int

putctl1(q, type, param)

queue_t *q;

302 Technical Reference: Communications, Volume 2

Description

The putctl1 utility creates a control message of the type specified by the type parameter with a one-byte

parameter specified by the param parameter, and calls the put procedure of the queue pointed to by the q

parameter, with a pointer to the created message as an argument.

The putctl1 utility allocates new blocks by calling the allocb utility.

This utility is part of STREAMS Kernel Extensions.

Parameters

 q Specifies the queue.

type Specifies the type of control message.

param Specifies the one-byte parameter.

Return Values

On successful completion, the putctl1 utility returns a value of 1. It returns a value of 0 if it cannot allocate

a message block, or if the value of the type parameter is M_DATA, M_PROTO, or M_PCPROTO. The

M_DELAY type is allowed.

Related Information

The allocb utility, putctl utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

putctl Utility

Purpose

Passes a control message.

Syntax

int

putctl(q, type)

queue_t *q;

Description

The putctl utility creates a control message of the type specified by the type parameter, and calls the put

procedure of the queue pointed to by the q parameter. The argument of the put procedure is a pointer to

the created message. The putctl utility allocates new blocks by calling the allocb utility.

This utility is part of STREAMS Kernel Extensions.

Parameters

 q Specifies the queue that contains the desired put procedure.

type Specifies the type of control message to create.

Chapter 3. Streams 303

Return Values

On successful completion, the putctl utility returns a value of 1. It returns a value of 0 if it cannot allocate

a message block, or if the value of the type parameter is M_DATA, M_PROTO, M_PCPROTO, or

M_DELAY.

Related Information

The allocb utility, putctl1 utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

putmsg System Call

Purpose

Sends a message on a stream.

Syntax

#include <stropts.h>

int putmsg (fd, ctlptr,

dataptr, flags)

int fd;

struct strbuf * ctlptr;

struct strbuf * dataptr;

int flags;

Description

The putmsg system call creates a message from user-specified buffers and sends the message to a

STREAMS file. The message may contain either a data part, a control part or both. The data and control

parts to be sent are distinguished by placement in separate buffers. The semantics of each part is defined

by the STREAMS module that receives the message.

This system call is part of STREAMS Kernel Extensions.

Parameters

 fd Specifies a file descriptor referencing an open stream.

ctlptr Holds the control part of the message.

dataptr Holds the data part of the message.

flags Indicates the type of message to be sent. Acceptable values are:

0 Sends a nonpriority message.

RS_HIPRI

Sends a priority message.

The ctlptr and dataptr parameters each point to a strbuf structure that contains the following members:

int maxlen; /* not used */

int len; /* length of data */

char *buf; /* ptr to buffer */

304 Technical Reference: Communications, Volume 2

The len field in the strbuf structure indicates the number of bytes to be sent, and the buf field points to

the buffer where the control information or data resides. The maxlen field is not used in the putmsg

system call.

To send the data part of a message, the dataptr parameter must be nonnull and the len field of the dataptr

parameter must have a value of 0 or greater. To send the control part of a message, the corresponding

values must be set for the ctlptr parameter. No data (control) part will be sent if either the dataptr (ctlptr)

parameter is null or the len field of the dataptr (ctlptr) parameter is set to -1.

If a control part is specified, and the flags parameter is set to RS_HIPRI, a priority message is sent. If the

flags parameter is set to 0, a nonpriority message is sent. If no control part is specified and the flags

parameter is set to RS_HIPRI, the putmsg system call fails and sets the errno global variable to EINVAL.

If neither a control part nor a data part is specified and the flags parameter is set to 0, no message is sent

and 0 is returned.

For nonpriority messages, the putmsg system call blocks if the stream write queue is full due to internal

flow-control conditions. For priority messages, the putmsg system call does not block on this condition.

For nonpriority messages, the putmsg system call does not block when the write queue is full and the

O_NDELAY or O_NONBLOCK flag is set. Instead, the system call fails and sets the errno global variable

to EAGAIN.

The putmsg system call also blocks, unless prevented by lack of internal resources, while waiting for the

availability of message blocks in the stream, regardless of priority or whether the O_NDELAY or

O_NONBLOCK flag has been specified. No partial message is sent.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno

global variable is set to indicate the error.

Error Codes

The putmsg system call fails if one of the following is true:

 Value Description

EAGAIN A nonpriority message was specified, the O_NONBLOCK flag is set, and the stream write

queue is full due to internal flow-control conditions.

EAGAIN Buffers could not be allocated for the message that was to be created.

EBADF The value of the fd parameter is not a valid file descriptor open for writing.

EFAULT The ctlptr or dataptr parameter points outside the allocated address space.

EINTR A signal was caught during the putmsg system call.

EINVAL An undefined value was specified in the flags parameter, or the flags parameter is set to

RS_HIPRI and no control part was supplied.

EINVAL The stream referenced by the fd parameter is linked below a multiplexer.

ENOSR Buffers could not be allocated for the message that was to be created due to insufficient

STREAMS memory resources.

ENOSTR A stream is not associated with the fd parameter.

ENXIO A hangup condition was generated downstream for the specified stream.

EPIPE or EIO The fd parameter refers to a STREAM-based pipe and the other end of the pipe is closed. A

SIGPIPE signal is generated for the calling thread.

ERANGE The size of the data part of the message does not fall within the range specified by the

maximum and minimum packet sizes of the topmost STREAMS module.

 OR

 The control part of the message is larger than the maximum configured size of the control

part of a message.

 OR

Chapter 3. Streams 305

Value Description

 The data part of a message is larger than the maximum configured size of the data part of a

message.

The putmsg system call also fails if a STREAMS error message was processed by the stream head

before the call. The error returned is the value contained in the STREAMS error message.

Files

 /lib/pse.exp Contains the STREAMS export symbols.

Related Information

The getmsg system call, getpmsg system call, putpmsg system call.

The read subroutine, poll subroutine, write subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

putnext Utility

Purpose

Passes a message to the next queue.

Syntax

#define putnext(q, mp) ((*(q)->q_next->q_qinfo->qi_putp)((q)-q_next, (mp)))

Description

The putnext utility calls the put procedure of the next queue in a stream and passes to the procedure a

message pointer as an argument. The putnext utility is the typical means of passing messages to the next

queue in a stream.

This utility is part of STREAMS Kernel Extensions.

Parameters

 q Specifies the calling queue.

mp Specifies the message that is to be passed.

Related Information

List of Streams Programming References, Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

putpmsg System Call

Purpose

Sends a priority message on a stream.

306 Technical Reference: Communications, Volume 2

Syntax

#include <stropts.h>

int putpmsg (fd, ctlptr,

dataptr, band, flags)

int fd;

struct strbuf * ctlptr;

struct strbuf * dataptr;

int band;

int flags;

Description

The putpmsg system call is identical to the putmsg system call except that it sends a priority message.

All information except for flag settings are found in the description for the putmsg system call. The

differences in the flag settings are noted in the error codes section.

This system call is part of STREAMS Kernel Extensions.

Parameters

 fd Specifies a file descriptor referencing an open stream.

ctlptr Holds the control part of the message.

dataptr Holds the data part of the message.

band Indicates the priority band.

flags Indicates the priority type of message to be sent. Acceptable values are:

MSG_BAND

Sends a non-priority message.

MSG_HIPRI

Sends a priority message.

Error Codes

The putpmsg system call is unsuccessful under the following conditions:

v The flags parameter is set to a value of 0.

v The flags parameter is set to MSG_HIPRI and the band parameter is set to a nonzero value.

v The flags parameter is set to MSG_HIPRI and no control part is specified.

Related Information

The poll subroutine, read subroutine, write subroutine.

The getmsg system call, getpmsg system call, putmsg system call.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

putq Utility

Purpose

Puts a message on a queue.

Chapter 3. Streams 307

Syntax

int

putq(q, bp)

register queue_t * q;

register mblk_t * bp;

Description

The putq utility puts the message pointed to by the bp parameter on the message queue pointed to by the

q parameter, and then enables that queue. The putq utility queues messages based on message-queuing

priority.

The priority classes are:

 Class Description

type >= QPCTL High-priority

type < QPCTL && band > 0 Priority band

type < QPCTL && band == 0 Normal

When a high-priority message is queued, the putq utility always enables the queue. For a priority-band

message, the putq utility is allowed to enable the queue (the QNOENAB flag is not set). Otherwise, the

QWANTR flag is set, indicating that the service procedure is ready to read the queue. When an ordinary

message is queued, the putq utility enables the queue if the following condition is set and if enabling is

not inhibited by the noenable utility: the module has just been pushed, or else no message was queued

on the last getq call and no message has been queued since.

The putq utility looks only at the priority band in the first message block of a message. If a high-priority

message is passed to the putq utility with a nonzero b_band field value, the b_band field is reset to 0

before the message is placed on the queue. If the message passed to the putq utility has a b_band field

value greater than the number of qband structures associated with the queue, the putq utility tries to

allocate a new qband structure for each band up to and including the band of the message.

The putq utility should be used in the put procedure for the same queue in which the message is queued.

A module should not call the putq utility directly in order to pass messages to a neighboring module.

Instead, the putq utility itself can be used as the value of the qi_putp field in the put procedure for either

or both of the module qinit structures. Doing so effectively bypasses any put-procedure processing and

uses only the module service procedures.

This utility is part of STREAMS Kernel Extensions.

Note: The service procedure must never put a priority message back on its own queue, as this would

result in an infinite loop.

Parameters

 q Specifies the queue on which to place the message.

bp Specifies the message to put on the queue.

Return Values

On successful completion, the putq utility returns a value of 1. Otherwise, it returns a value of 0.

Related Information

The getq utility.

308 Technical Reference: Communications, Volume 2

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

qenable Utility

Purpose

Enables a queue.

Syntax

void qenable (q)

register queue_t * q;

Description

The qenable utility places the queue pointed to by the q parameter on the linked list of queues ready to

be called by the STREAMS scheduler.

This utility is part of STREAMS Kernel Extensions.

Parameters

 q Specifies the queue to be enabled.

Related Information

List of Streams Programming References, Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

qreply Utility

Purpose

Sends a message on a stream in the reverse direction.

Syntax

void qreply (q, bp)

register queue_t * q;

register mblk_t * bp;

Description

The qreply utility sends the message pointed to by the bp parameter either up or down the stream-in the

reverse direction from the queue pointed to by the q parameter. The utility does this by locating the partner

of the queue specified by the q parameter (see the OTHERQ utility), and then calling the put procedure of

that queue’s neighbor (as in the putnext utility). The qreply utility is typically used to send back a

response (M_IOCACK or M_IOCNAK message) to an M_IOCTL message.

This utility is part of STREAMS Kernel Extensions.

Parameters

 q Specifies which queue to send the message up or down.

bp Specifies the message to send.

Chapter 3. Streams 309

Related Information

The OTHERQ utility, putnext utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

qsize Utility

Purpose

Finds the number of messages on a queue.

Syntax

int

qsize(qp)

register queue_t * qp;

Description

The qsize utility returns the number of messages present in the queue specified by the qp parameter. If

there are no messages on the queue, the qsize parameter returns a value of 0.

This utility is part of STREAMS Kernel Extensions.

Parameters

 qp Specifies the queue on which to count the messages.

Related Information

List of Streams Programming References, Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

RD Utility

Purpose

Gets the pointer to the read queue.

Syntax

#define RD(q) ((q)-1)

Description

The RD utility accepts a write-queue pointer, specified by the q parameter, as an argument and returns a

pointer to the read queue for the same module.

This utility is part of STREAMS Kernel Extensions.

Parameters

 q Specifies the write queue.

310 Technical Reference: Communications, Volume 2

Related Information

The OTHERQ utility, WR utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

rmvb Utility

Purpose

Removes a message block from a message.

Syntax

mblk_t *

rmvb(mp, bp)

register mblk_t * mp;

register mblk_t * bp;

Description

The rmvb utility removes the message block pointed to by the bp parameter from the message pointed to

by the mp parameter, and then restores the linkage of the message blocks remaining in the message. The

rmvb utility does not free the removed message block, but returns a pointer to the head of the resulting

message. If the message block specified by the bp parameter is not contained in the message specified

by the mp parameter, the rmvb utility returns a -1. If there are no message blocks in the resulting

message, the rmvb utility returns a null pointer.

This utility is part of STREAMS Kernel Extensions.

Parameters

 bp Specifies the message block to be removed.

mp Specifies the message from which to remove the message block.

Related Information

List of Streams Programming References, Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

rmvq Utility

Purpose

Removes a message from a queue.

Syntax

void rmvq (q, mp)

register queue_t * q;

register mblk_t * mp;

Description

Attention: If the mp parameter does not point to a message that is present on the specified queue, a

system panic could result.

Chapter 3. Streams 311

The rmvq utility removes the message pointed to by the mp parameter from the message queue pointed

to by the q parameter, and then restores the linkage of the messages remaining on the queue.

This utility is part of STREAMS Kernel Extensions.

Parameters

 q Specifies the queue from which to remove the message.

mp Specifies the message to be removed.

Related Information

List of Streams Programming References, Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

sad Device Driver

Purpose

Provides an interface for administrative operations.

Syntax

#include <sys/types.h>

#include <sys/conf.h>

#include <sys/sad.h>

#include <sys/stropts.h>

int ioctl (fildes, command, arg)

int fildes, command;

int arg;

Description

The STREAMS Administrative Driver (sad) provides an interface for applications to perform administrative

operations on STREAMS modules and drivers. The interface is provided through ioctl operations.

Privileged operation can access the sad device driver in the /dev/sad/user directory.

Parameters

 fildes Specifies an open file descriptor that refers to the sad device driver.

command Determines the control function to be performed.

arg Supplies additional information for the given control function.

Values for the command Parameter

The autopush command allows a user to configure a list of modules to be automatically pushed on a

stream when a driver is first opened. The autopush command is controlled by the following commands.

312 Technical Reference: Communications, Volume 2

Command Description

SAD_SAP Allows the person performing administrative duties to configure the information for the given device,

which is used by the autopush command. The arg parameter points to a strapush structure containing

the following elements:

uint sap_cmd;

long sap_major;

long sap_minor;

long sap_lastminor;

long sap_npush;

uint sap_list[MAXAPUSH] [FMNAMESZ + 1];

The elements are described as follows:

sap_cmd

Indicates the type of configuration being done. Acceptable values are:

SAP_ONE

Configures one minor device of a driver.

SAP_RANGE

Configures a range of minor devices of a driver.

SAP_ALL

Configures all minor devices of a driver.

SAP_CLEAR

Undoes configuration information for a driver.

sap_major

Specifies the major device number of the device to be configured.

sap_minor

Specifies the minor device number of the device to be configured.

sap_lastminor

Specifies the last minor device number in a range of devices to be configured. This field is

used only with the SAP_RANGE value in the sap_cmd field.

sap_npush

Indicates the number of modules to be automatically pushed when the device is opened. The

value of this field must be less than or equal to MAXAPUSH, which is defined in the sad.h

file. It must also be less than or equal to NSTRPUSH, which is defined in the kernel master

file.

sap_list

Specifies an array of module names to be pushed in the order in which they appear in the list.

When using the SAP_CLEAR value, the user sets only the sap_major and sap_minor fields. This

undoes the configuration information for any of the other values. If a previous entry was configured with

the SAP_ALL value, the sap_minor field is set to 0. If a previous entry was configured with the

SAP_RANGE value, the sap_minor field is set to the lowest minor device number in the range

configured.

On successful completion, the return value from the ioctl operation is 0. Otherwise, the return value is

-1.

SAD_GAP Allows any user to query the sad device driver to get the autopush configuration information for a

given device. The arg parameter points to a strapush structure as described under the SAD_SAP

value.

The user sets the sap_major and sap_minor fields to the major and minor device numbers, respectively,

of the device in question. On return, the strapush structure is filled with the entire information used to

configure the device. Unused entries are filled with zeros.

On successful completion, the return value from the ioctl operation is 0. Otherwise, the return value is

-1.

Chapter 3. Streams 313

Command Description

SAD_VML Allows any user to validate a list of modules; that is, to see if they are installed on the system. The arg

parameter is a pointer to a str_list structure containing the following elements:

int sl_nmods;

struct str_mlist *sl_modlist;

The str_mlist structure contains the following element:

char l_name[FMNAMESZ+1];

The fields are defined as follows:

sl_nmods

Indicates the number of entries the user has allocated in the array.

sl_modlist

Points to the array of module names.

Return Values

On successful completion, the return value from the ioctl operation is 0 if the list is valid or 1 if the list

contains an invalid module name. Otherwise the return value is -1.

Error Codes

On failure, the errno global variable is set to one of the following values:

 Value Description

EFAULT The arg parameter points outside the allocated address space.

EINVAL The major device number is not valid, the number of modules is not valid.

OR

The list of module names is not valid.

ENOSTR The major device number does not represent a STREAMS driver.

EEXIST The major-minor device pair is already configured.

ERANGE The value of the command parameter is SAP_RANGE and the value in the sap_lastminor field is not

greater than the value in the sap_minor field.

OR

The value of the command parameter is SAP_CLEAR and the value in the sap_minor field is not equal to

the first minor in the range.

ENODEV The value in the command parameter is SAP_CLEAR and the device is not configured for the autopush

command.

ENOSR An internal autopush data structure cannot be allocated.

Related Information

The autopush command.

The close subroutine, fstat subroutine, open subroutine, stat subroutine.

Understanding streamio (STREAMS ioctl) Operations, Understanding STREAMS Drivers and Modules,

Understanding the log Device Driver in AIX 5L Version 5.3 Communications Programming Concepts.

314 Technical Reference: Communications, Volume 2

splstr Utility

Purpose

Sets the processor level.

Syntax

int splstr()

Description

The splstr utility increases the system processor level in order to block interrupts at a level appropriate for

STREAMS modules and drivers when they are executing critical portions of their code. The splstr utility

returns the processor level at the time of its invocation. Module developers are expected to use the

standard splx(s) utility, where s is the integer value returned by the splstr operation, to restore the

processor level to its previous value after the critical portions of code are passed.

This utility is part of STREAMS Kernel Extensions.

Related Information

The splx utility.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

splx Utility

Purpose

Terminates a section of code.

Syntax

int splx(x)

int x;

Description

The splx utility terminates a section of protected critical code. This utility restores the interrupt level to the

previous level specified by the x parameter.

This utility is part of STREAMS Kernel Extensions.

Related Information

The splstr utility.

List of Streams Programming References and Understanding STREAMS Drivers and Modules in AIX 5L

Version 5.3 Communications Programming Concepts.

srv Utility

Purpose

Services queued messages for STREAMS modules or drivers.

Chapter 3. Streams 315

Syntax

#include <sys/types.h>

#include <sys/stream.h>

#include <sys/stropts.h>

 int <prefix>rsrv(queue_t *q); /* read side */

int <prefix>wsrv(queue_t *q); /* write side */

Parameters

 q Pointer to the queue structure.

Description

The optional service (<prefix>srv) routine can be included in a STREAMS module or driver for one or

more of the following reasons:

v To provide greater control over the flow of messages in a stream

v To make it possible to defer the processing of some messages to avoid depleting system resources

v To combine small messages into larger ones, or break large messages into smaller ones

v To recover from resource allocation failure. A module’s or driver’s put routine can test for the availability

of a resource, and if it is not available, enqueue the message for later processing by the srv routine.

A message is first passed to a module’s or driver’s put routine, which may or may not do some

processing. It must then either:

v Pass the message to the next stream component with putnext

v If a srv routine has been included, it may call putq to place the message on the queue

Once a message has been enqueued, the STREAMS scheduler controls the invocation of the service

routine. Service routines are called in FIFO order by the scheduler. No guarantees can be made about

how long it will take for a srv routine to be called except that it will happen before any user level process

is run.

Every stream component (stream head, module or driver) has limit values it uses to implement flow

control. Tunable high and low water marks should be checked to stop and restart the flow of message

processing. Flow control limits apply only between two adjacent components with srv routines.

STREAMS messages can be defined to have up to 256 different priorities to support requirements for

multiple bands of data flow. At a minimum, a stream must distinguish between normal (priority zero)

messages and high priority messages (such as M_IOCACK). High priority messages are always placed at

the head of the srv routine’s queue, after any other enqueued high priority messages. Next are messages

from all included priority bands, which are enqueued in decreasing order of priority. Each priority band has

its own flow control limits. If a flow controlled band is stopped, all lower priority bands are also stopped.

Once the STREAMS scheduler calls a srv routine, it must process all messages on its queue. The

following steps are general guidelines for processing messages. Keep in mind that many of the details of

how a srv routine should be written depend on the implementation, the direction of flow (upstream or

downstream), and whether it is for a module or a driver.

1. Use getq to get the next enqueued message.

2. If the message is high priority, process it (if appropriate) and pass it to the next stream component with

putnext.

3. If it is not a high priority message (and therefore subject to flow control), attempt to send it to the next

stream component with a srv routine. Use canput or bcanput to determine if this can be done.

316 Technical Reference: Communications, Volume 2

4. If the message cannot be passed, put it back on the queue with putbq. If it can be passed, process it

(if appropriate) and pass it with putnext.

Rules for service routines:

1. Service routines must not call any kernel services that sleep or are not interrupt safe.

2. Service routines are called by the STREAMS scheduler with most interrupts enabled.

Note: Each stream module must specify a read and a write service (srv) routine. If a service routine is

not needed (because the put routine processes all messages), a NULL pointer should be

placed in module’s qinit structure. Do not use nulldev instead of the NULL pointer. Use of

nulldev for a srv routine may result in flow control errors.

Prior to AIX 4.1, STREAMS service routines were permitted which were not coded to specification (that

is, the service routine called sleep or called kernel services that slept, other possibilities). In AIX 4.1,

this behavior will cause a system failure because the STREAMS scheduler is executed with some

interrupts disabled. Modules or drivers can force the old style scheduling by setting the sc_flags field of

the kstrconf_t structure to STR_Q_NOTTOSPEC. This structure is passed to the system when the

module or driver calls the str_install STREAMS service. This flag will cause STREAMS to schedule the

module’s or driver’s service routines with all interrupts enabled. There is a severe performance penalty

for this type of STREAMS scheduling and future releases may not support STR_Q_NOTTOSPEC.

Return Values

Ignored.

Related Information

put, bcanput, canput, getq, putbq, putnext, putq utilities.

The queue structure in /usr/include/sys/stream.h.

str_install Utility

Purpose

Installs streams modules and drivers.

Syntax

#include <sys/strconf.h>

int

str_install(cmd, conf)

int cmd;

strconf_t * conf;

Description

The str_install utility adds or removes Portable Streams Environment (PSE) drivers and modules from the

internal tables of PSE. The extension is pinned when added and unpinned when removed (see the

pincode kernel service). It uses a configuration structure to provide sufficient information to perform the

specified command.

This utility is part of STREAMS Kernel Extensions.

The configuration structure, strconf_t, is defined as follows:

Chapter 3. Streams 317

typedef struct {

 char *sc_name;

 struct streamtab *sc_str;

 int sc_open_stylesc_flags;

 int sc_major;

 int sc_sqlevel;

 caddr_t sc_sqinfo;

} strconf_t;

The elements of the strconf_t structure are defined as follows:

 Element Description

sc_name Specifies the name of the extension in the internal tables of PSE. For

modules, this name is installed in the fmodsw table and is used for

I_PUSH operations. For drivers, this name is used only for reporting with

the scls and strinfo commands.

sc_str Points to a streamtab structure.

318 Technical Reference: Communications, Volume 2

Element Description

sc_open_stylesc_flags Specifies the style of the driver or module open routine. The acceptable

values are:

STR_NEW_OPEN

Specifies the open syntax and semantics used in System V

Release 4.

STR_OLD_OPEN

Specifies the open syntax and semantics used in System V

Release 3.

If the module is multiprocessor-safe, the following flag should be added by

using the bitwise OR operator:

STR_MPSAFE

Specifies that the extension was designed to run on a

multiprocessor system.

If the module uses callback functions that need to be protected against

interrupts (non-interrupt-safe callback functions) for the timeout or bufcall

utilities, the following flag should be added by using the bitwise OR

operator:

STR_QSAFETY

Specifies that the extension uses non-interrupt-safe callback

functions for the timeout or bufcall utilities.

This flag is automatically set by STREAMS if the module is not

multiprocessor-safe.

STR_PERSTREAM

Specifies that the module accepts to run at perstream

synchronization level.

STR_Q_NOTTOSPEC

Specifies that the extension is designed to run it’s service routine

under process context.

By default STREAMS service routine runs under interrupt context

(INTOFFL3). If Streams drivers or modules want to execute their service

routine under process context (INTBASE), they need to set this flag.

STR_64BIT

Specifies that the extension is capable to support 64-bit data types.

STR_NEWCLONING

Specifies the driver open uses new-style cloning. Under this style,

the driver open() is not checking for CLONEOPEN flag and returns

new device number.

sc_major Specifies the major number of the device.

Chapter 3. Streams 319

Element Description

sc_sqlevel Reserved for future use. Specifies the synchronization level to be used by

PSE. There are seven levels of synchronization:

SQLVL_NOP No synchronization

Specifies that each queue can be accessed by more than one

thread at the same time. The protection of internal data and of put

and service routines against the timeout or bufcall utilities is

done by the module or driver itself. This synchronization level

should be used essentially for multiprocessor-efficient modules.

SQLVL_QUEUE Queue Level

Specifies that each queue can be accessed by only one thread at

the same time. This is the finest synchronization level, and should

only be used when the two sides of a queue pair do not share

common data.

SQLVL_QUEUEPAIR Queue Pair Level

Specifies that each queue pair can be accessed by only one

thread at the same time.

SQLVL_MODULE Module Level

Specifies that all instances of a module can be accessed by only

one thread at the same time. This is the default value.

SQLVL_ELSEWHERE Arbitrary Level

Specifies that a group of modules can be accessed by only one

thread at the same time. Usually, the group of modules is a set of

cooperating modules, such as a protocol family. The group is

defined by using the same name in the sc_sqinfo field for each

module in the group.

SQLVL_GLOBAL Global Level

Specifies that all of PSE can be accessed by only one thread at

the same time. This option should normally be used only for

debugging.

SQLVL_DEFAULT Default Level

Specifies the default level, set to SQLVL_MODULE.

sc_sqinfo Specifies an optional group name. This field is only used when the

SQLVL_ELSEWHERE arbitrary synchronization level is set; all modules

having the same name belong to one group. The name size is limited to

eight characters.

Parameters

 cmd Specifies which operation to perform. Acceptable values are:

STR_LOAD_DEV

Adds a device into PSE internal tables.

STR_UNLOAD_DEV

Removes a device from PSE internal tables.

STR_LOAD_MOD

Adds a module into PSE internal tables.

STR_UNLOAD_MOD

Removes a module from PSE internal tables.

conf Points to a strconf_t structure, which contains all the necessary information to successfully load and unload

a PSE kernel extension.

320 Technical Reference: Communications, Volume 2

Return Values

On successful completion, the str_install utility returns a value of 0. Otherwise, it returns an error code.

Error Codes

On failure, the str_install utility returns one of the following error codes:

 Code Description

EBUSY The PSE kernel extension is already in use and cannot be unloaded.

EEXIST The PSE kernel extension already exists in the system.

EINVAL A parameter contains an unacceptable value.

ENODEV The PSE kernel extension could not be loaded.

ENOENT The PSE kernel is not present and could not be unloaded.

ENOMEM Not enough memory for the extension could be allocated and pinned.

ENXIO PSE is currently locked for use.

Related Information

The pincode kernel service, unpincode kernel service.

The streamio operations.

Configuring Drivers and Modules in the Portable Streams Environment (PSE) and List of Streams

Programming References in AIX 5L Version 5.3 Communications Programming Concepts.

streamio Operations

Purpose

Perform a variety of control functions on streams.

Syntax

#include <stropts.h>

int ioctl (fildes, command, arg)

int fildes, command;

Description

See individual streamio operations for a description of each one.

This operation is part of STREAMS Kernel Extensions.

Parameters

 fildes Specifies an open file descriptor that refers to a stream.

command Determines the control function to be performed.

arg Represents additional information that is needed by this operation.

The type of the arg parameter depends upon the operation, but it is generally an integer or a pointer to a

command-specific data structure.

The command and arg parameters are passed to the file designated by the fildes parameter and are

interpreted by the stream head. Certain combinations of these arguments can be passed to a module or

driver in the stream.

Chapter 3. Streams 321

Values of the command Parameter

The following ioctl operations are applicable to all STREAMS files:

 Operation Description

I_ATMARK

 Checks if the current message on the stream-head read queue is

marked.

I_CANPUT Checks if a given band is writable.

I_CKBAND Checks if a message of a particular band is on the stream-head

queue.

I_FDINSERT

 Creates a message from user specified buffers, adds information

about another stream and sends the message downstream.

I_FIND Compares the names of all modules currently present in the stream

to a specified name.

I_FLUSH

 Flushes all input or output queues.

I_FLUSHBAND

 Flushes all message of a particular band.

I_GETBAND

 Gets the band of the first message on the stream-head read queue.

I_GETCLTIME

 Returns the delay time.

I_GETSIG

 Returns the events for which the calling process is currently

registered to be sent a SIGPOLL signal.

I_GRDOPT

 Returns the current read mode setting.

I_LINK Connects two specified streams.

I_LIST Lists all the module names on the stream.

I_LOOK

 Retrieves the name of the module just below the stream head.

I_NREAD

 Counts the number of data bytes in data blocks in the first message

on the stream-head read queue, and places this value in a specified

location.

I_PEEK Allows a user to retrieve the information in the first message on the

stream-head read queue without taking the message off the queue.

I_PLINK Connects two specified streams.

I_POP

 Removes the module just below the stream head.

I_PUNLINK

 Disconnects the two specified streams.

I_PUSH

 Pushes a module onto the top of the current stream.

I_RECVFD Retrieves the file descriptor associated with the message sent by an

I_SENDFD operation over a stream pipe.

I_SENDFD

 Requests a stream to send a message to the stream head at the

other end of a stream pipe.

I_SETCLTIME

 Sets the time that the stream head delays when a stream is closing.

I_SETSIG

 Informs the stream head that the user wishes the kernel to issue the

SIGPOLL signal when a particular event occurs on the stream.

I_SRDOPT Sets the read mode.

I_STR Constructs an internal STREAMS ioctl message.

322 Technical Reference: Communications, Volume 2

Operation Description

I_UNLINK

 Disconnects the two specified streams.

Return Values

Unless specified otherwise, the return value from the ioctl subroutine is 0 upon success and -1 if

unsuccessful with the errno global variable set as indicated.

Related Information

List of Streams Programming References, Understanding streamio (STREAMS ioctl) Operations in AIX 5L

Version 5.3 Communications Programming Concepts.

strlog Utility

Purpose

Generates STREAMS error-logging and event-tracing messages.

Syntax

int

strlog(mid, sid, level, flags, fmt, arg1, . . .)

short mid, sid;

char level;

ushort flags;

char * fmt;

unsigned arg1;

Description

The strlog utility generates log messages within the kernel. Required definitions are contained in the

sys/strlog.h file.

This utility is part of STREAMS Kernel Extensions.

Parameters

 mid Specifies the STREAMS module ID number for the module or driver submitting the log message.

sid Specifies an internal sub-ID number usually used to identify a particular minor device of a driver.

level Specifies a tracing level that allows for selective screening of low-priority messages from the tracer.

Chapter 3. Streams 323

flags Specifies the destination of the message. This can be any combination of:

SL_ERROR

The message is for the error logger.

SL_TRACE

The message is for the tracer.

SL_CONSOLE

Log the message to the console.

SL_FATAL

Advisory notification of a fatal error.

SL_WARN

Advisory notification of a nonfatal error.

SL_NOTE

Advisory message.

SL_NOTIFY

Request that a copy of the message be mailed to the system administrator.

fmt Specifies a print style-format string, except that %f, %e, %E, %g, and %G conversion specifications

are not handled.

arg1 Specifies numeric or character arguments. Up to NLOGARGS (currently 4) numeric or character

arguments can be provided. (The NLOGARGS variable specifies the maximum number of arguments

allowed. It is defined in the sys/strlog.h file.)

Related Information

The streamio operations.

clone Device Driver in AIX 5L Version 5.3 Communications Programming Concepts.

List of Streams Programming References, Understanding the log Device Driver, Understanding STREAMS

Error and Trace Logging in AIX 5L Version 5.3 Communications Programming Concepts.

strqget Utility

Purpose

Obtains information about a queue or band of the queue.

Syntax

int

strqget(q, what, pri, valp)

register queue_t * q;

qfields_t what;

register unsigned char pri;

long * valp;

Description

The strqget utility allows modules and drivers to get information about a queue or particular band of the

queue. The information is returned in the valp parameter. The fields that can be obtained are defined as

follows:

This utility is part of STREAMS Kernel Extensions.

324 Technical Reference: Communications, Volume 2

typedef enum qfileds {

 QHIWAT = 0,

 QLOWAT = 1,

 QMAXPSZ = 2,

 QMINPSZ = 3,

 QCOUNT = 4,

 QFIRST = 5,

 QLAST = 6,

 QFLAG = 7,

 QBAD = 8

} qfields_t;

Parameters

 q Specifies the queue about which to get information.

what Specifies the information to get from the queue.

pri Specifies the priority band about which to get information.

valp Contains the requested information on return.

Return Values

On success, the strqget utility returns a value of 0. Otherwise, it returns an error number.

Related Information

List of Streams Programming References, Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

t_accept Subroutine for Transport Layer Interface

Purpose

Accepts a connect request.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_accept (fd, resfd, call)

int fd;

int resfd;

struct t_call * call;

Description

The t_accept subroutine is issued by a transport user to accept a connect request. A transport user can

accept a connection on either the same local transport end point or on an end point different from the one

on which the connect indication arrived.

Parameters

 fd Identifies the local transport end point where the connect indication arrived.

resfd Specifies the local transport end point where the connection is to be established.

Chapter 3. Streams 325

call Contains information required by the transport provider to complete the connection. The call parameter

points to a t_call structure, which contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

The netbuf structure is described in the tiuser.h file. In the call parameter, the addr field is the address of

the caller, the opt field indicates any protocol-specific parameters associated with the connection, the udata

field points to any user data to be returned to the caller, and the sequence field is the value returned by the

t_listen subroutine which uniquely associates the response with a previously received connect indication.

If the same end point is specified (that is, the resfd value equals the fd value), the connection can be

accepted unless the following condition is true: the user has received other indications on that end point,

but has not responded to them (with either the t_accept or t_snddis subroutine). For this condition, the

t_accept subroutine fails and sets the t_errno variable to TBADF.

If a different transport end point is specified (that is, the resfd value does not equal the fd value), the end

point must be bound to a protocol address and must be in the T_IDLE state (see the t_getstate

subroutine) before the t_accept subroutine is issued.

For both types of end points, the t_accept subroutine fails and sets the t_errno variable to TLOOK if there

are indications (for example, a connect or disconnect) waiting to be received on that end point.

The values of parameters specified by the opt field and the syntax of those values are protocol-specific.

The udata field enables the called transport user to send user data to the caller, the amount of user data

must not exceed the limits supported by the transport provider as returned by the t_open or t_getinfo

subroutine. If the value in the len field of the udata field is 0, no data will be sent to the caller.

Return Values

On successful completion, the t_connect subroutine returns a value of 0. Otherwise, it returns a value of

-1, and the t_errno variable is set to indicate the error.

Error Codes

If unsuccessful, the t_errno variable is set to one of the following:

 Value Description

TACCES The user does not have permission to accept a connection on the responding transport end

point or use the specified options.

TBADDATA The amount of user data specified was not within the bounds allowed by the transport provider.

TBADDR The specified protocol address was in an incorrect format or contained illegal information.

TBADF The specified file descriptor does not refer to a transport end point; or the user is illegally

accepting a connection on the same transport end point on which the connect indication

arrived.

TBADOPT The specified options were in an incorrect format or contained illegal information.

TBADSEQ An incorrect sequence number was specified.

TLOOK An asynchronous event has occurred on the transport end point referenced by the fd parameter

and requires immediate attention.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The function was issued in the wrong sequence on the transport end point referenced by the fd

parameter, or the transport end point referred to by the resfd parameter is not in the T_IDLE

state.

TSYSERR A system error has occurred during execution of this function.

326 Technical Reference: Communications, Volume 2

Related Information

The t_alloc subroutine, t_connect subroutine, t_getinfo subroutine, t_getstate subroutine, t_listen

subroutine, t_open subroutine, t_rcvconnect subroutine and t_snddis subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_alloc Subroutine for Transport Layer Interface

Purpose

Allocates a library structure.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

char *t_alloc (fd, struct_type, fields)

int fd;

int struct_type;

int fields;

Description

The t_alloc subroutine dynamically assigns memory for the various transport-function argument structures.

This subroutine allocates memory for the specified structure, and also allocates memory for buffers

referenced by the structure.

Use of the t_alloc subroutine to allocate structures will help ensure the compatibility of user programs with

future releases of the transport interface.

Parameters

 fd Specifies the transport end point through which the newly allocated structure will be passed.

Chapter 3. Streams 327

struct_type Specifies the structure to be allocated. The structure to allocate is specified by the struct_type

parameter, and can be one of the following:

T_BIND

struct t_bind

T_CALL

struct t_call

T_OPTMGMT

struct t_optmgmt

T_DIS struct t_discon

T_UNITDATA

struct t_unitdata

T_UDERROR

struct t_uderr

T_INFO

struct t_info

Each of these structures may subsequently be used as a parameter to one or more transport

functions.

Each of the above structures, except T_INFO, contains at least one field of the struct netbuf

type. The netbuf structure is described in the tiuser.h file. For each field of this type, the user

may specify that the buffer for that field should be allocated as well. The fields parameter

specifies this option, where the parameter is the bitwise-OR of any of the following:

T_ADDR

The addr field of the t_bind, t_call, t_unitdata, or t_uderr structure.

T_OPT The opt field of the t_optmgmt, t_call, t_unitdata, or t_uderr structure.

T_UDATA

The udata field of the t_call, t_discon, or t_unitdata structure.

T_ALL All relevant fields of the given structure.

fields Specifies whether the buffer should be allocated for each field type. For each field specified in

the fields parameter, the t_alloc subroutine allocates memory for the buffer associated with the

field, initializes the len field to zero, and initializes the buf pointer and the maxlen field

accordingly. The length of the buffer allocated is based on the same size information returned

to the user from the t_open and t_getinfo subroutines. Thus, the fd parameter must refer to

the transport end point through which the newly allocated structure will be passed, so that the

appropriate size information can be accessed. If the size value associated with any specified

field is -1 or -2, the t_alloc subroutine will be unable to determine the size of the buffer to

allocate; it then fails, setting the t_errno variable to TSYSERR and the errno global variable to

EINVAL. For any field not specified in the fields parameter, the buf field is set to null and the

maxlen field is set to 0.

Return Values

On successful completion, the t_alloc subroutine returns a pointer to the newly allocated structure.

Otherwise, it returns a null pointer.

Error Codes

On failure, the t_errno variable is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport end point.

328 Technical Reference: Communications, Volume 2

Value Description

TNOSTRUCTYPE Unsupported structure type requested. This can include a request for a structure type which

is inconsistent with the transport provider type specified, for example, connection-oriented or

connectionless.

TSYSERR A system error has occurred during execution of this function.

Related Information

The t_free subroutine, t_getinfo subroutine, t_open subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_bind Subroutine for Transport Layer Interface

Purpose

Binds an address to a transport end point.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_bind(fd, req, ret)

int fd;

struct t_bind * req;

struct t_bind * ret;

Description

The t_bind subroutine associates a protocol address with the transport end point specified by the fd

parameter and activates that transport end point. In connection mode, the transport provider may begin

accepting or requesting connections on the transport end point. In connectionless mode, the transport user

may send or receive data units through the transport end point.

Parameters

 fd Specifies the transport end point.

req Specifies the address to be bound to the given transport end point.

ret Specifies the maximum size of the address buffer.

The req and ret parameters point to a t_bind structure containing the following members:

struct netbuf addr;

unsigned qlen;

The netbuf structure is described in the tiuser.h file. The addr field of the t_bind structure specifies a

protocol address and the qlen field is used to indicate the maximum number of outstanding connect

indications.

The req parameter is used to request that the address represented by the netbuf structure be bound to

the given transport end point. In the req parameter, the netbuf structure fields have the following

meanings:

Chapter 3. Streams 329

Field Description

len Specifies the number of bytes in the address.

buf Points to the address buffer.

maxlen Has no meaning for the req parameter.

On return, the ret parameter contains the address that the transport provider actually bound to the

transport end point; this may be different from the address specified by the user in the req parameter. In

the ret parameter, the netbuf structure fields have the following meanings:

 Field Description

maxlen Specifies the maximum size of the address buffer.

buf Points to the buffer where the address is to be placed. (On return, this field points to the bound address.)

len Specifies the number of bytes in the bound address.

If the value of the maxlen field is not large enough to hold the returned address, an error will result.

If the requested address is not available or if no address is specified in the req parameter (that is, the len

field of the addr field in the req parameter is 0) the transport provider assigns an appropriate address to be

bound and returns that address in the addr field of the ret parameter. The user can compare the

addresses in the req parameter to those in the ret parameter to determine whether the transport provider

has bound the transport end point to a different address than that requested. If the transport provider could

not allocate an address, the t_bind subroutine fails and t_errno is set to TNOADDR.

The req parameter may be null if the user does not wish to specify an address to be bound. Here, the

value of the qlen field is assumed to be 0, and the transport provider must assign an address to the

transport end point. Similarly, the ret parameter may be null if the user does not care which address was

bound by the provider and is not interested in the negotiated value of the qlen field. It is valid to set the

req and ret parameters to null for the same call, in which case the provider chooses the address to bind to

the transport end point and does not return that information to the user.

The qlen field has meaning only when initializing a connection-mode service. It specifies the number of

outstanding connect indications the transport provider should support for the given transport end point. An

outstanding connect indication is one that has been passed to the transport user by the transport provider.

A value of the qlen field greater than 0 is only meaningful when issued by a passive transport user that

expects other users to call it. The value of the qlen field is negotiated by the transport provider and can be

changed if the transport provider cannot support the specified number of outstanding connect indications.

On return, the qlen field in the ret parameter contains the negotiated value.

This subroutine allows more than one transport end point to be bound to the same protocol address as

long as the transport provider also supports this capability. However, it is not allowable to bind more than

one protocol address to the same transport end point. If a user binds more than one transport end point to

the same protocol address, only one end point can be used to listen for connect indications associated

with that protocol address. In other words, only one t_bind subroutine for a given protocol address may

specify a value greater than 0 for the qlen field. In this way, the transport provider can identify which

transport end point should be notified of an incoming connect indication. If a user attempts to bind a

protocol address to a second transport end point having a qlen value greater than 0, the transport provider

instead assigns another address to be bound to that end point. If a user accepts a connection on the

transport end point that is being used as the listening end point, the bound protocol address is found to be

busy for the duration of that connection. No other transport end points may be bound for listening while

that initial listening end point is in the data-transfer phase. This prevents more than one transport end

point bound to the same protocol address from accepting connect indications.

330 Technical Reference: Communications, Volume 2

Return Values

On successful completion, the t_connect subroutine returns a value of 0. Otherwise, it returns a value of

-1, and the t_errno variable is set to indicate the error.

Error Codes

If unsuccessful, the t_errno variable is set to one of the following:

 Value Description

TACCES The user does not have permission to use the specified address.

TADDRBUSY The requested address is in use.

TBADADDR The specified protocol address was in an incorrect format or contained illegal information.

TBADF The specified file descriptor does not refer to a transport end point.

TBUFOVFLW The number of bytes allowed for an incoming argument is not sufficient to store the value of that

argument. The provider’s state changes to T_IDLE and the information to be returned in the ret

parameter is discarded.

TNOADDR The transport provider could not allocate an address.

TOUTSTATE The function was issued in the wrong sequence.

TSYSERR A system error has occurred during execution of this function.

Related Information

The t_open subroutine, t_optmgmt subroutine, t_unbind subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_close Subroutine for Transport Layer Interface

Purpose

Closes a transport end point.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_close(fd)

int fd;

Description

The t_close subroutine informs the transport provider that the user is finished with the transport end point

specified by the fd parameter and frees any local library resources associated with the end point. In

addition, the t_close subroutine closes the file associated with the transport end point.

The t_close subroutine should be called from the T_UNBND state (see the t_getstate subroutine).

However, this subroutine does not check state information, so it may be called from any state to close a

transport end point. If this occurs, the local library resources associated with the end point are freed

automatically. In addition, the close subroutine is issued for that file descriptor. The close subroutine is

abortive if no other process has that file open, and will break any transport connection that may be

associated with that end point.

Chapter 3. Streams 331

Parameter

 fd Specifies the transport end point to be closed.

Return Values

On successful completion, the t_connect subroutine returns a value of 0. Otherwise, it returns a value of

-1, and the t_errno variable is set to indicate the error.

Error Code

If unsuccessful, the t_errno variable is set to the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport end point.

Related Information

The close subroutine, t_getstate subroutine, t_open subroutine, t_unbind subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_connect Subroutine for Transport Layer Interface

Purpose

Establishes a connection with another transport user.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_connect(fd, sndcall, rcvcall)

int fd;

struct t_call * sndcall;

struct t_call * rcvcall;

Description

The t_connect subroutine enables a transport user to request a connection to the specified destination

transport user.

Parameters

 fd Identifies the local transport end point where communication will be established.

sndcall Specifies information needed by the transport provider to establish a connection.

rcvcall Specifies information associated with the newly established connection.

The sndcall and rcvcall parameters point to a t_call structure that contains the following members:

332 Technical Reference: Communications, Volume 2

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

The netbuf structure is described in the tiuser.h file. In the sndcall parameter, the addr field specifies the

protocol address of the destination transport user, the opt field presents any protocol-specific information

that might be needed by the transport provider, the udata field points to optional user data that may be

passed to the destination transport user during connection establishment, and the sequence field has no

meaning for this function.

On return to the rcvcall parameter, the addr field returns the protocol address associated with the

responding transport end point, the opt field presents any protocol-specific information associated with the

connection, the udata field points to optional user data that may be returned by the destination transport

user during connection establishment; and the sequence field has no meaning for this function.

The opt field implies no structure on the options that may be passed to the transport provider. The

transport provider is free to specify the structure of any options passed to it. These options are specific to

the underlying protocol of the transport provider. The user can choose not to negotiate protocol options by

setting the len field of the opt field to 0. In this case, the provider may use default options.

The udata field enables the caller to pass user data to the destination transport user and receive user data

from the destination user during connection establishment. However, the amount of user data must not

exceed the limits supported by the transport provider as returned by the t_open or t_getinfo subroutine. If

the len field of the udata field in the sndcall parameter is 0, no data is sent to the destination transport

user.

On return, the addr, opt, and udata fields of the rcvcall parameter are updated to reflect values

associated with the connection. Thus, the maxlen field of each parameter must be set before issuing this

function to indicate the maximum size of the buffer for each. However, the rcvcall parameter may be null,

in which case no information is given to the user on return from the t_connect subroutine.

By default, the t_connect subroutine executes in synchronous mode, and waits for the destination user’s

response before returning control to the local user. A successful return (that is, a return value of 0)

indicates that the requested connection has been established. However, if the O_NDELAY flag is set (with

the t_open subroutine or the fcntl command), the t_connect subroutine executes in asynchronous mode.

In this case, the call does not wait for the remote user’s response, but returns control immediately to the

local user and returns -1 with the t_errno variable set to TNODATA to indicate that the connection has not

yet been established. In this way, the function simply initiates the connection establishment procedure by

sending a connect request to the destination transport user.

Return Values

On successful completion, the t_connect subroutine returns a value of 0. Otherwise, it returns a value of

-1, and the t_errno variable is set to indicate the error.

Error Codes

If unsuccessful, the t_errno variable is set to one of the following:

 Value Description

TACCES The user does not have permission to use the specified address or options.

TBADADDR The specified protocol address was in an incorrect format or contained illegal information.

TBADDATA The amount of user data specified was not within the bounds allowed by the transport provider.

TBADF The specified file descriptor does not refer to a transport end point.

TBADOPT The specified protocol options were in an incorrect format or contained illegal information.

Chapter 3. Streams 333

Value Description

TBUFOVFLW The number of bytes allocated for an incoming argument is not sufficient to store the value of

that argument. If executed in synchronous mode, the provider’s state, as seen by the user,

changes to T_DATAXFER, and the connect indication information to be returned in the rcvcall

parameter is discarded.

TLOOK An asynchronous event has occurred on this transport end point and requires immediate

attention.

TNODATA The O_NDELAY or O_NONBLOCK flag was set, so the function successfully initiated the

connection establishment procedure, but did not wait for a response from the remote user.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The function was issued in the wrong sequence.

TSYSERR A system error has occurred during execution of this function.

Related Information

The fcntl command.

The t_accept subroutine, t_getinfo subroutine, t_listen subroutine, t_open subroutine, t_optmgmt

subroutine, t_rcvconnect subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_error Subroutine for Transport Layer Interface

Purpose

Produces an error message.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

void t_error(errmsg)

char * errmsg;

extern int t_errno;

extern char *t_errno;

extern int t_nerr;

Description

The t_error subroutine produces a message on the standard error output that describes the last error

encountered during a call to a transport function.

The t_error subroutine prints the user-supplied error message, followed by a colon and the standard

transport-function error message for the current value contained in the t_errno variable.

Parameter

 errmsg Specifies a user-supplied error message that gives context to the error.

334 Technical Reference: Communications, Volume 2

External Variables

 t_errno Specifies which standard transport-function error message to print. If the value of the t_errno variable

is TSYSERR, the t_error subroutine also prints the standard error message for the current value

contained in the errno global variable.

The t_errno variable is set when an error occurs and is not cleared on subsequent successful calls.

t_nerr Specifies the maximum index value for the t_errlist array. The t_errlist array is the array of message

strings allowing user-message formatting. The t_errno variable can be used as an index into this array

to retrieve the error message string (without a terminating new-line character).

Examples

A t_connect subroutine is unsuccessful on transport end point fd2 because a bad address was given, and

the following call follows the failure:

t_error("t_connect failed on fd2")

The diagnostic message would print as:

t_connect failed on fd2: Incorrect transport address format

In this example, t_connect failed on fd2 tells the user which function was unsuccessful on which

transport end point, and Incorrect transport address format identifies the specific error that occurred.

Related Information

List of Streams Programming References, STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_free Subroutine for Transport Layer Interface

Purpose

Frees a library structure.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_free(ptr, struct_type)

char * ptr;

int struct_type;

Description

The t_free subroutine frees memory previously allocated by the t_alloc subroutine. This subroutine frees

memory for the specified structure and also frees memory for buffers referenced by the structure.

The t_free subroutine checks the addr, opt, and udata fields of the given structure (as appropriate) and

frees the buffers pointed to by the buf field of the netbuf structure. If the buf field is null, the t_free

subroutine does not attempt to free memory. After all buffers are freed, the t_free subroutine frees the

memory associated with the structure pointed to by the ptr parameter.

Undefined results will occur if the ptr parameter or any of the buf pointers points to a block of memory that

was not previously allocated by the t_alloc subroutine.

Chapter 3. Streams 335

Parameters

 ptr Points to one of the seven structure types described for the t_alloc subroutine.

struct_type Identifies the type of that structure. The type can be one of the following:

Type Structure

T_BIND

struct t_bind

T_CALL

struct t_call

T_OPTMGMT

struct t_optmgmt

T_DIS struct t_discon

T_UNITDATA

struct t_unitdata

T_UDERROR

struct t_uderr

T_INFO

struct t_info

Each of these structure types is used as a parameter to one or more transport subroutines.

Return Values

On successful completion, the t_free subroutine returns a value of 0. Otherwise, it returns a value of -1,

and the t_errno variable is set to indicate the error.

Error Codes

If unsuccessful, the t_errno variable is set to the following:

 Value Description

TNOSTRUCTYPE Unsupported structure type requested.

TSYSERR A system error has occurred during execution of this function.

Related Information

The t_alloc subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_getinfo Subroutine for Transport Layer Interface

Purpose

Gets protocol-specific service information.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

336 Technical Reference: Communications, Volume 2

int t_getinfo(fd, info)

int fd;

struct t_info * info;

Description

The t_getinfo subroutine returns the current characteristics of the underlying transport protocol associated

with fd file descriptor. The t_info structure is used to return the same information returned by the t_open

subroutine. This function enables a transport user to access this information during any phase of

communication.

Parameters

 fd Specifies the file descriptor.

Chapter 3. Streams 337

info Points to a t_info structure that contains the following members:

long addr;

long options;

long tsdu;

long etsdu;

long connect;

long discon;

long servtype;

The values of the fields have the following meanings:

addr A value greater than or equal to 0 indicates the maximum size of a transport protocol address; a

value of -1 specifies that there is no limit on the address size; and a value of -2 specifies that the

transport provider does not provide user access to transport protocol addresses.

options

A value greater than or equal to 0 indicates the maximum number of bytes of protocol-specific

options supported by the provider; a value of -1 specifies that there is no limit on the option size;

and a value of -2 specifies that the transport provider does not support user-settable options.

tsdu A value greater than 0 specifies the maximum size of a transport service data unit (TSDU); a value

of 0 specifies that the transport provider does not support the concept of TSDU, although it does

support the sending of a data stream having no logical boundaries preserved across a connection; a

value of -1 specifies that there is no limit on the size of a TSDU; and a value of -2 specifies that the

transfer of normal data is not supported by the transport provider.

etsdu A value greater than 0 specifies the maximum size of an expedited transport service data unit

(ETSDU); a value of 0 specifies that the transport provider does not support the concept of ETSDU,

although it does support the sending of an expedited data stream having no logical boundaries

preserved across a connection; a value of -1 specifies that there is no limit on the size of an

ETSDU; and a value of -2 specifies that the transfer of expedited data is not supported by the

transport provider.

connect

A value greater than or equal to 0 specifies the maximum amount of data that may be associated

with connection establishment functions; a value of -1 specifies that there is no limit on the amount

of data sent during connection establishment; and a value of -2 specifies that the transport provider

does not allow data to be sent with connection establishment functions.

discon A value greater than or equal to 0 specifies the maximum amount of data that may be associated

with the t_snddis and t_rcvdis subroutines; a value of -1 specifies that there is no limit on the

amount of data sent with these abortive release functions; and a value of -2 specifies that the

transport provider does not allow data to be sent with the abortive release functions.

servtype

This field specifies the service type supported by the transport provider.

If a transport user is concerned with protocol independence, the sizes may be accessed to determine how

large the buffers must be to hold each piece of information. Alternatively, the t_alloc subroutine may be used

to allocate these buffers. An error will result if a transport user exceeds the allowed data size on any function.

The value of each field can change as a result of option negotiation; the t_getinfo subroutine enables a user

to retrieve the current characteristics.

Return Values

On successful completion, the t_getinfo subroutine returns a value of 0. Otherwise, it returns a value of

-1, and the t_errno variable is set to indicate the error.

The servtype field of the info parameter may specify one of the following values on return:

 Value Description

T_COTS The transport provider supports a connection-mode service, but does not support the optional

orderly release facility.

338 Technical Reference: Communications, Volume 2

Value Description

T_COTS_ORD The transport provider supports a connection-mode service with the optional orderly release

facility.

T_CLTS The transport provider supports a connectionless-mode service. For this service type, the t_open

subroutine returns -2 for the values in the etsdu, connect, and discon fields.

Error Codes

In unsuccessful, the t_errno variable is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport end point.

TSYSERR A system error has occurred during execution of this function.

Related Information

The t_alloc subroutine, t_open subroutine, t_rcvdis subroutine and t_snddis subroutine.

List of Streams Programming Reference and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_getstate Subroutine for Transport Layer Interface

Purpose

Gets the current state.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_getstate(fd)

int fd;

Description

The t_getstate subroutine returns the current state of the provider associated with the transport end point

specified by the fd parameter.

Parameter

 fd Specifies the transport end point.

Return Codes

On successful completion, the t_getstate subroutine returns the current state. Otherwise, it returns a value

of -1, and the t_errno variable is set to indicate the error.

If the provider is undergoing a state transition when the t_getstate subroutine is called, the function will

fail. The current state is one of the following.

Chapter 3. Streams 339

Value Description

T_DATAXFER Data transfer.

T_IDLE Idle.

T_INCON Incoming connection pending.

T_INREL Incoming orderly release (waiting to send an orderly release indication).

T_OUTCON Outgoing connection pending.

T_OUTREL Outgoing orderly release (waiting for an orderly release indication).

T_UNBND Unbound.

Error Codes

If unsuccessful, the t_errno variable is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport end point.

TSTATECHNG The transport provider is undergoing a state change.

TSYSERR A system error has occurred during execution of this function.

Related Information

The t_open subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_listen Subroutine for Transport Layer Interface

Purpose

Listens for a connect request.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_listen(fd, call)

int fd;

struct t_call * call;

Description

The t_listen subroutine listens for a connect request from a calling transport user.

Note: If a user issues a t_listen subroutine call in synchronous mode on a transport end point that was

not bound for listening (that is, the qlen field was 0 on the t_bind subroutine), the call will never

return because no connect indications will arrive on that endpoint.

Parameters

 fd Identifies the local transport endpoint where connect indications arrive.

340 Technical Reference: Communications, Volume 2

call Contains information describing the connect indication.

The call parameter points to a t_call structure that contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

The netbuf structure contains the following fields:

addr Returns the protocol address of the calling transport user.

opt Returns protocol-specific parameters associated with the connect request.

udata Returns any user data sent by the caller on the connect request.

sequence

Uniquely identifies the returned connect indication. The value of sequence enables the user to listen

for multiple connect indications before responding to any of them.

Since the t_listen subroutine returns values for the addr, opt, and udata fields of the call parameter, the

maxlen field of each must be set before issuing the t_listen subroutine to indicate the maximum size of the

buffer for each.

By default, the t_listen subroutine executes in synchronous mode and waits for a connect indication to

arrive before returning to the user. However, if the O_NDELAY or O_NONBLOCK flag is set (using the

t_open subroutine or the fcntl command), the t_listen subroutine executes asynchronously, reducing to a

poll for existing connect indications. If none are available, the t_listen subroutine returns -1 and sets the

t_errno variable to TNODATA.

Return Values

On successful completion, the t_listen subroutine returns a value of 0. Otherwise, it returns a value of -1,

and the t_errno variable is set to indicate the error.

Error Codes

If unsuccessful, the t_errno variable is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport end point.

TBADQLEN The transport end point is not bound for listening. The qlen is zero.

TBUFOVFLW The number of bytes allocated for an incoming argument is not sufficient to store the value of

that argument. The provider’s state, as seen by the user, changes to T_INCON, and the

connect-indication information to be returned in the call parameter is discarded.

TLOOK An asynchronous event has occurred on this transport end point and requires immediate

attention.

TNODATA The O_NDELAY or O_NONBLOCK flag was set, but no connect indications had been queued.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The subroutine was issued in the wrong sequence.

TSYSERR A system error has occurred during execution of this function.

Related Information

The t_accept subroutine, t_alloc subroutine, t_bind subroutine, t_connect subroutine, t_open subroutine,

t_rcvconnect subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

Chapter 3. Streams 341

t_look Subroutine for Transport Layer Interface

Purpose

Looks at the current event on a transport end point.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_look(fd)

int fd;

Description

The t_look subroutine returns the current event on the transport end point specified by the fd parameter.

This subroutine enables a transport provider to notify a transport user of an asynchronous event when the

user is issuing functions in synchronous mode. Certain events require immediate notification of the user

and are indicated by a specific error, TLOOK, on the current or next subroutine executed.

This subroutine also enables a transport user to poll a transport end point periodically for asynchronous

events.

Parameter

 fd Specifies the transport end point.

Return Values

On successful completion, the t_look subroutine returns a value that indicates which of the allowable

events has occurred, or returns a value of 0 if no event exists. One of the following events is returned:

 Event Description

T_CONNECT Indicates connect confirmation received.

T_DATA Indicates normal data received.

T_DISCONNECT Indicates disconnect received.

T_ERROR Indicates fatal error.

T_EXDATA Indicates expedited data received.

T_LISTEN Indicates connection indication received.

T_ORDREL Indicates orderly release.

T_UDERR Indicates datagram error.

If the t_look subroutine is unsuccessful, a value of -1 is returned, and the t_errno variable is set to

indicate the error.

Error Codes

If unsuccessful, the t_errno variable is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport end point.

TSYSERR A system error has occurred during execution of this function.

342 Technical Reference: Communications, Volume 2

Related Information

The t_open subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_open Subroutine for Transport Layer Interface

Purpose

Establishes a transport end point.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_open(path, oflag, info)

char * path;

int oflag;

struct t_info * info;

Description

The t_open subroutine must be called as the first step in the initialization of a transport end point. This

subroutine establishes a transport end point, first, by opening a UNIX system file that identifies a particular

transport provider (that is, transport protocol) and then returning a file descriptor that identifies that end

point. For example, opening the /dev/dlpi/tr file identifies an 802.5 data link provider.

Parameters

 path Points to the path name of the file to open.

oflag Specifies the open routine flags.

Chapter 3. Streams 343

info Points to a t_info structure.

The info parameter points to a t_info structure that contains the following elements:

long addr;

long options;

long tsdu;

long etsdu;

long connect;

long discon;

long servtype;

The values of the elements have the following meanings:

addr A value greater than or equal to 0 indicates the maximum size of a transport protocol address; a

value of -1 specifies that there is no limit on the address size; and a value of -2 specifies that the

transport provider does not provide user access to transport protocol addresses.

options

A value greater than or equal to 0 indicates the maximum number of bytes of protocol-specific

options supported by the provider; a value of -1 specifies that there is no limit on the option size;

and a value of -2 specifies that the transport provider does not support user-settable options.

tsdu A value greater than 0 specifies the maximum size of a transport service data unit (TSDU); a

value of 0 specifies that the transport provider does not support the concept of TSDU, although it

does support the sending of a data stream having no logical boundaries preserved across a

connection; a value of -1 specifies that there is no limit on the size of a TSDU; and a value of -2

specifies that the transfer of normal data is not supported by the transport provider.

etsdu A value greater than 0 specifies the maximum size of a expedited transport service data unit

(ETSDU); a value of 0 specifies that the transport provider does not support the concept of

ETSDU, although it does support the sending of an expedited data stream having no logical

boundaries preserved across a connection; a value of -1 specifies that there is no limit on the size

of an ETSDU; and a value of -2 specifies that the transfer of expedited data is not supported by

the transport provider.

connect

A value greater than or equal to 0 specifies the maximum amount of data that may be associated

with connection establishment functions; a value of -1 specifies that there is no limit on the

amount of data sent during connection establishment; and a value of -2 specifies that the transport

provider does not allow data to be sent with connection establishment functions.

discon A value greater than or equal to 0 specifies the maximum amount of data that may be associated

with the t_snddis and t_rcvdis functions; a value of -1 specifies that there is no limit on the

amount of data sent with these abortive release functions; and a value of -2 specifies that the

transport provider does not allow data to be sent with the abortive release functions.

servtype

This field specifies the service type supported by the transport provider, as described in the Return

Values section.

If a transport user is concerned with protocol independence, these sizes may be accessed to determine

how large the buffers must be to hold each piece of information. Alternatively, the t_alloc subroutine can

be used to allocate these buffers. An error results if a transport user exceeds the allowed data size on any

function.

Return Values

On successful completion, the t_open subroutine returns a valid file descriptor. Otherwise, it returns a

value of -1, and the t_errno variable is set to indicate the error.

344 Technical Reference: Communications, Volume 2

The servtype field of the info parameter can specify one of the following values on return:

 Value Description

T_COTS The transport provider supports a connection-mode service but does not support the optional

orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service with the optional orderly release

facility.

T_CLTS The transport provider supports a connectionless-mode service. For this service type, the t_open

subroutine returns -2 for the values in the etsdu, connect, and discon fields.

A single transport end point can support only one of the above services at one time.

If the info parameter is set to null by the transport user, no protocol information is returned by the t_open

subroutine.

Error Codes

If unsuccessful, the t_errno variable is set to the following:

 Value Description

TSYSERR A system error has occurred during the startup of this function.

Related Information

The open subroutine, t_close subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_optmgmt Subroutine for Transport Layer Interface

Purpose

Manages options for a transport end point.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_optmgmt(fd, req, ret)

int fd;

struct t_optmgmt * req;

struct t_optmgmt * ret;

Description

The t_optmgmt subroutine enables a transport user to retrieve, verify, or negotiate protocol options with

the transport provider.

Parameters

 fd Identifies a bound transport end point.

req Requests a specific action of the provider.

Chapter 3. Streams 345

ret Returns options and flag values to the user.

Both the req and ret parameters point to a t_optmgmt structure containing the following members:

struct netbuf opt;

long flags;

The opt field identifies protocol options, and the flags field specifies the action to take with those options.

The options are represented by a netbuf structure in a manner similar to the address in the t_bind

subroutine. The req parameter is used to send options to the provider. This netbuf structure contains the

following fields:

 Field Description

len Specifies the number of bytes in the options.

buf Points to the options buffer.

maxlen Has no meaning for the req parameter.

The ret parameter is used to return information to the user from the transport provider. On return, this

netbuf structure contains the following fields:

 Field Description

len Specifies the number of bytes of options returned.

buf Points to the buffer where the options are to be placed.

maxlen Specifies the maximum size of the options buffer. The maxlen field has no meaning for the req parameter,

but must be set in the ret parameter to specify the maximum number of bytes the options buffer can

hold. The actual structure and content of the options is imposed by the transport provider.

The flags field of the req parameter can specify one of the following actions:

 Action Description

T_NEGOTIATE Enables the user to negotiate the values of the options specified in the req parameter with the

transport provider. The provider evaluates the requested options and negotiates the values,

returning the negotiated values through the ret parameter.

T_CHECK Enables the user to verify if the options specified in the req parameter are supported by the

transport provider. On return, the flags field of the ret parameter has either T_SUCCESS or

T_FAILURE set to indicate to the user whether the options are supported or not. These flags

are only meaningful for the T_CHECK request.

T_DEFAULT Enables a user to retrieve the default options supported by the transport provider into the opt

field of the ret parameter. In the req parameter, the len field of the opt field must be zero, and

the buf field can be NULL.

If issued as part of the connectionless-mode service, the t_optmgmt subroutine may become blocked due

to flow control constraints. The subroutine does not complete until the transport provider has processed all

previously sent data units.

Return Values

On successful completion, the t_optmgmt subroutine returns a value of 0. Otherwise, it returns a value of

-1, and the t_errno variable is set to indicate the error.

346 Technical Reference: Communications, Volume 2

Error Codes

If unsuccessful, the t_errno variable is set to one of the following:

 Value Description

TACCES User does not have permission to negotiate the specified options.

TBADF Specified file descriptor does not refer to a transport endpoint.

TBADFLAG Unusable flag was specified.

TBADOPT Specified protocol options were in an incorrect format or contained unusable information.

TBUFOVFLW Number of bytes allowed for an incoming parameter is not sufficient to store the value of that

parameter. Information to be returned in the ret parameter will be discarded.

TOUTSTATE Function was issued in the wrong sequence.

TSYSERR A system error has occurred during operation of this subroutine.

Related Information

The t_getinfo subroutine, t_open subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_rcv Subroutine for Transport Layer Interface

Purpose

Receives normal data or expedited data sent over a connection.

Library

Transport Layer Interface Library (libtli.a)

Syntax

int t_rcv(fd, buf, nbytes, flags)

int fd;

char * buf;

unsigned nbytes;

int * flags;

Description

The t_rcv subroutine receives either normal or expedited data. By default, the t_rcv subroutine operates

in synchronous mode and will wait for data to arrive if none is currently available. However, if the

O_NDELAY flag is set (using the t_open subroutine or the fcntl command), the t_rcv subroutine runs in

asynchronous mode and will stop if no data is available.

On return from the call, if the T_MORE flag is set in the flags parameter, this indicates that there is more

data. This means that the current transport service data unit (TSDU) or expedited transport service data

unit (ETSDU) must be received in multiple t_rcv subroutine calls. Each t_rcv subroutine with the T_MORE

flag set indicates that another t_rcv subroutine must follow immediately to get more data for the current

TSDU. The end of the TSDU is identified by the return of a t_rcv subroutine call with the T_MORE flag

not set. If the transport provider does not support the concept of a TSDU as indicated in the info

parameter on return from a t_open or t_getinfo subroutine, the T_MORE flag is not meaningful and

should be ignored.

On return, the data returned is expedited data if the T_EXPEDITED flag is set in the flags parameter. If the

number of bytes of expedited data exceeds the value in the nbytes parameter, the t_rcv subroutine will set

the T_EXPEDITED and T_MORE flags on return from the initial call. Subsequent calls to retrieve the

Chapter 3. Streams 347

remaining ETSDU not have the T_EXPEDITED flag set on return. The end of the ETSDU is identified by

the return of a t_rcv subroutine call with the T_MORE flag not set.

If expedited data arrives after part of a TSDU has been retrieved, receipt of the remainder of the TSDU

will be suspended until the ETSDU has been processed. Only after the full ETSDU has been retrieved (the

T_MORE flag is not set) will the remainder of the TSDU be available to the user.

Parameters

 fd Identifies the local transport end point through which data will arrive.

buf Points to a receive buffer where user data will be placed.

nbytes Specifies the size of the receiving buffer.

flags Specifies optional flags.

Return Values

On successful completion, the t_rcv subroutine returns the number of bytes it received. Otherwise, it

returns a value of -1 and sets the t_errno variable to indicate the error.

Error Codes

If unsuccessful, the t_errno variable may be set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport end point.

TLOOK An asynchronous event has occurred on this transport end point and requires immediate

attention.

TNODATA The O_NDELAY flag was set, but no data is currently available from the transport provider.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE The subroutine was issued in the wrong sequence.

TSYSERR A system error has occurred during operation of this subroutine.

Related Information

The t_getinfo subroutine, t_look subroutine, t_open subroutine, t_snd subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_rcvconnect Subroutine for Transport Layer Interface

Purpose

Receives the confirmation from a connect request.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_rcvconnect(fd, call)

int fd;

struct t_call * call;

348 Technical Reference: Communications, Volume 2

Description

The t_rcvconnect subroutine enables a calling transport user to determine the status of a previously sent

connect request and is used in conjunction with t_connect to establish a connection in asynchronous

mode. The connection will be established on successful completion of this function.

Parameters

 fd Identifies the local transport end point where communication will be established.

call Contains information associated with the newly established connection.

The call parameter points to a t_call structure that contains the following elements:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

The netbuf structure contains the following elements:

addr Returns the protocol address associated with the responding transport end point.

opt Presents protocol-specific information associated with the connection.

udata Points to optional user data that may be returned by the destination transport user during

connection establishment.

sequence

Has no meaning for this function.

The maxlen field of each parameter must be set before issuing this function to indicate the maximum size

of the buffer for each. However, the call parameter may be null, in which case no information is given to

the user on return from the t_rcvconnect subroutine. By default, the t_rcvconnect subroutine runs in

synchronous mode and waits for the connection to be established before returning. On return, the addr,

opt, and udata fields reflect values associated with the connection.

If the O_NDELAY flag is set (using the t_open subroutine or fcntl command), the t_rcvconnect

subroutine runs in asynchronous mode and reduces to a poll for existing connect confirmations. If none

are available, the t_rcvconnect subroutine stops and returns immediately without waiting for the

connection to be established. The t_rcvconnect subroutine must be re-issued at a later time to complete

the connection establishment phase and retrieve the information returned in the call parameter.

Return Values

On successful completion, the t_rcvconnect subroutine returns a value of 0. Otherwise, it returns a value

of -1 and sets the t_errno variable to indicate the error.

Error Codes

If unsuccessful, the t_errno variable may be set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport end point.

TBUFOVFLW The number of bytes allocated for an incoming parameter is not sufficient to store the value of

that parameter and the connect information to be returned in the call parameter will be

discarded. The state of the provider, as seen by the user, will be changed to DATAXFER.

TLOOK An asynchronous event has occurred on this transport connection and requires immediate

attention.

TNODATA The O_NDELAY flag was set, but a connect confirmation has not yet arrived.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE This subroutine was issued in the wrong sequence.

Chapter 3. Streams 349

Value Description

TSYSERR A system error has occurred during operation of this subroutine.

Related Information

The t_accept subroutine, t_alloc subroutine, t_bind subroutine, t_connect subroutine, t_listen

subroutine, t_look subroutine, t_open subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_rcvdis Subroutine for Transport Layer Interface

Purpose

Retrieves information from disconnect.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

t_rcvdis(fd, discon)

int fd;

struct t_discon * discon;

Description

The t_rcvdis subroutine is used to identify the cause of a disconnect, and to retrieve any user data sent

with the disconnect.

Parameters

 fd Identifies the local transport end point where the connection existed.

350 Technical Reference: Communications, Volume 2

discon Points to a t_discon structure that contains the reason for the disconnect and contains any user data

that was sent with the disconnect.

The t_discon structure contains the following members:

struct netbuf udata;

int reason;

int sequence;

These fields are defined as follows:

reason Specifies the reason for the disconnect through a protocol-dependent reason code.

udata Identifies any user data that was sent with the disconnect.

sequence

Identifies an outstanding connect indication with which the disconnect is associated. The

sequence field is only meaningful when the t_rcvdis subroutine is issued by a passive transport

user that has called one or more t_listen subroutines and is processing the resulting connect

indications. If a disconnect indication occurs, the sequence field can be used to identify which of

the outstanding connect indications is associated with the disconnect.

If a user does not care if there is incoming data and does not need to know the value of the reason or

sequence fields, the discon parameter may be null and any user data associated with the disconnect will

be discarded. However, if a user has retrieved more than one outstanding connect indication (using the

t_listen subroutine) and the discon parameter is null, the user will be unable to identify with which

connect indication the disconnect is associated.

Return Values

On successful completion, the t_rcvdis subroutine returns a value of 0. Otherwise, it returns a value of -1

and sets the t_errno variable to indicate the error.

Error Codes

If unsuccessful, the t_errno variable may be set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport end point.

TBUFOVFLW The number of bytes allocated for incoming data is not sufficient to store the data. (The state of

the provider, as seen by the user, will change to T_IDLE, and the disconnect indication

information to be returned in the discon parameter will be discarded.)

TLOOK An asynchronous event has occurred on this transport endpoint and requires immediate

attention.

TNODIS No disconnect indication currently exists on the specified transport end point.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE This subroutine was issued in the wrong sequence.

TSYSERR A system error has occurred during execution of this subroutine.

Related Information

The t_alloc subroutine, t_connect subroutine, t_listen subroutine, t_open subroutine, t_snddis

subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

Chapter 3. Streams 351

t_rcvrel Subroutine for Transport Layer Interface

Purpose

Acknowledges receipt of an orderly release indication.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

t_rcvrel(fd)

int fd;

Description

The t_rcvrel subroutine is used to acknowledge receipt of an orderly release indication. After receipt of

this indication, the user may not attempt to receive more data because such an attempt will block forever.

However, the user may continue to send data over the connection if the t_sndrel subroutine has not been

issued by the user. The subroutine is an optional service of the transport provider, and is only supported if

the transport provider returned service type T_COTS_ORD on the t_open or t_getinfo subroutine.

Parameter

 fd Identifies the local transport end point where the connection exists.

Return Values

On successful completion, the t_rcvrel subroutine returns a value of 0. Otherwise, it returns a value of -1

and sets the t_errno variable to indicate the error.

Error Codes

If unsuccessful, the t_errno variable is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport end point.

TLOOK An asynchronous event has occurred on this transport end point and requires immediate

attention.

TNOREL No orderly release indication currently exists on the specified transport end point.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE This subroutine was issued in the wrong sequence.

TSYSERR A system error has occurred during execution of this function.

Related Information

The t_getinfo subroutine, t_look subroutine, t_open subroutine, t_sndrel subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

352 Technical Reference: Communications, Volume 2

t_rcvudata Subroutine for Transport Layer Interface

Purpose

Receives a data unit.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_rcvudata(fd, unitdata, flags)

int fd;

struct t_unitdata * unitdata;

int * flags;

Description

The t_rcvudata subroutine is used in connectionless mode to receive a data unit from another transport

user.

Parameters

 fd Identifies the local transport end point through which data will be received.

unitdata Holds information associated with the received data unit.

The unitdata parameter points to a t_unitdata structure containing the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

On return from this call:

addr Specifies the protocol address of the sending user.

opt Identifies protocol-specific options that were associated with this data unit.

udata Specifies the user data that was received.

Note: The maxlen field of the addr, opt, and udata fields must be set before issuing this function to

indicate the maximum size of the buffer for each.

flags Indicates that the complete data unit was not received.

By default, the t_rcvudata subroutine operates in synchronous mode and will wait for a data unit to arrive

if none is currently available. However, if the O_NDELAY or O_NONBLOCK flag is set (using the t_open

subroutine or fcntl command), the t_rcvudata subroutine will run in asynchronous mode and will stop if no

data units are available.

If the buffer defined in the udata field of unitdata is not large enough to hold the current data unit, the

buffer will be filled and the T_MORE flag will be set in flags on return to indicate that another t_rcvudata

subroutine should be issued to retrieve the rest of the data unit. Subsequent t_rcvudata subroutine calls

will return 0 for the length of the address and options until the full data unit has been received.

Return Values

On successful completion, the t_rcvudata subroutine returns a value of 0. Otherwise, it returns a value of

-1 and sets the t_errno variable to indicate the error.

Chapter 3. Streams 353

Error Codes

If unsuccessful, the t_errno variable is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport end point.

TBUFOVFLW The number of bytes allocated for the incoming protocol address of options is not sufficient to

store the information. (The unit data information to be returned in the unitdata parameter will be

discarded.)

TLOOK An asynchronous event has occurred on this transport endpoint and requires immediate

attention.

TNODATA The O_DELAY or O_NONBLOCK flag was set, but no data units are currently available from

the transport provider.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE The subroutine was issued in the wrong sequence.

TSYSERR A system error has occurred during operation of this subroutine.

Related Information

The t_alloc subroutine, t_open subroutine, t_rcvuderr subroutine, t_sndudata subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_rcvuderr Subroutine for Transport Layer Interface

Purpose

Receives a unit data error indication.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_rcvuderr(fd, uderr)

int fd;

struct t_uderr * uderr;

Description

The t_rcvuderr subroutine is used in connectionless mode to receive information concerning an error on a

previously sent data unit, and should only be issued following a unit data error indication. It informs the

transport user that a data unit with a specific destination address and protocol options produced an error.

Parameters

 fd Identifies the local transport endpoint through which the error report will be received.

354 Technical Reference: Communications, Volume 2

uderr Points to a t_uderr structure containing the following members:

struct netbuf addr;

struct netbuf opt;

long error;

The maxlen field of the addr and opt fields must be set before issuing this function to indicate the maximum

size of the buffer for each.

On return from this call, the t_uderr structure contains:

addr Specifies the destination protocol address of the erroneous data unit.

opt Identifies protocol-specific options that were associated with the data unit.

error Specifies a protocol-dependent error code.

If the user decides not to identify the data unit that produced an error, the uderr parameter can be set to

null and the t_rcvuderr subroutine will clear the error indication without reporting any information to the

user.

Return Values

On successful completion, the t_rcvuderr subroutine returns a value of 0. Otherwise, it returns a value of

-1 and sets the t_errno variable to indicate the error.

Error Codes

If unsuccessful, the t_errno variable is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport end point.

TNOUDERR No unit data error indication currently exists on the specified transport end point.

TBUFOVFLW The number of bytes allocated for the incoming protocol address or options is not sufficient to

store the information. (The unit data error information to be returned in the uderr parameter will

be discarded.)

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TSYSERR A system error has occurred during execution of this subroutine.

Related Information

The t_look subroutine, t_rcvudata subroutine, t_sndudata subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_snd Subroutine for Transport Layer Interface

Purpose

Sends data or expedited data over a connection.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

Chapter 3. Streams 355

int t_snd(fd, buf, nbytes, flags)

int fd;

char * buf;

unsigned nbytes;

int flags;

Description

The t_snd subroutine is used to send either normal or expedited data.

By default, the t_snd subroutine operates in synchronous mode and may wait if flow-control restrictions

prevent the data from being accepted by the local transport provider at the time the call is made. However,

if the O_NDELAY or O_NONBLOCK flag is set (using the t_open subroutine or the fcntl command), the

t_snd subroutine runs in asynchronous mode and stops immediately if there are flow-control restrictions.

Even when there are no flow-control restrictions, the t_snd subroutine will wait if STREAMS internal

resources are not available, regardless of the state of the O_NDELAY or O_NONBLOCK flag.

On successful completion, the t_snd subroutine returns the number of bytes accepted by the transport

provider. Normally this equals the number of bytes specified in the nbytes parameter. However, if the

O_NDELAY or O_NONBLOCK flag is set, it is possible that only part of the data will be accepted by the

transport provider. In this case, the t_snd subroutine sets the T_MORE flag for the data that was sent and

returns a value less than the value of the nbytes parameter. If the value of the nbytes parameter is 0, no

data is passed to the provider and the t_snd subroutine returns a value of 0.

Parameters

 fd Identifies the local transport end point through which data is sent.

buf Points to the user data.

nbytes Specifies the number of bytes of user data to be sent.

flags Specifies any optional flags.

If the T_EXPEDITED flag is set in the flags parameter, the data is sent as expedited data and is subject

to the interpretations of the transport provider.

If the T_MORE flag is set in the flags parameter, or as described above, an indication is sent to the

transport provider that the transport service data unit (TSDU) or expedited transport service data unit

(ETSDU) is being sent through multiple t_snd subroutine calls. Each t_snd subroutine with the T_MORE

flag set indicates that another t_snd subroutine will follow with more data for the current TSDU. The end

of the TSDU or ETSDU is identified by a t_snd subroutine call with the T_MORE flag not set. Use of the

T_MORE flag enables a user to break up large logical data units without losing the boundaries of those

units at the other end of the connection. The flag implies nothing about how the data is packaged for

transfer below the transport interface. If the transport provider does not support the concept of a TSDU

as indicated in the info parameter on return from the t_open or t_getinfo subroutine, the T_MORE flag is

not meaningful and should be ignored.

The size of each TSDU or ETSDU must not exceed the limits of the transport provider as returned by the

t_open or t_getinfo subroutine. If the size is exceeded, a TSYSERR error with system error EPROTO

occurs. However, the t_snd subroutine may not fail because EPROTO errors may not be reported

immediately. In this case, a subsequent call that accesses the transport endpoint fails with the associated

TSYSERR error.

If the call to the t_snd subroutine is issued from the T_IDLE state, the provider may silently discard the

data. If the call to the t_snd subroutine is issued from any state other than T_DATAXFER, T_INREL, or

T_IDLE, the provider generates a TSYSERR error with system error EPROTO (which can be reported in

the manner described above).

356 Technical Reference: Communications, Volume 2

Return Values

On successful completion, the t_snd subroutine returns the number of bytes accepted by the transport

provider. Otherwise, it returns a value of -1 and sets the t_errno variable to indicate the error.

Error Codes

If unsuccessful, the t_errno variable is set to one of the following:

 Value Description

TBADDATA The amount of user data specified was not within the bounds allowed by the transport provider.

TBADF The specified file descriptor does not refer to a transport end point.

TBADFLAG The value specified in the flags parameter is invalid.

TFLOW The O_NDELAY or O_NONBLOCK flag was set, but the flow-control mechanism prevented the

transport provider from accepting data at this time.

TLOOK An asynchronous event has occurred on the transport end point reference by the fd parameter

and requires immediate attention.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE The subroutine was issued in the wrong sequence.

TSYSERR A system error has been detected during execution of this subroutine.

Related Information

The t_getinfo subroutine, t_getstate subroutine, t_open subroutine, t_rcv subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_snddis Subroutine for Transport Layer Interface

Purpose

Sends a user-initiated disconnect request.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_snddis(fd, call)

int fd;

struct t_call * call;

Description

The t_snddis subroutine is used to initiate an abortive release on an already established connection or to

reject a connect request.

Parameters

 fd Identifies the local transport end point of the connection.

Chapter 3. Streams 357

call Specifies information associated with the abortive release.

The call parameter points to a t_call structure containing the following fields:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

The values in the call parameter have different semantics, depending on the context of the call to the

t_snddis subroutine. When rejecting a connect request, the call parameter must not be null and must

contain a valid value in the sequence field to uniquely identify the rejected connect indication to the transport

provider. The addr and opt fields of the call parameter are ignored. In all other cases, the call parameter

need only be used when data is being sent with the disconnect request. The addr, opt, and sequence fields

of the t_call structure are ignored. If the user does not wish to send data to the remote user, the value of the

call parameter can be null.

The udata field specifies the user data to be sent to the remote user. The amount of user data must not

exceed the limits supported by the transport provider as returned by the t_open or t_getinfo subroutine. If

the len field of the udata field is 0, no data will be sent to the remote user.

Return Values

On successful completion, the t_snddis subroutine returns a value of 0. Otherwise, it returns a value of -1

and sets the t_errno variable to indicate the error.

Error Codes

If unsuccessful, the t_errno variable is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport end point.

TOUTSTATE The function was issued in the wrong sequence. The transport provider’s outgoing queue may

be flushed, so data may be lost.

TBADDATA The amount of user data specified was not within the bounds allowed by the transport provider.

The transport provider’s outgoing queue will be flushed, so data may be lost.

TBADSEQ An incorrect sequence number was specified, or a null call structure was specified when

rejecting a connect request. The transport provider’s outgoing queue will be flushed, so data

may be lost.

TLOOK An asynchronous event has occurred on this transport endpoint and requires immediate

attention.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TSYSERR A system error has occurred during execution of this subroutine.

Related Information

The t_connect subroutine, t_getinfo subroutine, t_listen subroutine, t_look subroutine, t_open

subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_sndrel Subroutine for Transport Layer Interface

Purpose

Initiates an orderly release of a transport connection.

358 Technical Reference: Communications, Volume 2

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_sndrel(fd)

int fd;

Description

The t_sndrel subroutine is used to initiate an orderly release of a transport connection and indicates to the

transport provider that the transport user has no more data to send.

After issuing a t_sndrel subroutine call, the user cannot send any more data over the connection.

However, a user can continue to receive data if an orderly release indication has been received.

The t_sndrel subroutine is an optional service of the transport provider and is only supported if the

transport provider returned service type T_COTS_ORD in the t_open or t_getinfo subroutine.

Parameter

 fd Identifies the local transport endpoint where the connection exists.

Return Values

On successful completion, the t_sndrel subroutine returns a value of 0. Otherwise, it returns a value of -1

and sets the t_errno variable to indicate the error.

Error Codes

If unsuccessful, the t_errno variable is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TFLOW The O_NDELAY or O_NONBLOCK flag was set, but the flow-control mechanism prevented the

transport provider from accepting the function at this time.

TLOOK An asynchronous event has occurred on the transport end point reference by the fd parameter

and requires immediate attention.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE The subroutine was issued in the wrong sequence.

TSYSERR A system error has occurred during execution of this subroutine.

Related Information

The t_getinfo subroutine, t_open subroutine, t_rcvrel subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_sndudata Subroutine for Transport Layer Interface

Purpose

Sends a data unit to another transport user.

Chapter 3. Streams 359

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_sndudata(fd, unitdata)

int fd;

struct t_unitdata * unitdata;

Description

The t_sndudata subroutine is used in connectionless mode to send a data unit to another transport user.

By default, the t_sndudata subroutine operates in synchronous mode and may wait if flow-control

restrictions prevent the data from being accepted by the local transport provider at the time the call is

made. However, if the O_NDELAY or O_NONBLOCK flag is set (using the t_opensubroutine or the fcntl

command), the t_sndudata subroutine runs in asynchronous mode and fails under such conditions.

Parameters

 fd Identifies the local transport endpoint through which data is sent.

unitdata Points to a t_unitdata structure containing the following elements:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

The elements are defined as follows:

addr Specifies the protocol address of the destination user.

opt Identifies protocol-specific options that the user wants associated with this request.

udata Specifies the user data to be sent. The user can choose not to specify what protocol options

are associated with the transfer by setting the len field of the opt field to 0. In this case, the

provider can use default options.

If the len field of the udata field is 0, no data unit is passed to the transport provider; the t_sndudata

subroutine does not send zero-length data units.

If the t_sndudata subroutine is issued from an invalid state, or if the amount of data specified in the

udata field exceeds the TSDU size as returned by the t_open or t_getinfo subroutine, the provider

generates an EPROTO protocol error.

Return Values

On successful completion, the t_sndudata subroutine returns a value of 0. Otherwise, it returns a value of

-1 and sets the t_errno variable to indicate the error.

Error Codes

If unsuccessful, the t_errno variable is set to one of the following:

 Value Description

TBADDATA The amount of user data specified was not within the bounds allowed by the transport provider.

TBADF The specified file descriptor does not refer to a transport endpoint.

TFLOW The O_NDELAY or O_NONBLOCK flag was set, but the flow-control mechanism prevented the

transport provider from accepting data at this time.

360 Technical Reference: Communications, Volume 2

Value Description

TLOOK An asynchronous event has occurred on this transport end point and requires immediate

attention.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE This subroutine was issued in the wrong sequence.

TSYSERR A system error has occurred during execution of this subroutine.

Related Information

The t_alloc subroutine, t_open subroutine, t_rcvudata subroutine, t_rcvuderr subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_sync Subroutine for Transport Layer Interface

Purpose

Synchronizes transport library.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_sync(fd)

int fd;

Description

The t_sync subroutine synchronizes the data structures managed by the transport library with information

from the underlying transport provider. In doing so, this subroutine can convert a raw file descriptor

(obtained using the open or dup subroutine, or as a result of a fork operation and an exec operation) to

an initialized transport endpoint, assuming that the file descriptor referenced a transport provider. This

subroutine also allows two cooperating processes to synchronize their interaction with a transport provider.

For example, a process creates a new process with the fork subroutine and issues an exec subroutine

call. The new process must issue a t_sync subroutine call to build the private library data structure

associated with a transport endpoint and to synchronize the data structure with the relevant provider

information.

Note: The transport provider treats all users of a transport endpoint as a single user. If multiple processes

are using the same endpoint, they should coordinate their activities so as not to violate the state of

the provider. The t_sync subroutine returns the current state of the provider to the user, thereby

enabling the user to verify the state before taking further action. This coordination is only valid

among cooperating processes; a process or an incoming event may change the provider’s state

after a t_sync subroutine call is issued.

If the provider is undergoing a state transition when the t_sync subroutine is called, the subroutine will be

unsuccessful.

Chapter 3. Streams 361

Parameters

 fd Specifies the transport end point.

Return Values

On successful completion, the t_sync subroutine returns the state of the transport provider. Otherwise, it

returns a value of -1 and sets the t_errno variable to indicate the error. The state returned can be one of

the following:

 Value Description

T_UNBIND Unbound

T_IDLE Idle

T_OUTCON Outgoing connection pending

T_INCON Incoming connection pending

T_DATAXFER Data transfer

T_OUTREL Outgoing orderly release (waiting for an orderly release indication)

T_INREL Incoming orderly release (waiting for an orderly release request)

Error Codes

If unsuccessful, the t_errno variable is set to one of the following:

 Value Description

TBADF The specified file descriptor is a valid open file descriptor, but does not refer to a transport

endpoint.

TSTATECHNG The transport provider is undergoing a state change.

TSYSERR A system error has occurred during execution of this function.

Related Information

The dup subroutine, exec subroutine, fork subroutine, open subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

t_unbind Subroutine for Transport Layer Interface

Purpose

Disables a transport endpoint.

Library

Transport Layer Interface Library (libtli.a)

Syntax

#include <tiuser.h>

int t_unbind(fd)

int fd;

362 Technical Reference: Communications, Volume 2

Description

The t_unbind subroutine disables a transport endpoint, which was previously bound by the t_bind

subroutine. On completion of this call, no further data or events destined for this transport endpoint are

accepted by the transport provider.

Parameter

 fd Specifies the transport endpoint.

Return Values

On successful completion, the t_unbind subroutine returns a value of 0. Otherwise, it returns a value of -1

and sets the t_errno variable to indicate the error.

Error Codes

If unsuccessful, the t_errno variable is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TOUTSTATE The function was issued in the wrong sequence.

TLOOK An asynchronous event has occurred on this transport endpoint.

TSYSERR A system error has occurred during execution of this function.

Related Information

The t_bind subroutine.

List of Streams Programming References and STREAMS Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

testb Utility

Purpose

Checks for an available buffer.

Syntax

int

testb(size, pri)

register size;

uint pri;

Description

The testb utility checks for the availability of a message buffer of the size specified in the size parameter

without actually retrieving the buffer. A successful return value from the testb utility does not guarantee

that a subsequent call to the allocb utility will succeed; for example, when an interrupt routine takes the

buffers.

This utility is part of STREAMS Kernel Extensions.

Parameters

 size Specifies the buffer size.

Chapter 3. Streams 363

pri Specifies the relative importance of the allocated blocks to the module. The possible values are:

v BPRI_LO

v BPRI_MED

v BPRI_HI

The pri parameter is currently unused and is maintained only for compatibility with applications developed

prior to UNIX System V Release 4.0.

Return Values

If the buffer is available, the testb utility returns a value of 1. Otherwise, it returns a value of 0.

Related Information

The allocb utility.

List of Streams Programming References and Understanding STREAMS Flow Control in AIX 5L Version

5.3 Communications Programming Concepts.

timeout Utility

Purpose

Schedules a function to be called after a specified interval.

Syntax

int

timeout(func, arg, ticks)

int (* func)();

caddr_t arg;

long ticks;

Description

The timeout utility schedules the function pointed to by the func parameter to be called with the arg

parameter after the number of timer ticks specified by the ticks parameter. Multiple pending calls to the

timeout utility with the same func and arg parameters are allowed. The function called by the timeout

utility must adhere to the same restrictions as a driver interrupt handler. It must not sleep.

On multiprocessor systems, the function called by the timeout utility should be interrupt-safe. Otherwise,

the STR_QSAFETY flag must be set when installing the module or driver with the str_install utility.

This utility is part of STREAMS Kernel Extension.

Note: This utility must not be confused with the kernel service of the same name in the libsys.a library.

STREAMS modules and drivers inherently use this version, not the libsys.a library version. No

special action is required to use this version in the STREAMS environment.

Parameters

 func Indicates the function to be called. The function is declared as follows:

void (*func)(arg)

void *arg;

arg Indicates the parameter to supply to the function specified by the func parameter.

364 Technical Reference: Communications, Volume 2

ticks Specifies the number of timer ticks that must occur before the function specified by the func parameter is

called. Many timer ticks can occur every second.

Return Values

The timeout utility returns an integer that identifies the request. This value may be used to withdraw the

time-out request by using the untimeout utility. If the timeout table is full, the timeout utility returns a

value of 0 and the request is not registered.

Execution Environment

The timeout utility may be called from either the process or interrupt environment.

Related Information

The untimeout utility.

List of Streams Programming References in AIX 5L Version 5.3 Communications Programming Concepts.

Understanding STREAMS Drivers and Modules in AIX 5L Version 5.3 Communications Programming

Concepts.

Understanding STREAMS Synchronization in AIX 5L Version 5.3 Communications Programming Concepts

.

timod Module

Purpose

Converts a set of streamio operations into STREAMS messages.

Description

The timod module is a STREAMS module for use with the Transport Interface (TI) functions of the

Network Services Library. The timod module converts a set of streamio operations into STREAMS

messages that may be consumed by a transport protocol provider that supports the Transport Interface.

This allows a user to initiate certain TI functions as atomic operations.

The timod module must only be pushed (see ″Pushable Modules″ in AIX 5L Version 5.3 Communications

Programming Concepts) onto a stream terminated by a transport protocol provider that supports the TI.

All STREAMS messages, with the exception of the message types generated from the streamio

operations described below as values for the cmd field, will be transparently passed to the neighboring

STREAMS module or driver. The messages generated from the following streamio operations are

recognized and processed by the timod module.

This module is part of STREAMS Kernel Extensions.

Chapter 3. Streams 365

Fields

The fields are described as follows:

 Field Description

cmd Specifies the command to be carried out. The possible values for this field are:

TI_BIND

Binds an address to the underlying transport protocol provider. The message issued to the TI_BIND

operation is equivalent to the TI message type T_BIND_REQ, and the message returned by the

successful completion of the operation is equivalent to the TI message type T_BIND_ACK.

TI_UNBIND

Unbinds an address from the underlying transport protocol provider. The message issued to the

TI_UNBIND operation is equivalent to the TI message type T_UNBIND_REQ, and the message

returned by the successful completion of the operation is equivalent to the TI message type

T_OK_ACK.

TI_GETINFO

Gets the TI protocol-specific information from the transport protocol provider. The message issued to

the TI_GETINFO operation is equivalent to the TI message type T_INFO_REQ, and the message

returned by the successful completion of the operation is equivalent to the TI message type

T_INFO_ACK.

TI_OPTMGMT

Gets, sets, or negotiates protocol-specific options with the transport protocol provider. The message

issued to the TI_OPTMGMT ioctl operation is equivalent to the TI message type T_OPTMGMT_REQ,

and the message returned by the successful completion of the ioctl operation is equivalent to the TI

message type T_OPTMGMT_ACK.

len (On issuance) Specifies the size of the appropriate TI message to be sent to the transport provider.

(On return) Specifies the size of the appropriate TI message from the transport provider in response to the

issued TI message.

dp Specifies a pointer to a buffer large enough to hold the contents of the appropriate TI messages. The TI

message types are defined in the sys/tihdr.h file.

Examples

The following is an example of how to use the timod module:

#include <sys/stropts.h>

 -

 -

struct strioctl strioctl;

strucu t_info info;

 -

 -

strioctl.ic_cmd = TI_GETINFO;

strioctl.ic_timeout = INFTIM;

strioctl.ic_len = sizeof (info);

strioctl.ic_dp = (char *)&info;

ioctl(fildes, I_STR, &strioctl);

Related Information

The tirdwr module.

The streamio operations.

Benefits and Features of STREAMS, Building STREAMS, Pushable Modules, Understanding STREAMS

Drivers and Modules, Understanding STREAMS Messages, Using STREAMS in AIX 5L Version 5.3

Communications Programming Concepts.

366 Technical Reference: Communications, Volume 2

tirdwr Module

Purpose

Supports the Transport Interface functions of the Network Services library.

Description

The tirdwr module is a STREAMS module that provides an alternate interface to a transport provider that

supports the Transport Interface (TI) functions of the Network Services library. This alternate interface

allows a user to communicate with the transport protocol provider by using the read and write

subroutines. The putmsg and getmsg system calls can also be used. However, the putmsg and getmsg

system calls can only transfer data messages between user and stream.

The tirdwr module must only be pushed (see the I_PUSH operation) onto a stream terminated by a

transport protocol provider that supports the TI. After the tirdwr module has been pushed onto a stream,

none of the TI functions can be used. Subsequent calls to TI functions will cause an error on the stream.

Once the error is detected, subsequent system calls on the stream will return an error with the errno

global variable set to EPROTO.

The following list describes actions taken by the tirdwr module when it is pushed or popped or when data

passes through it:

 Action Description

push Checks any existing data to ensure that only regular data messages are present. It ignores any messages

on the stream that relate to process management. If any other messages are present, the I_PUSH

operation returns an error and sets the errno global variable to EPROTO.

write Takes the following actions on data that originated from a write subroutine:

Messages with no control portions

Passes the message on downstream.

Zero length data messages

Frees the message and does not pass downstream.

Messages with control portions

Generates an error, fails any further system calls, and sets the errno global variable to EPROTO.

read Takes the following actions on data that originated from the transport protocol provider:

Messages with no control portions

Passes the message on upstream.

Zero length data messages

Frees the message and does not pass upstream.

Messages with control portions will produce the following actions:

v Messages that represent expedited data generate an error. All further calls associated with the stream

fail with the errno global variable set to EPROTO.

v Any data messages with control portions have the control portions removed from the message prior to

passing the message to the upstream neighbor.

v Messages that represent an orderly release indication from the transport provider generate a zero length

data message, indicating the end of file, which is sent to the reader of the stream. The orderly release

message itself is freed by the module.

v Messages that represent an abortive disconnect indication from the transport provider cause all further

write and putmsg calls to fail with the errno global variable set to ENXIO. All further read and getmsg

calls return zero length data (indicating end of file) once all previous data has been read.

v With the exception of the above rules, all other messages with control portions generate an error, and all

further system calls associated with the stream fail with the errno global variable set to EPROTO.

Chapter 3. Streams 367

Action Description

pop Sends an orderly release request to the remote side of the transport connection if an orderly release

indication has been previously received.

Related Information

The timod module.

The streamio operations.

The read subroutine, write subroutine.

The getmsg system call, putmsg system call.

Benefits and Features of STREAMS, Building STREAMS, Pushable Modules, STREAMS Overview,

Understanding STREAMS Drivers and Modules, Understanding STREAMS Messages, Using STREAMS in

AIX 5L Version 5.3 Communications Programming Concepts.

unbufcall Utility

Purpose

Cancels a bufcall request.

Syntax

void unbufcall(id)

register int id;

Description

The unbufcall utility cancels a bufcall request.

This utility is part of STREAMS Kernel Extensions.

Parameters

 id Identifies an event in the bufcall request.

Related Information

The bufcall utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

unlinkb Utility

Purpose

Removes a message block from the head of a message.

368 Technical Reference: Communications, Volume 2

Syntax

mblk_t *

unlinkb(bp)

register mblk_t * bp;

Description

The unlinkb utility removes the first message block pointed to by the bp parameter and returns a pointer

to the head of the resulting message. The unlinkb utility returns a null pointer if there are no more

message blocks in the message.

This utility is part of STREAMS Kernel Extensions.

Parameters

 bp Specifies which message block to unlink.

Related Information

The linkb utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

untimeout Utility

Purpose

Cancels a pending timeout request.

Syntax

int

untimeout(id)

int id;

Description

The untimeout utility cancels the specific request made with the timeout utility.

This utility is part of STREAMS Kernel Extensions.

Note: This utility must not be confused with the kernel service of the same name in the libsys.a library.

STREAMS modules and drivers inherently use this version, not the libsys.a library version. No

special action is required to use this version in the STREAMS environment.

Parameters

 id Specifies the identifier returned from the corresponding timeout request.

Execution Environment

The untimeout utility can be called from either the process or interrupt environment.

Chapter 3. Streams 369

Related Information

The timeout utility.

List of Streams Programming References and Understanding STREAMS Drivers and Modules in AIX 5L

Version 5.3 Communications Programming Concepts.

unweldq Utility

Purpose

Removes a previously established weld connection between STREAMS queues.

Syntax

#include <sys/stream.h>

int unweldq (q1, q2, q3, q4, func, arg, protect_q)

queue_t *q1;

queue_t *q2;

queue_t *q3;

queue_t *q4;

weld_fcn_t func;

weld_arg_t arg;

queue_t *protect_q;

Description

The unweldq utility removes a weld connection previously established with the weld utility between two

STREAMS queues (q1 and q2). The unweldq utility can be used to unweld two pairs of queues in one call

(q1 and q2, q3 and q4).

The unwelding operation is performed by changing the first queue’s q_next pointer so that it does not

point to any queue. The unweldq utility does not actually perform the operation. Instead, it creates an

unwelding request which STREAMS performs asynchronously. STREAMS acquires the appropriate

synchronization queues before performing the operation.

Callers that need to know when the unwelding operation has actually taken place should specify a callback

function (func parameter) when calling the unweldq utility. If the caller also specifies a synchronization

queue (protect_q parameter) , STREAMS acquires the synchronization associated with that queue when

calling func. If the callback function is not a protected STREAMS utility, such as the qenable utility, the

caller should always specify a protect_q parameter. The caller can also use this parameter to synchronize

callbacks with protected STREAMS utilities.

Note: The stream.h header file must be the last included header file of each source file using the stream

library.

Parameters

 q1 Specifies the queue whose q_next pointer must be nulled.

q2 Specifies the queue that will be unwelded to q1.

q3 Specifies the second queue whose q_next pointer must be nulled. If the unweldq utility is used to

unweld only one pair of queues, this parameter should be set to NULL.

q4 Specifies the queue that will be unwelded to q3.

func Specifies an optional callback function that will execute when the unwelding operation has

completed.

arg Specifies the parameter for func.

370 Technical Reference: Communications, Volume 2

protect_q Specifies an optional synchronization queue that protects func.

Return Values

Upon successful completion, 0 (zero) is returned. Otherwise, an error code is returned.

Error Codes

The unweldq utility fails if the following is true:

 Value Description

EAGAIN The weld record could not be allocated. The caller may try again.

EINVAL One or more parameters are not valid.

ENXIO The weld mechanism is not installed.

Related Information

List of Streams Programming References in AIX 5L Version 5.3 Communications Programming Concepts.

STREAMS Overview in AIX 5L Version 5.3 Communications Programming Concepts.

Welding Mechanism in AIX 5L Version 5.3 Communications Programming Concepts.

The weldq utility.

wantio Utility

Purpose

Register direct I/O entry points with the stream head.

Syntax

#include <sys/stream.h>

int wantio(queue_t *q, struct wantio *w)

Parameters

 q Pointer to the queue structure.

w Pointer to the wantio structure.

Description

The wantio STREAMS routine can be used by a STREAMS module or driver to register input/output

(read/write/select) entry points with the stream head. The stream head then calls these entry points

directly, by-passing all normal STREAMS processing, when an I/O request is detected. This service may

be useful to increase STREAMS performance in cases where normal module processing is not required or

where STREAMS processing is to be performed outside of this operating system.

STREAMS modules and drivers should precede a wantio call by sending a high priority M_LETSPLAY

message upstream. The M_LETSPLAY message format is a message block containing an integer followed

by a pointer to the write queue of the module or driver originating the M_LETSPLAY message. The integer

counts the number of modules that can permit direct I/O. Each module passes this message to its

neighbor after incrementing the count if direct I/O is possible. When this message reaches the stream

head, the stream head compares the count field with the number of modules and drivers in the stream. If

the count is not equal to the number of modules, then a M_DONTPLAY message is sent downstream

Chapter 3. Streams 371

indicating direct I/O will not be permitted on the stream. If the count is equal, then queued messages are

cleared by sending them downstream as M_BACKWASH messages. When all messages are cleared, then

an M_BACKDONE message is sent downstream. This process starts at the stream head and is repeated

in every module in the stream. Modules will wait to receive an M_BACKDONE message from upstream.

Upon receipt of this message, the module will send all queued data downstream as M_BACKWASH

messages. When all data is cleared, the module will send an M_BACKDONE message to its downstream

neighbor indicating that all data has been cleared from the stream to this point. wantio registration is

cleared from a stream by issuing a wantio call with a NULL pointer to the wantio structure.

Multiprocessor serialization is the responsibility of the driver or module requesting direct I/O. The stream

head acquires no STREAMS locks before calling the wantio entry point.

Currently, the write entry point of the wantio structure is ignored.

Return Values

Returns 0 always.

Related Information

The wantmsg utility.

The queue and wantio structures in /usr/include/sys/stream.h.

wantmsg Utility

Purpose

Allows a STREAMS message to bypass a STREAMS module if the module is not interested in the

message.

Syntax

int wantmsg(q, f)

queue_t * q;

int (*f)();

Description

The wantmsg utility allows a STREAMS message to bypass a STREAMS module if the module is not

interested in the message, resulting in performance improvements.

The module registers filter functions with the read and write queues of the module with the wantmsg

utility. A filter function takes as input a message pointer and returns 1 if the respective queue is interested

in receiving the message. Otherwise it returns 0. The putnext and qreply subroutines call a queue’s filter

function before putting a message on that queue. If the filter function returns 1, then putnext or qreply put

the message on that queue. Otherwise, putnext or qreply bypass the module by putting the message on

the next module’s queue.

The filter functions must be defined so that a message bypasses a module only when the module does not

need to see the message.

The wantmsg utility cannot be used if the module has a service routine associated with the queue

specified by the q parameter. If wantmsg is called for a module that has a service routine associated with

q, wantmsg returns a value of 0 without registering the filter function with q.

This utility is part of STREAMS Kernel Extensions.

372 Technical Reference: Communications, Volume 2

Parameters

 q Specifies the read or write queue to which the filter function is to be registered.

f Specifies the module’s filter function that is called at the putnext or qreply time.

Return Values

Upon successful completion, the wantmsg utility returns a 1, indicating that the filter function specified by

the f parameter has been registered for the queue specified by the q parameter. In this case, the filter

function is called from putnext or qreply. The wantmsg utility returns a value of 0 if the module has a

service routine associated with the queue q, indicating that the filter function is not registered with q.

Example

wantmsg(q, tioc_is_r_interesting);

 wantmsg(WR(q), tioc_is_w_interesting);

/*

 * read queue filter function.

 * queue is only interested in IOCNAK, IOCACK, and

 * CTL messages.

 */

static int

tioc_is_r_interesting(mblk_t *mp)

{

 if (mp->b_datap->db_type == M_DATA)

 /* fast path for data messages */

 return 0;

 else if (mp->b_datap->db_type == M_IOCNAK ||

 mp->b_datap->db_type == M_IOCACK ||

 mp->b_datap->db_type == M_CTL)

 return 1;

 else

 return 0;

}

/*

 * write queue filter function.

 * queue is only interested in IOCTL and IOCDATA

 * messages.

 */

static int

tioc_is_w_interesting(mblk_t *mp)

{

 if (mp->b_datap->db_type == M_DATA)

 /* fast path for data messages */

 return 0;

 else if (mp->b_datap->db_type == M_IOCTL ||

 mp->b_datap->db_type == M_IOCDATA)

 return 1;

 else

 return 0;

}

Related Information

The putnext utility, the qreply utility.

List of Streams Programming References, STREAMS Messages in AIX 5L Version 5.3 Communications

Programming Concepts.

Chapter 3. Streams 373

weldq Utility

Purpose

Establishes an uni-directional connection between STREAMS queues.

Syntax

#include <sys/stream.h>

int weldq (q1, q2, q3, q4, func, arg, protect_q)

queue_t *q1;

queue_t *q2;

queue_t *q3;

queue_t *q4;

weld_fcn_t func;

weld_arg_t arg;

queue_t *protect_q;

Description

The weldq utility establishes an uni-directionnal connection (weld connection) between two STREAMS

queues (q1 and q2). The weldq utility can be used to weld two pairs of queues in one call (q1 and q2, q3

and q4).

The welding operation is performed by changing the first queue’s q_next pointer to point to the second

queue. The weldq utility does not actually perform the operation. Instead, it creates a welding request

which STREAMS performs asynchronously. STREAMS acquires the appropriate synchronization queues

before performing the operation.

Callers that need to know when the welding operation has actually taken place should specify a callback

function (func parameter) when calling the weldq utility. If the caller also specifies a synchronization queue

(protect_q parameter), STREAMS acquires the synchronization associated with that queue when calling

func. If the callback function is not a protected STREAMS utility, such as the qenable utility, the caller

should always specify a protect_q parameter. The caller can also use this parameter to synchronize

callbacks with protected STREAMS utilities.

This utility is part of STREAMS Kernel Extensions.

Note: The stream.h header file must be the last included header file of each source file using the stream

library.

Parameters

 q1 Specifies the queue whose q_next pointer must be modified.

q2 Specifies the queue that will be welded to q1.

q3 Specifies the second queue whose q_next pointer must be modified. If the weldq utility is used to

weld only one pair of queues, this parameter should be set to NULL.

q4 Specifies the queue that will be welded to q3.

func Specifies an optional callback function that will execute when the welding operation has completed.

arg Specifies the parameter for func.

protect_q Specifies an optional synchronization queue that protects func.

Return Values

Upon successful completion, 0 (zero) is returned. Otherwise, an error code is returned.

374 Technical Reference: Communications, Volume 2

Error Codes

The weldq utility fails if the following is true:

 Value Description

EAGAIN The weld record could not be allocated. The caller may try again.

EINVAL One or more parameters are not valid.

ENXIO The weld mechanism is not installed.

Related Information

List of Streams Programming References in AIX 5L Version 5.3 Communications Programming Concepts.

STREAMS Overview in AIX 5L Version 5.3 Communications Programming Concepts.

Welding Mechanism in AIX 5L Version 5.3 Communications Programming Concepts.

The unweldq utility.

WR Utility

Purpose

Retrieves a pointer to the write queue.

Syntax

#define WR(q) ((q)+1)

Description

The WR utility accepts a read queue pointer, the q parameter, as an argument and returns a pointer to the

write queue for the same module.

This utility is part of STREAMS Kernel Extensions.

Parameters

 q Specifies the read queue.

Related Information

The OTHERQ utility, RD utility.

List of Streams Programming References and Understanding STREAMS Messages in AIX 5L Version 5.3

Communications Programming Concepts.

xtiso STREAMS Driver

Purpose

Provides access to sockets-based protocols to STREAMS applications.

Chapter 3. Streams 375

Description

The xtiso driver (X/Open Transport Interface (XTI) over Sockets) is a STREAMS-based pseudo-driver that

provides a Transport Layer Interface (TLI) to the socket-based protocols. The only supported use of the

xtiso driver is by the TLI and XTI libraries.

The TLI and XTI specifications do not describe the name of the transport provider and how to address

local and remote hosts, two important items required for use.

The xtiso driver supports most of the protocols available through the socket interface. Each protocol has a

/dev entry, which must be used as the name parameter in the t_open subroutine. The currently supported

names (as configured by the strload subroutine) are:

 Name Socket Equivalent

/dev/xti/unixdg AF_UNIX, SOCK_DGRAM

/dev/xti/unixst AF_UNIX, SOCK_STREAM

/dev/xti/udp AF_INET, SOCK_DGRAM

/dev/xti/tcp AF_INET, SOCK_STREAM

Each of these protocols has a sockaddr structure that is used to specify addresses. These structures are

also used by the TLI and XTI functions that require host addresses. The netbuf structure associated with

the address for a particular function should refer to one of the sockaddr structure types. For instance, the

TCP socket protocol uses a sockaddr_in structure; so a corresponding netbuf structure would be:

struct netbuf addr;

struct sockaddr_in sin;

/* initialize sockaddr here */

sin.sin_family = AF_INET;

sin.sin_port = 0;

sin.sin_addr.s_addr = inet_addr("127.0.0.1");

addr.maxlen = sizeof(sin);

addr.len = sizeof(sin);

addr.buf = (char *)&sin;

The XTI Stream always consists of a Stream head and the transport interface module, timod. Depending

on the transport provider specified by the application, timod accesses either the STREAMS-based

protocol stack natively or a socket-based protocol through the pseudo-driver, xtiso.

The XTI library, libxti.a assumes a STREAMS-based transport provider. The routines of this library

perform various operations for sending transport Provider Interface, TPI, messages down the XTI streams

to the transport provider and receives them back.

The transport interface module, timod, is a STREAMS module that completes the translation of the TPI

messages in the downstream and upstream directions.

The xtiso driver is a pseudo-driver that acts as the transport provider for socket-based communications. It

interprets back and forth between the the TPI messages it receives from upstream and the socket

interface.

AIX also provides the transport interface read/write module, tirdwr, which applications can push on to the

XTI/TLI Stream for accessing the socket layer with standard UNIX read and write calls.

This driver is part of STREAMS Kernel Extensions.

Files

 /dev/xti/* Contains names of supported protocols.

376 Technical Reference: Communications, Volume 2

Related Information

The strload command.

The t_bind subroutine for Transport Layer Interface, t_connect subroutine for Transport Layer Interface,

t_open subroutine for Transport Layer Interface.

The t_bind subroutine for X/Open Transport Layer Interface, t_connect subroutine for X/Open Transport

Layer Interface, t_open subroutine for X/Open Transport Layer Interface.

Internet Transport-Level Protocols in AIX 5L Version 5.3 System Management Guide: Communications and

Networks.

UNIX System V Release 4 Programmer’s Guide: Networking Interfaces.

Understanding STREAMS Drivers and Modules in AIX 5L Version 5.3 Communications Programming

Concepts.

t_accept Subroutine for X/Open Transport Interface

Purpose

Accept a connect request.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_accept (fd, resfd, call)

int fd;

int resfd;

const struct t_call *call;

Description

The t_accept subroutine is issued by a transport user to accept a command request. A transport user may

accept a connection on either the same local transport endpoint or on an endpoint different than the one

on which the connect indication arrived.

Before the connection can be accepted on the same endpoint, the user must have responded to any

previous connect indications received on that transport endpoint via the t_accept subroutine or the

t_snddis subroutine. Otherwise, the t_accept subroutine will fail and set t_errno to TINDOUT.

If a different transport endpoint is specified, the user may or may not choose to bind the endpoint before

the t_accept subroutine is issued. If the endpoint is not bound prior to the t_accept subroutine, the

transport provider will automatically bind the endpoint to the same protocol address specified in the fd

parameter. If the transport user chooses to bind the endpoint, it must be bound to a protocol address with

a qlen field of zero (see the t_bind subroutine) and must be in the T_IDLE state before the t_accept

subroutine is issued.

The call to the t_accept subroutine fails with t_errno set to TLOOK if there are indications (for example,

connect or disconnect) waiting to be received on the endpoint specified by the fd parameter.

The value specfied in the udata field enables the called transport user to send user data to the caller. The

amount of user data sent must not exceed the limits supported by the transport provider. This limit is

Chapter 3. Streams 377

specified in the connect field of the t_info structure of the t_open or t_getinfo subroutines. If the len field

of udata is zero, no data is sent to the caller. All the maxlen fields are meaningless.

When the user does not indicate any option, it is assumed that the connection is to be accepted

unconditionally. The transport provider may choose options other than the defaults to ensure that the

connection is accepted successfully.

There may be transport provider-specific restrictions on address binding. See Appendix A, ISO Transport

Protocol Information and Appendix B, Internet Protocol-specific Information.

Some transport providers do not differentiate between a connect indication and the connection itself. If the

connection has already been established after a successful return of the t_listen subroutine, the t_accept

subroutine will assign the existing connection to the transport endpoint specified by resfd (see Appendix B,

Internet Protocol-specific Information).

Parameters

 fd Identifies the local transport endpoint where the connect indication arrived.

resfd Specifies the local transport endpoint where the connection is to be established.

call Contains information required by the transport provider to complete the connection. The call parameter

points to a t_call structure which contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

The fields within the structure have the following meanings:

addr Specifies the protocol address of the calling transport user. The address of the caller may be null

(length zero). When this field is not null, the field may be optionally checked by the X/Open

Transport Interface.

opt Indicates any options associated with the connection.

udata Points to any user data to be returned to the caller.

sequence

Specifies the value returned by the t_listen subroutine which uniquely associates the response

with a previously received connect indication.

Valid States

fd: T_INCON

resfd (Fd != resfd): T_IDLE

Return Values

 0 Successful completion.

-1 Unsuccessful completion, t_errno is set to indicate an error.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TACCES The user does not have permission to accept a connection on the responding transport

endpoint or to use the specified options.

TBADADDR The specified protocol address was in an incorrect format or contained illegal information.

378 Technical Reference: Communications, Volume 2

Value Description

TBADDATA The amount of user data specified was not within the bounds allowed by the transport

provider.

TBADF The file descriptor fd or resfd does not refer to a transport endpoint.

TBADOPT The specified options were in an incorrect format or contained illegal information.

TBADSEQ An invalid sequence number was specified.

TINDOUT The subroutine was called with the same endpoint, but there are outstanding connection

indications on the endpoint. Those other connection indications must be handled either by

rejecting them via the t_snddis subroutine or accepting them on a different endpoint via

the t_accept subroutine.

TLOOK An asynchronous event has occurred on the transport endpoint referenced by fd and

requires immediate attention.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE The subroutine was called in the wrong sequence on the transport endpoint referenced by

fd, or the transport endpoint referred to by resfd is not in the appropriate state.

TPROTO This error indicates that a communication problem has been detected between X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open

Transport Interface(t_errno).

TPROVMISMATCH The file descriptors fd and resfd do not refer to the same transport provider.

TRESADDR This transport provider requires both fd and resfd to be bound to the same address. This

error results if they are not.

TRESQLEN The endpoint referenced by resfd (where resfd is a different transport endpoint) was bound

to a protocol address with a qlen field value that is greater than zero.

TSYSERR A system error has occurred during execution of this subroutine.

Related Information

The t_connect subroutine, t_getstate subroutine, t_open subroutine, t_optmgmt subroutine,

t_rcvconnect subroutine.

t_alloc Subroutine for X/Open Transport Interface

Purpose

Allocate a library structure.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

void *t_alloc (

int fd

int struct_type,

int fields)

Description

The t_alloc subroutine dynamically allocates memory for the various transport function parameter

structures. This subroutine allocates memory for the specified structure, and also allocates memory for

buffers referenced by the structure.

Use of the t_alloc subroutine to allocate structures helps ensure the compatibility of user programs with

future releases of the transport interface functions.

Chapter 3. Streams 379

Parameters

 fd Specifies the transport endpoint through which the newly allocated structure will be passed.

struc_type Specifies the structure to be allocated. The possible values are:

T_BIND

struct t_bind

T_CALL

struct t_call

T_OPTMGMT

struct t_optmgmt

T_DIS struct t_discon

T_UNITDATA

struct t_unitdata

T_UDERROR

struct t_uderr

T_INFO

struct t_info

Each of these structures may subsequently be used as a parameter to one or more transport

functions. Each of the above structures, except T_INFO, contains at least one field of the struct

netbuf type. For each field of this type, the user may specify that the buffer for that field should

be allocated as well. The length of the buffer allocated will be equal to or greater than the

appropriate size as returned in the info paramenter of the t_open or t_getinfo subroutines.

fields Specfies whether the buffer should be allocated for each field type. The fields parameter specifies

which buffers to allocate, where the parameter is the bitwise-OR of any of the following:

T_ADDR

The addr field of the t_bind, t_call, t_unitdata or t_underr structures.

T_OPT The opt field of the t_optmgmt, t_call, t_unitdata or t_underr structures.

T_UDATA

The udata field of the t_call, t_discon or t_unitdata structures.

T_ALL All relevant fields of the given structure. Fields which are not supported by the transport

provider specified by the fd parameter are not allocated.

For each relevant field specified in the fields parameter, the t_alloc subroutine allocates memory

for the buffer associated with the field and initializes the len field to zero and initializes the buf

pointer and maxlen field accordingly. Irrelevant or unknown values passed in fields are ignored.

The length of the buffer allocated is based on the same size information returned to the user on a

call to the t_open and t_getinfo subroutines. Thus, the fd paramenter must refer to the transport

endpoint through which the newly allocated structure is passed so that the appropriate size

information is accessed. If the size value associated with any specified field is -1 or -2, (see the

t_open or t_getinfo subroutines), the t_alloc subroutine is unable to determine the size of the

buffer to allocate and fails, setting t_errno to TSYSERR and errno to EINVAL. For any field not

specified in fields, buf will be set to the null pointer and len and maxlen will be set to zero.

Valid States

ALL - apart from T_UNINIT.

Return Values

On successful completion, the t_alloc subroutinereturns a pointer to the newly allocated structure. On

failure, a null pointer is returned.

380 Technical Reference: Communications, Volume 2

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TSYSERR A system error has occurred during execution of this function.

TNOSTRUCTYPE Unsupported structure type (struct_type) requested. This can include a request for a structure

type which is inconsistent with the transport provider type specified, for example,

connection-oriented or connectionless.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open

Transport Interface (t_errno).

Related Information

The t_free subroutine, t_getinfo subroutine, t_open subroutine.

t_bind Subroutine for X/Open Transport Interface

Purpose

Bind an address to a transport endpoint.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_bind (fd, req, ret)

 int fd;

 const struct t_bind *req;

 struct t_bind *ret;

Description

The t_bind subroutine associates a protocol address with the transport endpoint specified by the fd

parameter and activates that transport endpoint. In connection mode, the transport provider may begin

enqueuing incoming connect indications or servicing a connection request on the transport endpoint. In

connectionless mode, the transport user may send or receive data units through the transport endpoint.

The req and ret parameters point to a t_bind structure containing the following members:

struct netbuf addr;

unsigned qlen;

Within this structure, the fields have the following meaning:

 Field Description

addr Specifies a protocol address.

qlen Indicates the maximum number of outstanding connect indications.

If the requested address is not available, the t_bind subroutine returns -1 with t_errno set as appropriate.

If no address is specified in the req parameter, (that is, the len field of the addr field in the req parameter

is zero or the req parameter is NULL), the transport provider assigns an appropriate address to be bound,

Chapter 3. Streams 381

and returns that address in the addr field of the ret parameter. If the transport provider could not allocate

an address, the t_bind subroutine fails with t_errno set to TNOADDR.

The qlen field has meaning only when initializing a connection-mode service. This field specifies the

number of outstanding connect indications that the transport provider should support for the given

transport endpoint. An outstanding connect indication is one that has been passed to the transport user by

the transport provider but which has not been accepted or rejected. A qlen field value of greater than zero

is only meaningful when issued by a passive transport user that expects other users to call it. The value of

the qlen field is negotiated by the transport provider and may be changed if the transport provider cannot

support the specified number of outstanding connect indications. However, this value of the qlen field is

never negotiated from a requested value greater than zero to zero. This is a requirement on transport

providers. See ″Implementation Specifics″ for more information. On return, the qlen field in the ret

parameter contains the negotiated value.

The requirement that the value of the qlen field never be negotiated from a requested value greater than

zero to zero implies that transport providers, rather than the X/Open Transport Interface implementation

itself, accept this restriction.

A transport provider may not allow an explicit binding of more than one transport endpoint to the same

protocol address, although it allows more than one connection to be accepted for the same protocol

address. To ensure portability, it is, therefore, recommended not to bind transport endpoints that are used

as responding endpoints, (those specified in the resfd parameter), in a call to the t_accept subroutine, if

the responding address is to be the same as the called address.

Parameters

 fd Specifies the transport endpoint. If the fd parameter refers to a connection-mode service, this function allows

more than one transport endpoint to be bound to the same protocol address. However, the transport provider

must also support this capability and it is not possible to bind more than one protocol address to the same

transport endpoint. If a user binds more than one transport endpoint to the same protocol address, only one

endpoint can be used to listen for connect indications associated with that protocol address. In other words,

only one t_bind for a given protocol address may specify a qlen field value greater than zero. In this way, the

transport provider can identify which transport endpoint should be notified of an incoming connect indication. If

a user attempts to bind a protocol address to a second transport endpoint with a a qlen field value greater than

zero, t_bind will return -1 and set t_errno to TADDRBUSY. When a user accepts a connection on the

transport endpoint that is being used as the listening endpoint, the bound protocol address will be found to be

busy for the duration of the connection, until a t_unbind or t_close call has been issued. No other transport

endpoints may be bound for listening on that same protocol address while that initial listening endpoint is active

(in the data transfer phase or in the T_IDLE state). This will prevent more than one transport endpoint bound to

the same protocol address from accepting connect indications.

If the fd parameter refers to a connectionless-mode service, only one endpoint may be associated with a

protocol address. If a user attempts to bind a second transport endpoint to an already bound protocol address,

t_bind will return -1 and set t_errno to TADDRBUSY.

382 Technical Reference: Communications, Volume 2

req Specifies the address to be bound to the given transport endpoint. The req parameter is used to request that

an address, represented by the netbuf structure, be bound to the given transport endpoint. The netbuf

structure is described in the xti.h file. In the req parameter, the netbuf structure addr fields have the following

meanings:

buf Points to the address buffer.

len Specifies the number of bytes in the address.

maxlen Has no meaning for the req parameter.

The req parameter may be a null pointer if the user does not specify an address to be bound. Here, the value

of the qlen field is assumed to be zero, and the transport provider assigns an address to the transport

endpoint. Similarly, the ret parameter may be a null pointer if the user does not care what address was bound

by the provider and is not interested in the negotiated value of the qlen field. It is valid to set the req and ret

parameters to the null pointer for the same call, in which case the provider chooses the address to bind to the

transport endpoint and does not return that information to the user.

ret Specifies the maximum size of the address buffer. On return, the ret parameter contains the address that the

transport provider actually bound to the transport endpoint; this is the same as the address specified by the

user in the req parameter. In the ret parameter, the netbuf structure fields have the following meanings:

buf Points to the buffer where the address is to be placed. On return, this points to the bound address.

len Specifies the number of bytes in the bound address on return.

maxlen Specifies the the maximum size of the address buffer. If the value of the maxlen field is not large

enough to hold the returned address, an error will result.

Valid States

T_UNBIND.

Return Values

 0 Successful completion.

-1 t_errno is set to indicate an error.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TACCES The user does not have permission to use the specified address.

TADDRBUSY The requested address is in use.

TBADADDR The specified protocol address was in an incorrect format or contained illegal information.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVLW The number of bytes allowed for an incoming argument (maxlen) is greater than 0 but not sufficient

to store the value of that argument. The provider’s state will change to T_IDLE and the information

to be returned in ret will be discarded.

TNOADDR The transport provider could not allocate an address.

TOUTSTATE The function was issued in the wrong sequence.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open Transport

Interface (t_errno).

TSYSERR A system error has occurred during execution of this function.

Related Information

The t_alloc subroutine, t_close subroutine, t_open subroutine, t_optmgmt subroutine, t_unbind

subroutine.

Chapter 3. Streams 383

t_close Subroutine for X/Open Transport Interface

Purpose

Close a transport endpoint.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_close (fd)

int fd;

Description

The t_close subroutine informs the transport provider that the user is finished with the transport endpoint

specified by the fd parameter and frees any local library resources associated with the endpoint. In

addition, the t_close subroutine closes the file associated with the transport endpoint.

The t_close subroutine should be called from the T_UNBND state (see the t_getstate subroutine).

However, this subroutine does not check state information, so it may be called from any state to close a

transport endpoint. If this occurs, the local library resources associated with the endpoint will be freed

automatically. In addition, the close subroutine is issued for that file descriptor. The close subroutine is

abortive if there are no other descriptors in this process or if there are no other descriptors in another

process which references the transport endpoint, and in this case, will break any transport connection that

may be associated with that endpoint.

A t_close subroutine issued on a connection endpoint may cause data previously sent, or data not yet

received, to be lost. It is the responsibility of the transport user to ensure that data is received by the

remote peer.

Parameter

 fd Specfies the transport endpoint to be closed.

Valid States

ALL - apart from T_UNINIT.

Return Values

 0 Successful completion.

-1 t_errno is set to indicate an error.

Errors

On failure, t_errno is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TPROTO This error indicates that a communication problem has been detected between the X/Open Transport

Interface and the transport provider for which there is no other suitable X/Open Transport Interface

(t_errno).

384 Technical Reference: Communications, Volume 2

Related Information

The t_getstate subroutine, t_open subroutine, t_unbind subroutine.

t_connect Subroutine for X/Open Transport Interface

Purpose

Establish a connection with another transport user.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_connect (fd, sndcall, rcvcall)

 int fd;

 const struct t_call *sndcall;

 struct t_call *rcvcall;

Description

The t_connect subroutine enables a transport user to request a connection to the specified destination

transport user. This subroutine can only be issued in the T_IDLE state.

The sndcall and rcvcall parameters both point to a t_call structure which contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

In the sndcall parameter, the fields of the structure have the following meanings:

 Field Description

addr Specifies the protocol address of the destination transport user.

opt Presents any protocol-specific information that might be needed by the transport provider.

sequence Has no meaning for this subroutine.

udata Points to optional user data that may be passed to the destination transport user during connection

establishment.

On return, the fields of the structure pointed to by the rcvcall parameter have the following meanings:

 Field Description

addr Specifies the protocol address associated with the responding transport endpoint.

opt Represents any protocol-specific information associated with the connection.

sequence Has no meaning for this subroutine.

udata Points to optional user data that may be returned by the destination transport user during connection

establishment.

The opt field permits users to define the options that may be passed to the transport provider. These

options are specific to the underlying protocol of the transport provider and are described for ISO and TCP

protocols in Appendix A, ISO Transport Protocol Information, Appendix B, Internet Protocol-specific

Information and Appendix F, Headers and Definitions. The user may choose not to negotiate protocol

options by setting the len field of opt to zero. In this case, the provider may use default options.

Chapter 3. Streams 385

If used, the value of the opt.buf field of the sndcall parameter netbuf structure must point to a buffer with

the corresponding options; the maxlen and buf values of the addr and opt fields of the rcvcall parameter

netbuf structure must be set before the call.

The udata field of the structure enables the caller to pass user data to the destination transport user and

receive user data from the destination user during connection establishment. However, the amount of user

data must not exceed the limits supported by the transport provider as returned in the connect field of the

info parameter of the t_open or t_getinfo subroutines. If the value of udata.len field is zero in the sndcall

parameter netbuf structure, no data will be sent to the destination transport user.

On return, the addr, opt, and udata fields of rcvcall are updated to reflect values associated with the

connection. Thus, the maxlen value of each field must be set before issuing this subroutine to indicate the

maximum size of the buffer for each. However, the value of the rcvcall parameter may be a null pointer, in

which case no information is given to the user on return from the t_connect subroutine.

By default, the t_connect subroutine executes in synchronous mode, and waits for the destination user’s

response before returning control to the local user. A successful return (for example, return value of zero)

indicates that the requested connection has been established. However, if O_NONBLOCK is set via the

t_open subroutine or the fcntl parameter, the t_connect subroutine executes in asynchronous mode. In

this case, the call will not wait for the remote user’s response, but returns control immediately to the local

user and returns -1 with t_errno set to TNODATA to indicate that the connection has not yet been

established. In this way, the subroutine initiates the connection establishment procedure by sending a

connect request to the destination transport user. The t_rcvconnect subroutine is used in conjunction with

the t_connect subroutine to determine the status of the requested connection.

When a synchronous t_connect call is interrupted by the arrival of a signal, the state of the corresponding

transport endpoint is T_OUTCON, allowing a further call to either the t_rcvconnect, t_rcvdis or t_snddis

subroutines.

Parameters

 fd Identifies the local transport endpoint where communication will be established.

sndcall Specifies information needed by the transport provider to establish a connection.

rcvcall Specifies information associated with the newly establisehd connection.

Valid States

T_IDLE.

Return Values

 0 Successful completion.

-1 t_errno is set to indicate an error.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TACCES The user does not have permission to use the specified address or options.

TADDRBUSY This transport provider does not support multiple connections with the same local and remote

addresses. This error indicates that a connection already exists.

TBADADDR The specified protocol address was in an incorrect format or contained illegal information.

TBADDATA The amount of user data specified was not within the bounds allowed by the transport provider.

TBADF The specified file descriptor does not refer to a transport endpoint.

386 Technical Reference: Communications, Volume 2

Value Description

TBADOPT The specified protocol options were in an incorrect format or contained illegal information.

TBUFOVFLW The number of bytes allocated for an incoming parameter (maxlen) is greater than 0 but not

sufficient to store the value of that argument. If executed in synchronous mode, the provider’s

state, as seen by the user, changes to T_DAXAXFER, and the information to be returned in the

rcvcall parameter is discarded.

TLOOK An asynchronous event has occurred on this transport endpoint and requires immediate

attention.,

TNODATA O_NONBLOCK was set, so the subroutine successfully initiated the connection establishment

procedure, but did not wait for a response from the remote user.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE The subroutine was issued in the wrong sequence.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open

Transport Interface (t_errno).

TSYSERR A system error has occurred during execution of this subroutine.

Related Information

The t_accept subroutine, t_alloc subroutine, t_getinfo subroutine, t_listen subroutine, t_open subroutine,

t_optmgmt subroutine, t_rcvconnect subroutine.

t_error Subroutine for X/Open Transport Interface

Purpose

Produce error message.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_error (

 const char *errmsg)

Description

The t_error subroutine produces a language-dependent message on the standard error output which

describes the last error encountered during a call to a transport subroutine.

If the errmsg parameter is not a null pointer and the character pointed to be the errmsg parameter is not

the null character, the error message is written as follows: the string pointed to by the errmsg parameter

followed by a colon and a space and a standard error message string for the current error defined in

t_errno. If t_errno has a value different from TSYSERR, the standard error message string is followed by

a newline character. If, however, t_errno is equal to TSYSERR, the t_errno string is followed by the

standard error message string for the current error defined in the errno global variable followed by a

newline.

The language for error message strings written by the t_error subroutine is implementation-defined. If it is

in English, the error message string describing the value in t_errno is identical to the comments following

the t_errno codes defined in the xti.h header file. The contents of the error message strings describing

the value in the errno global variable are the same as those returned by the strerror subroutine with an

parameter of errno.

Chapter 3. Streams 387

The error number, t_errno, is only set when an error occurs and it is not cleared on successful calls.

Parameter

 errmsg Specifies a user-supplied error message that gives the context to the error.

Valid States

ALL - apart from T_UNINIT.

Return Values

Upon completion, a value of 0 is returned.

Errors Codes

No errors are defined for the t_error subroutine.

Examples

If a t_connect subroutine fails on transport endpoint fd2 because a bad address was given, the following

call might follow the failure:

t_error("t_connect failed on fd2");

The diagnostic message to be printed would look like:

t_connect failed on fd2: incorrect addr format

where incorrect addr format identifies the specific error that occurred, and t_connect failed on fd2

tells the user which function failed on which transport endpoint.

Related Information

The strerror subroutine, t_connect subroutine.

t_free Subroutine for X/Open Transport Interface

Purpose

Free a library structure.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_free (

 void *ptr;

 int struct_type)

Description

The t_free subroutine frees memory previously allocated by the t_alloc subroutine. This subroutine frees

memory for the specified structure and buffers referenced by the structure.

The t_free subroutine checks the addr, opt, and udata fields of the given structure, as appropriate, and

frees the buffers pointed to by the buf field of the netbuf structure. If buf is a null pointer, the t_free

388 Technical Reference: Communications, Volume 2

subroutine does not attempt to free memory. After all buffers are free, the t_free subroutine frees the

memory associated with the structure pointed to by the ptr parameter.

Undefined results occur if the ptr parameter or any of the buf pointers points to a block of memory that

was not previously allocated by the t_alloc subroutine.

Parameters

 ptr Points to one of the seven structure types described for the t_alloc subroutine.

struct_type Identifies the type of the structure specified by the ptr parameter. The type can be one of the

following:

T_BIND

struct t_bind

T_CALL

struct t_call

T_OPTMGMT

struct t_optmgmt

T_DIS struct t_discon

T_UNITDATA

struct t_unitdata

T_UDERROR

struct t_uderr

T_INFO

struct t_info

Each of these structures may subsequently be used as a parameter to one or more transport

functions.

Valid States

ALL - apart from T_UNINIT.

Return Values

 0 Successful completion.

-1 t_errno is set to indicate an error.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TSYSERR A system error has occurred during execution of this function.

TNOSTRUCTYPE Unsupported struct_type parameter value requested.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open

Transport Interface (t_errno).

Related Information

The t_alloc subroutine.

Chapter 3. Streams 389

t_getinfo Subroutine for X/Open Transport Interface

Purpose

Get protocol-specific service information.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_getinfo (fd, info)

int fd;

struct t_info *info;

Description

The t_getinfo subroutine returns the current characteristics of the underlying transport protocol and/or

transport connection associated with the file descriptor specified by the fd parameter. The pointer specified

by the info parameter returns the same information returned by the t_open subroutine, although not

necessarily precisely the same values. This subroutine enables a transport user to access this information

during any phase of communication.

Parameters

 fd Specifies the file descriptor.

info Points to a t_info structure which contains the following members:

long addr; /* max size of the transport protocol */

 /* address */

long options; /* max number of bytes of protocol-specific */

 /* options */

long tsdu; /* max size of a transport service data */

 /* unit (TSDU) */

long etsdu; /* max size of an expedited transport */

 /* service data unit (ETSDU) */

long connect; /* max amount of data allowed on connection */

 /* establishment functions */

long discon; /* max amount of data allowed on t_snddis */

 /* and t_rcvdis functions */

long servtype; /* service type supported by the transport */

 /* provider */

long flags; /* other info about the transport provider */

The values of the fields have the following meanings:

 Field Description

addr A value greater than zero indicates the maximum size of a transport protocol address and a value of

-2 specifies that the transport provider does not provide user access to transport protocol addresses.

options A value greater than zero indicates the maximum number of bytes of protocol-specific options

supported by the provider, and a value of -2 specifies that the transport provider does not support

options set by users.

tsdu A value greater than zero specifies the maximum size of a transport service data unit (TSDU); a

value of zero specifies that the transport provider does not support the concept of TSDU, although it

does support the sending of a datastream with no logical boundaries preserved across a connection;

a value of -1 specifies that there is no limit on the size of a TSDU; and a value of -2 specifies that

the transfer of normal data is not supported by the transport provider.

390 Technical Reference: Communications, Volume 2

Field Description

etsdu A value greater than zero specifies the maximum size of an expedited transport service data unit

(ETSDU); a value of zero specifies that the transport provider does not support the concept of

ETSDU, although it does support the sending of an expedited data stream with no logical boundaries

preserved across a connection; a value of -1 specifies that there is no limit on the size of an ETSDU;

and a value of -2 specifies that the transfer of expedited data is not supported by the transport

provider. Note that the semantics of expedited data may be quite different for different transport

providers (see Appendix A, ISO Transport Protocol Information and Appendix B, Internet

Protocol-specific Information) .

connect A value greater than zero specifies the maximum amount of data that may be associated with

connection establishment functions and a value of -2 specifies that the transport provider does not

allow data to be sent with connection establishment functions.

discon A value greater than zero specifies the maximum amount of data that may be associated with the

t_snddis and t_rcvdis subroutines and a value of -2 specifies that the transport provider does not

allow data to be sent with the abortive release functions.

servtype This field specifies the service type supported by the transport provider on return. The possible

values are:

T_COTS

The transport provider supports a connection-mode service but does not support the

optional orderly release facility.

T_COTS_ORD

The transport provider supports a connection-mode service with the optional orderly release

facility.

T_CLTS

The transport provider supports a connectionless-mode service. For this service type, the

t_open subroutine will return -2 for etsdu, connect and discon.

flags This is a bit field used to specify other information about the transport provider. If the T_SENDZERO

bit is set in flags, this indicates that the underlying transport provider supports the sending of

zero-length TSDUs. See Appendix A, ISO Transport Protocol Information for a discussion of the

separate issue of zero-length fragments within a TSDU.

If a transport user is concerned with protocol independence, the above sizes may be accessed to

determine how large the buffers must be to hold each piece of information. Alternatively, the t_alloc

subroutine may be used to allocate these buffers. An error results if a transport user exceeds the allowed

data size on any subroutine. The value of each field may change as a result of protocol option negotiation

during connection establishment (the t_optmgmt call has no affect on the values returned by the

t_getinfo subroutine). These values will only change from the values presented to the t_open subroutine

after the endpoint enters the T_DATAXFER state.

Valid States

ALL - apart from T_UNINIT.

Return Values

 0 Successful completion.

-1 t_errno is set to indicate an error.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TSYSERR A system error has occurred during execution of this subroutine.

Chapter 3. Streams 391

Value Description

TPROTO This error indicates that a communication problem has been detected between the X/Open Transport

Interface and the transport provider for which there is no other suitable X/Open Transport Interface

(t_errno).

Related Information

The t_alloc subroutine, t_open subroutine.

t_getprotaddr Subroutine for X/Open Transport Interface

Purpose

Get the protocol addresses.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_getprotaddr (fd, boundaddr, peeraddr)

int fd;

struct t_bind *boundaddr;

struct t_bind *peeraddr;

Description

The t_getproaddr subroutine returns local and remote protocol addresses currently associated with the

transport endpoint specified by the fd parameter.

Parameters

 fd Specifies the transport endpoint.

boundaddr Specifies the local address to which the transport endpoint is to be bound. The boundaddr

parameter has the following fields:

maxlen Specifies the maximum size of the address buffer.

buf Points to the buffer where the address is to be placed. On return, the buf field of

boundaddr points to the address, if any, currently bound to fd.

len Specifies the length of the address. If the transport endpoint is in the T_UNBND state,

zero is returned in the len field of boundaddr.

peeraddr Specifies the remote protocol address associated with the transport endpoint.

maxlen Specifies the maximum size of the address buffer.

buf Points to the address, if any, currently connected to fd.

len Specifies the length of the address. If the transport endpoint is not in the T_DATAXFER

state, zero is returned in the len field of peeraddr.

Valid States

ALL - apart from T_UNINIT.

392 Technical Reference: Communications, Volume 2

Return Values

 0 Successful completion.

-1 t_errno is set to indicate an error.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVIEW The number of bytes allocated for an incoming parameter (maxlen) is greater than 0 but not

sufficient to store the value of that parameter.

TSYSERR A system error has occurred during execution of this subroutine.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open Transport

Interface (t_errno).

Related Information

The t_bind subroutine.

t_getstate Subroutine for X/Open Transport Interface

Purpose

Get the current state.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_getstate (fd)

int fd;

Description

The t_getstate subroutine returns the current state of the provider associated with the transport endpoint

specified by the fd parameter.

Parameter

 fd Specifies the transport endpoint.

Valid States

ALL - apart from T_UNINIT.

Return Values

 0 Successful completion.

Chapter 3. Streams 393

-1 t_errno is set to indicate an error. The current state is one of the following:

T_UNBND

Unbound

T_IDLE

Idle

T_OUTCON

Outgoing connection pending

T_INCON

Incoming connection pending

T_DATAXFER

Data transfer

T_OUTREL

Outgoing orderly release (waiting for an orderly release indication)

T_INREL

Incoming orderly release (waiting to send an orderly release request)

If the provider is undergoing a state transition when the t_getstate subroutine is called, the subroutine will

fail.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TSTATECHNG The transport provider is undergoing a transient state change.

TSYSERR A system error has occurred during execution of this subroutine.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open

Transport Interface (t_errno).

Related Information

The t_open subroutine.

t_listen Subroutine for X/Open Transport Interface

Purpose

Listen for a connect indication.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_listen (fd, call)

int fd;

struct t_call *call;

Description

The t_listen subroutine listens for a connect request from a calling transport user.

394 Technical Reference: Communications, Volume 2

By default, the t_listen subroutine executes in synchronous mode and waits for a connect indication to

arrive before returning to the user. However, if O_NONBLOCK is set via the t_open subroutine or with the

fcntl subroutine (F_SETFL), the t_listen subroutine executes asynchronously, reducing to a poll for

existing connect indications. If none are available, the subroutine returns -1 and sets t_errno to

TNODATA.

Some transport providers do not differentiate between a connect indication and the connection itself. If this

is the case, a successful return of t_listen indicates an existing connection (see Appendix B, Internet

Protocol-specific Information).

Parameters

 fd Identifies the local transport endpoint where connect indications arrive.

call Contains information describing the connect indication. The parameter call points to a t_call structure which

contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

In this structure, the fields have the following meanings:

addr Returns the protocol address of the calling transport user. This address is in a format usable in

future calls to the t_connect subroutine. Note, however that t_connect may fail for other reasons,

for example, TADDRBUSY.

opt Returns options associated with the connect request.

udata Returns any user data sent by the caller on the connect request.

sequence

A number that uniquely identifies the returned connect indication. The value of sequence enables

the user to listen for multiple connect indications before responding to any of them.

Since this subroutine returns values for the addr, opt and udata fields of the call parameter, the maxlen field

of each must be set before issuing the t_listen subroutine to indicate the maximum size of the buffer for

each.

Valid States

T_IDLE, T_INCON.

Return Values

 0 Successful completion.

-1 t_errno is set to indicate an error.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADQLEN The qlen parameter of the endpoint referenced by the fd parameter is zero.

TBODATA O_NONBLOCK was set, but no connect indications had been queued.

Chapter 3. Streams 395

Value Description

TBUFOVFLW The number of bytes allocated for an incoming parameter (maxlen) is greater than 0 but not

sufficient to store the value of that parameter. The provider’s state, as seen by the user,

changes to T_INCON, and the connect indication information to be returned in the call

parameter is discarded. The value of the sequence parameter returned can be used to do a

t_snddis.

TLOOK An asynchronous event has occurred on the transport endpoint and requires immediate

attention.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE The subroutine was issued in the wrong sequence on the transport endpoint referenced by the

fd parameter.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open

Transport Interface (t_errno).

TQFULL The maximum number of outstanding indications has been reached for the endpoint referenced

by the fd parameter.

TSYSERR A system error has occurred during execution of this subroutine.

Related Information

The fcntl subroutine, t_accept subroutine, t_alloc subroutine, t_bind subroutine, t_connect subroutine,

t_open subroutine, t_optmgmt subroutine, t_rcvconnect subroutine.

t_look Subroutine for X/Open Transport Interface

Purpose

Look at the current event on a transport endpoint.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_look (fd)

int fd;

Description

The t_look subroutine returns the current event on the transport endpoint specified by the fd parameter.

This subroutine enables a transport provider to notify a transport user of an asynchronous event when the

user is calling subroutines in synchronous mode. Certain events require immediate notification of the user

and are indicated by a specific error, TLOOK, on the current or next subroutine to be executed. Details on

events which cause subroutines to fail, T_LOOK, may be found in Section 4.6, Events and TLOOK Error

Indication.

This subroutine also enables a transport user to poll a transport endpoint periodically for asynchronous

events.

Additional functionality is provided through the Event Management (EM) interface.

Parameter

 fd Specifies the transport endpoint.

396 Technical Reference: Communications, Volume 2

Valid States

ALL - apart from T_UNINIT.

Return Values

Upon success, the t_look subroutine returns a value that indicates which of the allowable events has

occurred, or returns zero if no event exists. One of the following events is returned:

 Event Description

T_LISTEN Connection indication received.

T_CONNECT Connect confirmation received.

T_DATA Normal data received.

T_EXDATA Expedited data received.

T_DISCONNECT Disconnect received.

T_UDERR Datagram error indication.

T_ORDREL Orderly release indication.

T_GODATA Flow control restrictions on normal data flow that led to a TFLOW error have been lifted.

Normal data may be sent again.

T_GOEXDATA Flow control restrictions on expedited data flow that led to a TFLOW error have been lifted.

Expedited data may be sent again.

On failure, -1 is returned and t_errno is set to indicate the error.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TSYSERR A system error has occurred during execution of this subroutine.

TPROTO This error indicates that a communication problem has been detected between the X/Open Transport

Interface and the transport provider for which there is no other suitable X/Open Transport Interface

(t_errno).

Related Information

The t_open subroutine, t_snd subroutine, t_sndudata subroutine.

t_open Subroutine for X/Open Transport Interface

Purpose

Establish a transport endpoint.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

#include <fcntl.h>

int t_open (

 const char *name;

 int oflag;

 struct t_info *info)

Chapter 3. Streams 397

Description

The t_open subroutine must be called as the first step in the initialization of a transport endpoint. This

subroutine establishes a transport endpoint by supplying a transport provider identifier that indicates a

particular transport provider (for example, transport protocol) and returning a file descriptor that identifies

that endpoint.

This subroutine also returns various default characteristics of the underlying transport protocol by setting

fields in the t_info structure.

Parameters

 name Points to a transport provider identifier.

oflag Identifies any open flags (as in the open exec) . The oflag parameter is constructed from O_RDWR optionally

bitwise inclusive-OR-ed with O_NONBLOCK. These flags are defined by the fcntl.h header file. The file

descriptor returned by the t_open subroutine is used by all subsequent subroutines to identify the particular

local transport endpoint.

398 Technical Reference: Communications, Volume 2

info Points to a t_info structure which contains the following members:

long addr; /* max size of the transport protocol */

 /* address */

long options; /* max number of bytes of */

 /* protocol-specific options */

long tsdu; /* max size of a transport service data */

 /* unit (TSDU) */

long etsdu; /* max size of an expedited transport */

 /* service data unit (ETSDU) */

long connect; /* max amount of data allowed on */

 /* connection establishment subroutines */

long discon; /* max amount of data allowed on */

 /* t_snddis and t_rcvdis subroutines */

long servtype; /* service type supported by the */

 /* transport provider */

long flags; /* other info about the transport provider */

The values of the fields have the following meanings:

addr A value greater than zero indicates the maximum size of a transport protocol address and a value of

-2 specifies that the transport provider does not provide user access to transport protocol addresses.

options

A value greater than zero indicates the maximum number of bytes of protocol-specific options

supported by the provider, and a value of -2 specifies that the transport provider does not support

user-settable options.

tsdu A value greater than zero specifies the maximum size of a transport service data unit (TSDU); a

value of zero specifies that the transport provider does not support the concept of TSDU, although it

does support the sending of a data stream with no logical boundaries preserved across a connection;

a value of -1 specifies that there is no limit on the size of a TSDU; and a value of -2 specifies that

the transfer of normal data is not supported by the transport provider.

etsdu A value greater than zero specifies the maximum size of an expedited transport service data unit

(ETSDU); a value of zero specifies that the transport provider does not support the concept of

ETSDU, although it does support the sending of an expedited data stream with no logical boundaries

preserved across a connection; a value of -1 specifies that there is no limit on the size of an ETSDU;

and a value of -2 specifies that the transfer of expedited data is not supported by the transport

provider. Note that the semantics of expedited data may be quite different for different transport

providers.

connect

A value greater than zero specifies the maximum amount of data that may be associated with

connection establishment subroutines and a value of -2 specifies that the transport provider does not

allow data to be sent with connection establishment subroutines.

discon A value greater than zero specifies the maximum amount of data that may be associated with the

t_synddis and t_rcvdis subroutines and a value of -2 specifies that the transport provider does not

allow data to be sent with the abortive release subroutines.

Chapter 3. Streams 399

servtype

This field specifies the service type supported by the transport provider. The valid values on return

are:

T_COTS

The transport provider supports a connection-mode service but does not support the

optional orderly release facility.

T_COTS_ORD

The transport provider supports a connection-mode service with the optional orderly release

facility.

T_CLTS

The transport provider supports a connectionless-mode service. For this service type,

t_open will return -2 for etsdu, connect and discon.

A single transport endpoint may support only one of the above services at one time.

flags This is a bit field used to specify other information about the transport provider. If the T_SENDZERO

bit is set in flags, this indicates the underlying transport provider supports the sending of zero-length

TSDUs.

If a transport user is concerned with protocol independence, the above sizes may be accessed to determine

how large the buffers must be to hold each piece of information. Alternatively, the t_alloc subroutine may be

used to allocate these buffers. An error will result if a transport user exceeds the allowed data size on any

subroutine.

If the info parameter is set to a null pointer by the transport user, no protocol information is returned by the

t_open subroutine.

Valid States

T_UNINIT

Return Values

 Valid file descriptor Successful completion.

-1 t_errno is set to indicate an error.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADFLAG An invalid flag is specified.

TBADNAME Invalid transport provider name.

TSYSERR A system error has occurred during execution of this subroutine.

TPROTO This error indicates that a communication problem has been detected between the X/Open Transport

Interface and the transport provider for which there is no other suitable X/Open Transport Interface

(t_errno).

Related Information

The t_open subroutine.

400 Technical Reference: Communications, Volume 2

t_optmgmt Subroutine for X/Open Transport Interface

Purpose

Manage options for a transport endpoint.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_optmgmt(

 int fd,

 const struct t_optmgmt *req,

 struct t_optmgmt *ret)

Description

The t_optmgmt subroutine enables a transport user to retrieve, verify, or negotiate protocol options with

the transport provider.

The req and ret parameters both point to a t_optmgmt structure containing the following members:

struct netbuf opt;

long flags;

Chapter 3. Streams 401

Within this structure, the fields have the following meaning:

 Field Description

opt Identifies protocol options. The options are represented by a netbuf structure in a manner similar to the

address in the t_bind subroutine:

len Specifies the number of bytes in the options and on return, specifies the number of bytes of

options returned.

buf Points to the options buffer. For the ret parameter, buf points to the buffer where the options are to

be placed. Each option in the options buffer is of the form struct t_opthdr possibly followed by an

option value. The fields of this structure and the values are:

level Identifies the X/Open Transport Interface level or a protocol of the transport provider.

name Identifies the option within the level.

len Contains its total length, for example, the length of the option header t_opthdr plus the

length of the option value. If t_optmgmt is called with the action T_NEGOTIATE set.

status Contains information about the success or failure of a negotiation.

Each option in the input or output option buffer must start at a long-word boundary. The macro

OPT_NEXTHDR (pbuf, buflen, poption) can be used for that purpose. The macro parameters are

as follows:

pbuf Specifies a pointer to an option buffer opt.buf.

buflen The length of the option buffer pointed to by pbuf.

poption Points to the current option in the option buffer. OPT_NEXTHDR returns a pointer to the

position of the next option or returns a null pointer if the option buffer is exhausted. The

macro is helpful for writing and reading. See the xti.h header file for the exact definition

of this structure.

If the transport user specifies several options on input, all options must address the same level.

 If any option in the options buffer does not indicate the same level as the first option, or the level

specified is unsupported, then the t_optmgmt request fails with TBADOPT. If the error is

detected, some options may have successfully negotiated. The transport user can check the

current status by calling the t_optmgmt subroutine with the T_CURRENT flag set.

Note: ″The Use of Options″ contains a detailed description about the use of options and should

be read before using this subroutine.

maxlen Has no meaning for the req parameter, but must be set in the ret parameter to specify

the maximum size of the options buffer. On return, len specifies the number of bytes of

options returned. The value in maxlen has no meaning for the req argument,

402 Technical Reference: Communications, Volume 2

Field Description

flags Specifies the action to take with those options. The flags field of req must specify one of the following

actions:

T_CHECK

This action enables the user to verify whether the options specified in the req parameter are

supported by the transport provider. If an option is specified with no option value, (that is, it

consists only of a t_opthdr structure), the option is returned with its status field set to one of the

following:

v T_SUCCESS - if it is supported.

v T_NOTSUPPORT - if it is not or needs additional user privileges.

v T_READONLY - if it is read-only (in the current X/Open Transport Interface state).

No option value is returned. If an option is specified with an option value, the status field of the

returned option has the same value, as if the user had tried to negotiate this value with

T_NEGOTIATE. If the status is T_SUCCESS, T_FAILURE, T_NOTSUPPORT, or T_READONLY,

the returned option value is the same as the one requested on input.

 The overall result of the option checks is returned in the flags field of the netbuf structure pointed

to by the ret parameter. This field contains the worst single result of the option checks, where the

rating is the same as for T_NEGOTIATE.

 Note, that no negotiation takes place. All currently effective option values remain unchanged.

T_CURRENT

This action enables the transport user to retrieve the currently effective option values. The user

specifies the options of interest in the opt fields in the netbuf structure pointed to by the req

parameter. The option values are irrelevant and will be ignored; it is sufficient to specify the

t_opthdr part of an option only. The currently effective values are then returned in opt fields in the

netbuf structure pointed to by the ret parameter.

 The status field returned is on of the following:

v T_NOTSUPPORT if the protocol level does not support this option or the transport user illegally

requested a privileged option.

v T_READONLY if the option is read-only.

v T_SUCCESS in all other cases.

The overall result of the option checks is returned in the flags field of the netbuf structure pointed

to by the ret parameter. This field contains the worst single result of the option checks, where the

rating is the same as for T_NEGOTIATE.

 For each level, the T_ALLOPT option (see below) can be requested on input. All supported

options of this level with their default values are then returned.

Chapter 3. Streams 403

Field Description

T_DEFAULT

This action enables the transport user to retrieve the default option values. The user specifies the

options of interest in the opt fields in the netbuf structure pointed to by the req parameter. The

option values are irrelevant and will be ignored; it is sufficient to specify the t_opthdr part of an

option only. The default values are then returned in the opt field of the netbuf structure pointed to

by the ret parameter.

 The status field returned is one of the following:

v T_NOTSUPPORT if the protocol level does not support this option or the transport user illegally

requested a privileged option.

v T_READONLY if the option is read-only.

v T_SUCCESS in all other cases.

The overall result of the option checks is returned in the flags field of the ret parameter netbuf

structure. This field contains the worst single result of the option checks, where the rating is the

same as for T_NEGOTIATE.

 For each level, the T_ALLOPT option (see below) can be requested on input. All supported

options of this level with their default values are then returned. In this case, the maxlen value of

the opt field in the ret parameter netbuf structure must be given at least the value of the options

field of the info parameter (see the t_getinfo or t_open subroutines) before the call.

T_NEGOTIATE

This action enables the transport user to negotiate option values. The user specifies the options of

interest and their values in the buffer specified in the req parameter netbuf structure. The

negotiated option values are returned in the buffer pointed to by the opt field of the ret parameter

netbuf structure. The status field of each returned option is set to indicate the result of the

negotiation. The value is one of the following:

v T_SUCCESS if the proposed value was negotiated.

v T_PARTSUCCESS if a degraded value was negotiated.

v T_FAILURE is the negotiation failed (according to the negotiation rules).

v T_NOTSUPPORT if the transport provider does not support this option or illegally requests

negotiation of a privileged option

v T_READONLY if modification of a read-only option was requested.

If the status is T_SUCCESS, T_FAILURE, T_NOTSUPPORT or T_READONLY, the returned

option value is the same as the one requested on input.

 The overall result of the negotiation is returned in the flags field of the ret parameter netbuf

structure. This field contains the worst single result, whereby the rating is done according to the

following order, where T_NOTSUPPORT is the worst result and T_SUCCESS is the best:

v T_NOTSUPPORT

v T_READONLY

v T_FAILURE

v T_PARTSUCCESS

v T_SUCCESS.

For each level, the T_ALLOPT option (see below) can be requested on input. This option has no

value and consists of a t_opthdr only. This input requests negotiation of all supported options of

this level to their default values. The result is returned option by option in the opt field of the

structure pointed to in the ret parameter. Depending on the state of the transport endpoint, not all

requests to negotiate the default value may be successful.

404 Technical Reference: Communications, Volume 2

Field Description

The T_ALLOPT option can only be used with the t_optmgmt structure and the actions T_NEGOTIATE,

T_DEFAULT and T_CURRENT. This option can be used with any supported level and addresses all

supported options of this level. The option has no value and consists of a t_opthdr only. Since only options

of one level may be addressed in a t_optmgmt call, this option should not be requested together with

other options. The subroutine returns as soon as this option has been processed.

Options are independently processed in the order they appear in the input option buffer. If an option is

multiply input, it depends on the implementation whether it is multiply output or whether it is returned only

once.

Transport providers may not be able to provide an interface capable of supporting T_NEGOTIATE and/or

T_CHECK functionalities. When this is the case, the error TNOTSUPPORT is returned.

The subroutine t_optmgmt may block under various circumstances and depending on the implementation.

For example, the subroutine will block if the protocol addressed by the call resides on a separate controller.

It may also block due to flow control constraints, if data previously sent across this transport endpoint has

not yet been fully processed. If the subroutine is interrupted by a signal, the option negotiations that have

been done so far may remain valid. The behavior of the subroutine is not changed if O_NONBLOCK is set.

Parameters

 fd Identifies a transport endpoint.

req Requests a specific action of the provider.

ret Returns options and flag values to the user.

X/Open Transport Interface-Level Options

X/Open Transport Interface (XTI) level options are not specific for a particular transport provider. An XTI

implementation supports none, all, or any subset of the options defined below. An implementation may

restrict the use of any of these options by offering them only in the privileged or read-only mode, or if the

bound transport endpoint identified by the fd parameter relates to specific transport providers.

The subsequent options are not association-related (see Chapter 5, The Use of Options) . They may be

negotiated in all XTI states except T_UNINIT.

The protocol level is XTI_GENERIC. For this level, the following options are defined (the type of each

option value is of type unsigned long unless otherwise indicated):

 XTI-Level Options

Option Name Legal Option Value Meaning

XTI_DEBUG (array of unsigned

longs)

see text enable debugging

XTI_LINGER (struct linger) see text linger on close if data is present

XTI_RCVBUF size in octets receive buffer size

XTI_RCVLOWAT size in octets receive low-water mark

XTI_SNDBUF0 size in octets send buffer size

XTI_SNDLOWAT size in octets send low-water mark

A request for XTI_DEBUG is an absolute requirement. A request to activate XTI_LINGER is an absolute

requirement; the timeout value to this option is not. XTI_RCVBUF, XTI_RCVLOWAT, XTI_SNDBUF and

XTI_SNDLOWAT are not absolute requirements.

Chapter 3. Streams 405

Option Description

XTI_DEBUG Enables debugging. The values of this option are implementation-defined. Debugging is

disabled if the option is specified with no value (for example, with an option header only).

The system supplies utilities to process the traces. An implementation may also provide other

means for debugging.

XTI_LINGER Lingers the execution of a t_close subroutine or the close exec if send data is still queued in

the send buffer. The option value specifies the linger period. If a close exec or t_close

subroutine is issued and the send buffer is not empty, the system attempts to send the

pending data within the linger period before closing the endpoint. Data still pending after the

linger period has elapsed is discarded.

Depending on the implementation, the t_close subroutine or close exec either, at a

maximum, block the linger period, or immediately return, whereupon, at most, the system

holds the connection in existence for the linger period.

The option value consists of a structure t_linger declared as:

struct t_linger {

 long l_onoff;

 long l_linger;

}

The fields of the structure and the legal values are:

l_onoff Switches the option on or off. The value l_onoff is an absolute requirement. The

possible values are:

T_NO switch option off

T_YES activate option

l_linger Determines the linger period in seconds. The transport user can request the default

value by setting the field to T_UNSPEC. The default timeout value depends on the

underlying transport provider (it is often T_INFINITE). Legal values for this field are

T_UNSPEC, T_INFINITE and all non-negative numbers.

 The l_linger value is not an absolute requirement. The implementation may place

upper and lower limits to this value. Requests that fall short of the lower limit are

negotiated to the lower limit.

Note: Note that this option does not linger the execution of the t_snddis subroutine.

XTI_RCVBUF Adjusts the internal buffer size allocated for the receive buffer. The buffer size may be

increased for high-volume connections, or decreased to limit the possible backlog of incoming

data.

This request is not an absolute requirement. The implementation may place upper and lower

limits on the option value. Requests that fall short of the lower limit are negotiated to the

lower limit.

Legal values are all positive numbers.

XTI_RCVLOWAT Sets a low-water mark in the receive buffer. The option value gives the minimal number of

bytes that must have accumulated in the receive buffer before they become visible to the

transport user. If and when the amount of accumulated receive data exceeds the low-water

mark, a T_DATA event is created, an event mechanism (for example, the poll or select

subroutines) indicates the data, and the data can be read by the t_rcv or t_rcvudata

subroutines.

This request is not an absolute requirement. The implementation may place upper and lower

limits on the option value. Requests that fall short of the lower limit are negotiated to the

lower limit.

Legal values are all positive numbers.

406 Technical Reference: Communications, Volume 2

Option Description

XTI_SNDBUF Adjusts the internal buffer size allocated for the send buffer.

This request is not an absolute requirement. The implementation may place upper and lower

limits on the option value. Requests that fall short of the lower limit are negotiated to the

lower limit.

Legal values are all positive numbers.

XTI_SNDLOWAT Sets a low-water mark in the send buffer. The option value gives the minimal number of bytes

that must have accumulated in the send buffer before they are sent.

This request is not an absolute requirement. The implementation may place upper and lower

limits on the option value. Requests that fall short of the lower limit are negotiated to the

lower limit.

Legal values are all positive numbers.

Valid States

ALL - except from T_UNINIT.

Return Values

 0 Successful completion.

-1 t_errno is set to indicate an error.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TACCES The user does not have permission to negotiate the specified options.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADFLAG An invalid flag was specified.

TBADOPT The specified options were in an incorrect format or contained illegal information.

TBUFOVFLW The number of bytes allowed for an incoming argument (maxlen) is greater than 0 but not sufficient

to store the value of that argument. The information to be returned in ret will be discarded.

TOUTSTATE The subroutine was issued in the wrong sequence.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open Transport

Interface (t_errno).

TSYSERR A system error has occurred during execution of this subroutine.

Related Information

The t_accept subroutine, t_alloc subroutine, t_connect subroutine, t_getinfo subroutine, t_listen

subroutine, t_open subroutine, t_rcvconnect subroutine.

t_rcv Subroutine for X/Open Transport Interface

Purpose

Receive data or expedited data sent over a connection.

Library

X/Open Transport Interface Library (libxti.a)

Chapter 3. Streams 407

Syntax

#include <xti.h>

int t_rcv (

 int fd,

 void *buf,

 unsigned int nbytes,

 int *flags)

Description

The t_rcv subroutine receives either normal or expedited data. By default, the t_rcv subroutine operates

in synchronous mode and waits for data to arrive if none is currently available. However, if O_NONBLOCK

is set via the t_open subroutine or the fcntl parameter, the, t_rcv subroutine executes in asynchronous

mode and fails if no data is available. (See the TNODATA error in ″Error Codes″ below.)

Parameters

 fd Identifies the local transport endpoint through which data will arrive.

buf Points to a receive buffer where user data will be placed.

nbytes Specifies the size of the receive buffer.

flags Specifies optional flags. This parameter may be set on return from the t_rcv subroutine. The possible

values are:

T_MORE

If set, on return from the call, indicates that there is more data, and the current transport service

data unit (TSDU) or expedited transport service data unit (ETSDU) must be received in multiple

t_rcv calls. In the asynchronous mode, the T_MORE flag may be set on return from the t_rcv

call even when the number of bytes received is less than the size of the receive buffer specified.

Each t_rcv call with the T_MORE flag set, indicates that another t_rcv call must follow to get

more data for the current TSDU. The end of the TSDU is identified by the return of a t_rcv call

with the T_MORE flag not set. If the transport provider does not support the concept of a TSDU

as indicated in the info parameter on return from the t_open or t_getinfo subroutines, the

T_MORE flag is not meaningful and should be ignored. If the nbytes parameter is greater than

zero on the call to t_rcv, t_rcv returns 0 only if the end of a TSDU is being returned to the user.

T_EXPEDITED

If set, the data returned is expedited data. If the number of bytes of expedited data exceeds the

value of the nbytes parameter, t_rcv will set T_EXPEDITED and T_MORE on return from the

initial call. Subsequent calls to retrieve the remaining ETSDU will have T_EXPEDITED set on

return. The end of the ETSDU is identified by the return of a t_rcv call with the T_MORE flag

not set.

 In synchronous mode, the only way to notify the user of the arrival of normal or expedited data

is to issue this subroutine or check for the T_DATA or T_EXDATA events using the t_look

subroutine. Additionally, the process can arrange to be notified via the Event Management

interface.

Valid States

T_DATAXFER, T_OUTREL.

Return Values

On successful completion, the t_rcv subroutine returns the number of bytes received. Otherwise, it returns

-1 on failure and t_errno is set to indicate the error.

408 Technical Reference: Communications, Volume 2

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TLOOK An asynchronous event has occurred on this transport endpoint and requires immediate

attention.

TNODATA O_NONBLOCK was set, but no data is currently available from the transport provider.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE The subroutine was issued in the wrong sequence on the transport endpoint referenced by the

fd parameter.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open

Transport Interface (t_errno).

TSYSERR A system error has occurred during execution of this subroutine.

Related Information

The fcntl subroutine, t_getinfo subroutine, t_look subroutine, t_open subroutine, t_snd subroutine.

t_rcvconnect Subroutine for X/Open Transport Interface

Purpose

Receive the confirmation from a connect request.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_rcvconnect (fd, call)

int fd;

struct t_call *call;

Description

The t_rcvconnect subroutine enables a calling transport user to determine the status of a previously sent

connect request and is used in conjunction with the t_connect subroutine to establish a connection in

asynchronous mode. The connection is established on successful completion of this subroutine.

Parameters

 fd Identifies the local transport endpoint where communication will be established.

Chapter 3. Streams 409

call Contains information associated with the newly established connection. The call parameter points to a t_call

structure which contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

The fields of the t_call structure are:

addr Returns the protocol address associated with the responding transport endpoint.

opt Presents any options associated with the connection.

udata Points to optional user data that may be returned by the destination transport user during

connection establishment.

sequence

Has no meaning for this subroutine.

The maxlen field of each t_call member must be set before issuing this subroutine to indicate the maximum

size of the buffer for each. However, the vale of the call parameter may be a null pointer, in which case no

information is given to the user on return from the t_rcvconnect subroutine. By default, the t_rcvconnect

subroutine executes in synchronous mode and waits for the connection to be established before returning.

On return, the addr, opt and udata fields reflect values associated with the connection.

If O_NONBLOCK is set (via the t_open subroutine or fcntl), the t_rcvconnect subroutine executes in

asynchronous mode, and reduces to a poll for existing connect confirmations. If none are available, the

t_rcvconnect subroutine fails and returns immediately without waiting for the connection to be established.

(See TNODATA in ″Error Codes″ below.) In this case, the t_rcvconnect subroutine must be called again to

complete the connection establishment phase and retrieve the information returned in the call parameter.

Valid States

T_OUTCON

Return Values

 0 Successful completion.

-1 t_errno is set to indicate an error.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allocated for an incoming argument (maxlen) is greater than 0 but not

sufficient to store the value of that argument, and the connect information to be returned in call

will be discarded. The provider’s state, as seen by the user, will be changed to T_DATAFER.

TLOOK An asynchronous event has occurred on the transport connection and requires immediate

attention.

TNODATA O_NONBLOCK was set, but a connect confirmation has not yet arrived.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE The subroutine was issued in the wrong sequence on the transport endpoint referenced by the

fd parameter.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open

Transport Interface (t_errno).

TSYSERR A system error has occurred during execution of this subroutine.

410 Technical Reference: Communications, Volume 2

Related Information

The t_accept subroutine, t_alloc subroutine, t_bind subroutine, t_connect subroutine, t_listen

subroutine, t_open subroutine, t_optmgmt subroutine.

t_rcvdis Subroutine for X/Open Transport Interface

Purpose

Retrieve information from disconnect.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_rcvdis (fd, discon)

int fd;

struct t_discon *discon;

Description

The t_rcvdis subroutine identifies the cause of a disconnect and retrieves any user data sent with the

disconnect.

Parameters

 fd Identifies the local transport endpoint where the connection existed.

discon Points to a t_discon structure containing the following members:

struct netbuf udata;

int reason;

int sequence;

The t_discon structure fields are:

reason Specifies the reason for the disconnect through a protocol-dependent reason code.

udata Identifies any user data that was sent with the disconnect.

sequence

May identify an outstanding connect indication with which the disconnect is associated. The

sequence field is only meaningful when the t_rcvdis subroutine is issued by a passive transport

user who has executed one or more t_listen subroutines and is processing the resulting

connect indications. If a disconnect indication occurs, the sequence field can be used to identify

which of the outstanding connect indications is associated with the disconnect.

If a user does not care if there is incoming data and does not need to know the value of the reason or

sequence fields, the discon field value may be a null pointer and any user data associated with the

disconnect will be discarded. However, if a user has retrieved more than one outstanding connect

indication (via the t_listen subroutine) and the discon field value is a null pointer, the user will be unable

to identify with which connect indication the disconnect is associated.

Valid States

T_DATAXFER, T_OUTCON, T_OUTREL, T_INREL, T_INCON(ocnt > 0).

Chapter 3. Streams 411

Return Values

 0 Successful completion.

-1 t_errno is set to indicate an error.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allocated for incoming data (maxlen) is greater than 0 but not sufficient to

store the data. If the fd parameter is a passive endpoint with ocnt > 1, it remains in state

T_INCON; otherwise, the endpoint state is set to T_IDLE.

TNODIS No disconnect indication currently exists on the specified transport endpoint.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE The subroutine was issued in the wrong sequence on the transport endpoint referenced by the

fd parameter.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open

Transport Interface (t_errno).

TSYSERR A system error has occurred during execution of this subroutine.

Related Information

The t_alloc subroutine, t_connect subroutine, t_listen subroutine, t_open subroutine, t_snddis

subroutine.

t_rcvrel Subroutine for X/Open Transport Interface

Purpose

Acknowledging receipt of an orderly release indication.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_rcvrel (fd)

int fd;

Description

The t_rcvrel subroutine is used to acknowledge receipt of an orderly release indication. After receipt of

this indication, the user may not attempt to receive more data because such an attempt will block forever.

However, the user may continue to send data over the connection if the t_sndrel subroutine has not been

called by the user. This function is an optional service of the transport provider, and is only supported if the

transport provider returned the T_COTS_ORD service type on t_open or t_getinfo calls.

Parameter

 fd Identifies the local transport endpoint where the connection exists.

412 Technical Reference: Communications, Volume 2

Valid States

T_DATAXFER, T_OUTREL.

Return Values

 0 Successful completion.

-1 t_errno is set to indicate an error.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TLOOK An asynchronous event has occurred on this transport endpoint and requires immediate

attention.

TNOREL No orderly release indication currently exists on the specified transport endpoint.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE The subroutine was issued in the wrong sequence on the transport endpoint referenced by the

fd parameter.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open

Transport Interface (t_errno).

TSYSERR A system error has occurred during execution of this subroutine.

Related Information

The t_getinfo subroutine, t_open subroutine, t_sndrel subroutine.

t_rcvudata Subroutine for X/Open Transport Interface

Purpose

Receive a data unit.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_rcvudata (fd, unitdata, flags)

int fd;

struct t_unitdata *unitdata;

int *flags;

Description

The t_rcvudata subroutine is used in connectionless mode to receive a data unit from another transport

user.

By default, the t_rcvudata subroutine operates in synchronous mode and waits for a data unit to arrive if

none is currently available. However, if O_NONBLOCK is set (via the t_open subroutine or fcntl), the

t_rcvudata subroutine executes in asynchronous mode and fails if no data units are available.

Chapter 3. Streams 413

If the buffer defined in the udata field of the unitdata parameter is not large enough to hold the current

data unit, the buffer is filled and T_MORE is set in the flags parameter on return to indicate that another

t_rcvudata subroutine should be called to retrieve the rest of the data unit. Subsequent calls to the

t_rcvudata subroutine return zero for the length and options until the full data unit is received.

Parameters

 fd Identifies the local transport endpoint through which data will be received.

unitdata Holds information associated with the received data unit. The unitdata parameter points to a

t_unitdata structure containing the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

On return from this call:

addr Specifies the protocol address of the sending user.

opt Identifies options that were associated with this data unit.

udata Specifies the user data that was received.

The maxlen field of addr, opt, and udata must be set before calling this subroutine to indicate the

maximum size of the buffer for each.

flags Indicates that the complete data unit was not received.

Valid States

T_IDLE

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and t_errno is

set to indicate an error.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TBODATA O_NONBLOCK was set, but no data units are currently available from the transport provider.

TBUFOVFLW The number of bytes allocated for the incoming protocol address or options (maxlen) is greater

than 0 but not sufficient to store the information. The unit data information to be returned in the

unitdata parameter is discarded.

TLOOK An asynchronous event has occurred on the transport endpoint and requires immediate

attention.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE The subroutine was issued in the wrong sequence on the transport endpoint referenced by the

fd parameter.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open

Transport Interface (t_errno).

TSYSERR A system error has occurred during execution of this subroutine.

Related Information

The fcntl subroutine, t_alloc subroutine, t_open subroutine, t_rcvuderr subroutine, t_sndudata

subroutine.

414 Technical Reference: Communications, Volume 2

t_rcvuderr Subroutine for X/Open Transport Interface

Purpose

Receive a unit data error indication.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_rcvuderr (fd, uderr)

int fd;

struct t_uderr *uderr;

Description

The t_rcvuderr subroutine is used in connectionless mode to receive information concerning an error on a

previously sent data unit, and should only be issued following a unit data error indication. It informs the

transport user that a data unit with a specific destination address and protocol options produced an error.

Parameters

 fd Identifies the local transport endpoint through which the error report will be received.

uderr Points to a t_uderr structure containing the following members:

struct netbuf addr;

struct netbuf opt;

long error;

The maxlen field of add and opt must be set before calling this subroutine to indicate the maximum size of

the buffer for each.

On return from this call:

addr Specifies the destination protocol address of the erroneous data unit.

opt Identifies options that were associated with the data unit.

error Specifies a protocol-dependent error code.

If the user does not care to identify the data unit that produced an error, uderr may be set to a null pointer,

and the t_rcvuderr subroutine simply clears the error indication without reporting any information to the

user.

Valid States

T_IDLE

Return Values

 0 Successful completion.

-1 t_errno is set to indicate an error.

Chapter 3. Streams 415

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allocated for the incoming protocol address or options (maxlen) is greater

than 0 but not sufficient to store the information. The unit data information to be returned in the

uderr parameter is discarded.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TNOUDERR No unit data error indication currently exists on the specified transport endpoint.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open

Transport Interface (t_errno).

TSYSERR A system error has occurred during execution of this subroutine.

Related Information

The t_rcvudata subroutine, t_sndudata subroutine.

t_snd Subroutine for X/Open Transport Interface

Purpose

Send data or expedited data over a connection.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_snd (

 int fd,

 void *buf,

 unsigned int nbytes,

 int *flags)

Description

The t_snd subroutine is used to send either normal or expedited data. By default, the t_snd subroutine

operates in synchronous mode and may wait if flow control restrictions prevents the data from being

accepted by the local transport provider at the time the call is made. However, if O_NONBLOCK is set

(via the t_open subroutine or fcntl), the t_snd subroutine executes in asynchronous mode, and fails

immediately if there are flow control restrictions. The process can arrange to be informed when the flow

control restrictions are cleared via either the t_look subroutine or the Event Management interface.

On successful completion, the t_snd subroutine returns the number of bytes accepted by the transport

provider. Normally this equals the number of bytes specified in the nbytes parameter. However, if

O_NONBLOCK is set, it is possible that only part of the data is actually accepted by the transport

provider. In this case, the t_snd subroutine returns a value that is less than the value of the nbytes

parameter. If the value of the nbytes parameter is zero and sending of zero octets is not supported by the

underlying transport service, the t_snd subroutine returns -1 with t_errno set to TBADDATA.

It is important to remember that the transport provider treats all users of a transport endpoint as a single

user. Therefore if several processes issue concurrent t_snd calls then the different data may be

intermixed.

416 Technical Reference: Communications, Volume 2

Multiple sends which exceed the maximum TSDU or ETSDU size may not be discovered by the X/Open

Transport Interface. In this case an implementation-dependent error will result (generated by the transport

provider) perhaps on a subsequent XTI call. This error may take the form of a connection abort, a

TSYSERR. a TBADDATA or a TPROTO error.

If multiple sends which exceed the maximum TSDU or ETSDU size are detected by the X/Open Transport

Interface, t_snd fails with TBADDATA.

Parameters

 fd Identifies the local transport endpoint over which data should be sent.

buf Points to the user data.

nbytes Specifies the number of bytes of user data to be sent.

flags Specifies any optional flags described below:

T_EXPEDITED

If set in the flags parameter, the data is sent as expedited data and is subject to the

interpretations of the transport provider.

T_MORE

If set in the flags parameter, indicates to the transport provider that the transport service data

unit (TSDU) (or expedited transport service data unit - ETSDU) is being sent through multiple

t_snd calls. Each t_snd call with the T_MORE flag set indicates that another t_snd call will

follow with more data for the current TSDU (or ETSDU).

 The end of the TSDU (or ETSDU) is identified by a t_snd call with the T_MORE flag not set.

Use of T_MORE enables a user to break up large logical data units without losing the

boundaries of those units at the other end of the connection. The flag implies nothing about how

the data is packaged for transfer below the transport interface. If the transport provider does not

support the concept of a TSDU, as indicated in the info parameter on return from the t_open or

t_getinfo subroutines, the T_MORE flag is not meaningful and is ignored if set.

 The sending of a zero-length fragment of a TSDU or ETSDU is only permitted where this is

used to indicate the end of a TSDU or ETSDU, for example, when the T_MORE flag is not set.

Some transport providers also forbid zero-length TSDUs and ETSDUs. See Appendix A, ISO

Transport Protocol Information for a fuller explanation.

Valid States

T_DATAXFER, T_INREL.

Return Values

On successful completion, the t_snd subroutine returns the number of bytes accepted by the transport

provider. Otherwise, -1 is returned on failure and t_errno is set to indicate the error.

Note, that in asynchronous mode, if the number of bytes accepted by the transport provider is less than

the number of bytes requested, this may indicate that the transport provider is blocked due to flow control.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

Chapter 3. Streams 417

Value Description

TBADDATA Illegal amount of data:

v A single send was attempted specifying a TSDU (ETSDU) or fragment TSDU (ETSDU)

greater than that specified by the current values of the TSDU or ETSDU fields in the info

argument;

v a send of a zero byte TSDU (ETSDU) or zero byte fragment of a TSDU (ETSDU) is not

supported by the provider (see Appendix A, ISO Transport Protocol Information) .

v multiple sends were attempted resulting in a TSDU (ETSDU) larger than that specified by the

current value of the TSDU or ETSDU fields in the info argument - the ability of an XTI

implementation to detect such an error case is implementation-dependent. See

″Implementation Specifics″.

TBADFLAG An invalid flag was specified.

TFLOW O_NONBLOCK was set, but the flow control mechanism prevented the transport provider from

accepting any data at this time.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TLOOK An asynchronous event has occurred on this transport endpoint.

TOUTSTATE The subroutine was issued in the wrong sequence on the transport endpoint referenced by the

fd parameter.

TSYSERR A system error has occurred during execution of this subroutine.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open

Transport Interface (t_errno).

Related Information

The t_getinfo subroutine, t_open subroutine, t_rcv subroutine.

t_snddis Subroutine for X/Open Transport Interface

Purpose

Send user-initiated disconnect request.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_snddis (

 int fd,

 const struct t_call *call)

Description

The t_snddis subroutine is used to initiate an abortive release on an already established connection, or to

reject a connect request.

The t_snddis subroutine is an abortive disconnect. Therefore a t_snddis call issued on a connection

endpoint may cause data previously sent via the t_snd subroutine, or data not yet received, to be lost

(even if an error is returned).

Parameters

 fd Identifies the local transport endpoint of the connection.

418 Technical Reference: Communications, Volume 2

call Specifies information associated with the abortive release. The call parameter points to a t_call structure

which contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

The values in the call parameter have different semantics, depending on the context of the call to the

t_snddis subroutine. When rejecting a connect request, the call parameter must be non-null and contain a

valid value of sequence to uniquely identify the rejected connect indication to the transport provider. The

sequence field is only meaningful if the transport connection is in the T_INCON state. The addr and opt fields

of the call parameter are ignored. In all other cases, the call parameter need only be used when data is

being sent with the disconnect request. The addr, opt and sequence fields of the t_call structure are ignored.

If the user does not wish to send data to the remote user, the value of the call parameter may be a null

pointer.

The udata field specifies the user data to be sent to the remote user. The amount of user data must not

exceed the limits supported by the transport provider, as returned in the the t_open or t_getinfo subroutines

info parameter discon field. If the len field of udata is zero, no data will be sent to the remote user.

Valid States

T_DATAXFER, T_OUTCON, T_OUTREL, T_INREL, T_INCON(ocnt > 0).

Return Values

 0 Successful completion.

-1 t_errno is set to indicate an error.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADDATA The amount of user data specified was not within the bounds allowed by the transport provider.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADSEQ An invalid sequence number was specified, or a null call pointer was specified, when rejecting

a connect request.

TLOOK An asynchronous event, which requires attention has occurred.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE The subroutine was issued in the wrong sequence on the transport endpoint referenced by the

fd parameter.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open

Transport Interface (t_errno).

TSYSERR A system error has occurred during execution of this subroutine.

Related Information

The t_connect subroutine, t_getinfo subroutine, t_listen subroutine, t_open subroutine.

t_sndrel Subroutine for X/Open Transport Interface

Purpose

Initiate an orderly release.

Chapter 3. Streams 419

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_sndrel (fd)

int fd;

Description

The t_sndrel subroutine is used to initiate an orderly release of a transport connection and indicates to the

transport provider that the transport user has no more data to send.

After calling the t_sndrel subroutine, the user may not send any more data over the connection. However,

a user may continue to receive data if an orderly release indication has not been received. This subroutine

is an optional service of the transport provider and is only supported if the transport provider returned

service type T_COTS_ORD on the t_open or t_getinfo subroutines.

Parameter

 fd Identifies the local transport endpoint where the connection exists.

Valid States

T_DATAXFER, T_INREL.

Return Values

 0 Successful completion.

-1 t_errno is set to indicate an error.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TFLOW O_NONBLOCK was set, but the flow control mechanism prevented the transport provider from

accepting the subroutine at this time.

TLOOK An asynchronous event has occurred on this transport endpoint and requires immediate

attention.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE The subroutine was issued in the wrong sequence on the transport endpoint referenced by the

fd parameter.

TPROTO This error indicates that a communication problem has been detected between X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open

Transport Interface (t_errno).

TSYSERR A system error has occurred during execution of this subroutine.

Related Information

The t_getinfo subroutine, t_open subroutine, t_rcvrel subroutine.

420 Technical Reference: Communications, Volume 2

t_sndudata Subroutine for X/Open Transport Interface

Purpose

Send a data unit.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_sndudata (

 int fd,

 const struct t_unitdata *unitdata)

Description

The t_sndudata subroutine is used in connectionless mode to send a data unit from another transport

user.

By default, the t_sndudata subroutine operates in synchronous mode and waits if flow control restrictions

prevents the data from being accepted by the local transport provider at the time the call is made.

However, if O_NONBLOCK is set (via the t_open subroutine or fcntl), the t_sndudata subroutine

executes in asynchronous mode and fails under such conditions. The process can arrange to be notified of

the clearance of a flow control restriction via either the t_look subroutine or the Event Management

interface.

If the amount of data specified in the udata field exceeds the TSDU size as returned in the t_open or

t_getinfo subroutines info parameter tsdu field, a TBADDATA error will be generated. If the t_sndudata

subroutine is called before the destination user has activated its transport endpoint (see the t_bind

subroutine), the data unit may be discarded.

If it is not possible for the transport provider to immediately detect the conditions that cause the errors

TBADDADDR and TBADOPT. These errors will alternatively be returned by the t_rcvuderr subroutine.

Therefore, an application must be prepared to receive these errors in both of these ways.

Parameters

 fd Identifies the local transport endpoint through which data will be sent.

unitdata Points to a t_unitdata structure containing the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

In the unitdata structure:

addr Specifies the protocol address of the destination user.

opt Identifies options that the user wants associated with this request.The user may choose not

to specify what protocol options are associated with the transfer by setting the len field of

opt to zero. In this case, the provider may use default options.

udata Specifies the user data to be sent. If the len field of udata is zero, and sending of zero

octets is not supported by the underlying transport service, the t_sndudata subroutine

returns -1 with t_errno set to TBADDATA.

Chapter 3. Streams 421

Valid States

T_IDLE

Return Values

 0 Successful completion.

-1 t_errno is set to indicate an error.

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADADDR The specified protocol address was in an incorrect format or contained illegal information.

TBADDATA Illegal amount of data. A single send was attempted specifying a TSDU greater than that

specified in the info parameter, or a send of a zero byte TSDU is not supported by the provider.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADOPT The specified options were in an incorrect format or contained illegal information.

TFLOW O_NONBLOCK was set, but the flow control mechanism prevented the transport provider from

accepting any data at this time.

TLOOK An asynchronous event has occurred on the transport endpoint.

TNOTSUPPORT This subroutine is not supported by the underlying transport provider.

TOUTSTATE The subroutine was issued in the wrong sequence on the transport endpoint referenced by the

fd parameter.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open

Transport Interface (t_errno).

TSYSERR A system error has occurred during execution of this subroutine.

Related Information

The fcntl subroutine, t_alloc subroutine, t_open subroutine, t_rcvudata subroutine, t_rcvuderr

subroutine.

t_strerror Subroutine for X/Open Transport Interface

Purpose

Produce an error message string.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

const char *t_strerror (

int errnum)

Description

The t_strerror subroutine maps the error number to a language-dependent error message string and

returns a pointer to the string. The error number specified by the errnum parameter corresponds to an

X/Open Transport Interface error. The string pointed to is not modified by the program, but may be

overwritten by a subsequent call to the t_strerror subroutine. The string is not terminated by a newline

422 Technical Reference: Communications, Volume 2

character. The language for error message strings written by the t_strerror subroutine is

implementation-defined. If it is English, the error message string describing the value in t_errno is identical

to the comments following the t_errno codes defined in the xti.h header file. If an error code is unknown,

and the language is English, t_strerror returns the string.

"<error>: error unknown"

where <error> is the error number supplied as input. In other languages, an equivalent text is provided.

Parameter

 errnum Specifies the error number.

Valid States

ALL - except T_UNINIT.

Return Values

The t_strerror subroutine returns a pointer to the generated message string.

Related Information

The t_error subroutine.

t_sync Subroutine for X/Open Transport Interface

Purpose

Synchronize transport library.

Library

X/Open Transport Interface Library (libxti.a)

Syntax

#include <xti.h>

int t_sync (fd)

int fd;

Description

The t_sync subroutine synchronizes the data structures managed by the transport library with information

from the underlying transport provider. In doing so, if the file descriptor referenced a transport endpoint,

the subroutine can convert an uninitialized file descriptor (obtained using the open or dup subroutines or

as a result of a fork operation and an exec operation) to an initialized transport endpoint, by updating and

allocating the necessary library data structures. This subroutine also allows two cooperating processes to

synchronize their interaction with a transport provider.

For example, if a process forks a new process and issues an exec operation, the new process must issue

a t_sync to build the private library data structure associated with a transport endpoint and to synchronize

the data structure with the relevant provider information.

It is important to remember that the transport provider treats all users of a transport endpoint as a single

user. If multiple processes are using the same endpoint, they should coordinate their activities so as not to

violate the state of the transport endpoint. The t_sync subroutine returns the current state of the transport

endpoint to the user, thereby enabling the user to verify the state before taking further action. This

Chapter 3. Streams 423

coordination is only valid among cooperating processes; it is possible that a process or an incoming event

could change the endpoint’s state after a t_sync call is issued.

If the transport endpoint is undergoing a state transition when the t_sync subroutine is called, the

subroutine will fail.

Parameter

 fd Specifies the transport endpoint.

Valid States

ALL - except T_UNINIT.

Return Values

On successful completion, the state of the transport endpoint is returned. Otherwise, a value of -1 is

returned and t_errno is set to indicate an error. The state returned is one of the following:

 Value Description

T_UNBND Unbound.

T_IDLE Idle.

T_OUTCON Outgoing connection pending.

T_INCON Incoming connection pending.

T_DATAXFER Data transfer.

T_OUTREL Outgoing orderly release (waiting for an orderly release indication).

T_INREL Incoming orderly release (waiting for an orderly release request).

Error Codes

On failure, t_errno is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint. This error may be returned

when the fd parameter has been previously closed or an erroneous number may have been

passed to the call.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open

Transport Interface (t_errno).

TSTATECHNG The transport endpoint is undergoing a state change.

TSYSERR A system error has occurred during execution of this function.

Related Information

The dup subroutine, exec subroutine, fork subroutine, open subroutine.

t_unbind Subroutine for X/Open Transport Interface

Purpose

Disable a transport endpoint.

Library

X/Open Transport Interface Library (libxti.a)

424 Technical Reference: Communications, Volume 2

Syntax

#include <xti.h>

int t_unbind (fd)

int fd;

Description

The t_unbind subroutine disables the transport endpoint which was previously bound by t_bind. On

completion of this call, no further data or events destined for this transport endpoint are accepted by the

transport provider. An endpoint which is disabled by using the t_unbind subroutine can be enabled by a

subsequent call to the t_unbind subroutine.

Parameter

 fd Specifies the transport endpoint.

Valid States

T_IDLE

Return Values

 0 Successful completion.

-1 t_errno is set to indicate an error.

Errors

On failure, t_errno is set to one of the following:

 Value Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TOUTSTATE The subroutine was issued in the wrong sequence.

TLOOK An asynchronous event has occurred on this transport endpoint.

TSYSERR A system error has occurred during execution of this subroutine.

TPROTO This error indicates that a communication problem has been detected between the X/Open

Transport Interface and the transport provider for which there is no other suitable X/Open Transport

Interface (t_errno).

Related Information

The t_bind subroutine.

Options for the X/Open Transport Interface

Options are formatted according to the t_opthdr structure as described in ″Use of Options for the

X/Open Transport Interface″. A transport provider compliant to this specification supports none, all, or any

subset of the options defined in the following sections: ″TCP/IP-Level Options″ to ″IP-level Options″. An

implementation may restrict the use of any of these options by offering them only in the privileged or

read-only mode.

Chapter 3. Streams 425

TCP-Level Options

The protocol level is INET_TCP. For this level, the following table shows the options that are defined.

 TCP-Level Options

Option Name Type of Option Value Legal Option Value Meaning

TCP_KEEPALIVE struct t_kpalive see text following table check if connections are live

TCP_MAXSEG unsigned long length in octets get TCP maximum segment size

TCP_NODELAY unsigned long T_YES T_NO don’t delay send to coalesce packets

 TCP_KEEPALIVE If set, a keep-alive timer is activated to monitor idle connections that may no longer exist. If

a connection has been idle since the last keep-alive timeout, a keep-alive packet is sent to

check if the connection is still alive or broken.

Keep-alive packets are not an explicit feature of TCP, and this practice is not universally

accepted. According to RFC 1122:

″a keep-alive mechanism should only be invoked in server applications that might otherwise

hang indefinitely and consume resources unnecessarily if a client crashes or aborts a

connection during a network failure.″

The option value consists of a structure t_kpalive declared as:

struct t_kpalive {

 long kp_onoff;

 long kp_timeout;

}

The t_kpalive fields and the possible values are:

kp_onoff

Switches option on or off. Legal values for the field are:

T_NO Switch keep-alive timer off.

T_YES Activate keep-alive timer.

T_YES | T_GARBAGE

Activate keep-alive timer and send garbage octet.

Usually, an implementation should send a keep-alive packet with no data

(T_GARBAGE not set). If T_GARBAGE is set, the keep-alive packet contains one

garbage octet for compatibility with erroneous TCP implementations.

 An implementation is, however, not obliged to support T_GARBAGE (see RFC

1122). Since the kp_onoff value is an absolute requirement, the request ″T_YES |

T_GARBAGE″ may therefore be rejected.

kp_timeout

Specifies the keep-alive timeout in minutes. This field determines the frequency of

keep-alive packets being sent, in minutes. The transport user can request the

default value by setting the field to T_UNSPEC. The default is

implementation-dependent, but at least 120 minutes (see RFC 1122). Legal values

for this field are T_UNSPEC and all positive numbers.

 The timeout value is not an absolute requirement. The implementation may pose

upper and lower limits to this value. Requests that fall short of the lower limit may

be negotiated to the lower limit.

 The use of this option might be restricted to privileged users.

TCP_MAXSEG Used to retrieve the maximum TCP segment size. This option is read-only.

426 Technical Reference: Communications, Volume 2

TCP_NODELAY Under most circumstances, TCP sends data as soon as it is presented. When outstanding

data has not yet been acknowledged, it gathers small amounts of output to be sent in a

single packet once an acknowledgment is received. For a small number of clients, such as

window systems (for example, Enhanced AIXwindows) that send a stream of mouse events

which receive no replies, this packetization may cause significant delays. TCP_NODELAY

is used to defeat this algorithm. Legal option values are:

T_YES Do not delay.

T_NO Delay.

These options are not association-related. The options may be negotiated in all X/Open Transport

Interface states except T_UNBIND and T_UNINIT. The options are read-only in the T_UNBIND state. See

″The Use of Options for the X/Open Transport Interface″ for the differences between association-related

options and those options that are not.

Absolute Requirements

A request for TCP_NODELAY and a request to activate TCP_KEEPALIVE is an absolute requirement.

TCP_MAXSEG is a read-only option.

UDP-level Options

The protocol level is INET_UDP. The option defined for this level is shown in the following table.

 UDP-Level Options

Option Name Type of Option Value Legal Option Value Meaning

UDP_CHECKSUM unsigned long T_YES/T_NO checksum computation

 UDP_CHECKSUM Allows disabling and enabling of the UDP checksum computation. The legal values are:

T_YES Checksum enabled.

T_NO Checksum disabled.

This option is association-related. It may be negotiated in all XTI states except T_UNBIND

and T_UNINIT. It is read-only in state T_UNBND.

If this option is returned with the t_rcvudata subroutine, its value indicates whether a

checksum was present in the received datagram or not.

Numerous cases of undetected errors have been reported when applications chose to turn off

checksums for efficiency. The advisability of ever turning off the checksum check is very

controversial.

Absolute Requirements

A request for this option is an absolute requirement.

IP-level Options

The protocol level is INET_IP. The options defined for this level are listed in the following table.

 IP-Level Options

Option Name Type of Option Value Legal Option Value Meaning

IP_BROADCAST unsigned int T_YES/T_NO permit sending of broadcast messages

IP_DONTROUTE unsigned int T_YES/T_NO just use interface addresses

IP_OPTIONS array of unsigned characters see text IP per-packet options

IP_REUSEADDR unsigned int T_YES/T_NO allow local address reuse

Chapter 3. Streams 427

IP-Level Options

Option Name Type of Option Value Legal Option Value Meaning

IP_TOS unsigned char see text IP per-packet type of service

IP_TTL unsigned char time in seconds IP per packet time-to-live

 IF_BROADCAST Requests permission to send broadcast datagrams. It was defined to make sure that

broadcasts are not generated by mistake. The use of this option is often restricted to

privileged users.

IP_DONTROUTE Indicates that outgoing messages should bypass the standard routing facilities. It is mainly

used for testing and development.

IP_OPTIONS Sets or retrieves the OPTIONS field of each outgoing (incoming) IP datagram. Its value is a

string of octets composed of a number of IP options, whose format matches those defined in

the IP specification with one exception: the list of addresses for the source routing options

must include the first-hop gateway at the beginning of the list of gateways. The first-hop

gateway address will be extracted from the option list and the size adjusted accordingly

before use.

The option is disabled if it is specified with ″no value,″ for example, with an option header

only.

The t_connect (in synchronous mode), t_listen, t_rcvconnect and t_rcvudata subroutines

return the OPTIONS field, if any, of the received IP datagram associated with this call. The

t_rcvuderr subroutine returns the OPTIONS field of the data unit previously sent that

produced the error. The t_optmgmt subroutine with T_CURRENT set retrieves the currently

effective IP_OPTIONS that is sent with outgoing datagrams.

Common applications never need this option. It is mainly used for network debugging and

control purposes.

IP_REUSEADDR Many TCP implementations do not allow the user to bind more than one transport endpoint to

addresses with identical port numbers. If IP_REUSEADDR is set to T_YES this restriction is

relaxed in the sense that it is now allowed to bind a transport endpoint to an address with a

port number and an underspecified internet address (″wild card″ address) and further

endpoints to addresses with the same port number and (mutually exclusive) fully specified

internet addresses.

428 Technical Reference: Communications, Volume 2

IP_TOS Sets or retrieves the type-of-service field of an outgoing (incoming) IP datagram. This field

can be constructed by any OR’ed combination of one of the precedence flags and the

type-of-service flags T_LDELAY, T_HITHRPT, and T_HIREL:

v Precedence:

These flags specify datagram precedence, allowing senders to indicate the importance of

each datagram. They are intended for Department of Defense applications. Legal flags are:

T_ROUTINE

T_PRIORITY

T_IMMEDIATE

T_FLASH

T_OVERRIDEFLASH

T_CRITIC_ECP

T_INETCONTROL

T_NETCONTROL

Applications using IP_TOS but not the precedence level should use the value T_ROUTINE

for precedence.

v Type of service:

These flags specify the type of service the IP datagram desires. Legal flags are:

T_NOTOS

requests no distinguished type of service

T_LDELAY

requests low delay

T_HITHRPT

requests high throughput

T_HIREL

requests high reliability

The option value is set using the macro SET_TOS(prec, tos) where prec is set to one of

the precedence flags and tos to one or an OR’ed combination of the type-of-service flags.

SET_TOS returns the option value.

The t_connect, t_listen, t_rcvconnect and t_rcvudata subroutines return the

type-of-service field of the received IP datagram associated with this call. The t_rcvuderr

subroutine returns the type-of-service field of the data unit previously sent that produced

the error.

The t_optmgmt subroutine with T_CURRENT set retrieves the currently effective IP_TOS

value that is sent with outgoing datagrams.

The requested type-of-service cannot be guaranteed. It is a hint to the routing algorithm

that helps it choose among various paths to a destination. Note also, that most hosts and

gateways in the Internet these days ignore the type-of-service field.

IP_TIL This option is used to set the time-to-live field in an outgoing IP datagram. It specifies how

long, in seconds, the datagram is allowed to remain in the Internet. The time-to-live field of an

incoming datagram is not returned by any function (since it is not an association-related

option).

IP_OPTIONS and IP_TOS are both association-related options. All other options are not

association-related.

IP_REUSEADDR may be negotiated in all XTI states except T_UNINIT. All other options may be

negotiated in all other XTI states except T_UNBND and T_UNINIT; they are read-only in the state

T_UNBND.

Absolute Requirements

A request for any of these options in an absolute requirement.

Chapter 3. Streams 429

430 Technical Reference: Communications, Volume 2

Chapter 4. Packet Capture Library Subroutines

The packet capture library contains subroutines that allow users to communicate with the packet capture

facility provided by the operating system to read unprocessed network traffic. Applications using these

subroutines must be run as root. These subroutines are maintained in the libpcap.a library:

v pcap_close

v pcap_compile

v pcap_datalink

v pcap_dispatch

v pcap_dump

v pcap_dump_close

v pcap_dump_open

v pcap_file

v pcap_fileno

v pcap_geterr

v pcap_is_swapped

v pcap_lookupdev

v pcap_lookupnet

v pcap_loop

v pcap_major_version

v pcap_minor_version

v pcap_next

v pcap_open_live

v pcap_open_offline

v pcap_perror

v pcap_setfilter

v pcap_snapshot

v pcap_stats

v pcap_strerror

© Copyright IBM Corp. 1997, 2005 431

432 Technical Reference: Communications, Volume 2

Index

Special characters
_getlong subroutine 25

_getshort subroutine 26

_ll_log subroutine 3

_putlong subroutine 27

_putshort subroutine 28

/etc/hosts file
closing 41

opening 192, 193

retrieving host entries 66, 67, 68, 70, 72

setting file markers 192, 193

/etc/networks file
closing 42, 43, 44

opening 196, 197

retrieving network entries 76, 77, 78, 79, 80, 81

setting file markers 196, 197

/etc/protocols file
closing 44, 45

opening 198, 199

retrieving protocol entries 85, 86, 87, 88, 89, 90

setting file markers 198, 199

/etc/resolv.conf file
retrieving host entries 66, 67, 68, 70

searching for domain names 159

searching for Internet addresses 159

/etc/services file
closing 46, 47

opening 97, 98, 200, 201

reading 97, 98

retrieving service entries 92, 93, 94, 96

setting file markers 200, 201

A
accept subroutine 29

adjmsg utility 243

administrative operations
providing interface for 312

allocb utility 243, 245

arp subroutines
arpresolve_common 30

arpupdate 31

arpresolve_common subroutine 30

arpupdate subroutine 31

ASCII strings
converting to Internet addresses 130

asynchronous mode
sending data 355

B
backq utility 244

bcanput utility 245

bind subroutine 33

bufcall utility 245, 368

byte streams
placing long byte quantities 27

byte streams (continued)
placing short byte quantities 28

C
canput utility 247

clients
server authentication 174

clone device driver 247

code, terminating section 315

communications kernel service subroutines
res_ninit 162

compressed domain names
expanding 39

connect subroutine 34

connected sockets
creating pairs 225

receiving messages 153

sending messages 179, 182

connection requests
accepting 325

listening 340

receiving confirmation 348

connectionless mode
receiving data 353

receiving error data 354

sending data 359

converter subroutines
inet_net_ntop 125

inet_net_pton 126

inet_ntop 131

inet_pton 132

copyb utility 248

copymsg utility 248

CreateIoCompletionPort Subroutine 36

current domain names
returning 65

setting 191

current host identifiers
retrieving 73

D
data

receiving normal or expedited 347

sending over connection 355

data blocks
allocating 253

data link provider, providing interface 250

datamsg utility 249

default domains
searching names 158

disconnects
identifying cause and retrieving data 350

user-initiated requests 357

dlpi STREAMS driver 250

dn_comp subroutine 38

© Copyright IBM Corp. 1997, 2005 435

dn_expand subroutine 39

domain names
compressing 38

drivers
installing 317

setting processor levels 315

dupb utility 251

dupmsg utility 251

E
enableok utility 252

endhostent subroutine 41

endhostent_r subroutine 41

endnetent subroutine 42

endnetent_r subroutine 43

endnetgrent subroutine 133

endnetgrent_r subroutine 44

endprotoent subroutine 44

endprotoent_r subroutine 45

endservent subroutine 46

endservent_r subroutine 47

error logs
generating messages 323

error messages
producing 334

esballoc utility 253

ether_aton subroutine 47

ether_hostton subroutine 47

ether_line subroutine 47

ether_ntoa subroutine 47

ether_ntohost subroutine 47

event traces
generating messages 323

F
file descriptors

testing 291

flow control
testing priority band 245

flushband utility 254

flushq utility 254

freeaddrinfo subroutine 61

freeb utility 255

freemsg utility 256

functions
scheduling calls 364

G
get_auth_method subroutine

authentication methods
list of 64

getaddrinfo subroutine 61

getadmin utility 256

getdomainname subroutine 65

gethostbyaddr subroutine 66

gethostbyaddr_r subroutine 67

gethostbyname subroutine 68

gethostbyname_r subroutine 70

gethostent subroutine 72

gethostent_r subroutine 72

gethostid subroutine 73

gethostname subroutine 74

getmid utility 257

getmsg system call 257

getnameinfo subroutine 75

getnetbyaddr subroutine 76

getnetbyaddr_r subroutine 77

getnetbyname subroutine 78

getnetbyname_r subroutine 79

getnetent subroutine 80

getnetent_r subroutine 81

getnetgrent subroutine 133

getnetgrent_r subroutine 82

getpeername subroutine 83

getpmsg system call 260

getprotobyname subroutine 85

getprotobyname_r subroutine 86

getprotobynumber subroutine 87

getprotobynumber_r subroutine 88

getprotoent subroutine 89

getprotoent_r subroutine 90

getq utility 261

GetQueuedCompletionStatus Subroutine 91

getservbyname subroutine 92

getservbyname_r subroutine 93

getservbyport subroutine 94

getservbyport_r subroutine 96

getservent subroutine 97

getservent_r subroutine 98

getsmuxEntrybyidentity subroutine 1

getsmuxEntrybyname subroutine 1

getsockname subroutine 99

getsockopt subroutine 100

group network
entries in the

handling 82, 133, 197

H
host machines

setting names 195

setting unique identifiers 194

htonl subroutine 107

htons subroutine 107

I
I_ATMARK operation 274

I_CANPUT operation 274

I_CKBAND operation 275

I_FDINSERT operation 275

I_FIND operation 276

I_FLUSH operation 277

I_FLUSHBAND operation 277

I_GETBAND operation 278

I_GETCLTIME operation 278

I_GETSIG operation 279

I_GRDOPT operation 279

I_LINK operation 279

436 Technical Reference: Communications, Volume 2

I_LIST operation 280

I_LOOK operation 281

I_NREAD operation 281

I_PEEK operation 282

I_PLINK operation 282

I_POP operation 283

I_PUNLINK operation 284

I_PUSH operation 284

I_RECVFD operation 285

I_SENDFD operation 286

I_SETCLTIME operation 286

I_SETSIG operation 287

I_SRDOPT operation 288

I_STR operation 289

I_UNLINK operation 290

I/O Completion Port (IOCP) Kernel Extension
CreateCompletionPort 36

GetQueuedCompletionStatus 91

PostQueuedCompletionStatus 147

ReadFile 151

WriteFile 240

if_freenameindex subroutine 108

if_indextoname subroutine 109

if_nameindex subroutine 110

if_nametoindex subroutine 110

incoming connections
limiting backlog 144

inet_addr subroutine 120

inet_Inaof subroutine 123

inet_makeaddr subroutine 124

inet_net_ntop subroutine 125

inet_net_pton subroutine 126

inet_netof subroutine 127

inet_network subroutine 128

inet_ntoa subroutine 130

inet_ntop subroutine 131

inet_pton subroutine 132

inet6_opt_append Subroutine 111

inet6_opt_find Subroutine 112

inet6_opt_finish Subroutine 113

inet6_opt_get_val Subroutine 113

inet6_opt_init Subroutine 114

inet6_opt_next Subroutine 115

inet6_opt_set_val Subroutine 116

inet6_rth_add Subroutine 116

inet6_rth_getaddr Subroutine 117

inet6_rth_init Subroutine 117

inet6_rth_reverse Subroutine 118

inet6_rth_segments Subroutine 119

inet6_rth_space Subroutine 120

initializing logging facility variables 2

initiating SMUX peers 15

innetgr subroutine 133

insq utility 262

Internet addresses
constructing 124

converting 120

converting to ASCII strings 130

returning network addresses 123

searching 158

Internet numbers
converting Internet addresses 120

converting network addresses 128

ioctl commands 135

ioctl socket control operations 135

isastream function 291

isinet_addr Subroutine 141

ISODE library
extending base subroutines 9

initializing logging facility variables 2

logging subroutines 3

isodetailor subroutine 2

K
kvalid_user subroutine

DCE principal mapping 143

L
library structures

allocating 327

freeing 335

linkb utility 291

listen subroutine 144

ll_dbinit subroutine 3

ll_hdinit subroutine 3

ll_log subroutine 3

local host names
retrieving 74

long byte quantities
retrieving 25

long integers, converting
from host byte order 107

from network byte order 145

to host byte order 145

to network byte order 107

M
Management Information Base (MIB)

registering a section 16

mapping
Ethernet number 47

memory management subroutines
getaddrinfo 61

getnameinfo 75

if_freenameindex 108

mi_bufcall Utility 292

mi_close_comm Utility 293

mi_next_ptr Utility 294

mi_open_comm Utility 295

MIB variables
encoding values from 5

setting variable values 11

minor devices, opening on another driver 247

modules
comparing names 276

installing 317

listing all names on stream 280

pushing to top 284

Index 437

modules (continued)
removing below stream head 283

retrieving name below stream head 281

retrieving pointer to write queue 375

returning IDs 257

returning pointer to 256

returning pointer to read queue 310

setting processor level 315

testing flow control 245

msgdsize utility 296

multiplexed streams
connecting 279, 282

disconnecting 284, 290

N
name servers

creating packets 159

creating query messages 159

retrieving responses 168

sending queries 168

name2inst subroutine 22

names
binding to sockets 33

network addresses
converting 128

returning 123

returning network numbers 127

network entries
retrieving 80, 81

retrieving by address 76, 77

retrieving by name 78, 79

network host entries
retrieving 72

retrieving by address 66, 67

retrieving by name 68, 70

network host files
opening 192, 193

network services library
supporting transport interface functions 367

next2inst subroutine 22

nextot2inst subroutine 22

noenable utility 252, 297

ntohl subroutine 145

ntohs subroutine 146

O
o_ subroutines 5

o_generic subroutine 5

o_igeneric subroutine 5

o_integer subroutine 5

o_ipaddr subroutine 5

o_number subroutine 5

o_specific subroutine 5

o_string subroutine 5

object identifier data structure 7

object tree (OT)
freeing 14

MIB list 14

ode2oid subroutine 7

OID
adjusting the values of entries 9

converting text strings to 23

extending number of entries in 9

manipulating entries 9

OID (object identifier data structure)
manipulating the 7

oid_cmp subroutine 7

oid_cpy subroutine 7

oid_extend subroutine 9

oid_free subroutine 7

oid_normalize subroutine 9

oid2ode subroutine 7

oid2ode_aux subroutine 7

oid2prim subroutine 7

Options 425

OTHERQ utility 297

P
peer entries 1

peer socket names
retrieving 83

pfmod Packet Filter Module
upstream data messages, removing 298

PostQueuedCompletionStatus Subroutine 147

prim2oid 7

priority bands
checking write status 274

flushing messages 254

processor levels, setting 315

protocol data unit (PDU) 12

sending 17

sending an open 18

protocol entries
retrieving 89, 90

retrieving by name 85, 86

retrieving by number 87, 88

psap.h file 8

pullupmsg utility 301

putbq utility 302

putctl utility 303

putctl1 utility 302

putmsg system call 304

putnext utility 306

putpmsg system call 306

putq utility 307

Q
qenable utility 309

qreply utility 309

qsize utility 310

queries
awaiting response 166

querying 100

queue bands
flushing messages 277

438 Technical Reference: Communications, Volume 2

R
rcmd subroutine 148

rcmd_af Subroutine 150

RD utility 310

read mode
returning current settings 279

setting 288

ReadFile Subroutine 151

readobjects subroutine 10

recv subroutine 153

recvfrom subroutine 155

recvmsg subroutine 157

register I/O points
wantio utility 371

release indications, acknowledging 352

remote hosts
executing commands 148

starting command execution 169

reporting errors to log files 3

res_init subroutine 158

res_mkquery subroutine 159

res_ninit subroutine 162

res_query subroutine 164

res_search subroutine 166

res_send subroutine 168

retrieving variables 22

rexec subroutine 169

rexec_af Subroutine 171

rmvb utility 311

rmvq utility 311

rresvport subroutine 172

rresvport_af Subroutine 173

ruserok subroutine 174

S
s_generic subroutine 11

sad device driver 312

SCTP subroutines
sctp_opt_info 176

sctp_peeloff 177

sctpctrl 178

sctp_opt_info subroutine 176

sctp_peeloff subroutine 177

sctpctrl subroutine 178

send subroutine 179

send_file
send the contents of file through a socket 185

send_file subroutine
socket options 185

sendmsg subroutine 181

sendto subroutine 183

server query mechanisms
providing interfaces to 164

service entries
retrieving by name 92, 93

retrieving by port 94, 96

service file entries
retrieving 97, 98

set_auth_method subroutine
authentication methods

list of 190

setdomainname subroutine 191

sethostent subroutine 192

sethostent_r subroutine 193

sethostid subroutine 194

sethostname subroutine 195

setnetent subroutine 196

setnetent_r subroutine 197

setnetgrent subroutine 133

setnetgrent_r subroutine 197

setprotoent subroutine 198

setprotoent_r subroutine 199

setservent subroutine 200

setservent_r subroutine 201

setsockopt subroutine 202

short byte quantities
retrieving 26

short integers, converting
from host byte order 107

from network byte order 146

to host byte order 146

to network byte order 107

shutdown subroutine 210

SIGPOLL signal
informing stream head to issue 287

returning events of calling process 279

SLP subroutines
SLPAttrCallback 211

SLPClose 212

SLPEscape 213

SLPFindAttrs 214

SLPFindScopes 215

SLPFindSrvs 215

SLPFindSrvTypes 216

SLPFree 217

SLPGetProperty 218

SLPOpen 218

SLPParseSrvURL 220

SLPSrvTypeCallback 220

SLPSrvURLCallback 221

SLPUnescape 222

SLPAttrCallback subroutine 211

SLPClose subroutine 212

SLPEscape subroutine 213

SLPFindAttrs subroutine 214

SLPFindScopes subroutine 215

SLPFindSrvs subroutine 215

SLPFindSrvTypes subroutine 216

SLPFree subroutine 217

SLPGetProperty subroutine 218

SLPOpen subroutine 218

SLPParseSrvURL subroutine 220

SLPSrvTypeCallback subroutine 220

SLPSrvURLCallback subroutine 221

SLPUnescape subroutine 222

SMUX
communicating with the SNMP agent 17

communicating with the snmpd daemon 15

ending SNMP communications 12

Index 439

SMUX (continued)
initiating transmission control protocol (TCP) 15

peer responsibility level 16

reading a MIB variable structure into 10

reading the smux_errno variable 13

registering an MIB tree for 16

retreiving peer entries 1

sending an open PDU 18

sending traps to SNMP 20

setting debug level for subroutines 15

unregistered trees 14

waiting for a message 21

smux_close subroutine 12

smux_error subroutine 13

smux_free_tree subroutine 14

smux_init subroutine 15

smux_register subroutine 16

smux_response subroutine 17

smux_simple_open subroutine 18

smux_trap subroutine 20

smux_wait subroutine 21

smux.h file 13

SNMP multiplexing peers 1

snmpd daemon
incoming messages alert 18

snmpd.peers file 1

socket connections
accepting 29

listening 144

socket names
retrieving 99

socket options
setting 202

socket receive operations
disabling 210

socket send operations
disabling 210

socket subroutine 223

socket subroutines
freeaddrinfo subroutine 61

if_indextoname subroutine 109

if_nameindex subroutine 110

if_nametoindex subroutine 110

inet6_opt_append 111

inet6_opt_find 112

inet6_opt_finish 113

inet6_opt_get_val 113

inet6_opt_init 114

inet6_opt_next 115

inet6_opt_set_val 116

inet6_rth_add 116

inet6_rth_getaddr 117

inet6_rth_init 117

inet6_rth_reverse 118

inet6_rth_segments 119

inet6_rth_space 120

rcmd_af 150

rexec_af 171

rresvport_af 173

socketpair subroutine 225

sockets
connecting 34

creating 223

initiating TCP for SMUX peers 15

managing 239

retrieving with privileged addresses 172

sockets kernel service subroutines
accept 29

bind 33

connect 34

dn_comp 38

getdomainname 65

gethostid 73

gethostname 74

getpeername 83

getsockname 99

getsockopt 100

listen 144

recv 153

recvfrom 155

recvmsg 157

send 179

sendmsg 181

sendto 183

setdomainname 191

sethostid 194

sethostname 195

setsockopt 202

shutdown 210

socket 223

socketpair 225

sockets messages
receiving from connected sockets 153

receiving from sockets 155, 157

sending through any socket 182

sockets network library subroutines
_getlong 25

_getshort 26

_putlong 27

_putshort 28

dn_expand 39

endhostent 41

endhostent_r 41

endnetent 42

endnetent_r 43

endnetgrent_r 44

endprotoent 44

endprotoent_r 45

endservent 46

endservent_r 47

gethostbyaddr 66

gethostbyaddr_r 67

gethostbyname 68

gethostbyname_r 70

gethostent 72

gethostent_r 72

getnetbyaddr 76

getnetbyaddr_r 77

getnetbyname 78

getnetbyname_r 79

getnetent 80

440 Technical Reference: Communications, Volume 2

sockets network library subroutines (continued)
getnetent_r 81

getprotobyname 85

getprotobyname_r 86

getprotobynumber 87

getprotobynumber_r 88

getprotoent 89

getprotoent_r 90

getservbyname 92

getservbyname_r 93

getservbyport 94

getservbyport_r 96

getservent 97

getservent_r 98

htonl 107

htons 107

inet_addr 120

inet_Inaof 123

inet_makeaddr 124

inet_netof 127

inet_network 128

inet_ntoa 130

ntohl 145

ntohs 146

rcmd 148

res_init 158

res_mkquery 159

res_query 164

res_search 166

res_send 168

rexec 169

rresvport 172

ruserok 174

sethostent 192

sethostent_r 193

setnetent 196

setnetent_r 197

setprotoent 198

setprotoent_r 199

setservent 200

setservent_r 201

sockets-based protocols, providing access 375

splice subroutine 239

splstr utility 315

splx utility 315

sprintoid subroutine 7

srv utility 315

messages queued 315

str_install utility 317

str2oid subroutine 7

stream heads
checking queue for message 275

counting data bytes in first message 281

issuing SIGPOLL signal 287

removing modules 283

retrieving messages 282

retrieving module names 281

returning set delay time 278

setting delay 286

streamio operations
I_ATMARK 274

streamio operations (continued)
I_CANPUT 274

I_CKBAND 275

I_FDINSERT 275

I_FIND 276

I_FLUSH 277

I_FLUSHBAND 277

I_GETBAND 278

I_GETCLTIME 278

I_GETSIG 279

I_GRDOPT 279

I_LINK 279

I_LIST 280

I_LOOK 281

I_NREAD 281

I_PEEK 282

I_PLINK 282

I_POP 283

I_PUNLINK 284

I_PUSH 284

I_RECVFD 285

I_SENDFD 286

I_SETCLTIME 286

I_SETSIG 287

I_SRDOPT 288

I_STR 289

I_UNLINK 290

STREAMS
mi_bufcall Utility 292

mi_close_comm Utility 293

mi_next_ptr Utility 294

mi_open_comm Utility 295

performing control functions 321

unweldq Utility 370

weldq Utility 374

STREAMS buffers
checking availability 363

STREAMS device drivers
clone 247

sad 312

STREAMS drivers
dlpi 250

xtiso 375

STREAMS message blocks
copying 248

duplicating descriptors 251

freeing 255, 256

removing from head of message 368

removing from messages 311

STREAMS messages
allocating 253

allocating data blocks 243

checking buffer availability 363

checking markings 274

concatenating 291

concatenating and aligning data bytes 301

constructing internal ioctl 289

converting streamio operations 365

counting data bytes 281

creating control 302, 303

Index 441

STREAMS messages (continued)
creating, adding information, and sending

downstream 275

determining whether data message 249

duplicating 251

flushing in given priority band 254

generating error-logging and event-tracing 323

getting next from queue 261

getting next priority 260

getting off stream 257

passing to next queue 306

placing in queue 262

putting on queue 307

removing from queue 311

retrieving file descriptors 285

retrieving without removing 282

returning number of data bytes 296

returning number on queue 310

returning priority band of first on queue 278

returning to beginning of queue 302

sending 304

sending in reverse direction 309

sending priority 306

sending to stream head at other end of stream

pipe 286

trimming bytes 243

STREAMS modules
timod 365

tirdwr 367

STREAMS queues
checking for messages 275

counting data bytes in first message 281

enabling 309

flushing 254

flushing input or output 277

getting next message 261

obtaining information 324

passing message to next 306

preventing scheduling 297

putting messages on 307

retrieving pointer to write queue 375

returning message to beginning 302

returning number of messages 310

returning pointer to mate 297

returning pointer to preceding 244

returning pointer to read queue 310

returning priority band of first message 278

scheduling for service 252

testing for space 247

STREAMS subroutines
isastream 291

t_accept 325

t_alloc 327

t_bind 329

t_close 331

t_connect 332

t_error 334

t_free 335

t_getinfo 336

t_getstate 339

t_listen 340

STREAMS subroutines (continued)
t_look 342

t_open 343

t_optmgmt 345

t_rcv 347

t_rcvconnect 348

t_rcvdis 350

t_rcvrel 352

t_rcvudata 353

t_rcvuderr 354

t_snd 355

t_snddis 357

t_sndrel 358

t_sndudata 359

t_sync 361

t_unbind 362

STREAMS system calls
getmsg 257

getpmsg 260

putmsg 304

putpmsg 306

STREAMS utilities
adjmsg 243

allcob 243

backq 244

bcanput 245

bufcall 245

canput 247

copyb 248

copymsg 248

datamsg 249

dupb 251

dupmsg 251

enableok 252

esballoc 253

flushband 254

flushq 254

freeb 255

freemsg 256

getadmin 256

getmid 257

getq 261

insq 262

linkb 291

msgdsize 296

noenable 297

OTHERQ 297

pullupmsg 301

putbq 302

putctl 303

putctl1 302

putnext 306

putq 307

qenable 309

qreply 309

qsize 310

RD 310

rmvb 311

rmvq 311

splstr 315

splx 315

442 Technical Reference: Communications, Volume 2

STREAMS utilities (continued)
str_install 317

strlog 323

strqget 324

testb 363

timeout 364

unbufcall 368

unlinkb 368

untimeout 369

WR 375

string conversions 23

strlog utility 323

strqget utility 324

synchronous mode
sending data 355

T
t_accept subroutine 325

t_accept Subroutine 377

t_alloc subroutine 327

t_alloc Subroutine 379

t_bind subroutine 329

t_bind Subroutine 381

t_close subroutine 331

t_close Subroutine 384

t_connect subroutine 332

t_connect Subroutine 385

t_error subroutine 334

t_error Subroutine 387

t_free subroutine 335

t_free Subroutine 388

t_getinfo subroutine 336

t_getinfo Subroutine 390

t_getprotaddr Subroutine 392

t_getstate subroutine 339

t_getstate Subroutine 393

t_listen subroutine 340

t_listen Subroutine 394

t_look subroutine 342

t_look Subroutine 396

t_open subroutine 343

t_open Subroutine 397

t_opthdr 425

t_optmgmt subroutine 345

t_optmgmt Subroutine 401

t_rcv subroutine 347

t_rcv Subroutine 407

t_rcvconnect subroutine 348

t_rcvconnect Subroutine 409

t_rcvdis subroutine 350

t_rcvdis Subroutine 411

t_rcvrel subroutine 352

t_rcvrel Subroutine 412

t_rcvudata subroutine 353

t_rcvudata Subroutine 413

t_rcvuderr Subroutine 415

t_rdvuderr subroutine 354

t_snd subroutine 355

t_snd Subroutine 416

t_snddis subroutine 357

t_snddis Subroutine 418

t_sndrel subroutine 358

t_sndrel Subroutine 419

t_sndudata subroutine 359

t_sndudata Subroutine 421

t_strerror Subroutine 422

t_sync subroutine 361

t_sync Subroutine 423

t_unbind subroutine 362

t_unbind Subroutine 424

testb utility 363

text2inst subroutine 22

text2obj subroutine 23

text2oid subroutine 23

timeout utility 364, 369

timod module 365

tirdwr module 367

transport connections, initiating release 358

transport endpoints
binding addresses 329

closing 331

disabling 362

establishing 343

establishing connection 332

examining current events 342

getting current states 339

managing options 345

transport interfaces
converting streamio operations into messages 365

supporting network services library functions 367

transport library, synchronizing data 361

transport protocols
getting service information 336

traps 20

U
unbufcall utility 368

unconnected sockets
receiving messages 155

sending messages 182, 183

unique identifiers
retrieving 73

unlinkb utility 368

untimeout utility 369

unweldq Utility 370

V
variable bindings 5

variable initialization 2

W
wantio utility 371

wantmsg Utility 372

weldq Utility 374

WR utility 375

write queue
retrieve a pointer to 375

WriteFile Subroutine 240

Index 443

X
xtiso STREAMS driver 375

444 Technical Reference: Communications, Volume 2

Vos remarques sur ce document / Technical publication remark form

Titre / Title : Bull AIX 5L Technical Reference Communications

Nº Reférence / Reference Nº : 86 A2 80EM 02 Daté / Dated : October 2005

ERREURS DETECTEES / ERRORS IN PUBLICATION

AMELIORATIONS SUGGEREES / SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Vos remarques et suggestions seront examinées attentivement.

Si vous désirez une réponse écrite, veuillez indiquer ci-après votre adresse postale complète.

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.

If you require a written reply, please furnish your complete mailing address below.

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

Remettez cet imprimé à un responsable BULL ou envoyez-le directement à :

Please give this technical publication remark form to your BULL representative or mail to:

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

Technical Publications Ordering Form

Bon de Commande de Documents Techniques

To order additional publications, please fill up a copy of this form and send it via mail to:

Pour commander des documents techniques, remplissez une copie de ce formulaire et envoyez-la à :

BULL CEDOC
ATTN / Mr. L. CHERUBIN
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Phone / Téléphone : +33 (0) 2 41 73 63 96
FAX / Télécopie +33 (0) 2 41 73 60 19
E–Mail / Courrier Electronique : srv.Cedoc@franp.bull.fr

Or visit our web sites at: / Ou visitez nos sites web à:

http://www.logistics.bull.net/cedoc

http://www–frec.bull.com http://www.bull.com

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

[_ _] : no revision number means latest revision / pas de numéro de révision signifie révision la plus récente

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

PHONE / TELEPHONE : FAX :

E–MAIL :

For Bull Subsidiaries / Pour les Filiales Bull :

Identification:

For Bull Affiliated Customers / Pour les Clients Affiliés Bull :

Customer Code / Code Client :

For Bull Internal Customers / Pour les Clients Internes Bull :

Budgetary Section / Section Budgétaire :

For Others / Pour les Autres :

Please ask your Bull representative. / Merci de demander à votre contact Bull.

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

86 A2 80EM 02

ORDER REFERENCE

	Contents
	About This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	32-Bit and 64-Bit Support for the Single UNIX Specification
	Related Publications

	Chapter 1. Simple Network Management Protocol (SNMP)
	getsmuxEntrybyname or getsmuxEntrybyidentity Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	isodetailor Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Files
	Related Information

	ll_hdinit, ll_dbinit, _ll_log, or ll_log Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	o_number, o_integer, o_string, o_igeneric, o_generic, o_specific, or o_ipaddr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	oid_cmp, oid_cpy, oid_free, sprintoid, str2oid, ode2oid, oid2ode, oid2ode_aux, prim2oid, or oid2prim Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	oid_extend or oid_normalize Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	readobjects Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	s_generic Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	smux_close Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	smux_error Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	smux_free_tree Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	smux_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	smux_register Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	smux_response Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	smux_simple_open Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	smux_trap Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	smux_wait Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	text2inst, name2inst, next2inst, or nextot2inst Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	text2oid or text2obj Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	Chapter 2. Sockets
	_getlong Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	_getshort Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	_putlong Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Files
	Related Information

	_putshort Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Files
	Related Information

	accept Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	arpresolve_common Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	arpupdate Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	bind Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	connect Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	CreateIoCompletionPort Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	dn_comp Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	dn_expand Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	endhostent Subroutine
	Purpose
	Library
	Syntax
	Description
	Files
	Related Information

	endhostent_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Files
	Related Information

	endnetent Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Files
	Related Information

	endnetent_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Files
	Related Information

	endnetgrent_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Files
	Related Information

	endprotoent Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Files
	Related Information

	endprotoent_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Files
	Related Information

	endservent Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Files
	Related Information

	endservent_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Files
	Related Information

	ether_ntoa, ether_aton, ether_ntohost, ether_hostton, or ether_line Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	FrcaCacheCreate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	FrcaCacheDelete Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	FrcaCacheLoadFile Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	FrcaCacheUnloadFile Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	FrcaCtrlCreate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	FrcaCtrlDelete Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	FrcaCtrlLog Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	FrcaCtrlStart Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	FrcaCtrlStop Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	freeaddrinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	getaddrinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	get_auth_method Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Related Information

	getdomainname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	gethostbyaddr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	gethostbyaddr_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	gethostbyname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Files
	Related Information

	gethostbyname_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	gethostent Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Files
	Related Information

	gethostent_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	gethostid Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	gethostname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getnameinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	getnetbyaddr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getnetbyaddr_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getnetbyname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getnetbyname_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getnetent Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Files
	Related Information

	getnetent_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getnetgrent_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getpeername Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	getprotobyname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	getprotobyname_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	getprotobynumber Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getprotobynumber_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getprotoent Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Files
	Related Information

	getprotoent_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	GetQueuedCompletionStatus Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	getservbyname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getservbyname_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getservbyport Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getservbyport_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getservent Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Files
	Related Information

	getservent_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getsockname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getsockopt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	htonl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	htons Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	if_freenameindex Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	if_indextoname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	if_nameindex Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	if_nametoindex Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	inet6_opt_append Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	inet6_opt_find Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	inet6_opt_finish Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	inet6_opt_get_val Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	inet6_opt_init Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	inet6_opt_next Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	inet6_opt_set_val Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	inet6_rth_add Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	inet6_rth_getaddr Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	inet6_rth_init Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	inet6_rth_reverse Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	inet6_rth_segments Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	inet6_rth_space Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	inet_addr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	inet_lnaof Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	inet_makeaddr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	inet_net_ntop Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	inet_net_pton Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	inet_netof Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	inet_network Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	inet_ntoa Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	inet_ntop Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	inet_pton Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	innetgr, getnetgrent, setnetgrent, or endnetgrent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	ioctl Socket Control Operations
	Purpose
	Syntax
	Description
	Parameters
	Socket Control Operations
	Routing Table Control Operations
	ARP Table Control Operations
	Global Network Parameters Control Operations
	Interface Control Operations
	Return Values
	Error Codes
	Related Information

	isinet_addr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	kvalid_user Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	listen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	ntohl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ntohs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	PostQueuedCompletionStatus Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	rcmd Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	rcmd_af Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	ReadFile Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	recv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	recvfrom Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	recvmsg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	res_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Files
	Related Information

	res_mkquery Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	res_ninit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Files
	Related Information

	res_query Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	res_search Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	res_send Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	rexec Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	rexec_af Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	rresvport Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	rresvport_af Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	ruserok Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	sctp_opt_info Subroutine
	Purpose
	Library
	Syntax
	Description
	Implementation Specifics
	Parameters
	Return Values
	Error Codes
	Related Information

	sctp_peeloff Subroutine
	Purpose
	Library
	Syntax
	Description
	Implementation Specifics
	Parameters
	Return Values
	Error Codes
	Related Information

	sctpctrl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Files
	Related Information

	send Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	sendmsg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	sendto Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	send_file Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Related Information

	set_auth_method Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Related Information

	setdomainname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	sethostent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Files
	Related Information

	sethostent_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Files
	Related Information

	sethostid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	sethostname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	setnetent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	setnetent_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Files
	Related Information

	setnetgrent_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	setprotoent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	setprotoent_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Files
	Related Information

	setservent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	setservent_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Files
	Related Information

	setsockopt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	shutdown Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SLPAttrCallback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	SLPClose Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	SLPEscape Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	SLPFindAttrs Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	SLPFindScopes Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	SLPFindSrvs Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	SLPFindSrvTypes Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	SLPFree Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	SLPGetProperty Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	SLPOpen Subroutine
	Purpose
	Syntax
	Description
	Implementation Specifics
	Parameters
	Return Values
	Error Codes
	Related Information

	SLPParseSrvURL Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	SLPSrvTypeCallback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	SLPSrvURLCallback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	SLPUnescape Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	socket Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	socketpair Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	socks5_getserv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes (placed in errno)
	Examples
	Related Information

	/etc/socks5c.conf File
	Purpose
	Description
	Security
	Examples
	Related Information

	socks5tcp_accept Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes (placed in errno; inherited from underlying call to connect())
	Error Codes (placed in socks5_errno; SOCKSv5-specific errors)
	Examples
	Related Information

	socks5tcp_bind Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes (placed in errno; inherited from underlying call to connect())
	Error Codes (placed in socks5_errno; SOCKSv5-specific errors)
	Examples
	Related Information

	socks5tcp_connect Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes (placed in errno; inherited from underlying call to connect())
	Error Codes (placed in socks5_errno; SOCKSv5-specific errors)
	Examples
	Related Information

	socks5udp_associate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes (placed in errno; inherited from underlying call to connect())
	Error Codes (placed in socks5_errno; SOCKSv5-specific errors)
	Examples
	Related Information

	socks5udp_sendto Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes (placed in errno; inherited from underlying call to sendto())
	Error Codes (placed in socks5_errno; SOCKSv5-specific errors)
	Examples
	Related Information

	splice Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	WriteFile Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	Chapter 3. Streams
	adjmsg Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	allocb Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	backq Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	bcanput Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	bufcall Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	canput Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clone Device Driver
	Purpose
	Description
	Related Information

	copyb Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	copymsg Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	datamsg Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dlpi STREAMS Driver
	Purpose
	Description
	Files
	Related Information

	dupb Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dupmsg Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	enableok Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	esballoc Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	flushband Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	flushq Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	freeb Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	freemsg Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	getadmin Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	getmid Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	getmsg System Call
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	getpmsg System Call
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	getq Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	insq Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ioctl Streams Device Driver Operations
	Purpose
	Syntax
	Description
	Parameters
	Return Value
	Errors
	Application Usage
	Related Information

	I_ATMARK streamio Operation
	Purpose
	Description
	Error Codes

	I_CANPUT streamio Operation
	Purpose
	Description
	Return Values
	Error Codes

	I_CKBAND streamio Operation
	Purpose
	Description
	Error Codes

	I_FDINSERT streamio Operation
	Purpose
	Description
	Error Codes

	I_FIND streamio Operation
	Purpose
	Description
	Error Codes

	I_FLUSH streamio Operation
	Purpose
	Description
	Error Codes

	I_FLUSHBAND streamio Operation
	Purpose
	Description
	Error Codes

	I_GETBAND streamio Operation
	Purpose
	Description
	Error Codes

	I_GETCLTIME streamio Operation
	Purpose
	Description

	I_GETSIG streamio Operation
	Purpose
	Description
	Error Codes

	I_GRDOPT streamio Operation
	Purpose
	Description
	Error Codes

	I_LINK streamio Operation
	Purpose
	Description
	Error Codes

	I_LIST streamio Operation
	Purpose
	Description
	Error Codes

	I_LOOK streamio Operation
	Purpose
	Syntax
	Description
	Error Codes

	I_NREAD streamio Operation
	Purpose
	Description
	Return Values
	Error Codes

	I_PEEK streamio Operation
	Purpose
	Description
	Error Codes

	I_PLINK streamio Operation
	Purpose
	Description
	Error Codes

	I_POP streamio Operation
	Purpose
	Description
	Error Codes

	I_PUNLINK streamio Operation
	Purpose
	Description
	Error Codes

	I_PUSH streamio Operation
	Purpose
	Description
	Error Codes

	I_RECVFD streamio Operation
	Purpose
	Description
	Error Codes

	I_SENDFD streamio Operation
	Purpose
	Description
	Error Codes

	I_SETCLTIME streamio Operation
	Purpose
	Description
	Error Codes

	I_SETSIG streamio Operation
	Purpose
	Description
	Error Codes

	I_SRDOPT streamio Operation
	Purpose
	Description
	Error Codes

	I_STR streamio Operation
	Purpose
	Description
	Error Codes

	I_UNLINK streamio Operation
	Purpose
	Description
	Error Codes
	Related Information

	isastream Function
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	linkb Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	mi_bufcall Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	mi_close_comm Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mi_next_ptr Utility
	Purpose
	Syntax
	Description
	Parameter
	Return Values
	Related Information

	mi_open_comm Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	msgdsize Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	noenable Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	OTHERQ Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pfmod Packet Filter Module
	Purpose
	Synopsis
	Description
	IOCTLs
	Filters
	Configuration
	Example

	pullupmsg Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	putbq Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	putctl1 Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	putctl Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	putmsg System Call
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	putnext Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	putpmsg System Call
	Purpose
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	putq Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	qenable Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	qreply Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	qsize Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	RD Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	rmvb Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	rmvq Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	sad Device Driver
	Purpose
	Syntax
	Description
	Parameters
	Values for the command Parameter
	Return Values
	Error Codes
	Related Information

	splstr Utility
	Purpose
	Syntax
	Description
	Related Information

	splx Utility
	Purpose
	Syntax
	Description
	Related Information

	srv Utility
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	str_install Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	streamio Operations
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	strlog Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	strqget Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	t_accept Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_alloc Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_bind Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_close Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Code
	Related Information

	t_connect Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_error Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameter
	External Variables
	Examples
	Related Information

	t_free Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_getinfo Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_getstate Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Codes
	Error Codes
	Related Information

	t_listen Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_look Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	t_open Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_optmgmt Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_rcv Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_rcvconnect Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_rcvdis Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_rcvrel Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	t_rcvudata Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_rcvuderr Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_snd Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_snddis Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_sndrel Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	t_sndudata Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_sync Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	t_unbind Subroutine for Transport Layer Interface
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	testb Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	timeout Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Execution Environment
	Related Information

	timod Module
	Purpose
	Description
	Fields
	Examples
	Related Information

	tirdwr Module
	Purpose
	Description
	Related Information

	unbufcall Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	unlinkb Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	untimeout Utility
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Related Information

	unweldq Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wantio Utility
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	wantmsg Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Example
	Related Information

	weldq Utility
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	WR Utility
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	xtiso STREAMS Driver
	Purpose
	Description
	Files
	Related Information

	t_accept Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Valid States
	Return Values
	Error Codes
	Related Information

	t_alloc Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Valid States
	Return Values
	Error Codes
	Related Information

	t_bind Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Valid States
	Return Values
	Error Codes
	Related Information

	t_close Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameter
	Valid States
	Return Values
	Errors
	Related Information

	t_connect Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Valid States
	Return Values
	Error Codes
	Related Information

	t_error Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameter
	Valid States
	Return Values
	Errors Codes
	Examples
	Related Information

	t_free Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Valid States
	Return Values
	Error Codes
	Related Information

	t_getinfo Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Valid States
	Return Values
	Error Codes
	Related Information

	t_getprotaddr Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Valid States
	Return Values
	Error Codes
	Related Information

	t_getstate Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameter
	Valid States
	Return Values
	Error Codes
	Related Information

	t_listen Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Valid States
	Return Values
	Error Codes
	Related Information

	t_look Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameter
	Valid States
	Return Values
	Error Codes
	Related Information

	t_open Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Valid States
	Return Values
	Error Codes
	Related Information

	t_optmgmt Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	X/Open Transport Interface-Level Options
	Valid States
	Return Values
	Error Codes
	Related Information

	t_rcv Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Valid States
	Return Values
	Error Codes
	Related Information

	t_rcvconnect Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Valid States
	Return Values
	Error Codes
	Related Information

	t_rcvdis Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Valid States
	Return Values
	Error Codes
	Related Information

	t_rcvrel Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameter
	Valid States
	Return Values
	Error Codes
	Related Information

	t_rcvudata Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Valid States
	Return Values
	Error Codes
	Related Information

	t_rcvuderr Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Valid States
	Return Values
	Error Codes
	Related Information

	t_snd Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Valid States
	Return Values
	Error Codes
	Related Information

	t_snddis Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Valid States
	Return Values
	Error Codes
	Related Information

	t_sndrel Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameter
	Valid States
	Return Values
	Error Codes
	Related Information

	t_sndudata Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameters
	Valid States
	Return Values
	Error Codes
	Related Information

	t_strerror Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameter
	Valid States
	Return Values
	Related Information

	t_sync Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameter
	Valid States
	Return Values
	Error Codes
	Related Information

	t_unbind Subroutine for X/Open Transport Interface
	Purpose
	Library
	Syntax
	Description
	Parameter
	Valid States
	Return Values
	Errors
	Related Information

	Options for the X/Open Transport Interface
	TCP-Level Options
	UDP-level Options
	IP-level Options

	Chapter 4. Packet Capture Library Subroutines
	Index

