
TDS-TCP/IP

User's Guide

 D
PS

7
0
0
0
/
X
TA

N
O

VA
S
C

A
LE

 7
0
0
0

REFERENCE
47 A2 37UT 07

DPS7000/XTA
NOVASCALE 7000

TDS-TCP/IP
User's Guide

February 2005

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

REFERENCE
47 A2 37UT 07

Software

The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not
limited to, copying, distributing, modifying, and making derivative works.

Copyright Bull SAS 1998, 2005

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of this
book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

Intel® and Itanium® are registered trademarks of Intel Corporation.

Windows® and Microsoft® software are registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Linux® is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Bull will not be liable for errors contained
herein, or for incidental or consequential damages in connection with the use of this material.

47 A2 37UT iii

Preface

TDS-TCP/IP allows an application running on a Windows, Linux or AIX platform
to dialog with a TDS transaction on GCOS 7 in client/server mode via a TCP/IP
communication link.

The application on the station is called the client application, while the TDS
transaction running on GCOS 7 is called the server application.

This document presents the configuration commands, variations from standard
TDS master commands, and a subset of C-language XATMI functions for client
application development. Where applicable, references are given to relevant
information in the TDS Administration Guide and associated documents.

The list of associated documents is given below with reference numbers.

This guide is intended for:

• administrators and operators concerned with TDS generation and supervision,

• programmers responsible for developing client/server applications running on a
station that dialogs with a TDS transaction through a TCP/IP network.

Scope and
Objectives

Intended
Readers

TDS-TCP/IP User's Guide

iv 47 A2 37UT

This guide first gives an overview of TDS-TCP/IP, then describes the commands
required for its installation and use, and the API to be used for client application
development.

The summary of the contents of this manual is as follows:

Chapter 1 summarizes the features and requirements of
TDS-TCP/IP.

Chapter 2 describes the GCOS 7 TS 9764 added functionalities.

Chapter 3 describes commands executed for TDS administration.

Chapter 4 describes the API to be used for client application
development.

Chapter 5 describes error handling.

Chapter 6 describes TCP/IP transactions using the FORMS
facility.

Chapter 7 describes the protocol between SA7 and the client
application.

Chapter 8 describes the use of a client application on AIX and
Linux platforms.

This guide is a member of the set of TDS manuals:

TDS Concepts .. 47 A2 26UT
TDS Administrator's Guide ... 47 A2 32UT
TDS COBOL Programmer's Guide ... 47 A2 33UT
TDS C Language Programmer's Guide... 47 A2 07UT
TDS Quick Reference Handbook ... 47 A2 04UT

The following publications give information on topics related to running a TDS
application:

For configuring TDS-TCP/IP:
XTI GCOS 7 Name Services User's Guide ..47 A2 69UC
OPEN 7 Administrator's Reference Manual Vol. 1..................................47 A2 82UC
OPEN 7 Administrator's Reference Manual Vol. 2..................................47 A2 83UC
OPEN 7 Administrator's Reference Manual Vol. 3..................................47 A2 84UC

For generating the DPS 7000 network:
Network Overview and Concepts ..47 A2 92UC
Network Generation ..47 A2 93UC

Structure

Bibliography

Preface

47 A2 37UT v

For main console operator commands:
Network User's Guide..47 A2 94UC
GCOS 7 System Operator's Guide... 47 A2 53US

For status values and return codes:
Messages and Return Codes Directory ..47 A2 10UJ

Conventions for entering TP7GEN syntax

UPPERCASE indicates that this underlined item is a reserved
keyword, which must be specified if the clause in
which it appears, is required.

UPPERCASE indicates a reserved keyword that must be coded as
shown. It may be omitted.

item italics indicates a term for which the user supplies a
value.

[item] optional entry

{item|item|item} a list of items within braces means that only one is to
be selected if the introducing parameter is specified.
The item heading the list and appearing in bold is the
default value if the introducing parameter is not
specified. This list of parameters can also be vertical:
{item}
{item}
{item}

item . . . Three dots following an item indicate that more items
having the same form may appear.

Clause
 . Three vertical dots mean that part of a clause has been
 . intentionally omitted.
 .

||A|| Clauses enclosed in double vertical bars indicate only
one

||B|| occurrence of each.
||C||

Syntax
Notation

TDS-TCP/IP User's Guide

vi 47 A2 37UT

Conventions for entering the master command syntax

You can use this syntax:

• if you are logged on under a master mailbox

• or if the command is:
− stored in a subfile for execution by the M EXEC_TDS command
− to be executed via the Batch Interface
− to be executed via the spawning mechanism.

Command names and parameters follow the same naming convention. Separate:

• the command name and the first parameter by at least one blank

• parameters from each other by blanks or commas.

Each master command is followed by various position parameters and keywords.
A parameter can be specified as:

• a keyword introducing an argument

• a position parameter.

Keywords can be specified in any order. Both keywords and position parameters
can be mixed, in which case position parameters are interpreted as the values for
parameters whose rank is determined by the preceding keyword, if any.

Parameters must be constants. Use the following data types:

• character
• decimal
• boolean
• name
• star-name
• file.

EXAMPLE:

M CLOSE_TDS_FILE IFN=T1, DEASSIGN=1

Because full GCL facilities are not available, do not:

• use built-ins or GCL variables

• mix quoted and unquoted strings

• nest parentheses.

❑

47 A2 37UT vii

Table of Contents

1. Overview

1.1 Features of TDS-TCP/IP... 1-1

1.1.1 General Features... 1-1

1.1.2 Definitions and Terminology .. 1-2

1.1.3 Existing TDS Transactions .. 1-5

1.1.4 TDS-TCP/IP Client API.. 1-5

1.2 Users .. 1-6

1.3 Prerequisites .. 1-7

1.3.1 Hardware .. 1-7

1.3.2 Software .. 1-7

1.4 Delivery .. 1-8

1.4.1 Software for Windows.. 1-8

1.4.2 Software for Linux.. 1-9

1.4.3 Software for AIX... 1-9

1.5 Configuration .. 1-10

1.5.1 TDS Generation... 1-10

1.5.2 SOCKG 7 Sockets ... 1-10

1.5.3 Client stations .. 1-10

1.6 Security .. 1-11

1.7 API Programming .. 1-11

1.8 Limitations .. 1-12

1.8.1 TPR Programming Functions .. 1-12

1.8.2 Session Management Procedures .. 1-13

1.8.3 Configurability Rules.. 1-13

TDS-TCP/IP User's Guide

viii 47 A2 37UT

2. Added functionalities

2.1 AIX and Linux Clients.. 2-1

2.2 GCOS 7 TS 9764 added functionalities.. 2-1

2.2.1 Spawning on a TCP/IP correspondent .. 2-1
2.2.1.1 Active TCP/IP correspondent.. 2-1
2.2.1.2 Passive TCP/IP correspondent ... 2-2

2.2.2 Call SET-ACTIVE/SET-PASSIVE.. 2-2

2.2.3 MAXIMUM IDLE TIME... 2-2

2.2.4 WAIT-TIME.. 2-3

2.2.5 TERMINAL_ID... 2-3

2.2.6 DISCONNECTIONS issued by TDS.. 2-3

2.2.7 SECUR'ACCESS... 2-3

2.2.8 PASSTHRU functionality ... 2-4

2.3 GCOS 7 TS 9920 added functionalities.. 2-4

2.3.1 Reconnect with option Force ... 2-4

3. Server Administration

3.1 TDS Generation 3-1

3.1.1 TCP-IP PROTOCOL Clause ... 3-1

3.1.2 ATTACH SHARABLE MODULE Clause ... 3-2

3.1.3 Errors and Responses... 3-2

3.2 GCOS 7 Environment Configuration... 3-3

3.2.1 Description... 3-3

3.2.2 Declarations for OPEN 7 ... 3-3

3.2.3 Declarations for GXTI .. 3-4

3.3 Master Commands.. 3-5

3.3.1 Correspondent Management... 3-5
3.3.1.1 ALLOW_NEW_TDS_COR.. 3-6
3.3.1.2 CANCEL_TDS_COR .. 3-7
3.3.1.3 DISPLAY_TDS.. 3-8
3.3.1.4 LIST_TDS_COR ... 3-10
3.3.1.5 PREVENT_NEW_TDS_COR.. 3-12

3.3.2 Socket Management.. 3-13
3.3.2.1 CLOSE_TDS_SOCKET.. 3-14
3.3.2.2 DISPLAY_TDS_SOCKET (DTDSS) ... 3-15
3.3.2.3 OPEN_TDS_SOCKET .. 3-16

47 A2 37UT ix

4. Client Application Development

4.1 PC Environment Configuration ... 4-1

4.1.1 Description... 4-1

4.1.2 Configuration Declaratives .. 4-1

4.2 TDS-TCP/IP Client API ... 4-3

4.2.1 Composition of the API.. 4-4

4.2.2 Compiling the Client Program.. 4-4

4.3 C-Language XATMI Functions.. 4-5

4.3.1 tpalloc .. 4-5

4.3.2 tpconnect .. 4-7

4.3.3 tpdiscon .. 4-11

4.3.4 tpfree .. 4-12

4.3.5 tprecv .. 4-13

4.3.6 tpsend .. 4-15

4.3.7 tperrno .. 4-17

4.3.8 tperrdtl .. 4-18

4.4 Client States .. 4-19

4.5 Client Program Examples ... 4-20

4.5.1 Application Main Program ... 4-21

4.5.2 TDS API Interface.. 4-25

5. Error Handling

5.1 Sequence Integrity .. 5-1

5.1.1 Socket Closure in Abnormal Cases... 5-1

5.1.2 Commitment Unit Rollback .. 5-2

5.1.3 TDS Re-initialization .. 5-2

5.1.4 TDS Failure.. 5-2

5.1.5 TDS-HA Takeover ... 5-2

5.1.6 GCOS 7 Warm Restart after Crash... 5-2

5.2 Transaction Programming... 5-3

5.3 Client Error Messages .. 5-4

5.3.1 TDS ERROR MESSAGES .. 5-12

5.4 Client Trace .. 5-13

5.4.1 Activating the Trace... 5-13

TDS-TCP/IP User's Guide

x 47 A2 37UT

6. TCP/IP Transactions Using FORMS Facility

6.1 Generality .. 6-1

6.2 SDPI Verbs Particularities... 6-2

6.2.1 Forms Activation (CDGET).. 6-2

6.2.2 Forms Send (CDSEND) .. 6-2

6.2.3 Forms Receive (CDRECV).. 6-2

6.2.4 Forms Release (CDRELS) .. 6-3

6.2.5 Forms Purge Input Data (CDPURGE)... 6-3

6.2.6 Forms Attribute or List Attribute Selection (CDATTR or CDATTL) 6-3

6.2.7 Forms Identification (CDFIDI).. 6-3

6.2.8 Forms Mechanism Function (CDMECH)... 6-3

6.3 Limitations .. 6-4

6.4 Data Flow Example... 6-5

7. Protocol between SA7 and the client application

8. AIX or Linux Client

8.1 Installation .. 8-1

8.2 Configuration .. 8-2

8.3 Programming .. 8-3

8.4 Example .. 8-4

8.5 Debugging .. 8-11

8.5.1 Client Trace ... 8-11

8.5.2 Client Log .. 8-13

8.5.3 Logging of error messages at the console .. 8-13

 Glossary

 Index

47 A2 37UT xi

Table of Graphics

Figure 1-1. Components of TDS-TCP/IP on DPS7000 /TA 1-3
Figure 4-1. Client PC-TDS Dialog ... 4-20

Figures

TDS-TCP/IP User's Guide

xii 47 A2 37UT

Overview

47 A2 37UT 1-1

 1. Overview

1.1 Features of TDS-TCP/IP

1.1.1 General Features

TDS-TCP/IP allows an application located on a Windows, Linux or AIX platform
to dialog with a TDS transaction on GCOS 7 according to a Client/Server model.

The application located on the station is said to be the client application while the
TDS transaction running on GCOS 7 is the server application.

This conversational dialog is made up of messages exchanged via the network; it
takes place through the "de facto" standard communications network known as
TCP/IP that provides native TCP/IP support in a GCOS 7 TDS processing
environment.

Access to the TCP/IP network is via a layer of network services named the socket
interface (often abbreviated to socket). This layer is implemented on GCOS 7 by a
component called SOCKG 7 (SOCKet for GCOS 7), while on the stations, the
interface is a part of the operating system .

At application level (i.e., the client application and the server application), the
conversational dialog must respect the client/server rules defined by a subset of the
XATMI interface.

TDS-TCP/IP User's Guide

1-2 47 A2 37UT

On GCOS 7 (server)

• Existing TDS transactions can be used by a client application; these transactions
can be either in line mode or in formatted mode (i.e., using the FORMS
facility).

• At TDS transaction level, respect of the XATMI protocol is transparent; this is
done at a lower level by a new GCOS 7 component named SOCKG 7 that
converts the TDS specific verbs to the appropriate functions of the socket
interface.

• On DPS 7000 / TA, SOCKG 7 has access to lower communications layers
(sockets) using either OPEN 7 services or GXTI services. On DPS 7000 / XTA,
SOCKG7 is available by using an INTEROP 7 gateway.

• Generation and administration of the TDS TCP/IP link use TP7GEN and TDS
master commands.

On the station (client)

• The client application dialogs with a TDS transaction using a specific API
provided by BULL and installed on the station in a standard DLL (Dynamic
Link Library) on Windows machines or a shared library on Linux or AIX
machines.

• The API provided is a set of primitives, written in C language, which are
XATMI compliant; this allows the customer to develop the client application
with all Rapid Application Development tools (RAD) that can call the
functions provided by this API (such as WINDEV, VB, etc.).

1.1.2 Definitions and Terminology

The new features provided by TDS-TCP/IP introduce the concept of another kind
of transaction. These transactions are referred to as TCP/IP transactions to
distinguish them from other transactions running for OSI/DSA correspondents
(such as TM, XCP1, XCP2, etc.).

A TCP/IP transaction is a TDS transaction located on a DPS 7000 system started by
a client program located on a station, which converses with it through the socket
interface as described above.

A TCP/IP transaction is executed by a TCP/IP correspondent, during a TCP/IP
correspondent session.

A TCP/IP transaction dialogs with a client application located on a station via a
TCP/IP communication link.

Other terms and abbreviations are defined in the Glossary.

Overview

47 A2 37UT 1-3

The following diagrams show the components that interact via TDS-TCP/IP:

Figure 1-1. Components of TDS-TCP/IP on DPS7000 /TA

TDS-TCP/IP User's Guide

1-4 47 A2 37UT

Figure 1-2. Components of TDS-TCP/IP on DPS7000 /XTA

Overview

47 A2 37UT 1-5

1.1.3 Existing TDS Transactions

TDS-TCP/IP has an impact on TDS at generation level and at administration level,
but does not affect TPRs already coded. Such TPRs can be launched by a TCP/IP
correspondent without any modification (as they are) and whatever their
presentation mode (line mode or formatted mode).

Within the same TDS, OSI/DSA transactions can run simultaneously with TCP/IP
transactions.

In a given TDS, a transaction may be running simultaneously for a TCP/IP
correspondent and for an OSI/DSA correspondent.

Moreover, a given transaction can be running at the same time for a terminal
correspondent and for a TDS-TCP/IP correspondent.

1.1.4 TDS-TCP/IP Client API

Bull provides a TDS-TCP/IP client API for the development of client applications
that communicate with the TDS via a TCP/IP link. This API accesses functions on
the stations via a DLL or a shared library coded in C-Language.

It is the customer's responsibility to verify that the tool he wants to use for client
application development (C compiler and/or RAD tools) can correctly use the
TDS-TCP/IP client API provided by BULL.

The API is composed of the following functions written in C-Language:

• functions for conversational services: tpconnect, tpdiscon, tprecv and tpsend,

• functions for typed buffer management: tpalloc and tpfree.

Some complementary error management functions have been added to the standard
XATMI functions: tperrno and tperrdtl.

The functions provided by this API are available by accessing the DLL on the PC
or the shared library on AIX or Linux.

These functions are fully described in the chapter Client Application Development.

TDS-TCP/IP User's Guide

1-6 47 A2 37UT

1.2 Users

Two types of users are directly concerned with TDS-TCP/IP feature(s). They are:

• those in charge of TDS generation, and the associated GCOS 7 configuration
and supervision,

• developers of client applications running on a PC that use TDS services.

In addition, several types of users interact to enable the operation of TDS-TCP/IP:

• the TDS administrator, responsible for the generation step and the monitoring of
TDS applications,

• the GCOS 7 administrator, responsible for network generation,

• the OPEN 7 administrator, responsible for the installation and configuration of
OPEN 7 and SOCKG 7 on DPS7000/TA, or the INTEROP7 administrator,
responsible for the installation and configuration of INTEROP7 products on
DPS7000/XTA

• the PC administrator, in charge of product installation and system configuration,

• the Telecommunication and Network administrator, responsible for address
declarations and coordination for all types of machines, since TDS-TCP/IP uses
heterogeneous hardware.

Overview

47 A2 37UT 1-7

1.3 Prerequisites

1.3.1 Hardware

DPS 7000 Server

Any DPS 7000/TA or DPS 7000/XTA system running:

• GCOS 7 V9 TS 9866

• GCOS 7 V10 TS 9910 and upper

On DPS 7000/TA, an FCP7 or an ISL controller to enable connection to a TCP/IP
network using FDDI or Ethernet technologies.

Windows, AIX or Linux client

Any station having an appropriate communications card allowing connection to a
TCP/IP network and capable of running the software listed below.

1.3.2 Software

On DPS 7000/TA server:

GCOS 7

The GCOS 7 component of TDS-TCP/IP is integrated in TDS and is available
with:

• GCOS 7 V9 TS 9866
• GCOS 7 V10 TS 9910.and upper

SOCKG 7

TDS-TCP/IP uses SOCKG 7 sockets on GCOS 7. SOCKG 7 offers a standard
socket interface that supports two methods of communication:

• one provided by OPEN 7 services which are available from OPEN 7 V5,

• the other provided by GXTI services, available with the GCOS 7 releases listed
above.

SOCKG 7 and OPEN 7 V5 can be installed with the INTEROP 7 facility called
ISI 7 minimum tape version I5310.

TDS-TCP/IP User's Guide

1-8 47 A2 37UT

On DPS 7000/XTA server:

• The supported operating systems are GCOS 7 V10 TS 9870 and upper

• V7000 version 1.5 minimum

• INTEROP7_BASIC version 2.3.0 minimum (which includes SOCKG7 and the
sharable module H_SM_DCM)

 On AIX Computer:

• The operating system supported is AIX 4.3

On Linux Computer

• The shared library is currently being built on Red Hat 7.3 system

1.4 Delivery

1.4.1 Software for Windows

The Windows operating systems that allow development and execution of client
applications are Windows 95/98/ME and Windows NT/2000/XP.

From version 4.2.1, the package TDS_TCP_APIW is delivered with Interop7 from
CD ID330. It includes an executable file, which will install the product
TDS_TCP/IP on windows.

Five files are delivered:

• atmi.ini which contains DLL options for trace and time-out. It must be located
in the Windows directory (usually C:\WINNT).

• atmi32.dll which contains the DLL itself. It should be located in the Windows
system directory (usually C:\WINNT\SYSTEM32). The DLL is a 32-bit version
for Windows .

• atmi.h, an include file which contains the description of the connection
structures, the external function prototypes, the event types, and error codes.

• atmi32.lib that contains the XATMI standard definition (this file is needed for
development purposes but not for execution of the client application).

The atmi.h and the atmi32.lib files must be put in the client working directory used
for application development

Overview

47 A2 37UT 1-9

• Atmi32.bas is a model to program an application VB and may be put in the
client working directory used for application development.

1.4.2 Software for Linux

The package TDS_TCP_APIX, which includes :

• A shared library XATMI

• An include file ‘Atmi.h’

is an Interop7 product. The release 2.1.1 is delivered from CD ID330 (for
DPS7000/XTA) and from CD I5322 (for DPS7000/TA) as a ‘tar’ archive.

The shared library is currently being built on Red Hat 7.3 system.

1.4.3 Software for AIX

The package TDS_TCP_APIX, which includes :

• A shared library XATMI

• An include file ‘Atmi.h’

is an Interop7 product. The release 2.1.1 is delivered from CD ID330 (for
DPS7000/XTA) and from CD I5322 (for DPS7000/TA) as a ‘tar’ archive.

The shared library is currently being built on AIX 4.3 system.

TDS-TCP/IP User's Guide

1-10 47 A2 37UT

1.5 Configuration

1.5.1 TDS Generation

To enable the TDS to communicate via TCP/IP, the TDS SECTION of the STDS
file must be adapted. The STDS is the input file for generation processing, and
describes the characteristics of the resulting TDS-TCP/IP, a transactional
application.

TDS generation incorporates two important activities:

• declaration of the TCP/IP protocol,

• selection of the SOCKG 7 communication link (either OPEN 7 or GXTI).

1.5.2 SOCKG 7 Sockets

Two different sets of files are usable for configuration purpose according to the
SOCKG 7 communication link to be used, so the socket selection is important.

SOCKG 7 configuration incorporates two important activities:

• declaration of the TCP/IP service,

• providing details of relevant host-client information.

TDS generation and SOCKG 7 configuration are explained in the chapter Server
Administration.

1.5.3 Client stations

The configuration of the stations incorporates two important activities:

• declaration of the TCP/IP service,

• providing details of relevant host-client information.

Overview

47 A2 37UT 1-11

1.6 Security

For each TDS-TCP/IP connection, the client application must provide:

• a user identification,
• a password,
• a project,
• a billing.

Verification is then made by comparison with the GCOS 7 catalog information.

Before GCOS 7 TS 9764, a TDS running TCP/IP transactions cannot be controlled
by SA7 (Secur'Access). GCOS 7 TS 9764 enables the control by Secur'Access. The
Access Master functionality is not supported.

1.7 API Programming

The client API allows the client application to dialog with TDS transactions.

Two functions provide the buffer management and are local to the client
applications:

• tpalloc which allocates typed buffers,

• tpfree which frees typed buffers.

The interface between the client application and TDS includes six functions that
are called by the client:

• tpconnect which logs the TCP/IP client to TDS,

• tprecv which receives TDS messages,

• tpsend which sends message to TDS,

• tpdiscon which disconnects the client from TDS in strong mode,

• tperrno and tperrdtl for error management (extension of the XATMI protocol).

API programming is fully explained in the chapter Client Application
Development.

TDS-TCP/IP User's Guide

1-12 47 A2 37UT

1.8 Limitations

Although most TDS services can be used by TDS-TCP/IP transactions, restrictions
apply to:

• Some TPR programming functions.

• Some session management procedures.

• The terminal BREAK function which is not supported.

• Service messages, SEND verbs with routing addresses and M SNDTU
commands; none of these are sent to TCP/IP correspondents.

• There is no header and trailer in message presentation.

Since GCOS 7 TS 9764 the passthru function is allowed, for details please report to
the GCOS 7 TS 9764 added functionalities part of this document.

1.8.1 TPR Programming Functions

Existing TPRs can be executed as they are and without any modification.

New TPRs may be developed following the same method as used previous to the
TDS-TCP/IP interface, but the following restrictions need to be taken into account:

Since GCOS 7 TS 9764 the SPAWNING on a TCP/IP correspondent is allowed
using CALL DSPAWN/SPAWN/SPAWNTX/TSPAWN. The behaviour of the
spawning, related to this correspondent type, is described in the GCOS 7 TS 9764
added functionalities part of this document.

Overview

47 A2 37UT 1-13

1.8.2 Session Management Procedures

The following session management procedures cannot be used:

• RECONNECT-OPTION. An error status: - wrong session type - is returned for a
TCP/IP correspondent.

Since GCOS 7 TS 9764, the CALL SET-ACTIVE/SET-PASSIVE functions related
to a TCP/IP correspondent are allowed. For details please report to the
GCOS 7 TS 9764 added functionalities part of this document.

1.8.3 Configurability Rules

TDS is able to support up to 4000 active sessions including OSI/DSA sessions and
TCP/IP sessions.

The maximum number of TCP/IP users that can be connected simultaneously to a
TDS application is 1000. These 1000 sockets are shared by all the TDS
applications of a same GCOS 7 system. Starting from GCOS 7 TS 9910, this
number is raised to 3000 on DPS 7000 / XTA.

The maximum number of TCP/IP connections per client process is 64. From the
DLL version 3.1.0, this number is raised to 500.

TDS-TCP/IP User's Guide

1-14 47 A2 37UT

47 A2 37UT 2-1

 2. Added functionalities

2.1 AIX and Linux Clients

An AIX version and a Linux version of the TDS-TCP/IP API are provided. They
allow a client application located on an AIX or Linux machine to dialog with a
TDS transaction on GCOS7.

The API is installed on the AIX or Linux machine in a standard shared library.

The Chapter 8 of this document describes the use of TDS-TCP/IP for AIX and
Linux clients.

2.2 GCOS 7 TS 9764 added functionalities

2.2.1 Spawning on a TCP/IP correspondent

A call SPAWN/DSPAWN/TSPAWN/SPAWNTX to a TCP/IP correspondent is
allowed. If the correspondent is frozen, a status 3 (or 17 wrong type on
SPAWNTX) is returned.

The reconnection of a frozen TCP/IP correspondent using the TDS master
command ALNTC is without effect; the correspondent must be reconnected to
accept a new spawning.

2.2.1.1 Active TCP/IP correspondent

A spawned transaction can be started onto this correspondent type, only after the
termination of a running transaction.

TDS-TCP/IP User's Guide

2-2 47 A2 37UT

If a running transaction, related to this kind of correspondent, makes a call SPAWN
toward itself, this spawned transaction will be automatically started at the end of
the running transaction.

A transaction spawned from another correspondent (TCP/IP or other type) can be
started on the TCP/IP active correspondent at the end of a running transaction. If no
transaction is running, the further transaction started by tpsend () will be executed,
the spawned transaction will be started at the end of the transaction.

2.2.1.2 Passive TCP/IP correspondent

When a spawned transaction is started by TDS for this correspondent type, the
client receives the message sent by the spawned transaction using the tprecv ()
function. The client is not allowed to launch a transaction by tpsend () because the
correspondent is passive.

However the client using tprecv (), may be awaiting a message sent by a spawned
transaction.

The tprecv function is synchronous so the process executing the function is blocked
until either the reception of the data coming from the server or the expiration of the
time-out value given in the Atmi.ini file. During this time, the execution of the
program is stopped, next actions generated in the program are differed.

2.2.2 Call SET-ACTIVE/SET-PASSIVE

These TDS functions are allowed.

Note that the spawning behaviour is different for an active or a passive TCP/IP
correspondent, see above the TCP/IP spawning.

A TCP/IP correspondent is always connected or reconnected in ACTIVE mode.

2.2.3 MAXIMUM IDLE TIME

Since GCOS 7 TS 9764, the maximum idle time applied to a TCP/IP correspondent
leads to an abnormal disconnection (the disconnect transaction, if any, is launched).

Added functionalities

47 A2 37UT 2-3

2.2.4 WAIT-TIME

The WAIT-TIME for a TCP/IP correspondent does not enable the automatic
execution of the next TPR when the current TPR ends with a SEND EGI.

In this case, the execution of the next TPR is started by the client response message
to the SEND EGI (tpsend ()).

If the TPR ends without SEND or with a SEND EMI, the time given in the WAIT-
TIME is normally taken into account.

2.2.5 TERMINAL_ID

Since GCOS 7 TS 9764, using a DLL version 3.0.6, a terminal identification may
by supplied to the tpconnect function using the termid field in the data parameter.
If the termid field is supplied with a value different from spaces, it is moved in the
TERMINAL_ID field of the TRANSACTION-STORAGE of the LOGON
transaction. If the termid field is filled with spaces, or not used, or null, or if the
DLL version is 3.0.5 the TERMINAL_ID field of the TRANSACTION-
STORAGE of the LOGON transaction is initialized by TDS to the specific value
H-TCPIP-CLI.

2.2.6 DISCONNECTIONS issued by TDS

Since GCOS 7 TS 9764, the maximum idle time of the TDS generation applied to a
TCP/IP correspondent leads to an abnormal disconnection issued by TDS.

TDS disconnects abnormally the correspondent if there is no incoming message
from the client during 2 minutes after TDS has requested the turn (because the
action to start needs the turn).

2.2.7 SECUR'ACCESS

A TDS TCP/IP application can be protected by Secur'Access.

A TCP/IP correspondent connected to a TDS controlled by Secur'Access, executes
the dedicated Secur'Access transactions and the dialogs must be done according to
the format of their messages. Please report to the part Protocol between SA7 and
the Client application of this document for details.

The Access Master functionality is not supported.

TDS-TCP/IP User's Guide

2-4 47 A2 37UT

2.2.8 PASSTHRU functionality

Since GCOS 7 TS 9764, the Passthru functionality can be activated from a TCP/IP
correspondent. The requested connection to a TDS or IOF application is done in a
DSA environment using a DKU7105 terminal model (and a TM correspondent type
for the target TDS).

If the target application is TDS, the messages are received without header and
trailer in line mode. When the formatted mode (FORMS) is activated in a
transaction, the messages are received in the TDS-TCP/IP FORMS format.

If the target application is IOF, only the line mode must be used because the TDS-
TCP/IP FORMS format is only used for TDS. The messages sent by IOF in line
mode contain some presentation characters corresponding to the DKU7105 model
as the terminal identification, the cursor position, i.e. these messages have not the
FORMS TCP/IP format.

2.3 GCOS 7 TS 9920 added functionalities

2.3.1 Reconnect with option Force

In certain cases, TDS does not detect that a TCP/IP connection is broken. The user
cannot reconnect to TDS because from TDS point of view, he is still connected.
 From now, the application can use the option "logon force" (see paragraph 4.3.2)
to disconnect the user, then to reconnect him with same the logon context.

47 A2 37UT 3-1

 3. Server Administration

The server administration of TDS-TCP/IP consists of:

• TDS administration for the TDS generation and the control of the TDS session
using master commands (TDS preparation is not impacted by TDS-TCP/IP).

• GCOS 7 administration for the configuration of the TDS-TCP/IP services.

3.1 TDS Generation

The use of the TCP/IP communication link must be declared at TDS generation.

To generate the TDS:

• Modify the TDS source member (STDS) to include:

− the TCP-IP PROTOCOL clause (see below),

− the ATTACH SHARABLE MODULE clause (see below).

• Generate the TDS using TP7GEN (see the TDS Administrator’s Guide for
details).

3.1.1 TCP-IP PROTOCOL Clause

Syntax

[TCP-IP PROTOCOL [USED] [WITH {OPEN7 |GXTI }].]

This clause specifies the use of the TCP/IP protocol and enables selection of
OPEN 7 or GXTI as the communication link. OPEN7 is the default value.

On DPS 7000 / XTA, just specify :

TCP-IP PROTOCOL.

The position of the TCP-IP PROTOCOL clause is just before the first USE
statement (if any) and after the XA-RESYNC-DELAY clause in the TDS
SECTION of the STDS.

TDS-TCP/IP User's Guide

3-2 47 A2 37UT

3.1.2 ATTACH SHARABLE MODULE Clause

Syntax

[ATTACH SHARABLE MODULE H_SM_DCM.]

This (already existing) clause must also be declared to attach SOCKG 7.

The position of the ATTACH SHARABLE MODULE clause is just after the
RESERVE AREAS clause in the TDS SECTION of the STDS. See the TDS
Administrator's Guide for more details.

3.1.3 Errors and Responses

The following TP7GEN error message can occur:

TG28 sev WRONG SYNTAX IN CLAUSE OR STATEMENT: clause.

where clause is the following:

TCP-IP PROTOCOL

Type: Information: sev=2

Meaning: Indicates the clause or statement in which a syntax
error has been detected.

Action: Correct the syntax of the clause or statement, and re-
run TP7GEN.

Server Administration

47 A2 37UT 3-3

3.2 GCOS 7 Environment Configuration

TDS-TCP/IP, like other Internet services, has to be declared at GCOS 7 level. Two
configurations are possible depending on the communication link used for the
socket, either OPEN 7 or GXTI.

3.2.1 Description

Two types of information must be declared in the configuration files, /etc/hosts
(for OPEN 7) or ETC_HOSTS (for GXTI):

• the IP addresses of client hosts,

• the service names.

3.2.2 Declarations for OPEN 7

Update the /etc/hosts file with the IP address of the host name, which is the
symbolic name used to address the DPS 7000 system. See the OPEN 7
Administrator's Reference Manual.

Update the /etc/services file of the OPEN 7 subsystem with the service names,
their related port number, and the protocol used (i.e., TCP). See the OPEN 7
Administrator's Reference Manual. The TDS-TCP/IP service is identified by
concatenation of the host name and the TDS name. A port number is associated
with each service. It must be the same as the one declared on the PC for the same
service, and must not be in conflict with the port numbers of other services. The
value of the port number must be greater than 1024.

EXAMPLE:

If a client application wants to connect to the TDS TDS1 located on the DPS 7000
system referred to by the host name BC0F the following line must appear in
/etc/services:

bc0ftds1 10100/tcp

❑

TDS-TCP/IP User's Guide

3-4 47 A2 37UT

3.2.3 Declarations for GXTI

The ETC_HOSTS subfile in the GCOS 7 library SYS.DSACONF must contain
the same information as the /etc/hosts file located in the OPEN 7 subsystem. See
XTI GCOS 7 Name Services User's Guide. To comply with GXTI conventions, the
host name is DPS7000_name-xti in lower case.

EXAMPLE:

193.128.250.85 bc0f-xti

❑

The ETC_SERVICES subfile in the GCOS 7 library SYS.DSACONF must
contain the same information as /etc/services file located in the OPEN 7 subsystem.
See XTI GCOS 7 Name Services User's Guide. Check that the standard service :
“echo“ is also declared in ETC_SERVICES.

EXAMPLE:

If a client application wants to connect to the TDS TDS1 located on the DPS 7000
system referred to by the host name bc0f-xti the following lines must appear in
ETC_SERVICES:

echo 7/tcp
bc0f-xtitds1 10100/tcp

❑

Server Administration

47 A2 37UT 3-5

3.3 Master Commands

3.3.1 Correspondent Management

The client applications executing TDS transactions via TCP/IP are TCP/IP
correspondents. The following master commands deal with this type of
correspondent:

• ALLOW_NEW_TDS_COR (allows connection of new TCP/IP correspondents).

• CANCEL_TDS_COR (cancels one or all TCP/IP correspondents).

• DISPLAY_TDS (displays information about the current number of active
TCP/IP sessions).

• LIST_TDS_COR (lists information about the correspondent state and the
number of running transactions and TPRs).

• PREVENT_NEW_TDS_COR (prevents connection of new TCP/IP
correspondents).

NOTE:
A TCP/IP correspondent cannot be a master operator.

TDS-TCP/IP User's Guide

3-6 47 A2 37UT

3.3.1.1 ALLOW_NEW_TDS_COR

Purpose

Cancels a previous [M] PREVENT_NEW_TDS_COR command and reconnects all
passive TM, XCP1, XCP2 and TCP/IP correspondents. According to the
parameters specified, this command:

• allows new terminal or TCP/IP correspondents to log on to a TDS application,

• establishes new XCP1 and XCP2 session pools,

• increases the number of allocated sessions for pools already opened.

Syntax

[M] { ALLOW_NEW_TDS_COR | ALNTC }
 [{ TMC | TM_COR } = bool }]
 [{ X1C | XCP1_COR } = bool }]
 [{ X2C | XCP2_COR } = bool }]
 [TDS = { name4 | #WTDS }]
 [{ TCPIPC | TCPIP_COR } = bool }]

Parameters

TCPIP_COR TCP/IP correspondents.

See TDS Administrator’s Guide for other parameters.

Constraints

Specifying no parameter is equivalent to specifying all correspondents regardless
of their type.

Output

See TDS Administrator’s Guide.

Example

[M] ALNTC TCPIPC;

Allows all TCP/IP correspondents to log on to the TDS.

Server Administration

47 A2 37UT 3-7

3.3.1.2 CANCEL_TDS_COR

Purpose

Forces the specified correspondent(s) to log off even if the user is frozen.

Syntax

[M] { CANCEL_TDS_COR | CTC }
 { COR | USER } = star12
 [STRONG = { 0 | bool }]
 [FROZEN = { 0 | bool }]
 [TDS = { name4 | #WTDS }]

Parameters

STRONG Forces the correspondent to log off immediately or
allows any active transactions to complete.

The effect of STRONG=1 depends on the type of
correspondent:

For TCP/IP correspondents, if a transaction is in
progress, the executing TPR aborts, the
ON-ABORT-TPR is executed, and the transaction
terminates. The remote client application is aware of
the disconnection via the returned status obtained on
the next API verb.

See TDS Administrator’s Guide for other parameters.

Constraints

None.

Output

See TDS Administrator’s Guide.

Example

[M] CTC COR=LAUTIER TDS=PL ;

TDS-TCP/IP User's Guide

3-8 47 A2 37UT

3.3.1.3 DISPLAY_TDS

Purpose

Displays information about the current TDS session according to the parameters
specified. Additional information is displayed when SIMUL and/or STATUS are
required.

Syntax

[M] { DISPLAY_TDS | DTDS }
 [{ STATUS | STAT } = bool]
 [SIMUL = { 0 | bool }]
 [SMLIB = { 0 | bool }]
 [SWAP = { 0 | bool }]
 [TDS = { name4 | #WTDS }]
 [{ RPC_STAT | RPC_STATUS } = bool]

Parameters

See TDS Administrator’s Guide.

Constraints

See TDS Administrator’s Guide.

Output

The current number of TCP/IP sessions is displayed as part of the general statistics,
if the TDS is TCP/IP.

See TDS Administrator’s Guide for a complete description.

Server Administration

47 A2 37UT 3-9

Example

Display the General statistics of an application named PL:

S: DTDS STATUS
 --
 -- TDS = PL 11:45:51 NOV 14, 1997 --
 ----- GENERAL TDS STATISTICS -----
 --
 INIT.SIMU.COUNT = 5 CUR.SIMU.COUNT = 4
 ACC.SESS.ALLOC = 0 ACC.SESS.REJEC = 0
 USED TX COUNT = 16 TX ABORT. COUNT = 0
 USED TPR COUNT = 27 TPR ABORT COUNT = 0
 COMMIT COUNT = 16 DIALOG COUNT = 10
 TPR ELAPSED TIME = 3 TPR CPU TIME = 0
 DEADLOCK COUNT = 0 NON CONCUR WAIT = 0
 TABOV ABT COUNT = 0 WDNAV ABT COUNT = 0
 LGWAITABT COUNT = 0 DIRTY READ ABORT = 0
 BUFOVABT COUNT = 0 SERIALIZATION = 0
 MAX TM SES = 10 CUR TM SES = 0
 MAX XCP1 SES = 5 CUR XCP1 SES = 0
 MAX XCP2 SES = 50 CUR XCP2 SES = 0
 MAX VIRT SES = 3 CUR VIRT SES = 1
 PMOS COR COUNT = 1 MAX IDLE TIME = 2000
 POOL USED (KB) = 160 POOL SIZE (KB) = 500
 PSEUDO BUFFERS = 0
 WAITING TPR MEAN = 0 MAX CPU TIME = 9000
 CUR TCP SES = 2
 TDS: PL, DTDS COMMAND COMPLETED

TDS-TCP/IP User's Guide

3-10 47 A2 37UT

3.3.1.4 LIST_TDS_COR

Purpose

Displays information about all correspondents or about specified correspondent(s).

Syntax

[M] { LIST_TDS_COR | LSTC }
 { COR | USER } = star12
 [TYPE = { * | TM | XCP1 | XCP2 | DUMMY | TCPIP }]
 [{ NG | NETGEN } = { 0 | bool }]
 [{ LOG | LOGGED } = bool]
 [{ DTLD | DETAILED } = { 0 | bool }]
 [SORT = { 0 | bool }]
 [{ PRTMB | PRINT_MEMBER } = name31]
 [TDS = { name4 | #WTDS }]

Parameters

See TDS Administrator’s Guide.

Constraints

NETGEN=1 and LOGGED are mutually exclusive.

Output

The new cortype TCP/IP is processed by the command.

See TDS Administrator’s Guide for a complete description.

Server Administration

47 A2 37UT 3-11

Example

For a list of all types of correspondents known by TDS, when a TCP/IP
correspondent is present:

S: LSTC * *

 -- TDS = PL 10:38:40 NOV 14, 1997 --
 ----- LIST OF CORRESPONDENTS -----

 STATE: UNSPEC / TYPE: TM / LIST: SHORT / OPTION: DYNAMIC
 LEVENEZ-P H___PMS

 STATE: UNSPEC / TYPE: DUMMY / LIST: SHORT / OPTION: DYNAMIC
 DUMMY

 STATE: LOGGED / TYPE: TCPIP / LIST: SHORT / OPTION: DYNAMIC
 LAUTIER
 TDS: PL, LSTC COMMAND COMPLETED

For a detailed list of all TCP/IP correspondents:

S: LSTC * TCPIP DTLD
 --
 -- TDS = PL 10:49:12 NOV 14, 1997 --
 ----- LIST OF CORRESPONDENTS -----
 --

 STATE: LOGGED /TYPE: TCPIP /LIST: DETAILED /OPTION: DYNAMIC
 CORRESPONDENT ADDRESS TX_COUNT TPR_COUNT STATUS TX_NM
 LAUTIER 3 8 P ESSAI
 TDS: PL, LSTC COMMAND COMPLETED

TDS-TCP/IP User's Guide

3-12 47 A2 37UT

3.3.1.5 PREVENT_NEW_TDS_COR

Purpose

Prevents new correspondents, including TCP/IP correspondents, from logging on to
a TDS application. Prevents allocation of new XCP1 and XCP2 sessions by [M]
MODIFY_COR_POOL, [M] OPEN_COR_POOL or corresponding CALLs
described in TDS COBOL Programmer’s Guide. For XCP2 correspondents, new
conversations can be allocated using pools already opened.

When all current correspondents log off normally, TDS remains idle until [M]
ALLOW_NEW_TDS_COR or [M] TERMINATE_TDS is issued.

Syntax

[M] { PREVENT_NEW_TDS_COR | PVNTC }
 [{ TMC | TM_COR } = bool }]
 [{ X1C | XCP1_COR } = bool }]
 [{ X2C | XCP2_COR } = bool }]
 [TDS = { name4 | #WTDS }]
 [{ TCPIPC | TCPIP_COR } = bool }]

Parameters

TCPIP_COR TCP/IP correspondents.

See TDS Administrator’s Guide for other parameters.

Constraints

None.

Output

See TDS Administrator’s Guide.

Example

[M] PVNTC TCPIPC TDS=PL;

Prevents the TCP/IP correspondents from logging onto the TDS application named
PL.

Server Administration

47 A2 37UT 3-13

3.3.2 Socket Management

Three new master commands are supplied to manage the closing, display and
opening of the TDS socket:

• CLOSE_TDS_SOCKET

• DISPLAY_TDS_SOCKET

• OPEN_TDS_SOCKET

At TDS start, the TDS socket is automatically opened. TCP/IP correspondents can
log on to the application as soon as the TDS is ready. The CLOSE_TDS_SOCKET
and OPEN_TDS_SOCKET commands allow dynamic re-initialization of the
communication link without stopping the TDS application. OPEN_TDS_SOCKET
is intended for use after SOCKG 7 has been stopped or after a network failure.

TDS-TCP/IP User's Guide

3-14 47 A2 37UT

3.3.2.1 CLOSE_TDS_SOCKET

Purpose

Closes the TDS socket. This command disconnects all TCP/IP correspondents and
closes the socket. The CLOSE_TDS_SOCKET command is not remanent at TDS
warm restart.

Syntax

[M] { CLOSE_TDS_SOCKET | CLTS}
 [STRONG = { bool | 0 }]
 [TDS = { name4 | #WTDS }]

Parameters

STRONG When STRONG = 1, forces disconnection of TCP/IP
correspondents even if they are executing a
transaction. In this case, the current TPR is aborted.

When STRONG = 0 (the default value), closure of the
TDS socket is deferred until the last TCP/IP
correspondent ends its current transaction.

Constraints

None.

Output

After the command is successfully executed, the TX92 message appears on the
master console:

TDS SOCKET CLOSED.

Example

S: CLTS STRONG=1 TDS=PL
 TX54 TDS: PL, CLTS COMMAND COMPLETED
--> TX92 TDS SOCKET CLOSED

When the command cannot be performed, the message TX55 is issued:

TX55 TDS: PL, CLTS COMMAND NOT PERFORMED rc.

Server Administration

47 A2 37UT 3-15

3.3.2.2 DISPLAY_TDS_SOCKET (DTDSS)

Purpose:

Display socket informations such as socket interface configuration through
OPEN7 or GXTI, correspondent name and its peer address and port.

Syntax :

[M] { DTDSS }

{ DISPLAY_TDS_SOCKET }

[{ STATUS | STAT }=bool]

 [{ COR | USER } =star12]

 [SORT=bool]

 [{ PRINT_MEMBER | PRTMB }=name31]

[TDS = { name4 | #WTDS }]

Parameters :

STATUS alias STAT Socket interface configuration (OPEN7 or
GXTI).

Default STAT=1.

COR alias USER TCPIP TDS correspondents whose peer
port and tcpip address is to be displayed.
Star convention assumed.

 If blank (default value), no correspondent
information is displayed.

Only logged correspondents (not the
FROZEN ones) are taken into account.

SORT Correspondents are sorted in alphabetical
order.

TDS-TCP/IP User's Guide

3-16 47 A2 37UT

Default SORT=0 (random order).

PRINT_MEMBER : Member in tds-name.DEBUG file for
storing output to be printed. This member
is always opened in output mode and is
erased on cold restart of TDS.

Default : Result are displayed on the
screen.

Output :

Depending on the parameter specified, the message returned can be
TX93,TX94, TX23,TX24,TX56,TX57.

See Appendix I.

Example :

DTDSS STATUS=1 COR=* SORT=0 ;

 --
 -- TDS = JDB 10:29:49 MAR 31, 2004 --
 ----- CURRENT TCP/IP PARAMETERS ---
 --
SOCKET INTERFACE IS : OPEN7
CORRESPONDENT PEER ADDRESS PORT
 JDB2 129.182.197.67 1142
 JDB3 129.182.197.67 1143
 JDB4 129.182.197.67 1144
 JDB1 129.182.197.67 1141
TDS : JDB, DTDSS COMMAND COMPLETED

3.3.2.3 OPEN_TDS_SOCKET

Purpose

Opens the TDS socket. This command re-opens the TDS socket after a
CLOSE_TDS_SOCKET command has been issued.

Syntax

Server Administration

47 A2 37UT 3-17

[M] { OPEN_TDS_SOCKET | OTS }
 [UPON = { OPEN7 | GXTI }]
 [TDS = { name4 | #WTDS }]

Parameters

UPON Specifies the option for the communication link:
OPEN7 or GXTI. It must correspond to the option set
in the TDS-TCP/IP PROTOCOL generation clause.
The default value is GXTI.

Constraints

None.

Output

After the command is successfully executed, the message TX92 appears on the
master console:

TDS SOCKET OPENED.

Example

S: OTS UPON=OPEN7 TDS=PL
 TX54 TDS: PL, OTS COMMAND COMPLETED
--> TX92 TDS SOCKET OPENED

When the command cannot be performed, the message TX55 is issued:

TX55 TDS: PL, OTS COMMAND NOT PERFORMED rc.

TDS-TCP/IP User's Guide

3-18 47 A2 37UT

47 A2 37UT 4-1

 4. Client Application Development

Client application development on the PC concerns:

• Configuration of the client machine; i.e., PC configuration,

• Calls to C-language XATMI functions invoked by the TDS-TCP/IP API in order
to access one or more TDS applications from a PC application.

4.1 PC Environment Configuration

4.1.1 Description

Client PCs must be configured for each TDS application. Two files hold the
relevant information:

• the address for remote host mapping is held in the HOSTS file located in the
Windows installation directory(usually C:\WINNT\system32\drivers\etc),

• the service declaration is held in the SERVICES file located in the Windows
installation directory(usually C:\WINNT\system32\drivers\etc).

4.1.2 Configuration Declaratives

The HOSTS file must be updated to include the IP addresses of the names of the
hosts running the TDS applications. A host name is the symbolic name used in the
client application to address the DPS 7000 system (corresponding to the hostid
parameter of the tpconnect verb).

EXAMPLE:

129.182.50.50 bc0f #host name of the DPS 7000 on which
the TDS tds1 runs

❑

TDS-TCP/IP User's Guide

4-2 47 A2 37UT

The SERVICES file must be updated to include the required service names, the
port number associated to each service, and the protocol used. The service name is
the concatenation of the host name and the TDS name. The port number must be
the same as the one declared on the GCOS 7 server.

EXAMPLE:

If a client application wants to connect to the TDS tds1 located on the DPS 7000
referred to by the host name bc0f, the following line must appear in the SERVICES
file:

bc0ftds1 10100/tcp
❑

NOTE:
The value of the port number must be greater than 1024.

Client Application Development

47 A2 37UT 4-3

4.2 TDS-TCP/IP Client API

A PC user connected to TDS via TCP/IP, accesses a TDS application in the same
way as a terminal user connected through DSA. In particular, the turn is managed.

The TDS-TCP/IP client API provided for the development of client applications
enables a conversational service. This API uses XATMI functions adapted to
GCOS 7 requirements in terms of connection, transactional dialog with turn,
abnormal events, and disconnection.

The LOGON transaction is activated each time a TCP/IP client successfully
connects to TDS. In the TRANSACTION-STORAGE of the LOGON transaction,
the TERMINAL-ID field is initialized by TDS to the specific value
H-TCPIP-CLI.

Since GCOS 7 TS 9764 and DLL version 3.0.6, the tpconnect function supports a
termid field with 13 characters in the data parameter. If the termid field is supplied
with a value different from spaces, it is moved in the TERMINAL-ID field of the
TRANSACTION-STORAGE of the LOGON transaction. If the termid field is
filled with spaces, or null, or not used, or if the DLL version is before 3.0.6 the
TERMINAL-ID field of the TRANSACTION-STORAGE of the LOGON
transaction is initialized by TDS to the specific value H-TCPIP-CLI.

Transactions are started by the tpsend function. tpsend and tprecv are coded in the
client application to correspond to the RECEIVE and SEND verbs coded in the
TPRs and the messages sent and received by the TDS monitor.

Before GCOS 7 TS 9764, if there is no SEND verb at the end of a transaction, a
final tprecv function is issued to get back the turn. A null length message is then
returned. Since GCOS 7 TS 9764, if there is no SEND verb at the end of a
transaction, a final tprecv function receives the READY message from TDS (or the
related service message defined at TDS generation time).

If a transaction aborts, the message sent by the ON-ABORT-TPR is retrieved by
the next tprecv verb.

If tpsend parameters are not correct from the TDS-TCP/IP dialog's point of view,
an error status is returned on the next tprecv verb.

TDS-TCP/IP User's Guide

4-4 47 A2 37UT

4.2.1 Composition of the API

The TDS-TCP/IP client API is composed of the following subset of C-Language
XATMI functions:

• four functions for conversational services: tpconnect, tpdiscon, tprecv and tpsend

• two functions for typed buffer management: tpalloc and tpfree

• two functions for error return: tperrno and tperrdtl, these functions being
extensions of XATMI.

The client application is always the initiator of the TDS connection, but the
disconnection can be made by either the client (PC) or the server (DPS 7000).

4.2.2 Compiling the Client Program

For a client coded in C, an atmi.h file is delivered containing the description of the
connection structures: service_id and subtype, the extern function prototypes, the
event types, and error codes.

The atmi.h file must be put in the client working directory.

In the source code using API functions, the following directive may be provided:

#include <atmi.h>

Client Application Development

47 A2 37UT 4-5

4.3 C-Language XATMI Functions

This section contains the C-language description of the XATMI functions for the
TDS-TCP/IP client API. It is compliant with the Windows system API.

4.3.1 tpalloc

This function allocates a typed buffer for use for connection and dialog with TDS.
The only type permitted for TDS-TCP/IP is X_C_TYPE. The buffer allocated is at
least as large as size.

Syntax

char * tpalloc(char *type, char *subtype, long size)

Input Parameters

type “X_C_TYPE“. This parameter is char[16] null or
blank terminated.

subtype Name of the subtype associated to the type. The
subtype is application dependent. It indicates the
meaning or interpretation of the data in the application.
This parameter is char[16], null or blank terminated.

size Allocated buffer size in bytes.

Constraints

The buffers must be allocated by tpalloc and freed by tpfree. Other functions for
memory management such as malloc() must not be used.

TDS-TCP/IP User's Guide

4-6 47 A2 37UT

Return Value

Upon successful completion, tpalloc returns a pointer to a buffer of the appropriate
type aligned on a long word. Otherwise, it returns NULL and tperrno must be
called to get the error condition.

The possible values for tperrno on tpalloc are the following:

• invalid arguments given [TPEINVAL]
• system error [TPESYSTEM], [TPEOS]

EXAMPLE

See Client Program Examples later in this chapter.

❑

Client Application Development

47 A2 37UT 4-7

4.3.2 tpconnect

This function makes the connection to the TDS application which is identified by
the couple (host name, TDS name) associated with a unique port number.

Since the version 3.0.6 of the DLL and using a TDS with GCOS 7 TS 9764, the
tpconnect function supports and added field named termid in the input data
parameter. If this field is filled with a value different from spaces, it is sent to TDS
and becomes the terminal identification in the TERMINAL-ID field of the
TRANSACTION-STORAGE of the LOGON transaction.

Syntax

int tpconnect (char *svc,char *data, long len, long flags)

Input Parameters

svc Name of the service which is the concatenation of the
host name and the TDS name described in the
SERVICES file.

 struct service_id {
 char hostid[16];
 char tdsname[5]} svc;

hostid
the DPS 7000 host name (a string, null terminated or
blank terminated).

tdsname
Name of the TDS application (a string, null
terminated or blank terminated).

data Buffer allocated by tpalloc function with the type
X_C_TYPE. Before the 3.0.6 version of the DLL it
contains the following structure:

 struct subtype {
 char name[13];
 char project[13];
 char billing[13];
 char password[13];} data;

TDS-TCP/IP User's Guide

4-8 47 A2 37UT

Since the 3.0.6 version of the DLL it may contain the
following structure:

 struct subtype {
 char name[13];
 char project[13];
 char billing[13];
 char password[13];
 char termid[13];} data;

Since the DLL version 3.0.8, the data structure may be
the following :

 struct subtype {
 char name[13];
 char project[13];
 char billing[13];
 char password[13];
 char termid[13];

char dataconvert [2];}
data;

Since the DLL version 4.2.0, the data structure may be
the following :

 struct subtype {
 char name[13];
 char project[13];
 char billing[13];
 char password[13];
 char termid[13];

char dataconvert [2]
char relogonforce[2];
} data;

This structure contains the identification of the
GCOS 7 user, known in the GCOS 7 catalog, which
will allow the foreign client to execute transactions.

All structure variables are strings, null or blank
terminated.

name
Name of the TDS user. There is no default value.

project
Name of the project. When connected, the client
application can launch all the transactions permitted
for this project according to PROJECT/TDS code of

Client Application Development

47 A2 37UT 4-9

the GCOS 7 catalog. If this parameter is filled with
blanks, the GCOS 7 default project is taken.

billing
The billing is checked in the GCOS 7 catalog. If set
to blanks, the GCOS 7 default billing for this user’s
project will be taken.

password
GCOS 7 password of the user. There is no default
value.

termid
Terminal Identifier. The termid field, if any, enables
the TDS to transmit this value into the TERMINAL-
ID field of the TRANSACTION-STORAGE of the
LOGON transaction.

dataconvert
Data conversion indicator. If set to blank or not
specified, ASCII / EBCDIC conversion will be
performed for the data buffers exchanged on tprecv
and tpsend verbs.
If dataconvert = "Y" data buffers are converted.
If dataconvert = "N" data buffers are not converted.
This latter value must be used only from GCOS 7
TS 9866.

relogonforce
Force logon indicator. If set to blank or “N” or not
specified, tpconnect fails with error 90 if the user is
already connected.
If relogonforce = "Y", if the transaction state is
commited or it is an end of transaction, the user
already connected is disconnected, then it is
connected with the same context; else tpconnect
fails with error 90.
 This latter value must be used only from GCOS 7
TS 9920.

len Before the version 3.0.6 of the DLL, the len value
must be 0. Since the version 3.0.6 of the DLL, if the
termid field is specified the data structure length must
be 65. If the termid field is not specified the len value
must be either 0 or 52.
Since the DLL version 3.0.8, if the dataconvert field of
the data structure is specified the len value must be 67.
Since the DLL version 4.2.1, if the relogonforce field

TDS-TCP/IP User's Guide

4-10 47 A2 37UT

of the data structure is specified the len value must be
69.

flags Not used.

Constraints

The client application must perform a tprecv after the tpconnect function in order to
receive the result message of the connection and get back the turn.

The tpconnect function can be protected by a timer to avoid blocking situations that
may occur in case of an incorrect configuration, a non-response from the network
or TDS. The default value of the time-out is 0. It means no time-out mechanism
applies. This value can be modified by changing the TIMEOUT key in the Atmi.ini
file as follows:

TIMEOUT = MaxDelay

MaxDelay is expressed in milliseconds. For example, TIMEOUT = 300000 fixes a
time-out to 5 minutes.

When a time-out occurs, the socket is closed causing the disconnection of the
client.

Return Value

The output is a communication descriptor cd, which is the input parameter for the
tprecv, tpsend and tpdiscon verbs. The cd descriptor is used to refer to the
connection in subsequent calls.

If the value is -1, the connection has failed and tperrno must be called to get the
error condition.

tperrno on tpconnect:

• invalid arguments given [TPEINVAL]
• maximum number of connections reached [TPELIMIT]
• protocol error [TPEPROTO]

EXAMPLE

See Client Program Examples later in this chapter.

❑

Client Application Development

47 A2 37UT 4-11

4.3.3 tpdiscon

This function abnormally terminates the connection specified by cd, generates an
abnormal disconnection to the server from the client part and cleans the client
context. It can be activated at any time by the client application.

To disconnect normally, a client must issue a tpsend with the “BYE” transaction in
order to notify TDS to execute the LOGOUT TPR. In this case, tpdiscon is used to
clean the client context. It must be also called after error upon tprecv and tpsend.

Syntax

int tpdiscon (int cd)

Input Parameter

cd descriptor returned by tpconnect function.

Constraints

None.

Return Value

If the value is 0, the function is successful.

If the value is -1, the function has failed and tperrno must be called to get the error
condition.

tperrno on tpdiscon:

• invalid arguments given [TPEINVAL]
• protocol error [TPEPROTO]

EXAMPLE

See Client Program Examples later in this chapter.

❑

TDS-TCP/IP User's Guide

4-12 47 A2 37UT

4.3.4 tpfree

This function frees a typed buffer allocated by the tpalloc function. This function
does not return a value to the client program. Therefore, it is declared as a void.

Syntax

void tpfree (char *ptr)

Input Parameter

ptr Pointer to a buffer previously obtained by the tpalloc
function. This pointer can be NULL in which case no
action occurs. Undefined results occur if ptr does not
point to a typed buffer.

EXAMPLE

See Client Program Examples later in this chapter.

❑

Client Application Development

47 A2 37UT 4-13

4.3.5 tprecv

This function allows a client application to receive a message from the server.

Syntax

int tprecv (int cd, char **data, long *len, long flags,
 long *revent)

Input Parameters

cd Descriptor obtained through tpconnect function.
Specifies on which open connection data is to be
received.

flags Not used.

Output Parameters

data Buffer allocated through the tpalloc function with the
type X_C_TYPE and which contains the received
message.

len Contains the length of the received message. If len is
0, no data is received, and neither *data nor the buffer
it points to have been modified.

revent revent is significant if tpermo is set to TPEEVENT.
Valid events for tprecv() are as follows:

TPEV_SENDONLY: 0x0020
The recipient of this event has the turn and is
allowed to send data but cannot receive any data
until it relinquishes control.

TPEV_SVCERR: 0x0002
This event indicates that the TDS server has
encountered an error while processing the client
request. When it is the first tprecv() after
tpconnect() it means that the connection was
accepted by TCP/IP but was rejected afterwards by
TDS. Upon an SVCERR event, no data is returned
by tprecv(). The connection been terminated by
TDS, so tpdiscon() must be called to clean the client
context.

TDS-TCP/IP User's Guide

4-14 47 A2 37UT

Constraints

The client application must not have the turn when tprecv() is issued.

The tprecv function can be protected by a timer to avoid blocking situations that
may occur in case of an incorrect configuration, a non-response from the network
or TDS. The default value of the time-out is 0. It means no time-out mechanism
applies.

For Windows, this value can be modified by changing the TIMEOUT key in the
Atmi.ini file as follows:

TIMEOUT = MaxDelay

MaxDelay is expressed in milliseconds. For example, TIMEOUT = 300000 fixes a
time-out to 5 minutes.

For AIX or Linux, this value can be modified by positioning the environment
variable : ATMI_TIMEOUT with a delay expressed in milliseconds.

When a time-out occurs, the socket is closed causing the disconnection of the
client.

Return Value

If the value is 0, the function is successful.

If the value is -1, tperrno must be called to get the error condition. If tperrno is set
to TPEEVENT and revent to TPEV_SENDONLY, the received message has been
returned in the buffer and the client application now has the turn. In the other error
cases, the tprecv function has failed and no data is available.

tperrno on tprecv:

• invalid arguments given [TPEINVAL]
• protocol error [TPEPROTO]
• system error [TPESYSTEM], [TPEOS]
• an event occurred and its type is available in revent [TPEEVENT]

EXAMPLE

See Client Program Examples later in this chapter.

❑

Client Application Development

47 A2 37UT 4-15

4.3.6 tpsend

This function allows the client application to send a message to the TDS. The turn
is sent with each tpsend().

Syntax

int tpsend (int cd, char *data, long len, long flags, long
 *revent)

Input Parameters

cd Descriptor obtained through tpconnect function.
Specifies on which open connection to send data.

flags Not used.

data Buffer allocated through tpalloc function with the type
X_C_TYPE containing the message to send.

len Contains the length of the buffer to send. Its value
must be greater than 0.

Output Parameters

revent Not used.

Constraints

The client application must have the turn when tpsend() is issued.

TDS-TCP/IP User's Guide

4-16 47 A2 37UT

Return Value

If the value is 0, the function is successful.

If the value is -1, the function has failed and tperrno must be called to get the error
condition.

tperrno on tpsend:

• invalid arguments given [TPEINVAL]
• protocol error [TPEPROTO]
• system error [TPESYSTEM], [TPEOS]

EXAMPLE

See Client Program Examples later in this chapter.

❑

Client Application Development

47 A2 37UT 4-17

4.3.7 tperrno

This function retrieves the tperrno value set by the previous API call. It is an
extension of the XATMI primitives.

Syntax

int tperrno (void)

Input Parameters

None.

Output Parameters

None.

Constraints

None.

Return Value

If the value is 0, it means that the previous function has encountered no error.

If the value is not 0, it is the tperrno value.

The tperrno values are as follows:

TPEINVAL 4 Invalid arguments given
TPELIMIT 5 Maximum number of connections reached
TPEOS 7 System error
TPEPROTO 9 Protocol error
TPESYSTEM 12 System error
TPEEVENT 22 Event occurred and its type is available in the

revent parameter

EXAMPLE

See Client Program Examples later in this chapter.

❑

TDS-TCP/IP User's Guide

4-18 47 A2 37UT

4.3.8 tperrdtl

This function retrieves the tperrno value and the detailed error value set by the
previous API call. It is an extension of the tperrno function. The detailed error
corresponds to the client error message number.

Syntax

int tperrdtl (int *suberr)

Input Parameters

None.

Output Parameters

suberr Detailed error code set by the last API call.

Constraints

tperrdtl and tperrno are mutually exclusive. These 2 verbs cannot be used in
sequence to test the result of the same API call.

Return Value

If the value is 0, it means that the previous function has encountered no error.

If the value is not 0, it is the tperrno value. See the tperrno values above.

Client Application Development

47 A2 37UT 4-19

4.4 Client States

The following table represents the client state with respect to XATMI routines
during a conversational service with TDS.

Each line contains an XATMI routine, each column a client state.

An entry under a particular state in the table shows which XATMI routine can be
called in that state, and lists the resulting state. A blank indicates that it is an error
to call the XATMI routine in that state.

state
routine

init send receive

tpconnect receive
tprecv send (*1)

receive (*2)
tpsend receive
tpdiscon init

(*1) resulting state if the client has received the turn
(*2) resulting state if the client has not received the turn

Error cases:

Upon an error returned by an XATMI routine, the tpdiscon routine must be called.

TDS-TCP/IP User's Guide

4-20 47 A2 37UT

4.5 Client Program Examples

Here is an example of a client PC-TDS dialog:

Client WINDOWS PC DPS 7000 TDS TCPI

tpconnect Connection request
LOGON processing

tprecv
rcvbuf= READY

SEND message=
READY

tpsend
sendbuf= TRACE PRINT

TRACE command

tprecv
rcvbuf= TERMINAL IN TRACE...

RECEIVE

SEND message=
TERMINAL IN TRACE...

RECEIVE

SEND message=
TPR COMPLETED

tpsend
sendbuf= SENDMSG NBEMI=0

Transaction SENDMSG

tprecv
rcvbuf= TPR COMPLETED

tpsend
sendbuf= BYE

LOGOUT processing

tprecv
rcvbuf=""

SEND message=""

tpdiscon

Figure 4-1. Client PC-TDS Dialog

Client Application Development

47 A2 37UT 4-21

4.5.1 Application Main Program

The following example is a program written in VB (Visual Basic).

==> forms description

Begin VB.Form test_vbatmi32
 Caption = "Form1"
 ClientHeight = 1935
 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 2685
 LinkTopic = "Form1"
 ScaleHeight = 1935
 ScaleWidth = 2685
 StartUpPosition = 3 'Windows Default

 Begin VB.CommandButton CmdFin
 Caption = "FIN"
 Height = 495
 Left = 360
 TabIndex = 1
 Top = 960
 Width = 2055
 End

 Begin VB.CommandButton CmdConnect
 Caption = "CONNECT"
 Height = 495
 Left = 360
 TabIndex = 0
 Top = 240
 Width = 2055
 End

End

* CODE *

 Option Explicit
 Dim ConnectIdent As Long
 Dim ReturnStatus As Long
 Dim data As String

TDS-TCP/IP User's Guide

4-22 47 A2 37UT

Private Sub CmdConnect_Click()

 Dim ConnectData As TP_CONNECTION_DATA
 Dim ConnectService As TP_CONNECTION_SERVICE
 Dim ConnectIdent As Long
 Dim ReturnStatus As Long
 Dim data As String
 Dim turn As Long

 ConnectData.Name = "LAUTIER"
 ConnectData.Project = "TCP"
 ConnectData.Billing = "TCP-V7"
 ConnectData.Password = "JA"
 ConnectService.HostId = "bcde-xti"
 ConnectService.TdsName = "tcpi"

==> connection to the tds

 ATMI_ConnectTds ConnectService, ConnectData, ConnectIdent, ReturnStatus
 If ReturnStatus <> 0 Then
 MsgBox "connect tds code : " & ReturnStatus, vbOKOnly, "*** ERROR ***"
 Exit Sub
 End If

 receivedata
 If ReturnStatus <> 0 Then
 Exit Sub
 End If

==> execution of the TRACE command
**
 data = "TRACE PRINT"
 ATMI_SendData ConnectIdent, data, ReturnStatus
 If ReturnStatus <> 0 Then
 MsgBox "send data code : " & ReturnStatus, vbOKOnly, "*** ERROR ***"
 Exit Sub
 End If

 receivedata
 If ReturnStatus <> 0 Then
 Exit Sub
 End If

Client Application Development

47 A2 37UT 4-23

==> execution of the SENDMSG transaction
**
 data = "SENDMSG NBEMI=0"
 ATMI_SendData ConnectIdent, data, ReturnStatus
 If ReturnStatus <> 0 Then
 MsgBox "send data code : " & ReturnStatus, vbOKOnly, "*** ERROR ***"
 Exit Sub
 End If

 receivedata
 If ReturnStatus <> 0 Then
 Exit Sub
 End If

==> normal disconnection from TDS
**
 data = "BYE"
 ATMI_SendData ConnectIdent, data, ReturnStatus
 If ReturnStatus <> 0 Then
 MsgBox "send data code : " & ReturnStatus, vbOKOnly, "*** ERROR ***"
 Exit Sub
 End If

 ATMI_ReceiveData ConnectIdent, data, turn, ReturnStatus
 If ReturnStatus = 0 Then
 MsgBox "erreur : receive ok after BYE", vbOKOnly, "*** ERROR ***"
 Else
 MsgBox "disconnection ok : status for BYE : " & ReturnStatus, vbOKOnly,
 "*** OK ***"
 End If

 ATMI_DisconnectTds ConnectIdent, ReturnStatus
 If ReturnStatus <> 0 Then
 MsgBox "disconnect tds code : " & ReturnStatus, vbOKOnly,
 "*** ERROR ***"
 Exit Sub
 End If
==> end of main program

 MsgBox "==> test OK", vbOKOnly, "BYE BYE"

End Sub

Private Sub CmdFin_Click()
 End
End Sub

TDS-TCP/IP User's Guide

4-24 47 A2 37UT

==> sub program for receiving data sent by the TDS transaction
**
Private Sub receivedata()
 Dim turn As Long
 Dim title As String
 Dim ReturnStatusDisc As Long
 turn = 0
 While turn = 0
 ATMI_ReceiveData ConnectIdent, data, turn, ReturnStatus
 If ReturnStatus <> 0 Then
 MsgBox "receive data code : " & ReturnStatus, vbOKOnly,
 "*** ERROR ***"
 ATMI_DisconnectTds ConnectIdent, ReturnStatusDisc
 If ReturnStatusDisc <> 0 Then
 MsgBox "disconnect tds code : " & ReturnStatusDisc, vbOKOnly,
 "*** ERROR ***"
 End If
 Exit Sub
 End If
 If turn = 0 Then
 MsgBox data, vbOKOnly, "receive noturn length=" & Len(data)
 Else
 MsgBox data, vbOKOnly, "receive with turn length=" & Len(data)
 End If
 Wend
End Sub

Client Application Development

47 A2 37UT 4-25

4.5.2 TDS API Interface

Attribute VB_Name = "Module1"
Rem ======= TDS TCP/IP interface defintion in Visual Basic

Rem types definition
Rem ******************

Option Explicit

Type TP_CONNECTION_SERVICE
 HostId As String * 16
 TdsName As String * 5
End Type

Type TP_CONNECTION_DATA
 Name As String * 13
 Project As String * 13
 Billing As String * 13
 Password As String * 13
 Termid As String * 13
 Dataconv As String * 2
 RelogonForce As String * 2
End Type

Rem Constants
Rem ************

Const ATMI_BUFFERTYPE As String * 8 = "X_C_TYPE"
Public Const ATMI_CONNECTDATASIZE As Long = 52
Public Const ATMI_MAX_RECEIVED_DATA_LENGTH = 32767
Public Const ATMI_TPEEVENT As Long = 22
Public Const ATMI_TPEV_SENDONLY As Long = 32

Rem ATMI32.DLL entry points declarations
Rem **

Declare Function tpalloc Lib "Atmi32.dll" _
 (ByVal sType As String, ByVal sSubType As String, ByVal lsize As Long)
 As Long

Declare Sub tpfree Lib "Atmi32.dll" _
 (ByVal pBuffer As Long)

Declare Function tpconnect Lib "Atmi32.dll" _
 (ByRef sSvc As TP_CONNECTION_SERVICE, ByVal pBuffer As Long, _
 ByVal lsize As Long, ByVal lFlags As Long) As Long

TDS-TCP/IP User's Guide

4-26 47 A2 37UT

Declare Function tpdiscon Lib "Atmi32.dll" _
 (ByVal lCd As Long) As Long

Declare Function tprecv Lib "Atmi32.dll" _
 (ByVal lCd As Long, ByRef pBuffer As Long, ByRef lsize As Long, _
 ByVal lFlags As Long, ByRef lEvent As Long) As Long

Declare Function tpsend Lib "Atmi32.dll" _
 (ByVal lCd As Long, ByVal pBuffer As Long, ByVal lLen As Long, _
 ByVal lFlags As Long, ByRef lRevent As Long) As Long

Declare Function tperrno Lib "Atmi32.dll" () As Long

Rem Other Win 32 API functions used as Services to transfert data
Rem **

Declare Sub CopyConnectDataToBuffer Lib "KERNEL32" Alias "RtlMoveMemory" _
 (ByVal pDest As Long, ByRef HpSource As TP_CONNECTION_DATA, ByVal
 cbCopy As Long)

Declare Sub CopyStringToBuffer Lib "KERNEL32" Alias "RtlMoveMemory" _
 (ByVal pDest As Long, ByVal HpSource As String, ByVal cbCopy As Long)

Declare Sub CopyBufferToString Lib "KERNEL32" Alias "RtlMoveMemory" _
 (ByVal sString As String, ByVal pSource As Long, ByVal cbCopy As Long)

Rem function interface to call XATMI DLL entry points
Rem ***

Public Sub ATMI_ConnectTds(TdsIdent As TP_CONNECTION_SERVICE, UserIdent As
TP_CONNECTION_DATA, _
 ConnectIdent As Long, ReturnStatus As Long)
 Dim ConnectFlags As Long
 Dim ConnectBuffer As Long
 ConnectBuffer = tpalloc(ATMI_BUFFERTYPE, "connect",
 ATMI_CONNECTDATASIZE)
 If ConnectBuffer = 0 Then
 ReturnStatus = tperrno()
 Else
 CopyConnectDataToBuffer ConnectBuffer, UserIdent, ATMI_CONNECTDATASIZE
 ConnectIdent = tpconnect(TdsIdent, ConnectBuffer, ATMI_CONNECTDATASIZE,
 ConnectFlags)
 If ConnectIdent = -1 Then
 ReturnStatus = tperrno()
 Else
 ReturnStatus = 0
 End If
 tpfree ConnectBuffer
 End If
End Sub

Client Application Development

47 A2 37UT 4-27

Public Sub ATMI_DisconnectTds(ConnectIdent As Long, ReturnStatus As Long)
 ReturnStatus = tpdiscon(ConnectIdent)
 If ReturnStatus <> 0 Then
 ReturnStatus = tperrno()
 End If
End Sub

Public Sub ATMI_SendData(ConnectIdent As Long, DataToSend As String,
ReturnStatus As Long)
 Dim SendFlags As Long
 Dim SendEvent As Long
 Dim DataLength As Long
 Dim SendBuffer As Long
 DataLength = Len(DataToSend)
 SendBuffer = tpalloc(ATMI_BUFFERTYPE, "send", DataLength)
 If SendBuffer = 0 Then
 ReturnStatus = tperrno()
 Else
 CopyStringToBuffer SendBuffer, DataToSend, DataLength
 SendFlags = 0
 ReturnStatus = tpsend(ConnectIdent, SendBuffer, DataLength, SendFlags,
 SendEvent)
 If ReturnStatus <> 0 Then
 ReturnStatus = tperrno()
 End If
 tpfree SendBuffer
 End If
End Sub

TDS-TCP/IP User's Guide

4-28 47 A2 37UT

Public Sub ATMI_ReceiveData(ConnectIdent As Long, ReceivedData As String, _
 TurnIndicator As Long, ReturnStatus As Long)
 Dim ReceiveBuffer As Long
 Dim DataLength As Long
 Dim receiveFlags As Long
 Dim ReceiveEvent As Long
 DataLength = ATMI_MAX_RECEIVED_DATA_LENGTH
 TurnIndicator = 0
 ReceiveBuffer = tpalloc(ATMI_BUFFERTYPE, "receive", DataLength)
 If ReceiveBuffer = 0 Then
 ReturnStatus = tperrno()
 Else
 ReturnStatus = tprecv(ConnectIdent, ReceiveBuffer, DataLength,
 receiveFlags, ReceiveEvent)
 If ReturnStatus = -1 Then
 ReturnStatus = tperrno()
 If ReturnStatus = ATMI_TPEEVENT Then
 If ReceiveEvent = ATMI_TPEV_SENDONLY Then
 ReturnStatus = 0
 TurnIndicator = 1
 Else
 ReturnStatus = ReceiveEvent
 End If
 End If
 End If
 If ReturnStatus = 0 Then
 If DataLength <> 0 Then
 ReceivedData = String(DataLength, " ")
 CopyBufferToString ReceivedData, ReceiveBuffer, DataLength
 Else
 ReceivedData = ""
 End If
 End If
 tpfree ReceiveBuffer
 End If
End Sub

Error Handling

47 A2 37UT 5-1

 5. Error Handling

5.1 Sequence Integrity

A TDS transaction is written to receive and send messages in a pre-defined order.
Consistency in receive-send sequences is necessary.

The TCP/IP client must know the semantics of each message expected and sent by
the transaction. These sequences can be disrupted by the following situations:

• during a socket closure in abnormal cases,

• a commitment unit rollback,

• a TDS re-initialization,

• a TDS failure.

Note: When a TDS RESTART (COLD or WARM) is done or when a TDS REINIT
occurs, the previous sessions of TCP/IP correspondents are lost.
Thus, at reconnection of the TCP/IP client, the session is in first logon processing;
Its eventual previous interrupted transaction is not restarted.

5.1.1 Socket Closure in Abnormal Cases

Socket closure can occur in abnormal situations, due to a master command or
disconnection. If the transaction has not been completed when the socket closure
occurs, the TCP/IP correspondent may connect again to the TDS, and the
transaction will be re-started. Two situations are possible:

• If the failure occurs at the commitment point when the correspondent reconnects
to TDS, NEXT-TPR is started and the receive-send sequence is not disrupted.

• If the failure occurs during the transaction, the commitment unit is restarted and
the receive-send sequence is disrupted, as in the commitment unit rollback case
below.

TDS-TCP/IP User's Guide

5-2 47 A2 37UT

5.1.2 Commitment Unit Rollback

When a commitment unit is restarted, all the commitment unit messages are sent
again. The TDS-TCP/IP client may receive the same data twice.

5.1.3 TDS Re-initialization

When sockets close, all TDS-socket operations are interrupted, causing the
disconnection of all TCP/IP sessions. A client application must reconnect to the
TDS, and the TDS is re-initialized. The receive-send sequence is disrupted.

5.1.4 TDS Failure

If TDS fails, sockets close, and all TDS-socket operations are interrupted.

5.1.5 TDS-HA Takeover

If an HA takeover occurs, all TDS-socket operations are interrupted. Moreover, the
TCP/IP correspondents are not automatically reconnected to the backup TDS.

5.1.6 GCOS 7 Warm Restart after Crash

If the TDS step is repeatable it may happen after a GCOS 7 crash that TDS restarts
before the socket communication link is re-established. It this case, the TCP/IP
communication cannot be initialized by TDS and TCP/IP clients cannot be
reconnected. So it is recommended to issue an OPEN_TDS_SOCKET master
command as soon as the TDS becomes ready after step repeat.

Error Handling

47 A2 37UT 5-3

5.2 Transaction Programming

If a TCP/IP client is disconnected while executing a transaction, this transaction
will be automatically restarted at its last commitment point when reconnecting to
TDS. The client may receive the same messages twice.

The recovery after receive-send sequence failures is complex, if it assumes that the
client application must forecast all the possible messages that can be received, and
must be sent due to the failure cases described above.

So, it is recommended to code a CANCELCTX procedure in the LOGON
transaction in the case of a TCP/IP correspondent in order to prevent current
transactions restarting at reconnection time.

Note: After a TDS Reinit or a TDS restart (COLD or WARM, after GCOS7 crash
or not), the previous session of TCP/IP correspondents are lost.
At the reconnection of the TCP/IP client, the session is in first logon processing
and its eventual previous interrupted transaction is not restarted.

TDS-TCP/IP User's Guide

5-4 47 A2 37UT

5.3 Client Error Messages

Client error messages are logged in the file Atmitds.log. This file is dynamically
created by the DLL. Messages are recorded in the log each time an error occurs
during the execution of an XATMI function. It is used for trace purposes and to
find details of tperrno values.

The error messages are as follows:

TDS-TCP/IP Related Errors

Error = 1 Internal error in ATMI DLL
DLL system error.

Error = 2 Connect error: ID out of range
Invalid cd input parameter.

Error = 3 Connect error: Wrong session ID
Invalid cd input parameter.

Error = 4 Invalid argument given
Parameter not addressable.

Error = 5 Maximum number of connections reached
− Attempt to perform a new connection while 500

connections are already active in the client
application.

− No new connection is allowed due to a
PREVENT_NEW_TDS_COR command issued on
the TDS application.

Error = 9 Protocol error
− Function called in an improper context.
− User cannot be connected.
− Buffer too small to receive data.

Error = 10 Invalid connection buffer
DLL system error

Error = 12 System error
DLL system error

Error = 20 Communication error during connection
Communication link failure.

Error = 22 Event occurred
An event occurred and its type is available in the
revent parameter of tprecv.

Error Handling

47 A2 37UT 5-5

Error = 30 Internal error TDS
Attempt to connect a user already known by TDS as a
non-TCP/IP correspondent.

Error = 31 Invalid length
Buffer length too small to receive data.

Error = 32 TDS socket being closed
Attempt to connect a user while TDS socket being
closed.

Error = 33 Invalid Client version
Incompatibility between client version and GCOS 7
Technical Status.

Error = 60 Catalog GCOS error
Connection parameters: Name, Project, Billing do not
match GCOS 7 catalog information.

Error = 70 Invalid password
Password connection parameter is invalid.

Error = 80 Internal TDS error (table allocation)
TDS system error during connection.

Error = 81 Connection error : (Table or swap allocation)
TDS system error during connection.

Error = 90 User already connected
Attempt to connect a user already connected.

Error = 95 Connection error : (Invalid multiple users)
- The length of the correspondent’s name exceed nine

characters.

- There is already 999 connected multiple users using
this name.

Error =96 Connection error : (Wrong multiple users name)

Error = 100 Incomplete disconnection
Attempt to connect a user already being disconnected.

Error = 110 Connection error (invalid state)
TDS system error during connection.

Error = 120 Invalid reconnection
TDS system error during connection.

TDS-TCP/IP User's Guide

5-6 47 A2 37UT

Error = 130 Reconnection (invalid state)
TDS system error during connection.

Error = 140 Master not allowed
Attempt to connect the TDS master operator as a
TCP/IP correspondent.

Error = 150 TDS not ready, retry later
Attempt to connect a user while TDS is not at the
ready state.

Error = 200 Send error (invalid header: session)
TDS system error while sending data.

Error = 210 Send error (invalid header)
TDS system error while sending data.

Error = 220 Send error (invalid header: sequence)
TDS system error while sending data.

Error = 230 Send error (invalid datatype or bad turn)
TDS system error while sending data.

Error = 235 Send error (session being disconnected)
Attempt to send data while the user session being
disconnected.

Error = 240 Send error (internal error)
TDS system error while sending data.

Error = 245 Send error (no data)
Attempt to send a null length buffer while the session
is idle.

Error = 250 Send error (flow state)
TDS system error while sending data.

Error = 260 Send error (timeout)
Time-out occurred before TDS receives all the sent
data.

Error = 280 User canceled by TDS operator
Attempt to receive data while the user being canceled
by the TDS master operator.

Error = 300 Socket connection closed during receive
Communication link failure.

Error = 1001 Unable to create window (internal error)
DLL system error.

Error Handling

47 A2 37UT 5-7

Error = 1002 Too many thread in process (internal error)
DLL system error.

Error = 1003 Unable to retrieve threadId (internal error)
DLL system error.

Error = 1004 Buffer still allocated at end of thread or process
Some buffers were still allocated at end of thread or
process.

Error = 1005 Connection still opened at end of thread or process
Some connections were still opened at end of thread or
process.

Error = 1006 Abnormal termination received from peer
Socket disconnection on TDS initiative, it may happen
when:
− The user has sent a message "BYE" to TDS.
− The user is cancelled by the master command CTC.
− The user is disconnected because the maximum idle

time is expired.

Error = 1007 Invalid length (header and received length
different)
DLL system error.

Error = 1008 Buffer overflow (received data too long)
Allocated buffer too short to receive all the data.

Error = 1009 Socket connection closed on receive
Socket disconnection occurred while receiving data.

Error = 1010 Timeout event occurred
Timeout event occurred while trying to connect or to
receive data.

Error = 1011 Unable to create timer thread (internal error)
DLL system error.

Error = 1012 Unable to create semaphore table (internal error)
DLL system error.

Error = 1013 Unable to initialize semaphore (internal error)
System error.

Error = 1014 Unable to register exit function (internal error)
System error.

Error = 1015 Error on trace file access (internal error)
System error.

Error = 1016 Error on trace file creation (internal error)
System error.

TDS-TCP/IP User's Guide

5-8 47 A2 37UT

Error = 1017 Error on trace file opening (internal error)
System error.

Error = 1018 Receive error (timeout)
System error.

Error = 1019 Receive error (internal error)
System error.

Error = 1020 Error on semaphore locking (internal error)
System error.

Error = 1021 Error on semaphore unlocking (internal error)
System error.

 Error = 1022 File not found: file_name

Socket Related Errors : Windowssockets

(Refer to the Microsoft Sockets documentation)

Error = 10004 Socket error: WSAEINTR
Error = 10009 Socket error: WSAEBADF
Error = 10013 Socket error: WSAEACCES
Error = 10014 Socket error: WSAEFAULT
Error = 10022 Socket error: WSAEINVAL
Error = 10024 Socket error: WSAEMFILE
Error = 10035 Socket error: WSAEWOULDBLOCK
Error = 10036 Socket error: WSAEINPROGRESS
Error = 10037 Socket error: WSAEALREADY
Error = 10038 Socket error: WSAENOTSOCK
Error = 10039 Socket error: WSAEDESTADDRREQ
Error = 10040 Socket error: WSAEMSGSIZE
Error = 10041 Socket error: WSAEPROTOTYPE
Error = 10042 Socket error: WSAENOPROTOOPT
Error = 10043 Socket error: WSAEPROTONOSUPPORT
Error = 10044 Socket error: WSAESOCKTNOSUPPORT
Error = 10045 Socket error: WSAEOPNOTSUPP
Error = 10046 Socket error: WSAEPFNOSUPPORT
Error = 10047 Socket error: WSAEAFNOSUPPORT
Error = 10048 Socket error: WSAEADDRINUSE
Error = 10049 Socket error: WSAEADDRNOTAVAIL
Error = 10050 Socket error: WSAENETDOWN
Error = 10051 Socket error: WSAENETUNREACH
Error = 10052 Socket error: WSAENETRESET
Error = 10053 Socket error: WSAECONNABORTED
Error = 10054 Socket error: WSAECONNRESET
Error = 10055 Socket error: WSAENOBUFS

Error Handling

47 A2 37UT 5-9

Error = 10056 Socket error: WSAEISCONN
Error = 10057 Socket error: WSAENOTCONN
Error = 10058 Socket error: WSAESHUTDOWN
Error = 10059 Socket error: WSAETOOMANYREFS
Error = 10060 Socket error: WSAETIMEOUT
Error = 10061 Socket error: WSAECONNREFUSED
Error = 10062 Socket error: WSAELOOP
Error = 10063 Socket error: WSAENAMETOOLONG
Error = 10064 Socket error: WSAEHOSTDOWN
Error = 10065 Socket error: WSAEHOSTUNREACH
Error = 10066 Socket error: WSAENOEMPTY
Error = 10067 Socket error: WSAEPROCLIM
Error = 10068 Socket error: WSAEUSERS
Error = 10069 Socket error: WSAEDQUOT
Error = 10070 Socket error: WSAESTALE
Error = 10071 Socket error: WSAEREMOTE
Error = 10091 Socket error: WSASYSNOTREADY
Error = 10092 Socket error: WSAVERNOTSUPPORTED
Error = 10093 Socket error: WSANOTINITIALISED
Error = 11001 Socket error: WSAHOST_NOT_FOUND
Error = 11002 Socket error: WSATRY_AGAIN
Error = 11003 Socket error: WSANO_RECOVERY
Error = 11004 Socket error: WSANO_DATA

Socket Related Errors : AIX sockets

Error = 10002 Socket error: ENOENT
Error = 10004 Socket error: EINTR
Error = 10009 Socket error: EBADF
Error = 10013 Socket error: EACCES
Error = 10014 Socket error: EFAULT
Error = 10022 Socket error: EINVAL
Error = 10024 Socket error: EMFILE
Error = 10052 Socket error: ESTALE
Error = 10054 Socket error: EWOULDBLOCK
Error = 10055 Socket error: EINPROGRESS
Error = 10056 Socket error: EALREADY
Error = 10057 Socket error: ENOTSOCK
Error = 10058 Socket error: EDESTADDRREQ
Error = 10059 Socket error: EMSGSIZE
Error = 10060 Socket error: EPROTOTYPE
Error = 10061 Socket error: ENOPROTOOPT
Error = 10062 Socket error: EPROTONOSUPPORT
Error = 10063 Socket error: ESOCKTNOSUPPORT
Error = 10064 Socket error: EOPNOTSUPP
Error = 10065 Socket error: EPFNOSUPPORT

TDS-TCP/IP User's Guide

5-10 47 A2 37UT

Error = 10066 Socket error: EAFNOSUPPORT
Error = 10067 Socket error: EADDRINUSE
Error = 10068 Socket error: EADDRNOTAVAIL
Error = 10069 Socket error: ENETDOWN
Error = 10070 Socket error: ENETUNREACH
Error = 10071 Socket error: ENETRESET
Error = 10072 Socket error: ECONNABORTED
Error = 10073 Socket error: ECONNRESET
Error = 10074 Socket error: ENOBUFS
Error = 10075 Socket error: EISCONN
Error = 10076 Socket error: ENOTCONN
Error = 10077 Socket error: ESHUTDOWN
Error = 10078 Socket error: ETIMEDOUT
Error = 10079 Socket error: ECONNREFUSED
Error = 10080 Socket error: EHOSTDOWN
Error = 10081 Socket error: EHOSTUNREACH
Error = 10083 Socket error: EPROCLIM
Error = 10084 Socket error: EUSERS
Error = 10085 Socket error: ELOOP
Error = 10086 Socket error: ENAMETOOLONG
Error = 10087 Socket error: ENOTEMPTY
Error = 10088 Socket error: EDQUOT
Error = 10093 Socket error: EREMOTE
Error = 10115 Socket error: ETOOMANYREFS
Error = 11001 Socket error: HOSTNOTFOUND
Error = 11002 Socket error: TRY_AGAIN
Error = 11003 Socket error: NO_RECOVERY
Error = 11004 Socket error: NO_DATA

Socket Related Errors : Linux sockets

Error = 10002 Socket error: ENOENT
Error = 10004 Socket error: EINTR
Error = 10009 Socket error: EBADF
Error = 10011 Socket error: EAGAIN, EWOULDBLOCK
Error = 10013 Socket error: EACCES
Error = 10014 Socket error: EFAULT
Error = 10022 Socket error: EINVAL
Error = 10024 Socket error: EMFILE
Error = 10036 Socket error: ENAMETOOLONG
Error = 10039 Socket error: ENOTEMPTY
Error = 10040 Socket error: ELOOP
Error = 10066 Socket error: EREMOTE
Error = 10087 Socket error: EUSERS
Error = 10088 Socket error: ENOTSOCK

Error Handling

47 A2 37UT 5-11

Error = 10089 Socket error: EDESTADDRREQ
Error = 10090 Socket error: EMSGSIZE
Error = 10091 Socket error: EPROTOTYPE
Error = 10092 Socket error: ENOPROTOOPT
Error = 10093 Socket error: EPROTONOSUPPORT
Error = 10094 Socket error: ESOCKTNOSUPPORT
Error = 10095 Socket error: EOPNOTSUPP
Error = 10096 Socket error: EPFNOSUPPORT
Error = 10097 Socket error: EAFNOSUPPORT
Error = 10098 Socket error: EADDRINUSE
Error = 10099 Socket error: EADDRNOTAVAIL
Error = 10100 Socket error: ENETDOWN
Error = 10101 Socket error: ENETUNREACH
Error = 10102 Socket error: ENETRESET
Error = 10103 Socket error: ECONNABORTED
Error = 10104 Socket error: ECONNRESET
Error = 10105 Socket error: ENOBUFS
Error = 10106 Socket error: EISCONN
Error = 10107 Socket error: ENOTCONN
Error = 10108 Socket error: ESHUTDOWN
Error = 10109 Socket error: ETOOMANYREFS
Error = 10110 Socket error: ETIMEDOUT
Error = 10111 Socket error: ECONNREFUSED
Error = 10112 Socket error: EHOSTDOWN
Error = 10113 Socket error: EHOSTUNREACH
Error = 10114 Socket error: EALREADY
Error = 10115 Socket error: EINPROGRESS
Error = 10116 Socket error: ESTALE
Error = 10122 Socket error: EDQUOT
Error = 11001 Socket error: HOSTNOTFOUND
Error = 11002 Socket error: TRY_AGAIN
Error = 11003 Socket error: NO_RECOVERY
Error = 11004 Socket error: NO_DATA

TDS-TCP/IP User's Guide

5-12 47 A2 37UT

5.3.1 TDS ERROR MESSAGES

The following TDS error messages are specific to TDS-TCP/IP and may occur at
TDS execution time.

MV79. TCP/IP COMMUNICATION IS NOT INITIALIZED ERRNO=XXXXX ON XXXXXXXXXXXXX

Meaning: An error occurred during TDS-TCP/IP initialization:
ERRNO=XXXXX is the error code returned by the
SOCKG 7 function invoked.
XXXXXXXXXXXXX is the name of the invoked
SOCKG 7 function which encountered a problem.

Action: Check "host" and "services" configuration files used
for the chosen TCP/IP configuration.
Check that OPEN 7 and SOCKG 7 products are active
and ready on the site.

MV80. TCP/IP FUNCTION IS NOT AVAILABLE

Meaning: The product TDS-TCP/IP (Marketing Identifier) has
not been purchased for the site.
The H_SM_DCM SM of SYS.DCM.SYSTEM is not
loaded.

Action: Verify if the product was purchased or not.
Ensure that the SM containing H_SM_DCM is loaded.

Error Handling

47 A2 37UT 5-13

5.4 Client Trace

The ATMITDS.TRC file allows to debug TDS-TCP/IP client applications. If the
trace mode is activated (either TRACE_API or TRACE_SOC not null), this file is
dynamically created, in the user project directory, by the DLL.

Since the DLL version 3.1.0, a path name can be specified to store the files
ATMITDS.TRC and ATMITDS.LOG in a chosen folder. The path name is defined
by the PATH key in the ATMI.INI file.

EXAMPLE :

PATH=D:\MY_TRACE_FOLDER

If the atmi.ini file is not found in the system directory (usually C:\WINNT), only
the ATMITDS.LOG is always created in the current working directory with the
event “1022 File not found” logged and possibly other errors.

If in the atmi.ini file, the keyword SUPPRESS_LOG is found to 1, the
ATMITDS.LOG is never created.

If the path is not specified in the atmi.ini file, the ATMITDS.LOG and
ATMITDS.TRC files can be created in the current working directory.

If the file ATMITDS.TRC can not be created or reached, this event is written in
ATMITDS.LOG

❑

5.4.1 Activating the Trace

To activate the trace, keys must be set as follows in the atmi.ini file:

DEBUG = {0 | 1 | 2}
TRACE_API = {0 | 1 | 2}
TRACE_SOC = {0 | 1 | 2}

DEBUG relates to the debug mode. If 0, no error messages are
echoed at the console. If 1, all messages except
disconnection messages are displayed at the console. If
2, all messages are displayed.

TRACE_API relates to the trace of the API calls. Its value indicates
the trace value. If its value is 1, only the first 32 bytes
of the buffers are dumped. If its value is 2, the whole
contents of the buffers is dumped.

TDS-TCP/IP User's Guide

5-14 47 A2 37UT

TRACE_SOC relates to the trace of the socket verbs. Its value
indicates the trace value. TRACE_SOC is reserved for
system debugging.

The Trace Format

 First field: time / second field: thread number / third field: DLL load event
 11:36:21.710 0000 ***** ATMI TDS TRACE ***** (version: 3.0.3.1) 20/11/1998

 : implies an event or API call received by the DLL
 11:36:21.710 0001 DLL new thread : winThreadId=FFFC9CDD ProcessId=1
 11:36:39.390 0001 tpalloc bufsize=2000

>>> : implies API input parameter values
 11:36:39.390 0001 >>> type : addr=0041B1C0 lg=8
 0001 0000 585F435F 54595045
 X_C_TYPE
 11:36:39.390 0001 >>> subtype : addr=00412580 lg=4
 0001 0000 617A7177
 azqw

<<< : implies API output parameter values
 11:36:39.390 0001 <<< tpalloc bufptr=0055000c

=== : implies a socket trace event

*** : implies a DLL error not related to a specific thread

47 A2 37UT 6-1

 6. TCP/IP Transactions Using FORMS Facility

6.1 Generality

A TDS transaction running on GCOS 7 in formatted mode can be used by a client
application located on a PC as well as by a terminal. That implies no modification
of the SDPI forms routines (refer to the FORMS User's Guide).

The server and client applications process the FORMS dialog by the exchange of
structured messages:

• Each message will contain as many fields as the number of named fields (NF)
defined in the form generation. The unnamed fields (UF) are never sent to the
client application.

• Only the contents of the named fields, without any qualification or rendition
attributes, are sent to the client application.

• All fields, transmittable or not transmittable, are exchanged in the same order in
which they are displayed on a terminal screen (i.e., left to right, top to bottom).
If several forms are activated in APPEND mode, the messages of each active
form are added in the same order as the form activation.

• Each field is separated from the preceding one by a delimiter character. This
delimiter is currently the TAB character (i.e., "05" EBCDIC from server
application, "09" ASCII from client application).

• Two consecutive delimiter characters in a message mean that the corresponding
field is cleared or empty.

• Pluri Language West characters (PLW) are supported according to the ISO
8859-1 specification (PLW in ASCII 8-bits mode).

• If a client application sends a function-key, the key profile FC1 FC2 is placed at
the beginning of the message. It is preceded by the ESC CSI characters (i.e.,
"274A" EBCDIC from the server application, "1B5B" ASCII from the client
application), and followed by a lower-case u character. FC1 FC2 takes the
values "01" to "24".

TDS-TCP/IP User's Guide

6-2 47 A2 37UT

• Fields with the pseudo-graphics characters (CSPS) attribute, contain only CSPS
or blank characters. A serial of CSPS characters begins always by a leading
SHIFT-OUT character (i.e., "0E" EBCDIC or ASCII).

On the GCOS 7 server, Formname_OF_DKU7107 object form file must be present
in the binary library or UFAS files, or Formname_OF_ANY object form file in the
binary library.

6.2 SDPI Verbs Particularities

Refer to FORMS User’s Guide, Appendix A.

6.2.1 Forms Activation (CDGET)

For a TM transaction, this action will place the fixed form in the message sent to
the terminal in order to format the screen.

For a TCP/IP transaction, none of this information is placed in the message sent to
the client application. When a level 3 CDGET is performed, all the fields of the
activating forms are sent to the client application. All these fields are blank.

6.2.2 Forms Send (CDSEND)

This action causes data to be transferred to the client application. All named fields,
either specified in the selection-vector or not, are put in the message.

6.2.3 Forms Receive (CDRECV)

This action causes data to be received from the message sent by the client
application to the user data record according to the user selection vector. The
message contains all the named fields.

The message sent by the client application is checked:

When the received field number is different from the form field number, a status
key A7 (RECARERR return code) is set, and no data transferred to the server
application.

When a received protected field has been modified by the client application, the
corresponding selection vector is set to "A". If this field is transmittable, it is not
delivered. If it is the last field in error in the form, a status key AB (ALMOST
return code) is set.

TCP/IP Transactions Using FORMS Facility

47 A2 37UT 6-3

When a received field length exceeds the form field length, the corresponding
selection vector is set to "O". If this field is transmittable, it is not delivered. If it
is the last field in error in the form, a status key AB (ALMOST return code) is set.

6.2.4 Forms Release (CDRELS)

This action does not put any data in the message.

6.2.5 Forms Purge Input Data (CDPURGE)

This action purges all pending input messages and gives the control to the server
application.

6.2.6 Forms Attribute or List Attribute Selection (CDATTR or CDATTL)

This action does not put any data in the message, except if a CLEAR action has
been specified by the server application in the selection vector.

In this case, all the named fields (NF) are put in the message to be sent to the client
application.

Else, an empty message is sent.

6.2.7 Forms Identification (CDFIDI)

This action returns the name of the form having data pending from the last client
received message.

When the received field number is different from the form field number, a status
key A7 (RECARERR return code) is set, and no data is transferred to the server
application.

6.2.8 Forms Mechanism Function (CDMECH)

This action activates the control function mechanism.

This action does not put any data in the message, except in the following case. If a
mechanism CLEAR, INITAT or INIT is performed, and if a CLEAR action has
been specified by the server application in the selection vector, then all the named
fields are put in the message to be sent to the client application, else, an empty
message is performed.

TDS-TCP/IP User's Guide

6-4 47 A2 37UT

6.3 Limitations

Most of the TDS FORMS functionalities are supported by TDS-TCP/IP
transactions with the following restrictions:

• TELETRANS applications, running with the special <<T>> mode activation are
not supported. Under TDS-TCP/IP they lead to a transaction abort with a status
key AB (FUNCNAV return code).

• The CDMECH CPON/CPOFF mechanism, which notifies the cursor position at
<<TRANSMIT>> key press to the TDS application, is not processed. TCP/IP
transactions with such a mechanism, run as for a terminal without this
functionality support.

• The DETECTABLE, IMMEDIAT-TRANSMIT (running on terminals with a
light-pen device) , and INPUT-DEVICE-BD (running on terminals with a badge
reader) attributes are not processed.

• The initial data, specified at form generation, is not retrieved from the form
internal structure during CDGET processing. It is lost.

TCP/IP Transactions Using FORMS Facility

47 A2 37UT 6-5

6.4 Data Flow Example

Suppose an application running with a form F1.

This form begins with an unnamed field UF1, preceding a named field NF1 with
protected and not transmittable attributes, followed by a UF2 preceding an
unprotected NF2, terminated by an UF3 followed by an unprotected NF3.

This transaction starts by:

a TPR1 which performs:
 CDGET F1 level=1
 CDATTR F1 level=1 attribute = PR on NF3
 CDSEND F1 level=3 "ABC" to NF1, "123" to NF3
a TPR2 performing a CDRECV on all 3 NFs

At TPR termination of TPR1, the message sent to the terminal or the client is the
following:

To the terminal To the TCP/IP client application

UF1 NF1 definition "ABC" TAB " " TAB
UF2 NF2 definition "123"
UF 3 NF3 definition

CP1 "ABC" CP2 " "
CP3 PR "123"

At TPR beginning of TPR2, if the response is "STOP" on NF2, the message sent
from the terminal or the client is the following:

From the terminal From the TCP/IP client application

"STOP" TAB "123" "ABC" TAB "STOP" TAB
"123"

TDS-TCP/IP User's Guide

6-6 47 A2 37UT

❑

47 A2 37UT 7-1

 7. Protocol between SA7 and the client
application

The application on PC connected to a secured TDS shall expect messages from
SA7 and be able to answer them.

This protocol is available from SA7 V3.5 which can be installed with the
INTEROP7 facility called ISI7 minimum tape version IS230.

For a TCP/IP correspondent, the messages from SA7 are in the following format:

<header>:<function>:<status>:<message>

where (the character « : » being used as a delimiter):

<header> = « SA7TCP »: a sequence of 6 characters indicating that the message
is issued from SA7.

<function>, a 3-character code:

= « 001 »: end of check
= « 002 »: request for password
= « 003 »: request for password change

<status>, a 3-character code (status codes are those used by
SECUR’ACCESS for a TM type correspondent; they
are defined in the SAMES1 member of the
SA7.LIV.SL library):

= « 000 »: connection accepted if function = 001
password change accepted if function = 003
= a letter followed by 2 digits indicating the reason for
function request - e.g.:

D41: « initial password »
D73: « wrong password, 2 attempts left »
D74: « wrong password, last attempt »
E48: « password expired »
E50: « password soon expired »
.....

TDS-TCP/IP User's Guide

7-2 47 A2 37UT

= 3 digits indicating the reason for connection denied -
e.g.:

060: password expired
068: user lacking security rights
098: user stuck for password
108: validity date exceeded
...

<message>: gives the message associated with <status>; this
message is in the language defined for the user.

The answers expected by SA7 are in the following format:

when a password is requested,

<header>:<function>:<action-code>:<user-name>:<parameter1>

when a password change is requested,

<header>:<function>:<action-code>:<user-
name>:<parameter1>:<parameter2>

where:

<header> (6 characters) takes the same value as in the request
from SA7

<function> (3 characters) is the value of the request from SA7

<action-code> (1 character) is a code used for validating or ignoring
the function:

= « A »: function ignored
= « V »: function validated
= « C »: password change requested when answering a
password request

<user-name> (12 characters) is the name of the user, if different
from the name used for connection

<parameter1> (12 characters) is the user password

<parameter2> (12 characters) is the new user password.

In GCOS 7 TS 9764 the messages from the SA7 TPRs are considered as
application type messages, the client API must therefore comply with the protocol
described above.

Like for a DSA terminal, the option retained for the TS 9764 is to authorize a
maximum of 3 password attempts before denying connection to TDS.

Protocol between SA7 and the client application

47 A2 37UT 7-3

EXAMPLES OF DIALOGS:

1. Connection with a wrong password:

SA7 issues:
(English)
SA7TCP :002 :D73 :ERRONEOUS PASSWORD : TWO TRIES AGAIN
(French)
SA7TCP :002 :D73 :MOT DE PASSE ERRONE : ENCORE 2 ESSAIS
SA7 receives:
SA7TCP :002 :V : :SA7U :
SA7 issues: (SA7U password correct)
SA7TCP :001 :000 :

2. Connection with a password correct but to be changed soon:

SA7 issues:
(English)
SA7TCP :003 :E50 :YOUR PASSWORD WILL EXPIRE SOON
(French)
SA7TCP :003 :E50 :MOT DE PASSE BIENTOT PERIME
SA7 receives:
SA7TCP :003 :A :
SA7 issues (connection accepted, password change not mandatory):
SA7TCP :001 :000 :

3. Connection with an expired password:

SA7 issues:
(English)
SA7TCP :003 :E48 :PASSWORD HAS EXPIRED : MUST BE CHANGED
(French)
SA7TCP :003 :E48 :MOT DE PASSE PERIME
A7 receives:
SA7TCP :003 :V : :SA7U2 :USA7 :
SA7 issues (password changed from SA7U2 to USA7):
SA7TCP :001 :000 :

TDS-TCP/IP User's Guide

7-4 47 A2 37UT

4. Password change requested by the user, SAUTIL1 transaction:

SA7 issues:
(English)
SA7TCP :003 :A31 :PASSWORD CHANGE
(French)
SA7TCP :003 :A31 :CHANGEMENT DE MOT DE PASSE
SA7 receives:
SA7TCP :003 :V : :SA7U2 :AZER :
SA7 issues (password changed from SA7U2 to AZER)
SA7TCP :003 :000 :

5. Connection denied for a user who entered 3 wrong passwords in succession:

SA7 issues:
(English)
SA7TCP :001 :098 : USER BLOCKED FOR PASSWORD
(French)
SA7TCP :001 :098 : UTILISATEUR BLOQUE POUR MOT DE PASSE

❑

47 A2 37UT 8-1

 8. AIX or Linux Client

8.1 Installation

The AIX or Linux machine must have an appropriate communications card
allowing connection to a TCP/IP network and must be able to run the software
listed below.

The AIX or Linux operating system must allow development and execution of
client applications.

Two files are delivered for the product :

• Atmi.h, an include file required for compilation of the client application
program

• XATMI, the shared library providing the interface with TDS-TCP / IP
transactions.

The AIX or Linux machine administrator may decide where to install the shared
library XATMI, and the include file Atmi.h.

TDS-TCP/IP User's Guide

8-2 47 A2 37UT

8.2 Configuration

AIX or Linux machines must be configured for each TDS application. Two files
hold the relevant information:

• the address for remote host mapping is held in the /etc/hosts,

• the service declaration is held in the /etc/services file.

The /etc/hosts file must be updated to include the IP addresses of the names of the
hosts running the TDS applications. A host name is the symbolic name used in the
client application to address the DPS 7000 system (corresponding to the hostid
parameter of the tpconnect verb).

EXAMPLE:

129.182.50.50 bc0f #host name of the DPS 7000 on which
the TDS tds1 runs

❑

The /etc/services file must be updated to include the required service names, the
port number associated with each service, and the protocol used. The service name
is the concatenation of the host name and the TDS name. The port number must be
the same as the one declared on the GCOS 7 server.

EXAMPLE:

If a client application wants to connect to the TDS tds1 located on the DPS 7000
referred to by the host name bc0f, the following line must appear in the
/etc/services file:

bc0ftds1 10100/tcp

❑

NOTE:
The value of the port number must be greater than 1024.

AIX or Linux Client

47 A2 37UT 8-3

8.3 Programming

From the shared library XATMI version 1.2.0, a data conversion indicator may be
supplied to the tpconnect function, using the dataconvert field in the data
parameter.

A new environment variable is created, ATMI_CONNECT_TIMEOUT. Used
during a tpconnect function call, it gives the maximum waiting time for the
connection establishment, expressed in milliseconds. Its default value is
tcp_keepinit network attribute value (usually 75 seconds).The maximum number of
TCP/IP connections per client process is 64. From the shared library XATMI
version 1.3.0, this number is raised to 500.

The TDS-TCP/IP client API is composed of the following functions:

• four functions for conversational services: tpconnect, tpdiscon, tprecv and tpsend

• two functions for typed buffer management: tpalloc and tpfree

• two functions for error return: tperrno and tperrdtl, these functions being
extensions of XATMI.

The functions prototypes are described in Chapter 4.3.

For a client application program coded in C, an include file Atmi.h is delivered
containing the description of the connection structures, the external function
prototypes, the event types, and error codes.

The Atmi.h file must be put in the client working directory.

In the source code using API functions, the following directive may be provided:

#include “Atmi.h”

In order to access the shared library XATMI from a AIX or Linux client
application program, a Makefile of the following form is required :

VPATH= <path-of-source-code>
DASHO= -g
CFLAGS= $(DASHO)
LDFLAGS= XATMI -L '.'

atmi_test.o: $(VPATH)/atmi_test.c
 $(CC) ${CFLAGS} -c $(VPATH)/atmi_test.c
test_atmi: atmi_test.o
 $(CC) -o test_atmi atmi_test.o $(LDFLAGS)

TDS-TCP/IP User's Guide

8-4 47 A2 37UT

8.4 Example

The following example is a program written in C.

/***/
/* Complete test of all entry points (connection with termid) */
/***/
#include <stdio.h>
#include <sys/types.h>

/***/
/* To be included in all client programmes */
/***/
#include "Atmi.h"
/***/

char *tpbuffer = NULL;
long tplen;
long tpflags;
long tprevent;
int tpcd;
int tpret;

/***/
/* subroutine to send data to TDS */
/* return value : */
/* 0 : normal exit */
/* -1 : error signalled and tpdiscon OK */
/* -2 : error signalled and tpdiscon KO */
/***/
int send_to_tds()
{
 tpret = tpsend(tpcd, tpbuffer, tplen, tpflags, &tprevent);
 if (tpret == -1)
 {
 tpret = tperrno();
 fprintf (stdout, "tpret after send : %d\n", tpret);
 tpret = tpdiscon(tpcd);
if (tpret == -1)
{
tpret = tperrno();
fprintf (stdout, "tpret after disconnect : %d\n", tpret);
return (-2);
}
return (-1);
}
 return (0);
}

AIX or Linux Client

47 A2 37UT 8-5

/***/
/* subroutine to receive data from TDS */
/* return value : */
/* 0 : normal exit */
/* -3 : error signalled and tpdiscon OK */
/* -4 : error signalled and tpdiscon KO */
/***/
int receive_from_tds()
{
 tpret = tprecv(tpcd, &tpbuffer, &tplen, tpflags, &tprevent);
 if (tpret == -1)
 {
 tpret = tperrno();
 if ((tpret == TPEEVENT)&& (tprevent == TPEV_SENDONLY))
 return (0);
 else
 {
 fprintf (stdout, "tpret after receive : %d\n", tpret);
 tpret = tpdiscon(tpcd);
 if (tpret == -1)
 {
 tpret = tperrno();
 fprintf (stdout, "tpret after disconnect : %d\n", tpret);
 return (-4);
 }
 return (-3);
 }
 }
 return (0);
}
/***/
#define min(a,b) (((a) < (b))? (a): (b))
/***/

main(argc, argv)
 int argc;
 char *argv[];
{
char tptype[16] = "X_C_TYPE";
char tpsubtype[16] = " ";
long tpsize=32784;
long tpbuflen;
int outlg;
char outbuff[50];
char inbuff[50];
int ret;

struct service_id {
 char hostid[16];
 char tdsname[5];
} tpsvc;

TDS-TCP/IP User's Guide

8-6 47 A2 37UT

struct subtype {
 char name[13];
 char project[13];
 char billing[13];
 char password[13];
 char termId[13];
} tpdata;
/***/
/* allocation of buffer for communication with TDS */
/***/
 tpbuffer = tpalloc(tptype, tpsubtype, tpsize);
 if (tpbuffer == NULL)
 {
 fprintf(stdout, "tpalloc did not work");
 exit(-5);
 }
/***/
/* effect connection to TDS */
/***/
 strcpy(tpsvc.hostid,"bc06-42");
 strcpy(tpsvc.tdsname,"espt");
 strcpy(tpdata.name,argv[1]);
 memcpy(tpdata.password,argv[2], sizeof(argv[1]));
 strcpy(tpdata.project,"ESP7");
 strcpy(tpdata.billing, "ESP7");
 strcpy(tpdata.termId, "MyTerm");
 memcpy(tpbuffer,&tpdata,sizeof(tpdata));
/***/
/* set tpbuflen = 65 to allow passage of terminal identifier */
/***/
 tpbuflen = 65;
 tpflags = 0;
 tpcd = tpconnect((char *) &tpsvc, tpbuffer, tpbuflen, tpflags);
 if (tpcd == -1)
 {
 tpret = tperrno();
 fprintf (stdout, "tpret after connect : %d\n", tpret);
 tpfree(tpbuffer) ;
exit(-6);
 }
/***/
/* retrieve READY message after connection */
/***/
 do
 {
 ret = receive_from_tds();
 if (ret != 0)
 {
tpfree(tpbuffer) ;
exit (ret);
}
 outlg = min(tplen, 50);
 memset(outbuff,(char) 0, 50);

AIX or Linux Client

47 A2 37UT 8-7

 memcpy(outbuff, tpbuffer, outlg);
 fprintf(stdout, "returned buffer : %s\n", outbuff);
 } while (tprevent != TPEV_SENDONLY);

/***/
/* use tpsend to request TRACE PRINT */
/***/
 memset(tpbuffer,(char) 0, 256);
 memcpy(tpbuffer, "TRACE PRINT", sizeof("TRACE PRINT"));
 tplen = 11;
 memset(inbuff,(char) 0, 50);
 memcpy(inbuff, tpbuffer, tplen);
 fprintf(stdout,"sent buffer : %s\n", inbuff);
 ret = send_to_tds();
 if (ret != 0)
 {
tpfree(tpbuffer) ;
exit (ret);
}
/***/
/* retrieve message after TRACE PRINT */
/***/
 do
 {
 ret = receive_from_tds();
 if (ret != 0)
 {
tpfree(tpbuffer) ;
exit (ret);
}
 outlg = min(tplen, 50);
 memset(outbuff,(char) 0, 50);
 memcpy(outbuff, tpbuffer, outlg);
 fprintf(stdout, "returned buffer : %s\n", outbuff);
 } while (tprevent != TPEV_SENDONLY);
/***/
/* use tpsend to execute user TPR (STYLEADD) */
/* STYLEADD adds a record to a UFAS sequential indexed file */
/***/
 memset(tpbuffer,(char) 0, 256);
 memcpy(tpbuffer, "STYLEADD STDeee¤¤¤", sizeof("STYLEADD STDeee¤¤¤"));
 tplen = sizeof("STYLEADD STDeee¤¤¤") -1;
 memset(inbuff,(char) 0, 50);
 memcpy(inbuff, tpbuffer, tplen);
 fprintf(stdout,"sent buffer : %s\n", inbuff);
 ret = send_to_tds();
 if (ret != 0)
 {
tpfree(tpbuffer) ;
exit (ret);
}

TDS-TCP/IP User's Guide

8-8 47 A2 37UT

/***/
/* retrieve reply from STYLEADD */
/***/
 do
 {
 ret = receive_from_tds();
 if (ret != 0)
 {
tpfree(tpbuffer) ;
exit (ret);
}
 outlg = min(tplen, 50);
 memset(outbuff,(char) 0, 50);
 memcpy(outbuff, tpbuffer, outlg);
 fprintf(stdout, "returned buffer : %s\n", outbuff);
 } while (tprevent != TPEV_SENDONLY);

/***/
/* use tpsend to execute user TPR (STYLLST) which reads */
/* successive records from a UFAS sequential indexed file */
/***/
 memset(tpbuffer,(char) 0, 256);
 memcpy(tpbuffer, "STYLLST ", sizeof("STYLLST "));
 tplen = sizeof("STYLLST ") -1;
 memset(inbuff,(char) 0, 50);
 memcpy(inbuff, tpbuffer, tplen);
 fprintf(stdout,"sent buffer : %s\n", inbuff);
 ret = send_to_tds();
 if (ret != 0)
 {
tpfree(tpbuffer) ;
exit (ret);
}
/***/
/* retrieve replies from STYLLST */
/***/
 do
 {
 ret = receive_from_tds();
 if (ret != 0)
 {
tpfree(tpbuffer) ;
exit (ret);
}
 outlg = min(tplen, 50);
 memset(outbuff,(char) 0, 50);
 memcpy(outbuff, tpbuffer, outlg);
 fprintf(stdout, "returned buffer : %s\n", outbuff);
 } while (tprevent != TPEV_SENDONLY);

AIX or Linux Client

47 A2 37UT 8-9

/***/
/* use tpsend to execute user TPR (STYLEDEL) */
/* STYLEDEL deletes a record to a UFAS sequential indexed file */
/***/
 memset(tpbuffer,(char) 0, 256);
 memcpy(tpbuffer, "STYLEDEL STDe", sizeof("STYLEDEL STDe"));
 tplen = sizeof("STYLEDEL STDe") -1;
 memset(inbuff,(char) 0, 50);
 memcpy(inbuff, tpbuffer, tplen);
 fprintf(stdout,"sent buffer : %s\n", inbuff);
 ret = send_to_tds();
 if (ret != 0)
 {
tpfree(tpbuffer) ;
exit (ret);
}
/***/
/* retrieve reply from STYLEDEL */
/***/
 do
 {
 ret = receive_from_tds();
 if (ret != 0)
 {
tpfree(tpbuffer) ;
exit (ret);
}
 outlg = min(tplen, 50);
 memset(outbuff,(char) 0, 50);
 memcpy(outbuff, tpbuffer, outlg);
 fprintf(stdout, "returned buffer : %s\n", outbuff);
 } while (tprevent != TPEV_SENDONLY);

/***/
/* use tpsend to execute TRACE OFF */
/***/
 memset(tpbuffer,(char) 0, 256);
 memcpy(tpbuffer, "TRACE OFF", sizeof("TRACE OFF"));
 tplen = sizeof("TRACE OFF") -1;
 memset(inbuff,(char) 0, 50);
 memcpy(inbuff, tpbuffer, tplen);
 fprintf(stdout,"sent buffer : %s\n", inbuff);
 ret = send_to_tds();
 if (ret != 0)
 {
tpfree(tpbuffer) ;
exit (ret);
}

TDS-TCP/IP User's Guide

8-10 47 A2 37UT

/***/
/* retrieve reply from TRACE OFF */
/***/
 do
 {
 ret = receive_from_tds();
 if (ret != 0)
 {
tpfree(tpbuffer) ;
exit (ret);
}
 outlg = min(tplen, 50);
 memset(outbuff,(char) 0, 50);
 memcpy(outbuff, tpbuffer, outlg);
 fprintf(stdout, "returned buffer : %s\n", outbuff);
 } while (tprevent != TPEV_SENDONLY);
/***/
/* use tpsend to execute the BYE transaction */
/***/
 memset(tpbuffer,(char) 0, 256);
 memcpy(tpbuffer, "BYE", sizeof("BYE"));
 tplen = sizeof("BYE") - 1;
 memset(inbuff,(char) 0, 50);
 memcpy(inbuff, tpbuffer, tplen);
 fprintf(stdout,"sent buffer : %s\n", inbuff);
 ret = send_to_tds();
 if (ret != 0)
 {
tpfree(tpbuffer) ;
exit (ret);
}
/***/
/* received buffer should be empty after BYE */
/***/
 ret = receive_from_tds();
 if (ret != 0)
 {
tpfree(tpbuffer) ;
exit (ret);
}
 if (tplen != 0)
 {
 outlg = min(tplen, 50);
 memset(outbuff,(char) 0, 50);
 memcpy(outbuff, tpbuffer, outlg);
 fprintf(stdout, "returned buffer : %s\n", outbuff);
 }
/***/
/* liberate buffer */
/***/
 tpfree(tpbuffer);
}

AIX or Linux Client

47 A2 37UT 8-11

8.5 Debugging

8.5.1 Client Trace

The file ATMITDS.TRC_< process id>, where <process id> represents the process
identifier for the client application program, allows you to debug TDS-TCP/IP
client applications.

If the trace mode is activated, this file is dynamically created, in your current
directory, by the shared library.

Trace information is first accumulated in a trace buffer of 512K bytes, and then
transferred to the trace file, which is maintained in circular fashion. Each entry is
preceded by a trace header. Note that the size of the trace file is 1024K plus the
twice the length of the header information.

Trace information is transferred to the trace file from the trace buffer :

1. whenever the trace buffer becomes full

2. whenever an error is detected

3. on execution of the last tpfree call of an application; the number of tpalloc
calls are counted, and, whenever a tpfree call is executed, the counter is
decremented. Tracing to the trace file takes place whenever the counter
becomes zero.

The client trace facility is activated by positioning one or both of the environment
variables ATMI_TRACE_PATH, ATMI_TRACE_SIZE,
ATMI_SUPPRESS_LOG,ATMI_TRACE_API (for API tracing) and
ATMI_TRACE_SOC (for internal socket functions).

These environment variables have the following significance :

ATMI_TRACE_PATH Used during trace and log files creation, it gives the
path (absolute or relative) of the directory in which
trace and log files will be stored. If the given path is
wrong, default value is applied.
Default value : path of the current directory where the
application is launched.

ATMI_TRACE_SIZE Used during writing in the circular trace file, it gives
the maximum trace file size, expressed in MegaBytes.
Default value : 1

ATMI_SUPPRESS_LOG Used to suppress the logging into log file.
Default value: 0 (log file is created if an error occurs)

TDS-TCP/IP User's Guide

8-12 47 A2 37UT

ATMI_TRACE_API relates to the trace of the API calls. Its value indicates
the trace value.

If its value is 0 (default value), no tracing is effected.

If its value is 1, only the first 32 bytes of the buffers
are dumped.

If its value is 2, the whole contents of the buffers is
dumped.

Note that for normal functioning, a value of 0 is recommended. The value of 1 is
recommended if a problem arises where the content of send / receive buffers is not
required. Value 2 should be reserved for the case of a problem when the send /
receive buffer contents need to be checked.

ATMI_TRACE_SOC relates to the tracing of the socket verbs. Its value
indicates the trace value .

If its value is 0 (default value), no socket tracing is
effected.

If its value is 1, the socket verbs are traced.

If its value is 2, the send / receive headers exchanged
with TDS are traced.

ATMI_TRACE_SOC is reserved for system
debugging.

Note that these environment variables have to be exported in the standard way in
order for the application to have access to their values.

Each trace file entry (0 or 1) begins with a header of the following format :

**

*** Write to trace file : length = 5586

**

Mon Sep 13 17:10:36 1999 ***** ATMI TDS TRACE ***** (version : AIX 2.0.0)

 Subsequent fields in the trace file have the following syntax :

-> : implies an event or API call received, for example :

Mon Sep 13 17:10:36 1999(00000000) --> tpalloc bufsize=32784

Note that the thread index (in this case, 0) is given in brackets .

AIX or Linux Client

47 A2 37UT 8-13

 >>> : implies API input parameter values, for example :

(00000000)>>> type : addr=2FF229E8 lg=8
(00000000) 0000 585F435F 54595045 X_C_TYPE
(00000000)>>> subtype : addr=2FF229F8 lg=1
(00000000) 0000 20

 <<< : implies API output parameter values, for example :

Mon Sep 13 17:10:36 1999(00000000) <<< tpalloc bufptr=200007f8

 === : implies a socket trace event, for example :

Mon Sep 13 17:10:45 1999(00000000) === socket : socketId=00000004 lasterr=0

*** : implies any other type of error

8.5.2 Client Log

The file ATMITDS.LOG_< process id>, where <process id> represents the process
identifier for the client application program, is automatically produced when an
error occurs throughout the XATMI functions if the environment variable
ATMI_SUPPRESS_LOG is set to 0.

This file is dynamically created in ATMI_TRACE_PATH if any or in your current
directory.

8.5.3 Logging of error messages at the console

Independently of the trace file mechanism, the user may request logging of error
messages at the console. This is done by setting the environment variable
ATMI_DEBUG.

This environment variable has the following significance :

ATMI_DEBUG If the value is 0, there is no console display

If the value is 1, only abnormal disconnection
messages are displayed at the console

If the value is 2, all errors are displayed at the
console.

Note that this environment variable has to be exported in the standard way in order
for the application to have access to its values.

TDS-TCP/IP User's Guide

8-14 47 A2 37UT

❑

Glossary

47 A2 37UT g-1

Glossary

API
Application Program Interface.

client application
In the client/server model, it is the application that requests a service to be provided by the server
application.

Client/Server model
Generic name defining a standard way for applications to co-operate. The two co-operating
applications can be located on the same system or on two different systems; in the latter case, the
two applications co-operate via a communication link.

correspondent
The user of a PC application that dialogs with GCOS 7 transaction via a TCP/IP (or OSI/DSA) link.

DLL
Windows Dynamic Link Library

Ethernet
One of the best known technologies used for Local Area Networks (LAN).

FDDI
Fiber Distributed Data Interface: a technology based on optical fiber and used for Local Area
Networks (LAN).

GXTI
GCOS 7 XTI: GCOS 7 component implementing the X/Open Transport Interface.

OPEN 7
GCOS 7 sub-system that provides a subset of UNIX system functions.

OSI/DSA
Open Systems Interconnection/Distributed Standard Architecture:
DSA is the name of the implementation by Bull of the OSI communication model.

PC
Personal Computer

TDS-TCP/IP User's Guide

g-2 47 A2 37UT

RAD tool
Rapid Application Development tool.

SA7
Secur’Access7: a GCOS 7 TDS that provides security facilities.

server application
In the client/server model, it is the application that provides a service requested by the client
application.

shared library
Any code module that can be accessed and used by many applications. Shared libraries are used
primarily for sharing common code between different executable files or for breaking an
application into separate components, thus allowing easy upgrades.

sockets
Berkeley sockets: one of the two most prevalent communications APIs, originally developed for
UNIX systems (the second being TLI, Transport Layer Interface) and supporting various
communication protocols, in particular TCP/IP. The socket interface was first implemented by
Berkeley in the 1980s.

SOCKG 7
SOCKet GCOS 7 component that provides a standard socket interface.

‘tar’ archive
 A single file, created by the command tar, which stores the contents of many files.

TCP/IP
Transmission Control Protocol/Internet Protocol: name of an international "de facto" standard set of
communication protocols; the Internet network is made up of the interconnection of thousands of
different networks all using TCP/IP.

TCP/IP protocols the result of developments done in the late 1960s and 1970s for the DARPA
(Defense Advanced Research Projects Agency).

TCP stands for Transmission Control Protocol; it is a connection-oriented protocol that provides a
reliable, full duplex, byte steam for user processes; TCP defines the set of protocols to be used at
the Transport Layer level (OSI layer 4).

IP stands for Internet Protocol and provides the packet delivery for TCP (and others such as UDP,
ICMP,...): IP defines the set of protocols to be used at the Network Layer level (OSI layer 3).

TDS-HA
TDS High Availability

TM correspondent
One of the OSI/DSA correspondents.

Glossary

47 A2 37UT g-3

XATMI
X/Open Application Transaction Manager Interface:
one of the three levels of the DTP model of X/Open (Distributed Transaction Processing).

XCP1 correspondent
XCP2 correspondent

OSI/DSA correspondents.

TDS-TCP/IP User's Guide

g-4 47 A2 37UT

❑

47 A2 37UT i-1

Index

/
/etc/hosts file, 3-3
/etc/services file, 3-3

A
abnormal socket closure, 5-1
activating

client trace, 5-13, 8-11, 8-13
ALLOW_NEW_TDS_COR, 3-6
API

definition, g-1
programming, 1-11

APPEND mode
FORMS, 6-1

application
definition, g-1
development, 4-1

ATTACH SHARABLE MODULE clause, 3-2

B
Berkeley socket

definition, g-2
bibliography, iv
BREAK function, 1-12
buffer management, 1-11

C
CANCEL_TDS_COR, 3-7
CANCELCTX, 5-3

CDATTL, 6-3
CDATTR, 6-3
CDFIDI, 6-3
CDGET, 6-2
CDMECH, 6-3
CDPURGE, 6-3
CDRECV, 6-2
CDRELS, 6-3
CDSEND, 6-2
character sets

PLW, 6-1
clauses

ATTACH SHARABLE MODULE, 3-2
TCP-IP PROTOCOL, 3-1

client
activating trace, 5-13, 8-11, 8-13
application, 1-1
application (definition), g-1
application development, 1-5
compiling program, 4-4
error messages, 5-4
PC, 1-7, 1-10
states, 4-19
trace, 5-13
trace format, 5-14

client/server
model (definition), g-1

CLOSE_TDS_SOCKET, 3-14
commitment unit

rollback, 5-2
compiling

client program, 4-4
configuration

GCOS 7, 3-3
PC, 4-1

console operator commands

TDS-TCP/IP User's Guide

i-2 47 A2 37UT

documentation, v
conventions

syntax, v
correspondent

definition, g-1
management (TCP/IP), 3-5
TM (definition), g-2
XCP1 (definition), g-3
XCP2 (definition), g-3

customer responsibility, 1-5

D
DISPLAY_TDS, 3-8
DLL

definition, g-1
documentation

DPS 7000 network, iv
error messages, v
main console operator commands, v
network, iv
OPEN 7, iv
Return Codes, v
TDS, iv
TDS-TCP/IP, iv
XTI, iv

documents
related, iv

DPS 7000
documentation, iv
server, 1-7

dynamic link library, 1-2

E
error messages

client, 5-4
MV79, 5-12
MV80, 5-12
related documents, v
TDS, 5-12
TG28, 3-2
TP7GEN, 3-2

ETC_HOSTS subfile, 3-4
ETC_SERVICES subfile, 3-4

Ethernet
definition, g-1

existing TDS transactions, 1-2

F
FDDI

definition, g-1
format

client trace, 5-14
FORMS

APPEND mode, 6-1
CDATTL, 6-3
CDATTR, 6-3
CDFIDI, 6-3
CDGET, 6-2
CDMECH, 6-3
CDPURGE, 6-3
CDRECV, 6-2
CDRELS, 6-3
CDSEND, 6-2
NF fields, 6-1
UF fields, 6-1
using, 6-1

functions
pass-thru, 1-12

G
GCOS 7

configuration, 3-3
release needed, 1-7
warm restart, 5-2

GXTI
declarations, 3-4
definition, g-1
services, 1-2

H
hardware

DPS 7000, 1-7
PC, 1-7
requirements, 1-7

header in message, 1-12

Index

47 A2 37UT i-3

host IP addresses, 4-1
HOSTS file, 4-1, 8-2

I
intended readers

of manual, iii
ISO 8859-1 specification, 6-1

L
limitations, 1-12
LIST_TDS_COR, 3-10

M
M SNDTU commands, 1-12
main console operator commands

documentation, v
master commands

ALLOW_NEW_TDS_COR, 3-6
CANCEL_TDS_COR, 3-7
CLOSE_TDS_SOCKET, 3-14
DISPLAY_TDS, 3-8
LIST_TDS_COR, 3-10
OPEN_TDS_SOCKET, 3-16
PREVENT_NEW_TDS_COR, 3-12
syntax conventions, vi

messages
header, 1-12
service, 1-12
trailer, 1-12

MV79 error message, 5-12
MV80 error message, 5-12

N
named fields. See NF fields
network

related documents, iv
NF fields, 6-1
notation for syntax, v

O
objectives of manual, iii
OPEN 7

declarations, 3-3
definition, g-1
services, 1-2

OPEN_TDS_SOCKET, 3-16
operator commands

documentation, v
OSI/DSA

definition, g-1

P
pass-thru function, 1-12
PC

client, 1-7, 1-10
configuration, 4-1
definition, g-1
software required, 1-8

PC-TDS dialog example, 4-20
PLW character set, 6-1
pre-requisites

hardware, 1-7
software, 1-7

PREVENT_NEW_TDS_COR, 3-12
programming

API, 1-11
TPR, 1-12

programming transactions, 5-3
protocols

TCP/IP, 1-1
XATMI, 1-1

R
RAD

definition, g-2
tools, 1-2

Rapid Application Development tools, 1-2
readers

of manual, iii
related documents, iv
releases needed

TDS-TCP/IP User's Guide

i-4 47 A2 37UT

GCOS 7, 1-7
restart

warm (GCOS 7), 5-2
Return Codes

related documents, v
rollback

commitment unit, 5-2

S
SA7

definition, g-2
scope of manual, iii
SDPI verbs, 6-2
Secur’Access 7

definition, g-2
security, 1-11
SEND verbs

with routing addresses, 1-12
sequence failures

recovery, 5-3
sequence integrity, 5-1
server

administration, 3-1
application, 1-1
application (definition), g-2
DPS 7000, 1-7

service messages, 1-12
SERVICES file, 4-1, 8-2
session

management, 1-13
number supported, 1-13

socket
abnormal closure, 5-1
definition, g-2
interface, 1-1
management, 3-13
selection, 1-10

SOCKG 7
definition, g-2
sockets, 1-10
usage, 1-1
used by TDS-TCP/IP, 1-7

software
GCOS 7, 1-7
PC, 1-8

requirements, 1-7
SOCKG 7, 1-7

spawning
on a TCP correspondent, 1-12

syntax
conventions, v
master commands, vi
TP7GEN, v

T
takeover

TDS-HA, 5-2
TCP/IP

correspondent, 1-2
correspondent management, 3-5
definition, g-2
features, 1-1
transactions, 1-2

TCP-IP PROTOCOL clause, 3-1
TDS

access from PC, 4-3
documentation, iv
error messages, 5-12
existing transactions, 1-2, 1-5
failure, 5-2
generation, 1-10, 3-1
master commands, 3-1
re-initialization, 5-2
specific verbs, 1-2

TDS-HA
definition, g-2
takeover, 5-2

TDS-TCP/IP
client API, 1-5, 4-4
components, 1-3
related documents, iv

TG28
error message, 3-2

time-out
for tpconnect, 4-10
for tprecv, 4-14

TM correspondent
definition, g-2

TP7GEN
error message, 3-2

Index

47 A2 37UT i-5

syntax conventions, v
tpalloc, 4-5
tpconnect, 4-7
tpdiscon, 4-11
tperrdtl, 4-18
tperrno, 4-17
tpfree, 4-12
TPR

programming, 1-12
tprecv, 4-13
tpsend, 4-15
trace

client, 5-13
trailer in message, 1-12
transaction

programming, 5-3

U
UF fields, 6-1
unnamed fields. See UF fields
user types, 1-6

V
verbs

SDPI, 6-2

W
warm restart

GCOS 7, 5-2
WINSOCKET, 1-1

X
XATMI

definition, g-3
functions, 4-5

XATMI protocols, 1-1
XCP1 correspondent

definition, g-3
XCP2 correspondent

definition, g-3

TDS-TCP/IP User's Guide

i-6 47 A2 37UT

❑

Technical publication remarks form

Title : DPS7000/XTA NOVASCALE 7000 TDS-TCP/IP User's Guide Transaction
processing: General

Reference Nº : 47 A2 37UT 07 Date: February 2005

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please include your complete mailing address below.

NAME : Date :

COMPANY :

ADDRESS :

Please give this technical publication remarks form to your BULL representative or mail to:

Bull - Documentation Dept.

1 Rue de Provence
BP 208
38432 ECHIROLLES CEDEX
FRANCE
info@frec.bull.fr

Technical publications ordering form

To order additional publications, please fill in a copy of this form and send it via mail to:

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Phone: +33 (0) 2 41 73 72 66
FAX: +33 (0) 2 41 73 70 66
E-Mail: srv.Duplicopy@bull.net

CEDOC Reference # Designation Qty

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

[_ _] : The latest revision will be provided if no revision number is given.

NAME: Date:

COMPANY:

ADDRESS:

PHONE: FAX:

E-MAIL:

For Bull Subsidiaries:

Identification:

For Bull Affiliated Customers:

Customer Code:

For Bull Internal Customers:

Budgetary Section:

For Others: Please ask your Bull representative.

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

47 A2 37UT 07
REFERENCE

	TDS-TCP/IP User's Guide - 47 A2 37UT REV07
	Preface
	Table of Contents
	Table of Graphics
	1. Overview
	1.1 Features of TDS-TCP/IP
	1.1.1 General Features
	1.1.2 Definitions and Terminology
	1.1.3 Existing TDS Transactions
	1.1.4 TDS-TCP/IP Client API

	1.2 Users
	1.3 Prerequisites
	1.3.1 Hardware
	1.3.2 Software

	1.4 Delivery
	1.4.1 Software for Windows
	1.4.2 Software for Linux
	1.4.3 Software for AIX

	1.5 Configuration
	1.5.1 TDS Generation
	1.5.2 SOCKG 7 Sockets
	1.5.3 Client stations

	1.6 Security
	1.7 API Programming
	1.8 Limitations
	1.8.1 TPR Programming Functions
	1.8.2 Session Management Procedures
	1.8.3 Configurability Rules

	2. Added functionalities
	2.1 AIX and Linux Clients
	2.2 GCOS 7 TS 9764 added functionalities
	2.2.1 Spawning on a TCP/IP correspondent
	2.2.2 Call SET-ACTIVE/SET-PASSIVE
	2.2.3 MAXIMUM IDLE TIME
	2.2.4 WAIT-TIME
	2.2.5 TERMINAL_ID
	2.2.6 DISCONNECTIONS issued by TDS
	2.2.7 SECUR'ACCESS
	2.2.8 PASSTHRU functionality

	2.3 GCOS 7 TS 9920 added functionalities
	2.3.1 Reconnect with option Force

	3. Server Administration
	3.1 TDS Generation
	3.1.1 TCP-IP PROTOCOL Clause
	3.1.2 ATTACH SHARABLE MODULE Clause
	3.1.3 Errors and Responses

	3.2 GCOS 7 Environment Configuration
	3.2.1 Description
	3.2.2 Declarations for OPEN 7
	3.2.3 Declarations for GXTI

	3.3 Master Commands
	3.3.1 Correspondent Management
	3.3.2 Socket Management

	4. Client Application Development
	4.1 PC Environment Configuration
	4.1.1 Description
	4.1.2 Configuration Declaratives

	4.2 TDS-TCP/IP Client API
	4.2.1 Composition of the API
	4.2.2 Compiling the Client Program

	4.3 C-Language XATMI Functions
	4.3.1 tpalloc
	4.3.2 tpconnect
	4.3.3 tpdiscon
	4.3.4 tpfree
	4.3.5 tprecv
	4.3.6 tpsend
	4.3.7 tperrno
	4.3.8 tperrdtl

	4.4 Client States
	4.5 Client Program Examples
	4.5.1 Application Main Program
	4.5.2 TDS API Interface

	5. Error Handling
	5.1 Sequence Integrity
	5.1.1 Socket Closure in Abnormal Cases
	5.1.2 Commitment Unit Rollback
	5.1.3 TDS Re-initialization
	5.1.4 TDS Failure
	5.1.5 TDS-HA Takeover
	5.1.6 GCOS 7 Warm Restart after Crash

	5.2 Transaction Programming
	5.3 Client Error Messages
	5.3.1 TDS ERROR MESSAGES

	5.4 Client Trace
	5.4.1 Activating the Trace

	6. TCP/IP Transactions Using FORMS Facility
	6.1 Generality
	6.2 SDPI Verbs Particularities
	6.2.1 Forms Activation (CDGET)
	6.2.2 Forms Send (CDSEND)
	6.2.3 Forms Receive (CDRECV)
	6.2.4 Forms Release (CDRELS)
	6.2.5 Forms Purge Input Data (CDPURGE)
	6.2.6 Forms Attribute or List Attribute Selection (CDATTR or CDATTL)
	6.2.7 Forms Identification (CDFIDI)
	6.2.8 Forms Mechanism Function (CDMECH)

	6.3 Limitations
	6.4 Data Flow Example

	7. Protocol between SA7 and the client application
	8. AIX or Linux Client
	8.1 Installation
	8.2 Configuration
	8.3 Programming
	8.4 Example
	8.5 Debugging
	8.5.1 Client Trace
	8.5.2 Client Log
	8.5.3 Logging of error messages at the console

	Glossary
	Index

