
TDS COBOL

Programmer's Guide

 D
PS

7
0
0
0
/
X
TA

N
O

VA
S
C

A
LE

 7
0
0
0

Transaction Processing: General

REFERENCE
47 A2 33UT 08

DPS7000/XTA
NOVASCALE 7000

TDS COBOL
Programmer's Guide

Transaction Processing: General

February 2005

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

REFERENCE
47 A2 33UT 08

The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not
limited to, copying, distributing, modifying, and making derivative works.

Copyright Bull SAS 1994, 2005

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of this
book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

Intel® and Itanium® are registered trademarks of Intel Corporation.

Windows® and Microsoft® software are registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Linux® is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Bull will not be liable for errors contained
herein, or for incidental or consequential damages in connection with the use of this material.

47 A2 33UT iii

Preface

This manual describes how to program transactional applications running under
TDS.

The information is intended for the systems analyst or programmer for developing
and implementing a TDS application. It is assumed that TDS programmers have a
good knowledge of COBOL programming and are familiar with the basic concepts
of transactional processing.

Chapter 1 describes transaction processing, how data is managed
and passed to the transaction, and the system interfaces
that allow a TDS application to function.

Chapter 2 describes how to program a transaction in COBOL.

Chapter 3 is a guide to the TDS procedures and verbs used for
dealing with session management.

Chapter 4 is a guide to the TDS procedures and verbs used for
dealing with TPR control.

Chapter 5 is a guide to the TDS procedures and verbs used for
dealing with spawn handling.

Chapter 6 is a guide to the TDS procedures and verbs used for
dealing with correspondent pools.

Chapter 7 is a guide to the TDS procedures used for dealing with
the terminal adapter.

Chapter 8 is a guide to the TDS procedures for handling
COMMON-STORAGE.

Chapter 9 is a guide to the TDS procedures and verbs used for
file access, including concurrency, commitment, and
rollback handling.

Chapter 10 is a guide to the TDS procedures for handling FORMS.

Scope and
Objectives

Intended
Readers

Structure

TDS COBOL Programmer's Guide

iv 47 A2 33UT

Chapter 11 is a guide to the TDS procedures for dealing with
GTWriter.

Chapter 12 describes the special-purpose transactions, and the
transaction initialization routine.

Chapter 13 describes how a TDS application is designed,
implemented, optimized, and debugged.

Chapter 14 deals with the terminal commands available to users of
the TDS application.

The section on IMAGEWorks has been deleted. For information about
IMAGEWorks, see the TDS-IMAGEWorks Link User's Guide.

The appendices give details and references to all topics mentioned in the manual.

The following publications give more information about specific topics in the set of
TDS manuals.

This manual is one of a set of TDS manuals. The other manuals in this set are:

TDS Concepts .. 47 A2 01UT
TDS C Programmer's Guide.. 47 A2 07UT
High Availability Concepts .. 47 A2 22UT
High Availability Administrator's Guide ... 47 A2 23UT
TDS-IMAGEWorks Link User's Guide .. 47 A2 25UT
TDS-IMAGEWorks DPX20 User's Guide.. 47 A2 31UT
TDS Administrator's Guide ... 47 A2 32UT

Prerequisite material is contained in the TDS Concepts Manual; related material is
contained in the TDS Administrator's Guide.

For using TDS with ORACLE-V6:

ORACLE-V6/TDS User's Guide ..47 A2 05UR
ORACLE-V6/TDS-HA User's Guide..47 A2 07UR

For using TDS with ORACLE7:

ORACLE7/TDS User's Guide..47 A2 14UR
ORACLE7/TDS-HA User's Guide ...47 A2 16UR

For generating the DSA network:

DNS V4 System Generation ...39 A2 22DN
DNS V4 NGL Reference Manual ...39 A2 23DN
CNS7 A2 NOI Operator Guide..39 A2 34DN
CNS 7 A1 NOI Operator Guide.. 39 A2 41DM

Bibliography

Preface

47 A2 33UT v

For cataloging users, including correspondents, and TDS authority codes using the
MAINTAIN_CATALOG utility:

Catalog Management User's Guide ..47 A2 35UF
GCOS 7 System Administrator's Manual .. 47 A2 54US

For creating and managing FORMS using the MAINTAIN_FORM utility:

Forms User's Guide..47 A2 15UJ

For producing reports:

Generalized Terminal Writer User's Guide .. 47 A2 55UU

For COBOL syntax and use:

COBOL 85 Reference Manual... 47 A2 05UL
COBOL 85 User's Guide ... 47 A2 06UL

For defining XCP2 correspondents:

CPI-C/XCP2 User's Guide .. 47 A2 14UT

For defining XCP1 correspondents:

Transactional Intercommunication using the XCP1
Protocol User's Guide ... 47 A2 11UT

For File Access and Data Management:

Full IDS/II Reference Manual 1 ... 47 A2 05UD
Full IDS/II Reference Manual 2 ... 47 A2 06UD
Full IDS/II User's Guide... 47 A2 07UD
IDS/II Reference Manual...47 A2 11UD
IDS/II Administrator's Guide.. 47 A2 13UD
Database Reorganization (DBREORG) User's Guide 47 A2 15UD
UFAS-EXTENDED User's Guide ..47 A2 04UF
Data Security Facilities User's Guide ...47 A2 09UF

For main console operator commands and DPS 7000 Network Generation:

GCOS 7 Network Overview and Concepts ..47 A2 92UC
GCOS 7 Network Generation ..47 A2 93UC
GCOS 7 Network User Guide..47 A2 94UC
GCOS 7 System Operator's Guide... 47 A2 53US

TDS COBOL Programmer's Guide

vi 47 A2 33UT

For information on installing and optimizing the system:

System Behavior Reporter User's Guide ... 47 A2 03US
TILS User's Guide ... 47 A2 04US
GCOS 7 – V8 System Installation Configuration and Updating Guide .. 47 A2 19US
GCOS 7 – V9 System Installation Configuration and Updating Guide .. 47 A2 23US
GCOS 7 System Administrator's Manual .. 47 A2 54US

For concurrency control:

GAC-EXTENDED User's Guide ...47 A2 12UF

For file recovery procedures and journal usage:

File Recovery Facilities User's Guide...47 A2 37UF

For GCL commands:

IOF Terminal User's Reference Manual:
Part 1 ..47 A2 38UJ
Part 2 ..47 A2 39UJ
Part 3 ..47 A2 40UJ

For JCL statements:

JCL Reference Manual ...47 A2 11UJ
JCL User's Guide..47 A2 12UJ

For status values:

Messages and Return Codes Directory ..47 A2 10UJ

For using IQS under TDS:

IQS/TDS User's Guide...47 A2 81UR

For information on PCF commands:

GCOS 7 Program Checkout Facility User's Guide47 A2 15UP
For Migrating between Releases:

GCOS 7 Evolution Guide ... 47 A2 20UG

For Using DOF 7

DOF7-PO User's Guide ..47 A2 80UC
Structured Records (OMH Format) Part 1 - Commands.........................47 A2 81UC
Structured Records (OMH Format) Part 2 - Messages47 A2 82UC
Structured Records (DSAC Format) Part 1 - Commands and Messages 47 A2 83UC
DOF7-SM User's Guide ..47 A2 84UC
Structured Records (DSAC Format) Part 2 - Unsolicited Messages.......47 A2 85UC

Preface

47 A2 33UT vii

UPPERCASE WORDS Keywords whose presence in a format indicates they
may be used in that context. Any such words
underlined must be used whenever the relevant option
is used. Those which are not underlined may be
omitted.

lowercase words These represent variable items to be supplied by the
programmer.

[] square brackets indicate an optional clause

{item}

{item} braces indicate a choice

{item}

Syntax
Notation

TDS COBOL Programmer's Guide

viii 47 A2 33UT

47 A2 33UT ix

Table of Contents

1. Transaction Processing

1.1 Overview of TDS... 1-1

1.1.1 INITIATING A TDS TRANSACTION ... 1-2

1.1.2 HOW DO TPRS RELATE TO TDS?.. 1-2

1.1.3 HOW DO TPRS FUNCTION? ... 1-4

1.1.4 TPRS AND OTHER PROGRAMS... 1-5

1.1.5 TPRS EXECUTING SIMULTANEOUSLY ... 1-6

1.1.6 TRANSACTION TYPES .. 1-7

1.1.7 ELEMENTS OF A TRANSACTION... 1-8

1.1.8 TDS DATA EXCHANGE MODES ... 1-12

1.1.9 SCREEN DISPLAYS ... 1-12
1.1.9.1 LINE MODE... 1-12
1.1.9.2 FORMAT MODE ... 1-13

1.1.10 FILES .. 1-14
1.1.10.1 TDS-CONTROLLED FILES .. 1-14
1.1.10.2 NON-CONTROLLED FILES ... 1-17

1.1.11 UPDATES..
1-18

1.1.12 RESTARTING AFTER A FAILURE... 1-21

1.1.13 BATCH INTERFACE ... 1-22

1.1.14 GTWRITER..
1-22

1.1.15 SPECIAL SERVICES .. 1-22

1.1.16 STORAGES...
1-23

1.1.17 AN EXAMPLE OF A COBOL TPR .. 1-24

TDS COBOL Programmer's Guide

x 47 A2 33UT

2. Programming the Transaction

2.1 Identification Division .. 2-1

2.2 Environment Division .. 2-2

2.2.1 CONFIGURATION SECTION ... 2-2
2.2.1.1 OBJECT-COMPUTER .. 2-2

2.2.2 INPUT-OUPUT-SECTION... 2-3
2.2.2.1 FILE-CONTROL.. 2-3

2.3 Data Division... 2-5

2.3.1 PURPOSE AND USE .. 2-5

2.3.2 STRUCTURE... 2-5

2.3.3 SUB-SCHEMA SECTION.. 2-6
2.3.3.1 SUB-SCHEMA SECTION FOR IDS/II... 2-6
2.3.3.2 SUB-SCHEMA SECTION FOR FULL IDS/II..................................... 2-8

2.3.4 FILE SECTION .. 2-10

2.3.5 WORKING-STORAGE SECTION ... 2-12
2.3.5.1 WORKING-STORAGE SECTION AND SHARED-STORAGE 2-12
2.3.5.2 COMMON-STORAGE... 2-14
2.3.5.3 CONTROLLED COMMON-STORAGE... 2-16
2.3.5.4 FORMS ... 2-17

2.3.6 LINKAGE SECTION .. 2-22
2.3.6.1 TDS-STORAGE .. 2-22
2.3.6.2 CONSTANT-STORAGE.. 2-30
2.3.6.3 PRIVATE-STORAGE AND TRANSACTION-STORAGE 2-31

2.3.7 COMMUNICATION SECTION .. 2-35
2.3.7.1 INPUT CD ... 2-36
2.3.7.2 INPUT-CD-ALIAS FOR FORMS... 2-39
2.3.7.3 OUTPUT CD ... 2-41
2.3.7.4 OUTPUT-CD-ALIAS FOR FORM ... 2-43

2.4 Procedure Division.. 2-45

2.4.1 PURPOSE AND USE .. 2-45

2.4.2 STRUCTURE... 2-45

2.4.3 SYNTAX RULES ... 2-45

2.4.4 EXCEPTIONS TO NORMAL USE... 2-46

2.4.5 SPAWNING A TRANSACTION... 2-46
2.4.5.1 SPAWNING PRIORITIES ... 2-48
2.4.5.2 SPAWNING TOWARDS ACTIVE AND PASSIVE TERMINALS 2-49
2.4.5.3 SEARCHING FOR A CORRESPONDENT..................................... 2-50
2.4.5.4 USING THE STAR (*) CONVENTION ... 2-51
2.4.5.5 DUMMY CORRESPONDENT... 2-52
2.4.5.6 LENGTH OF A CORRESPONDENT'S NAME................................ 2-52
2.4.5.7 LIMITS... 2-53
2.4.5.8 USING THE TRANSACTION INITIALIZATION ROUTINE FOR

SPAWNING... 2-53

47 A2 33UT xi

2.4.6 CHAINING TPRS... 2-54

2.4.7 MESSAGE HANDLING WITHOUT FORMS ... 2-55

2.4.8 MESSAGE HANDLING WITH FORMS... 2-64
2.4.8.1 ACTIVATING A FORM.. 2-64
2.4.8.2 SENDING DATA ... 2-67
2.4.8.3 RECEIVING DATA.. 2-67

2.4.9 CHARACTER SETS.. 2-70

2.4.10 PRINTING.. 2-72

2.4.11 REPORT HANDLING USING GTWRITER ... 2-74

2.4.12 TERMINAL ADAPTER .. 2-77
2.4.12.1 EXTERNAL MESSAGES.. 2-77
2.4.12.2 LINE MODE/FORMAT MODE .. 2-78
2.4.12.3 TERMINAL ADAPTER AND FREE PRESENTATION.................... 2-78
2.4.12.4 SWITCHING BETWEEN PRESENTATION MODES 2-79
2.4.12.5 DISPLAYING MESSAGES ON AN USER'S TERMINAL 2-79

2.4.13 DEVELOPING ADMINISTRATIVE TRANSACTIONS..................................... 2-82

2.5 Status Setting.. 2-84

3. Session Management Procedures

3.1 Overview ... 3-1

3.2 The CALL "DISP-SESLIMIT" Procedure .. 3-2

3.3 The CALL "MD-NEWCONNECT" Procedure ... 3-5

3.4 The CALL "RECONNECT-OPTION" Procedure... 3-8

3.5 The CALL "SET-ACTIVE" Procedure ... 3-12

3.6 The CALL "SET-PASSIVE" Procedure... 3-13

3.7 The CALL "TERMID" Procedure... 3-14

3.8 The RECEIVE Verb .. 3-17

3.9 The SEND Verb .. 3-19

4. TPR Control Procedures

4.1 Overview ... 4-1

4.2 The CALL "ABORT" Procedure .. 4-3

4.3 The CALL "CANCELCTX" Procedure... 4-4

4.4 The CALL "DISPLAY-MENU" Procedure ... 4-8

4.5 The CALL "EXITS" Procedure .. 4-9

4.6 The CALL "GETSP-U-CNTXT" Procedure ... 4-11

4.7 The CALL "GETTPRPAR" Procedure .. 4-13

TDS COBOL Programmer's Guide

xii 47 A2 33UT

4.8 The CALL "NOCANCELCTX" Procedure ... 4-16

4.9 The CALL "RESTORE" Procedure ... 4-18

4.10 The CALL "SIMBRK" Procedure... 4-21

4.11 The CALL "SUBJOB" Procedure .. 4-23

4.12 The CALL “JOBINFO” Procedure ... 4-31

4.13 The CALL "XSIMBRK" Procedure .. 4-33

4.14 The ACCEPT Verb.. 4-35

4.15 The DISPLAY Verb ... 4-36

4.16 The EXIT Verb .. 4-37

4.17 The STOP Verb .. 4-38

4.18 The WRITE in User Journal verb.. 4-38

5. Spawn Handling Procedures

5.1 Overview ... 5-1

5.2 The CALL "DELSPAWN" Procedure .. 5-2

5.3 The CALL "DSPAWN" Procedure... 5-3

5.4 The CALL "NBSPAWN" Procedure .. 5-5

5.5 The CALL "SPAWN" Procedure ... 5-6

5.6 The CALL "SPAWNTX" Procedure... 5-8

5.7 The CALL "TSPAWN" Procedure ... 5-12

6. Correspondent Pool Handling Procedures

6.1 Overview ... 6-1

6.2 The CALL "CLOSE-POOL" Procedure ... 6-2

6.3 The CALL "DISP-COR" Procedure ... 6-6

6.4 The CALL "DISP-POOL" Procedure... 6-11

6.5 The CALL "GET-TDS-STAT" Procedure .. 6-17

6.5.1 TRS-GENERALINFO .. 6-23

6.5.2 TRS-USERINFO.. 6-27

6.5.3 TRS-FILEINFO .. 6-30

6.6 The CALL "LIST-COR" Procedure.. 6-33

6.7 The CALL "LIST-POOL" Procedure.. 6-38

6.8 The CALL "MODIFY-POOL" ... 6-43

6.9 The CALL "OPEN-POOL" Procedure ... 6-48

47 A2 33UT xiii

7. Terminal Adapter Procedures

7.1 Overview ... 7-1

7.2 The CALL "MDPROF" Procedure ... 7-2

7.3 The CALL "RDPROF" Procedure ... 7-7

8. COMMON-STORAGE Handling Procedures

8.1 Overview ... 8-1

8.2 The CALL "CLENGTH-COMMON" Procedure ... 8-2

8.3 The CALL "CREAD-COMMON" Procedure.. 8-3

8.4 The CALL "CWRITE-COMMON" Procedure .. 8-4

8.5 The CALL "FREE-COMMON" Procedure... 8-5

8.6 The CALL "KEEP-COMMON" Procedure... 8-6

8.7 The CALL "LENGTH-COMMON" Procedure.. 8-7

8.8 The CALL "READ-COMMON" Procedure .. 8-8

8.9 The CALL "SAVE-COMMON" Procedure... 8-9

8.10 The CALL "TAKE-COMMON" Procedure ... 8-10

9. File Access Concurrency and Commitment Procedures

9.1 Overview ... 9-1

9.2 The CALL "CMIT-U-CNTXT" Procedure... 9-3

9.3 The CALL "DFCMIT" Procedure ... 9-5

9.4 The CALL "INVCMIT" Procedure.. 9-6

9.5 The CALL "KEEP-CURRENCIES" Procedure.. 9-7

9.6 The CALL "LOCK" Procedure... 9-8

9.7 The CALL "NOCMIT" Procedure .. 9-12

9.8 The CALL "RESET-NON-CONCURRENT" Procedure .. 9-13

9.9 The CALL "ROLL-BACK" Procedure .. 9-14

9.10 The CALL "SET-NON-CONCURRENT" Procedure ... 9-15

9.11 The CALL "UNLOCK" Procedure.. 9-17

9.12 The CLOSE Verb .. 9-18

9.13 The OPEN Verb .. 9-19

9.14 The CALL "GET-SYNCSTATE" Procedure .. 9-20

TDS COBOL Programmer's Guide

xiv 47 A2 33UT

10. FORMS Procedures

10.1 The CALL "CDATTL" Procedure... 10-2

10.2 The CALL "CDATTR" Procedure .. 10-4

10.3 The CALL "CDFIDI" Procedure... 10-7

10.4 The CALL "CDGET" Procedure .. 10-8

10.5 The CALL "CDMECH" Procedure... 10-14

10.6 The CALL "CDPURGE" Procedure... 10-16

10.7 The CALL "CDRECV" Procedure ... 10-17

10.8 The CALL "CDRELS" Procedure .. 10-20

10.9 The CALL "CDSEND" Procedure ... 10-21

11. GTWRITER Procedures

12. Special-purpose Transactions and the Transaction Initialization Routine

12.1 Overview ... 12-1

12.2 BREAK Transaction .. 12-5

12.3 DISCNCT Transaction .. 12-8

12.4 LOGON Transaction ... 12-9

12.5 LOGOUT Transaction ... 12-14

12.6 RESTART Transaction ... 12-14

12.7 SHUTDOWN Transaction ... 12-15

12.8 STARTUP Transaction ... 12-17

12.8.1 HIGH AVAILABILITY (HA) ONLY.. 12-20

12.8.2 H_REINIT TRANSACTION ... 12-21

12.9 H_XAEVT Transaction.. 12-22

12.10 Transaction Initialization Routine.. 12-25

13. Implementing the Transaction

13.1 Creating the Application.. 13-1

13.1.1 COMPILING A PROGRAM ... 13-2

13.1.2 LINKING A PROGRAM ... 13-3

13.1.3 LINKING A BATCH INTERFACE PROGRAM .. 13-4

13.1.4 COMPILING/LINKING QUERIES.. 13-7

13.1.5 DELETING A TPR ... 13-7

47 A2 33UT xv

13.2 Tuning the Application .. 13-8

13.2.1 ELIMINATING SEGMENT FAULTS.. 13-8

13.2.2 USING SEND AND RECEIVE STATEMENTS ... 13-9

13.2.3 USING CALL STATEMENTS.. 13-10
13.2.3.1 ADVANTAGES.. 13-10
13.2.3.2 DISADVANTAGES.. 13-10

13.2.4 ACCESSING FILES AND DATABASES ... 13-11

13.2.5 DESIGNING ACCESS TO RESOURCES... 13-12

13.2.6 OPTIMIZING PROGRAM CODING... 13-12
13.2.6.1 LARGE TPRS.. 13-13
13.2.6.2 SMALL TPRS.. 13-15

13.2.7 MESSAGE HANDLING ... 13-15
13.2.7.1 FORM DISPLAY.. 13-15
13.2.7.2 POSITIONING THE CURSOR.. 13-15
13.2.7.3 DATA TRANSMISSION WITHOUT FORMS 13-15
13.2.7.4 DATA TRANSMISSION WITH FORMS.. 13-16

13.2.8 MEMORY OCCUPANCY .. 13-17

13.3 Testing and Debugging... 13-18

13.3.1 THE TRACE COMMAND .. 13-18
13.3.1.1 DESCRIPTION OF THE STANDARD TRACE COMMAND 13-20
13.3.1.2 DESCRIPTION OF THE EXTENDED TRACE COMMAND........... 13-23
13.3.1.3 REPORT/OUTPUT PRODUCED BY THE EXTENDED TRACE

COMMAND ... 13-26
13.3.1.4 STATUS VALUES RETURNED BY THE TRACE COMMAND 13-26
13.3.1.5 EXAMPLES OF USING THE TRACE COMMAND....................... 13-26
13.3.1.6 NOTES ON THE EXTENDED TRACE COMMAND 13-28

13.3.2 DEBUGGING AT TDSGEN ... 13-29

13.3.3 DEBUGGING USING TDS BATCH INTERFACE PROCEDURES............... 13-30
13.3.3.1 CONNECT FUNCTION... 13-34
13.3.3.2 DIALOG FUNCTION ... 13-40
13.3.3.3 DIALOG FUNCTION WITH THE DEVICE HEADER.................... 13-41
13.3.3.4 RESUME FUNCTION ... 13-42

13.3.4 EXAMPLE OF A BATCH INTERFACE PROGRAM...................................... 13-42
13.3.4.1 COMMENTS ON EXAMPLE... 13-49
13.3.4.2 COMPILATION, LINKAGE, AND EXECUTION............................ 13-49

13.3.5 DEBUGGING USING BATCH PROGRAMS... 13-50

TDS COBOL Programmer's Guide

xvi 47 A2 33UT

14. Terminal Operations

14.1 Introduction ... 14-1

14.2 Command Mode ... 14-2

14.2.1 USER COMMANDS .. 14-2

14.2.2 TDS COMMANDS ... 14-3
14.2.2.1 BYE ... 14-3
14.2.2.2 TRACE .. 14-3
14.2.2.3 MENU.. 14-3
14.2.2.4 PT.. 14-5
14.2.2.5 REDISPLAYING THE LAST MESSAGE .. 14-6

14.3 Transaction Mode ... 14-7

A. Trace Options and TDS-Authorized PCF Commands

B. Explanation of the Abort Codes

C. COBOL Example Using Forms

D. Example of SUBJOB

E. TCAM

E.1 The TCAM Call Statements ..E-2

E.2 Using TCAM..E-3

E.3 TCAM Call Statements ...E-6

E.3.1 THE CALL "TERMID" PROCEDURE..E-6

E.3.2 THE CALL "TOPEN" PROCEDURE ...E-6

E.3.3 THE CALL "TEVENT" PROCEDURE..E-14

E.3.4 THE CALL "TRECV" PROCEDURE..E-19

E.3.5 THE CALL "TRCVIT" PROCEDURE...E-20

E.3.6 THE CALL "TSEND" PROCEDURE..E-21

E.3.7 THE CALL "TSENDIT" PROCEDURE ..E-24

E.3.8 THE CALL "TCLOSE" PROCEDURE ...E-26

E.4 Return Status List and Definitions ..E-27

E.5 Status Codes and Statement Cross Reference..E-30

47 A2 33UT xvii

E.6 Using the TCAM Call Statements ...E-31

E.6.1 OPENING AND CLOSING A PASS-THRU SESSION....................................E-31

E.6.2 STARTING AND ENDING PASS-THRU MODE ...E-31

E.6.3 COMMAND SEQUENCING ..E-32

E.7 Abnormal Disconnections ...E-41

E.7.1 PRINCIPAL SESSION DISCONNECTIONS...E-41

E.7.2 PASS-THRU SESSION DISCONNECTIONS ...E-42

E.7.3 ABORTS, GCOS 7 CRASHES, AND RECOVERY...E-42

 Index

TDS COBOL Programmer's Guide

xviii 47 A2 33UT

Table of Graphics

Figure 1-1. Application Programs (TPRs) Managed by TDS... 1-2
Figure 1-2. The Programmer's View of TDS.. 1-3
Figure 1-3. Transaction Processed by a Sequence of TPRs... 1-4
Figure 1-4. TPRs Composed of Calling and Called Subroutines... 1-5
Figure 1-5. Simultaneous TPR Processing.. 1-6
Figure 1-6. Conversations and Think Times .. 1-9
Figure 1-7. Current Record Pointer.. 1-16
Figure 2-1. Handling COMMON-STORAGE by Using CALL Statements 2-15
Figure 2-2. TDS-STORAGE, COMMON-STORAGE, TRANSACTION-STORAGE and

SHARED-STORAGE... 2-34
Figure 2-3. Message Buffering with ESI .. 2-56
Figure 2-4. TDS Message Buffering with EMI.. 2-57
Figure 2-5. Order Processing - Sequence of Operations .. 2-69
Figure 2-6. EBCDIC/PLW CODE... 2-71
Figure 2-7. Creating GTWriter Reports.. 2-76
Figure 2-8. Displaying Messages with Terminal Adapter for a User Not in Roll Mode...... 2-80
Figure 3-1. Switching a Terminal between Passive and Active States.............................. 3-13
Figure 4-1. Using CALL RESTORE ... 4-19
Figure 9-1. Using CALL LOCK for a Local Resource .. 9-10
Figure 9-2. Using CALL LOCK for a Global Resource .. 9-11
Figure 9-3. Non-concurrency ... 9-16
Figure 10-1. Forms in Overlay and Append Mode ... 10-11
Figure 10-2. Forms in Erase and Window Mode (1/2) ... 10-12
Figure 12-1. Context of Special Services ... 12-2
Figure 12-2. LOGON Transaction .. 12-13
Figure 13-1. Preparing TPRs for Execution.. 13-6
Figure 13-2. Example of Structured Programming... 13-13
Figure 13-3. Structure of a TDS Batch Interface .. 13-43
Figure 13-4. Data Format for the Standard Batch Program ... 13-51
Figure C-1. Flowchart For Transaction TCDE (TPRs TCD1, TCD2, TCD3)C-3
Figure E-1. Using TCAM as Communication between the End User and the Remote

Application ...E-1
Figure E-2. The Break Signal ...E-5
Figure E-3. Timeout after SEND WITH EGI ...E-17
Figure E-4. Timeout after SEND WITH EMI...E-18
Figure E-5. Two Conversations in the Same TPR ...E-34

Figures

47 A2 33UT xix

Figure E-6. Opening the Pass-Thru Session ..E-35
Figure E-7. Receiving Data without Turn in the Pass-Thru SessionE-36
Figure E-8. Transaction Receives Data with Turn in the Pass-Thru Session.....................E-37
Figure E-9. Receiving Data without the Turn in the Principal Session...............................E-38
Figure E-10. Normal End of Pass-Thru Session...E-40
Figure E-11. Disconnecting the Principal Session..E-41
Figure E-12. Disconnecting the Pass-Thru Session ...E-42

Table 2-1. Spawning Priorities .. 2-48
Table 2-2. DKU7007 Control Codes ... 2-61
Table 2-3. DKU7007 Line and Column Codes ... 2-62
Table 2-4. GS Field Protection Codes (DKU 7007).. 2-63
Table 2-5. CD Status Keys (1/5) ... 2-84
Table 2-6. Communications Verbs and XCP1 Procedures (CD Status Keys) (1/2) 2-89
Table 2-7. Status Key Values for FORMS (1/2).. 2-91
Table 12-1. File Assignments on ASSIGN-FLAG = P .. 12-19
Table 12-2. CONTEXT-FLAG and ASSIGN-FLAG Values .. 12-20
Table 12-3. LINKAGE SECTION Parameters for the Transaction Initialization Routine.. 12-26
Table A-1. TDS-Authorized PCF Commands (1/2) ...A-5

Tables

TDS COBOL Programmer's Guide

xx 47 A2 33UT

47 A2 33UT 1-1

 1. Transaction Processing

1.1 Overview of TDS

This chapter presents a brief overview of the GCOS 7 Transaction Driven
Subsystem (TDS). A clear description of the concepts underlying TDS is provided
in the TDS Concepts Manual. The concepts presented are essential reading. The
purpose of this chapter is to show the programmer how useful these concepts are in
preparation for programming transactional applications. A system is said to be
transaction driven when its operation depends primarily on the transactions that are
available for processing. User application programs designed to process
transactions under TDS are called Transaction Processing Routines (TPRs). These
are coded in a high-level language by the programmer.

The System Administrator describes the environment in which transactions execute
at TDS generation. The TDS Generation process is called TDSGEN. This process
describes a TDS for a particular application; the TPRs written by the programmer
operate in this environment provided by the generated TDS. In general the
programmer does not have to be concerned about TDSGEN. It is enough to know
that the generation program is generated using COBOL-like statements and entries
defining the type and number of transactions and terminals. For the syntax and
implementation of TDSGEN, see the TDS Administrator's Guide.

The subject of this manual is how to program TPRs.

TDS COBOL Programmer's Guide

1-2 47 A2 33UT

1.1.1 Initiating a TDS Transaction

After the TDS Administrator has set up the programming environment by
performing the steps in TDSGEN and started the TDS application TDSGEN
produces, the ordinary users can log onto TDS. To start a transaction, the terminal
operator keys in the transaction identifier on the terminal screen. The transaction
identifier (maximum eight characters long) is declared at TDSGEN. As each
transaction is completed, the user may begin another.

1.1.2 How Do TPRs Relate to TDS?

TDS supervises the execution of transactions as seen in Figure 1-1.

TPR1 TPR2 TPR3 TPR4

TDS Code,
Message Buffers,
Data,
Programming
Environment

TDS

Figure 1-1. Application Programs (TPRs) Managed by TDS

Each transaction is processed by a set of TPRs. Any TPR can be shared by several
transactions. A transaction may consist of only a single TPR.

Transaction Processing

47 A2 33UT 1-3

TDS, as seen by the programmer, is a collection of commands in a TPR.

Programmer's view of TDS

Transaction 1

Transaction 2

Transaction 3

Transaction n

TPR 1

TPR2

TPR3

 .
 .
 .
TPR n

Company
Operation/
Business

TDS Generation
Program
(TDSGEN)

System Administrator's View

Figure 1-2. The Programmer's View of TDS

The TDS Administrator views TDS from the viewpoint of TDSGEN, whereas the
TDS Programmer views TDS from the viewpoint of the terminal operator.

TDS COBOL Programmer's Guide

1-4 47 A2 33UT

1.1.3 How Do TPRs Function?

TDS uses a message from a terminal, which consists of a transaction identifier and
user parameters, to start TPR1. TPR1 is the first TPR in the sequence whose name
is given in TDSGEN. It is shown in Figure 1-3, below. When TPR1 terminates,
TDS passes control to TPR2 and so on until the final TPR terminates, at which
point the transaction is complete. A TPR can be recursive, which means that can
pass control to itself.

It is not up to the TPR to call the next one. It simply names the TPR that is to
follow. TDS starts it as soon as the necessary conditions are satisfied and resources
become available.

message

reply

data
base

TPR1

TPR2

TPR3

TPR4

Figure 1-3. Transaction Processed by a Sequence of TPRs

Transaction Processing

47 A2 33UT 1-5

1.1.4 TPRs and Other Programs

A TPR can call subroutines. A transaction might, for example, be processed by a
sequence of TPRs as shown in Figure 1-4.

TPR1 CALL

SUB1.A

SUB1.B

TPR2 CALL

SUB2.A

SUB2.B CALL

SUB2.B1

SUB2.B2

SUB2.B3

TPR3

Figure 1-4. TPRs Composed of Calling and Called Subroutines

TPR1 is started by TDS. It performs its processing with the aid of two called
subroutines, SUB1-A and SUB1-B and terminates, giving TPR2 as the next TPR.
TDS then activates TPR2, which in turn calls other subroutines.

TDS COBOL Programmer's Guide

1-6 47 A2 33UT

1.1.5 TPRs Executing Simultaneously

DS can handle more than one TPR at the same time. For information on the
maximum number of the simultaneous TPRs (the so-called "simultaneity level"),
see the TDS Administrator's Guide.

Figure 1-5 shows a TDS with a simultaneity level of 3. There are five TPRs, but
only three are ever executing simultaneously. The execution of several
simultaneous TPRs is called concurrency.

TPR active Terminal Operator
Activity

T

R

A

N

S

A

C

T

I

O

N

S

TIME
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

A1

A2

B

C1

C2

Figure 1-5. Simultaneous TPR Processing

Transaction Processing

47 A2 33UT 1-7

In this example 3 levels of simultaneity are shown, that is, at any time, a maximum
of 3 TPRs can simultaneously (concurrently) execute. At time (t0) the 3
transactions A1, B, and C2 execute in simultaneity. B stops executing at time (t1)
at which point A2 starts executing. A1 and A2 are 2 separate occurrences of the
same transaction A. C1 and C2 are 2 separate occurrences of the same transaction
C. A1, A2, C1 and C2 execute as if they are all separate transactions.

The same transaction can be activated several times. Even if more than one
transaction requires the same TPR at the same time, only one copy of this TPR is
present in memory.

From this example, it follows that some kind of concurrency control mechanism is
needed so that transactions do not interfere with each other. This mechanism is
described later in this chapter in the section on Files.

1.1.6 Transaction Types

Three types of transactions are defined at TDSGEN:

1. "Update" transactions, containing updates to files/databases
2. FOR INQUIRY
3. FOR DEBUG

1. An "update" transaction is one in which the TPR will modify the database.
The modification may be to replace or supplement existing information, or it
may require the addition or deletion of whole elements.

2. A FOR INQUIRY transaction only causes information to be retrieved on the
terminal.

message

response

A FOR INQUIRY transaction does not modify the database and does not have
conversations. There is only 1 exchange with the terminal operator.

3. The FOR DEBUG transactions are the transactions being tested for which file
modifications are simulated. The FOR DEBUG option allows transactions to
modify files temporarily. However, once the commitment unit terminates, the
files will be rolled back to their original unmodified state. This type of
transaction is described more fully in the section Debugging in TDSGEN in
Chapter 13.

TDS COBOL Programmer's Guide

1-8 47 A2 33UT

1.1.7 Elements of a Transaction

As explained in the TDS Concepts Manual, an exchange is the sequence of input
request, transactional processing, and output response.

A transaction comprises:

EXCHANGES - of messages

COMMITMENT UNITS - for resource management

In general it is recommended that a COMMITMENT UNIT correspond to an
EXCHANGE. This is the default value (IMPLICIT COMMITMENT in
TDSGEN). However, commitment units and exchanges can interact. For example,

Commitment Unit

{ Exchange-1
{ .
{ .
{ .
{ Exchange-n

or

Exchange

{ Commitment Unit-1
{ .
{ .
{ .
{ Commitment Unit-n

Messages can be displayed in two formats:

message format: "line mode", or "format mode"

conversation level: "lines" or "forms".

Transaction Processing

47 A2 33UT 1-9

In line mode, the terminal operator is prompted to enter a piece of information on a
line. Once the terminal operator has filled up the line, he/she fills up the next line,
and so on. Normally a piece of information corresponds to a line, but you might
enter two or more pieces of information on a line as shown in Example 1 below
(details about line mode are given in the section on Screen Displays later in this
chapter).

In format mode, the terminal operator is prompted to enter pieces of information on
certain parts of the screen and the TDS application displays information through a
formatted menu (details about format mode are also given in the section on Screen
Displays later in this chapter).

In line mode, the terminal operator works on a line by line basis, whereas in format
mode the TDS application has complete control over the appearance of a form and
can guide the terminal operator to enter the required input.

In line mode, the "think times" are interleaved, which is to say they are prompted.
In format mode, the "think times" are accumulated until the terminal operator has
filled in the entire form, with all the information using only one prompt.

Remember that a conversation is the phase between two exchanges of the same
transaction, that is, the time between the transmission of the response from a TPR
and the reception of the next input message from the terminal operator.
The "think-time" is the time it takes the user to enter a new message.

response

Think-TimeConversation

message

.

.

.

.

.

Figure 1-6. Conversations and Think Times

TDS COBOL Programmer's Guide

1-10 47 A2 33UT

Line Mode: 1 exchange per element.

EXAMPLE 1:

In each exchange, one line is treated.

This is what appears before the terminal operator enters a piece of information.

ITEM No.

This is what appears after the terminal operator enters pieces of information.

ITEM No.
QUANTITY

ITEM No.
QUANTITY

ITEM No.
QUANTITY

528
 10

529
 30

530
 7

Forms Mode: 1 exchange for several elements,

Transaction Processing

47 A2 33UT 1-11

EXAMPLE 2:

In a single exchange the following form is treated.

This is how the empty form appears before the terminal operator enters a piece of
information.

.

.

.

.

.

.

15 LINES

PRODUCT N° QUANTITY

CONFIRM (Y or N)

This is how the filled form appears after the terminal operator has entered the
required information.

.

.

.

.

.

.

15 LINES

PRODUCT N° QUANTITY

CONFIRM (Y or N)

5 2 8

5 2 9

5 3 0

1 0

3 0

5

❑

TDS COBOL Programmer's Guide

1-12 47 A2 33UT

1.1.8 TDS Data Exchange Modes

A TDS application can exchange messages with a partner, terminal operator, or
another program in the following modes:

• In line mode through the COBOL statements: RECEIVE and SEND. These are
described in Message Handling Without FORMS in Chapter 2, and the actual
procedures are described in Chapter 3. Note that line mode is not supported with
the 327x group of terminals.

• In format mode through the Standard Device Programmatic Interface (SDPI)
procedures. FORMS procedures use the SDPI interface. FORMS procedures
are described later in Message Handling With FORMS in Chapter 2 and the
actual procedures are described in Chapter 10.

• In XCP1 mode through the XCP1 primitives. These primitives allow a TDS
application to communicate with another application that supports the XCP1
protocol. For more information, see the Transactional Intercommunication
Using XCP1 Protocol User's Guide.

• In XCP2 mode (refer to the CPI-C/XCP2 User's Guide).

• To connect to another application at the same site, or on a different site, without
having to log off from TDS, use the PT (PASS THROUGH) command that is
described in Chapter 14.

1.1.9 Screen Displays

Messages appear on the screen either in line mode, or through the FORMS utility.
These two methods of entering messages are explained in the following two
sections.

1.1.9.1 Line Mode

In line mode, the transaction is activated by a message from the terminal operator.
The TPRs then perform a sequence of SEND and RECEIVE statements to obtain a
single data item at a time.

The programmer has available a range of local control functions in
CONSTANT-STORAGE such as "clear screen" and "move cursor".

The operator can enter a sequence of data in reply to a prompt from a TPR.
However, large messages cause problems of data separation and extraction.

Transaction Processing

47 A2 33UT 1-13

1.1.9.2 Format Mode

In format mode, the TPR names a form to be displayed on the screen. A form is a
set of headings with spaces for data entry by the operator. The spaces are known as
'variable fields'. (Appendix C shows a sample form). The form is generated from
the data description that has fields for:

• fixed headers,

• strings of control codes,

• data to be keyed in.

The control codes define:

• the screen layout,

• field protection,

• data-range checks,

• cross-field checks.

These attributes and many others are specified when the programmer defines the
form.

The terminal is initially in line mode. Any TPR can set the terminal to format
mode with the cursor positioned at the start of the first variable field.

The operator then keys in the data. As each variable field is completed, the cursor
moves to the next field in sequence. If the operator enters numeric characters
instead of alphabetic characters, the entry is rejected. When all fields have been
entered, the response is transmitted to TDS and TDS activates the next TPR of the
transaction. The TPR receives the message containing only the variable fields
separated by tabulation codes.

The TPR can then unstring the message into its component fields to process the
data. The advantages of processing in format mode are as follows:

• Screen layout resembles the source document. This makes it easier for the
terminal operator to enter data.

• Many data items can be easily entered and transmitted as a single message.

• Many errors are detected and corrected automatically.

TDS COBOL Programmer's Guide

1-14 47 A2 33UT

1.1.10 Files

The characteristics of the TDS-controlled and non-controlled files are given in the
TDS Concepts Manual.

The files accessed by a TPR may be TDS-controlled or non-controlled files
according to how they were defined in the INPUT-OUTPUT SECTION at
TDSGEN.

If the files are non-controlled, they must be declared in the FILE-DEFINITION
clause at TDSGEN.

If the files are TDS-controlled, they are declared in the TDS-FILE-DEFINITION
or IDS-DEFINITION clauses at TDSGEN and are protected by the General Access
Control (GAC) mechanism.

GAC-EXTENDED allows a TDS-controlled file to be shared concurrently, but
GAC-EXTENDED cannot be used for non-controlled files. For a complete
explanation of GAC-EXTENDED, see the GAC-EXTENDED User's Guide.

1.1.10.1 TDS-controlled Files

TDS-controlled files can be UFAS indexed sequential, or relative files, but IDS/II
areas are always considered as TDS-controlled files. They are opened by TDS at
the start of the TDS session. TDS-controlled files are processed in INPUT or
INPUT-OUTPUT according to the clause specified in PROCESSING-CONTROL
at TDSGEN.

During the TDS session, a UFAS-EXTENDED file can be dynamically closed, (for
example, the TDS Administrator issues the [M] CLOSE_TDS_FILE command),
or can be dynamically re-opened, (for example, the TDS Administrator issues the
[M] OPEN_TDS_FILE command).

Each time a TDS-controlled file is used, TDS allocates a control structure that
contains a pointer to the current record of the file. See Figure 1-7.

If the transaction was declared with the FOR DEBUG clause at TDSGEN
(unless it has been validated by the master command [M] MODIFY_TX
VALIDATE = 1), the verbs that modify or update files are ineffective: the
modifications or updates are performed, but they are undone at commitment time.

Transaction Processing

47 A2 33UT 1-15

IDS/II and UFAS file pointers are kept by TDS throughout the commitment unit
and are made available to each consecutive TPR of this commitment unit. Outside
the commitment, these file pointers are initially null. For UFAS-EXTENDED
files, the "KEEP-CURRENCIES" procedure can be called to retain the file
pointers, which would otherwise be set to zero. This option is not available for
IDS/II. For more information see the section on KEEP-CURRENCIES in
Chapter 9.

TDS-controlled files are automatically protected by CI locking.

GAC-EXTENDED/GAC locks CIs to protect against concurrent accesses, whether
read/write. If the SHARED READ clause is specified in the TRANSACTION
SECTION at TDSGEN, several readers may access the same CI concurrently.

If a file is declared as INPUT-OUTPUT, the control mechanism can be inhibited by
specifying in the TRANSACTION SECTION at TDSGEN

SUPPRESS CONCURRENT ACCESS CONTROL.

This clause may be used when a transaction reads records for statistical purposes
while other transactions update these records.

Control is exercised:

• at the control interval (CI) for UFAS-EXTENDED or UFAS files,

• or at the page level for IDS/II areas.

The CI or page containing the record accessed by a transaction is locked for the
duration of the current commitment unit.

Concurrent access control causes conflicts when one transaction requests a CI or
page that is already locked. The second transaction waits until the resource is
freed. If the conflict causes a deadlock (that is, the resource will never be freed),
one transaction is aborted by TDS and restarted from the last commitment when
the other transaction releases the required CI or page. For a complete explanation
of deadlock and long-wait, see the GAC-EXTENDED User's Guide.

TDS COBOL Programmer's Guide

1-16 47 A2 33UT

TDS-controlled files may be protected by both the Before and After Journals.
Journals are specified at TDSGEN and through run-time JCL entries. They are
therefore not visible to the programmer.

Transaction 1 Time Transaction 2

TPR1A

START KEY 100

READ NEXT

CALL "NOCMIT"

TPR2A

START KEY 500

READ NEXT

CALL "NOCMIT"

TPR1B

READ NEXT READ NEXT

TPR2B

TPR1C

READ NEXT
READ NEXT

record
?

record
101

record
100

record
502

record
501

record
500

t1

t2

t3

t4

commitment t5

t6

t7

Figure 1-7. Current Record Pointer

Transaction 1 and Transaction 2 access the same file simultaneously. TDS
maintains separate file pointers for each transaction and the file is processed
correctly by both transactions.

At the end of TPR1A (t3) a call is made to "NOCMIT" (explained in Chapter 3).
This means that no commitment is taken. Therefore the READ ... NEXT statement
in TPR1B is quite in order. At the end of TPR1B (t5) a commitment point is taken
and the file pointer reset so that the READ ... NEXT in TPR1C will not produce the
results that were expected: TDS aborts the TPR with the code NOCURREC
(no current record defined). The pointer must be repositioned by the TPR unless
the KEEP-CURRENCIES procedure is used.

Transaction Processing

47 A2 33UT 1-17

1.1.10.2 Non-controlled Files

Every file except IDS/II areas may be declared a TDS non-controlled file. For
these files, the following functions are not supported:

Multiple current record pointers: non-controlled files cannot be accessed
simultaneously because TDS maintains only
one set of pointers or currencies per file for
the whole TDS application.

FOR DEBUG: this function indicates which transactions
are to be debugged and is described later in
Chapter 13.

GAC-EXTENDED: see the previous subsection.

Deferred updates: this function means that all updates from a
transaction are held in limbo until the
transaction is completed. The advantage is
that the transaction aborts can easily be
handled by discarding these updates. For
more information, see the TDS
Administrator's Guide.

Because there is no concurrent access control and only one current record pointer
per file, these files must not be accessed simultaneously.

Non-controlled files may be protected by the Before Journal, but they cannot be
protected by the After Journal.

TDS COBOL Programmer's Guide

1-18 47 A2 33UT

1.1.11 Updates

Records are accessed in packets known as CIs. A CI is the unit of data that is
transferred in each physical I/O operation.

When a record is being updated, the whole CI (not the file) is locked. This means
that access to the record by another transaction is not permitted until the
commitment is taken. Locking at CI level is necessary to avoid concurrent update
problems. The updates to the files are not seen by other transactions until a
commitment point is taken.

EXAMPLE

The quantity to be ordered will be entered only after the stock level has been
checked.

UPDAT 325: The initial message is only to read record 325.

RECEIVE
 .
 .
 READ record "325"

.
 .
SEND stock

TPR1

The transaction waits for the operator to key in the quantity, say, 12. Meanwhile,
record 325 remains locked.

RECEIVE
 .
 .
calculate

stock - quantity
 .
 .
 .
 REWRITE record "325"
 .
 .
SEND

COMMITMENT

TPR2

❑

Transaction Processing

47 A2 33UT 1-19

Record 325 is locked for the duration of the transaction because a commitment
point is not taken at the end of TPR1. Any transaction (say TPR3) trying to access
the same control interval (that is, the CI containing record 325) must first wait for
TPR2 to terminate, or else will be aborted by TDS. If the commitment unit in
TPR3 is aborted, it is automatically restarted at the start of the commitment point
when the record is unlocked.

Take the same example, but in this case the quantity ordered is 12 and is fixed at
the beginning.

UPDAT 325,12: The initial message identifies both the record 325 to be
updated and the quantity, 12. Processing takes place
without further operator intervention.

RECEIVE

READ record "325"
 .
 .
stock > 12----------NO
 | |
 | YES |
 | |
stock - quantity SEND message
 . "stock insufficient"
 .
REWRITE record "325"

COMMITMENT
 .
 .
SEND

COMMITMENT

STATISTICAL READ

When a TPR tries to access a record in a CI or page already locked by another TPR
or by a batch program, the TPR is forced to wait until the CI or page is released,
unless "statistical read" is specified. "Statistical read" means that a transaction can
access data that is being updated by other commitment units. For further details,
see the TDS Administrator's Guide.

TDS COBOL Programmer's Guide

1-20 47 A2 33UT

COMMITMENT

Depending on the type of commitment (IMPLICIT or EXPLICIT option) chosen
by the user for each transaction at TDSGEN, the programmer performs the
following actions:

IMPLICIT COMMITMENT

When the IMPLICIT COMMITMENT option is specified for a transaction, TDS
performs a commitment:

• for every conversation,

• at the end of every transaction,

• at the end of a TPR when a WAIT-TIME value has been specified in the
TDS-STORAGE.

The programmer can override the implicit commitment by using the following
statements:

• CALL "NOCMIT" which will cancel a commitment point that would
otherwise be processed. This statement is explained in
Chapter 3.

• CALL "DFCMIT" which will force a commitment point to be processed
when otherwise no action would be taken. This
statement is explained in Chapter 3.

EXPLICIT COMMITMENT

Commitment processing is entirely under the control of the programmer, who must
code CALL "DFCMIT" statements for a commitment to be processed.

Transaction Processing

47 A2 33UT 1-21

1.1.12 Restarting after a Failure

Until now we have assumed that each transaction runs happily to completion. In
practice, several things might happen to prevent a transaction from completing.
The system (GCOS 7) could fail from a variety of hardware and software causes.
TDS could abort or maybe only a single transaction aborts.

Restarting a transaction means restoring the status of the transaction to some
previous point in time.

After a system crash, or a TDS abort, TDS can be restarted in two ways:

• Warm restart,

• Cold restart.

A TDS warm restart brings the application back to its previous status. This is the
normal restart after a crash or a TDS abort. TDS rolls back (reverses) the files and
restarts the transactions from their last commitment, that is, from their last safe
state.

A cold restart erases information left over from the previous session. For example,
events such as the sessions that are abnormally disconnected, or the transactions
that are not terminated, are lost.

Note that file integrity is not done by the type of TDS restart. If the previous TDS
step aborts, then file integrity functions are executed at the abnormal end of the
step. If the system crashes, then file integrity functions are executed at the warm
restart of the system.

If a cold, or clean restart is executed for the system, file integrity functions cannot
be done at restart time; static rollforward must be performed before a TDS
application is restarted. The TDS application is forced to restart in Cold mode.

Less serious than a system crash, or a TDS abort is the failure of a single
transaction. To recover from such a failure, TDS maintains the Before and After
Journals on which details of all update operations are recorded. Thus, if it becomes
necessary to undo some particular update, TDS can use the Before-Journal entry to
restore the updated item to its previous value, that is, the commitment unit will be
undone.

NOTE:
A FOR INQUIRY transaction is not restarted if TDS aborts or the system
crashes.

For more information on the protection of user files, see the File Recovery
Facilities User's Guide.

TDS COBOL Programmer's Guide

1-22 47 A2 33UT

1.1.13 Batch Interface

A batch program can exchange data with TDS as long as it simulates a terminal.
The batch program logs onto TDS as any terminal does.

The batch program is written in COBOL. It uses COPY and CALL statements to
four special procedures that are explained in the section Debugging Using Batch
Interface Procedures in Chapter 13. Messages between the batch program and TDS
pass through a supplied data structure that is accessed from a program by a COPY
statement in the WORKING-STORAGE SECTION.

A batch program can simulate only one terminal.

The maximum number of such pseudo-terminals that may be active at any one time
is defined in the TDSGEN.

1.1.14 GTWriter

TDS applications usually require one or more carefully formatted reports to be
produced (the term report means a set of formatted output). The GTWriter facility
tries to ease this burden by allowing the programmer to specify the physical layout
of a report. This facility is described in Chapter 2, and the procedures are given in
Chapter 11.

1.1.15 Special Services

TDS executes various functions at the start of, during and at the end of a TDS
session. Each function is called a special-purpose transaction and is stored in the
sharable module library. These are explained in Chapter 12.

Transaction Processing

47 A2 33UT 1-23

1.1.16 Storages

There are a number of standard data-areas from which the TPR derives information
that it needs to perform its processing, and into which it places data for the control
of the communications network and for the TDS routines and other TPRs or
transactions.

The following data areas are used:

TDS-STORAGE --------------> used as a shared storage between
TPRs and TDS.

CONSTANT-STORAGE ---------> contains communications control-
characters.

PRIVATE-STORAGE ----------> owned by a single TDS user for a
whole TDS session, that is, from the
user's first log-on to the user's normal
log-out, or to the user's cancellation
by the master.

TRANSACTION-STORAGE ------> shared by every TPR in one
transaction.

COMMON-STORAGE -----------|
 |
CONTROLLED COMMON-STORAGE |->
 |
SHARED-STORAGE -----------|

used as storage areas shared by all
transactions of one TDS.

INPUT CD Area ------------|
 |->
OUTPUT CD Area -----------|

These are data areas for data
transmission parameters. The data
structures generated in the input and
output Communication Descriptions
(CDs) allow the TPR to handle
messages through SEND and
RECEIVE statements.

All these storage areas are explained in Chapter 2.

TDS COBOL Programmer's Guide

1-24 47 A2 33UT

1.1.17 An Example of a COBOL TPR

Because COBOL has been the preferred programming language among TDS users,
this is the language used in this manual to illustrate TPR programming. Before
getting involved in detail it is important to have an overall view of a TPR. A TPR
written in COBOL comprises the same four divisions as a COBOL program:
IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE.

IDENTIFICATION DIVISION.
PROGRAM-ID. TPRECHO.
AUTHOR. SMITH.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. DPS7.
OBJECT-COMPUTER. DPS7.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 OUTPUT-MESSAGE PIC X(50).
01 INPUT-MESSAGE.
 02 DEB-INPUT-MESSAGE PIC X(3).
 02 IN-MESSAGE PIC X(97).

LINKAGE SECTION.
COPY TDS-STORAGE.
COPY CONSTANT-STORAGE.
01 TRANSACTION-STORAGE.
 RFU PIC X(1000).

COMMUNICATION SECTION.
CD CD-IN FOR INPUT
 SYMBOLIC QUEUE IS SQI
 MESSAGE DATE IS MDI
 MESSAGE TIME IS MTI
 SYMBOLIC SOURCE IS SSI
 TEXT LENGTH IS TLI
 END KEY IS EKI
 STATUS KEY IS SKI
 MESSAGE COUNT IS MCI.

Transaction Processing

47 A2 33UT 1-25

01 CDI PIC X(87).
CD CD-OUT FOR OUTPUT
 DESTINATION COUNT IS DCO
 TEXT LENGTH IS TLO
 STATUS KEY IS SKO
 ERROR KEY IS EKO
 SYMBOLIC DESTINATION IS SDO.

01 CDO PIC X(23).

PROCEDURE DIVISION USING TDS-STORAGE, CONSTANT-STORAGE
 TRANSACTION-STORAGE.
START.

1) MOVE SYMBOLIC-QUEUE TO SQI.
2) MOVE 100 TO TLI.
3) MOVE 1 TO DCO.
4) MOVE 50 TO TLO.
5) RECEIVE CD-IN MESSAGE INTO INPUT-MESSAGE.
6) DISPLAY "MESSAGE RECEIVED: "INPUT-MESSAGE UPON ALTERNATE CONSOLE.
7) IF SKI NOT = "00" GO TO RECEIVE-ERROR.
8) MOVE SSI TO SDO.
9) IF DEB-INPUT-MESSAGE = "END" GO TO FIN.
10) MOVE "READY FOR NEXT MESSAGE (OR END TO TERMINATE)" TO OUTPUT-MESSAGE.
11) SEND CD-OUT FROM OUTPUT-MESSAGE WITH EGI.
12) IF SKO NOT = "00" GO TO SEND-ERROR.
13) MOVE "TPRECHO" TO NEXT-TPR.
 GO TO FIN.

RECEIVE-ERROR.
 DISPLAY "RECEIVE ERROR " SKI UPON TERMINAL.
 GO TO FIN.
SEND-ERROR.
 DISPLAY "TRANSMISSION ERROR" SKO UPON TERMINAL.
FIN.
 EXIT PROGRAM.

TDS COBOL Programmer's Guide

1-26 47 A2 33UT

Comments:

1. The TPR named TPRECHO loads the input CD SYMBOLIC-QUEUE with
the contents of the TDS-STORAGE field SYMBOLIC-QUEUE.

2. Indicates that there are 100 positions available for the data to be received.

3. Sets DCO to 1.

4. Indicates that there are 50 positions available for the data to be sent.

5. The message is made available to TPRECHO.

6. Displays that the message is received on a terminal other than the submitting
terminal.

7. The status of the message received is tested.

8. The output CD is to contain the identifier of the activating terminal.

9. Tests for the end of the message to terminate the transaction (see Step 13).

10. Sends a prompt to the terminal operator.

11. The SEND verb transfers the message to the terminal.

12. The status of the message sent is tested.

13. TPRECHO indicates to TDS that TPRECHO is the next TPR. This means
that TPRECHO repeats itself until the end of the transaction (see step 9). The
absence of a value in the NEXT-TPR field indicates the end of the transaction.

The TPR is covered in full in the next chapter. An example of a TDS Generation
Program (TDSGEN) can be found in the TDS Administrator's Guide.

47 A2 33UT 2-1

 2. Programming the Transaction

This chapter describes the DIVISIONs that declare information specific to TDS.
The language for programming the TPRs is COBOL.

The TPR is programmed like any communications program in which input and
output Communication Descriptions (CDs) are used with SEND and RECEIVE
statements. However, the TPR uses storages specific to the TDS environment
which are declared at TDSGEN and then referenced by the TPR.

2.1 Identification Division

This division of a TPR is similar to that of a standard COBOL program. The
identifier specified in the PROGRAM-ID statement is the name of the TPR
specified in TDSGEN (MESSAGE statement) and in the CURRENT-TPR,
NEXT-TPR, ON-ABORT-TPR, and PRIOR-TPR fields of TDS-STORAGE.
These fields are explained the section LINKAGE SECTION later in this
chapter. The name of a TPR must be different from all other names known in
the generated TDS (file names, shared data names, etc.).

In the TPR: In the Generation Program:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TPRECHO.
 AUTHOR. SMITH.

TRANSACTION SECTION.
MESSAGE "ECHO" ASSIGN TO
TPRECHO.

TPRECHO is the name of the TPR. The subsequent TPR is indicated in the
NEXT-TPR field of TDS-STORAGE. If there is no subsequent TPR, this
means that this TPR is the last TPR in the transaction.

"ECHO" is the message-id as described in the TDS Administrator's Guide.

TDS COBOL Programmer's Guide

2-2 47 A2 33UT

2.2 Environment Division

The ENVIRONMENT DIVISION is used to supply information about the
configuration, special hardware characteristics and input/output control. This
division is composed of two sections: the CONFIGURATION SECTION and
the INPUT-OUTPUT SECTION.

2.2.1 Configuration Section

Defines the functional characteristics of the source and object computer. This
section is identical to that used in a batch COBOL program and includes two
clauses:

SOURCE COMPUTER and OBJECT COMPUTER.

2.2.1.1 OBJECT-COMPUTER

Segment sizes are by default 4 Kbytes. In order to override these defaults, the
user specifies values for:

• MAXIMUM PROCEDURE SEGMENT SIZE psegmax

• MAXIMUM DATA SEGMENT SIZE dsegmax

However, at compilation time, the user can again override these sizes by
specifying values for the PSEGMAX and DSEGMAX parameters in the
COBOL statement. For an explanation of PSEGMAX and DSEGMAX, see the
COBOL 85 User's Guide.

EXAMPLE

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. DPS7.
OBJECT-COMPUTER. DPS7.
❑

Programming the Transaction

47 A2 33UT 2-3

2.2.2 INPUT-OUPUT-SECTION

Associates the files to be used by a TPR with those described at TDSGEN.

2.2.2.1 FILE-CONTROL

The FILE-CONTROL paragraph is used by the programmer to identify all files
to be used by COBOL TPRs. Every file except the user journal file must be
described at TDSGEN which stores file-control entries (SELECT clause) in the
tdsname.COBOL file. A TPR that needs a particular file must issue a COPY
statement in the ENVIRONMENT DIVISION of a COBOL TPR to retrieve the
file-control entries from the library.

If you are using COBOL, you must declare TDS non-controlled files at
TDSGEN. If you are using other languages, you can assign and open
non-controlled files within a TPR.

Illustrations of FILE-CONTROL entries and the rules regarding their use can be
found in the description of the ENVIRONMENT DIVISION in the COBOL 85
Reference Manual.

Syntax

 FILE-CONTROL.

 COPY SELECT-filename. [...]
 [COPY SELECT-USERJRNL.]

The filename is up to 24 alphanumeric characters in length and must not start or
end with a hyphen.

TDS COBOL Programmer's Guide

2-4 47 A2 33UT

NOTES:
1. The EXTERNAL phrase in the SELECT clause of TDSGEN, which is

optional in standard COBOL, is required by TDS to indicate that the
associated internal file name can be declared by more than one TPR.

2. For TDS-controlled files, access mode can be dynamic or random and
organization must be UFAS.

3. Each file control entry must be terminated by its own *END statement,
in addition to the period that terminates the standard COBOL format.

4. The internal-file-name USERJRNL is reserved for the user journal and
must not be specified in any FILE-CONTROL entry. When the TPR
needs to write to the user journal file, you must specify the COPY
SELECT-USERJRNL clause. The corresponding description is
produced by the TDSGEN as a result of the USER-JOURNAL
statement; see the example in the description of the FILE SECTION
later in this chapter.

Syntax in the TPR: Syntax in the TDSGEN:

 FILE-CONTROL.

 COPY SELECT-FT1.

 FILE-CONTROL.
 SELECT EXTERNAL FT1
 ASSIGN TO T1
 ORGANIZATION UFF INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS IKEY1
 FILE STATUS IS FSTATUS
 WITH FLR.
 *END.

Programming the Transaction

47 A2 33UT 2-5

2.3 Data Division

2.3.1 Purpose and Use

The Data Division defines the nature and characteristics of the data that the TPR
is to:

• accept as input,

• manipulate,

• create,

• produce as output.

Data to be processed can be contained in files, placed into intermediate or
working storage, or formatted specifically for output purposes. The
programmer also uses this division to describe the communication area for
storing input and output messages.

2.3.2 Structure

The Data Division of a TPR has the same structure as that used in a batch
COBOL program with the exception that the LINKAGE SECTION is required.
The following paragraphs describe how each section of the Data Division is
used in a TPR.

DATA DIVISION

FILE
SECTION

LINKAGE
SECTION

COMMUNICATION
SECTION

WORKING-STORAGE
SECTION

SUB-SCHEMA
SECTION

If you are using IDS/II, the SUB-SCHEMA SECTION must be the first
SECTION of the Data Division.

TDS COBOL Programmer's Guide

2-6 47 A2 33UT

2.3.3 SUB-SCHEMA SECTION

The following IDS/II statements have a special meaning for TDS. For all other
IDS/II statements, see the IDS/II Reference Manual and the Full IDS/II
Reference Manual.

The SUB-SCHEMA SECTION is mandatory if IDS/II is used.

2.3.3.1 SUB-SCHEMA SECTION for IDS/II

The SUB-SCHEMA SECTION contains a unique DB schema entry and
specifies the database schema that the TPR accesses. The database schema
must be described in the IDS-DEFINITION clause at TDSGEN. A TDS
application can support up to 32 schemas. It is important to remember that only
one DB schema can be used by a TPR.

Syntax

 DATA DIVISION.

 SUB-SCHEMA SECTION.

 DB schema-name.

 [DB-DESCRIPTIONS IN { WORKING-STORAGE } SECTION.]
 { LINKAGE }

 [{ RECORDS ARE { ALL }]
 [{ [NOT] record-name ... }]
 []
 [{ REALMS ARE { ALL }]
 [{ [NOT] record-name ... }]

 .
 .
 .
 WORKING-STORAGE SECTION.
 .
 .
 .
 77 identifier USAGE IS DB-KEY.
 .
 .
 .

Programming the Transaction

47 A2 33UT 2-7

Usage

The schema referenced by schema-name must be the schema declared in the
INPUT-OUTPUT SECTION of TDSGEN.

If the program is the main (or only) program of a TPR (that is, directly called by
TDS), the DB-DESCRIPTIONS clause must specify WORKING-STORAGE.
If the entire clause is omitted, this is the default.

A program which is called from the main program of a TPR, when the calling
program contains a SUB-SCHEMA SECTION (that is, uses IDS/II), must
contain the DB-DESCRIPTIONS IN LINKAGE clause.

A program that is called from the main program of a TPR, when the calling
program does not use IDS/II, must contain the DB-DESCRIPTIONS IN
WORKING-STORAGE clause.

A program with37

the DB-DESCRIPTIONS IN LINKAGE clause must not contain any READY
or FINISH statements.

If a program with the DB-DESCRIPTIONS IN WORKING-STORAGE clause
contains any READY or FINISH statements, these statements are ignored at
execution time.

When there are called programs in a TPR, each call to a called program must
contain, in the USING phrase of the CALL statement, arguments concerning the
database identifiers that will be used in the execution of the called program. In
the called program, the USING phrase of the PROCEDURE statement must
contain similar arguments. The user must provide the argument list. The
argument list must be defined as follows:

...USING ua ... DB-REGISTERS DB-CXT DB-PARAMETERS rn ...

where:

• ua..., are the user data-arguments that are being passed between programs.

• DB-REGISTERS, DB-CXT, and DB-PARAMETERS pass the necessary
control structures to permit the execution of all DML functions (except
READY and FINISH). DB-PARAMETERS must not be specified if the
schema does not contain any database parameter.

• rn..., is a list of the record names referenced in the called program. The
record names must be the same as those recorded in the schema. If a record
type has no field, it must not be specified in the list.

The RECORDS clause allows the user to declare that the program references
only records of a specified series of types. Only information concerning these
record types will be placed in the program during DML preprocessing.

TDS COBOL Programmer's Guide

2-8 47 A2 33UT

If the RECORDS ARE ALL clause is coded, then the entire database as defined
by the schema may be referenced. However, only the operations on the areas
specified in the TDSGEN will be permitted at execution time.

As an alternative to the RECORDS ARE clause, the user may code the
REALMS ARE clause which limits the scope of program reference to the record
types defined in the selected areas. These areas must have been specified in
TDSGEN. The REALMS clause is only a more convenient way of writing a
lengthy list of records.

If the word NOT prefixes the list of record, or realm names, then record types
defined in the entire database, or in all the areas, except those declared, are
available.

The effect of the REALMS ARE ALL clause is the same as that of the
RECORDS ARE ALL clause.

The use of the RECORDS/REALMS clause reduces the size of the UWA (or
Linkage area description) which the program will require. In addition, it
ensures that only specified records (or realms) will be referenced by the
program.

2.3.3.2 SUB-SCHEMA SECTION for Full IDS/II

The SUB-SCHEMA SECTION can contain up to 32 DB subschema entries and
specifies the database schemas that the TPR accesses. The database schema
must be described in the IDS-DEFINITION clause at TDSGEN.
The USE-IDS-SUBSCHEMA clause must also be specified at TDSGEN.
The database schema is accessed via a subschema and it is important to
remember that one database schema cannot be simultaneously accessed via two
different subschemas.

Programming the Transaction

47 A2 33UT 2-9

Syntax

 DATA DIVISION.

 SUB-SCHEMA SECTION.

 { DB db-ifn-name USING sub-schema-name WITHIN schema-name.

 [DB-DESCRIPTIONS IN { WORKING-STORAGE } SECTION.] }
 { LINKAGE }
 .
 .
 .
 WORKING-STORAGE SECTION.
 .
 .
 .

Usage

The db-ifn-name is only a qualifier that eliminates ambiguity for a DML verb.
The use of a db-ifn-name is mandatory even if there is only one DB clause in
the COBOL program.

The sub-schema referenced by sub-schema-name must be defined for the
schema referenced by schema-name.

The schema referenced by schema-name must be a schema declared in the
INPUT-OUTPUT SECTION of TDSGEN.

The clauses "RECORDS ARE ..." and "REALMS ARE ..." no longer apply. All
records described in the sub-schema can be referenced.
The other rules described for IDS/II in the previous section still apply (main and
secondary program).

A secondary program can be defined without restriction as a "USE
PROCEDURE".

TDS COBOL Programmer's Guide

2-10 47 A2 33UT

2.3.4 FILE SECTION

Syntax

 FILE SECTION.

 COPY FD-filename....

Description

The FILE SECTION is present if files are referred to in the PROCEDURE
DIVISION. FD descriptions in the FILE SECTION of a TPR must be described
at TDSGEN. The TPR copies the required FD description. Note that you must
declare TDS non-controlled files at TDSGEN.

Usage

The filename appended to FD- (note that the hyphen must follow the letters
FD) can be up to 24 alphanumeric characters. The name must contain at least
one letter and cannot start or end with a hyphen.

The filename must correspond to the internal-file-name specified in the
SELECT clause of the FILE-CONTROL paragraph of the ENVIRONMENT
DIVISION. See the section FILE-CONTROL earlier in this chapter.

An FD entry for the User Journal is automatically provided at TDSGEN. You
must specify a COPY FD-USERJRNL clause in the FILE SECTION of the
TPR that needs to write records to the User Journal file.

The user journal contains user records and input/output messages, depending on
the option specified at TDSGEN.

Programming the Transaction

47 A2 33UT 2-11

Example 1

Syntax in the TPR: Syntax in the TDSGEN:

 DATA DIVISION.

 FILE SECTION.

 TDS-FILE-DEFINITION.
 FD FT1
 BLOCK CONTAINS 10 RECORDS
 LABEL RECORD IS STANDARD
 RECORD CONTAINS 80
CHARACTERS.
 01 REC1.
 2 IKEY1 PIC X(5).
 2 MESS1 PIC X(75).
 *END.

Example 2: The User Journal

Syntax in the TPR: Syntax in the TDSGEN:

 FILE-CONTROL.
 COPY SELECT-USERJRNL.

 DATA DIVISION.

 FILE SECTION.

 COPY FD-USERJRNL.

 TDS SECTION.

 USER-JOURNAL.

TDS COBOL Programmer's Guide

2-12 47 A2 33UT

2.3.5 WORKING-STORAGE SECTION

The WORKING-STORAGE SECTION is optional and is used in the same
manner as in a standard COBOL program. The format and rules for its use can
be found in the COBOL 85 Reference Manual.

2.3.5.1 WORKING-STORAGE SECTION and SHARED-STORAGE

There are two ways of creating WORKING-STORAGE and only one way of
creating SHARED-STORAGE. If used, the SHARED-STORAGE clause must
be declared at TDSGEN. WORKING-STORAGE can be defined in the TPR as
shown in Format 1 or defined at TDSGEN and copied into the
WORKING-STORAGE SECTION of a TPR as shown in Format 2.

Format 1

 WORKING-STORAGE SECTION. }
 77 }
 . }
 . }
 . } In Format 1, WORKING-STORAGE
 01 } is not defined at TDSGEN.
 02 }
 . }
 . }
 . }

Format 2

 COPY data-name. } In Format2, the WORKING-
STORAGE
 } is defined at TDSGEN.

Programming the Transaction

47 A2 33UT 2-13

SHARED-STORAGE is used to describe user storage areas that are to be shared
between two or more transactions. It is defined as part of
WORKING-STORAGE in TDSGEN in the SHARED-STORAGE clause. Up
to 63 SHARED-STORAGE areas can be used. The maximum size of 1
SHARED STORAGE is 64 Kbytes.

Several TPRs can simultaneously access and update the information in
SHARED-STORAGE. Unlike COMMON-STORAGE, it is accessed directly
by using MOVE statements. There is no protection against simultaneous access
by several TPRs and if this is required it must be established through the
non-concurrency clause in TDSGEN, or even better through the CALL "LOCK"
procedure (described in Chapter 9). Without this protection, inconsistent data
may be produced in the following two cases:

• MOVE statements processing more than 255 characters,

• TPRs with different priorities in simultaneous access.

The WORKING-STORAGE Section of a TPR is refreshed automatically by
TDS: the original contents of the WORKING-STORAGE are therefore
provided each time the TPR is called. However, the SHARED STORAGE area
in WORKING-STORAGE has the latest updated contents.

TDS COBOL Programmer's Guide

2-14 47 A2 33UT

2.3.5.2 COMMON-STORAGE

COMMON-STORAGE is a storage area shared among all transactions of a
TDS. A TPR can pass information to another TPR within the same or another
transaction through COMMON-STORAGE. Any transaction can read, modify,
and save this storage area by calling the appropriate TDS function.

The size and structure of COMMON-STORAGE is described at TDSGEN (in
the TDS SECTION and the WORKING-STORAGE clause of the
INPUT-OUTPUT SECTION respectively), and COPYed into the
WORKING-STORAGE SECTION(s) of the TPR(s). Alternatively, the
structure of COMMON-STORAGE can also be described in the
WORKING-STORAGE of the TPR itself.

The characteristics of COMMON-STORAGE are as follows:

• maximum size is 65504 bytes (64 Kbytes minus 2 bytes),

• not a controlled area (access control is not handled by GAC-EXTENDED or
GAC),

• not subject to rollback.

• The TPR accesses COMMON-STORAGE by means of specific calls that
allow the user to control any access conflicts.

The individual TPR within a transaction can access and modify
COMMON-STORAGE. At a cold start of the TDS session,
COMMON-STORAGE is set to zero. At a warm restart,
COMMON-STORAGE is in the state in which it terminated at the end of the
previous TDS session.

Any transaction can operate on this area by issuing the following, where
data-name-1 is the name of an area declared in the WORKING-STORAGE and
data-name-2 is the length of COMMON-STORAGE.

 { "READ-COMMON" }
 { "TAKE-COMMON" }
 CALL { "FREE-COMMON" } USING data-name-1 [,data-name-
2].
 { "SAVE-COMMON" }
 { "KEEP-COMMON" }

 CALL "LENGTH-COMMON" USING data-name-1.

Figure 2-1 provides an overview of these CALL statements. For an explanation
of each CALL COMMON statement, see Chapter 8.

Programming the Transaction

47 A2 33UT 2-15

tdsname.CTLN

COMMON-STORAGE

T
D
S

W
A
R
M

R
E
S
T
A
R
T

TDS

COMMON-STORAGE

keep lock

unlock

unlock
K
E
E
P

C
O
M
M
O
N

S
A
V
E

C
O
M
M
O
N

TPR

WORKING-STORAGE

T
A
K
E

C
O
M
M
O
N

R
E
A
D

C
O
M
M
O
N

MY COMMON
STORAGE

F
R
E
E

C
O
M
M
O
N

lock

Figure 2-1. Handling COMMON-STORAGE by Using CALL
Statements

NOTE:
At TDS warm restart, COMMON-STORAGE is initialized from the
tdsname.CTLN file.

TDS COBOL Programmer's Guide

2-16 47 A2 33UT

COMMON-STORAGE can be updated only after TAKE-COMMON is used.

2.3.5.3 CONTROLLED COMMON-STORAGE

CONTROLLED COMMON-STORAGE is a communication area shared
among all transactions. Access to these areas is controlled by
GAC-EXTENDED (or GAC). Each area is protected by the Before-Journal
mechanism and rolled back if a commitment aborts. The main difference
between CONTROLLED COMMON-STORAGE and COMMON-STORAGE
is recovery; a CONTROLLED COMMON-STORAGE area can be rolled back
whereas a COMMON-STORAGE area cannot be rolled back.

CONTROLLED COMMON-STORAGE areas have the following
characteristics:

• Maximum size of each area is 64 Kbytes,

• Each area has a unique name,

• Up to 64 CONTROLLED COMMON-STORAGEs can be declared.

The CONTROLLED COMMON-STORAGE clause is defined in the
INPUT-OUTPUT SECTION of TDSGEN. The data structure of each
CONTROLLED COMMON-STORAGE is retrieved by specifying the
following:

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY data-name-1.
.
.
.
COPY data-name-n.

The TPR can access CONTROLLED COMMON-STORAGE by calling:

CREAD-COMMON allows the TPR to get a CONTROLLED
COMMON-STORAGE from the tdsname. CTLM
system file.

CWRITE-COMMON allows the TPR to update a CONTROLLED
COMMON-STORAGE in the tdsname. CTLM
system file.

CLENGTH-COMMON returns the exact length in bytes of a
CONTROLLED COMMON-STORAGE.

Programming the Transaction

47 A2 33UT 2-17

Any transaction can operate on these areas by issuing the following:

CALL {"CREAD-COMMON" } USING data-name-1,
 {"CWRITE-COMMON"} data-name-2,
 data-name-3,
 data-name-4.

CALL "CLENGTH-COMMON" USING data-name-1,
 data-name-2,
 data-name-3.

For a more detailed explanation of these three CALL statements, see Chapter 8.

2.3.5.4 FORMS

This section explains what elements a TPR must have in its
WORKING-STORAGE SECTION if it is to use the FORMS facility.

As a follow up to what was mentioned in Chapter 1 on this topic, it is a good
idea to refer to the IOF Programmer's Manual for an introduction to the
FORMS facility. A description of how FORMS handles messages is given later
in this chapter.

Three special data structures (form-nameI, form-nameV and form-nameR) are
stored in the COBOL source library (H_CBLIB) and copied into the
WORKING-STORAGE SECTION of the TPR to provide the interface with the
FORMS utility.

WORKING-STORAGE SECTION.

[77 data-name PIC X(6)] Activate Mechanism
[77 data-name PIC X(4)] Modify Attribute

01 data-name-1.
 COPY form-nameI. Copy form
identification
01 data-name2.
 COPY form-nameV. Copy selection vector
01 data-name-3.
 COPY form-nameR. Copy data record

TDS COBOL Programmer's Guide

2-18 47 A2 33UT

Usage

form-nameR can be COPYed in the LINKAGE SECTION, as part of
TRANSACTION-STORAGE.
COPY form-nameI is useful only in the TPR that activates the form using a
CALL "CDGET" statement. The other COPY statements form-nameV and
form-nameR are necessary for receiving or sending formatted messages and for
modifying attributes.

The form can be activated locally by the terminal before the transaction begins
to execute. In this case, calling CDGET to activate the form is not necessary.

SEND with ESI statements do not transmit control codes. These codes are
transmitted only in a SEND with EMI or EGI statement.

The form may be active during more than one TPR in the transaction and
remains active until a TPR calls the CDRELS procedure to release the form.

The form may be active during more than one transaction (the NO IMPLICIT
RELEASE clause is defined in TDSGEN).

For example, if a form is called CUST and the user data-names chosen are
TDATA1, TDATA2, TDATA3, a TPR activating the form and communicating
through it with the terminal must have:

01 TDATA1.
 COPY CUSTI.
.
01 TDATA2.
 COPY CUSTV.
.
01 TDATA3.
 COPY CUSTR.

Programming the Transaction

47 A2 33UT 2-19

Form Identification

The structure form-nameI is used to identify a form, to verify its compilation
date and to specify its mode of activation.

The structure of form-nameI is as follows:

01 data-name.
 COPY form-nameI.
 02 FILLER PIC X VALUE "3".
 02 FILLER PIC X(8) VALUE "formname".
 02 form-name-NO PIC 9(3) VALUE ZERO.
 02 form-name-MD PIC X VALUE "A" or "O" or "W" or "E".
 02 form-name-OF PIC X(8) VALUE SPACES.
 02 form-name-OO PIC 9(3) VALUE ZERO.
 02 form-name-LL PIC 9(3) VALUE ZERO.
 02 FILLER PIC X(5) VALUE "date-of-compilation".
 02 FILLER COMP-1 VALUE "time-of-compilation".
 02 form-name-AF PIC 9 VALUE any-flag.
 02 form-name-SL PIC 9(3) VALUE 1.
 02 form-name-SC PIC 9(3) VALUE 1.

form-name-NO specifies the form occurrence number.

form-name-MD specifies the mode of activation of the form
(A=APPEND, O=OVERLAY, W=WINDOW,
E=ERASE).

form-name-OF specifies the old form. The new form can overlay,
or be appended to, or replace the old form.

form-name-OO specifies the occurrence number of the old form.

form-name-LL is used only for the APPEND and OVERLAY
modes.
If form-name-LL is zero, the number of lines
allocated is equal to the number of lines in the
form.
If form-name-LL is greater than or equal to the
number of lines in the form, the form is completed
with the appropriate number of blank lines.
If form-name-LL is less than the number of lines in
the form (but greater than zero), the status
FUNCNAV is returned.

form-name-AF is the any-flag, which is initialized according to the
TERM option selected at form loading time (1 if
ANY, otherwise 0).

form-name-SL is the form starting line for W and E modes.

form-name-SC is the form starting column for W and E modes.

TDS COBOL Programmer's Guide

2-20 47 A2 33UT

Selection Vector

The structure form-nameV is used to select individual fields of a form for
sending or receiving their contents, to modify their attributes or to return the
status of a field.

The structure of form-nameV is as follows:

01 data-name.
 COPY form-nameV.

 02 form-nameV.
 03 FILLER PIC X VALUE "2".
 03 FILLER COMP-1 VALUE "number-of-
fields".
 03 FILLER PIC X(8) VALUE "formname".
 03 form-name-VO PIC 9(3) VALUE ZERO.
 03 form-name-V.
 04 form-name-FC-V PIC X.
 04 data-name-01-V PIC X.
 04 data-name-02-V PIC X.
 .
 .
 04 array-name-AV.
 05 array-name-V OCCURS dimension.
 06 data-name-i-V PIC X.

Form-name-V comprises a single character (PIC X) for each
named field. The fields are in order of NFIELDs or
in screen image order if NFIELDs are not used.

Form-name-VO specifies the form occurrence number.

Form-name-FC-V specifies the selection vector entry corresponding to
form-name-FC in the data record (described
below).

For example, for a form called CUST with two data fields, NUMBER and
NAME (in that order) the selection vector would be as follows:

02 CUSTV.
 03 FILLER PIC X VALUE "2".
 03 FILLER COMP-1 VALUE 2.
 03 FILLER PIC X(8) VALUE "CUST ".
 03 CUST-VO PIC 9(3) VALUE ZERO.
 03 CUST-V.
 04 CUST-FC-V PIC X.
 04 NUMBER-V PIC X.
 04 NAME-V PIC X.

Programming the Transaction

47 A2 33UT 2-21

Data Record

The structure form-nameR contains the COBOL description of the named fields
(NF) and is used to send and receive fields of the form.

The structure of form-nameR is as follows:

01 data-name.
 COPY form-nameR.

 04 form-name-FC PIC 99.
 04 data-name-01 PIC ...
 04 data-name-02 PIC ..
 .
 .
 04 array-name-A.
 05 array-name OCCURS dimension.
 06 data-name-i PIC...

The first field (form-name-FC) of the data record is generated by default, except
when NO IMPLICIT FUNCTION CODE or FUNCTION-CODE is specified in
the Source Form Definition Language. This is described in the IOF
Programmer's Manual. This field receives the control code from the terminal.

The example shows the form called CUST for which NUMBER and NAME are
6 and 20 alphanumeric characters, respectively:

04 CUST-FC PIC 99.
04 NUMBER PIC X(6).
04 NAME PIC X(20).

If NUMBER had been defined in SPIC as "+99.9", the structure would be:

04 CUST-FC PIC 99.
04 NUMBER PIC S99V9.
04 NAME PIC X(20).

The structure of an array CUST-ARRAY for 5 occurrences of NUMBER and
NAME is:

04 CUST-ARRAY-A.
 05 CUST-ARRAY OCCURS 5.
 06 NUMBER PIC S99V99.
 06 NAME PIC X(20).

TDS COBOL Programmer's Guide

2-22 47 A2 33UT

2.3.6 LINKAGE SECTION

The LINKAGE SECTION is the only mandatory section of the Data Division;
it describes data referred to by both the calling program (that is, TDS itself), and
the called program (TPR). Thus, the LINKAGE SECTION is required in the
main program of the TPR. Other programs (sub-programs) of the TPR can use
the LINKAGE SECTION as in a COBOL batch program.

The three storage areas of the LINKAGE SECTION are:

• TDS-STORAGE.

• CONSTANT-STORAGE.

• TRANSACTION-STORAGE.

The three storage areas must be described in the following order:

[TDS-STORAGE [, CONSTANT-STORAGE [, TRANSACTION-STORAGE]]]

2.3.6.1 TDS-STORAGE

Through the TDS-STORAGE area, control information is passed between TDS
and the TPRs. A TDS-STORAGE is kept for each active transaction. It is used
by a TPR to store the next TPR. It also contains statistical information about
aborts and restarts. The TDS-STORAGE area must be declared in the main (or
only) program of the TPR.

The area has the following standard description:

01 TDS-STORAGE.
 02 SYMBOLIC-QUEUE PIC X(12).
 02 PRIOR-TPR PIC X(12).
 02 CURRENT-TPR PIC X(12).
 02 NEXT-TPR PIC X(12).
 02 ON-ABORT-TPR PIC X(12).
 02 ABORT-CODE COMP-1.
 02 USER-ID PIC X(8).
 02 TX-MODE PIC 9.
 02 RESTART-STATUS PIC 9.
 02 TRANSACTION-SERIAL-NUMBER COMP2.
 02 TPR-SERIAL-NUMBER COMP-1.
 02 WAIT-TIME COMP-1.
 02 ABORT-ICC PIC X(8).
 02 RESTART-CODE PIC X.
 02 USER-FULLNAME PIC X(12).

Programming the Transaction

47 A2 33UT 2-23

 02 NO-RESTART PIC X(1).
 02 REST-CVSTAT PIC X(1).
 02 RESTART-INFO PIC X(1).
 02 LAST-TPRNAME PIC X(12).
 02 EXCP-CLASS-TYPE PIC X(4).
 02 LNODENAME PIC X(4).
 02 WATCH-TIME COMP-1

Usage

The TPR must specify:

PROCEDURE DIVISION USING TDS-STORAGE ...

and must contain as well the LINKAGE SECTION entry to copy the
appropriate data description:

COPY TDS-STORAGE.

Private data declarations used by the TPR must not be inserted after the
statement COPY TDS-STORAGE (for example 02 MY-DATA PIC X.). This
wrong declaration would lead to a TDS abort.

The SYMBOLIC-QUEUE field contains the tds-name (PROGRAM-ID in
TDSGEN). It must be moved by the TPR into the input CD SYMBOLIC
QUEUE (described later in the section on the COMMUNICATION SECTION)
before the TPR issues a RECEIVE statement.

MOVE SYMBOLIC-QUEUE TO QUIN
MOVE SPACES TO BUFREC
RECEIVE CDREC MESSAGE INTO BUFREC

The input CD is declared as follows:

CD CDREC FOR INPUT
SYMBOLIC QUEUE QUIN

PRIOR-TPR contains the name of the preceding TPR that activated the current
TPR.

The CURRENT-TPR contains the name of the currently executing TPR.

TDS COBOL Programmer's Guide

2-24 47 A2 33UT

NEXT-TPR - Before a TPR ends, this field must contain either the identifier of
the next TPR in the transaction or spaces if it is the last one (it contains spaces
at the beginning of the TPR). NEXT-TPR permits multiple branches from a
TPR. For example, processing is to be varied on the basis of a question
answered by the user:

IF ANSWER = "YES" MOVE "TD2-UPDATE" TO NEXT-TPR.

IF ANSWER = "NO" MOVE "TD2-CNCLL" TO NEXT-TPR
 ELSE MOVE "OPERR" TO NEXT-TPR.

ON-ABORT-TPR and ABORT-CODE - To give the programmer more control
over the handling of exception conditions, several error-processing TPRs may
be written. The ON-ABORT-TPR field may be initialized in the current TPR
with the name of the appropriate error-processing TPR so that if an abnormal
condition arises (for example, TPR exception, time-limit), TDS will set the
ABORT-CODE and activate the specified TPR. A TPR may also set
ON-ABORT-TPR and then abort itself by means of the statement CALL
"ABORT" if necessary.

TRANSACTION-STORAGE and PRIVATE-STORAGE are not rolled back
before the ON-ABORT-TPR TPR is executed (as for an abort of a transaction).
This makes diagnosing the cause of the error easier.

The ON-ABORT-TPR field is not modified by TDS. The ON-ABORT-TPR
field is rolled back when the commitment is aborted to be restarted, for
example, in the case of GAC-EXTENDED/GAC rollback for deadlock.
However, the ON-ABORT-TPR field is not rolled back when the commitment
is aborted and will not be restarted, for example, in the case of CANCELTX
which is set in the NEXT-TPR field of an interrupting transaction.

Additional information could be supplied via TRANSACTION-STORAGE, or
COMMON-STORAGE. See also the DISCNCT and BREAK transactions
described in Chapter 12.

NOTE:
A TPR started at abort time should begin with:

 RECEIVE NO DATA GO TO CONTINUE.
 .
 .
 CONTINUE.

Programming the Transaction

47 A2 33UT 2-25

USER-ID contains the identifier specified at log-on. For an XCP2 session,
USER-ID contains the XCP2 correspondent name (name of the partner). If the
identifier is more than 8 bytes long, the name is truncated.

TX-MODE - The field indicates whether or not the transaction is executing in
TRACE mode. TX-MODE is set by TDS. It is non-zero to indicate TRACE
mode. Otherwise the field contains zero. For complete details of TRACE, see
Chapter 13.

RESTART-STATUS - Usually any restart is invisible to the user and does not
require special attention on the part of the programmer. The TDS files, data
areas, and indicators are automatically reset; the one exception is
COMMON-STORAGE which is left unchanged. The only sign of a restart is a
possible repetition of a message. Sometimes it is necessary to know whether
the TPR was activated normally or as a result of a restart.

For example, in some cases, like non-controlled file updating without file
protection, if the TPR is restarted, a record insert or delete operation will fail
when the record has already been inserted or deleted. The use of
RESTART-STATUS will avoid these problems.

Possible values are as follows:
0: the first time that the TPR is activated,

2: a restart after a commitment unit failure, or after a CALL "INVCMIT". For
example, a deadlock or LONGWAIT causes the commitment unit of the
waiting TPR to abort. Restart also results when CALL "ROLL-BACK" is
called.

After a warm restart of a TDS application, this field is always set to 2 if the
transaction is restarted.

The field is reset to zero only when the first TPR of the commitment unit has
terminated.

The TRANSACTION-SERIAL-NUMBER field contains a number assigned by
TDS. This number identifies the transaction within the TDS session. A TPR
must not modify this number.

The TPR-SERIAL-NUMBER field contains a number assigned by TDS. This
number establishes the sequence of the TPR within the transaction. A TPR must
not modify this field.

TDS COBOL Programmer's Guide

2-26 47 A2 33UT

The WAIT-TIME field indicates a time delay in seconds that elapses before the
next TPR is activated.

• When the TPR terminates with a SEND EGI statement and a specified wait
time, the next TPR is activated after the receipt of a new message, or the
elapse of the wait time, whichever occurs first. One reason for the timeout
may be that the message could not be displayed on the terminal because of
long delays in network response times.

• When the TPR terminates with a SEND EMI statement or no SEND
statement at all and a specified wait time, the next TPR is activated after the
wait time has elapsed and when it is possible for the transaction to send
another message.

For example, if the master terminal requires a report at fifteen-minute
intervals, a special transaction can be written for this purpose and activated
once at the beginning of the session. The last TPR of the transaction sets the
NEXT-TPR field to the identifier of the first TPR of the transaction and fills
the WAIT-TIME field with the value 900. This causes the transaction to be
reactivated every fifteen minutes for the duration of the session.

Note that, in this example, the master terminal cannot activate any further
transactions. To regain control, the operator must enter a "break" and force
the special transaction to terminate. It would therefore be better for the first
transaction to spawn the reporting transaction on a DUMMY. The master
terminal is then freed for other use. Spawning is described later in this
chapter.

ABORT-ICC is set by TDS when ON-ABORT-TPR is activated. It contains the
address in the TPR of the statement that caused the abort.

The RESTART-CODE field is set to "1" when a TPR is restarted
(RESTART-STATUS=2) because a CALL "ROLL-BACK" statement was
executed. Otherwise the value of the RESTART-CODE field is set to another
value.

The USER-FULLNAME field is the complete name of the user (12 characters
in length) for whom the transaction is started. In fact, you can consider it an
extended USER-ID field. For an XCP2 session, USER-FULLNAME is the
name of the user on whose behalf the transaction is running (XCP2
correspondent name if the transaction has been started with the security option
'NONE').

The NO-RESTART field is for XCP2 users only. It specifies whether the
commitment-unit can be restarted.

• A value of 0 means that restarts are supported.

• A value of 1 means that restarts are not supported: in the case of conflicts the
transaction is aborted.

Programming the Transaction

47 A2 33UT 2-27

The REST-CVSTAT field is for XCP2 users only. It is significant when
RESTART-STATUS (in TDS-STORAGE also) is 2. It gives the programmer
information about the conversation states. The possible values are:

0: "FIRST-PROCESSING", i.e. this is the first time the TPR is processed.

1: "CONV-RESTORED". This means that, for the local transaction, the state of
its conversations have been restored to the state they were in at the beginning
of the commitment-unit. This happens when the commitment unit is restarted
as a consequence of one or more of the following:

a request to rollback coming from the local transaction or the partner
transaction

an external event (break, and so on)

a GAC request to rollback.

This does not ensure that the partner applications have restored their
conversations as well (although they should have). If there is at least one
partner application which has not restored the state of a conversation,
although it was required, the local transaction will probably get an abnormal
status-code on the next XCP2 conversation verb which relates to a
conversation that is in an unexpected state. This should happen only in the
case of heterogeneous applications (for example an IBM application
co-operating with a TDS application).

2: "ALL-CONV-ABORTED". This values is set when:

the processing is restarted as a result of a warm start or a reinitialization
the transaction is aborted. This value is always transmitted to the
ON-ABORT-TPR.

NOTE:
For a transaction whose main session is an XCP2 session, the
TDS-STORAGE is as follows:

USERID = the correspondent name

FULL_USERNAME = the name of the user for which the transaction is
running (or blanks if the transaction is invoked with the option 'no user').

TDS COBOL Programmer's Guide

2-28 47 A2 33UT

The RESTART-INFO field indicates when a commitment unit is restarted after
a TDS abort (that can be restarted), or after a warm restart of TDS. This means
that the value of the RESTART-STATUS field is 2. Possible values are:

R The commitment unit is restarted after a TDS restartable abort.
W The commitment unit is restarted after a warm restart of TDS.
O Other

The LAST-TPRNAME field contains the name of the last TPR committed (if
this TPR was not the last TPR of the transaction). This field is only available
during the first TPR of the disconnect transaction. If no transaction was running
at disconnection time, this field is filled with spaces.

If the disconnection is related to an XCP1 session, the LAST-TPRNAME field
may not be significant (in particular for a session allocated by a TM or
DUMMY correspondent). The programmer can use a call "GETTPRPAR" verb
to get information about the last TPR committed (if any) and the last TM or
DUMMY correspondent using the XCP1 session before the disconnection
occurs. Refer to the description of the call GETTPRPAR in chapter 4.

When using stacked contexts, the LAST-TPRNAME field contains the name of
the most-recently-committed TPR, no matter what the context rank is. For
example, this is the case after a BREAK or ENTERTX.

The EXCP-CLASS-TYPE field contains the class and type of exception that
leads to the execution of ON-ABORT tpr. This field is meaningful only in
ON-ABORT tpr; otherwise its value is "FFFF".

The LNODENAME field contains the name of the local system.

The WATCH-TIME field indicates that the delay of the answer of the network is
to be surveyed at end of TPR with SEND (EMI or EGI).

Recall

• When a TPR ends with a SEND EMI, TDS must wait for the agreement of
the network before being able to do another send and then cannot start the
next TPR until this agreement is received.

• When a TPR ends with a SEND EGI with a WAIT_TIME and when the
terminal user does not answer, TDS at the expiration of the WAIT_TIME
asks the network for permission to send another message. TDS must wait for
the agreement of the network before starting the next TPR.

Programming the Transaction

47 A2 33UT 2-29

Working principles

• The purpose of WATCH-TIME is to ensure a transaction doesn't remain
blocked between two TPRs if the network doesn't give its agreement in the
two cases described above.

• This functionality is implemented in TDS by means of a new field,
WATCH-TIME, in the TDS-STORAGE.

• The WATCH-TIME field indicates a time delay in seconds.

• It is set to the value zero at the beginning of each TPR.

• It is activated at the end of the TPR.

• If the agreement of the network is not received before the delay of the
WATCH-TIME is exhausted, the terminal is disconnected.

• The master terminal then receives the message TX88.

• The message TX88 can be suppressed by re-defining the TDS service
message 44 with a blank character in the STDS subfile.

Working Rules

1. WATCH-TIME and SEND EMI:

The WATCH-TIME is not effective in the following cases:

− Session is neither a terminal nor a TCP-IP session
− Send is a synchronous one
− Send is an explicit one.
− Session is pass-thru mode.

2. The WATCH-TIME and SEND EGI:

The WATCH-TIME is not effective in the following cases:

− Session is not a terminal session.
− Send is the last of the transactions and the terminal is active.
− Session is in pass-thru mode.

When a WAIT-TIME has been set, the WATCH-TIME has a meaning only
if the value of the WAIT-TIME is less than the WATCH-TIME one
because they are both activated at the end of the TPR. If this rule is not
respected and if the terminal user does not answer before the delay defined
by the WATCH-TIME is expired, the terminal will be disconnected.

TDS COBOL Programmer's Guide

2-30 47 A2 33UT

2.3.6.2 CONSTANT-STORAGE

The CONSTANT-STORAGE contains communications control characters
available to TPRs, usually for formatting purposes on terminals. Eight such
characters are pre-defined in this area as part of the software. Examples of such
characters are line-feed and carriage-return. Additional characters up to a
maximum of 256 can be included in this area through the SPECIAL-CHAR
entry in the TDS SECTION at TDSGEN. For example, the code GS (group
separator) can be re-defined with a value that the terminal recognizes as GS,

SPECIAL-CHAR GS IS "E1".

The default value is "1D" (hexadecimal code). This code will be added to the
list of codes in the CONSTANT-STORAGE area. Table 2-2 gives the control
codes for DKU7007.

Fields in CONSTANT-STORAGE can be 'read' by the TPR, for example,

MOVE LF TO A-MESS-17.

but cannot be modified. The characters are used to control layout on the
terminal when other means are not available or not applicable; they may also be
used to delimit input fields.

The CONSTANT-STORAGE area is included in the TPR by using the
following statement in its LINKAGE SECTION:

COPY CONSTANT-STORAGE.

and the TPR using it must contain the following entry in the PROCEDURE
DIVISION:

PROCEDURE DIVISION USING TDS-STORAGE CONSTANT-STORAGE ...

Programming the Transaction

47 A2 33UT 2-31

2.3.6.3 PRIVATE-STORAGE and TRANSACTION-STORAGE

PRIVATE-STORAGE contains data that is private to a single TDS user (which
corresponds to a user session). PRIVATE-STORAGE is set to zeros when the
first transaction, that is, the LOGON transaction, for the user is started and then
kept until the user logs off. This is not true for FOR INQUIRY transactions.
The user can store statistics and control information in PRIVATE-STORAGE.
A PRIVATE-STORAGE is passed from one transaction to the next.

NOTE:
For a remote XCP2 transaction, the time life of the session is the same as
that of the remote transaction working for the conversation. Since TS6150
the private-storage of the remote XCP2 transaction is initiated with zeros at
the beginning.

A TRANSACTION-STORAGE contains data that is private to a transaction.
The programmer can use this storage area to make TPRs belonging to the same
transaction communicate with one another: data generated by the previous TPR
can be passed to a subsequent TPR within the transaction. Therefore the size of
the TRANSACTION-STORAGE may vary according to the transaction. At the
beginning of a transaction, all data items in the TRANSACTION-STORAGE
area are set to zero up to the size declared at TDSGEN. One exception is the set
of special-purpose transactions described in Chapter 3.

Data values set up by the first TPR are passed unchanged by TDS to the next
TPR and so on regardless of the commitment unit. The user defines the use of
TRANSACTION-STORAGE.

TRANSACTION-STORAGE is useful when several transactions are being
processed in parallel, which is the normal case for TDS applications. A storage
area is needed that is unique to each transaction. All details related to the
transaction are kept in this area.

It is possible to access PRIVATE and TRANSACTION STORAGE separately,
using the PROCEDURE DIVISION clause in the TPR, as follows:

PROCEDURE DIVISION USING TDS-STORAGE CONSTANT STORAGE
 PRIVATE-STORAGE TRANSACTION-STORAGE

TDS COBOL Programmer's Guide

2-32 47 A2 33UT

There are two ways of declaring PRIVATE and TRANSACTION STORAGE:

• in the LINKAGE SECTION of the TPR itself:

01 PRIVATE-STORAGE.
 02 private-storage-item.
 .
 .
01 TRANSACTION-STORAGE.
 02 transaction-storage-item.
 .
 .

Note that in this case the order of the declarations is not important, because
separate pointers in the PROCEDURE DIVISION clause access the
structures.

• in the STDS:

in the TRANSACTION-SECTION of the STDS:

01 PRIVATE-STORAGE.
 02 private-storage-item.
 .
 .
01 DEFAULT TRANSACTION STORAGE-SIZE
01 TRANSACTION-STORAGE.
 02 transaction-storage-item.
 .
 .
 *END

Note that in this case the order of the declarations must be as shown above.

• In the TDS-SECTION of the STDS:

Use the PRIVATE-STORAGE clause in STDS as follows:

PRIVATE-STORAGE SIZE IS pssz.

01 PRIVATE-STORAGE.
 02 private-storage-item.
 .
 .
*END

Programming the Transaction

47 A2 33UT 2-33

Use the DEFAULT TRANSACTION-STORAGE SIZE clause in STDS as
follows:

DEFAULT TRANSACTION-STORAGE SIZE IS deftxstorage.

Use the TRANSACTION-STORAGE clause in STDS as follows:

TRANSACTION-STORAGE SIZE IS txxz.

01 TRANSACTION-STORAGE.
 02 transaction-storage-item.
 .
 .

NOTE:
Even though PRIVATE STORAGE is not declared in the TRANSACTION
SECTION, the size specified in the TRANSACTION-STORAGE ... SIZE IS
... clause must include the PRIVATE-STORAGE size. For example:

PRIVATE-STORAGE SIZE IS 24.
01 PRIVATE-STORAGE.
 02 ADTERM PIC X(12).
 02 USERNM PIC X (12).
*END

and in the TRANSACTION SECTION:

TRANSACTION-STORAGE tx-storage SIZE IS 34. (= 10 + 24)
01 TRANSACTION-STORAGE.
 02 TX-ITEM PIC X(10).
*END

Figure 2-2 shows the relationships between the TPR on the one hand, and
TDS-STORAGE, COMMON-STORAGE, TRANSACTION-STORAGE, and
SHARED-STORAGE on the other. For more information on separate access to
PRIVATE-STORAGE and TRANSACTION-STORAGE, refer to the TDS
Administrator's Guide.

TDS COBOL Programmer's Guide

2-34 47 A2 33UT

COMMON-STORAGE

TPR1A

TDS-STORAGE

TPR1B
TPR1C

TRANSACTION
STORAGE

TRANSACTION
STORAGE

TPR2A

TDS-STORAGE

TPR2B

TPR2B

COPY SHST

TPR1A

WORKING-STORAGE SECTION.
 COPY

TDS-WORKING-STORAGE.

(01 COMMON-STORAGE.)
LINKAGE SECTION.

01 TDS-STORAGE..

01 TRANSACTION-STORAGE

PROCEDURE DIVISION ...

 CALL "TAKE-COMMON" ...

TPR1B

 COPY
 TDS-WORKING-STORAGE.
(01 COMMON-STORAGE.)

COPY SHST

LINKAGE SECTION.

01 TDS-STORAGE..

01 TRANSACTION-STORAGE

 CALL "READ-COMMON" ...

 WORKING-STORAGE SECTION.

PROCEDURE DIVISION.

TPR2A

WORKING-STORAGE SECTION.
 COPY

TDS-WORKING-STORAGE.

(01 COMMON-STORAGE.)

LINKAGE SECTION.
 01 TDS-STORAGE..

01 TRANSACTION-STORAGE

PROCEDURE DIVISION ...

 CALL "READ-COMMON" ...

SHARED-STORAGE (SHST)

Figure 2-2. TDS-STORAGE, COMMON-STORAGE,
TRANSACTION-STORAGE and SHARED-STORAGE

Programming the Transaction

47 A2 33UT 2-35

2.3.7 COMMUNICATION SECTION

A TPR that is to communicate with a correspondent must contain a
COMMUNICATION SECTION.

The COMMUNICATION SECTION must include an input Communication
Description (CD) if the TPR is to receive a message, and an output
Communication Description (CD) if the TPR is to send a message.

This section contains CD entries for the input and output messages. The CD...
FOR INPUT entry is used by RECEIVE statements, the CD...FOR OUTPUT
entry by the SEND statement. The programmer must set up some of the fields
within the entries before these statements are executed, some are set up by TDS
during statement execution.

The CDs are also used for screen displays through FORMS. For FORMS, input
and output CDs are used in their "alias" forms, that is, they have a new name.

For communication between TDS applications, refer to the CPI-C/XCP2 User's
Guide, or the Transactional Intercommunication Using XCP1 Protocol Manual.

To connect to another application at the same site or on a different site, without
having to log off from TDS, use the PT (pass through) command that is
described in Chapter 14.

Syntax

COMMUNICATION SECTION.

 CD cd-name-1 FOR INPUT

 01 data-name-1 Re-defines input CD
 01 input-cd-alias defines input-cd-alias for

FORMS

 CD cd-name2 FOR OUTPUT
 01 data-name2 re-defines output CD
 01 output-cd-alias defines output-cd-alias for

FORMS

TDS COBOL Programmer's Guide

2-36 47 A2 33UT

2.3.7.1 INPUT CD

An input CD supplies information about the message to be received by the TPR.
The format (below) is an adaptation of the standard COBOL format.

Syntax

CD cd-name FOR INPUT
 [SYMBOLIC QUEUE IS data-name-1]
 [MESSAGE DATE IS data-name2]
 [MESSAGE TIME IS data-name-3]
 [SYMBOLIC SOURCE IS data-name-4]
 [TEXT LENGTH IS data-name-5]
 [END KEY IS data-name-6]
 [STATUS KEY IS data-name-7]
 [MESSAGE COUNT IS data-name-8].

Data-name-1 is an input parameter. All the other parameters are output
parameters.

A message can be input by more than one RECEIVE statement. END-KEY=3
means that the entire message has been received.

The RECEIVE statement can be issued only as the first action of the transaction
and thereafter in a TPR subsequent to a SEND with EGI (End-of-Group
Indicator). This verb is explained in Chapter 3.

Usage

The optional clauses can be written in any order.

If none of the optional clauses of the CD is specified, a level 01 data description
entry must follow the CD description entry.

For each input CD, a record area of 87 contiguous characters is allocated. The
record area is defined to TDS as follows:

• The SYMBOLIC QUEUE clause defines data-name-1 as the name of the
data item whose implicit description is that of an elementary alphanumeric
data item of 12 characters occupying positions 1-12 in the record.
data-name-1 must contain the TDS name retrieved from TDS-STORAGE.

• A filler occupying positions 13-48 in the record.

Programming the Transaction

47 A2 33UT 2-37

• The MESSAGE DATE clause defines data-name2 as the name of a data item
of 6 digits without an operational sign, occupying positions 49-54 in the
record. At the time a RECEIVE statement is performed, data-name-2
contains the date in the form defined at TDSGEN.

• The MESSAGE TIME clause defines data-name-3 as the name of a data item
whose implicit description is that of an integer of 8 digits without an
operational sign, occupying positions 55-62 in the record. At the time a
RECEIVE statement is performed, data-name-3 contains the time of day.

• The SYMBOLIC SOURCE clause defines data-name-4 as the name of an
elementary alphanumeric data item of 12 characters occupying positions
63-74 in the record (the rightmost characters are padded to spaces if the
length of the terminal address is less than 12 characters). It contains the
terminal address.

• The TEXT LENGTH clause defines data-name-5 as the name of an
elementary data item whose implicit description is that of an integer of 4
digits without an operational sign, occupying positions 75-78 in the record.

• The END KEY clause defines data-name-6 as the name of an elementary
alphanumeric data item of 1 character occupying position 79 in the record.

• The STATUS KEY clause defines data-name-7 as the name of an elementary
alphanumeric data item of 2 characters occupying positions 80-81 in the
record.

• The MESSAGE COUNT clause defines data-name-8 as the name of an
elementary data item whose implicit description is that of a 6-digit integer
without an operational sign occupying positions 82-87 in the record.

Use of the above clauses results in a record whose implicit description is
equivalent to the following:

01 inaccessible-data-name.
 02 data-name-1 PIC X(12). (Symbolic Queue)
 02 FILLER PIC X(36).
 02 data-name2 PIC 9(06). (Message Date)
 02 data-name-3 PIC 9(08). (Message Time)
 02 data-name-4 PIC X(12). (Symbolic Source)
 02 data-name-5 PIC 9(04). (Text Length)
 02 data-name-6 PIC X. (End Key)
 02 data-name-7 PIC XX. (Status Key)
 02 data-name-8 PIC 9(06). (Message Count)

Record description-entries after an input CD implicitly re-define this record and
must describe a record of exactly 87 characters. Multiple re-definitions of this
record are permitted; however, only the first re-definition can contain VALUE
clauses. TDS always references the record according to the data descriptions
defined in number 3 above.

TDS COBOL Programmer's Guide

2-38 47 A2 33UT

All data-names must be unique within the CD; any data-name can be replaced
by the reserved word FILLER.

NOTES:
The data item referenced by data-name-1 must be set equal to the data item
SYMBOLIC-QUEUE of TDS-STORAGE prior to execution of any
RECEIVE or CDRECV statement. It is an input parameter.

The data item referenced by data-name-2, which is assigned a value by TDS
as part of the execution of a RECEIVE or CDRECV statement, represents
the date of completion of the message in the form defined at TDSGEN. The
default format is YYMMDD, where YY is the year, MM is the month and
DD is the day. It is an output parameter.

The data item referenced by data-name-3, which is assigned a value by TDS
as part of the execution of a RECEIVE or CDRECV statement, represents
the time of completion of the message. The format is hhmmsstt, where hh is
hours, mm is minutes, ss is seconds and tt is hundredths of a second. It is an
output parameter.

During execution of the RECEIVE or CDRECV statement, TDS sets the
data item referenced by data-name-4 equal to the symbolic name of the
terminal or the correspondent-name of the correspondent that is the source of
the message.

When the source is a pseudo-terminal (that is, during batch processing), the
data item referenced by data-name-4 is set equal to the name supplied by the
pseudo-terminal at connection time (refer to Chapter 13 for details of
programming batch interface programs). It is an output parameter.

The data item referenced by data-name-5 is set by TDS equal to the number
of positions filled as a result of the execution of the RECEIVE or CDRECV
statement. It is an output parameter.

If TDS detects the end of message, it sets the data item referenced by
data-name-6 to 3; otherwise, it is set to 0. It is an output parameter.

The data item referenced by data-name-7 indicates the status of the executed
RECEIVE, ACCEPT MESSAGE COUNT, or CDRECV for compatibility
purposes with communications systems ENABLE INPUT or DISABLE
INPUT statements. Status key values appear in Table 2-5. It is an output
parameter.

The data item referenced by data-name-8 indicates whether a message is
waiting for the current transaction. A value of 1 is affirmative and a value of
0 is negative. This data item is updated by TDS only as part of the execution
of an ACCEPT statement with the COUNT option. It is an output parameter.
ACCEPT is explained later in Chapter 4.

Programming the Transaction

47 A2 33UT 2-39

2.3.7.2 INPUT-CD-ALIAS for FORMS

Input and output CDs cannot be CALLed directly when using the FORMS
utility. You must re-define the input and output CDs in the
COMMUNICATION SECTION by a 01 structure. Such a re-definition is
called an alias.

Syntax

CD cd-name-1 FOR INPUT.
01 cd-alias-1.
 02 symbolic-queue PIC X(12).
 02 FILLER PIC X(50).
 02 symbolic-source PIC X(12).
 02 FILLER PIC X(4).
 02 end-key PIC X.
 02 status-key PIC XX.
 02 FILLER PIC X(6).

The following fields of the input-cd-alias are used:

• "symbolic-queue" to contain the name of the queue.

• "symbolic-source" to contain the name of the correspondent.

• "end-key" to contain the enclosure level returned after the CDRECV
procedure has executed as follows:

0: Partial Message,
1: Partial Message, FORMS in append mode,
3: End of Message.

• "status-key" to contain the status returned on execution of various
FORMS functions.

TDS COBOL Programmer's Guide

2-40 47 A2 33UT

The input CD data structure is modified by the REDEFINES clause to obtain
the input-cd-alias. An example of such an entry is as follows:

COMMUNICATION SECTION.

 CD cd-name FOR INPUT.
 SYMBOLIC QUEUE IS SYMQUEUE
 MESSAGE DATE IS MDATE
 MESSAGE TIME IS MTIME
 SYMBOLIC SOURCE IS SYMSOUR
 TEXT LENGTH IS TLENGTH
 END KEY IS ENDKEY
 STATUS KEY IS STATUS
 MESSAGE COUNT IS MCOUNT

 01 input-CD-alias
 02 RSYMQUEUE PIC X (12).
 02 FILLER PIC X(50). to mask "mdate" and
 "mtime"
 02 RSYMSOUR PIC X(12).
 02 FILLER PIC X(4). to mask "tlength"
 02 RENDKEY PIC X.
 02 RSTATUS PIC XX.
 02 FILLER PIC X(6). to mask "mcount"

The re-defining clause (01 input-CD-alias) causes
input-CD-alias to share the same storage as cd-name.

Programming the Transaction

47 A2 33UT 2-41

2.3.7.3 OUTPUT CD

An output CD supplies information about a message to be sent by the TPR. The
format (below) closely adheres to the standard COBOL format. No indexing or
subscripting is currently possible, so there is no reference to a DESTINATION
TABLE OCCURS clause.

Syntax

 CD cd-name FOR OUTPUT.
 [DESTINATION COUNT IS data-name-1]
 [TEXT LENGTH IS data-name2]
 [STATUS KEY IS data-name-3]
 [ERROR KEY IS data-name-4]
 [SYMBOLIC DESTINATION IS data-name-5].

Input Parameters Output Parameters
data-name-1
data-name-2
data-name-5

data-name-3
data-name-4

Usage

You can write the optional clauses in any order.

If none of the optional clauses is specified, a level 01 data description entry
must follow the CD description entry.

For each output CD a record area of 23 contiguous characters is allocated. This
record area is defined to TDS as follows:

• The DESTINATION COUNT clause defines data-name-1 as the name of the
data item whose implicit description is that of an integer of 4 digits without
an operational sign, occupying positions 1-4 in the record.

• The TEXT LENGTH clause defines data-name-2 as the name of an
elementary data item whose implicit description is that of an integer of 4
digits without an operational sign, occupying positions 5-8 in the record.

• The STATUS KEY clause defines data-name-3 as an elementary
alphanumeric data item of 2 characters occupying positions 9-10 in the
record.

• The ERROR KEY clause defines data-name-4 as the name of an elementary
alphanumeric data item of 1 character occupying position 11 in the record.

TDS COBOL Programmer's Guide

2-42 47 A2 33UT

• The SYMBOLIC DESTINATION clause defines data-name-5 as the name of
an elementary alphanumeric data item of 2 characters occupying positions
12-23 in the record.

Use of the above clauses results in a record whose implicit description is
equivalent to the following:

 01 inaccessible-data-name.
 02 data-name-1 PIC 9(04). (Destination Count)
 02 data-name-2 PIC 9(04). (Text Length)
 02 data-name-3 PIC XX. (Status Key)
 02 data-name-4 PIC X. (Error Key)
 02 data-name-5 PIC X(12). (Symbolic Destination)

Record descriptions after an output CD implicitly re-define this record.
Multiple re-definitions of this record are permitted; however, only the first re-
definition can contain VALUE clauses. TDS always references the record
according to the data descriptions defined in number 3 above.

All data-names must be unique within the CD; any data-name can be replaced
by the reserved word FILLER.

NOTES:
During the execution of a SEND or CDSEND (or for compatibility with
communications systems, an ENABLE OUTPUT or DISABLE OUTPUT)
statement, the data item referenced by data-name-1 indicates to TDS the
number of symbolic destinations that are to be used from the area referenced
by data-name-5. Data-name-1 must equal 1. It is an input parameter.

During execution of a SEND statement, TDS interprets the data item
referenced by data-name-2 as the user's indication of the number of leftmost
positions (length) of the data to be transferred. It is an input parameter.

The data item referenced by data-name-3 indicates the status of the
previously executed SEND, CDSEND, ENABLE OUTPUT, or DISABLE
OUTPUT statement. Status key values appear in Table 2-5. It is an output
parameter.

The data item referenced by data-name-4 is set by TDS to 0 after execution
of a SEND, CDSEND, ENABLE OUTPUT or DISABLE OUTPUT
statement except when the contents of the data item referenced by
data-name-5 are invalid, in which case the data item referenced by
data-name-4 is set to 1. It is an output parameter.

Programming the Transaction

47 A2 33UT 2-43

The data item referenced by data-name-5 represents the destination of the
message. This "destination" may be the correspondent having initiated the
transaction or any other correspondent. In order to send the message to the
terminal or correspondent that initiated the transaction, the data item
identified as SYMBOLIC SOURCE of the input CD must be moved to
data-name-5 prior to execution of the SEND, CDSEND, or CDGET
statement. It is an input parameter.

The rightmost four characters of data-name-5 are used to select an output
device other than the default output device associated with the symbolic
source. Possible values are as follows:

PRTn denoting printer n,
CRTn denoting display (cathode ray tube) n,
DSKn denoting disk(ette) n.

If there is only one device (of the specified type) attached to the identified
destination, "n" is left blank. The default output device is identified by
spaces occupying the four rightmost characters of data-name-5.

The programmer must ensure that the values of the data items referenced by
data-name-1, data-name2, and data-name-5 are valid at the time of execution
of the SEND statement.

The data items referenced by data-name-3 and data-name-4 are updated by
TDS.

2.3.7.4 OUTPUT-CD-ALIAS for FORM

Like the input CD, the output CD cannot be called directly by FORMS. This
means that an output CD must be re-defined.

 CD cd-name2 FOR OUTPUT.
 01 cd-alias2.
 02 FILLER PIC X(8).
 02 status-key PIC XX.
 02 FILLER PIC X.
 02 symbolic-destination PIC X(12).

TDS COBOL Programmer's Guide

2-44 47 A2 33UT

The following fields of the output-cd-alias are used:

• "status-key" contains the status returned on execution of various
FORMS functions.

• "symbolic-destination" contains the name of the correspondent.

Entries in the output CD data structure can be modified by implicit re-
definitions (at level 01) to obtain the output-cd-alias. Only the first of multiple
re-definitions can contain VALUES. An example of such an entry is as follows:

COMMUNICATION SECTION.

CD CD-OUT FOR OUTPUT
 DESTINATION COUNT IS DCOUNT
 TEXT LENGTH IS TLENGTH
 STATUS KEY IS STATUS
 ERROR KEY IS ERROR
 SYMBOLIC DESTINATION IS SYMDEST.

01 output-cd-alias REDEFINES CD-OUT.
 02 RDCOUNT PIC 9(4) VALUE 1.
 02 FILLER PIC X(4). to mask "tlength"
 02 RSTATUS PIC XX
 02 FILLER PIC X to mask "error"
 02 RSYMDEST.
 03 RTERMINAL PIC X(8).
 03 RTYPE PIC X(3).
 03 RNUMBER PIC X.

In this example, RDCOUNT is set to 1, which is the only possible value under
TDS.

The SYMBOLIC DESTINATION is split so that the TPR can select for output a
slave terminal device. For instance:

 MOVE SYMSOURCE TO RTERMINAL.
 MOVE "PRT" TO RTYPE.
 MOVE SPACE TO RNUMBER.

will select for output the (only) printer attached to the terminal that initiated the
transaction.

Programming the Transaction

47 A2 33UT 2-45

2.4 Procedure Division

2.4.1 Purpose and Use

The Procedure Division is the last required division of a TPR. This division
contains instructions that specify the data processing steps to be performed by
the TPR.

The Procedure Division of a TPR is used in the same manner and has the same
format as in a COBOL batch program. For most PROCEDURE DIVISION
statements, the programmer should refer to the COBOL 85 Reference Manual.
The following paragraphs are concerned with the exceptions that arise in coding
a TPR Procedure Division.

2.4.2 Structure

The Procedure Division of the main (or only) program of a TPR must begin as
follows:

PROCEDURE DIVISION USING TDS-STORAGE [CONSTANT-STORAGE
 [PRIVATE-STORAGE] [TRANSACTION-STORAGE]
].

If the TPR is composed of several programs, these storage areas can be passed
from the main program to the others, as required.

2.4.3 Syntax Rules

Syntax rules apply as described in the COBOL 85 Reference Manual.

TDS COBOL Programmer's Guide

2-46 47 A2 33UT

2.4.4 Exceptions to Normal Use

Because there is no message queuing in transaction processing, the
communications statements ENABLE and DISABLE are irrelevant under TDS.
To be compatible, however, the STATUS KEY field of the input CD is updated
if the ENABLE statement or the DISABLE statement is specified with the
INPUT phrase. The STATUS and ERROR KEY fields are updated if the
ENABLE or DISABLE statements are specified with the OUTPUT phrase.

Similarly, the use of other procedure statements in a TPR would be at cross-
purposes with the concept of transaction processing. For example, the use of
the SORT statement, considering that the execution of a TPR must be completed
in milliseconds, would be inappropriate. In such cases, the programmer must
decide what constitutes a contradiction in the application of a given statement,
because the compiler accepts all PROCEDURE DIVISION statements available
in COBOL.

The actual procedures are explained in the following chapter.

2.4.5 Spawning a Transaction

Spawning a transaction means starting a transaction from within a transaction.
The transaction that is started is called the spawned transaction. The spawned
transaction is started when the commitment unit in which the spawning is
performed ends normally. If the commitment unit calling a spawned transaction
aborts, it is rolled back and the request for spawning is ignored. The spawning
facility directs the spawned transaction to a correspondent (terminal) which can
be the same correspondent (that is, the correspondent initiating the transaction
that calls the spawn facility) or another. The recipient and the requester must
have the necessary authority codes for using the spawned transaction.

The main use of spawning is for report printing on receive-only terminals,
writing to diskettes, and reading from devices with no keyboard.

Processing performed by the spawned transaction is desynchronized from the
transaction calling the spawn. In other words, the calling transaction can
continue to do its own work and does not have to wait for the spawned
transaction to start executing.

Spawning can take effect immediately (SPAWN, or SPAWNTX) or after a
specified delay (DSPAWN, or SPAWNTX) or at a specified time of day
(TSPAWN, or SPAWNTX).

Programming the Transaction

47 A2 33UT 2-47

The following CALL statements are used to spawn transactions (see Chapter 5
for more details):

 CALL "DSPAWN" USING
 CALL "SPAWN" USING
 CALL "TSPAWN" USING
 CALL "SPAWNTX" USING

The CALL "SPAWNTX" statement groups the functions of the CALL
"DSPAWN", the CALL "SPAWN", and the CALL "TSPAWN". Using this
statement, you can:

• specify a correspondent name with a length up to 12 characters, instead of 8
in previous releases.

• specify the transaction message with a length of up to 130 characters, instead
of 46 in previous releases.

• provide more detailed status reporting after the execution of the CALL
"SPAWNTX".

The following CALL statement cancels spawned transactions:

 CALL "DELSPAWN"

The CALL "DELSPAWN" statement deletes the pending spawned transactions
attached to the current session.

Transaction spawning is

• either "Immediate":

The spawned transaction is taken into account, that is, it becomes eligible for
execution as soon as the spawning commitment unit terminates.

• or "Deferred":

The spawned transactions are eligible for execution after a specified delay, or
when a specified time of day has been reached.

A transaction eligible for execution may not execute if the TDS application is
inactive, or if the correspondent is not available, for example, when TDS cannot
connect it. In this case, the transaction executes as soon as the TDS application,
or the terminal is reactivated.

When several eligible transactions have been spawned onto an active
correspondent, TDS takes the turn. This means that as each spawned
transaction is completed, the next one queued for this user is started. TDS does
not give the turn back to the user until the queue of spawned transactions is
empty.

TDS COBOL Programmer's Guide

2-48 47 A2 33UT

2.4.5.1 Spawning Priorities

If you or other users direct several transactions to the same correspondent, the
transactions are arranged in a queue that determines the order of spawning.
When you spawn a transaction, you can specify a priority. The four priorities
are as follows:

1. Express

2. High

3. Medium (default value)

4. Low

These priorities are used to manage the spawning queues. For each
correspondent on which spawning has been requested, there are three associated
queues:

HIGH
MEDIUM
LOW.

Table 2-1 shows how these queues are managed.

Table 2-1. Spawning Priorities

QUEUE High Medium Low

PRIORITY

1
Express

2
High

3
Medium

4
Low

LIFO

FIFO

FIFO

FIFO

LIFO (last in first out) means that the last transaction to be placed in the
spawning queue is the first to be sent to the correspondent.

Programming the Transaction

47 A2 33UT 2-49

FIFO (first in first out) means that the first transaction to be placed in the
spawning queue is the first to be sent to the correspondent.

As soon as the correspondent that is designated as a recipient of spawned
transactions is idle, the three queues are scanned from HIGH to LOW to
identify the first transaction to be started. For example, a spawned transaction
that is placed in the "HIGH" queue with an express priority will be started
before any other spawned transactions.

For spawned transactions that are deferred, the MEDIUM queue is chosen when
the delay has expired or the specified time of day has been reached.

2.4.5.2 Spawning Towards Active and Passive Terminals

The correspondent to which the spawned transaction is directed may be active,
or passive. Both these terms are defined in the TDS Concepts Manual.

On an active terminal, the spawned transaction is started when the terminal is in
command mode, that is, no transaction is running. During the execution of the
spawned transaction, the terminal receiving the spawned transaction can hold a
conversation if it owns a keyboard, whether active or passive.

When TDS successfully connects a new correspondent, it is set to the passive
state; otherwise the state of a correspondent remains unchanged.

Spawning does not affect a correspondent's state. If the correspondent is active,
it is still active at the end of the spawned transaction and if it is passive, it
remains passive.

In all cases, the spawned transaction is eligible for execution at the normal end
of the commitment unit that requires the spawning.

TDS COBOL Programmer's Guide

2-50 47 A2 33UT

2.4.5.3 Searching for a Correspondent

This section explains how TDS searches for a correspondent that has been
specified as the recipient of the spawned transaction.

TDS searches for the name of the correspondent in the following order. Steps 2,
3, and 4 are performed only if the correspondent's name does not contain a star
(*).

1. The TDS Correspondent Table, which contains the names of all
correspondents known to TDS, including logged or abnormally
disconnected correspondents.

2. If the correspondent is not found in step 1, the search for the
correspondent's name continues in the TDS Mailbox Table, which contains
the DSA addresses (session control and mailbox) of all correspondents
known to TDS, including logged or abnormally disconnected
correspondents.

If the correspondent's name specified as a parameter of the SPAWN
statement is an address instead of a name, the correspondent's name will be
found in the second step.

For the CALL "SPAWNTX" statement, the correspondent's name is taken
as a DSA address with the following format:

 |X X X X|X X X X X X X X|
 |_______|_______________|
 A B

where:

A represents the session-control name,
B represents the mailbox name.

For the CALL "SPAWN", CALL "DSPAWN", and CALL "TSPAWN"
statements, the correspondent's name is taken as a DSA address with the
following format:

 |X X X X|X X X X bbbb|
 |_______|____________|
 A B

Programming the Transaction

47 A2 33UT 2-51

where:

A represents the session-control name,
B represents the mailbox name, left aligned with four spaces (represented
by b)

3. If the correspondent is not found in Step 1 and 2, the search continues in
the list of correspondents defined at network generation.

If the correspondent is found, it will be known to TDS.

4. If the correspondent's name is not found, the 8 characters (or 12 for CALL
"SPAWNTX") given as the correspondent's name are taken as a DSA
address with the format described in step 2 above.

Then TDS tries to connect the correspondent at this address.

2.4.5.4 Using the Star (*) Convention

Spawning can be used to direct a transaction to a specific correspondent or to a
correspondent belonging to a group of correspondents. A group is formed by
use of the star convention in the correspondent's name. When a transaction is
directed to a group of correspondents, the first available correspondent of the
group is chosen for executing the spawned transaction. Spawning to a group of
correspondents can give extra flexibility, for example, a report can be directed
to any printer in the group.

The first parameter (data-name-1) of a spawn statement (SPAWN, DSPAWN,
TSPAWN, SPAWNTX) can contain the name of a "group of correspondents"
instead of the name a single correspondent. A group of correspondents have
their names identical in one or more of their leftmost contiguous characters.
The field specified by data-name-1 must contain the common part of the userid
with a star ("*") to represent the characters of the userids which are not
identical.

EXAMPLE

The group of correspondents WORKERA, WORKERB, WORKERC could be
indicated by WORKER*. Neither AWORKER nor WORKA would be included
in this group. The spawned transaction would be started for the first free
correspondent to become available in the group. All correspondents in the
group must have an authority code matching the transaction's authority code;
otherwise a status value of 2 (if SPAWN, DSPAWN, or TSPAWN are used), or a
status value of 43 (if SPAWNTX is used) may be returned in the status field
defined in the spawning TPR.

When the star convention is used, the spawning mechanism cannot be a log-on
procedure for a correspondent (see the previous section).

TDS COBOL Programmer's Guide

2-52 47 A2 33UT

❑

2.4.5.5 DUMMY Correspondent

The user's name for spawning may be set to DUMMY. A dummy correspondent
is (as its name implies) not a real correspondent, that is, it does not represent
anything. Transactions spawned to such a correspondent cannot dialog with
their correspondent.

2.4.5.6 Length of a Correspondent's Name

This section does not apply to the CALL "SPAWNTX" statement.

The first parameter of the CALL statement for spawning is an 8-character field
that must contain the correspondent's name.

Some users may be connected to a TDS application with a name of more than 8
characters long (up to 12 characters).

Therefore it is not possible using these CALL statements to spawn using such a
name because the parameter is limited to 8 characters.

All correspondents in the group must have an authority code matching the
transaction's authority code; otherwise a status "2" (if SPAWN, DSPWAN, or
TSPAWN) or "43" (if you use SPAWNTX) may be returned in the status field
defined within the spawning TPR.

However, it is possible to do the following:

1. It is recommended that you use the CALL "SPAWNTX" statement that
allows you to specify a correspondent's name of up to 12 characters in
length.

2. The first 8 characters of the name may be specified as the spawn
parameter. Then the correspondent's name is searched for in the TDS
Tables as described previously, the name containing 8 characters padded
with 4 blanks is searched for, if this name is not found, TDS adds a star as
the ninth character in the case of the star convention and the search is
repeated. The user's name containing more than 8 characters should be
found this time.

Programming the Transaction

47 A2 33UT 2-53

EXAMPLE

The user whose name is STEPHENSON (10 characters long) may be used for
spawning. The parameter to be specified in a CALL statement must be
STEPHENS. If STEPHENS does not exist, TDS will find STEPHENSON.

It is important to know the first correspondent whose name begins with
"STEPHENS" is chosen by TDS.

❑

2.4.5.7 Limits

The maximum number of spawned transactions in the same commitment unit is
limited to 76. When this limit is reached, an abnormal status is returned ("11"
for the CALL "SPAWNTX" statement, "1" for other statements).

The global number of spawned transactions waiting to be validated at any one
time is 1,000. When this limit is reached:

• on the first attempt and if the transaction is executed for the first time, the
transaction is rolled back and is restarted after 5 seconds.

• otherwise, an abnormal status is returned, that is, status "10" for SPAWNTX,
and "1" for other statements.

2.4.5.8 Using the Transaction Initialization Routine for Spawning

The Transactional Initialization Routine is an optional user-written subprogram.
This section describes how this routine is used for spawning. For further
information on the Transaction Initialization Routine, see Chapter 12.

The transaction initialization routine (if any) is called on a spawn statement to
analyze the spawning message. This routine is activated twice:

• first, with the identification of the requester of spawning as an input
parameter to control the access rights of the requester to the spawned
transaction.

• second, with the identification of the recipient to control the access rights of
the recipient to the spawned transaction. This second call to the initialization
routine is performed later at the start of the spawned transaction.

TDS COBOL Programmer's Guide

2-54 47 A2 33UT

2.4.6 Chaining TPRs

TDS loads the first TPR of the transaction in response to the first message
entered at the terminal.

Each TPR is called by TDS when the preceding TPR terminates. A TPR
specifies its successor by setting the PROGRAM-ID of the successor in
NEXT-TPR of TDS-STORAGE.

On normal termination of the current TPR, the next TPR is loaded and executed.
The currently executing TPR may specify itself as the NEXT-TPR.

If the NEXT-TPR contains spaces, the transaction terminates at the end of the
current TPR. Each executing TPR "knows" its position in the chain by
PRIOR-TPR and NEXT-TPR of TDS-STORAGE.

If the NEXT-TPR contains "BYE", the terminal is logged off immediately.

If the NEXT-TPR contains "BYEWEAK", the terminal is logged off:

• immediately only if there are no outstanding transactions eligible for
immediate spawning to that terminal,

• as soon as the terminal returns to command mode if an interrupt context
(LOGON, BREAK) exists for the user concerned.

Note that "BYEWEAK" is valid only for the duration of the current VCAM
session and is no longer in effect after a CANCEL_JOB command is issued, or
after a system crash has occurred.

("BYEWEAK" is useful for sharing a printer among different applications).

The TPR can specify the PROGRAM-ID of an "abort" TPR in the
ON-ABORT-TPR field in TDS-STORAGE.

When a TPR aborts, ABORT-CODE is set giving the reason and the "abort"
TPR is executed. The "abort" TPR can chain to other TPRs.

When a transaction aborts, there are two cases to consider:

• if the ON-ABORT-TPR is not specified, the TDS-supplied ON-ABORT-TPR
is performed; this abnormally terminates the transaction and sends a message
to the initiator of the transaction; if the initiator of the transaction is a printer
or a XCP1 application, no message is sent,

• if the ON-ABORT-TPR is specified, the ON-ABORT-TPR is executed while
the ON-ABORT-TPR field in the TDS-STORAGE is reset to blanks; this
process may be executed 3 times, thus allowing 3 aborts to occur.

Programming the Transaction

47 A2 33UT 2-55

2.4.7 Message Handling Without FORMS

The Procedure Division statements used for data communications in COBOL
are RECEIVE for input and SEND for output. The RECEIVE verb makes an
incoming message available to a TPR. Details are given in Chapter 3. The
SEND verb releases a message to the destination specified in the SYMBOLIC
DESTINATION of the output CD. The SEND verb is explained in Chapter 3.

To input a message from a terminal, the programmer must provide the CD
SYMBOLIC QUEUE with data from the TDS-STORAGE location
SYMBOLIC-QUEUE. The RECEIVE statement can then be executed with the
input message being placed in a designated location, for example:

 RECEIVE CD-INPUT MESSAGE INTO MESSAGE-AREA

where CD-INPUT is the cd-name defined in the COMMUNICATION
SECTION and MESSAGE-AREA a data area defined in the
WORKING-STORAGE SECTION of the TPR. In this input operation TDS
will load fields in the CD entry giving such information as the number of
characters in the message and the time the RECEIVE statement is processed.

After a RECEIVE statement, 'END KEY' can be tested to ensure that the
complete message has been received.

• 0 (it is not the end of the message),

• 3 (it is the end of the received message).

To send a message to a terminal, the programmer must set up parameters in the
output CD giving:

• 1 to DESTINATION COUNT (if not initialized in the description),

• the identifier of the destination,

• the number of characters in the message,

and then issue a SEND statement.

This statement has several formats and thus several effects:

Format 1 SEND cd-name FROM identifier-1.
Format 2 SEND cd-name [FROM identifier-1] WITH ESI.
Format 3 SEND cd-name [FROM identifier-1] WITH EMI.
Format 4 SEND cd-name [FROM identifier-1] WITH EGI.

TDS COBOL Programmer's Guide

2-56 47 A2 33UT

Format 1

SEND cd-name FROM
identifier

in this form the statement releases a portion of a
message to a TDS buffer without physical
transmission to the terminal. The message portion is
held in 'quarantine' and is referred to as part of a
'quarantine unit' (see Figure 2-3).

Format 2

SEND cd-name FROM
identifier WITH ESI

this has the same effect as the previous statement
except that it allows in addition the use of the
ADVANCING option. (ESI stands for 'End of
Segment Indicator'.)

TDS buffer

2nd SEND ... with ESI1st SEND ... with ESI

Figure 2-3. Message Buffering with ESI

In neither case will the message be physically transmitted until a SEND ...
WITH EMI or EGI is executed; these indicators on the SEND statement
validate the quarantine unit prior to its transmission. Any quarantine units not
validated upon normal completion will not be transmitted when the TPR
terminates.

Programming the Transaction

47 A2 33UT 2-57

Format 3

SEND cd-name [FROM
identifier] WITH EMI

execution of this statement (EMI means End of
Message Indicator) transfers the contents of the
message area to the TDS message buffer.

1st SEND ... with EMI

OR

1st SEND ... with EMI

TDS
buffer

previous SEND ...
SEND ... with ESI

Figure 2-4. TDS Message Buffering with EMI

In Format 1 and Format 2, the physical transmission of the quarantined data
takes place at the normal completion of the TPR.

Format 4

SEND cd-name [FROM
identifier] WITH EGI

this SEND statement (EGI means End of Group
Indicator) causes the message to be transmitted to the
terminal and indicates that a response is required from
the terminal. In this case the next data
communication statement must be RECEIVE which
will be issued in the next TPR. It is also used as the
last SEND statement of a transaction in which case no
response is expected but the operator may enter a new
transaction. The statement may refer only to the
terminal that activated the transaction.

TDS COBOL Programmer's Guide

2-58 47 A2 33UT

NOTES on the 4 formats

In the same TPR, the next SEND statement (any format) will transmit validated
message segments already in the buffer to the terminal. The buffer is then filled
with the new message.

A SEND statement after a SEND WITH EMI statement will degrade
performance because the executing task must wait for the SEND WITH EMI
statement to be completed.

After a SEND statement, it is recommended that STATUS KEY be tested.

Output Message

If there is only one message to be transmitted by a TPR, it is done
asynchronously. If a TPR issues a SEND statement and can continue to do its
own work, this is called asynchronous transmission.

Synchronous means that the TPR stops executing from the time a SEND
statement is issued until the transmission has been completed. In other words
the TPR is synchronized to the completion of the SEND statement. If several
messages are sent by a TPR using the SEND with EMI (end-of-message
indicator) statement,

• each message is physically and synchronously transmitted by the next SEND
except the last,

• the last message is transmitted asynchronously.

Programming the Transaction

47 A2 33UT 2-59

EXAMPLE

 TPR1
 WORKING-STORAGE SECTION.
 01 OUT-MESSAGE-AREA.
 03 CCI PIC X.
 03 C2 PIC X.
 03 TITLE1 PIC X(9) VALUE "TOWN-NAME".

 COMMUNICATION SECTION.

 CD CD-OUT FOR OUTPUT
 DESTINATION COUNT IS DCOUNT

 TEXT LENGTH IS TLENGTH
 STATUS KEY IS SKEY
 ERROR KEY IS EKEY
 SYMBOLIC DESTINATION IS SYMDEST.

 CD CD-IN FOR INPUT
 SYMBOLIC QUEUE IS SYMQUEUE
 MESSAGE DATE IS MESDATE
 MESSAGE TIME IS MESTIME
 SYMBOLIC SOURCE IS SYMSOURCE
 TEXT LENGTH IS TEXTL
 END KEY IS EIKEY
 STATUS KEY IS SIKEY
 MESSAGE COUNT IS METCOUNT.

 LINKAGE SECTION.

 COPY CONSTANT-STORAGE.

 PROCEDURE DIVISION USING TDS-STORAGE, CONSTANT-STORAGE
...
 RECEIVE ...
 1. MOVE 1 to DCOUNT
 2. MOVE FF TO CC1.
 MOVE BLK TO C2.
 3. MOVE SYMSOURCE TO SYMDEST.
 4. MOVE 11 TO TLENGTH.
 5. SEND CD-OUT FROM OUT-MESSAGE-AREA WITH EGI
 AFTER ADVANCING 0 LINES.
 6. IF SKEY NOT EQUAL "00"...
 7. MOVE "TPR2" TO NEXT-TPR.
 EXIT PROGRAM

TDS COBOL Programmer's Guide

2-60 47 A2 33UT

 TPR2
 COMMUNICATION SECTION.

 CD CD-IN FOR INPUT
 SYMBOLIC QUEUE IS SYMQUEUE
 MESSAGE DATE IS MESDATE

 MESSAGE TIME IS MESTIME
 SYMBOLIC SOURCE IS SYMSOURCE
 TEXT LENGTH IS TEXTL
 END KEY IS EIKEY
 STATUS KEY IS SIKEY
 MESSAGE COUNT IS METCOUNT.

 WORKING-STORAGE SECTION.
 01 IN-MESSAGE-AREA.
 03 TOWN-NAME PIC X(25).

 PROCEDURE DIVISION USING TDS-STORAGE, CONSTANT-STORAGE...
 8. MOVE SYMBOLIC-QUEUE TO SYMQUEUE
 MOVE SPACES TO IN-MESSAGE-AREA.
 RECEIVE CD-IN INTO IN-MESSAGE-AREA.
 9. IF EIKEY NOT EQUAL "3" ...

TPR1 displays "TOWN-NAME" as a prompt to the user to key in "town-name".
TP2 is activated as soon as "town-name" is entered.

1. Sets DCOUNT to 1.

2. The control codes FF and BLK clear the screen and cause the field
TITLE1 to blink. See Table 2-2.

3. The output CD is to contain the identifier of the activating terminal. In this
example, SYMDEST is set to the value of the SYMSOURCE field which
has been initialized by the previous RECEIVE statement.

4. The message length is set to 11.

5. SEND transfers the message to the terminal.

6. The status of SEND is tested.

7. TPR1 indicates to TDS that TPR2 is to follow.

8. TPR2 loads the input CD SYMBOLIC-QUEUE with the contents of the
TDS-STORAGE SYMBOLIC-QUEUE.

9. The 'END KEY' is tested to determine if the entire message is received.

❑

Programming the Transaction

47 A2 33UT 2-61

Table 2-2. DKU7007 Control Codes

EBCDIC
value

Control
Code

Meaning

OC FF

OD CR Return to beginning of current line

25 LF Move cursor 1 line down

OD25 NL Return to beginning of next line

5F BLK

13 DC3 Position cursor at address given by the next two characters
(line and column code - see note below)

27D4 SCM Change to format mode

27D5 SCN Change to line mode

Line mode - clear screen
Format mode - clear variable fields

1C FS Start of fixed field (terminal must be in line mode
when this character is received)

Characters after 5F blink until next space, end of line, or
start of variable field

1D GS Start of variable field (VIP must be in line mode when
this character is received). Field is terminated by the FS
character.

3C DC4 Reset cursor to start of first variable field
(Terminal must be in format mode)

05 HT Line mode - set cursor to next tabulation
Format mode - set cursor to start of next variable field

TDS COBOL Programmer's Guide

2-62 47 A2 33UT

Table 2-3. DKU7007 Line and Column Codes

Line/Col
number

Graphic
Symbol

EBCDIC
Code

COBOL
collating

Line/Col
number

Graphic
Code

EBCDIC
value

COBOL
collating

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

!
"
#
$
%
&
'
(
)
*
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?
@
A
B
C
D
E
F
G

40
4F
7F
7B
5B
6C
50
7D
4D
5D
5C
4E
6B
60
4B
61
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
7A
5E
4C
7E
6E
6F
7C
C1
C2
C3
C4
C5
C6
C7

65
80

128
124

92
109

81
126

78
94
93
79

108
97
76
98

241
242
243
244
245
246
247
248
249
250
123

95
77

127
111
112
125
194
195
196
197
198
199
200

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[

]
^
_
è
a
b
c
d
e
f
g
h
i
j
k
l

m
n
o

201
202
210
211
212
213
214
215
216
217
218
227
228
229
230
231
232
233
234

75
225

91
96

110
122
130
131
132
133
134
135
136
137
138
146
147
148
149
150
151

C8
C9
D1
D2
D3
D4
D5
D6
D7
D8
D9
E2
E3
E4
E5
E6
E7
E8
E9
4A
E0
5A
5F
6D
79
81
82
83
84
85
86
87
88
89
91
92
93
94
95
96

Programming the Transaction

47 A2 33UT 2-63

The control code is specified in the VALUE clause by its COBOL collating
sequence. The COBOL collating sequence is the decimal conversion of the
EBCDIC value+1.

The GS control code is followed by a second character defining the nature of
the variable field: whether it is to contain numeric data, whether it can be
transmitted, whether it can be printed locally. Table 2-4 gives the settings of
this control character. For example, if GS is followed by F4, this means that the
variable field:

• is numeric,

• can be transmitted,

• can be printed locally.

Table 2-4. GS Field Protection Codes (DKU 7007)

Transmission
allowed

Printing
allowed

Hexadecimal
value

N

N

N

N

Y

Y

Y

Y

Y

Y

N

N

Y

Y

N

N

Y

N

Y

N

Y

N

Y

N

F0

F1

F2

F3

F4

F5

F6

F7

241

242

243

244

245

246

247

248

Numerics
only

COBOL
collating
sequence

Y = YES
N = NO

TDS COBOL Programmer's Guide

2-64 47 A2 33UT

2.4.8 Message Handling with FORMS

This section shows how FORMS handles messages (see also earlier in this
chapter). For an introduction to FORMS, see the IOF Programmer's Manual.

Access to forms is given through the Standard Device Programmatic Interface
(SDPI) statements. These statements provide a basic way to dialog with an
endpoint, that is, to a logical terminal as seen by the program.

Each statement corresponds to an interaction with the terminal, except the
CDFIDI statement that is purely informative. This action may result

• either in issuing some kind of message for the terminal (CDGET, CDSEND,
CDATTR, CDATTL, CDMECH, CDRELS),

• or in receiving some message (CDRECV, CDPURGE).

For each action of the first kind, the program can specify an enclosure level in
the statement which is used to specify when the message is to be delivered to
the terminal and, if it is to be delivered immediately, whether the application
keeps the turn, (that is, the right to send other messages) or gives it to the
terminal.

For a RECEIVE statement, the program gives the name of a queue on which to
receive. The statement returns an enclosure level that indicates to the program
whether it has more to receive to get the whole message and where the turn is.
For each statement, the status key indicates whether the statement is
successfully completed.

SDPI procedures are called in the TPR

• to activate the form,

• to send and receive data.

2.4.8.1 Activating a Form

Activating a form consists of displaying the fixed fields and the initial values
and attributes (for example, a protected field, highlighted field) of the variable
fields on the screen.

To activate a form, the TPR must call a CDGET procedure referencing a
structure, called form-nameI. This structure identifies a form, checks its
compilation date and specifies its mode of activation. A form can be activated
in one of four modes:

• APPEND,
• OVERLAY,
• WINDOW,

Programming the Transaction

47 A2 33UT 2-65

• ERASE.

APPEND Mode

The user may specify where to mount the form on the screen. The place that the
form occupies on the screen is in relation to the forms already mounted. When
a new form is activated, all the forms below the form to which the new form is
to be appended are implicitly released. The area occupied by these forms on the
screen is cleared.

When a request is made to mount a form at the top of the screen, the whole
screen is cleared. Several occurrences of the same form may be simultaneously
mounted on the screen. Each occurrence is identified by an occurrence number
specified in the form-nameI and form-nameV structures. Recall that a
form-nameV is used:

• to select individual fields of a form for sending or receiving their contents,

• to modify their attributes,

• or to return the status of a field.

OVERLAY Mode

All the preceding forms are logically released but the screen is not cleared. The
new form overwrites what was displayed.

WINDOW Mode

The WINDOW mode is a mode where each form defines a window on the
screen. The window consists of the smallest rectangle that may contain the
form beginning in line 1 column 1 up to the maximum line and the maximum
column.

The program specifies in the form identification structure the location of the
window by giving the coordinates of its top left corner. All the forms
previously on the screen are frozen, as in OVERLAY mode. Then the contents
of the window that will contain the form are erased. The form is placed in the
window and it becomes the new active form.

When the CDGET procedure references a form that is already displayed in a
window, this form becomes the active form again with its fields restored to their
contents when the form was the active form. In this case, the form is always
displayed at the same location on the screen and the window coordinates that
may be specified are ignored. This means that you can view forms as a stack of

TDS COBOL Programmer's Guide

2-66 47 A2 33UT

paper sheets that partially overlay each other and where the user may remove a
sheet in the middle of stack to put it on the top of the stack.

You may use the POPUP mechanism to release only the currently active form.
In this case, the form window is reset to its underlying contents and the next
form in the stack becomes the new active form.

ERASE Mode

The ERASE mode is similar to the WINDOW mode except that ERASE mode
first releases all forms and clears the screen. A form may be activated in the
WINDOW mode only if the previous form was activated in one of the following
modes: ERASE or WINDOW. A form cannot be appended to a form activated
in WINDOW or ERASE mode.

If you wish to activate a form in either the WINDOW or the ERASE mode, the
TERM parameter must be set to ANY in the MAINTAIN_FORM command.

You can mount the object form:

• either from the binary libraries or the UFAS-EXTENDED file assigned to the
TDS step,

• or from the terminal diskette.

FORMS either sends the object form or requests that the terminal mount the
form from the diskette, depending on the options specified when the form was
generated. When you activate the MAINTAIN_FORM utility, the terminal
mounts the form when a MOVE to the diskette has been executed for the form
in question. In this case, the clause "FORM IS" must be declared at TDSGEN.
For more information, see the IOF Programmer's Manual.

If the form is not present on the diskette and the terminal is a DKU7007,
DKU7107 or DKU211, the terminal notifies FORMS that the form cannot be
activated. FORMS then sends the object form from its library or UFAS file to
the terminal.

For VIP7760 terminals, an unsuccessful activation of the form from a diskette
can cause the terminal to disconnect.

Programming the Transaction

47 A2 33UT 2-67

2.4.8.2 Sending Data

The following procedures cause a message to be output to a terminal:

CDSEND sends some variable fields of a form. A selection
vector is passed to identify the form and to specify
the fields that must be modified.

CDATTR sets special effects (for example, highlights fields)
on some fields of a form. The form and the fields
within the form are identified by a selection vector.
If the form has been created with the
SUBSTITUTE ATTRIBUTES option, a
replacement attribute is selected whenever an
attribute is specified that does not exist on the
terminal, for example, if Reverse Video is requested
for a VIP7760 terminal, Blink is selected.

CDATTL is similar to CDATTR except that it sets a list of
attributes instead of only one attribute.

CDMECH initiates an "one-shot" mechanism that affects the
whole device, such as clearing all unprotected
fields or setting the alarm.

CDRELS releases all the active forms and sets the terminal to
normal mode. CDRELS does not clear the screen.
If the screen is to be cleared, CDRELS must be
followed by a CDMECH with the RESET option.

For a complete description of each procedure, refer to Chapter 10.

2.4.8.3 Receiving Data

When the terminal user enters data on the screen, the TPR must issue as many
CDRECV statements as there are forms for which data has been entered. In
such a case, it is recommended that a CDFIDI statement precede each
CDRECV statement. This procedure returns the identification of the next form
that is used to receive data.

The selection vector that the TPR gives when it calls the CDRECV statement
identifies the form and selects the fields required in this form.

If a function key field has been declared in the MAINTAIN_FORM utility,
pressing the function key will fill the field with the rank of the function key.
Mapping function keys onto ranks is described in the IOF Programmer's
Manual.

TDS COBOL Programmer's Guide

2-68 47 A2 33UT

If the message contains some more information for another form, the TPR is
notified through an appropriate enclosure level. If the TPR does not want to
receive the pending data, it must call CDPURGE.

For a complete description of the CDRECV, CDFIDI, and CDPURGE
procedures, see Chapter 10. An example of a COBOL transaction using
FORMS is given in Appendix C.

Programming the Transaction

47 A2 33UT 2-69

Terminal
operator enters

order details

TPR receives variable
order fields

 and processes them
directly

TPR issues CALL
"CDRELS" to release

the form

TPR issues CALL
"CDMECH" to clear

screen

END

Terminal
operator keys

in
"ORDER"

Terminal
operator keys

in
"ORDER"

TPR sends
order form

layout to terminal
screen

TPR sends control
char. to set terminal

to form mode

Terminal
operator enters

order details

Terminal operator
clears screen when

ready

END

WITHOUT FORMS
START

WITH FORMS
START

TPR issues
CALL "CDGET"

to display the form
on the screen

TPR receives variable
order fields; unstrings

the message and
processes them

A TPR sets the
terminal to line

mode

Figure 2-5. Order Processing - Sequence of Operations

TDS COBOL Programmer's Guide

2-70 47 A2 33UT

2.4.9 Character Sets

The character sets used with FORMS are the Pluri Lingual West (PLW) and the
C101 character sets. There are fully described in the IOF Programmer's
Manual.

The PLW character set is a set of graphic characters for writing texts using the
Latin alphabet. There are two representations of the PLW character set:

• indirect code:

The interchange code which is in keeping with the international standard ISO
6937 and is available on terminals such as DKU7107 and DKU211. Some
characters, such as the accented letters, are represented by more than one
byte.

• direct code:

A proper superset of international EBCDIC code (the international EBCDIC
code being also known as C101 code). This code is supported for FORMS
by GCOS 7.

A TPR using FORMS can send and receive all PLW characters of the direct
EBCDIC PLW code. See Figure 2-6.

If the terminal supports PLW, it is assumed to operate in this mode and FORMS
translates from/to the interchange code to/from the direct code. Whenever
possible, FORMS forces the terminal to operate in this mode.

If the terminal does not support PLW, FORMS converts from the PLW code
sent by the program into the C101 code where accented letters are replaced by
the same non-accented letters. The main purpose of the conversion is to avoid
sending invalid characters to the terminal and to provide at least an
understandable text.

When a form is generated or reloaded, the MAINTAIN_FORM utility, checks
whether it contains PLW characters that do not belong to the C101 common
subset. If so, the object form member is flagged as being of PLW type.

When a form of PLW type is activated through the CDGET procedure, the
object form is scanned in order to translate the PLW characters into:

• either interchange code (indirect) if the terminal supports interchange code,

• or C101 characters if the terminal does not support interchange code.

When a form of PLW type is moved to a diskette by the MAINTAIN_FORM
utility, the form is always translated into the interchange code.

Programming the Transaction

47 A2 33UT 2-71

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F ! ^ ? " + ~o
~
O

U

& - ° µ { } \ 0

é / a j ~ £ A J 1

â ê A
^

E b k s
^

B K S 2

a.. ..e A E
.. ..

c l t C L T 3

a e A E d m u D M U 4

a A I e n v § E N V 5

a~ ^ I
~ ^

f o w q F O W 6

a° .. A l° ..
g p x G P X 7

ç ç I h q y H Q Y 8

n~ N
~

i r z I R Z 9

[] : a !

. $, # o

?

o u O U^ ^ ^ ^

< * % @

() ' .. o u O U

o u O+ =; > '

o u O U..

SP

ÂA

Figure 2-6. EBCDIC/PLW CODE

TDS COBOL Programmer's Guide

2-72 47 A2 33UT

2.4.10 Printing

Before issuing a SEND statement, the TPR moves the name of the printer to
SYMBOLIC DESTINATION in the output CD.

The printer has its set of control codes. However, the ADVANCING phrase
specified in the SEND statement performs the same function as Line Feeds
(LFs).

You are advised to use spawning.

EXAMPLE 1

Transaction X outputs to a printer with a keyboard. For as long as the printer
continues to print, the operator cannot initiate a new transaction on it.

RECEIVE CD-IN MESSAGE INTO IN-BUFFER

produce required data

SEND CD-OUT FROM OUT-BUFFER WITH EGI

EXIT PROGRAM.

TRANSACTION X

EXAMPLE 2

Transaction Y generates an output. However instead of outputting to terminal
A, transaction Y "spawns" transaction Z which outputs to a printer configured
on terminal A. Terminal A can therefore continue initiating new transactions
since it does not receive the print output.

Programming the Transaction

47 A2 33UT 2-73

TRANSACTION Y
initiated at
terminal A

USERID must be in catalog:
USERID = site name + terminal name
 NETW PRT3

MOVE "Z" TO Z2
name of transaction to be activated
(as in a normal message, additional
parameters are possible)

CALL "SPAWN" USING Z1, Z2, Z3

status indicator

IF Z3 NOT = ZERO ... if spawning is not successful, enter
recovery procedure

continue processing

TRANSACTION Z
spawned on
printer message buffer contains transaction

name "Z" (+ optional parameters)

(further activations do not have an
input message)NEXT.

RECEIVE CD- IN MESSAGE INTO IN- BUFFER

produce required data

WRITE records to user file

MOVE "NETWPRT3" TO Z1

RECEIVE CD-IN MESSAGE INTO
IN-BUFFER NO DATA GO NEXT

READ records from user file
SEND CD-OUT FROM OUT-BUFFER WITH EGI
IF NOT "END-OF-FILE" MOVE
CURRENT-TPR TO
NEXT-TPR

CALL "DFCMIT"

EXIT PROGRAM.

loop back on same TPR

TDS COBOL Programmer's Guide

2-74 47 A2 33UT

❑

If a printer is receive-only (no keyboard), a special attribute is declared at
network generation.

Spawning Transactions on a Receive Printer via the Datanet

To ensure that all messages are received, it is recommended that only one
message per TPR be sent through use of the SEND EGI statement. To execute
all the SEND statements in the transaction, include two TPRs with:

• a SEND EGI statement in the first TPR,
• a RECEIVE NO DATA at the beginning of the second TPR.

The SEND EGI statement hands over control to the Datanet that signals to TDS
that the message has been printed. Then, TDS activates the second TPR with
the RECEIVE NO DATA statement.

(See transaction Z in Example 1).

2.4.11 Report Handling Using GTWriter

The Generalized Terminal Writer (GTW) allows any hardcopy terminal in a
communications network to be used as a printer remote from the central site but
local to the user, that is any TDS user can request the printing of outputs or files
at any terminal known to GTWriter. This section gives an overview: for more
information, see Chapter 11 and the Generalized Terminal Writer User's Guide.

GTWriter creates and handles reports.

The writer report is generated by first calling H_TW_USTARTE to open a
subfile in SYS.TW.OUT.

The control record is also created.

The report will be scheduled at the next commitment.

Commitment units in which a report is being created can run concurrently with
each other.

Figure 2-7 shows 3 transactions running concurrently. In transaction X, 2
reports are created, whereas in transactions Y and Z one report is created in each
transaction.

Programming the Transaction

47 A2 33UT 2-75

For this example, the following are assumed:

• a simultaneity of 4 is in effect,
• the SYS.TW.OUT file is declared a non-controlled file at TDSGEN,
• the assignment statement (ASSIGN SYS.TW.OUT SHARE=DIR) is

included in the JCL for starting the particular TDS application.

When an abort occurs during a commitment unit, the report is not queued, but
the affected commitment unit is re-executed and the report is rescheduled.

Note : A other file than SYS .TW.OUT may be used by suffixing the EFN by
one character chosen in set (0..9,A..Z).

Examples: SYS.TW.OUT4 or SYS.TW.OUTB .
(see parameter MULTI_SYS_TW_OUT in GTWRITER User’s Guide 47 A2 55
UU).

If the file SYS.TW.OUT(i) is closed or has changed between the start of the
report and the commitment, the transaction is aborted either with the return code
″NOTOPENS″on WRITE primitive or with the return code ″EFNERR″ (if
closed and deassigned) or “NOTOPEN″ (if closed and not deassigned) at
commitment time. If the file has been closed then reopened between the last
writing TPR and the committing one, the transaction is aborted by TDS with the
return code “NOTOPENS”.

TDS COBOL Programmer's Guide

2-76 47 A2 33UT

Figure 2-7. Creating GTWriter Reports

Transaction X

TPR1

.

.

.

CALL « H_TW_USTARTE »

WRITE

WRITE

.

.

TPRn

CALL « H_TW_UGETR »

.

.

CALL « H_TW_USTARTE »

WRITE

Commitpoint is taken

END of Transaction X

Transaction Y

TPRa

CALL « H_TW_USTARTE »

WRITE

.

.

.

.

.

.

End of TPRa

TPRc

.

.

.

WRITE

End of TPRc

Commitpoint is taken

END of Transaction Y

Transaction Z

TPRi

CALL « H_TW_USTARTE »

End of TPRi

TPRm

WRITE

.

.

.

WRITE

End of TPRm

TPRI

.

.

.

WRITE

End of TPRI

Commitpoint is taken

END of Transaction Z

Commitpoint is taken

Programming the Transaction

47 A2 33UT 2-77

2.4.12 Terminal Adapter

The Terminal Adapter adapts messages to terminals supported by a TDS
application. With the Terminal Adapter services (an option to be specified in
TDSGEN), you can:

• adapt messages to your terminal in input and output (including the IBM 327x
terminals),

• support foreign character sets,

• modify a user profile that contains variables for adapting screen presentation
to the transactions running for the user (the procedure is described in Chapter
7).

You can use the Terminal Adapter for TM correspondents only.

"Old" TPRs using no specific terminal devices remain unchanged.

The Terminal Adapter cannot adapt:

• messages for slave terminals,

• messages sent from a transaction set to FOR INQUIRY,

• messages directed to the Batch Interface.

In these three cases, the messages are sent in the same way as previous releases
without Terminal Adapter.

Using the Terminal Adapter in a TDS application does not support:

• the continuation character at the end of a line (-),

• the synchronization characters at the end of a page (+++),

• the function keys.

2.4.12.1 External Messages

External messages (in contrast to messages sent by a user's currently executing
transaction) mean those delivered to a user by:

• the Master operator using the commands [M] SEND_TDS_USER or [M
] MODIFY_TDS_MOT,

• the TDS monitor as service messages,

• a transaction running for another correspondent (who sends a message to an
explicit destination).

TDS COBOL Programmer's Guide

2-78 47 A2 33UT

2.4.12.2 Line Mode/Format Mode

When a user first logs on, the terminal is operating in line or format mode.

The mode is selected by a TPR as follows:

• The terminal is initially placed in line mode when the user logs onto the TDS
application.

• To change to format mode, the TPR must call a CDGET statement and a form
is activated.

• To return to line mode, the TPR must call a CDRELS statement.

• Either of these modes can also be selected via the options specified at
TDSGEN.

A TPR can receive or send formatted messages only to a terminal operating in
format mode.

2.4.12.3 Terminal Adapter and Free Presentation

When you specify the USE TERMINAL ADAPTER clause in TDSGEN, no
messages are adapted to a user's terminal until the program modifies the
individual user's profile (by setting the TA variable to 1 in the CALL
"MDPROF" statement). Until this happens, the user is said to be in "free
presentation" mode.

You can use the Terminal Adapter to send external messages to an active form,
or to a terminal operating in line mode. External messages sent via the Terminal
Adapter appear on the terminal status line of the screen. If the terminal has no
status line, the bottom line of the screen is used instead.

Programming the Transaction

47 A2 33UT 2-79

2.4.12.4 Switching Between Presentation Modes

The following table shows the effects of switching between modes.

Switching from: To: Effect

Format Mode Line Mode Screen is cleared only if
the user has a Terminal
Adapter presentation.

Line Mode Format Mode Screen is cleared by the
CDGET statement.

Terminal Adapter Free Presentation Screen is not cleared.

Free Presentation Terminal Adapter Screen is cleared only if
the user is in line mode.

Note that in the case of IMPLICIT RELEASE (without using the CALL
"CDRELS" statement), the screen is not cleared.

2.4.12.5 Displaying Messages on an User's Terminal

If the terminal operates in free presentation:

• Messages appear on the screen after the cursor position according to the
advancing options, or control characters specified.

• If the message does not fit on the screen, the terminal may be disconnected.

• If the message is greater than the screen length, the beginning of the message
is displayed; then the screen is cleared and the whole message is displayed.
However, the screen display depends on the type of Datanet being used.

If the terminal uses the Terminal Adapter, you must consider whether the
terminal operates in roll mode or not.

Terminals in Roll Mode

A message appears on the screen after the cursor position according to the
advancing options specified.

Each new line at the bottom of the screen pushes up the remainder of the screen
by one line, thus erasing the topmost one.

In the case of printers, messages are continuously displayed according to the
advancing options specified. Printers always operate in roll mode.

TDS COBOL Programmer's Guide

2-80 47 A2 33UT

Terminals Not in Roll Mode

Messages are displayed in one of two ways depending on whether they are
external or not, as shown in the following illustration:

FORMAT MODE LINE MODE

SEND from
User's transaction

Message is sent in
Free Presentation
(Normally a message is
displayed in format mode)

Display A

SEND from
another transaction

Display B

External Message Display B Display B

Form is re-displayed Screen is cleared from
the cursor position at
the commitment point

Form is re-displayed Screen is cleared

A rollback from
Terminal Adapter
Presentation

A rollback from
Free Presentation

Display B

Figure 2-8. Displaying Messages with Terminal Adapter for a User Not
in Roll Mode

Display A

• A message appears on the screen according to the advancing options
specified. When a message uses the AFTER ADVANCING clause, the
message is displayed independently of the cursor position.

• If the message does not fit on the screen, the screen is cleared and the
message is then displayed.

• If the message is greater than the length of the page (a profile variable), the
status key PAGEOV is sent to the TPR and the message is canceled.

Programming the Transaction

47 A2 33UT 2-81

Display B

Messages appear on the terminal status line that must not be used by
applications. These messages are:

• either overlaid by a new message,

• or cleared by TDS when a RECEIVE statement is performed.

Messages longer than 62 characters may be truncated, and the status key
MSG-TRUNC is sent to the TPR.

Messages are displayed in one of these ways only if the Terminal Adapter is
supported by the addressed terminal; otherwise, the message is canceled and the
status key TAFAIL is sent.

The Terminal Adapter and the BREAK Transaction

When a BREAK message is received, the screen is cleared from the cursor
position, which was current at the most recent commitment point, and the next
message appears from this cursor position.

When the BREAK processing has completed, the screen is cleared from the
most recent commitment point preceding the BREAK and the next message is
sent from this cursor position.

TDS COBOL Programmer's Guide

2-82 47 A2 33UT

2.4.13 Developing Administrative Transactions

The TDS Administrator/Master terminal operator is offered two different ways
of managing correspondents and pools:

• master commands,
• administrative transactions.

Administrative transactions are first developed by the TDS programmer and
then used by the TDS Administrator/Master terminal operator as alternatives to
the corresponding master commands (listed in parentheses) for doing the
following tasks:

Master-terminal Operator Tasks Call Statement Used by Programmer
(see Chapter 3)

Allow/prevent new connections.
([M] ALLOW_NEW_TDS_COR ...)

CALL "MD-NEWCONNECT"

Display telecommunication limits of
a TDS application
([M] DISPLAY_TDS ...)

CALL "DISP-SESLIMIT"

Open a session pool
([M] OPEN_COR_POOL ...)

CALL "OPEN-POOL"

Close a session pool
([M] CLOSE_COR_POOL ...)

CALL "CLOSE-POOL"

Modify characteristics of a session
pool.
([M] MODIFY_COR_POOL ...)

CALL "MODIFY-POOL"

Display characteristics of a session
pool.
([M] LIST_COR_POOL ...)

CALL "DISP-POOL"

List pools
([M] LIST_COR_POOL ...)

CALL "LIST-POOL"

Display characteristics of a
correspondent
([M] LIST_TDS_COR ...)

CALL "DISP-COR"

List correspondents
([M] LIST_TDS_COR ...)

CALL "LIST-COR"

Programming the Transaction

47 A2 33UT 2-83

You can develop these administrative transactions to:

• manage the pool of dummy correspondents,
• modify the pool of sessions when either the XCP1 or XCP2 protocol is being

used,
• display the dynamic, or static state of correspondents and pool objects,
• manage the telecommunication characteristics of a TDS application such as

the number of sessions,
Information concerning the correspondents can be defined statically at
NETGEN, or dynamically during a TDS session as follows.
− At NETGEN, any modification is definitive and overrides the previous

static value.
− When you make a modification through a control-operator call statement,

the modification is temporary; that is, the modification is not preserved
after the object is deactivated normally.

These control-operator call statements are executed immediately, that is, they do
not require a commitment to be taken and they are not canceled if a rollback
occurs later in the commitment unit. However, when you modify the NETGEN
while a control-operator procedure is executing, the control-operator procedure
aborts and an abnormal status is returned to the caller.

TDS COBOL Programmer's Guide

2-84 47 A2 33UT

2.5 Status Setting

The status settings described below are either the STATUS-KEY in CD
structures or the STATUS output parameter in verbs that do not make use of
CDs. Some of these status codes appear only for XCP1 users.
Table 2-5. CD Status Keys (1/5)

Status
Key Return Code Meaning

00 DONE successful completion of the verb.

04 It is not possible to receive data without the
turn. SEND is not allowed until you have the
turn. Issue another RECEIVE in the next TPR.

1. UNSUCCESSFUL
10

11 UNS-SESTX

CP-ALLOCATE unsuccessful

CP-ALLOCATE unsuccessful; no more
sessions for transaction

20 DEST-UNKNOWN destination of SEND unknown

30 DEST-COUNT-INVALID contents of DESTINATION COUNT invalid

40 WAIT

data not immediately available for RECEIVE
or CDRVX. The user must terminate the
current TPR and issue a new RECEIVE or
CDRVX in next TPR

50 LENGTH-ERROR character count greater than length of field to
be sent

PARAM-ERROR partial segment with 0 character count or no
sending area specified on SEND

7. TXINIT-ERROR error notification received from a remote
correspondent after transaction message has
been sent

70 TXI-UNDEFINED reason not identified

71 TXI-UNKNOWN unknown transaction

72 TXI-SECLV-NOSUP security level not supported by remote
correspondent

73 TXI-CONVTY-NOSUP conversation type not supported by remote
application

74 TXI-NAV-NRTRY transaction not available, e.g. authority code
on mailbox XCP1

75 TXI-TERMREQ dialog termination has been requested

CP-ALLOCATE unsuccessful; no more
sessions in pool

UNS-SESPOOL

60

RCV-LV1

Programming the Transaction

47 A2 33UT 2-85

Table 2-5. CD Status Keys (2/5)

Status
Key

Return Code Meaning

ABEND

94

9A

A0

TOO-LONG

BREAK

MSG-REJECT

dialog abnormally terminated by the remote
application

message not completely transferred as a
maximum message size (defined at generation
time) has been exceeded

break has been received; message not
completely transferred

last message sent rejected by remote
application

80

A1 MSG-REFUSED
External message has been sent to an user
with Terminal Adapter presentation and having
the user-profile variable MAIL set to off (0)

A2 MSG-TRUNC
External message having more than 62
characters has been sent to an user with
Terminal Adapter presentation.

A3
A message longer than a logical page was
sent to an user with Terminal Adapter
presentation. The message is lost.

B0 REM-PROG-ERROR remote transaction has aborted

C0

MSG-PAGEOV

RESFAIL-NRTRY
dialog with remote application has terminated
abnormally due to session failure which is not
temporary (such as protocol violation)

D0 RESFAIL-RTRY
dialog with remote application has terminated
abnormally due to session failure which is
temporary (such as disconnect when
security-level=0)

TDS COBOL Programmer's Guide

2-86 47 A2 33UT

Table 2-5. CD Status Keys (3/5)

Status
Key

Return Code

E. VERB-NOT-SUPPORTED

E0 VNS-SNRVAUX SEND or RECEIVE on auxiliary session

E1 VNS-RVXFORMATTED CDSNX/CDRVX used with formatted mode.

E2 VNS-SNNOTTERM

E3 VNS-SNXTERM

E4 VNS-RVEMI RECEIVE with EMI

E5 VNS-SNXESI CDSNX with ESI

E6 VNS-TAFAIL The message cannot be adapted to the
terminal and is lost.

F. STATE-CHECK verb not allowed in this state

F0 STCK-VERB verb not allowed in this state

F1 STCK-SNSNXALREADY

F2 STCK-SECLEVEL SYNC-UNIT does not match security level

F3 STCK-LAST SYNC-UNIT does not match LAST
MESSAGE.

CDNSNX to a correspondent not defined in
the principal or an auxiliary session of the
transaction

SEND/CDSNX and a recoverable message
already sent or SEND/CDSNX and last
message already sent

SEND explicit destination to a correspondent
which is neither the initiator nor a terminal
(not applicable to XCP1 verbs)

Meaning

NOTE:
E., F. are not status code. They are included simply to show the class of
status code (1st character).

Programming the Transaction

47 A2 33UT 2-87

Table 2-5. CD Status Keys (4/5)

Status
Key Return Code Meaning

G.

G0

G1

G2

G3

G4

G5

G6

PARAM-ERROR

PARER-UNKSYBQ

PARER-SNDESTEGI

PARER-NOTALLOC

PARER-SNESINEW

PARER-RETCTL

PARER-SECLEVEL

PARER-TXNAMELG

parameter error

unknown symbolic queue

Send explicit destination with EGI

session not allocated when calling CDSNX or
CDRVX

Send with ESI to new destination

return control error on CP-ALLOCATE

security-level error

error in transaction name length

H.

H0

H1

H2

H3

H4

H5

H6

H7

INVALID-PARAM

INVPAR-CDDCE

INVPAR-OTHER

INVPAR-RETCTL

INVPAR-UNKCOR

INVPAR-IDENT

INVPAR-TXNAMELG

INVPAR-SECLEVEL

INVPAR-CORNAME

invalid parameter

invalid CD or DCE

invalid parameter on SEND/CDSNX or
RECEIVE/CDRVX
invalid return control on CP-ALLOCATE

correspondent specified is unknown

session identification invalid

invalid transaction-name length

invalid security level

correspondent specified in DFRECOV is
invalid

NOTE:
G., H. are not status codes. They are included simply to show the class of the
status code (1st character).

TDS COBOL Programmer's Guide

2-88 47 A2 33UT

Table 2-5. CD Status Keys (5/5)

Status
Key Return Code Meaning

K.

K0

K1

K2

FUNCTION-NAV

FNAV-SLAVEUNAC

FNAV-SNDESTUNAC

FNAV-BUFFERFULL

function is not available

slave inaccessible

SEND explicit destination inaccessible

message buffer full

L0 BREAKX break has been received when calling
CDSNX/CDRVX

TIMEOUTI0 Timeout

Dialog with remote application has been
interrupted due to a session failure whichj is
temporary ; dialog can be restarted with
message recovery

DISCONNECTJ0

NOTE:
K. is not a status code. It is included simply to show the class of status code
(1st character).

Programming the Transaction

47 A2 33UT 2-89

Table 2-6. Communications Verbs and XCP1 Procedures
(CD Status Keys) (1/2)

Verbs/Procedures

Status Key
Return Code

DF
RECOV

ABT-
WORK

CP-
FREE

CP-
ALLO
CATE

REC
EIVESEND

X

X

X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X

X

X
X

X

X

X
X
X

X
X
X

X

X
X
X

X

X

X

X

X

X
X
X

X
X
X

X

X
X
X

X

X

X
X
X
X

X

X

X

X
X
X

X
X
X

X

X
X
X

X

X

X
X
X

X

X

X

X
X
X

X
X
X

X

X
X
X

X

X

X

X
X
X

X
X

X

X
X
X

X

X

X

X
X

X

00 DONE
10 UNS-SESPOOL
11 UNS-SESTX
12 UNS-TFAIL

20 DEST-UNKNOWN
30 DEST-COUNT-INVALID
40 WAIT

50 LENGTH-ERROR
60 PARAM-ERROR
70 TXI-UNDEFINED

71 TXI-UNKNOWN
72 TXI-SECLV-NOSUP
73 TXI-CONVTYP-NOSUP

74 TXI-NAV-NRTRY
75 TXI-TERMREQ
80 ABEND

94 TOO-LONG
9A BREAK
A0 MSG-REJECT

B0 REM-PROG-ERROR
C0 RESFAIL-NRTRY
D0 RESFAIL-RTRY

E0 VNS-SNRVAUX
E1 VNS-RVXFORMATTED
E2 VNS-SNNOTTERM

E3 VNS-SNXTERM
E4 VNS-RVEMI
E5 VNS-SNXESI

F0 STCK-VERB
F1 STCK-SNSNXALREADY
F2 STCK-SECLEVEL
F3 STCK-LAST

X

X

X

X

CD
SNX

CD
RVX

INIT
WORK

EXTR
WORK

TDS COBOL Programmer's Guide

2-90 47 A2 33UT

Table 2-6. Communications Verbs and XCP1 Procedures
(CD Status Keys) (2/2)

Verbs/Procedures

Status Key
Return Code

DF
RECOV

ABT-
WORK

CP-
FREE

CP-
ALLO
CATE

REC
EIVE

SEND

X

X

X
X

X

X

X

X

X

X

X
X

X
X
X

X
X

X

X

X

X

X

X

X

X X
X

X

X
X

X
X
X

X

X

X

X

X
X X

X

CD
SNX

CD
RVX

INIT
WORK

EXTR
WORK

G0 PARER-UNKSYMBQ
G1 PARER-SNDESTEGI

G2 PARER-NOTALLOC
G3 PARER-SNESINEW
G4 PARER-RETCTL

G5 PARER-SECLEVEL
G6 PARER-TXNAMELG

H0 INVPAR-CDDCE
H1 INVPAR-OTHER
H2 INVPAR-RETCTL

H3 INVPAR-UNKCOR
H4 INVPAR-IDENT
H5 INVPAR-TXNAMELG

H6 INVPAR-SECLEVEL
H7 INVPAR-CORNAME
I0 TIMEOUT

J0 DISCONNECT
K0 FNAV-SLAVEUNAC
K1 FNAV-SNDESTUNAC

K2 FNAV-BUFFERFULL
L0 BREAKX

Programming the Transaction

47 A2 33UT 2-91

Table 2-7 gives the values and meanings specific to the use of FORMS, together
with the relevant return codes.

Table 2-7. Status Key Values for FORMS (1/2)

Value Return Code Meaning

NORMAL
Normal Execution.

Some received fields were not selected; they are lost.

An error was found in at least one field. Check selection
vector contents to find erroneous fields.

Invalid selection vector contents.

A function key has been received but the function code
field was not selected.

DONE

SKIPPED

ALMOST

DONEIDE

DONEIDC

0

A8

AB

AF

9I

ABNORMAL

92

92

92

97

9A

9F

9H

9J

A0

A1

A3

ENTRYOV

SPACEOV

MSGOV

OPTERR

BREAK

CALLVIOL

DNSPEC

ALREADY

SNDVIOL

SEQERR

RCVVIOL

Maximum number of active or frozen forms exceeded.

No more space available for control structures.

Maximum message area declared in TDS generation is
too small.

Invalid enclosure level.

A Break occurred.

Environment is neither TDS nor IOF.

Invalid endpoint name. The contents of the SYMBOLIC
DESTINATION or SYMBOLIC QUEUE is illegal.

Form is already active (last form is activated in
Window mode).

Turn error (SEND)

Endpoint not in forms mode.

Turn error (RECEIVE). This status is returned on
CDRECV if there are no messages to be received.

TDS COBOL Programmer's Guide

2-92 47 A2 33UT

Table 2-10. Status Key Values for FORMS (2/2)

Value Return Code Meaning

ABNORMAL

A4

A6

A7

A7

A9

A9

AC

AE

AG

AI

S1

RECNFD

OBJUNKN

RECARERR

SNDARERR

DVIDFBID

CONFLICT

ARGERR

FUNCNAV

NOMATCH

IGNORE

DAMAGED

The specified form was not found.

Unknown attribute or mechanism.

The selection vector does not match an active form.
(RECEIVE)

The selection vector does not match an active form.
(SEND)

Device not supported.

The attribute conflicts with the form (e.g. because the
selected field starts in column 1).

Unexpected parameter or incompatible version numbers
between data structures and object form.

Activation mode not available.

The creation date of the form does not match the
creation date of program structures.

Combination of error 9I and some other erroneous
condition.

System error.

47 A2 33UT 3-1

 3. Session Management Procedures

3.1 Overview

This chapter deals with the following procedures:

DISP-SESLIMIT displays the telecommunication limits of a TDS
application:

GET-SYNCSTATE obtains the synchronization of committed data in XA
Resource Managers.

MD-NEWCONNECT prevents, or allows new connections from being
established, but does not affect the current
connections.

RECONNECT-OPTION specifies the transactions that will execute at the time
of reconnection or disconnection.

SET-ACTIVE sets a terminal from the passive to the active state, and
allows the terminal operator to initiate a new
transaction when the current transaction terminates.

SET-PASSIVE sets a terminal from the active to the passive state,

TERMID gets the characteristics of the principal correspondent
(terminal).

and the following verbs:

RECEIVE makes an incoming message available to the TPR.

SEND causes a message to be released to the destination that
has been specified in the SYMBOLIC DESTINATION
field in the output CD.

TDS COBOL Programmer's Guide

3-2 47 A2 33UT

3.2 The CALL "DISP-SESLIMIT" Procedure

Syntax

CALL "DISP-SESLIMIT" USING option,
 limit-values,
 status.

Description

Displays the telecommunication limits of a TDS application:

• either as defined in NETGEN (static state),

• or the current telecommunication limits (dynamic state).

The equivalent GCL master command is [M] DISPLAY_TDS... (described
in the TDS Administrator's Guide).

Option is an input parameter consisting of a 1-character alphabetic field for
selecting the static or dynamic characteristics as follows.

S indicates Static parameters.

D indicates Dynamic parameters.

Limit-values refers to an output data structure which you can copy from the
<tdsname>. COBOL file by using the COBOL statement COPY
H-DC-TP-TDSLIMIT.

05 coc-tds-limit.
 06 coc-tds-limit-version PIC X VALUE 1. input=1
 06 coc-mxnb-of-tmses COMP-1. max number of TM
 sessions
 06 coc-mxnb-of-xcp1ses COMP-1. max number of XCP1
 sessions
 06 coc-mxnb-of-xcp2ses COMP-1. max number of XCP2
 sessions
 06 coc-cnb-of-tmses COMP-1. current number of TM
 sessions
 06 coc-cnb-of-xcp1ses COMP-1. current number of XCP1
 sessions
 06 coc-cnb-of-xcp2ses COMP-1. current number of XCP2
 sessions

Session Management Procedures

47 A2 33UT 3-3

For the D option, the maximum number fields returned contains 0 if new
connections are prevented from being established through the
CALL "MD-NEWCONNECT" procedure, or through the corresponding master
command [M] PREVENT_NEW_TDS_COR.

The current number fields (coc-cnb-of-tmses, coc-cnb-of-xcp1ses,
coc-cnb-of-xcp2ses) contain 0 when one of the following conditions is met:

• option is set to S,

• option is set to D and the field refers to a XCP2 number even though the XCP2
service is not allowed for this TDS application.

Status refers to the following data structure that you can copy from the <tdsname>.
COBOL file by using the COBOL statement COPY H-DC-TP-STAT.

05 coc-status.
06 coc-status-version PIC X VALUE 1. input=1
06 coc-external-status PIC X.
06 coc-system-status.
 07 coc-issuer PIC X.
 07 coc-code COMP-1. status code
 07 coc-subcode COMP-1. status subcode
 07 coc-last-rc COMP-2.

Only the coc-external-status field can be checked by the caller. The
values it can take can be retrieved through the COBOL statement COPY
H-DC-TP-STAT.
The coc-external-status field can contain the following values.

coc-argerr (2) The field option is not reachable.
The field coc-tds-limit is not reachable.
coc-status-version does not equal 1.
coc-tds-limit-version does not equal 1.
option is neither S nor D.

coc-arviol (3) The transaction issuing the DISP-SESLIMIT was not
submitted by the master.

coc-busy (4) Option equals S: NETGEN is being updated. Retry
later.

coc-done (0) Request is performed.

coc-notdone (9) PPC incident (returned only if option equals D).
NETGEN incident (returned only if option equals S).
Contact the Service Center.

TDS COBOL Programmer's Guide

3-4 47 A2 33UT

coc-objunkn (B) TDS workstation was not declared in NETGEN
(returned only if option equals S).
XCP2 workstation was not declared in NETGEN
(returned only if option equals S).

coc-ogenunkn (C) NETGEN was incrementally generated while TDS was
processing the command. Retry later (returned only if
option equals S).

coc-resnav (D) The XCP2 service was not started (returned only if
option equals D).

coc-wrongpar (H) Error occurred on the TDS/PPC interface. Contact the
Service Center (returned only if option equals D).

Session Management Procedures

47 A2 33UT 3-5

3.3 The CALL "MD-NEWCONNECT" Procedure

Syntax

CALL "MD-NEWCONNECT" USING param-structure, status.

Description

Prevents new connections from being established or allows new connections to be
established. It does not affect the current connections.

The equivalent GCL master command is [M] ALLOW_NEW_TDS_COR...
and/or [M] PREVENT_NEW_TDS_COR (described in the TDS
Administrator's Guide).

Input parameters

param-structure refers to a structure which you can copy from the
<tdsname>. COBOL file by using the COBOL statement COPY
H-DC-TP-NWCNCT.

05 coc-new-connect.
 06 coc-new-connect-version PIC X VALUE 1. input=1
 06 coc-allow-flags.
 07 coc-xcp2-fg PIC X. Y -> allows and N -> rejects
 U -> unchanged
 07 coc-tm-fg PIC X. Y -> allows and N -> rejects
 U -> unchanged
 07 coc-xcp1-fg PIC X. Y -> allows
 N -> rejects
 U -> unchanged

where:

coc-xcp2-fg refers to XCP2 connections.
coc-tm-fg refers to TM connections.
coc-xcp1-fg refers to XCP1 connections.

To allow new connections to be established, specify Y

To prevent new connections from being established, specify N

To leave connections unchanged, specify U.

TDS COBOL Programmer's Guide

3-6 47 A2 33UT

coc-xcp2-fg set to Y has no effect on future requests for allocating a
conversation, but any future request:

• to open a pool for the TDS application will be rejected,

• to increase the number of sessions will be rejected.

For TS 7560, TS 8650, and TS 9662, TDS-TCP/IP correspondents may be selected,
but the H-DC-TP-NWCNCT structure (copied from the <tdsname>.COBOL
library) does not contain this correspondent type.

If a TDS-TCP/IP correspondent is to be selected, the programmer must add the
following declaration after the COBOL statement COPY H-DC-TP-NWCNCT:

 07 coc-tcpip-fg PIC X.

and move “2” to the coc-new-connect-version field.

The coc-tcpip-fg field must be loaded with Y (allows), N (rejects), or U
(unchanged).

The programmer may also use a private param-structure including the
coc-tcpip-fg field; the coc-new-connect-version field loaded with “2”
enables TDS-TCP/IP correspondent selection.

After TS 9662, the H-DC-TP-NWCNCT structure (copied from the
<tdsname>.COBOL library) contains:

• the coc-new-connect-version field initialized with the value “2”, and

• the fields: coc-xcp2-fg, coc-tm-fg, coc-xcp1-fg, and coc-tcpip-fg
initialized with the value “U” (unchanged).

Output parameters

allow-flags:

coc-xcp2-fg = "1" the request for XCP2 sessions is performed.

coc-xcp2-fg = "0" the request for XCP2 sessions has failed.

coc-tm-fg = "1" the request for TM sessions is performed.

coc-tm-fg = "0" the request for TM sessions has failed.

coc-xcp1-fg = "1" the request for XCP1 sessions is performed.

coc-xcp1-fg = "0" the request for XCP1 sessions has failed.

Session Management Procedures

47 A2 33UT 3-7

coc-tm-fg, coc-xcp1-fg and coc-xcp2-fg are meaningful only if the
field "coc-external-status" does not contain COC-ARGERR, or
COC-ARVIOL.

Status refers to the following data structure that you can copy from the <tdsname>.
COBOL file by using the COBOL statement COPY H-DC-TP-STAT.

05 coc-status.
06 coc-status-version PIC X VALUE 1. input=1
06 coc-external-status PIC X.
06 coc-system-status.
 07 coc-issuer PIC X.
 07 coc-code COMP-1. status code
 07 coc-subcode COMP-1. status subcode
 07 coc-last-rc COMP-2.

The coc-external-status field can contain the following values:

coc-argerr (2) The coc-new-connect field is not found.
coc-status-version does not equal 1.
coc-new-connect-version does not equal 1.
coc-xcp2-fg is neither Y nor N.
coc-tm-fg is neither Y nor N.
coc-xcp1-fg is neither Y nor N.

coc-arviol (3) The transaction issuing the MD-NEWCONNECT was
not submitted by the master.

coc-done (0) Request is performed.

coc-notdone (9) A TDS or VCAM incident occurred.
Contact the Service Center.

NOTE:
The request is performed in the following order:

 XCP2
 TM
 XCP1

When a request fails, the first flag (starting from coc-xcp2-fg) set to 0 indicates
which request has failed.

TDS COBOL Programmer's Guide

3-8 47 A2 33UT

3.4 The CALL "RECONNECT-OPTION" Procedure

NOTE:
This call is supported only with the TDS-HA (High Availability) product.

Syntax

CALL "RECONNECT-OPTION" USING data-name-1, data-name-2.

Description

Specifies the special transactions to execute at time of the disconnection,
reconnection, or both. The data-name-1 structure selects these options; so it
contains the input parameters. Data-name-2 contains the results of the call. This
call does the following:

• reduces the reconnection time by preventing the execution of one or more of the
special transactions.

• "hides" the disconnection-reconnection from the end-user by preventing the
execution of all special transactions.

• specifies whether or not to restart the end-user's transaction that was in progress
at the time of the disconnection.

• specifies a maximum time between disconnection and reconnection. Users not
reconnected within this specified time limit are not automatically reconnected.

Usage

• The data-name-1 structure contains input parameters to be passed during the
call, as follows:

 02 MAX-RECONNECT-TIME COMP-1.
 02 DISCONNECT PIC X(1).
 02 LOGON PIC X(1).
 02 RESTART PIC X(1).
 02 RFU PIC X(5).

• The data-name-2 structure is the output, as follows:
 01 DATA-NAME-2 PIC 9.

For more information about the TDS-HA product, see the High Availability
Concepts manual and High Availability Administrator's Guide.

Session Management Procedures

47 A2 33UT 3-9

Input Parameters

MAX-RECONNECT-TIME is the maximum time-limit delay, in seconds, taken
into account at take-over. If this parameter is not
specified, the default is 10 minutes. The delay is the
time elapsed, in seconds, from the time of the user's
last activity (that is, the last commitment of the last
transaction) and the time of reconnection. A user not
reconnected during this time limit is then not
reconnected automatically.
A value of zero means that no automatic reconnection
takes place. A negative value gives an error message
(see data-name-2, below).

DISCONNECT specifies whether to execute the special transaction
DISCNCT at accidental disconnection or automatic
reconnection (after a take-over). A value of 0 means
that the DISCNCT transaction does not execute if an
accidental disconnection affects any users (TDS abort
or member failure).
A value of 0 overrides the effect of the TDS master
command MODIFY_TDS_RESTART_OPTION with
EXEC_DISCONNECT_TX = 1 executed on the TDS
(before the take-over). A value of 7 causes the
transaction to execute when a user is accidentally
disconnected.
DISCNCT can also be executes at TDS shutdown or
member failure (if a TDS master command
MODIFY_TDS_RESTART_OPTION with
EXEC_DISCONNECT_TX = 1 is executed on the
TDS.

LOGON specifies if the special transaction LOGON is to be
executed at every further reconnection (whether
automatic reconnection after a take-over or after any
accidental reconnection).
A value of 0 means that the LOGON transaction does
not execute. A value of 7 means that the LOGON
transaction does execute.
NOTE: By setting the LOGON value to 0, you
disable the reconnect-option call. The call must be
done in the LOGON transaction.

TDS COBOL Programmer's Guide

3-10 47 A2 33UT

RESTART specifies if the special RESTART transaction executes
at every further reconnection (whether automatic
reconnection after a take-over or any accidental
disconnection).
A value of 0 means that the RESTART transaction
does not execute. A value of 7 means that the
RESTART transaction does execute. There must be a
context and a user transaction in progress at the
take-over.

RFU five blank characters reserved for future use.

Output Parameters

As a result of the call, TDS places an output value in Data-Name-2. These values
and their meanings are as follows:

0 Successful execution

1 Negative value given in the
MAX-RECONNECT-TIME parameter.

2 Invalid value specified in DISCONNECT, LOGON, or
RESTART.

3 Wrong session type. The principal session of the
transaction making the call is not TM.

4 Wrong transaction is making the call. The call can be
made only from within a LOGON transaction.

5 Call not supported. The call can be made only from an
HA TDS.

Session Management Procedures

47 A2 33UT 3-11

NOTES:
1. This procedure can be called in only the LOGON transaction.

2. TDS takes into account the options specified in this call after the
commitment-point, following the call.

3. The options remain valid until either the correspondent is no longer known
to TDS (after a normal disconnection or M CANCEL_TDS_COR), or a
new call "RECONNECT-OPTION" is performed (in the LOGON
transaction), which overrides the preceding "RECONNECT-OPTION"
call.

4. This call statement also affects the automatic reconnection processing
performed on the M ALLOW_NEW_TDS_COR master command.

5. This statement is available only with an HA TDS (which is declared
WATCHED BY CMSC). For a take-over of an HA TDS, this call is taken
fully into account, and the commands MDTRSO and TTDS have no effect.
For a TDS warm restart, the commands M MDTRSO and M TTDS are
taken into account first, and the maximum reconnection time is taken into
account only for those sessions that must be reconnected. This is as
specified in the master command using this statement. Some special
transactions can be passed over, no matter what the master command
specifies.

6. For an active correspondent, avoiding these special transactions can reduce
the reconnection time. When the transaction resumes, the last message is
sent again.

7. For a passive correspondent, such as a printer, it may be necessary to
indicate the disconnection (with these special transactions) in order to
manage the duplicate messages.

TDS COBOL Programmer's Guide

3-12 47 A2 33UT

3.5 The CALL "SET-ACTIVE" Procedure

Syntax

CALL "SET-ACTIVE".

Description

Applicable for terminals with a keyboard, with the following results:

• sets the terminal from the passive to the active state,

• Allows the terminal operator to initiate a new transaction when the current
transaction terminates.

NOTES:
1. If the user at TDSGEN has supplied no break routine, TDS will switch the

terminal to the active state upon receipt of a break.

2. SET-ACTIVE is ignored if the terminal has no input capabilities
(receive-only terminals) or if it is already active.

For more information, see Figure 3-1, which shows how to set a terminal between
active and passive.

Session Management Procedures

47 A2 33UT 3-13

3.6 The CALL "SET-PASSIVE" Procedure

Syntax

CALL "SET-PASSIVE".

Description

Applicable for terminals with a keyboard, with the following results:

• sets the terminal from the active to the passive state,

• the READY message no longer appears,

• Prevents the operator from initiating a new transaction when the current
transaction has terminated.

Usage

The terminal may be switched to the active state by the "SET-ACTIVE" clause.

The terminal may also be switched to the active state by the BREAK key if the user
supplies no BREAK transaction. In this case, the current transaction is aborted.

See the following illustration.

ACTIVE PASSIVE

CALL "SET-ACTIVE"
BREAK Key

CALL "SET-PASSIVE"

Figure 3-1. Switching a Terminal between Passive and Active States

TDS COBOL Programmer's Guide

3-14 47 A2 33UT

3.7 The CALL "TERMID" Procedure

Syntax

CALL "TERMID" USING ADDRESS OF data-name-l.

Description

The TERMID statement gets the characteristics of the principal correspondent
(terminal).

Usage

Data-name-1 is an output parameter. It is the name of a structure that must be
declared as follows:

01 data-name-1.
 02 CORRESPID PIC X(12).
 02 PROJECT PIC X(12).
 02 BILLING PIC X(12).
 02 LOCALDVC.
 03 MODEL COMP-1.
 03 DVTYPE
 04 DISPLAY PIC X.
 04 KEYBRD PIC X.
 04 PRINTER PIC X.
 03 PAGEL COMP-1.
 03 LINEL COMP-1.
 03 DVFEATR.
 04 ROLLUP PIC X.
 04 WRAPAR PIC X.
 04 LINFEED PIC X.
 04 LINFOLD PIC X.
 04 HTAB PIC X.
 04 VTAB PIC X.
 02 FILLER PIC X(12).

All these characteristics are returned by the CALL "TERMID" statement. No
status is returned. Before the fields of the data structure are filled, the length of the
structure is checked. If the structure is too small, the transaction is aborted with the
ARGERR return code.

Session Management Procedures

47 A2 33UT 3-15

Parameters

CORRESPID is a 12-character alphanumeric field. It identifies the
principal correspondent of the transaction.

PROJECT is a 12-character alphanumeric field. It identifies the
project of the correspondent.

BILLING is a 12-character alphanumeric field. It identifies the
billing of the correspondent.

MODEL is COMP-1 field. It gives the device-model
identification of the primary correspondent (terminal).

DISPLAY is a 1-character alphanumeric field.
0 = not a screen.
1 = a screen.

KEYBRD is a 1-character alphanumeric field.
0 = not a keyboard.
1 = a keyboard.

PRINTER is a 1-character alphanumeric field.
0 = not a printer.
1 = a printer.

PAGEL is a COMP-1 field that gives the length of the page.

LINEL is a COMP-1 field, which gives the length of the line.

ROLLUP is a 1-character alphanumeric field.
0 = no automatic roll-up.
1 = automatic roll-up.

WRAPAR is a 1-character alphanumeric field.
0 = no automatic wrap around.
1 = automatic wrap around.

LINFEED is a 1-character alphanumeric field.
0 = no automatic line feed.
1 = automatic line feed.

LINFOLD is a 1-character alphanumeric field.
0 = no automatic line folding
1 = automatic line folding.

TDS COBOL Programmer's Guide

3-16 47 A2 33UT

HTAB is a 1-character alphanumeric field.
0 = no horizontal tabulation.
1 = horizontal tabulation.

VTAB is a 1-character alphanumeric field.
0 = no vertical tabulation.
1 = vertical tabulation.

Session Management Procedures

47 A2 33UT 3-17

3.8 The RECEIVE Verb

Syntax

RECEIVE cd-name MESSAGE INTO identifier-1
 [NO DATA imperative-statement].

Description

Makes an incoming message available to the TPR. When no data is available, the
RECEIVE statement allows a specified imperative statement. When the terminal
adapter is being used and the incoming message has several lines, only the first line
is received by the TPR.

Usage

cd-name must reference an input communication description (CD) in the
COMMUNICATION SECTION of the Data Division.

identifier-1 is the name of the area in memory where the message is to be placed.

NOTE:
TDS updates the data items defined in the input CD with each execution of a
RECEIVE statement.

TDS makes data available to the TPR in identifier-1 when a RECEIVE
statement is issued, either at the beginning of the first TPR of a transaction, or at
the beginning of a subsequent TPR that has been activated (the previous TPR
having issued a SEND WITH EGI statement).

Additional RECEIVE statements may be required to transfer the remainder of
the message. These additional RECEIVE statements may be split over several
TPRs of the transaction.

TDS COBOL Programmer's Guide

3-18 47 A2 33UT

If no data is available in identifier-1 during execution of a RECEIVE statement,
one of the following occurs:

• If the NO DATA phrase is specified, the RECEIVE operation is terminated with
a STATUS KEY indicating that the action is complete. The imperative statement
is executed.

• If the NO DATA phrase is omitted, the status key of the input CD is set to F0
(see Table 2-5).

The following apply to data transfer:

• If the size of the message is the same as the size of the area referenced by
identifier-1, the message is stored in identifier-1.

• If the size of the message is smaller than the area referenced by identifier-1, the
message is aligned to the leftmost position of identifier-1, without space fill.

• If the size of the message is greater than the area referenced by identifier-1, the
message fills identifier-1 left to right. The remainder of the message is
transferred to identifier-1 by subsequent RECEIVE statements issued by the
same TPR, or another TPR prior to any other communication request. As many
RECEIVE statements can be issued as are required to transfer to identifier-1 a
complete message. If the transaction is terminated before the complete message
is transferred, the part not transferred is lost. The whole message has to be
transferred before any SEND statement can be performed. Infringement of this
rule causes the TPR to obtain the status key STCK-VERB in CD (see Table 2-5).

Data items referenced by data-names in the input CD are updated with each
execution of a RECEIVE statement.

Session Management Procedures

47 A2 33UT 3-19

3.9 The SEND Verb

Syntax 1

SEND cd-name FROM identifier-1.

Syntax 2

 { ESI }
SEND cd-name [FROM identifier-1] WITH { EMI }
 { EGI }

{ identifier-2 }

 [{ BEFORE } { identifier-3 }]
 [{ AFTER } ADVANCING { integer [{ LINES }] }].
 [{ PAGE [{ LINE }] }]

Description

The SEND statement causes a message to be released to the destination that has
been specified in the SYMBOLIC DESTINATION field in the output CD. If the
destination is the terminal or correspondent that activated the current transaction,
the SEND operation can also indicate that a response is required from the terminal
operator or correspondent.

Usage

cd-name: must reference an output communication description entry (CD) in the
COMMUNICATION SECTION of the DATA DIVISION.

identifier-1: names the area in memory from which the message is to be sent.

identifier-2: must reference a one-character integer without an operational sign.

"1" for ESI (End of Segment Indicator)
"2" for EMI (End of Message Indicator)
"3" for EGI (End of Group Indicator).

identifier-3: when used in the ADVANCING phrase, it must reference a decimal
value. Identifier-3 can be zero.

TDS COBOL Programmer's Guide

3-20 47 A2 33UT

NOTES:
1. TEXT-LENGTH of the output CD specifies the number of bytes to be sent

from memory beginning from the leftmost position of identifier-1. If the
Terminal Adapter is used, ensure that TEXT-LENGTH is less than 2048
bytes.

2. If TEXT-LENGTH is negative or greater than memory, the STATUS-KEY
of the output CD is set to 50 (LENGTH-ERROR).

Syntax 1 is equivalent to the SEND with ESI statement, that is, a Syntax 1 SEND
releases only a portion of a message or message segment to TDS. TDS transmits
only the complete message. Therefore, these portions are held by TDS in the
output buffer and they are then said to be "quarantined". All successive portions
are concatenated. The message is completed with a SEND EMI or EGI (Syntax 2)
statement. At the end of a TPR, any portion or segment of a message not
terminated by an end of message indicator (EMI or EGI) of a Syntax 2 SEND
statement is discarded from the system. No portion or segment of the message is
sent.

A single execution of a SEND statement in Syntax 2 never releases to TDS more
than a single message or message segment based on the specified indicator.

ESI means End of Segment Indicator.
ESI is used with the first or intermediate message
segments. Since the message is not yet terminated, the
next communication request must be another SEND
statement. Segments are held in quarantine until a
SEND with EMI or EGI statement is made.

EMI means End of Message Indicator.
EMI is used with the last (or only) message segment of
a complete message. The message is no longer held in
quarantine and may be released to the correspondent.
The turn is kept by the TPR. A new message may now
be built for the same or another destination.

EGI means End of Group Indicator.
EGI is used to indicate the end of a complete message
when a response is required. After the output
operation is completed, the turn is given to the
terminal or correspondent, that is, the correspondent is
switched to input mode.

Implicitly, the next communication verb must be a RECEIVE statement. The EGI
indicator should accompany the last SEND statement of a transaction. If this is not
done, TDS assumes it.

If the indicator conflicts with the previous communication verb, the STATUS KEY
of the output CD is set to F0 (STCK-VERB) (see Table 2-5).

Session Management Procedures

47 A2 33UT 3-21

As long as a MESSAGE is not completed by an EMI or EGI indicator, all requests
must reference the same destination. Infringement of this rule causes the TPR to
receive the status PARAM-ERROR.

When the transaction was spawned for a passive terminal, that terminal may be
referenced by a SEND with EGI statement.

ADVANCING (Syntax 2) allows control of the vertical positioning of each
message or message segment on a terminal where vertical positioning is applicable.
If vertical positioning is not applicable to the terminal, TDS ignores the vertical
positioning specified or implied.

On a terminal where vertical positioning is applicable and the ADVANCING
phrase is not specified, automatic advancing occurs as if the AFTER ADVANCING
1 LINE phrase were specified.

Note that if the ADVANCING phrase is implicitly or explicitly specified and
vertical positioning is applicable:

• If identifier-3 or integer is specified, the transmission to the terminal is
positioned downward the number of lines indicated by the value of the data item
referenced by identifier-3 or integer.

• If the BEFORE phrase is used, the message or message segment is represented
on the terminal before vertical positioning takes place.

• If the AFTER phrase is used, the message or message segment is represented on
the terminal after vertical positioning takes place.

• If PAGE is specified, transmissions are represented on the terminal before or
after (depending on the option specified) the terminal is positioned to the next
page.

• If PAGE is specified but does not apply to the particular terminal, advancing
occurs as if BEFORE or AFTER (depending on which was specified)
ADVANCING 1 LINE were specified.

The use of the ADVANCING phrase adds to the size of the message or message
segment three characters for a page advancement and two additional characters for
each line positioned. This should be taken into account when defining the size of
the largest message in TDS (MESSAGE-LENGTH clause in the TDS SECTION at
TDSGEN).

Special characters from CONSTANT STORAGE can be inserted as part of the
contents of the data item referenced by identifier-1. These characters are
transmitted to the terminal without modification.

TDS COBOL Programmer's Guide

3-22 47 A2 33UT

Be careful

If the SYMBOLIC DESTINATION of the CD-output is loaded from TDS storage
(for example, PRIVATE or TRANSACTION STORAGE), it is necessary to refresh
this storage field in case of user reconnection. In fact, the user may use another
terminal at reconnection time. If this storage field is not refreshed, unpredictable
results may occur (for example, next TPR launched without message transmission,
looping, etc.).

This field must be refreshed from the SYMBOLIC SOURCE field of CD-input
once the RECEIVE verb has been executed or from the TERMINAL-ID field of
the LOGON TRANSACTION STORAGE.

For more details, refer to CD-output (in particular the explanation of data-name-5).

47 A2 33UT 4-1

 4. TPR Control Procedures

4.1 Overview

This chapter deals with the following procedures:

ABORT aborts the transaction.

CANCELCTX the TPR calling CANCELCTX continues, but the
previous context is deleted.

DISPLAY-MENU displays the TDS menu with the list of available
transactions on the terminal from which the request
was actually issued.

EXITS forces the current TPR to terminate.

GETTPRPAR returns the length and addresses of structures, and the
number of stacked contexts.

RESTORE the TRANSACTION-STORAGE is restored to the
state it had in a previous context which has been saved
at the interrupt time.

SIMBRK simulates a break for a correspondent in the same way
as if it was issued at the terminal.

SUBJOB submits a request for asynchronous job execution.

XSIMBRK simulates a break for a correspondent in the same way
as if it was issued at the terminal.

TDS COBOL Programmer's Guide

4-2 47 A2 33UT

and the following verbs:

ACCEPT causes the information requested to be transferred to a
data item specified by an identifier.

DISPLAY outputs data to a terminal or SYSOUT.

EXIT exits the program.

STOP aborts the transaction.

WRITE in User Journal outputs user-defined records to the user journal.

NOTE:
The procedures and verbs are described in the order shown above, not in
alphabetic sequence.

TPR Control Procedures

47 A2 33UT 4-3

4.2 The CALL "ABORT" Procedure

Syntax

CALL "ABORT" [USING abort-code].

Description

Aborts the transaction.

Usage

abort-code is a data-name defined as COMP-1. It is stored by TDS in the
ABORT-CODE field of TDS-STORAGE. The ABORT-CODE field, which
originally contains zero, is updated with the abort code given in CALL "ABORT".
The default abort-code is USERREQ (user request).

TRANSACTION-STORAGE and PRIVATE-STORAGE are not rolled back
(whether or not the ON-ABORT-TPR mechanism is used).

TDS COBOL Programmer's Guide

4-4 47 A2 33UT

4.3 The CALL "CANCELCTX" Procedure

Syntax

CALL "CANCELCTX" USING RANK.

Description

The TPR calling CANCELCTX continues, but the previous context is deleted.
RANK is a COMP-1 (FIXED BIN-15) output parameter that contains the number
of the context that has been canceled. Zero means that no context has been
canceled; one means that the context number 1 (the main context) has been
canceled, and so on). Each CANCELCTX reduces the number in RANK by 1.

If there is no previous context, CANCELCTX has no effect.

By testing RANK, the user knows how many previous contexts remain and can
decide what action next to take.

The CALL "CANCELCTX" procedure is useful only in the following transactions:

BREAK
DISCNCT
LOGON
RESTART

If the CALL "CANCELCTX" procedure is used in a user transaction, RANK will
be 0.

If the CALL "CANCELCTX" procedure is used in system transactions, for example,
STARTUP, SHUTDOWN or LOGOUT, then RANK will be (-1).

If the previous context refers to an XCP2 transaction, the RANK will be (-2). In
this case, the function CANCELCTX is not available. The XCP2 transaction must
be terminated in another way (for example, by moving "CANCELTX" to the next
TPR).

TPR Control Procedures

47 A2 33UT 4-5

On deletion of the main context (RANK=1) by the CALL "CANCELCTX"
procedure

• The interrupting context replaces the main context, particularly for the READY
message, and for FORMS with the NO IMPLICIT RELEASE option in use.
The READY message is displayed at the terminal if both no form is active and
no message has been sent in the last TPR of the interrupting transaction. Note
that the FORMS procedure such as CALL "CDMECH" or CALL "CDRELS" send
messages.

• No context remains when the DISCNCT transaction is executed. This means
that the next connection will be as for the first log-on.

Note that in the case of a connection after an abnormal disconnection, the LOGON
transaction can use CALL "CANCELCTX" to delete the previous context, that is,
the context that existed before disconnection.

TDS COBOL Programmer's Guide

4-6 47 A2 33UT

EXAMPLE:

Transaction A Transaction BREAK1 Transaction BREAK2

Context saved
in swap
No. 1

TPR1

TPRn

Context saved
in swap

No. 2

TPR1

"break"
end of TPR

space NEXT-TPR
end of Transaction
BREAK1

"break"

space NEXT-TPR
end of Transaction
BREAK2

TPR Control Procedures

47 A2 33UT 4-7

Transaction A has no previous context.

Transaction BREAK1 has 1 previous context.

Transaction BREAK2 has 2 previous contexts.

1. If the CALL "CANCELCTX" is inside transaction A:
− no action takes place (CALL "CANCELCTX" is ignored),
− RANK = 0

2. If the CALL "CANCELCTX" is inside transaction BREAK1, CALL
"CANCELCTX" cancels the previous context:
− transaction A is aborted (ON-ABORT-TPR, if any, is not activated),
− RANK = 1
− transaction BREAK1 continues until the end.

3. If the CALL "CANCELCTX" is inside transaction BREAK2, CALL
"CANCELCTX" cancels the previous context:
− transaction BREAK1 is aborted (ON-ABORT-TPR, if any, is not

activated),
− RANK = 2
− transaction BREAK2 continues until the end.

❑

TDS COBOL Programmer's Guide

4-8 47 A2 33UT

4.4 The CALL "DISPLAY-MENU" Procedure

Syntax

CALL "DISPLAY-MENU".

Description

Displays the TDS menu with the list of available transactions on the terminal from
which the request was actually issued. A side effect of using this CALL statement
is that if several transactions are being spawned to this terminal, note that this
CALL statement is automatically spawned with the "high" priority.

TPR Control Procedures

47 A2 33UT 4-9

4.5 The CALL "EXITS" Procedure

Syntax

CALL "EXITS".

Usage

Forces the current TPR to terminate.

EXAMPLE 1

Transaction A
TPR1

.............
MOVE SPACES TO NEXT_TPR

CALL "EXITS"

.........

.........

end of TPR1

end of Transaction

TDS COBOL Programmer's Guide

4-10 47 A2 33UT

EXAMPLE 2

Transaction A
TPR1..............

..............

end of TPR1

TPR2

PROCA

CALL PROCB

CALL "EXITS"

PROCB

MOVE "TPR2" TO NEXT_TPR
CALL PROCA

❑

TPR Control Procedures

47 A2 33UT 4-11

4.6 The CALL "GETSP-U-CNTXT" Procedure

Syntax

 CALL "GETSP-U-CNTXT" USING i- reqid,
 i- area,
 io-size,
 o- address,
 o- status.

Description

Gets space in user context.

Space can be allocated in PRIVATE-STORAGE or in
TRANSACTION-STORAGE. The allocated subsets are identified by their
REQID. For a given REQID, space is allocated upon the first call to
GETSP-U-CNTXT. Further calls to GETSP-U-CNTXT with the same REQID
may be issued in order to retrieve the address of the subset.

The MAXIMUM PRIVATE-STORAGE and/or MAXIMUM
TRANSACTION-STORAGE clauses must be specified in the STDS.

Parameters

i-reqid is a string of 8 alphanumeric characters identifying the
user context. It is an input parameter. The name
"-STATIC-" is reserved for the space subsets
corresponding to the PRIVATE-STORAGE SIZE and
the TRANSACTION-STORAGE size as defined in the
STDS.

The other subsets are the DYNAMIC subsets and their
reqid is named by the user.

i-area is a 1-character alphabetic field. Its value can be "P"
for PRIVATE-STORAGE and "T" for
TRANSACTION-STORAGE. It is an input
parameter.

TDS COBOL Programmer's Guide

4-12 47 A2 33UT

io-size is a COMP-1 field that can be an input or output
parameter. It must be specified at least the first time a
part of the context is used. If io-size is equal to 0, the
procedure puts the right size of the user context subset
in io-size, if this one exists. Otherwise, o-status is
equal to 6. If io-size is not equal to 0, the value must
be the right size of the user context subset. If it is not
the case, o-address is returned equal to NULL ptr and
o-status to 2.

o-address (pointer type) is the address of the beginning of the
subset of privat-storage or transaction-storage (as it is
specified in the i-area parameter) identified by i-reqid.

o-status is a one-character output field. It gives the status of
the operation.

0 the allocation is done

1 parameter error

2 the size parameter is specified and wrong

3 lack of space for the allocation

4 too many user contexts

5 no MAXIMUM TRANSACTION-STORAGE
clause or no MAXIMUM PRIVATE-STORAGE
clause is present.

6 the specified reqid does not exist

TPR Control Procedures

47 A2 33UT 4-13

4.7 The CALL "GETTPRPAR" Procedure

Syntax

 CALL "GETTPRPAR" USING data-name-1,
 data-name-2,
 data-name-3.

Description

Returns lengths and addresses of structures and the number of stacked contexts
before the current transaction, depending on what is specified in the data-name-2
parameter.

The lengths and addresses are in pointer variables, and are for these TDS storage
structures: TDS, CONSTANT, PRIVATE, and TRANSACTION. The transaction
stacking numbers apply to these transactions: BREAK, LOGON, DISCNT,
RESTART, and CONTEXT RANK.

Returns information at disconnection time of an XCP1 session.

Usage

Data-name-1 has three formats.

Format 1:

The first format is a structure that contains the lengths and addresses of the TDS
structures after this call. The COBOL statement COPY TDS-USER-AREA to
obtain this structure, as follows:

 01 TDS-USER-AREA.
 02 TDS-STORAGE-PTR POINTER.
 02 TDS-STORAGE-LGTH COMP-2.
 02 CST-STORAGE-PTR POINTER.
 02 CST-STORAGE-LGTH COMP-2.
 02 PRV-STORAGE-PTR POINTER.
 02 PRV-STORAGE-LGTH COMP-2.
 02 TX-STORAGE-PTR POINTER.
 02 TX-STORAGE-LGTH COMP-2.

TDS COBOL Programmer's Guide

4-14 47 A2 33UT

The parameters of this structure have the following meanings:

PTR Pointer to storage

LGTH Length of storage

TDS TDS storage

CST CONSTANT storage

PRV PRIVATE storage

TX TRANSACTION storage

The TX storage length is that defined in the STDS, less the length of the PRIVATE
storage.

The TX storage length and the PRIVATE storage length include the space allocated
by GETSP-U-CNTXT if any.

Format 2:

The second format is a COMP-1 field that returns the number of existing
CONTEXT RANK contexts. This is shown in the following text:

 77 TDS-CONTEXT-RANK COMP-1.

Format 3:

The third format is an output structure with the following description:

 01 RESULT.
 02 XCP1-TYPE PIC X(2).
 02 XCP1-LAST-TPRNAME PIC X(12).
 02 XCP1-LAST-USERID PIC X(12).

This format is used when Data-name-2 is filled with "XCP1-01" (see Data-name-2
below).

XCP1-TYPE can be LP, LA or RP.

LA means Local Auxiliary, an auxiliary XCP1 session
allocated by the CP-ALLOCATE verb on the local side
(where the OCPOOL command was entered).

LP means Local Principal, an XCP1 session on the local
side (where the OCPOOL command was entered).

RP means Remote Principal, an XCP1 session on the
remote side.

TPR Control Procedures

47 A2 33UT 4-15

XCP1-LAST-TPRNAME is the name of the last TPR committed, if any, executed
either for an auxiliary session or a principal session.

XCP1-LAST-USERID is the name:

• of the user working with the XCP1 session at disconnection time, if the
XCP1-TYPE is LA,

• of the XCP1 correspondent for the other types.

This information is only available if the call "GETTPRPAR" is executed for an
XCP1 correspondent in the first TPR of the DISCONNECT transaction. It is
initialized with spaces at connection or reconnection time and during an
"INIT-WORK" verb.

Data-name-2 is an input parameter of 13 alphanumeric characters right padded
with spaces. Valid values and their meanings are as follows:

TDS-USER-AREA Indicates the structure to return in format 1.

NBCTXT Indicates the structure to return in format 2.

XCP-01 Indicates the structure to return in format 3.

Data-name-3 is a single character (PIC X) in which the status of the call is
returned. Valid values and their meanings are as follows:

0 Successful call

1 Unknown option specified for DATANAME-2

If Data-name-2 is XCP1-01, the status 1 is returned if the call is not done in the
disconnect transaction, or if the correspondent is not an XCP1 correspondent, or if
the data-name-1 structure cannot be accessed.

TDS COBOL Programmer's Guide

4-16 47 A2 33UT

4.8 The CALL "NOCANCELCTX" Procedure

Syntax

CALL "NOCANCELCTX" USING data-name-1

Description

This procedure allows resumption explicitly of the user transaction interrupted by a
disconnection or a system failure at this user reconnection time when the
"CANCELCTX AT RECONNECTION" clause is present in the TDS generation
file.

This procedure may only be called in the logon transaction and the last context of
the user will be resumed only after the execution of the logon transaction.

If the main transaction was interrupted by one or several break transactions when
the disconnection occurs, the whole stack of interrupted contexts of the user is
restored after the execution of the logon transaction.

Usage

data-name-1 is a COMP-1 field containing the output status of the call as follows:

0 successful completion

1 procedure not called in the logon transaction

The procedure has no effect if it is called in the first logon transaction: the status
returned will be 0.

TPR Control Procedures

47 A2 33UT 4-17

The call to "NOCANCELCTX" AND THE "CANCELCTX" procedures are
independent and may be called successively. The table below shows the result of
one of these calls according to what has happened previously:

current call

with the clause without the clause

"nocancelctx"

4

4

4

"cancelctx"

1

1

1

"nocancelctx"

2

3

4

"cancelctx"

1

1

1

previous call

nothing

"cancelctx"

"nocancelctx"

The references 1, 2, 3, 4 have the following meaning:

1 The action of the CANCELCTX procedure remains
the same.

2 The transaction or the stack of interrupted transactions
will be resumed at the end of the logon transaction.

3 The last stacked transaction has been unstacked by the
CANCELCTX procedure. All the stacked transactions
remaining will be resumed at the end of the logon
transaction.

4 The call has no effect.

TDS COBOL Programmer's Guide

4-18 47 A2 33UT

4.9 The CALL "RESTORE" Procedure

Syntax

CALL "RESTORE" USING RANK.

Description

Applicable when at least one context has been stacked for the BREAK, LOGON,
RESTART, and DISCNCT transactions (these transactions are described in Chapter
12). On execution of RESTORE, the TRANSACTION-STORAGE is restored to
the state it had in the previous context, which has been saved at the interrupt time.
PRIVATE-STORAGE that is part of TRANSACTION-STORAGE is also restored.

RANK is a COMP-1 (or FIXED BIN-15) output parameter that contains the
number of the context that has been restored. Zero means that no context has been
restored; one means that the context number 1 (the main context) has been restored,
and so on.

If there is no previous context, the CALL "RESTORE" is ineffective.

NOTE:
Do not use the CALL RESTORE in conjunction with the GETSP-U-CNTXT.

TPR Control Procedures

47 A2 33UT 4-19

Figure 4-1 illustrates the use of CALL "RESTORE".

CALL "RESTORE" CALL "RESTORE" CALL "RESTORE"

2 is found in
TRANSACTION-STORAGE

1 is found in
TRANSACTION-STORAGE

end of Transaction
BREAK1

end of Transaction
BREAK2

2 1

 spaces -> NEXT-TPR spaces -> NEXT-TPR

spaces in NEXT-TPR
end of Transaction A

Transaction BREAK2

 Put 4 in TRANSACTION
 STORAGE

Transaction BREAK1
 TPR1

 Put 1 in TRANSACTION
 STORAGE

Transaction A
 TPR1

Put 2 in TRANSACTION
 STORAGE

3

Figure 4-1. Using CALL RESTORE

Transaction BREAK1 interrupts TPR1 of transaction A that is currently executing.
Transaction BREAK2 interrupts transaction BREAK1. TDS stores any working
data that it needs to continue BREAK1 and BREAK2 at a later time.

TDS COBOL Programmer's Guide

4-20 47 A2 33UT

In transaction BREAK2, two previous contexts exist:

1 CALL "RESTORE" USING RANK.

- RANK = 2

- TRANSACTION-STORAGE is restored with that of transaction
 BREAK1 (value = 1).

2 CALL "RESTORE" USING RANK

- RANK = 1

- TRANSACTION-STORAGE is restored with that of transaction A
 (value = 2).

CALL "RESTORE" USING RANK.3

- RANK = 0.

After the execution of the CALL "RESTORE",

After the execution of the CALL "RESTORE",

This command is ineffective,

- After the execution of the CALL "RESTORE"

TPR Control Procedures

47 A2 33UT 4-21

4.10 The CALL "SIMBRK" Procedure

Syntax

CALL "SIMBRK" USING data-name-1, data-name-2 [data-name-3].

Description

Simulates a break for a correspondent. The BREAK transaction, if defined, will be
activated.

The commitment option (wait commitment or rollback commitment), used when
"SIMBRK" is called, is the one specified in the STDS for the transaction calling
"SIMBRK". If this commitment option has not been specified, the one specified
for the BREAK transaction will be used, but the one given for the transaction
data-name-2 will never be used. See Chapter 12 for a description of BREAK
transaction processing.

Usage

Data-name-1 is a userid of up to 8 alphanumeric characters identifying the
correspondent. A userid of less than 8 is right padded with spaces. It is an input
parameter.

Data-name-2 is an output parameter. It is a single numeric character that contains
the status of the CALL at completion:

0 successful completion

1 unknown correspondent

2 correspondent found, but it has been logged off, or correspondent name is
invalid (contains invalid characters such as '<').

3 wrong value for data-name-3 (see data-name-3 below).

5 correspondent is in pass-through mode; this verb is not allowed in this
context.

TDS COBOL Programmer's Guide

4-22 47 A2 33UT

Data-name-3 is an optional input parameter. It is a 7-character string. Three cases
are to be considered:

• data-name-3 is specified with a value of "REALBRK" to indicate that the CALL
"SIMBRK" treatment is exactly the same as if it was issued at the terminal. In
this case, the BREAK transaction will be executed according to the specified
COMMITMENT option as follows:

− if WAIT COMMITMENT, at the next commitment point,

− if ROLL-BACK COMMITMENT, at the end of the current TPR, after its
rollback has been done. In this case, the restart status will be set to 2.

• data-name-3 is specified with a value other than "REALBRK", CALL
"SIMBRK" will not be executed, and data-name-2 will be set to 3.

• data-name-3 is not specified, the CALL "SIMBRK" behavior is not exactly the
same as if was issued at the terminal; the BREAK transaction will only be taken
into account at the next commitment point (the current CU will not be rolled
back even if ROLL-BACK COMMITMENT has been specified in the
COMMITMENT option).

TPR Control Procedures

47 A2 33UT 4-23

4.11 The CALL "SUBJOB" Procedure

Syntax

CALL "SUBJOB" USING job-description, status, file-description,
 [dest].

Description

Submits a request for asynchronous job execution. A submitted job is stored in the
Stream Reader queue and processed by the Stream Reader service asynchronously.
The term asynchronous means that the TPR submitting the request can continue to
do its own work while the submitted job becomes eligible for execution.

A request is validated only if the submitting commitment unit ends normally. In
the case of rollback, the job submitted by the current commitment unit or TPR is
canceled.

A job submission and its execution are asynchronous. The console and report
messages are not directed to the submitting terminal (the user specified in the $JOB
statement), but to the IOF mailbox of the user submitting the TPR which contains
the CALL "SUBJOB" procedure.

The user can submit a job to a remote host and direct its output to a different
destination.

For an example of how CALL "SUBJOB" is used, see Appendix D.

Note the following points:

$JOB/$ENDJOB present in the JCL of the submitted job:

You must specify the PROJECT and BILLING parameters in the $JOB statement
of the submitted job if there are no corresponding default values in the site catalog;
otherwise the submitted job aborts.

No $JOB/$ENJOB present in the JCL of the submitted job:

The project and billing of the user submitting the TPR which contains the CALL
"SUBJOB" statement is used.

For more information, see the JCL Reference Manual.

TDS COBOL Programmer's Guide

4-24 47 A2 33UT

Usage

Job-description is a data structure that contains the set of parameters applicable to
the submitted jobs. The job description must be structured as follows:

01 JOB-DESCRIPTION.
 02 JOBDESC-STRUCT-LN COMP-1.]
 02 JOB-CLASS PIC X.]
 02 JOB-PRIORITY PIC 9.]
 02 JOB-SWITCHES PIC X OCCURS 32.]
 02 JOB-DELETE PIC X.] 61 bytes
 02 JOB-HOST PIC X(4).]
 02 JOB-CLASS2 PIC X(2).]
 02 JOB-SKIP-BLANK PIC X(1).]
 02 JOB-NOMESSIOF PIC X(1).]
 02 JOB-OUTDEST.]
 03 PRIMARY-DEST PIC X(8).]
 03 SECONDARY-DEST PIC X(8).]
 02 JOB-VALUES.
 03 VALUES-STRUCT-LN COMP-1.
 03 VALUES-STRUCT.
 04 VALUES-STRUCT-HEADER.
 05 NB-OF-POSITIONAL COMP-1.
 05 NB-OF-KEYWORD COMP-1.
 04 VALUES-PARAMETERS PIC X(m).

All the fields in JOB-DESCRIPTION are input parameters.

JOBDESC-STRUCT-LN must contain the exact size in bytes of the
JOB-DESCRIPTION structure. This value is typically
61 when values are not used.

JOB-CLASS If specified, must be one of the sixteen classes from A
to P under which the job will be submitted, scheduled
and executed.
If JOB-CLASS is not specified (space), you can use 2
characters for indicating the class of the submitted job
(see JOB-CLASS2 below).

JOB-PRIORITY represents the job scheduling priority such as can be
specified in the $JOB statement. It must be in the
range 0 to 7, where 0 is the highest and 7 is the lowest
priority.

TPR Control Procedures

47 A2 33UT 4-25

JOB-SWITCHES represent the initial job switch values. You must
initialize each of them to 0 or 1. They are numbered
from 1 to 32 whereas the switches specified in the
SWITCHES parameter of the
ENTER_JOB_REQUEST directive are numbered from
0 to 31.

JOB-DELETE must be set to Y (Yes) or N (No). If yes, the subfile
which contains the job to be submitted will be deleted
once the job has successfully executed. This
parameter corresponds to the DELETE option of the
$JOB statement.

JOB-HOST is a DSA node name up to 4 characters long. It
specifies the remote host name where the job must be
executed. This parameter corresponds to the HOST
option of the $JOB statement. If equal to spaces, the
job is executed locally. The host name must be
cataloged.

JOB-CLASS2 allows you to specify 2 characters for the class of the
job to be submitted. If JOB-CLASS contains a value
other than a space, then JOB-CLASS2 must be filled
with spaces.
If JOB-CLASS2 contains a value other than spaces,
then JOB-CLASS must contain a space.
Both JOB-CLASS and JOB-CLASS2 can be filled
with spaces in which case the class of the submitted
job is the default batch class for the project.
If JOB-CLASS2 contains a class which is not available
to the recipient of the submitted job, the class of the
submitted job will be P.

JOB-SKIP-BLANK must be set to Y (yes) or N (no). If yes, spaces to the
right of the passed valued are suppressed. If no or any
other value, spaces are kept. (Note that this was the
default value in V5.)

TDS COBOL Programmer's Guide

4-26 47 A2 33UT

JOB-NOMESSIOF determines the destination of the messages IN,
STARTED, COMPLETED, and OUTPUT
COMPLETED.
If JOB-NOMESSIOF=Y or y, messages are sent only
to the main operator and not to the lof mailbox of the
submitting user.
Other values such as N, n, " ", or everything else lead
messages to be sent to the main operator and to the lof
mailbox of the submitting user.
It is the way to avoid accumulating of messages in the
lof mailbox of the submitting user (or in the lof
mailbox of the TDS master if the parameter DEST is
set to MASTER).

JOB-OUTDEST the two fields of this substructure specify the output
destination station. These parameters correspond to
the DEST option of the JCL statements SYSOUT,
WRITER, or OUTVAL.
If both are blank, the job output is directed to the local
main station. If the primary destination name is
specified (not blank) and the secondary destination
name is not initialized, then the job output is directed
to the primary RBF station. If the secondary
destination name is also initialized, then the output is
directed according to the Distributed Job Processing
algorithm.

The JOB-VALUES substructure contains the initial job values.

VALUES-STRUCT-LN defines the size in bytes of the VALUES-STRUCT
data structure. If 0, there is no value to be transmitted
to the job.

NB-OF-POSITIONAL defines the number of positional values that are
described in the values parameter structure.

NB-OF-KEYWORD defines the number of keyword values that are
described in the values parameter structure. When the
submitted job is a GCL procedure
NB-OF-KEYWORD is equal to zero.

TPR Control Procedures

47 A2 33UT 4-27

VALUES-PARAMETERS defines all the elements (positional and keyword
values). This structure is the concatenation of all the
elements. Each element must have one of the
following descriptions. If the element is a positional
value, then the description is as follows:
05 POSITIONAL.
06 POS-LENGTH COMP-1.
06 POS-VALUE PIC X(POS-LENGTH).

where POS-LENGTH is the size in bytes of the
positional value.

If the element is a keyword value, then the declaration
is as follows:

05 KEYWORD.
06 KW-LENGTH COMP-1.
06 KW-NAME PIC X(8).
06 KW-VALUE PIC X(KW-LENGTH).

where KW-LENGTH is the size in bytes of the
keyword values and KW-NAME is the keyword name
left justified and padded with spaces.

All the positional values must be declared before the
keyword values.

If the default job value is chosen, you must specify the
following for:
- a positional value:
 06 POS-LENGTH COMP-1 VALUE 0.
 (do not use POS-VALUE)

- a keyword value:
 06 KW-LENGTH COMP-1 VALUE 0.
 06 KW-NAME PIC X(8).
 (do not use KW-VALUE)

If the positive value or keyword value is not
completely filled (that is they contain spaces on the
right), the spaces are passed to the reader and can lead
to JCL translation errors. This can be seen in this
example:

05 pos1
 06 POS1 LGTH COMP-1 VALUE 6
 06 POS VL PIC X(6) VALUE "ABC "

TDS COBOL Programmer's Guide

4-28 47 A2 33UT

In this example above, if POS1 VL is used in:

 MVL A=&posvl_XYZ;

then the value of A is ABCbbb_XYZ and not
ABC_XYZ.
When the submitted job is a GCL procedure the first
POS-VALUE must contain:

 MWINLIB BIN binary-library-name
 [:media:device-class];

library name is the name of the library where the GCL
procedure is stored,

The second POS-VALUE must contain:
 procedure name b

where:

procedure name is the name of the GCL
procedure b represents the blank character suffix that
you must add on to the procedure name.

The third and possibly the fourth POS-VALUE fields
must contain the parameters of the GCL procedure
Each POS-VALUE length is limited to 128 characters.

• Status is a data structure which defines the status of the CALL "SUBJOB"
statement. It is an output parameter and must have the following data structure:

 01 STATUS.
 02 RESULT PIC 9.
 02 JOBID COMP-2.

 01 STATUSB REDEFINES STATUS
 02 RESULTB PIC 9.
 02 ERROR-TYPE COMP-1.
 02 ERROR-NUMBER COMP-1.

• RESULT can take three possible values. According to these values, either the
JOBID field or the ERROR-TYPE and ERROR-NUMBER fields are significant.

TPR Control Procedures

47 A2 33UT 4-29

RESULT = 0 Successful completion. A request to submit the job is
made. The JOBID field of the status structure is filled
with the Job Identifier and can be used to get
information on the submitted job (see the CALL
"JOBINFO" PROCEDURE paragraph). When the
commitment unit successfully completes, the job is
submitted asynchronously. However, the presence of a
zero in RESULT does not necessarily indicate that the
submitted job is successfully completed; an error can
subsequently occur during execution, for example a
JCL error is detected.

RESULT = 1 Abnormal completion. One of the input parameters is
erroneous and the job is not submitted.
In this case ERROR-TYPE takes the value 1 and
ERROR-NUMBER takes one of the following values:
2 - wrong priority (JOB-PRIORITY).
4 - wrong class (JOB-CLASS).
13 - error in the value (JOB-VALUES).
26 - wrong switch (es) (JOB-SWITCHES).
27 - wrong subfile suppression value (JOB-DELETE).
29 - wrong syntax (OCL or GCL) in the file
description (FILE-DESCRIPTION).
30 - correct syntax for the parameters but failure of job
submission (for example, JOB-HOST correct syntax
but non-existent).
33 -- error in the site name (for example,
incompatibility between the local system and the
remote host where the files resides).

RESULT = 2 Wrong file. The file (or the subfile) cannot be accessed
and the job is not submitted.
In this case, ERROR-NUMBER takes the value 0 and
ERROR-TYPE takes one of the following values:
1 - the file description is wrong.
2 - the file cannot be assigned.
3 - the file cannot be opened.
4 - the subfile (if any) cannot be opened.
5 - problem when creating file management structure
(H_FD).

• File description is a data structure which identifies the "file literal"
description of the file which contains the job to be submitted.

TDS COBOL Programmer's Guide

4-30 47 A2 33UT

It must have the following format:
 01 FILE-DESCRIPTION.
 02 FILE-LITERAL-LENGTH COMP-1.
 02 FILE-LITERAL PIC X(FILE-LITERAL-LENGTH).

where FILE-LITERAL-LENGTH is the size in bytes of the FILE-LITERAL
item.

FILE-LITERAL has the following format:
 [subfile-name:] external-filename [:media:device-class]

in Operator Control Language (OCL)

or:
 external-filename [..subfile-name] [:media:device-class]

in GCOS Command Language (GCL)

When the submitted job is a GCL procedure the format is as follows:
 SYS.HSLLIB..ABSENTEE

When the file is cataloged, it must be cataloged in the site catalog or a private
auto-attachable catalog.

Media and device class identify respectively the volume and device on which the
external filename resides. They must not be specified when the file is cataloged.

The file may be either a sequential file or a library member.

• Dest is an optional input parameter 6 characters long which allows you to
direct Console and Report messages to the master terminal instead of to the
submitting terminal. To do this, you specify "MASTER" in the dest parameter;
any other value causes messages to be sent to the IOF mailbox of the user
submitting the TPR which contains the CALL "SUBJOB" procedure. You must
also specify "MASTER" in the dest parameter, if the job (submitted via CALL
"SUBJOB") is to issue TDS Master Commands through the JCL statement
EXDIR.

TPR Control Procedures

47 A2 33UT 4-31

4.12 The CALL “JOBINFO” Procedure

Syntax

CALL "JOBINFO" USING data-name-1

Description

Allows you to know the state of a job submitted by the call "SUBJOB" procedure.
This procedure does not work when the submitted job is executed on a remote host.

The job outputs must be held (using the HOLDOUT keyword in JCL) in order to
be still known by the system after the job termination.

This procedure takes as input the Job Identifier of the submitted JOB (JOBID field
of the STATUS structure when the call "SUBJOB" statement is successful), and
returns in output the state of the job.

The procedure cannot be called in the same COMMITMENT as the call
"SUBJOB" one because the job is really submitted at the normal end of the
commit.

A way to get information about the submitted job is:

• to put the JOBID returned by the "SUBJOB" procedure in the Transaction
storage

• to set a wait-time in the WAIT-TIME field of the TDS-STORAGE

• to commit the TPR and to call the "JOBINFO" procedure in a further
commitment.

Usage

Data-name-1 is a structure having the following format:

01 JOB-STRUCT.
 02 JOBID COMP-2.
 02 RESULT COMP-1.
 02 RC COMP-2.
 02 RON COMP-1.
 02 JOBSTATE COMP-1.
 02 SUSJOBSTATE COMP-1.

JOBID is an input parameter that contains the Job Identifier.

TDS COBOL Programmer's Guide

4-32 47 A2 33UT

RESULT gives the result of the "JOBINFO" procedure call:

• 0 - successful completion of the procedure.

• 1 - unsuccessful completion of the procedure.

RC is the RETURN CODE of the called JOB Management primitive (can be useful
for debugging when RESULT = 1). RC can be edited in the following way:

01 EDITRC PIC X (30).
 CALL "H_STD_UEDTG4" USING EDITRC ADDRESS OF RC.
 DISPLAY "RETURN CODE = " EDITRC.

When the JOBID refers to a job executed on a remote host, the returned RESULT
is 1 and the RC is SCHDL24,NOMATCH.

RON is the Binary Ron of the submitted Job identified by JOBID (when RESULT
= 0, otherwise RON = 0).
JOBSTATE is the state of the JOB (when RESULT = 0, otherwise JOBSTATE = 0).

JOBSTATE can take one of the following values:

• 1 - IN INTRODUCTION
• 2 - READ
• 3 - IN TRANSLATION
• 4 - TRANSLATED WITH ERROR
• 5 - HELD
• 6 - SCHEDULABLE
• 7 - IN EXECUTION
• 8 - SUSPENDED
• 9 - TERMINATED
• 10 - IDLE
• 11 - INTRODUCED WAITING INPUT

SUBJOBSTATE is a precision on the JOB termination when JOBSTATE has the
value "TERMINATED" (otherwise SUBJOBSTATE = 0).

SUBJOBSTATE can take one of the following values:

• 0 - JOB COMPLETED
• 1 - USAGE OF $DATA
• 2 - NOT EXECUTED
• 3 - ABORTED
• 4 - JOB has been killed with CJ strong
• 5 - JOB has been killed with CJ weak

A JOB is completed when JOBSTATE = 9 and SUBJOBSTATE = 0.

TPR Control Procedures

47 A2 33UT 4-33

4.13 The CALL "XSIMBRK" Procedure

Syntax

 CALL "XSIMBRK" USING data-name-1
 data-name-2
 data-name-3
 [data-name-4].
 dataname-3.

Description

Simulates a 'break' for a correspondent. The transaction activated is the one
specified in data-name-2.

The commitment option (wait commitment or rollback commitment) used when
"XSIMBRK" is called is the one specified in the STDS for the transaction calling
"XSIMBRK". If this commitment option has not been specified, the one specified
for the BREAK transaction will be used, and not the option specified for the
transaction given in data-name-2.

The same BREAK transaction processing (see Chapter 12) applies to the
transaction specified in data-name-2.

Usage

Data-name-1 is a userid of 12 alphanumeric characters identifying the
correspondent. A userid of less than 8 is right padded with spaces. It is an input
parameter.

Data-name-2 is an input parameter of 8 characters containing the name of the
transaction to be activated.

TDS COBOL Programmer's Guide

4-34 47 A2 33UT

Data-name-3 is an output parameter. It is a single numeric character that contains
the status of the call, as follows:

0 = Successful

1 = Unknown correspondent

2 = Correspondent found, but frozen or logged off

3 = Unknown transaction name in data-name-2

4 = Unknown transaction (authority code checking failed)

5 = correspondent is in pass-through mode; this verb is not allowed in this
context.

6 = wrong value for data-name-4 (see below).

Data-name-4 is an optional input parameter. It is a 7-character string. Three cases
are to be considered:

• data-name-4 is specified with a value of "REALBRK" to indicate that the CALL
"SIMBRK" treatment will be exactly the same as if it was issued at the terminal.
In this case, the BREAK transaction specified in data-name-2 will be executed
according to the specified COMMITMENT option as follows:

− if WAIT COMMITMENT, at the next commitment point,

− if ROLL-BACK COMMITMENT, at the end of the current TPR, after its
rollback has been done. In this case, the restart status will be set to 2.

• data-name-4 is specified with a value other than "REALBRK", CALL
"XSIMBRK" will not be executed, and data-name-3 will be set to 6.

• data-name-4 is not specified, the CALL "XSIMBRK" behavior is not exactly the
same as if was issued at the terminal; the BREAK transaction will only be taken
into account at the next commitment point (the current CU will not be rolled
back even if ROLL-BACK COMMITMENT has been specified in the
COMMITMENT option).

TPR Control Procedures

47 A2 33UT 4-35

4.14 The ACCEPT Verb

Syntax 1

 { DATE }
ACCEPT identifier FROM { DAY } .
 { TIME }

Syntax 2

ACCEPT cd-name MESSAGE COUNT.

Usage

Syntax 1

Syntax 1 applies as in a COBOL batch program.
The ACCEPT statement causes the information requested to be transferred to the
data item specified by the identifier, according to the rules of the MOVE statement.
DATE, DAY and TIME are conceptual data items and, therefore, are not described
in the COBOL program.
DATE is composed of the data elements year, month, and day. For example,
July 1, 1990 would be expressed as 900701.
DAY is composed of the data elements year and day. For example, July 1, 1990
would be expressed as 90182.
TIME is composed of the data elements hours, minutes, seconds and hundredths of
a second. For example, 2:41 P.M. would be expressed as 14410000.

Syntax 2

The ACCEPT statement causes the MESSAGE COUNT field specified for
cd-name to be updated to indicate the number of messages that exist in a queue.

On execution of the ACCEPT statement, the contents of the area specified by a
Communication Description entry (See Chapter 2) must contain at least the name
of the symbolic queue to be tested. Testing the condition causes the contents of the
data items referenced by data-name-7 (STATUS KEY) and data-name-8
(MESSAGE COUNT) of the area associated with the Communication Description
entry to be updated.

For more information on ACCEPT, see the COBOL 85 Reference Manual.

TDS COBOL Programmer's Guide

4-36 47 A2 33UT

4.15 The DISPLAY Verb

Syntax

DISPLAY { identifier-1 } {,identifier-2 } ...
 { literal-1 } {,literal-2 }

 [{ SYSOUT }]
 UPON [{ [ALTERNATE] CONSOLE }].
 [{ device-name }]

Usage

UPON determines the device on which data is output.

• SYSOUT is the default value. It is an output file. Normally any DISPLAY
verbs in a TPR will be ignored at Run-Time. If the TRACE option is selected
(see the DISP trace option in Chapter 13), any DISPLAY verbs will become
operative and the information designated will be output together with the other
TRACE information.

• If CONSOLE, ALTERNATE CONSOLE or device-name is specified, the data is
output respectively to:

the submitting terminal,

an alternate terminal,

the designated terminal.

Where the DISPLAY verb has more than one operand, the values displayed are in
the same sequence as the operands entered.

For example, if the identifier TOTO contains 492 and the identifier TITI contains
641, then the following statement

DISPLAY TOTO, TITI

will produce the values 492, 641.

The statement DISPLAY "TOTO", "TITI" produces the values TOTO, TITI.

If the USE DISPLAY_IN_JOR clause is present in the TDS generation, then you
can write data in the JOR using:

• DISPLAY "xx" or,

• DISPLAY "xx" UPON SYSOUT.

TPR Control Procedures

47 A2 33UT 4-37

4.16 The EXIT Verb

Syntax

EXIT PROGRAM.

Description

PROGRAM must be specified in the EXIT statement of the main (or only) body of
the TPR. One of the following occurs when the EXIT PROGRAM statement is
executed:

• If the NEXT-TPR field of TDS-STORAGE contains a valid TPR name, TDS
will load and activate the named TPR together with a copy of the
TRANSACTION-STORAGE area. The TPR named could be the TPR being
terminated; hence, a TPR can cause itself to be terminated and then loaded.

• If the NEXT-TPR field is blank, the TPR and the transaction are both
terminated. (This field is reset to blanks by TDS before execution of each TPR).

• If the NEXT-TPR field contains an invalid TPR name, the transaction is aborted.

• The TPR identified as NEXT-TPR will become eligible for activation
immediately if no WAIT-TIME has been specified and no message has been sent
in the previous TPR, or after a delay delimited by:

− the arrival of a response if the last TPR terminated with a SEND EGI
statement,

− the transmission of another message to the terminal when allowed (the last
TPR terminated with a SEND EMI statement to the originating terminal),

− the expiration of WAIT-TIME in TDS-STORAGE.

In any of the above cases when the next TPR is the first of a commitment unit,
the TPR will be activated only if the transaction to which it belongs is
non-concurrent with the running transactions.

TDS COBOL Programmer's Guide

4-38 47 A2 33UT

4.17 The STOP Verb

Syntax

STOP.

Description

STOP causes the transaction to abort.

4.18 The WRITE in User Journal verb

Syntax

WRITE data-name [FROM identifier-1].

Description

Outputs user-defined records to the user journal.

Usage

Data-name is the name of the record described in the user journal FD in the File
Section.

Identifier-1 defines the area in memory containing the record to be written.

If no user journal is used for this application, WRITE is ignored.

47 A2 33UT 5-1

 5. Spawn Handling Procedures

5.1 Overview

This chapter deals with the following procedures:

DELSPAWN cancels all the spawned transactions pending for the
correspondent that initiates the transaction in which the
call is submitted.

DSPAWN directs a transaction towards a correspondent after a
specified delay.

NBSPAWN returns the number of valid spawned transactions on a
correspondent, except those spawned with timer.

SPAWN directs a transaction towards a correspondent (active or
passive).

SPAWNTX directs a transaction towards any active or passive
correspondent.

TSPAWN directs a transaction towards a correspondent at a
specified time of day.

TDS COBOL Programmer's Guide

5-2 47 A2 33UT

5.2 The CALL "DELSPAWN" Procedure

Syntax

CALL "DELSPAWN".

Description

Cancels all the spawned transactions pending for the correspondent that initiates
the transaction in which the call is submitted.

The CALL "DELSPAWN" request takes effect when the commitment unit in which
the call is performed ends normally.

The spawn requests taken into account are those which were validated before the
CALL "DELSPAWN". This means that all the SPAWN, DSPAWN, TSPAWN, and
SPAWNTX calls requested in a commitment unit containing the CALL
"DELSPAWN" take effect at the end of the commitment unit. This is true even if
these spawning requests are sent to the correspondent that started the transaction
containing this commitment unit.

Spawn Handling Procedures

47 A2 33UT 5-3

5.3 The CALL "DSPAWN" Procedure

Syntax

 CALL "DSPAWN" USING data-name-1,
 data-name-2,
 data-name-3,
 data-name-4.

Description

Directs a transaction towards a correspondent after a specified delay. The spawned
transaction becomes eligible for execution after the specified delay. If the specified
correspondent is not connected, it is automatically connected before the transaction
is activated.

Usage

Data-name-1 is an alphanumeric field of up to 8 characters. This field must contain
the name of the correspondent to which the transaction is spawned. It is an input
parameter.

Data-name-2 is an alphanumeric field of up to 46 characters. This field must
contain a message identifying the transaction and its parameters in the same format
as keyed in from a terminal. Data-name-2 is an input parameter.

Data-name-3 is a 1-character numeric field that defines the status after the
execution of DSPAWN as follows:

0 successful completion

1 number of spawns by commitment unit has exceeded the maximum allowed.
For an explanation of this limit, see the section Spawning a Transaction in
Chapter 2.

2 unknown transaction (This may happen because the authority codes of the
spawn conflict.)

3 unknown correspondent

4 no longer used.

Data-name-4 is a COMP-1 field specifying the delay, in seconds, to elapse before
the transaction becomes eligible for execution.

If the delay is zero or negative, the spawn is immediate with MEDIUM priority.
No error message or status is sent.

TDS COBOL Programmer's Guide

5-4 47 A2 33UT

• If a MDTIME operator command is issued between the moment when the call
dspawn is issued and the moment when the spawning is validated: delay is
corrupted when:

− local time is shifted back (for example from 10:20 to 10:10) the 10 mn
difference are added to the delay.

− local time is shifted forward (for example from 10:20 to 10:35) the 15 mn
difference are subtracted to the delay. If the delay becomes negative, an
immediate spawning is issued.

• When the delay has elapsed, the transaction becomes eligible for execution with
the MEDIUM priority.

The Transaction Initialization routine (if any) is called twice:

• during the CALL "DSPAWN", with the requester of the spawn in the USERID
parameter of the Transaction Initialization Routine.

• at the start of the spawned transaction, with the recipient of the spawn in the
USERID parameter of the Transaction Initialization Routine. During this second
call, if an invalid access right or unknown transaction name is detected, a
message is sent to the master terminal.

The recipient and the requester must have authority codes that allow the
recipient and the requester to use the spawned transaction. Authority codes
define the list of authorized TDS users at TDSGEN.

For an explanation of the Transaction Initialization routine, see Chapters 2
and 12.

Spawn Handling Procedures

47 A2 33UT 5-5

5.4 The CALL "NBSPAWN" Procedure

Syntax

CALL "NBSPAWN" USING data-name-1,data-name-2.

Description

CALL "NBSPAWN" returns the number of valid spawned transactions on a
correspondent, except those spawned with timer.

Usage

Data-name-1 is an input field twelve characters long (PIC X(12)), which contains
the correspondent name for which the information is required.

Data-name-2 is an output COMP-1 field (FIXED BIN(15)), in which the number of
spawned transactions is returned.

TDS COBOL Programmer's Guide

5-6 47 A2 33UT

5.5 The CALL "SPAWN" Procedure

Syntax
 CALL "SPAWN" USING data-name-1,
 data-name-2,
 data-name-3,
 [,data-name-4].

Description

Directs a transaction towards a correspondent (active or passive). The spawned
transaction becomes eligible for execution at the end of the commitment unit that
performs the CALL "SPAWN" statement.

Usage

Data-name-1 is a userid of up to 8 alphanumeric characters identifying the
correspondent to which the transaction is spawned. It is an input parameter.

Data-name-2 is an alphanumeric field of up to 46 characters. It must contain a
message identifying the transaction and its parameters in the same format as keyed
in from a terminal. Data-name-2 is an input parameter.

Data-name-3 is a 1-character numeric field. It is an output parameter defining the
status after the execution of the CALL "SPAWN" statement, as follows:

0 successful completion,

1 number of spawns by commitment unit has exceeded the limit. For an
explanation of the limit, see the section on Spawning a Transaction in
Chapter 2.

2 unknown transaction (This may happen because the authority codes of the
spawn conflict),

3 unknown correspondent, or connection rejected for the correspondent.
Since TS 9764, on a TCP/IP correspondent:
- with the ATMI.DLL version < 3.0.6, data-name-1 contains neither a
correspondent name; nor the string "H-TCPIP-CLI".
- with the ATMI.DLL version >= 3.0.6, data-name-1 contains neither a
correspondent name, nor the TERMID (of the spawner) provided at
tpconnect time, nor the string "H-TCPIP-CLI" if the TERMID was not
provided at tpconnect time.

4 wrong type; spawn towards this type of correspondent not allowed,

5 wrong priority.

Spawn Handling Procedures

47 A2 33UT 5-7

Data-name-4 is an input parameter. It is a 1 decimal digit specifying the priority of
the spawn:

1 express
2 high
3 medium (default)
4 low

The Transaction Initialization Routine (if any) is called twice when the CALL
"SPAWN" statement is performed:

• first, with the requester of the spawn in the USERID parameter of the
Transaction Initialization Routine.

• second, with the recipient of the spawn in the USERID parameter of the
Transaction Initialization Routine.

For an explanation of the Transaction Initialization routine, see Chapters 2
and 12.

The recipient and the requester must have authority codes that allow the
recipient and the requester to use the spawned transaction. Authority codes
define the list of authorized TDS users at TDSGEN.

TDS COBOL Programmer's Guide

5-8 47 A2 33UT

5.6 The CALL "SPAWNTX" Procedure

Syntax

CALL "SPAWNTX" USING data-name-1,
 data-name-2,
 data-name-3,
 data-name-4,
 data-name-5,
 data-name-6.

Description

Directs a transaction towards any active or passive correspondent. The spawned
transaction becomes eligible for execution at one of the following times:

• at the end of the commitment unit that performs the CALL "SPAWNTX"
statement (when DELAY, and TIME-OF-DAY are set to zero in data-name-3),

• when the specified delay has elapsed (when DELAY is not set to 0),

• at a specified time of day (when TIME-OF-DAY is not set to 0).

Usage

Data-name-1 identifies the correspondent to which the transaction is spawned.
The star convention can be used as described in Chapter 2. Data-name-1 is an
input parameter containing 12 alphanumeric characters, left justified, and right
padded with blanks.

Data-name-2 is an input parameter with the following data structure:

01 DATA-NAME-2.
 02 MSG-LENGTH COMP-1.
 02 MSG PIC X(y).

Spawn Handling Procedures

47 A2 33UT 5-9

where

• MSG-LENGTH is the length of the second parameter. The maximum value
allowed is 130.

• "PIC X(y)" means that "y" must be replaced by a value supplied by the
programmer. This value must be less than or equal to 130.

• The value specified in MSG-LENGTH determines the actual length of MSG.

• MSG contains a message-id identifying the transaction and its parameters in the
same format as keyed in from a terminal. The parameters are not checked.

• The entire message is passed to the Transaction Initialization Routine, if any, in
order to get the message-id.

• The message-id, if there is no Transaction Initialization Routine, is extracted
from the beginning of the input string. Its maximum length is 8. When this
length is less than 8, it must be separated from the remainder by a blank. The
Transaction Initialization Routine is described in Chapters 2 and 12.

For example, if you specify 50 in MSG-LENGTH and assuming that you specified
90 in MSG, then only the first 50 characters in MSG are used.

Data-name-3 is an input parameter with the following data structure:

01 DATA-NAME-3.
 02 VERSION COMP-1.
 02 DELAY COMP-1.
 02 TIME-OF-DAY.
 03 HOUR COMP-1.
 03 MINUTE COMP-1.
 03 SECOND COMP-1.

where

• VERSION must be set to zero.

• DELAY specifies the delay in seconds, to elapse before the transaction becomes
eligible for execution. DELAY must be set to zero when it is not used.

• If a MDTIME operator command is issued between the moment when the call
dspawn is issued and the moment when the spawning is validated: delay is
corrupted when:

− local time is shifted back (for example from 10:20 to 10:10), the 10 mn
difference is added to the delay.

− local time is shifted forward (for example from 10:20 to 10:35), the 15 mn
difference is subtracted from the delay. If the delay becomes negative, an
immediate spawning is issued.

TDS COBOL Programmer's Guide

5-10 47 A2 33UT

• TIME-OF-DAY defines when the spawned transaction will be eligible for
execution on the day:

− HOUR must range from 0 to (22 X 24), that is, the limit is 528 or about 3
weeks from the current date.

− MINUTE must range from 0 to 59.

− SECOND must range from 0 to 59.

• Only one of the fields DELAY, or TIME-OF-DAY can be non-zero, otherwise an
error occurs. The field that is filled with zeros determines the type of spawn.

• If both DELAY and TIME-OF-DAY are filled with zeros, then the spawn is
immediate.

Data-name-4 is a 1-character numeric field. This input parameter specifies the
priority of the spawn:

1 express
2 high
3 medium
4 low

It is significant only for an immediate spawn. When DELAY, or TIME-OF-DAY is
not zero, the priority must be set to MEDIUM.

For an explanation of the priorities, see Chapter 2.

Data-name-5 is a 2-character numeric field. This output parameter defines the
status after the execution of the CALL "SPAWNTX" statement as follows:

00 successful completion.

10 spawn table overflow, that is, the total number of spawns waiting for
validation is exceeded (see Spawning a Transaction in Chapter 2).

11 the maximum number of spawns exceeds the number allowed per
commitment unit (see Chapter 2 for more information on limits).

20 DELAY and TIME-OF-DAY mixed.

21 TIME-OF-DAY already reached.

22 TIME-OF-DAY is not valid (negative, or out of range).

23 DELAY is not valid (negative).

30 wrong priority. A priority can be 1, 2, 3, or 4.

31 priority for deferred spawns must be medium (equal to 3).

Spawn Handling Procedures

47 A2 33UT 5-11

40 transaction name is not valid (blank).

41 transaction name is not found.

42 authority code of the requester of the spawn does not match that of the
spawned transaction.

43 authority code of the recipient of the spawn does not match that of the
spawned transaction.

44 in a TDS-HA, do not spawn a CMA transaction.

50 correspondent name is not valid (blank, or with illegal characters).

51 connection has been requested, but was not successful.

52 reconnection has been requested, but was not successful.

53 the correspondent (with star convention) is unknown.

54 the state connection of the corespondent is unstable, retry later.

55 wrong type: spawn on a primary active correspondent is forbidden if it is a
XCP1 correspondent.

56 wrong type: spawn towards a correspondent which is not passive, whereas
only a passive correspondent was specified at TDSGEN (via the clause USE
PASSIVE-SPAWN-CHECK).

57 wrong type: spawn towards a XCP2 correspondent.

58 wrong type of correspondent.

59 the spawned transaction tried to use the XCP2 service, but the XCP2 service
is not available.

60 Since TS 9764, on a TCP/IP correspondent:
- with the ATMI.DLL version < 3.0.6, data-name-1 contains neither a
correspondent name; nor the string "H-TCPIP-CLI".
- with the ATMI.DLL version >= 3.0.6, data-name-1 contains neither a
correspondent name, nor the TERMID (of the spawner) provided at
tpconnect time, nor the string "H-TCPIP-CLI" if the TERMID was not
provided at tpconnect time.

Data-name-6 is an output parameter declared as PIC X(2). Data-name-6 is
used by the Service Center for debugging purpose (when data-name-5 contains
51 or 52, data-name-6 gives the reason why the connection was unsuccessful).
It is not to be tested by the application program.

TDS COBOL Programmer's Guide

5-12 47 A2 33UT

5.7 The CALL "TSPAWN" Procedure

Syntax

CALL "TSPAWN" USING data-name-1,
 data-name-2,
 data-name-3,
 data-name-4.

Description

Directs a transaction towards a correspondent at a specified time of day. The
spawned transaction becomes eligible for execution at a specified time of day. If
the specified correspondent is not connected, it is automatically connected before
the transaction is started.

Usage

Data-name-1 is a userid of up to 8 alphanumeric characters identifying the
correspondent to which the transaction is spawned. It is an input parameter.

Data-name-2 is an alphanumeric field of up to 46 characters. It must contain a
message identifying the transaction and its parameters in the same format as keyed
in from a terminal. Data-name-2 is an input parameter.

Data-name-3 is a 1-character numeric field which defines the status after the
execution of the CALL "TSPAWN" statement as follows:

0 successful completion

1 number of spawns by commitment unit has exceeded the maximum allowed.
For an explanation of this limit, see Chapter 2.

2 unknown transaction (This may happen because the authority codes of the
spawn conflict).

3 unknown correspondent, or connection rejected for the correspondent.

4 no longer used.

5 time-of-day already reached

6 data-name-4 is not a valid time-of-day.

Spawn Handling Procedures

47 A2 33UT 5-13

Data-name-4 is an 01 level data-name that defines when the spawned transaction
will be eligible for execution on the day. The format of this data item is as follows:

01 data-name-4.
 02 hour COMP-1.
 02 minute COMP-1.
 02 second COMP-1

where:

• hour must range from 0 to (22 x 24), that is, the limit is 528 or about three
weeks from the current date,

• minute must range from 0 to 59,

• second must range from 0 to 59.

NOTES:
The Transaction Initialization routine (if any) is called twice:

1. During the CALL "TSPAWN", with the requester of the spawn in the
USERID parameter of the Transaction Initialization Routine.

2. At the start of the spawned transaction, with the recipient of the spawn in
the USERID parameter of the Transaction Initialization Routine. If an
invalid access right or unknown transaction name is detected, a message is
sent to the master terminal.
For an explanation of the Transaction Initialization routine, see Chapters 2
and 12.
The recipient and the requester must have authority codes that allow the
recipient and the requester to use the spawned transaction. Authority
codes define the list of authorized TDS users at TDSGEN.

TDS COBOL Programmer's Guide

5-14 47 A2 33UT

❑

47 A2 33UT 6-1

 6. Correspondent Pool Handling Procedures

6.1 Overview

This chapter deals with the following procedures:

CLOSE-POOL closes one or more pools.

DISP-COR displays static (as declared in the NETGEN), or
dynamic characteristics of the specified correspondent.

DISP-POOL displays static (as declared in NETGEN), or dynamic
(current) characteristics of the specified pool.

GET-TDS-STAT gives detailed statistics of correspondents and files of a
TDS that is running.

LIST-COR lists the correspondents declared in NETGEN (static
list), or connected to the TDS application (dynamic
list).

LIST-POOL lists the XCP2 pools declared in NETGEN (static list),
or running for a correspondent (dynamic list).

MODIFY-POOL modifies the characteristics of a session pool.

OPEN-POOL opens one or all session pools between a local TDS
application and a partner application.

TDS COBOL Programmer's Guide

6-2 47 A2 33UT

6.2 The CALL "CLOSE-POOL" Procedure

Syntax

CALL "CLOSE-POOL" USING corresp-name, all-option
 pool-name,
 close-option,
 drain-sc,
 drain-tg,
 status.

Description

The equivalent GCL master command is [M] CLOSE_COR_POOL... (described
in the TDS Administrator's Guide).

XCP2:
Closes one or all session pools between a local TDS application and a partner
application. A pool is identified by the local name of the partner correspondent,
and a pool name.

XCP1:
The pool is the object named "ATTRIBUTE" in the XCP1 protocol definition and
in the master command [M] CLOSE_COR_POOL ...

You must already have opened the pool(s) by the CALL "OPEN-POOL"
procedure, or by the master command [M] OPEN_COR_POOL ...

The pool(s) can be closed in 2 ways:

• normally, it is closed after all conversations have been deallocated (XCP2), or
sessions became unused (XCP1).

• abnormally, conversations are aborted and the transactions using these
conversations receive the status "dealloc-abend" (XCP2). For XCP1,
transactions using the allocated sessions are aborted.

Correspondent Pool Handling Procedures

47 A2 33UT 6-3

Input parameters

corresp-name is a string of 12 alphanumeric characters defining the partner
application. It must be a name of a XCP2COR object, or a XCP1COR object
previously connected to the TDS application. "DUMMY" characters are not
accepted.

all-option is a 1-character alphabetic field as follows:

Y (the command applies to all opened pools).

N (the command applies to the pool specified in pool-name).

pool-name is specified only if the all-option field contains N. For XCP2, this is a
string of 8 alphanumeric characters. For XCP1, the first 2 bytes must contain the
pool attribute and the remaining characters must be blank. If all the characters are
blank, TDS takes as the pool attribute the first 2 characters of the correspondent
name.

close-option is a 1-character alphabetic field for determining how the pool(s) must
be closed:

N indicates Normal termination.

For XCP2, sessions of the specified pool(s) are closed immediately if no
conversation uses them; otherwise they are closed after the conversations using
them end.

For XCP1, sessions are freed when the transactions (if any) using them ends; when
all sessions of the pool are released, the session pool is deleted.

S indicates Strong (or abnormal termination).

For XCP2, conversations using sessions of the specified pool(s) are abnormally
terminated and session pool(s) are closed after transactions using these aborted
conversations have received the abnormal status and have deallocated these
conversations.

For XCP1, all sessions are immediately disconnected (any related transactions
abort) and the session pool is deleted.

Note that N has same effect on the pool as the [M] CANCEL_TDS_COR
STRONG=0 command has, whereas S has the same effect as the [M]
CANCEL_TDS_COR STRONG=1 command.

drain-sc/drain-tg are 1-character alphabetic fields for determining what is to be
done with the enqueued conversations before the XCP2 pools are closed.

TDS COBOL Programmer's Guide

6-4 47 A2 33UT

drain-sc and/or drain-tg apply only to XCP2 pools.

• you must specify drain-sc and/or drain-tg when the all-option parameter is set
to Y.

• drain-sc and/or drain-tg are not taken into account if the close-option is set to S
(they are forced to 0 by TDS), or if all-option is set to N.

• drain-sc must be set to one of the following values:

Y indicates YES, that is, the local application processes (drains) the enqueued
conversation-requests.

N indicates NO, that is, the local application rejects (does not drain) the
enqueued conversation-requests.

• drain-tg must be set to one of the following values:

Y indicates YES, that is, the remote application processes (drains) the enqueued
conversation-requests.

N indicates NO, that is, the remote application rejects (does not drain) the
enqueued conversation-requests.

Output parameters

These are returned only for XCP2 pools.

drain-sc and drain-tg contain values returned by the PPC even if the all-option is
set to N, or if the close-option is set to S.

status refers to the following data structure that you can copy from the
<tdsname>.COBOL file by using the COBOL statement COPY H-DC-TP-STAT.

05 coc-status.
06 coc-status-version PIC X VALUE 1. input=1
06 coc-external-status PIC X.
06 coc-system-status.
 07 coc-issuer PIC X.
 07 coc-code COMP-1. status code
 07 coc-subcode COMP-1. status subcode
 07 coc-last-rc COMP-2.

Correspondent Pool Handling Procedures

47 A2 33UT 6-5

The field coc-external-status can have one of the following values:

coc-argerr (2) The corresp-name field is not found.
The all-option field is not found.
The pool-name field is not found.
The close-option field is not found.
The drain-sc field is not found.
The drain-tg field is not found.
coc-status-version does not equal to 1.
corresp-name refers to a XCP1 correspondent and the
last 6 characters of pool-name are not blank.
all-option is neither Y nor N.
drain-sc is neither Y nor N.
drain-tg is neither Y nor N.
close-option is neither N nor S.

coc-arviol (3) The transaction issuing the CLOSE-POOL has not
been submitted by the master.

coc-done (0) Request is performed.

coc-notdone (9) PPC or TDS incident occurred. Contact the Service
Center.

coc-notop (A) The pool is not open (returned only for a XCP2
context).

coc-objunkn (B) corresp-name unknown to TDS and PPC.
pool-name is unknown to the PPC (returned only for a
XCP2 context).

coc-resnav (D) corresp-name refers to a XCP2 correspondent and the
XCP2 service is not started.

coc-typeerr (G) corresp-name equals "DUMMY".
corresp-name refers to a wrong correspondent name.
The specified correspondent refers to a TM or dummy
correspondent connected to the TDS application.

coc-wrongpar (H) An error occurred on the TDS/PPC interface. Contact
the Service Center.

TDS COBOL Programmer's Guide

6-6 47 A2 33UT

6.3 The CALL "DISP-COR" Procedure

Syntax

CALL "DISP-COR" USING corresp-name, option,
 cor-attrib,
 status.

Description

Displays static (as declared in the NETGEN), or dynamic characteristics of the
specified correspondent.

The dynamic characteristics can be supplied only if the correspondent is currently
connected to the TDS application.

The static characteristics are supplied only if the correspondent can be reached by
the TDS application submitting the request, that is,

• for an XCP2 correspondent declared as "parallel" in NETGEN, at least one pool
must have been declared in NETGEN and this pool must link this correspondent
to the TDS submitting the request.

• for an XCP1 correspondent, the correspondent must be primary, that is, an
"open-pool" request is performed toward this correspondent.

• for a terminal (TM correspondent), there is no restriction, that is, the
correspondent is always displayed.

The equivalent GCL master command is [M] LIST_TDS_COR... (described in the
TDS Administrator's Guide).

Usage

corresp-name is a string of 12 alphanumeric characters defining the local
correspondent name of the partner application. If the option parameter is set to D,
corresp-name can be the name of a virtual correspondent such as DUMMY.

option is a 1-character alphabetic field indicating which characteristics are to be
displayed. The option input parameter must contain one of the following values:

S indicates Static parameters.

D indicates Dynamic parameters.

Correspondent Pool Handling Procedures

47 A2 33UT 6-7

Output parameters

cor-attrib refers to a structure that you can obtain by using the COBOL statement
COPY H-DC-TP-DISPCOR:

05 coc-cor-attrib.
 06 coc-cor-attrib-version PIC X VALUE 1. input=1
 06 coc-cor-type PIC X. COC-TM, COC-XCP1,
 COC-XCP2 or COC-DUMMY
 06 coc-cor-address.
 07 coc-sess-control PIC X(4).
 07 coc-mailbox PIC X(8).
 07 coc-extension PIC X(4). blank for tm and xcp2
 06 coc-cor-attrib-static.
 07 coc-cor-backup PIC X(12).
 07 coc-cor-profile PIC X(6).
 06 coc-cor-attrib-dynamic.
 07 coc-cnb-of-pool COMP-1. current nb of pools
 07 coc-mxalcses COMP-2. max nb of allocated
 sessions
 07 coc-cumalcses COMP-2. cumulated nb of
 allocated sessions
 07 coc-failalcses COMP-2. nb of allocated
 sessions which failed
 07 coc-txacc COMP-2. transaction account
 07 coc-tpracc COMP-2. TPR account
 07 coc-state PIC X. C -> Connected
 D -> Disconnected

Static Characteristics

The output fields returned are: coc-cor-type, coc-cor-address, and
coc-cor-attrib-static.

The contents of the coc-cor-profile parameter depends on the correspondent
type:

• a TM correspondent's profile can be mapped on to the following structure:
 06 profile.
 07 * PIC X(4).
 07 cross PIC X(1). Y or N
 07 first PIC X(1). Y or N if cross=Y,
 U otherwise

TDS COBOL Programmer's Guide

6-8 47 A2 33UT

• an XCP1 correspondent's profile can be mapped on to the following structure:
 06 profile.
 07 primary PIC X(1). always Y
 07 active PIC X(1). Y or N
 07 init-work PIC X(1). Y or N
 07 debug PIC X(1). Y or N
 07 cross PIC X(1). Y or N
 07 first PIC X(1). Y or N if cross=Y,
 otherwise U

• an XCP2 correspondent's profile can be mapped on to the following structure:
 06 profile.
 07 primary PIC X(1). Y or N
 07 parallel PIC X(1). Y or N
 07 winner PIC X(1). Y or N
 07 max-sync-lvl PIC X(1). C -> Confirm
 S -> Syncpoint
 07 cross PIC X(1). Y or N
 07 first PIC X(1). Y or N if cross=Y,
 U otherwise

Dynamic Characteristics

The output fields returned are: coc-cor-type, coc-cor-address and
coc-cor-attrib-dynamic. For a TM correspondent connected to a TDS application
via IOF (for example, the TDS submitter), then the coc-cor-address field is filled
with blanks.

The coc-extension field is significant only for a XCP1 secondary passive
correspondent; otherwise, it is filled with blanks.

coc-cnb-of-pool is significant only for XCP2 and XCP1 primary correspondents;
otherwise, 0 is returned.

coc-mxalcses, coc-cumalcses, coc-failalcses are returned only for XCP1 primary
correspondents; otherwise these fields are set to 0.

coc-txacc, coc-tpracc are returned only for active secondary XCP1 correspondents,
DUMMY correspondents, or TM correspondents; otherwise these fields are set
to 0.

Correspondent Pool Handling Procedures

47 A2 33UT 6-9

status refers to the following data structure that you can copy from the
<tdsname>.COBOL file by using the COBOL statement COPY H-DC-TP-STAT.

05 coc-status.
06 coc-status-version PIC X VALUE 1. input=1
06 coc-external-status PIC X.
06 coc-system-status.
 07 coc-issuer PIC X.
 07 coc-code COMP-1. status code
 07 coc-subcode COMP-1. status subcode
 07 coc-last-rc COMP-2.

The field coc-external-status can have one of the following values:

coc-argerr (2) The corresp-name field is not found.
The option field is not found.
The coc-cor-attrib field is not found.
coc-status-version does not equal 1.
coc-cor-attrib-version does not equal 1.
corresp-name equals DUMMY or is blank.
option is neither S nor D.

coc-arviol (3) The transaction issuing the CALL "DISP-COR" was
not submitted by the master.

coc-busy (4) NETGEN is being updated. Retry later.

coc-done (0) Request is performed.

coc-dupname (8) corresp-name has a multiple definition (TM, XCP1,
XCP2) in NETGEN.

coc-notdone (9) TDS incident (returned only if option equals D).
PPC incident (returned only for a XCP2 context and if
option equals D).
NETGEN incident.
Contact the Service Center.

TDS COBOL Programmer's Guide

6-10 47 A2 33UT

coc-objunkn (B) corresp-name is unknown (returned only for a XCP2
context and if option equals D).
corresp-name is unknown (returned only if option
equals S).
corresp-name is unknown (returned only if it is not a
XCP2 context and if option equals D).
corresp-name refers in NETGEN to a XCP1
correspondent which is not primary (returned only if
option equals S).
corresp-name refers in NETGEN to a XCP2
correspondent which is not reachable by TDS (because
it is parallel and no pool is declared from the current
TDS towards the specified correspondent) (returned
only if option equals S).

coc-ogenunkn (C) NETGEN was incrementally generated while TDS was
processing the command. Retry later.

coc-resnav (D) corresp-name refers to an XCP2 correspondent and the
XCP2 service is not started, or the TPR executing the
call belongs to a transaction that is not allowed to use
XCP2 (the TDS generation clause XCP2 SERVICE
USED does not exist for this transaction).

coc-typeerr (G) corresp-name refers to a wrong correspondent name.
The specified correspondent refers to a correspondent
connected to the TDS application that is not XCP1,
TM, or dummy (returned only if option equals D).

coc-wrongpar (H) Error occurred on the TDS/PPC Interface. Contact the
Service Center (returned only for a XCP2 context and
if option equals D).

Correspondent Pool Handling Procedures

47 A2 33UT 6-11

6.4 The CALL "DISP-POOL" Procedure

Syntax
CALL "DISP-POOL" USING corresp-name, pool-name,
 option,
 pool-attrib,
 status.

Displays static (as declared in NETGEN), or dynamic (current) characteristics of
the specified pool. Dynamic characteristics can be displayed only if the pool is
opened.

Static characteristics can be obtained for XCP2 pools only.

Static characteristics can be displayed only if the pool has been declared for the
TDS submitting the request, that is, in NETGEN, the pool is defined with the same
XCP2WKS as that corresponding to the TDS application.

The equivalent GCL master command is [M] LIST_COR_POOL... (described in
the TDS Administrator's Guide).

Input parameters

corresp-name is a string of 12 alphanumeric characters for defining the local
correspondent name of the partner application.

pool-name:

XCP2 correspondent pool-name is a string of 8 alphanumeric characters for
defining the pool.

XCP1 correspondent The first 2 characters must contain the pool attribute
and the last 6 characters must be blank characters. If
all characters are blank, the TDS application will take
as the pool attribute the first 2 characters of the
correspondent name.

DUMMY correspondent pool-name must be filled with blank characters

option is a 1-character alphabetic field for selecting the characteristics to be
displayed. It must contain one of the following values:

S indicates Static parameters.

D indicates Dynamic parameters.

Only the D value is accepted for a XCP1, or a DUMMY correspondent.

TDS COBOL Programmer's Guide

6-12 47 A2 33UT

Output parameters

pool-attrib refers to a structure that you can copy from the <tdsname>.COBOL file
by using the COBOL statement COPY H-DC-TP-DISPPOOL:

05 coc-disp-pool.
 06 coc-disp-pool-version PIC X VALUE 1. input=1
 06 coc-dispp-pool-x2.
 07 coc-max-ses-nb COMP-1. max no. of sessions
 07 coc-min-win-source COMP-1. min no. of winner
 sessions for source
 07 coc-min-win-target COMP-1. min no. of winner
 sessions for target
 07 coc-win-auto-activ COMP-1. no. of winner auto-active
 sessions
 07 coc-drain-source PIC X. default value for drain
 option for local
 application
 07 coc-drain-target PIC X. default value for drain
 option for partner
 application
 07 coc-max-synclvl PIC X. max synchronization
 level:
 C -> confirm,
 or S -> syncpoint
 07 coc-cur-ses-count COMP-1. current no. of sessions
 07 coc-cur-win-source COMP-1. current no. of winner
 sessions for source
 07 coc-cur-win-target COMP-1. current no. of winner
 sessions for target
 07 coc-trans-count COMP-1. no. of sessions in transient
 state
 06 coc-dispp-pool-dux1.
 07 coc-connect-count COMP-1. current no. of connected
 sessions
 07 coc-trans-count COMP-1. current no. of transient
 sessions
 07 coc-frozen-count COMP-1. current no. of frozen
 sessions

Correspondent Pool Handling Procedures

47 A2 33UT 6-13

Since TS 7356, the H_SX-TP7-DISPOOL subfile has been modified in the
<tdsname>.COBOL file by adding the following declarations after'07
coc-frozen-count COMP-1.'

06 coc-dispp-pool-dux1ses.
 07 coc-entry-count COMP-1.
 07 coc-entry occurs 100.
 08 coc-name pic x(4).
 08 coc-state COMP-1.
 08 coc-resstate COMP-1.
 08 coc-correspname pic x (12)

• COC-ENTRY-COUNT is the number of returned entries in the COC-ENTRY
substructure.

• COC-NAME contains the session name (ATTRIBUTE concatenated with two
digits identifying the session: AT00, AT01... AT99).

• COC-STATE values are:
 1 = LOGON, 2 = LOGGED, 3 = DISC, 4 = FROZEN, 5 = UNLOGGED.

• COC-RESSTATE values are:
 1 = PERMANENT, 2 = FREE, 3 = ALLOCPRINC, 4 = ALLOCAUX,
 12 = FREE/NALC

• COC-CORRESPNAME contains the name of the user whom the session has
been allocated to when the COC-RENAME value is 4 (ALLOCAUX).

To obtain the additional information, the field COC-DISP-POOL-VERSION must
be set to 2.

TDS COBOL Programmer's Guide

6-14 47 A2 33UT

See the master command LST_COR_POOL in the TDS Administrator's Guide for
more details.

XCP2: The three fields coc-cur-ses-count, coc-cur-win-source,
and coc-cur-win-target in coc-dispp-pool-x2 are filled
only when you select the dynamic option; otherwise,
they are meaningless.

The content of coc-drain-source (coc-drain-target)
depends on the value you specify in the option field:

Static option:
contains the values declared in NETGEN, that is, Y
(Yes), or N (No).

Dynamic option:
is set to Y if draining is requested either locally for
coc-drain-source, or remotely for coc-drain-target
when the CALL "CLOSE-POOL" statement, or the
[M] CLOSE_COR_POOL is executed. Otherwise, it
is set to N.

XCP1 or DUMMY: The three fields of coc-dispp-pool-dux1 are filled.

status refers to the following data structure that you can copy from the
<tdsname>.COBOL file by using the COBOL statement COPY H-DC-TP-STAT.

05 coc-status.
06 coc-status-version PIC X VALUE 1. input=1
06 coc-external-status PIC X.
06 coc-system-status.
 07 coc-issuer PIC X.
 07 coc-code COMP-1. status code
 07 coc-subcode COMP-1. status subcode
 07 coc-last-rc COMP-2.

Correspondent Pool Handling Procedures

47 A2 33UT 6-15

The field coc-external-status can have one of the following values:

coc-argerr (2)
The corresp-name field is not found.
The pool-name field is not found.
The option field is not found.
The coc-disp-pool field is not found.
coc-status-version does not equal 1.
coc-disp-pool-version does not equal 1.
corresp-name equals "DUMMY" or is blank.
corresp-name refers to a TM correspondent (returned
only if option equals "D").
corresp-name refers to a correspondent type other than
XCP2 (returned only if option equals "S").
corresp-name refers to a XCP1 correspondent and the
last 6 characters of pool-name are not blanks.
corresp-name equals "DUMMY" and pool-name is not
blank.
pool-name is blank (returned only if option equals
"S").
option is neither S nor D.

coc-arviol (3)
The transaction issuing the DISP-POOL was not
submitted by the master.

coc-busy (4)
NETGEN is being updated. Retry later.

coc-done (0)
Request is performed.

coc-dupname (8)
Corresp-name has a multiple definition (TM, XCP1,
XCP2) in NETGEN.

coc-notdone (9)
Internal error (returned only if option equals D).
Internal error (returned only for a XCP2 context and if
option equals D).
NETGEN incident.
Contact the Service Center.

coc-notop (A)
The pool is not open, i.e. there are no active sessions
for that pool (returned only for a XCP1 or dummy
context and if option equals D).

TDS COBOL Programmer's Guide

6-16 47 A2 33UT

coc-objunkn (B)
corresp-name or pool-name unknown to ppc (returned
only if it is a XCP2 context and if option equals D).
corresp-name was not declared in NETGEN.
pool-name was not declared in NETGEN.

coc-ogenunkn (C)
NETGEN was incrementally generated while TDS was
processing the command. Retry later.

coc-resnav (D)
corresp-name refers to an XCP2 correspondent and the
XCP2 service is not started, or the TPR executing the
call belongs to a transaction that is not allowed to use
XCP2 (the TDS generation clause XCP2 SERVICE
USED does not exist for this transaction).

coc-typeerr (G)
Corresp-name refers to a wrong correspondent name.
The specified correspondent refers to a correspondent
connected to the TDS application that is not XCP1,
TM, or DUMMY (returned only if option equals D).
Corresp-name refers to a secondary XCP1
correspondent (the command is only allowed for a
primary correspondent) (returned only if option equals
D).

coc-wrongpar (H)
Error occurred on the TDS/PPC interface. Contact the
Service Center (returned only for a XCP2 context and
if option equals D).

Correspondent Pool Handling Procedures

47 A2 33UT 6-17

6.5 The CALL "GET-TDS-STAT" Procedure

Syntax

CALL "GET-TDS-STAT" USING data-name1, ,...data-nameN.

Description

Gives detailed information and general statistics about the correspondents and files
of a running TDS. Each parameter requests a different type of information about
the running TDS. There can be up to 15 parameters (N). The parameter is at the
"01" group level name of the structures that receive the collected information.

The parameters specified in the TRS-CONTROL structure determine the
information that this procedure passes to GET-TDS-STAT. The only obligatory
parameter is TRS-CONTROL. The other parameters are not obligatory and can be
specified more than once, in the following order:

TRS-CONTROL First parameter

TRS-GENERALINFO Optional, always after TRS-CONTROL.

TRS-USERINFO Optional, always after the TRS-CONTROL parameter
and any TRS-GENERALINFO parameters (if they
exist).

TRS-FILEINFO Optional, always after the TRS-CONTROL parameter
and any TRS-GENERALINFO or TRS-USERINFO
parameters (if they exist).

The copy members are available in the TDSNAME.COBOL after a TDS
generation.

TDS COBOL Programmer's Guide

6-18 47 A2 33UT

This procedure has the following limits:

• The TRS procedure can return information for a maximum of 4096 users. A
maximum of 14 TRS-USERINFO structures can be passed to GET-TDS-STAT.

• The TRS procedure can return information for a maximum of 500 files in any
one call. A maximum of 10 TRS-FILEINFO structures can be passed to
GET-TDS-STAT.

• A maximum of 15 data-name parameters can be passed to GET-TDS-STAT.

• The release level of the TDS can influence what information that the TRS
procedure can provide.

The following are examples of what the GET-TDS-STAT call does:

• It can display the current TDS status on a terminal and update it.

• It can determine if any given file is open or closed before a TPR issues I/O
operations against it.

• It can determine which users are logged onto the TDS at any given time.

• It can identify all blocked users and those users blocking them. (A user is
blocked when a transaction is not available and the user must wait for it.)

Usage

The TRS-CONTROL structure is as follows:

01 TRS-CONTROL
 02 TRS-STATUS COMP-1 VALUE 0.
 02 TRS-SUB-STATUS COMP-1 VALUE 0.
 02 NB-GBLK COMP-1 VALUE 1.
 02 NB-UBLK COMP-1 VALUE 0.
 02 NB-UENT COMP-1 VALUE 0.
 02 SELECT-USERS PIC X(12) VALUE SPACES.
 02 MAX-USERS COMP-1 VALUE 200.
 02 NB-USERS COMP-1 VALUE 0.
 02 NB-FBLK COMP-1 VALUE 0.
 02 NB-FENT COMP-1 VALUE 0.
 02 SELECT-FILES PIC X(8) VALUE SPACES.
 02 MAX-FILES COMP-1 VALUE 500.
 02 NB-FILES COMP-1 VALUE 0.

Correspondent Pool Handling Procedures

47 A2 33UT 6-19

Parameters

TRS-STATUS
This field informs the calling TPR of any errors with the following status values:

0 Successful call to TRS. This is the only status that returns requested TDS
information.

1 One or more of these fields contain a negative value: NB-GBLK,
NB-UBLK, NB-FBLK, MAX-USERS, or MAX-FILES.

2 The value is not 0 or 1 in NB-GBLK in TRS-CONTROL.

3 Either too many parameters are being passed to TRS, or at least one of these
fields exceeds the TRS limits: NB-GBLK, NB-UBLK, or NB-FBLK.

4 Too few parameters are being passed to TRS. The valid number of
parameters is one more that the sum of these fields: NB-GBLK, NB-UBLK,
and NB-FBLK.

5 Either user information is requested when NB-UENT is less than zero, or the
value of the NB-UBLK field multiplied by that of the NB-UENT field is less
than the value of MAX-FILES.

6 Either user information is requested when NB-FENT is less than zero, or the
value of the NB-FBLK field multiplied by that of the NB-FENT field is less
than the value of MAX-FILES.

-2 One of the parameter structures passed to TRS is too small to receive all the
requested information. This can be because the "occurs" values for
USERINFO, FILEINFO, or both are different than the values of
MAX-USERS and MAX-FILES.

TRS-SUB-STATUS This field indicates which structure contains an error.
Valid values for this field are:
1 -The error is in the general control structure.
2 -The error is in the user control structure.
3 -The error is in the file control structure.

This field is required when the TRS-STATUS field
(described above) returns a value of 1, 3, or -2.

NB-GBLK This field indicates when a TRS-GENERINFO
structure is being passed to TRS. Valid values are:
0 -The TRS-GENERALINFO structure is being
passed.

TDS COBOL Programmer's Guide

6-20 47 A2 33UT

(NB-UBLK, NB-UENT, MAX-USERS, NB-USERS)
These four fields combine to specify what user
information TRS should report. Different
combinations of these fields produce different reports.
If no user information is required, then the NB-UBLK,
NB-UENT, and MAX-USERS fields should all be set
to zero. The value of the NB-UBLK field multiplied
by the value of the NB-UENT field must be greater
than or equal to the value of MAX-USERS. All
TRS-USERINFO structures must have the same
number of entries. The user fields are as follows:

NB-UBLK This field indicates how many TRS-USERINFO
structures are being passed to TRS.

NB-UENT This field indicates how many entries are in each
TRS-USERINFO structure.

MAX-USERS This field indicates that the calling TPR specifies the
maximum number of users for whom detailed
information is required. TRS-USERINFO returns the
details.

NB-USERS This field indicates how many users about whom to
retrieve detailed information. TRS clears the other
user fields.

(NB-FBLK + NB-FENT + MAX-FILES + NB-FILES)
These four fields combine to specify what file
information TRS should report. Different
combinations of these fields produce different reports.
If no file information is required, then the NB-FBLK,
NB-FENT, and MAX-FILES fields should all be set to
zero. The value of the NB-FBLK field multiplied by
the value of the NB-FENT field must be greater than
or equal to the value of MAX-FILES. All
TRS-FILEINFO structures must have the same
number of entries. The file fields are as follows:

NB-FBLK This field indicates how many TRS-FILEINFO
structures are being passed to TRS.

NB-FENT This field indicates how many entries are in each
TRS-FILEINFO structure.

Correspondent Pool Handling Procedures

47 A2 33UT 6-21

MAX-FILES This field indicates that the calling TPR specifies the
maximum number of files about which detailed
information is required. TRS-FILEINFO returns the
details.

NB-FILES This field indicates how many files about which to
retrieve detailed information. TRS clears the other file
fields

SELECT-USERS, SELECT-FILES
These fields restrict the users or files about which TRS
reports. These fields can both use a simplified star
convention in that they support only a single trailing
star. For example, these fields support both A* and
ABC*, but not A*B or *B. These fields can select
users and files in three ways.

TRS returns information on all users and files if these
fields contain spaces, or a single star (*).

TRS returns information only on the specified user or
file if they contain a full user-id or file name (without
the star convention).

TRS returns information for the user or files whose
names match the supplied star convention. If the value
in the MAX-USERS or MAX-FILES field is less than
the number of users or files matching the star
convention, TRS uses the value in the MAX field.

The following two examples show how to call a TRS.

EXAMPLE

In this example, the TRS-CONTROL structure contains the following parameters:

NB-GBLK = 1
NB-UBLK = 2
NB-FBLK = 1

With the above parameters, the structure contains a status field that tells the TPR if
the call to GET-TDS-STAT was successful. The procedure should be as follows:

CALL "GET-TDS-STAT" USING TRS-CONTROL,
 TRS-GENERALINFO,
 TRS-USERINFO1,
 TRS-USERINFO2,
 TRS-FILEINFO.
❑

TDS COBOL Programmer's Guide

6-22 47 A2 33UT

EXAMPLE

In this example, the TRS-CONTROL structure contains the following parameters:

NB-GBLK = 0
NB-UBLK = 0
NB-FBLK = 1

With the above parameters, the procedure should be as follows:

CALL "GET-TDS-STAT" USING TRS-CONTROL, TRS-FILEINFO.
❑

Correspondent Pool Handling Procedures

47 A2 33UT 6-23

6.5.1 TRS-GENERALINFO

Description

If specified in the TRS-CONTROL structure, this parameter summarizes
information about the whole TDS operation. The NB-GBLK field in the
TRS-CONTROL structure indicates that this information is required.

Usage

01 TRS-GENERALINFO.
 02 TDS-NAME PIX X(4).
 02 TPR COMP-2.
 02 TPR-ABORT COMP-2.
 02 TX COMP-2.
 02 TX-ABORT COMP-2.
 02 EXCHANGE COMP-2.
 02 COMMIT COMP-2.
 02 CPU-MIN PIC 9999V999.
 02 CPU-MILSEC COMP-2.
 02 ELAPSED-MIN PIC 9999V999.
 02 ELAPSED-MILSEC COMP-2.
 02 USERS COMP-1.
 02 FROZEN COMP-1.
 02 TOTAL FILES COMP-1.
 02 CUR-MEM-AREAS COMP-1.
 02 MAX-MEM-AREAS COMP-1.
 02 BUFOV COMP-2.
 02 LONGWAIT COMP-2.
 02 TABOV COMP-1.
 02 DIRTY-READ COMP-1.
 02 WDNAV COMP-1.
 02 DEADLOCK COMP-1.
 02 SERIAL COMP-1.
 02 NON-CONC COMP-1.
 02 TIMELIMIT COMP-2.
 02 IDLE-TIME COMP-2.
 02 MAX-TERMS COMP-1.
 02 CUR-SIMU COMP-2.
 02 FRZ-SIMU COMP-1.
 02 COMMON-SIZE COMP-2.
 02 PRIVATE-SIZE COMP-2.
 02 MAX-TX-SIZE COMP-2.
 02 HA-TDS PIC X.
 02 BROADCAST-SIZE COMP-1.
 02 BROADCAST-MESS PIC X(46).
 02 SMLIBS OCCURS D.
 03 SMLIB_NM PIC X(44).
 02 FILLER PIC X(100).

TDS COBOL Programmer's Guide

6-24 47 A2 33UT

Parameters

TDS-NAME the name of the TDS application. This entry is useful
because a TPR can run under several TDSs.

TPR the number of TPRs that have been executed.

TPR-ABORT the number of TPR aborts that have occurred.

TX the number of transactions that have been executed.

TX-ABORT the number of transaction aborts that have occurred.

EXCHANGE the number of exchanges (message dialogs) that has
taken place.

COMMIT the number of commitments completed.

CPU-MIN the total CPU time, in minutes, used by all TPRs
within the TDS.

CPU-MILSEC the total CPU time, in milliseconds, used by all TPRs
within the TDS.

ELAPSED-MIN the total elapsed time, in minutes, of all TPRs up to
this point.

ELAPSED-MILSEC the total elapsed time, in milliseconds, of all TPRs up
to this point.

USERS the total number of users, connected or frozen,
currently known to TDS.

FROZEN the number of users out of the total given in "USERS",
that are frozen on the application (that is, abnormally
disconnected from TDS) but where a context is
maintained to allow these users to resume at logon.

TOTAL-FILES the total number of files opened or closed in the
application.

CUR-MEM-AREAS the current number of TDS memory-areas, manual or
automatic.

MAX-MEM-AREAS the maximum number of TDS memory-areas that may
be configured.

BUFOV the number of aborts caused by buffer-overflows.

LONGWAIT the number of aborts caused by long waits.

TABOV the number of aborts caused by lock table-overflows.

Correspondent Pool Handling Procedures

47 A2 33UT 6-25

DIRTY-READ the number of aborts caused by IDS "dirty-reads".

WDNAV the number of aborts cause by deferred writes not
being available.

DEADLOCK the number of TPR aborts due to the return code
DEADLOCK received from GAC.

SERIAL the number of times that the TDS was serialized.
Certain master commands (such as [M] CLOSE)
cause TDS serializations.

NON-CONC the number of times any user waited due to a
transaction that was non-concurrent with those
transactions already running.

TIMELIMIT the current TPR CPU time-limit, at which the TPR
aborts.

IDLE-TIME the TDS idle-time at which a user can remain at the
"command level" without entering anything before
automatically logged-off from TDS.

MAX-TERMS the maximum number of terminals that can be
connected to a running TDS.

CUR-SIMU the current TDS simultaneity level.

FRZ-SIMU the number of simultaneities not used by the TDS;
those suspended by the master command
MODIFY_TDS SIMUL=N.

COMMON-SIZE the size of the non-controlled common-storage area
available in TDS.

PRIVATE-SIZE the size of the private-storage area within
transaction-storage. It is the maximum private-storage
size when specified.

MAX-TX-SIZE the size of the largest transaction-storage area. This
value is used to calculate the size of the swap file. It is
the maximum transaction-storage size when specified.

HA-TDS "H" specifies that High Availability TDS is in used and
is monitored by the COMPLEX MANAGEMENT
SERVICE. " " specifies that the application is not HA
TDS.

TDS COBOL Programmer's Guide

6-26 47 A2 33UT

BROADCAST-SIZE the length of the current broadcast message. If the
value of this field is zero, no current broadcast
message exists.

BROADCAST-MESS the broadcast message, as sent by the master command
MODIFY_TDS_MOT.

SMLIB_NM the current sharable module libraries assigned to the
TDS in the order in which they are searched.

Correspondent Pool Handling Procedures

47 A2 33UT 6-27

6.5.2 TRS-USERINFO

Description

If specified in the TRS-CONTROL structure, this parameter provides detailed
information about the TDS users. The MAX-USERS field in the TRS-CONTROL
structure indicates that this information is required. The SELECT-USERS field in
the TRS-CONTROL structure specifies the user selection. The NB-UBLK
parameter in the TRS-CONTROL structure indicates the number of USERINFO
structures. The default array size and the name of this structure can be modified, as
follows:

COPY TRS-USERINFO REPLACING 200 BY 400
 TRAILING "USERINFO" BY "USERINFO2".

Usage

01 TRS-USERINFO.
 02 USERINFO OCCURS 200.
 03 USER-TYPE PIC X(2).
 03 USERID PIC X(12).
 03 STATE PIC 9.
 03 SEND-LEVEL PIC 9.
 03 WAITTIME PIC X(1).
 03 SERIALIZE PIC X(1).
 03 BLOCKING PIC X(1).
 03 MULTI-TPR-COMMIT PIC X(1).
 03 PASS-THROUGH PIC X(1).
 03 TERM-TYPE PIC X(8).
 03 TERM-NAME PIC X(8).
 03 TX-NAME PIC X(8).
 03 TX-STORE-SIZE COMP-2.
 03 TX-NAME-BLOCKED PIC X(8).
 03 FILLER PIC X(20).

Parameters

USER-TYPE the type of user as seen by TDS:
"space" = normal user
"B = batch-interface user
"I = user connected via IOF (master operator only)
"D" = dummy correspondent
"X1" = XCP1 correspondent
"X2" = XCP2 correspondent.

USERID the user identification.

TDS COBOL Programmer's Guide

6-28 47 A2 33UT

STATE the current state of the user as follows:

1 = Processing - executing a TPR

2 = End TPR - between TPRs (next TPR has not
started)

3 = Command - not running a transaction (READY
or IDLE)

4 = Frozen - abnormal disconnection (including
$*$DIS)

5 = Blocked - blocked due to non-concurrence

6 = GAC Wait - waiting on GAC after LONGWAIT,
DEADLOCK, TABLV or ENQUE abort

7 = Transient - in a state of flux or between states

8 = Unlogged - user unlogged after master command
M CANCEL

9 = CMG Wait - waiting commitment unit restart
after an abort with WCNAV, BUFNBOV,
CMWSOV, ITMNAV or ENQUE. The return
code ENQUE received at TPR start if
serialization is requested by another commitment
unit.

SEND-LEVEL indicates level of last physical send from TDS to the
terminal (EMI or EGI), or more accurately, the type of
event that TDS is waiting for (for EMI, an
acknowledgement of the sent message, for EGI, the
next input from the terminal). Possible values are:

1 = No physical send - no send or only send ESI.

2 = Send EMI and no acknowledgement received

3 = Send EGI and the next terminal input awaited.

WAITTIME indicates whether the previous TPR set the wait-time
in TDS-STORAGE before completing:

"space" = wait-time not set

"W" = wait-time set (determines start of NEXT-TPR).

Correspondent Pool Handling Procedures

47 A2 33UT 6-29

SERIALIZE indicates whether a user executes alone (serialization)
or waits for all active commit units to finish before
executing alone. Possible values are:

"space" = not serializing

"S" = serializing or waiting to serialize.

BLOCKING indicates whether specified user is blocking other users
by running a transaction non-concurrent with itself or
with other transactions. Possible values are:

"space" = not blocking other users

"B" = blocking other users via non-concurrence
mechanism. Not that the blocked users should have a
STATE of BLOCKED.

MULTI-TPR-COMMIT indicates whether user is executing a multi-TPR
commitment unit. That is, a TPR executed a SEND
WITH EGI without a commitment.

"space" = last TPR ended with a commitment

"M" = last TPR ended without a commitment.

PASSTHROUGH indicates whether user is using TDS Pass-Through:

"space" = user is not using TDS Pass-Through

"P" = user is using TDS Pass-Through

TERM-TYPE the type of terminal that the user is connected to.

TERM-NAME the name of the user's terminal. This value is use as
symbolic source or symbolic destination.

TX-NAME the name of the transaction (if any) that the user is
running.

TX-STORE-SIZE the size of the TRANSACTION-STORAGE associated
with the transaction. It includes the space allocated by
GETSP-U-CNTXT if any.

TX-NAMED-BLOCKED the name of the transaction that the user is blocked on
if the STATE is BLOCKED.

TDS COBOL Programmer's Guide

6-30 47 A2 33UT

6.5.3 TRS-FILEINFO

Description

If specified in the TRS-CONTROL structure, this parameter provides detailed
information about TDS files. The MAX-FILES field in the TRS-CONTROL
structure indicates that this information is required. The SELECT-FILES field in
the TRS-CONTROL structure specifies the file selection. The NB-FBLK
parameter in the TRS-CONTROL structure indicates the number of FILEINFO
structures. The default array size and name of this structure can be modified, as
follows:

COPY TRS-FILEINFO REPLACING 200 BY 40
 TRAILING "FILEINFO" BY "FILEINFO2".

Usage

01 TRS-FILEINFO.
 02 FILEINFO OCCURS 200.
 03 FILE-TYPE PIC X(1).
 03 FILE-NAME PIC X(8).
 03 FILE-STATE PIC X(1).
 03 AFTER-JOURNAL PIC X(1).
 03 BEFORE-JOURNAL PIC X(1).
 03 SHARE-LEVEL PIC X(1).
 03 DEFERRED-UPDATE PIC X(1).
 03 SHARE-MODE PIC X(1).
 03 ACCESS-MODE PIC X(1).
 03 INIT-PMD PIC X(2).
 03 CUR-PMD PIC X(2).
 03 FILE-INTEGRITY PIC X(1).
 03 EFN PIC X(44).
 03 FILLER PIC X(20).

Correspondent Pool Handling Procedures

47 A2 33UT 6-31

Parameters

FILE-TYPE the type of the file:

"C" = TDS controlled file
"N" = TDS non-controlled file
"D" = IDS-II database area

FILE-NAME the internal file name as specified in TDSGEN and
used by TPRs.

FILE-STATE indicates whether the file is open or not:

"O" = file is open
"C" = file is closed or being closed.

AFTER-JOURNAL indicates whether the file is protected by the After
Journal:

"space" = no after Journal on file
"A" = file is protected by After Journal.

BEFORE-JOURNAL indicates whether the file is protected by the Before
Journal:

"space" = no Before Journal on file
"B" = file is protected by Before Journal.

SHARE-LEVEL shows the current sharability of the file. If the file is
closed and re-opened without specifying the option
"SHARED" on the M OPEN command, then it is
exclusive.

"S" = file is opened in shared-mode
"E" = file is exclusive to TDS.

DEFERRED-UPDATE indicates whether Deferred Updates is used for the file:

"space" = Deferred Updates is not used
"D" = Deferred Updates is used

SHARE file sharing mode:

"N" = normal
"M" = monitor
"O" = onewrite
"D" = directory
"F" = free.

TDS COBOL Programmer's Guide

6-32 47 A2 33UT

ACCESS file access mode:

"R" = read
"W" = write
"S" = spwrite
"P" = spread.

INIT-PMD+CUR-PMD displays the initial processing-mode for the file, the
value specified in TDSGEN and retrieved at the first
TDS startup or the last cold restart (whichever was
last). If the file is closed and re-opened, the current
processing-mode may be different. This current
processing-mode is retained for the next session if a
TDS warm restart is used.

The processing-modes are:

"IN" = input
"UP" = input-output/update
"OU" = output
"AP" = extend/append.

FILE-INTEGRITY the file integrity as specified in the TDSGEN. This is
the minimum level of protection that TDS provides for
the file:

"H" = high
"M" = medium
"N" = none.

EFN the external file name.

Correspondent Pool Handling Procedures

47 A2 33UT 6-33

6.6 The CALL "LIST-COR" Procedure

Syntax

CALL "LIST-COR" USING type,
 option,
 list-cor,
 status.

Description

Lists the correspondents

• either declared in NETGEN (static list),

• or connected to the TDS application (dynamic list).

The list is not sorted.

The equivalent GCL master command is [M] LIST_TDS_COR... (described
in the TDS Administrator's Guide).

Input parameters

type is a 1-character field for selecting the correspondent type. It must contain one
of the following values:

1. for Terminal Manager correspondents,
2. for XCP1 correspondents,
3. for XCP2 correspondents,
4. for DUMMY

A static list of correspondents varies according to the type of correspondent
requested:

• if the type requested is XCP2, all the XCP2 correspondents that can be reached
from the submitting TDS application are listed. This means that if the
correspondent is declared as parallel in NETGEN, a pool exists in NETGEN that
associates it with the TDS application. If the correspondent is not parallel, it is
always listed.

• if the type requested is XCP1, all the XCP1 correspondents whose role is
primary are listed.

• if the type requested is TM, all the TM correspondents defined in NETGEN are
listed.

TDS COBOL Programmer's Guide

6-34 47 A2 33UT

option is a 1-character field that specifies the type of characteristics to be displayed
and must contain one of the following values:

S indicates that Static parameters are to be displayed (not allowed if type is set
to 4.

D indicates that Dynamic parameters are to be displayed.

list-cor is a data structure that returns the list of correspondents. You can copy this
data structure from the <tdsname>.COBOL file through the following COBOL
statement:

 "COPY H-DC-TP-LISTCOR REPLACING MAX-COR-NB BY
 <user-supplied maximum value>":

05 coc-list-cor.
 06 coc-list-cor-version PIC X VALUE 1. input=1
 06 coc-c-index COMP-1. index to be returned
 upon next call
 06 coc-c-list-max-size COMP-1. no. of coc-cor-name
 fields in
 coc-cor-list
 06 coc-c-actual-list-size COMP-1. number of
 correspondents
 in the list
 06 coc-c-total-list-size COMP-1. number of
 correspondents
 (total)
 06 coc-cor-list occurs 1 to max-cor-nb times
 depending on
 coc-c-list-max-size.
 07 coc-cor-name PIC X(12).
 07 coc-cor-state PIC X(1). C indicates Connected,
 D indicates
 Disconnected
 U indicates Undefined

Correspondent Pool Handling Procedures

47 A2 33UT 6-35

The following items are input parameters:

• coc-list-cor-version corresponds to the version of the data structure and must
contain 1.

• coc-c-list-max-size is the number of coc-cor-name field in the coc-cor-list
sub-structure. It must be less than or equal to 5000.

• coc-c-index is used when residual list size is greater than the value specified in
the coc-c-list-max-size field, that is, when several calls are necessary to get the
full list. The coc-c-index field must contain 0 for the first call. If the
coc-external-status is set to COC-TRUNC, the content of coc-c-index is
modified by TDS and must be supplied upon the next call statement.

Output parameters

In the list-cor structure:

• coc-c-total-list-size returns the current number of correspondents
only when the option parameter is set to D and type is XCP2. Note that
coc-c-total-list-size contains the same value after the first call and
after the following ones (for the same list); you can use it to adapt the
coc-c-list-max-size parameter.

• coc-c-actual-list-size is the number of correspondents returned.
• coc-cor-name is the local correspondent name.
• coc-cor-state returns U (Undefined) only for TM and XCP1

correspondents and a blank when option is static.
• coc-c-index is significant when the coc-external-status field in the status

structure equals COC-TRUNC. Its value must be supplied as an input parameter
upon the next CALL statement in order to get the next correspondents in the list.
The list cannot be obtained with several calls when type contains 3 and option
contains D.

status refers to the following data structure that you can copy from the
<tdsname>.COBOL file by using the COBOL statement COPY H-DC-TP-STAT.

05 coc-status.
06 coc-status-version PIC X VALUE 1. input=1
06 coc-external-status PIC X.
06 coc-system-status.
 07 coc-issuer PIC X.
 07 coc-code COMP-1. status code
 07 coc-subcode COMP-1. status subcode
 07 coc-last-rc COMP-2.

coc-trunc is returned in coc-external-status if the coc-cor-list structure is not long
enough.

TDS COBOL Programmer's Guide

6-36 47 A2 33UT

When the coc-external-status equals coc-trunc, the next CALL "LIST-POOL" must
be performed in the same TPR, before any other procedure; otherwise coc-argerr is
returned.

Here is the list of status values that the coc-external-status field can contain.

coc-argerr (2) The type field is not found.
The option field is not found.
The coc-list-cor field is not found.
coc-status-version does not equal 1.
coc-list-cor-version does not equal 1.
coc-c-list-max-size is less than 0 or greater than 5000.
coc-c-index is not equal to 0 and it is the first time a
"CALL LIST-COR" is performed in the current TPR.
coc-c-index was changed between the previous and the
current call.
type was changed between the previous and the current
call.
option was changed between the previous and the
current call.
previous call was a CALL "LIST-POOL".
type is not 1 (TM), or 2 (XCP1), or 3 (XCP2), or 4
(dummy).
type equals 4 (dummy) and option equals S.
option is neither S nor D.

coc-arviol (3) The transaction issuing the CALL "LIST-COR" was
not submitted by the master.

coc-busy (4) NETGEN is being updated. Retry later.

coc-done (0) The requested information is listed.

coc-notall (7) The list of correspondents increased while TDS was
processing the command. The list may be incomplete
(returned only if option equals D).

coc-notdone (9) PPC incident.
TDS incident.
NETGEN incident.
Contact the Service Center.

coc-ogenunkn (C) NETGEN was incrementally generated while TDS was
processing the command. Retry later.

Correspondent Pool Handling Procedures

47 A2 33UT 6-37

coc-resnav (D) Type equals 3 (XCP2) and the XCP2 service is not
started, or the TPR executing the call belongs to a
transaction that is not allowed to use XCP2 (the TDS
generation clause XCP2 SERVICE USED does not
exist for this transaction). This is returned only on the
first call and if option equals D.

corresp-name refers to a XCP2 correspondent and the
XCP2 service is not started, or the TPR executing the
call belongs to a transaction that is not allowed to use
XCP2 (the TDS generation clause XCP2 SERVICE
USED does not exist for this transaction).

coc-trunc (F) A new call is necessary to list the remainder of the
requested information because c-list-max-size was too
small.

coc-wrongpar (H) Error occurred on the TDS/PPC interface. Contact the
Service Center.

TDS COBOL Programmer's Guide

6-38 47 A2 33UT

6.7 The CALL "LIST-POOL" Procedure

Syntax

 CALL "LIST-POOL" USING corresp-name,
 option,
 list-pool,
 status.

Description

Lists the XCP2 pools:

• either declared in NETGEN (static list),
• or running for a correspondent (dynamic list).

In both cases (static or dynamic), only the pools attached to the TDS application
are listed. The list is not sorted.

The equivalent GCL master command is [M] LIST_COR_POOL...
(described in the TDS Administrator's Guide).

Input parameters

corresp-name is a string of 12 alphanumeric characters for defining the local
correspondent name of an XCP2, or XCP1 partner application. If the option is set
to 'D', the corresp-name must contain the name of a correspondent connected to the
TDS application.

option is a 1-character field for indicating which characteristics are to be
displayed and must contain one of the following values:

S indicates that Static parameters are to be displayed (for a XCP2
correspondent only).

D indicates that Dynamic parameters are to be displayed.

Correspondent Pool Handling Procedures

47 A2 33UT 6-39

list-pool refers to a structure that returns the list of pools. You can copy this
structure from the <tdsname>.COBOL file using the following COBOL statement:

"COPY H-DC-TP-LISTPOOL REPLACING MAX-POOL-NB BY
 <user-supplied maximum value>"
05 coc-list-pool.
 06 coc-list-pool-version PIC X VALUE 1. input=1
 06 coc-p-index COMP-1. index to be returned upon
 next call
 06 coc-p-list-max-size COMP-1. no. of coc-pool-name
 fields in pool list
 06 coc-p-actual-list-size COMP-1. no. of pools in the list
 06 coc-p-total-list-size COMP-1. no. of pools for the
 correspondent
 06 coc-pool-list occurs 1 to max-pool-nb times depending on
 coc-p-list-max-size.
 07 coc-pool-name PIC X(8).
 07 coc-pool-state PIC X(1). O indicates Open,
 C indicates being Closed

The following items are input parameters:

• coc-list-pool-version is the version of the declarative structure. It
must contain 1.

• coc-p-list-max-size is the number of the coc-pool-name field in the
coc-pool-list sub-structure and must be less than, or equal to 5000.

• coc-p-index is used when residual list size is greater than the value specified
in the coc-p-list-max-size field, that is, when several calls are required
to get the full list. This field must contain 0 for the first call. If the
coc-external-status is set to COC-TRUNC, the content of
coc-p-index is modified by TDS and must be supplied upon the next call
statement.

Output parameters

In the list-pool structure:

• coc-p-total-list-size returns the current number of pools for the
correspondent. Returned only when option equals D. Note that it contains the
same value after the first call and after the following ones (relevant to the same
list). Use coc-p-total-list-size to adapt the
coc-p-list-max-size field.

• coc-p-actual-list-size returns the number of pools in the pool-list.

TDS COBOL Programmer's Guide

6-40 47 A2 33UT

• coc-pool-name:

For a XCP2 correspondent, coc-pool-name is the name of the pool.

For a XCP1 correspondent, coc-pool-name consists of the pool attribute
(2 characters) padded with 6 blank characters.

• coc-pool-state is meaningful only when the option parameter equals D.

• coc-p-index is meaningful only when the coc-external-status field
in the status structure equals COC-TRUNC. Its value must be supplied as an
input parameter upon the next CALL statement in order to obtain the next
pool(s) in the list. The list of pools cannot be obtained using several calls when
option is set to D.

status refers to the following data structure that you can copy from the
<tdsname>.COBOL file by using the COBOL statement COPY H-DC-TP-STAT.

05 coc-status.
06 coc-status-version PIC X VALUE 1. input=1
06 coc-external-status PIC X.
06 coc-system-status.
 07 coc-issuer PIC X.
 07 coc-code COMP-1. status code
 07 coc-subcode COMP-1. status subcode
 07 coc-last-rc COMP-2.

coc-trunc is returned in coc-external-status if the pool-list structure is
not long enough.

When the coc-external-status equals coc-trunc, the next CALL
"LIST-POOL" must be performed in the same TPR, before any

other procedure; otherwise coc-argerr is returned.

Correspondent Pool Handling Procedures

47 A2 33UT 6-41

Here is the list of status values that the coc-external-status field can contain.

coc-argerr (2) The corresp-name field is not found.
The option field is not found.
The coc-list-pool field is not found.
coc-status-version is not equal to 1.
coc-list-pool-version does not equal 1.
corresp-name equals DUMMY or is blank.
coc-p-list-max-size is lower than 0, or greater than
5000.
coc-p-index contains a value other than 0 and it is the
first time a "CALL LIST" is performed in the current
TPR.
coc-p-index was changed between the previous and the
current call.
option was changed between the previous and the
current call.
previous call was a "CALL "LIST-COR".
corresp-name was changed between the previous and
the current call.
option is neither "S" nor "D".

coc-arviol (3) The transaction issuing the CALL "LIST-POOL" was
not submitted by the master.

coc-busy (4) NETGEN is being updated. Retry later.

coc-done (0) Request is performed and all the information to be
listed is provided.

coc-dupname (8) Corresp-name has a multiple definition (TM, XCP1,
XCP2) in NETGEN.

coc-notall (7) The list of pools increased while TDS was processing
the command. The list can be incomplete (returned
only if option equals D).

coc-notdone (9) PPC incident
TDS incident
NETGEN incident.
Contact the Service Center

coc-notop (A) No pool is open, that is, there are no active sessions
towards the given correspondent (returned only if for a
XCP1 context and if option equals D).

coc-objunkn (B) Corresp-name is unknown to the PPC.

TDS COBOL Programmer's Guide

6-42 47 A2 33UT

coc-ogenunkn (C) NETGEN was incrementally generated while TDS was
processing the command. Retry later.

coc-resnav (D) Corresp-name refers to an XCP2 correspondent and
the XCP2 service is not started, or the TPR executing
the call belongs to a transaction that is not allowed to
use XCP2 (the TDS generation clause XCP2
SERVICE USED does not exist for this transaction).
This is returned only on the first call and if option
equals "D".

coc-trunc (F) A new call is necessary to obtain the remainder of the
list because p-list-max-size was too small.

coc-typeerr (G) corresp-name refers to a wrong correspondent name.
The specified correspondent refers to a correspondent
connected to the TDS application other than a XCP1
correspondent (returned only if option equals D).
corresp-name refers to a correspondent other than a
XCP2 correspondent.
corresp-name refers to a XCP1 correspondent which is
secondary (the command applies to primary only)
(returned only if option equals S).

coc-wrongpar (H) Error occurred on the TDS/PPC interface. Contact the
Service Center.

Correspondent Pool Handling Procedures

47 A2 33UT 6-43

6.8 The CALL "MODIFY-POOL"

Syntax

CALL "MODIFY-POOL" USING corresp-name,
 pool-name,
 mod-values,
 status.

Description

Modifies characteristics of a session pool, such as the maximum number of
sessions. It is assumed that the specified pool is already opened.

When a TDS application is cold re-started, or when the specified pool is closed,
any modifications made by the master terminal operator are lost. Otherwise, the
modifications are preserved until the next CALL "MODIFY-POOL" request is
performed, or the master command [M] MODIFY_COR_POOL is entered.

XCP2:

After negotiating the parameters to be modified with the partner application, the
caller is informed of any modifications made to the session pool.

If you use this statement to decrease the number of active sessions, the surplus
sessions are deallocated as soon as the conversations using them are deallocated.

XCP1 and DUMMY:

Same as for the [M] MODIFY_COR_POOL command. Here, a pool name is the
value specified in the ATTRIBUTE parameter of this command.

If the relative number of sessions is negative, the surplus sessions are closed as
soon as they are freed.

If the relative number of sessions is positive, additional sessions are connected.

The equivalent GCL master command is [M] MODIFY_COR_POOL...
(described in the TDS Administrator's Guide).

TDS COBOL Programmer's Guide

6-44 47 A2 33UT

Input parameters

corresp-name is an input parameter of 12 alphanumeric characters for defining
the partner application. It must contain dummy or the name of an XCP2COR
object, or XCP1COR object previously connected by the CALL "OPEN_POOL
procedure, or the master command [M] OPEN_COR_POOL ...

pool-name is an input parameter of 8 alphanumeric characters defining the pool.

For a XCP2 correspondent, this parameter is the pool
name (the POOL object in NETGEN).

For a XCP1 correspondent, the first 2 characters must
contain the pool attribute, that is, the pool attribute as
defined for the [M] MODIFY_COR_POOL
command. The remaining characters must be filled
with blank characters. If all characters are blank, TDS
will take as the pool attribute the first 2 characters of
the correspondent name.

For a DUMMY correspondent, this parameter must be
filled with blank characters.

mod-values refers to a structure that you can copy from the <tdsname>.COBOL
file by using the COBOL statement COPY H-DC-TP-MODPOOL:

05 coc-mod-pool.
 06 coc-mod-pool-version PIC X VALUE 1. input=1
 06 coc-mod-pool-x2.
 07 coc-mod-flags-x2.
 08 coc-max-ses-nb-fg PIC X. Y -> max no. of sessions
 changed
 N -> unchanged
 08 coc-win-source-fg PIC X. Y -> max no. of winner
 sessions for source
 changed
 N -> unchanged
 08 coc-win-target-fg PIC X. Y -> max. no. of winner
 sessions for
 target changed
 N -> unchanged
 08 coc-auto-activ-fg PIC X. Y -> no. of auto-active
 changed
 N -> unchanged
 08 coc-filler PIC X(12). reserved for future use

Correspondent Pool Handling Procedures

47 A2 33UT 6-45

 07 coc-mod-val-x2.
 08 coc-max-ses-nb COMP-1. absolute no. of sessions
 08 coc-min-win-source COMP-1. min no. of winner
 sessions for source
 08 coc-min-win-target COMP-1. min no. of winner
 sessions for target
 08 coc-win-auto-activ COMP-1. max no. of winner auto
 active sessions
 08 coc-filler PIC X(14). reserved for future use

 06 coc-mod-pool-dux1.
 07 coc-mod-flags-dux1.
 08 coc-ses-nb-fg PIC X. must contain Y
 08 coc-filler PIC X(15). reserved for future use

 07 coc-mod-val-dux1.
 08 coc-ses-nb COMP-1. relative no. of sessions
 08 coc-filler PIC X(20). reserved for future use

XCP2 pool

All the fields in coc-mod-pool-x2 are input parameters.

If you request the [M] PREVENT_NEW_TDS_COR X2C=1 command, or
execute the CALL "MD-NEWCONNECT" with coc-xcp2-fg=Y, increasing the
number of sessions is rejected, but decreasing the number of sessions is accepted
(unless the partner name on the receptor site is unknown in which case the request
is always rejected).

Note that the coc-max-ses-nb is an absolute number.

XCP1 pool or a DUMMY correspondent:

All fields in coc-mod-pool-dux1 are input parameters. Note that coc-ses-nb is a
relative number.

Output parameters

In the mod-values structure:

• For a XCP2 pool, the structure coc-mod-val-x2 contains the
negotiated values.

• For a XCP1 pool, or a DUMMY correspondent, no outputs appear in
coc-mod-val-dux1.

TDS COBOL Programmer's Guide

6-46 47 A2 33UT

status refers to the following data structure that you can copy from the
<tdsname>.COBOL file by using the COBOL statement COPY H-DC-TP-STAT.

05 coc-status.
06 coc-status-version PIC X VALUE 1. input=1
06 coc-external-status PIC X.
06 coc-system-status.
 07 coc-issuer PIC X.
 07 coc-code COMP-1. status code
 07 coc-subcode COMP-1. status subcode
 07 coc-last-rc COMP-2.

Here is the list of status values that the coc-external-status field can take.

coc-argerr (2) The corresp-name field is not reachable.
The pool-name is field not reachable.
The coc-mod-pool field is not reachable.
coc-status-version does not equal 1.
coc-mod-pool-version does not equal 1.
corresp-name refers to a XCP1 correspondent and the
last 6 characters of pool-name are not blanks.
corresp-name equals DUMMY and pool-name is not
blank.
coc-ses-nb-fg is neither Y nor N (XCP1 or DUMMY).
coc-max-ses-nb-fg is neither Y nor N.
coc-win-source-fg is neither Y nor N.
coc-win-target-fg is neither Y nor N.
coc-auto-activ-fg is neither Y nor N.

coc-arviol (3) The transaction issuing the MODIFY-POOL has not
been submitted by the master.

coc-busy (4) A previous request to modify the pool is still being
processed (returned only if for a XCP1 context and if
ses-nb is positive).

coc-done (0) Request is performed.

coc-nonew (6) TDS does not allow any new XCP2 connections to be
established (as a result of the CALL
"MD-NEWCONNECT" verb, or a [M]
PREVENT_NEW_TDS_COR master command) and
maxsesnb is greater than the actual maximum XCP2
session count (returned only for a XCP2 context and if
coc-max-ses-nb-fg equals Y).

Correspondent Pool Handling Procedures

47 A2 33UT 6-47

coc-notall (7) The requested number of active sessions is greater than
the "XCP1SESS" parameter attached to the TDS
workstation (TDSWKS is declared in NETGEN).
Only the remaining unused sessions were activated
(returned only for a XCP1 context and if coc-ses-nb is
positive).

coc-notdone (9) A PPC or TDS incident occurred. Contact the Service
Center.

coc-objunkn (B) corresp-name unknown to tds and ppc.
− pool-name unknown to PPC (XCP2).
− corresp-name was not declared in NETGEN

(returned only for a XCP1 context and if coc-ses-nb
is positive).

coc-resnav (D) corresp-name refers to a XCP2 correspondent and the
XCP2 service is not started.

coc-syserr (E) Internal error (returned only if it is a XCP1 context and
if coc-ses-nb is positive).

coc-typeerr (G) corresp-name refers to a wrong correspondent name.
The specified correspondent refers to a correspondent
connected to the TDS application that is neither XCP1
nor DUMMY.

In NETGEN, corresp-name refers to a XCP1
correspondent which is not primary (returned only for
a XCP1 context and if coc-ses-nb is positive).

coc-wrongpar (H) Error occurred on the TDS/PPC interface. Contact the
Service Center.

TDS COBOL Programmer's Guide

6-48 47 A2 33UT

6.9 The CALL "OPEN-POOL" Procedure

Syntax

CALL "OPEN-POOL" USING corresp-name,
 all-option,
 pool-name,
 param-name,
 status.

Description

XCP2:

Opens one or all session pools between a local TDS application and a partner
application. Before the sessions can be established and allocated to conversations,
the CALL "OPEN-POOL" must be issued:

• either by the local site,

• or by the partner site.

The partner correspondent can be defined in NETGEN with PARALLEL=1 or
PARALLEL=0. The local name of the partner correspondent and a pool name
identifies the pool. The characteristics of the pool(s) must have been declared at
NETGEN.

A CALL "OPEN-POOL" request is rejected:

• if either a [M] PREVENT_NEW_TDS_COR command,

• or a CALL "MD-NEWCONNECT" request was previously performed.

XCP1:

Same effect as the [M] OPEN_COR_POOL command. Here, a pool name is
the value specified in the ATTRIBUTE parameter.

The equivalent GCL master command is [M] OPEN_COR_POOL... (described in
the TDS Administrator's Guide).

Correspondent Pool Handling Procedures

47 A2 33UT 6-49

Input parameters

corresp-name is an input parameter of 12 alphanumeric characters for defining
the local correspondent name of the partner application. It must contain the name
of a XCP2COR, or a XCP1COR object previously declared in NETGEN.

corresp-name cannot be "DUMMY", blank, or identical to the name of a
terminal operator.

all-option is a 1-character input parameter in which you must specify one of
the following values:

Y indicates that this call applies to all pools declared in NETGEN that can link
the application to the specified correspondent. TDS tries to open all the
pools. (If a fatal error is encountered, only some of the pools are opened).

N indicates that this call applies to the pool specified in pool-name.

For a XCP1 correspondent, the all-option input parameter is ignored.

pool-name

For XCP2, pool-name is a string of 8 alphanumeric
characters for defining the pool. It must have been
described through the NETGEN.

For XCP1, the first 2 characters of pool-name must
contain the pool attribute. The remaining characters
must be filled with blank characters. If all characters
are blank, TDS will take as the pool attribute the first 2
characters of the correspondent name.

The pool-name input parameter is ignored if
all-option is set to Y.

For a XCP2 pool, the two sites negotiate the pool name
according to the pool attributes defined in their
respective NETGEN declaration. If on the acceptor
site, the pool name is not known, the pool names
proposed of the initiator site are accepted; except for
the following 4 attributes (refer to the GCOS 7-V6
Networks: Overview and Generation manual).

- winner_auto set to 0 by the acceptor.
- drain_source set to 0 by the acceptor.
- drain_target set to 0 by the acceptor.
- sync_level set to "confirm" by the acceptor.

TDS COBOL Programmer's Guide

6-50 47 A2 33UT

param-name refers to a structure that you can copy from the <tdsname>.COBOL
file by using the COBOL statement COPY H-DC-TP-OPENPOOL:

05 coc-open-pool.
 06 coc-open-pool-version PIC X VALUE 1. input=1
 06 coc-open-pool-x2.
 07 coc-max-ses-nb COMP-1. maximum no. of
 sessions
 07 coc-min-win-source COMP-1. min no. of winner
 sessions for source
 07 coc-min-win-target COMP-1. min no. of winner
 sessions for target
 07 coc-opened-pool-nb COMP-1. total no. of pools
 opened
 06 coc-open-pool-x1.
 07 coc-activ-ses-nb COMP-1. no. of sessions
 activated immediately

For a XCP2 pool, only coc-open-pool-version is an input parameter.

For a XCP1 pool, coc-open-pool-version and coc-open-pool-x1 are input
parameters. coc-activ-ses-nb cannot be 0.

Output Parameters

In the param-name structure:

For a XCP2 pool

Unless the verb is used for several pools,
coc-max-ses-nb, coc-min-win-source, and
coc-min-win-target contain the attributes of the pool as
negotiated with the correspondent. Otherwise, the
TDS monitor does not modify these fields.

coc-opened-pool-nb always contains the number of
pools that has been opened successfully. If all-option
is set to Y, this number is less than or equal to the total
XCP2 pools number defined in NETGEN (if it is less,
a value other than COC-DONE is returned in the
coc-external-status).

Correspondent Pool Handling Procedures

47 A2 33UT 6-51

For a XCP1 pool, the structure remains unchanged.

• status refers to the following data structure that you can copy from the
<tdsname>.COBOL file by using the COBOL statement COPY
H-DC-TP-STAT.

 05 coc-status.
 06 coc-status-version PIC X VALUE 1. input=1
 06 coc-external-status PIC X.
 06 coc-system-status.
 07 coc-issuer PIC X.
 07 coc-code COMP-1. status code
 07 coc-subcode COMP-1. status subcode
 07 coc-last-rc COMP-2.

• Only the coc-external-status field can be checked by the caller. The
values it can take can be retrieved through the COBOL statement COPY
H-DC-TP-STAT.

• The coc-system-status field is reserved for the use of the Service
Center.

The coc-external-status field can contain the following values.

coc-already (1) The specified pool is already opened (returned only in
a XCP2 context and if all-option equals N).

Some sessions with the same attribute as this specified
in the pool-name field are already established (returned
only in a XCP1 context).

coc-argerr (2) The corresp-name field is not found.
The all-option field is not found.
The pool-name field is not found.
The coc-open-pool field is not found.
corresp-name equals "DUMMY" or is blank.
coc-status-version does not equal 1.
coc-open-pool-version does not equal 1.
corresp-name refers to a XCP1 correspondent and the
last 6 characters of the pool-name field are not blanks.
corresp-name refers to a XCP2 correspondent,
all-option equals N and pool-name is blank.
corresp-name refers to a XCP1 correspondent and
coc-activ-ses-nb is negative or zero.
all-option is neither Y nor N.

coc-arviol (3) The transaction issuing the OPEN-POOL was not
submitted by the master.

coc-busy (4) NETGEN is being updated. Retry later.

TDS COBOL Programmer's Guide

6-52 47 A2 33UT

coc-done (0) The request is performed.

coc-dupname (8) corresp-name has a multiple definition (TM, XCP1,
XCP2) in NETGEN.

coc-empty (5) A request to open a pool towards an XCP2
correspondent was made, but no pools are defined in
NETGEN for this correspondent.

coc-nonew (6) A request to open pool(s) towards a XCP2
correspondent was made, but TDS rejects new XCP2
connections. (This is caused by the
"MD-NEWCONNECT" verb, or a "[M]
PREVENT_NEW_TDS COR" master command).

coc-notall (7) all-option equals Y and some pools cannot be opened
(returned only in a XCP2 context).

coc-activ-ses-nb is greater than the value defined in the
XCP1SESS parameter associated with the TDS
workstation (TDSWKS is declared in NETGEN).
Only XCP1SESS sessions were activated (returned
only in a XCP1 context).

coc-notdone (9) NETGEN incident.
An incident occurred for the ppc (returned only if
all-option equals N).
All attempts failed (returned only if all-option equals
Y).
Contact the Service Center.

coc-ogenunkn (C) NETGEN was incrementally generated while TDS was
processing the command. Retry later.

coc-objunkn (B) corresp-name was not declared in NETGEN.
pool-name was not declared in NETGEN.

coc-resnav (D) corresp-name refers to a XCP2 correspondent and the
XCP2 service is not started.

coc-syserr (E) XCP1: Internal error (returned only in a XCP1
context).

coc-typeerr (G) The corresp-name in NETGEN is neither XCP1 nor
XCP2.
corresp-name refers to a XCP1 correspondent that is
not primary.

coc-wrongpar(H) Internal error occurred on the TDS/PPC interface.

47 A2 33UT 7-1

 7. Terminal Adapter Procedures

7.1 Overview

This chapter deals with the following procedures:

MDPROF modifies the variables in the profile of a user for whom
a transaction is running.

RDPROF reads the variables from the profile of a user for whom
the transaction is running.

TDS COBOL Programmer's Guide

7-2 47 A2 33UT

7.2 The CALL "MDPROF" Procedure

Syntax

CALL "MDPROF" USING profile-description,
 status-description,
 [,enclosure-level].

Description

Modifies the variables in the profile of a user for whom a transaction is running.

CALL "MDPROF" generates control characters that are sent to the terminal. The
effect of some modifications may be postponed depending on the profile variable
in question.

No preceding quarantined messages must exist when you use the CALL
"MDPROF" statement (and follows the same rules as for the SEND verb).

If the USE TERMINAL ADAPTER clause is not specified at TDSGEN, the CALL
"MDPROF" statement is ignored.

If MDPROF is called while the terminal is in formatted mode, the following
remarks apply:

• The INVCHAR field is taken into account immediately by FORMS.

• The CSET field is taken into account only on output (because the terminal will
receive the message indicating the modification only after exit from formatted
mode).

• All the other fields are taken into account only after exit from formatted mode
(in fact, after execution of the FORMS verb CDRELS).

If MDPROF is called while the terminal is in line mode and the terminal is
subsequently in formatted mode, the following remarks apply:

• The AUTOLF, EXPTABS, MAIL, PL, PW, ROLL, TA, and TABS fields are not
relevant to FORMS. However, their values effective again after exit from
formatted mode.

• The INVCHAR field is taken into account by FORMS.

• The CSET field is taken into account by FORMS.

Terminal Adapter Procedures

47 A2 33UT 7-3

Usage

profile-description is a data structure containing the set of variables of a
user profile. Use the COBOL statement COPY PROFILE-DESC to obtain the
following data structure.

02 PROFILE-DESCRIPTION.
 03 AUTOLF-D PIC 9. takes effect from next SEND
 03 CSET-D PIC 9. takes effect from next SEND
 03 EXPTABS-D PIC 9. takes effect from next
 RECEIVE
 03 INVCHAR-D PIC X. takes effect from next SEND
 03 MAIL-D PIC 9. takes effect immediately
 03 PL-D PIC 999. takes effect from next SEND
 03 PW-D PIC 999. takes effect from next SEND
 03 ROLL-D PIC 9. takes effect from next SEND
 03 TA-D PIC 9. takes effect after the next
 terminal I/O
 03 TABS-ARRAY-D. PIC 9. takes effect after the next
 04 TABS-D PIC 999 OCCURS 16. terminal I/O

All the fields in the PROFILE-DESCRIPTION structure are input parameters and
are described as follows.

AUTOLF AUtO Line Feed can be either 0 or 1.
If AUTOLF is 1, pressing the return or the transmit
key automatically generates a line feed.
If AUTOLF is 0, the line feed is generated by the
system.
The default value is that specified in the network
generation.

CSET Character SET
the character set to be used for coding terminal
characters.
The value can be:

0 for code C101 (EBCDIC),
1 for code C127 (extended EBCDIC). The default

value is 1.
3 for code C114 (Arab characters).
4 for code C118 (Greek characters).
5 for code C113 (Cyrillic characters).
6 for code C094 (Chinese characters).
7 for code PLE (PLURI-LINGUAL EAST).

For further details on the character set, see Chapter 2.

TDS COBOL Programmer's Guide

7-4 47 A2 33UT

EXPTABS EXpand TABulationS.
When EXPTABS is 1, all tabulation characters keyed
in are replaced by a number of spaces, as defined by
the TABS variable.
When EXPTABS is 0, the tabulation characters are
transmitted as they are.
The default value is 1.

INVCHAR INValid CHARacter representation (PIC X).
Represents characters that cannot be displayed on the
user's terminal. If value is "00"X (zero), the characters
are left unchanged.
The default value is "00"X.

MAIL refers to the reception of messages. The value is either
1, or 0.
The default value (MAIL = 1) allows external
messages to be displayed. If MAIL = 0, such
messages do not appear and the sender receives the
return code MSG-REFUSED if the SEND verb is used
in a TPR.

PL indicates the Page Length and can contain up to 3
numeric characters (PIC 999).
Specifies how many lines can be entered on a screen.
The default value is terminal dependent.
PL must be greater than 10, and less than, or equal to
the terminal's actual page length, as specified in the
network generation.

PW Printing Width (PIC 999).
The maximum number of characters per line.
The default value is terminal dependent.
PW must be greater than 35 and less than or equal to
the physical width of terminal, as specified in the
network generation.

ROLL ROLL mode can be 0 or 1.
If ROLL is 1, the terminal operates in rollmode. Each
new line at the bottom of the screen pushes up the
remainder of the screen by one line, thus erasing the
topmost line.
The default value is that specified in the network
generation.

Terminal Adapter Procedures

47 A2 33UT 7-5

TA TA=0 puts the user out of terminal adapter
presentation. This is the default value.
TA=1 puts the user into terminal adapter presentation.
Messages can be sent to or received by the user
regardless of terminal type.

TABS TABulation Stops.
Redefines the tab stop positions on the terminal. Tab
stops are expressed as column numbers starting with 1
for the leftmost character position. The tab stops are
sorted in ascending order.
type PIC 999 OCCURS 16.
The default value is 0.
The values must be positive and less than or equal to
the physical width of the terminal.
You cannot modify tabulation stops for a user working
in format mode.

Status-description is the data structure containing the status key that
informs you if an error occurs for a profile variable.

You can obtain this data structure by using the COBOL statement COPY
PROFILE-STATUS.

01 PROFILE-STATUS.
 02 STATUS-S PIC 9.
 02 AUTOLF-S PIC 9.
 02 CSET-S PIC 9.
 02 EXPDTABS-S PIC 9.
 02 INVCHAR-S PIC 9.
 02 MAIL-S PIC 9.
 02 PL-S PIC 9.
 02 PW-S PIC 9.
 02 ROLL-S PIC 9.
 02 TA-S PIC 9.
 02 TABS-S PIC 9.

All the fields in PROFILE-STATUS are output parameters.

TDS COBOL Programmer's Guide

7-6 47 A2 33UT

PROFILE-STATUS takes the following values at the completion of statement:

0 successful completion
1 at least one warning and no error occurred
2 at least one error occurred
3 invalid parameter structure
4 ignored statement
5 misplaced statement for example, a quarantined message already exists, or

there is a turn error.

The status items in the PROFILE-STATUS structure can take the following values
at the completion of the statement:

0 modification request is taken into account.
1 warning: this user cannot use this value for this item.
2 error: the value is out of range for this item.

An erroneous status item does not prevent a valid modification from taking effect
for another status item.

Some of the modifications must be made known to the terminal. Consequently, the
enclosure-level, which specifies how a message terminates, must be
accurately chosen to save these modifications.

enclosure-level takes the following values:

1 The message is quarantined, but is not sent to the terminal. This is the
default value. This is equivalent to ESI in TDS terms.

2 All quarantined messages are now sent to the terminal. The application still
retains the turn. This is equivalent to EMI in TDS terms.

3 All quarantined messages are now sent to the terminal. The turn is given to
the terminal. This is equivalent to EGI in TDS terms.

Terminal Adapter Procedures

47 A2 33UT 7-7

7.3 The CALL "RDPROF" Procedure

Syntax

CALL "RDPROF" USING profile-description, status.

Description

Reads the variables from the profile of a user for whom the transaction is running.

If the USE TERMINAL ADAPTER clause is not specified at TDSGEN, this
statement is ignored.

Usage

profile-description is a data structure containing the set of variables of a
user profile. You can obtain this data structure by using the COBOL statement
COPY PROFILE-DESC.

02 PROFILE-DESCRIPTION.
 03 AUTOLF-D PIC 9.
 03 CSET-D PIC 9.
 03 EXPTABS-D PIC 9.
 03 INVCHAR-D PIC X.
 03 MAIL-D PIC 9.
 03 PL-D PIC 999.
 03 PW-D PIC 999.
 03 ROLL-D PIC 9.
 03 TA-D PIC 9.
 03 TABS-ARRAY-D.
 04 TABS-D PIC 999 OCCURS 16.

All the fields in PROFILE-DESCRIPTION are output parameters. For an
explanation of these parameters, see the CALL "MDPROF" statement earlier in
this chapter.

status defines the status of the statement CALL "RDPROF" and is an output
parameter. Status takes the following values at the completion of the statement:

0 Successful completion of the statement. Current values of the profile are
stored in the structure.

1 Abnormal completion. The parameter structure is not valid.
2 Ignored statement.

TDS COBOL Programmer's Guide

7-8 47 A2 33UT

❑

47 A2 33UT 8-1

 8. COMMON-STORAGE Handling Procedures

8.1 Overview

This chapter deals with the following procedures:

CLENGTH-COMMON returns the actual length in bytes of the specified
CONTROLLED COMMON-STORAGE defined at
TDSGEN.

CREAD-COMMON reads the contents of the specified CONTROLLED
COMMON-STORAGE from the tdsname.CTLM file
and moves it into a specified area.

CWRITE-COMMON updates the contents of the specified CONTROLLED
COMMON-STORAGE that is stored on the
tdsname.CTLM file (on disk) with the contents of a
user area declared in WORKING-STORAGE.

FREE-COMMON moves the contents of a specified data area to
COMMON-STORAGE and unlocks
COMMON-STORAGE.

KEEP-COMMON moves the contents of a specified data area to the
COMMON-STORAGE, and saves, that is, updates the
COMMON-STORAGE on a TDS system file, named
tdsname.CTLN.

LENGTH-COMMON returns the length of COMMON-STORAGE as
defined at TDSGEN.

READ-COMMON moves the contents of the COMMON-STORAGE area
to a specified data area.

SAVE-COMMON moves the contents of a specified data area to the
COMMON-STORAGE, writes the
COMMON-STORAGE onto the TDS system file,
named tdsname.CTLN, and unlocks
COMMON-STORAGE.

TAKE-COMMON moves the contents of COMMON-STORAGE to a
specified data area and locks COMMON-STORAGE.

TDS COBOL Programmer's Guide

8-2 47 A2 33UT

8.2 The CALL "CLENGTH-COMMON" Procedure

Syntax

 CALL "CLENGTH-COMMON" USING data-name-1,
 data-name-2,
 data-name-3.

Description

Returns the actual length in bytes of the specified CONTROLLED
COMMON-STORAGE defined at TDSGEN.

Usage

data-name-1 is a field of 12 alphanumeric characters identifying
CONTROLLED COMMON-STORAGE. It is an input parameter.

data-name-2 is a COMP-2 field that contains the length (in bytes) of the
CONTROLLED COMMON-STORAGE. Data-name-2 is an output parameter.

data-name-3 is a single numeric character defined as PIC 9 that contains the
status of the CALL. It is an output parameter. The possible status values are:

0 = successful completion.

1 = unknown CONTROLLED COMMON-STORAGE name.

COMMON-STORAGE Handling Procedures

47 A2 33UT 8-3

8.3 The CALL "CREAD-COMMON" Procedure

Syntax

 CALL "CREAD-COMMON" USING data-name-1,
 data-name-2,
 data-name-3,
 data-name-4.

Description

Reads the contents of the specified CONTROLLED COMMON-STORAGE from
the tdsname.CTLM file and moves it into an area named data-name-2. The
CONTROLLED COMMON-STORAGE is locked until the next commitment.

Usage

data-name-1 is a field of 12 alphanumeric characters identifying
CONTROLLED COMMON-STORAGE defined at TDSGEN. It is an input
parameter.

data-name-2 names an area declared in the WORKING-STORAGE SECTION
of the TPR. Data-name-2 is an output parameter.

data-name-3 is a COMP-2 field that must contain the length of data to be read.
Data-name3 is an input parameter.

If the specified length is lower than the real length of the CONTROLLED
COMMON-STORAGE, only the specified length is read from the beginning of the
CONTROLLED COMMON-STORAGE.

The value of data-name-3 must not be negative, zero, or greater than the size of the
CONTROLLED COMMON-STORAGE as given at TDSGEN. If one of these
conditions occurs, the size given at TDSGEN is retained and no error status is
returned. However, the real size used to perform the move to the user area
(data-name-2) is adjusted to the end of the user segment in order to avoid the
exception (out of bounds). Note that the value of data-name3 is not modified.

data-name-4 is a single numeric character defined as PIC 9. This output
parameter contains the status of the CALL. At completion, this field contains one
of the following values:

0 = successful completion
1 = unknown CONTROLLED COMMON-STORAGE name.

TDS COBOL Programmer's Guide

8-4 47 A2 33UT

8.4 The CALL "CWRITE-COMMON" Procedure

Syntax

CALL "CWRITE-COMMON" USING data-name-1,
 data-name-2,
 data-name-3,
 data-name-4.

Description

Updates the contents of the specified CONTROLLED COMMON-STORAGE that
is stored on the tdsname.CTLM file (on disk) with the contents of the user area
(data-name-2) declared in WORKING-STORAGE.

The specified CONTROLLED COMMON-STORAGE is locked until the next
commitment point.

Usage

data-name-1 is a field of 12 alphanumeric characters identifying the
CONTROLLED COMMON-STORAGE. It is an input parameter.

data-name-2 names an area declared in the WORKING-STORAGE of the
TPR. Data-name-2 is an input parameter.

data-name-3 is a COMP-2 field containing the length of data to be updated. It
is an input parameter.

If the specified length is lower than the real length of the CONTROLLED
COMMON-STORAGE, only the specified length starting at the beginning of the
CONTROLLED COMMON-STORAGE is written onto the secondary storage.

The value must not be negative, zero, or greater than the size of the
CONTROLLED COMMON-STORAGE as given at TDSGEN. If one of these
conditions occurs, the size given at TDSGEN is retained and no error status is
returned. However, the size used to perform the move from the user area
(data-name-2) is adjusted to the end of the user segment in order to avoid the
exception (out of bounds).

data-name-4 is a single numeric character (defined as PIC 9) containing the
output status of the CALL as follows:

0 = successful completion
1 = unknown CONTROLLED COMMON-STORAGE name.

COMMON-STORAGE Handling Procedures

47 A2 33UT 8-5

8.5 The CALL "FREE-COMMON" Procedure

Syntax

CALL "FREE-COMMON" USING data-name-1 [,data-name-2].

Description

Moves the contents of an area named data-name-1 to COMMON-STORAGE and
unlocks COMMON-STORAGE. See Figure 2-1.

TAKE-COMMON should have been called beforehand.

Usage

data-name-1 is the name of an area declared in the WORKING-STORAGE of
the TPR that contains the data to be moved. It is an input parameter.

data-name-2 indicates the length of the data to be moved. It is a COMP-2 field
specifying the number of bytes from the start of the data-name-1 area to be moved
into COMMON-STORAGE. It is an input parameter.

If data-name-2 is not specified, the length used for the move is the length of
COMMON-STORAGE as declared at TDSGEN.

If the length given as the parameter has a wrong value (either negative, or zero, or
greater than the size of the COMMON-STORAGE), then the real size will be
retained.

However, the size used to perform the move from the data-name-1 area will be
adjusted to the end of the user segment (which contains data-name-1) in order to
avoid the exception (out of bounds).

TDS COBOL Programmer's Guide

8-6 47 A2 33UT

8.6 The CALL "KEEP-COMMON" Procedure

Syntax

CALL "KEEP-COMMON" USING data-name-1 [,data-name-2].

Description

Moves the contents of an area named data-name-1 to the COMMON-STORAGE,
and saves, that is, updates the COMMON-STORAGE on a TDS system file, named
tdsname.CTLN. The CALL "KEEP-COMMON" statement does not unlock the
COMMON-STORAGE. See Figure 2-1.

TAKE-COMMON must precede KEEP-COMMON to lock
COMMON-STORAGE. If the TPR does not unlock COMMON-STORAGE by
calling FREE-COMMON before terminating, the transaction will be aborted with
RESVIOL.

Usage

data-name-1 is the name of an area declared in the WORKING-STORAGE of
the TPR. data-name-1 contains the data to be moved into COMMON-STORAGE.
It is an input parameter.

data-name-2 indicates the length of the data to be moved. It is a COMP-2 field
specifying the number of bytes from the start of the data-name-1 area to be moved
into COMMON-STORAGE. It is an input parameter.

If data-name-2 is not specified, the length used for the move is the length of
COMMON-STORAGE as declared at TDSGEN.

If the length given as the parameter has a wrong value (either negative, or zero, or
greater than the real size of the COMMON-STORAGE), then the real size will be
retained.

However, the size used to perform the move from the data-name-1 area will be
adjusted to the end of the user segment (which contains data-name-1) in order to
avoid the exception (out of bounds).

COMMON-STORAGE Handling Procedures

47 A2 33UT 8-7

8.7 The CALL "LENGTH-COMMON" Procedure

Syntax

CALL "LENGTH-COMMON" USING data-name-1.

Description

Returns the length of COMMON-STORAGE as defined at TDSGEN.

Usage

data-name-1 indicates the length of COMMON-STORAGE. It is a COMP-2
output parameter that contains the number of bytes of COMMON-STORAGE as
defined at TDSGEN.

TDS COBOL Programmer's Guide

8-8 47 A2 33UT

8.8 The CALL "READ-COMMON" Procedure

Syntax

CALL "READ-COMMON" USING data-name-1 [,data-name-2].

Description

Moves the contents of the COMMON-STORAGE area to an area named
data-name-1. See Figure 2-1.

Usage

data-name-1 is the name of an area declared in the WORKING-STORAGE of
the TPR. data-name-1 contains the data moved from COMMON-STORAGE. It is
an output parameter.

data-name-2 indicates the length of the data to be moved. It is a COMP-2 field
specifying the number of bytes to be moved from the start of
COMMON-STORAGE. It is an input parameter.

If data-name-2 is not specified, the length used for the move is the length of
COMMON-STORAGE as declared at TDSGEN.

If the length given as the parameter has a wrong value (either negative, or zero, or
greater than the real size of the COMMON-STORAGE), then the real size will be
retained.

However, the size used to perform the move from the COMMON-STORAGE area
will be adjusted to the end of the user segment (which contains data-name-1) in
order to avoid the exception (out of bounds).

COMMON-STORAGE Handling Procedures

47 A2 33UT 8-9

8.9 The CALL "SAVE-COMMON" Procedure

Syntax

CALL "SAVE-COMMON" USING data-name-1 [,data-name-2].

Description

• moves the contents of an area named data-name-1 to the
COMMON-STORAGE,

• saves, that is, writes the COMMON-STORAGE onto the TDS system file,
named tdsname.CTLN,

• unlocks COMMON-STORAGE.

COMMON-STORAGE should have previously been locked by TAKE-COMMON.
See Figure 2-1.

After a TDS or system failure, TDS at warm restart initializes
COMMON-STORAGE with the last "saved" contents from the TDS file.

Usage

data-name-1 is the name of an area declared in the WORKING-STORAGE of
the TPR, that contains the data to be moved into COMMON-STORAGE. It is an
input parameter.

data-name-2 indicates the length of the data to be moved. It is a COMP-2 field
specifying the number of bytes from the start of the data-name-1 area to be moved
into COMMON-STORAGE. It is an input parameter.

If data-name-2 is not specified, the length used for the move is the length of
COMMON-STORAGE as declared at TDSGEN.

If the length given as the parameter has a wrong value (either negative, or zero, or
greater than the real size of the COMMON-STORAGE), then the real size will be
retained.

However, the size used to perform the move from the data-name-1 area will be
adjusted to the end of the user segment (which contains data-name-1) in order to
avoid the exception (out of bounds).

TDS COBOL Programmer's Guide

8-10 47 A2 33UT

8.10 The CALL "TAKE-COMMON" Procedure

Syntax

CALL "TAKE-COMMON" USING data-name-1 [,data-name-2].

Description

Moves the contents of COMMON-STORAGE to an area named data-name-1 and
locks COMMON-STORAGE. See Figure 2-1.

If the calling TPR does not release COMMON-STORAGE before terminating, the
transaction will be aborted with RESVIOL.

Usage

data-name-1 is the name of an area declared in the WORKING-STORAGE of
the TPR. data-name-1 contains the data moved from COMMON-STORAGE. It is
an output parameter.

data-name-2 indicates the length of the data to be moved. It is a COMP-2 field
specifying the number of bytes to be moved from the start of
COMMON-STORAGE. It is an input parameter.

If data-name-2 is not specified, the length used for the move is the length of
COMMON-STORAGE as declared at TDSGEN.

If the length given as the parameter has a wrong value (either negative, or zero, or
greater than the real size of the COMMON-STORAGE), then the real size will be
retained.

However, the size used to perform the move to the data-name-1 area will be
adjusted to the end of the user segment (which contains data-name-1) in order to
avoid the exception (out of bounds).

47 A2 33UT 9-1

 9. File Access Concurrency and
Commitment Procedures

9.1 Overview

This chapter deals with the following procedures:

CMIT-U-CNTXT commits user storage either immediately or after
specified events.

DFCMIT requests a commitment to be taken at the end of the
TPR.

INVCMIT invalidates the current commitment unit, but retains
the context of the TDS-STORAGE.

KEEP-CURRENCIES keeps the currencies of a TPR, that is, the current
points, active after commitment. The next
commitment unit does not need to reposition the
currencies of the file.

LOCK prevents concurrent access to private or shared
resources. Examples of a resource are shared storage
or program coding.

NOCMIT cancels the commitment action at the end of the
current TPR, unless the TPR is the last TPR of the
transaction.

RESET-NON-CONCURRENT
disables the non-concurrency mechanism for the next
commitment unit. The transaction must be declared
MANUALLY NON-CONCURRENT or
NON-CONCURRENT at TDSGEN time.

ROLL-BACK rolls back the transaction to the first TPR of the current
commitment unit.

TDS COBOL Programmer's Guide

9-2 47 A2 33UT

SET-NON-CONCURRENT
activates the non-concurrency mechanism for the next
commitment unit, whether the transaction is declared
MANUALLY NON-CONCURRENT or
NON-CONCURRENT at TDSGEN time.

UNLOCK unlocks a resource that has been previously locked.
By using the unlock facility, you can free a resource
before the next commitment point.

This chapter deals with the following verbs:

CLOSE allows a TPR to close any file. The file may be a
TDS-controlled file or a TDS non-controlled file
declared or not declared at TDSGEN.

OPEN allows a TPR to open a file. This file may be one of
the following:

a TDS-controlled file (such a file may be opened only
in INPUT or UPDATE mode),

a file that is not controlled by TDS but which is
declared in TDSGEN,

a non-declared file (only under COBOL 85 which
allows files to be generated dynamically).

Note that the descriptions are in the order shown in this list, and not in alphabetic
sequence.

File Access Concurrency and Commitment Procedures

47 A2 33UT 9-3

9.2 The CALL "CMIT-U-CNTXT" Procedure

Syntax

CALL "CMIT-U-CNTXT" USING data-name-1,
 data-name-2,
 data-name-3,
 data-name-4.

Description

Commits user storage either immediately or at specified events. With this call, you
can commit storage at a specific time, rather than only at the commit point of a
TPR that is terminating normally. The storage can be PRIVATE storage, part of the
TRANSACTION storage, or both.

When this call commits immediately, if the TPR aborts later, the current contents of
the defined areas are made available to the session, the transaction, or both. This is
instead of the contents found at the last commit point. Immediate commitment
occurs no matter how the TPR terminates, including user error, user requests, GAC
conflicts, and breaks.

When this call commits at specified events, the request for committing storage is
stored, and then later executed when the specified event occurs. (It is executed
first, before any other action.) The specified events are ROLLBACK and
BACKOUT. If more than one call to the procedure is made during a commit, this
procedure takes into account only the last one. If the commit terminates before the
specified events occur, the request is abandoned.

For example, the committed area could be the TRANSACTION storage and the
specified event could be ROLLBACK. In this case, if a GAC conflict causes a
commit-rollback, the TRANSACTION storage is saved as at the event occurrence
time. It is then available to the transaction at the restart of the current commit.

NOTE:
Do not use the CMIT-U-CNTXT procedure in conjunction with the
GETSP-U-CNTXT procedure.

TDS COBOL Programmer's Guide

9-4 47 A2 33UT

Usage

Data-name-1 is a four-character input field that defines when the commit action
occurs. Valid values for this field and their meanings are as follows:

I The action is immediate.

B The action occurs at a BACKOUT event. This causes file ROLLBACK, but
with a continuation of the commit. This event is possible when an XCP2
environment uses the verb "BACKOUT without conversation restore". (The
"USE XCP2" clause declares this transaction.)

R The action occurs at a ROLLBACK event. This is an event that either rolls
back and then restarts the commit, or aborts the transaction. This event
includes call ROLLBACK, break, disconnection, GAC conflict, and system
crash.

BR The action occurs at both BACKOUT and ROLLBACK.

Other values are user specification errors.

Data-name-2 is a four-character input field that specifies the areas to commit.
Valid values for this field and their meanings are as follows:

P The area is the entire PRIVATE storage.

T The area is the TRANSACTION storage.

PT The area is both PRIVATE and TRANSACTION storages.

Other values are user specification errors.

Data-name-3 is an input comp-2 field that specifies the amount (the length) of
the transaction storage to commit. The committed amount starts at displacement 0
and ends at a displacement of the value in this field less 1 (included).

The value in data-name-3 is significant only when committing
TRANSACTION storage, in which case it must always be greater than 0. When
the value is greater than the TRANSACTION storage, TDS takes the entire
TRANSACTION storage. A negative error is a user specification error.

Data-name-4 is a one-character output field. Values for this field are as follows:

0 The procedure executed successfully.

1 User error

Any other value indicates a system error.

File Access Concurrency and Commitment Procedures

47 A2 33UT 9-5

9.3 The CALL "DFCMIT" Procedure

Syntax

CALL "DFCMIT".

Description

Requests a commitment to be taken at the end of the TPR.

Usage

The commitment may be requested anywhere in the TPR; however, the
commitment becomes effective only when the TPR terminates normally.

NOTES:
1. The commitment clears all IDS/II database currencies, cancels the current

record pointer in non-database files, and releases any resource attached to
the TPR such as non-concurrency or locked CIs.

2. All IDS/II database and file modifications, performed before the
commitment, become fixed at the commitment point. Thus any future
rollback decided after this commitment point will not affect the updates
made before the commitment point.

3. For more information about commitment points, see the section on
KEEP-CURRENCIES later in this chapter, and Chapter 1.

4. CALL "DFCMIT" cancels any CALL "NOCMIT" called beforehand, in
the TPR.

TDS COBOL Programmer's Guide

9-6 47 A2 33UT

9.4 The CALL "INVCMIT" Procedure

Syntax

CALL "INVCMIT".

Description

Invalidates the current commitment unit, but retains the context of the
TDS-STORAGE.

Usage

When the commitment point is taken either by a CALL "DFCMIT" statement, or at
the end of the TPR for an implicit commitment, the following occurs:

• any modifications which have been made to all files (IDS/II and
UFAS-EXTENDED) during the current commitment unit are invalidated,

• the CALL "KEEP-CURRENCIES" statement is invalidated,

• any quarantined messages, portions and message segments are kept,

• the RESTART-STATUS field of TDS-STORAGE is set to 2,

• the TPR indicated in the NEXT-TPR field of the TDS-STORAGE is activated,

• the TRANSACTION-STORAGE and PRIVATE-STORAGE are set to the values
they held before the commitment unit which performed the CALL "INVCMIT"
statement.

NOTES:
1. The CALL "INVCMIT" statement takes effect only at commitment time,

which is determined by the IMPLICIT COMMITMENT clause and the
CALL "DFCMIT"/ CALL "NOCMIT" statements.

2. The CALL "INVCMIT" statement produces the same result as a
transaction declared FOR DEBUG at TDSGEN for the current
commitment unit except for TRANSACTION-STORAGE and
PRIVATE-STORAGE.

3. Any transactions spawned during the current commitment unit are
invalidated.

File Access Concurrency and Commitment Procedures

47 A2 33UT 9-7

9.5 The CALL "KEEP-CURRENCIES" Procedure

Syntax

CALL "KEEP-CURRENCIES" USING data-name-1, data-name-2.

Description

Keeps the currencies of a TPR, that is, the current points, active after commitment.
The next commitment unit does not need to reposition the currencies of the file.

Usage

data-name-1 specifies the file whose currencies are to be kept.
Data-name-1 is a PIC X (8) string containing up to 8 alphanumeric characters
right padded with blanks.

data-name-2 is a single numeric character string (PIC X) in which the status is
returned.

0 = successful execution

1 = the statement was already issued for the file

2 = data-name-1 unknown

3 = data-name-1 file is not open.

4 = KEEP-CURRENCIES forbidden (inquiry transaction or IDS/II).

NOTE:
If the file whose currencies are to be kept, is closed after the end of the current
commitment unit, the next commitment unit will not be allowed to start, and the
transaction will be aborted with the IFNERR return code. Please refer to
Appendix B (of this manual).

TDS COBOL Programmer's Guide

9-8 47 A2 33UT

9.6 The CALL "LOCK" Procedure

Syntax

CALL "LOCK" USING lock-description, data-name-1.

Description

Prevents concurrent access to private or shared resources. Examples of a resource
are shared storage or program coding.

The application is entirely in charge of identifying resources.

Usage

Lock-description is a data structure that must have the following format:

01 LOCK-DESCRIPTION.
 02 RESOURCE-IDENTIFIER COMP-1.
 02 RESOURCE-TYPE PIC X.
 02 LOCK-MODE PIC X.

• RESOURCE-IDENTIFIER identifies the resource to be locked. Its value ranges
from 0 to 16383 and is agreed upon by all users accessing the same resource.
For example, file A could be called 24.
RESOURCE-IDENTIFIER is an input parameter.

• RESOURCE-TYPE defines the scope of the resource identifier. It must take one
of the following two values:

 L as local the resource is private to the TDS application. No
other application can access this resource. Two local
resources identified by the same resource identifier in
different TDS applications are 2 different objects.

 G as global he resource is common to all the applications.
Because all applications can access the same resource,
locking mechanisms control access to the resource by
all TDS applications. Note that if 2 resources have the
same resource-identifier value, one as local and the
other as global, these 2 resources are different.

File Access Concurrency and Commitment Procedures

47 A2 33UT 9-9

 RESOURCE-TYPE is an input parameter.

 LOCK-MODE defines how the TPR is to access the resource as follows:

 E (exclusive) the resource is requested in exclusive mode by the
TPR.

 S (shared) the resource is requested in shared mode by the TPR.

If a resource is requested in exclusive mode by a TPR while locked in shared mode
by another TPR, the exclusive request is set to wait until the tenant unlocks the
resource.

LOCK-MODE is an input parameter.

data-name-1 is an output parameter. It is a single numeric character in which
the status is returned:

0 = successful execution

1 = at least one wrong argument was detected by TDS

2 = wrong argument detected by the concurrency mechanism.

The GAC-EXTENDED concurrency mechanism handles resources as follows:

• in the case of conflict, deadlock or longwait, the waiting TPR is aborted, rolled
back to the last commitment and restarted when the resource becomes available.

• all locks are released at the end of a commitment even if UNLOCK is not called.

In the following examples, the abbreviations are as follows:

R-I Resource Identifier

R-T Resource-Type

L-M Lock Mode

CU Commitment Unit

L Local (Resource-Type)

E Exclusive Lock Mode

S Shared Lock Mode

For an explanation of CALL "UNLOCK", see later in this chapter.

TDS COBOL Programmer's Guide

9-10 47 A2 33UT

EXAMPLE 1: Local Resource

In TDS Application A, 3 represents the resource to be locked, that is, file A

In TDS Application B, 3 represents the resource to be locked, that is, file B.

TDS Application A TDS Application B

Transaction A Transaction B
TPR1 TPR1

3 R-I
 L R-T
 E L-M

3 R-I
 L R-T
 E L-M

Transaction A Transaction B
TPR1 TPR1

3 R-I
 L R-T
 E L-M

CALL "LOCK"
CALL "LOCK" CALL "LOCK"

Transaction A
accesses non-

controlled file A

Transaction B
accesses non-

controlled file B

Transaction B
waits

Transaction A
waits

CALL "UNLOCK"
or end or CU

CALL "UNLOCK"
or end or CU

CALL "UNLOCK"

CALL "UNLOCK"

File A can be accessed
by Transaction B

File B can be accessed
by Transaction A

3 R-I
 L R-T
 S L-M

Figure 9-1. Using CALL LOCK for a Local Resource

File Access Concurrency and Commitment Procedures

47 A2 33UT 9-11

EXAMPLE 2: Global Resource

In TDS application A and TDS application B, 3 represents the resource to be
locked, that is, file C

TPR1

CALL "LOCK" USING ...

3 R-I
G R-T
E L-M

Transaction B waits

CALL "UNLOCK"

TDS Application A TDS Application B

Transaction A

TPR1

3 R-I
G R-T
E L-M

CALL "LOCK" USING ...

Transaction A
access non-controlled
 file C

CALL "UNLOCK" USING ...
or end of CU

(LONG-WAIT
possible)

file C can be accessed
by Transaction B

Transaction B

Figure 9-2. Using CALL LOCK for a Global Resource

❑

TDS COBOL Programmer's Guide

9-12 47 A2 33UT

9.7 The CALL "NOCMIT" Procedure

Syntax

CALL "NOCMIT".

Description

CALL "NOCMIT" cancels the commitment action at the end of the current TPR,
unless the TPR is the last TPR of the transaction.

Useful only when the IMPLICIT COMMITMENT option is used for the
transaction.

Usage

CALL "NOCMIT" can be requested during the execution of the TPR, but takes
effect at the end of the TPR.

CALL "NOCMIT" cancels any CALL "DFCMIT" called beforehand in the same
TPR.

File Access Concurrency and Commitment Procedures

47 A2 33UT 9-13

9.8 The CALL "RESET-NON-CONCURRENT" Procedure

Syntax

CALL "RESET-NON-CONCURRENT".

Description

Disables the non-concurrency mechanism for the next commitment unit. The
transaction must be declared MANUALLY NON-CONCURRENT or
NON-CONCURRENT at TDSGEN time.

Usage

Action is deferred until the start of the next commitment unit and has effect for the
remainder of the transaction or until the CALL "SET-NON-CONCURRENT"
statement is performed. See Figure 9-3.

Action is symmetric between transactions. If transaction A, non-concurrent with
transaction B, calls RESET-NON-CONCURRENT, transaction A will not wait for
transaction B, and transaction B will also not wait for transaction A.

TDS COBOL Programmer's Guide

9-14 47 A2 33UT

9.9 The CALL "ROLL-BACK" Procedure

Syntax

CALL "ROLL-BACK".

Description

Rolls back the transaction to the first TPR of the current commitment unit.

Usage

The current TPR is immediately aborted.

Any modifications to the IDS/II database or files are invalidated.

Quarantined messages are purged.

The first TPR of the commitment unit is activated with the
TRANSACTION-STORAGE, PRIVATE-STORAGE, and input message as they
were when the commitment unit was initiated.

After the rollback, the RESTART-STATUS field of TDS-STORAGE is set to 2.

NOTE:
Data transferred between the transaction and the terminal during the
commitment unit may be duplicated (sent another time).

File Access Concurrency and Commitment Procedures

47 A2 33UT 9-15

9.10 The CALL "SET-NON-CONCURRENT" Procedure

Syntax

CALL "SET-NON-CONCURRENT".

Description

Activates the non-concurrency mechanism for the next commitment unit, whether
the transaction is declared MANUALLY NON-CONCURRENT or
NON-CONCURRENT at TDSGEN time. The CALL
"SET-NON-CONCURRENT" procedure does not affect the current commitment
unit.

Usage

Action is deferred until the start of the next commitment unit.

The non-concurrency mechanism is effective for the remainder of the transaction
and can be cancelled by use of the CALL "RESET-NON-CONCURRENT"
statement.

TDS COBOL Programmer's Guide

9-16 47 A2 33UT

No Concurrency Control

COMMITMENT

Concurrency Control

COMMITMENT

CALL "DFCMIT"

NON-CONCURRENT

Concurrency Control

Concurrency Control

No Concurrency Control

CALL "RESET-NON-CONCURRENT"

COMMITMENT

COMMITMENT

CALL "DFCMIT"

MANUALLY NON-CONCURRENT

No Concurrency Control

CALL "SET-NON-CONCURRENT"

Figure 9-3. Non-concurrency

The left-hand column in Figure 9-3 shows that when the NON-CONCURRENT
clause is defined at TDSGEN, non-concurrency is activated from the start or the
transaction.

The right-hand column shows that when the MANUALLY NON-CONCURRENT
clause is defined at TDSGEN, non-concurrency is activated only on the
commitment unit after the SET-NON-CONCURRENT procedure is called.

File Access Concurrency and Commitment Procedures

47 A2 33UT 9-17

9.11 The CALL "UNLOCK" Procedure

Syntax

CALL "UNLOCK" USING unlock-description, data-name-1.

Description

Unlocks a resource that has been previously locked. By using the unlock facility,
you can free a resource before the next commitment point. See Figure 9-1 and
Figure 9-2.

Usage

Unlock-description is a data structure of the following format:

 01 UNLOCK-DESCRIPTION.
 02 RESOURCE-IDENTIFIER COMP-1.
 02 RESOURCE-TYPE PIC X.

• RESOURCE-IDENTIFIER is an integer that ranges from 0 to 16383. It
identifies the resource to be released and must correspond to the identifier used
to lock the resource.

• RESOURCE-TYPE defines the resource as it was defined for LOCK.

 L (local) the resource is private to the application.

 G (global) the resource is common to all the applications.

data-name-1 is a single numeric character in which the status is returned:

0 = successful execution

1 = wrong argument

2 = unknown resource identifier

TDS COBOL Programmer's Guide

9-18 47 A2 33UT

9.12 The CLOSE Verb

Syntax

CLOSE ifn.

Description

Allows a TPR to close any file. The file may be a TDS-controlled file or a TDS
non-controlled file declared or not declared at TDSGEN.

For files declared at TDSGEN, the CLOSE verb is executed asynchronously. So, a
further OPEN request issued by a transaction may be rejected.

For files not declared at TDSGEN, the CLOSE verb takes effect immediately.

NOTE:
At the start of the TDS session, all files declared in TDSGEN and assigned to
the TDS job are opened by TDS. During the TDS session, the user can close a
file. The file remains closed until the user issues an OPEN statement.

Usage

The status must be tested through the primitive H_CBL_UGETG4 in the
declaratives clause in COBOL. Refer to the COBOL 85 User's Guide.

For the status values, see the Messages and Return Codes Directory.

File Access Concurrency and Commitment Procedures

47 A2 33UT 9-19

9.13 The OPEN Verb

Syntax

 { INPUT }
 { INPUT-OUTPUT }
 OPEN { } , ifn.
 { OUTPUT }
 { EXTEND }

Description

This statement allows a TPR to open a file. This file may be one of the following:

• a TDS-controlled file (such a file may be opened only in INPUT or UPDATE
mode),

• a file that is not controlled by TDS but which is declared in TDSGEN,

Usage

The file must be assigned, otherwise invalid status is returned,

If the file is TDS-controlled, the TPR issuing the OPEN statement is denied access
to the file before taking a commitment.

Use of the COBOL verb ASSIGN for dynamic file assignment is forbidden in TDS.

NOTE:
Do not use the OPEN statement for non-declared files: the result can be either
exceptions inside COBOL run-time or an abnormal return code (IFNSTRU).

Wrong status may be reported and must be tested for by using the primitive
H_CBL_UGETG4 in the declaratives clause in COBOL. Refer to the COBOL 85
User's Guide.

TDS COBOL Programmer's Guide

9-20 47 A2 33UT

9.14 The CALL "GET-SYNCSTATE" Procedure

Syntax

CALL "GET-SYNCSTATE" USING sync-state.

Description

The function is used to determine the synchronization state of committed data. It
refers to the result of the last commitment (or rollback in the event of a transaction
abort), for the user session at the time the function was invoked.

It is strongly recommended that each TDS-XA TPR should begin with this function
in order to be aware of the state of the XA resources before proceeding with data
processing.

Output Parameter

sync_state is represented by a 1-character field with one of the following two
values:

0 SYNC: synchronized state

1 DESYNC: desynchronized state

A failure has disrupted the last commitment or rollback and the commitment
unit must be resynchronized by TDS.

A DESYNC state warns the user that an incident has occurred. Before continuing,
the user should contact the TDS administrator for further information about the
incident, the desynchronization-resynchronization process, and the final state of his
last commitment unit (committed or rolled back).

If the last commitment performed for this session was not involved with XA
protocol, the primitive completes successfully and returns 0.

The GET-SYNCSTATE procedure can be invoked from the ON_ABORT_TPR to
determine the result of the transaction abort rollback.

47 A2 33UT 10-1

 10. FORMS Procedures

This chapter deals with the following procedures:

CDATTL and CDATTR apply a list of rendition attributes to a given selection
of fields.

CDFIDI returns the name and occurrence number of the form to
be received by the transaction.

CDGET activates a form.

CDMECH applies a mechanism to determine how fields in a form
are to function.

CDPURGE purges all input messages and gives the turn back to
the application.

CDRECV receives a named data-form.

CDRELS releases all active forms and puts the terminal in line
mode.

CDSEND sends data from a data record to the terminal.

TDS COBOL Programmer's Guide

10-2 47 A2 33UT

10.1 The CALL "CDATTL" Procedure

Syntax

CALL "CDATTL" USING output-cd-alias, selection-vector,
 attribute-identifier [,enclosure-level].

Description

Applies a list of rendition attributes to fields selected in the selection vector.

Usage

output-cd-alias: the contents of "symbolic-source" in the input-cd-alias
must be moved into "symbolic-destination" of the output-cd-alias.

selection-vector specifies the form name and occurrence number of the
form to which the command applies.

For the other fields of the selection-vector, see CALL "CDATTR".

attribute-identifier is a structure defined as follows:

01 attribute-identifier.
02 data-name PIC 9(3) VALUE "number of attributes".
02 data-name-1 PIC X(4) VALUE "attribute".
 .
 .
 .
02 data-name-n PIC X(4) VALUE "attribute".

where n = "number of attributes".

For the list of attributes, see CALL "CDATTR".

FORMS Procedures

47 A2 33UT 10-3

enclosure-level specifies how the message terminates as follows:

1 - end-of-record The message is quarantined but is not sent to the
terminal. This is the default value. This is equivalent
to ESI in TDS terms.

2 - end-of-quarantine All quarantined messages are now sent to the terminal.
The application still retains the turn. This is equivalent
to EMI in TDS terms.

3 - end-of-interaction All quarantined messages are now sent. The turn is
given to the terminal. This is equivalent to EGI in
TDS terms.

TDS COBOL Programmer's Guide

10-4 47 A2 33UT

10.2 The CALL "CDATTR" Procedure

Syntax

CALL "CDATTR" USING output-cd-alias, selection-vector,
 attribute-identifier [,enclosure-level].

Description

Applies an attribute to fields selected in the selection vector. If the enclosure-level
is 1 and if all enclosure-levels associated with subsequent CALL statements
(including CALL "CDRELS" itself) are also 1, then changes to the attribute values
are lost after the CALL "CDRELS" statement has been executed.

If a form has been created with THE SUBSTITUTE ATTRIBUTE clause, an
attribute that does not exist for a given terminal, is replaced (e.g., if BD is selected
for a VIP7760, RV is substituted).

An attribute remains modified until a call to

• either CDATTR/CDATTL (to change an attribute with an explicit value),

• or CDMECH with INITAT (to reset all attributes to their initial values).

Usage

output-cd-alias: the contents of symbolic-source in the input-cd-alias must
be moved into "symbolic-destination" of the output-cd-alias.

selection-vector specifies the form name and occurrence number of the
form to which the command applies. Depending on the action required for a
particular named field (NF), the other fields of the selection vector are set as
follows:

space Do not affect the attributes of the associated NF.

S Affect the attributes of the associated NF.

C Clear the contents of the associated NF.

B Clear the contents of the associated NF and affect the
attributes as specified.

FORMS Procedures

47 A2 33UT 10-5

attribute-identifier is a four-character data item that may take the
following values:

BI Blink

BD Bold (that is, high intensity)

Bxxx Background color, where xxx may be:

RED
YEL
BLU
GRE
CYA
MAG
WHI
BLA
DFT
CN
COS
CP
DFT

FT
Fxxx

HL

INIT
NBI
NCOS
NHL
NPR
NRV
NUL
PR
RV
UL

Red
Yellow
Blue
Green
Cyan
Magenta
White
Black
Default color
Conceal
Column separator
Cursor position
Default rendition (NBI, NHL,
NRV, NCOS, NUL, BDFT,
FDFT, and normal intensity)
Faint (decreased intensity)
Foreground color, (for xxx,
see Bxxx)
Rendition highlighted
specific to terminal
Initial attributes
No blink
No column separator
Not highlighted
Not protected
Not reverse video
Not underlined
Protected
Reverse video
Underlined

TDS COBOL Programmer's Guide

10-6 47 A2 33UT

1 - end-of-record The message is quarantined but is not sent to the
terminal. This is the default value. This is equivalent
to ESI in TDS terms.

2 - end-of-quarantine All quarantined messages are now sent to the terminal.
The application still retains the turn. This is equivalent
to EMI in TDS terms.

3 - end-of-interaction All quarantined messages are now sent. The turn is
given to the terminal. This is equivalent to EGI in
TDS terms.

FORMS Procedures

47 A2 33UT 10-7

10.3 The CALL "CDFIDI" Procedure

Syntax

CALL "CDFIDI" USING input-cd-alias, form-identifier.

Description

Returns the name and occurrence number of the form to be received by the
transaction. CDFIDI can be used to determine the name of a form loaded by the
preceding transaction.

Usage

input-cd-alias: the contents of "SYMBOLIC-QUEUE" of TDS-STORAGE
must be moved into "symbolic-queue" of the input-cd-alias.

form-identifier has the following format:

01 form-identification.
 02 form-name PIC X(8).
 02 occurrence-number PIC 9(3).

TDS COBOL Programmer's Guide

10-8 47 A2 33UT

10.4 The CALL "CDGET" Procedure

Syntax

CALL "CDGET" USING output-cd-alias, form-nameI
 [,enclosure-level].

Description

Activates a form depending on the values specified in form-nameI, according to the
following modes:

APPEND If the APPEND mode is specified, that is, the field
form-name-MD is set to A, all forms following the
form specified by the old partition name
(form-name-OF) and occurrence number
(form-name-OO) fields of the structure form-nameI are
released and cleared. The new form is appended after
the old form.

If the old form and occurrence number fields specify a
name of spaces and an occurrence of zero (default
initialization), the new form will be appended at the
top of the screen and all other forms will be released
and cleared.

OVERLAY If the OVERLAY mode is specified, that is, the field
form-name-MD is set to O, the old form and
occurrence number fields must specify a name of
spaces and an occurrence number of zero. The forms
that were active are frozen, that is, they remain visible
on the screen but all their fields become protected and
they are no longer addressable from the program. The
new form is activated at the top of the screen.

FORMS Procedures

47 A2 33UT 10-9

WINDOW If the WINDOW mode is specified, that is, the field
form-name-MD is set to W, the forms that were active
are frozen. If the form to be activated is already
displayed on the screen with the same occurrence
number, this form is put on top of the other forms and
activated again with its previous contents. Otherwise,
the form-name-SL and form-name-SC fields determine
the line and column numbers of the top left corner of
the rectangle where the form is to be placed. The
contents of this rectangle are cleared and the form is
activated.

ERASE If the ERASE mode is specified, that is, the field
form-name-MD is set to E, all the forms are released
and the screen is cleared. The form-name-SL and
form-name-SC fields determine the line and column
numbers of the top left corner of the rectangle where
the form is to be placed.

Figure 10-1 shows examples of forms in OVERLAY and APPEND modes and
Figure 10-2 shows examples of forms in the ERASE and WINDOW modes.

The maximum number of active or frozen forms is 6.

When CDGET is executed for a new form, all preceding cursor requests are
ignored.

By default, the cursor is positioned either on the first field having the initial Cursor
Position (CP) attribute, or on the first unprotected field. If the new form is
activated in APPEND Mode and does not contain any field with the CP attribute or
any unprotected fields, the cursor is positioned on the first field having the CP
attribute or on unprotected field.

TDS COBOL Programmer's Guide

10-10 47 A2 33UT

Usage

output-cd-alias: the contents of "symbolic-source" in the input-cd-alias
must be moved into "symbolic-destination" of the output-cd-alias.

form-nameI: the fields in form-nameI are set as follows:

• form-name-MD: specifies the mode of activation of the form. (A for Append, O
for Overlay, W for WINDOW, E for ERASE),

• form-name-OF and form-name-OO are set according to where the new form is
to appear, namely:

if the new form is to appear at the top of the screen, form-name-OF = spaces and
form-name-OO= 0

if the new form is to be appended after an old form (APPEND Mode only), both
parameters contain user-defined values of the old form.

enclosure-level specifies how the message terminates as follows:

1 - end-of-record The message is quarantined but is not sent to the
terminal. This is the default value. This is equivalent
to ESI in TDS terms.

2 - end-of-quarantine All quarantined messages are now sent to the terminal.
The application still retains the turn. This is equivalent
to EMI in TDS terms.

3 - end-of-interaction All quarantined messages are now sent. The turn is
given to the terminal. This is equivalent to EGI in
TDS terms.

EXAMPLE OF HOW THE CALL "CDGET" STATEMENT FUNCTIONS

To modify the default cursor position, call CDATTR with the
CURSOR-POSITION (CP) argument. CP causes the cursor to be positioned to the
leftmost character of the field as follows:

 CDGET F1
 CDGET F2 Append to F1 enclosure-level:1
 CDATTR F1 CP (field selected) enclosure-level:2

If, however, the following sequence is used, CDATTR is ignored:

 CDGET F1
 CDATTR F1 CP (field selected)
 CDGET F2 Append to F1 enclosure-level3
❑

FORMS Procedures

47 A2 33UT 10-11

LOGICAL APPEND, RELOCATABLE FORMS

F1
APPEND F2

TO F1 F1

F2

F1

F2

F1

F3

APPEND F3
TO F1

ACTIVE

ACTIVE

F1

F3

F1

F3

F3

ACTIVE

MULTI-OCCURRENCE FORMS

APPEND (F3, 2)
TO (F3, 1)

F1

F3

F2

F4

F4 ACTIVE

OVERLAY (CORRESPONDS TO APPEND IN 1E)

OVERLAY F4

LOGICAL REPLACE, RELOCATABLE FORMS

Figure 10-1. Forms in Overlay and Append Mode

TDS COBOL Programmer's Guide

10-12 47 A2 33UT

ERASE and WINDOW Mode

SC1

SL1
F1

CDGET F1 ERASE Mode

F1
F3 F2

CDGET F2 WINDOW Mode

SC1 SC2

SL1
SL2 F1

F2

CDGET F3 WINDOW Mode

Figure 10-2. Forms in Erase and Window Mode (1/2)

FORMS Procedures

47 A2 33UT 10-13

F1
F2

F3
F2

CDGET F1 WINDOW mode

CDMECH POPUP

Figure 10-2. Forms in Erase and Window Mode (2/2)

TDS COBOL Programmer's Guide

10-14 47 A2 33UT

10.5 The CALL "CDMECH" Procedure

Syntax

CALL "CDMECH" USING output-cd-alias, mechanism-identifier
 [,enclosure-level].

Description

Applies a mechanism to determine how fields in a form are to function. If the
enclosure-level is 1 and if all enclosure-levels associated with subsequent CALL
statements (including CALL "CDRELS" itself) are also 1, then changes to the
attribute values are lost after the CALL "CDRELS" statement has been executed.

Usage

output-cd-alias: the contents of "symbolic-source" in the input-cd-alias
must be moved into "symbolic-destination" of the output-cd-alias.

mechanism-identifier is a six-character alphanumeric data item that may
take the following values:

ALARM activates the audio or visual alarm

CLEAR clears all unprotected fields

PROTCT protects all NFIELDS of all active forms. This
command is effective on the next CDGET.

INITAT (alias RESET) clears all unprotected fields and resets attributes to
their initial values. When the screen is in line mode,
(that is, after CDRELS with end-key=1), this
command clears the screen.

INIT resets all forms to their initial state

STPRV valid only for a printer. All subsequent CDSENDs
print only the variable fields.

STPRA subsequent CDSENDs print all fields. This is the
default value.

FORMS Procedures

47 A2 33UT 10-15

CPON sets up a mode where the TPR will be notified of the
cursor position in the subsequent CDRECV
statements, for terminals supporting this feature
(QUESTAR 200, IBM3278/79, MINITEL).

CPOFF resets the previous CPON.

POPUP when the active form has been activated in the
WINDOW mode, the POPUP mechanism releases the
form and activates the previous form in the stack of
displayed forms. The window associated with the
released form is reset to the underlying contents.
When the active form has not been activated in the
WINDOW mode, or when the stack of displayed forms
is reduced to one form (that is, no previous form
exists), the return code FUNCNAV is sent.

enclosure-level specifies how the message terminates as follows:

1 -end-of-record The message is quarantined but is not sent to the
terminal. This is the default value. This is equivalent
to ESI in TDS terms.

2 - end-of-quarantine All quarantined messages are now sent to the terminal.
The application still retains the turn. This is equivalent
to EMI in TDS terms.

3 - end-of-interaction All quarantined messages are now sent. The turn is
given to the terminal. This is equivalent to EGI in
TDS terms.

TDS COBOL Programmer's Guide

10-16 47 A2 33UT

10.6 The CALL "CDPURGE" Procedure

Syntax

CALL "CDPURGE" USING input-cd-alias.

Description

Purges all pending input messages and gives the turn back to the application.

Usage

input-cd-alias: the contents of the "SYMBOLIC-QUEUE" field of
TDS-STORAGE must be moved into "symbolic-queue" of the input-cd-alias.

FORMS Procedures

47 A2 33UT 10-17

10.7 The CALL "CDRECV" Procedure

Syntax

CALL "CDRECV" USING input-cd-alias, form-nameR, wait-indicator,
 selection-vector.

Description

Receives a data record form-nameR, according to the selection-vector form-nameV.
For each field in the data record form-nameR that is to receive data, the
corresponding field in the selection vector form-nameV must be set to "S".

The form name and occurrence-number of the selection vector form-nameV must
match a form and occurrence number for which data is available.

On receiving data, the "end-key" of the input-cd-alias specifies the enclosure level
associated with the data. This is a one-character data item that contains one of the
following values:

1 - End-of-record More data in the same message to be received.

3 - End-of-interaction All data in the message has been received. The turn is
given to the application.

Usage

input-cd-alias: the contents of "SYMBOLIC-QUEUE" of TDS-STORAGE
must be moved into "symbolic-queue" of the input-cd-alias.

wait-indicator is set to either 1 or 0 and determines the action to be taken on
expiration of WAIT-TIME declared in TDS-STORAGE.

If set to 0:

If the operator has entered a response before the expiration of WAIT-TIME,
STATUS = 00 (NORMAL): see Example 1.

If the operator has not replied, on expiration of WAIT-TIME, STATUS = 3
(RCVVIOL): see Example 2.

If set to 1:

Whether the operator replies or not, and whether WAIT-TIME has expired or not,
STATUS = 00 (NORMAL).

TDS COBOL Programmer's Guide

10-18 47 A2 33UT

EXAMPLE: WAIT-INDICATOR = 0 OR 1

TPRn
CALL "CDSEND"

time <WAIT-TIME

TPR n + 1
CALL "CDRECV"

STATUS = 00 (NORMAL)

operator reply
before expiration of WAIT-TIME

❑

selection-vector is set to one of the following values after execution,

R Normal reception. Valid data has been moved to the corresponding field.

S No data is available for the field, i.e. either the field is not transmittable or
its contents are set to null or to spaces.

+ A sign was entered in an unsigned field. Data has not been transferred.

T Data has been transferred, but the least significant digits have been
truncated.

O Data has not been transferred, because the significant digits would have been
truncated.

A Data has not been transferred, because incorrect characters have been input
to NFIELD.

C This field contains the cursor (may also be returned for a non-selected field).

X This field contains the cursor and valid data has been moved to it (R + C).

D This field has the attribute DT or IT and data are received in the field.

FORMS Procedures

47 A2 33UT 10-19

The values O, T, and + can be returned only for fields with a numeric or numeric
edited SCREEN PICTURE or COMP-1 usage.

Before execution, all selection-vector fields, that is, those in form-nameV, must be
set to spaces and the fields to be selected must be set to S.

If data is available for a non-selected field, the data is not transferred and the
corresponding field is set to L (=lost); if no data is available the selection-vector
field is not affected.

EXAMPLE OF SELECTION-VECTOR VALUES

For SPIC="99.99", the values keyed in at the terminal change the selection vector
as follows:

Selection Vector
Before

Value
Keyed in

Value Received
in TPR

Selection Vector
After

S
S
S
S
S
S
S
S

Blank
Blank

12.34
 1.23

1.2
 1.234

 $1.2
 1234
 none
 +1.23
 none
 1234

1234
0123
0120
0123
none
none
none
none
none
none

R
R
R
T
A
O
S
+

Blank
L

❑

TDS COBOL Programmer's Guide

10-20 47 A2 33UT

10.8 The CALL "CDRELS" Procedure

Syntax

CALL "CDRELS" USING output-cd-alias [,enclosure-level].

Description

Releases all active forms and puts the terminal in line mode. However, the screen
is not cleared. To clear the screen, CDRELS must be followed by CDMECH with
the INITAT option. When the CALL "CDRELS" statement is executed and the
enclosure-level is 1, changes to the attribute values are lost.

Usage

output-cd-alias: the contents of "symbolic-source" in the input-cd-alias
must be moved into "symbolic-destination" of the output-cd-alias.

enclosure-level specifies how the message terminates as follows:

1 - end-of-record The message is quarantined, but is not sent to the
terminal. This is the default value. This is equivalent
to ESI in TDS terms.

2 - end-of-quarantine All quarantined messages are now sent to the terminal.
The application still retains the turn. This is equivalent
to EMI in TDS terms.

3 - end-of-interaction All quarantined messages are now sent. The turn is
given to the terminal. This is equivalent to EGI in
TDS terms.

FORMS Procedures

47 A2 33UT 10-21

10.9 The CALL "CDSEND" Procedure

Syntax

CALL "CDSEND" USING output-cd-alias, form-nameR, enclosure-level,
 selection-vector.

Description

Sends data from the data record form-nameR to the terminal according to the
criteria specified in the selection-vector.

After the execution of the CALL "CDSEND" statement, the contents of the
selection vector fields are unchanged. If the contents of a selected numeric field
are invalid, the selection vector field is loaded with an "A".

Before sending data, the transaction must have received all the data; otherwise it
aborts with the SNDVIOL abort code.

Usage

output-cd-alias: the contents of "symbolic-source" in the input-cd-alias
must be moved into "symbolic-destination" of the output-cd-alias.

enclosure-level specifies how the message terminates as follows:

1 - end-of-record The message is quarantined, but is not sent to the
terminal. This is the default value. This is equivalent
to ESI in TDS terms.

2 - end-of-quarantine All quarantined messages are now sent to the terminal.
The application still retains the turn. This is equivalent
to EMI in TDS terms.

3 - end-of-interaction All quarantined messages are now sent. The turn is
given to the terminal. This is equivalent to EGI in
TDS terms.

TDS COBOL Programmer's Guide

10-22 47 A2 33UT

selection-vector specifies the form name and occurrence number of the
form to which the command applies. Depending on
the action required for a particular NF, the other fields
of the selection vector are set as follows:

"space" Do not move the associated NF from the data record.

S Move the associated NF from the data record.

C Clear the contents of the NF.

GTWRITER Procedures

47 A2 33UT 11-1

 11. GTWRITER Procedures

GTWRITER is described in Chapter 2. For a detailed description of how to use
GTWriter procedures, refer to the Generalized Terminal Writer User's Guide 47
A2 55 UU.

.

H_TW_USTART is an old interface but is still assumed;

It is replaced by H_TW_USTARTE.

Other procedures:

H_TW_UCOMM sends a GTWriter command to the Command Handler.

H_TW_UDRE returns the status of a specified driver.

H_TW_UGETR returns the allocated report number.

H_TW_UMAINE reads fields in the main GTWriter table.

H_TW_UQNE reads the next report in the GTWriter queue.

H_TW_UQRE reads a report description from the GTWriter queue.

H_TW_USAVE saves a report member in the SITEOUT library.

H_TW_USTARTE opens a report.

H_TW_UTRE returns a description of a terminal and its state.

This list is not exhaustive.

See Generalized Terminal Writer User's Guide for more information.

Note : An other file than SYS .TW.OUT may be used by suffixing the EFN by one
character chosen in set (0..9,A..Z).

Examples: SYS.TW.OUT4 or SYS.TW.OUTB .
(see parameter MULTI_SYS_TW_OUT in Generalized Terminal Writer User’s
Guide).

TDS COBOL Programmer's Guide

11-2 47 A2 33UT

47 A2 33UT 12-1

 12. Special-purpose Transactions and the
Transaction Initialization Routine

12.1 Overview

This section discusses certain special-purpose transactions, written by the user,
which are called by TDS in circumstances such as TDS startup/shutdown or user
log-on/log-off. Each transaction must be written according to certain rules that are
described below.

The special-purpose transactions are activated when the following events occur:

• The LOGON transaction is activated each time a correspondent connects
successfully.

• The LOGOUT transaction is activated each time a correspondent disconnects
normally.

• The RESTART transaction is activated when a user logs onto TDS and a context
already exists for the user.

• The DISCNCT transaction is activated each time a correspondent disconnects
abnormally.

• The STARTUP transaction is activated when TDS has started successfully.

• The SHUTDOWN transaction is activated when TDS terminates normally or
abnormally.

• The BREAK transaction is activated after a break signal is received from a
correspondent.

TDS COBOL Programmer's Guide

12-2 47 A2 33UT

Figure 12-1 shows how the special-purpose transactions interact.

User Log-on

LOGON

Application
Transactions

Break

BREAK

After Abnormal
Disconnection

or
Crash

RESTART

Terminal Failure

DISCNCT

TDS Shutdown

SHUTDOWN

User Log-off

BYE and
LOGOUT

TDS Startup

STARTUP

Figure 12-1. Context of Special Services

Special-purpose Transactions and the Transaction Initialization Routine

47 A2 33UT 12-3

In all these events, the following rules apply:

• If a message-id has been defined in the TRANSACTION-SECTION of
TDSGEN with the same name as the corresponding event (for instance:
message-id LOGON for a logon event), the first TPR of this transaction is
activated. The TPR may have any identification. If a user wishes to define a
special-purpose transaction, the following syntax is used in TDSGEN:

 TRANSACTION SECTION.

 MESSAGE "LOGON" ASSIGN TO UTPRLG
 .
 .
 .
 MESSAGE "BREAK" ASSIGN TO UTPRBR
 .
 .
 .
 MESSAGE "SHUTDOWN" ASSIGN TO UTPRSH

When LOGON is entered by TDS, the user TPR UTPRLG is executed.
Similarly, when SHUTDOWN is entered by TDS, the user TPR UTPRSH is
executed.

• If no message-id has been defined in the TRANSACTION-SECTION of
TDSGEN, TDS gives control to a TPR having the same name as the event (for
instance: LOGON TPR) if there is one. One exception is the DISCNCT
transaction that requires that the TPR named DISCONNECT be activated.

• If no corresponding TPR is found, TDS default TPRs are then activated.

• An advantage of defining one's own special transactions in TDSGEN is that the
user may modify the processing otherwise applied by default by TDS. If the
user writes these TPRs, for example, LOGON, BREAK, it is recommended that
the user write the corresponding transactions in TDSGEN. Otherwise, the
authority codes, sizes, etc are set by the TDS-supplied transactions, which may
not be suitable.

TDS COBOL Programmer's Guide

12-4 47 A2 33UT

• In all cases, the transactions are processed like any interrupt transaction:

− A new context is allocated to the transaction, the interrupted context being
saved.

− TRANSACTION-STORAGEs are initialized according to each special
transaction. The different TRANSACTION-STORAGEs are described in the
following subsections. The TRANSACTION-STORAGE size is defined in
TDSGEN.

− If a PRIVATE-STORAGE is defined, the size must be defined in the
TRANSACTION-STORAGE of the relevant transaction. The special
transaction is passed the PRIVATE-STORAGE of the terminal.

− When the transaction terminates (with spaces in the NEXT-TPR field), the
context is released and the interrupted transaction if any (case of the BREAK
transaction) is automatically resumed.

• No restrictions apply to the processing activated by these transactions in terms of
database access or data exchange (except DISCNCT that may not send data to its
correspondent). Rules for commitment and rollback apply in the same way as
for normal transactions.

• All the special-purpose transactions except the BREAK transaction are not
restarted at TDS warm restart if they have been terminated abnormally because
of a TDS abort or a system crash. Any referenced files remain in the state they
were in at the time of the last valid commitment.

• When a BREAK signal is received on a session for which a special-purpose
transaction (except BREAK) is running, the BREAK signal is ignored.

Special-purpose Transactions and the Transaction Initialization Routine

47 A2 33UT 12-5

12.2 BREAK Transaction

The BREAK transaction can be defined at TDSGEN. Then it replaces the standard
BREAK processing. This can be done by assigning a TPR to the message-id
BREAK in the MESSAGE statement in the TRANSACTION SECTION at
TDSGEN or simply by naming a TPR "BREAK". The BREAK transaction is
activated when a Break message (simulated or not) is received from a
correspondent.

In previous releases, BREAK event handling was confined to the BREAK
transaction, but in release V6, you can handle a BREAK event in any transaction.
This means that any transaction processing a BREAK event is executed according
to the COMMITMENT options specified for the MESSAGE statement declared in
the TRANSACTION SECTION at TDSGEN:

WAIT The current transaction will be interrupted at the next
commitment point and the BREAK transaction is
activated.

ROLL-BACK When the current TPR ends, the current transaction is
rolled back to the previous commitment and the
BREAK transaction is activated.

No Value Specified Takes the value specified for the BREAK transaction
itself.

No Value Specified for
the BREAK transaction

ROLL-BACK applies.

How the BREAK Transaction is Processed

When the current transaction is interrupted, the following occur:

• the context of the interrupted transaction is retained

• the first TPR of the BREAK transaction is activated. The TDS-STORAGE
fields are initialized as for the first TPR of any transaction.

This first TPR must issue a RECEIVE NO DATA in order to be allowed to send
messages later.

The BREAK transaction is organized and processed like any other transaction. The
first TPR may chain to any other TPR. It can be aborted, (CALL "ABORT" using
abort-code), in which case, the interrupted transaction is resumed at its last
commitment point. The CALL "RESTORE" and CALL "CANCELCTX"
statements may be used. These are described in Chapter 4.

The BREAK transaction may itself be interrupted by another BREAK message.

TDS COBOL Programmer's Guide

12-6 47 A2 33UT

Therefore, the same processing applies and a new BREAK transaction is entered.
The context of the interrupted BREAK transaction is stacked. Although the
theoretical limit to the maximum number of interrupts may be the capacity of the
internal TDS swap file, TDS may limit the maximum number of interrupts to about
16, by ignoring the BREAK signal.

The BREAK transaction terminates according to the options specified for the
NEXT-TPR field of TDS-STORAGE.

NEXT-TPR = "spaces". The interrupted transaction is resumed where the
BREAK transaction was activated.

NEXT-TPR = CANCELTX. The interrupted transaction, if any, is aborted with the
abort-code "BREAK".
ON-ABORT-TPR, if any, will be activated.

NEXT-TPR = ENTERTX. The terminal is set to active (command mode). The
READY message indicates that the user has the turn
and can enter a new transaction while the interrupted
transaction is retained. When the new transaction
terminates and sets NEXT-TPR to "spaces", the
interrupted transaction resumes.

Terminal Re-connection When an incident occurs during break transaction
processing, the terminal will be restarted at the last
commitment point of the transaction that was current
at the disconnection point. All the contexts are
restored to the state existing at that commitment point.

Special-purpose Transactions and the Transaction Initialization Routine

47 A2 33UT 12-7

Form Handling When a transaction is interrupted to process the
BREAK transaction, the terminal is set to
non-formatted mode.

When the transaction resumes:

all the forms activated during the BREAK processing
are released,

all the forms which were active at the break time are
re-activated,

all the variable fields are re-transmitted to the terminal
in such a way that the user is re-established in the
exact situation as at break time.

During BREAK Processing:

when the BREAK transaction, at the end of its
processing, starts another transaction through the
command NEXT-TPR = ENTERTX, the form
mounted by the BREAK transaction is kept if the NO
IMPLICIT RELEASE option is specified; the form is
released if the NO IMPLICIT RELEASE option is not
specified.

No Break Transaction
Specified

If no BREAK transaction is specified, TDS performs
the following:

if no transaction is currently executing, TDS switches
a passive terminal to the active state and sends
READY to the terminal,

otherwise, TDS aborts a currently executing
transaction with the return code BREAK.

TDS COBOL Programmer's Guide

12-8 47 A2 33UT

12.3 DISCNCT Transaction

The DISCNCT transaction is activated when a correspondent is accidentally
disconnected.

The following actions take place if the disconnection occurs while a TPR is
executing for this terminal:

• the TPR is aborted immediately if TDS verbs or procedures are executed
(RECEIVE, SEND, CALL ROLL-BACK, CALL RESTORE, CALL
KEEP-CURRENCIES, CALL CDRECV, CALL CDSEND, CALL SUBJOB,
CALL SET-ACTIVE, etc.).

• the process of disconnection will start at the end (normal or abnormal) of the
TPR.

If there is a message, it is not sent to the correspondent. A DISCNCT transaction
may be activated at TDS restart if the DISCNCT transaction could not take place
because of a TDS shutdown, or system failure.

If the disconnection is related to an XCP1 session, the LAST-TPRNAME field of
the TDS-STORAGE may not be significant (in particular for a session allocated by
a TM or DUMMY correspondent).

The following programming rules apply to the DISCNCT transaction:

• The commitment unit which is currently active, if any, is rolled back to its initial
state. The TRANSACTION-STORAGE and PRIVATE-STORAGE of the
disconnected user are passed to the DISCNCT transaction and the DISCNCT
transaction is executed.

• To identify the terminal, the first DISCNCT TPR can perform a RECEIVE NO
DATA. No message must be sent to the terminal, because it is disconnected.

• The first DISCNCT TPR may update controlled files and chain to subsequent
TPRs.

• All the TDS-STORAGE fields except PRIOR-TPR are initialized as for the first
TPR of any transaction. The PRIOR-TPR field remains as it was before the
DISCNCT transaction was activated.

• The TRANSACTION-STORAGE is copied from the interrupted transaction on
a length equal to the TRANSACTION-STORAGE size of the DISCNCT
transaction.

If the user session was idle at disconnection time, the
TRANSACTION-STORAGE of DISCNCT transaction is initialized with "0".

The programmer can use a call "GETTPRPAR" verb to get information about
the last TPR committed (if any) and the last TM or DUMMY correspondent
using the XCP1 session before the disconnection occurs. Refer to the
description of the call GETTPRPAR in chapter 4.

Special-purpose Transactions and the Transaction Initialization Routine

47 A2 33UT 12-9

12.4 LOGON Transaction

The LOGON transaction is activated each time a correspondent connects
successfully to TDS, whether TDS requests the connection or not. Recall that there
are two ways of logging on to a TDS application:

1. The terminal operator enters $*$CN tdsname ...

2. Once the terminal operator powers on the terminal, TDS connects the
correspondent (see Chapter 2).

When a terminal (T1) is generated with slaves, this terminal cannot be connected
until all the slaves are connected. The LOGON transaction is started for the
terminal (T1) when all slaves are connected.

The Transaction-Storage description must have the following format:

01 TRANSACTION-STORAGE.
 02 USER-ID PIC X(12).
 02 PROJECT PIC X(12).
 02 BILLING PIC X(12).
 02 TERMINAL-ID PIC X(24).
 02 TERMINAL-TYPE PIC X(8).
 02 TERMINAL-MODE PIC X.
 02 CONTEXT-FLAG PIC X.
 02 AUTHORITY-CODES PIC X(32).
 02 FILLER PIC X(1).
 02 SPAWNCOUNT COMP-1.
 02 USED-BY-TDS PIC X(12).
 02 FILLER PIC X(n).

When the first TPR is activated, the above fields in the
TRANSACTION-STORAGE area are initialized by TDS as follows:

• The USER-ID, PROJECT, and BILLING fields will contain the user-id, project
and billing supplied by the user during logging-on. However, the length of the
TDS user name is limited to 8 characters.

• The TERMINAL-ID field will contain the terminal identification supplied by the
terminal, CRNETGEN, or terminal controller.

• The TERMINAL-TYPE field will contain the terminal model identification (for
example, DKU 7211).

• The TERMINAL-MODE flag contains one of the following values.
− “A”: When the terminal is active.
− “P”: When the terminal is passive.

TDS COBOL Programmer's Guide

12-10 47 A2 33UT

• The CONTEXT-FLAG is used to indicate whether a context already exists for
the incoming user. The flag is set to " " (space) when there is no context; if a
context exists from the previous session the flag is set to "C" if no transaction
was in progress or "F" if a transaction is to be resumed.
The RESTART transaction is explained later in this chapter.

• AUTHORITY-CODES is the list of authority codes of the user-id just logged. It
represents a 32-character string of "0" or "1" digits.

• SPAWNCOUNT is used to indicate whether spawned transactions are waiting
for this correspondent (SPAWNCOUNT = 1), or not (SPAWNCOUNT = 0).

• To send data, the first TPR must perform a RECEIVE NO DATA before calling
SEND.

• The USED-BY-TDS field is reserved for internal use and not available for the
users.

The first LOGON TPR may call other TPRs in order to do the following:

• reject the connection,

• accept the connection and resume the interrupted transaction (if any, this
happens only in the case of relog-on),

• accept the connection and reject the interrupted transaction (if any, for a
relog-on).

The connection can be rejected by chaining to the standard TDS "BYE"
transaction. Note that:

− if no previous context exists (first log-on), the LOGOUT transaction will be
activated,

− if a previous context exists (relog-on), the DISCNCT transaction will be
activated.

The connection can be accepted and the interrupted transaction, if any, is
resumed by terminating the LOGON TPR (or a TPR called by this TPR) with
spaces in the NEXT-TPR field.

The connection can be accepted and the interrupted transaction rejected by
chaining to the standard TDS TPR "CANCELTX". The "CANCELTX" TPR will:

• terminate the logon sequence,

• abort the interrupted transaction (all of them if there are several); the
ON-ABORT-TPR of the aborted transaction, if any, is activated (see Chapter 2),

• put the terminal in "command" mode.

The RESTART TPR will not be entered.

See Figure 12-2.

Special-purpose Transactions and the Transaction Initialization Routine

47 A2 33UT 12-11

NOTE:
The logon process can manage the "symbdest" (symbolic destination)
parameter. This allows an interrupted transaction, when it resumes, to issue a
send statement with EGI even if the end user has changed terminals. The
transaction stores the destination in private storage and reads it when the
transaction does not contain an exchange.

Handling of TDS service message header and trailer

Syntax

CALL "SETMGPRES" USING function,
 presentation-length,
 presentation-value,
 status.

Description

This function is aimed to override either the TDS service message header and
trailer, or the TDS transaction message header and trailer. The default presentation
of these service messages is defined either by TDSGEN through the
SERVICE-MESSAGE and TDSTX-MESSAGE statements, or during the logon
sequence by explicitly entering the hexadecimal value. Note that only the service
message header can be redefined during the logon sequence. Refer to the TDS
ADMINISTRATOR GUIDE for a complete description of this service.

The "SETMGPRES" TDS function is issued to set up dynamically an appropriate
presentation for the TDS service and transaction message to match the specific
terminal type of the requestor. Typically this function should be used during the
LOGON TPR by taking into account the TERMINAL-TYPE which is provided in
the transaction storage. The presentation values are retained until the requestor is
logged out, or another call is performed.

TDS COBOL Programmer's Guide

12-12 47 A2 33UT

Parameter Description

• function is a COMP-1 (FIXED BIN(15)) to specify whether the TDS service
message or transaction message header or trailer is to be set up. It must take one
of the 4 values:

1 = the TDS service message header is to be set up
2 = the TDS service message trailer is to be set up
3 = the TDS transaction message header is to be set up
4 = the TDS transaction message trailer is to be set up

• presentation-length is a COMP-1 (FIXED BIN(15)) which must contain the
length of the header or trailer which are passed as the third parameter. It is the
'presentation-value' size. It must be comprised between 0 and 16, and be an even
number.

• presentation-value is the value of the header or trailer. It must contain up to 16
hexadecimal characters the size of which must be provided in the previous
parameter.

• code is a 1 numeric character that contains the result of the function. The
following values may be returned:

0 = successful completion
1 = erroneous function code out of the range [1,4]
2 = erroneous length, out of the range [0,16], or odd number
3 = erroneous value which is not an hexadecimal value

EXAMPLE

You can modify your LOGON TPR as follows:

working-storage section.
77 p-func comp-1.
77 p-length comp-1.
77 p-value pic x(16).
77 p-code pic x.

procedure division.

if terminal-type = "DKU7211"
 move 1 to p-func
 move 4 to p-length
 move "0d25" to p-value.
 call "setmgpres" using p-func p-length p-value p-code.
 if p-code not = "0" display "setmgpres erreur: " p-code
 upon alternate console.
❑

Special-purpose Transactions and the Transaction Initialization Routine

47 A2 33UT 12-13

LOGON Transaction

= "CANCELTX"
Interrupted
Transaction
is Aborted

RESTART Transaction

Interrupted
Transaction
is Restarted

User Log-on

Log-on
is Rejected

Log-on
is Accepted

NEXT- TPR = " "

NEXT-TPR

NEXT-TPR = BYE

Figure 12-2. LOGON Transaction

Form Handling

Like any transaction, the LOGON Transaction can set the terminal to formatted
mode. At the end of the LOGON transaction, the current form is kept if the NO
IMPLICIT RELEASE option has been specified at TDSGEN.

Note for XCP2 users

You must declare the LOGON transaction in the STDS in order to define USE
XCP2 in the corresponding MESSAGE clause.

TDS COBOL Programmer's Guide

12-14 47 A2 33UT

12.5 LOGOUT Transaction

The LOGOUT transaction is activated after the BYE transaction has executed. The
standard accounting message is sent to the terminal before the LOGOUT
transaction is called. In order to send a message to the terminal, the LOGOUT
transaction must first perform a RECEIVE NO DATA.

For an explanation of the BYE transaction, see Chapter 14.

12.6 RESTART Transaction

The RESTART transaction is activated when a user logs on to TDS and a context
already exists for the user and a transaction is to be resumed. In this case,
CONTEXT-FLAG is set to "F" (the user has been logged off accidentally or there
has been a TDS failure). TDS-STORAGE is initialized as for the first TPR of any
transaction, but the PRIOR-TPR and NEXT-TPR fields remain as they were before
the RESTART transaction was activated. The transaction-storage is copied from
the interrupted transaction. The RESTART transaction can be used to reinitialize
some terminal functions not performed by TDS.

The interrupted TPR (if any) is resumed when the RESTART Transaction
terminates (with NEXT-TPR set to spaces).

Note that, if the NEXT-TPR = CANCELTX in the LOGON transaction, the
RESTART transaction will not be executed.

Special-purpose Transactions and the Transaction Initialization Routine

47 A2 33UT 12-15

12.7 SHUTDOWN Transaction

The SHUTDOWN transaction is activated when TDS terminates normally or
abnormally (through the [M] TERMINATE_TDS STRONG = 1
command). The SHUTDOWN transaction is the last transaction to be executed in
a TDS session.
When SHUTDOWN has started, all users except the master terminal, are logged
off and all user transactions are either completed or interrupted. The SHUTDOWN
transaction is defined in TDSGEN and there are no restrictions on its execution,
that is, SHUTDOWN can chain to other TPRs and can dialog with the master
terminal. Commitments are allowed and files can be modified.

The Transaction-Storage description must have the following format:

01 TRANSACTION-STORAGE.
 02 SHUTDOWN-FLAG PIC X.
 02 FILLER PIC X(n).

'n' depends on the value defined in TDSGEN (See the TDS Administrator's Guide,
"TRANSACTION-STORAGE").

When the transaction is activated, SHUTDOWN-FLAG indicates whether a
[M] TERMINATE_TDS, or [M] TERMINATE_TDS STRONG = 1
command was used:

" " (space) Normal TDS termination ([M]
TERMINATE_TDS), user transactions terminate
normally,

"S" Fast TDS shutdown ([M] TERMINATE_TDS

STRONG = 1); termination of user transactions is
forced.

The first SHUTDOWN TPR either may terminate without calling another TPR or
may call another TPR that may hold a conversation with the master terminal. In
the second case shutdown becomes complete when NEXT-TPR = space is
specified.

TDS COBOL Programmer's Guide

12-16 47 A2 33UT

High Availability (HA) Only

When TDS is working with the High Availability (HA) feature, the transaction
storage in the SHUTDOWN transaction has the following format:

 01 TRANSACTION-STORAGE
 02 SHUTDOWN-FLAG PIC X.
 02 MSTPRESENT-FLAG PIC X.
 02 HAINITROLE-FLAG PIC X.
 02 FILLER PIC X(N).

If the TDS master is connected, TDS sets MSTPRESENT-FLAG to the value one,
and the SHUTDOWN transaction can dialog with the master. If the TDS master is
not connected, TDS sets MSTPRESENT-FLAG to the value two, and the
SHUTDOWN transaction itself cannot dialog with the master. TDS creates a
special dummy session to perform the shutdown sequence. If the SHUTDOWN
transaction attempts a dialog, it aborts. When the SHUTDOWN transaction is
activated, TDS sets the value of HAINITROLE-FLAG to A, B or N (see the
explanation of the STARTUP transaction).

NOTE:
A disconnection of the master TDS (i.e. which is not the special dummy
session) occurring during the SHUTDOWN transaction prevents TDS
termination. If a TAKEOVER is in progress, it cannot be completed. The
reconnection of the master TDS is mandatory to resume the SHUTDOWN
transaction in order to terminate the TDS session.

To identify such a situation, in order to complete the shutdown processing:

- A cobol display upon [alternate] console can be used in the SHUTDOWN tpr
to inform that the SHUTDOWN transaction is running for the master TDS
(testing MSTPRESENT-FLAG set to one).

- A cobol display upon [alternate] console can be used in the DISCONNECT
tpr to warn that the master's reconnection will be mandatory to complete the
SHUTDOWN transaction.

For more information about the HA product, see the High Availability Concepts
manual and High Availability Administrator's Guide.

Special-purpose Transactions and the Transaction Initialization Routine

47 A2 33UT 12-17

12.8 STARTUP Transaction

The STARTUP transaction is activated when the TDS session has successfully
started (cold startup) or restarted (warm restart). The sequence of events is as
follows:

1. A TDS application is restarted (warm or cold).

2. User files are opened.

3. The STARTUP transaction is executed.

4. Users can log on.

TRANSACTION-STORAGE must have the following format:

01 TRANSACTION-STORAGE.
 02 CONTEXT-FLAG PIC X.
 02 ASSIGN-FLAG PIC X.
 02 ANEW-FLAG PIC X.
 02 XCPCONTEXT-FLAG PIC X.
 02 FILLER PIC X(m).

When the TPR is activated, the above flags in the TRANSACTION-STORAGE are
set by TDS as follows:

CONTEXT-FLAG space There is no frozen terminal user.
This happens in one of the following cases:

a "cold" restart ([M] TERMINATE_TDS, or
[M] MODIFY_TDS_RESTART_OPTION
executed during the previous session),

First TDS execution after a TDSGEN,

Previous TDS session normally completed
(all users logged off with a BYE command or
were cancelled).

TDS COBOL Programmer's Guide

12-18 47 A2 33UT

"F" All known users whether they are connected
or frozen when the previous TDS session
ended and not reconnected at restart time are
in the frozen state.
For further details, refer to the description of
the CONNECT parameter in:

either the [M] TERMINATE_TDS
command if the previous TDS session
terminated normally or the
[M] MODIFY_TDS_RESTART_OPTION
command if the last TDS session terminated
abnormally as a result of:
([M] TERMINATE_TDS STRONG=1, CJ,
a TDS abort).

Note that dummy correspondents and XCP correspondents are not taken into
account for CONTEXT-FLAG.

ASSIGN-FLAG S The files opened are those assigned to TDS
by the JCL. This value is set in one of the
following cases:

a "cold" restart
([M] TERMINATE_TDS MODE=COLD,
[M] MODIFY_TDS_RESTART_OPTION
MODE=COLD),

first TDS execution after a TDSGEN.

P The files opened are those which were used
in the previous TDS session. Any file
declared in the JCL (static assignment) which
is different from those used in the previous
session is reported in the TDS JOR. In this
case the file used for the previous session is
used instead of that declared by the static
assignment. Table 12-1 summarizes which
files are assigned to which external file name.

ANEW-FLAG A Always set regardless of the TDS STARTUP.

Special-purpose Transactions and the Transaction Initialization Routine

47 A2 33UT 12-19

XCPCONTEXT-
FLAG

space

F

There is no frozen XCP correspondent.

There are frozen XCP correspondents.
The last TDS session terminated abnormally
while the transactions using the XCP protocol
were being executed.

The STARTUP transaction can be composed from one or several TPRs.

TPRs of STARTUP transaction can do any of the following :

• do a send operation to the master terminal only.

• hold a conversation with the master terminal.

• spawn a transaction to the master terminal (connections to other terminals are
not yet allowed).

• spawn a transaction to a dummy correspondent (the spawned transaction will
start at the end of the STARTUP transaction).

• read and write files.

• chain to another TPR.

Table 12-1. File Assignments on ASSIGN-FLAG = P

Previous Session
ASSIGN-FLAG = P

JCL
Static Assignment

Result on
Restart

ifn1, efn1

ifn1, efn2 Assign ifn1, efn1

ifn1, efn1
no mismatch

ifn1, efn2
mismatch reported
in TDS JOR

ASSIGN ifn1, efn1

If there is a mismatch in file assignment between the previous session and the job
description, the TDS warm restart does the following:

• ignores the assignment in the job description,

• uses the previous session values,

• inserts a message in the TDS JOR giving the files used.

TDS COBOL Programmer's Guide

12-20 47 A2 33UT

Table 12-2. CONTEXT-FLAG and ASSIGN-FLAG Values

FLAG

CONTEXT-FLAG

ASSIGN-FLAG

COLD

space

S

WARM
Last Session
Normal End

WARM
last Session
Abrupt or

Abnormal End

F or space

P
F
P

Table 12-2 summarizes the values that CONTEXT-FLAG and ASSIGN-FLAG
may have for a COLD or WARM startup.

12.8.1 High Availability (HA) Only

When TDS is working with the High Availability (HA) feature, the transaction
storage in the STARTUP transaction has the following format:

01 TRANSACTION-STORAGE
 02 CONTEXT-FLAG PIC X.
 02 ASSIGN-FLAG PIC X.
 02 ANEW-FLAG PIC X.
 02 XCPCONTEXT-FLAG PIC X.
 02 MSTPRESENT-FLAG PIC X.
 02 HAINITROLE-FLAG PIC X.
 02 FILLER PIC X(m).

If the TDS master is connected, TDS sets MSTPRESENT-FLAG to the value one,
and the STARTUP transaction can dialog with the master.

If the TDS master is not connected, TDS sets MSTPRESENT-FLAG to the value
two, and the STARTUP transaction itself cannot dialog with the master. TDS
creates a special dummy session to perform the startup sequence. If the STARTUP
transaction attempts a dialog, it aborts.

Special-purpose Transactions and the Transaction Initialization Routine

47 A2 33UT 12-21

When the STARTUP transaction is activated, TDS sets the value of
HAINITROLE-FLAG as follows:

A If the TDS was initially started in Active mode,

B If the TDS was initially started in Backup mode and has become Active after
a Takeover,

N if the TDS is not managed by HA.

For more information about the HA product, see the High Availability Concepts
manual and High Availability Administrator's Guide.

12.8.2 H_REINIT Transaction

After a restartable abort, the H_REINIT transaction is executed. H_REINIT can be
seen as a special STARTUP transaction executed as part of a RESTARTABLE
ABORT sequence. It is executed after the recovery phase and before Commits are
restarted.

For example, you may use H_REINIT to open UFAS files not declared in the TDS.

To avail of this facility, you must declare it in the TDS generation as follows:

MESSAGE "H_REINIT" ASSIGN TO user-tpr-name
 AUTHORITY-CODES 0,1 (for example)
 TRANSACTION-STORAGE SIZE x.

This transaction is executed in a temporary session so no SEND can be performed.
No specific Transaction Storage is provided by TDS.
TPRs can read and/or write files, chain to other TPRs, and spawn on known
correspondents (connections are not yet allowed).

If the level of current simultaneity is not at least 2, or if there is a lack of space in
the TDS Tables or in the SWAP file, a fatal abort of TDS (with message MV34)
occurs.

TDS COBOL Programmer's Guide

12-22 47 A2 33UT

12.9 H_XAEVT Transaction

This transaction is useful only for a TDS using XA commitment protocol with
ORACLE7.

A basic transaction called H_XAEVT is provided by ORACLE7, see
ORACLE7/TDS User's Guide. It may be customized so that events that could lead
to data inconsistency can be handled. Although using this transaction is not
mandatory, note that the default action is limited to sending a message to the
master to display information as such contained in the message storage described
further, the message is also written in the JOR of the TDS, see TDS Administrator's
Guide.

The H_XAEVT transaction is defined by assigning a TPR to the message-id
H_XAEVT in the Transaction Section of the STDS subfile for TP7GEN.

The transaction is started twice by TDS each time a commitment unit
resynchronization occurs: as soon as desynchronization is detected and after its
resynchronization completion.

The H_XAEVT transaction runs for a temporary correspondent, that is why no
message can be sent to him.

The first TPR may have any identification. It receives the message as follows:

01 XAEVT-MSG.
 02 TPR-NAME PIC X (12).
 02 USER-NAME PIC X (12).
 02 OCCUR-NB COMP-1.
 02 TDS-XA-STATUS COMP-1.
 88 ROLLBACK VALUE 0.
 88 COMMIT VALUE 1.
 02 XA-GLOBAL-STATUS COMP-1.
 88 DONE VALUE 0.
 88 RETRY VALUE 4.
 88 HEURISTIC-MIXED VALUE 5.
 88 HEURISTIC-ROLLBACK VALUE 6.
 88 HEURISTIC-COMMIT VALUE 7.
 88 HEURISTIC-HAZARD VALUE 8.
 88 RMERR VALUE -3.
 88 NOTA VALUE -4.
 88 RMFAIL VALUE -7.

Special-purpose Transactions and the Transaction Initialization Routine

47 A2 33UT 12-23

When the transaction is activated, the above information is set by the TDS as
follows:

TPR_NAME

Is the current TPR of the commitment unit that has been resynchronized.

USER_NAME

Is the correspondent identifier, for which the TPR was running.

OCCUR_NB

Can have the value 1 or 2. If 1, the transaction was started after detection of
desynchronization. If 2, it was started after completion of resynchronization.

TDS_XA_STATUS

Indicates the completion status of non-XA Resource Managers (for example UFAS
files, IDS2 databases) on the TDS side. This information may help the database
administrator to take a heuristic decision.

TDS COBOL Programmer's Guide

12-24 47 A2 33UT

XA-GLOBAL-STATUS

Is the status returned by ORACLE7/TDS that involves resynchronization of the
commitment unit or last returned one, when the transaction is launched after
resynchronization completion. In this latter case, last returned one means on last
commit or rollback request.

DONE the XA Resource Managers (ORACLE databases)
successfully completed the same commitment action
(EITHER Commit or Rollback, depending on
TDS_XA_STATUS).

RETRY the XA Resource Managers are not able to commit at
this time, TDS will re-issue a commit request later.

HEURISTIC COMMIT due to a heuristic decision, the work done was
committed.

HEURISTIC ROLLBACK due to a heuristic decision, the work done was rolled
back.

HEURISTIC MIXED due to a heuristic decision, the work done (on XA and
non XA Resource Manager) was partly committed and
partly rolled back.

HEURISTIC HAZARD due to some failure, the work done may have been
heuristically completed.

RMERR when a commit request was issued: an error occurred
in committing the work performed and this work has
been rolled back.
When a roll back request was issued: an error occurred
in rolling back the work performed.

RMFAIL an error has resulted in one or more Resource
Managers being unavailable.

NOTA a commit request was issued and the work done rolled
back. The transaction identifier is no more known by
concerned Resource Managers.

Special-purpose Transactions and the Transaction Initialization Routine

47 A2 33UT 12-25

12.10 Transaction Initialization Routine

Transaction Initialization Routine is a user-written subprogram. This subprogram
is called by TDS when a message is received either from a terminal that has no
transaction active (in "command" mode) or as a first message whose purpose is to
spawn a transaction. The subprogram must return a transaction identifier to TDS.
The existence of such a subprogram is indicated by the USE Procedure name
FOR TRANSACTION INITIALIZATION statement in the TDS SECTION of
the TDSGEN.

The following programming rules apply to the Transaction Initialization Routine.

• The routine must not access any file, whether TDS controlled or non controlled,
nor call any TDS function (for example, SEND, RECEIVE, or CALL
statements).

• The routine may call other subprograms; however, these subprograms must
neither access any file nor call any TDS function.

• The Working-Storage area of the routine is not refreshed at each call. If the
Working-Storage area must contain constant value data items, these data items
should remain unchanged throughout the execution of the routine or should be
initialized before the routine exits.

• The PROCEDURE DIVISION statement must take the following form:
 PROCEDURE DIVISION USING INPUT-TEXT, TEXT-LENGTH, TX-TYPE,
 TERMINAL-INFO.

• The LINKAGE SECTION must contain the following data items:
 01 INPUT-TEXT.
 02 INPUT-TEXT-1 PIC X(maximum-message-length).
 77 TEXT-LENGTH COMP-1.
 77 TX-TYPE PIC X(8).
 01 TERMINAL-INFO.
 02 SYMBOLIC-SOURCE PIC X(12).
 02 TERMINAL-TYPE PIC X(8).
 02 USERID PIC X(12).
 02 TERM-MODE PIC X(1).
 02 DVCHDR-LG COMP-1.

Table 12-3 summarizes these parameters. The x indicates the type of parameter.
All these parameters are input parameters except TX-TYPE which is both an
input and an output parameter.

TDS COBOL Programmer's Guide

12-26 47 A2 33UT

Table 12-3. LINKAGE SECTION Parameters for the Transaction
Initialization Routine

Input Parameter Output Parameter

INPUT-TEXT

TEXT-LENGTH

x

x

x

x

x

x

x

x
x

TX-TYPE

TERMINAL-INFO

SYMBOLIC-SOURCE

TERMINAL-TYPE

USERID

TERM-MODE

DVCHDR-LG x

INPUT-TEXT contains the message to be decoded. In the case of
spawning, the message text of the spawn command is
used as input text.

TEXT-LENGTH contains the length of the received text and includes
the device header when the TERM-MODE field is set
to "U".

TX-TYPE contains the transaction identifier (left justified and, if
necessary, padded with spaces on the right). The
transaction initialization routine should return the
transaction identifier in TX-TYPE.

TERMINAL-INFO contains information about the terminal that may be
needed by the transaction initialization routine when
decoding the message.

SYMBOLIC-SOURCE is the name of the correspondent.

TERMINAL-TYPE is the terminal model, for example, DKU7211.

USERID contains the name of the user who activated the
transaction.

Special-purpose Transactions and the Transaction Initialization Routine

47 A2 33UT 12-27

TERM-MODE contains the type of connection mode. By default, a
terminal operates in edited mode, that is,
TERM-MODE = E. Otherwise a terminal can operate
in unedited mode, that is TERM-MODE = U.

In edited mode, control information such as the device
header is not actually displayed for a message being
prepared for transmission, whereas in unedited mode
all such control information is displayed.

DVCHDR-LG contains the length of the device header and applies
only when TERM-MODE is set to U.

The transaction initialization routine must not modify any of the fields except the
TX-TYPE field. TX-TYPE is set to spaces by TDS each time the routine is called.
If the value of TX-TYPE is not changed during the routine, that is, it remains
spaces, the transaction identifier retained by TDS is contained in the field starting
at the first character of the message and bounded by:

• either the first space in the message,

• or the first 8 characters of the input text.

Note, if the transaction uses FORMS, the sequence of operations is as follows:

• the Transaction Initialization Routine receives the text as it came from the
terminal,

• the Transaction Initialization Routine returns the transaction identifier,

• the first TPR of the transaction receives the message after being edited by
FORMS.

Thus the text received by the TPR is that received from the terminal, possibly
edited by FORMS. This message may or may not contain the transaction identifier.

TDS COBOL Programmer's Guide

12-28 47 A2 33UT

❑

47 A2 33UT 13-1

 13. Implementing the Transaction

13.1 Creating the Application

Before a TDS application can be run, a certain number of tasks must be performed.
TPRs must be compiled and linked. This involves the standard JCL set up
described in this chapter. The network must be configured and defined to allow
terminals and application transaction programs to communicate with one another.
This entails running the Network Generation (CRNETGEN) utility.

The user must be declared in the system; see the Catalog Management User's
Guide. TPR sharable modules must be loaded from the appropriate sharable
module library into backing store from where segments can be swapped in and out
of main memory and shared by all active transactions. At some stage (either before
or after TDS is launched), the operator must initiate telecommunications in order to
provide TDS with access to the terminal network.

The following pages describe how to compile and link a TPR. The other topics,
which are dealt with by the System Administrator, are treated in the TDS
Administrator's Guide.

Later sections show you how to improve a transaction's performance, and how to
test and debug an application.

TDS COBOL Programmer's Guide

13-2 47 A2 33UT

13.1.1 Compiling a Program

A TPR is compiled as a standard COBOL program. (See the COBOL 85 User's
Guide). The user need specify only the input source library tdsname.COBOL.

The TPR is compiled through the following job description:

$JOB job-name, USER=userid [,PROJECT=project [,BILLING=billing]];

LIB SL INLIB1 = (user-source-name [,DVC = device-class,
 MD = volume-name]),

 [INLIB2 = (tdsname.COBOL [,DVC = device-class,
 MD = volume-name]),]

 [INLIB3 = (H_CBLIB [,DVC=device-class, MD=volume-name])];

COBOL SOURCE=tpr-name,

 [CODAPND] [,DSEGMAX = integer-1] [,PSEGMAX = integer-2],...

 CULIB = (user-culibrary-name, DVC = device-class,
 MD = volume-name);

$ENDJOB;

You can execute this job interactively through IOF.

The description of parameters is as follows:

• tdsname.COBOL allows COPY statements tdsname.COBOL contains:

− all the control and file description entries defined at TDSGEN, for example,
common data definitions declared for WORKING-STORAGE,
COMMON-STORAGE and TRANSACTION-STORAGE.

− storages to be shared, namely, TDS-STORAGE and CONSTANT-STORAGE.

• The TPR issues COPY statements to retrieve these file and storage entries.

• The H_CBLIB file must be specified to allow COPY statements to be used for
FORMS.

Implementing the Transaction

47 A2 33UT 13-3

• The CODAPND parameter is recommended because it appends the code
segment to the linkage segment. This reduces the number of entries in the SM
(sharable module) and the amount of disk I/Os required.
TPR performance can be improved by specifying CODAPND and adjusting
PSEGMAX and DSEGMAX in the COBOL statement in order to control the
creation of segments in the compile unit. The use of CODAPND, PSEGMAX,
and DSEGMAX is explained later in this chapter.

• The CULIB parameter specifies the library in which the resulting compile unit is
to be stored.

• If a TPR is to be run with PCF commands, it must be compiled with DEBUG.

NOTE:
All files declared in a TPR compiled with COBOL 85 must also have been
declared in the STDS (see the TDS Administrator's Guide), otherwise the TPR
may abort at execution time.

13.1.2 Linking a Program

The sharable module library must have been allocated and initialized before
linkage. This may be done through the TP7PREP utility that the TDS
Administrator uses to allocate TDS system files. One potential source of confusion
for new TDS programmers is one group of these system files that are called the
off-line files even though they are on-line. They are called off-line because they
are used only in the preparation and generation of TDS.

The TPR is linked through the following job description:

$JOB job-name, USER = userid [,PROJECT=project [,BILLING=billing]];

LIB CU, INLIB1 = (user-culibrary-name [,DVC = device-class,

 MD = volume-name]);

LINKER tpr-name, SM,

 OUTLIB = (tdsname.SMLIB [,DVC = off-line-device-class,

 MD = off-line-volume-name]),

 COMFILE = (tdsname.SLLIB [,DVC = off-line-device-class,

 MD = off-line-volume-name],

SUBFILE = TP7LINKTPRi);

$ENDJOB;

TDS COBOL Programmer's Guide

13-4 47 A2 33UT

This job can be performed interactively through IOF as follows:

• The JCL statement LIB CU sets up a search path for the LINKER utility so that
it can find the appropriate compile-unit library or libraries.

• tpr-name is the PROGRAM-ID name specified in the IDENTIFICATION
DIVISION of the TPR.

• tdsname.SMLIB is the sharable module library in which the TPR being linked
is to be stored. This SM library must have been previously allocated and
initialized as part of the group of files that are called the off-line files.

• tdsname.SLLIB is the source library containing TP7LINKTPR created at
TDSGEN. There are as many TP7LINKTPRs as there are
TPR-sharable-modules declared at TDSGEN. The program is linked to the SM
named TPR[i].

• off-line and volume name as defined at TP7PREP time.

A TPR can be run only if it has been correctly linked.

13.1.3 Linking a Batch Interface Program

The batch program is linked through the following job description:

$JOB job-name, USER = userid [,PROJECT = project [,BILLING = billing]];

LIB CU, INLIB1 = (library-name [,DVC = device-class, MD = volume-name]);

LINKER load-module-name, OUTLIB = (load-module-library

 [,DVC = device-class, MD = volume-name]), COMFILE = *ien;

$INPUT ien;

 ENTRY = entry-point-name,

 LINKTYPE = (DACM),

 STARTASG = (PRIVATE = 17);

$ENDINPUT;

$ENDJOB;

Implementing the Transaction

47 A2 33UT 13-5

The description of parameters is as follows:

• load-module-name is the name of the batch program.

• LINKTYPE and STARTASG commands are specified as shown. Note that from
the technical status TS 6152, STARTASG is no longer needed.

• Other linker clauses can be included to meet user requirements.

The batch interface program is executed like any $STEP statement.

EXAMPLE

STEP load-module-name, FILE = (load-module-library,
 DVC = device-class, MD = volume-name), DUMP = DATA;
❑

Figure 13-1 summarizes what compilation and linking of TPRs involve.

The COBOL compiler compiles the source code, making references where
necessary to the COBOL source library (<tdsname>.COBOL) that is produced at
TDSGEN. TPRs retrieve information from <tdsname>.COBOL through COPY
statements. The object code is then output to the compile unit library
(user-culibrary-name). Each TPR is then linked into a sharable module in a
predetermined sharable module library (<tdsname>.SMLIB). Now that a fully
executable sharable module has been created, it can be fetched and loaded into
main store for execution.

TDS COBOL Programmer's Guide

13-6 47 A2 33UT

User Source
Library

COMPILER

user-culibrary-name

tdsname.SLLIB
(TP7LINKTPR

 .
 .

TP7LINKTPR99)

LINKAGE EDITOR

tdsname.SMLIB

tdsname.COBOL

Figure 13-1. Preparing TPRs for Execution

Implementing the Transaction

47 A2 33UT 13-7

13.1.4 Compiling/Linking Queries

These tasks are described in the IQS/TDS User's Guide.

13.1.5 Deleting a TPR

The following job description deletes a TPR from a sharable module:

$JOB job-name, USER = userid [,PROJECT = project [,BILLING = billing]];

LIBMAINT SM LIB = (tdsname.SMLIB [,DVC=offline-device-class,

 MD=offline-volume-name]),

 COMFILE= *ien;

$INPUT ien;

 DELETE sm-name, LKU = tpr-name;

$ENDINPUT;

$ENDJOB;

The description of parameters is as follows:

• tpr-name is the PROGRAM-ID name specified in the IDENTIFICATION
DIVISION of the TPR.

• sm-name is the name of the TPR-sharable-module containing tpr-name.

• Offline device and volume-name are defined at TP7PREP time.

TDS COBOL Programmer's Guide

13-8 47 A2 33UT

13.2 Tuning the Application

TPRs are executed within a unique environment as defined at TDSGEN. Although
a TPR is a single entity, many transactions are processed simultaneously.
Therefore, TPR design and the programming techniques adopted must be
consistent throughout and oriented towards a single efficient system.

For a TPR to operate effectively within its environment, consider the following
suggestions:

13.2.1 Eliminating Segment Faults

• Use the CODAPND option. A TPR is most efficient as a single code segment
because the time taken to search for and load the program from disks is reduced.
Use of the CODAPND parameter will ensure that the generated code segment
will be placed in the same segment as the linkage segment.

• In the main code segment, try to group procedures that are frequently used. This
reduces the number of I/O operations and saves memory. Therefore place all
other procedures in alternative code segments.

• Optimize data storage areas by selective grouping of like data and related
records to reduce overall I/O activity. Use of the COBOL REDEFINES clause
reduces working area size and therefore saves work space.

• Certain COBOL statements can be very costly in terms of generated code.

Therefore it is important to optimize generated code size by minimizing the
number of SEND, RECEIVE, STRING, UNSTRING, and INITIALIZE
statements.

EXAMPLE

Instead of writing two SEND statements, use the PERFORM statement to branch
to a single SEND.

Original Coding Alternative Coding
SEND FROM A PERFORM SEND-A
SEND FROM B MOVE B TO A

PERFORM SEND-A
.
.
.
SEND-A

❑

Implementing the Transaction

47 A2 33UT 13-9

• Do not specify DEBUG for a transaction that is already debugged because the
resultant compilation creates unnecessary data segments.

• Reduce the number of CALL statements. For a function containing only a few
lines of code that is used by several TPRs, incorporate the function within each
TPR by using the COBOL statement COPY.

• Limit and standardize code segment sizes. The size of code segments should be:

− the same to even out "search/load" time

− as small as possible to be conveniently swapped in.

The TPR should be segmented according to its logical structure. This will
help VMM to retain in memory the minimum number of segments, thereby
reducing the swapping. The normal rate of missing segments is one per TPR.
Details are given in the JOR (PROG MISSING SEGMENTS/PAGES) and
also on the TDS execution report (NUMBER OF USED TPRs). A high rate
of missing segments is due to either inadequate TDS memory or a
programming error.

13.2.2 Using SEND and RECEIVE Statements

The following points are recommended:

• Avoid numerous RECEIVE statements. Input messages are oversliced if the
receiving data item in the TPR is of inadequate size.

• Reduce the number of SEND with ESI statements and SEND statements without
an indicator. This action reduces processing time and increases memory
availability.

• Avoid the use of SEND with EMI statements followed by another SEND
statement within the same TPR. TDS waits for the first transmission to complete
before processing the second SEND statement. This results in slow throughput
and hence increases response time for other terminals. This, however, does not
apply to a TDS with a large number of simultaneities declared at TDSGEN.

• Avoid using SEND statements to terminals other than the originating terminal.
Spawn the transaction in order to recover the message in the case of terminal
failure.

• Use the information already in the COMMUNICATION SECTION. For
example, RECEIVE gives DATE and TIME, therefore the ACCEPT (DATE and
TIME) can be avoided.

TDS COBOL Programmer's Guide

13-10 47 A2 33UT

• Avoid complicated message formats when not using FORMS. Well-spaced
messages are easier to read. Limit the number of characters transmitted.
Tabstops or addressable entry markers, when available on a terminal should be
used instead of embedding control codes within the message. Minimize the
length of the message to reduce buffer size and transmission time.

• Use FORMS for easy handling of screen displays and for minimizing
working-storage area.

13.2.3 USING CALL Statements

Where possible, replace the CALL statement by a PERFORM statement which
incorporates a COPY statement. However, the routine must be recompiled each
time the TPR is modified.

13.2.3.1 Advantages

A routine to be called can be in a different sharable module, thereby avoiding
recompilation each time.

Routines performing special functions can be written separately and merged later
into a single sharable module. The USE clause integrates the routine in the
generated TDS load module.

13.2.3.2 Disadvantages

A called routine needs a separate code segment. This leads to a greater demand on
memory, an increase in execution time and a greater risk of missing segments.

Each code segment uses one entry in the sharable module, thereby reducing the
number of entries available to TPRs.

Implementing the Transaction

47 A2 33UT 13-11

13.2.4 Accessing Files and Databases

In order to obtain the optimum throughput and fast response times, note the
following points:

• Reduce the number of file accesses to reduce CPU and elapsed times. The
average I/O is approximately 30-50 milliseconds in elapsed time and 5-10
milliseconds of CPU time. The average number of I/Os per TPR can be
calculated from the TDS statistics report and the JOR.

• Always try to commit the processing as soon as possible, thereby reducing the
number of concurrent access conflicts. Avoid conversations within a
commitment unit, as these will lock CIs for long periods.

• Use the SHARED READ or SUPPRESS CONCURRENT clauses if possible.

• Resolve any deadlock and concurrent access conflicts that appear in the TDS
statistical report. Resulting aborts increase I/O activity, incur additional
processing, increase response time, and involve additional operator intervention.

• Unnecessary protection for file integrity increases I/O overheads.

• Do not dynamically reorganize indexed files. Leave enough free space when
creating the file.

• If the commitment unit includes a conversation, access as many required records
as possible prior to the conversation to avoid having to repeat the conversation
with the terminal operator in the case of deadlock. However, since this
procedure locks pages, it should be used only when strictly necessary.

• Some records, such as inventory records and directories, cause frequent access
conflicts as they are accessed by many transactions. Try to split these records up
into several smaller records to be located in different CIs.

TDS COBOL Programmer's Guide

13-12 47 A2 33UT

13.2.5 Designing Access to Resources

• Avoid locking COMMON-STORAGE because this will delay the processing of
other transactions. Use SHARED-STORAGE wherever possible.

• Non-concurrency should be reduced. The TDS statistics report provides details
of the number of conflicts caused by non-concurrency clauses. Certain master
commands including [M] OPEN_TDS_FILE and [M] CLOSE_TDS_FILE
require non-concurrency with all transactions. Avoid issuing these commands
unnecessarily.

• Avoid specifying too many TPRs within the same exchange. Use one TPR per
exchange. The overhead involved in starting one TPR is one swap I/O, one
VMM I/O (segment loading) and one I/O at the end of each TPR if the TPRs are
unmapped systematically.

• Avoid separating into different SMs, TPRs

− either of the same transaction,

− or of transactions likely to be concurrent.

13.2.6 Optimizing Program Coding

Structured programming and modular segmentation break the TPR into smaller,
more manageable units or modules. These modules are linked by PERFORM
statements. As shown in Figure 13-2, a hierarchy of PERFORMs executes
modules of successively lower levels. Higher level modules determine the logic of
the TPR, and the lower-level modules proceed to process the details.

The ideal TPR consists of a single segment containing the code and link segments.
A multi-segment TPR, while having one segment executing, may have to wait for
the next segment because in the meantime it has been swapped out or overlaid by
another segment. If this is a large segment, considerable VMM activity is required
to swap it in. The CODAPND parameter of the COBOL statement merges code
and link segments when the size of the TPR is small.

Avoid GO TO verbs. They can occasionally be used for handling exceptions when
they simplify the logic to improve overall performance. A well-designed TPR does
not need GO TOs.

Paragraph and data names should be self-explanatory. An entry captioned
PERFORM XYZ says little whereas PERFORM COMPUTE-RETAIL-PRICE is
immediately obvious.

Implementing the Transaction

47 A2 33UT 13-13

PROCEDURE DIVISION USING ...

TPR-START.
 PERFORM RECEIVE-MSG.
 IF NO-ERROR-INPUT
 IF PRIOR-TPR = SPACES
 PERFORM FIRST-TIME
 ELSE
 IF NBR-PASS = NBR-TIME
 PERFORM LAST-TIME
 ELSE
 PERFORM ONE-TIME
 ELSE
 CALL "ABORT".
 .
 .
 .
TPR-EXIT.
 EXIT PROGRAM.

Figure 13-2. Example of Structured Programming

13.2.6.1 Large TPRs

When a TPR is large, it should be segmented.

Two types of segmentation are available:

• Logical
• Physical

Logical segmentation should be attempted first as it gives much better
performance.

LOGICAL SEGMENTATION

Group in the main code segment those operations occurring most frequently and
routines for handling exception conditions and errors.

Segments are logically segmented by specifying segment numbers in the
SECTION headers of the PROCEDURE DIVISION, for example:

section-name SECTION 22.

TDS COBOL Programmer's Guide

13-14 47 A2 33UT

For each set of SECTIONs with the same segment number, the compiler generates
object code in a single segment. One segment is generated for each segment
number. Segment numbers 0 to 49 correspond to fixed segments, which are
retained because they contain the results of ALTERs and PERFORMs.

Sections of coding which are logically related and which are normally executed
together can, thus, be grouped into a single segment even if they are not physically
contiguous in the PROCEDURE DIVISION.

PHYSICAL SEGMENTATION

Whether logical or not, all segments are subdivided by the compiler if their size
exceeds the preferred size. The preferred size is by default 4 Kbytes and can be
overwritten successfully as follows:

• in OBJECT-COMPUTER of the CONFIGURATION SECTION of the
transaction's ENVIRONMENT DIVISION by:

 MAXIMUM PROCEDURE SEGMENT SIZE psegmax.

 MAXIMUM DATA SEGMENT SIZE dsegmax.

• and later in the COBOL statement at compilation time.

− PSEGMAX
− DSEGMAX.

For DSEGMAX, do not exceed 65,504 bytes.

For more information on PSEGMAX and DSEGMAX, see the COBOL 85
Reference Manual.

Segmentation can occur in the middle of a frequently used iterative sequence of
code. If it does, performance is impaired due to unnecessary swapping and
additional memory requirements. In this case, increase the segment size so that the
logical code sequence is contained in a single segment.

Implementing the Transaction

47 A2 33UT 13-15

13.2.6.2 Small TPRs

Several small TPRs constituting a transaction should be grouped in a single TPR.

The advantages are as follows:

• facilitates the Virtual Memory Management (VMM) in its "search/load",

• allows VMM to retain all these small TPRs in memory for a longer time, thus
improving performance by reducing the number of swaps.

The only constraint in programming such a TPR is its complexity. For example,
the TPR might start with a GO TO DEPENDING ON which then branches to
various routines.

13.2.7 Message Handling

13.2.7.1 Form Display

Whenever a form is displayed on the screen, the next prompt should be sent by
erasing the variable fields rather than sending the whole form again.

A short message could be sent at the same time to inform the operator if an entry
keyed in is incorrect. An average form consists of between 500 and 1000
characters. Erasing the variable fields requires one character.

13.2.7.2 Positioning the Cursor

If more than three blanks appear in a form, it is more efficient to move the cursor to
the corresponding position than adding spaces.

13.2.7.3 Data Transmission without Forms

Because more than one SEND with EMI statement gives rise to synchronous
processing (the TPR must wait until the next SEND is allowed), avoid several
SEND WITH EMI statements in a TPR.

SEND with EMI statements can be replaced by SEND with ESI statements
terminated with a SEND with EMI or EGI. Instead of transmitting several short
messages during the TPR, TDS will transmit one long message at the end of the
TPR. Processing is therefore faster and more efficient. Consequently, the overall
response time is much faster.

TDS COBOL Programmer's Guide

13-16 47 A2 33UT

When a TPR contains several SEND statements, move the output messages to a
single area and issue PERFORM on the paragraph containing the SEND statement.
This reduces memory occupancy.

The SEND statement in the paragraph would be of the format:

SEND......WITH identifier.

where identifier is the name of a numeric data field containing:

1 for ESI
2 for EMI
3 for EGI

Any type of transaction may use the NO AUTOMATIC UNMAPPING option that
is specified in the TRANSACTION SECTION at TDSGEN. This option prevents
the process executive from being released at the end of a TPR. Therefore the
transaction context need not be saved between TPRs. This results in reducing I/O
overhead in a transaction composed of many TPRs.

The NO AUTOMATIC UNMAPPING option is not effective when a TPR:

• either terminates with:
− a commitment, or
− SEND with EGI statement,

• or specifies WAIT-TIME in TDS-STORAGE.

When the NO AUTOMATIC UNMAPPING option is specified, the TPR which
issues a SEND with ESI or EMI remains waiting (idle) until the transfer to the
network is completed. If the NO AUTOMATIC UNMAPPING option is omitted,
and a single SEND with EMI statement has been issued, the TPR is unmapped on
termination, thereby adding to CPU and I/O overhead. When several SEND with
EMI statements are issued, they are all synchronous except the last SEND with
EMI or EGI statement.

SEND statements toward either slave terminals or terminals other than the current
one are also synchronous. Synchronous transmission reduces throughput and
should therefore be avoided.

13.2.7.4 Data Transmission with Forms

Data sent to a terminal is handled by calls to FORMS procedures, described in
Chapter 10.

FORMS assumes that messages can be recovered.

Implementing the Transaction

47 A2 33UT 13-17

13.2.8 Memory Occupancy

To minimize the amount of memory that a TPR occupies:

• share code using the PERFORM statement,

• ensure that a COPY statement does not result in unnecessary data structure
expansion; if so, remove unnecessary fields,

• avoid unnecessarily large working areas by using REDEFINES clauses.

NOTES:
TRANSACTION-STORAGE is swapped:

1. at each commitment,

2. at each intermediate clean-point on WAIT-TIME and SEND with EMI.

TDS COBOL Programmer's Guide

13-18 47 A2 33UT

13.3 Testing and Debugging

13.3.1 The TRACE Command

The TRACE command is used to debug TPRs by tracing selected events. It
produces output messages to a private SYSOUT file. Although the TRACE
command selects the events to be traced, it cannot modify them. Only a subset of
Program Checkout Facility (PCF) commands using symbolic addressing is allowed
in TDS. This subset of PCF commands can be used if the TPR has been compiled
with the DEBUG option.

TRACE must not be used when a form is active between two transactions, that is,
when the NO IMPLICIT RELEASE option has been specified in the USE
FORMS clause of the TDS SECTION at TDSGEN.

In release V6, you can use the extensions to the TRACE command to debug
transactions involving a XCP1, or a XCP2 principal conversation. Now you can
request a trace for both a particular transaction and a particular user. In other
words, each occurrence of the transaction running for a specified user is traced.

Standard Syntax

 [DISP]
 [FLOW]
 { PRINT} [IDS2]
TRACE { SEND } [=terminal-name[PRT]] [MESG]
 { OFF } [MREC]
 [RREC]
 [TRST]
 [PCF]
 [XPCF]
 [XCP]
 [XCPM]
 [PT]
 [XA]

Implementing the Transaction

47 A2 33UT 13-19

Extended Syntax 1

 [DISP]
 {name-12} [FLOW]
TRACE PRINT [FROM] TX=name-8 USER={ } [TPR=name-12] [IDS2]
 { * } [MESG]
 [MREC]
 [RREC]
 [TRST]
 [PCF]
 [XCPM]
 [XCP]
 [XPCF]
 [PT]
 [XA]

Extended Syntax 2

TRACE SEND [= terminal-name [PRT]] TX = name-8

 USER= {name-12}
 { * }

 [TPR=name-12]
 [options-list as for Extended Syntax 1]

Extended Syntax 3

TRACE OFF { TX = { name-8 } }
 { { * } }

Extended Syntax 4

TRACE LIST

Reserved for the Master Terminal Operator Only.

TDS COBOL Programmer's Guide

13-20 47 A2 33UT

Extended Syntax 5

TRACE OFF TX = { name-8 } [OPER = { name-12 }]
 { * } [{ * }]

Extended Syntax 6

 [TX = name-8 OPER = name-12]
TRACE LIST [TX = * OPER = name-12]
 [TX = name-8 OPER = *]
 [TX = * OPER = *]

13.3.1.1 Description of the Standard TRACE Command

The TRACE PRINT option puts the terminal in trace mode and delivers the trace
information to a subfile of the on-line DEBUGFILE file, from where it can be
dumped to a printer. The message "TERMINAL IN TRACE MODE OUTPUT
ON member-name" is received at the terminal.

When trace mode is terminated, the subfile is printed.

The TRACE SEND command puts the terminal in trace mode and prints trace
information at the terminal. The message "TERMINAL IN TRACE MODE
OUTPUT ON HARD COPY [terminal-name]" is sent to the terminal.
Terminal-name can identify

• either a terminal other than the one used,
• or a pseudo-terminal.

You can specify if the terminal is a VIP printer, by adding the keyword PRT,
preceded by a space, after the keyword =termnlname. This allows TDS to transmit
a VIP device header with "status print" coding. You can use this keyword only if
the device is really a VIP printer, and the destination TRACE SEND must not be
already in use by any transaction.

When terminal-name is omitted, the output is sent to the terminal at which the
command is keyed in.

NOTES:
You cannot specify the SEND option:

1. at the system console serving as the master terminal,

2. for a pseudo-terminal in a batch-interface program,

3. or, for a terminal having no printer.

Implementing the Transaction

47 A2 33UT 13-21

TRACE Options

The following trace options are available with the TRACE command. When no
options are specified, the whole list is taken by default except PCF and XPCF.
These two options are mutually exclusive. With this exception you can specify any
combination of options as long as you separate them with spaces.

DISP traces the information supplied as a result of the
execution of any COBOL DISPLAY verbs in the
TPRs.
Note that any DISPLAY verbs in the TPR (except the
UPON CONSOLE version) will not be executed
unless the associated terminal is in trace mode and the
DISP option has been selected.

FLOW traces the processing flow of the transaction.

IDS2 traces actions performed by IDS/II as specified in the
IDS/II options file.

MESG traces the input messages to and output messages from
a transaction.

MREC traces modifications to records of TDS-controlled files
during the processing of a transaction.

RREC traces read operations performed on TDS-controlled
file records during the processing of a transaction.

TRST records an image of the Transaction-Storage area on
completion of each TPR.

TDS COBOL Programmer's Guide

13-22 47 A2 33UT

PCF The Program Checkout Facility allows the user to
enter debugging commands that apply to subsequent
TPRs.
If PCF is specified, a dialog is initiated between the
terminal operator and the transaction. The terminal
operator enters PCF commands that will be applied to
each TPR once TRACE has been activated. The input
is ended by EOD. If the TRACE transaction aborts
with return code FUNCNAV, this means that the
DEBUG option is present in the TDS STEP JCL
statement.

 --> TRACE { SEND } [=terminal-name] [options-list] PCF
 { PRINT }

 <-- TERMINAL IN TRACE MODE OUTPUT ON xxxxxxxxx

 --> ENTER COMMAND
 --> PCF-command1
 .
 .
 .
 <-- ENTER COMMAND
 --> PCF-command
 <-- ENTER COMMAND
 --> EOD
 <-- READY

The set of commands is written to a subfile belonging the on-line DEBUGFILE.
The set of commands will apply to all TPRs following the TRACE command. If a
new set of commands is required, you must start a new TRACE command.

For details of PCF commands, see the Program Checkout Facility User Guide.

For a quick reference to the syntax of PCF commands, see Appendix A. This
Appendix also gives a more complete description of each trace option.

XPCF The Program Checkout Facility allows the user to
debug interactively a TPR from an IOF console. For
more information, see the Program Checkout Facility
User's Guide.

With the XPCF option, if the TRACE transaction
aborts with return code FUNCNAV, this means that the
DEBUG option is present in the TDS STEP JCL
statement.

Implementing the Transaction

47 A2 33UT 13-23

Canceling the Trace

To cancel a trace, enter:

TRACE OFF

This sets the terminal to line mode and sets the terminal to READY. If the PRINT
option was previously specified, the contents of DEBUGFILE are printed
immediately.

13.3.1.2 Description of the Extended TRACE Command

The TRACE PRINT (or TRACE SEND) command sets the transaction to the
'traced' state. This means that the trace is started each time the specified
transaction starts for the specified user (or each user if '*' is specified) starting this
transaction and the trace stops when the transaction ends. The type of events traced
depends on the options you specify.

TX = name-8 specifies the particular transaction which you wish to
be traced. If the TRANSACTION
INITIALIZATION ROUTINE service is used, it is
the message-id returned by the routine.

This is useful for tracing transactions involved in
XCP1 or XCP2 conversations.

Only users with the required authority codes for
running the specified transaction can enter the TRACE
command.

The TRACE PRINT (or SEND) command has no
immediate effect, but it is effective on next
occurrences of the specified transaction. In other
words, this command is ineffective for transactions
already running when the command is entered.

USER = name-12 specifies the particular user for which any occurrence
of the transaction must be traced. The user involved in
the trace need not be connected to the TDS application
when you enter the TRACE command.

USER = * specifies that the transaction must be traced each time
it is started, regardless of the user involved.

TPR = name-12 starts tracing from the specified TPR for one
commitment unit. However, the tpr-name is taken
into account only if this is the name of the first TPR in
the commitment unit.

TDS COBOL Programmer's Guide

13-24 47 A2 33UT

FROM The trace continues after the specified transaction has
ended and stops:
− either when the user involved in the trace logs off,
− or when you enter the TRACE OFF command.

You can force the trace to continue tracing any further
commitment units whose first TPR corresponds to the
specified named TPR if you specify both TPR and
FROM.
In this release, the parameter FROM is taken into
account only for transactions started by TM or XCP1
correspondents (not XCP2).

OPER The user who enters the TRACE command.

Results of the Trace

The results of the trace are stored as follows for the TRACE PRINT option:

The member name created by a terminal in trace mode is as follows:

 tx name_____user name_______trace instance number
 <- 8 char -><- 12 char -> <- 1 character + 2 digits ->

The user name (12 characters long) and the transaction name (8 characters long)
are padded with underscore characters and the trace instance number is preceded
by an underscore.

One member is created for each occurrence of a traced transaction.

When 'FROM' is specified (and meaningful), only one member is created for the
whole trace session (for that user).

When 'FROM' and 'USER=*' are both specified, one member is created for each
user activating the transaction. This member is used for the whole trace session
(for that user).

The results of a TRACE SEND option are presented in the same way as described
for the Standard Syntax above.

Implementing the Transaction

47 A2 33UT 13-25

Additional TRACE Options

In addition to the TRACE options listed above, there are four new options.

XCPM traces each message exchanged, including each XCP2,
or XCP1 verb.

XCP traces each XCP1, or XCP2 verb/call procedure, but
does not trace the contents of the messages.

PT traces TCAM verbs used for passthrough
communications.

XA traces ORACLE7-XA routines when an error occurs
during their processing, or in all cases when ORA/TDS
trace level is 2 (detailed). See the ORACLE7/TDS
User's Guide for more details. This trace is useful for
internal debugging purposes, especially for finding out
the exact error status returned by ORACLE7-XA.

Canceling the Trace

To cancel a trace for a transaction, enter:

TRACE OFF TX = name-8

This sets the transaction to the non-traced state. This means that further
occurrences of the transaction will not be traced, whereas the current occurrences
are traced until they complete.

Only the master operator, and the user who actually started tracing the specified
transaction (oper-user) can cancel the trace for a transaction.

Only the master operator can specify the oper-name parameter to cancel the
traces requested by a specified user.

If the oper-name parameter is omitted, then only the traces requested by the user
who actually enters the TRACE OFF command are cancelled.

Displaying Traced Transactions

To display the list of transactions that are being traced, enter:

TRACE LIST

Only the master operator can specify the tx-name and oper-name parameters.

TDS COBOL Programmer's Guide

13-26 47 A2 33UT

13.3.1.3 Report/Output Produced by the Extended TRACE Command

After the TRACE command has executed, one of the following messages is
displayed on the requester's terminal.

PRINT option -> READY
SEND option ->TRANSACTION xxxxxxxx TRACED ON TERMINAL xxxxxxxxxxxx
PCF option ->: PCF COMMANDS ARE IN xxx..x_INxx

13.3.1.4 Status Values Returned by the TRACE Command

When you use the TRACE command, you may receive the following status values:

• INVALID TRANSACTION
• INSUFFICIENT AUTHORITY CODES
• TRACE MANAGED BY ANOTHER USER
• TRACE ALREADY ACTIVE
• DEVICE NOT AVAILABLE FOR TRACES
• ERROR IN TRANSACTION PARAMETERS
• UNKNOWN TRANSACTION

13.3.1.5 Examples of Using the TRACE Command

EXAMPLE 1

SMITH enters: TRACE PRINT
TX=DEBIT USER= DUPONT

DEBIT is the transaction for which the
trace is to be started.

DUPONT logs on and starts transaction
DEBIT

starts tracing DEBIT

GRANT starts transaction DEBIT DEBIT is not traced

SMITH enters: TRACE LIST Displays the DEBIT transaction on
Smith's terminal. This is the only
transaction for which Smith requested
the trace.

DUPONT enters: TRACE LIST No transactions are being traced for
Dupont

SMITH enters: TRACE OFF
TX=DEBIT

Stops the trace for DEBIT.

Implementing the Transaction

47 A2 33UT 13-27

SMITH enters: TRACE LIST No transactions are being traced for
Smith

DUPONT starts transaction DEBIT DEBIT is not traced

EXAMPLE 2

SMITH enters: TRACE PRINT FROM
TX=DEBIT USER= DUPONT

Indicates that DEBIT is to be traced

DUPONT logs on starts transaction
DEBIT

DEBIT is traced

DUPONT starts transaction CREDIT CREDIT is traced

SMITH enters: TRACE OFF
TX=DEBIT

Stops tracing DEBIT

DUPONT starts transaction CREDIT CREDIT is not traced

EXAMPLE 3

SMITH enters: TRACE PRINT
TX=DEBIT USER= DUPONT

Indicates that DEBIT is to be traced

Master operator enters: TRACE LIST
TX=* USER=SMITH

Displays DEBIT

Master operator enters: TRACE OFF
TX=* USER=SMITH

Cancels the trace for DEBIT

❑

TDS COBOL Programmer's Guide

13-28 47 A2 33UT

13.3.1.6 Notes on the Extended TRACE Command

1. The TDS monitor does not manage any conflicts:

When you use the SEND option, several simultaneous occurrences of the
transaction are displayed on the same terminal.

Only one oper-user can manage the trace of a transaction at a time. As soon
as a user has started the trace, no other users can either start the trace, or
cancel it (except the master operator) until the first oper-user cancels it.

Entering the TRACE OFF command for a transaction while this transaction is
running may cause the current traces to abort, especially if the PCF option
was on.

2. Do not confuse the user and correspondent concepts. In some cases, they are
different:

Transactions spawned towards a dummy correspondent run on behalf of a user
who also activated the spawning transaction.

For instance, a transaction TX1 running for SMITH spawns a transaction TX2
towards the DUMMY correspondent. Then TX2 runs also on behalf of the
user SMITH. Therefore, to trace the spawned transaction, you should specify
SMITH as the user-name.

LOGERR and SYNCPEVT transactions run for the user <tds-name>_ADM.

Transactions where the principal conversation is XCP2 run on behalf of the
user specified in the H_PPC_UINVK verb (described in the CPI-C/XCP2
User's Guide). If the parameter PPC_SECURITY_OPT is set to
P_SECUR_NONE, the transaction runs for the XCP2 correspondent that
invokes the transaction.

3. Effect of the TRACE TX=name-8 command on the standard TRACE
command as used in previous releases:

The TRACE TX=name-8 command has no effect if and as long as the
specified traced-user is itself in traced mode. This means that if the trace is
running for a user, the trace goes on in same way even if the user starts a
transaction in the traced state (trace options specified for the transaction are
ignored). This situation is shown in the following example:

DUPONT logs on and enters:
TRACE PRINT

starts the trace for DUPONT

SMITH logs on and enters:
TRACE SEND = terminal-name
TX=DEBIT USER=DUPONT

Indicates that DEBIT is to be traced

Implementing the Transaction

47 A2 33UT 13-29

DUPONT starts the transaction DEBIT Traces DEBIT and stores the results of
the trace in a subfile (PRINT option).

But, if the specified oper-user sets itself to traced mode, while it was already
being traced (it started a transaction in traced state with the FROM option), the new
options are taken into account. This is shown below:

SMITH logs on and enters: TRACE
SEND = terminal-name FROM
TX=DEBIT USER=DUPONT

Indicates that DEBIT is to be traced

DUPONT starts the transaction DEBIT Traces DEBIT and stores the results of
the trace in a subfile (SEND option).

DUPONT starts the transaction CREDIT Traces CREDIT because you specified
FROM and sends the results of the trace to
the terminal.

DUPONT enters: TRACE PRINT starts the trace for DUPONT

DUPONT starts the transaction DEBIT Traces DEBIT and stores the results of
the trace in a subfile.

4. When a TDS application is Warm restarted, the effects of the Extended
TRACE command are lost, that is, the transaction is no longer in traced mode;
therefore further occurrences of the transaction will not be traced. But if the
Standard TRACE command was running for users when the TDS application
failed, then this trace is reactivated.

13.3.2 Debugging at TDSGEN

By specifying FOR DEBUG in the MESSAGE statement of the TRANSACTION
SECTION in TDSGEN, the user can specify which transactions are to be
debugged. This allows transactions to modify files. However, as soon as the
commitment unit terminates, the files will be rolled back to their original
unmodified state. New transactions can therefore be developed and tested on 'live'
files or databases under real conditions without risking corrupting data or
disturbing operational transactions.

TDS COBOL Programmer's Guide

13-30 47 A2 33UT

13.3.3 Debugging Using TDS Batch Interface Procedures

TDS Batch Interface procedures provide a debugging tool that allows a batch
program to simulate a terminal. The simulated terminal is known as a batch
pseudo-terminal. Such a pseudo-terminal can use the protocol associated with a
real terminal. The batch interface allows TDS to be debugged, without the
constraints that would be imposed by using live terminals.

This allows FORMS to be used through the batch interface, provided that FORMS
supports the simulated terminal.

These procedures allow communication to be established with a remote TDS.

Several pseudo-terminals can connect to TDS simultaneously. Each
pseudo-terminal can be either conversational or receive-only, according to the
CONVERSATION-KEY parameter passed when the batch program simulates
log-on.

The interface between the batch program and TDS includes three subroutines that
are called by the batch program:

• H_TP7_UBCNCT which logs on the pseudo-terminal.

• H_TP7_UBDIALOG which sends and receives messages.

• H_TP7_UBRESUME that informs TDS that the last message has been
processed and that another can be received.

As from TS 7254, Batch Interface subroutine names can be written "H_TP7_xx"
instead of "H_MT_xx". The old syntax "H_MT_xx" is still supported.

Implementing the Transaction

47 A2 33UT 13-31

The data structure retrieved by COPY BATCH-MSG-AREA serves to exchange
data between the program and TDS.

 01 BATCH-MSG-AREA.
 02 MESSAGE-LENGTH COMP-1.
 02 CONVERSATION-KEY PIC 9.
 88 CONVERSATION VALUE 1.
 88 NO-CONVERSATION VALUE 0.
 88 END-OF-SESSION VALUE 5.
 02 END-KEY PIC 9.
 88 INTERMEDIATE VALUE 0.
 88 END-OF-TPR VALUE 1.
 88 END-OF-COMMIT VALUE 2.
 88 END-OF-TX VALUE 3.
 02 ERROR-KEY PIC 99.
 88 NO-ERROR VALUE 0.
 88 ABORTED VALUE 1.
 88 UNKNOWN-TX VALUE 2.
 88 LOCAL-RESTART VALUE 3.
 88 TDS-RESTART VALUE 4.
 88 TIMEOUT VALUE 96.
 88 ARGERR VALUE 97.
 88 NOSEG VALUE 98.
 88 DENIED VALUE 99.
 02 MESSAGE-TEXT PIC X(1024).
 02 CONNECT-TEXT REDEFINES MESSAGE-TEXT.
 03 TDS-NAME PIC X(4).
 03 BATCH-NAME PIC X(4).
 03 PASSWORD PIC X(8).
 03 USER-NAME PIC X(8).
 03 PROJECT-NAME PIC X(8).
 03 ACCOUNT-NAME PIC X(8).
 03 TERMINAL-TYPE PIC X(8).
 03 NODE-NAME PIC X(4).
 03 FILLER PIC X(n).

TDS COBOL Programmer's Guide

13-32 47 A2 33UT

Usage

• The MESSAGE-LENGTH data item identifies the length of information found
in data item MESSAGE-TEXT. It must be initialized with the maximum length
of MESSAGE-TEXT before the connect function (CALL
"H_TP7_UBCNCT"...) is called, or with the current message length in
MESSAGE-TEXT before the dialog function (CALL "H_TP7_UBDIALOG") is
called.

The contents of the data item MESSAGE-LENGTH are set by the standard
Batch Interface as a result of a call to the dialog ("H_TP7_UBDIALOG"), or
resume function ("H_TP7_UBRESUME"). MESSAGE-LENGTH indicates the
current length of the message stored in MESSAGE-TEXT by TDS.
MESSAGE-LENGTH can be an input or output parameter.

• The CONVERSATION-KEY data item indicates whether the message generated
by TDS gives the turn to the batch program. Before calling the connect
function, the batch program must initialize this data item to CONVERSATION
if the program is to operate conversationally; alternatively, if the program is to
operate in a receive-only mode, CONVERSATION-KEY must be set to
NO-CONVERSATION. It is an output parameter.

• The END-KEY data item is set by TDS as a result of the execution of a dialog or
resume function, in order to indicate which entity (TPR, commitment unit, or
transaction) is closed by the message. It is an output parameter.

• The ERROR-KEY data item is set by TDS as a result of the execution of a
connect, dialog or resume function. It indicates if any error has occurred, and
the type of error. It is an output parameter.

Value 96 (TIMEOUT) is returned when an EXT-TIMEOUT value not null has
been used in the second parameter structure and this delay is exhausted.

Value 97 (ARGERR) is returned by H_TP7_UBCNCT when the second
parameter is used and EXT-VERSION is out of allowed values or if
EXT-TIMEOUT is negative.

Value 98 (NOSEG), when returned by H_TP7_UBCNCT, means that the
working segment cannot be created. When returned by H_TP7_UBDIALOG or
H_TP7_RESUME, it means that the working segment has not been created.

• The MESSAGE-TEXT data item contains either an input text provided by the
batch program or a message sent by TDS. The input text is either an input
message for a transaction or a conversational input for the connect function.
This standard description is named CONNECT-TEXT. It can be an input or
output parameter.

• The MESSAGE-TEXT data item length supplied by the COPY statement ranges
from 52 characters to the value specified in the MESSAGE-LENGTH clause at
TDSGEN. The default value is 1024 characters.

Implementing the Transaction

47 A2 33UT 13-33

• Before the execution of the connect function, the data structure named
CONNECT-TEXT is to be set as follows:

TDS-NAME should contain the name of the TDS subsystem to be accessed.

BATCH-NAME should be a unique system name identifying the
pseudo-terminal as a correspondent of the communication facility. This name
does not need to be described in the network generation; it has the same format
as a terminal name.

PASSWORD should contain the password associated with the user name
specified in the USER-NAME field.

USER-NAME should contain the unique name of a user known by the specified
TDS subsystem; this user name is used in a similar way as for a terminal user.

PROJECT-NAME and ACCOUNT-NAME should contain the project and
billing under which the user intends to work. When default project and/or
billing are to be used, the corresponding data item should contain spaces.

TERMINAL-TYPE, when requested to simulate a true terminal, may contain the
name of a supported terminal type. The following terminals are supported:

− DKU7007,
− DKU7107,
− DKU7211,
− IBM3270,
− IBM3278/3279,
− VIP7804,
− PC7800,
− Minitel.

If the terminal type specified is erroneous, the connect function is denied and an
error-key DENIED is returned.

If this field is completed, the functions and protocols relevant to terminals apply
to the simulated terminal:

• The user must specify specific terminal character strings, such as, message
headers and device protocol headers (STA, FC1, FC2).

• FORMS is accessible to simulated terminals if the terminal type is supported by
the current version of FORMS. The program will receive data in the specific
format of the terminal.

NODE-NAME is an optional field but if present it must contain a valid node
name as generated in the Network. This name is the node name under which the
TDS application is running and enables a batch application to be connected to a
remote TDS.

FILLER: (n) = 976 or 972 if node name is specified.

TDS COBOL Programmer's Guide

13-34 47 A2 33UT

13.3.3.1 CONNECT Function

Syntax

CALL "H_TP7_UBCNCT" USING BATCH-MSG-AREA [EXT-AREA].

Description

The connect function must be performed as the first batch-entry function and is
similar to a terminal user log-on.

Usage

• The connect function may be performed only once and must be successfully
executed before the dialog and resume functions.

• The BATCH-MSG-AREA data structure is used in a specific manner prior to
execution of the connect function.

• The MESSAGE-LENGTH field contains the maximum length of the
MESSAGE-TEXT data item.

• The CONVERSATION-KEY field specifies the mode (receive-only or
conversational) in which the program will operate.

• The MESSAGE-TEXT field contains the data structure identified as
CONNECT-TEXT.

• Upon completion of the connect function, the ERROR-KEY data item should be
checked for successful completion (NO-ERROR). After an unsuccessful
connect no other functions may be performed.

• The CONVERSATION-KEY data item will indicate if the next function should
be dialog or resume upon completion of the connect function.

Implementing the Transaction

47 A2 33UT 13-35

• The EXT-AREA is used to pass a 12-character password. It has the following
format:

 01 EXT-AREA.
 02 EXT-VERSION COMP-1.
 02 EXT-PASSWORD PIC X(12).
 02 EXT-TIMEOUT COMP-1.
 02 EXT-USERNAME PIC X(12).
 02 EXT-PROJECTNAME PIC X(12).
 02 EXT-ACCOUNTNAME PIC X(12).
 02 EXT-STATUS-AREA.
 03 EXT-ERRORID PIC X(2).
 03 EXT-RETURN-CODE PIC X(30).
 03 EXT-STAT PIC X(2).
 03 EXT-REASON PIC X(4).
 03 EXT-COMP-STAT PIC X(2).

If EXT-AREA is absent, an 8-character password is taken from the
BATCH-MSG-AREA.

If EXT-VERSION is 1, only the EXT-PASSWORD field is taken into account (the
password is taken from this field).

If EXT-VERSION is 2, both the EXT-PASSWORD and EXT-TIMEOUT fields are
used. The connection will be done with a TIMEOUT value (if a positive value is
supplied). This timeout value, specified in seconds (to connection time), is
supplied in EXT-TIMEOUT. If EXT-TIMEOUT is null (0), no timer detection
upon connection is done. The value is limited by the COMP-1 capacity (about 9
hours). The EXT-PASSWORD must be filled with 12 characters. If
EXT-VERSION is not 1 or if EXT-TIMEOUT is negative, ERROR-KEY is filled
with ARGERR (97). If EXT-TIMEOUT is not null (0) and no response to the
connection received passed this delay, ERROR-KEY is filled with TIME-OUT
(96).

If EXT-VERSION is 3, the fields EXT-PASSWORD, EXT-TIMEOUT,
EXT-USERNAME, EXT-PROJECTNAME, and EXT-ACCOUNTNAME of this
extended area are taken into account and must be filled. If no timeout detection is
desired, EXT-TIMEOUT must be set to 0 (zero). If default project and/or billing
are to be used, then EXT-PROJECTNAME and EXT-ACCOUNTNAME may be
set to blanks.

If EXT-VERSION is 4, the fields of EXT-STATUS-AREA are available.
EXT-STATUS-AREA in an output area used to help you debug problems when
finalizing a Batch Interface program.

If EXT-VERSION is not 1, 2, 3, or 4 or if EXT-TIMEOUT is negative or an
exception has been detected on the parameters provided by the caller, the
ERROR-KEY is filled with ARGERR (97).

TDS COBOL Programmer's Guide

13-36 47 A2 33UT

If USERNAME is to be passed with more than 8 characters, the EXT-VERSION
field should be set to 3 and the three fields EXT-USERNAME,
EXT-PROJECTNAME, and EXT-ACCOUNTNAME must be filled.

EXAMPLE

CALL "H_TP7_UBCNCT" USING BATCH-MSG-AREA [EXT-AREA].
CALL "HTP7_UBDIALOG" USING BATCH-MSG-AREA
[DVCHD-AREA EXT-AREA].
CALL "H_TP7_UBRESUME" USING BATCH-MSG-AREA [EXT-AREA].

❑

If the EXT-AREA structure is to be used with the "H_TP7_UBDIALOG"
subroutine, the DVCHD-AREA structure must be filled (if no device header is to
be sent, STRUCT-LGT should be set to 0).

The fields EXT-PASSWORD and EXT-ACCOUNTNAME are used (in input) by
the "H_TP7_UBCNCT" routine only. These fields are neither taken into account
nor modified by the subroutines "H_TP7_UBDIALOG" and
"H_TP7_UBRESUME".

EXT-ERRORID is a unique identifier for each abnormal return from the Batch
Interface subroutine.

EXT-RETURN-CODE is the last return code received (in case of anomaly it is
shown in edited format). Its value may be DONE.

EXT-STAT is the status of the VCAM verb returning the error state.

EXT-REASON is the reason for the disconnection or the connection rejection.

The content of EXT-COMP-STAT depends on the value of EXT-ERRORID. It is
explained below.

EXT-ERRORID Values Returned by "H_TP7_UBCNCT"

 “00” No error.
All fields of EXT-STATUS-AREA are loaded with the character "0".

“01” Problem when activating the workstation.
The following status fields are meaningful:
EXT-RETURN-CODE (CHECK,ARGERR)
When "CHECK", see the EXT-STAT value.
When "ARGERR", contact your Service Center.

Implementing the Transaction

47 A2 33UT 13-37

 EXT-STAT Values

"32"X: The workstation is already active (name is already known).
Action: Verify name and/or check program logic.

"33"X: The workstation is de-activating.
Action: Contact your Service Center.

"34"X: System resource overload.
Action: Contact your Service Center.

“02” Problem with model of declared terminal.
The following status fields are meaningful:
EXT-RETURN-CODE (NOMATCH, other RC)
When "NOMATCH", the terminal type is unknown.
Action: Check the terminal type value with the H_TERM subfile of
SYS.HSLLIB.
When "other RC", contact your Service Center.

“03” Problem when activating mailbox.
The following status fields are meaningful:
EXT-RETURN-CODE (CHECK, ARGERR)
When "CHECK", see the EXT-STAT value. When "ARGERR", contact
your Service Center.

 EXT-STAT Values

"32"X: The mailbox is already active (name is already known).
Action: Verify name and/or check program logic.

"33"X: The mailbox is de-activating.
Action: Contact your Service Center.

"34"X: System resource overload.
Action: Contact your Service Center.

“04” Problem when opening message group.

The following status fields are meaningful:
EXT-RETURN-CODE (CHECK, ARGERR)
When "CHECK", see the EXT-STAT value.
When "ARGERR", contact your Service Center.

TDS COBOL Programmer's Guide

13-38 47 A2 33UT

 EXT-STAT Values

"34"X: System resource overload.
Action: Contact your Service Center.

"35"X: Connection reject.
Action: See the reason for the connection rejection in EXT-REASON.

“05” Problem on reception of event during connection phase.
The following status fields are meaningful:
EXT-RETURN-CODE, EXT-STAT
Action: Contact your Service Center.

“06” OPENACK event was expected, but another one was received.
The following status fields are meaningful:
EXT-RETURN-CODE, EXT-COMP-STAT (received event)
Action: Contact your Service Center.

“07” OPENACK REJECT (connection is refused in the second phase).
The following status fields are meaningful:
EXT-RETURN-CODE, EXT-STAT (reject code "35"X), EXT-REASON
Action: See the reason for the rejection in EXT-REASON.

“08” Problem at connection negotiation ($H_INQUIR VCAM verb)
The following status fields are meaningful:
EXT-RETURN-CODE, EXT-STAT
Action: Contact your Service Center.

 EXT-ERRORID Values Returned by Other Subroutines

“09” Erroneous subroutine call in this context. The subroutine has probably been
called while the Batch Interface was already in error.
No status fields are meaningful.
Action: Check your program.

“10” BATCH-MSG-AREA area is not the same as the one used at the last call to
the "H_TP7_UBCNCT" subroutine (control is done on address).
No status fields are meaningful.
Action: Check your program.

“11” H_TP7_UBDIALOG subroutine has been called instead of
H_TP7_UBRESUME (conversation key was "NO-CONVERSATION").
No status fields are meaningful.
Action: Check your program.

Implementing the Transaction

47 A2 33UT 13-39

“12” Input message length is negative.
No status fields are meaningful.
Action: Check your program.

“13” H_TP7_UBRESUME subroutine has been called instead of
H_TP7_UBDIALOG (conversation key was "CONVERSATION").
No status fields are meaningful.
Action: Check your program.

“14” Abnormal status when receiving an interruption during another VCAM
primitive.
The following status fields are meaningful:
EXT-RETURN-CODE, EXT-STAT
Action: Contact your Service Center.

“15” Abnormal status (neither done nor interrupt pending) when sending or
receiving a message.
The following status fields are meaningful:
EXT-RETURN-CODE, EXT-STAT
Action: Contact your Service Center.

“16” Abnormal status (neither v_done nor v_skip) when receiving an event.
The following status fields are meaningful:
EXT-RETURN-CODE, EXT-STAT
Action: Contact your Service Center.

“17” Disconnection occurred (V_MSGCLOSED has been received).
The following status fields are meaningful:
EXT-RETURN-CODE, EXT-REASON
Action: None, mailbox and workstation have been de-activated.

“18” Abnormal status when receiving an interruption after a V_INTERRUPT
event.
The following status fields are meaningful:
EXT-RETURN-CODE, EXT-STAT
Action: Contact your Service Center.

“19” Unexpected event received by the Batch Interface.
The following status field is meaningful:
EXT-COMP-STAT (received event)
Action: Contact your Service Center.

“20” Status neither done nor moredata when receiving a message.
The following status field is meaningful:
EXT-RETURN-CODE, EXT-STAT
Action: Contact your Service Center.

TDS COBOL Programmer's Guide

13-40 47 A2 33UT

“21” Detected level not supported.
The following status field is meaningful:
EXT-COMP-STAT (detected level)
Action: Contact your Service Center.

 EXT-ERRORID Values Returned by Other Subroutines

“01”X Abnormal rejection.
“02”X Destination node not operable.
“03”X Destination node saturated.
“04”X Mailbox unknown.
“05”X Mailbox not operable.
“06”X Mailbox saturated.
“07”X Destination application saturated.
“09”X Dialog rejection (as a result of negotiation).
“0A”X Presentation rejection (as a result of negotiation).
“15”X Timeout.
“18”X Security violation.
“40”X Destination node unknown.
“41”X Path to the destination node is not available.
“42”X Duplicate user identifier.

13.3.3.2 DIALOG Function

Syntax

CALL "H_TP7_UBDIALOG" USING BATCH-MSG-AREA.

Description

Sends a message to TDS and awaits the corresponding reply.

Usage

• The dialog function may be executed only when the previous statement (Call
H_TP7_UBCNCT, or Call H_TP7_UBDIALOG) has obtained a
CONVERSATION-KEY set to CONVERSATION.

• Before the function is executed, the message to be sent to TDS must be moved
to the MESSAGE-TEXT field and MESSAGE-LENGTH be set to the
appropriate value. After the function is executed, the reply from TDS is
available in the MESSAGE-TEXT field, the length of which is stored in
MESSAGE-LENGTH.

Implementing the Transaction

47 A2 33UT 13-41

13.3.3.3 DIALOG Function with the Device Header

Syntax

CALL "H_TP7_UBDIALOG" USING BATCH-MSG-AREA DVCHD-AREA.

Description

Sends a message to TDS with DEVICE HEADER and awaits the corresponding
reply.

Usage

In addition to the DIALOG function just described, the following structure must be
filled:

01 DVCHD-AREA.
 02 STRUCT-LGT COMP-1.
 02 HEADER.
 03 HEADER-LGT COMP-1.
 03 HEADER-VL PIC X (i).

• The STRUCT-LGT data item defines the length of the structure and must be
equal to HEADER-LGT + 4.

• The HEADER-LGT data item defines the length of the value in HEADER-VL
and is always even because two characters give one hexadecimal byte.

• HEADER-VL contains the device header value whose PIC must not exceed 30.
The values specified in the picture string must be a hexadecimal value.

EXAMPLE

MOVE 6 TO HEADER-LGT.
MOVE "7DD7C7" TO HEADER-VL.
MOVE 10 TO STRUCT-LGT.
❑

Remarks

The device header is not tested for terminal type and the terminal is forced to
operate in unedited mode. Thus, in line mode, the device header is added before
the input text and must be taken into account by TPRs.

TDS COBOL Programmer's Guide

13-42 47 A2 33UT

13.3.3.4 RESUME Function

Syntax

CALL "H_TP7_UBRESUME" USING BATCH-MSG-AREA.

Description

Notifies TDS that the message received is processed and that the
BATCH-MSG-AREA is available for a new message.

Usage

• The resume function may be executed only if CONVERSATION-KEY is set to
NO-CONVERSATION upon the return of H_TP7_UBCNCT, or
H_TP7_UBDIALOG, or H_TP7_UBRESUME.

• After the execution of the function, the message from TDS is available in the
MESSAGE-TEXT field, the length of which is stored in MESSAGE-LENGTH.

13.3.4 Example of a Batch Interface Program

A batch program operating a pseudo-terminal would have the structure illustrated
by Figure 13-3.

Implementing the Transaction

47 A2 33UT 13-43

*

STOP

START

Read Test Data

log on

End
Of Data

?
yes

initial input or reply
to be returned to TDS

Indicate End of
Processing

Set up Message
to be sent from
Pseudo-terminal

no

Processing and
Printing of Message

From TDS

End of
Processing

no

yes

yes

NO-CONVERSATIONno

CALL "H_ TP7_UBDIALOG" ...

CALL "H_TP7_UBRESUME"...
*

CONVER-
SATION-KEY =

NOCONV

Set up parameters
in BATCH-MSG-AREA.
CALL "H_TP7_UBCNCT" ...

MOVE BYE
TO

MESSAGE-TEXT

Figure 13-3. Structure of a TDS Batch Interface

TDS COBOL Programmer's Guide

13-44 47 A2 33UT

The logic shown in Figure 13-3 is that of a batch program operating as a
conversational pseudo-terminal.

The input data consists of values to be sent to the TDS subsystem as though they
had been typed at a terminal, including values in error to simulate mistakes.

The data has to be carefully checked by the batch program especially where a
transaction includes a large number of exchanges; missing test data or misplaced
data will disrupt the conversational processes. It may be useful to separate the test
data records for a sequence of transactions, so that if data is accidentally lost, the
program can recover from the next marker point.

The output from the batch program consists of the data received as messages from
the TDS subsystem to the pseudo-terminal; the batch program will edit the data
received, not only to make the printed output easier to read but also because the
data may contain embedded control characters.

EXAMPLE

Take an order processing system simulating one of the terminals for order entry.
Two types of transaction can be started at this terminal. Therefore the input will
contain two types of data. The program is as follows:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. BATCHTEST.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT TERMINAL-DATA ASSIGN TO ...
 SELECT TDS-REPLIES ASSIGN TO ...

The data required for the simulation of the terminal operator's actions appears in
the file TERMINAL-DATA. The results obtained from TDS are output to
TDS-REPLIES.

Implementing the Transaction

47 A2 33UT 13-45

In this example, data for each transaction is input as a variable-length record.
Output data is printed as it is received from TDS.

 DATA DIVISION.
 FILE SECTION.
 FD TERMINAL-DATA ...
 01 ORDER-DATA.
 02 DTYPE ...
 02 CUST NUMBER ...
 02 OCOUNT ...
 02 ORDER-DETAILS OCCURS 20 DEPENDING ON OCOUNT.
 03 OITEM-NUMBER ...
 03 OQUANTITY ...
 01 QUOTE-DATA.
 02 FILLER ...
 02 QITEM-NUMBER ...
 02 QUANTITY ...
FD TDS-REPLIES ...
01 PLINE PIC X(60).

❑

The test data consists of two types of record:

• ORDER-DATA for the transaction ORDER contains a customer number and up
to 20 order items. The record type is indicated by the field DTYPE that is
common to both types of record.

• QUOTE-DATA for the transaction QUOTE contains the item number for which
a quote is required and the quantity ordered.

The test data consists of two types of record:

• ORDER-DATA for the transaction ORDER contains a customer number and up
to 20 order items. The record type is indicated by the field DTYPE that is
common to both types of record.

• QUOTE-DATA for the transaction QUOTE contains the item number for which
a quote is required and the quantity ordered.

Data is output to TDS-REPLIES. The maximum message length, including control
codes, expected from TDS is 60 characters.

WORKING-STORAGE SECTION.
77 K PIC 99.
 COPY BATCH-MSG-AREA.
01 MGROUP.
 02 TRANS-NAME ...
 02 MCUST-NUMBER ...

The description of the Batch Message Area can be obtained from the source library
by a COPY statement.

TDS COBOL Programmer's Guide

13-46 47 A2 33UT

The initial message transmitted by the transaction ORDER contains the message
identifier and the customer number. These two items have to be set up in
MGROUP before being transferred.

PROCEDURE DIVISION.
FIRST-PARAGRAPH.
 OPEN INPUT TERMINAL-DATA ...
 OUTPUT TDS-REPLIES ...
 MOVE 1024 TO MESSAGE-LENGTH.
 MOVE 1 TO CONVERSATION-KEY.
 MOVE "TDS1" TO TDS-NAME.
 MOVE "BT01" TO BATCH-NAME.
 MOVE "JOANIE" TO USER-NAME.
 MOVE SPACES TO PASSWORD, PROJECT-NAME, ACCOUNT-NAME.
 MOVE SPACES TO TERMINAL-TYPE, NODE-NAME.
 CALL "H_TP7_UBCNCT" USING BATCH-MSG-AREA.
 IF ERROR-KEY NOT = ZERO STOP RUN.

Having opened the necessary files, the batch program logs on to TDS as a
pseudo-terminal in conversational mode (CONVERSATION-KEY = CONV)
quoting the name of the appropriate version of TDS, giving the 'terminal name',
BT01, and the user identifier. If the attempt to log on is unsuccessful, the program
ends.

LOOP1.
 READ TERMINAL-DATA AT END GO TO LAST-PARA.
 IF DTYPE = 1 GO TO QUOTE-PARA.
 MOVE "ORDER" TO TRANS-NAME.
 MOVE CUST-NUMBER TO MCUST-NUMBER.
 MOVE MGROUP TO MESSAGE-TEXT.
 MOVE 12 TO MESSAGE-LENGTH.
 CALL "H_TP7_UBDIALOG" USING BATCH-MSG-AREA.
 IF ERROR-KEY NOT = ZERO GO TO ERR-PARA
 PERFORM PRINT-TDS-REPLY.
 MOVE "YES" TO MESSAGE-TEXT.
 MOVE 3 TO MESSAGE-LENGTH.
 CALL "H_TP7_UBDIALOG" USING BATCH-MSG-AREA.
 IF ERROR-KEY NOT = ZERO GO TO ERR-PARA.
 PERFORM PRINT-TDS-REPLY.

The program then processes the test data file. It either branches to QUOTE-PARA
if the data refers to the transaction QUOTE, or continues to process the transaction
ORDER.

Implementing the Transaction

47 A2 33UT 13-47

The message identifier and customer number are set up together in
MESSAGE-TEXT. Their combined lengths are placed in the
MESSAGE-LENGTH. UBDIALOG is called to submit this transaction to TDS.
Any error returned by TDS will cause the program to branch to ERR-PARA. If the
return is normal, the message from TDS is printed.

The normal response from TDS is the name of the customer corresponding to the
number sent from the pseudo-terminal.

Two conversations are represented.

 PERFORM LOOP2 VARYING K FROM 1 BY UNTIL K = OCOUNT.
LOOP2.
 MOVE OITEM-NUMBER (K) TO MESSAGE-TEXT.
 MOVE 6 TO MESSAGE-LENGTH.
 CALL "H_TP7_UBDIALOG" USING BATCH-MSG-AREA.
 IF ERROR-KEY NOT = ZERO GO TO ERR-PARA.
 PERFORM PRINT-TDS-REPLY.
 MOVE "YES" TO MESSAGE-TEXT.
 MOVE 3 TO MESSAGE-LENGTH.
 CALL "H_TP7_UBDIALOG" USING BATCH-MSG-AREA.
 IF ERROR-KEY NOT = ZERO GO TO ERR-PARA.
 PERFORM PRINT-TDS-REPLY.
 MOVE OQUANTITY (K) TO MESSAGE-TEXT.
 MOVE 5 TO MESSAGE-LENGTH.
 CALL "H_TP7_UBDIALOG" USING BATCH-MSG-AREA.
 IF ERROR-KEY NOT = ZERO GO TO ERR-PARA.
 PERFORM PRINT-TDS-REPLY.
END-LOOP2.
 MOVE ZERO TO MESSAGE-TEXT.
 MOVE 6 TO MESSAGE-LENGTH.
 CALL "H_TP7_UBDIALOG" USING BATCH-MSG-AREA.
 IF ERROR-KEY NOT = ZERO GO TO ERR-PARA.
 PERFORM PRINT-TDS-REPLY.
 GO TO LOOP1.

LOOP2 is executed as many times as there are order items in the test data record.
It has three sets of five statements; each set:

• defines a message,
• indicates its length,
• calls H_TP7_UBDIALOG,
• checks that the message was handled correctly by TDS,
• prints the reply received from TDS.

The first set inputs an item number to TDS and gets back the corresponding item
description. The second set confirms the item. The third set inputs the quantity of
that item.

TDS COBOL Programmer's Guide

13-48 47 A2 33UT

END-LOOP2 sets to zero the item number to indicate the end of the current order.
The program then branches back to read the next set of test data.

QUOTE-PARA
 MOVE "QUOTE" TO MESSAGE-TEXT.
 MOVE 5 TO MESSAGE-LENGTH.
 CALL "H_TP7_UBDIALOG" USING BATCH-MSG-AREA.
 IF ERROR-KEY NOT = ZERO GO TO ERR-PARA.
 PERFORM PRINT-TDS-REPLY.
 MOVE QITEM-NUMBER TO MESSAGE-TEXT.
 MOVE 6 MESSAGE-LENGTH.
 CALL "H_TP7_UBDIALOG" USING BATCH-MSG-AREA.
 IF ERROR-KEY NOT = ZERO GO TO ERR-PARA.
 PERFORM PRINT-TDS-REPLY.
 MOVE QUANTITY TO MESSAGE-TEXT.
 MOVE 5 TO MESSAGE-LENGTH.
 CALL "H_TP7_UBDIALOG" USING BATCH-MSG-AREA.
 IF ERROR-KEY NOT = ZERO GO TO ERR-PARA.
 PERFORM PRINT-TDS-REPLY.
 GO TO LOOP1.

QUOTE-PARA processes the transaction QUOTE in a similar manner to the way
in which the transaction ORDER was processed earlier.

ERR-PARA.
 MOVE "** ERROR **" TO PLINE.
 WRITE PLINE AFTER 3.
 MOVE ERROR-KEY TO PLINE.
 WRITE PLINE AFTER 1.
 PERFORM PRINT-TDS-REPLY.
DUMMY-PARA.
 GO TO LOOP1.

ERR-PARA prints a header, the contents of ERROR-KEY and the text of the
message, if any, from TDS. DUMMY-PARA is required for the last GO TO if
ERR-PARA is entered from within LAST-PARA. DUMMY-PARA ignores
incorrect data and branches to LOOP1 to continue with the input of new data.

PRINT-TDS-REPLY.
 MOVE MESSAGE-TEXT TO PLINE.
 INSPECT PLINE REPLACING CODE-VAL BY PRINTABLES.
 WRITE PLINE AFTER 1.

The INSPECT statement requires that the following data areas be declared in the
WORKING-STORAGE SECTION:

01 INSPECT-VALUES.
 02 CODE-VAL PIC X(12)
 VALUE ""06, 13, 14, 20, 21, 29, 30, 38, 40, 208, 219, 281"".
 02 CODE-REP PIC X(12)
 VALUE "<>*!?+/%@=#$".

Implementing the Transaction

47 A2 33UT 13-49

CODE-VAL contains values of the COBOL collating sequence. These values
represent control codes or symbols that are not graphically represented.

CODE-REP contains printable symbols representing 1-for-1 the values appearing
in CODE-VAL.

LAST-PARA.
 MOVE "BYE" TO MESSAGE-TEXT.
 MOVE 3 TO MESSAGE-LENGTH.
 CALL "H_TP7_UBRESUME" USING BATCH-MSG-AREA.
 IF ERROR-KEY NOT = ZERO PERFORM ERR-PARA
 ELSE PERFORM PRINT-TDS-REPLY.
 CLOSE TERMINAL-DATA TDS-REPLIES.
 STOP RUN.

LAST-PARA is optional and logs off the batch program from TDS. The
pseudo-terminal is logged off when the batch program has terminated.

13.3.4.1 Comments on Example

The user-written batch program has a simple structure; in practice it is a powerful
debugging tool.

The batch program is free to make use of the TDS trace facility as a
pseudo-terminal in the same way as a real terminal would be.

The master terminal can also be simulated. The batch program can issue master
commands, provided that the user at the pseudo-terminal logs on as the master
defined at TDSGEN. TDS can be run with a mix of real terminals and
pseudo-terminals, while being developed and also in a fully operational
environment.

The batch interface facility can be used by user-written batch programs simply in
order to use the processing characteristics of TDS.

13.3.4.2 Compilation, Linkage, and Execution

The preparation and execution of TDS Batch Interface programs follows the
standard pattern, described at the beginning of this chapter.

TDS COBOL Programmer's Guide

13-50 47 A2 33UT

13.3.5 Debugging Using Batch Programs

Instead of writing a program that uses the TDS batch interface procedures, the user
can test his TDS by means of the Standard Batch Program. This program acts as a
terminal but operates only one pseudo-terminal.

The test data can be supplied from any file. Each message to be received by TDS
occupies as many records as required to hold the text. Figure 13-4 shows the
layout of data in the record.

The JCL for the standard batch utility is as follows:

STEP H_TDSCTP, FILE = SYS.HLMLIB, DUMP = DATA;
ASSIGN H_CR, input-file-specification;
[ASSIGN H_PR, output-file-specification;]
ENDSTEP;

This utility operates with up to 14 entries, each entry having a maximum of 80
characters. An entry is one line as shown in Figure 13-4.

The maximum message length declared in TDSGEN is 1024 characters, otherwise
the input messages will be truncated.

Implementing the Transaction

47 A2 33UT 13-51

The format of data input to the program is positional and starts from position 1 in
the following field sizes:

First Record

(x4) (x4) (x4)(x2) (x8) (x8) (x8) (x8)

Other Records

position 1
position 73

position 74

M ...

TRACE PRINT

message-id parameters

BYE

*

*

*

*

any character except
"space" to continue on
the following line

any character except
"space" if message is
first in a transaction

(x8)

tdsname batchname mode userid password project billing termtype nodename

Figure 13-4. Data Format for the Standard Batch Program

The first record holds the log-on information: tdsname, batchname, mode (space if
conversational, RO if receive only), userid, password, project, billing, and
optionally the terminal type and node name. Tdsname is the name of the TDS
application. When the master terminal is defined at TDSGEN, you can
specify the mailbox name.

The following terminals are supported: DKU7007, DKU7107, DKU7211, IBM
3270, IBM 3278/3279, VIP7804, PC7800, and Minitel.

The optional nodename allows the user to connect to a remote TDS application
through a network. Local nodename is the default value.

The reason for delimiting transactions by a character in position 74 is that if one
transaction aborts, the next in sequence can be correctly located, any intervening
messages being omitted.

TDS COBOL Programmer's Guide

13-52 47 A2 33UT

Messages from TDS are printed via SYSOUT in the form in which they would
appear at the terminal. If the TRACE transaction is to be activated, it should
specify PRINT or SEND with termnlname.

EXAMPLE OF THE STANDARD BATCH PROGRAM

Here is the JCL for starting H_TDSCTP:

$STEP H_TDSCTP FILE=SYS.HLMLIB XPRTY=9;
$ASSIGN H_CR .JCLLIB DVC=&DVC1 MD=&MD1 SUBFILE=&TEST;
$ASSIGN H_PR .PRT DVC=&DVC1 MD=&MD1 SUBFILE=CTP1;
$ENDSTEP;

mailbox name

- MAINA14

batchname userid project billing

SMITH SMITMAST

_MAIMAI4 SMITH SMIT MAST POSITION 74
message-id *
MESSAGE "*** This is the name of a user transaction ***"
END OF TRANSACTION
M MODIFY_TX TX = trans1 VALIDATE=0
BYE (user log-off) *
❑

47 A2 33UT 14-1

 14. Terminal Operations

14.1 Introduction

Successful log-on means that the user is connected to GCOS 7 and the appropriate
TDS application.

When a physical incident leads to a disconnection, the user can relog on using the
same userid. If a transaction was in progress when the disconnection occurred, the
transaction is restarted from the last commitment. The last message sent or
received is repeated at the terminal.

Terminals ASSIGNed to a TDS application will be logged onto this TDS
application, as soon as the terminal operator logs on and the TDS subsystem
becomes available.

An unassigned AUTO terminal becomes logged onto a TDS application when a
message is sent to it, or when a transaction is spawned to it. At warm restart after a
communications failure, these terminals are logged on again by an [M] ANEW
command.

All terminals can operate in one of two modes:

• command mode, in which the user communicates directly with TDS,

• transaction mode, in which the user communicates with one of the exchanges
comprising the transaction.

TDS COBOL Programmer's Guide

14-2 47 A2 33UT

14.2 Command Mode

The terminal is in the command mode immediately after logon when no transaction
is active for it. To exit from the command mode, the user initiates a transaction.

"Break" has no effect other than sending READY, except if a user-defined break
transaction is supplied at TDSGEN.

A command can be rejected for one of the following reasons:

• the command is unknown to the TDS application,

• the user is not authorized to request the transaction (mismatch in authority code),

• the command can be overlaid by a message from the master terminal by a [M]
SEND_TDS_USER, or [M] MODIFY_TDS_MOT command.

There are two types of commands that can be issued from the terminal.

• TDS commands which address TDS,

• user commands which address transactions.

14.2.1 User Commands

A user command is entered to initiate a transaction.

Syntax

message-id transaction parameters

Description

• message-id identifies the transaction by causing TDS to load and activate the
first TPR of the transaction. Message-id is up to 8 alphanumeric characters and
can be any character string except M, TRACE, or BYE and must not begin with
$*$, question mark (?), the characters defined in the USE LAST MESSAGE or
USE MENU clauses (see the TDS Administrator's Guide).

If the message-id is unknown to TDS, UNKNOWN TRANSACTION is
displayed.

• transaction-parameters refer to those expected by the transaction.

Terminal Operations

47 A2 33UT 14-3

14.2.2 TDS Commands

These commands for addressing a TDS application, are BYE, TRACE, "menu", PT
and the "last message character".

14.2.2.1 BYE

The BYE command is a TDS command used to log off a terminal.

Syntax

BYE

The terminal receives a log-off message. The terminal is then logged off from TDS
and is disconnected from the DPS 7000.

The LOGOUT Transaction, if any, is executed to allow accounting and statistics to
be processed.

14.2.2.2 TRACE

Syntax

TRACE
{PRINT}
{SEND }[=termnlname[PRT]][TX=name-8][USER=name-12][TPR=name-12][options-list]
{OFF }

For an explanation of the TRACE command, see Chapter 13.

14.2.2.3 MENU

MENU lists available transactions from which the user selects a transaction
identifier to start a transaction.

You activate MENU by entering a slash / (default) or any character string defined
by in USE MENU FOR TRANSACTION-MENU clause in the TDS SECTION at
TDSGEN.

TDS COBOL Programmer's Guide

14-4 47 A2 33UT

A menu is displayed in the following format:

>

-:
-:

p/n tdsname

1 message-id1
2 message-id2
. .
. .
. .
18 message-id18

explanatory-text1
explanatory-text2
 .
 .
 .
explanatory-text18

where:

• p is the menu number and n is the total number of menus,

• tdsname is the name of the TDS application,

• up to 18 lines describe the available transactions, each of which is numbered and
includes information declared in the TRANSACTION SECTION at TDSGEN:

− a message-id defined in the MESSAGE statement.

− an explanatory-text defined by the PROMPT clause

• a two-character field prefixed by --> allows you

− either to enter a number corresponding to the transaction if the transaction to
be selected appears on the screen

− or, if the transaction is not on the screen, to search for the transaction by
manipulating scroll-up and scroll-down as follows:

> or blank to move up the next page,

< to move down the preceding page,

> n or <n to move n pages up or down,

=n to move to page number n (=0 moves to the last page),

slash (/) or semicolon (;) to quit the menu.

• two blank lines prefixed by -: allow you to enter the message-id followed by
parameters as in command mode.

Terminal Operations

47 A2 33UT 14-5

14.2.2.4 PT

PT (pass through) allows you to connect to another application at the same site or
on a different site, without having to log off from TDS.

PT opens a pass-through session during which the terminal is directly connected to
the new application.

The terminal returns to TDS when the user logs off.

NOTE:
If PT is activated with no parameter, the user is connected to IOF on the local
site.

This command may be modified by the TDS Administrator if he does not wish
you to use the pass-through feature. At TDSGEN, the message-id can be
assigned to another transaction by using the MESSAGE PT ASSIGN TO
clause.

Syntax

 PT [destination-node] [,APPL = { IOF }]
 { application-name }
 [USER = userid]
 [PASSWORD = user-password]
 [PROJECT = project]
 [BILLING = billing]
 [STATION = station]
 [NEW]
 [NSTARTUP]
 [STR = ? OPTION (length of system header)%string]
 [NTERMSG]

Parameters

Destination node is a 4-character parameter and specifies the name of the
remote application node. It is the only positional parameter. This means that it
must be the first parameter.

APPL is an 8-character parameter specifying the mailbox name of the remote
application. The default value is IOF.

USER is a 12-character parameter specifying the name of the user who will be
connected to the remote application.

TDS COBOL Programmer's Guide

14-6 47 A2 33UT

PASSWORD is a 12-character parameter specifying the password of the user who
requests the connection. If USER is specified, then PASSWORD must be
specified.

PROJECT is a 12-character parameter specifying the project of the user.

BILLING is a 12-character parameter specifying the billing of the user. If
PROJECT is specified, BILLING must be specified.

STATION is an 8-character parameter specifying the name of the station.

NEW/NSTARTUP are specific parameters for IOF.

The STR parameter overrides service message headers and is used only in TDS.
There are two choices for this parameter: a system header option with system
header length or a string. The % is a delimiter that distinguishes the user string
from the system header option. Here is an example of the system header option
with system header length:

STR = ?A

The string is an alphanumeric field of up to eight characters that the first TPR of a
LOGON receives. Here is an example of a string:

STR = ?A%string

For further information, see the DNS Terminal Management Reference Guide.

The NTERMSG parameter, if specified, is used by the PT transaction to prevent
the message "SESSION TERMINATED BY REMOTE APPLICATION" being
sent.

All the above parameters are subject to catalog limitations and rules.

14.2.2.5 Redisplaying the Last Message

When the terminal is in either command mode, or transaction mode, you can enter
the last message character to request that TDS re-send the most recently
displayed message to the user terminal. Note that only the last message character
specified in TDSGEN is permitted and in transaction mode, this character must be
the first and only character transmitted. The default is the question mark (?) or any
single character defined in the USE lastmsg FOR LAST MESSAGE clause.

To list the transactions available, enter a slash (/) or any character defined in the
USE menu FOR TRANSACTION-MENU clause in the TDS SECTION at
TDSGEN.

Terminal Operations

47 A2 33UT 14-7

14.3 Transaction Mode

In transaction mode, the user communicates directly with the transaction. All
entries are addressed to the transaction and not to TDS.

There are no restrictions on the syntax of messages. However, messages from the
terminal must not begin with $*$.

The terminal returns to the command mode when the transaction has terminated.
The user is notified that the transaction is normally terminated either by the last
message sent, or by READY.

If a transaction is interrupted because of a programming error, the following
message is displayed:

 ABORT (x.xx.xxxx.) RC=yyyyyyyy, zzzz (TPR name)

where:

(x.xx.xxxx.) the address in the TPR at which the abort occurred.

yyyyyyyy system integration unit

zzzz return code of the relevant abort, see Table B-1.

Note that TRANSACTION-STORAGE and PRIVATE-STORAGE are not rolled
back.

To interrupt a transaction in progress, Break can be issued at a terminal:

• by pressing the BREAK key,

• or by entering $*$BRK,

• or esc tdsname when you are the master terminal logged under IOF.

In addition to redisplaying the last message in command mode, you can also do this
in transaction mode. In this mode, the last message character must be
the first and only character that you enter before you press the TRANSMIT key.

TDS COBOL Programmer's Guide

14-8 47 A2 33UT

❑

47 A2 33UT A-1

 A. Trace Options and TDS-Authorized PCF
Commands

This appendix describes the format for each option of the TRACE command.

FLOW

Gives the following information about a transaction:

BEGINNING OF TRANSACTION <messageid>;

TSN <transaction-serial-number>

BEGINNING OF TPR <tprname> PRSN : <tpr-serial-number>

RESTART STATUS : <restart-status>

NORMAL END OF A { TPR [WITH COMMITMENT] } [WAIT-TIME:xxx]
 { TRANSACTION }

When TPR is specified, the transaction is still in progress. WAIT-TIME is
specified only if the corresponding field in TDS-STORAGE is valid.

 { TPR }
ABNORMAL END OF A { TRANSACTION }
 { COMMITMENT UNIT }

 [AT:xxxxxxxx] G4=yyyyyyyy System Integration Unit, return code
 where xxxxxxxx is the address in the
 program where the abort was detected.

TDS COBOL Programmer's Guide

A-2 47 A2 33UT

If COMMITMENT UNIT is specified, it may be a functional abort (BUSY,
BLKBUSY, DEADLOCK), the TPR will be restarted. Alternatively
COMMITMENT UNIT may be specified for a user abort (ON-ABORT-TPR) in
which case the specified program will be started.)

The following message indicates that a call "H_PPC_UBACK" WITH
RESTORE=0 has been done in the TPR:

END OF {TPR } WITH BACKOUT NO RESTART [WAIT-TIME:xxx]
 {TRANSACTION}

BREAK REQUEST

A Break signal was issued from the terminal that initiated the transaction.

MESG

Indicates each message sent and received

RECEIVE STATEMENT.END key : { EGI } LENGTH:length STATUS:status
 { NONE }

followed by a dump of the message, if applicable.

There is no dump. If EGI is specified, the whole message is received, otherwise
only a portion is received.

 { NONE }
SEND STATEMENT INDICATOR : { ESI } DESTINATION : destination
 { EMI } LENGTH : length
 { EGI } STATUS : status

followed by a dump of the message, if applicable.

If NONE, the message portion was sent without an end indicator and there is no
dump. When ESI, EMI or EGI are specified, the whole message or segment is
dumped, including the control characters generated by the line spacing requests.

Trace Options and TDS-Authorized PCF Commands

47 A2 33UT A-3

RREC

Indicates the execution of each READ or START directed to a TDS-controlled file:

{ START }
{ READ } [NEXT] IFN : internal-file-name AT : xxxxxxxx

xxxxxxxx is the address of the instruction in the program. If NEXT is specified,
the file will be accessed sequentially. If READ is specified, RREC is followed by
a dump of the record.

MREC

Indicates each execution of a DELETE, WRITE or REWRITE directed to a
TDS-controlled file:

{ DELETE }
{ WRITE } IFN : internal-file-name AT : xxxxxxxx
{ REWRITE }

where xxxxxxxx is the address of the instruction in the program. MREC is
followed by a dump of the record (not DELETE).

TRST

TRANSACTION STORAGE

Indicates the completion of each TPR of the transaction and gives the context of
the TRANSACTION-STORAGE.

DISP Indicates the object on the execution of each
DISPLAY.

IDS2 Activates the IDS/II traces as specified by the run-time
options.

TDS COBOL Programmer's Guide

A-4 47 A2 33UT

PCF

PCF facilities available in COBOL are as follows:

• only symbolic addressing mode is provided. It implies the TPR was compiled
with DEBUG to generate the compile unit database,

• DEBUG must not be specified in the job,

• the transaction may have been declared for DEBUG at TDSGEN to invalidate or
validate the database updates. This clause is independent of PCF debugging
commands,

• as PCF commands apply to TPRs using shared code, serialization mechanisms
are implemented for TPRs in debug mode. This allows a TPR to be shared by
productive terminals and debugging terminals. These mechanisms apply at
commitment level and mean that TPRs in debug mode execute alone at a
specific time until the commitment unit terminates. This may lead to reduced
throughput,

• if a command is to be added, changed or removed from the command file, all the
commands must be reintroduced unless they are cataloged. The PCF EXEC
command can be used to make the TDS-PCF interface operate better,

• Once a TPR is validated, it must be recompiled without the DEBUG to prevent
unnecessary loading of the database.

Trace Options and TDS-Authorized PCF Commands

47 A2 33UT A-5

Table A-1. TDS-Authorized PCF Commands (1/2)

Command Explanation

APPLY (A)
The specified command applies to the named procedure
or block.

CHANGE (C)

Assign value to specified data items when control reaches
specified action points.

DUMP (D) [command-number] D data-expression [, data expression...]
[AT action-point-list] [IF-clause];

Display specified data items when control reaches specified
action points.

END [command-number] END [DUMP] [AT action-point-list]
[IF-clause];

Abort the execution at specified point.

EXEC (E) [command-number] E "file-description"
[AT action-point--list] [IF-clause];

Execute PCF commands from specified file.

GOTO (G) [command-number] GO action-point [AT action-point-list]
[IF-clause];

Force a transfer of control at specified point.

HELP (H) H pcf-command-name;

Display syntax of specified PCF command.

KILL (K)

Delete specified commands when control reaches specified
action points.

A [command-number-list] IN procedure-name [.block];

[command-number] C assignment [, assignment...]
[AT action-point-list] [IF-clause];

[command-number] K [command-number-list]
[AT action--point-list] [IF-clause];

TDS COBOL Programmer's Guide

A-6 47 A2 33UT

Table A-1. TDS-Authorized PCF Commands (2/2)

Command Explanation

LIST (L) [command-list] L [command-number-list]
[AT action-point-list] [IF-clause];

Display the specified commands when control reaches the
specified action points.

OUTPUT (O) [command-number] O "file-description"
[AT action-point-list] [IF-clause];

Directs the PCF execution report to a specified file.

RECOVER [command-number]
RECOVER

RESUME (R)
SUSPEND (S)

TRACE (T)

WHERE (W)

Defines a recovery action for certain execution incidents.

[AT action-point-list]

[IF-clause];

[command-number] R
S [command-number-list]

[AT action-point-list] [IF-clause];

To activate/deactivate specified PCF commands when control
reaches specified action points. Restricts debugging to a
desired section of a program.

[command-number] T [AT action-point-list]

[IF-clause];

Trace flow of program through specified action point.

[command-number] W [

[IF-clause]

Display the context of specified action points.

] [AT action-point-list]

ILLDEC
SUBSCRIPT

NOT
MAP

TRACK
TK

Trace Options and TDS-Authorized PCF Commands

47 A2 33UT A-7

• List of PCF commands which are not allowed in TDS are as follows:

BEGIN only aborts the TPR

PAUSE is ineffective.

• List of PCF commands which are not relevant to TDS are:
 CHECKPOINT
 FSE
 GO
 INLIB1
 INLIB2
 INLIB3
 LIB.

• For more information on syntax and semantics, refer to the PCF User's Guide.

• Example of PCF command file used for debugging a transaction:
 APPLY IN TPR1;
 DUMP TDS-STORAGE AT BEG-PROC;
 GOTO ABC AT ERROR-SECTION IF COUNT=1;
 RECOVER ILLDEC;
 APPLY IN TPR3;
 CHANGE NEXT-TPR="TPR5" AT EXIT-TPR;
 LIST AT EXIT-TPR;
 APPLY IN TPR5;
 TRACE MAP AT SEARCH-KEY;

TDS COBOL Programmer's Guide

A-8 47 A2 33UT

Description of PCF Parameters

action-point ::= { ?[[stn.]ste.]sra }

 { }

 { label }

 { }

 { {LINE ! LN} line-number }

 { }

 { ILN number }

 { }

 { {POST_MORTEM ! POST-MORTEM ! P_M ! P-M} }

 { }

 { {ALL_LABELS ! ALL-LABELS ! A_L ! A-L} }

 { }

 { {EACH_REF ! EACH-REF ! E_R ! E-R} / sym-ref}

action-point-list ::= action-point [TO action-point]

 [,action-point [TO action-point]]...

assignment ::= data-reference= {data-expression ! constant}

bit-string-constant ::= "bits" B

block ::= { {LINE ! LN} line-number }

 { }

 { ILN number }

 { }

 { procedure-name [.procedure-name...] }

character-constant ::= "string" [C]

command-number ::= number

command-number-list ::= command-number [TO command-number]

 [,command-number [TO command-number]]...

complex-constant ::= (numeric-constant,numeric-constant)

Trace Options and TDS-Authorized PCF Commands

47 A2 33UT A-9

Description of PCF Parameters

constant ::= { numeric-constant }

 { }

 { character-constant }

 { }

 { hexadecimal-constant }

 { }

 { {.T. ! .F.} }

data-expression ::= { (data-expression) }

 { }

 { constant }

 { }

 { symbolic-reference }

 { }

 { effective-reference }

 { }

 { semi-symbolic-re}ference }

 [operator-data-expression...] [format]

displacement ::= hexa6

effective-reference ::= { ?[[stn.]ste.]sra }

 { }

 { ?KSTKi! ?STK(i[{: ! TO} j]) }

 { }

 { ?BRi ! ?BR (i[{: ! TO} j]) }

 { }

 { ?GRi ! ?GR (i[{: ! TO} j]) }

 { }

 { ?XRi ! ?XR (i[{: ! TO} j]) }

 { }

 { ?SRi ! ?SR (i[{: ! TO} j]) }

 { }

 { {?IC ! ?TR ! ?ST ! ?SAM ! ?PSA ! ?PTV } }

 { { } }

 { {?NBP ! ?LOC ! ?PAR ! ?COM ! ?SAV } }

 . displacement

TDS COBOL Programmer's Guide

A-10 47 A2 33UT

Description of PCF Parameters

fcode ::= {B ! C ! DPS ! DPU ! DUSLO ! DUSLS ! DUSTS !

 DUSTO ! DUU ! EFB ! FB ! H ! L ! LB ! LFB !

 P ! RC ! SFB ! X}

file-description ::= file-literal

 (see the IOF Terminal User's Reference Manual,

 Part I Section VI).

format ::= # fcode [p [.q]]

hexadecimal-constant ::= "hexa" {X ! H}

IF-clause ::= IF {data-expression ! /SEV ! /COUNT}

 [{NOT ! ? }]

 {= ! < ! > ! < ! > ! EQ ! NE ! GT ! LT ! GE ! LE}

 data-expression

 [{AND ! & ! OR}]

 []

 [{data-expression ! /SEV ! /COUNT}]

 []

 [[{NOT ! ^ }]]

 []

 [{= ! < ! > ! < ! > ! EQ ! NE ! GT ! LT ! GE ! LE}]

 []

 [data-expression...]

label ::= name

library-description ::= lib-78

 (see the IOF Terminal User's Reference Manual,

 Part I Section VII).

line-number ::= number [.number...] [*rank]

name ::= characters

number ::= digits

Trace Options and TDS-Authorized PCF Commands

47 A2 33UT A-11

Description of PCF Parameters

numeric-constant ::= [{+ ! -}] [number] [.number]

 [{E ! D ! Q} [{+ ! -}] number]

operator ::= { {+ ! -} }

 { }

 { [{NOT ! ? }] }

 { }

 { {= ! < ! > ! < ! > ! EQ ! NE ! GT ! LT ! GE ! LE} }

pointer-constant ::= [/ {DIRECT ! DT ! INDIRECT ! IT}]

 []

 [/ {R0 ! R1 ! R2 ! R3}]

 / [[stn.] ste.] sra

procedure-name ::= name

rank ::= number

semi- ::= { @name [.displacement] }

symbolic-reference { }

 { :isn [.offset] }

sra ::= hexa6

segment relative address

ste ::= hexa2

segment table entry

stn ::= hexa1

segment table number

subscript ::= data-expression [{: ! TO} data-expression]

sym-ref ::= { name [.name...] }

symbolic-reference { }

 { name [{OF ! IN} name...] }

 [(subscript [,subscript...])]

TDS COBOL Programmer's Guide

A-12 47 A2 33UT

❑

47 A2 33UT B-1

 B. Explanation of the Abort Codes

NOTE:
Codes shown in brackets may be returned to the user or may appear in a dump:
codes where no USE was specified are returned only in the TPR.

[0804] ADDROUT
Address out of bounds

1853 ARGERR
COBOL SYMBOLIC-QUEUE within the output CD or device-name separated by
"/" (1C Syntax).

1501 ARVIOL
Access rights violation. WRITE requested while in "statistical read".

1E04 BREAK
Break request from a terminal

1206 BUFNBOV
TDS buffer pool overflow (the number of buffers exceeds the number defined at
TDSGEN) - switching to the Before Journal is not possible. Increase buffer pool
size or add the before Journal.

1878 NOMATCH
The next program name is unknown

1223 ENTRYOV
Segment entry overflow - number of entries exceeds limit. Retry CLOSE
DEASSIGN.

TDS COBOL Programmer's Guide

B-2 47 A2 33UT

[1C0B] EXHAUST
End-of-file already signaled

[1228] FILEOV
File overflow due to record insertion

[0A06] FLNAV
File is not available - must be recovered before it can be opened

0A05 FUNCNAV
Unavailable function for specified file, e.g. READ of user-journal file

1466 LOCKVIOL
The transaction tries to access files opened in statistical read mode, and this mode
is not explicitly specified for it.

00D3 CANEVT
Transaction cancelled (see CANCELTX in the LOGON transaction

[1020] INDUNKN
Index unknown - TDS error

[0A07] ITMNAV
A program tries to modify a file protected by the Before Journal but the journal was
suppressed by the "SUPPRESS BEFORE JOURNAL" clause

[0204] KEYCHG
Attempt to change record key on REWRITE

[1807] LNERR
Erroneous length for variable-length record

[1C04] NOCURREC
A sequential file request preceded a direct request

[1C19] NODELETE
No delete is allowed

Explanation of the Abort Codes

47 A2 33UT B-3

0115 NOTALL
Set by the M CANCEL command when execution was incomplete. Repeat the
command.

1C01 NOTOPEN
The referenced file is not open

[0700] NOWAIT
Simultaneous requests on a file have occurred, in violation of non-concurrency

1730 OPERATOR
Transaction cancelled by the M CANCEL command

1806 OPTERR
Attempt to execute a transaction with the SUPPRESS BEFORE JOURNAL clause
while files are SHARED and integrity is set to HIGH or MEDIUM

1463 PMDVIOL
Processing-mode violation

04C5 PROCEXP
Procedure exception within a program

1021 QUNKN
SYMBOLIC-QUEUE within input CD is incorrect

1623 RESVIOL
Result of a resource handling violation, e.g. FREE/SAVE-COMMON function
performed without TAKE-COMMON, violation of programming rules in
transaction for inquiry, mono-phase transaction, or transaction aborted due to TDS
supervisor with ORACLE in synchronous mode

1442 RCVVIOL
Violation when wrong RECEIVE

0A18 SCIDXNAV
Secondary index of UFAS indexed file was not created

TDS COBOL Programmer's Guide

B-4 47 A2 33UT

1214 SFNBOV
Too many users in TRACE Print Mode - DIRSIZE parameter of
the "<tdsname>-DEBUG" file is too small to accommodate all users

1441 SNDVIOL
Violation when using the SEND verb

1219 TABOV
The transaction tried to lock more pages than currently allocated. The transaction
will be automatically restarted with a higher number of locked pages allowed

0027 DATALIM
Not enough space for saving file currencies in the swap-file buffer; this lack of
space may cause this return code to occur:

• when unmapping is performed and no commitment point is performed (see
Chapter 13),

• on a commitment point if the CALL "KEEP-CURRENCIES" procedure has
been called for the files protected by the before Journal.

(Sizing the swap-file buffer is discussed in the TDS Administrator's Guide).

0029 TIMELIM
TPR time limit exceeded

[1E05] UNRECIO
Irrecoverable I/O error

0980 USERREQ
Abort requested by user

120F COUNTOV
The transaction requires more locked pages than declared at TDSGEN (see the
MAXIMUM NUMBER OF LOCKED PAGES clause in the TDS SECTION)

186B UBUGERR
IDS/II user error: see detailed explanation in JOR or TRACE. When a TPR aborts
with this code, the message is printed in the JOR, and the trace file when the
terminal is in TRACE mode

Explanation of the Abort Codes

47 A2 33UT B-5

1821 IFNERR
Occurs when a CALL "KEEP-CURRENCIES" statement was used in a previous
commitment unit for a file which has since been closed

IDS/II TRACE

The format of the trace message when IDS/II is used under TDS is as follows:

PGID: <tprname> SLN: <internal-line-no> { ERR | WNG } :
 <error-no> <text>

where:

<tprname> is a 30-character string containing the program
identification as specified in the PROGRAM-ID
clause. If this information is not available or is
irrelevant, asterisks replace it.

<internal-line-no> is a 7-digit decimal number identifying the source
internal line number where the statement involved is
coded. If this information is not available or is
irrelevant, 0 replaces it.

ERR/WNG indicate a fatal error or a warning respectively.

<error-no> is a 4-digit decimal number. The meaning of each
error number is described below.

<text> describes the error. Though these texts are made as
explicit as possible, further information may be found
in the Messages and Return Codes Directory.

Error Number Description
0402 Mismatch between schema name or date in TPR and

object file. The TPR was not compiled with the same
object schema as the one assigned to the TDS.

0516
0530
0532

Check that the TPR is programmed according to
TDS/IDS rules.

0896 to 0904 DML inconsistency. Contact the Service Center.
1792 to 1811 DML/schema inconsistency: check for consistency

between TPR and schema. Possibly the TPR was not
recompiled after a schema modification or an internal
error.

Further information on this subject may be found in the IDS/II Reference Manual.

TDS COBOL Programmer's Guide

B-6 47 A2 33UT

❑

47 A2 33UT C-1

 C. COBOL Example Using Forms

This appendix is an example of a transaction with COBOL using FORMS.

The form is called SALES and is used for sales. If data is entered incorrectly, the
fields of the corresponding line are "highlighted" and the data can be re-entered.
The program calculates the total sales value for each product and a grand total for
the sales of all products.

The form image of SALES is as follows:

PRODUCT TYPE ###########

NAME OF REPRESENTATIVE ########################### CODE ###

PRODUCT PRICE QUANTITY CODE TOTAL

######
######
######
######
######
######
######

:
:
:
:
:
:
:

####
####
####
####
####
####
####

###
###
###
###
###
###
###

####
####
####
####
####
####
####

######
######
######
######
######
######
######

#
#
#
#
#
#
#

:
:
:
:
:
:
:

:
:
:
:
:
:
:

:
:
:
:
:
:
:

GRAND TOTAL ########
SELECTION FIELD
(IF / = STOP)

TDS COBOL Programmer's Guide

C-2 47 A2 33UT

TDS-name PRFM is the name of the TDS application
Transaction

TCD1 (TPR)

TCD2 (TPR)

TCD3 (TPR)

TCDE is the name of the transaction assigned to the
TPR named TCD1

Display form SALES on the screen

Enter data, calculate grand total; if erroneous data
re-run TCD2

Clear all NF (not protected) fields then return to TCD2

COBOL Example Using Forms

47 A2 33UT C-3

- ENTER DATA
- TOTAL PRODUCT
- GRAND TOTAL

TCDE

PERFORM TOTAL

TCD2

ERROR

TCD3

ANOTHER
CYCLE

STOP

FORM "SALES"
ON THE SCREEN

Y

Y

N

N

CLEAR SCREEN
NF(NPR) ONLY

TCD1

TCD1

RECEIVE (TDS)

CDGET (L = 3)

NEXT = TCD2

TCD2

CDRECV (W = 1)

Y

/
N

ERROR
CDRELS
(L = 1)N

YCDATTR (L = 1)

PERFORM PREPS

CDSEND (L = 3)

NEXT = TCD3

CDATTR (L = 1)

CDATTL (L = 3)

CDMECH
(L = 2

INITAT)

END

CDRECV

CDMECH
(L = 3

INITAT)

another
 cycle

TCD3

22

Figure C-1. Flowchart For Transaction TCDE (TPRs TCD1, TCD2, TCD3)

TDS COBOL Programmer's Guide

C-4 47 A2 33UT

Screen Definition of form SALES

 SALES FROM : FASL

 CD=01/27/86 CT=17:33 ND=01/27/86 MT=17/33 SL=CBX NN=01

 1 NF SLASH LINE IS 01 COL IS 02 SCREEN-PIC IS X(1) UL .

 2 NL SALE-TITLE LINE IS 01 COL IS 37 SCREEN-PIC IS X(10) UL .

 3 NF REP-NAME LINE IS 04 COL COL IS 29 SCREEN-PIC IS X(27) UL .

 4 NF REP-CODE LINE IS 4 COL IS 64 SCREEN-PIC IS X(6) UL DI .

 5 ARRAY SALE-LINES OCCURS 7.

 6 NF PRODUCT LINE IS 07 COL IS 05 SCREEN-PIC IS X(6) UL BCYA .

 7 NF PRODUCT-CODE LINE IS 07 COL IS 48 SCREEN-PIC IS X(4) DI BMAG .

 8 NF QUANTITY LINE IS 07 COL IS 61 SCREEN-PIC IS 9(3) DI BYEL .

 9 NF PRICE LINE IS 7 COL IS 20 SCREEN-PIC IS ZZ9.99 NU BBLU .

10 NF TOTAL LINE IS 07 COL IS 61 SCREEN-PIC IS ZZZ9.99 PR .

11 UF LINE IS 07 COL IS 03 VALUE IS "%" CSPS .

12 UF LINE IS 07 COL IS 15 VALUE IS "%" CSPS .

13 UF LINE IS 07 COL IS 29 VALUE IS "%" CSPS .

14 UF LINE IS 07 COL IS 44 VALUE IS "%" CSPS .

15 UF LINE IS 07 COL IS 57 VALUE IS "%" CSPS .

16 UF LINE IS 07 COL IS 69 VALUE IS "%" CSPS .

17 UF LINE IS 08 COL IS 03 VALUE IS "#***********/*************/" CSPS .

18 END-ARRAY.

19 NF GRAND-TOTAL LINE IS 24 COL IS 50 SCREEN-PIC IS ******9.99 PR FRED.

20 UF LINE IS 01 COL IS 23 VALUE IS "PRODUCT TYPE" RV .

21 UF LINE IS 04 COL IS 04 VALUE IS "NAME" .

22 UF LINE IS 04 COL IS 09 VALUE IS "OF" .

23 UF LINE IS 04 COL IS 12 VALUE IS "REPRESENTATIVE" .

24 UF LINE IS 04 COL IS 58 VALUE IS "CODE" .

25 UF LINE IS 05 COL IS 03 VALUE IS

26 "#***********.*************.**************.************.***********,"

27 CSPS FMAG .

28 UF LINE IS 06 COL IS 03 VALUE IS "%" CSPS .

29 UF LINE IS 06 COL IS 05 VALUE IS "PRODUCT" .

30 UF LINE IS 06 COL IS 15 VALUE IS "%" CSPS

31 UF LINE IS 06 COL IS 19 VALUE IS "PRICE" .

32 UF LINE IS 06 COL IS 29 VALUE IS "%" CSPS .

33 UF LINE IS 06 COL IS 31 VALUE IS "QUANTITY" .

34 UF LINE IS 06 COL IS 44 VALUE IS "%" CSPS .

35 UF LINE IS 06 COL IS 49 VALUE IS "CODE" .

36 UF LINE IS 06 COL IS 57 VALUE IS "%" CSPS .

37 UF LINE IS 06 COL IS 62 VALUE IS "TOTAL" .

38 UF LINE IS 06 COL IS 69 VALUE IS "%" CSPS .

39 UF LINE IS 24 COL IS 36 VALUE IS "GRAND TOTAL" BGRE.

COBOL Example Using Forms

47 A2 33UT C-5

TCDE: Structures SALES (I, V, R) used in the TPRs TCD1, TCD2, TCD3

 SALESI FROM : FASL

 CD=01/03/86 CT=21:31 MD=01/27/86 MT=17:43

 1 *

 2 02 FILLER PIC X VALUE "3".

 3 02 FILLER PIC X(8) VALUE "SALES".

 4 02 SALES-NO PIC 9(3) VALUE ZERO.

 5 02 SALES-MD PIC X VALUE "A".

 6 02 SALES-OF PIC X(8) VALUE SPACES.

 7 02 SALES-OO PIC 9(3) VALUE ZERO.

 8 02 SALES-LL PIC 9(3) VALUE ZERO.

 9 02 FILLER PIC X(5) VALUE "86003"

10 02 FILLER COMP-1 VALUE 0252.

11 02 SALES-AF PIC 9 VALUE 1.

12 02 SALES-SL PIC 9(3) VALUE 1.

13 02 SALES-SC PIC 9(3) VALUE 1.

 11 02 SALESV FROM : FASL

 CD=01/03/86 CT=21:31 MD=01/27/86 MT=17:43

 1 02 SALESV.

 2 03 FILLER PIC X VALUE ""2"".

 3 03 FILLER COMP-1 VALUE 41.

 4 03 FILLER PIC X(8) VALUE "SALES".

 5 03 SALES-NO PIC 9(3) VALUE ZERO.

 6 03 SALES-V.

 7 04 SALES-FC-V PIC X.

 8 04 SLASH-V PIC X.

 9 04 SALES-TITLE-V PIC X.

10 04 REP-NAME-V PIC X.

11 04 REP-CODE-V PIC X.

12 04 SALE-LINES-AV.

13 05 SALE-LINES-V OCCURS 7.

14 06 PRODUCT-V PIC X.

15 06 PRODUCT-CODE-V PIC X.

16 06 QUANTITY-V PIC X.

17 06 PRICE-V PIC X.

18 06 TOTAL-V PIC X.

19 04 GRAND-TOTAL-V PIC X.

 SALES-R FROM : FASL

 CD=01/03/86 CT=21.31 MD=01/27/86 MT=17.43

 1 04 SALES-FC PIC 99.

 2 04 SLASH PIC X(1).

 3 04 SALE-TITLE PIC X(10).

 4 04 REP-NAME PIC X(27).

 5 04 REP-CODE PIC X(6).

 6 04 SALES-LINES-A .

TDS COBOL Programmer's Guide

C-6 47 A2 33UT

 7 05 SALES-LINES OCCURS 7.

 8 06 PRODUCT PIC X(6).

 9 06 PRODUCT-CODE PIC X(4).

10 06 QUANTITY PIC 9(3).

11 06 PRICE PIC 999V99.

12 06 TOTAL PIC 9999V99.

13 04 GRAND-TOTAL PIC 9999999V99.

TCD1: Display form SALES on the screen

 TCD1 FROM : FASL

 CD=01/02/86 ND=01/12/85 MT=13:27

 10 IDENTIFICATION DIVISION.

 20 PROGRAM-ID. TCD1.

 30 AUTHOR. CHEGMA-ROBBE.

 40 ENVIRONMENT DIVISION.

 50 CONFIGURATION SECTION.

 60 SOURCE-COMPUTER. LEVEL-64.

 70 OBJECT-COMPUTER. LEVEL-64.

 80 DATA DIVISION.

 90 WORKING-STORAGE SECTION.

100 01 W-ARGUMENTS.

110 02 LEVEL PIC X.

120 02 WAIT PIC 9.

130 02 MECH PIC X(6).

140 01 ZMSG.

150 02 ZMES PIC X(20).

160 01 Z-PAR.

170 02 TRAN PIC X(4).

180 02 WTIME PIC X(3).

190 02 WIND PIC X.

200 *

210 01 SALESI.

220 COPY SALESI.

230 *

240 LINKAGE SECTION.

250 COPY TDS-STORAGE.

260 COPY CONSTANT-STORAGE.

270 *

280 01 TRANSACTION-STORAGE.

290 02 TS-PRI-ST.

300 03 TS-WTIME PIC 999.

310 03 TS-WIND PIC 9.

320 03 FILLER PIC X(226).

330 02 TS-REC PIC X(223).

340 **

COBOL Example Using Forms

47 A2 33UT C-7

350 COMMUNICATION SECTION.

360 CD CDIN INPUT

370 SYMBOLIC QUEUE ISQ

380 MESSAGE DATE IMD

390 MESSAGE TIME IMT

400 SYMBOLIC SOURCE ISS

410 TEXT LENGTH ITL

420 END KEY IEK

430 STATUS KEY ISK

440 MESSAGE COUNT IMC.

450 01 CDI PIC X(87).

460 CD CDOUT OUTPUT

470 DESTINATION COUNT ODC

480 TEXT LENGTH OTL

490 STATUS KEY OSK

500 ERROR KEY OEK

510 SYMBOLIC DESTINATION OSD.

520 01 CDO PIC X(23).

530 /*

540 PROCEDURE DIVISION USING

550 TDS-STORAGE CONSTANT-STORAGE TRANSACTION-STORAGE.

560 D10-START.

570 MOVE SPACES TO CDI CDO ZMSG.

580 MOVE 0 TO TS-WIND WAIT.

590 MOVE SYMBOLIC-QUEUE TO ISQ.

600 RECEIVE CDIN MESSAGE INTO ZMSG.

610 IF ISK NOT = "00" GO DISP-ISK.

620 UNSTRING ZMES DELIMITED BY ALL " " OR ","

630 INTO TRAN WTIME WIND.

640 IF WIND NUMERIC AND WTIME NUMERIC

650 MOVE WIND TO TS-WIND MOVE WTIME TO TS-WTIME.

660 IF WIND = 1 MOVE TS-WTIME TO WAIT-TIME.

670 *

680 MOVE ISS TO OSD.

690 MOVE 1 TO ODC OTL.

700 MOVE 3 TO LEVEL.

710 CALL "CDGET" USING CDO SALESI LEVEL.

720 IF OSK = "A4" GO DISP-OSK.

730 MOVE "TCD2" TO NEXT-TPR.

740 F90-FIN.

750 *

760 EXIT PROGRAM.

770 DISP-ISK.

780 DISPLAY "CDI-ISK=" ISK UPON SYSOUT. GO F90-FIN.

790 DISP-OSK.

800 DISPLAY "CDO-OSK=" OSK UPON SYSOUT. GO F90-FIN.

TDS COBOL Programmer's Guide

C-8 47 A2 33UT

TCD2: Enter data - total by product - grand total

 TCD2 FROM : FASL

 CD=01/03/86 CT=16:43 ND=01:12:86 MT=19.04

 10 IDENTIFICATION DIVISION.

 20 PROGRAM-ID. TCD2.

 30 AUTHOR. CHEGMA-ROBBE.

 40 INSTALLATION. GAMBETTA CENTER CENTER.

 50 ENVIRONMENT DIVISION.

 60 CONFIGURATION SECTION.

 70 SOURCE-COMPUTER. LEVEL-64.

 80 OBJECT-COMPUTER. LEVEL-64.

 90 DATA DIVISION.

100 WORKING-STORAGE SECTION.

110 77 I PIC 999.

120 77 J PIC 9.

130 77 W-I PIC 9.

140 77 ERROR-INDICATOR PIC 9.

150 77 W-NBF PIC 9.

160 77 TOTAL-MAN PIC 9(4)V99.

170 77 TOTAL-NUM PIC 9(7)V99.

180 01 SALES-SW.

190 COPY SALESV REPLACING TRAILING "-V" BY "-W".

200 01 W-ARGUMENTS.

210 02 LEVEL PIC X.

220 02 WAIT PIC 9.

230 02 ATTR PIC X(4) VALUE "INIT".

240 02 MECH PIC X(6).

250 01 ATTL.

260 02 FILLER PIC 999. VALUE 2.

270 02 FILLER PIC X(4) VALUE "CP".

280 02 FILLER PIC X(4) VALUE "ML".

290 01 ZMSG.

300 02 ZMES PIC X(30).

310 02 TRAN PIC X(4).

320 *

330 01 SALES-SV.

340 COPY SALESV.

350 *

360 LINKAGE SECTION.

370 COPY TDS-STORAGE.

380 COPY CONSTANT-STORAGE.

390 *

400 01 TRANSACTION-STORAGE.

410 02 TS-PRI-ST.

420 03 TS-WTIME PIC 999.

430 03 TS-WIND PIC 9.

440 03 FILLER PIC X(226).

COBOL Example Using Forms

47 A2 33UT C-9

450 02 SALESR

460 COPY SALESR.

470 **

480 COMMUNICATION SECTION.

490 CD CDIN INPUT.

500 SYMBOLIC QUEUE ISQ

510 MESSAGE DATE IMD

520 MESSAGE TIME IMT

530 SYMBOLIC SOURCE ISS

540 TEXT LENGTH ITL

550 END KEY IEK

560 STATUS KEY ISK

570 MESSAGE COUNT IMC.

580 01 CDI PIC X(87).

590 CD CDOUT OUTPUT

600 DESTINATION COUNT ODC

610 TEXT LENGTH OTL

620 STATUS KEY OSK

630 ERROR KEY OEK

640 SYMBOLIC DESTINATION OSD.

650 01 CDO PIC X(23).

660 /*

670 PROCEDURE DIVISION USING

680 TDS-STORAGE CONSTANT-STORAGE TRANSACTION-STORAGE.

690 D10-START.

700 MOVE SYMBOLIC-QUEUE TO ISQ.

710 MOVE 1 TO ODC.

720 MOVE "3" TO LEVEL.

730 MOVE ALL "S" TO SALES-W.

740 MOVE TS-WIND TO WAIT.

750 IF WAIT = 1 MOVE TS-WTIME TO WTIME.

760 D20-LOOP.

770 MOVE SPACES TO SALESR

780 MOVE ALL "S" TO SALES-V.

790 CALL "CDRECV" USING CDI SALESR WAIT SALES-SV.

800 MOVE ISS TO OSD.

810 IF SLASH-V = "R" AND SLASH = "/"

820 MOVE "INITAT" TO MECH

830 MOVE SPACES TO ZMSG

840 MOVE "1" TO LEVEL CALL "CDRELS" USING CDO LEVEL

850 MOVE "2" TO LEVEL CALL "CDMECH" USING CDO MECH LEVEL

860 ** SEND CDOUT FROM ZMSG EMI

870 MOVE SPACES TO NEXT-TPR GO F60-END.

880 MOVE SPACES TO SALE-TITLE-V SLASH-V REP-CODE-V REP-NAME-V.

890 MOVE 0 TO ERROR-INDICATOR.

900 MOVE ZERO TO TOTAL-NUM

910 PERFORM TOTAL-O THRU TOTAL-F

920 VARYING I FROM 1 BY 1 UNTIL I > 7.

930 IF ERROR-INDICATOR = 0 GO Y40-RIGHT.

940 N30-ERROR.

TDS COBOL Programmer's Guide

C-10 47 A2 33UT

950 MOVE "1" TO LEVEL

960 CALL "CDATTR" USING CDO SALES-SW ATTR LEVEL

970 MOVE "3" TO LEVEL

980 MOVE SPACES TO GRAND-TOTAL-V

990 CALL "CDATTL" USING CDO SALES SV ATTL LEVEL

1000 MOVE SALES-V TO SALES-W

1010 MOVE "TCD2" TO NEXT-TPR.

1020 GO F60-END.

1030 T40-RIGHT.

1040 MOVE "1" TO LEVEL

1050 MOVE ALL "S" TO SALES-W

1060 CALL "CDATTR" USING CDO SALES-SW ATTR LEVEL

1070 PERFORM PREP-SEND THRU END-PREP VARYING J

1080 FROM 1 BY 1 UNTIL J > 7

1090 MOVE "S" TO GRAND-TOTAL-V

1100 MOVE TOTAL-NUM TO GRAND-TOTAL

1110 MOVE "3" TO LEVEL

1120 CALL "CDSEND" USING CDO SALESR LEVEL SALES-SV.

1130 F50-LOOP.

1140 MOVE "TCD3" TO NEXT-TPR.

1150 F60-END.

1160 EXIT PROGRAM.

1170 /*

1180 TOTAL-D.

1190 IF PRODUCT-V (I) NOT = "R" GO TO TOTAL-NR.

1200 IF PRODUCT-CODE-V (I) = "R"

1210 AND QUANTITY-V (I) = "R"

1220 AND PRICE-V (I) = "R"

1230 MULTIPLY QUANTITY (I) BY PRICE (I) GIVING TOTAL-MAN

1240 MOVE TOTAL-MAN TO TOTAL (I)

1250 ADD TOTAL-MAN TO TOTAL-NUM

1260 MOVE SPACES TO SALE-LINES-V (I)

1270 GO TO TOTAL-F.

1280 TOTAL-NR.

1290 IF PRODUCT-CODE-V (I) = "S"

1300 AND QUANTITY-V (I) = "S"

1310 AND PRICE-V (I) = "S"

1320 MOVE SPACES TO SALE-LINES-V (I)

1330 GO TO TOTAL-F.

1340 TOTAL-ERROR.

1350 MOVE 1 TO ERROR-INDICATOR

1360 MOVE ALL "S" TO SALE-LINES-V (I).

1370 TOTAL-F.

1380 EXIT.

1390 ****

1400 PREP-SEND.

COBOL Example Using Forms

47 A2 33UT C-11

1410 IF SALE-LINES (J) = SPACES

1420 MOVE SPACES TO SALE-LINES-V (J)

1430 GO TO END-PREP.

1440 MOVE ALL "S" TO SALE-LINES-V (J)

1450 END-PREP.

1460 EXIT.

TCD3: Clear all NF (NPR) - if another cycle go to TCD2

 TCD3 FROM : FASL

 CD=01/03/86 CT=18:38 MD=01/12/86 MT=18:32

 10 IDENTIFICATION DIVISION.

 20 PROGRAM-ID. TCD3.

 30 AUTHOR. CHEGNA-ROBBE.

 40 ENVIRONMENT DIVISION.

 50 CONFIGURATION SECTION.

 60 SOURCE-COMPUTER. LEVEL-64.

 70 OBJECT-COMPUTER. LEVEL-64.

 80 DATA DIVISION.

 90 WORKING-STORAGE SECTION.

100 01 W-ARGUMENTS.

110 02 LEVEL PIC X.

120 02 WAIT PIC X.

130 02 MECH PIC X(6).

140 01 ZMSG.

150 02 ZMES PIC X(30).

160 02 TRAN PIC X(4).

170 *

180 01 SALES-VR.

190 COPY SALES-V.

200 02 SAES-R.

210 COPY SALESR.

220 *

230 LINKAGE SECTION.

240 COPY TDS-STORAGE.

250 COPY CONSTANT-STORAGE.

260 *

270 01 TRANSACTION-STORAGE.

280 02 TS-PRI-RT.

290 03 TS-WTIME PIC 999.

300 03 TS-WIND PIC 9.

310 03 FILLER PIC X(226).

320 02 TS-REC PIC X(223).

330 **

340 COMMUNICATION SECTION.

TDS COBOL Programmer's Guide

C-12 47 A2 33UT

350 CD CDIN INPUT

360 SYMBOLIC QUEUE ISQ

370 MESSAGE DATE IMD

380 MESSAGE TIME IMT

390 SYMBOLIC SOURCE ISS

400 TEXT LENGTH ITL

410 END KEY IEK

420 STATUS KEY ISK

430 MESSAGE COUNT IMC.

440 01 CDI PIC X(87).

450 CD CDOUT OUTPUT

460 DESTINATION COUNT ODC

470 TEXT LENGTH OTL

480 STATUS KEY OSK

490 ERROR KEY OEK

500 SYMBOLIC DESTINATION OSD.

510 01 CDO PIC X(23).

520 /*

530 PROCEDURE DIVISION USING

540 TDS-STORAGE CONSTANT-STORAGE TRANSACTION-STORAGE.

550 D10-START.

560 MOVE SPACES TO CDI.

570 MOVE SYMBOLIC-QUEUE TO ISQ.

580 MOVE 1 TO ODC.

590 MOVE 3 TO LEVEL.

600 CALL "CDRECV" USING CDI SALESR WAIT SALESV.

610 MOVE ISS TO OSD.

620 MOVE "INITAT" TO MECH.

630 CALL "CDMECH" USING CDO MECH LEVEL.

640 MOVE "TCD2" TO NEXT-TPR.

650 F90-END.

660 EXIT PROGRAM.

COBOL Example Using Forms

47 A2 33UT C-13

1010200.00

GCL

IOF

TDSC-12TCD1 - DATA ENTRY

PRODUCT TYPE FORMS-TDS

NAME OF REPRESENTATIVE RS CODE 100

PRODUCT PRICE QUANTITY CODE TOTAL

IOF

GCL

FORMS

200

400

500

10

20

10

1

2

3

TCD2- TOTAL BY PRODUCT THEN GRAND TOTAL

PRODUCT TYPE FORMS-TDS

NAME OF REPRESENTATIVE RS CODE 100

PRICE QUANTITY CODE TOTAL

GRAND TOTAL **15000.00

TCD3- CLEAR SCREEN NF (NPR) - IF "/" TOTAL CLEAR -STOP

PRODUCT TYPE

NAME OF REPRESENTATIVE

PRODUCT

PRICE QUANTITY CODE TOTALPRODUCT

CODE

2000.00

8000.00

5000.00
GRAND TOTAL **15000.00

FORMS

400.00

500.00

020

010

2

3

2000.00

8000.00

5000.00

TDS COBOL Programmer's Guide

C-14 47 A2 33UT

❑

47 A2 33UT D-1

 D. Example of SUBJOB

This Appendix is divided into two parts. The first part shows how a job is
submitted through a TPR and the second part shows how a GCL procedure is
submitted.

Assume that a user wishes to submit a job by means of a TPR. The job is
contained in the sub-file named C. This file is stored in the uncataloged JCSL
library that resides on the MS/D500 disk volume BD112.

Contents of the subfile:

COBOL SOURCE=&1 INLIB=(&2 &3) &XR LEVEL=NSTD;

$ENDJOB

The TPR is written as follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. SDP11.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 IND-ESI PIC 9 VALUE 1.
01 IND-EGI PIC 9 VALUE 3.
01 DESCRPT-JOB.

 02 JOB-LONG-STRUCTURES COMP-1 VALUE 61.
 02 JOB-CLASS PIC X VALUE SPACE.
 02 JOB-PRIORITY PIC 9 VALUE 7.
 02 JOB-SWITCHES VALUE "00000000000000000000000000000000".
 03 SW PIC 9 OCCURS 32 INDEXED BY I.
 02 JOB-DELETE PIC X VALUE "N".
 02 JOB-HOST PIC X(24) VALUE SPACE.
 02 PARAMETERS.
 03 LONG-STRUCTURE COMP-1 VALUE 54.
 03 DESCR-PARAMETERS
 04 NB-POSITIONALS COMP-1 VALUE 3.
 04 NB-KEYWORDS COMP-1 VALUE 1.
 04 DEFINITION-PARAMETERS.
 05 POSITIONAL-1 COM-1 VALUE 6.6---------|
 05 VALUE-1 PIC X(6) VALUE "UT4V00".<----|

TDS COBOL Programmer's Guide

D-2 47 A2 33UT

 05 POSITIONAL-2 COMP-1 VALUE 4.------|
 05 VALUE-2 PIC X(4) VALUE "JBSL".<---|
 05 POSITIONAL-3 COMP-1 VALUE 20.---------------------|
 05 VALUE-3 PIC X(20) VALUE "DVC=MS/D500 MD=BD111".<--|
 05 KEYWORDS.
 06 KW-LONG COMP-1 VALUE 4.
 06 KW-NAME PIC X(8) VALUE "XR".
 06 KW-VALUE PIC X(4) VALUE "XREF".
01 STAT.
 02 RESULT PIC 9.
 02 FILLER COMP-2.
01 JOB-START.
 02 LENGTH-FOLLOWING COMP-1 VALUE 20.--------------------------|
 02 JOB-COORDINATES PIC X(20) VALUE "C:JCSL:BD112:MS/D500".<---|
 |--------------------
 |
 V
 sfn:efn:md:dvc (uncataloged)

01 MESS-ERR.
 02 FILLER PIC X(11) VALUE "ERROR SKO=".
 02 SKO-ERR PIC XX.
 02 FILLER PIC X(8) VALUE "LEVEL".
 02 LEV-ERR PIC XX.
 02 FILLER PIC X(10) VALUE "VECTORS=".
 02 VECTOR PIC X(12).
01 ZRECEP PIC X(6).
01 AIG PIC 9 VALUE 0.
01 MEMBERI.
 COPY G-COMCORI.
01 MEMBERV.
 COPY G-COMCORV.
01 MEMBERR.
 COPY G-COMCORR.
LINKAGE SECTION.
COPY TDS-STORAGE.
COPY CONSTANT-STORAGE.
01 TRANSACTION-STORAGE PIC X(256).
COMMUNICATION SECTION.
CD CDIN FOR INPUT
 SYMBOLIC QUEUE SQI
 MESSAGE DATE MDI
 MESSAGE TIME MTI
 SYMBOLIC SOURCE SSI
 TEXT LENGTH TLI
 END KEY EKI
 STATUS KEY SKI
 MESSAGE COUNT MCI.
01 CDIN-R PIC X(87).
CD CDOUT FOR OUTPUT
 DESTINATION COUNT DCO

Example of SUBJOB

47 A2 33UT D-3

 TEXT LENGTH TLO
 STATUS KEY SKO
 ERROR KEY EKO
 SYMBOLIC DESTINATION SDO.
01 CDOUT-R.
 02 FILLER PIC 9(4) VALUE 1.
 02 FILLER PIC 9(4) VALUE 1.
 02 FILLER PIC X(15).

PROCEDURE DIVISION USING TDS-STORAGE CONSTANT-STORAGE
TRANSACTION-STORAGE.

START.
 MOVE SYMBOLIC-QUEUE TO SQI.
 RECEIVE CDIN MESSAGE INTO ZRECEP.
 IF EKI = ZERO MOVE 1 TO AIG GO TO START.
 MOVE SSI TO SDO.
 IF AIG = 1 MOVE "MESSAGE TOO LONG. RESTART TRANSACTION"
 TO MESS-ERR
 GO TO SEND-ERROR.
 DISPLAY "CALL SUBJOB PENDING" UPON TERMINAL.
 MOVE ZERO TO JOB-SWITCHES.

 CALL "SUBJOB" USING DESCRPT-JOB STAT JOB-START.

 IF RESULT NOT=ZERO
 DISPLAY "OH WELL.. RESULT= " RESULT UPON TERMINAL
 MOVE SPACES TO NEXT-TPR GO TO TPR-END.

SEND-FORM.

**
* *
* ACTIVATE FORM AND REQUEST ENTRY OF CUSTOMER NUMBER *
* *
**

CALL "CDGET" USING CDOUT-R MEMBERI IND-ESI.
IF SKO = "AG" DISPLAY "ERROR DATE..TO BE RECOMPILED" UPON CONSOLE
 MOVE SPACES TO NEXT-TPR GO TO TPR-END.
IF SKO NOT="OO" AND NOT="AB" MOVE "10" TO LEV-ERR PERFORM ERR-SKO.
MOVE SPACES TO G-COMCOR-V.
MOVE "S" TO G-L24-V.
MOVE "ENTER CUSTOMER NO" TO G-L24.
CALL "CDSEND" USING CDOUT-R MEMBERR IND-EGI MEMBERV.
IF SKO NOT="00" AND NOT="AB" MOVE "11" TO LEV-ERR
 GO TO ERR-SKO.
GO TO TPR-END.

TDS COBOL Programmer's Guide

D-4 47 A2 33UT

The following listing shows the results of submitting the job.

JOBID + C USER = KEHOE PROJECT = PK

<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-

12:10:46 JOB INTRODUCED FROM
 C JBSL BD11

<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-

12:10:49 START OF TRANSLATION

** PARAMETER VALUES **

&1 = UT4V00
&2 = JBSL
&3 = DVC=MS/D500 MD=BD111
&XR = XREF
 $JOB C USER=KEHOE;

WARNING 150 THIS STATEMENT HAS BEEN GENERATED

 COBOL SOURCE=&1 INLIB=(&2 &3) &XR LEVEL=L64;

 RECORD COUNT: 1

12:10:49 END OF TRANSLATION

SUBMITTING A GCL PROCEDURE

IDENTIFICATION DIVISION.
PROGRAM-ID. SDP11.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 IND-ESI PIC 9 VALUE 1.
01 IND-ESI PIC 9 VALUE 3.
01 DESCRPT-JOB.

 02 JOB-LONG-STRUCTURES COMP-1 VALUE 61.
 02 JOB-CLASS PIC X VALUE SPACE.
 02 JOB-PRIORITY PIC 9 VALUE 7.
 02 JOB-SWITCHES.
 03 SW PIC 9 OCCURS 32 INDEXED BY I.
 02 JOB-DELETE PIC X VALUE "N".
 02 JOB-HOST PIC X(24) VALUE SPACE.

Example of SUBJOB

47 A2 33UT D-5

 02 PARAMETERS.
 03 LONG-STRUCTURES COMP-1 VALUE 49.

 03 DESCR-PARAMETERS.
 04 NB-POSITIONALS COMP-1 VALUE 3.

 04 NB-OF-KEYWORDS COMP-1 VALUE 0.
 04 DEFINITION-PARAMETERS.
 05 POSITIONAL-1 COMP-1 VALUE 24. ---------------------|
 05 VALUE-1 PIC X(24) VALUE "MWINLIB BIN SYS.HBINLIB;"<----|
 05 POSITIONAL-2 COMP-1 VALUE 3 . -----------|
 05 VALUE-2 PIC X(3) VALUE "DJ ". <--------|
 05 POSITIONAL-3 COMP-1 VALUE 12. ------------|
 05 VALUE-3 PIC X(12) VALUE "JOBID = x114". <----------|

01 STAT.
 02 RESULT PIC 9.
 02 FILER COMP-2
01 JOB-START. -----------------------|
 02 LENGTH-FOLLOWING COMP-1 VALUE 20. <-----|
 02 JOB-COORDINATES PIC X(20) VALUE "SYS.HSLLIB..ABSENTEE".
01 MESS-ERR.
 02 FILLER PIC X(11) VALUE "ERROR SKO=".
 02 SKO-ERR PIC XX.
 02 FILLER PIC X(8) VALUE "LEVEL".
 02 LEV-ERR PIC XX.
 02 FILLER PIC X(10) VALUE "VECTORS=".
 02 VECTOR PIC X(12).
01 ZRECEPT PIC X(6).
01 AIG PIC 9 VALUE 0.
01 MEMBERI.
 COPY G-COMCORI.
01 MEMBERV.
 COPY G-COMCORV.
01 MEMBERR.
COPY G-COMCORR.
LINKAGE SECTION
COPY TDS-STORAGE.
COPY CONSTANT-STORAGE.
01 TRANSACTION-STORAGE PIC X(256).
COMMUNICATION SECTION.
CD CDIN FOR INPUT
 SYMBOLIC QUEUE SQI
 MESSAGE DATE MDI
 MESSAGE TIME MTI
 SYMBOLIC SOURCE SSI
 TEXT LENGTH TLI
 END KEY EKI
 STATUS KEY SKI
 MESSAGE COUNT MCI.

TDS COBOL Programmer's Guide

D-6 47 A2 33UT

01 CDIN-R PIC X(87).
CD CDOUT FOR OUTPUT
 DESTINATION COUNT DCO
 TEXT LENGTH TLO
 STATUS KEY SKO
 ERROR KEY EKO
 SYMBOLIC DESTINATION SDO.
01 CDOUT-R.
 02 FILLER PIC 9(4) VALUE 1.
 02 FILLER PIC 9(4) VALUE 1.
 02 FILLER PIC X(15).

PROCEDURE DIVISION USING TDS-STORAGE CONSTANT-STORAGE TRANSACTION-
STORAGE.

START.
MOVE SYMBOLIC-QUEUE TO SQI.
RECEIVE CDIN MESSAGE INTO ZRECEP.
IF EKI = ZERO MOVE 1 TO AIG GO TO START.
MOVE SSI TO SDO.
IF AIG = 1 MOVE "MESSAGE TOO LONG. RESTART TRANSACTION" TO MESS-
ERR
 GO TO SEND-ERROR.
DISPLAY "CALL SUBJOB PENDING" UPON TERMINAL.
MOVE ZERO TO JOB-SWITCHES.

 CALL "SUBJOB" USING DESCRPT-JOB STAT JOB-START.

IF RESULT NOT=ZERO DISPLAY "OH WELL.. RESULT = " RESULT UPON
TERMINAL
 MOVE SPACES TO NEXT-TPR GO TO TPR-END.

47 A2 33UT E-1

 E. TCAM

Note that the features described in this Appendix are not part of standard TDS; to
use these features, you need a special MI (Marketing Identifier).

TDS uses TCAM (TDS Communications Access Method) for pass through
communications. TCAM can be used to communicate between a Front-End
application (which initiates the dialog) and a Back-End application (which does not
initiate the dialog). The following diagram shows this communication method.

 Transactions
 Using
 T C A M

REMOTE
APPLICATION

TDSEND USER
Principal
 Session

Pass-Thru
 Session

CORRESPONDENT
BACK-END

CORRESPONDENT
FRONT-END

CORRESPONDENT

Figure E-1. Using TCAM as Communication between the End User and the
Remote Application

A session is the logical link between two correspondents. TDS creates it at the
time of connection. Figure E-1 shows a transaction using TCAM with two
sessions: the principal session and the pass-thru session. The principal session
initiates a transaction that will dialog with a remote application. When the
transaction starts, the principal session is already open and belongs to the
transaction. A TCAM call statement opens the pass-thru session, and it then
belongs to the transaction.

Figure E-1 shows three correspondents: the logged user, the TDS, and the remote
application. These three correspondents dialog with each other through two
sessions. The correspondents cannot send data at the same time. Instead, they take
turns. The correspondent with the turn has the right to send data to another
correspondent.

During the session, the TPR sends and receive events and interruptions (also called
special events). These are present in the form of a returned status in a call
statement.

TDS COBOL Programmer's Guide

E-2 47 A2 33UT

E.1 The TCAM Call Statements

With TCAM, an end user can initialize a TDS transaction to dialog with another
application. This application can be on the same site as the TDS session, or on
another site. In this way, the transaction can access the files and databases declared
in the TDS and those belonging to the remote application.

TDS uses TCAM in the transaction code of a set of CALL statements
(or procedures) to communicate with other applications. The TCAM call
statements are as follows:

TERMID gets the terminal characteristics. (Principal session
only.)

TOPEN opens a TCAM pass through session.
(Pass-thru session only.)

TEVENT returns session events to the transaction.
(Both sessions.)

TRECV receives data from the remote application.
(Pass-thru session only.)

TRCVIT receives interruptions from the remote application.
(Pass-thru session only.)

TSEND sends data to the remote application.
(Pass-thru session only.)

TSENDIT sends interruptions to the remote application.
(Both sessions.)

TCLOSE closes the TCAM pass-thru session. (Pass-thru session
only.)

TCAM

47 A2 33UT E-3

E.2 Using TCAM

A transaction uses TCAM to create a pass-thru session. This pass-thru session
provides the communication environment between the TDS and the remote
application. However, the end user does not see the TDS and is able to
communicate with the remote application as though the TDS were not there.

There is no defined application protocol for the pass-thru session, leaving the user
without restrictions in using the pass-thru session.

There is no message recovery function on the pass-thru session. However, the end
user can write an application (TDS and remote) to use this function.

A transaction in pass-thru mode manages the pass-thru and the principal session
using this set of verbs:

Principal Session Pass-Thru Session

CALL "TEVENT" CALL "TOPEN"
RECEIVE CALL "TEVENT"
SEND CALL "TRECV"
CALL "TSENDIT" CALL "TSEND"
CALL "TCLOSE" (with reason 35) CALL "TSENDIT"

CALL "TRCVIT"
CALL "TCLOSE"

NOTE:
In the principal session, there is no verb especially defined to receive the
interruption. TDS sends them to the transaction using CALL "TEVENT".

TDS COBOL Programmer's Guide

E-4 47 A2 33UT

Pass-Thru Session Limits

• A transaction can open only one pass-thru session.

• The transaction that opens a session, manages the session.

• The pass-thru session is closed at the end of the transaction. Either the
transaction or the TDS closes it. If it is not closed, TCAM closes it
automatically.

• A transaction can not be in a pass-thru mode and XCP1 mode at the same time.
(The TOPEN or CP-ALLOCATE call statement in the transaction defines these
modes.)

• A transaction cannot be in a pass-thru mode and XCP2 mode at the same time.

• A user connected to an OMH terminal cannot enter a transaction using the TDS
pass-thru.

• TDS does not include the pass-thru sessions when checking the maximum
number of connections allowed.

Using the Question Mark (?)

The user, when logged to a terminal can use the question mark in a transaction as
follows:

• When the user is logged on to a terminal and the transaction is not in pass-thru
mode, the question mark displays the most recent message again.

• When the transaction is in pass-thru mode, the question mark does nothing. The
transaction will receive (in the RECEIVE verb) a question mark (?), but the
message is normal.

Using the Break Signal

In pass-thru mode, a break signal at the terminal sends an interruption in the CALL
"TEVENT", using a status of 43 (V-ATTENTION). This is not the normal break
signal processing by TDS.

TCAM

47 A2 33UT E-5

EXAMPLE: Break Signal

The following diagram shows a break signal.

• At the start of this example, the terminal has the turn in the principal session, and
the transaction has the turn in the pass-thru session.

• When the break occurs at the terminal, it is sent to the transaction as an
interruption message (message 1), which is a status of 43 (V-ATTENTION) in
the CALL "TEVENT". TPR N then sends this to the remote in the CALL
"TSENDIT", using TYPE = 0. This is message 2.

• The remote does not have the turn. So it sends an interruption message
(message 3) to the transaction, asking for the turn.

• TPR N+1 receives a status of 35 (V-INTERRUPT in a pass-thru session) in the
CALL "TEVENT", so it sends a CALL "TRCVIT" to the terminal. The result is
TYPE = 1 (demand the turn).

• In the principal session, TPR N+1 still does not have the turn, so it sends an
interruption message (message 4) to the terminal, asking for the turn.

• The transaction receives the turn after it gets a status of 41 (V-DATA) in the
principal session.

❑

The following diagram shows a break signal.

TERMINAL TDS REMOTE

V-interrupt 4

(V-dmndturn)

V-data 5

V-interrupt 1
(V-attention)

V-interrupt 3
(V-dmndturn)

V-interrupt 2
(V-attention)

CALL "TEVENT"
code =43

ALL "TSENDIT"
TYPE = 0

TPR
N

CALL "EVENT"
code = 35
CALL "TRECVIT"
TYPE= 1
CALL "TSENDIT"
TYPE =1

TPR
N+1

Figure E-2. The Break Signal

TDS COBOL Programmer's Guide

E-6 47 A2 33UT

E.3 TCAM Call Statements

E.3.1 The CALL "TERMID" Procedure

Syntax

CALL "TERMID" USING ADDRESS OF data-name1.

Description

This call retrieves the principal correspondent characteristics. These characteristics
are for the terminal and are necessary for TDS to open a pass-thru session.

The usage and parameters for this verb are described in the chapter on session
management procedures, in the subsection on the CALL "TERMID" procedure.

E.3.2 The CALL "TOPEN" Procedure

Syntax

CALL "TOPEN" USING ADDRESS OF data-name1,
 data-name2,
 data-name3,
 data-name4,
 data-name5,
 ADDRESS OF data-name6.

TCAM

47 A2 33UT E-7

Description

This call opens a pass-thru session between the TDS transaction and a target
application.

A pass-thru session is in asynchronous mode and TWA (Two-Way Alternate) mode.
TOPEN opens an asynchronous pass-thru session. Before opening a pass-thru
session, the transaction checks a status of 104 (session pass-thru already opened),
which determines if there is one already opened.

TDS verifies the structure and the parameters. If the structure is too small, or if the
parameters are invalid, the ARGERR return code aborts the transaction.

The status of 30 or 31 on CALL "TEVENT", not 0, acknowledges that the
asynchronous session is open. Status 0 means the transaction is in pass-thru mode.

When the target application is a TDS, TDS fills the SYMBOLIC-SOURCE field
with the terminal internal address.

The FILLER field of this call can suppress the transport of the device header and
the pending timer event. If the first four characters in this field are set to the
NDVH value on the TOPEN statement performed in TDS1, the device headers
coming from the terminal and received by TDS1 are not sent to the target, and
TDS1 will not receive any device header from the target.

If the last 4 characters in the FILLER field are NOTM, the principal session (with
send EMI, or without send) is no longer pending on the wait-time. An event
coming from the pass-thru session will start the TPR. This is useful in detecting a
transmission failure from the PT session when the target has kept the turn.

TDS COBOL Programmer's Guide

E-8 47 A2 33UT

data-name1 Usage

data-name1 is an input parameter. It is the name of a structure that must be
declared as follows:

01 data-name1.
 02 DESTMBX PIC X(8) VALUE "IOF".
 02 DESTNODE PIC X(4) VALUE SPACES.
 02 PASSWORD PIC X(12) VALUE SPACES.
 02 TURN PIC X VALUE "A".
 02 OTERMID.
 03 CORRESPID PIC X(12).
 03 PROJECT PIC X(12).
 03 BILLING PIC X(12).
 03 LOCALDVC.
 04 MODEL COMP-1.
 04 TYPE.
 05 DISPLAY PIC X.
 05 KEYBRD PIC X.
 05 PRINTER PIC X.
 04 PAGEL COMP-1.
 04 LINEL COMP-1.
 04 DVFEATR
 05 ROLLUP PIC X.
 05 WRAPAR PIC X.
 05 LINFEED PIC X.
 05 LINFOLD PIC X.
 05 HTAB PIC X.
 05 VTAB PIC X
 03 FILLER PIC X(12).
 02 USERINFO PIC X (32).

Parameters for data-name1

DESTMBX is an 8-character alphanumeric field (PIC X(8)) that
contains the name of the remote application.

DESTNODE is a 12-character alphanumeric field (PIC X(4)) that
contains the node name of the remote application. If
this field is blank, the remote application is on the
same site as the local TDS.

TCAM

47 A2 33UT E-9

PASSWORD is a 12-character alphanumeric field (PIC X (14)) that
contains the target correspondent password. If the
CORRESPID field of this structure contains the
principal correspondent name and the PASSWORD
field is left blank, then TDS pass-thru retrieves the
password from the CATALOG.

TURN is a 1-character alphanumeric field (PIC X) that
contains one of the following values: A or I.

For A, the transaction specifies that the initial turn be
given to the remote application.

For I, the transaction specifies that the initial turn stay
at the transaction.

OTERMID Either the CALL "TERMID" statement or the
transaction itself can fill this part of the structure. For
more information, see the CALL "TERMID"
statement.

USER INFO This field is specific to the remote application, and it
can be redefined.

For example, when the remote application is IOF, the structure is as follows:

02 USERINFO.
 03 SEPAR1 PIC X value "$".
 03 STATION PIC X(8)./*station name*/
 03 SEPAR2 PIC X value "!".
 03 OPTION PIC X(22) value "NSTARTUP"

Where:

SEPAR 1 "$" if there is a station.
" " (blank) if there is not a station.

SEPAR 2 "!" if there is an IOF option.
" " (blank) if there is not.

TDS COBOL Programmer's Guide

E-10 47 A2 33UT

When the remote application is another TDS, the TDS that is requesting the
connection gives "user information" to the remote TDS. The structure is as
follows:

02 USERINFO.

 03 FILLER PIC X(9).
 03 SEPAR3 PIC X VALUE "?".
 03 PARAM PIC X VALUE "A".
 03 SYSLGTH PIC X.
 03 SYSHDR PIC X(8).
 03 FILLER PIC X(12).

You may pass information to the LOGON transaction of TDS by placing "%" in the
SYSLGTH field and up to 8 characters in the SYSHDR field. The LOGON
transaction can retrieve the information via a RECEIVE statement.

Where:

SEPAR 3 "?" if there are presentation options (which are
specified for a TDS remote).

" " (blank) if there is not a TDS option.

PARAM encodes the two options that are described at terminal
level: UNEDIT and NSYSMSG.

UNEDIT. In the case of VIP, messages and device
procedure headers are visible to the application.

NSYSMSG. TDS cannot send system messages in this
session.

TCAM

47 A2 33UT E-11

The encoding is as follows:

“A” No UNEDIT, no NSYSMES
“B” UNEDIT, no NSYSMES
“C” no UNEDIT, NSYSMES
“D” UNEDIT, NSYSMES
“S” Same as A, but with the TRACE PRINT option
“T” Same as B, but with the TRACE PRINT option
“U” Same as C, but with the TRACE PRINT option
“V” Same as D, but with the TRACE PRINT option

SYSLGTH contains one of two values: the effective length of the
SYSHDR field ("0", "2", "4", "6", "8"), or "%", which
is a particular separator that separates strings from a
system header. See below.

SYSHDR defines the presentation of the service messages that
TDS sends. It defines a prefix that is inserted in front
of each TDS service message, which overrides the one
defined at TDS GENERATION time in the
SERVICE-MESSAGE statement. This field is
encoded as follows:

It is encoded with each character representing a
hexadecimal EBCDIC DIGIT. The user can pass a
particular string (of up to 8 alpha-numeric characters)
at connection time and the LOGON transaction
processes it. This string is sent to the first TPR of the
LOGON transaction as a message in the RECEIVE
NO DATA statement. The RECEIVE mechanism
determines if the user has provided a string. Because
the previous system header also has a "%" string, these
two mechanisms cannot be used at the same time.

For example, the default prefix, which is CR-LF, is
encoded with the 4 characters "OD25".

TDS COBOL Programmer's Guide

E-12 47 A2 33UT

data-name2 Usage

data-name2 is an output parameter. It is a computational field (COMP-1) that
defines the status returned on the CALL "TOPEN" statement. The returned status
values are:

0 DONE
1 REJECT-ABN
2 REJECT-DNNOTOP
3 REJECT-DNSAT
4 REJECT-DMUNKN
5 REJECT-DMNOTOP
6 REJECT-DMSAT
7 REJECT-DASAT
9 REJECT-DIAREJ
21 REJECT-TIMEOUT
52 OPERR-RESOV
56 OPERR-DSTUNS
64 REJECT-DNUNKN
65 REJECT-PDNNOTAV
66 REJECT-DUPUSERID
67 REJECT-DUPSTID
68 REJECT-MODNOTAV
85 INV-OPSTRUC
100 ERR-USERID
101 ERR-MODEL
102 ERR-TERMCHAR
103 ERR-XCP
104 ERR-OPALREADY
128 PTARGERR

data-name3 Usage

data-name3 is an output parameter. It is a computational field (COMP-2) used for
debugging because it contains wrong status information. The TPR can print it.

data-name4 Usage

data-name4 is a computational field (COMP-1) used to pass four parameters or
less. If more than four parameters are passed, this is an output field containing the
pass-thru session identifier.

TCAM

47 A2 33UT E-13

data-name5 Usage

data-name5 is a computational field (COMP-1) that sets the timer on a remote
session. For more information, see the data-name5 parameter description of the
TSEND procedure.

data-name6 Usage

data-name6 is the name of a structure that extends the capabilities of the CALL
"TOPEN", as follows:

01 data-name6.
 02 EXTENDED-VERSION COMP-1.
 02 EXTENDED-MBXEXT PIC X(4).

Parameters for data-name6

EXTENDED-VERSION must be set to 1.

EXTENDED-MBTEXT is either the name of the extended remote mailbox or
must be set to spaces.

If the timer on remote session is not used, it must be set to 0.

TDS COBOL Programmer's Guide

E-14 47 A2 33UT

E.3.3 The CALL "TEVENT" Procedure

Syntax

CALL "TEVENT" USING dataname1,
 dataname2,
 dataname3.

Description

In pass-thru mode this call must be at the beginning of each TPR. If not, the
UBUGGER return code aborts the transaction.

This procedure returns all of the VCAM or timer events in the pass-thru session to
the transaction. However, it returns only some of the VCAM events in the
principal session. This tells the user what the next should be.

The status values all correspond to VCAM semaphore messages, VCAM
interruptions, and timer semaphore messages in the principal and pass-thru
sessions. In the pass-thru session, some of the interruptions are returned to the
transaction with the CALL "TRCVIT".

If the structure is too small, or if the parameters are invalid, the ARGERR return
code aborts the transaction.

Usage

TEVENT usage implies that a commitment point is forced at the end of the current
TPR.

data-name1 is an output parameter. It is a computational field (COMP-1) that
defines the status returned on the "TEVENT" procedure.

TCAM

47 A2 33UT E-15

The following is a list of the status values returned involving the pass-thru session:

29 PT-TIMER
30 PT-ACK-IN
31 PT-ACK-ACC
32 PT-CLOSED
33 PT-DATA
34 PT-CREDIT
35 PT-INTRPT
36 PT-ACK-REJ
70 SYSTERR
71 IGNORE
105 ERR-NOTPT

The following is a list of the status values returned involving the principal session:

40 MN-CLOSED
41 MN-DATA
42 MN-CREDIT
43 MN-ATT
44 MN-ABNTERM
45 MN-TERMREQ
46 MN-TIMEOUT

data-name2 is an output parameter. It is a computational field (COMP-1) that
defines the secondary status returned on the "TEVENT" procedure. This field is
used only if the value of the first status in data-name1 is 36 (PT-ACK-REJ: pass
thru session).

TDS COBOL Programmer's Guide

E-16 47 A2 33UT

The following is a list of the status values that this field returns:

1 REJECT - ABN
2 REJECT - DNNOTOP
3 REJECT - DNSAT
4 REJECT - DMUNKN
5 REJECT - DMNOTOP
6 REJECT - DMSAT
7 REJECT - DASAT
9 REJECT - DIAREJ
10 REJECT - PRESREJ
21 REJECT - TIMEOUT
23 REJECT - RIGHVIOL
24 REJECT - SECVIOL
52 OPERR - RESOV
55 OPERR - LMBXSAT
56 OPERR - DSTUNS
64 REJECT - DNUNKN
65 REJECT - PDNNOTAV
66 REJECT - DUPUSERID
67 REJECT - DUPSTID
68 REJECT - MODNOTAV
>=128 PTARGERR

data-name3 is an output parameter. It is a computational field (COMP-2) used for
debugging because it contains wrong status information. The TPR can print it.

Timeout

The "TEVENT" call returns a status of 46, which is a timeout status. This code is
used about the dialog on the principal session only. Remember the following rules
about timeout management (TDS is not in pass-thru mode):

• The TDS-STORAGE specifies the wait time.

• After a SEND WITH EGI, when the TPR specifies a wait time, the next TPR can
start after the terminal response arrives (even before the delay), or after the wait
time delay.

• After a SEND WITH EMI, when the TPR specifies a wait time, the next wait
time starts after the wait time delay. However, in this case, the TPR cannot start
before the delay, and even later because the V-CREDIT is also waiting.

In pass-thru mode, the timeout status can appear (when a wait time is specified)
according to the following two timeout examples.

TCAM

47 A2 33UT E-17

EXAMPLE: Timeout after a SEND WITH EGI

The diagram below shows how CALL "TEVENT" uses a timeout after a SEND
WITH EGI.

• During the processing TPR N, the first event (1) coming from the remote
application takes place in the pass-thru session.

• TPR N specifies the wait time delay. As a result, the timer starts at the end of
TPR N, when the message (2) is sent to the terminal.

• TPR N+1 can start before the end of the delay because the TDS has received the
first event (1), which has not yet returned to the transaction.

• During the processing of TPR N+1, the timer notification occurs, which means
that the terminal has not answered. No other event occurs in the pass-thru
session. TPR N+2 starts and the timeout is returned on "TEVENT".

❑

V-data 2

level = 3

EVENT 1

TPR
N+1

notif timer

SET WAIT-TIME

SEND WITH EGI
 TIMER STARTED

TPR
N

CALL "TEVENT"
==>TIMEOUT (46)

TPR
N+2

TERMINAL TDS REMOTE

CALL "TEVENT"
==> event 1

Figure E-3. Timeout after SEND WITH EGI

TDS COBOL Programmer's Guide

E-18 47 A2 33UT

EXAMPLE: Timeout after a SEND WITH EMI

The following diagram shows how the CALL "TEVENT" uses a timeout after a
SEND WITH EMI.

• During the processing of TPR N, the first event (1) takes place in the pass-thru
session.

• TPR N specifies the wait time delay. As a result, the timer starts at the end of
TPR N, when the message (2) is sent to the terminal.

• Unlike in the SEND WITH EGI, TPR N+1 must wait to start after the delay.

• The CALL "TEVENT" returns the status of 46 (TIMEOUT). The principal
session events (in this case, timeout) are returned to the transaction before this
pass-thru session (in this case, event 1).

• Note that it is not necessary to wait for the V-CREDIT before starting TPR N+1.
This is because this takes place in pass-thru mode.

❑

TERMINAL TDS REMOTE

V-data 2

level = 2

SET WAIT-TIME

SEND WITH EMI
 TIMER STARTED

TPR
 N

EVENT 1

CALL "TEVENT"
==>TIMEOUT (46)

TPR
N+2

CALL "TEVENT"
==> EVENT 1

TPR
N+1

NOTIF TIMER

CALL "TEVENT"
==> V-credit (42)

TPR
N+3

V-credit

Figure E-4. Timeout after SEND WITH EMI

TCAM

47 A2 33UT E-19

E.3.4 The CALL "TRECV" Procedure

CALL "TRECV" USING ADDRESS OF data-name1,
 data-name2,
 data-name3.

Description

Receives the data from the remote application in the pass-thru session.

This call must be used to receive data in the pass-thru session. The ARGERR
return code aborts the transaction if the parameters are not valid.

Usage

data-name1 is the name of the structure that is declared as follows:

01 data-name1.
 02 LEVEL COMP-1.
 02 LENGTH COMP-1.
 02 BUFFER PIC X(LENGTH).

LEVEL is an output field that contains the retrieved enclosure
level. Valid values are:
1: end of record. The remote application keeps the
 turn
3: end of interaction unit. The transaction receives the
 turn.
5: end of message group.

LENGTH is both an input and output field. As an input field, it
must contain the maximum buffer length. As an output
field, it contains the length of the message received.

BUFFER is an output field that contains the message received.

TDS COBOL Programmer's Guide

E-20 47 A2 33UT

data-name2 is an output parameter. It is a computational (COMP-1) field that
defines the status that the "TRECV" statement returns. The following is a list of
the status values:

0 DONE
35 PT-INTRPT
37 PT-INTRPT
38 PT-TRUNC
70 SYSTERR
71 IGNORE
80 INV-BUFLG
105 ERR-NOTPT

data-name3 is an output parameter. It is a computational field (COMP-2) used for
debugging.

E.3.5 The CALL "TRCVIT" Procedure

Syntax

CALL "TRCVIT" USING ADDRESS OF data-name1,
 data-name2,
 data-name3.

Description

Receives the interruptions that come from a remote application in a pass-thru
session. The ARGERR return code aborts the transaction if the parameters are not
valid.

Usage

data-name1 is the name of the structure that is declared as follows:

01 data-name1.
 02 TYPE COMP-1.
 02 LENGTH COMP-1.
 02 BUFFER PIC X(LENGTH).

TCAM

47 A2 33UT E-21

TYPE is an output field that contains the type of the
interruption received. Valid values are:
1: V-DMNDTURN
2: V-PURGE
3: V-ABNTERM
8: V-TERMREQ
9: V-TELEG

LENGTH is both an input and output field that is used when the
type value is 9 (v-teleg). As an input field, it contains
the length of a telegram (80 bytes), to avoid a
truncation. As an output field, it contains the telegram
length.

BUFFER is an output field that is used when the interruption
type is 9. It contains the telegram.

data-name2 is an output parameter. It is a computational (COMP-1) field that
defines the status that the "TRCVIT" statement returns. The status values are:

0 DONE
35 PT-INTRPT
37 PT-TRUNC
70 SYSTERR
71 IGNORE
80 INV-BUFLG
105 ERR-NOTPT

data-name3 is an output parameter. It is a computational field (COMP-2) used for
debugging because it contains wrong status information. The TPR can print it.

E.3.6 The CALL "TSEND" Procedure

Syntax

CALL "TSEND" USING ADDRESS OF data-name1,
 data-name2,
 data-name3,
 data-name4,
 data-name5,
 data-name6.

TDS COBOL Programmer's Guide

E-22 47 A2 33UT

Description

Sends data to the remote application in a pass-thru session.

The ARGERR return code aborts the transaction if the parameters are not valid.

Usage

data-name1 is the name of the structure that is declared as follows:

01 data-name1.
 02 LEVEL COMP-1.
 02 LENGTH COMP-1.
 02 BUFFER PIC X(LENGTH).

Where:

LEVEL is an input field that contains the enclosure level.
Valid values are:

1: end of record. The transaction keeps the turn.
2: end of quarantine unit. The transaction keeps the
 turn.
3: end of interaction unit. The remote application
 receives the turn.
5: end of message group.

LENGTH is an input field that contains the length of the message
to be sent.

BUFFER is an input field that contains the message to be sent.

data-name2 is an output parameter. It is a computational (COMP-1) field that
defines the status that the "TSEND" statement returns. The following is a list of
the status values:

0 DONE
35 PT-INTRPT
38 PT-TURNVIOL
39 PT-WAITCR
70 SYSTERR
80 INV-BUFLG
81 INV-LEVEL
86 INV-DVCHD
105 ERR-NOTPT
106 ERR-DVCHD

TCAM

47 A2 33UT E-23

data-name3 is an output parameter. It is a computational field (COMP-2) used for
debugging because it contains wrong status information. The TPR can print it.

data-name4 is not valid for this release. It is a computation field (COMP-1).

data-name5 is a computational field (COMP-1) that sets the timer (in seconds) in a
remote session. A TPR can set this timer only once, and it detects if the remote
application never gives a response. If the remote application does give a response
before the time expires, TDS reset the timer and the TPR can be restarted.

data-name6 is the name of a structure that gives the device header to the remote
application, as follows:

COBOL DECLARATION
01 UDVCHD.
 02 UDVCHDLG COMP-1.
 02 UDVCHDVL PIC X(30).

In the following example, no checking is done on the validity of the device header
contents compared to the terminal type. The valid characters are in the set of 0 to 9
and A to F:

MOVE 6 TO UDVCHDLG.
MOVE "004040" TO UDVCHDVL.

The following is a list of the status values:

86 invalid characters in device header
106 function not allowed (DPNS).

TDS COBOL Programmer's Guide

E-24 47 A2 33UT

E.3.7 The CALL "TSENDIT" Procedure

Syntax

CALL "TSENDIT" USING data-name1,
 data-name2,
 ADDRESS OF data-name3,
 data-name4,
 data-name5.

Description

Required in order to send interruptions to the remote application in a pass-thru
session or to a principal correspondent in a principal session.

The ARGERR return code aborts the transaction if the parameters are not valid.

Usage

data-name1 is an input character. It is a 1-character alphanumeric field (PIC X). It
contains the interruption destination. Valid values are as follows:

1: Send to the principal correspondent.
2: Send to the remote application.

data-name2 is an input parameter. It is a 1-character alphanumeric field (PIC X)
and contains the type of interruption to be sent.

Valid values on a pass-thru session are as follows:

0: V-ATTENTION
1: V-DMNDTURN
9: V-TELEG

Valid values on a principal session are as follows:

1: V-DMNDTURN
9: V-TELEG

TCAM

47 A2 33UT E-25

data-name3 is an input parameter. It is the name of a structure used if the type of
interruption is 9 (V-TELEG), declared as follows:

01 data-name3.
 02 LENGTH COMP-1.
 02 BUFFER PIC X(80).

LENGTH contains the length of the telegram to be sent. This
length contains the size of device headers
(from 1 to 16 bytes) plus one more byte if the
DATANET version is DNS-V4. This length must be
no more than 80 bytes.

BUFFER contains the telegram.
data-name4 is an output parameter. It defines the status returned by "TSENDIT".

The following is a list of the status values.

In a pass-thru session:

35: PT-INTRPT

In a principal session:

43 MN-ATT
44 MN-ABNTERM
45 MN-TERMREQ

In both sessions:

0 DONE
70 SYSTERR
72 TURN-ALREADY
80 INV-BUFLG
82 INV-INTTYP
83 INV-DEST
105 ERR-NOTPT

data-name5 is an output parameter. It is a computational field (COMP-2) used for
debugging because it contains wrong status information. The TPR can print it.

TDS COBOL Programmer's Guide

E-26 47 A2 33UT

E.3.8 The CALL "TCLOSE" Procedure

Syntax

CALL "TCLOSE" USING data-name1,
 data-name2,
 data-name3.

Description

Required to close the pass-thru session if the close is abnormal. This procedure is
also required in order to inform the TDS, with a status of 35, when the principal
session disconnects. For more information, see the subsection describing abnormal
disconnections, later in this appendix.

The ARGERR return code aborts the transaction if the parameters are not valid.

Usage

data-name1 is an input parameter. It is a computational field (COMP-1) that
contains the code giving the reason for the close. The code is given to the remote
application. Valid values are from 35 through 44.

data-name2 is an output parameter. It is a computational (COMP-1) field that
defines the status that the "TCLOSE" statement returns. The following is a list of
the status values:

0 DONE
73 PTCLS-ER
84 INV-CLCODE
105 ERR-NOTPT

data-name3 is an output parameter. It is a computational field (COMP-2) used for
debugging because it contains wrong status information. The TPR can print it.

TCAM

47 A2 33UT E-27

E.4 Return Status List and Definitions

Status Code Definition

0 Successful completion of the verb

The following status codes occur when the pass-thru session rejects the open verb.
(V-REJECT)

Status Code Definition

1 Abnormal rejection reason
2 Destination node not operable
3 Destination node saturated
4 Destination mailbox unknown
5 Destination mailbox not operable
6 Destination mailbox saturated
7 Destination application saturated
9 Dialog rejection (as a result of negotiation)
10 Presentation rejection (as a result of negotiation)
21 Timeout waiting for acknowledgement
23 Access right violation (object access)
24 Security violation (subject access)
30 Acknowledgement of open in pass-thru session. The

transaction gets the turn and can call the TSEND
statement.

31 Acknowledgement of open in pass-thru session. The
remote application gets the turn. The transaction must
wait, using TEVENT in the next TPR, for status
V-DATA (33) from the remote application.

32 V-MGCLOSED received in the pass-thru session. The
transaction is no longer in pass-thru mode.

33 V-DATA received in the pass-thru session. The TPR
can call the "TRECV" statement in order to receive the
data from the remote application.

34 V-CREDIT received in the pass-thru session. The
TPR can call the "TSEND" statement in order to send
some data to the remote application.

35 V-INTERRUPT received in the pass-thru session. The
TPR must call the "TRCVIT" statement in order to
receive the interruption coming from the remote
application.

36 V-OPENACK received in the pass-thru session, but
the open is rejected. The second parameter of
"TEVENT" gives more details on the rejection
reasons.

TDS COBOL Programmer's Guide

E-28 47 A2 33UT

37 The buffer length is insufficient, resulting in a
truncation. Some data is lost.

38 TURNVIOL. No data is received or sent.
39 A V-CREDIT must arrived before sending data toward

the remote application.

The following status codes occur during only the principal session.

Status Code Definition

40 V-MGCLOSED received in the principal session,
causing it to close.

41 V-DATA received in the principal session. The TPR
can call the RECEIVE CD-IN to receive the data from
the principal correspondent.

42 V-CREDIT received in the principal session. The TPR
can use the SEND to the principal session later.

43 V-ATTENTION received in the principal session. If
the principal correspondent is a terminal, this event
indicates that a break has occurred in it.

44 V-ABNTERM received in the principal session,
causing it to disconnect abnormally. The transaction
can use "TCLOSE" with code 35.

45 V-TERMREQ received in only the principal session.
This could occur, for example, after a TT operator
command.

46 Timeout received for the transaction.

The following status codes occur when the pass-thru session open fails.

Status CodeDefinition

52 V-RESOV. System overload. Retry later with
"TOPEN".

55 V-LMBXSTAT. Maximum number of sessions on the
local mailbox is reached.

56 V-DSTUNSPEC. Destination unspecified.

The following status codes occur when the pass-thru session open is rejected.
(V-REJECT)

Status Code Definition

64 Destination node unknown
65 Path to the destination node is not available
66 Duplicate user identifier
67 Duplicate station identifier
68 Telecom module not available (line or datanet)

TCAM

47 A2 33UT E-29

The following status codes occur at any time.

Status Code Definition

70 A system error has occurred. The transaction must
close the pass-thru session using "TCLOSE"

71 Ignore this event
72 ALREADY. The transaction already has the turn.
73 There is an error during the close of the pass-thru

session.

The following status codes occur when there is an invalid parameter.

Status Code Definition

80 Invalid buffer length
81 Invalid enclosure level
82 Invalid interruption type
83 Invalid destination parameter
84 Invalid close code
85 Invalid value in OPEN structure
86 Invalid character in the device header

The following status codes occur at any time.

Status Code Definition

100 Error during the user identification research in the
catalog

101 Unknown value for model field in the OPEN structure
102 Error during the access to terminal characteristics
103 Pass-thru mode is not possible, due to XCP usage.
104 Session pass-thru is already open
105 Verb not allowed. The transaction is not in pass-thru

mode
106 Function not allowed (DPNS)

>=128 V-ARGERR on open in the pass-thru session.

TDS COBOL Programmer's Guide

E-30 47 A2 33UT

E.5 Status Codes and Statement Cross Reference

 TERMID TOPEN TEVENT TRECV TRCVIT TSEND TSENDIT TCLOSE

Codes Statements

 0
 1
 2
 3
 4
 5
 7
 9
 10
 21
 23
 24
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 52
 55
 56
 64
 65
 66
 67
 68
 70
 71
 72
 73
 80
 81
 82
 83
 84
 85
100
101
102
103
105
128

X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X

X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X

X

X

X
X

X
X

X

X

X

X

X

X
X

X

X

X

X

X
X

X
X
X

X

X
X

X

X

X

X

X

X

X
X

X

X

X

X

X

TCAM

47 A2 33UT E-31

E.6 Using the TCAM Call Statements

E.6.1 Opening and Closing a Pass-Thru Session

The CALL "TOPEN" statement opens the pass-thru session. However, the
transaction must wait until the CALL "TEVENT" returns a status of 30
(PT-ACK-IN) or 31 (PT-ACK-ACC), which ensure that the session is open. A
session can close in two ways: normally or abnormally.

Normally, the session is closed after the TDS and the remote application exchange
"data of level 5" in the session. Either the transaction or the remote application can
initiate this exchange (using TRECV and TSEND).

Abnormally, the transaction closes the session with a "TCLOSE" call. The
"TCLOSE" call should be used when the transaction receives either a return status
of 70 (SYSTERR) or a warning that the principal session is disconnected.

E.6.2 Starting and Ending Pass-Thru Mode

To start pass-thru mode, the CALL "TOPEN" statement declares that a transaction
is in pass-thru mode with a return status of done. To end pass-thru mode, the
following calls allow a transaction to exit:

CALL "TEVENT" This call returns a status of 36 (PT-ACK-REJ), which
indicates the pass-thru session is not open, or a status
of 32 (PT-CLOSED), which indicates the pass-thru
session is closed.

CALL "TSEND" The transaction exits pass-thru mode when the
transaction first receives "data of level 5" ("TRECV")
and then sends "data of level 5" ("TSEND") to the
remote application.

CALL "TRECV" The transaction also exits pass-thru mode when it first
sends "data of level 5" ("TSEND") to the remote
application and then receives "data of level 5"
("TRECV") from the remote application.

TDS COBOL Programmer's Guide

E-32 47 A2 33UT

CALL "TCLOSE" A CALL "TCLOSE" (with a close code of 35 as the
first parameter) warns the TDS about the
disconnection of the principal session and starts the
DISCONNECT transaction. The transaction waiting
for the principal session to reconnect is no longer in
pass-thru mode.

Note that if the close reason in the CALL "TCLOSE"
is not 35, the transaction remains in pass-thru mode
until the next CALL "TEVENT" sends a return status
of 32 (PT-CLOSED).

END OF TRANSACTION
The TDS closes the pass-thru session with code 36.

Programming Rules

• Each TPR must begin with a CALL "TEVENT" in order to receive all the events
and interruptions that occur during the two sessions (principal and pass-thru) and
determine which statement must follow.

• The return status of 44 (MN-ABNTERM) on CALL "TEVENT" or CALL
"TSENDIT" tells the transaction that the principal session has disconnected, and
not to attempt to dialog with it. The transaction can continue, however, and
dialog in the pass-thru session. Then, at the end of the dialog with the remote
application, the transaction must inform the TDS of the disconnection with the
CALL "TCLOSE" statement with code 35.

Even if the transaction does not use "TCLOSE" with code 35, the TDS is
automatically informed about the principal session disconnection.

If the transaction does attempt to dialog with the disconnected principal session,
it receives one of two statuses. The transaction can receive a wrong status
returned (TFAILED) on the RECEIVE or SEND verb that is not the last Send of
the TPR. The transaction can also receive a UBUGERR return code (on the last
SEND verb) that aborts the transaction.

E.6.3 Command Sequencing

The following call statements must meet these conditions.

In Either Session

"TEVENT" This call is mandatory at the beginning of a TPR.

"TSENDIT" This call can be used at any time.

TCAM

47 A2 33UT E-33

In the Principal Session

SEND The transaction has the turn in the principal session,
after a RECEIVE.

SEND 42 (V-CREDIT)
Additional SEND verbs (with EMI) can be sent in the
principal session. However, the transaction must
receive the V-CREDIT first, if the previous SEND was
with EMI.

RECEIVE 41 (V-DATA)
With status 41, the transaction can use this verb.

In the Pass-Thru Session

"TSEND" The transaction has the turn in the pass-thru session.
This is after a "TRECV" with level 3, or after status 30
(PT-ACK-IN) on "TEVENT".

"TSEND" 34 (V-CREDIT)
Additional "TSEND" verbs (with level 1 or 2) can be
used in a pass-thru session. However, a V-CREDIT
(status 34) must be received before sending the next
"TSEND".

"TRCVIT" 35 (V-INTERRUPT)
If the transaction receives the status 35, a CALL
"TRCVIT" must be performed. Status 35 is returned
on "TEVENT", "TRECV", "TRCVIT", "TSEND", and
"TSENDIT".

"TRECV" 33 (V-DATA)
Status 33 allows the transaction to use the "TRECV"
call statement.

Command Sequencing Rules

• TDS does not control the command sequencing. However, the programming
rules should be respected. If not, a wrong status is returned or the transaction is
aborted. If these rules are not followed:

− either the wrong statuses are returned on the call statement or
SEND/RECEIVE verbs

− or the transaction is aborted (for example a SEND on a disconnected principal
session).

TDS COBOL Programmer's Guide

E-34 47 A2 33UT

• Two conversations can be initialized in the same TPR: one for each session.
This is shown in the diagram below.

TERMINAL TDS REMOTE

TPR
 N

V-data

level 3

V-data

level 3

CALL "TSEND"
LEVEL = 3

SEND WITH EGI

Figure E-5. Two Conversations in the Same TPR

• While the RECEIVE verb (when successful) always give the turn to the
transaction in the principal session, the CALL "TRECV" (when successful) does
not always give the turn to the transaction in the pass-thru session.

• If the programming rules are not applied, the TDS ensures that data that the
transaction receives is not lost.

− The transaction must use the RECEIVE verb in the principal session, after
receiving a status of 41 on the CALL "TEVENT". The transaction can do this
either in the same TPR or in succeeding TPRs. For example, this could occur
after a call statement in the pass-thru session. The message is not lost, and no
other message from the terminal can be received first.

− The transaction must perform a CALL "TRECV" in the pass-thru session after
it receives a status of 33. For example, this could occur after dialoguing in the
principal session. The transaction can do this either in the same TPR or in
succeeding TPRs, and the data is not lost.

TCAM

47 A2 33UT E-35

Command Sequencing Examples

EXAMPLE: Opening the Pass-Thru Session and the Remote Application Keeps
the Turn

The following diagram shows how the CALL "TOPEN" opens the pass-thru
session. The remote application keeps the turn.

• The CALL "TOPEN" requests to open the pass-thru session. The CALL
"TEVENT", with status 31, indicates that the session is open and that the turn
goes to the correspondent accepting the connection. In this case, that is the
remote application.

• After the CALL "TOPEN", the transaction must wait for the CALL "TEVENT"
to give the connection results. The CALL "TEVENT" must be in the next TPR.

• The CALL "TEVENT" of TPR N+1 can return the connection results, but it also
returns some principal session event information. For example, it returns a
status of 42 (V-CREDIT) if the TPR sends a message to the terminal (SEND
with EMI), or it returns a status of 43 (V-ATTENTION) if a break occurs at the
terminal.

❑

TDS REMOTE

TPR
 N

CALL "TOPEN"

CALL "TEVENT"
status = 31

TPR
N+1

V-OPENREQ

V-OPENACK

Figure E-6. Opening the Pass-Thru Session

TDS COBOL Programmer's Guide

E-36 47 A2 33UT

EXAMPLE: Receiving Data without Turn in the Pass-Thru Session and Sending
It to the Terminal

The following diagram shows the TDS receiving data from the remote application,
without having the turn. The TDS then sends data to the terminal.

• The TPR N has to receive data in the pass-thru session with CALL "TRECV"
because the TPR N returns the status of 33 (V-DATA) on CALL "TEVENT".

• The TPR N then sends this data to the terminal (SEND with EMI). The principal
session waits for a V-CREDIT.

• The remote application can send a new V-DATA level 1 in the next TPR
(TPR N+1) in code 33 on the CALL "TEVENT". However, a V-CREDIT must
be received before sending a new message.

• At the end of TPR N, the transaction has the turn in the principal session, and the
remote application has the turn in the principal session. This is the same as at
the start of TPR N.

❑

TERMINAL TDS REMOTE

TPR
 N

CALL "TEVENT"
 status = 33

CALL "TRECV"
level =1

SEND WITH EMI

V-DATA level 1

V-DATA level 1

V-DATA level 1

V-CREDIT

Figure E-7. Receiving Data without Turn in the Pass-Thru Session

TCAM

47 A2 33UT E-37

EXAMPLE: Transaction Receives Data with the Turn in the Pass-Thru Session
and Sends It to the Terminal

The following diagram shows the transaction receiving data, with the turn, from the
remote application. The transaction then sends data to the terminal.

• The TPR can use a CALL "TRECV" because TPR N contains a status of 33 on
the CALL "TEVENT". In this way, the transaction receives the data coming
from the remote application.

• TPR N sends the data to the terminal (SEND with EGI). First however, the
transaction must ensure that, if the preceding verb in the principal session was a
SEND with EMI, it received a status of 42 (V-CREDIT) on CALL "TEVENT".

• After TPR N sends the data to the terminal, the transaction waits for a V-DATA
level of 3 in the principal session.

• At the end of TPR N, the terminal has the turn in the principal session, and the
transaction has the turn in the pass-thru session.

❑

TERMINAL TDS REMOTE

TPR
 N

CALL "TEVENT"
 status = 33

CALL "TRECV"
level = 3

SEND WITH EGI

V-data

level = 3

V-data

level = 3

Figure E-8. Transaction Receives Data with Turn in the Pass-Thru Session

TDS COBOL Programmer's Guide

E-38 47 A2 33UT

EXAMPLE: Transaction Receives Data with the Turn in the Principal Session
and Sends It to the Remote Application

The following diagram shows the transaction receiving data, in the principal
session, from the terminal. The transaction has the turn. The transaction then
sends data to the remote application.

• The TPR can use a RECEIVE verb because TPR N contains a status of 41 on the
CALL "TEVENT". In this way, the transaction receives the data coming from
the terminal.

• TPR N sends the data to the remote application, using call "TSEND". At the
same time, the remote application gets the turn.

• After TPR N, the pass-thru session waits for a status of 33 (V-DATA).

❑

TERMINAL TDS REMOTE

TPR
 N

CALL "TEVENT"
 status = 41

RECEIVE CD IN

CALL "TSEND"
level = 3

V-data

level = 3

V-data

level = 3

. . .

Figure E-9. Receiving Data without the Turn in the Principal Session

TCAM

47 A2 33UT E-39

EXAMPLE: Normal End of the Pass-Thru Session

The following diagram shows a pass-thru session ending normally. This example
uses the TCAM.

• The TCAM (TDS Communication Access Method) performs a pass-thru that
makes TDS become transparent to the end user. In this way, message 1, "BYE",
is addressed to the remote.

• TPR N receives the data in message 1 with the RECEIVE verb. It then uses
"TSEND" to send "BYE" (message 1) to the remote application. This becomes
message 2. TPR N sends the turn along with the message.

• The remote application receives message 2, and closes the session. The remote
then sends "data of level 5", which becomes message 3.

• TPR N+1 can perform a call "TRECV" because it receives a status of 33 on the
call "TEVENT". This is in accordance with the programming rules shown
above.

• TPR N+1 sends "data of level 5" in the next message (which is message 4). This
closes the session. Message 3 is a request to close, and message 4 is the
acknowledgement of the close.

The pass-thru session is now closed, and the transaction is no longer in pass-thru
mode.

• TPR N+1 owns the turn in the principal session, and send data towards the
terminal in message 5.

❑

TDS COBOL Programmer's Guide

E-40 47 A2 33UT

TERMINAL TDS REMOTE

Bye;

TPR
 N

CALL "TEVENT"
 status = 41

RECEIVE CD IN

CALL "TSEND"
 level = 3 level = 3

1 V-data

level = 3

. . .

TPR
N+1

CALL "TEVENT"
 status = 33

CALL "TRECV"
==> level = 5
CALL "TSEND"
 level = 5
SEND WITH EMI

3 V-data

level = 5

4 V-data

level = 5

RECEIVE
SEND

5 V-data

level = 1

2 V-data

Figure E-10. Normal End of Pass-Thru Session

TCAM

47 A2 33UT E-41

E.7 Abnormal Disconnections

The terminal can be abnormally disconnected during either the principal or
pass-thru session.

E.7.1 Principal Session Disconnections

When a terminal disconnects abnormally, it sends two events on the CALL
"TEVENT" to the TDS:

• status code 44 (V-ABNTERM), which is an interruption. This information
should be stored in TRANSACTION STORAGE.

• status code 40 (V-MGCLOSED), which is an event. After receiving this, the
pass-thru session should be closed using code 35 on the CALL "TCLOSE"
statement. This warns the TDS about the principal session disconnection, and
the pass-thru session is closed.

These two events are shown in the diagram below.

TERMINAL TDS

CALL "TEVENT"
 CODE = 44

V-INTERRUPT

(V-ABNTERM)

V-MGCLOSED

$*$DIS

CALL "TEVENT"
 CODE = 40

Figure E-11. Disconnecting the Principal Session

NOTE:
The principal session disconnection does not force the user to close the
pass-thru session, too. The transaction can continue to dialog in the pass-thru
session. However, no principal session verbs are allowed.

TDS COBOL Programmer's Guide

E-42 47 A2 33UT

E.7.2 Pass-Thru Session Disconnections

When the pass-thru session disconnects abnormally as follows:

• The TPR receives a status of 35 (V-INTERRUPT) in the CALL "TEVENT".

• The TPR must send a CALL "TRCVIT". This returns a type = 3, which
indicates that the pass-thru session has disconnect abnormally.

• Before leaving pass-thru mode, the transaction must wait for the last event of
this session, which is a status of 40 (V-MGCLOSED) in the CALL "TEVENT".

• After this, the transaction is no longer in pass-thru mode.

These events are shown in the diagram below.

TPR
 N

CALL "TEVENT"
CODE = 35
CALL "TRCVIT"
TYPE=3

V-INTERRUPT

V-ABNTERM

V-MGCLOSEDCALL "TEVENT"
CODE = 32

TPR
 N+1

TDS REMOTE

Figure E-12. Disconnecting the Pass-Thru Session

E.7.3 Aborts, GCOS 7 Crashes, and Recovery

The pass-thru mode follows the same rules as the TDS when a transaction aborts.

When there is a GCOS 7 crash, the TDS closes all sessions (pass-thru or not).

There is no recovery of a pass-thru session, and no message recovery. The
pass-thru session are not automatically opened again after a master command
ALLOW_NEW_TDS_COR.

47 A2 33UT i-1

Index

A
ABORT (Call) 4-3
Abort codes

Explanation B-1
ABORT-CODE 2-24
ABORT-ICC 2-26
ANEW-FLAG (Startup Transaction) 12-18
APPEND Mode (FORMS) 10-8
Application

Compiling 13-2
Creating 13-1
Linking 13-3
Tuning 13-8

ASSIGN-FLAG (Startup Transaction) 12-18

B
Batch Interface

Definition 1-22
Description 13-30

Batch Program
Data Format of 13-51
Explanation of 13-50
Linking a 13-4

BREAK Transaction 4-4, 4-18, 4-21, 12-1,
12-5

BREAK Transaction and FORMS 12-7
BYE command 14-3

C
CANCELCTX (Call) 4-4
CD 2-23

Input 2-36
Output 2-41

CDATTL (Call) 10-2
CDATTR (Call) 10-4
CDFIDI (Call) 10-7
CDGET (Call) 10-8
CDMECH (Call) 10-14
CDPURGE (Call) 10-16
CDRECV (Call) 10-17
CDRELS (Call) 10-20
CDSEND (Call) 10-21
Chaining TPRs 2-54
Character Sets 2-70
CLENGTH-COMMON (Call) 8-2
CLOSE Command 9-18
CLOSE-POOL (Call) 6-2
CMIT-U-CNTXT (Call) 9-3
Codes

Abort 2-24, B-1
DKU7007 Control 2-61
DKU7007 Line and Column 2-62
EBCDIC/PLW 2-72
GS Field Protection 2-63

Command Mode 14-2
Commitment

Explicit 1-20
Implicit 1-20

Commitment Unit 9-5, 9-7, 9-12
COMMON-STORAGE 2-14, 8-5, 8-6, 8-7,

8-8, 8-10
COMMUNICATION SECTION 2-35
CONFIGURATION

SECTION 2-2
CONSTANT-STORAGE 1-23, 2-30
CONTEXT-FLAG (Startup Transaction) 12-

14, 12-17

TDS COBOL Programmer's Guide

i-2 47 A2 33UT

CONTROLLED COMMON-STORAGE 8-
3, 8-4

CONTROLLED COMMON-STORAGE 8-2
Controlled files 1-14
Conversation 1-9
Correspondent

and a TPR 2-35
and SYMBOLIC DESTINATION 2-43
and SYMBOLIC SOURCE 2-37
Dummy 2-26
Frozen XCP 12-19
Identification for Spawning 2-50
Length of name for spawning 2-52

CREAD-COMMON (Call) 8-3
CTLN File 8-6
CURRENT-TPR 2-23
CWRITE-COMMON (Call) 8-4

D
DATA DIVISION 2-5
Data Transmission

with FORMS 13-15
without FORMS 13-15

Database Accessing 13-11
Debugging

at TDSGEN 13-29
Using TDS Batch Interface Procedures

13-30
DELSPAWN (Call) 5-2
DFCMIT (Call) 9-5
DISCNCT Transaction 4-4, 4-5, 4-18, 12-8,

12-10
DISP-COR (Call) 6-6
DISPLAY Command 4-36
DISPLAY-MENU (Call) 4-8
DISP-POOL (Call) 3-2, 6-11
DIVISION

DATA 2-5
ENVIRONMENT 2-2
IDENTIFICATION 2-1
PROCEDURE 2-45

DSPAWN (Call) 5-3
Dummy Correspondent and Spawning 2-52

E
EGI (SEND Command) 3-19
ENVIRONMENT DIVISION 2-2
ERASE (FORMS) 10-9
Exchange 1-8, 1-12
EXCP-CLASS-TYPE 2-28
EXIT Command 4-37
EXITS (Call) 8-5
Explicit Commitment 1-20

F
File

Accessing 13-11
FILE SECTION 2-10
FILE-CONTROL 2-3
Files

non-controlled 1-17
TDS-controlled 1-14

FOR
DEBUG 1-7
INQUIRY 1-7

Format Mode 1-13
FORMS

alias CD data structure 2-43
Alias CD data structure 2-39
Example of C-1
Message Handling with 2-64
Procedures 10-1
Status keys 2-92

functions
h_set_active 9-20

G
GET-TDS-STAT (Call) 6-17
GETTPRPAR (Call) 4-11, 4-13
GTWriter

Description 2-74
GTWRITER

Procedures 11-1

Index

47 A2 33UT i-3

H
H_REINIT transaction 12-21
h_set_active function 9-20
HA (High Availability)

Shutdown transaction 12-16
Startup transaction 12-20

I
IDENTIFICATION DIVISION 2-1
Implicit Commitment 1-20
INPUT-OUTPUT SECTION 2-3
INVCMIT (Call) 9-6

K
KEEP-COMMON (Call) 8-6
KEEP-CURRENCIES (Call) 9-7

L
LAST-TPRNAME 2-28
LENGTH-COMMON (Call) 8-7
Line Mode 1-12
LINKAGE SECTION 2-22
LIST-COR (Call) 6-33
LIST-POOL (Call) 6-38
LNODENAME 2-28
LOCK (Call) 9-8
LOGON Transaction 4-4, 4-18, 12-9, 12-14
LOGOUT Transaction 4-5, 12-10, 12-14

M
MANUALLY NON-CONCURRENT 9-13,

9-15
MD-NEWCONNECT (Call) 3-5
MDPROF (Call) 7-2
Memory Occupancy 13-17
Message

Handling 13-15
Message Buffering 2-56
Mode

Append 10-8

Erase 10-9
Format 1-13
Line 1-12
Overlay 10-8
Window 10-9

MODIFY-POOL (Call) 6-43

N
NBSPAWN (Call) 5-5
NEXT-TPR 2-24
NOCANCELCTX (Call) 4-16
NOCMIT (Call) 9-12
non-controlled files 1-17
NO-RESTART 2-26

O
ON-ABORT-TPR 2-24
OPEN Command 9-19
OPEN-POOL (Call) 6-48
Optimizing Program Coding 13-12
Overlay Mode 10-8

P
PASS-THROUGH (PT) command 14-5
pass-thru E-1
PCF Commands (TDS-Authorized) A-1
Printing 2-72
PRIOR-TPR 2-23
PRIVATE-STORAGE 1-23, 2-31
PROCEDURE DIVISION 2-45
Program Coding (optimizing) 13-12

R
RDPROF (Call) 7-7
READ-COMMON (Call) 8-8
Real time statistics 6-17
RECEIVE Statement 3-17, 13-9
RECONNECT-OPTION (Call) 3-8
Redisplaying the Last Message 14-6
RESET-NON-CONCURRENT (Call) 9-13

TDS COBOL Programmer's Guide

i-4 47 A2 33UT

RESTART Transaction 4-4, 4-18, 12-14
RESTART-CODE 2-26
RESTART-INFO 2-28
RESTART-STATUS 2-25
REST-CVSTAT 2-27
RESTORE (Call) 4-18
ROLL-BACK (Call) 9-14

S
SECTION

COMMUNICATION 2-35
CONFIGURATION 2-2
FILE 2-10
INPUT-OUTPUT 2-3
LINKAGE 2-22
SUB-SCHEMA 2-6
WORKING-STORAGE 2-12

Segmentation
Logical 13-13
Physical 13-14

SEND Statement 3-19, 13-9
session management functions

h_set_active 9-20
SET-ACTIVE (Call) 3-12
SETMGPRES 12-11
SET-NON-CONCURRENT (Call) 9-15
SET-PASSIVE (Call) 3-13
SHARED-STORAGE 1-23, 2-12
SHUTDOWN Transaction 4-5, 12-15

HA 12-16
SIMBRK (Call) 4-21
SPAWN (Call) 5-6
Spawning

and dummy correspondent 2-52
and length of correspondent name 2-52
and transactional initialization routine 2-

53
Deferred 2-47
Immediate 2-47
Limits 2-53
on active terminals 2-49
on passive terminals 2-49
Priority 2-48, 2-50

SPAWNTX (Call) 5-8
Special-purpose Transactions 12-1

Star Convention (*)
and Spawning 2-51

STARTUP Transaction 4-5, 12-17
HA 12-20

Statistical Read 1-19
Status key values for FORMS 2-92
Status Keys 2-84
STOP Command 4-38
STORAGE

CONSTANT 1-23, 2-30
PRIVATE 1-23, 2-31
SHARED 1-23, 2-12
STORAGE 2-14
TDS 1-23, 2-22
TRANSACTION 1-23, 2-31

Structured Programming (example) 13-12
SUBJOB

(Call) 4-23
Example of D-1

SUB-SCHEMA SECTION 2-6
SYMBOLIC-QUEUE 2-23

T
TAKE-COMMON (Call) 8-10
TCAM (TDS Communications Access

Method) E-1
TCLOSE (Call) E-26
TDS

Definition 1-1
TDS Communications Access Method

(TCAM) E-1
TDS service message 12-11
TDS-STORAGE 1-23, 2-22
TERMID (Call) 3-14, E-6
Terminal

Operations 14-1
Terminal Adapter 2-77
TEVENT (Call) E-14
TOPEN (Call) E-7
TPR

Chaining 2-54
Compilation 13-2
Deletion 13-7
Example of 1-24
Execution 1-4

Index

47 A2 33UT i-5

Large 13-13
Linkage 13-3
Simultaneous execution of 1-6
Small 13-15

TPR-SERIAL-NUMBER 2-25
TRACE command 13-18, 14-3

options A-1
Transaction

Elements of 1-8
FOR DEBUG 1-7
Initialization Routine 12-25
Inquiry 1-7
MENU 14-3
mode 14-7
Optimizing 13-12
Programming 2-1
Spawning a 2-46
Special-purpose 12-1
Starting a 1-2
Types 1-7
Update 1-7

Transactional Initialization Routine and
Spawning 2-53

transactions
XA synchronization state 12-22

TRANSACTION-SERIAL-NUMBER 2-25
TRANSACTION-STORAGE 1-23, 2-31
TRCVIT (Call) E-20
TRECV (Call) E-19
TSEND (Call) E-22
TSENDIT (Call) E-24
TSPAWN (Call) 5-12
Tuning 13-8
TX-MODE 2-25

U
UNLOCK (Call) 9-17
User Journal 4-38
USER-FULLNAME 2-26
USER-ID 2-25

W
WINDOW Mode (Forms) 2-65

WORKING-STORAGE SECTION 2-12
WRITE (User Journal) 4-38

X
XA synchronization state transaction 12-22
XCP Correspondent 12-19
XCPCONTEXT-FLAG 12-19
XSIMBRK (Call) 4-33

TDS COBOL Programmer's Guide

i-6 47 A2 33UT

Technical publication remarks form

Title : DPS7000/XTA NOVASCALE 7000 TDS COBOL Programmer's Guide

Reference Nº : 47 A2 33UT 08 Date: February 2005

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please include your complete mailing address below.

NAME : Date :

COMPANY :

ADDRESS :

Please give this technical publication remarks form to your BULL representative or mail to:

Bull - Documentation Dept.

1 Rue de Provence
BP 208
38432 ECHIROLLES CEDEX
FRANCE
info@frec.bull.fr

Technical publications ordering form

To order additional publications, please fill in a copy of this form and send it via mail to:

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Phone: +33 (0) 2 41 73 72 66
FAX: +33 (0) 2 41 73 70 66
E-Mail: srv.Duplicopy@bull.net

CEDOC Reference # Designation Qty

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

[_ _] : The latest revision will be provided if no revision number is given.

NAME: Date:

COMPANY:

ADDRESS:

PHONE: FAX:

E-MAIL:

For Bull Subsidiaries:

Identification:

For Bull Affiliated Customers:

Customer Code:

For Bull Internal Customers:

Budgetary Section:

For Others: Please ask your Bull representative.

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

47 A2 33UT 08
REFERENCE

	TDS COBOL Programmer's Guide - 47 A2 33UT REV08
	Preface
	Table of Contents
	Table of Graphics
	1. Transaction Processing
	1.1 Overview of TDS
	1.1.1 Initiating a TDS Transaction
	1.1.2 How Do TPRs Relate to TDS?
	1.1.3 How Do TPRs Function?
	1.1.4 TPRs and Other Programs
	1.1.5 TPRs Executing Simultaneously
	1.1.6 Transaction Types
	1.1.7 Elements of a Transaction
	1.1.8 TDS Data Exchange Modes
	1.1.9 Screen Displays
	1.1.10 Files
	1.1.11 Updates
	1.1.12 Restarting after a Failure
	1.1.13 Batch Interface
	1.1.14 GTWriter
	1.1.15 Special Services
	1.1.16 Storages
	1.1.17 An Example of a COBOL TPR

	2. Programming the Transaction
	2.1 Identification Division
	2.2 Environment Division
	2.2.1 Configuration Section

	2.2.2 INPUT-OUPUT-SECTION
	2.3 Data Division
	2.3.1 Purpose and Use
	2.3.2 Structure
	2.3.3 SUB-SCHEMA SECTION
	2.3.4 FILE SECTION
	2.3.5 WORKING-STORAGE SECTION
	2.3.6 LINKAGE SECTION
	2.3.7 COMMUNICATION SECTION

	2.4 Procedure Division
	2.4.1 Purpose and Use
	2.4.2 Structure
	2.4.3 Syntax Rules
	2.4.4 Exceptions to Normal Use
	2.4.5 Spawning a Transaction
	2.4.6 Chaining TPRs
	2.4.7 Message Handling Without FORMS
	2.4.8 Message Handling with FORMS
	2.4.9 Character Sets
	2.4.10 Printing
	2.4.11 Report Handling Using GTWriter
	2.4.12 Terminal Adapter
	2.4.13 Developing Administrative Transactions

	2.5 Status Setting

	3. Session Management Procedures
	3.1 Overview
	3.2 The CALL "DISP-SESLIMIT" Procedure
	3.3 The CALL "MD-NEWCONNECT" Procedure
	3.4 The CALL "RECONNECT-OPTION" Procedure
	3.5 The CALL "SET-ACTIVE" Procedure
	3.6 The CALL "SET-PASSIVE" Procedure
	3.7 The CALL "TERMID" Procedure
	3.8 The RECEIVE Verb
	3.9 The SEND Verb

	4. TPR Control Procedures
	4.1 Overview
	4.2 The CALL "ABORT" Procedure
	4.3 The CALL "CANCELCTX" Procedure
	4.4 The CALL "DISPLAY-MENU" Procedure
	4.5 The CALL "EXITS" Procedure
	4.6 The CALL "GETSP-U-CNTXT" Procedure
	4.7 The CALL "GETTPRPAR" Procedure
	4.8 The CALL "NOCANCELCTX" Procedure
	4.9 The CALL "RESTORE" Procedure
	4.10 The CALL "SIMBRK" Procedure
	4.11 The CALL "SUBJOB" Procedure
	4.12 The CALL “JOBINFO” Procedure
	4.13 The CALL "XSIMBRK" Procedure
	4.14 The ACCEPT Verb
	4.15 The DISPLAY Verb
	4.16 The EXIT Verb
	4.17 The STOP Verb
	4.18 The WRITE in User Journal verb

	5. Spawn Handling Procedures
	5.1 Overview
	5.2 The CALL "DELSPAWN" Procedure
	5.3 The CALL "DSPAWN" Procedure
	5.4 The CALL "NBSPAWN" Procedure
	5.5 The CALL "SPAWN" Procedure
	5.6 The CALL "SPAWNTX" Procedure
	5.7 The CALL "TSPAWN" Procedure

	6. Correspondent Pool Handling Procedures
	6.1 Overview
	6.2 The CALL "CLOSE-POOL" Procedure
	6.3 The CALL "DISP-COR" Procedure
	6.4 The CALL "DISP-POOL" Procedure
	6.5 The CALL "GET-TDS-STAT" Procedure
	6.5.1 TRS-GENERALINFO
	6.5.2 TRS-USERINFO
	6.5.3 TRS-FILEINFO

	6.6 The CALL "LIST-COR" Procedure
	6.7 The CALL "LIST-POOL" Procedure
	6.8 The CALL "MODIFY-POOL"
	6.9 The CALL "OPEN-POOL" Procedure

	7. Terminal Adapter Procedures
	7.1 Overview
	7.2 The CALL "MDPROF" Procedure
	7.3 The CALL "RDPROF" Procedure

	8. COMMON-STORAGE Handling Procedures
	8.1 Overview
	8.2 The CALL "CLENGTH-COMMON" Procedure
	8.3 The CALL "CREAD-COMMON" Procedure
	8.4 The CALL "CWRITE-COMMON" Procedure
	8.5 The CALL "FREE-COMMON" Procedure
	8.6 The CALL "KEEP-COMMON" Procedure
	8.7 The CALL "LENGTH-COMMON" Procedure
	8.8 The CALL "READ-COMMON" Procedure
	8.9 The CALL "SAVE-COMMON" Procedure
	8.10 The CALL "TAKE-COMMON" Procedure

	9. File Access Concurrency and Commitment Procedures
	9.1 Overview
	9.2 The CALL "CMIT-U-CNTXT" Procedure
	9.3 The CALL "DFCMIT" Procedure
	9.4 The CALL "INVCMIT" Procedure
	9.5 The CALL "KEEP-CURRENCIES" Procedure
	9.6 The CALL "LOCK" Procedure
	9.7 The CALL "NOCMIT" Procedure
	9.8 The CALL "RESET-NON-CONCURRENT" Procedure
	9.9 The CALL "ROLL-BACK" Procedure
	9.10 The CALL "SET-NON-CONCURRENT" Procedure
	9.11 The CALL "UNLOCK" Procedure
	9.12 The CLOSE Verb
	9.13 The OPEN Verb
	9.14 The CALL "GET-SYNCSTATE" Procedure

	10. FORMS Procedures
	10.1 The CALL "CDATTL" Procedure
	10.2 The CALL "CDATTR" Procedure
	10.3 The CALL "CDFIDI" Procedure
	10.4 The CALL "CDGET" Procedure
	10.5 The CALL "CDMECH" Procedure
	10.6 The CALL "CDPURGE" Procedure
	10.7 The CALL "CDRECV" Procedure
	10.8 The CALL "CDRELS" Procedure
	10.9 The CALL "CDSEND" Procedure

	11. GTWRITER Procedures
	12. Special-purpose Transactions and the Transaction Initialization Routine
	12.1 Overview
	12.2 BREAK Transaction
	12.3 DISCNCT Transaction
	12.4 LOGON Transaction
	12.5 LOGOUT Transaction
	12.6 RESTART Transaction
	12.7 SHUTDOWN Transaction
	12.8 STARTUP Transaction
	12.8.1 High Availability (HA) Only
	12.8.2 H_REINIT Transaction

	12.9 H_XAEVT Transaction
	12.10 Transaction Initialization Routine

	13. Implementing the Transaction
	13.1 Creating the Application
	13.1.1 Compiling a Program
	13.1.2 Linking a Program
	13.1.3 Linking a Batch Interface Program
	13.1.4 Compiling/Linking Queries
	13.1.5 Deleting a TPR

	13.2 Tuning the Application
	13.2.1 Eliminating Segment Faults
	13.2.2 Using SEND and RECEIVE Statements
	13.2.3 USING CALL Statements
	13.2.4 Accessing Files and Databases
	13.2.5 Designing Access to Resources
	13.2.6 Optimizing Program Coding
	13.2.7 Message Handling
	13.2.8 Memory Occupancy

	13.3 Testing and Debugging
	13.3.1 The TRACE Command
	13.3.2 Debugging at TDSGEN
	13.3.3 Debugging Using TDS Batch Interface Procedures
	13.3.4 Example of a Batch Interface Program
	13.3.5 Debugging Using Batch Programs

	14. Terminal Operations
	14.1 Introduction
	14.2 Command Mode
	14.2.1 User Commands
	14.2.2 TDS Commands

	14.3 Transaction Mode

	A. Trace Options and TDS-Authorized PCF Commands
	B. Explanation of the Abort Codes
	C. COBOL Example Using Forms
	D. Example of SUBJOB
	E. TCAM
	E.1 The TCAM Call Statements
	E.2 Using TCAM
	E.3 TCAM Call Statements
	E.3.1 The CALL "TERMID" Procedure
	E.3.2 The CALL "TOPEN" Procedure
	E.3.3 The CALL "TEVENT" Procedure
	E.3.4 The CALL "TRECV" Procedure
	E.3.5 The CALL "TRCVIT" Procedure
	E.3.6 The CALL "TSEND" Procedure
	E.3.7 The CALL "TSENDIT" Procedure
	E.3.8 The CALL "TCLOSE" Procedure

	E.4 Return Status List and Definitions
	E.5 Status Codes and Statement Cross Reference
	E.6 Using the TCAM Call Statements
	E.6.1 Opening and Closing a Pass-Thru Session
	E.6.2 Starting and Ending Pass-Thru Mode
	E.6.3 Command Sequencing

	E.7 Abnormal Disconnections
	E.7.1 Principal Session Disconnections
	E.7.2 Pass-Thru Session Disconnections
	E.7.3 Aborts, GCOS 7 Crashes, and Recovery

	Index

