UFAS-EXTENDED

User’'s Guide

File and Volume Management

REFERENCE
47 A2 04UF 06

DPS7000/XTA
NOVASCALE 7000

DPS7000/XTA
NOVASCALE 7000

UFAS-EXTENDED

User’s Guide

File and Volume Management

September 2002

LLLLLLLLL

FFFFF

REFERENCE
47 A2 04UF 06

The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not
limited to, copying, distributing, modifying, and making derivative works.

Copyright © Bull SAS 1995, 2001, 2002

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of this
book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements
We acknowledge the right of proprietors of trademarks mentioned in this book.

®

Intel® and Itanium® are registered trademarks of Intel Corporation.

Windows® and Microsoft® software are registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

®

Linux® is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Bull will not be liable for errors contained
herein, or for incidental or consequential damages in connection with the use of this material.

Preface

Scope and This manual describes UFAS-EXTENDED (Unified File Access System for Large

Objectives Systems) and shows how to use it under GCOS7 on DPS7000 machines, with the
latest disk subsystems.

Intended The intended readers of this manual are primarily COBOL programmers, but it

Readers may equally be used by programmers working in other languages.

To set up files under GCOS7, a knowledge of GCL (GCOS7 Command Language)
is essential. Thisinformation can be obtained from the IOF Terminal User’s
Reference Manual.

Prerequisites
GCL/JCL

To use UFAS-EXTENDED files, you can enter either GCL commands or JCL
statements. Throughout the text, each time a GCL command is given, its functional
equivalent in JCL appears between parentheses. A Correspondence Tableis
provided in Appendix D.

Structure There are eight sectionsin the manual. Each section begins with a summary. You
should begin by reading the first section which introduces UFAS-EXTENDED and
shows its context within the GCOS7 system. In Section 1, basic concepts are
explained. These concepts are essential reading for anyone who wishes to acquire
background information about UFAS-EXTENDED.

The next three sections describe the three UFAS-EXTENDED file organizations:
sequential, relative and indexed sequential. The type of file organization to be used
within asystem is generally an application designer’s decision. This decisionis
then trand ated into the necessary programming language to suit the file
organization. Most likely, you will not need to read &l three sections.

The fifth section shows how to assign and reference UFAS-EXTENDED fileswith
GCL or JCL.

47 A2 04UF Rev06 iii

UFAS-EXTENDED User’s Guide

Bibliography

The sixth section concentrates on file design and shows you how to alocate a
UFAS-EXTENDED file. Parametersto be specified may vary depending on the
particular disk device you use.

The seventh section describes the use of tape files.

The eighth section gives an overview of the utilities for manipulating and
maintaining files.

Use the index to locate a particular topic.

The most important manuals referred to in the text are:

COBOL 85 Reference Manualcoccoevireneneinenesesie e 47 A2 05UL
COBOL 85 USEI'S GUIRcveuevieeieieierieiisieesie et 47 A2 06UL
Data Management Utilities USer’'S GUIdE...........cceverereninencieieeeseniens 47 A2 26UF
GPL System PrimitivESc.ccce i 47 A2 34UL
UFAS BOOSLEr USEI 'S GUITE........coeeeeeeeeiesieeeeesie e e see e seeeneens 47 A2 33UF
IOF Terminal User’s Reference Manual (Part 1)ccccooveeevevecnennene, 47 A2 38UJ
IOF Terminal User’s Reference Manual (Part 2)cccocevevenencnnennee 47 A2 39UJ
IOF Terminal User’s Reference Manual (Part 3)cccceoeeevenenecniennne. 47 A2 40UJ
File Migration TOOl USer’s GUITE..........ccereriereeieeieenesese e 47 A2 32UF
File Recovery Facilities UsSer’'s GUIDE..........ceceeveveeviine e 47 A2 37UF
JCL Reference Manual ..o 47 A2 11UJ
JCL USEI'S GUITE......eeuereeeeiieeiesietesieie sttt 47 A2 12UJ

Other manuals referred to in the text are:

Catalog Management User’s GUIE.ccovveeverieeeeseseese e 47 A2 35UF
GAC-EXTENDED USEr'S GUIE........ccereeneeneeieeiesiesieseeneeseeesesseseeseesaeneas 47 A2 12UF
System Administrator’'s Manualcoocererenrneece e 47 A2 41US
Full IDSI1 Reference Manual 1cocoovvevienenenininesesese s 47 A2 05UD
Full IDSI1 Reference Manual 2ccovviieneneineenesese s 47 A2 06UD
FUIl IDSI USEI'S GUITE ... 47 A2 07TUD
Messages and Return Codes DIir€CLOry.........cccvvrerererenierieseenesieseseneens 47 A2 10UJ
SORT/MERGE Utilities User GUITE........ccoueeiieeieecieecieecee e 47 A2 08UF
TDSAAMINISIrator's GUIAE...........cooeieeeereieeeesie e 47 A2 32UT
TDSCOBOL Programmer’s GUIAE.........cccveveerernierserseesceesieesreesseeseeens 47 A2 33UT

47 A2 04UF Rev06

Preface

Syntax The following conventions are used for presenting GCL command syntax.

Notation
I TEM

item

ITEM

bool

{}

[]

Anitemin upper caseisaliteral value, to be specified
as shown. The upper caseis merely aconvention; in
practice you can specify the item in upper or lower
case.

Aniteminlower caseisanon-literal. A user-supplied
valueis expected.

In most casesit gives the type and maximum length of
the value:

char 12 astring of up to 12 characters

nane31 aname of up to 31 characters

dec10 adecimal integer value of up to 10
digits

file78 afile description of upto 78
characters

vol umel8 avolume description of up to 18
characters

Anunderlined item is adefault value. It isthevalue
assumed if none is specified.

A boolean value which iseither 1 or 0. A boolean
parameter can be specified by its keyword alone,
optionally prefixed by "N". Specifying the keyword
alone aways sets the value to 1. Prefixing the keyword
with"N" always setsit to 0.

Braces indicate a choice of items. Only one of these
items can be selected. When presented horizontally,
the items are separated by a vertical bar asfollows:

{ item | item | item }

Square brackets indicate that the enclosed itemis
optional. An item not enclosed in square bracketsis
mandatory.

47 A2 04UF Rev06

UFAS-EXTENDED User’s Guide

@) Parentheses indicate that asingle value or alist of
values can be specified. A list of values must be
enclosed by parentheses, with each value separated by
acomma or a space.

Ellipses indicate that the item concerned can be
specified more than once.

+=8$*/-. Literal charactersto be specified as shown.

---- All parameters or commands below a dashed line do
not appear in the help menus.

Example 1:
[VOAWE ={ * | () | (vol18 ...) }]

This means you can specify:

Nothing at all (VOLUME=* applies)

VOLUME=* (the same as nothing at all)

VOLUME=FSD001:M S/D500 for asingle volume
VOLUME=(FSD001:M $D500,FSD002:M S/D500) for alist of volumes
VOLUME=() for no volumes

Example 2:
[ACCNTSPACE = { [+]dec5 | -dec5 }]
This means you can specify:

» Nothing at all

« ACCNTSPACE=10to increase the value by 10

» ACCNTSPACE=+10 to increase the value by 10
» ACCNTSPACE=-10 to decrease the value by 10

Example 3:
[AUTQADD ={ bool | 1}]
Thisis aboolean parameter whose default value is one. You can specify:

» Nothing at all (AUTOADD=1 applies)
« AUTOADD=1 or smply AUTOADD
+ AUTOADD=0 or smply NAUTOADD

Vi 47 A2 04UF Rev06

Table of Contents

1. Introduction to UFAS-EXTENDED

Rt S 1 0[] 1 4 F= U ST OUPPPUPPPSSPPPN 1-1
1.2 Overview Of UFAS-EXTENDEDcooiiiiiiiiiiiee ettt 1-2
1.3 UFAS-EXTENDED FEALUINES......uuuuuiutuiitiiiiiiiiiiiiiiiiiitiibebeaibeebeeseebabsbseebsbebebsbeesbsbsrsserererenes 1-3
1.4 ESSENLAI CONCEPLS. ..coieiiieiiiiiie ittt e st e et e s et e e s an e e e annbe e e e snenes 1-4
0 A I Yo [o= I =T 0 o L 1-4
1.4.2 Control INtErvals (CIS)uuuuuuuruuuiuiuiiiiiiiiriiniiratarerarnrerenrrerererrererrrerrrrr.. 1-6
1.4.3 Control Intervals and ADdress SPaCESccoovuiieiiiiiie it 1-7
1.4.4 Different Types of Disk Volumes
1441 FBO DiSK VOIUMES ...cotiiieiiiiiiiiiee ettt e e e e e e

1.4.4.2 VBO DiSK VOIUMES ...ttt e s

2. Sequential Organization

2.1 SUIMIMAIY ittt ettt ettt e e e e st e et e e e e et e e ettt e e e e e s s ab b e ettt e e e saasnrnneeeeeeesannnnns 2-1
2.2 Brief Review of Sequential Organizationcccee oo, 2-2
P22 TN 1Y/ o =230 1 @ o= 11 o o = 2-3
2.4 Type of Access Mode in COBOL-85........ccooiiiiiiii e, 2-5
2.5 Using a Sequential File for the First TimMe ... 2-5
2.6 Format of a Data Cl in a Sequential File ... 2-6

3. Relative Organization

oL SUIMIMAIY .ttt ettt e et e ettt e e e e e s e e et e e e s e s b b e et et e e e s e e s nrnnneeeeeesaannne 3-1
3.2 Brief Review of Relative Organization..............cccco oo, 3-2
G T0C TN 1Y/ o =230 1@ o= 11 o o = 3-3

47 A2 04UF Rev06 vii

UFAS-EXTENDED User’s Guide

3.4 Types of AcCeSS MOAE iN COBOLccoiuiiiiiiiiiic et 3-4
3.4.1 Sequential-Access Mode in COBOL-85cooviiiiiiiiiiiieiieice e 3-4
3.4.2 Random-Access Mode in COBOL-85........cooiuiiiiiiiiiiiiiiiiee e 3-5
3.4.3 Dynamic-Access Mode in COBOL-85cccviiiiiiiiiiniiiee e 3-6
3.5 Using a Relative File for the First TIMecccoooiiii oo 3-6
3.6 Format of a Data Clin a Relative File..............oooiiiiiiii e 3-7
3.7 Example of an AppliCation..........ccooiiiiiiii i ———— 3-9

4. Indexed Sequential Organization

4.1 SUMIMAIY ceeiieiiiiitiee et ettt e e e e ettt e e a4 e s s ettt e e e s e e bbb e et et e e e s e s b e e et e e e e e sanrnnreeeeeeneas 4-1
4.2 Brief Review of Indexed Sequential Organization............ccccevveeeiiiiiiiiieeee e 4-2
4.3 TYPES OFf OPEN MOUE......uiiiiieiiiiie ettt e e e s enne e s 4-5
4.4 Types of Access Mode in COBOL-85 ..., 4-6
4.4.1 Sequential-Access Mode in COBOL-85co.coeuururrerneeseerneessssiseeiesesneenn.
4.4.2 Random-Access Mode in COBOL-85.......ccccoiiiiiiiiiieeiiiiee e 4-7
4.4.3 Dynamic-Access Mode in COBOL-85uuiuiiiiiiiiiieieieeeeeieeeeeeeeeeeeeeeeeee e eeeeeees 4-8
4.5 Using an Indexed Sequential File for the First TiMmeccccccvevvviviii 4-9
4.6 AddING RECOIAS......cci e, 4-9
4.7 Deleting RECOIAS.........coiiii e
4.8 SECONUAIY KBYS ...ttt ettt st e e st e e s bbbt e e sb bt e e anbe e e e snneeed 4-10
4.8.1 Creating Secondary INAEXEScuvuiiiiiiiiiiiiiiiiieiieeeieeeeeeee e e e e aeeeeeees 4-10
4.8.2 Updating Secondary INOEXES..........uuueeeerereeriieieeeeeeeeeeeeeeereeereessreeeereerreeeee. 4-11
4.9 Structure of a UFAS-Extended Indexed Sequential File.................ccccoeeii) 4-12
4.9.1 AdAreSS SPACE L....eeeiiiiiiiie ettt 4-12
4.9.2 AdArESS SPACE 2....eeiiiiiiiiie ettt 4-12
e TG R Yo [0 [£ TSR] o F= Lot I F P 4-12
4.9.4 AdAreSS SPACE d.....ooiiiiiiiee et 4-12
495 AdAreSS SPACE 5. ..eeeiiiiiiiie et 4-13
e I G I Yo [0 [T TSR] o F= Lot I F P 4-13
4.9.7 AdArESS SPACE 7. .ueeiiiiiiiie ettt 4-14
4.9.8 Primary-Index Handlingc.ccooiiiioiiiiiiii e 4-14
4.9.9 Secondary-IndexX HaNAINGcevvviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 4-16
4.9.10 Structure of a Primary and Secondary INAeX.........cccceovuiveiiniiieeniieee e 4-17
4.10 Allowing for Fre@ SPacCEcccvvveiiieeeeee e 4-18

viii 47 A2 04UF Rev06

411 INSErtiNG RECOIUSeeiiiiiiiie ettt e e e e sbbe e e s anneeend 4-19

4.11.1 SIMPIE INSEITION ..ttt e e s ee e 4-19
4.11.2 Insertion Requiring Cl COMPACLION..........uuuriiiirieieiiiriereieiereeereeerererrrerere—.. 4-20
4.11.3 Insertion Requiring Cl SPIttiNGoeiiiiiiiiiiiiiieieeee e 4-21
4.11.4 Insertion Requiring Reorganization of INdeX CIScocceiiiiiiiiiieeeiiienen 4-22
4.12 Format of a Data Ci In an Indexed Sequential Filecccooiiiiiiiiiec e 4-24
4.13 Example of an APPHCALION.......c..eii i 4-25

5. File Assignment, Buffer Management, and File Integrity

0 R 10 [1 0] = VSO PPUPPTPPRPPIN 5-1
5.2 GCL COMMANGS.....oiiiiiriieeiiriie et et e et e e e e s e e e st e e e e s e e e s e nnneeeeennee 5-2
5.3 JCL StAtEMENIS...cciiiiiiiiiiiiiiii et 5-3
5.4 USEer-Program REFEIEINCEooiiiiiiie ittt 5-4
5.5 File-Assignment Parameter Group ASGi in the GCL Command EXEC_PG.................. 5-5
5.6 TYPES Of VOIUME ...ttt e e et e e e sbn e e e e ane 5-8
5.6.1 ReSIAENt VOIUME...coiiiiiiiiiiiiie ettt e e e e e e eee e e e e e e e enenes 5-8
5.6.2 WOIK VOIUME ..ottt 5-9
5.6.3 NAMEA VOIUME ...coviiiiiiiiiiiieee ettt e e e e s e st e e e e e e s e nnnneees 5-10
5.7 MURIVOIUME FlES......eiiiiiiiiiiiie e 5-11
5.7.1 Partial/Extensible Processing of Multivolume Filesccoccoceiiiiiieiniien e, 5-12
5.7.2 Managing Multivolume Devices (MOUNT) ... 5-14
5.8 Sharing Devices between FileS (POOL)ccueeiiiiiiiiiiiiiee e 5-16
5.9 FlE SNAING .t 5-18
5.10 OVErriding RUIES.......cooiiiiiiieiiii ettt e s snnee e 5-21
5.11 Using the File-Define Parameter Group DEFi..............ccccc) 5-23
5.12 BUffer ManagemeNnt.........ccooiiiiiiie e 5-24
5.12.1 Declaring the Size of the Overall Buffer Space (POOLSIZE)..........c.ccccevenen. 5-26
5.12.2 Defining a Buffer POOI (BUFPOOL)cciiiiiiiiiiiiieiiiee e 5-27
5.12.3 Defining the Number of Buffers (RESERVE AREAS/NBBUF) 5-29
5.12.4 Examples of BUffer USAgEcoccuuiiiiiiiiiiii e 5-31
5.12.5 TUNING BUFFEIS...coiiiiiiiiiiee ey 5-40
5.12.6 UFAS-EXTENDED Statistics as Presented in the JOR............ccocovveiiiieeenenn 5-42
5.13 JOUIMN@NIZALION ...eeeiieiieiiieee ettt ettt et e et e e e e s s e e e s e e e s nenneee e 5-47
5.13.1 BefOre JOUMAL........coviiiiiiiiiiiiie et 5-47
LN I A 1 (= SN Lo U o = SO USRI 5-48

47 A2 04UF Rev06 iX

UFAS-EXTENDED User’s Guide

I S e o 1 (=T | 1 S PRSP OPU PR 5-50
LN A [T O Y 14T PSRRI 5-50
5.14.1.1 Files without Secondary KeYsccccceviiieiiiiiiieniiiiee e 5-51
5.14.1.2 Files with Secondary KeYScccoiuiiiiiiiiiiiiiiieeeiieee e 5-51

B5.14.2 File PrOCESSING «.oiueeeieiitiiie ittt ettt bbb et e e s e e e e 5-52
5.14.2.1 INPUT OPEN MOUEccoiiiiiieiiiiiie ittt 5-52
5.14.2.2 EXTEND MOEootiiiiiiiiiie ittt 5-52
5.14.2.3 Files Without Secondary Keys ... 5-52
5.14.2.4 Files With Secondary Keys ... 5-54

LN S B [=1 £ (o) o RS 5-55
5.14.4 Permanent [-O ErTOrS. ... 5-56

6. Designing and Allocating UFAS-EXTENDED Disk Files

6.1 SUIMIMAIY .ttt e e e ettt e e e e et e e e et e e e e e s st r e ettt e e e s e asnrnnneeeeeesannnnns 6-1
6.2 Preliminary REMAIKScooi et 6-2
6.3 What Happens when you Allocate a File ..., 6-3
6.3.1 Choosing the Cl Size (CISIZE)cccoiuiiiiiiiiie et 6-5

6.3.2 Recommended CI Sizes by Space Occupied............ccoeeeiiiii e,

6.3.3 Disk-Storage Capacitycccoeeeieiiiii i, 6-7

6.3.4 Choosing the Initial Size (SIZE).......ccooouiiiiiiiiei s 6-11

6.3.5 Choosing the Increment Size (INCRSIZE) ..., 6-12

6.4 Simulating File AlIOCALIONcoiiiiiiiei e 6-13
6.5 Calculating Space Requirements fir a Sequential File.........ccccccooviiiiiiiiie i 6-14
6.5.1 Fixed-Length ReCOrds.........ccoooiiiiiii) 6-14

6.5.2 Variable-Length Records..........cccooiiiiii) 6-16

6.6 Calculating Space Requirements for a Relative File......................ccc) 6-18
6.7 Design Guidelines for Indexed Sequential Filesccccco) 6-21
6.7.1 Choosing the CISIZE for an Indexed Sequential File..............................l. 6-22

6.7.2 Choosing Free SPace (CIFSP) ...t 6-22

6.7.3 MASS INSEITION. ...ceiiiiiiiiiiii e e e et e e e e e e s nneeees 6-24

6.7.4 Files With Secondary Keys........ccccoiiiiiii 6-24

6.7.5 Calculating Space REQUIFEMENTScueeeiiiiiiieeiiiiee e 6-25
6.7.5.1 File Without Secondary INAeXES..........ccoucuurieiiiiiieiiiiiieniieee i 6-26

6.7.5.2 File With Secondary INndeXes.............coeeeeeee e 6-30

X 47 A2 04UF Rev06

6.8

File Allocation COMMANGScoiiiiiiiiiiiiiiieie e e beee e e e e e s st reer e e e e e e e snneeeeees 6-38
6.8.1 BUILD_FILE ... oottt 6-38

6.8.1.1 Examples of File Allocation Using BUILD_FILE...........c..ccccceviuveenns 6-40
6.8.2 CREATE_FILE ...ttt e 6-44
6.8.3 The File-Allocation Parameter Group ALCi ..., 6-47
6.8.4 The File-Define Parameter Group DEFicc.coovviiiiiiiiiiiii e 6-49
B.8.5 LIST _FILE .t 6-52
6.8.6 LIST_FILE_SPACE. ..ottt 6-53
6.8.7 MODIFY_FILE ..ottt 6-54
6.8.8 MODIFY_FILE_SPACEotiiiiiiii ittt 6-56

7. Magnetic Tape and Cartridge Tape Files

7.1
7.2
7.3
7.4

7.5
7.6
7.7
7.8
7.9

SUIMIMIAIY ettt e e e s e et et e e e s e e s e ettt e e e s e s bbb r e et e e e e e saannrnneeeeeeesannnnes 7-1
TYPES OF TAPE FHle. i s 7-2
TAPE LADEIS ... e s 7-3
FIle ATIDULES ...t e e e e e e e e e e e sebereeeeeeeeeas 7-4
7.4.1 Record Size (RECSIZE)cocuuiiiiiiiiie ettt 7-4
7.4.2 BIOCK Size (BLKSIZE)coiiiiiiiieiiieeee ettt 7-4
7.4.3 Record Format (RECFORM) ..., 7-5

7.4.3.1 Fixed-Length Records..........cccceeoiiiii 7-6

7.4.3.2 Variable-Length Records............cccccooiiiiii 7-6
ChooSiNg the BIOCK SIZEcooiiiiiiiiiiie e 7-11
Creating a Magnetic-Tape or a Cartridge-Tape Filecccccvviiiiiniiie e 7-12
Referencing Tape FilES ...t 7-14
Minimum Length of a Physical RECOrd.............cccocuuiiiiiiiiiiiiiiiiieeeeeeeeeeneneed 7-16
Compacted Data OnN TaPecoooeeeeeeeeeeeeee e 7-16

8. File Manipulation and Maintenance

8.1
8.2
8.3

8.4
8.5
8.6
8.7

ST 1110 1= LY PSP PTPPRT 8-1
Sorting and Merging FileS ..o 8-1
o= Vo I][T PP U PP PPUPRPPPPPRPN 8-2
8.3.1 Converting UFAS Files to the UFAS-EXTENDED File Format 8-4
8.3.2 Converting VBO files to FBO format..........ccccccooeeeiiiii, 8-5
Data Services Language (DSL)uuuuuuuuuiuiiiiiiiiiiiiiiieeeieierereeenneerererererrnrn——..
FIlE-LeVel ULIITIESoeiiiiiiieeeee e e e e e e 8-7
Volume-Level ULIIItIES...........c.ooiii e
Visibility of Physical and Logical Space Allocated to UFAS Disk Files...........ccccceenee. 8-10

47 A2 04UF Rev06 Xi

UFAS-EXTENDED User’s Guide

A. Randomizing Formulas for Relative Files

Al RandomMizing TECHANMIQUES.ccoiuiiiieiiiiie ettt et eb e e e enenes A-1
A2 Prime-NUMDEI DiVISIONcoiiiiiiiiiiee ettt e e e e e snabn e e eee s A-2
A.3 Square, Enfold, and EXIFACLcuvviiiiiiiiiiiiiiiceceeeeeeeee ettt A-4
A4 RAAIX CONVEISIONeutiiiiieeii ittt ettt et e e e ettt e e e e e e bbb e e et e e e e e sasbebeeeeeeeeesnnrnreeeeens A-6
A5 FrequENCY ANAIYSISoooiiiiiiiiiii ettt A-7
A.5.1 Using Frequency Analysis to Develop Randomized Relative Record

AAIESSES ...ttt e e e e e e e e e e e e e A-9

A6 NON-NUMETIC KEYS ...ttt ettt e e s e b e e e annes A-12

B. Label and Volume Formats of Magnetic Tapes

B.1 Magnetic-Tape CONVENLIONSc.cuiiiiiiiiiee ittt ettt s bbb e e e ennns B-1
B.1.1 Reel/File RelatiONSHIDuuuuuuuuiiiiiiiiiiiiiiieiiiiieieiiieieieierererersrerererereererrree——.. B-2
B.1.2 File OrganiZation..............uuuuuuueuuuueiiiiineinierneeneeernrernrnrernrernrereee—————————. B-2
B.1.3 Data OrganiZationccueeeiiiiiiieiiiiie ettt ettt B-2
B.2 Native Magnetic Tape Label and Volume FOrmats.........cccocueveiiiiiieiiiiie e B-4
B.2.1 General INfOrMationcoiiiiiiiiiiiee e e e B-4
B.2.2 GCOS7/ASCII Standard FOrmMat...........coocueeiirrmieeiireie e B-17

C. Hexadecimal Layout of Address Spaces in an Indexed Sequential File
D. JCL-GCL/GCL -JCL Correspondence Tables
E. More About Buffers

F. UFAS Files under UFAS-EXTENDED

Xii 47 A2 04UF Rev06

G. Batch Performance Improvement

L R O 1T gV T PP PP PP OTPPPPPPRP G-1
G.1.1 How to Activate the Batch Booster Option...........cccccovviiiiiniiineiniee e G-1
G.1.1.1 Activation External to the Program..........ccccccovuiiiiiiiieiiniiiee e G-1

G.1.1.2 Activation Within & Programccceeeiiiiieiiiiiieciiiee e G-2

G.1.2 How BPB Processing WOIKScoiiiuiiiiiiiiiie et G-2

G.2 Conditions fOr BPB ProCeSSINGuviiiiiiiiieiiiiee ittt sane e G-3
G.3 Support of Data Management ULIHtIESc.ooiiiiiiiiiiii e G-4
G.3.1 FilE TrANSTEI ..t G-4

G.3.2 SORT/MERGE ULIILIES ...cceveeiiiieiiie ettt G-4
G.3.2. 1 SOOI ittt nn e G-4

G.3.2.2 MBIQE ittt G-6

G4 USBGE IN GCL. ittt et e e e e e e e e e e G-6

Index

47 A2 04UF Rev06 xiii

UFAS-EXTENDED User’s Guide

Table of Graphics

Figures

1-1. Logical Record as Unit Of TranSfer.........ccccoiiiiiiii e
1-2. Control Interval as Unit of Transfer ...
1-3. Cl Layout in Sequential and Relative Files ...
1-4. Cl Layoutin an Indexed Sequential Fileoooiiiiiiiiiie e
1-5. Mapping a Cl to @ Data BIOCKcooiiiiiiiiiii e
L1-6. DUSK TFACK ...vveeeiitieiie ittt ettt ettt et et e e st e e sn e e e sr e e e e snn e e e e snrneeeeaned
1-7. Physical Layout of a VBO DiSK VOIUME ...
1-8. Files, Volumes, and EXIENTS..........oeiiiiiiieiiiiii ety
1-9. Physical Layout Of @ Fileooiiiiiiiiie e
1-10. Logical/Physical Layout Of @ File.........cueiiiiiiiiiiiiieiiiee ey
2-1. Layout of Records in a Sequential File ...
2-2. Accessing a Sequential Filec..ueeiiiiiii
2-3. Format of a data Cl in a Sequential File (Fixed-Length Records)cccouveeeeeiiinnnnnen.
2-4. Format of a Data Cl in a Sequential File (Variable-Length Records)cccccceeeeennnes
3-1. Relative File RECOIA LAYOULocueiiiiiiiiei ittt
3-2. Sequential Access to a Relative File............ocviiiiiiiiiiiii e
3-3. Relative File RANUOM ACCESSoccuiiiiiiie e ie ettt e e e e e seete et e e e e s esateeere e e e s s s snnraaeeeeeesennnnes
3-4. Relative File DYNAmIC ACCESS.....ciiuutiiiiiiee ittt ettt e e et e e e e e e e snbbeeeeeaeeeaannes
3-5. Relative File Data Cl Format (fixed length records).........cccccoiiiiiiiiiiiiininiie e
3-6. Relative File Data Cl Format (variable length records).........ccoocuiieeiiiiiniiiiiiiee e
3-7. Relative File APPlICALION.......cuiieiiiiieiiiec e e e e e e e e e s e snrree e e e e e e s annnnes
4-1. Indexed Sequential RECOrd KEYS.........uuiiiiiiiiiiiiieiiie ettt e e e e e e e e e e e
4-2. Sequential Access to an Indexed Sequential File...........cccoveeveeeiiiiciie e
4-3. Random Access to an Indexed Sequential File ...
4-4. Dynamic Access to an Indexed Sequential File ...
4-5. Detailed Layout of an Indexed Sequential File ..o
4-6. UFAS-EXTENDED Indexed File Structure (without secondary keys)

4-7. Primary and Secondary INAeX STTUCIUIEc.uuvviiieee ittt e e e e e e
4-8. Free Space in an Indexed Sequential Fileuuvvveeiiiiiiiiiiee e
4-9. SIMPIE INSEITION. ..cci ittt ittt e st e e et e e et e e e b e e e e nneas
4-10. Insertion Requiring Cl COMPACLIONciviiiiiiiieie ittt
4-11. Insertion Requiring Cl SPILIING.......ccuetieiiiiieeiiiee et
4-12. Insertion Requiring Reorganization of INAeX CISccccvieeieeiii i
4-13. Data Cl Format in an Indexed Sequential Filecccooviiiiiirei e

Xiv 47 A2 04UF Rev06

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9

5-10.
5-11.
5-12.
5-13.
5-14.
5-15.
5-16.

6-1.
7-1.
7-2.

7-4.
7-5.
B-1.
B-2.
E-1.

Using the File Assi

Parameters for AsSigning @ file (1/2)uuuuuiuiiiiiiiiiiiiii e 5-6

Using Resident Vo
Using a Work Volu

USING @ NAMEA VOIUMEciiiiiiiiiiiiiiiee ettt e e et e e sbeeee e 5-10
Using a Multivolume Uncataloged Disk or Tape Filecoooiiiiiiiiiiiie e 5-11
Using a Multivolume Cataloged File...........cooi i 5-11
Partial/Extensible Processing of Multivolume Tape FileSuuvvvivvvvviviiviiiiiiieieeenennnnd 5-13
Managing MUltivOIUME DEVICESuuuuuuuiiiiiiiiiiiiiiiaa e naeannennannnnsnnnnne 5-15
POOI DBVICE ...ttt ettt et e s e nnree e 5-17
Sharing a File With ANOther STEP........coiiiiiiii e 5-18
ACCESS and SHARE VAIUESooiiiiiiiiiiiiie ettt 5-19
File-Sharing RUIESoouiii e 5-20
Layout Of BUFfEr SPACE........cueiiiiiiee ittt 5-25
Using the Before JOUMNAL...........cooi e 5-47
UsiNg the After JOUIMN@L...........uiiiiiee e 5-48
USING CIFESP .ttt sttt e e bbbt e e s bbbt e e s bt e e e e snnreeas 6-23
TYPES Of TAPE Fle.c i st 7-2,
Fixed-Length Records: Blocked and Unblocked...............cccccoviiviiiiininiiccc, 7-6]
Variable-Length RECOIUScccoiiiiiiiii e 7-7,
Variable-Length Unblocked ReCOrdscccoiiiiiiiiiiiiii e, 7-8
Variable-Length BIOCKEd RECOITS.coiiiiiiiiiiiieie e 7-9
Magnetic Tape Label Formats Read by GCOS7/EBCDIC (1/2)ccccvvveeveeeiiiiiieneeenn, B-14
Magnetic Tape Label Formats Accepted by GCOS7/ASCI ...ccceevivicivvieeieeeiicieieeeen B-22
2101 g o = T To | T T PSPPSR E-2

gNMeNt Parameter GrOUPcoeoveieieieierieniesiesieeeeeesie e seens 5-5]

1910 0SS 5-8
1 1< P 5-9

47 A2 04UF Rev06

XV

UFAS-EXTENDED User’s Guide

Tables

6-1. Recommended CISIZE VAIUES...........cocoeiiiiiiiie e
6-2. Number of CIs per FSA DisK VOIUME........ccoiiiiiiiiiie e
6-3. Storage Capacity of NOn-FSA Disk VOIUMES..........cooiiiiiiiiiiiie e
6-4. Comparative Capacity of VBO and FBO MS/D500 Volumes
6-5. Comparative Capacity of VBO and FBO MS/B10 Volumes.............ccccceeeeiiei,

8-1. File-Level ULIIItIES (L/2)...ccccie et
8-2. VOIUME-LeVEl ULIHTIES.......oiiiiiiieiieee et
A-L. Prime NUMDBDEIS ...t et e e e e e e et e e e e e e s e annrneeeeaee s
A-2. Pattern of diStriDULIONooiiiieie e
A-3. Developing a relative addreSS........coiuiiiiiiiieiiiie et
[I - o1 B Y/ o1 S PP PP PPRT TP
B-2. Volume Header Label 1 (GCOST7/EBCDIC)........uuuuiuiuiuimiuininininisininininrnrnreisrmmmm...
B-3. File Header Label 1 (GCOST7/EBCDIC) (1/2)....cccuuiiiiiiiee ittt esiee e eiiee e siaee e
B-4. File Header Label 2 (GCOST7/EBCDIC) (L1/2)...cccuutiiiiiiiiiiiiiee it
B-5. End-of-File Trailer Label 1 (GCOST7/EBCDIC).......cccoiuiiiiiiiiieeiiiiee et
B-6. End-of-Volume Trailer Label 1 (GCOST7/EBCDIC)coeeiiiiiiiiiiiiee e
B-7. Magnetic-Tape Formats Written by GCOS7/EBCDICccccuviiiiiiiiiiiiiieeeeeeeeieee
B-8. 8. Volume Header Label 1 (GCOST/ASCI)cuiiiiiiiiiiiiieee e
B-9. File Header Label 1 (GCOST7/ASCI) (1/2) cuuuiieiiiiiie ettt sieee e siieea e
B-10. File Header Label 2 (GCOST/ASCII) .ottt
B-11. End-of-File Label 1 (GCOST/ASCI) ...ccoi ittt
D-1. JCL-GCL CorreSpoNdeNCE (L/2) ...uuueeeeeiieciiieieeeeeesiitiieee e e e s e sstaeeeeee e e s e snnnnneneeaeeesnnnsnseees
D-2. GCL-JCL CorreSPONAENCE (L/2) ...eeiieeieiiiiiieiee ettt e e e e eeeeees

XVi 47 A2 04UF Rev06

1. Introduction to UFAS-EXTENDED

1.1 Summary

This section covers the following topics:

« overview of UFAS-EXTENDED,
 features of UFAS-EXTENDED,
-+ essentia concepts,
- logical records (fixed-length and variable-length),
- control interval (CI),
- control intervals and address spaces,
- layout of Clswithin afile,
- FBO disk volumes,

- VBO disk volumes,
disk track
disk cylinder

- disk address,
- disk extent,
- logical/physica layout,

47 A2 04UF Rev06 1-1

UFAS-EXTENDED User’s Guide

1.2

Overview of UFAS-EXTENDED

UFAS-EXTENDED isthe standard file structure for DPS 7000 systems. It isthe
file structure that is used for applications running under GCOS 7 since release V5.

UFAS-EXTENDED isthe interface between logical data management and physical
devices. It isaset of routines providing facilitiesfor:

- creating,
« reading,
« and updating disk and tape/cartridge files known as "UFAS-EXTENDED files".

Regardless of the physical characteristics of the file media, UFAS-EXTENDED
performs the following functions:

buffer handling,
data blocking,
error checking,
record locating,
label processing.

All Cls (described later in this Section) of a UFAS-EXTENDED file are the same
size.

Fewer |I/O operations are performed because of the large number of buffers
supported:

 upto 20,000 buffers per TDS application (18,500 for PREVIOUS files),

 up to 32,000 buffers can be shared at system level, that is, among several
applications, including batch applications.

A large number of files can be simultaneously opened:

» approximately 1000 files can be shared among several TDS applications, if level
of share =5, or 3200 filesif level of share = 2 (with the M| EFM2).

- approximately 500 files can be simultaneously opened for one TDS application.

1-2

47 A2 04UF Rev06

Introduction to UFAS-EXTENDED

1.3 UFAS-EXTENDED Features

The major UFAS-EXTENDED features are as follows:

1. UFAS-EXTENDED supportsthe following file organizations:
sequential,
relative,
indexed sequential,
IDS/I (Integrated Data Store).
NOTE:

File organization is the technique of arranging a collection of recordsin the
most effective way for processing.

An DS/ fileis adatabase file containing several record types and logical
relationships between them. Physically the file consists of a number of areas.
Since IDS/11 is beyond the scope of this manual, please seethe relevant IDS/11
Reference Manual for more information, .

Each file organization can be used in the various GCOS 7 environments:

Batch,
Transactional (TDS),
Interactive (10F).

UFAS-EXTENDED supports the access modes and verbs defined by the
American National Standards Institute (ANSI) for the COBOL Language
(COBOL-85).

Other Features are:

multivolume files (afile spread over several volumes) and multifile volumes
(more than one file per volume) on both disk and tape/cartridge,

standard-label processing on disk, tape, and tape cartridge,

full standard error-handling as defined for COBOL-85,

file integrity through checkpoint/restart and journalization facilities,
concurrent file-access from more than one program,

static and dynamic file extension for sequential and indexed sequential files.

47 A2 04UF Rev06

1-3

UFAS-EXTENDED User’s Guide

1.4 Essential Concepts

The following pages treat concepts which are essentia in understanding and using
UFAS-EXTENDED files. These concepts are as follows:

« logical records,

- control intervals (Cls),

« control intervals and files,
 physical disk characteristics.

The threefirst concepts only deal with the disk files. The FBO volumes are
defined by the following concepts:

Data Blocks isthe smallest addressable unit for an /O inaFBO
volume. Thesizeis 512 byteson a FSA disk and 4096
bytes on anon-FSA disk formatted as a FBO volume.

File Blocks is the smallest unit that the access method can handle.
Thefile block corresponds to the CI of the UFASfiles.
A file block can consist of one or more data blocks.

Note that files held on tape/cartridge are dealt with separately in Section 7.

141 Logical Records

Dataistransferred between UFAS-EXTENDED and user programs by means of
logical records. These logical records are defined in the program and allow portions
of datato be manipulated. A fileis anamed collection of these records.

In COBOL, for example, the I-O processing done by verbs such as READ,
WRITE, and REWRITE causes records to be moved to and from a record-
description area.

In FORTRAN, the record description isthe list of variables associated with the 1/0
Statement.

Records can be of fixed or variable length. Thisis discussed below.

1-4 47 A2 04UF Rev06

Introduction to UFAS-EXTENDED

Figure 1-1 shows how the logical record isthe unit of transfer between a program
and UFAS-EXTENDED.

GCOS 7
User Programs
777777777 Logical i
N < Records »| UFAS-EXTENDED
System Utilities

Figure 1-1. L ogical Record as Unit of Transfer

Fixed-L ength and Variable-Length Records

Records can be fixed length or variable length. (Fixed length or variable length is
declared as one of the file attributes at file creation time.)

An example of the use of fixed-length records might be in a payroll application,
where thereis one record for each employee. The record could have the form:

EMPLOYEE HOME SOCIAL EMPLOYEE | INCOME
NAME ADDRESS | SECURITY N°.| NUMBER |TAXE CODE

Each employee record contains the same amount of information, therefore each
record is of the same length.

An example of the use of variable-length records might be asalesfilein which
there is one record per customer per year. Each customer could theoretically place
an order each week. However, in practice the total number of ordersin ayear never
exceeds twenty. The design of the record might be:

CUSTOMER | SALES | ... | ORDER | ORDER | | ORDER
NUMBER | AREA N°.1 N°.2

47 A2 04UF Rev06 1-5

UFAS-EXTENDED User’s Guide

Suppose the average number of orders placed by each customer is 5. It would be
wasteful for each record to contain space for 20 entries (since only 25% of the
space would be used). It is more efficient to use variable-length records, so that
each record will occupy only the necessary amount of space (plus asmall amount
of control information, managed by UFAS-EXTENDED).

Under UFAS-EXTENDED, all file organizations support variable-length records.

Note that when variable-length records are used, the maximum record length for
thefileis declared at file-allocation time.

1.4.2 Control Intervals (Cls)

One of the most important concepts in UFAS-EXTENDED is the Contral Interval
(CI). A Cl isthe unit of transfer to and from disk. Each CI contains one or more
records, (a minimum of 2 records for indexed sequential files), according to the
size declared by the user. UFAS-EXTENDED Cls correspond to IDS/11 pages. The
main characteristics of Cls are:

« All Clsarethe same size (data Cls, index Cls or label Cls),

« Records cannot be split across Cls; a Cl contains an integral number of records,
up to amaximum of 255,

« The maximum record length cannot exceed the declared Cl size,

« Themaximum size of aCl is 32,256 bytes (32K - 512),

» Thedeclared Cl size for Fixed Block Organization (FBO) disk subsystems
corresponds to an integral number of blocks (described later in this Section). In
the case of Variable Block Organization (VBO) disk subsystems, the Cl size
cannot be larger than one track and Cls do not overflow tracks.

» Thesize of aCl isawaysamultiple of 512 bytes; you can specify any sizefor a
Cl (up to 5 digitslong), but UFAS-EXTENDED aways rounds the figure up to a
multiple of 512. Table 6-1 gives you the recommended filling capacity of a Cl
for each type of disk drive.

» Themaximum number of Clsin afileislimited to 16,777,215 (2**24 - 1)

Further information about Clsis contained in the sections specific to each type of
file organization.

1-6 47 A2 04UF Rev06

Introduction to UFAS-EXTENDED

Figure 1-2 shows how the CI isthe unit of transfer between UFAS-EXTENDED
and the storage media.

GCOS 7

User Programs

_ Logical] ~control | |-
« g > UFAS-EXTENDED «- =000 - »

System Utilities

Figure 1-2. Control Interval asUnit of Transfer

1.4.3 Control Intervals and Address Spaces

Read on if you wish to learn more about Cls and the physical characteristics of disk
volumes. The relationship between the logical layout of the file and the physical
layout of thefileis discussed. Note that the discussion applies only to disk files;
tape files are discussed in Section 7.

Layout of ClsWithin aFile

A fileis astructured amount of space, consisting of several address spaces used to
group data of the same category. The layout of Cls within afile depends upon the
file organization. Figure 1-3 shows the logica layout of Clsfor sequential and

relativefiles.

Address Space 2
Address cl| cl| cl ci|c | c|cl
Space 1

Figure 1-3. Cl Layout in Sequential and Relative Files

47 A2 04UF Rev06 1-7

UFAS-EXTENDED User’s Guide

« Address space 1 contains control information such as the description of the other
address spaces and any user labels. This control information is used and
managed by UFAS-EXTENDED, and is aways located at the beginning of the
first track used by thefile. The address space 1 always occupies one track on a
VBO disk. For FBO volumes, address space 1 occupies a minimum of 16
Kbytes.

» Address space 2 contains the data Cls.

Primary Index Cls DataCls Secondary Index Cls
\ I I \
Address Address Address Address Address Address Address
Space 1 Space 3 Space 4 Space 2 Space 6 Space 7 Space 5

Figure1-4. CI Layout in an Indexed Sequential File

 Address space 1 contains control information such as the description of the other
address spaces and any user labels. This control information isused and
maintained by UFAS-EXTENDED. Address space 1 always occupies one disk
track (VBO), or the first sixteen Kbytes of the file (FBO volumes).

 Address space 2 contains the data Cls,

» Address spaces 3 and 4 contain the primary index Cls, and address spaces 5, 6
and 7 contain the secondary index Cls.

Theterms primary index and secondary index are defined later in Section 4.

To see how the logical layout described above is mapped onto disks, it isfirst
necessary to describe briefly the physical characteristics of disks.

1.4.4 Different Types of Disk Volumes

A disk volume is afixed number of plates mounted one above the other on a
common spindle.

Each plate has two recording surfaces, top and bottom (except the upper surface of
the top disk and the lower surface of the bottom disk, which are protective covers
and are not used for data storage).

The physical disk volumeis different from the logical volume. The logical volume
determines the place reservation of the file. There are two types of logical volume:

« FBO (Fixed Block Organization), used since the GCOS 7-V5 release.
« VBO (Variable Block Organization), as used in earlier releases.

1-8 47 A2 04UF Rev06

Introduction to UFAS-EXTENDED

There are two different physical architectures:
» The FSA (Fixed Sector Architecture) disks with FBO organization (MS/FSA
device class).

» Thenon-FSA or CKD disks (device class: MS/500 or MS/B10),which can be
formatted by the VOLPREP into VBO or FBO volumes.

1.4.4.1 FBO Disk Volumes

FBO disk volumes are either FSA (MS/FSA) disks or non-FSA disks formatted as
FBO format (MSB10 or MS/D55). These volumes are organized in fixed length
data blocks.

The size of adatablock is 512 bytes on the FSA disks and 4096 bytes on the non-
FSA, FBO formatted. The size of the Cls (file blocks) isamultiple of 512.

Cls are physically mapped onto the data blocks so that volume space is not wasted.
A Cl always occupies an integral number of data blocks.

Figure 1-5. Mapping a Cl to a Data Block

In Figure 1-5, aparticular Cl is mapped onto 7 data blocks, that is 3584 (512 x 7)
bytes.

47 A2 04UF Rev06 1-9

UFAS-EXTENDED User’s Guide

1.4.4.2 VBO Disk Volumes

The VBO disk volumes are organized in tracks and cylinders. They are located on
the non-FSA disks using the VBO format (M S/B10 or MS/D500).

Disk Track

Each recording surfaceis divided into a number of concentric bands, known as
tracks, on which dataisrecorded. A track is the area covered by one read/write
head during one revolution of the disk. Figure 1-6 illustrates asingle track on a
recording surface.

SPINDLE L DIsK

1 HEAD TRAC

Figure 1-6. Disk Track

Disk Cylinder

Thetracks in the same relative position on each recording surface logically form a
cylinder. For example, the outermost tracks (one from each recording surface) form
one cylinder. Figure 1-7 illustrates cylinders.

Disk Address
A location on adisk volume is specified as:

» adatablock address on FBO volumes,
« acylinder track address on VBO volumes.

Cylinders are numbered consecutively from the outermost (cylinder 000) to the
innermost.

Tracks are numbered according to the recording surface on which they occur. All
tracks on the first recording surface (the lower surface of the top disk) are
numbered 00; all tracks on the second recording surface (the upper surface of the
second disk) are numbered 01, and so on down to the last surface.

1-10

47 A2 04UF Rev06

Introduction to UFAS-EXTENDED

Figure 1-7 illustrates the physical layout and addressing system for disk volumes.

CYLINDER 707
CYLINDER 000

R
TRACK 00
TRACK 01

TRACK 02
TRACKO3—4*j\\\A

%
TRACKO04 — —7 - DISKS
TRACK05—~¥A\\\A

e

‘j

TRACK 06
TRACKOFI\\A

e

Figure 1-7. Physical Layout of a VBO Disk Volume

Disk Extents

A disk file can occupy one or more extents. An extent is agroup of contiguous
tracks in the case of VBO volumes or in the case of FBO volumes contiguous data
blocks in the same disk volume.

Figure 1-8 illustrates the relationship between disk volumes, files and extents,
where:

« fileAisasingle-extent, single-volumefile.
- file B isamulti-extent, single-volumefile.
« file Cisamulti-extent, multi-volumefile.

47 A2 04UF Rev06 1-11

UFAS-EXTENDED User’s Guide

B |C |BIC

Figure 1-8. Files, Volumes, and Extents

L ogical/Physical Layout

Figure 1-9 shows a single file which consists of 4 extents. Extents 1 and 2 are
located on volume X, and extents 3 and 4 are located on volume'Y.

Volume X
File File
Extent 1 Extent 2
Volume Y
File File
Extent 3 Extent 4

Figure 1-9. Physical Layout of a File

1-12 47 A2 04UF Rev06

Introduction to UFAS-EXTENDED

Figure 1-10 shows the relationship between the physical layout and the logical

layout of thefile.

File Extent 1 File Extent 2 File Extent 3

File Extent 4

Address Space 2 J
Address Space 4

Address Space 3

Address Space 6

Address Space 1 (1 track)

Address Space 7

Address Space 5

Figure1-10. Logical/Physical Layout of a File

 Address-space boundaries are independent of extent boundaries,

» Address spaces are logically addressed using Cl numbers; this means that
UFAS-EXTENDED files can be transferred to a different set of extents without

any specia reprocessing,

» You can move UFAS-EXTENDED files between disks with different physical
characterigtics (block, number of tracks per cylinder, track capacity) without any

loss of coherence.

Disk-file design and space alocation are described later in Section 6.

47 A2 04UF Rev06

1-13

UFAS-EXTENDED User’s Guide

1-14 47 A2 04UF Rev06

2. Sequential Organization

2.1 Summary

This section covers the following topics:

sequential-file concepts,

types of open mode,

sequential-access mode,

using a sequential file for the first time,
format of adata Cl in asequential file.

47 A2 04UF Rev06

2-1

UFAS-EXTENDED User’s Guide

2.2 Brief Review of Sequential Organization

A sequential file can be stored on disk or tape.

Accessto the records it contains can only be sequential. To retrieve record n, you
must first read down to and including record (n - 1). After record n has been read,
the next READ statement will read record (n + 1).

NOTE:
In GPL, however, you can access the nth record directly in asequential disk file,
using this as start point for subsequents READs.

You can write record n only after you have written record (n - 1).

Figure 2-1 shows alogical picture of recordsin asequentid file.

Recl | Rec2 | Rec3 | Rec4 Rec (n-1) | Recn | Rec (n+1)

Figure 2-1. Layout of Recordsin a Sequential File

A program using a sequentia file must have its organization declared as
SEQUENTIAL (ORGANIZATION ISSEQUENTIAL in COBOL). Thisisthe
default value if you omit an ORGANIZATION IS clause.

2-2 47 A2 04UF Rev06

Sequential Organization

2.3 Types of Open Mode

When you open afile, you must state an open mode, for example in the COBOL
OPEN statement. The declared open mode determines which verbs you can use to
access thefile. You can open a sequential file in four modes:

INPUT

OUTPUT

-0

EXTEND (GPL equivalent APPEND)

Figure 2-2 shows the ways of opening a sequential file and the verbs used to access
such afile.

COBOL

VERB
COBOL READ WRITE REWRITE
OPEN MODE

INPUT X
OUTPUT X
I-O* X X

EXTEND X

*|-O can be applied only to disk files

Figure2-2. Accessing a Sequential File

» Opening afilein OUTPUT mode deletes any previous contents of thefile; this
mode should normally be used only when you wish to create a new sequential
file,

» EXTEND mode causes the WRITE verb to append extrarecords to the end of
thefile; in all other respects EXTEND mode is equivaent to OUTPUT mode,

» In1-O mode, a REWRITE must be preceded by a READ of the record to be
updated. Do not try to change the length of variable-length records.

47 A2 04UF Rev06 2-3

UFAS-EXTENDED User’s Guide

MULTIVOLUME FILES
(described later in Section 5)

Where spaceis allocated for afile on more than one volume, volumes are switched
automatically in the OUTPUT, EXTEND, INPUT and I-O open modes as follows:

OUTPUT or EXTEND open modes:

The current volume is released and subsequent write operations continue at the first
allocated extent on the next volume. Note that the first volume must remain on line
because it contains the control information which is required or updated by UFAS-
EXTENDED. The volume switch will occur only when all the allocated space on
the current volume is completely used up.

INPUT and I-O open modes:

After the last record in the last extent of the current volume has been read, the next
record to be read will be the first record on the first extent allocated to the file on
the next volume.

2-4 47 A2 04UF Rev06

Sequential Organization

2.4 Type of Access Mode in COBOL-85

You can access a sequential filein only one access mode:
ACCESS MODE IS SEQUENTIAL

In COBOL the access-mode clause must state SEQUENTIAL. Thisisthe default
value.

2.5 Using a Sequential File for the First Time

When you first access a newly allocated sequential file, you should openitin
OUTPUT mode and place recordsin it. If thefileison disk, it isin fact possible to
open in 1-O mode, but thisis not advised. You can use such utilities as
LOAD_FILE (JCL equivalent CREATE), SORT_FILE (JCL equivalent SORT),
and MERGE_FILE (JCL equivalent MERGE) as well as COBOL programs.

47 A2 04UF Rev06 2-5

UFAS-EXTENDED User’s Guide

2.6 Format of a Data Cl in a Sequential File

The following information will give you a better understanding of how space
requirements are calculated (described later in Section 6). Thereis no user
programming required to maintain, or take into account, the control fields shown.
UFAS-EXTENDED does all the necessary processing.

Neither fixed-length nor variable-length records are ever split over two Cls and the
size of aCl isaways amultiple of 512. Therefore, there may be unused spacein a
Cl. UFAS-EXTENDED always rounds up the size of a Cl (CISIZE parameter)
given by the user to amultiple of 512. Table 6-1 gives you the Cl sizesthat are
recommended for each type of disk drive.

Each stored record has a 4-byte header which contains the record length. A user
program cannot access this header. The unit of data transfer between UFAS-
EXTENDED and programs remains the logical record, containing only user-
declared datafields. Each programming language handles the length of each
variable record differently, for example, in COBOL the DEPENDING ON clauseis
used.

Figure 2-3 shows the format of a Cl for a sequentially organized file for fixed-
length records and Figure 2-4 shows the same for variable-length records.

Cl Header Information — { 9 bytes for FBO files
{ 8 bytes for VBO files

Record Header

4 bytes Data Record

Record Header

4 bytes Data Record

Record Header Data Record

4 bytes

Record Header

4 bytes Data Record

Record Header Data Record

4 bytes

Record Header Data Record

4 bytes

1 byte CI
Unused Space trailer if FBO

Figure 2-3. Format of adata Cl in a Sequential File (Fixed-Length
Records)

2-6 47 A2 04UF Rev06

Sequential Organization

Cl Header Information — { 9 bytes for FBO fi'Ies
{ 8 bytes for VBO files
Record Header
4 bytes REC 1
Record Header
4 bytes REC 2
REC 2 Record Header
(contd.) 4 bytes REC3
REC 3 and so on up
to record n
Record Header REC n
4 bytes
Unused Space 1 byte_CI
trailer if FBO

Figure 2-4. Format of a Data Cl in a Sequential File (Variable-Length
Records)

2-7

47 A2 04UF Rev06

UFAS-EXTENDED User’s Guide

2-8 47 A2 04UF Rev06

3. Relative Organization

3.1 Summary

This section covers the following topics:

relative-file concepts,

types of open mode,

types of access mode,
sequential-access mode,
random-access mode,
dynamic-access mode,

using arelative file for the first time,
format of adataCl in arelativefile,
example of an application,
advantages and disadvantages.

47 A2 04UF Rev06

3-1

UFAS-EXTENDED User’s Guide

3.2

Brief Review of Relative Organization

A relative file must reside on disk. A record in arelative file can be accessed
directly by its unique record number. To read record n, you do not need to read
through records 1 to (n - 1). Similarly, in OUTPUT, to write record m, you do not
need to write records 1 to (m - 1).

Figure 3-1 shows alogical picture of recordsin arelativefile.

Rec 1

Rec 2 Rec 3 Rec (n-1) Rec n |Rec(n+1) Rec m

—— T e N

EMPTY EMPTY

Figure 3-1. Relative File Record L ayout

A relative file consists of a series of record positions or dots each of whichis
identified by arelative record number (RRN). Each record position, which can
contain one logical record, can be accessed directly viaits RRN.

TheRRNsare 1, 2, 3,... The maximum record number depends on the size of the
file. If afileisbuilt to hold 1240 records, then the highest RRN is 1240.

When ardativefileisfirst allocated, it consists of empty record positions. Any
attempt to retrieve arecord directly from an empty position causes an error.

When the nth record is directly accessed, the record positions 1 to (n - 1) may be
empty. In Figure 3-1, record positions 3 and (n - 1) are empty.

You can establish the RRN either by loading the file sequentially or by converting
akey field into an RRN. Appendix A gives some examples of randomizing
algorithms for key fields.

A program using arelative file must have its organization declared as RELATIVE
(ORGANIZATION ISRELATIVE in COBOL).

3-2

47 A2 04UF Rev06

Relative Organization

3.3 Types of Open Mode

When you open afile, you must state an open mode. You can open arelativefilein
four modes:

INPUT

OUTPUT

-0

EXTEND (GPL equivalent APPEND)

The choice of open mode depends on the access mode declared for thefile. The
various combinations are described in the following sections.

47 A2 04UF Rev06 3-3

UFAS-EXTENDED User’s Guide

3.4 Types of Access Mode in COBOL

You can access arelative file in three access modes:

{ SEQUENTI AL }
ACCESS MODE |'S { RANDOM }
{ DINAMC }

3.4.1 Sequential-Access Mode in COBOL-85

Sequential -access mode allows the program to carry out standard sequential
processing. The open modes are discussed below.

INPUT mode;

When you open afilein INPUT mode, then the first record read is RRN 1, then
RRN 2 and so on (unless you use the START verb to specify the first record).
Empty record positions are skipped. For example, if record position 4 is empty, the
records read in sequentia order are 1,2,3,5,6...

The data name given in the START verb must be the dataitem that is specified in
the RELATIVE KEY phrase of the associated SELECT clause.

OUTPUT mode:

Opening afilein OUTPUT mode deletes any previous contents of thefile. Thefirst
record is written into record position 1, then record position 2, and so on. Thisis
used only when you wish to initially load ardativefile.

[-O mode:

The REWRITE and DELETE verbs must be preceded by a READ verb when
accessis sequential. Since the maximum record size is reserved for each record
position, arecord written using the REWRITE verb may be of a different length
than the one being overwritten.

EXTEND mode:

The EXTEND phrase can be used only in COBOL-85.

Figure 3-2 shows the COBOL verbs avail able to the programmer when ACCESS
MODE IS SEQUENTIAL.

3-4 47 A2 04UF Rev06

Relative Organization

SoBOL START
VERB READ WRITE REWRITE DELETE
OPEN MODE
INPUT X X
OUTPUT X
I-O X X X X
EXTEND X
Figure 3-2. Sequential Accessto a Relative File

Random-Access Mode in COBOL-85

In random-access mode, each file access must reference avalid RRN specifying
the record position required. The value given in the RELATIVE KEY IS phrase
indicates the record to be accessed.

Figure 3-3 shows the COBOL verbs avail able to the programmer when ACCESS
MODE IS RANDOM.

VERB | READ WRITE REWRITE DELETE
OPEN (RRN) (RRN) (RRN) (RRN)
MODE
INPUT X
OUTPUT X
I-O X X X X
Figure 3-3. Relative File Random Access

The difference between WRITE and REWRITE in I-O mode isthat aWRITE
statement loads an empty location but REWRITE overwrites an existing valid
record in the file. Since the maximum record size is reserved for each record
position, arecord written using the REWRITE verb may be of a different length
than the one being overwritten.

47 A2 04UF Rev06

3-5

UFAS-EXTENDED User’s Guide

3.4.3 Dynamic-Access Mode in COBOL-85

In dynamic-access mode, you can combine sequential access with random access.
Using the COBOL verb START, you indicate at what record location in thefile
sequential accessisto begin. Verbs which do not specify an RRN are taken as
sequential, whereas those with avalid RRN are used for random access (see above,
in this Section).

Figure 3-4 shows the COBOL verbs avail able when ACCESS MODE is dynamic.

OPEN VERB READ WRITE REWRITE DELETE START
MODE [RRN] [RRN] [RRN] [RRN] [RRN]
INPUT X X
OUTPUT X
I-O X X X X X
Figure 3-4. Relative File Dynamic Access

If arelative fileisto be referenced by a START verb, the RELATIVE KEY phrase
must be specified for that file in the FILE-CONTROL entry.

3.5 Using a Relative File for the First Time

When you first access anew relative file, you must open it either in OUTPUT
mode or in [-O mode. You can use the LOAD_FILE command (JCL equivalent
CREATE) as described in Section 8.

3-6 47 A2 04UF Rev06

Relative Organization

3.6 Format of a Data Cl in a Relative File

The following information will help you understand how space requirements are

calculated (described later in Section 6). There is no user programming required to
maintain or take into account the control fields shown. UFAS-EXTENDED does

al the necessary processing. Figure 3-5 shows the CI format for fixed-length
records and Figure 3-6 shows the Cl format for variable-length records.

Cl Header Information

~{ 9 bytes for FBO files
{ 8 bytes for VBO files

Record Header
4 bytes

Data Record

Record Header
4 bytes

Empty Record Location

Record Header
4 bytes

Data Record

Record Header
4 bytes

Empty Record Location

Record Header
4 bytes

Data Record

Record Header
4 bytes

Data Record

Unused Space

1 byte CI
trailer if FBO

Figure 3-5. Relative File Data Cl Format (fixed length records)

47 A2 04UF Rev06

3-7

UFAS-EXTENDED User’s Guide

- { 9 bytes for FBO files
Cl Header Information — { 8 bytes for non VBO files
Record Header Unused
4 bytes Data Record Space
Record Header .
4 bytes Empty Record Location
Record Header
4 bytes Data Record
Record Header Unused
4 bytes Data Record Space
Record Header .
4 bytes Empty Record Location
Record Header Unused
4 bytes Data Record Space
1 byte CI
Unused Space trailer if
FBO

Figure 3-6. Relative File Data Cl Format (variable length records)

In either case, arecord is never split over 2 Clsand the size of aCl isaways a
multiple of 512. There may, therefore, be unused spacein aCl. UFAS-
EXTENDED aways rounds up the size of a Cl (CISIZE parameter) given by the
user to amultiple of 512. Table 6-1 gives you the Cl sizes recommended for each
type of disk drive.

Note that each record |ocation has a 4-byte record header. This header contains
information on whether the record location is empty or not.

For variable-length records, the maximum record length is reserved for each record
position. Therefore, no file space is saved by choosing variable record format for a
relative file. However, there may be other advantages for the programmer to code
the application using variable-length instead of fixed-length records.

For full details on space calculations, see Section 6.

3-8

47 A2 04UF Rev06

Relative Organization

Example of an Application

A user has afile where each record details a spare part. There are 5,000 spare parts.
Thefileisto be used on-line as part of a stock control system.

When the file was designed, each spare part was given a number, from 1 to 5,000.
The numbers are published in a catalog used by customers when ordering.

Figure 3-7 shows the ordering procedure.

Customer Telephones
Order by Using Catalog Number

I

Terminal Operator
Keys in Number

Spare
Parts

Catalog

GCOS 7

A

Figure 3-7.

v

Using this Number
Program Addresses
Relative File

A file record might have the format:

Relative File Application

PART
DESCRIPTION

CURRENT
STOCK

MINIMUM
ORDER

UNIT
PRICE

RE-ORDER
LEVEL

AVAILABILITY
DATE

The user program updates records based on the order value. (The same program
will probably also record the order for billing and shipment.)

Hence, the order is always made using the latest information on stock level and
current price.

The on-line user program would access the filein RANDOM mode. The file would
be opened in I-O mode, to alow changes.

47 A2 04UF Rev06

3-9

UFAS-EXTENDED User’s Guide

If the parts had been numbered in such away that all parts belonging to a
subassembly were in consecutive record locations, then the user program might
operatein DYNAMIC mode so that a sequentia listing of a part of the file could be
made at the terminal.

Each evening, or perhaps once a week, when the on-line operation is not active, a
program might be run which inspects every record in the file in order to compile a
report for replenishing stock items which are at or below the reorder level. Here
accessto thefileis sequential.

However, even in batch mode, you may find it more efficient to address the file
directly than to perform sequential processing. If ajob isrun every day to update a
fileand if, say, only 2% of the records are accessed in the run, then direct accessis
more efficient (in the case above, only 100 records are accessed) rather than
sequential (up to possibly 5000 record accesses). Note that this choice can be made
only if the user program can be supplied with the locations (RRNS) of the records
to be updated.

3-10 47 A2 04UF Rev06

4. Indexed Sequential Organization

4.1 Summary

This section covers the following topics:

indexed-sequential-file concepts,

types of open mode,

types of access mode,

- sequential access,

- random access,

- dynamic access,

using an indexed sequential file for the first time,
adding records,

deleting records,

secondary keys,

creating secondary indexes,

updating secondary indexes,

structure of a UFAS-EXTENDED indexed sequential file,
- address space 1

- address space 2

- address space 3

- address space 4

- address space 5

- address space 6

- address space 7

primary-index handling,

secondary-index handling,

structure of primary and secondary indexes,
allowing for free space,

inserting records,

- simpleinsertion,

- insertion requiring Cl compaction,

- insertion requiring Cl splitting,

- reorganization of index Cls.

format of adata Cl in an indexed sequential file,
example of an application.

47 A2 04UF Rev06

4-1

UFAS-EXTENDED User’s Guide

4.2 Brief Review of Indexed Sequential Organization

An indexed sequential file can reside only on a disk. Each record in an indexed
sequential fileisidentified by avalue called a key. There are two kinds of key:
primary keys and secondary keys.

The primary key isthe main key by which a set of records is organized or accessed.
It must be present as a data field within the record and each record may have only
one primary key. Two different records cannot have the same primary key value.

A secondary key is any key, other than the primary key, used to access data. You
can specify up to 15 secondary keys, but they must be present as data fields within
the record. Several different records may have the same secondary key value
(DUPLICATES are allowed), but split keys are not permitted.

Records can be read using the primary or secondary keys. To write a new record or
to update an existing record, the primary key must be used. Figure 4-1 shows a
logical picture of records and their keysin an indexed sequentid file.

FIELD 1 FIELD 2 FIELD 3 FIELD 4 FIELD 5

Primary KEY Secondary KEY

Figure4-1. Indexed Sequential Record Keys

For each key, itslength and its location within the record must be the same for all
recordsin thefile. The location of the key (that is, its offset from the beginning of
the record) is defined by the user at file-allocation time. Each key is uniquely
identified by its location and its length; this means that no two keys can have the
same |ocation and the same length. This topic is further discussed in Section 6.
Although any two keys must be distinct, it is permissible for them to have the same
KEYLOC (position of the byte of each key in the record).

The key can exist anywhere in the record, subject to the restriction that for
variable-length records the defined key fields must always be present. If afile
contains variable-length records and the highest-key location is byte m and its
length is n bytes, then the minimum length of the record for the fileis(m - 1) + n.

CAUTION:
The maximum key length is 251 bytes. It is nhot possible to have a key split into
several parts.

4-2 47 A2 04UF Rev06

Indexed Sequential Organization

Asshown in Figure 1-4, an indexed sequential file hasindex areas, in addition to
datarecords. These indexes provide the path between the user-supplied key value
and the address of the record to be accessed. In other words, these indexes are used
to locate recordsin adatafile. UFAS-EXTENDED maintains these indexes.

In the following example, an order file has:

primary key = order number

secondary key = customer number

secondary key = product number
Order Customer Product

Number Number Number

101 391 0891 | QUANTITY | FULL ADDRESS
102 201 0371 | QUANTITY | FULL ADDRESS
179 391 0893 | QUANTITY | FULL ADDRESS
213 251 0891 | QUANTITY | FULL ADDRESS

S —

Duplicates are Duplicates are

not allowed allowed

» Customer number 391 has 2 orders (101 and 179) for two different products

(891 and 893).

» Product 891 has been ordered by 2 different customers (391 and 251).

47 A2 04UF Rev06

4-3

UFAS-EXTENDED User’s Guide

Indexes are used in two different ways:

Sequential access: the order file may be accessed sequentially, that is, in
order number sequence,

Random access: individual records in thefile are accessed on the basis
of agiven value for akey; for example, retrieve all the
orders of a customer whose customer number is 391.

A program using an indexed sequentid file must have its organization declared as
INDEXED (ORGANIZATION IS INDEXED).

4-4 47 A2 04UF Rev06

Indexed Sequential Organization

4.3 Types of Open Mode

When you open afile, you must state an open mode. You can open an index
sequentia filein four modes:

INPUT
OUTPUT

-0

EXTEND (GPL equivalent APPEND)

EXTEND open mode is arecent feature of UFAS-EXTENDED and is available
only in COBOL-85.

The choice of open mode depends on the access mode declared for thefile. The
various combinations are described below.

47 A2 04UF Rev06 4-5

UFAS-EXTENDED User’s Guide

4.4 Types of Access Mode in COBOL-85

You can access an indexed sequential filein three modes:

{ SEQUENTI AL }
ACCESS MODE |'S { RANDOM }
{ DINAMC }

44.1 Sequential-Access Mode in COBOL-85

Choose this mode to process al the records of the file. You can open afilefor
INPUT, OUTPUT, or I-O mode.

INPUT and I-O mode:

» Records are read by a program in ascending order by primary-key or secondary-
key value. When records are being read using a secondary key where duplicates
(non unique keys) are allowed, duplicate records are read in the same order as
they were written.

» Usethe START verb to specify thelogica position within the file at which
processing begins.

[-O only:

When using the REWRITE verb, which must be preceded by a READ, you must
not change the primary-key value.

OUTPUT mode:

» Opening afilein OUTPUT mode deletes the previous contents of the file.

» Open afilefor OUTPUT to populate the file; this can be done by a utility such
asthe LOAD FILE (JCL equivalent CREATE) command (described later in
Section 8), or by aCOBOL program.

« Records written by the program must be in ascending order of primary key.

EXTEND mode:
 Available only in COBOL-85.
 Records must be written in ascending order of primary key.

Figure 4-2 shows the COBOL verbs available when ACCESS MODE IS
SEQUENTIAL.

4-6 47 A2 04UF Rev06

Indexed Sequential Organization

4.4.2

Random access s performed by a key value. To read a record, the user program
supplies the key value (primary key value or secondary key value, if any) of the

Random-Access Mode in COBOL-85

COBOL

copoL~VERB READ WRITE REWRITE DELETE (SJSYFiT
OPEN MODE

INPUT X X

OUTPUT X

I-O X X X X

EXTEND X

Figure4-2. Sequential Accessto an Indexed Sequential File

required record. To write arecord to afile, the program uses the value of the
record’s primary-key field to place arecord in thefile.

Note that all primary-key values used in afile must be unique.

Figure 4-3 shows the COBOL verbs available when ACCESS MODE IS

RANDOM.
COBOL

COBOL—_VERB READ WRITE REWRITE DELETE
OPEN MODE (KEY) (KEY) (KEY) (KEY)

INPUT X

OUTPUT X

-0 X X X X
Figure4-3. Random Accessto an Indexed Sequential File
In1-O mode:

« WRITE is used to add a new record to afile, that is, a new primary-key value.
+ REWRITE isused to overwrite an existing record (having the same record
length and the same primary-key value).

47 A2 04UF Rev06

4-7

UFAS-EXTENDED User’s Guide

4.4.3 Dynamic-Access Mode in COBOL-85

In dynamic-access mode, you can mix sequential with random accessin the same
program. Using the COBOL verb START, indicate the record location in the file at
which sequential accessisto begin. Verbs without key values are taken as
sequential, whereas those with key values are processed for random access as
described in paragraph 4.4.2.

Figure 4-4 shows the COBOL verbs available when ACCESS MODE IS

DYNAMIC.
BOL
COBOL| beaD WRITE REWRITE | DELETE START
VERB
COBOL (KEY) (KEY) (KEY) (KEY) (KEY)
OPEN MODE
INPUT X X
OUTPUT X
I-O X X X X X

Figure 4-4. Dynamic Accessto an Indexed Sequential File

Note that the meaning of aWRITE verb in dynamic-access mode depends on how
you open afile.

CAUTION:
When you open the filein OUTPUT or EXTEND mode:

Records written by WRITE statements must be in ascending order of primary
key. Thisis particularly important when you open the file in EXTEND mode.

When you open thefile in 1-O mode:

The primary-key value of the record written need not be greater than the primary-
key values of records written by previous WRITE statements (you do not have to
write recordsin ascending order of primary key).

4-8 47 A2 04UF Rev06

Indexed Sequential Organization

4.5 Using

4.6 Addin

an Indexed Sequential File for the First Time

When you first access a new indexed sequential file, you must open it either in
OUTPUT mode or in I-O mode. You can use a utility such asthe LOAD FILE
(JCL equivalent CREATE) command as described in Section 8.

It is recommended that you open the filein OUTPUT mode; if any secondary keys
are associated with thisfile, then run the SORT _INDEX utility (JCL equivalent
SORTIDX) after thefileisloaded. In this case, use the APPLY NO-SORTED-
INDEX clausein a COBOL step.

g Records

You may add records with new primary-key values to the file, provided that thereis
space available. Primary key values in the additional records may be greater than
the highest value or lower than the lowest value already present in the file. The new
values can, of course, also lie between the existing high and low values. When
designing afile, be sure to alocate sufficient file space for later expansion. See
"Choosing Free Space" in Section 6.

4.7 Deleting Records

When you delete records, the space freed can be re-used during later insertions into
thefile. For further details, see thislater in Section ("Insertion Requiring ClI
Compaction™).

47 A2 04UF Rev06

UFAS-EXTENDED User’s Guide

4.8 Secondary Keys

Up to 15 secondary keys can also be used; duplicate key values are alowed for
secondary keys. In a TDS application, there must not be more than 2 or 3
secondary keys. Avoid specifying meaningless duplicates (KEY = SPACE or
ZERO).

4.8.1 Creating Secondary Indexes

Although there are two ways of creating secondary indexes, it is recommended that
you use thefirst of those below.

« Itisassumed that the records to be loaded are aready sorted in primary key
order. When you wish to load the file (first time use), you can use:

- either the LOAD_FILE command (JCL equivalent CREATE),

- or aCOBOL program (using WRITE verbs) with the APPLY NO-SORTED-
INDEX ON clause and the ALTERNATE RECORD KEY inthe SELECT
clause.

After records areinitialy loaded in an indexed sequential file, use the
SORT_INDEX (SRTIDX) command (JCL equivaent SORTIDX) to sort and
load the secondary indexes.

« UFAS-EXTENDED builds secondary indexes automatically when thefileis:

- updated (open in I-O mode),

- created by a COBOL program without using the APPLY NO-SORTED-
INDEX clause (open in OUTPUT mode),

- loaded with the LOAD_FILE command and the parameter ORDER=0 (JCL
equivalent FILELOAD=NORDER in CREATE).

This means that a newly inserted record is immediately available from its
primary key or from any secondary keys.

The simplified format for SRTIDX isasfollows:

SRTIDX [QUTFILE =] (outfile-file-description)
For example,

S: SRTI DX (SD3. | Q6. QUSTOMVERS)

where SD3.1QS.CUSTOMERS is the file whose secondary indexes are to be
created. The keys stored in the secondary index are sorted into ascending
order.

4-10 47 A2 04UF Rev06

Indexed Sequential Organization

For further information about this utility, see the IOF Terminal User’s Reference
Manual or the Data Management Utilities User’s Guide for the equivalent JCL
utility SORTIDX.

Secondary indexes will be built automatically if a COBOL program loads afile by
using the WRITE verb when thereisno APPLY NO-SORTED-INDEX ON clause
in the I-O-CONTROL Section of the ENVIRONMENT DIVISION. The sameis
trueif the program opens the file in 1-O mode. Note that in these circumstances any
duplicate records will be written in the order in which they are provided (and not
sorted on the primary key as they would be with SORTIDX).

For performance reasons, it is recommended that you use the APPLY NO-
SORTED-INDEX ON clause when afileis being initialy loaded by a COBOL
program in OUTPUT or EXTEND mode. THE APPLY NO-SORTED-INDEX ON
clause is effective only when the file is opened in output mode.

For more information on the APPLY NO-SORTED-INDEX ON clause, see the
COBOL-85 Reference Manual.

Updating Secondary Indexes

Secondary indexes are updated automatically as the records are updated, according
to ANSI COBOL standards; therefore, no user action is required.

47 A2 04UF Rev06 4-11

UFAS-EXTENDED User’s Guide

4.9 Structure of a UFAS-Extended Indexed Sequential File

It isuseful to know about the structure of an indexed sequentia file because this
knowledge will help you interpret the information given by the LIST_FILE
command (JCL equivalent FILLIST). For instance, if you find that there have been
alot of Cl splitsfor a particular file, it istime to redefine the file with alarger free
space allocation and rebuild it.

Asshown in Figure 1-4, an indexed sequential file consists of up to 7 address
spaces. These are further detailed in Figure 4-5. Address spaces 3, 4, 5, 6 and 7 are
specific to indexed sequential files.

49.1 Address Space 1
This address space contains Cls control information for UFAS-EXTENDED.

Address space 1 always occupies at least the first blocks (16 Kbytes) of an FBO
file, or thefirst track of aVBO file.

4.9.2 Address Space 2

This address space contains user data structured in logical recordsin the Cls.

4.9.3 Address Space 3

This address space contains a part of the index used to access the data through the
primary key for an indexed sequential file. It contains that part of the index (high-
level index) that does not point to data Cls. It can be empty for asmall fileusing a
singlelevel index.

494 Address Space 4

This address space contains the part of the index used to access data through the
primary key for an indexed sequential file. Address space 4 contains that part of the
index (low-level index) that pointsto data Cls.

4-12 47 A2 04UF Rev06

Indexed Sequential Organization

Address Space 5

This address space contains the lowest part of the indexes that are used to access
the data through secondary keys. It is also known as the dense index. An index is
said to be dense because it contains an entry for every stored record in the indexed
file. For each secondary index, thereis one entry at this level for each record in the
data area.

For example, if we have 100 records in the file and 3 secondary keys per record,
the number of entrieswill be 100 x 3 = 300.

Address space 5 exists only for indexed sequential files with secondary keys.

Address Space 6

For each secondary key that has been specified for thefile, there is an index with
the same structure as the primary index.

Address Space 6 contains the high-level index associated with each secondary key.
It does the same job for secondary indexes as address space 3 does for primary
indexes. It exists only for indexed sequential files with secondary keys.

47 A2 04UF Rev06 4-13

UFAS-EXTENDED User’s Guide

4.9.7 Address Space 7
Address space 7 contains the low-level index associated with each secondary key.

It does the same job for secondary indexes as address space 4 does for primary
indexes.

Address Spaces
1 3 4 2 6 7

5
ccccecceececcecceccececccccc
rrrrrrrrrrrrrrrrrnd
[S—— [S——

Lowest-level primary index Cls

Higher-level primary index Cls

UFAS-EXTENDED file-control information

Higher-level secondary index Cls

Lowest-level secondary index Cls

Dense level secondary index Cls

Figure 4-5. Detailed L ayout of an I ndexed Sequential File

4.9.8 Primary-Index Handling

A primary index generally comprises several levels. In asingle-level index, and at
the lowest level of amulti-level index, an entry points directly to an individual data
Cl. At the higher levels of amulti-level index, an entry points to an index Cl at the
next lower level; amulti-level index is used where the size of afileis such that it
would give rise to excessive search time using a single-level index.

Figure 4-6 shows two index address spaces, higher (address space 3), and lower
(address space 4) and the data address space (address space 2).

Within each address space reserved for the indexes, the index entries are contained
within Cls.

Thesize of aCl in all address spaces, including address space 2, is the same.

4-14 47 A2 04UF Rev06

Indexed Sequential Organization

The primary index takes into account the order of the records. It consists of only
one entry per data Cl corresponding to its record with the highest key value. The
ascending key sequence allows UFAS-EXTENDED to locate keys that are not
included in the index.

» UFAS-EXTENDED builds as many levels of higher index as necessary and at
each level only one ClI isinspected for record access.

« Each index entry records the highest primary-key value present in the Cl to
which it refers. Hence, in Figure 4-6, using a 3-character key, the highest
primary-key value present in the 17th data Cl is EAP.

Assume that the record with the key hamed JFO isto beretrieved. UFAS-
EXTENDED begins at the highest level of index. Within the highest index Cl
(RST), UFAS-EXTENDED startsiits search from the JKA entry which points to the
index Cl (JKA) in address space 4. Thisisthe lowest-level index. Within thisindex
Cl, UFAS-EXTENDED finds the index entry JKA which points to the 18th data
Cl. UFAS-EXTENDED concludes that the record key JFO, if it is present, isin the
18th ClI.

47 A2 04UF Rev06

4-15

UFAS-EXTENDED User’s Guide

4.9.9 Secondary-Index Handling

You can specify up to 15 secondary keys for afile. For performance reasons, the
number of secondary keys used in atransactional environment should be small.
The indexes for these keys are held in address spaces 5, 6 and 7, as shown in

Figure 4-5.

Highest Index CI

EAP

JKA

PNN

RST

Address Space 3

ACC

ADE

EAP

BID

Cl's
1to 16

Figure 4-6.

FIB KRR
JKA |\ NOU
HAA PNN
LLL
\
Cl 17 Cl 18 Cl 19 Cl 20
BUD HAB NOP REA
CCE GIA PNN RFU
EAP GLL PLA RST
DEA JKA PAA
DIA JFO

UFAS-EXTENDED Indexed File Sructure

(without secondary keys)

Address Space 4

RAA

PNZ

RST

REB

Address Space 2

Cl's
21ton

-~

Data
Cls

4-16

47 A2 04UF Rev06

Indexed Sequential Organization

4.9.10 Structure of a Primary and Secondary Index
Figure 4-7 shows how two secondary indexes access the data area through address

space 5. To keep matters simple, this example shows only 5 entries per index Cl;
usually there are many more entries per Cl.

Secondary Index 1 Secondary Index 2

Address Space 6
Higher level

non dense
secondary

index Cls

Address Space 7
Lowest level

non dense
secondary

index CI

Address Space 5
Dense level

of secondary
indexes

Address Space 2
Data area Cls

\\ ,,,,,,,,,,,,,,,,,

Address Space 4
Lowest level
of primary

Address Space 3
Higher level
of primary

T ——— 1 indexcis

Figure4-7. Primary and Secondary Index Structure

47 A2 04UF Rev06 4-17

UFAS-EXTENDED User’s Guide

4.10 Allowing for Free Space

At allocation time, you can specify the amount of space to be left empty in a Cl by
using the CIFSP parameter in the BUILD FILE command (JCL equivalent
PREALLOC) as described in Section 6. When you load the file for the first timein
OUTPUT mode, space will be left empty according to the CIFSP parameter in
order to allow for later record insertions.

Figure 4-8 shows free space |eft in Cls after theinitial loading of thefile.

sammnnm

Figure 4-8. Free Spacein an Indexed Sequential File

The shaded areas represent free space.

4-18 47 A2 04UF Rev06

Indexed Sequential Organization

4.11 Inserting Records

Within the space alocated to the file, UFAS-EXTENDED automatically makes
new Cls available to the file as necessary. When arecord is to be inserted into a Cl,
UFAS-EXTENDED reads the current Cl in which the record should be inserted (on
the basis of the primary key). Some of the insertion mechanisms are described in
the following sections.

4.11.1 Simple Insertion

This occurs when enough space is present in the Cl without moving records within
the Cl. See Figure 4-9.

Key

FLX

record to be inserted

ClI (FXX) ClI (FXX)
Cl Header Information Cl Header Information

FAB FAB

FBB FBB

FDM FDM

< FNQ FNQ
FNA FNA

FXX FXX

FLX

record descriptors record descriptors

Figure 4-9. Simple Insertion

Each record in the Cl contains a pointer to the next higher record by key value
within the CI. Note that the physical sequence of records within the Cl is not the
same as the key sequence. These pointers allow logica chaining of the Cls.

For an explanation of the "record descriptors’, see Section 4.

47 A2 04UF Rev06 4-19

UFAS-EXTENDED User’s Guide

4.11.2 Insertion Requiring Cl Compaction

This applies when enough spaceis present in the Cl, but UFAS-EXTENDED must
compact the recordsin the Cl in order to retrieve space made available as a result
of record deletion.

The records remain in the same order as before they were compacted. See Figure 4-
10. (Links between records are not shown.)

Key

FPX

record to be inserted
CI (FXX) Cl (FXX)

Cl Header Information Cl Header Information

FAB FAB

FBB
FDM
FXX FNA
FNQ

Record Descriptors Record Descriptors

Figure4-10. Insertion Requiring Cl Compaction
Cls containing variable-length records often need to be compacted.

UFAS-EXTENDED compacts the recordsin the Cl so that al free spaceis
collected at the end. During the compaction, the new record is inserted. Because
the Cls are compacted and not reorganized asin earlier releases of UFAS, the costs
associated with the updating of address space 5 are avoided.

4-20 47 A2 04UF Rev06

Indexed Sequential Organization

4.11.3 Insertion Requiring ClI Splitting

This occurs when the appropriate Cl does not contain enough space. This means
that UFAS-EXTENDED must find another Cl. See Figure 4-11.

Index CI (SMX) A

DBX

GHH Address

SMX Space 4
Lowest-
level
Indexes

Space index-
entries <

J
CI (DBX) —> CI (GHH) —> CI (SMX) Cl (free)

BLB DBZ PLX

DBX ELG PRA

DBA DCz PVB
GHH SMX Address
GHA NER Space 2
DCC GHI
EFF
FAB)

| | FPA | | <« Record to be inserted

Before CI Splitting
After CI Splitting

Index CI (SMX)

DBX
Cl (DBX) —> CI (ELG) Cl (SMX) Cl (GHH) ELG
BLB DBZ PLX FAB GHH Address
DBX DCC PRA FPA SMX Space 4
DBA DCZ PVB GHA .
EFF SMX GHH owest-
ELG NER level
Indexes
GHI
e
L—>
Address Space 2 J

Figure4-11. Insertion Requiring Cl Splitting

47 A2 04UF Rev06 4-21

UFAS-EXTENDED User’s Guide

Figure 4-11 shows what is known as CI splitting. UFAS-EXTENDED splitsthe Cl
called GHH. After this Cl is split, records DBZ, DCC, DCZ, EFF, and ELG, remain
inthe old CI (now called CI (ELG)), but the new record FPA is inserted into the
new Cl (GHH) along with records GHH, GHA, and FAB.

Note that there are links between each Cl to alow sequential accessto take place.

UFAS-EXTENDED automatically manages the spare entriesin index Cls;
normally there are many more entries per index Cl than appear in this example.

CAUTION:
If afile with secondary indexes using the Deferred Update mechanismis split,
the mechanism is no longer taken into account and return code WDNAV is
issued; instead, the Before Journal takes effect automatically.

4.11.4 Insertion Requiring Reorganization of Index Cls

In the previous paragraph, where we described an insertion causing a Cl to be split,
we assumed that there was at |east one spare index entry in the lowest level index
in question. When there is no spare index entry, UFAS-EXTENDED uses more
complex mechanisms to insert arecord.

The content of the low-level index Cl is split into two index Cls. During this
splitting operation, no data record is moved; only index Cls are affected. As aresult
of this splitting, an index entry is made in the high-level index (address space 3 or
6). Thisentry, in turn, can lead to a reorganization of the high-level indexes.

Figure 4-12 shows how arecord identified by key 1210 isto beinserted into the
data Cl 13, but CI 13 isfull; hence the Cl needsto be split, but thereis no free
entry in address space 4.

In the right-hand column of Figure 4-12, the index Cl (1786) is split and thereis
room for the index entry 1100. Next the data Cl (13) is split; records whose keys
are 1000, 1020, and 1100 are placed in the new data Cl (nn) and record 1214
remains in the data Cl (13) where the new record 1210 is also placed.

NOTE:
An indexed Ufasfile frequently modified (delete of records and/or insertion
of new records) gives rise to many splittings of Data's Cl or Index'sCl. Itis
strongly recommended to reorganize it periodically by using the LDF/CREATE
utility. This allows to reduce the disk space and improves the sequential access
time to records.

4-22 47 A2 04UF Rev06

Indexed Sequential Organization

| 1210 |

Address
Space 3

Address
Space 4

Address <
Space 2

Figure4-12.

BEFORE

Index Cl (4312)

Cl Header

Key = 0419

Key = 1786

Key = 4312

Free

Index CI (1786)

L

Cl Header

Cl 12| Key = 0613

Cl 13| Key = 1214

F

Cl 14| Key = 1316

Cl 15| Key = 1786

Data CI (13) <+—

Cl Header

1000

1100

1214

1020

Pi Record to be inserted

AFTER
Index CI (4312)

Cl Header

Key = 0419

Key = 1214

Key = 1786

Key = 4312

Index CI (1214)

L

Cl Header

Cl 12| Key = 0613

Cl 13| Key = 1214 »—

Free

Index CI (1786)

Cl Header

Cl 14 |Key = 1316

Cl 15|Key = 1786

Free

Free

Key = 1100 [

Data Cl (nn) <+—

Cl Header

1000

1020

1100

Data Cl (13) <«—-

Cl Header

1210

1214

I nsertion Requiring Reorganization of Index Cls

Address
Space 3

Address
Space 4

Address
Space 2

47 A2 04UF Rev06

4-23

UFAS-EXTENDED User’s Guide

4.12 Format of a Data Ci In an Indexed Sequential File

You may find the following information useful for calculating file space. No user
programming is required to maintain, or take into account, the control fields shown
in Figure 4-13. UFAS-EXTENDED does al the necessary processing.

Cl Format (fixed-length or variable-length records)

21 bytes for FBO files
Cl Header Information—[
20 bytes for VBO files

Record Header

5 Bytes Data Record A

Record Header
5 Bytes

Record Header

5 Bytes Data Record B

Data Record |

Record Header
5 Bytes

Record Header

5 Bytes Data Record E

Data Record C

Record Header
5 Bytes

Record Header
5 Bytes

Data Record H

Data Record F

RD (C)

1 byte ClI

RD (1) RD (B) RD(A) |ailer if FBO

Each record descriptor (RD) is 2 bytes long.

Each record header is 5 bytes long.

- Indicates unused space, including any space occupied by logically deleted
records which are not yet physical deleted

Figure4-13. Data Cl Format in an Indexed Sequential File

4-24 47 A2 04UF Rev06

Indexed Sequential Organization

Commentson Figure 4-13

The maximum number of records allowed in aCl is 255.

The size of adata Cl for an indexed sequentia file must be large enough to
accommodate at |east 2 records.

There is one record descriptor for each active or deleted record in the Cl. In
Figure 4-13, records D and G are marked for deletion. When recordsin aCl are
marked for deletion, they are not physically removed immediately; thus the
associated record descriptors may or may not be empty (See "Insertion
Requiring CI Compaction” above.)

The record descriptors point to the records (an offset from the Cl header).

The Cl size will be amultiple of 512 bytes. You can specify a Cl of any size (up
to five digits long), but UFAS-EXTENDED always rounds thisfigure up to a
multiple of 512. Table 6-1 gives you the recommended Cl sizes for each non-

FSA disk drive. Table 6-2 gives you the recommended CI sizes for files being
allocated on FSA disks.

For full detail s concerning space calculation, see Section 6.

4.13 Example of an Application

A large organization maintains a personnel file where there is one record for each
employee. Therecord format is:

Employee
Name

Home Social Next-of-Kin | b e of Date of Qualification
Address Security Name & Birth Hire level
Number Address

Thisfileisto be accessed non-sequentially. Therefore, choose either relative or
indexed sequential file organization. If you choose relative, each employee will
have to be alocated an RRN. Thiswould be very inflexible because old RRNs
remain in the file as people leave or retire. In addition, new employees would have

to

receive a new number (for security reasons, old numbers could not be re-used).

Instead, you can build an indexed sequential file using a unique number, for
example, the employee’s social security number. Thus you need not invent a new
classification system, and space previously occupied by deleted records can be re-
used by new key values automatically.

47 A2 04UF Rev06

4-25

UFAS-EXTENDED User’s Guide

4-26 47 A2 04UF Rev06

5.

File Assignment, Buffer Management, and
File Integrity

5.1 Summary

This section covers the following topics:

GCL commands/JCL statements,
user-program reference,
file-assignment parameter group ASGi,
types of volume:

- resident,

- work,

- named,

multivolume files:

- partial/extensible processing of multivolume files,
managing multivolume devices (MOUNT)),
sharing devices between files (POOL),
file sharing,

overriding rules,

file-define parameter group DEF,
manipulating buffers:

- POOLSIZE,

BUFPOOL,

- NBBUF,

tuning buffers,

- JOR dtatistics,

journalization:

- Before Journdl,

- After Journal,

file integrity,

- file creation,

- file opening,

file extension,

permanent |-O errors.

47 A2 04UF Rev06

5-1

UFAS-EXTENDED User’s Guide

5.2 GCL Commands

GCL commands are used to assign and allocate UFAS-EXTENDED filesin the
IOF environment.

You can use the following parameters of the GCL command EXEC PG to reference
UFAS-EXTENDED files:

ASGi assigns afileto aprogram (described in Section 5),

ALCi declares space requirements for atemporary or
permanent disk file (described in Section 6). In certain
commands, like COPY_FILE and COMPARE_FILE,
you can allocate a file dynamically by specifying the
DYNALC and ALLOCATE parameters.

DEFi provides file attributes for the assigned files (described
in Section 6). These attributes can also be introduced
through the INDEF and OUTDEF parameters of afile
management utility.

GCL Keywords:
POOL optimizes device usage (described in Section 5),
POOLSIZE defines the maximum size of the UFAS-EXTENDED

buffer pool. (described in Section 5).

These statements are discussed here as they apply to UFAS-EXTENDED files. For
a compl ete description, see the IOF Terminal User’s Reference Manual.

5-2 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

5.3 JCL Statements

JCL statements are used to assign and allocate UFAS-EXTENDED filesin the
batch and TDS environments.

Thefiles, and the manner in which they are to be used, are specified in the job
description. JCL statements which can reference UFAS-EXTENDED files are:

ASSIGN assigns afileto aprogram,

ALLOCATE declares space requirements for atemporary or new
permanent disk file,

DEFINE provides file attributes and file usage information, such
as the number of buffers allocated to afile (NBBUF
parameter),

POOL optimizes device usage,

SIZE declares the declared working set and the memory area

shared by buffers (POOL SIZE parameter).

These statements are discussed in this manual as they apply to UFAS-EXTENDED
files. For a compl ete description, see the JCL Reference Manual.

In addition to these JCL statements, there isin the CREATE utility, for example,
the OUTALC parameter for dynamically allocating afile. The INDEF and
OUTDEF parameters provide file attributes to be used by UFAS-EXTENDED. All
these parameters are covered in the Data Management Utilities User’s Guide.

47 A2 04UF Rev06 5-3

UFAS-EXTENDED User’s Guide

54 User-Program Reference

COBOL programs are independent of the physical attributes of the filesthey use. A
COBOL program references an "interna -file-name" with which thereal fileis
associated at run time (see the next section on file assignment). The program
describes only the logical characteristics of the file to be processed. Examples of
such attributes are:

« record length

record format (fixed or variable)

file organization (sequential, relative or indexed)
access mode.

open mode

In some programming languages, the programmer can declare the number of
buffers or the block size, etc. However, for GCOSY, it is good practice to declare
thisinformation in the GCL or JCL and not in the program. If thisadviceis
followed, the file characteristics can be altered without changing and re-compiling
the program. As it will be discussed later in this Section, the values defined in the
|abel override the JCL statements/GCL commands, which, in turn, override the
values declared in the program.

5-4 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

5.5 File-Assignment Parameter Group ASGi in the GCL Command
EXEC_PG

For each internal-file-name (FILEi) used in aprogram, there must be afile-
assignment parameter group introduced through ASGi.

Disk volume User program Disk volume
PLM PDVA

MUPPRG

FAX
REPORT

EXEC_PG MUPPRG

LIB = MY.LM.IB

FILEL = IFB

ASGL = FA. X: PLM MS/ D500
FILE2 = | FA

ASR = FA Y

FILE3 = FX2

ASG3 = SYS. OUT;

FAY

Figure5-1. Using the File Assignment Parameter Group

The program MUPPRG accesses two disk files, FA.Y on disk volume PDVA and
FA.X on disk volume PLM. A report is produced through the standard SY SOUT
mechanism.

Thefile FA.X is permanent, uncataloged, and therefore has probably been allocated
(and loaded) in aprevious job. It is assumed that the file FA.Y is cataloged; thusit
is unnecessary to specify the device class or the media. Similarly, if thefile FA.Y is
aresident or atemporary file, the device class or media need not be specified. If it
is cataloged, it has been made known to the catalog in a previous program or job
through the BUILD_FILE, or CREATE_FILE, or MODIFY FILE_STATUS
commands. The media on which the file resides will be found by GCOS7 in the
catal og.

Figure 5-1 shows a simple form of the file-assignment parameter group ASGi.
Figure 5-2 gives the complete syntax of the parameter group ASGi asit appliesto
UFAS-EXTENDED files.

47 A2 04UF Rev06 5-5

UFAS-EXTENDED User’s Guide

EXEC_PG

progr am nanme
FILEE = internal-fil e-nane
ASG = (external-file-name

VRI TE
READ
SPREAD

{ }]
{]
{]
{ SPWRITE }]
{]
{ H]

— e ——

SHARE =

——r—

[NBEFN

L
Pyl
o
<
e
1
o
o
@D
(@]
w
m
Q
-

>
2
Q
1
p
o
D
(¢]
w
m
R
o

{ bl

{ DEASSI G\ }
END = { PASS }
{ LEAVE }

{ UNLOAD }
N

——r——

[{ DEASSI ol
[ABEND = { PASS ol
[{ LEAVE Pl
[{ UNLOAD }]
[MOUNT = dec3]

[NO }]

[POOL = { FIRST }]

[{ NEXT }]

[DEFER = bool]

[OPTIONAL = bool]

Figure5-2.

Parametersfor Assigning afile (1/2)

5-6

47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

[CATNOW = { bool 1}]

[{ ddd]
[EXPDATE = { yy/dd bl
[{ yy/midd }]
[{ 6250 }]
[DENSITY = { b
[{ 1600 }]

[VOLWR = { bool [0 } 1) ;

Figure5-2 Parametersfor Assigning afile (2/2)

For an explanation of these parameters, see the IOF Terminal User’s Reference
Manual.

For cataloged files, the minimum information required by a file-assignment
parameter group ASGi, isthe name by which thefileis referenced in the program,
that is, the internal-file-name (FILEi parameter of the EXEC PG command) and
the externa-file-name (ASGi parameter).

For uncatal oged files, the minimum information required is as follows:

« theinterna-file-name,

« the external-file-name,

« thedisk or tape cartridge volume where the file resides,
 thedevice class.

Volume and device class need not be specified if thefileis RESIDENT.

47 A2 04UF Rev06 5-7

UFAS-EXTENDED User’s Guide

5.6 Types of Volume

There are 3 types of volume:

o resident
« work
* named

Each typeis described in the following sub-sections.

5.6.1 Resident Volume

When a GCOS7 session begins, the operator can name certain disk volumes as
RESIDENT. These disks are kept on-line for the whole session. If no volume name
and no device classis specified at assignment time (see the ASGi parameter group
in sub-section 5.5), the system assumes that thefileis either cataloged or alocated
on these resident volumes; see Figure 5-3.

COW ’ THE NEXT GCL STATEMENT REFERS TO A PREVI QUSLY
ALLOCATED FI LE ON A RESI DENT DI SK VOLUME COR A
CATALOCGED FI LE ;

EXEC_PG MYPROGRAM
FILEL = I FLQ
ASGL = PY. RVBX;

COW ’ THE NEXT STATEMENT REFERS TO A TEMPORARY FI LE
ON A RESI DENT DI SK VOLUNVE' ;

EXEC_PG MYPG
FI LE1 = | NLBNB
ASGL = TFX. P$TEMPRY;

Figure5-3. Using Resident Volumes

5-8 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

5.6.2 Work Volume

The second type isaWORK volume. Whereas a RESIDENT volume must be a
disk, aWORK volume must be atape or a cartridge. A WORK volumeis atape

prepared by a utility such asthe PREPARE_TAPE (PRPTP) (JCL equivalent
VOLPREP) command.

When the user specifiesa WORK volume, the operator will be instructed to mount
aWORK volume for the job at execution time. To write to awork tape, a program
must know whether the tape file is permanent (default) or temporary ($TEMPRY).

If atemporary file iswritten, the volume remains aWORK tape. However, if a
permanent file is written, the tape volume loses its WORK status to become a
normal named volume; see Figure 5-4.

Cow

" THE FOLLOW NG FI LE ASSI GNMVENT PARAMETER GROUP ASG
REFERENCES A TEMPCORARY FI LE ON A WORK TAPE. AT THE
END OF TH S PROGRAM THE TAPE W LL STILL HAVE THE
ATTRI BUTE WORK' ;

EXEC_PG MYPROGRAM
FILEL = INITX
ASGL = (FIT. PM WORK: MI/ T9$TEMPRY) ;

THE NEXT STATEMENT ESTABLI SHES A NEW PERMVANENT FI LE
ON A WORK VCLUVE' ;

EXEC_PG MYPG
FILEL = I NQLP
ASGL = (FIT. PM WORK: MT: T9 EXPDATE=240) ;

NOTE IN THI S EXAMPLE TWO ASG PARAVETER GROUPS USI NG
THE SAVE FILENAVE FIT.PM THI'S | S ACCEPTED BY GCCS 7
SINCE THE STATUS OF THE FILES IS DI FFERENT; I . E.
TEMPORARY UNCATALOGED AND PERMVANENT UNCATALOGED. THE
NEXT TI ME THE USER USES THE PERVANENT FILE FI T. PM
HE MUST SUPPLY THE PROPER VOLUVE NAME (THE VOLUMVE
NAME OF THE WORK TAPE WHI CH |'S DI SPLAYED | N THE JOB
OCCURRENCE REPORT)’ :

Figure 5-4. Using a Work Volume

47 A2 04UF Rev06

5-9

UFAS-EXTENDED User’s Guide

Work tapes are also used when a tape file overruns the supplied volumes. See
"Multivolume Files" later in this Section.

5.6.3 Named Volume

The third and most usual type of volume declaration is the volume name. Each
standard disk and tape volume has a name. This name, stored on the volume labdl,
can be set up by the following commands:

PREPARE DISK (PRPD) labels and formats a disk volume
PREPARE TAPE (PRPTP) labels and formats a tape volume

For a complete explanation of these commands, see the IOF Terminal User’s
Reference Manual (Part 2).

The JCL equivalent for formatting disk and tape volumes is the VOL PREP utility.

COW ' THE FOLLOW NG THREE FI LE ASSI GNMENT PARAMETER GROUP
ASG REFER TO UNCATALOGED FI LES ON NAMED VOLUMES' ;

EXEC_PG MYPRCG

FI LE1 = BINB
ASGL = LM PL: BD41: Ms/ D500
FI LE2 = BINC

ASK = GHAC: 1487D: MI/ T9$TEMPRY
FI LE3 = FRED
ASG3 = XA. BPLQ TXAMB: MI/ T9;

COW ' NOTE THAT NAMED VOLUMES MAY CONTAI N TEMPORARY OR
PERVMANENT FI LES THROUGH | T WLL PROBABLY BE AN
I NSTALLATI ON POLI CY TO PLACE TEMPCRARY TAPE FI LES ON
WORK VOLUMES' ;

Figure 5-5. Using a named volume

5-10 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

57 Multivolume Files

A single file may be spread across several volumes. All the volumes for thefile
must be of exactly the same type (al disk and same disk type, or all tape). For
information on multivolume files and types of OPEN mode, see section 2.

For amultivolume file, always supply volume names, viaASGi parameters, in the
order they were specified when the file was first allocated on disk or first written
on tape.

The maximum number of volumes allowed for asingle fileis 10 for anon-
cataloged file.

Cow

Cow

" THE NEXT STATEMENT ASSI GNS A MJULTI VOLUME FI LE NAMED
MST. PLN

EXEC_PG MYPG
FILEL = FILA
ASGL = (MST. PLN: 11451/ 11452/ 11453: M5/ D500) ;

"THE NEXT STATEMENT ASSI GNS A MJULTI VOLUME TAPE FI LE WHI CH
I'S TO BE WRI TTEN ON WORK TAPES' ;

EXEC_PG MYPROGRAM
FILE1 = FILB
ASGL = (N. MSTPLN: WORK: MI/ T9 EXPDATE = 340);

EXPDATE ENSURES THAT THE FI LE N. MSTPLN W LL BE RETAI NED
FOR 340 DAYS.’;

Figure 5-6. Using a Multivolume Uncataloged Disk or Tape File
Figure 5-7 shows the form of the above example for a cataloged disk file.

EXEC_PG MYPROGRAM
FILE1 = FI LA
ASGL = MST. PLN,

Figure5-7. Using a Multivolume Cataloged File

47 A2 04UF Rev06 5-11

UFAS-EXTENDED User’s Guide

Multivolume files can be temporary or permanent. If you specify that thefileison
aWORK volume, then the system will automatically use as many WORK volumes
as required. The sequence in which they are used will be listed in the Job
Occurrence Report, and these names will then have to be used in subsequent
referencesto the file (if the file is not temporary).

Work tapes may also be used if you do not supply enough volumes for afile
opened in OUTPUT or EXTEND mode. On reaching the end of the last volume
specified, the system asks the operator to mount a work volume. The operator can
refuse the request, in which case the program is aborted.

5.7.1 Partial/Extensible Processing of Multivolume Files

Thisfacility isavailable only for sequential disk or tape/cartridge files.

Suppose that you know that a program requires records only from a subset of the
volumes of afile. GCOS7 allows you to supply this subset of al the volumes. The
advantage is that the preceding volumes are not read unnecessarily. Similarly, when
you open afilein EXTEND open mode, you need specify only the volume-name
list starting at the last volume containing records. Figure 5-8 applies to tape files
only. For UFAS disk files, the first volume in the list must always be the first
volume of thefile.

5-12 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

File FNAL.A

LBA LBC LBD

Program reads records only within volumes LBC and LBD. Does not read to
end-of-file, so LBE is not needed

File HMQC.41

PM4 is the last volume currently used. This file is opened in EXTENDED mode and
any future expansion will occur on reserved volumes PM5 and later, PM6.

File NCU.BX

END

File NCU.BX. opened in EXTENDED mode, is to grow using work volumes.
Currently, only one volume, 148, accomodates the file.

If the files FNAL.A, HMQC.41 and NCU.BX are cataloged, the above example
becomes:

EXEC_PG GROFI L
LI B = M. LI B: MSD: M5/ D500
FILEl = FLA
ASGL = (FNAL. A FIRSTVOL = 3 LASTVOL = 4)

FILE2 = FLB
ASG2 = (HMXC. 41 FIRSTVOL = 4)

FI LE3 = FLC
ASG3 = NCU. BX;

Figure 5-8. Partial/Extensible Processing of Multivolume Tape Files

47 A2 04UF Rev06 5-13

UFAS-EXTENDED User’s Guide

5.7.2 Managing Multivolume Devices (MOUNT)

Thisfacility isavailable only for sequential disk or tape/cartridge files.

Disk files: In the examples shown so far, al of the volumes of a
multivolume file will be placed on-line simultaneoudly.
Therefore afile-assignment parameter group ASGi
referencing 5 volumes will use 5 devices.

The following remark applies only to non-fixed disks.
To reduce the number of devices, usethe MOUNT
parameter (for sequentia files only) inthefile-
assignment parameter group ASGi. MOUNT specifies
the maximum number of devicesto be used at any one
time for the file. The default value, for disk files, isthe
number of volumes.

Tape Files: To specify the maximum number of tape drives to
accommodeate the file, use MOUNT. The most
effective valuesare MOUNT=1 and MOUNT= 2. The
default valueisMOUNT = 1 for tapefiles.

If MOUNT = 1, then only one tape drive will be
reserved for the file. After avolume is used, the
volume will be replaced by the next volumein
sequence. Although minimizing device reservation,
this technigue halts the program while the operator
changes volumes, unless premounting is used on
another device.

If MOUNT = 2, only two tape devices are used for the
file. However, in this case the operator can mount each
volume in advance and volume switching is not
delayed by operator intervention. See Figure 5-9.

5-14 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

COW ' MAXI MUM NUMBER OF DEVI CES USED ;

EXEC_PG MYPROGRAM
FILEl = GLBE
ASGL = (REL. X MOUNT = 4);

MTO1 MTO02 MTO3 MTO04

4 Magnetic Tape
MA1 MA2 MA3
@ @ @ @ Units are reserved

COW "M NI MUM NUMBER OF DEVI CES USED ;

EXEC_PG MYPG
FILEL = GLBE
ASGL = (REL. X MOUNT = 1);

MTO1 MTO1 MTO1 MTO1
Only 1 Magnetic Tape
MA1 MA2 MA3 MA4 Unit is reserved

COW * MOUNTI NG | N ADVANCE BY OPERATOR ;

EXEC_PG PROGRAM
FILEL = GLBE
ASGL = (REL. X MOUNT = 2);

MTO1 MTO02 MTO1 MTO02
(2 : \Z 2 Magnetic Tape
MA1 @ @ MA4 Units are reserved

Figure 5-9. Managing Multivolume Devices

The use of MOUNT applies to catal oged and permanent uncatal oged and
temporary tape files (described later in sub-section 7.2).

When the programmer specifies that afileison aWORK volume and the fileis
multivolume, GCOSY operates asif MOUNT = 1 is specified.

The MOUNT value continues to have effect when afile overflows onto WORK
volumes.

47 A2 04UF Rev06 5-15

UFAS-EXTENDED User’s Guide

5.8 Sharing Devices between Files (POOL)

The MOUNT parameter optimizes device usefor asinglefilewhichis
multivolume. A second form of device management concerns the sharing of
devices between files.

In the examples shown so far, adl the files referred to by the file-assignment
parameter group ASGi must be on-line when the program starts executing.
Therefore, in Figure 5-8 atota of 6 tape drives must be available. Yet in that
example it may be that the file FNAL.A is completely processed before processing
begins on file HMQC.41. Therefore, it would be better to use the same drives for
both files.

This can be done by specifying a device pool in the POOL parameter of the
EXEC_G command and the POOL parameter of the file-assignment parameter
group ASGi. Both are described in the IOF Terminal User’s Reference Manual
(Part 2).

The device-pool technique depends on the logic of the processing program. When
the program has finished processing afile, the program must signal to GCOSY that
the file can be de-assigned, causing the devices used to become available. In
COBOL thisisdone by specifying WITH LOCK in the CLOSE verb.

The program SLICK uses 3 disk files, DFA, DF.B and DE.C. Thefile DFAis
processed before the processing of DF.C begins.

5-16 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

BD14 stick BD18

<« 5| oPEN FDFA FDFB < >
DE.B
CLOSE FDFA W TH LOCK

OPEN FDFC

. < S acsE FDFB, FDEC

EXEC_PG SLI CK

LIB = AX. LIB
POOL = 1* MS/ D500
FILEL = FDFA
ASGL = (DF. A POOL = FIRST)
FILE2 = FDFA
ASG2 = DF.B
FILE3 = FDFC
ASG3 = (DF.C POOL

NEXT) ;

Figure5-10. Pool Device

In Figure 5-10, adevice pool consisting of one MSD500 disk driveis defined.
There are two files to be placed on pool devices - DF.A and DF.C (the POOL
parameter). Only one file with POOL is to be loaded when the program is started -
DF.A (the FIRST parameter). The file DF.C is not mounted and does not require a
disk drive, until the program opens the file (at which point the single-pool device
will be available). The result isthat only two disk drives are used by the program.

Note that the device used by file DF.B is not a member of the pool (no POOL in
ASG2).

In one program, there cannot be more than one pool for each type of device.

In the above example, only one deviceis pooled. In general a device pool may
contain more than one device. So if either or both disk files DF.A and DF.C were
on two volumes, then the pool parameter would be:

POCL 2* M5/ D500

You can specify a device pool for disk and tape device types. The files may be
temporary or permanent. The use of MOUNT with device poolsis not restricted.

For compl ete details on the POOL parameter, see the IOF Terminal User’s
Reference Manual (Part 2). The POOL parameter specified at file assignment is
explained in the same manual.

47 A2 04UF Rev06 5-17

UFAS-EXTENDED User’s Guide

5.9 File Sharing

Sharing means that a file being accessed by a program can be accessed by other
concurrently running programs. File sharing applies only to disk files.

The SHARE parameter specifies the sharing conditions applicable to afile. You
can use the SHARE parameter to specify the maximum permitted level of
concurrent file access.

For cataloged files you need specify only the ACCESS values. The sharing modeis
held in the catalog as part of the file attributes.

Two cases of shared access illustrated in Figures 5-11 and 5-12 are handled through
the file-assignment parameter group ASGi.

EXEC PG MYPG EXEC PG MY
FILEL = | FA FILEL = MX
ASGL = (XP. M ASGL = (XP. M
SHARE = NORMAL SHARE = NORMAL
ACCESS = READ)...; ACCESS = READ)...:

Figure5-11. Sharing aFilewith Another Sep
Thefile XPML isreferenced by both steps.
Some cases of file sharing are treated below:

NORMAL Many concurrent readers or one writer per file. Sharing
iscontrolled at the filelevel. Thisisthe default value.

ONEWRITE Many readers and one concurrent writer per file.
Sharing is controlled at the file level.

DANGER:
Do not use SHARE = FREE, (that is, totally freefile sharing) for UFAS-
EXTENDED files.

If a cataloged file has an associated parameter which specifies adifferent value for
SHARE from that specified in the catal og, then the catalog value will override the
value given at assignment time, and the program will be given exclusive access to
thefile (that is, ACCESS = READ becomes ACCESS = SPREAD, and
ACCESS=WRITE becomes ACCESS=SPWRITE). Do not use this feature to avoid
sharing afile with other programs, but use ACCESS=SPREAD or
ACCESS=SPWRITE where appropriate.

5-18 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

Figure 5-12 shows the keyword values for ACCESS and SHARE with their

Keyword Values
Type of Sharing Requested
ACCESS SHARE
WRITE NORMAL Exclusive Use (default value).
SPWRITE | NORMAL Exclusive Use.
READ NORMAL Read a file while several jobs read the file.
SPREAD NORMAL Exclusive Read.
READ ONEWRITE | Read a file while several jobs read the file and one job writes
to the file.
SPREAD ONEWRITE | Exclusive Read.
WRITE ONEWRITE | Write to a file while several jobs read the file.
SPWRITE | ONEWRITE | Exclusive Use..

Figure5-12. ACCESSand SHARE Values

Figure 5-12 shows the types of sharing that the user may request. Whether sharing
is granted, depends on the current use of the file.

For example, afile already assigned with the values:

ACCESS = READ
and
SHARE = ONEVWR TE

may be shared with another job which specifies:

ACCESS = WRI TE

and
SHARE = ONEWRI TE

GCOS7 does NOT check that the organi zation of the file supports the mode of
sharing that you requested. Observe the following guidelines.

« you cannot share afile opened in OUTPUT mode, (opening afilein OUTPUT
means that afileis being initially loaded),

 you can share indexed sequential filesin ONEWRITE. It isimportant to note
that when a Cl split occurs, the whole file is not locked. This means that there
should be fewer access conflicts. During the CI split, there can be several
readers.

47 A2 04UF Rev06 5-19

UFAS-EXTENDED User’s Guide

File Assignment/sharing with END = PASS

When afileisassigned with END = PASS, the file cannot be assigned to another
job that also passes the file with END = PASS until the fileisreleased by the first
job. This restriction prevents deadlock occurring between the jobs.

Requested ACCESS/SHARE Modes

Current

ACCESS/ |WRITE/ | SPWRITE/| READ/ SPREAD/ |READ/ SPREAD/ WRITE/ SPWRITE/
SHARE NORMAL| NORMAL NORMAL | NORMAL |ONEWRITE ONEWRITE | ONEWRITE|ONEWRITE
Modes

WRITE/

NORMAL

SPWRITE/

NORMAL

READ/ READ SPREAD * | READ SPREAD *

NORMAL NORMAL | NORMAL NORMAL NORMAL

SPREAD/ SPREAD * | SPREAD * | SPREAD * | SPREAD *

NORMAL NORMAL NORMAL NORMAL NORMAL
READ/ READ SPREAD * |READ SPREAD * | WRITE SPWRITE *
ONEWRITE NORMAL | NORMAL |ONEWRITE| NORMAL |ONEWRITE |ONEWRITE
SPREAD/ SPREAD * | SPREAD * |SPREAD * |SPREAD* |SPWRITE * |SPWRITE *
ONEWRITE NORMAL NORMAL |ONEWRITE |ONEWRITE| ONEWRITE | ONEWRITE
WRITE/ WRITE SPWRITE *

ONEWRITE ONEWRITE | ONEWRITE

SPWRITE/ SPWRITE * | SPWRITE *

ONEWRITE ONEWRITE | ONEWRITE

Figure5-13. File-Sharing Rules

Blank entries mean that sharing is denied. Entries marked * mean that sharing is
permitted only to arequest from the same step.

5-20

47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

5.10 Overriding Rules

CAUTION:
Avoid giving contradictory values for the various file attributes. Values are
tested, for example that the file opened does not have arecord size different
from that declared in the program. In COBOL 85, there are further checks and
ANY mismatch between program and file may lead to an abort with return code
OVRVIOL.

When a program opens afile, sufficient information must be availableto UFAS-
EXTENDED for file processing. Such attributes as the Cl size (block size on tape
files), record size, record format, number of buffers, must be declared or provided
by default. The sources of thisinformation are as follows:

« Theexisting filelabel. No label information is available when:
- you write an output file to tape; see sub-section 7.7,
- you allocate adisk file in the same program using the file-allocation
parameter group AL Ci; see Section 6.

For an existing disk or input tape file, any values declared in the label will
override al other values supplied from the program or through the GCL or JCL.

« Thefile-alocation parameter group ALCi (JCL statement ALLOCATE) and the
file-define parameter group DEFi (JCL statement DEFINE), which may be
associated with a file-assignment parameter group ASGi file reference (JCL
statement ASSIGN).

Any values declared in the GCL or JCL, (for example, number of buffers, or
CISIZE) will override any equivalent value in the program; the file-define
parameter group DEFi is described in sub-sections 5.11 and 6.8.4.

« Attributes from the executing program; the user program provides a compl ete set
of attributes (usually by default).

Outlined below are the genera overriding rules for the define parameters.

General Overriding Rule 1:
Rule 1 appliesif the file concerned already exists.

(1) Filelabe (including the VTOC - Volume Table of Contents for adisk file),

(2) Catalog (for acataloged file),

(3) Define parameters,

(4) Filedefinition value (for example, the FD in a COBOL program, or the
utility’simplicit value if you are using a system utility).

In Rule 1, (1) overrides (2) which overrides (3) which overrides (4), but see the

warning above.

47 A2 04UF Rev06 5-21

UFAS-EXTENDED User’s Guide

The FPARAM parameter allows you to force the define parameter values which
you enter to override the corresponding valuesin the file label.

« |f FFARAM = 0 (the default value), then for an existing file, thefile label
overrides the define parameters.

« |If FFARAM =1, then the define parameters override thefile label (for an
exigting file). Usethisfacility only in specia cases, for example, the file is non-
standard and/or the file is being reloaded to conform to the characteristics given
viathe define parameters.

» FPARAM cannot be used to override the catal og entry information for a
cataloged file.

General Overriding Rule 2:

Rule 2 applies if the file concerned does not exist. Therefore it appliesto files
being dynamically created, for example through use of the parameter group ALCi
(JCL equivaent ALLOCATE).

(1) Define parameters,

(2) Default file attributes (automatically provided by the COBOL program or by a
utility),

(3) Filedefinition value (FD).
In Rule 2, (1) overrides (2), which overrides (3), but see the warning above.

There are no default values for the parameters within the file-define parameter
group DEFi (JCL equivalent DEFINE). If you do not enter avalue for afile-define
parameter, an effective value will still be derived using the above rules. For
example, the following file attributes are chosen automatically if they are not given
in the DEF parameter group (JCL equivalent DEFINE):

« CISIZE is set to 2048 bytes (If the CREATE_FILE or CREATE_FILESET
commands are being used, CISIZE is set to 3584 bytes for MS/D500 and
MS/B10 disk devices),

+ CIFSP=0.

The CIFSP parameter can be specified in the DEF parameter group (JCL
equivalent DEFINE) to modify the amount of free space to be defined for afile
which is dynamically alocated. For more information on how to leave free spacein
afile, see sub-section 6.7.2.

5-22 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

Using the File-Define Parameter Group DEFi

As explained in the previous sub-section, file attributes defined in the catalog
override those defined in the parameter group DEFi. Thusit is recommended that
you define file attributes in the catal og whenever possible.

If the DEFi parameter is present in the EXEC_PG command (JCL equivalent
DEFINE), it is associated (viathe interna-file-name) with a file-assignment
parameter group ASGi (JCL equivalent ASSIGN).

EXEC PG MYPROGRAM
FILEL = TFX
ASGlL = JCJHB ...
DEF1 = (fil e-define paraneters);

Use the DEFi parameter (JCL equivalent DEFINE) to perform the following tasks:

- to specify execution parameters effective only for the current job, for example,
the number of buffers,

 to describe file attributes when:

- anew disk fileis being built (file-allocation parameter group AL Ci),
- an output tape is written,
- an unlabeled tapefileis being read.

» to process non-standard tape file formats.

See below for the format of the file-define parameter group DEFi as applicable to
buffers (the full syntax is given in sub-section 6.8.4). Note that, althoughiit is
possible to specify the type of journalization with DEFi, you are strongly advised
to do thisin the catal og.

EXEC PG MYPROG
FILE =ifn
ASG@ = efn
DEFi = ([BUFPOOL = name4]
[NBBUF = dec3])

Note that there are no default valuesin the file-define parameter group DEFi. The
file-define parameters supplement or override declarations of the program. This
topic was discussed in sub-section 5.10.

For a complete explanation of these parameters, see the IOF Terminal User’s
Reference Manual, Part 2 and the JCL Reference Manual.

47 A2 04UF Rev06 5-23

UFAS-EXTENDED User’s Guide

5.12 Buffer Management

This sub-section presents an overview of buffer management which should help
you to understand what is going on behind the scene when a program executes.
Luckily, the average programmer operates at afairly abstract level, divorced from
the need to know about buffer addressing. The real drudgery of buffer management
is performed by UFAS-EXTENDED and other software modules with which it
interfaces, for example, the Virtual Memory Manager (VMM).

The use of buffersinvolves working with large quantities of datain main memory
so that the number of disk accesses can be reduced.

When a Cl isrequested, it is temporarily held in an area of main storage, known as
abuffer. A good analogy for understanding buffersis to think of them as parking
lots for holding file information in main memory. Whenever possible, COBOL
READ and WRITE statements read from and write to buffersin memory.

If arequired Cl is aready in a buffer, no read operation from disk needs to be
performed. Management of buffers consists in minimizing the number of 1/0
operations. You can control the declared buffers through the following three

parameters:

POOLSIZE specified in the EXEC_ PG command (JCL equivalent:
SIZE statement)

BUFPOOL Specified in the DEFi parameter group, (JCL
equivalent: DEFINE)

NBBUF Specified in the DEFi parameter group, (JCL

equivalent: DEFINE)
EXEC PG MYPROG

[SI ZE=dec8] } program | evel
[POCLSI ZE = dec8]. .. }

FILE1 = ifnl }

ASGL = efnl }

DEF1 = ([BUFPQCL = nanme4 NBBUF = dec3]) Hile level
FILE2 = ifn2 }

AS@ = efn2 }

DEF2 = ([BUFPOOL = nane4 NBBUF = dec3]. ..); }

The use of large buffer poolsis no longer restricted to TDS applications: a new
functionality is provided for heavy batch steps. See the examplesin Section 5.12.4
for full details.

The following sections describe the use of buffers asthey apply to TDS, batch, and
|OF applications.

5-24 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

Code
Segments

Data
Segments

Internal
Structure
etc.

POOLSIZE (max. 20,000 buffers)

Buffer pool
TDS name

]
0]

=

Pseudo buffer
pool, DEFT

Buffer pool

BUFPOOL = name

LI
1]

Figure 5-14.

Layout of Buffer Space

Note that it isthe ICA attribute of the dimension which guarantees that a step will
have a specified amount of memory availableto it. The MINMEM option in the
JCL statement SIZE is no longer meaningful with ARM. Within the total amount of

buffer space allocated through use of the POOL SIZE parameter in the JCL

statement SIZE, the following are set up:

 apseudo buffer pool, named DEFT (buffers cannot be shared among the files),
« abuffer pool with the same name as the TDS application.
« in appropriate cases, anon-TDS buffer pool with name given by BUFPOOL =

name in the DEFINE statement.

Note that the number of buffersin ajob islimited to 20,000. For TDS applications,

buffers are assigned in the main buffer pool, TDS name, using the RESERVE

AREAS CLAUSE. For batch and I0OF applications, use the NBBUF parameter of

the JCL statement DEFINE to assign buffersin the other pools. The number of

buffersin apool should correspond to the total of NBBUF for al the files attached
to the pooal.

In the pseudo buffer pool (represented by the broken rectangles), five buffers are
shown.

47 A2 04UF Rev06

5-25

UFAS-EXTENDED User’s Guide

5.12.1 Declaring the Size of the Overall Buffer Space (POOLSIZE)

The maximum total amount of main memory reserved for buffersis specified in the
POOL SIZE parameter. Use this parameter to specify in kilobytes the amount of
main memory in which UFAS-EXTENDED creates and manipulates buffers during
program execution. It must be emphasized that you should specify a much higher
value than the default value (27 Kbytes).

It is recommended that you alocate the total buffer space required (POOLSIZE) in
multiples of 4 Kbytes.

If several buffer pools are declared (described in the next sub-section), then the
POOL SIZE valueisthe total amount of memory occupied by all the buffer pools.

TDSAPPLICATIONSONLY:

It isrecommended that for all TDS applications (including TDS controlled and
non-controlled files), a portion of memory be reserved for al buffer pools
including the pseudo buffer pool known as DEFT.

« Plan on reserving from 20 to 50% or even more of the total memory size for the
allocation of buffers, depending on the type of machine.

 Sharethe portion of memory reserved for buffers among the different TDS
applications, depending on such factors as the importance of the application and
the number of simultaneities and files.

- Estimate the number of buffers which the buffer pool may hold (developed in
sub-section 5.12.3).

« Adjust the Declared Working Set.

When you increase the value of POOL SIZE, you should correspondingly increase
the declared working set (DWS). Both parameters are specified in the JCL
statement SIZE.

» Adjust the number of buffersto the POOL SIZE value.

The relationship between the POOL SIZE value and the number of buffersis further
developed in sub-section 5.12.3.

5-26 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

BATCH/IOF APPLICATIONSONLY:

Use the following formulato calculate an approximate value of the POOLSIZE
parameter:

POOLSI ZE = (Average nbpg * 4 Kbytes) * NBBUF
where nbpg is the number of pages needed to hold aCl, that is:

nbpg = d S ZE rounded up to a multiple of 4 bytes.
4096

Assume that this formula produces the result of 400 Kbytes for POOLSIZE. Then
you can specify this parameter as follows:

EXEC PG MYPROGRAM
Sl ZE = 500
PQOLSI ZE = 400;

Defining a Buffer Pool (BUFPOOL)

Buffer pools reduce the amount of storage allocated to buffers by sharing buffer
space among severa files. When abuffer is needed, it is taken from a pool of
available buffers. When UFAS-EXTENDED receives arequest to read a certain Cl,
it looksto seeif one of its existing buffers already contains that CI. If no buffer
containsit, then UFAS-EXTENDED finds from its pool of buffers one that is not
currently in use and loads the contents of the requested Cl into it.

Use of buffer poolsis recommended whenever possible, particularly in applications
which access many files randomly.

To name a buffer pool, specify the BUFPOOL parameter in the file-define
parameter group DEFi (JCL equivalent DEFINE).

TDSAPPLICATIONSONLY:

A large UFAS-EXTENDED buffer pool can result in substantial performance
improvements:

 up to 50% reduction in the number of 1/0O operations,
 improved response times.
By default, a TDS application has available:

« one buffer poal for al the TDS-controlled files, whose name corresponds to that
of the TDS application,

47 A2 04UF Rev06 5-27

UFAS-EXTENDED User’s Guide

 apseudo buffer pool which is automatically provided for the non-controlled
files.

The disadvantage of using the DEFT pseudo buffer pool isthat the buffers are not
shared among the non-controlled files suchasH_CTLN.

In TDS applications, the use of asingle buffer pool (tdsname) is normally
recommended. However, do not include in the common buffer pool files which are
accessed:

« in sequential mode: these files require only afew buffers (two if they are
declared sequential, otherwise about 10 buffers),

« indirect mode if they have only afew Cls: such files should be placed together
in aspecific buffer pool for which the number of buffersisequal to the total
number of Cls.

A second buffer pool can also be used for input files containing tables such asthe
name and address of customers or the product details in a stock application.
Another possible use concernsindexed sequential files accessed sequentialy (to
avoid saturation of the main buffer poal).

You must specify in the DEFi parameter group (JCL equivalent DEFINE) for each
file in abuffer pool:

« the name of the buffer pool (BUFPOOL),
« the number of buffers (NBBUF).
If you omit one of these values, then the default values are as follows:

« the buffer pool is named according to the TDS application (tds-name),
« the number of buffers declared in the "RESERVE n AREAS" clause will apply.

Note that the number of buffers specified in the "RESERVE n AREAS' clauseis
the default value for all the buffer poolsin aTDS application.

BATCH/IOF APPLICATIONSONLY:

You can define no buffer pools, or one, or several, although the use of more than
one buffer pool is appropriate only in very rare cases. It isparticularly
advantageous to specify a buffer pool for a step randomly accessing more than five
files. If abuffer pool isbeing used, do not include sequential filesinit. Usethe
LMC mechanism instead.

5-28 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

Defining the Number of Buffers (RESERVE AREAS/NBBUF)

When you open afile, UFAS-EXTENDED allocates a number of buffersto
accommodate the Cls transferred from disk. NBBUF specifies the number of
buffers per file. You specify this parameter in the file-define parameter group DEFi
described earlier, or in the JCL equivalent DEFINE.

The minimum number of buffers, for all types of access on al types of
organization, is 1 per file.

The default values for NBBUF are as follows:

« afileaccessed in non-sequential access mode has 1 buffer (NBBUF = 1)
 afileaccessed in sequentia access mode has 2 buffers (NBBUF = 2)

« anindexed sequential file accessed directly has 1 buffer. Additional buffers are
reserved for Cl splitting.

« an IDY/II area has 4 buffers.

In dynamic-access mode, UFAS-EXTENDED keepsits buffersin memory aslong
aspossible.

You may specify a number of buffers:
« either for each individua file,

- or a thelevel of the buffer pool in which files share buffers.

Whenever possible, it is recommended that you use a buffer pool and that you
specify the same NBBUF value for each file belonging to the same buffer pool.

TDSAPPLICATIONSONLY:

Choose the number of buffers (specified in the RESERVE AREAS clause) so that
the size of the memory reserved for buffers (POOLSIZE) is effectively used. The
maximum number of buffers per TDS application is 20,000. Up to 32,000 buffers
may be defined for the whole system.

Specify an estimated value, such as:
Nunber of Buffers = POOLSIZE divided by (No. of pages * 4 Kbytes)

For example, if the CISIZE is 6 Kbytes, then 2 pages are required because each
page occupies 4 Kbytes. Note that the:

No. of pages = O Sl ZE divided by 4096 rounded up
toa mltiple of 4 Koytes.

47 A2 04UF Rev06 5-29

UFAS-EXTENDED User’s Guide

You can refine your estimate by comparing the figure given for USED SIZE and
POOLSIZE in the JOR. If USED SIZE islessthan POOLSIZE, then increase the
number of buffers up to the maximum specified in the RESERVE AREAS clause;
otherwise decrease the value of the POOL SIZE parameter and the declared-
working-set.

If you are using two or more buffer pools, specify the same number of buffers
(NBBUF value in the DEFINE statements) for each file belonging to the same
buffer pool (seethe second TDS example in the next sub-section).

BATCH/IOF APPLICATIONSONLY:

The default values for the buffer parameters mean that each fileis allocated 1 or 2
buffers so that:

POCOLSI ZE >= (no. of pages * nunber of buffers)

You can override the default NBBUF values by specifying avaue in the NBBUF
parameter within the file-define parameter group DEFi (JCL equivalent DEFINE).

It isagood general rule that NBBUF for each file should be not less than 6 plus the
number of secondary indexes. Using thisrule for sequential files with several
secondary indexes, instead of the normally recommended 100 buffers, will result in
greatly improved performance.

In the first IOF and batch example, the number of buffers per file is defined on a
file-by-file basis through use of the NBBUF parameter.

5-30 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

5.12.4 Examples of Buffer Usage

FIRST TDSEXAMPLE: - One buffer pool matching the name of the TDS
application, in thiscase TSIC.

It isassumed that 1,000 buffers are specified in the "RESERVE n AREAS" clause.

$JOB TDS- EX USER=BULLI;
$JOBLIB SM TSI C. SM.I B;
STEP TSI C, FI LE=(TSI C. LM.I B) , REPEAT
DUVP=NQ

Sl ZE 4500 PCOLSI ZE=4000;
ASSI GN | FN1 EFNL,;

ASSI GN | FN2 EFN2;

ASSI GN | FN3 EFNS3;

ASSI GN | FNd EFN4;

ASSI GN | FN5 EFN5;

ASSI GN | FN6 EFNG;

ASSI GN | FN7 EFN7;

ASSI GN | FN8 EFNB;

ASSI GN | FN9 EFND;

ASSI GN | FN1O EFNLO;

ASSI GN | FN5O EFNBO;
ASSI GN | FN51 EFNB1,;

ASSI GN | FN70 EFN70;

ASG DBUGHI LE, TSI C. DEBUG FI LESTAT=CAT, SHARE=D R,
ASG BLI B, . FORM Bl N, SHARE=DI R, ACCESS=READ,

$ASG H BJRNL DVC=MS/ D500 MD=FSD99 Fl LESTAT=TEMPRY;
ASG H FCRM . FCRM CBJET, FI LESTAT=CAT

SHARE=MON TCR, ACCESS=READ,

$DEFI NE H CTLM , JOURNAL=BEFCRE;

ENDSTEP,

$ENDICB;

The average CISIZE is estimated at 3,584 bytes. If the declared POOL SIZE value
for these buffersis 4,000 Kbytes, then the required number of buffersis:

4000 Kbytes divided by 4 Kbytes = 1000 buffers.

NOTE:
The 4000 Kbytes includes the space occupied by the buffers of the non-
controlled files.

47 A2 04UF Rev06 5-31

UFAS-EXTENDED User’s Guide

SECOND TDS EXAMPLE: Using two or more Buffer Pools.

In addition to the main buffer pool (in this case named TSIC), a second buffer pool
named PARA is used by two files.

It is assumed that 1,000 buffers are specified in the "RESERVE n AREAS" clause.

$JOB TDS- EX USER=BULLZ2;

$JOBLI B SM TSI C. SM.I B, TSI C. TEST;
STEP TSI C FI LE=(TSI C. LM.I B) , REPEAT
DUVP=NQ

Sl ZE 5000 POOLSI ZE=4400;

ASSI GN | FN1L PARAML;

DEFINE | FNL NBBUF=100 BUFPOCOL=PARA,
ASSI GN | FN2 PARAM;

DEFI NE | FN2 NBBUF=100 BUFPOOL=PARA;
ASSI GN | FNd EFN4;

ASSI GN | FNo EFNb;

ASSI GN | FN6 EFNg;

ASSI GN | FN7 EFN7;

ASSI GN | FN8 EFNB;

ASSI GN | FN9 EFNDS;

ASSI GN | FN10 EFNLO;

ASSI GN | FN5O EFNBO;
ASSI GN | FNb1 EFN51;

ASS|I GN | FN70 EFN70;

ASG DBUEI LE, TSI C. DEBUG FI LESTAT=CAT, SHARE=DI R,
ASG BLI B, . FORM BI N, SHARE=DI R, ACCESS=READ,

$ASG H BJR\NL DVC=ME/ D600 MD=FSDO9 FI LESTAT=TEMPRY;
ASG H FCRM . FORM CBJET, FI LESTAT=CAT

SHARE=MONI TOR, ACCESS=READ;

$DEFI NE H CTLM , JOURNAL=BEFCRE;

$DEFI NE H CTLN , BUFPOOL=TSI C,

ENDSTEP;

$ENDICB;

The average buffer size for the files belonging to the default buffer pool (TSIC) is
estimated at 3,584 bytes.

The two files belonging to the buffer pool PARA have atotal number of 100
buffers (the size of the Cl is 2048 bytes).The contents of these fileswill reside in
memory because the buffer pool to which they belong may contain the 100 buffers.

5-32 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

The global size (POOLSIZE) declared for the buffer pool is 4400 Kbytes. From
this figure must be taken the 400 K bytes for the PARAM1 and PARAM2 files,
whose 100 buffers are contained in the buffer pool named PARA.. (The amount of
space set aside for these buffersis cal culated by multiplying 100 by

4 Kbytes=400 Kbytes.)

The remaining 4000 K bytes are occupied by the buffer pool TSIC. The number of
buffersis calculated as follows:

4000 Kbytes divided by 4 Kbytes = 1000 buffers.

Note that the non-controlled file H_CTLN is declared in the main buffer pool TSIC
(DEFINE H_CTLN BUFPOOL=TSIC).

FIRST IOF EXAMPLE: No Buffer Pool is Specified

EXEC PG PG=LMNAME LI B=. LM.I B
Sl ZE 700 POCLS| ZE=1320

FI LE1=l FN1 ASGl= EFNL
DEF1=(1 FN1 NBBUF=200)

FI LE2=1 FN2 AS2= EFN2
DEF2=(1 FN2 NBBUF=30)

FI LE3=I FN3 ASG3= EFN3
DEF3=(1 FN3 NBBUF=50) ;

When no buffer pool is specified, the pool sizeis computed as follows.

For each file compute (BUFFER SIZE * NBBUF) and add up the size obtained for
each file.

In this example, atotal of 280 buffersis declared.

Assume that the files have the following CISIZE values:

File CISIZE
EFN1 2048
EFN2 3584
EFN3 6144

Then the POOL SIZE to be specified is:

EFNL 200 * (2048 rounded up to a nultiple of 4 Kbytes)

= (200 * 4 Kbytes) = 800 Kbytes
EFN2 30 * (3584 rounded up to a nultiple of 4 Kbytes)

= (30 * 4 Kbytes) = 120 Kbytes
EFN3 50 * (6144 rounded up to a nultiple of 4 Kbytes)

= (50 * 8 Khytes) = 400 Kbytes

Total size occupied = 1320 Kbytes

47 A2 04UF Rev06 5-33

UFAS-EXTENDED User’s Guide

SECOND IOF EXAMPLE: A buffer pool is specified for an |OF application
accessing more than 5 or 6 files.

EXEC PG PG=LMNAME LI B=. LM.I B

Sl ZE 500 POCLSI ZE=4000

FI LE1=I FN1 ASGl= EFNL

DEF1=(1 FN1 NBBUF=1000 BUFPOOL=PL01)
FI LE2=1 FN2 AS®= EFN2

DEF2=(1 FN2 NBBUF=1000 BUFPOOL=PL01)
FI LE3=I FN3 ASG3= EFN3

DEF3=(1 FN3 NBBUF=1000 BUFPOOL=PL01)
FI LE4=| FNd ASGA= EFMV4

DEF4=(1 FNd NBBUF=1000 BUFPOOL=PL01)
FI LE5=I FN6 ASGE= EFNG

DEF5=(1 FN6 NBBUF=1000 BUFPCOL=PL01)
FI LE6=I FN6 ASGH= SEQFI LE;

Calculating the POOL SIZE in an 10OF application having one buffer pool.

In this example, 1000 buffers are declared in a pool named PLO1. Thefile
SEQFILE isasequential file and does not belong to this poal.

Assume that the files have the following CISIZE values:

File CISIZE
EFN1 2048
EFN2 3584
EFN3 6144
EFN4 6144
EFNS 3584
EFNG 2048

If the average buffer size is 4 Kbytes, then the POOL SIZE to be specified is:
(1000 * 4 Kbytes) = 4 Mytes

The values specified in the following two examples for a batch application are
equally valid for an IOF application; instead of specifying JCL statements, you
must specify the equivalent GCL commands.

5-34 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

FIRST BATCH EXAMPLE: No buffer pool is present.

$JOB B- EXPLS USER=-BULL7 HOLD HOLDQUT;
STEP LMNAME . LM

SI ZE 700 PQOCLSI ZE=600;
ASSI GN | FN1 EFNL,;

DEFI NE | FNL NBBUF=20;
ASSI GN | FN2 EFN2;

DEFI NE | FN2 NBBUF=30;
ASSI GN | FN3 EFNS3;

DEFI NE | FN3 NBBUF=50;
ENDSTEP;

$ENDICB;

You follow the same procedure as that described in the first IOF example.

In this example, 100 buffers are declared. Assume that the files have the following

CISIZE vaues:

File CISIZE
EFN1 2048
EFN2 3584
EFN3 6144

The POOL SIZE value to be specified is 600 Kbytes which is calcul ated as follows:

EFNL 20 * (2048 rounded up to a multiple of 4 Kbytes)

(20 * 4 Koytes) = 80 Kbytes
EFN2 30 * (3584 rounded up to a multiple of 4 Kbytes)

(30 * 4 Kbytes) = 120 Kbytes
EFN3 50 * (6144 rounded up to a multiple of 4 Kbytes)

(50 * 8 Kbytes) = 400 Kbytes

Tot al = 600 Kbytes

47 A2 04UF Rev06 5-35

UFAS-EXTENDED User’s Guide

SECOND BATCH EXAMPLE: A buffer poal is specified for a batch application
accessing more than 5 or 6 files.

$JOB B- EXPLS USER-BULL7;

STEP LMNAME . LM

S| ZE 500 POOLSI ZE=400;

ASSI GN | FNL EFNL,;

DEFI NE | FN1 NBBUF=100 BUFPCOL=PLO1,
ASSI GN | FN2 EFN2;

DEFI NE | FN2 NBBUF=100 BUFPCOL=PLO1,
ASSI GN | FN3 EFNS3;

DEFI NE | FN3 NBBUF=100 BUFPQOL=PLO1,;
ASSI GN | FNd EFN4;

DEFI NE | FNd NBBUF=100 BUFPQOL=PLO1,;
ASSI GN | FN5 EFNb;

DEFI NE | FNo NBBUF=100 BUFPQCOL=PLO1,;
ASSI GN | FN6 EFNG;

DEFI NE | FN6 NBBUF=100 BUFPCOL=PLO1,
ASSI GN | FN7 SECFI LE;

ENDSTEP;

$ENDICB;

In this example 100 buffers are declared in a buffer pool named PLO1.
Thefile SEQFILE is asequentid file and does not belong to the buffer pool.

Thetotal amount of memory reserved for buffers (POOLSIZE) is equal to the
NBBUF value multiplied by the number of pages.

Assume that the files have the following CISIZE values:

File CISIZE
EFN1 2048
EFN2 3584
EFN3 6144
EFN4 6144
EFNS 3584
EFNG 2048

If the average CISIZE is 3584, then the POOL SIZE value to be specified is:

100 * (3584 rounded up to a multiple of 4 Kbytes)
(100 * 4 Kbyt es)
400 Kbytes

Note that the POOL SIZE value (400 K bytes) includes the space needed by the two
buffers of the sequential file.

5-36 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

NOTES:

1. When different NBBUF values are specified for files belonging to the
same buffer pool, only the highest NBBUF value is taken into account;
hence the convention for specifying the highest NBBUF value for al such
files.

2. If all thefiles belonging to the same buffer pool have the same CISIZE, the
average buffer sizeis equal to:

CISIZE rounded up to amultiple of 4 Kbytes.

For heavy BATCH applications: up to 4000 buffers may be specified for aBATCH
step. Note that up to 32000 buffers are available for the whole system (including all
the TDS and BATCH applications). This functionality may be used for heavy steps
randomly accessing UFASfiles. It should drastically decrease the number of
physical 10s.

The following recommendations must be strictly respected to avoid aborts:

Do not launch such BATCH steps while TDS applications are running to avoid
TDS or BATCH aborts with RC=SY SOV when more than 32,000 buffers are
needed.

Specify for the BATCH step a POOL SIZE and a DWS large enough to avoid aborts
with RC=CMWSOV. Gather within the same large BUFFER POOL all the UFAS
files which are not accessed in sequential mode.

POOL SIZE COMPUTATION FOR HEAVY BATCH APPLICATIONS.
The computation of the POOL SIZE will depend on:
« the number of buffers declared for the buffer pool(s): up to 4000 buffers.

« the average buffer size.

NOTE:
For heavy batch steps running during the night, with alow multi-level and large
memory available, it is better to compute the POOL SIZE taking into account
the maximum CISIZE rather than the average.

47 A2 04UF Rev06 5-37

UFAS-EXTENDED User’s Guide

FIRST EXAMPLE: GENERAL CASE.

JOB B- EXPLS USER=BULL7Y

STEP LMNAME . LM ;

SI ZE 45000 POCLS| ZE=16000;

ASSI GN | FN1 EFNL,;

DEFI NE | FNL NBBUF= 4000 BUFPOCL=PLO1,;
ASSI GN | FN2 EFN2;

DEFI NE | FN2 NBBUF= 4000 BUFPQCOL=PLO1,
ASSI GN | FN3 EFNS3;

DEFI NE | FN3 NBBUF= 4000 BUFPQCOL=PLO1,
ASSI GN | FNd EFN4;

DEFI NE | FNd NBBUF= 4000 BUFPQCOL=PLO1,
ASSI GN | FN5 EFNb;

DEFI NE | FNo NBBUF= 4000 BUFPOCL=PLO1;
ASSI GN | FN6 EFNG;

DEFI NE | FN6 NBBUF= 4000 BUFPOCL=PLO1;
ASSI GN | FN7 SECFI LE

ENDSTEP,

ENDICB,

In this example, 4000 buffers are specified for the six first files which are accessed
randomly. These files belong to the same buffer pool called PLOL. The seventh file,
being sequential, does not belong to the buffer pool called PLOL. It has only two
buffers, allocated implicitly.

If al the files have the same CISIZE of 4096 bytes, then the buffer pool size will
be:
(4000 * 4K) = 16000 Kbyt es.

5-38 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

SECOND BATCH EXAMPLE: TWO BUFFERS POOL SARE SPECIFIED.

It may be useful to declare a second buffer pool, in order to gather together files
having a specific behaviour.

For example, small files having only afew Cls and accessed very often may be
resident in memory.

JOB B- EXPLS USER=BULL7Y

STEP LMNAME . LM ;

SI ZE 60000 POCLS| ZE=20000;

ASSI GN | FNL EFNL,;

DEFI NE | FN1L NBBUF= 3000 BUFPOCOL=PLO1,
ASSI GN | FN2 EFN2;

DEFI NE | FN2 NBBUF= 3000 BUFPOCOL=PLO01,
ASSI GN | FN3 EFNS3;

DEFI NE | FN3 NBBUF= 3000 BUFPOCOL=PLO01,
ASSI GN | FNd EFN4;

DEFI NE | FNd NBBUF= 3000 BUFPQOOL=PLO1;
ASSI GN | FN5 EFNb;

DEFI NE | FNo NBBUF= 3000 BUFPQOOL=PLO1;
ASSI GN | FN6 EFNG;

DEFI NE | FN6 NBBUF= 1000 BUFPQOOL=PL0Z;
ASSI GN | FN7 EFN7;

DEFI NE | FN7 NBBUF= 1000 BUFPQOCOL=PLO0Z;
ENDSTEP;

ENDICB,

In this example, 4000 buffers have been declared in two pools named PLO1 with
3000 buffers, and PL0O2 with 1000 buffers.

POOL SIZE COMPUTATION WHEN SEVERAL BUFFER POOLSARE
SPECIFIED.

The pool size to be specified is the total amount of the memory dedicated to each
buffer pool.

If the average buffer sizein PLOL is estimated to be 4K, and the average buffer size
in PLO2 is estimated to be 8K, then the POOL SIZE to be specified will be:

(3000 * 4K) + (1000 * 8K) = 20000K
(for PLO1) (for PLO2)

47 A2 04UF Rev06 5-39

UFAS-EXTENDED User’s Guide

5.12.5

Tuning Buffers

To avoid wasting resources, you can modify an application’s buffer parameters. The
greater the number of buffers you specify, the fewer the disk 1/0O operations. The
optimum setting for the buffer-related parameters can only be determined
accurately by testing with different values. The maximum total size of the area
reserved for buffers (POOL SIZE) and the number of buffers defined for the pool
have a major impact on the performance of an application, in particular, TDS
applications. Use the JOR statistics (described in the next sub-section) to verify
how efficient the processing is and then tune the necessary parameters accordingly.

At the end of each step, the following information is printed in the JOR:
» for each UFAS-EXTENDED file and for all the files belonging to the same
buffer pool:

- GETCICOUNT, thetotal number of Cl accessesincluding label, index and
dataCls.

- HITCOUNT, the number of buffers reused from the buffer pool (no I/O
operation required).
- for the whole step:
- Number of buffers deleted (SEGDL)
- Number of buffers created (SEGCR)

To make the best use of buffers, UFAS-EXTENDED may cregate a buffer, re-
activate an existing buffer ("remember" buffer), or delete a buffer. For further
information on how UFAS-EXTENDED handles buffers, see Appendix E.

You can observe how the values affecting bufferswork in practice by studying the
JOR statistics.

By adjusting the number of buffersin direct relation to the size of the area reserved
(POOLSIZE), it is possible to achieve the most efficient buffer use, in other words
the highest hit ratio. A hit isthe number of Cl accessesinvolving no physical 1/0
operation. The hit ratio is the number of existing Cls accessed in the buffer pool to
the total number of Cls accessed (buffer pool and physical 1/0 operations).

5-40

47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

Tune application programs as follows:

» Choosethe NBBUF value for each file, or for the whole buffer pool, so that the
maximum number of buffers already allocated to the buffer pool is reused.

o Thehit ratio is defined as:
« HITCOUNT divided by GETCICOUNT

- Choose the POOLSIZE value in relation to the NBBUF value. Adding more
buffers can significantly reduce disk access times. The trade-off is that you
must specify alarge enough POOL SIZE value. Normally, USED SIZE is
dlightly less than POOLSIZE.

Creation/Deletion of BuffersWithin a Sep
Buffer Creation

New buffers continue to be created until either the maximum number of buffers
(given in the RESERVE AREAS clause), or the maximum total amount of main
memory reserved for buffers (POOLSIZE) is reached. When one of these limitsis
reached, UFAS-EXTENDED uses a previously created buffer, provided the
existing buffers are not busy, or are not used for DEFERRED UPDATES.
Otherwise UFAS-EXTENDED will delete one or more of the existing buffersto
make space available for new buffer(s).

The SEGCR counter indicates the number of buffers which are created for the step.
This number also includes about 5 control structures created at file opening time.

Buffer Deletion
A buffer is deleted:

» when no existing buffer of the same size as the requested one can be re-used,
» when files are closed,

» at acheckpoint,

- at the end of the step (normal or abnormal termination).

The SEGDL counter indicates the number of deleted buffers. Note that SEGDL
does not include the deletion of the control structures.

47 A2 04UF Rev06 5-41

UFAS-EXTENDED User’s Guide

When the value for POOL SIZE and the number of buffers are correctly set, ensure
that the number of buffers created (given by the SEGCR counter in the JOR) is
close to the number of buffers defined in the RESERVE AREAS clause. The most
efficient operation is when:

SEQCR divi ded by nunber of buffers

is approaching 1 for a batch step and is the lowest value for aTDS application. To
optimize thisratio, ensure that as many CISIZE values as possible have the same
size. However, inaTDS application, it is recommended that UFAS-EXTENDED
files have up to 3 or 4 different CISIZE values.

5.12.6 UFAS-EXTENDED Statistics as Presented in the JOR

This sub-section explains the statistics that may appear in the JOR. To ensure that
the buffer pool isbeing properly used, it isimportant to check these statistics.

>>> | FN=<i nternal file name>

REWR TECNT=a DELETECNT=b VR TECNT=c READCNT=d
>>> EFN=<external file nane>
CGETA COUNT=e H TOOUNT=f | OCOUNT=g
==> PQOOL=<pool namre>
NBFI LES=h NBBUF=i CETA COUNTSj
H TCOUNT=k
>>> XUFAS STEP STATI STICS STEP=<st ep nane>
POCLSI ZE=I USED SI ZE=m NBPQOOLS=n
AVAIL O =p FREE A =q TOTAL A =r
SEQCR=s SEQDL =t
READI CCT=u WR TEl CCT=v

File Statistics are displayed for both the internal and external file names.

For each internal file name, IFN statistics give the number of logical records:

o rewritten

o deleted,

o Wwritten,

o read.

REWRITECNT indicates the number of records rewritten to the
internal filein question.

DELETECNT indicates the number of records deleted from the

internd file

5-42 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

L
=

WRITECNT indicates the number of records written to the internal
file

READCNT indicates the number of recordsread in the interna file

IMPORTANT:

In COBOL 85, if you rewrite arecord with alength different from the length of
the existing record in the file, the rewrite operation istreated as a record
deletion followed by arecord insertion. Consequently, the number of records
deleted from and written to the file isreflected in the DELETECNT and
WRITECNT counters, and not in the REWRITECNT counter.

IFN statistics are not displayed for IDS areas because IDS uses specific verbs such
as SEARCH and STORE.

For each external file name, EFN statistics give three counters concerning the
number of all Cls accessed.

GETCICOUNT isthe total number of accessesto Clswhich are either
located on disks or found in the buffer pool.

HITCOUNT is the number of accessesto Cls aready allocated to
the buffer pool.

IOCOUNT isthe number of physical I/O requests (each I/O

request involves one Cl).
Buffer Pool Statistics (POOL) give:

pool name (in the case of aTDS application, this usually
corresponds to the name of the TDS application),

NBFILES is the maximum number of files that have been
simultaneoudly opened in a given pool.

NBBUF is the maximum number of buffers declared for the
pool. NBBUF is meaningless for the pseudo buffer
pool containing non-controlled filesin TDS.

GETCICOUNT isthe total number of accessesto Cls (data, index, and
label Cls).

HITCOUNT is the number of Cls accessed without an 1/0
operation.

47 A2 04UF Rev06 5-43

UFAS-EXTENDED User’s Guide

The remaining counters appear at step level:

POOLSIZE is the declared amount of memory dedicated to buffers
in the step. The value of POOLSIZE is expressed in
bytes.

USED SIZE isthe size of the POOL SIZE that has actually been

used. USED SIZE should be dlightly less than the
POOLSIZE. The value of USED SIZE is expressed in

bytes.

NBPOOLS is the maximum number of simultaneously opened
pools.

AVAIL CI indicates the number of entries available at system

level when the step is completed.

FREE CI indicates the number of entries which are not active
(i.e., available entries + entries not active but reserved)
at step termination.

TOTAL CI indicates the maximum number of active entries used
at system level by al thejobsin execution.

SEGCR isthe number of buffers (including control structures)
that have been created.

SEGDL isthe number of buffersthat have been deleted.

READIOCT isthe number of read I/O operations performed (see
Note below).

WRITEIOCT isthe number of write 1/0O operations performed (see
Note below).

NOTE:

The sum of the number of READIOCT and WRITEIOCT valuesis usualy
equal to the accumulated value of IOCOUNT which appears at file level. In the
case of aTDS abort and subsequent restart, the IOCOUNT value may not
correspond exactly to the sum of READIOCT and WRITEIOCT.

5-44 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

Example of File Satistics
>>> | FN=FI LUP

REWR TECNT=0 DELETECNT=1 WR TECNT=92 READCONT=608
>>> EFN=TDSL. FI LUP

CETA COUNT=1242 H TCOUNT=1068 I OGCOUNT=270

For the file TDSL.FILUP (whose IFN is FILUP):

» no record has been updated,
» onerecord has been deleted,
» 92 new records have been written,
« 608 records have been read.

These operationsinvolved 1,242 Cl accesses of which 1,068 required no physica
I/O operation, because the requested Cls were already in memory; 270 1/0O
operations were done for thisfile.

Note that:
GETCICOUNT = HITCOUNT + number of physical READ 1/O operations
IOCOUNT = physical READ I/O operations + physical WRITE I/O operations.

Example of Buffer Pool Statistics
Hereisthe printout of the POOL statistics, followed by an explanation.
==> POOL=TDS1

NBFI LES=34 NBBUF=500 CGETA COUNT=10225 H TOOUNT=7951
==> POOL=DEFT

NBFI LES=1 NBBUF=MEAN NGLESS CGETA GOUNT=11 H TOOUNT=8
In this example,

» 34 TDS controlled files have been simultaneously opened in the TDS application
named TDS1.

« the number of buffers shared among these files was 500 (RESERVE AREAS
clause),

« thetotal number of accessesto Cls (data, index, and label CIs) performed for all
the TDS-controlled files was 10,225.

« out of the 10,225 Cl accesses, 7,951 of the required Cls were aready located in
the buffer pool, that is, 7951 buffers were re-activated.

47 A2 04UF Rev06 5-45

UFAS-EXTENDED User’s Guide

One non-controlled file (the minimum) caused 11 Cls to be accessed, of which 8
were aready located in the buffer pool, thus reducing the number of physical 1/0
operations.

Example of Sep Satistics

>>>XUFAS STEP STATI STI CS STEP = TDS1
POOLSI ZE = 3072000 USED Sl ZE = 2339288 NBPOOLS = 2
AVAIL A = 110 FREE C = 1215 TOTAL A = 1005
SECCR = 572 SEGL = 567
READI CCT = 2243 WR TH CCT = 1438

In this example, for the transactional application called TDSL1, the defined
POOLSIZE is 3,072,000 bytes, and reflects the $SIZE statement where
POOL SIZE=3,000 (Kbytes) has been specified.

The actual size used by the buffers was 2,339,288 bytes (DEFT pool included).

Two pools have been used. Note that TDS usually creates a pool, whose nameis
the TDS name, for the controlled files, and the default pool called DEFT for the
non-controlled files. The DEFT pool isaways created for aTDS application.

110 buffer entries are available for any job when it is activated. 1215 buffer
entries are available and not reserved by any job. A total of 1005 buffer
entries have been created.

In this TDSL step, 572 buffers (segments) have been created (control structures are
included), whereas 567 have been deleted.

2,243 physical READ operations and 1,438 physical WRITE operations were
performed on all the UFAS-EXTENDED files.

5-46 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

5.13

5.13.1

Journalization

The following two sub-sections explain some of the journalization techniques

supported for UFAS-EXTENDED files. For maximum protection, use the

JOURNAL = BOTH option. Thisinvolves extral/O operations. If thefileis
cataloged, it is preferable to define the journal entry in the catalog. For more
details, refer to the File Recovery Facilities User’s Guide.

Before Journal

GCOS7 copies each data Cl beforeit is changed by the processing program and
placesit in the Before Journal .

You request this system facility either through the catalog, or through the file-
define parameter group DEFi (JCL equivalent DEFINE), for example,

EXEC PG MYPROGRAM

FILE = | NQU
ASA = JC FDB
DEF1 = (JOURNAL = BEFCRE);

If the program aborts, these "before" images may be used to restore (rollback) the
file's contents. Figure 5-15 summarizes Journa support for UFAS-EXTENDED

files.

Open Mode
. o EXTEND
File Organization OUTPUT (APPEND) I-O
Sequential tape No No -
Sequential disk No No Yes
Relative Yes* Yes* Yes
Indexed Sequential No Yes** Yes
Figure5-15. Usingthe Before Journal

The APPEND open mode isthe GPL equivalent of the EXTEND open modein

COBOL.

47 A2 04UF Rev06

5-47

UFAS-EXTENDED User’s Guide

The asterisk (*) indicates that such afile can be journalized only in direct-access
mode. In the EXTEND/APPEND column, only GPL files can bejournalized in
direct-access mode.

The asterisks (**) indicates that sequential file can only be opened in EXTEND
mode in COBOL-85.

The symboal (-) indicates that this open mode is not applicable.

When the Before Journal is not specified, the only way to guarantee file recovery is
by taking checkpoints.

5.13.2 After Journal

GCOS7 copies each logical record, after it has been updated, and writesit to the
After Journal on the disk specified. If a software error or a volume failure occurs,
the "after" images may be used to restore (rollforward) the file's contents.

Athough it is recommended that journal entries be defined in the catalog, you can
specify them through the file-define parameter group DEF, for example,

EXEC_PG MYPROGRAM

FILE = 1 NQU
ASGL = JC FDB
DEF1 = (JOURNAL = AFTER);
Open Mode
. o EXTEND
File Organization OUTPUT (APPEND) I-O
Sequential tape No No -
Sequential disk No No Yes
Relative No No Yes
Indexed Sequential No Yes* Yes

Figure5-16. UsingtheAfter Journal

The asterisk (*) indicates that an indexed sequential file can be opened in
EXTEND mode only in COBOL-85.

5-48 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

The symboal (-) indicates that this open mode is not applicable.

The APPEND open mode isthe GPL equivalent of the EXTEND open modein
COBOL.

InaTDS application, it can be preferable to use the After Journal with the Deferred
Update mechanism instead of the Before Journal since this reduces I/O overheads
and thus improves response times. However, if Cl splitting occurs while the
Deferred Update mechanism isin use, the return code WDNAV will be sent.

47 A2 04UF Rev06

5-49

UFAS-EXTENDED User’s Guide

5.14 File Integrity

UFAS-EXTENDED protectsfiles against aborts, system crashes and persistent 1-O
errors. UFAS-EXTENDED takes action to avoid leaving files unstable and, where
thisis not possible, the user iswarned with areturn code.

Anunstablefileisafilethat is not closed properly, and as aresult, the header or
trailer labels have not been written properly. An unstable index means that either
there are records with no index path to them, or there are index entries that do not
point to any records.

5.14.1 File Creation

When you open afilein OUTPUT:

» you create new records for the file and any previous records are deleted. Only
the records written to the file between the opening and closing of thefile are
considered the new contents of thefile.

The only way to ensure file recovery is by using the checkpoint mechanism. You
cannot use the Before or the After Journa at file creation time.

When you open afilein EXTEND mode (GPL equivalent isAPPEND):

- itisthe sameasopeningitin OUTPUT mode except that, at opening time, new
records are written after the last record.

After a GCOSY crash, you may be asked at restart time to reply to the REPEAT

FROM CHECKPOINT question for afile:

« |f you answer YES, thefile isrestored to the state it wasin at the time the last
checkpoint was taken and the step continues until the program ends.

« If you answer NO, the file remains unstable.

In the event of an abort, at the time of the last checkpoint you are asked to reply to
the REPEAT FROM CHECKPOINT question for afile:

« |f you answer YES, thefile isrestored to the state it wasin at the time the last
checkpoint was taken and the step continues until the program ends.

« If you answer NO, thefileis closed and remainsin the state it was in at the time
of the abort.

5-50 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

5.14.1.1 Files without Secondary Keys

If auser program aborts, or if the operator issues a CANCEL _JOB command, the
fileisclosed asit was at abort time.

If asystem crashes, thefileis not closed, but isleft in an unstable state. Any
attempt to reopen the file other than in OUTPUT mode, will return the DATANAV
return code.

5.14.1.2 Files with Secondary Keys

The recommended procedure for creating secondary keysis described in sub-
section 4.8.1.

For fileswith secondary keys, primary keys are created first, then secondary keys
are created. When the user program uses the COBOL clause APPLY NO-SORTED-
INDEX ON, the secondary keys are not built at file creation time, in which case
you must use the SORT_INDEX (JCL equivalent SORTIDX) command to sort and
load the secondary indexes later. In GPL, when afileis opened in OUTPUT mode,
secondary indexes are never created.

If an abort or a crash occurs when secondary indexes are being created, the
secondary keys are |eft unstable. Any attempt to open the file (other thanin INPUT
or OUTPUT mode, or while SORT_INDEX is executing) will return the
SCIDXNAV return code. If you open the filein INPUT mode, any attempted
access via secondary keys will aso return the SCIDXNAV return code.

47 A2 04UF Rev06 5-51

UFAS-EXTENDED User’s Guide

5.14.2 File Processing

5.14.2.1 INPUT Open Mode

Journalized file: If thefileis unstable, it can be read (INPUT open
mode) only through use of the file recovery utilities.

Non-journalized file: A stable or an unstable file can be opened in INPUT
open mode and read in sequentia access mode only.
In the case of an unstable file, this open mode will be
useful for restoring thefile.

Trying to read afile in direct access mode through unstable paths, however, will be
denied and:

« thereturn code FLNAV (fileis not available) will be returned if the primary
index isunstable,

« or the return code SCIDXNAV (secondary index is not available) will be
returned if the secondary index is unstable.

5.14.2.2 EXTEND Mode

In COBOL-85, you may aso use the Before Journal and the After Journal for the
sequential indexed files (refer to figures 5.15 & 5.16) in EXTEND mode (GPL
equivalent APPEND).

5.14.2.3 Files Without Secondary Keys

If an abort occurs while UFAS-EXTENDED is splitting a Cl, the split will be
terminated before the abort occurs. The file is then closed and is |eft in astable
state.

If the system crashes, the fileis not closed, but is left unstable.
There are 3 casesto consider:

File Not Protected by Journalization

Any attempt to reopen the file, will be accepted.

If you reopen thefilein INPUT open mode,

Its indexes are considered as damaged and any key access will be denied, causing
the return code FLNAV to be returned.

5-52 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

If you reopen thefilein I-O open mode,

Thefileisautomatically salvaged by the UFAS-EXTENDED File Salvager; this
salvaging can detect whether a Cl was being split at the time of the crash and will
restore the file consistency as at that point.

NOTE:
In batch mode, when the Before Journal is not used and records are inserted
after acheckpoint, but before a system crash, the return code DUPKEY will be
returned if the program tries to insert these records again after awarm restart.
The records will not be inserted and the processing will continue normally. This
return codeisignored.

File Protected by the Before Journal

Such instability can be avoided by using the Before Journal with such files. If you
are using the Before Journal, the Before images are rewritten automatically at
warm restart; therefore no salvaging is required.

File Protected by Deferred Updates and the After Journal

Such instability can be avoided by using the After Journal and Deferred Updates
(used only in aTDS application). The After Journa protects against al kinds of
incidents by keeping an image of each record after it has been updated. Asan
alternative to the Before Journal, you can use the Deferred Update option. Deferred
Update means that al updates are not written immediately to the files. If an
incident occurs, the program discards the updates.

47 A2 04UF Rev06 5-53

UFAS-EXTENDED User’s Guide

5.14.2.4 Files With Secondary Keys

If an abort occurs while UFAS-EXTENDED is splitting a Cl, the split will be
completed before the abort occurs. The fileisthen closed and left in a stable state.
Moreover, the whole set of accesses needed to complete an update request is
protected in the same way as splitting so that secondary indexes remain consistent
with primary indexes and data.

If a system crash occurs, thefileis not closed but isleft in an unstable state. Its
primary and secondary indexes are damaged.

There are 3 cases to consider:
1 FileNot Protected by Journalization
The salvaging mechanism is different according to the type of index.

Primary indexes are salvaged automatically as discussed in sub-section
5.14.2.3.

You must rebuild secondary indexes by using the SORT_INDEX (JCL
equivalent SORTIDX) utility. In this case, the UFAS-EXTENDED salvager
issues a message in the JOR requesting that you run the GCL utility

SORT _INDEX against thefile. If you attempt to accessthefileviaa
secondary key before using the SORT_INDEX (SRTIDX) utility (JCL
equivalent SORTIDX), your attempt will be rejected and the return code
SCIDXNAV will be returned.

2 FileProtected by the Before Journal

If the file was protected by Before Journal, it is automatically reopened in input-
output mode at system restart; the purpose being to rollback the data part and the
denselevel of secondary indexesto their last stable state. It isimportant to note
that, in this context, the other index levels are not rollbacked, having not been
journalized. This means that a possibility of index/data incoherence may occur,
specialy when splittings occured before the system crash. Thisisthe reason why it
is recommended to execute the SORTIDX utility after the rollback phase to restore
the coherency. If it is not achieved, programms accessing such filesin read access
mode may get some ADDROUT return codes when trying to access records
implied by the incoherency situation.

3 FileProtected by Deferred Updates and the After Journal
(TDS applications only)

Asfor fileswithout secondary keys above.

5-54 47 A2 04UF Rev06

File Assignment, Buffer Management, and File Integrity

NOTE:
Secondary-index salvaging is not automatic and is more time consuming than
primary-index salvaging.

File Extension

UFAS-EXTENDED supports file extension, both dynamic and static, for sequential
and indexed sequentid files.

A relative file does not support static file extension. However, arelative filethat is
accessed sequentialy can be dynamically extended only in OUTPUT or EXTEND
(COBOL-85 only) open mode. The GPL equivalent of EXTEND isAPPEND.
When ardativefileis opened in APPEND mode, extra space is usually allocated
from the end of the relative file, but in GPL you can specify the record address
from which you wish to extend the relative file.

Dynamic Extension:

If during arun the alocated space is filled and more space is required, the file will
be extended if you specify the INCRSIZE parameter in the BUILD_FILE (JCL
equivalent PREALLOC) or CREATE FILE (JCL equivaent FILALLOC)
command that is described later in Section 6.

If you wish to change the value of the INCRSIZE parameter for a cataloged file,
use the MODIFY_FILE (JCL equivalent FILMODIF) command that is also
described in Section 6.

Satic Extension:

Usethe MODIFY_FILE _SPACE (MDFSP) command (described later in
Section 6). The JCL equivalent isthe PREALLOC statement with the EXTEND
parameter.

In both cases afile is extended only if there is enough space on the disk to
accommodate the extension.

If acrash occurs during file extension, UFAS-EXTENDED can resume
automatically and complete the extension when you reopen thefile.

47 A2 04UF Rev06 5-55

UFAS-EXTENDED User’s Guide

5.14.4 Permanent I-O Errors

If the After Journal is specified, you can restore the file from a previously saved
copy of the file through the use of the RESTORE_FILE (JCL equivalent FILREST)
command; then use the static rollforward utility to roll forward the file. For more
details on the ROLLFWD utility, refer to the File Recovery Facilities User’'s Guide.

If the After Journal is not specified, you can restore the file only from a previously
saved copy, using the RESTORE_FILE (JCL equivalent FILREST) command.

5-56 47 A2 04UF Rev06

6. Designing and Allocating UFAS-
EXTENDED Disk Files

6.1 Summary

This section covers the following topics:

what happens when you allocate afile,

CISIZE,
- recommended filling capacity for Cls,
- storage capacity for the different disk devices,

choosing theinitial size (SIZE),
choosing theincrement size (INCRSIZE),
simulating how afileisallocated (CREATE_FILE),

calculating space regquirements for:
- asequentia file,
- aredativefile,

detailed design guidelines for indexed sequential files,
- choosing CISIZE,

- choosing Free Space (CIFSP),

- massinsertion,

calculating file space for an indexed sequential file:
- without secondary indexes,
- with secondary indexes,

file-allocation commands/DMU tilities.

47 A2 04UF Rev06

6-1

UFAS-EXTENDED User’s Guide

6.2 Preliminary Remarks

In the previous section we looked at some of the most important aspects of UFAS-
EXTENDED. What we are going to discuss here is of equal importance since we
will be seeing how to design and allocate space for UFAS-EXTENDED disk files.
Further information is provided in Appendix E.

First, you need to understand the reasons behind the GCL or JCL statements that
you typein at your terminal to be really confident and competent in allocating
UFAS-EXTENDED files.

The GCL commands for alocating UFAS-EXTENDED files are described towards
the end of Section 6. You will find a complete description of the JCL statementsin
the JCL Reference Manual and the utilities are covered in the Data Management
Utilities (DMU) User’'s Guide.

You can allocate files only on disk volumes that have been prepared (Iabeled and
formatted) with the following commands:

PREPARE DISK (PRPD) (JCL equivalent VOLPREP),
PREPARE VOLUME (PRPV) JCL equivalent VOLPREP (See Table 8-2).

For a description of these commands, see the IOF Terminal User’s Reference
Manual (Part 2), the JCL Reference Manual, and the DMU User’s Guide.

Before records can be written to a disk file, you must allocate file space and ensure
that the file's attributes are known to the system.

There are several methods of alocating a disk file:

« using the GCL command BUILD_ FILE (BF) (JCL equivalent PREALLOC)
described later in this Section,

+ using the GCL command CREATE_FILE (CRF) (JCL equivaent FILALLOC)
described later in this Section (you can simulate how afileisto be allocated),

« using thefile-allocation parameter group AL Ci with its associated parameter
group (JCL equivalent ALLOCATE) described later in this Section,

« using the GCL parameter DYNALC (JCL equivalent OUTALC) in thefile
management utilities.

6-2 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

6.3 What Happens when you Allocate a File

This sub-section explains background information that will help you understand
why files are allocated the way they are.

The execution of afile alocation command such as BUILD_FILE (JCL equivalent
PREALLOC) reserves space for adisk file, and creates the necessary file labels
which contain details of the file organization.

It is recommended that you allocate afile on an FSA disk in units of blocks,
100K B, or records (for adescription of the UNIT parameter, seelater in this
Section). The values CYL and TRACK are maintained for reasons of compatibility
with existing GCL/JCL. At dlocation time, an FBO disk file is dways alocated in
blocks, no matter what allocation unit was specified (cylinder, record, block, or
quantum of 100K B). The corresponding values for the units of cylinder and track
are

 1cylinder =1 000 Kbytes,
» 1track = 50 Kbytes.

UFAS-EXTENDED reserves space on FSA disks in units of blocks and on non-
FSA disksin units of disk tracks or cylinders (described in Section 1). Blocks, disk
tracks, or cylinders are allocated to the VBO disk file as a series of one or more
extents.

An extent is agroup of one or more contiguous blocks (tracks or cylinders for
VBO files). On any one volume, you may allocate afile up to 16 extents (the
default value is 5 extents). However, you can limit the number of extentsto one for
example, with the MAXEXT keyword in the BUILD_FILE command.

If you specify thesizein CIs (UNIT = CI for VBO files, UNIT=BLOCK for FBO
files),

« the BUILD_FILE (JCL equivalent PREALLOC) command cal cul ates the
number of tracksin the case of VBO disk files (based on the CISIZE) and
allocatesthefile:

— in blocks for FBO files,
- intracksfor VBO files.

The maximum number of Clsin afileis;
16 777 215 (2**24 - 1)
If you specify the size in units of records (UNIT = RECORD),

« the BUILD_FILE (JCL equivalent PREALLOC) command cal cul ates the
number of tracks (or blocks) based on the RECSIZE and CISIZE and allocates
thefile accordingly.

47 A2 04UF Rev06 6-3

UFAS-EXTENDED User’s Guide

If you specify the size in units of tracks (UNIT = TRACK), or cylinders (UNIT =
CYL),

« the BUILD_ FILE (JCL equivalent PREALLOC) command allocatesthefileasa
number of blocks for FBO files and as a number of tracks or cylinders for VBO
files. You should specify TRACK or CYLINDER inthe UNIT parameter only
for files being allocated on VBO disk volumes.

The effect of leaving free space in an UFAS-EXTENDED indexed sequentia file
being alocated in units of records (UNIT=RECORD) is covered later in this
Section.

Where a multivolumefile is to be allocated, you can specify the amount of space to
be taken on each volume (SPLIT) aswell asthe position at which the dlocationis
to start.

The start address can be identified by:

» blocksfor FBO disk files,
« cylinder and addresses for VBO disk files.

When you specify the SPLIT parameter, only one extent may be allocated per
volume. You cannot use the SPLIT parameter when UNIT = Cl or UNIT =
RECORD.

UFAS-EXTENDED allocates space by scanning the list of available free-space
extents.

UFAS-EXTENDED chooses the smallest extent of those greater than or equal to
the space required, if any.

List of Free Extents

40 23 25 60

For example, if the extents were 40, 23, 25, and 60 cylinders, arequest for 24
would be allocated on the 25-cylinder extent, leaving unused extents of 40, 23, 1,
and 60 cylinders.

List of Remaining Free Extents

40 23 1 60

6-4 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

If the space that you request is larger than the largest available free extent, UFAS-
EXTENDED allocates the largest extent. UFAS-EXTENDED then chooses the
remaining space still required:

either by searching for the smallest of the extents that are large enough,
or by choosing the largest, and then searching for space for the remainder.

Thus, if you request 86 cylinders with the above space list (60+40), UFAS-
EXTENDED allocates the 60- and 26-cylinder extents.

List of Remaining Free Extents

14 23 1

6.3.1 Choosing the CI Size (CISIZE)

It isimportant to choose the size of a Cl carefully. The CISIZE parameter specifies
the Cl sizein bytes. The size of a Cl isaways amultiple of 512. UFAS-
EXTENDED aways rounds up the size of a Cl that you specify to a multiple of
512 if the size specified is not already such a multiple. Table 6-1 gives you the Cl
sizes that are recommended for each VBO disk drive. These Cl sizes make the best
use of disk space, but in TDS applications, the most important factor may be the
response time, related to the number of index levels.

Thelarger the CISIZE, the larger the buffer(s) needed to process the file and the
longer the processing time needed to split a Cl. The advantage of specifying alarge
CISIZE istwo-fold: fewer Cl splitting operations will occur and there will be fewer
I/O operations. Note that the buffer size = CISIZE when VERSION = CURRENT,
or (CISIZE + 32) when VERSION = PREVIOUS, in both cases rounded up to a
multiple of 4 Kbytes.

When you write variable-length records to afile, the number of records placed in a
Cl will depend on the cumulative total of record-lengths that fitin aCl. A record is
never split over 2 Cls.

47 A2 04UF Rev06 6-5

UFAS-EXTENDED User’s Guide

6.3.2 Recommended CI Sizes by Space Occupied
Table 6-1 shows the recommended CISIZE values for files being allocated on VBO
disk volumes.
Table 6-1. Recommended CI SIZE values
MS/B10 MS/D500
Cls per Cls per Data Cls Data Cls
CISIZE Track Cylinder CISIZE per Track | per Cylinder

32256 1 (81%) 15 28672 1 (98%) 24

19456 2 (98%) 30 14336 2 (98%) 48

12800 3 (96%) 45 9216 3 (95%) 72

9216 4 (93%) 60 6656 4 (91%) 96

7168 5 (90%) 75 5120 5 (88%) 120

6144 6 (93%) 90 4096 6 (84%) 144

5120 7 (90%) 105 3584 7 (86%) 168

4096 8 (83%) 120 3072 8 (84%) 192

3584 9 (79%) 135 2560 10 (88%) 240

3072 11 (85%) 165 2048 12 (84%) 288

2560 13 (81%) 195 1536 15 (79%) 360

2048 15 (78%) 225 1024 21 (74%) 504

1536 19 (69%) 285 512 34 (60%) 816

1024 26 (54%) 390

512 40 (42%) 600
VBO disk drives are divided into classes as follows:
Device Class Name Disk Unit Family
MS/B10 1 Gigabyte disk drive
MS/D500 MSU1007
The CISIZE values shown in Table 6-1 make the best use of the available disk
space. The file designer must also take into account other criteria such asthe
memory cost of buffers for agiven CISIZE. Buffers are discussed in Section 5. For
files accessed in TDS applications, the number of index levelsis the most
important factor.
The percentages in the 2nd column show the efficiency of track space used
compared with the maximum track capacity.
From V5, datais accessed in fixed-sized memory units known as pages. A page can
contain only one Cl. Because it isimportant that the actual 1/0 transfers be done in
efficient sizes, you can calculate the number of pages required by using the
following formula:
Cl SI ZE di vi ded by 4096 (rounded up toamultiple of 4 Kbytes)
For instance, a Cl whose size is 4 096 requires a buffer capable of holding 1 page.
6-6 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

6.3.3 Disk-Storage Capacity
Table 6-2 shows the disk-storage capacity for FSA disk volumes.

Table 6-2. Number of Clsper FSA Disk Volume

CISIZE Volume Capacity
(in bytes) FSA FSA LSS v1 LSS V2
320 MB 660 MB 1600 MB 2500 MB
512 628400 1302800 2669600 4154100
1024 314200 651400 1334800 2077050
1536 209466 434266 889866 1384700
2048 157100 325700 667400 1038525
2560 125680 260560 533920 830820
3072 104733 217133 444933 692350
3584 89771 186114 381371 593442
4096 78550 162850 333700 519262
4608 69822 144755 296622 461566
5120 62840 130280 266960 415410
5632 57127 118436 242690 377645
6144 52366 108566 222466 346175
6656 48338 100215 205353 319546
7168 44885 93057 190685 296721
7680 41893 86853 177973 276940
8192 39275 81425 166850 259631
8704 36 964 76635 157035 244358
9216 34911 72377 148311 230783
9728 33073 68568 140505 218636
10240 31420 65140 133480 207705
12288 26183 54283 111233 173087
14336 22442 46528 95342 148360
16384 19637 40712 83425 129815
18432 17455 36188 74155 115391
20480 15710 32570 66740 103852
22528 14281 29609 60672 94411
24576 13091 27141 55616 86543
26624 12084 25053 51338 79886
28672 11221 23264 47671 74180
30720 10473 21713 44493 69235
32256 9974 20679 42374 65938

Dividing the CISIZE into the capacity of the volume gives the maximum number
of Clswhich can be dlocated on the volume for the particular CISIZE chosen. For
example, by dividing 320 megabytes by 4 096, it is possible to fit a maximum of
78 550 Cls on a 320 Megabyte volume.

Table 6-3 shows disk-storage capacity and the total number of cylinders that you
may allocate on a non-FSA disk volume.

47 A2 04UF Rev06 6-7

UFAS-EXTENDED User’s Guide

Table 6-3. Sorage Capacity of Non-FSA Disk Volumes

Non-FSA Disk Volume

MS/D500 MS/B10
Cylinders per volume 707 1730
Additional Cylinders 2 S
for Adternate Tracks
Tracks per Cylinder 24 15
Total Number of Tracks 16968 25950
(excluding alternates)
Bytes per Track 29013 39381
available to the User
Bytes per Cylinder 696312 590715
Total Capacity 500 1000
(Megabytes, approx)

Tables 6-4 and 6-5 compare the capacity obtained when you allocate with agiven
Cl size on volumes of the same type, but where the first isformatted in FBO with 4
Kbyte data blocks, whereas the second is formatted in VBO.

It is assumed that the whole volume is available (no DSMGT area) and that thefile
is mono-extent (on FBO volumes, Cls can still be split over two consecutive
tracks).

6-8 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

Table 6-4. Compar ative Capacity of VBO and FBO M /D500 Volumes

MS/D500
Number of Cl's Percentage
CISIZE VBO FBO | difference

512 576912 101808 -82,35%
1024 356328 101808 -71,43%
1536 254220 101808 -60,00%
2048 203616 101808 -50,00%
2560 169680 101808 -40,00%
3072 135744 101808 -25,00%
3584* 118776 101808 -14,29%
4096 101808 101808 0,00%
4608 84840 50904 -40,00%
5120 84840 50904 -40,00%
5632 67872 50904 -25,00%
6144 67872 50904 -25,00%
6156 67872 50904 -25,00%
6656 67872 50904 -25,00%
7168 50904 50904 0,00%
7680 50904 50904 0,00%
8192 50904 50904 0,00%
8704 50904 33936 -33,33%
9216 50904 33936 -33,33%
9728 50904 33936 0,00%
to 33936 33936 0,00%
12288 33936 33936 0,00%
12800 33936 25452 -25,00%
to 33936 25452 -25,00%
14336 33936 25452 -25,00%
14848 16968 25452 50,00%
to 16968 25452 50,00%
16384 16968 25452 50,00%
16896 16968 20361 20,00%
to 16968 20361 20,00%
20480 16968 20361 20,00%
20992 16968 16968 0,00%
to 16968 16968 0,00%
24576 16968 16968 0,00%
25088 16968 14544 -14,29%
to 16968 14544 -14,29%
28672 16968 14544 -14,29%

29184 0 12726 -

to 0 12726 "

32256 0 12726 -

* FILALLOC default value

47 A2 04UF Rev06 6-9

UFAS-EXTENDED User’s Guide

Table 6-5. Compar ative Capacity of VBO and FBO M S/B10 Volumes

MS/B10
Number of Cl's Percentage
CISIZE VBO FBO difference
512 1038000 207600 -80,0%

1024 674700 207600 -69.23%
1536 493050 207600 -57.89%
2048 389250 207600 -46.67%
2560 337350 207600 -38.46%
3072 285450 207600 -27.27%
3584* 233550 207600 -11.11%
4096 207600 207600 0.00%
4608 181650 103800 -42.86%
5120 181650 103800 -42.86%
5632 155700 103800 -33.33%
6144 155700 103800 -33.33%
6156 155700 103800 -33.33%
6656 129750 103800 -20.00%
7168 129750 103800 -20.00%
7680 103800 103800 0.00%
8192 103800 103800 0.00%
8704 103800 69200 -33.33%
9216 103800 69200 -33.33%
9728 77850 69200 -11.11%
12288 77850 69200 -11.11%
12800 77850 51900 -33.33%
13312 51900 51900 0.00%
16384 51900 51900 0.00%
16896 51900 41520 -20.00%
19456 51900 41520 -20.00%
19968 25950 41520 60.00%
20480 25950 41520 60.00%
20992 25950 34600 33.33%
24576 25950 34600 33.33%
25088 25950 29657 14.29%
28672 25950 29657 14.29%
29184 25950 25950 0.00%
32256 25950 25950 0.00%

* FILALLOC default value

6-10 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

6.3.4 Choosing the Initial Size (SIZE)

The SIZE parameter specifiesthe total amount of space to be alocated to afile.
You can use this parameter in the BUILD_FILE (JCL equivalent PREALLOC)
command, CREATE_FILE (JCL equivaent FILALLOC) command, the file-
alocation parameter group ALCi (JCL equivalent ALLOCATE), and the DYNALC
parameter (JCL equivalent OUTALC).

If you give avalue for SIZE, thisimplies that the allocation is to be done in global
mode. Global meansthat you give the total amount of space to be allocated and
GCOS7 decides how to spread this over the volume(s) concerned.

In global mode, the volume(s) concerned are specified viathe FILE parameter of
the GCL commands BUILD_FILE and CREATE_FILE or one of the JCL
statements PREALLOC, FILALLOC, or OUTALC .

The alternative to global modeis split mode (requested viathe SPLIT parameter of
the BUILD_FILE command). Split mode means that you choose the amount of
space to be alocated on each volume. In addition, you can optionally specify the
disk address(es) at which allocation isto start. In split mode, the volume(s)
concerned and the amount of space on each are given viathe SPLIT parameter.

Because you can extend indexed sequential files and sequential files (explained in
the next sub-section), do not allocate more space than needed for the first creation.
However, in the case of TDS applications, frequent file extensions are costly.

SIZE must be:

+ lessthan 32 768 tracks if UNIT = 100KB, TRACK, or CYL,
* lessthan 16 777 216 if UNIT = BLOCK or ClI,
« lessthan 2 130 706 306 if UNIT = RECORD.

47 A2 04UF Rev06 6-11

UFAS-EXTENDED User’s Guide

6.3.5 Choosing the Increment Size (INCRSIZE)

The INCRSIZE parameter specifies the amount of space by which afileis
automatically extended when it becomes full. INCRSIZE is measured in blocks,
units of 100 Kbytes, cylinders, tracks, ClIs, or records, depending on the unit
specified by the UNIT parameter. For files being allocated on FSA disks, it is
recommended that BLOCK or 100K B be specified in the UNIT parameter
(described later in this Section).

The INCRSIZE parameter can be specified in the BUILD_FILE (JCL equivalent
PREALLOC) command, CREATE_FILE (JCL equivalent FILALLOC) command,
or the file-all ocation parameter group ALCi (JCL equivalent ALLOCATE). The
value declared does not override a non-zero value aready declared in the catal og,
or subsequently set by MODIFY _FILE (CATMODIF). In cases of conflict, the
catalog value of INCRSIZE is always used.

The default value for INCRSIZE is 0, which means no automatic increment and the
maximum valueis 32 767.

The value of INCRSIZE should be large enough to avoid too many extensions.
Ideally the file space will have been correctly estimated at the outset but, if an
extension is necessary, the file space increment should be large enough (20 to 30%
of the value specified in the SIZE parameter at the time of creation).

For static extension, use the SIZE parameter of the MODIFY_FILE_SPACE
command (described later in this Section), or the JCL statement PREALLOC with
the EXTEND parameter.

6-12 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

Simulating File Allocation

Instead of actually allocating afile, you can simulate its alocation by using the
CREATE_FILE command (syntax is given later in this Section). This utility is
quick and easy. You start with rough estimates, for example an estimate of the file
size, and then refine each estimate in turn. No longer do you have to spend your
time trying to calculate how many Cls are occupied by the address space 1
information or by the indexes in the case of an indexed sequential file. If you are
working in line mode, ensure that the IMMED parameter is set to 0 so that you can
modify the characteristics of the model file by supplying appropriate commands. If
you do not specify the characteristics of the file that you wish to allocate, default
values are applied for the following parameters:

+ FILEFORM
+ FILEORG
+ RECFORM
CISIZE
RECSIZE
UNIT
SIZE
INCRSIZE

To display the current characteristics of the file to be allocated, you then use the
REPORT command. This utility gives the number of blocks, quanta of 100 Kbytes,
cylinders (or tracks in the case of non-FSA disks). For a description of the
REPORT command, see the |IOF Terminal User’s Reference Manual.

47 A2 04UF Rev06 6-13

UFAS-EXTENDED User’s Guide

6.5 Calculating Space Requirements fir a Sequential File

You should be familiar with sequential-file concepts before proceeding. These
concepts are described in Section 2.

User-supplied values for the calculation are RECSIZE (defined in the user
program), CISIZE (chosen by the file designer) and the number of records that the
fileisto hold.

For a sequential file, the value that you enter for CISIZE must be within the
following limits:

» must be greater than or equal to RECSIZE + 12 for VBO files
(RECSIZE + 14 for FBO files),

 cannot exceed onetrack for afile being allocated on a VBO disk volume.

6.5.1 Fixed-Length Records

If you know the number of recordsin the file to be allocated, then an easy method
of alocating thefileisto set UNIT=RECORD in the BUILD_FILE command, and
UFAS-EXTENDED automatically allocates the file. Otherwise you will need to
use the CREATE_FILE utility or do the following calculations.

First calculate the number of recordsin aCl:

« Number of records per Cl =

» (CISIZE - CI Header) divided by (RECSIZE + 4) rounded down

« To take account of the CI header information, subtract from the CISIZE:
- 10for files being allocated on FSA disks,
- 8for files being allocated on non-FSA disks.

- add 4 to the size of the record to take account of the record-header
information that occupies 4 bytes, (see Figure 2-3).

Then find number of Cls required:
Number of Cls=
(number of records) divided by (number of records per ClI), rounded up

If you allocate file space by using the BUILD_FILE command and UNIT = Cl,
then SIZE = number of Clswill suffice.

6-14 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

In the case of a non-FSA disk volume, calculate the number of tracks required (and
possibly from this the number of cylinders) by using the following formula:

Tracks = (number of Cls) divided by (Cls-per-track) plus 1, rounded up

The 1 extratrack isthat required for address space 1. If alocation isdonein Cls, or
in records, then thisis automatically added, but you must take it into account if
UNIT=TRACK or CYL. Tofind out the number of Cls per track, see Table 6-1.

Example of allocating an FBO disk file

A file PK.LOP of 2 349 records, each 220 bytesin length, isto be allocated on an
MS/FSA volume.

A simulation of the file's allocation (described later in this Section) indicates that
90 blocks are required.

CREATE_FI LE PK LCP: VOL1: M5 FSA

FI LESTAT = CAT
UFAS = SEQ
UNT = BLOCK
S| ZE = 90
ASIZE = 6144
RECFORM = F
RECSI ZE = 220;

Example of allocating a VBO disk file

A file PC.WTM of 3 000 records, each 90 bytesin length, isto be allocated on an
MS/D500 volume BD18. The CISIZE isto be 4 096.

An easy method of allocating the fileis to specify in the BUILD_FILE command
UNIT=RECORD, SIZE=3000. Then UFAS-EXTENDED automatically calculates
the number of tracks required.

Otherwise you need to use the CREATE_FILE utility or do the following
calculations.

» Number of records per Cl = (4096 - 8) divided by (90 + 4) = 43 records per CI
» Number of data Cls = 3000 divided by 43 =70 Cls
With a CISIZE of 4096, there are 6 Cls per MS/D500 track (Table 6-1).

Tracks = (70 divided by 6) plus 1 = 13 tracks

47 A2 04UF Rev06 6-15

UFAS-EXTENDED User’s Guide

The BUILD_FILE command is:
BU LD FI LE PC. WM BD18: M&/ D600

FI LESTAT = CAT

UFAS = SEQ

UNIT =d (or UNT = TRACK or UNNT = CYL
Sl ZE =70 SIZE = 13 SIZE=1)
CSIZE = 4096

RECSI ZE = 90;

Table 6-3 gives 24 tracks per cylinder for an MS/D500 disk drive. Therefore 1
cylinder will cater for 13 tracks.

Further examples of alocating files using the BUILD_FILE command are given
later in this Section.

6.5.2 Variable-Length Records

Using the same notation as for fixed-length records but with an average record
length (arl) instead of RECSIZE:

» Number of records per Cl = (CISIZE - Cl Header) divided by (arl + 4), rounded
down.

» Number of Cls= (number of records) divided by (number of records per Cl),
rounded up

» Tracks = (number of Cls) divided by (Cls-per-track) plus 1, rounded up
Example of allocating an FBO disk file

Assume you wish to alocate afile PK.RIT of 2,000 variable-length records whose
average length is 25 bytes and maximum length is 98 bytes. You wish to alocate
the file on an MS/FSA volume PKT. The CISIZE is 3584.

» Number of records per Cl = (3584-10) divided by (25+4) = 123.24
» =123 records per Cl
Number of data Cls= 2000 divided by 123 = 16.23 = 17 Cls

6-16 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

To take into account the space occupied by address space 1, add 5 to give 22 Clsin
al. Note that you can modify this estimate through use of the CREATE_FILE
command (described earlier in this Section).

CRF PK R T: PKT: M5 FSA

FI LESTAT = CAT
UFAS = SEQ
UNT = BLOCK
Sl ZE = 22
aSlzE = 3584
RECFORM = V
RECSI ZE = 98;

Example of allocating a VBO disk file

Assume you wish to alocate afile, PC.VWT of 4500 variable-length records
whose average length is 40 bytes and maximum length is 120 bytes. You wish to
alocate the file on an MS/D500 volume MX42. The CISIZE chosen is 1536.

» Number of records per Cl = (1536 - 8) divided by (40 + 4)
» =34 records per data Cl

Note that, if you wish to alocate file space in units of records (UNIT=RECORD
with SIZE=4500), then specify 120, instead of 40 for the record size.

Number of Cls= 4500 divided by 34 =133 Cls
With a CISIZE of 1536, there are 15 Cls per MSD500 track (See Table 6-1)
Tracks = (133 divided by 15) + 1 = 9.86, rounded up = 10 tracks.

giving:

BU LD FILE PC WA MX42: M&/ D500

FI LESTAT = CAT

UFAS = SEQ

UNT = (or INT=TRACK or UINT = C1L
Sl ZE = 133 SIZE = 10 SIZE=1)
ASIZE = 1536

RECSI ZE = 12

RECFORM =V,

47 A2 04UF Rev06 6-17

UFAS-EXTENDED User’s Guide

6.6 Calculating Space Requirements for a Relative File

You should be familiar with the relative-file concepts before proceeding. These
concepts are described in Section 3.

User-supplied values for the calculation are RECSIZE (defined in the user
program), CISIZE (chosen by the file designer) and the number of records that the
fileisto hold.

The calculations for aredative file are the same for both fixed-length and variable-
length records.

For arelative file, the value you enter for CISIZE must be within the following

limits:

» must be greater than or equal to RECSIZE + 12 for aVBO file (RECSIZE + 14
for an FBOfile),

- cannot exceed one track for aVBO file.

An easy method of allocating afileisto specify in the BUILD_FILE command
UNIT=RECORD, SIZE=number of records. Then UFAS-EXTENDED
automatically calculates the number of blocks/tracks required. Otherwise you need
to use the REPORT command of CREATE_FILE or do the following cal culations.

1. Cadculate the number of recordsin aCl:

Number of records per Cl = (CISIZE - Cl Header) divided by (RECSIZE + 4),
rounded down

Take account of the Cl header information, subtract from the CISIZE:

10 for FBO files,
8 for VBO files.

(Add 4 to the size of therecord to alow for the record-header that occupies 4
bytes. See Figures 3-5 and 3-6.)

1. Find the number of Clsrequired:

Number of Cls = (number of records) divided by (number of records per Cl),
rounded up

2. For VBO volumes, you may compute the number of tracks:
Tracks = (number of Cls) divided by (Cls-per-track), plus 1, rounded up
(Onetrack is added to cater for address space 1.)

6-18 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

Example of allocating an FBO file

A file POR.CL of 4,510 records, each 112 bytesin length is allocated on an
MS/FSA disk volume RR1. The CISIZE chosen is 4608 and the unit of allocation
chosen is blocks.

» Number of records per Cl = (4608 - 10) divided by (112 + 4)
» =39 records per Cl
» Number of Cls= 4510 divided by 39 = 116 Clsrounded up

To alow for address space 1, add afew extra Cls, say 5, which gives 121. Specify
121 inthe SIZE parameter. Note that you can modify your estimate by simulating a
file allocation (described earlier in this Section).

CRF PCR CL: RRL: M5/ FSA
FI LESTAT = CAT
UFAS = RELATI VE

INT =0
SIZE = 121
A Sl ZE = 4608

RECSI ZE = 112;

Example of allocating a VBO file

A file CLX.AA of 2080 records, RECSIZE = 134 is allocated on an M S/D500 disk
volume 26P. The CISIZE chosen is 2560.

» Number of records per Cl = (2560 - 8) divided by (134 + 4) = 18 records per Cl.
» Number of Cls= 2080 divided by 18 = 116 Cls rounded up.
With a CISIZE of 2560, there are 10 Cls per MSD500 track (Table 6-1)

tracks = 116 divided by 10, plus 1 = 13 tracks rounded up.

giving:

BF CLX AA: 26P: My D500
FI LESTAT = CAT
UFAS = RELATI VE
UNIT =d or (UINT = TRAXK or INT = CvL
Sl ZE = 116 SIZE = 13 SIZE=1)
asSlZze = 2560
RECSI ZE = 134;

47 A2 04UF Rev06 6-19

UFAS-EXTENDED User’s Guide

Table 6-3 gives 24 tracks per cylinder for an MS/D500 disk drive. Therefore 1
cylinder will cater for 13 tracks. This means that 11 tracks are not used when you
alocate in units of cylinders. To avoid this situation, it is better to alocate in unit
of tracks.

As described earlier in Section 3, you do the same calculations for variable-length
records as for fixed-length records.

Further examples of alocating files are given later in this Section 6.

6-20 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

Design Guidelines for Indexed Sequential Files

Before reading this sub-section, make sure that you are familiar with indexed
sequential file organization (described in Section 4).

Indexed sequential file design can be difficult to grasp, so go more slowly through
this sub-section.

At allocation time, the user supplies the following parameters:

CISIZE = Size of athefile-allocation parameter group ALCi CI
(data, index, label) (unit = bytes)

CIFSP= Free space left in a Cl (unit = percentage)

SIZE = Initial space for the file being allocated on:

for FBO files (UNIT = BLOCK, 100KB, CYL, or
RECORD),

for VBO files (UNIT = CI, TRACK, CYL, or
RECORD).

A default value of zero is provided for CIFSP. If you wish to extend thefile
incrementally (that is, by predefined increments), specify the INCRSIZE parameter
inthe BUILD_FILE, CREATE_FILE command, or the file-all ocation parameter
group ALCi. The JCL equivalents are the PREALLOC statement, the FILALLOC
utility and the OUTALC parameter group or the ALLOCATE statement.

An important factor affecting file access is the access mode.

The performance of arandomly accessed indexed sequential fileisthe same
throughout its life. Performance depends on the blocking factor, where:

blocking factor = (CISIZE - Cl Header) divided by (RECSIZE + 7) and must
be>=2

(The blocking factor is the number of records per CI). For this reason, most
attention will be concentrated on performance in direct-access mode.

Asshown in Figure 4-13, the Cl header is 21 byteslong (+ 1 byte for ClI Trailer)
for FBO files and 20 byteslong for VBO files.

You add 7 to the RECSIZE because each record header is 5 byteslong and each
record descriptor is 2 byteslong. See Figure 4-13.

47 A2 04UF Rev06 6-21

UFAS-EXTENDED User’s Guide

6.7.1 Choosing the CISIZE for an Indexed Sequential File

The choice of aCISIZE is determined by the type of application you wish to run.
In the case of TDS applications, choose a CISIZE which produces only 2 index
levels. Use the following formulas to calculate the number of entries per index for:
e aprimary key:

no. of Entries per Index Cl = (CISIZE - 10) divided by (KEY SIZE + 4)
« asecondary key:

no. of Entries per Index Cl = (CISIZE - 10) divided by (KEY SIZE + 8)

To avoid having more than 2 index levels, ensure that the number of entries per
index is greater than the square root of the number of Clsinthefile. If this
condition is not true, increase the CISIZE value to reduce the number of data Cls
and index Cls.

Ensure that the CISIZE is large enough to accommodate at least 2 records. The
value you enter for CISIZE must be within the following limits:

» must be greater than or equal to
2 * (RECSIZE + 7) + ClI Header,
« cannot exceed one track for aVBO disk file.
A CISIZE that is about 4 Kbytesis an efficient value. A good ruleisto limit the
blocking factor as follows:

blocking factor = (CISIZE - Cl Header) divided by (RECSIZE + 7)
subject to the limitation: 10 <= blocking factor <= 255

Tables 6-1 and 6-2 relate the CISIZE value to the number of pages required.

6.7.2 Choosing Free Space (CIFSP)

At file allocation time, the CIFSP parameter allows you to specify the percentage
of free space to be left within each Cl when thefileisinitially loaded. Thisfree
space allows records to be inserted into the Cl subsequently without causing Cl
splitting. However, the specified free space must be large enough to hold at least
one record or an integral number of records. For example, if there are 10 records
per ClI, then you can specify 20% free space to account for the subsequent insertion
of 2 records.

Note that the CIFSP parameter in the DEFi parameter group (JCL equivalent
DEFINE) isused only at time of file alocation.

6-22 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

If you create afile sequentially and use it without insertions, set the value of CIFSP
inthe BUILD_FILE command (JCL equivalent PREALLOC) to 0. If insertionsto
the file are randomly distributed, an efficient value for free spaceis:

AFSP = 20

If insertions into the file are concentrated locally, you do not need distributed free-
space and hence you need not specify the CIFSP parameter.

EXAMPLE:
Cl at the time of
initial loading
At initial loading time, a file Full at 80 %
allocated with 20 % free space Capacity
(CIFSP = 20). This means that [~~~
the file is full at 80 % capacity. 20 % free
space
Cl after record
insertion
After insertion I-O mode, this Full at 90 %
file is 90 % filled with records and Capacity
has 10 % free space. =~ [Tt
10 % free
space

Figure6-1. Using CIFSP
0

The maximum free space is obtained when only one record is loaded in each ClI.
You may request this by specifying avalue of 100 for CIFSP. Alternatively, you
can calculate the percentage of free space that gives one record loaded per Cl; any
value between this and 100 is equivalent to specifying 100.

The default valueis 0.
The maximum valueis 100.

In the case of avolatilefile, you may find the CIFSP parameter useful for reducing
the high splitting rate.

47 A2 04UF Rev06 6-23

UFAS-EXTENDED User’s Guide

When you wish to allocate a file in units of records (UNIT= RECORD), the
number of records specified in the SIZE parameter corresponds to the number of
records which will beinitially loaded. If you specify avalue in the CIFSP
parameter, UFAS-EXTENDED automatically cal culates the required amount of
free space to beleft in the Cl for the subsegquent insertion of further records. For
example, if the following parameters are specified:

N T = RECCRD
SI ZE = 1000
AFSP = 20

UFAS-EXTENDED adlocates afile for holding 1,000 records and in addition
leaves 20% free space in the Cl.

For other units of allocation, the requested size is allocated.

6.7.3 Mass Insertion

UFAS-EXTENDED uses this mode only when it is adding records to the end or to
the beginning of afilethat is opened in I-O mode. The end of afile means that the
key value of the records to be added in ascending order is higher than the highest
key value of the records already in the file. The beginning of the file means that the
key value of the records to be added in descending order is lower than the lowest
key value of the records already in the file. When UFAS-EXTENDED adds alarge
number of recordsin sequential (ascending or descending) order, full Clsare
created.

In this mode, UFAS-EXTENDED does not split each full Cl into two Cls, each
approximately half full. Instead, it leaves the original Cl almost full and creates a
new Cl that isamost empty.

@ IMPORTANT:

Note that you can no longer use the CIFSP parameter in the file-define
parameter group (DEFi) (JCL equivalent DEFINE) to control the split ratio in
the case of mass insertion.

6.7.4 Files With Secondary Keys

In general, avoid using secondary indexes. In aTDS application, do not specify
more than 3 secondary keys.

6-24 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

6.7.5 Calculating Space Requirements

To avoid calculating space requirements, you can use the CREATE _FILE
command to simulate afile allocation. This utility was described earlier in this
Section.

In the following sub-sections, the CREATE_FILE (JCL equivalent FILALLOC)
command and the BUILD_FILE command (JCL equivalent PREALLOC) are used
to explain how to alocate afile, but you could also use the file-allocation
parameter group ALCi (JCL equivalent ALLOCATE), or the DY NALC parameter
(JCL equivalent OUTALC).

Before you use the BUILD_FILE command with UNIT = CI or with UNIT =
RECORD, decide on the size of:

the Cl size (CISIZE) in bytes,

the record size (RECSIZE) in bytes,
the number of recordsin thefile,
 thekeysizein bytes.

When you wish to allocate a file in units of Cls, calculate the total number of Cls
for the SIZE parameter inthe BUILD_FILE (JCL equivalent PREALLOC)
command. Follow asimilar procedureif UNIT = TRACK, or UNIT = CYL, except
that you must calcul ate the SIZE parameter in the appropriate units.

The Cl must be large enough to hold at least 2 records. The maximum number of
records per data Cl is 255.

For calculations with variable-length records, use the average record length, but the
maximum record length is given as the RECSIZE parameter inthe BUILD_FILE
command.

Theformat of aCl isshownin Figure 4-13.

All rounding up or down is to the next integer value, except CISIZE which UFAS-
EXTENDED always rounds up to the next multiple of 512, unless such amultiple
of 512 is specified.

47 A2 04UF Rev06 6-25

UFAS-EXTENDED User’s Guide

6.7.5.1 File Without Secondary Indexes

The unit of alocation (UNIT =) inthe BUILD_FILE command (JCL equivalent
PREALLOC), CREATE _FILE (JCL equivalent FILALLOC) command or the file-
alocation parameter group ALCi (JCL equivalent ALLOCATE) determines how
you calcul ate space for indexed sequentid files.

In the case of FBO files, it is best to use the new units of allocation: either
BLOCK, or aguantum of 100 Kbytes (100K B). These units of alocation can be
used only for an FBO file. With RECORD as the unit of alocation, you simply
enter the number of recordsin the SIZE parameter. However, with Cl, or CYL, or
TRACK asthe unit of allocation, you must do some cal culations unless you have
decided to use the REPORT option in the CREATE_FILE command. These cases
are described separately below.

UNIT = RECORD

Enter the number of recordsin the SIZE parameter of the BUILD _FILE command
(JCL equivalent PREALLOC).

UNIT =CI

This meansthat the SIZE parameter of the BUILD_FILE command is quoted in
Cls. Therefore the user must cal culate the number of Cls required for thefile. To
do this, and to use the BUILD_FILE command, you must know the following:

The number of records to be loaded into thefile.

RECSIZE The size of the record in bytes. For afile with variable-
length records, use the average length of the records
for these calculations.

CISIZE The size of the data, label, and index Clsin bytes.
KEYSIZE The length of the key field in bytes.

You can allocate aVBO file in the previous UFAS format with VERSION =
PREVIOUS in the PREALLOC statement only. For further details, see
Appendix F.

An easy method of allocating afileisto specify in the BUILD_FILE command:
UINT = RECCRD, Sl ZE = nunber of records.

6-26

47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

Then UFAS-EXTENDED automatically calculates the number of:

« Dblocks required for an FBO disk file,
« tracksrequired for aVBO disk file.

Otherwisg, if you allocate space in units of Cls, use the REPORT command of
CREATE_FILE or do the following calculations.

Use the following formulato determine:

1. Thenumber of records per CI

(CISIZE - Cl Header) divided by (RECSIZE + 7), rounded down
(Subject to aminimum of 2 and a maximum of 255 records per CI.)

Subtract from the CISIZE:

22 for FBO files,
20 for VBOfiles.

2. Thenumber of data Clsin thefile
(total number of records) divided by (number of records per Cl), rounded up

You can now use the BUILD_FILE (JCL equivalent PREALLOC) command
without needing to know how much disk space will be alocated for the file
because this is done automatically by UFAS-EXTENDED.

Example of allocating an FBO disk file

Assume you wish to allocate afile called ED.BRT on an FSA disk volume using
UNIT=BLOCK.

User-supplied information:

number of records = 7,436
RECSIZE = 230 bytes
CISIZE = 3584

KEY SIZE = 15 bytes

« KEYLOC=6

Number of records per Cl = (3584 - 22) divided by (230 + 7) =15
Number of Cls= 7436 divided by 15 = 496 Cls rounded up

After smulating the file all ocation through use of the CREATE_FILE command, a
file size of 505 should be specified. The data occupies 496 blocks and 9 extra
blocks are required for control space information including the space occupied by
the primary index. In all 505 blocks must be specified in order to fit 7436 records
inthefile.

47 A2 04UF Rev06 6-27

UFAS-EXTENDED User’s Guide

CRF ED. BRT: Vol 8: M5/ FSA

EXPDATE = 450

FI LESTAT = CAT
UFAS = | NDEXED

UN T = BLOCK

SI ZE = 505

d Sl ZE = 3584

RECSI ZE = 230
KEYLOC = 6

KEYS| ZE = 15;

Example of allocating a VBO disk file

Suppose you wish to allocate afile called JC.EXM on an MS/D500 disk drive
using UNIT =Cl.

User-supplied information:

number of records = 5060 records

RECSIZE = 200 bytes

CISIZE = 4096 bytes (With a CISIZE of 4096,
Table 6-1 shows that for an
MS/D500, there are 6 data Cls
per track).

KEYSIZE =10 bytes

KEYLOC =5

To usethe BUILD_FILE (JCL equivalent PREALLOC) command, find the number
of data Cls required asfollows:

Number of records per Cl:
(4096 - 20) divided by (200 + 7) = 19.69 = 19 records rounded down

Number of Cls
5060 divided by 19 = 267 data Cls rounded up

The 267 data Cls are stored in address space 2. You need take no action for address
spaces 1, 3, and 4, this aspect being managed internally by UFAS-EXTENDED.

You may now use the BUILD_FILE (JCL equivalent PREALLOC) asfollows:
BU LD _FI LE JC. EXM TNDA: My D600

EXPDATE = 199

FI LESTAT = CAT

UFAS = | NDEXED

UINT =0 or (UNT = RECCRD Sl ZE = 5060)

SI ZE = 267

a Sl ZE = 4096

RECSI ZE = 200

KEYLOC = 5

KEYSI ZE = 10;

6-28

47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

UNIT = CYL (or UNIT = TRACK)

Both these units of allocation should be used only for files being allocated on non-
FSA disks.

Where you have afixed amount of space to allocate for the file and are interested
in how many records will fit in this space, you would allocate using cylinder or
track.

Unlike allocation by CI or record, which are easy to use, allocation by cylinder or
track has a drawback. To allocate by track or cylinder, you must know how many
tracks or cylinders are to be allocated. To calculate the number of tracks or
cylindersfor the different address spaces, it is best to simulate afile allocation by
using the CREATE_FILE command that is described earlier in this Section.

If the unit of allocation is the cylinder, then the number of cylinders to be alocated
isgiven by:

(number of tracks) divided by (number of tracks per cylinder), rounded up
User-supplied information:

The number of tracksin the SIZE parameter of the BUILD_FILE (JCL equivalent
PREALLOC) command,

RECSIZE the size of the records in bytes; where the file consists
of variable-length records, UFAS-EXTENDED takes
the maximum value specified in this parameter,

CISIZE the size of the data Cl in bytes,
KEYSIZE the length, in bytes, of the key field.
KEYLOC the location of the start position of the record key in

the record, expressed as the position of its leftmost
byte (first byte of record has position 1).

EXAMPLE:

Suppose that you wish to allocate afile called JC.EXN on an MSD500 disk drive
using UNIT = TRACK. User-supplied information:

Number of tracks = 95 tracks
RECSIZE 200 bytes
CISIZE 5120 bytes
KEYSIZE 20 bytes
KEYLOC 53

O

47 A2 04UF Rev06 6-29

UFAS-EXTENDED User’s Guide

Table 6-1 shows that with a CISIZE of 5120, there are 5 data Cl's per track on an
MS/D500.

You can now usethe BUILD_FILE command as follows:

BF FILE = JC BEXN TNDA M5/ D500
FI LESTAT = CAT

EXPDATE = 199

UFAS = | NDEXED

UINT = TRAXK

S| ZE = 95

a sl ze = 5120

RECSIZE = 200

KEYSIZE = 20

KEYLQC = 53

You can find out the number of records in the file by using the CREATE_FILE
(JCL equivalent FILALLOC). The amount of space allocated to each address space
isgiven by the LIST_FILE command. It is possible to find out the number of
records by multiplying the number of Cls by the number of records per CI.

6.7.5.2 File With Secondary Indexes

Secondary indexes are placed in address spaces 5, 6, and 7. Allocating space for
these address areas is similar to that for address spaces 2, 3, and 4 respectively,
except that you must take account of several secondary indexes. As with indexed
sequential files without secondary indexes, the unit of allocation may be blocks, or
aquantum of 100 Kbytes for FBO files, but you can also choose records. However,
cylinders, tracks, and Cls should be used only for VBO disk files.

With RECORD as the unit of alocation, you simply enter the number of recordsin
the SIZE parameter. With CYL or TRACK asthe unit of alocation, you must do
some calculations. These cases are described separately below.

UNIT = RECORD

An easy way of alocating space for afileisto enter the number of recordsin the
SIZE parameter of the BUILD_FILE command (JCL equivalent PREALLOC).

6-30 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

UNIT =ClI

To usethe BUILD_FILE (JCL equivalent PREALLOC) command correctly, you
must have the following information:

Number of records to be loaded into the file,

RECSIZE the number of bytesin each data record; for variable-
length records, use the average record length for these
caculations,

CISIZE the number of bytesinaCl,

KEY SIZE(i) size of each key, in bytes; KEY SIZE(0) isthe keysize

of the primary key in bytes,

KEY SIZE(1) to KEY SIZE(15) are the sizes of up to
15 secondary indexes,

KEYLOC(i) position of the first byte of each key in the record.
SECIDX (keyloc:keysize [:DUPREC] ...)

Explanation of KEYSIZE and KEYLOC:

Primary Key
\ \

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I | |
Secondary Key Secondary Key
KEYS| ZE (0) = 4 KEYLOC (0) = 1
KEYS ZE (1) = 3 KEYLOC (1) = 3
KEYSI ZE (2) = 4 KEYLOC (2) = 9

To usethe SECIDX parameter of the BUILD_FILE command, specify SECIDX as

follows.
SEQ DX = (9: 4)

This means that the secondary key starts at byte 9 and is 4 bytes long. If you enter
:DUPREC after the key length, then duplicates are allowed. A duplicate is 2 or
more records with identical secondary key values. If you do not enter :DUPREC,
then by default duplicates are not allowed.

47 A2 04UF Rev06 6-31

UFAS-EXTENDED User’s Guide

The maximum length of a secondary key is 251 bytes.

As asecondary key field cannot extend beyond the end of the record, the value of
KEY SIZE must satisfy the following conditions:

(KEYLOC + KEYSIZE) <= (RECSIZE + 1)

A secondary key field cannot start at the same position as the primary key nor at
the same position as another secondary key. Aslong as thisrestriction is observed,
key fields may overlap each other.

To usethe BUILD_FILE command, you must calculate the number of data Clsto
be loaded into the file to satisfy the SIZE parameter as follows:

Number of records per Cl
(CISIZE - Cl Header) divided by (RECSIZE + 7), rounded down

For files being allocated on FSA disks, the Cl header is 22 bytes long and for files
being allocated on non-FSA disks, the ClI header is 20 bytes long.

Number of Cls
(number of records) divided by (number of records per ClI), rounded up

NOTE:

See Appendix C, for the hexadecimal layout of address spacesin an indexed
sequential file.

6-32 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

Example of allocating an FBO disk file

Assume you wish to allocate afile called PK.NEY on an FSA disk volume, using
UNIT=BLOCK.

User-supplied information:

No of records = 3115

RECSIZE = 108 bytes

CISIZE = 4096 bytes

KEY SIZE (0) = 14-byte primary key
KEYLOC (0) =4

KEYSIZE (1) = 6-byte secondary key
KEYLOC (1) =19

KEYSIZE (2) = 39-byte secondary key
KEYLOC (2) =30

KEY SIZE (3) = 17-byte secondary key
KEYLOC (3) =74

KEY SIZE (4) = 9-byte secondary key
KEYLOC (4) =95

1. Cadculate the number of data Clsto beloaded into thefile.

Number of records per Cl = (4096-22) divided by (108+7) = 35 records,
rounded down

Number of data Cls = 3115 divided by 35 =89

2. Simulate the file alocation through use of the CREATE_FILE command
(described earlier in this Section). Make arough estimate of the size of thefile
taking into account the extra blocks required for the address space 1 and the
primary/secondary indexes.

Then refine this estimate by modifying the values you give in the SIZE
parameter of the CREATE_FILE command. In this case, at least 214 blocks
arerequired in order to fit 3,115 recordsinto the file.

47 A2 04UF Rev06 6-33

UFAS-EXTENDED User’s Guide

3. Allocate the file when the file characteristics seem appropriate.

CRF PK NEY: VOL44: M5 FSA
FI LESTAT = CAT
EXPDATE = 210
UFAS = | NDEXED
N T = BLOXK
SIZE = 214
Q Sl ZE = 4096
RECSI ZE = 108
RECFORM = F
KEYLOC = 4
KEYSI ZE = 14
SEADX = (19:6 30:39 74:17 95:9);

Example of allocating a VBO disk file

Suppose you wish to allocate afile called JC.EXO on an MS/B10 disk drive, using
UNIT =Cl.

User-supplied information:

» number of records = 2915 records
RECSIZE = 200 bytes

CISIZE = 3584 bytes;

KEY SIZE(0) = 20-byte primary key
KEYLOC(0) =5

The SECIDX parameter must be specified when secondary keys are to be defined.

KEY SIZE(1) = 10-byte secondary key
KEYLOC(1) = 30

KEY SIZE(2) = 50-byte secondary key
KEYLOC(2) =45

KEY SIZE(3) = 40-byte secondary key and a duplicate key is required
KEYLOC(3) = 96

KEY SIZE(4) = 30-byte secondary key and a duplicate key is required
KEYLOC(4) =138

Because the number of recordsis provided, you can allocate the file space in units
of records; otherwise you need to do the following calculations if you decide to
alocate the file space in units of Cls.

6-34 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

To usethe BUILD_FILE (JCL equivalent PREALLOC) command, you must first
find the number of data Cls required:

» Number of records per Cl

» (3584 - 20) divided by (200 + 7) = 17.21 = 17 records per data CI, rounded
down

« Number of Cls
» 2915 divided by 17 = 172 data Clsin thefile, rounded up
Usethe BUILD_FILE (JCL equivalent PREALLOC) command as follows:

BF JC. EXO TNDA: M5/ B10
FI LESTAT = CAT
EXPDATE = 199
UFAS = | NDEXED
WINT =0 R UINT = RECORD Sl ZE = 2915
SIZE = 172
a sl ZE = 3584
RECSI ZE = 200
KEYLCC = 5
KEYSI ZE = 20
SECQ DX = (30: 10 45:50 96: 40: DUPREC 138: 30: DUPREQ) ;

You can find out the number of recordsin the file by using the CREATE_FILE
(JCL equivalent FILALLOC). The amount of space allocated to each address space
isgiven by the LIST_FILE command. It is possible to find out the number of
records by multiplying the number of CI by the number of records per Cl.

UNIT = CYL (or UNIT = TRACK)

Both these units of alocation should be used only for files being allocated on non-
FSA disks.

Where you have a fixed amount of space to allocate for the file, you would allocate
using cylinder or track.

Unlike allocation by CI or record, which are easy to use, allocation by cylinder or
track means that you must know how many tracks or cylinders to allocate. To
calculate the number of tracks or cylindersfor the different address spaces, itis
best to simulate afile alocation by using the CREATE_FILE command that is
described later in this Section.

To display the current characteristics of the file to be allocated, you use the
REPORT command. Depending on the results, you decide whether or not to
alocate thefile. For a description of the REPORT command, see the |IOF Terminal
User’s Reference Manual.

47 A2 04UF Rev06 6-35

UFAS-EXTENDED User’s Guide

If the unit of allocation is the cylinder, then the number of cylinders to be alocated
isgiven by:

(number of tracks) divided by (number of tracks per cylinder), rounded up

EXAMPLE:

Suppose you wish to allocate afile called JC.EXP on an MS/D500 disk drive,
using UNIT = TRACK.

0

User-supplied information:

« Number of Tracks =95

« RECSIZE = 200 bytes

« CISIZE = 6656 bytes

» KEY SIZE(0) = 20-bytes primary key

« KEYLOC(0)=5

The SECIDX parameter must be specified when secondary keys are to be defined.

KEY SIZE(1) = 10-byte secondary key
KEYLOC(1) =30

KEY SIZE(2) = 50-byte secondary key
KEYLOC(2) =45

KEY SIZE(3) = 40-byte secondary key and a duplicate key is required.
KEYLOC(3) =96

KEY SIZE(4) = 30-byte secondary key and a duplicate key is required.
KEYLOC(4) =138

To find out the number of Cls per track, see Table 6-1. For an MS/B10 disk drive
with a CISIZE of 6656, there are 5 data Cls per track.

6-36 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

Usethe BUILD_ FILE command as follows:

BF JC. EXP: TNDA: M5/ B10
EXPDATE = 199
FI LESTAT = CAT
UFAS = | NDEXED

UNT = TRACK (or UNT = RECCRD SIZE = 7360 "
SIZE = 95 UINT = CYL SIZE = 2 cylinders)
a Sl ZE = 6656

RECSI ZE = 200

RECFCRM = F

KEYLOC = 5

KEYSI ZE = 20

SEC DX = (30: 10 45:50 96: 40: DUPREC 138: 30: DUPREQ) ;

You can find out the number of records in the file by using the CREATE_FILE
(JCL equivalent FILALLOC) command. The amount of space alocated to each
address spaceis given by the LIST_FILE command. It is possible to find out the
number of records by multiplying the number of Clsin address space 2 by the
number of records per CI.

* Thisfigure was cal culated through use of the CREATE_FILE command.

47 A2 04UF Rev06 6-37

UFAS-EXTENDED User’s Guide

6.8 File Allocation Commands

The following sub-sections provide the syntax for GCL commands that are most
commonly used at file allocation time. A number of examplesis provided after
each GCL command. The parameters are described in the |OF Terminal User’s
Reference Manual (Part 2).

A JCL --> GCL Correspondence Table and a GCL --> JCL Correspondence Table
are provided in Appendix D. JCL statements are described in the JCL Reference
Manual and the utilities are described in the Data Management Utilities User’s
Guide.

6.8.1 BUILD_FILE

Allocates space for adisk file and creates |abels that describe the file's
characteristics. The BUILD_FILE command creates the necessary file labels that
are set up to contain details of the file organization.

Important points:

The recommended units of allocation for files being allocated on FSA disks are
BLOCK and 100 KBytes.

However, to make the transition to FBO volume devices easier, the previous
alocation units (Cl, RECORD, CYL, and TRACK) can still be specified.

If you specify ClI in the UNIT parameter, a Cl will be transformed into a number of
blocks at allocation time.

If you specify CYL inthe UNIT parameter, acylinder will be transformed into
1,000 Kbytes at allocation time.

If you specify TRACK in the UNIT parameter, atrack will be transformed into 50
Kbytes at allocation time.

This suggeststhat it is best to specify BLOCK or 100KB for FBO files.

6-38 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

Syntax:
{ BULD FILE }
{ }
{ BF }
FILE = file78
{ car }
{ CAT{1]2| 3] 4|5} }
[FILESTAT = { }o]
{ UNCAT }
{ TEWPRY }
{ ddd }
[EXPDATE = { yy/ddd }]
{ yy/midd }
[UFAS = SEQ]
[UNT={ CL | BLOCK | 100KB | RECCRD | TRAXKK | 4 }]
[SIZE = dec10]
[SPLIT = (split-criteria)]
[SPLI TDVC = devi ce-cl ass]
[INCRSI ZE = dec5]
[MBXEXT = { 5| dec2 }]
[OSIZE = dec5]
[RECSI ZE = dec5 |
[KEYLOC = dec5]
[KEYSI ZE = dec3]
[AFSP ={ 0| dec3}]
[COLLATE = { EBODIC| ASI | BOD} |
[SEQ DX = (ddddd: dd[: DUPREQ . . .)]
[DDLIBL = 1ib78]
[AREA = nane30]
[1NDEX = nane30]
[SCHENMA = nane30]
[RRCFCRM={ F| FB| V| VB| U}]
[SILENT = { bool | 0}]
47 A2 04UF Rev06 6-39

UFAS-EXTENDED User’s Guide

6.8.1.1 Examples of File Allocation Using BUILD_FILE

In the following examples, all the files are allocated in the UFAS-EXTENDED
format. Do not hesitate to smulate afile's allocation through use of the
CREATE_FILE command (described earlier in this Section).

Examples of Allocating Sequential Files

BF

BF

BF

BF

PK. ALl : PAN: MS: FSA
FI LESTAT = CAT

UFAS = SEQ
UNIT = BLOCK
SI ZE = 287

Cl SI ZE = 3584
RECSI ZE = 228
RECFORM =V,

PK. CT: VOL 11: M5/ FSA
FI LESTAT = CAT

UFAS = SEQ
UNIT = 100KB
Sl ZE =5

Cl Sl ZE = 4096
RECSI ZE = 154,

LP. PIMBRES

FI LESTAT = UNCAT
UFAS = SEQ

UNIT = Cl

SI ZE = 600

Cl Sl ZE = 1000
RECSI ZE = 190;

FI LE = F2:V9: M5/ D500
FI LESTAT = UNCAT
UFAS = SEQ

SIZE = 1

Cl Sl ZE = 2048

RECSI ZE = 100;

Build a cataloged sequential file named
PK.ALI on volume named PAN. The unit
of dlocationisBLOCK. Thefile SIZE is
287 blocks. The CISIZE is 3584. The
RECSIZE is 228. Therecord format is
variable.

This command allocates a cataloged file
in units of 100KB. The total amount of
space required is 500K B. The record
format, by default, is fixed and each
record is 154 byteslong.

This command allocates aresident file.
Spaceisreserved for 600 data Cls.
Because 1000 is not a multiple of 512,
UFAS-EXTENDED rounds up the Cl
size to the next multiple of 512; that is,
1024 bytes. The record format, by
default, isfixed and each record will be
190 bytes. Each data Cl will hold 5
records; therefore, the total capacity of
thefileis5 x 600 =3,000 records.

Build an uncataloged UFAS-
EXTENDED sequential file named F2
on the volume named V9; by default, the
unit of allocationisCYL, thefileis1
cylinder, the Cl size is 2048 bytes, the
record sizeis 100 bytes.

6-40

47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

BF POW LMBRES Build a UFAS-EXTENDED sequential
UFAS = SEQ file named POW.LM on resident
SI ZE = 5000 volumes; the file size is 5000 records, the
UNI' T = RECORD increment size is 1000 records, the Cl
I NCRSI ZE = 1000 sizeis 2048 bytes, the record sizeis 60
Cl SI ZE = 2048 bytes.
RECSI ZE = 60;

BF JKL. WY 4 cylinders are to be alocated on the
UFAS = SEQ volume V8, 6 cylinderson V9, and 7

SPLIT = (V8:4 V9:6 V6:7) cylindersonV6.V8\V9,V6are MID500
disk volumes. The increment sizeis 2

SPLI TDVC = Ms/ D500 cylinders, the Cl sizeis 1024 bytes, the
record sizeis 200 bytes, record format is
I NCRSI ZE = 2 fixed. By default, the fileis cataloged.

G SI ZE = 1024
RECSI ZE = 200
RECFORM = F;

Example of Allocating an FBO Rélativefile

BF PK. LOY: V44: M5/ FSA A relative file named PK.LOY is
EXPDATE = 340 allocated on an FSA disk, volume VV44.
UNI T = BLOCK The CISIZE is 19456. The RECSIZE is
SIZE = 30 88. A file dlocation simulated by the
UFAS = RELATI VE CREATE_FILE command shows that
Cl SI ZE = 19456 this file can hold 6119 records.
RECSI ZE = 88

FI LESTAT = CAT,;

Example of Allocating a VBO Relative File

BF MPTSP. DD In this example, the relative file
EXPDATE = 300 MPTSPDD is allocated on two volumes,
UNI T = CYL D18A and D18B; each volume will
SPLIT = (D18A: 10 contain 10 cylinders. Thefileis split

D18B: 10) evenly between the two disks, hence
SPLI TDVC = Ms/ D500 reducing head movement in random
UFAS = RELATI VE access. Thefile has aretention period of
C Sl ZE = 1024 300 days.

RECSI ZE = 52
FI LESTAT = CAT,

47 A2 04UF Rev06 6-41

UFAS-EXTENDED User’s Guide

Example of Allocating I ndexed Sequential Files

BF

BF

LM TORL: LU5: M5/ FSA
FI LESTAT = CAT
UFAS = | NDEXED
UNI'T BLOCK

SI ZE = 198

Cl SI ZE = 4096
RECSI ZE = 211
RECFORM = F

KEYLOC = 1
KEYSI ZE = 16

C FSP = 12;

PC. Ul X: TNDA: M5/ D500
FI LESTAT = CAT
UFAS = | NDEXED
UNNT = C

SI ZE = 26352

G SI ZE = 3072
RECSI ZE = 211

KEYLOC = 10
KEYSI ZE = 21
ClFSP = 22;

An indexed sequential file, LM.TOR1is
alocated on an FSA disk volume LUS.
Thefileisalocated in units of blocks. A
file smulation indicates that 198 blocks
arerequired. The CISIZE is 4096. No
secondary keys are requested. Each Cl
will be left with 12% free space. Asthere
are 18 records per Cl, this means that it
will be possible to subsequently insert 2
recordsin each Cl.

In this example, an indexed sequential
file, PC.UIX, isalocated on MS/D500
volume TNDA. 26,352 data Cls are
requested. UFAS-EXTENDED
automatically adds the space for the
header track (address space 1) and index
area. Therecords are fixed length 211
bytes, and contain a 21-byte key starting
at position 10. No secondary keys are
required. The user has requested that
each Cl be 3072 byteslong. When the
fileis opened and loaded sequentialy,
each CI will be left with 22% free space.
Thisfree space will reduce the frequency
of splitting to accommodate later
insertions.

In this example, you must specify 22% free space in the CIFSP parameter to allow

for the subsequent insertion of 3 records.

No. of records per Cl = (3072 - 20) divided by (211 + 7) = 14 records

Hence one record requires the following amount of space:

100 divided by 14 = 7.15%

and three records require 22%.

6-42

47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

The following example shows how afile DEPT1.MY iscreated in an
autoattachable catal og. For further details including file generations, see the
Catalog Management User’s Guide and the IOF Terminal Reference User’s Manual

(Part 1).

CREATE_DI R
NAMVE = DEPTL;

CREATE_CATALOG
NAVE = DEPT1. CATALOG
VOLUMVE = K141: M5/ D500
NBOBJECT = 10;

BF FILE = DPT1. MY
UFAS = | NDEXED
SPLIT = (BD14: 10 BD15: 10)
SPLI TDVC = Ms/ D500

Cl SI ZE = 512
RECSI ZE = 115
KEYLOC = 25

KEYSI ZE = 30;

BF F1: V7: M5/ D500
FI LESTAT = UNCAT
UFAS = | NDEXED

SIZE = 4

Cl SI ZE = 4096

KEYLOC = 25

KEYSI ZE = 30

RECSI ZE = 120;
BF PHK. JK

UFAS = | NDEXED
SPLIT = (V1:2 V2:3 V3:5)
SPLI TDVC = Mg/ D500

I NCRSI ZE = 2
Cl SIZE = 1024
RECSI ZE = 100
RECFORM = V
KEYLOC = 12
KEYSI ZE = 8

SECI DX = (8:4 30: 8: DUPREC) ;

The system administrator creates Master
Directory DEPT1 under the root in the
Site Catalog.

An automatically attachable catalog is
created using the CREATE_CATALOG
command. Once the catalog has been
created, the system knows that all

catal oged objects whose names begin
with DEPT1 are to be created or
retrieved in DPT1.CATALOG.

A cataloged indexed sequential file
DPT1.MY isto be allocated on two

M S/D500 volumes, each containing 10
cylinders.

The Cl sizein 512 bytes. The records
sizein 115. The primary key starts at
byte 25 and is 30 bytes long.

Build the file named F1 on the M D500
volume named V7. Itisto bean
uncataloged UFAS-EXTENDED indexed
sequential file. Thefilesizeis4
cylinders. The Cl size is 4096 bytes. The
key field starts at byte 25. The primary
key is 30 byteslong. Thelogical record
is 120 byteslong. No secondary keys are
required

2 cylinders are to be allocated on volume
V1, 3cylinderson V2, and 5 cylinders
onV3. V1,V2,V3are MS/D500 disk
volumes. Theincrement sizeis 2
cylinders. The Cl sizeis 1024 bytes. The
record format is variable. The key field
starts at byte 12. The key is 8 bytes long.
There are two secondary keys: one starts
in byte 8 and is 4 bytes long the second
startsin byte 30 and is 8 bytes long.
Duplicate values are permitted with the
second secondary key but not with the
first.

47 A2 04UF Rev06

6-43

UFAS-EXTENDED User’s Guide

6.8.2 CREATE_FILE

The CREATE_FILE command (JCL equivalent FILALLOC) alocates spacefor a
disk file, optionaly using an existing file as amodel. As described in earlier in this
Section, you can use the CREATE_FILE command to simulate afile allocation.
File simulation using this command is aso described earlier in this Section.

Specify BLOCK and 100 KB inthe UNIT parameter only for FBO files. (These are
the recommended UNIT parameter values for such disk files).

Syntax:
{ CREATE_FI LE }
{ }
{ &= }
{ FILE }
{ } =file8
{ QUTFILE }
{ LIKE }
[{ } = (input-file-description)]
{ INFILE }
[IMED = { bool | 0}]
{ CAT }
{ CAT{1]2|3]4]|5} }
[FILESTAT = { }]
{ UNCAT }
{ TEMPRY }
{ ddd }
[EXPDATE = { yy/ddd }]
{ yy/midd }

[MORE ={ bool | 0}]
N T
Sl ZE

{ CvL | BLOXK | 100KB | TRACK }]
dec8]

| NORS| ZE = dec5]

SILENT = { bool | 01}]
PRTFILE = fil e78]

OOMVFI LE = file78]

COWAND = char 255]

REPEAT = bool]

6-44 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

Example Comment

CRF A. MYF: DK1: M5/ FSA Create a catal oged file on the FSA volume
LI KE = B. MYF named DK 1. Thefile characteristics will be
| MVED; like those of the B.MY F file and the

allocation is done without user dialog. Note
that the file will be cataloged (by default
FILESTAT = CAT)

CRF F2: V1: M5/ D500 Create the uncatal oged file named F2 on the
LI KE = F1:V3: M5/ D500 MSD500 volume named V1.
IMMED = 1 Thefile named F1 is used as amodel.
FI LESTAT = UNCAT, Creation isimmediate, so you are not given

the opportunity to change thefile
characteristics.

CRF FILE = F9: V9: M5/ Mb00 Create the uncataloged file named F9. There
FI LESTAT = UNCAT,; isno model file. Therefore the default

characteristics apply initialy.
Default characteristics:
Thefile organization is sequential.
The CISIZE is 3584.
The record format is fixed.
Theincrement sizeis 1 cylinder.
The unit of allocation isin cylinders.
Therecord sizeis 200 bytes.
You may modify these characteristics by
using the appropriate command(s) while you
arein the CREATE_FILE domain (before
actually creating thefile).

CRF FI LE The cataoged file named P2.F6 is created
=P2. F6: V8: M5/ D500 on the MSD500 volume named V8 and
LI KE = P2. F5 placed in the appropriate catalog. The
FI LESTAT = CAT cataloged file named P2.F5isused asa
| MVED = 1; model. Creation isimmediate.

47 A2 04UF Rev06 6-45

UFAS-EXTENDED User’s Guide

CRF FI LE Asthe previous example, except that the
=P2. F6: V8: M5/ D500 creation is not immediate. You will enter the
LI KE = P2. F5 CREATE_FILE domain and you can modify
FI LESTAT = CAT, the file characteristics by using the
appropriate commands as described below
CRF FILE = Asthe previous example, except that the file
M NE6: W: M5/ D500 will be named MINES, it will be
LI KE = P2. F5 uncataloged, and will reside on the
FI LESTAT = UNCAT,; MS/D500 volume named V' V.
CRF FI LE = XYZ$RES Create an uncataloged file without a model,
COWFI LE = X CRWVF using parameters read from the file
FI LESTAT = UNCAT,; X.CRMF.

In the previous example, you can enter the following commandsin the COMFILE
or in the COMMAND string:

« CATALOG (CAT) modifies or defines the file-catal og attributes,

« CHANGE (CH) modifies or definesfile attributes,

« CREATE (CR) createsthe resulting file,

« DELSIDX (DSX) deletes one or all secondary keys,

» FILTYPE (FT) overrides or modifies the file organization and form,
« LISTIDX (LSX) lists one or al secondary keys,

« NUMSIDX (NSX) renumbers the secondary keys,

« QUIT (Q) leavesthe utility,

« REPORT (RP) displays the characteristics of the file to be created,

« SECIDX (SX) defines or modifies a secondary key,

or you can enter these commands at your terminal asin the following example:

CRF . MYFI LE$RES (create a cataloged file, valid for one year
LI KE = P1. YOUFI LE with adialog at the user's terminal).
EXPDATE = 365;

All the above commands are described in the IOF Terminal User’s Reference
Manual.

6-46 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

6.8.3 The File-Allocation Parameter Group ALCi

Thefile-allocation parameter group ALCi (JCL equivalent ALLOCATE) allocates
space for disk files. The file-all ocation parameter group AL Ci is associated,
through the internal -file-name, with afile-assignment parameter group ASGi in the
same program. AL Ci is normally used for temporary files, unless the default file-
allocation parameters are not suitable for the file. You cannot use ALCi to allocate
spacefor IDY/II files.

Format:

EXEC_PR MYPROG

FILE =ifn
ASG = efn
ALG = ([SIZE = decl0]

[INCRSI ZE = dec5]
[UNT = { CrL | BLOCK | 100KB | RECCRD }]

[GHEK = { bool | 0}]
)

Specify BLOCK and 100K B in the UNIT parameter for FBO files only. (These are
the recommended UNIT parameter values for such disk files).

For an explanation of these parameters, see the IOF Terminal User’s Reference
Manual.

The following information is supplied by the file-assignment parameter group
ASGi (described in Section 5):

« whether thefileis temporary ($TEMPRY) or permanent,

» where the space is to be allocated (resident disk volume ($RES) or non-resident
volume),

« the expiration date (EXPDATE).

The program supplies the following attributes:

+ fileisUFAS (in COBOL, ORGANIZATION IS UFF); (note that UFF isthe
COBOL default),

- logical-record length,

« record format; fixed or variable (in COBOL FLR and VLR),

- for an indexed sequentia file, KEY SIZE and KEYLOC; in COBOL the
RECORD KEY IS clause specifies the record key that isthe primary key for the
file.

47 A2 04UF Rev06 6-47

UFAS-EXTENDED User’s Guide

Thefollowing file attributes are chosen automatically if they are not given in the
file-define parameter group DEFi (described above).

» CISIZE is set to 2048 bytes,
« CIFSP=0.

The space calculations are the same as those already described for BUILD_FILE.
Because UNIT=CI and UNIT=RECORD are not availablein ALCi (JCL
equivalent ALLOCATE), the calculation must result in avalue of:

« blocks,

» 100K B units,
» cylinders,
 tracks.

Examples

EXEC_PG PRGG 1

FILE = infl
ASGL = X$TEMPRY
ALCL = (S| ZE = 10);

EXEC_PG APROG
FILEL = OUTFILE
ASGL = A VOL2: M5/ D500
ALCl = CHECK;

EXEC_PG MYP
FILEL = DVFILE
ASGL =
(ZABC: BOL2: MBS/ D500
EXPDATE = 30)
ALCL = (SIZE = 10

I NCRSI ZE = 10).

EXEC PG PG = PL24

LIB = P2. F3
FILE 1 = F1

ASGL = WKF$TEMPRY
ALCL = (S| ZE = 10);

Comment

Automatic file allocation for a
temporary file; by default, the unit of
alocationisCYL.

Default automatic alocation
parameters; abort if file already exists.

An uncataloged disk file is assigned
to interna file name DMFILE. If the
file does not exist, it is allocated with
an expiration date of 30 days from the
current date. Because CATNOW is
not specified, thefile will be
uncataloged.

Execute the load module L P24 which
is stored in the cataloged library
P2.F3. Assign the temporary file
WKF to theinterna file F1. WKF
will be dynamically created with a
size of 10 units.

47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

6.8.4 The File-Define Parameter Group DEFi

The file-define parameter group DEFi (JCL equivalent DEFINE):

» Overrides and complements file parameters provided in user programs,
» Complements the file description in the file label,

Provides for buffer management,

Requests journalization.

Syntax:
EXEC PG MYPROG
FILE =ifn
ASG = efn
DEFi = (FI LEFORM = { UFAS }]

FI LEORG = { SEQ| RELATIVE | INDEXED }]
dec5]

dec5]

{FI VI U]l FB| VB}]

BLKSI ZE

RECS| ZE

[

[

[

[

[RECFORM

[NBBUF = dec4]

[SYSQUT = bool]

[DATAFORM = { SARF | SSF | DOF | ASA }]
[ERROPT = { SKIP | ABORT | | GNORE | RETOCDE }]
[BUFPOCL = nane4]

[OSIZE = dec5]

[BPB = dec3]

[CKPTLIM= { NO| EOV | dec8 }]

[FPARAM = bool]

[COWACT = bool]

[TRUNCSSF = bool]

[CONVERT = bool]

[BSN = bool]

[disk-file-specific-paraneters]

47 A2 04UF Rev06 6-49

UFAS-EXTENDED User’s Guide

where disk-file-specific-parameters are:

[JOURNAL = { BEFCRE |

[OOLLATE =

[WROHECK = bool]

[READLOOK = { NORVAL |
[LOCKVARK = bool]

AFTER | NONE | BOTH }]

{ BOD| ASO| | EBADIC}]

EXCL | STAT }]

[ADDRFCRM = { LRRR| LRRRR| TTRDD | SFRA }]

[KEYLOC = dec5]
[KEYSI ZE = dec3]
[AFSP = dec3]

[LTRKSI ZE = dec3]

As mentioned in Section 5, the file-define parameters are used to define/modify file

characteristics and/or processing options.

some of these file-define parameters.

In Section 5, you are shown how to use

For a complete explanation of these parameters, see Part 2 of the |OF Terminal

User’s Reference Manual.

Examples

EXEC_PG TULLOW
POCLSI ZE = 100

SI ZE = 150

FILEL = ifnl

ASGL = CCRI1

DEF1 = (NBBUF = 20

FI LEORG = | NDEXED
BUFPOOL = BS5)

FILE2 = ifn2

AS& = CORJ2

DEF2 = (NBBUF = 20
FI LEORG = | NDEXED
BUFPOCL = B5)

FILE3 = ifn3
ASG3 = CCRI3

Comment

Assign the file named CORJ1 to the
internal file named ifnl.

Thisindexed sequential file has 20
buffers defined that it sharesin the buffer
pool named B5.

Assign the file named CORJ2 to the
internal file named ifn2.

Thisindexed sequential file has 20
buffers defined that it sharesin the buffer
pool named B5.

Assign the file named CORJ3 to the
internal file named ifn3.

6-50

47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

DEF3 = (NBBUF = 20

FI LE4
ASHA
DEF4

FI LES
ASGL
DEF5

FI LE6
ASGS
DEF6

FI LE7
ASG/
ALC7

FI LEORG
BUFPOOL

i fnd
CORI4
(NBBUF = 20

FI LECRG

BUFPOOL

i fn5
CORJ5
(NBBUF = 20

FI LEORG

BUFPOOL

i fné
CORIJ6
(NBBUF = 20

FI LECRG

BUFPOOL

ouT
OUTF
(SIZE = 10
UNIT = CYL

| NCRSI ZE = 2);

Thisindexed sequential file has 20
buffers defined that it sharesin the buffer
pool named B5.

Assign the file named CORJ4 to the
internal file named ifn4.

Thisindexed sequential file has 20
buffers defined that it sharesin the buffer
pool named B5.

Assign the file named CORJ5 to the
internal file named ifn5

Thisindexed sequential file has 20
buffers defined that it sharesin the buffer
pool named B5.

Assign the file named CORJ6 to the
internal file named ifn6

Thisindexed sequential file has 20
buffers defined that it sharesin the buffer
pool named B5.

Assign the file named OUTF to the
internal file named OUT.

10 cylinders are to be allocated and the
increment sizeis 2 cylinders.

The OUTF file does not belong to the
buffer pool.

47 A2 04UF Rev06

6-51

UFAS-EXTENDED User’s Guide

6.8.5 LIST_FILE

The LIST_FILE command (JCL equivalent FILLIST) liststhe label, catalog and
usage information for adisk, or tapefile. The listed information is presented in six
sections. Each section may be requested or omitted.

Syntax:

{ LIST_HLE}

{ }

{ LSF }
{ FILE }
{ } = (input-file-description)
{ INFILE}

[OONTRCL = { bool | 0}]
[ORG={ bool | 0}]

[SPACE = { bool | 0}]

[USAGE = { bool | 0}]

[SUBFILES = { bool | 0}]
[SMNO={ bool | 0}]
[ALL = { bool | 0}]

[CATONLY { bool | 0}]

[SILENT = { bool | 01}]

[PRTFILE = file78]

For a description of these parameters, see Part 2 of the IOF Terminal User’s
Reference Manual.

6-52 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

6.8.6 LIST_FILE_SPACE

The LIST_FILE_SPACE command (JCL equivalent FILLIST) listsinformation
about the extents of afile.

Syntax:

{ LI ST_FILE_SPACE }

{ }

{ LSFSP }
{ FILE }
{ } =file7s
{ INFILE }

[SILENT = { bool | 0}]
[PRTFILE = file78]

For a description of these parameters, see the Part 2 of the IOF Terminal User’s

Reference Manual.

Examples Comment

LSFSP A. MYFI LE; List alocation of acataloged file

LSFSP F3: X: M5/ D500; List allocation of an uncataloged file.

LSFSP A. MYFI LE List allocation of a cataloged file; report
PRTFI LE = A QUT; isstored in A.OUT, errors appear at the

terminal.

LSFSP A. MYFI LE Same as the previous example, but errors
SI LENT arereported in A.OUT and not at the
PRTFI LE = A OUT; terminal.

47 A2 04UF Rev06 6-53

UFAS-EXTENDED User’s Guide

6.8.7

MODIFY_FILE

The MODIFY_FILE command (JCL equivalent FILMODIF) modifiesthe
characteristics of afile. Specify BLOCK inthe UNIT parameter for FBO files only.
(BLOCK isthe recommended value for such disk files).

Syntax:

{ MDIFY_FI LE }

{
{ MOF

}
}

FILE = fil e78

[NEWNAME = filedd |

{ ddd }
EXPDATE = { yy/ddd }]
{ yy/midd }

UNT ={ BLOK | CYL | TRAK }]

I NCRSI ZE = dec5]

1
e Ren Rate Lt Racn RacnRacn]

{
{
DUALSHR = {
{
{

JAURNAL =

P et et et)
B
e e e
—

SLOK ={ 10| IN| AP| IA]| CFF}]

6-54

47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

UNLCCK = bool]

SYMEN = nane5 |
CLEARMD = bool]

FI RSTVQL = dec2]
LASTVAL = dec?2]
VCLSET = nane6]
CLRVSET = bool]

MOUNT = decl]
SILENT = { bool | 01}]
FORCE = bool]

| OC = { DEFAULT | BYPASS | FORCE }]
LOGSUBF = bool]

—— — — — — — — ————

For a complete explanation of these parameters, see Part 2 of the IOF Terminal
User’s Reference Manual.

Examples Comment

MDF A. BC Change name and expiration date.
NEWNAME = A. XC
EXPDATE = 365

MDF PRQOJ. F3 Change sharing conditions.
SHARE = ONEVRI TE
DUALSHR = NORMAL;

47 A2 04UF Rev06

6-55

UFAS-EXTENDED User’s Guide

6.8.8 MODIFY_FILE_SPACE

The MODIFY_FILE SPACE command (JCL equivalent FILMODIF) extends the
existing space alocated to afile. This command cannot be used with relative files.
For further information on file extension, see Section 5. For dynamic extension, see
under Choosing the Increment Size earlier in this Section. Specify BLOCK and
100K B inthe UNIT parameter for FBO files only. (These are the recommended
values for such disk files).

Syntax:

{ MDD FY_FI LE_SPACE }
{ }
{ MFSP }

NAME = fil e44d
{ CAT }
[FILESTAT = { CAT{1]|2]|3|4|5} }]
{ UNCAT }
[VAL = { volune24 | RESIDENT }]
[SPLI TDVC = devi ce-cl ass]
[UNT ={ CL | BLOCK | 100KB | TRACK | SECTCR}]
[SIZE = dec8]
[SPLIT = (split-criteria)]
[REPEAT = bool]

[SILENT

{ bool | 0}]

[MAXEXT = { 16 | dec2 }]
For an explanation of these parameters, see Part 2 of the IOF Terminal User’s
Manual.

6-56 47 A2 04UF Rev06

Designing and Allocating UFAS-EXTENDED Disk Files

Examples
MDFSP A.B.C. SIZE = 30;

MDFSP F1 UNCAT 30
VOL2: M5/ FSA;

MDFSP MF UNCAT
SPLIT = (VOL2: 15 VOL3: 10)
SPLI TDVC = MBS/ D500;

MDFSP P1. F4
FI LESTAT = CAT SI ZE = 300
VOL = V4: M5/ FSA

MDFSP NAME = MYFI LE
FI LESTAT = UNCAT
SPLIT = (V3:2 V6: 4)
SPLI TDVC = MBS/ D500;

MDFSP NAME = MYFI LE
SIZE = 2
FI LESTAT = UNCAT,

Comment

Extend a cataloged file by 30 blocks
on the last currently used volume that
isregistered in the catalog. The last
volume must contain the end of the
file.

Extend an uncatal oged file by 30
blocks on the FSA volume named
VOL2.

VOL2 must contain the end of the
file.

Extend an uncatal oged file by 15
cylinders on volume VOL2 and 10 on
volume VOL3.

VOL 2 must contain the end of the
file.

Extend the cataloged file named
P1.F4 which isimplemented on
volume V9 by 300 blocks (where
UNIT =BLOCK).

If V4 does not contain the end-of -
file, then the system will retrieve the
V9 name from the catalog and access
the file organization information.
Extension will start on V9 and will
continue on V4 only if thereis not
enough free space on V9.

Extend the uncatal oged file named
MY FILE by 6 cylinders. The
extension consists of two cylinderson
the volume named V3 and 4 cylinders
on thevolume V6. V3and V6 are
MD/D500 volumes. Note that V3
must contain the end of file (before
the current extension).

Extend the uncatal oged file named
MY FILE by 2 cylinders. MYFILE
resides on aresident volume and will
be extended on this volume, and on
other resident volume(s) of the same
device class (if thisis necessary).

47 A2 04UF Rev06

6-57

UFAS-EXTENDED User’s Guide

6-58 47 A2 04UF Rev06

7. Magnetic Tape and Cartridge Tape Files

7.1 Summary

The cartridge tape unit introduced in Release V5 has the same characteristics as
those of a magnetic tape unit. Section 7 discusses only the standard
GCOS//EBCDIC tape format. Thisis the native format (LABEL = NATIVE in
JCL).

- types of tapefile,

+ labels,

- types of tape volume,

« types of record (fixed-length and variable-length),

« blocking of variable-length records,

« blocking of fixed-length records,

» choosing the block size,

« creating a cataloged magnetic tape or cartridge tapefile,
- referencing tapefiles,

« minimum length of a physical record.

47 A2 04UF Rev06 7-1

UFAS-EXTENDED User’s Guide

7.2 Types of Tape File

A tape file can be a permanent cataloged or permanent uncataloged file, or a

temporary file.
Tape File
Permanent Temporary
Cataloged Uncataloged
Figure7-1. Typesof TapeFile

Files may be mono-volume or multi-volume.

Tape volumes may be multifile.

Tape volumes are either private or WORK. This aspect of tape handling has already
been covered in Section 5. You can give tape files expiration dates.

7-2

47 A2 04UF Rev06

Magnetic Tape and Cartridge Tape Files

Tape Labels

A label isaseries of records placed before and after the actual datato be processed.
A standard GCOS7/EBCDIC tapefileis recorded with labels that contain
information about the volume and file attributes:

« the volume name,

« the volume sequence number (for multivolume files); thisis the relative number
of the given volume (medialist) in the set of volumes containing the whole file,

« the recording technique and recording density,
 the external-file-name,

the blocksize (BLKSIZE =)
the size of the logical record (RECSIZE =)
the record format (RECFORM =)

You can obtain this type of information for atape file by using the LIST_FILE
(JCL equivalent FILLIST) command. For a complete description of the volume
label and formats, see Appendix B.

The file designer needs to know how much space on atape will be required to
accommodate a given number of records. When programs are coded, the unit of
transfer between the program and the file isthe logical record, but information
recorded on tape isin the form of blocks, (sometimes called physica records). A
block contains one or more logical records, and optionally, control information that
is not visible to the user program.

47 A2 04UF Rev06 7-3

UFAS-EXTENDED User’s Guide

7.4 File Attributes

The following sections describe the attributes of a magnetic tapefile.

7.4.1 Record Size (RECSIZE)

Suppliesthe size of the logical record. For COBOL programsit need not be coded
since COBOL requires that the program-declared value be maintained for the file.
Hence, if you omit this parameter in the file-define parameter group DEFi (JCL
equivalent DEFINE), the value is taken from the program.

For magnetic tape files, the minimum record size is 18 bytes. Thislimit refersto
the number of bytes written (paragraph 7.8). For variable-length record files, the
record size corresponds to the value of the longest record in thefile.

7.4.2 Block Size (BLKSIZE)

Supplies the block size with which the fileisto be written. If the program declares
avalue (in COBOL the clause BLOCK CONTAINYS), then it is overridden by the
value in the file-define parameter group DEFi (described earlier in paragraph
6.8.4).

Note that when RECFORM =V or VB, the BLKSIZE value must be equal to or
greater than (RECSIZE + 4).

7-4 47 A2 04UF Rev06

Magnetic Tape and Cartridge Tape Files

Record Format (RECFORM)

The five record formats available on tape are as follows:

fixed length (RECFORM =F),
fixed length blocked (RECFORM = FB),
variable length (RECFORM =V),
variable length blocked (RECFORM =VB),
undefined length (RECFORM = U).

RECFORM defines the record format. For COBOL, the record format (fixed or
variable) must be the same asthat declared or implied in the program. Whether the
format chosen is blocked or unblocked is not relevant.

In FORTRAN, only fixed length (blocked or unblocked) is allowed.

EXAMPLE:

A program writes 90-byte records to atape file. The records are fixed length and
there will be 10 to a block.

EXEC PG MYPROGRAM

FILEL = TFI XT
ASGL = (OVQ PC EXPDATE = 20)
DEF1 = (BLKSI ZE = 900, RECFORM = FB);

The RECSIZE value will be supplied from the program.
0

47 A2 04UF Rev06 7-5

UFAS-EXTENDED User’s Guide

7.4.3.1 Fixed-Length Records

With fixed-length records (Figure 7-2), all the logical recordsin the file are the
same length. If they are blocked, that is, there is more than one logical record in
each block, then all the blocks of the file will contain the same number of records
and therefore all blocks will be the same Iength. The one exception is the last block
of the file which will be shorter than the others if there are not enough recordsto
fill it.

block block block

logical record logical record logical record

Fixed Length Unblocked Record

block block

logical record logical record logical record logical record

Fixed Length Blocked Record (2 Records in each Block)

Figure 7-2. Fixed-L ength Records: Blocked and Unblocked

Note that when RECFORM = F or FB, the BLKSIZE value must be an integral
multiple of RECSIZE.

7.4.3.2 Variable-Length Records

Variable-length records may have any length up to a user-specified maximum.
They can also be blocked. The maximum block size is user-specified and must be
large enough to accommodate at least one record of maximum length. Blocks (or
physical records) vary in length, thus making efficient use of the available space.

Each logical record has an associated RDW (Recor d Descriptor Word). Thisisa
4-byte control element that is provided and maintained for the record by GCOS?7.
The RDW contains the length of the record.

Each block for both blocked and unblocked files has an associated BDW (Block
Descriptor Word). This 4-byte control element is provided and maintained for each
block by GCOS7. The BDW contains the length of the block.

7-6

47 A2 04UF Rev06

Magnetic Tape and Cartridge Tape Files

Note that the BDW and RDW are not accessible from user programs. The unit of
transfer to and from the executing program is the logical record, containing data
fields. Each programming language determines the length of each logical record in
its own manner.

Figure 7-3 shows a series of variable-length records. Assume a program writes
recordsA, B, ... etc., and that the maximum record length is 125 bytes (record C).

50 bytes 30 bytes 125 bytes 15 bytes
record record record record
A B C D

45 bytes 48 bytes

record record
E F

Figure7-3. Variable-Length Records

Therefore, the file attributes are;

RECSI ZE = 125
BLKSI ZE = 129
RECFORM = V

RECSIZE is 125 because the maximum record length in the file is 125 bytes.

BLKSIZE is 129 because the maximum record length (125) is added to the RDW
(4 bytes).

RECFORM isV because the format of the file recordsis variable length,
unblocked.

47 A2 04UF Rev06 7-7

UFAS-EXTENDED User’s Guide

Figure 7-4 shows how these records are written to the file.

58 bytes
om0 >
BSN BDW RDW record A
4 4 50
<. 38bytes 5
BSN BDW RDW record B
4 4 30
< . 13Bbyes S
BSN BDW RDW record C
4 4 125
- 23bytes
BSN BDW RDW record D
4 4 15
< S3bytes 5
BSN BDW RDW record E
4 4 45
< S6byes N
BSN BDW RDW record F
4 4 48

Figure7-4. Variable-Length Unblocked Records

7-8 47 A2 04UF Rev06

Magnetic Tape and Cartridge Tape Files

BSN: Block Serial Numbers are generated and managed by GCOS7.

» BSN =0 means that no block serial numbers are to be on the tape.
« BSN =1 means that block serial numbers are to be on the tape.

The six logical recordsintroduced in Figure 7-3 are written as six separate physical
records each containing an RDW and BDW. The maximum physical length written
(record C) is 133 bytes, (that is, 4 bytes greater than that specified by BLKSIZE).
Thisis because the value given to BLKSIZE excludes the BDW in the same
manner as RECSIZE excludes the RDW.

If you wish to block this variable-length record file, the RECFORM parameter
must take the form VB, asfollows:

RECSI ZE = 125
BLKSI ZE = 129
RECFCRM = VB

Figure 7-5 shows the physical records that are written.

- S2bytes s
BSN BDW RDW record A RDW record B
4 4 50 4 30
B 133bytes >
BSN BDW RDW record C
4 4 125
124 bytes
e >

BSN BDW RDW record D RDW record E RDW record F

4 4 15 4 45 4 48

Figure7-5. Variable-Length Blocked Records

47 A2 04UF Rev06 7-9

UFAS-EXTENDED User’s Guide

The six logical records are written as three separate physical records. The logical

records are blocked up to the maximum block size specified, (that is, 129 plusthe
BDW).

Blocks contain variable numbers of records and vary in length.

7-10 47 A2 04UF Rev06

Magnetic Tape and Cartridge Tape Files

7.5 Choosing the Block Size

The choice of block size depends on:

» whether the blocks are fixed length or not
« how much memory is available for buffers.
The value of BLKSIZE depends on RECFORM and RECSIZE as follows:

» if RECFORM = F, BLKSIZE must be equal to RECSIZE,

« if RECFORM = FB, BLKSIZE must be a multiple of RECSIZE,

« if RECFORM =V, BLKSIZE must be equal to RECSIZE + 4,

- if RECFORM =VB, BLKSIZE must be amultiple of RECSIZE + 4,

- if RECFORM = U, BLKSIZE must be equal to the maximum record size.

Each block is separated by a gap to allow for the start/stop motion of the tape drive.
The data capacity of atape redl is greater for alarge block size than for asmall one.

Reel capacity can be calculated only for fixed-length and fixed-length blocked
files. For variable-length and variable-length blocked files, you must calculate the
capacity assuming an average block size.

These reel-capacity cal culations must take the following into account:

« therecording density to be used,
« the size of the gap between each physical record,
« thelength of the tape.

You can find these values in the various Operator Guides (see Preface) that are
available for each type of drive.

The formulafor calculating the capacity is.

Nunber of Bl ocks =
Length of Tape-Header and Trailer Sections

(Bytes per Block/Density) + Length of Inter Bl ock Gap

In this calculation you must also take account of BSNs (Block Serial Numbers).
BSNs occur only on tape and are 4 byteslong. GCOSY?, by default, writes BSNs
with each block and expects BSNsto be present on input files. If afile on output is
not to have BSNs, then the parameter BSN must be set to zero in the file-define
parameter group DEFi associated with the file-assignment parameter group ASGi.

47 A2 04UF Rev06 7-11

UFAS-EXTENDED User’s Guide

7.6 Creating a Magnetic-Tape or a Cartridge-Tape File

You can create afile only on tape volumes which have been prepared (label ed)
with the following commands:

« PREPARE TAPE (PRPTP)
« PREPARE VOLUME (PRPV) (only in interactive node).

The JCL equivalent isthe VOLPREP utility that is described in the Data
Management Utilities User’s Guide.

To create a catal oged tape file, use the CREATE MT FILE (CRMTF) command
(JCL equivalent PREALLOC).

To create an uncataloged tape file, use the file-all ocation parameter groups ASGi
and DEFi (paragraph 7.7). In JCL, you use the ASSIGN and DEFINE statements.

Therest of this section shows you how to create a catal oged magnetic
tape/cartridge tape file.

Syntax:

CREATE_TAPE FI LE }
CREATE MI_FILE }
CREATE CT FILE }
ORTPF }
CRMITF }
CRCTF }

e Reon R Rt N R

FILE = file78

[BLKSI ZE = dech]

[RECS| ZE = dech]

[VCRKMT = { bool | 0}]

[RECFORVi={ FB| F| VB| V| U}]
[COWPACT = { bool | 0}]

ddd

}
yy/ddd }]
yy/ mmi dd }

[EXPDATE =

[t Yot Wann

[NBSN = { bool | 0}]

[MOUNT = { 1| decl}]

7-12 47 A2 04UF Rev06

Magnetic Tape and Cartridge Tape Files

[ANSI = { bool | 0}]
[END = UNLQAD|
[SILENT = { bool | 0}]
[REPEAT = { bool |0}]
[CATAAGG={ 1| 2| 3] 4] 5}]
For an explanation of the parameters, see the IOF Terminal User’s Reference

Manual.

To learn more about label and volume formats, see Appendix B.

Examples Comment

CRTPF F. TRA: V2: MI/ T9 Create an ANSI file
BLKSI ZE = 4000
RECSI ZE = 1000
ANSI ;

CRMIF F. SRC: VN: VT/ T9 Create a UFAS-EXTENDED file with
BLKSI ZE = 2000 expiry date and compact recording of
RECSI ZE = 2000 blank characters.
RECFORM = F
COWPACT
EXPDATE = 10/ 08/ 95;

CRCTF X. WK Create file X.WK; when thefile X.WK is
WORKMT; first used, it will be alocated on awork

tape.
CRMIF P1. Create the catal oged tape file named

P1.FILE7 on the 9-track 1600 BPI tape
FI LE7: MYTAPE: MI/ T9/ D1600 volume named MY TAPE.

BLKSI ZE = 4096 The block size is 4096 bytes, the record

RECSI ZE = 128 sizeis 128 bytes, and the expiry date is

EXPDATE = 100; 100 days after today. By default, the
record format (RECFORM) isfixed
blocked (FB).

47 A2 04UF Rev06 7-13

UFAS-EXTENDED User’s Guide

7.7 Referencing Tape Files

To specify a GCOS7/EBCDIC tape file for input, use the file-assignment parameter
ASGi with its associated parameter group (see Section 5). The JCL equivalent is
ASSIGN. The labd information supplies the BLKSIZE value (which will override
any declared in the user program). The record length and record format from the
label will be checked against the program declared values for consistency. The
program must declare that thefileis of sequential organization.

Note that in COBOL it is not necessary to declare explicitly that the fileis of type
UFF or LEVEL-64 because no distinction is made for tape files.

For output tape-files, thereis no labd information concerning the file attributes.
Therefore, they must be declared through the program and/or through the file-
define parameter DEFi with its associate parameter group. The format of this
parameter, asit applies to the processing of output-tape files.

Syntax:
([FILEFORM = { UFAS | ANSI | NSTD }]

[FILEORG = { SEQ| RELATIVE | INDEXED }]

[BLKSI ZE = dec5]

[RECSI ZE = dec5]

[RECFORM={ F| V| U| FB| VB | FS| FBS}]
[NBBUF = dec4]

[SYSQUT = bool]

[DATAFORM = { SARF | SSF | DOF | ASA }]

[ERROPT = { SKIP | ABCRT | IGNCRE | RETCCCE }]
[BUFPOOL = nane4]

[AdSIZE = dec5]

[BPB = dec3]

[CKPTLIM={ NO| EOV | dec8 }]

[FPARAM = bool]

[COWACT = bool]

7-14 47 A2 04UF Rev06

Magnetic Tape and Cartridge Tape Files

[TRUNCSSF = bool]
[CONVERT = bool]
[BSN = bool]

[tape-file-specific-paraneters]

)

where tape-file-specific-parameters are:

[FUNCVASK

hexa8]

[DATACCDE = { BOD | ASO| | EBODIC}]

[BLKCFF = dec3]

NOTE:
Only those parameters that are of interest are shown for the file-define
parameter group DEFi. For full details of DEFi, see the IOF Terminal User’s
Reference Manual. The JCL equivalent isthe DEFINE statement that is
described in the JCL Reference Manual.

47 A2 04UF Rev06 7-15

UFAS-EXTENDED User’s Guide

7.8 Minimum Length of a Physical Record

On amagnetic tape, the length of a physical record is at least 18 bytes. This
physical record includesthe BSN, if present, and BDW and RDW if the
RECFORM =V or VB. Therefore, the minimum length of the logical record as
defined by RECSIZE or through the user programiis:

18 bytesif thefileis fixed length (blocked or unblocked)
without BSNs.

14 bytesif thefileis fixed length (blocked or unblocked)
with BSNs.

10 bytesif the fileis variable length (blocked or
unblocked) without BSNs.

6 bytesif thefile is variable length (blocked or

unblocked) with BSNs.

7.9 Compacted Data On Tape

The sequentia access method allows the compaction of data on tape by deleting
repetitive spaces. The COMPACT attribute must be supplied at tape file creation
through the DEFINE statement.

The following restrictions are applied to the compacted file:

» The blocksize given by the user must be at least equal to the maximum record
size + 4 bytes for the record header, + 1 byte control character per 128 characters
of data.

» Therecord size before and after compaction must not be greater than 32 Kbytes
- 1 (otherwise the compaction fails with return code TSEQL 24, RECSZERR).

« Only variable record format is alowed.

7-16 47 A2 04UF Rev06

8. File Manipulation and Maintenance

8.1 Summary

This section covers the following topics:

sorting and merging files,
loading files,

converting afile from the UFAS file format to the UFAS-EXTENDED file
format,

mani pul ating the contents of files,
converting VBO filesto FBO format,
using the Data Services Language (DSL),
list of file-level utilities,

list of volume-level utilities.

8.2 Sorting and Merging Files

You can sort and merge UFAS-EXTENDED disk and tape files by using
SORT_FILE and MERGE_FILE. These utilities are described in the |OF Terminal
User’s Reference Manual. The JCL equivaents are the SORT and MERGE utilities
which are described in the SORT/MERGE User Guide.

47 A2 04UF Rev06

8-1

UFAS-EXTENDED User’s Guide

8.3 Load File
This utility loads afile (JCL equivalent CREATE). The inpuit file and the output
file may bea UFAS or aUFAS-EXTENDED disk file, or atape file. The output
file, for our purposes, will be UFAS-EXTENDED.
Syntax:
{ LOAD FILE }
{ }
{ LDF }
{ FILE }
{ } = (output-file-description)
{ OUTFILE }
INFILE = (input-file-description)
{ CAT }
{ CAT{1]| 2]3| 4|5} }
[DYNALC = { }]
{ UNCAT }
{ TEWPRY }
{ ALLCCATE }
[{ } = (file-allocation-paraneters)]
{ QUTALC }
{ DeF}
[{ } = (file-define-parameters)]
{ QUTDEF }
[INDEF = (file-define-paranmeters)]
{ DSLFILE}
[{ } ={ file78 | ::TN}]
{ COWILE}
[START = dec8]
[TNCR = dec8]
[HALT = dec8]
[APPEND = { bool | 0}]
[ORDER = bool]
8-2 47 A2 04UF Rev06

File Manipulation and Maintenance

[PADCHAR = { charl |

[KEYLOC = dec5]

hexa2 }]

[TAPEND = { 1 | dec3 }]

[SILENT = { bool | 0}]
[PRINT={ ALPHA | HEXA| BOTH} |

[PRTFILE = file78]

[TITLE = char114]

[REPEAT = bool]

[FMEDIA = { bool | O]

[IMPCRT = bool]

[EXPCRT = bool]
For an explanation of the parameters, see the IOF Terminal User’s Reference
Manual.
Examples Comment

LDF (MYFI LE ACCESS =
SPVWRI TE
EXPDATE = 94/ 07/ 31)
I NFI LE = FRAN
DYNALC = CAT;
LDF FILE = P1.F1
I NFI LE
=MYDATA: V1: M5/ D500

LDF FILE = P1. F1: V2Ms/ D500
| NFI LE =

MYDATA: V1: M5/ D500
DYNALC = CAT
ALLOCATE = (SIZE = 5
UNIT = CYL);

LDF FI LE2: V3: M5/ D500
| NFI LE =

MYDAT1: V7: M5/ D500;

Load and dynamically allocatefile
MY FILE with expiry date and exclusive
access.

Load the cataloged file named P1.F1
with data from the uncataloged file
named MY DATA which resides on the

M S/D500 volume named V 1.

As the previous example, except that the
file PL.Flisto be dynamically created on
the MS/D500 volume named V2. Itssize
will be 5 cylinders.

L oad the uncataloged file named FILE2
which resides on the MS/D500 volume
named V 3 with data from the
uncataloged file named MY DAT1 which
resides on the MS/D500 volume named
V7.

47 A2 04UF Rev06

8-3

UFAS-EXTENDED User’s Guide

8.3.1

Converting UFAS Files to the UFAS-EXTENDED File Format

You can use the LOAD_FILE command (JCL equivalent CREATE) to convert a
UFASfileto the UFAS-EXTENDED file format.

Proceed asfollows:

If you usethe DYNALC parameter inthe LOAD_FILE command, you can
combine steps 1 and 2 (See the first example below).

1. allocate anew UFAS-EXTENDED file using the BUILD_FILE command,
2. usethe LOAD_FILE command to move logical records from the UFASfileto

the UFAS-EXTENDED file,
3. deletethe old UFASTile,

rename the UFAS-EXTENDED file to the same name as that in the UFAS
version (use the MODIFY _FILE command with the NEWNAME parameter;

see Table 8-1).

NOTE:

If thereare many filesto be converted, use the LOAD_FILESET command

with astar (*).
Examples

LDFST (DUP* ACCESS =

SPVWRI TE
EXPDATE = 365
INSET = ORG
DYNALC = CAT,
LDFST P1.**:V1: M5/ D500
I NSET = P2
DYNALC = CAT;
LDFST
FI LESET = **:V2: M5/ D500
I NSET

=**:V3: M5/ D500SUNCAT
DYNALC = UNCAT;

Comment

Load and allocate files DUP* with expiry
date and exclusive access from
ORG*files.

Load the fileset P1.** with datafrom the
fileset P2.**

The member files of PL** are
dynamicaly created on the volume
named V1. The fileswill be created as
cataloged files.

All uncataloged files on V3 are loaded
into the correspondingly named files on
V2

Dynamic allocation takes place on V2.
There are multi-volume fileson V3.

47 A2 04UF Rev06

File Manipulation and Maintenance

8.3.2 Converting VBO files to FBO format

A file migration tool in the |OF (Interactive Operator Facility) domain enables you
to migrate filesfrom VBO to FBO format. The MAINTAIN_MIGRATION
(MNMIG) tool can only be used interactively, and you must have SY SADMIN
rights. It helps you to produce a JCL program that is used to migrate files either
directly or indirectly to atarget FBO volume.

Full details are given in the File Migration Tool User’'s Guide.

47 A2 04UF Rev06

8-5

UFAS-EXTENDED User’s Guide

8.4 Data Services Language (DSL)

This language, which is available with the SORT_FILE (JCL equivalent SORT),
MERGE_FILE (JCL equivalent MERGE), COMPARE_FILE (JCL equivalent
COMPARE), LOAD_FILE (JCL equivalent CREATE) and PRINT_FILE (JCL
equivalent PRINT) commands allows you to:

« select/omit records from the input file,

« re-order datafields within each record,

« change the length of records,

» declarethe key fields for SORT FILE/MERGE FILE,

« sum duplicate-key records for SORT FILE/MERGE FILE.

For further information on the DSL for SORT_FILE and MERGE_FILE, see the
SORT/MERGE Utilities User’s Guide.

For further information on the DSL for COMPARE_FILE, LOAD_FILE and
PRINT_FILE commands, see the Data Management Utilities (DMU) User’s Guide.

8-6 47 A2 04UF Rev06

File Manipulation and Maintenance

8.5 File-Level Utilities

Table 8-1 shows the set of file-level utilities available for UFAS-EXTENDED disk

and tapefiles.

Table8-1. FileLeve Utilities (1/2)

GCL Commands

Function

BUILD_FILE (BF)
CLEAR_FILE (CLRF)
COMPARE_FILE (CMPF)

COMPARE_FILESET (CMPFST)

COPY_FILE (CPF)

COPY_FILESET (CPFST)

CREATE_CT_FILE (CRCTF)

CREATE_MT_FILE (CRMTF)

CREATE_FILE (CRF)

CREATE_FILESET (CRFST)

DELETE_FILE (DLF)

DELETE_FILESET (DLFST)

EXPAND_FILESET (EXPFST)

LIST_FILE (LSF)

LIST_FILESET (LSFST)
LIST_FILE_SPACE (LSFSP)

LOAD_FILE (LDF)

Allocates space for a disk file.
Logically erases the contents of a file without deallocating it.
Logically compares the contents of two sorted files.

Logically compares the contents of each sorted file of a fileset
to a sorted reference file.

Copies the contents of a file into another file of identical type.

Copies the contents of a set of files into another set of files of
identical types.

Creates a cataloged cartridge file.

Creates a cataloged tape file.

Allocates space for a disk file, possibly by referencing an
existing file to be used as a model. Can be used to simulate a
file allocation.

Allocates space for a set of disk files, possibly by referencing
an existing file to be used as a model.

Deallocates a disk or a cataloged tape file and erases its entry
in the catalog.

Deallocates a fileset.

Produces a report which displays the names of all the member
files of filesets.

Lists the label, catalog and usage information for a disk or a
tape file.

Lists the characteristics of the files of a fileset.
Lists the space allocated to a file.

Loads a UFAS-EXTENDED file; copies an IDS/Il area.

47 A2 04UF Rev06

8-7

UFAS-EXTENDED User’s Guide

Table8-1. FileLeve Utilities (2/2)

GCL Commands Function
LOAD_FILESET (LDFST) Loads a set UFAS_EXTENDED files; copies an
IDS/1 fileset.
MAINTAIN_FILE (MNF) Dumps physical records from a disk or tape file; modifies

physical records on a disk file.

MERGE_FILE (MRGF) Activates the MERGE utility which merges two to eight sorted
files into a new file or into an existing file.

MODIFY_FILE (MDF) Modifies the characteristics of a file.

MODIFY_FILE_SPACE (MDFSP) | Extends the space allocated.

MODIFY_FILE_STATUS Changes the catalog status of a file.

(MDFSTAT)

PRINT_FILE (PRF) Prints records from a file.

PRINT_FILESET (PRFST) Prints records from a fileset.

RESTORE_FILE (RSTF) Restore the contents of a disk file from a tape file or from a

UFAS-EXTENDED sequential disk file where it was previously
saved by the SAVE_FILE or SAVE_FILESET commands; also
restores the contents of a single-volume disk file from a tape
previously created by the SAVE_DISK command.

RESTORE_FILESET (RSTFST) | Restores the contents of a set of disk files from a tape file or
from a UFAS-EXTENDED sequential disk file or from a set of
files where it was previously saved by the SAVE_FILESET
command; also restores the contents of a set of single-volume
disk files from a tape previously created by the SAVE_DISK
command.

SAVE_FILE (SVF) Saves the contents of disk file into a sequential
UFAS-EXTENDED disk file or into a tape file.

SAVE_FILESET (SVFST) Saves the contents of a set of disk files into a sequential
UFAS-EXTENDED disk file, or on to a set of
UFAS-EXTENDED disk files, or on to a tape file or on to a set
of tape files.

SORT_FILE (SRTF/SORT) Activates the SORT utility which sorts one or more files into a
new file or into an existing file.

SORT_INDEX (SRTIDX) Sorts and loads the secondary indexes of a UFAS-EXTENDED
Indexed sequential file.

For further details on the BUILD FILE and CREATE_FILE commands, see
Section 6. For other commands, see the IOF Terminal User’s Reference Manual.

8-8 47 A2 04UF Rev06

File Manipulation and Maintenance

8.6 Volume-Level Utilities

Table 8-2 shows the set of volume-level utilities available for UFAS-EXTENDED
disk and tape volumes.

Table 8-2.

Volume-L evel Utilities

GCL Commands

Function

CLEAR_VOLUME (CLRV)

LIST_VOLUME (LSV)

MAINTAIN_VOLUME (MNV)

MODIFY_DISK (MDD)

PREPARE_DISK (PRPD)

PREPARE_TAPE (PRPTP)

PREPARE_VOLUME (PRPV)

RESTORE_DISK (RSTD)

SAVE_DISK (SVD)

Erases the contents of a volume.

Lists the contents (names and characteristics) of a native disk,
or tape volume.

Dumps physical records from a disk, or tape volume. Changes
physical records on a disk volume.

Declares defective tracks on a disk volume.

Labels and formats a disk volume; you can do the same
operation interactively using PREPARE_VOLUME.

Labels a tape volume; you can do the same operation
interactively using PREPARE_VOLUME.

Prepares (labels) a disk, or labels a tape volume. Used only in
interactive mode.

To label and format a disk volume from within a file, use
PREPARE_DISK.

To label and format a tape volume from within a file, use
PREPARE_TAPE.

Restores a native disk volume from a native tape file created by
the SAVE_DISK command.

Saves a native disk volume into a native tape file.

For further details, see the |IOF Terminal User’s Reference Manual.

47 A2 04UF Rev06

8-9

UFAS-EXTENDED User’s Guide

8.7 Visibility of Physical and Logical Space Allocated to UFAS Disk
Files

The address space 1 of any UFAS disk file contains how many Cls are allocated,
and how many (allocated) Cls are formatted.

Thisinformation appearsin the USAGE listing of LIST_FILE[SET] or
LIST_VOLUME (JCL equivalents FILLIST or VOLIST) when the USAGE option
is specified.

When a UFA S disk file has just been created, the physical extents (aslisted by the
SPACE option) match very closely the logical information (ad listed by the
USAGE option).

When a UFAS disk fileis extended by using the MODIFY _FILE_SPACE GCL
command (or PREALLOC with the EXTEND option), the address space 1 cannot
be immediately updated. This means that the USAGE information aso remains
unchanged (maximum, ratio, number of alocated Cls per address space). The
SPACE information, however, gives all the physical extents.

The extraphysica space not yet logically described in address space 1 will be
described as soon as the current logically described space in address space 1
becomesinsufficient in at least 1 other address space when arecord is added or
modified under UFAS access method control.

The same occurs when an input fileis restored or copied onto alarger than
necessary output file. The output address space 1 is simply a copy of the input
address space 1 and so does not take into account the surplus output space. On the
other hand, if the output fileis smaller than the input file then either the output file
is automatically extended or, if thisis not possible, the operation is aborted.

This effect may be propagated if such files are saved/restored or duplicated to any
other files, already existing or not.

8-10 47 A2 04UF Rev06

A. Randomizing Formulas for Relative Files

Randomizing Techniques

Asexplained in Section 3, relative files are organized around a Rel ative Record
Number (RRN). It isthe RRN which is randomized (or converted) to a disk storage
location (or disk address).

Randomizing methods ensure that records are distributed evenly throughout the
file. Thus, up to 90% of the file may be used depending on the particular
randomizing technique. Optimizing the available space, however, also generates
duplicate relative addresses which increase access time.

When you choose a randomizing technique, you must consider the advantages of
file space against file-access time.

There are many techniques available, four of which are explained in this Appendix,
asfollows:

» prime-number division,

- square, enfold, and extract,
« radix conversion,
 frequency anaysis.

When you are evaluating which of the above methods to choose, the following
criteriawill beaguide:

efficient use of mass storage,

frequency and distribution of synonyms,

processing time required for the randomizing calculation,
- even distribution of the RRNs throughout thefile.

47 A2 04UF Rev06 A-1

UFAS-EXTENDED User’s Guide

A.2 Prime-Number Division

The most widely accepted method of transforming akey into arelative record
addressisto divide the record key field by a prime number. (A prime number isa
number divisible only by itself or one). The prime number used should be the
largest prime number that is smaller than the total number of possible record
locations alocated to the file. The larger the prime number used, the less likely are
synonyms to be generated.

Table A-1. Prime Numbers

1. Every third prime number between 2 and 2939

5 197 449 727 1019 1303 1613 1951 2281 2633
13 223 463 733 1033 1321 1627 1987 2297 2659
23 233 487 761 1051 1367 1663 1999 2333 2677
37 251 503 787 1069 1399 1693 2017 2347 2689
47 269 523 811 1093 1427 1709 2039 2371 2707
61 281 557 827 1109 1439 1733 2069 2383 2719
73 307 571 853 1129 1453 1753 2087 2399 2741
89 317 593 863 1163 1481 1783 2111 2423 2767

103 347 607 883 1187 1489 1801 2131 2447 2791
113 359 619 911 1213 1511 1831 2143 2473 2803
137 379 643 937 1229 1543 1867 2179 2531 2837
151 397 659 953 1249 1559 1877 2213 2549 2857
167 419 677 977 1279 1579 1901 2239 2579 2887
181 433 701 997 1291 1601 1931 2267 2609 2909

2. Every fifth prime number between 2953 and 8033

2957 3467 3931 4457 4973 5501 6029 6551 7043 7603
3001 3517 4001 4507 5009 5527 6067 6577 7109 7649
3041 3541 4021 4547 5051 5573 6101 6637 7159 7691
3083 3581 4073 4591 5099 5641 6143 6679 7211 7727
3137 3617 4111 4639 5147 5659 6199 6709 7243 7789
3187 3659 4153 4663 5189 5701 6229 6763 7307 7841
3221 3697 4211 4721 5233 5743 6271 6803 7349 7879
3259 3733 4241 4759 5281 5801 6311 6841 7417 7927
3313 3779 4271 4799 5333 5839 6343 6883 7477 7963
3343 3823 4327 4861 5393 5861 6373 6947 7507 7991
3373 3863 4363 4909 5419 5897 6427 6971 7541 8009
3433 3911 4421 4943 5449 5953 6481 7001 7573 8027

When you divide the record key by the prime number selected, discard the quotient
and use the remainder as an address.

A-2 47 A2 04UF Rev06

Randomizing Formulas for Relative Files

EXAMPLE:

Assume you have a 800-record file whose record keys range from 0 (zero) to
999 999 999. Spaceisto be alocated to thisfile for 1 000 record "slots'. The
divisor is 997 - the highest prime number below 1 000. This leaves only three
record |ocations unused out of the 1 000 allocated.

O

If, for example, the record key to be processed is 777 775 925; then
777 775 925 / 997 = 780 116 with a remai nder of 273.

Thus, this record will be stored in relative record address 273.

NOTE:
If the record key to be divided is aphabetic or alphanumeric, it can be treated as
abinary field. In this case, the prime humber would also bein binary form. The
final calculations are also performed binarily so that the relative addressis
produced in a usable form.

47 A2 04UF Rev06 A-3

UFAS-EXTENDED User’s Guide

A.3 Square, Enfold, and Extract

In this randomizing technique, the record key field is squared, the result is split in
half, and then the two halves are added together. You extract the number of digits
needed for the address from the middle of the result. Normally, the two |ow-order
(rightmost) characters are ignored and you extract starting from the third low-order
character and continue to the fourth-order character and so on.

EXAMPLE 1.

A file of 8 000 records with record keys ranging from (0) zero to 999 999 999. You
wish to alocate afile for 10 000 record locations.

O

If the record key to be processed is 493 725 816, then:

Squared: 243,765,181,384,865,856

Enfolded: 243,765,181 + 384,865,856

v
628,631,037

e

Extracted result; 86,310 relative record address

Thisresult isobvioudy not suitable asit stands for afile of only 10 000 record
locations. It would be usable only in the unlikely event of a 99 999-record file. For
example 1, only four digits should have been extracted, yielding a maximum
address value of 9 999. Thisis till of no use where, for example, only 7 000 record
locations are to be allocated to thefile.

A-4 47 A2 04UF Rev06

Randomizing Formulas for Relative Files

EXAMPLE 2:

A file of 4 000 records with record keys in the same range as for the first example,
(from (0) zero to 999 999 999) is to have file space allocated to it sufficient for
6 000 record locations.

If the key to be processed is the same as that used in Example 1, the initial
extracted result (for four digits) would give arelative record address of 6 310.

Apart from this rel ative record address not being suitable for afile with only 6 000
record locations, the maximum address value that could be produced is still about
9 999.

In this case, reduce the initial expected result in order to adapt the the highest value
to the available file space. Here, multiplying the preliminary extracted result by 0.6
will have the desired effect:

6 310 * 0.6 = 3 786 relative record address.
U

47 A2 04UF Rev06 A-5

UFAS-EXTENDED User’s Guide

A4 Radix Conversion

For thistechnique, it is assumed that the record key is anumber of aradix other
than 10. The key isthen converted "back" to radix 10, digit by digit. The sum of
this process has the number of digits needed for the relative record address
extracted from it, starting with the low-order characters. You can then adapt this
initial extracted result to the available file space as that used in " Square, Enfold,
and Extract”.

EXAMPLE:

A file containing 6 000 records with record keys ranging from O (zero) to 99 999 is
to have space allocated to it sufficient for 7 500 record locations.

For example, if the record key to be processed is 14 623, and it is assumed to be a
radix 11 number, then:

146 2 3 becomes:

(1*11%*4) + (4*11**3) + (6* 11**2) + (2*11** 1) + (3*11**0) =
(1* 14641) + (4* 1331) + (6 * 121) + (2* 11) + (3* 1) =
(14641) + (5324) + (726) + (22) + (3) = 20716

Preliminary extracted result = 0716

Relative record address = (0716 * 0.75) = (0)537

O

A-6 47 A2 04UF Rev06

Randomizing Formulas for Relative Files

Frequency Analysis

This method has two uses:

« to determine the pattern of distribution for a given file, indicating which
positions are best for truncating or extracting rel ative record addresses from the
record keys; in other words you can use it to evaluate the most suitable
randomizing technique for afile,

- to develop relative addresses from the record keys, in extended form; in other
words, it is arandomizing method in its own right.

Using Frequency Analysisto Evaluate a Randomizing Technique

Frequency analysis consists of analyzing the keys of all the recordsin thefile, to
determine how frequently a digit appears in each given record key position. For
each digit position in the key, examine the records to determine the number of
times each digit (0 to 9) appears.

For example, in afile consisting of 16 045 records,

» 0 (zero) might occur in the fifth key position in 5 168 records,

« 1 might occur in the fifth key position for 5 638 different records,

« 2 might occur in that position for 4 958 records,

« 3 might occur for 281 records,

« the numbers 4 to 9 might not appear in this key position for any record.

This frequency-analysis count gives the actual distribution of digits appearingin
every key position. If the distribution were perfectly even, each of the digits would
occur the same number of times. Because there are 10 digits, this means that, with
atotal of 16 045 records, each digit would occur approximately 1 605 timesin any
one key position.

To determine the deviation from such an ideal distribution, measure the difference
between it and the real digit occurrence for each key position.

Thus, if 0 occursin the fifth key position of 5 168 records, the deviation would be:
(5 168 - 1 605) = 3 563.

« Dothisfor each digit in that key position before adding all the resultsto find the
total deviation for the key position.

» Then express the total deviation as a percentage of the total number of items.

The lower the figure, the more even the distribution. In this example, 0% could
arise only if there were exactly 1 605 occurrences of each of the digitsOto9ina
given key position throughout the file.

47 A2 04UF Rev06 A-7

UFAS-EXTENDED User’s Guide

Table A-2. Pattern of distribution

Key Position Number
Digits 1 2 3 4 5 6 7 Total
0 16045 0 0| 1852| 5168| 1807 | 1738 | 26610
1 0 0 4408 | 3147 | 5638 | 2120 | 1748 | 17061
2 0 2198 3792 1174 | 4958 | 1745 1743 | 15610
3 0 576 | 2231| 2724 281 | 1684 | 1610 | 9106
4 0 1195 2459 1194 0 1378 1617 7843
5 0 | 12076 | 3155| 1267 0 | 1647 | 1688 | 19833
6 0 0 0| 1243 0 | 1560 | 1660 | 4409
7 0 0 0| 1228 0 | 1329 | 1450 | 4007
8 0 0 0 1227 0 1415 1411| 4053
9 0 0 0 989 0 | 1360 | 1434 | 3783
Total
Deviation | 28885 | 22133 | 16045, 582121903 | 1961 | 1035
Total
File 16045 | 16045 | 16045| 16045 | 16045 | 16045 | 16045
% File 180 138 100 36 137 12 6

The pattern of distribution indicates which positions are best for truncating or
extracting relative record addresses from the record keys. Note that the total
variance for key position 3 in the Example of 16 045 (100% of the totd file) is
coincidental .

A-8 47 A2 04UF Rev06

Randomizing Formulas for Relative Files

Ab5.1 Using Frequency Analysis to Develop Randomized Relative Record
Addresses

» Express each individual key digit count as a percentage of the total number of
recordsin thefile, 16 045 in the example above,

« Calculate the cumulative total (in the last column of Table A-2) for all key-
position occurrences for each digit.

Table A-3. Developing arelative address

Key Position Number

Digits 1 2 3 4 5 6 7 | Total

0 % 100 12 32 11 11
Constant | 39915 | 26610 | 26610 | 28207 | 30868 | 28074 | 28074 | 26610

1 % 27 20 35 13 11
Constant | 17061 | 17061 | 19364 | 18767 | 20047 | 18170 | 17999 | 17061

2 % 14 24 7 31 11 11
Constant | 15610 | 16703 | 17483 | 16156 | 18030 | 16469 | 16469 | 15610

3 % 4 14 17 2 10 10
Constant | 9106 9288 | 9743 | 9880 | 9197 9561 | 9561 | 9106

4 % 7 15 7 9 10
Constant | 7843 8118 | 8431 | 8118 | 7843 8196 | 8235| 7843

5 % 75 20 8 10 11
Constant | 19833 | 27270 | 21816 | 20626 | 19833 | 20825 | 20924 | 19833

6 % 8 10 10
Constant | 4409 4409 4409 4585 | 4409 4629 | 4629 | 4409

7 % 8 8 9
Constant | 4007 4007 | 4007 | 4167 | 4007 4167 | 4187 | 4007

8 % 8 9 9
Constant | 4053 4053 | 4053 | 4215| 4053 4235 | 4235| 4053

9 % 6 8 9
Constant | 3783 3783 | 3783 | 3896 | 3783 3934 | 3953 | 3783

47 A2 04UF Rev06 A-9

UFAS-EXTENDED User’s Guide

» From the percentages of individua key-digit count and all key-digit totals thus
produced, calculate an adjusted constant for each digit in every record key
position, by using the following formula:

Constant = ((KN%o/ 2) * dT) + dT ... where:
Kn% = i ndi vi dual key percentage for digit vy
dT = all-key total for digit y

Thus the constant for converting a 1 appearing in the fifth key position is as
follows:

(17 061 + ((35%/ 2) * 17 061)
17 061 + 2 985.7

20 046.7

20 047 rounded up.

Whether rounding is done at this stage depends on the total range of values
produced from the total number of record positions to be allocated to the file. To
obtain the value range, calculate the minimum and maximum values:

Max. Value* Min. Value*
Digit Constant Digit Constant

Key 1 0 39915 0 39915
Key 2 5 27270 4 8118
Key 3 5 21816 4 8431
Key 4 0 28207 9 3896
Key 5 0 30868 3 9197
Key 6 0 28074 9 3934
Key 7 0 28074 9 3953

204224 77444

* Rounding to the nearest decimal integer is assumed.

A-10 47 A2 04UF Rev06

Randomizing Formulas for Relative Files

The range of values that would be produced by the file measured in our exampleis:

204 224 - 77 444 = 126 780

For arelative file consisting of 16 045 records, it would be reasonable to allocate
about 20 000 record locations. Clearly, the assumption made to round the constant
valueisjustified.

Before you can use the aggregate constant values as relative record addresses for
storing records, do the following two operations:

 Adjust the range of values from 126 780 to 20 000,
» Deduct a constant from whatever value is produced (the lowest value produced
should be 1),

Multiply the value produced from Table A-3 by 0.157 to reduce the range of
possibilities to 19 904, thereby "wasting" only 96 record |ocations out of the
20 000 allocated.

You can find the constant to be deducted by applying the ratio 0.157 to the
minimum aggregate constant val ue produced for the examplefile.

77 444 * 0.157 = 12 159 rounded up
204 224 * 0.157 = 32 064 rounded up

Thus, by applying a standard constant of 12 159, you will distribute "wasted"
record locations evenly: 48 at either end of thefile. These are atoken allowance for
any new records that might be added in the future with keys producing aggregate
constant val ues outside the range allowed for by the frequency analysis of the
original file.

47 A2 04UF Rev06 A-11

UFAS-EXTENDED User’s Guide

EXAMPLE:

Record key = 0451185

Constants=39915+ 8118 + 2 1816 + 18 767 + 20 047 + 4 235+ 20 924 =
133822

Constants Aggregate = 133 822

Adjusted Aggregate = (133 822 * 0.157) = 21 011 rounded up

Relative Record Address = (21 011 - 12 159) = 8 852

The advantage of treating the constants as in Table A-3 is that records are located
according to the mean frequency of their key values, athough this effect would
nevertheless be diffused.

For instance, the most probable key-value combination, 0511110, would be stored
in relative record address 14 675; and the least probable key-value combination in
the file, 0339399, would be stored in relative record address 6.

To compensate, there might be many duplicate relative addresses (which your
program must handle a so), although this would obviously depend on the actual
key-value combinations in the file.

Alternatively, consider only the five low-order digits in the constants aggregate,
which for record key 0451185 would mean ignoring the leading 1, leaving 33 822.
In this randomizing solution, you need multiply only the maximum total number,
99 999, by 0.2 to produce arelative record address that can be used for a 20 000-
record file.

O

A.6 Non-Numeric Keys

Where key fields include alphabetic, special characters or alphanumeric characters,
one method of randomizing would be to treat the field as a binary number and
perform binary arithmetic on it. This has the advantage of avoiding unnecessary
duplicate relative addresses.

Another method of randomizing is to convert each character into two numeric
digits. You then manipulate the resultant key by decimal arithmetic according to the
particular randomizing method employed. This method is useful where binary
arithmetic isimpracticable, but it does result in doubling the length of the keys.

A-12 47 A2 04UF Rev06

B. Label and Volume Formats of Magnetic
Tapes

Magnetic-Tape Conventions

A wide range of magnetic-tape handlers featuring various recording densities and
transfer ratesis available. Within this range are handlers capabl e of processing 7 -
or 9-track tape, using either the non-return-to-zero invert (NRZI) or the phase
encoded (PE) technique of recording.

Such awide range of tape handlers alows the user to choose peripheral devices not
only on system performance-to-cost ratios, but also on the desire to interchange
tapes with other equipment manufacturers.

GCOS7 software creates and reads tapes:

» in EBCDIC code with odd parity (called GCOS7/EBCDIC),
» inASCII code, on 9-track tape, with odd parity (called GCOS7/ASCII).

GCOS7/ASCII tapes must be labeled and may not contain U-type data blocks
(undefined), that is, data blocks with an undefined record format.

This Appendix gives detailed information on the standard formats. A standard tape
format:

- containslabelsin arange of formats defined later in Figure B-1 or contains no
labels, (BNONE) (in JCL, LABEL = NONE) in which case the first tape mark
indicates the end of recorded data,

» contains data blocks corresponding to one of the five accepted data-block
standards:

FFBYV VB U

Magnetic-tape files may be cataloged or uncataloged. For a cataloged file, use the
CREATE_MT_FILE (CRMTF) command to declare the file to the system and the
catalog. For a description of the CREATE_MT_FILE, see Section 7. For

uncatal oged files, the necessary information is supplied viathe file-define
parameter DEFi (described in Section 7).

47 A2 04UF Rev06 B-1

UFAS-EXTENDED User’s Guide

B.1.1 Reel/File Relationship

A file can be placed on asingle redl of tape, or on several reels of tape. When one
file occupies one red of tape, the file is considered to be asingle section, that is, a
single-volumefile. In this instance, afile section equatesto a volume (each reel of
tape is a magnetic tape volume). When one file extends over two or more reels of
tape, thefileis considered a multisection, that is, a multivolumefile; here again, a
file section equates to a volume (section 1 is on volume 1, section 2 is on volume 2,
etc.)

NOTE:
Non-standard format tapes and unlabeled tapes are single volume files only.

In COBOL, you can force the end of volume (CLOSE redl option) and make
the end-of-reel visible for a multivolume file. See the COBOL 85 Reference
Manual for details.

B.1.2 File Organization

Sequential file organization is used for magnetic-tape files. The recordsin thefile,
sorted or unsorted, are always read by the program sequentially. No random
accesses are possible. When arecord isto be inserted or deleted, the entire volume
(reel) must be copied. A record may not be read in update mode and then written
back in the same location. Old-master/new-master is the normal type of processing
for magnetic tape.

B.1.3 Data Organization

DATA BLOCKS

Data blocks can consist of one or more records, depending upon the record size,
and are of fixed or variable length.

Minimum and maximum block Iengths depend on the software, the hardware, and
the use of the tape for information interchange with other systems.
SOFTWARE AND HARDWARE LIMITATIONS

The hardware allows a minimum block length of 18 characters. The minimum
buffer must be at least this size.

B-2 47 A2 04UF Rev06

Label and Volume Formats of Magnetic Tapes

The hardware and software allow an unlimited maximum block length. Language
restrictions and the amount of memory space available for buffers determine this
limit.

AMERICAN NATIONAL STANDARDSINSTITUTE (ANSI) STANDARDS
FOR INTERCHANGE

ANSI standards alow a minimum block length of 18 characters and a maximum
block length of 2048 characters for interchange tapes. All GCOS7 systems can
create and read blocks within these limits.

DATA RECORDS

Records within magnetic tape blocks may be fixed length, variable length, or
undefined (GCOS/7/EBCDIC only). If interchange is desired, limit the maximum
record size to the maximum block size allowed by the American National
Standards Institute standard, 2048 characters.

COMPACTED DATA
Data can be compacted on magnetic tapes by suppressing repetitive blanks.

To do this, apply the COMPACT parameter in the CREATE_MT_FILE command,
and this attribute becomes a characteristic of the file, stored in the file label, and
valid during the entire existence of the file.

The following restrictions apply to a compacted file:

« only variable record format is allowed,
 the BLKSIZE given by the user must be at least equal to RECSIZE + 4 bytes
with an additional byte as a control character for each 128 characters of data,

For details of the COMPACT parameter, see the IOF Terminal User’s Reference
Manual.

47 A2 04UF Rev06 B-3

UFAS-EXTENDED User’s Guide

B.2 Native Magnetic Tape Label and Volume Formats

B.2.1 General Information

GCOS7 magnetic-tape software creates and processes tapes that conform to the
EBCDIC and ASCII code and collating sequences.

LABELS

Magnetic-tape labels are specia 80-character blocks that identify reels (volumes),
files, and sections of files stored on magnetic tape.

All labdls areidentified by their first four characters:

« thefirst three characters indicate the type of label,
« thefourth character indicates the number of the label within that type (HDR2 =
second file header abel).

Table B-1 lists the label identifiers, their meaning, and the number that may be
used per redl or file according to the GCOS 7/EBCDIC and GCOS 7/ASCI|
standards.

B-4 47 A2 04UF Rev06

Label and Volume Formats of Magnetic Tapes

Table B-1. Label Types

Maximum Number
Identifier Meaning GCOS 7/EBCDIC GCOS 7/ASCI
VOL Volume header label 8 per reel 1 per reel
UVL User volume header label 9 per reel
HDR File header label 8 per section 9 per section
UHL User header label 8 per section 26 per section
EQV End-of-volume trailer label | 8 per reel 9 per reel
EOF End-of-life trailer label 8 per file 9 per file
UTL User trailer label 8 per section 26 per section

For an explanation of section, refer to the paragraph "Reel/File Relationship"
earlier in this Appendix.

The software reads all the labelsin Table B-1 (see Figure B-1 at the end of this
Appendix) but processes only the VOL1, HDR1, HDR2, EOF1, EOF2, EOV 1 and
EOV 2 labels. All other labels are bypassed. The software creates tapes with the
formats shown in Figure B-2.

TAPE MARKS

The hexadecimal character 13 (the ASCII DC3 character and the EBCDIC TM
character both have this hexadecimal equivalent) is used as atape mark. The
software writes one tape mark to separate labels from data, one to indicate the end
of aredl, and two tape marks to indicate the end of afile. Since tape marks are not
placed in the input buffer when they are read, the programmer need never be
concerned with them when processing standard tapes.

47 A2 04UF Rev06 B-5

UFAS-EXTENDED User’s Guide

REFLECTIVE MARKERS

Two reflective tabs are pasted on the nonrecording side of the tape. One tab, the
beginning-of-tape (BOT) marker, isabout 10 feet from the start of the reel. The
other tab, the end-of-tape (EOT) marker, is about 18 feet from the end of the tape.
These markers are detected by a photoel ectric system.

GCOS//EBCDIC STANDARD FORMAT

The GCOS7/EBCDIC format is the label format used by the magnetic tape
software to process tapes written in EBCDIC or BCD code.

HEADER LABELS

Header label blocks are the identifying blocks that precede data on standard-format
tapes.

Table B-2. Volume Header Label 1 (GCOS7/EBCDIC)

Field Name Position | Length Description
Label Identifier 1 4 Contains VOL1 to identify this as a volume
header label.
Volume Serial Number 5 6 Contains information supplied by the

programmer that uniquely identifies this reel.
It may be 1-6 alphanumeric characters long,
left justified, with trailing blanks.

Volume Security 11 1 Not currently used. Set to zero.
Reserved 12 30 Contains blanks.
Owner’'s Name 42 10 Contains data supplied by the programmer

to identify the owner of the volume.
Any alphanumeric characters may be used.

Reserved 52 29 Contains blanks.

B-6 47 A2 04UF Rev06

Label and Volume Formats of Magnetic Tapes

VOL - Volume Header Labe

Each reel of magnetic tape is considered a volume and must contain a volume
header label (VOL1) toidentify it. The VOL1 label, placed as the first data on tape
by the magnetic-tape software, contains the information indicated in Table B-2.

HDR - FileHeader Labels

Thefile header labels (HDR1 and HDR?2) are automatically created by the software
when anew file or file section is opened, and are automatically read each time a
file or file section is opened. HDR1 contains operating system data and device
dependent information. Table B-3 describes the format of HDR1.

47 A2 04UF Rev06 B-7

UFAS-EXTENDED User’s Guide

TableB-3. FileHeader Labe 1(GCOS7/EBCDIC) (1/2)

. Relative _—
Field Name Position Length Description

Label Identifier 1 4 Contains HDR1 to identify this as a
file header label.

File Identifier 5 17 Contains the 17 rightmost characters
of the external file name. If the name is
longer than 17, then the remaining characters
are placed in the HDR2 label.

Volume Serial 22 6 Contains the first volume identifier.

Number It may be 1-6 alphanumeric characters,
left justified, with trailing blanks.

Volume Sequence | 28 4 Contains the sequence number of

Number this volume, decimal 0001 for a
single-volume file and for the first
volume of a multivolume file.

File Sequence 32 4 Contains the sequence number of

Number this file within a multifile set; it is
decimal 0001 for a single-volume
file and for the first volume of a
multivolume file.

Generation Numben 36 4 Contains the file generation
number (1 to 9999). If not used,it
contains 0001.

Version Number 40 2 Contains the file version number
(decimal 0 to 99). If not used, it
contains O.

B-8 47 A2 04UF Rev06

Label and Volume Formats of Magnetic Tapes

Table B-3. FileHeader Label 1 (GCOS7/EBCDIC) (2/2)
Field Name Relqt_ive Length Description
Position

Creation Date 42 6 Contains the date when the file was created.
The date is in the following format - a blank
followed by two numeric characters that
represent the year, followed by three numeric
characters that represent the sequence day
within the year (88001 = Jan 1, 1988).

Expiration Date 48 6 Contains the date the file expires.
The format is the same as the format of the
creation date.

File Security Indicator 54 1 Contains decimal 1 if the file is cataloged.
Contains zero otherwise.

Block Count 55 6 Not used. Set to zero.

System Code 61 13 Contains a unique code that identifies the
operating system that created this file.
This format is GCOS-4 64 nnn; nnn is the
version number of the system (e.g., 001, 002).

Reserved 74 7 Contains blanks.

The HDR2 file labd contains information on the file organization. Note that when
an input tape does not have a HDR2 labdl, the BLKSIZE, RECSIZE, and
RECFORM must be user-supplied either in the application program or in the DEFi
(JCL equivalent DEFINE) parameter. Table B-4 gives the format of HDR2.

47 A2 04UF Rev06

B-9

UFAS-EXTENDED User’s Guide

TableB-4. FileHeader Labe 2 (GCOS7/EBCDIC) (1/2)

: Relative -
Field Name Position Length Description

Label Identifier 1 4 Contains HDR2 to identify this as a file header
label.

Record Format 5 1 Contains a single character record format

Indicator code, F, V, or U.

Block Length 6 5 Contains the maximum block length,
excluding BSNs.
Minimum value is 00018.

Record Length 11 5 Contains the maximum record length present
in the file including the record header.

Recording Density 16 1 A one-byte code specifying the recording
density.
2 =D800
3=D1600
4 = D6250

Initial Volume Indicator 17 1 A one-byte code :
0 = first volume of a multi-volume
1 = not first volume.

Job Program Identifier 18 17 Not currently used.
Contains blanks.

Recording Technique 35 2 Contains blanks. Declares file to be
EBCDIC/odd parity.

B-10 47 A2 04UF Rev06

Label and Volume Formats of Magnetic Tapes

Table B-4. FileHeader Label 2 (GCOS7/EBCDIC) (2/2)
Field Name Relative Length Description
Position
Control Character 37 1 Contains C if the data is compact, otherwise
Identifier contains blank.
BSN Indicator 38 1 Contents : 1 = BSN present
0 =No BSN
The value 1 is the GCOS 7 default value.
Block Format Code 39 1 Indicates whether file is blocked or unblocked.
Blank = unblocked
B = blocked
Reserved 40 13 Contains blanks.
Remainder of the file 53 27 Contains leftmost 27 characters of the
name external file name. If external file name length
is less than or equal to 17 bytes, then this field
contain blanks.
Reserved 80 1 Contains blank.

TRAILER LABELS

Trailer 1abel blocks are the identifying blocks that follow data on GCOS7/EBCDIC
standard format tapes.

EOF - End-of-File Trailer Labds

The software places the end-of -file trailer labels on the tape each time an output
fileis closed. When the EOF labels are encountered on an input file, they indicate
that all datain the file has been processed (end-of-file). In this case, up to eight
end-of-file |abel's can be read, but only the first two are processed.

The software then compares the data blocks count contained in this label with the
number of data blocks input during processing. For a multivolume file, the count in
this label reflects the number of data blocks in the last volume only. Since the block
count is for data blocks only, it does not include tape marks or label blocks
(software or user). The EOF1 labd has the same format as the corresponding
HDR1 label, with afew exceptions. Table B-5 shows the EOF1 format.

47 A2 04UF Rev06

B-11

UFAS-EXTENDED User’s Guide

Table B-5. End-of-File Trailer Label 1 (GCOS7/EBCDIC)

. Relative o
Field Name Position Length Description
Label Identifier 1 4 Contains EOFL1.
5 50 (Same as HDR1 label).

Block Count 55 6 Contains a decimal number that indicates the
number of blocks in the file (single-volume
files) or in this section of the file (multivolume
files.)

61 20 (Same as HDRL1 label).

For an explanation of section, refer to the paragraph "Reel/File Relationship"
earlier in this Appendix.

The EOF2 label isthe same asthe HDR2 |abel except for the label identifier
(EOF2).

EQV - End-of-Volume Trailer Labels

The software places end-of-volume trailer labels at the end of a tape when thefile
on the tape extends to another reel. When an EQV label is encountered on an input
file, thislabel indicates that all the datain afile section has been processed (end-of -
section). In this case, up to eight end-of-volume labels can be read, but only the
first is processed.

The software compares the data block count contained in the label with the number
of data blocks input while processing this section of the file. The count isfor data
blocks only and does not include tape marks or label blocks (software or user). An
EOV1 label has the same format as the corresponding HDR1 label, with afew
exceptions. Table B-6 shows the EOV 1 format.

B-12 47 A2 04UF Rev06

Label and Volume Formats of Magnetic Tapes

Table B-6. End-of-Volume Trailer Label 1 (GCOS7/EBCDIC)
Field Name Relative Length Description
Position

Label Identifier 1 4 Contains EOV1.
5 50 (Same as HDRL1 label).

Block Count 55 6 Contains a decimal number that indicates the

number of blocks in the volume of the file.

61 20 (Same as HDR1 label).

The EOV2 label isthe same as the HDR2 label except for the label identifier

(EOV2).

VOLUME FORMATS

Figure B-1 shows magnetic tape volume formats that can be read by
GCOS7/EBCDIC. GCOS7 software reads al |abels but processes only the VOL 1,
HDR1, HDR2, EOF1, EOF2, EOV1, and EOV 2 labels. All others are bypassed.

By comparison, when atape volume is accepted (on input) by AVR (Automatic
Volume Recognition) as having no labels (SNONE), the access method software
assumes the tape contains a series of data blocks bounded by a single tape mark.
This tape mark is taken as the end-of-file.

47 A2 04UF Rev06

B-13

UFAS-EXTENDED User’s Guide

Single-Volume File

VOL |[HDR|UHL | T T|EOF UTL |T|T
18 | 1.8 | 1.8 | M DATA BLOCKS OF FILE M| 18 | 18 |M|M
Single-Volume File (SNONE)
DATA BLOCKS OF FILE ,\1;|
Multivolume File
VOL |[HDR| UHL | T T|EOV| UTL |T
18 | 1.8 | 1.8 /M| DATABLOCKSOFFIRSTREEL |\ 15| 1.8 |m
VOL |[HDR| UHL | T T |EOF | UTL|T|T
18 | 1.8 | 1.8 |M DATABLOCKS OF LASTREEL |1 | 158 | 1-8 |MIM
Multifile Single Volume
VOL |[HDR| UHL | T T | EOF | UTL UHL | T T EOF | UTL|T
18 | 1.8 | 1-8 |[M[FILEAIM 18 | 18 1-8 [MFLEBIm| 18 | 1.8 |M|M
FigureB-1. Magnetic Tape Label Formats Read by GCOS7/EBCDIC (1/2)

Multifile Multivolume

VOL | HDR | UHL | T |, - A| T | EOF HDR | UHL | T| FIRST SECTION
1-8 | 1-8 | 1-8 |M M| 1-8 1-8 | 1-8 |M OF FILE B
T|EOV | UTL | T | VOL | HDR | UHL LAST SECTION | T
M| 1-8 | 1-8 |[M| 1-8 | 1-8 | 1-8 OF FILE B M
EOV | UTL | T | HDR | UHL FILE C utL | T|T

1-8 | 1-8 |M| 1-8 | 1-8 1-8 |M|M

FigureB-1. Magnetic Tape Label Formats Read by GCOS7/EBCDIC (2/2)

B-14

47 A2 04UF Rev06

Label and Volume Formats of Magnetic Tapes

NOTE:

For alabeling scheme to be accepted as GCOS7/EBCDIC (described in the
CREATE_MT_FILE (JCL equivalent PREALLOC) command asANSI=0 and
in the file-define parameter group DEFi (JCL equivalent DEFINE) as
DATACODE= EBCDIC), the minimum requirementsare VOL 1, HDR1, EOF1,
EQOV1labds. If HDR2, EOF2, or EOV2 labels are present, they will also be
processed, but they are not mandatory.

47 A2 04UF Rev06

B-15

UFAS-EXTENDED User’s Guide

Table B-7. M agnetic-Tape Formats Written by GCOS7/EBCDIC

Empty labeled Volume : after PREPARE_TAPE (PRPTP)

T

VOL1HDR1 \,

Volume containing a single-volume file or the last section of multivolume file

T T T T
VOL1HDR1|HDR2 M DATA BLOCKS M EOF1/EOF2 M M
Volume containing an intermediate file section of a multivolume file
T T T
VOL1HDR1|HDR2 M DATA BLOCKS M EOV1/EOV2 M
Single volume unlabeled file ($none) : GCOS 7/EBCDIC only
DATA BLOCKS OF FILE ,\-I;I
A volume of Multivolume Multifile
T DATA BLOCKS T T T
VOL1HDR1/HDR2 M OF FILE A M EOF1/EOF2 M HDR1/HDR2 M
DATA BLOCKS OF T T
1st SECTION OF FILE B m |EOVIEOVZE
Multifile Single Volume
T DATABLOCKS | T T T
VOL1HDR1/HDR2 M OF FILE A M EOF1/EOF2 M HDR1/HDR2 M
DATA BLOCKS T T T
OF FILE B M |EOFLIEOR2I |y

B-16

47 A2 04UF Rev06

Label and Volume Formats of Magnetic Tapes

B.2.2 GCOS7/ASCII Standard Format

The GCOS7/ASCII format isthe label format used by the magnetic tape software
to process tapes written in the ASCII code.

HEADER LABELS

Header label blocks are the identifying blocks that precede data on standard-format

tapes.
Table B-8. 8. Volume Header Label 1 (GCOS//ASCII)
Field Name Relative Length Description
Position

Label Identifier 1 4 Contains VOL1

Volume Serial Number 5 6 Contains a unique identification code supplied
by the user. The code may be 1 to 6 alpha-
numeric characters long, left justified with
trailing blanks.

Volume Access 11 1 An alphanumeric character indicating
restrictions on access to the volume. A space
indicates no restrictions

Reserved 12 26 Contains spaces.

Owner’'s Name 38 14 Alphanumeric characters identifying the
owner. Default is all spaces.

Reserved 52 28 Contains spaces.

Label Standard Version 80 1 3 = 1974 version of International standard

(1ISO/1001), the current version generated by
GCOS 7.

1,2 = previous versions of the International
standard.

VOL - Volume Header Label

Each reel of magnetic tape is a volume and must contain a volume header 1abel
(VOL1) toidentify it. The VOL1 label, placed as the first data on the tape by the
magneti c-tape software, contains the information shown in Table B-7.

47 A2 04UF Rev06

B-17

UFAS-EXTENDED User’s Guide

HDR - FileHeader Labels

Thefile header labels (HDR1 and HDR?2) are automatically created by the software
when anew file or file section is opened. HDR1 contains operating system data
and device dependent information. Table B-8 shows the format of HDR1.

TableB-9. FileHeader Labd 1 (GCOS7/ASCII) (1/2)

Relative

Field Name Position

Length Description

Label Identifier 1 4 Contains HDR1 to identify this as a file label.

File Identifier 5 17 Contains the external file name for ASCII
magnetic-tape files, this cannot exceed 17
characters.

Volume Serial Number 22 6 Contains the first volume identifier.

Volume Sequence 28 4 Contains the sequence number of this file
Number within a multifile set; it is decimal 1 for a single
volume file and for the first file of a
multivolume set.

File Sequence Number 32 4 Contains the sequence number of the file
within a multifile set; 0001 for a single-file
volume and for the first file of a multivolume
set.

Generation Number 36 4 Contains the file generation number
(1 to 9999).
Default (no generations) is 0001.

Version Number 40 2 Contains the file version number (00 to 99). If
not used, contains O.

Creation Date 12 6 Contains the date on which the file was
created. The date is in the following format

- a blank followed by two numeric characters
which represent the year, followed by three
numeric characters which represent the day
within the year.

B-18 47 A2 04UF Rev06

Label and Volume Formats of Magnetic Tapes

Table B-9. FileHeader Labd 1 (GCOS7/ASCII) (2/2)
Field Name Relat_ive Length Description
Position

Expiration Date 48 6 Contains the date on which the file expires.
The format is the same as that of the
creation date.

File Security Indicator 54 1 Contains decimal 1 if the file is cataloged,
and spaces if it is not.

Block Count 55 6 Not used, contains zero.

System Code 61 13 Contains a unique code that identifies the
operating system. The format is
GCOS-4 LL nnn, where LL is the level
number (61, 62, 64 or 66) and nnn is the
version number of the system (001, etc).

Reserved 74 7 Contains blanks.

The HDR2 file labd contains information on the file organization. Table B-9 shows

the format of the HDR2 labdl.

47 A2 04UF Rev06

UFAS-EXTENDED User’s Guide

TableB-10. FileHeader Label 2 (GCOS7/ASCII)

. Relative .
Field Name Position Length Description

Label Identifier 1 4 Contains HDR2 to identify this as a file header
label.

Record-Format Indicator 5 1 Contains a single character record format
code.F for fixed length and V for variable
length.

Block Length 6 5 Contains the maximum block length including
the block header. The minimum value is
00018.

Record Length 11 5 Contains the maximum record length including
the record header.

Reserved 16 35 Contains blanks.

BSN Indicator 51 2 Indicates whether BSNs are used.

0 =no BSN

6 = Level 64/66 BSN

6 = Level 61 BSN
Reserved 53 28 Contains blanks.

TRAILER LABELS

Trailer label blocks are the identifying blocks that follow data on GCOS7/ASCI|
standard-format tapes.

EOF - End-of-File Trailer Labels

The software places the end-of -file trailer labels on the tape each time an output
fileis closed. When EOF labels are encountered on an input file, they indicate that
al datain the file has been processed (end-of-file). For filesin GCOS7/ASCI|
format, up to nine end-of-file labels can be read, but only the first two are
processed.

B-20 47 A2 04UF Rev06

Label and Volume Formats of Magnetic Tapes

The software then compares the data-blocks count in this label with the number of
data blocks input during processing. For a multivolume file, the count in this label
reflects the number of data blocksin the last volume only. Since the block count is
for data blocks only, it does not include tape marks or label blocks (software or
user). The EOFL1 label has the same format as the corresponding HDR1 label, with
afew label exceptions. Table B-10 shows the EOF1 format.

TableB-11. End-of-File Label 1 (GCOS7/ASCII)

. Relative .
Field Name Position Length Description
Label Identifier 1 4 Contains EOF1.
5 50 (Same as HDRL1 label).

Block Count 55 6 Contains a decimal number that indicates the
number of blocks in the file (single-volume
files) or in this section of the file (multivolume
files).

61 20 (Same as HDRL1 label).

The EOF2 label isthe same asthe HDR2 |abel except for the label identifier
(EOF2).

EQV - End-of-Volume Trailer Labels

The software places the end-of-volume at the end of areel of tape when thefile (or
last file for amultivolume, multifile set) extends onto another reel. When an EOV
labd is encountered on an input file, thislabel indicates that al the datain afile
section has been processed (end-of-section). In the case of GCOS7/ASCII tapes,
there may be up to nine EQV labels, but only the first is processed.

The software compares the data-block count contained in the label with the number
of data blocks input while processing this section of the file. The count isfor data
blocks only, and does not include tape marks or label blocks (software or user). An
EOV 1 labd has the same format as the EOF1 label except for the label identifier
(EOVY).

VOLUME FORMATS

Figure B-3 shows the magnetic-tape formats that can be read by GCOS7/ASCII.
GCOS7 software reads all labels but processes only theVOL1, HDR1, HDR2,
EOF1, EOF2 and EOV 1 labels. All other labels are bypassed.

47 A2 04UF Rev06 B-21

UFAS-EXTENDED User’s Guide

Single-Volume File

VOL | UVL | HDR | UHL T T EOF | UTL T T
1 19| 1-9 |1-26| M DATA BLOCKS OF FILE M |19 126 M | M
Multivolume File

VOL | UVL |HDR|UHL | T DATA BLOCKS OF T EOF | UTL T
1 1-9 1-9 |1-26 M FIRST REEL M 1-9 | 1-26 M

VOL | UVL |HDR|UHL | T DATA BLOCKS OF T EOF | UTL T T
1 1-9 | 19 |1-26| M LAST REEL M 1-9 | 1-26 M M
Multifile Single Volume

VOL | UVL |HDR|UHL | T FILE A T EOF | UTL T HDR|UHL| T
1 1-9 1-9 |1-26 M M 1-9 | 1-26 M 1-9 | 1-26 M

T EOF | UTL T T
FILEB | M |19 126 M | ™
Multifile Multivolume
VOL | UVL |HDR|UHL | T FILE A T EOF | UTL T HDR | UHL| T
1 1-9 1-9 |1-26 M M 1-9 | 1-26 M 1-9 | 1-26 M
First section T EOF | UTL T |[VOL|UVL HDR|UHL| T Last section T
of file B M 1-9 | 1-26 M 1 1-9 | 19 |1-26| M of file B M
EOF | UTL T HDR|UHL| T FILE C T EOF | UTL T T
1-9 | 1-26 M 1-9 [1-26| M M 1-9 | 1-26 M M

FigureB-2. Magnetic Tape Label FormatsAccepted by GCOS7/ASCI|

B-22 47 A2 04UF Rev06

C. Hexadecimal Layout of Address Spaces in
an Indexed Sequential File

ThisAppendix helps you analyze Cl layouts and debug Cls for indexed sequential
files. The layouts are intended only as a guide.

The following example represents a UFAS-EXTENDED file allocated on a non-
FSA disk. In the case of aFBO file, an extra byte precedes the Cl header and an
extra byte follows the end of the CI.

INDEX CI (Address spaces 3, 4, 6 and 7)

nIoloRONONONONO
[T [11 []

|07DAD026 | 00000000 |00C70000 0000C3CL FLF1F8FL| 00000100 C3CLF1F8 F8F70000

0200C3C1 F2FOFOF2 00000300 C3ClF2F2 F1F70000 0400C3Cl1 F2F2F9F2 00000500
C3C1F2F4 FAF20000 0600C3Cl1 F2F6F5F8 00000700 C3ClF2F7 F9F20000 0800C3C3
FOFOF6F8 00000900 C3C3F2F1 F3F60000 OAOOC3C6 FOF7F4F7 00000BO0 C3C6F2F1
FAF20000 O0COOC3F6 F1F6F3F8 00000D00 C3F6F6F3 F5F10000 OEOOC3F6 F8F9FOF4
00O000F00 C3F7F2F6 F6F60000 100003F7 F3F2F9F8 00001100 C3F7F3F7 F8F40000
1200C3F7 F3F9F7F2 00001300 C3F7F4F1 F6F10000 1400C3F7 F4F2F8F2 00001500
C3F7F4F5 F1F30000 1600C3F7 F4F7F4F2 00001700 C3F7F4F9 F9F90000 1800C3F7

FSF2F3FO 00001900 C3F7F5F5 F1F80000

47 A2 04UF Rev06 C-1

UFAS-EXTENDED User’s Guide

KEY TO INDEX CI LAYOUT

i) Cl Header
Amount of space used within the CI is 2018 (2016 in the case of an FSA disk file).
Amount of free space available within the Cl. (The CISIZE is 2048).

Key type. 00 = primary key (index), 01 = secondary key (index). Herethe primary
key sizeis 6 characters and the keyloc is 35.

Cl number within the address space. Herethefirst Cl is shown (000000)

Last active line number of the Cl (index entry). Hereit is 00C7.

ii) Index entry

Cl number of the lower level CI in which the highest referenced key is to be found.
For example, a Cl index in address spaces 3 and 6 pointsto a Cl index in address
space 4 and 7 respectively, whereas a Cl index in address spaces 4 and 7 pointsto a
data Cl.

Referenced Cl status.
00 = one or more valid recordsin the CI
80 = all recordsin the Cl have been deleted

The highest key value in theindex CI of the next lowest level. Hereit is
C3C1F1F1F8F1.

Thereis only one CI header, but there are many index entries.

C-2 47 A2 04UF Rev06

Hexadecimal Layout of Address Spaces in an Indexed Sequential File

DATA CI (address space 2)

OIOIONONORORORO

[1]

|

|]

(9) (o) W)

|

|

|075B00AS5 || 00000000 || 00080008 || 0000FFFF

quooooq \Qoooooco\

01@04040

40404040
40404040
F2404040
40404040
40404040

D440E2E3

40404040
40404040
40404040
E3D94040
40404040

40404040
00000000

40404040
40404040
40404006
40404040
C3FOF9F1
40C3C1FO0
C1C3D2D6

40404040
4040C3C1
40C6E6F6
40404040
40404040

40404040
00000000

40404040
40404040
E6F6FOF7
40404040
F2FOC3FO
FAFOF940

E540D9C9

40404040
FOF8F7F6
F3F54040
40404040
40404040

40000000
00000000

40404040
4040F34B
404040C4
40404040
FOFOF940
E5F24040

D5C740F1

40404040
40E5F340
40D6D7D9
40404040
40404040

00000000
00000000

40100000 CD02(C34B

F1404040

ES8D5C1CA

40404040

40404040

40404040

40404040
FFE740D7
D3C5C440
404040C3
4040C6E6
40E6CBC5
D54BE2E3
40404040

00000000
059B04CE

40404040
4040D3D6
40404040
40404040
C6EBF6FO0

40404040
D961C3D9
40404040
C1F1F1F8
F6FOF240
D540C46B
C54BE2D9
40404040

00000000
04010334

F3F44BF0
C3C1FOF3
C1CACOD5
40404040
40404040
F3404040

40404040
40C961D6
40404040
F1404040
4040D4C9
D76BD14B
C16BD3C7
40404040

00000000

40404040
F3F8C340
F5F8C340
C740E2D4
40401000
40404040

E3C1E2D2

100000CD
40C6C1C9
40404040
40404040
E9D6D740
D74BE2E3
40404040
40404040

00000668

0267019A] [00CD0000]

1s)

1) (13

47 A2 04UF Rev06

C-3

UFAS-EXTENDED User’s Guide

KEY TO DATA CI LAYOUT

Since the records are large, only part of the data Cl is shown.

Cl Header: length 20 bytes

Amount of space used within the CI.

Amount of free space available within the Cl.

Key type (dways 00).

Cl number within the address space. Hereitisthefirst ClI (000000).
Last logica line number of the CI. Hereit is 0008.

Last physical line number of the Cl. Hereitis0008. In the case of an empty Cl it
would be FFFFFF.

First line number of the Cl. Here thefirst record is shown (0000).
Reserved.

The number of the next CI, in thiscase 1. If thiswerethelast Cl, it would be set to
FFFFFF.

Record header: length 5 bytes

Record status
1 = active record
0 = deleted record

Record length, including header, here 205 bytes.

Number of the next line in the chain of records found in the Cl. If arecord has the
highest key of the Cl, thiszoneis FF.

Record descriptor: length 2 bytes

Cl offset related to the end of the header of line 00.
Asfor 13, line 01.

Asfor 13.

47 A2 04UF Rev06

Hexadecimal Layout of Address Spaces in an Indexed Sequential File

Dense Index Cl (address space 5)

€y

(8)(9) (2f3fafs)(e) (1)

///

00AG075A

01000000

00040000

/()00006’56 F5F4F700H0‘000‘0‘000 00‘0100% E6F6FOF7

00000000

00000200

C6EGF6F1

F8FFF#FF FFO00003 O0O0C6E6F6 F3F3FFFF FFFFO000
I

0400FFFF

FFFFFFFF

FFFFFFO0

00050?00 00000000 00000000 00000600 00000000

00000000

00000007

00000000

[
‘OOOOOOOO‘ 00000000 00000000 00000080 00000000

00090000
00000000
FFFFFFOO
00000000

O0FFFFFF

00000000
O00OOFFFF
00000000
000O000FF
00000000

00000000
FFO00000
00000000
FFFFO000
00000000

00000AOO0 00000000 00000000 0000000B 00000000
00000000 O0OOOOOFF FFFFOOOO 00000000 00000000
OOFFFFFF 00000000 00000000 OOOOFFFF FFO0O0000
00000000 00000000 FFFFFFOO 00000000 00000000
OOOOFFFF

KEY TO DENSE INDEX CI LAYOUT

Cl Header: 20 bytes

Amount of space used within the CI.

Record header

Record status
0001 (1) = active record
0000 (0) = deleted record
Reserved (12 bits)
Spanning flag (2bits)

00 (0) = No record exists with identical key

01 (4) = Thisisthefirst record in agroup of records
having identical keys

11 (c) = Thisis an intermediate record in a group of

records having identical keys

10 (8) = Thisisthe last record in agroup of records

having identical keys.

47 A2 04UF Rev06

C-5

UFAS-EXTENDED User’s Guide

Record length including header;

Number of the next line in the chain of records found in the Cl. If arecord has the
highest key in the Cl, this zoneis set to FF.

Record key.

Duplicate number. Indicates a duplicate key group if the spanning flag is other
than Q0.

SFRA space (Simple File Relative Address) of variable length. This containsthe
addresses of data records having the secondary key referenced in 7.

SFRA = data Cl number (3 bytes) + line number (1 byte)

C-6 47 A2 04UF Rev06

D.JCL - GCL / GCL - JCL Correspondence
Tables

Thislist is not comprehensive because there are some JCL statements that have no
equivalentin GCL.

Table D-1. JCL-GCL Correspondence (1/2)
JCL GCL Abbreviation
COMPARE COMPARE_FILE CMPF
COMPARE_FILESET CMPEST
CREATE LOAD_FILE LDF
LOAD_FILESET LDFST
DEALLOC DELETE_FILE DLF
DELETE_FILESET DLFST
FILALLOC CREATE_FILE CRF
CREATE_FILESET CRFST
FILDUPLI COPY_FILE CPF
COPY_FILESET CPEST
LIST FILE LSF
FILLIST LIST FILESET LSFST
LIST _FILE_SPACE LSFSP
FILMAINT MAINTAIN_FILE MNF
FILMODIF CLEAR_FILE CLRF
MODIFY_FILE_STATUS MDFSTAT
MODIFY_FILE MDF

47 A2 04UF Rev06

D-1

UFAS-EXTENDED User’s Guide

Table D-1

JCL-GCL Correspondence (2/2)

JCL

GCL

Abbreviation

FILREST

FILSAVE

LIBALLOC

LIBDELET

MERGE

PREALLOC

PRINT

SETLIST

SORT

SORTIDX

VOLLIST

VOLMAINT

VOLMODIF

VOLPREP

VOLREST

VOLSAVE

RESTORE_CATALOG
RESTORE_FILE
RESTORE_FILESET
SAVE_CATALOG
SAVE_FILE
SAVE_FILESET
BUILD_LIBRARY

CLEAR_LIBRARY
DELETE_LIBRARY

MERGE_FILE
BUILD_FILE
CREATE_MT_FILE
MODIFY_FILE_SPACE

PRINT_FILE
PRINT_FILESET

EXPAND_FILESET
SORT_FILE
SORT_INDEX
LIST_VOLUME
MAINTAIN_VOLUME
MODIFY_DISK
CLEAR_VOLUME
PREPARE_DISK
PREPARE_TAPE

RESTORE_DISK

SAVE_DISK

RSTCAT
RSTF
RSTFST
SVCAT
SVF
SVFST
BLIB

CLRLIB
DLLIB

MRGF
BF
CRMTF
MDFSP

PRF
PRFST

EXPFST
SRTF
SRTIDX
LSV
MNV
MDD
CLRV
PRPD
PRPTP
RSTD

SvD

D-2

47 A2 04UF Rev06

JCL - GCL / GCL - JCL Correspondence Tables

Table D-2. GCL-JCL Correspondence (1/2)

GCL Abbreviation JCL
BUILD_FILE BF PREALLOC
BUILD_LIBRARY BLIB LIBALLOC
CLEAR_FILE CLRF FILMODIF
CLEAR_LIBRARY CLRLIB LIBDELET
CLEAR_VOLUME CLRV VOLPREP
COMPARE_FILE CMPF COMPARE
COMPARE_FILESET CMPEST COMPARE
COPY_FILE CPF FILDUPLI
COPY_FILESET CPFST FILDUPLI
CREATE_FILE CRF FILALLOC
CREATE_FILESET CRFST FILALLOC
CREATE_CT_FILE CRCTF FILALLOC
CREATE_MT_FILE CRMTF PREALLOC
DELETE_FILE DLF PREALLOC
DELETE_FILESET DLFST DEALLOC
DELETE_LIBRARY DLLIB DEALLOC
EXPAND_FILESET EXPFST LIBDELET
LIST_FILE LSF SETLIST
LIST_FILEST LSFST FILLIST
LIST_FILE_SPACE LSFSP FILLIST
LIST_VOLUME LSV VOLLIST
LOAD_FILE LDF CREATE
LOAD_FILESET LDFST CREATE

47 A2 04UF Rev06

D-3

UFAS-EXTENDED User’s Guide

Table D-2 GCL-JCL Correspondence (2/2)

GCL Abbreviation JCL
MAINTAIN_FILE MNF FILMAINT
MAINTAIN_VOLUME MNV VOLMAINT
MERGE_FILE MRGF MERGE
MODIFY_DISK MDD VOLMODIF
MODIFY_FILE MDF FILMODIF
MODIFY_FILE_SPACE MDFSP PREALLOC
MODIFY_FILE_STATUS| MDSTAT FILMODIF
PREPARE_DISK PRPD VOLPREP
PREPARE_TAPE PRPTP VOLPREP
PREPARE_VOLUME PRPV VOLPREP
PRINT_FILE PRF PRINT
PRINT_FILSET PRFST PRINT
RESTORE_CATALOG RSTCAT FILREST
RESTORE_DISK RSTD VOLREST
RESTORE_FILE RSTF FILREST
RESTORE_FILESET RSTFST FILREST
SAVE_CATALOG SVCAT FILSAVE
SAVE_DISK SVD VOLSAVE
SAVE_FILE SVF FILSAVE
SAVE_FILESET SVFST FILSAVE
SORT_FILE SRTF SORT
SORT_INDEX SRTIDX SORTIDX

D-4 47 A2 04UF Rev06

E. More About Buffers

Asexplained in Section 5, you can control the use of buffers by specifying the
three parameters. POOL SIZE, NBBUF and BUFPOOL. This Appendix contains
further information about buffers and memory resources.

Buffer Algorithm

Buffers can bein one of the following states:

» busy
* remember
s empty

A busy buffer isonethat contains a Cl that is being accessed.

A remember buffer is one that contains a Cl that is kept in memory in order to be
reused subsequently. Whenever a buffer can be "remembered”, this avoids an 1/0
operation.

An empty buffer is a buffer whose contents are meaningless, for example, after the
abort of a commitment unit.

When a program needs to process a record, UFAS-EXTENDED first checksiif the
record isin one of the remember buffers. If it is, that remember buffer is activated
and the search ends. This means that no physical read needs to be made. A record is
kept of the number of times a remember buffer is reused. This count is printed out
in the JOR at the end of the job (HITCOUNT).

If the required record is not in aremember buffer, a data Cl must be read.

UFAS-EXTENDED finds space in alocated memory to accommodate these Cls
(data or index). Figure E-1 describes how buffers are handled.

UFAS-EXTENDED checks whether all buffers have been allocated, that is,
whether the maximum number of buffersfor this file has been reached. If al
buffers have been dlocated, one remember buffer will be deleted and a Cl will be
read into it.

47 A2 04UF Rev06 E-1

UFAS-EXTENDED User’s Guide

If the maximum number of buffersis not reached, a new buffer will be created
provided the maximum size of the memory allocated to buffersis not reached.

If the maximum size of the buffer poal is reached, one or more buffers will be
deleted to make space for the requested Cl.

Request for a Cl
(Add 1 to GETCICOUNT)

Is the CI
already in the buffer
Pool ?

Yes

Add 1 to HITCOUNT

Is the max.
No. of buffers (NBBUF)
reached ?

No

Is the
total buffer space
(POOLSIZE)
full ?

Is there an
empty or remember
buffer the same size
as the requested
Cl?

Is there an
empty or remember
buffer the same size
as the requested
Cl?

DELETE a differently
Yes| (A)— sized buffer
(Add 1 to SEGDL)

read the requested
Cl:add 1to
READIOCT

CREATE a buffer
(Add 1 to SEGCR)

The contents of the

new Cl overwrites

the contents of the
old CI

Is there an
empty or remember
buffer greater than
the requested
Cl?

Are the
empty or remember
buffers smaller than
the requested
Cl?

read the requested
Cl:add 1to

DELETE n buffers READIOCT

(Add n to SEGDL)

e
| BUFNAV or CMWSOVl PROCESSING

FigureE-1. Buffer Handling

E-2 47 A2 04UF Rev06

F. UFAS Files under UFAS-EXTENDED

ThisAppendix applies only if you are alocating UFAS filesunder UFAS-
EXTENDED through the VERSION = PREVIOUS parameter.

Compatibility between UFAS-EXTENDED and UFAS

For reasons of compatibility UFAS-EXTENDED continues to fully support the old
UFASfiles. However, you are recommended to convert such filesto the new fixed-
block file format.

For coupled systems, both systems must run with the same version of UFAS
because thereisno dynamic sharing facility and no backup (TCRF) facility
between a UFAS-EXTENDED and a UFAS system or vice versa.

If afileisunstablein arelease, the file must be recovered in that rel ease.

Since Release V6, the VERSION = PREVIOUS parameter can be specified only in
the JCL statement PREALLOC, and not in the BUILD_FILE command.

Features of UFAS

The size of an index Cl can be different from the size of adata Cl, becauseit is
computed by UFAS on the basis of the CASIZE parameter.

UFAS supports 18,500 buffersin aTDS application where VERSION =
PREVIOUS.

800 files can be shared at system level and 500 files can be simultaneously opened
for aTDS application.

47 A2 04UF Rev06 F-1

UFAS-EXTENDED User’s Guide

CONTROL AREA (CA)

One or more Cls make up an alocated area of the file known as a Control Area
(CA). A CA isthe unit of expansion for such an indexed sequential file. For agiven
file al CAs contain the same number of Cls. Only address space 2 (containing
data) and address space 5 (containing all secondary keys) have their Cls grouped
into CAs. Thisisimportant when you are all ocating space for such an indexed
sequential file. Seethe BUILD FILE command in Section 6. Once you have
specified the size of aCA, UFAS-EXTENDED builds CAs dynamically asthefile
grows.

Choosingthe CASIZE

CASIZE isthe number of data Cls per CA. CASIZE is also the number of index
entriesin an index Cl. Maximize the CASIZE within the following limits if
possible:

20 <= CASl ZE <= 100

This means that the most efficient range of values for CASIZE isfrom 20 to 100
Cls. However, you may use avalue greater than 100 if this eliminates alevel of
indexes, with a consequent saving of 1/Os during processing.

For example, if you have a CISIZE of 4096 and a CASIZE of 100, Table 6-1 shows
that there are 144 Cls per cylinder for an MS/D500 disk drive. In other words, one
CA is approximately equal to one cylinder on an MS/D500 disk drive.

If you omit CASIZE, then UFAS-EXTENDED automatically calculates the
CASIZE. CASIZE isinitidly chosen so that the number of data Cls that will fit it
occupy one cylinder minus two tracks, and CAFSP = 0.

To leave free space at initial fileloading time in each CA which isan integral
number of empty Cls, specify the amount of free space to be left by using the
CAFSP parameter in the BUILD FILE command.

Mass I nsertion

Mass Insertion mode is not available for UFAS files with VERSION set to
PREVIOUS.

F-2 47 A2 04UF Rev06

UFAS Files under UFAS-EXTENDED

Example Showing how to Allocate a Filewith the UFAS File Format

This example shows you how to alocate afilein the UFAS file format
(VERSION=PREVIOUS).

PREALLOC R HANS: V1: M5/ D500 Allocates the file named R HANS on the

MS/D500 volume named V1
UFAS = | NDEXED Thefile size is 5000 records; the
SIZE = 5000 UNIT = increment sizeis 1000 records. The Cl
RECORD size is 2048 bytes and the Cl free space
I NCRSI ZE = 1000 is 25% (allows the subsequent insertion
Cl SI ZE = 2048 of 4 records). The record sizeis 120
ClFSP = 25 bytes; the key field startsin byte 1. The
key is4 byteslong. Thefileis alocated
RECSI ZE = 120 in UFAS format. Each CA contains 30
KEYLCC = 1 Cls. The CA free space is 10% (allows
KEYSI ZE = 4 the insertion of 3 Cls)
VERSI ON = PREVI QUS
CASI ZE = 30
CAFSP = 10;

47 A2 04UF Rev06

F-3

UFAS-EXTENDED User’s Guide

F-4 47 A2 04UF Rev06

G. Batch Performance Improvement

G.1 Overview

The Batch Booster option provides greatly improved I/O (input/output)
performance. This feature enables multiple block 1/0O operations during disk
access, instead of block by block operations. This optimizes ELAPSE and CPU
time during file accesses.

The Batch Booster is also known asthe BPB (blocks per buffer) option, sinceitis
requested viathe BPB parameter. The terms "Batch Booster" and "BPB
Processing” are used interchangeably to refer to the features described in this
Appendix.

The Batch Booster isabilled option (M1) of GCOS 7 HPS AP and EXMS Version
V7. The Batch Booster is described in more detail in the manual Batch Booster.

G.1l1 How to Activate the Batch Booster Option

The statements or keywords used to activate the Batch Booster are as described
below.

G.1.1.1 Activation External to the Program

The Batch Booster can be activated in the step enclosure or by a utility as shownin
the following table:

Satement Keyword Parameter

JCL Step Enclosure
DEFINE BPB

47 A2 04UF Rev06 G-1

UFAS-EXTENDED User’s Guide

JCL Utilities

INDEF BPB
OUTDEF
PRTDEF

G.1.1.2 Activation Within a Program

The Batch Booster cannot be initiated by a COBOL or C Language program.
In GPL, use H_FD, or H_DEFINE/H_DCFILE with the BPB parameter.

G.1.2 How BPB Processing Works

UFAS-EXTENDED transfers several Clsfrom or to the buffersin asingle
Input/Output. The number of Cls depends on the value you set with the BPB
parameter. Thisvalue must be in the range 2 to 255.

The value of BPB is automatically decreased by the access method to comply with
therule:

BPB * CISIZE must be less than 64K bytes.

G-2 47 A2 04UF Rev06

Batch Performance Improvement

G.2 Conditions for BPB Processing

BPB processing is possible under the following conditions:

« fileaccess must be at record level

« thevalue of the BPB parameter must be greater than 1

« the application must be BATCH monoprocess

« thefile organization must be SEQUENTIAL or RELATIVE
- fileassignment must be:

ONEWRITE/SPREAD
ONEWRITE/SPWRITE

NORMAL/SPREAD

NORMAL/SPWRITE

NORMAL/READ

NORMAL/WRITE

or MONITOR/READ with READLOCK=STAT

» open mode must be INPUT, OUTPUT, or APPEND
« access mode must be SEQUENTIAL

« version must be CURRENT

« there must be nojournalization

« there must be no GAC (General Access Control)

When these conditions are not met, BPB processing is ineffective. The value of
BPB isignored and the processing is executed asif the value were set to 1. The
processis not usually aborted, and thereis no error message or return code. Thisis
not the case, however, with the use of the multi SCB mechanism (for instance,
accessto UFASfilesunder 1QS). If this mechanism is used with a BPB parameter
greater than 1, you will receive the return code CONFLICT.

47 A2 04UF Rev06 G-3

UFAS-EXTENDED User’s Guide

G.3 Support of Data Management Utilities

BPB processing is effective with the following data management utilities which
work at record level:

COMPARE on both input files, and on the output file, provided that
thefiles are not relative filesin direct access.

CREATE on theinput or the output file, provided that the fileis not
arelativefilein direct access.

PRINT on theinput file.

FILSAVE on the output file provided that it isa UFAS disk file.

G.3.1 File Transfer

Thefiletransfer utility supports BPB processing on thelocal file only. Therefore:
- at the sending site, BPB is effective for the input file

- atthereceiving site, BPB is effective for the output file.

G.3.2 SORT/MERGE Utilities

G.3.2.1 Sort

The conditions under which Sort calls the UFAS Access Method are given below.

M ono-Process Sort

For files of UFAS Indexed Organization, Sort always calls UFA S access method
(but the UFAS BPB does not apply in this case).

G-4 47 A2 04UF Rev06

Batch Performance Improvement

For Input UFAS Sequential or UFAS Relative files, Sort calls the UFAS access
method in the following cases:

« SHARE = FREE, DIR, ONEWRITE, or (SHARE=MONITOR and
READLOCK=STAT)

« or "al volumes are not mounted for thefile",

« or TRUNCSSF,

» Of concatenation,

« or REPEAT and CKPTLIM,

- or the DSL contains: KEYADDR or ADDATA or ADDROUT.

For Output UFAS Sequential or UFAS Relative files, Sort calls the UFAS access

method in the following cases:

« SHARE not = NORMAL,
« or "al volumes are not mounted for thefile",
« or REPEAT and CKPTLIM.

NOTE:
For SHARE = MONITOR, (READLOCK = STAT) or (ACCESS = SPREAD or
SPWRITE) are mandatory for INFILE. For OUTFILE, ACCESS = SPWRITE
is mandatory when SHARE = MONITOR.

M ulti-Process Sort

For files UFAS Indexed Organization, Sort aways cdlsthe UFAS access method
(but the UFAS BPB does not apply in this case).

For Input UFAS Sequential or UFAS Relativefiles, Sort calls the UFAS access
method in the following cases:

SHARE = FREE, DIR, ONEWRITE, or (SHARE=MONITOR and
READLOCK=STAT)

« or "al volumes are not mounted for the file",
« or TRUNCSSF,
« Or concatenation,

« or the DSL contains
(KEYADDR or ADDATA or ADDROUT)
and
(START
or HALT
or ((INVREC"=CONTINUE) or (ERROPT*=IGNORE)) and (RECFORM=V))

47 A2 04UF Rev06 G-5

UFAS-EXTENDED User’s Guide

G.3.2.2 Merge

For Output UFAS Sequential or UFAS Rd ative files, Sort callsthe UFAS access
method in the following cases:

« SHARE not = NORMAL,
« or "al volumes are not mounted for the file".

NOTE:
For SHARE = MONITOR, (READLOCK = STAT) or (ACCESS = SPREAD or
SPWRITE) are mandatory for INFILE. For OUTFILE, ACCESS = SPWRITE
is mandatory when SHARE = MONITOR.

Merge callsthe UFAS access method under the same conditions as Sort (except
that the DSL conditions do not apply).

G.4 Usage In GCL

This appendix describes the usage of BPB in batch and consequently via JCL.
However, GCL can also benefit from BPB.

In GCL, BPB is available viathe GCL command EXEC PG and the GCL
commands which call the GCOS 7 utilities.

For more details, see the manual Batch Booster.

G-6

47 A2 04UF Rev06

A

address space |1-8
hex layout |C-1
After Journal |5-48

ALCi parameter group
ASGi

file assignment parameters
ASGi parameter group

ASSIGN [7-14]

B

Before Journal _[5-47]
BLKSIZE [7-4]

buffer management [5-24]
buffer pool |5-27

buffer space |5-26]
buffers

algorithm -
batchu
busy E

creation |5-41
deletion |5-41

IOF usage [5-33
number
remember

states |E-1

Cl |1-7 .
debugging [C-1
layout |§__1
maximum allocation |6-7

CIFSP parameter |6-23

CISIZE
indexed sequential

control interval

CREATE_FILE

cylinder
maximum allocation

D

data block

data Cl format
indexed sequential
relativefile
sequential file

Data Servi ces Language

DEFi
DEFi parameter iroui [6-49]

device sharr ng
DSL m
E

EXEC PG [5-5]
extensible processing [5-12)]

Index

47 A2 04UF Rev06

UFAS-EXTENDED User’s Guide

F

FBO disk volumes [1-9
file attribute definition |5-23
filesharing [5-18|
files

dlocation |6-4

integrity |
merging [8-1

migrating VBO-FBO
processing

restoring [5-55
simulated dlocation |6-13|
sorting

fixed length records |1-6
free space

G
GCL/JCL correspondence [D-1]

INCRSIZE parameter [6-12

indexed sequential
Clsize |6-22
dynamic access
file structure
open modes

record insertion
secondary keys
sequential access

J

JCL/GCL correspondence
job occurrence report
JOR

L

LIST_FILE
LIST_FILE_SPACE

LOAD FILE
logical records
M

MAINTAIN_MIGRATION
mass insertion

MNMIG [85

MODIFY_FILE |
MODIFY_FILE_SPACE [6-56

MOUNT parameter |5-14
multivolume devices |5-14
multivolumefiles |2-4{|5-11
N

NBBUF

O

overriding rules |5-21

P

partial processing
POOL parameter |5-16
POOLSIZE ([5-26

R

randomizing
RECFORM
RECSIZE
relative file
dynamic access
open modes
random access
sequential access
RESERVE AREAS

47 A2 04UF Rev06

Index

S
sequential access
sequential file

open modes
SHARE parameter 5—18
SIZE parameter

space requii rements

calculation 6
indexed sequentlal H
relative files |6-]621
statistics |54 |
T
tapefiles

attributes
block size |7-11
creation

data organization
file organization
labels

multivolume
record length
referenci 7-14

n .
types |13

tapes

conventions |B-1

header labels [B-6)

labels

marks

trailer labels

volume formats
trailer labels

EOF B-21

EOV [B-12]B-21

U

UFASfile conversion |[8-4
utilities
file level
volume level [8-9)

\Y
variable length records
volume

named [5-10]
resident |5-8
work

47 A2 04UF Rev06

UFAS-EXTENDED User’s Guide

i-4 47 A2 04UF Rev06

Technical publication remarks form

Title : DPS7000/XTA NOVASCALE 7000 UFAS-EXTENDED User’s Guide File and Volume
Management

Reference N° : 47 A2 04UF 06 Date: September 2002

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please include your complete mailing address below.

NAME : Date :
COMPANY :

ADDRESS :

Please give this technical publication remarks form to your BULL representative or mail to:

Bull - Documentation DeP"

1 Rue de Provence

BP 208

38432 ECHIROLLES CEDEX
FRANCE

info@frec.bull.fr

Technical publications ordering form

To order additional publications, please fill in a copy of this form and send it via mail to:

BULL CEDOC
357 AVENUE PATTON Phone: +33 (0) 2 41 73 72 66
B.P.20845 FAX: +33 (0) 2 41 73 70 66
49008 ANGERS CEDEX 01 E-Mail: srv.Duplicopy@bull.net
FRANCE
CEDOC Reference # Designation Qty

G A

e A

T A

(__ 1 : The latest revision will be provided if no revision number is given.

NAME: Date:
COMPANY:

ADDRESS:

PHONE: FAX:

E-MAIL:

For Bull Subsidiaries:

Identification:

For Bull Affiliated Customers:

Customer Code:

For Bull Internal Customers:

Budgetary Section:

For Others: Please ask your Bull representative.

BULL CEDOC

357 AVENUE PATTON
B.P.20845

49008 ANGERS CEDEX 01
FRANCE

REFERENCE
47 A2 04UF 06

	UFAS-EXTENDED User's Guide - 47 A2 04UF Rev06
	Preface
	Table of Contents
	Table of Graphics

	1. Introduction to UFAS-EXTENDED
	1.1 Summary
	1.2 Overview of UFAS-EXTENDED
	1.3 UFAS-EXTENDED Features
	1.4 Essential Concepts
	1.4.1 Logical Records
	1.4.2 Control Intervals (CIs)
	1.4.3 Control Intervals and Address Spaces
	1.4.4 Different Types of Disk Volumes
	1.4.4.1 FBO Disk Volumes
	1.4.4.2 VBO Disk Volumes

	2. Sequential Organization
	2.1 Summary
	2.2 Brief Review of Sequential Organization
	2.3 Types of Open Mode
	2.4 Type of Access Mode in COBOL-85
	2.5 Using a Sequential File for the First Time
	2.6 Format of a Data CI in a Sequential File

	3. Relative Organization
	3.1 Summary
	3.2 Brief Review of Relative Organization
	3.3 Types of Open Mode
	3.4 Types of Access Mode in COBOL
	3.4.1 Sequential-Access Mode in COBOL-85
	3.4.2 Random-Access Mode in COBOL-85
	3.4.3 Dynamic-Access Mode in COBOL-85

	3.5 Using a Relative File for the First Time
	3.6 Format of a Data CI in a Relative File
	3.7 Example of an Application

	4. Indexed Sequential Organization
	4.1 Summary
	4.2 Brief Review of Indexed Sequential Organization
	4.3 Types of Open Mode
	4.4 Types of Access Mode in COBOL-85
	4.4.1 Sequential-Access Mode in COBOL-85
	4.4.2 Random-Access Mode in COBOL-85
	4.4.3 Dynamic-Access Mode in COBOL-85

	4.5 Using an Indexed Sequential File for the First Time
	4.6 Adding Records
	4.7 Deleting Records
	4.8 Secondary Keys
	4.8.1 Creating Secondary Indexes
	4.8.2 Updating Secondary Indexes

	4.9 Structure of a UFAS-Extended Indexed Sequential File
	4.9.1 Address Space 1
	4.9.2 Address Space 2
	4.9.3 Address Space 3
	4.9.4 Address Space 4
	4.9.5 Address Space 5
	4.9.6 Address Space 6
	4.9.7 Address Space 7
	4.9.8 Primary-Index Handling
	4.9.9 Secondary-Index Handling
	4.9.10 Structure of a Primary and Secondary Index

	4.10 Allowing for Free Space
	4.11 Inserting Records
	4.11.1 Simple Insertion
	4.11.2 Insertion Requiring CI Compaction
	4.11.3 Insertion Requiring CI Splitting
	4.11.4 Insertion Requiring Reorganization of Index Cls

	4.12 Format of a Data Ci In an Indexed Sequential File
	4.13 Example of an Application

	5. File Assignment, Buffer Management, and File Integrity
	5.1 Summary
	5.2 GCL Commands
	5.3 JCL Statements
	5.4 User-Program Reference
	5.5 File-Assignment Parameter Group ASGi in the GCL Command EXEC_PG
	5.6 Types of Volume
	5.6.1 Resident Volume
	5.6.2 Work Volume
	5.6.3 Named Volume

	5.7 Multivolume Files
	5.7.1 Partial/Extensible Processing of Multivolume Files
	5.7.2 Managing Multivolume Devices (MOUNT)

	5.8 Sharing Devices between Files (POOL)
	5.9 File Sharing
	5.10 Overriding Rules
	5.11 Using the File-Define Parameter Group DEFi
	5.12 Buffer Management
	5.12.1 Declaring the Size of the Overall Buffer Space (POOLSIZE)
	5.12.2 Defining a Buffer Pool (BUFPOOL)
	5.12.3 Defining the Number of Buffers (RESERVE AREAS/NBBUF)
	5.12.4 Examples of Buffer Usage
	5.12.5 Tuning Buffers
	5.12.6 UFAS-EXTENDED Statistics as Presented in the JOR

	5.13 Journalization
	5.13.1 Before Journal
	5.13.2 After Journal

	5.14 File Integrity
	5.14.1 File Creation
	5.14.1.1 Files without Secondary Keys
	5.14.1.2 Files with Secondary Keys

	5.14.2 File Processing
	5.14.2.1 INPUT Open Mode
	5.14.2.2 EXTEND Mode
	5.14.2.3 Files Without Secondary Keys
	5.14.2.4 Files With Secondary Keys

	5.14.3 File Extension
	5.14.4 Permanent I-O Errors

	6. Designing and Allocating UFAS-EXTENDED Disk Files
	6.1 Summary
	6.2 Preliminary Remarks
	6.3 What Happens when you Allocate a File
	6.3.1 Choosing the CI Size (CISIZE)
	6.3.2 Recommended CI Sizes by Space Occupied
	6.3.3 Disk-Storage Capacity
	6.3.4 Choosing the Initial Size (SIZE)
	6.3.5 Choosing the Increment Size (INCRSIZE)

	6.4 Simulating File Allocation
	6.5 Calculating Space Requirements fir a Sequential File
	6.5.1 Fixed-Length Records
	6.5.2 Variable-Length Records

	6.6 Calculating Space Requirements for a Relative File
	6.7 Design Guidelines for Indexed Sequential Files
	6.7.1 Choosing the CISIZE for an Indexed Sequential File
	6.7.2 Choosing Free Space (CIFSP)
	6.7.3 Mass Insertion
	6.7.4 Files With Secondary Keys
	6.7.5 Calculating Space Requirements
	6.7.5.1 File Without Secondary Indexes
	6.7.5.2 File With Secondary Indexes

	6.8 File Allocation Commands
	6.8.1 BUILD_FILE
	6.8.1.1 Examples of File Allocation Using BUILD_FILE

	6.8.2 CREATE_FILE
	6.8.3 The File-Allocation Parameter Group ALCi
	6.8.4 The File-Define Parameter Group DEFi
	6.8.5 LIST_FILE
	6.8.6 LIST_FILE_SPACE
	6.8.7 MODIFY_FILE
	6.8.8 MODIFY_FILE_SPACE

	7. Magnetic Tape and Cartridge Tape Files
	7.1 Summary
	7.2 Types of Tape File
	7.3 Tape Labels
	7.4 File Attributes
	7.4.1 Record Size (RECSIZE)
	7.4.2 Block Size (BLKSIZE)
	7.4.3 Record Format (RECFORM)
	7.4.3.1 Fixed-Length Records
	7.4.3.2 Variable-Length Records

	7.5 Choosing the Block Size
	7.6 Creating a Magnetic-Tape or a Cartridge-Tape File
	7.7 Referencing Tape Files
	7.8 Minimum Length of a Physical Record
	7.9 Compacted Data On Tape

	8. File Manipulation and Maintenance
	8.1 Summary
	8.2 Sorting and Merging Files
	8.3 Load_File
	8.3.1 Converting UFAS Files to the UFAS-EXTENDED File Format
	8.3.2 Converting VBO files to FBO format

	8.4 Data Services Language (DSL)
	8.5 File-Level Utilities
	8.6 Volume-Level Utilities
	8.7 Visibility of Physical and Logical Space Allocated to UFAS Disk Files

	A. Randomizing Formulas for Relative Files
	A.1 Randomizing Techniques
	A.2 Prime-Number Division
	A.3 Square, Enfold, and Extract
	A.4 Radix Conversion
	A.5 Frequency Analysis
	A.5.1 Using Frequency Analysis to Develop Randomized Relative Record Addresses

	A.6 Non-Numeric Keys

	B. Label and Volume Formats of Magnetic Tapes
	B.1 Magnetic-Tape Conventions
	B.1.1 Reel/File Relationship
	B.1.2 File Organization
	B.1.3 Data Organization

	B.2 Native Magnetic Tape Label and Volume Formats
	B.2.1 General Information
	B.2.2 GCOS7/ASCII Standard Format

	C. Hexadecimal Layout of Address Spaces in an Indexed Sequential File
	D. JCL - GCL / GCL - JCL Correspondence Tables
	E. More About Buffers
	F. UFAS Files under UFAS-EXTENDED
	G. Batch Performance Improvement
	G.1 Overview
	G.1.1 How to Activate the Batch Booster Option
	G.1.1.1 Activation External to the Program
	G.1.1.2 Activation Within a Program

	G.1.2 How BPB Processing Works

	G.2 Conditions for BPB Processing
	G.3 Support of Data Management Utilities
	G.3.1 File Transfer
	G.3.2 SORT/MERGE Utilities
	G.3.2.1 Sort
	G.3.2.2 Merge

	G.4 Usage In GCL

	Index

