
UFAS-EXTENDED

User's Guide

 D
PS

7
0
0
0
/
X
TA

N
O

VA
S
C

A
LE

 7
0
0
0

File and Volume Management

REFERENCE
47 A2 04UF 06

DPS7000/XTA
NOVASCALE 7000

UFAS-EXTENDED
User's Guide

File and Volume Management

September 2002

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

REFERENCE
47 A2 04UF 06

The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not
limited to, copying, distributing, modifying, and making derivative works.

Copyright Bull SAS 1995, 2001, 2002

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of this
book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

Intel® and Itanium® are registered trademarks of Intel Corporation.

Windows® and Microsoft® software are registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Linux® is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Bull will not be liable for errors contained
herein, or for incidental or consequential damages in connection with the use of this material.

47 A2 04UF Rev06 iii

Preface

This manual describes UFAS-EXTENDED (Unified File Access System for Large
Systems) and shows how to use it under GCOS7 on DPS7000 machines, with the
latest disk subsystems.

The intended readers of this manual are primarily COBOL programmers, but it
may equally be used by programmers working in other languages.

To set up files under GCOS7, a knowledge of GCL (GCOS7 Command Language)
is essential. This information can be obtained from the IOF Terminal User’s
Reference Manual.

GCL/JCL

To use UFAS-EXTENDED files, you can enter either GCL commands or JCL
statements. Throughout the text, each time a GCL command is given, its functional
equivalent in JCL appears between parentheses. A Correspondence Table is
provided in Appendix D.

There are eight sections in the manual. Each section begins with a summary. You
should begin by reading the first section which introduces UFAS-EXTENDED and
shows its context within the GCOS7 system. In Section 1, basic concepts are
explained. These concepts are essential reading for anyone who wishes to acquire
background information about UFAS-EXTENDED.

The next three sections describe the three UFAS-EXTENDED file organizations:
sequential, relative and indexed sequential. The type of file organization to be used
within a system is generally an application designer’s decision. This decision is
then translated into the necessary programming language to suit the file
organization. Most likely, you will not need to read all three sections.

The fifth section shows how to assign and reference UFAS-EXTENDED files with
GCL or JCL.

Scope and
Objectives

Intended
Readers

Prerequisites

Structure

UFAS-EXTENDED User’s Guide

iv 47 A2 04UF Rev06

The sixth section concentrates on file design and shows you how to allocate a
UFAS-EXTENDED file. Parameters to be specified may vary depending on the
particular disk device you use.

The seventh section describes the use of tape files.

The eighth section gives an overview of the utilities for manipulating and
maintaining files.

Use the index to locate a particular topic.

The most important manuals referred to in the text are:

COBOL 85 Reference Manual ...47 A2 05UL
COBOL 85 User’s Guide ...47 A2 06UL
Data Management Utilities User’s Guide..47 A2 26UF
GPL System Primitives ..47 A2 34UL
UFAS Booster User’s Guide...47 A2 33UF

IOF Terminal User’s Reference Manual (Part 1) 47 A2 38UJ
IOF Terminal User’s Reference Manual (Part 2) 47 A2 39UJ
IOF Terminal User’s Reference Manual (Part 3) 47 A2 40UJ

File Migration Tool User’s Guide..47 A2 32UF
File Recovery Facilities User’s Guide ...47 A2 37UF
JCL Reference Manual ...47 A2 11UJ
JCL User’s Guide... 47 A2 12UJ

Other manuals referred to in the text are:

Catalog Management User’s Guide...47 A2 35UF
GAC-EXTENDED User’s Guide..47 A2 12UF
System Administrator’s Manual ... 47 A2 41US
Full IDS/II Reference Manual 1 .. 47 A2 05UD
Full IDS/II Reference Manual 2 .. 47 A2 06UD
Full IDS/II User’s Guide .. 47 A2 07UD
Messages and Return Codes Directory.. 47 A2 10UJ
SORT/MERGE Utilities User Guide..47 A2 08UF
TDS Administrator’s Guide..47 A2 32UT
TDS COBOL Programmer’s Guide..47 A2 33UT

Bibliography

Preface

47 A2 04UF Rev06 v

The following conventions are used for presenting GCL command syntax.

ITEM An item in upper case is a literal value, to be specified
as shown. The upper case is merely a convention; in
practice you can specify the item in upper or lower
case.

item An item in lower case is a non-literal. A user-supplied
value is expected.

In most cases it gives the type and maximum length of
the value:

 char12 a string of up to 12 characters

 name31 a name of up to 31 characters

 dec10 a decimal integer value of up to 10
digits

 file78 a file description of up to 78
characters

 volume18 a volume description of up to 18
characters

ITEM An underlined item is a default value. It is the value
assumed if none is specified.

bool A boolean value which is either 1 or 0. A boolean
parameter can be specified by its keyword alone,
optionally prefixed by "N". Specifying the keyword
alone always sets the value to 1. Prefixing the keyword
with "N" always sets it to 0.

{ } Braces indicate a choice of items. Only one of these
items can be selected. When presented horizontally,
the items are separated by a vertical bar as follows:

 { item | item | item }

[] Square brackets indicate that the enclosed item is
optional. An item not enclosed in square brackets is
mandatory.

Syntax
Notation

UFAS-EXTENDED User’s Guide

vi 47 A2 04UF Rev06

() Parentheses indicate that a single value or a list of
values can be specified. A list of values must be
enclosed by parentheses, with each value separated by
a comma or a space.

... Ellipses indicate that the item concerned can be
specified more than once.

+ = $ * / - . Literal characters to be specified as shown.

- - - - All parameters or commands below a dashed line do
not appear in the help menus.

Example 1:

[VOLUME = { * | () | (vol18 ...) }]

This means you can specify:

• Nothing at all (VOLUME=* applies)
• VOLUME=* (the same as nothing at all)
• VOLUME=FSD001:MS/D500 for a single volume
• VOLUME=(FSD001:MS/D500,FSD002:MS/D500) for a list of volumes
• VOLUME=() for no volumes

Example 2:

[ACCNTSPACE = { [+]dec5 | -dec5 }]

This means you can specify:

• Nothing at all
• ACCNTSPACE=10 to increase the value by 10
• ACCNTSPACE=+10 to increase the value by 10
• ACCNTSPACE=-10 to decrease the value by 10

Example 3:

[AUTOADD ={ bool | 1 }]

This is a boolean parameter whose default value is one. You can specify:

• Nothing at all (AUTOADD=1 applies)
• AUTOADD=1 or simply AUTOADD
• AUTOADD=0 or simply NAUTOADD

47 A2 04UF Rev06 vii

Table of Contents

1. Introduction to UFAS-EXTENDED

1.1 Summary ... 1-1

1.2 Overview of UFAS-EXTENDED.. 1-2

1.3 UFAS-EXTENDED Features... 1-3

1.4 Essential Concepts.. 1-4

1.4.1 Logical Records ... 1-4

1.4.2 Control Intervals (CIs) .. 1-6

1.4.3 Control Intervals and Address Spaces .. 1-7

1.4.4 Different Types of Disk Volumes ... 1-8
1.4.4.1 FBO Disk Volumes .. 1-9
1.4.4.2 VBO Disk Volumes.. 1-10

2. Sequential Organization

2.1 Summary ... 2-1

2.2 Brief Review of Sequential Organization .. 2-2

2.3 Types of Open Mode... 2-3

2.4 Type of Access Mode in COBOL-85... 2-5

2.5 Using a Sequential File for the First Time... 2-5

2.6 Format of a Data CI in a Sequential File... 2-6

3. Relative Organization

3.1 Summary ... 3-1

3.2 Brief Review of Relative Organization... 3-2

3.3 Types of Open Mode... 3-3

UFAS-EXTENDED User’s Guide

viii 47 A2 04UF Rev06

3.4 Types of Access Mode in COBOL .. 3-4

3.4.1 Sequential-Access Mode in COBOL-85 .. 3-4

3.4.2 Random-Access Mode in COBOL-85.. 3-5

3.4.3 Dynamic-Access Mode in COBOL-85 ... 3-6

3.5 Using a Relative File for the First Time... 3-6

3.6 Format of a Data CI in a Relative File ... 3-7

3.7 Example of an Application... 3-9

4. Indexed Sequential Organization

4.1 Summary ... 4-1

4.2 Brief Review of Indexed Sequential Organization... 4-2

4.3 Types of Open Mode... 4-5

4.4 Types of Access Mode in COBOL-85 ... 4-6

4.4.1 Sequential-Access Mode in COBOL-85 .. 4-6

4.4.2 Random-Access Mode in COBOL-85.. 4-7

4.4.3 Dynamic-Access Mode in COBOL-85 ... 4-8

4.5 Using an Indexed Sequential File for the First Time... 4-9

4.6 Adding Records... 4-9

4.7 Deleting Records... 4-9

4.8 Secondary Keys .. 4-10

4.8.1 Creating Secondary Indexes ... 4-10

4.8.2 Updating Secondary Indexes... 4-11

4.9 Structure of a UFAS-Extended Indexed Sequential File... 4-12

4.9.1 Address Space 1.. 4-12

4.9.2 Address Space 2.. 4-12

4.9.3 Address Space 3.. 4-12

4.9.4 Address Space 4.. 4-12

4.9.5 Address Space 5.. 4-13

4.9.6 Address Space 6.. 4-13

4.9.7 Address Space 7.. 4-14

4.9.8 Primary-Index Handling ... 4-14

4.9.9 Secondary-Index Handling .. 4-16

4.9.10 Structure of a Primary and Secondary Index... 4-17

4.10 Allowing for Free Space .. 4-18

47 A2 04UF Rev06 ix

4.11 Inserting Records .. 4-19

4.11.1 Simple Insertion ... 4-19

4.11.2 Insertion Requiring CI Compaction.. 4-20

4.11.3 Insertion Requiring CI Splitting .. 4-21

4.11.4 Insertion Requiring Reorganization of Index Cls ... 4-22

4.12 Format of a Data Ci In an Indexed Sequential File ... 4-24

4.13 Example of an Application... 4-25

5. File Assignment, Buffer Management, and File Integrity

5.1 Summary ... 5-1

5.2 GCL Commands.. 5-2

5.3 JCL Statements... 5-3

5.4 User-Program Reference .. 5-4

5.5 File-Assignment Parameter Group ASGi in the GCL Command EXEC_PG.................. 5-5

5.6 Types of Volume ... 5-8

5.6.1 Resident Volume.. 5-8

5.6.2 Work Volume ... 5-9

5.6.3 Named Volume .. 5-10

5.7 Multivolume Files... 5-11

5.7.1 Partial/Extensible Processing of Multivolume Files ... 5-12

5.7.2 Managing Multivolume Devices (MOUNT) .. 5-14

5.8 Sharing Devices between Files (POOL) ... 5-16

5.9 File Sharing ... 5-18

5.10 Overriding Rules.. 5-21

5.11 Using the File-Define Parameter Group DEFi... 5-23

5.12 Buffer Management... 5-24

5.12.1 Declaring the Size of the Overall Buffer Space (POOLSIZE).......................... 5-26

5.12.2 Defining a Buffer Pool (BUFPOOL) ... 5-27

5.12.3 Defining the Number of Buffers (RESERVE AREAS/NBBUF) 5-29

5.12.4 Examples of Buffer Usage ... 5-31

5.12.5 Tuning Buffers.. 5-40

5.12.6 UFAS-EXTENDED Statistics as Presented in the JOR................................... 5-42

5.13 Journalization .. 5-47

5.13.1 Before Journal.. 5-47

5.13.2 After Journal... 5-48

UFAS-EXTENDED User’s Guide

x 47 A2 04UF Rev06

5.14 File Integrity... 5-50

5.14.1 File Creation... 5-50
5.14.1.1 Files without Secondary Keys ... 5-51
5.14.1.2 Files with Secondary Keys .. 5-51

5.14.2 File Processing .. 5-52
5.14.2.1 INPUT Open Mode.. 5-52
5.14.2.2 EXTEND Mode.. 5-52
5.14.2.3 Files Without Secondary Keys .. 5-52
5.14.2.4 Files With Secondary Keys ... 5-54

5.14.3 File Extension .. 5-55

5.14.4 Permanent I-O Errors... 5-56

6. Designing and Allocating UFAS-EXTENDED Disk Files

6.1 Summary ... 6-1

6.2 Preliminary Remarks... 6-2

6.3 What Happens when you Allocate a File .. 6-3

6.3.1 Choosing the CI Size (CISIZE) .. 6-5

6.3.2 Recommended CI Sizes by Space Occupied.. 6-6

6.3.3 Disk-Storage Capacity ... 6-7

6.3.4 Choosing the Initial Size (SIZE)... 6-11

6.3.5 Choosing the Increment Size (INCRSIZE) .. 6-12

6.4 Simulating File Allocation .. 6-13

6.5 Calculating Space Requirements fir a Sequential File.. 6-14

6.5.1 Fixed-Length Records.. 6-14

6.5.2 Variable-Length Records ... 6-16

6.6 Calculating Space Requirements for a Relative File... 6-18

6.7 Design Guidelines for Indexed Sequential Files ... 6-21

6.7.1 Choosing the CISIZE for an Indexed Sequential File 6-22

6.7.2 Choosing Free Space (CIFSP) .. 6-22

6.7.3 Mass Insertion.. 6-24

6.7.4 Files With Secondary Keys.. 6-24

6.7.5 Calculating Space Requirements .. 6-25
6.7.5.1 File Without Secondary Indexes.. 6-26
6.7.5.2 File With Secondary Indexes... 6-30

47 A2 04UF Rev06 xi

6.8 File Allocation Commands .. 6-38

6.8.1 BUILD_FILE... 6-38
6.8.1.1 Examples of File Allocation Using BUILD_FILE.............................. 6-40

6.8.2 CREATE_FILE... 6-44

6.8.3 The File-Allocation Parameter Group ALCi ... 6-47

6.8.4 The File-Define Parameter Group DEFi .. 6-49

6.8.5 LIST_FILE.. 6-52

6.8.6 LIST_FILE_SPACE.. 6-53

6.8.7 MODIFY_FILE ... 6-54

6.8.8 MODIFY_FILE_SPACE ... 6-56

7. Magnetic Tape and Cartridge Tape Files

7.1 Summary ... 7-1

7.2 Types of Tape File... 7-2

7.3 Tape Labels... 7-3

7.4 File Attributes .. 7-4

7.4.1 Record Size (RECSIZE) .. 7-4

7.4.2 Block Size (BLKSIZE) .. 7-4

7.4.3 Record Format (RECFORM) ... 7-5
7.4.3.1 Fixed-Length Records ... 7-6
7.4.3.2 Variable-Length Records... 7-6

7.5 Choosing the Block Size ... 7-11

7.6 Creating a Magnetic-Tape or a Cartridge-Tape File ... 7-12

7.7 Referencing Tape Files ... 7-14

7.8 Minimum Length of a Physical Record.. 7-16

7.9 Compacted Data On Tape .. 7-16

8. File Manipulation and Maintenance

8.1 Summary ... 8-1

8.2 Sorting and Merging Files ... 8-1

8.3 Load_File... 8-2

8.3.1 Converting UFAS Files to the UFAS-EXTENDED File Format 8-4

8.3.2 Converting VBO files to FBO format.. 8-5

8.4 Data Services Language (DSL) .. 8-6

8.5 File-Level Utilities .. 8-7

8.6 Volume-Level Utilities.. 8-9

8.7 Visibility of Physical and Logical Space Allocated to UFAS Disk Files......................... 8-10

UFAS-EXTENDED User’s Guide

xii 47 A2 04UF Rev06

A. Randomizing Formulas for Relative Files

A.1 Randomizing Techniques..A-1

A.2 Prime-Number Division ...A-2

A.3 Square, Enfold, and Extract ..A-4

A.4 Radix Conversion..A-6

A.5 Frequency Analysis...A-7

A.5.1 Using Frequency Analysis to Develop Randomized Relative Record
Addresses ..A-9

A.6 Non-Numeric Keys ..A-12

B. Label and Volume Formats of Magnetic Tapes

B.1 Magnetic-Tape Conventions ...B-1

B.1.1 Reel/File Relationship ..B-2

B.1.2 File Organization..B-2

B.1.3 Data Organization ..B-2

B.2 Native Magnetic Tape Label and Volume Formats...B-4

B.2.1 General Information ...B-4

B.2.2 GCOS7/ASCII Standard Format..B-17

C. Hexadecimal Layout of Address Spaces in an Indexed Sequential File

D. JCL - GCL / GCL - JCL Correspondence Tables

E. More About Buffers

F. UFAS Files under UFAS-EXTENDED

47 A2 04UF Rev06 xiii

G. Batch Performance Improvement

G.1 Overview .. G-1

G.1.1 How to Activate the Batch Booster Option.. G-1
G.1.1.1 Activation External to the Program... G-1
G.1.1.2 Activation Within a Program ... G-2

G.1.2 How BPB Processing Works .. G-2

G.2 Conditions for BPB Processing .. G-3

G.3 Support of Data Management Utilities ... G-4

G.3.1 File Transfer.. G-4

G.3.2 SORT/MERGE Utilities ... G-4
G.3.2.1 Sort ... G-4
G.3.2.2 Merge ... G-6

G.4 Usage In GCL... G-6

Index

UFAS-EXTENDED User’s Guide

xiv 47 A2 04UF Rev06

Table of Graphics

1-1. Logical Record as Unit of Transfer.. 1-5
1-2. Control Interval as Unit of Transfer ... 1-7
1-3. CI Layout in Sequential and Relative Files ... 1-7
1-4. CI Layout in an Indexed Sequential File ... 1-8
1-5. Mapping a CI to a Data Block ... 1-9
1-6. Disk Track ... 1-10
1-7. Physical Layout of a VBO Disk Volume .. 1-11
1-8. Files, Volumes, and Extents.. 1-12
1-9. Physical Layout of a File ... 1-12
1-10. Logical/Physical Layout of a File... 1-13
2-1. Layout of Records in a Sequential File ... 2-2
2-2. Accessing a Sequential File .. 2-3
2-3. Format of a data CI in a Sequential File (Fixed-Length Records) 2-6
2-4. Format of a Data CI in a Sequential File (Variable-Length Records) 2-7
3-1. Relative File Record Layout .. 3-2
3-2. Sequential Access to a Relative File... 3-5
3-3. Relative File Random Access ... 3-5
3-4. Relative File Dynamic Access... 3-6
3-5. Relative File Data CI Format (fixed length records).. 3-7
3-6. Relative File Data CI Format (variable length records)... 3-8
3-7. Relative File Application.. 3-9
4-1. Indexed Sequential Record Keys.. 4-2
4-2. Sequential Access to an Indexed Sequential File... 4-7
4-3. Random Access to an Indexed Sequential File .. 4-7
4-4. Dynamic Access to an Indexed Sequential File.. 4-8
4-5. Detailed Layout of an Indexed Sequential File ... 4-14
4-6. UFAS-EXTENDED Indexed File Structure (without secondary keys) 4-16
4-7. Primary and Secondary Index Structure ... 4-17
4-8. Free Space in an Indexed Sequential File .. 4-18
4-9. Simple Insertion... 4-19
4-10. Insertion Requiring CI Compaction ... 4-20
4-11. Insertion Requiring CI Splitting.. 4-21
4-12. Insertion Requiring Reorganization of Index CIs .. 4-23
4-13. Data CI Format in an Indexed Sequential File .. 4-24

Figures

47 A2 04UF Rev06 xv

5-1. Using the File Assignment Parameter Group ... 5-5
5-2. Parameters for Assigning a file (1/2)... 5-6
5-3. Using Resident Volumes... 5-8
5-4. Using a Work Volume ... 5-9
5-5. Using a named volume ... 5-10
5-6. Using a Multivolume Uncataloged Disk or Tape File .. 5-11
5-7. Using a Multivolume Cataloged File.. 5-11
5-8. Partial/Extensible Processing of Multivolume Tape Files ... 5-13
5-9. Managing Multivolume Devices .. 5-15
5-10. Pool Device ... 5-17
5-11. Sharing a File with Another Step... 5-18
5-12. ACCESS and SHARE Values ... 5-19
5-13. File-Sharing Rules... 5-20
5-14. Layout of Buffer Space.. 5-25
5-15. Using the Before Journal... 5-47
5-16. Using the After Journal.. 5-48
6-1. Using CIFSP.. 6-23
7-1. Types of Tape File... 7-2
7-2. Fixed-Length Records: Blocked and Unblocked... 7-6
7-3. Variable-Length Records .. 7-7
7-4. Variable-Length Unblocked Records .. 7-8
7-5. Variable-Length Blocked Records... 7-9
B-1. Magnetic Tape Label Formats Read by GCOS7/EBCDIC (1/2)B-14
B-2. Magnetic Tape Label Formats Accepted by GCOS7/ASCII ...B-22
E-1. Buffer Handling..E-2

UFAS-EXTENDED User’s Guide

xvi 47 A2 04UF Rev06

6-1. Recommended CISIZE values.. 6-6
6-2. Number of CIs per FSA Disk Volume.. 6-7
6-3. Storage Capacity of Non-FSA Disk Volumes.. 6-8
6-4. Comparative Capacity of VBO and FBO MS/D500 Volumes ... 6-9
6-5. Comparative Capacity of VBO and FBO MS/B10 Volumes.. 6-10
8-1. File-Level Utilities (1/2).. 8-7
8-2. Volume-Level Utilities.. 8-9
A-1. Prime Numbers ...A-2
A-2. Pattern of distribution ..A-8
A-3. Developing a relative address...A-9
B-1. Label Types...B-5
B-2. Volume Header Label 1 (GCOS7/EBCDIC)..B-6
B-3. File Header Label 1 (GCOS7/EBCDIC) (1/2)..B-8
B-4. File Header Label 2 (GCOS7/EBCDIC) (1/2)..B-10
B-5. End-of-File Trailer Label 1 (GCOS7/EBCDIC)..B-12
B-6. End-of-Volume Trailer Label 1 (GCOS7/EBCDIC) ...B-13
B-7. Magnetic-Tape Formats Written by GCOS7/EBCDIC ..B-16
B-8. 8. Volume Header Label 1 (GCOS7/ASCII)..B-17
B-9. File Header Label 1 (GCOS7/ASCII) (1/2)..B-18
B-10. File Header Label 2 (GCOS7/ASCII) ..B-20
B-11. End-of-File Label 1 (GCOS7/ASCII) ...B-21
D-1. JCL-GCL Correspondence (1/2) .. D-1
D-2. GCL-JCL Correspondence (1/2) .. D-3

Tables

47 A2 04UF Rev06 1-1

 1. Introduction to UFAS-EXTENDED

1.1 Summary

This section covers the following topics:

• overview of UFAS-EXTENDED,

• features of UFAS-EXTENDED,

• essential concepts,

− logical records (fixed-length and variable-length),

− control interval (CI),

− control intervals and address spaces,

− layout of CIs within a file,

− FBO disk volumes,

− VBO disk volumes,
disk track
disk cylinder

− disk address,

− disk extent,

− logical/physical layout,

UFAS-EXTENDED User’s Guide

1-2 47 A2 04UF Rev06

1.2 Overview of UFAS-EXTENDED

UFAS-EXTENDED is the standard file structure for DPS 7000 systems. It is the
file structure that is used for applications running under GCOS 7 since release V5.

UFAS-EXTENDED is the interface between logical data management and physical
devices. It is a set of routines providing facilities for:

• creating,
• reading,
• and updating disk and tape/cartridge files known as "UFAS-EXTENDED files".

Regardless of the physical characteristics of the file media, UFAS-EXTENDED
performs the following functions:

• buffer handling,
• data blocking,
• error checking,
• record locating,
• label processing.

All CIs (described later in this Section) of a UFAS-EXTENDED file are the same
size.

Fewer I/O operations are performed because of the large number of buffers
supported:

• up to 20,000 buffers per TDS application (18,500 for PREVIOUS files),

• up to 32,000 buffers can be shared at system level, that is, among several
applications, including batch applications.

A large number of files can be simultaneously opened:

• approximately 1000 files can be shared among several TDS applications, if level
of share = 5, or 3200 files if level of share = 2 (with the MI EFM2).

• approximately 500 files can be simultaneously opened for one TDS application.

Introduction to UFAS-EXTENDED

47 A2 04UF Rev06 1-3

1.3 UFAS-EXTENDED Features

The major UFAS-EXTENDED features are as follows:

1. UFAS-EXTENDED supports the following file organizations:

sequential,
relative,
indexed sequential,
IDS/II (Integrated Data Store).

NOTE:
File organization is the technique of arranging a collection of records in the
most effective way for processing.

An IDS/II file is a database file containing several record types and logical
relationships between them. Physically the file consists of a number of areas.
Since IDS/II is beyond the scope of this manual, please see the relevant IDS/II
Reference Manual for more information, .

2. Each file organization can be used in the various GCOS 7 environments:

Batch,
Transactional (TDS),
Interactive (IOF).

3. UFAS-EXTENDED supports the access modes and verbs defined by the
American National Standards Institute (ANSI) for the COBOL Language
(COBOL-85).

4. Other Features are:

multivolume files (a file spread over several volumes) and multifile volumes
(more than one file per volume) on both disk and tape/cartridge,

standard-label processing on disk, tape, and tape cartridge,

full standard error-handling as defined for COBOL-85,

file integrity through checkpoint/restart and journalization facilities,

concurrent file-access from more than one program,

static and dynamic file extension for sequential and indexed sequential files.

UFAS-EXTENDED User’s Guide

1-4 47 A2 04UF Rev06

1.4 Essential Concepts

The following pages treat concepts which are essential in understanding and using
UFAS-EXTENDED files. These concepts are as follows:

• logical records,
• control intervals (CIs),
• control intervals and files,
• physical disk characteristics.

The three first concepts only deal with the disk files. The FBO volumes are
defined by the following concepts:

Data Blocks is the smallest addressable unit for an I/O in a FBO
volume. The size is 512 bytes on a FSA disk and 4096
bytes on a non-FSA disk formatted as a FBO volume.

File Blocks is the smallest unit that the access method can handle.
The file block corresponds to the CI of the UFAS files.
A file block can consist of one or more data blocks.

Note that files held on tape/cartridge are dealt with separately in Section 7.

1.4.1 Logical Records

Data is transferred between UFAS-EXTENDED and user programs by means of
logical records. These logical records are defined in the program and allow portions
of data to be manipulated. A file is a named collection of these records.

In COBOL, for example, the I-O processing done by verbs such as READ,
WRITE, and REWRITE causes records to be moved to and from a record-
description area.

In FORTRAN, the record description is the list of variables associated with the I/O
statement.

Records can be of fixed or variable length. This is discussed below.

Introduction to UFAS-EXTENDED

47 A2 04UF Rev06 1-5

Figure 1-1 shows how the logical record is the unit of transfer between a program
and UFAS-EXTENDED.

User Programs

System Utilities

Logical
Records UFAS-EXTENDED

GCOS 7

Figure 1-1. Logical Record as Unit of Transfer

Fixed-Length and Variable-Length Records

Records can be fixed length or variable length. (Fixed length or variable length is
declared as one of the file attributes at file creation time.)

An example of the use of fixed-length records might be in a payroll application,
where there is one record for each employee. The record could have the form:

EMPLOYEE
NAME

HOME
ADDRESS

SOCIAL
SECURITY N°.

EMPLOYEE
NUMBER

INCOME
TAXE CODE

Each employee record contains the same amount of information, therefore each
record is of the same length.

An example of the use of variable-length records might be a sales file in which
there is one record per customer per year. Each customer could theoretically place
an order each week. However, in practice the total number of orders in a year never
exceeds twenty. The design of the record might be:

CUSTOMER
NUMBER

SALES
AREA YEAR ORDER

N°.1
ORDER

N°.2
ORDER
N°.20

UFAS-EXTENDED User’s Guide

1-6 47 A2 04UF Rev06

Suppose the average number of orders placed by each customer is 5. It would be
wasteful for each record to contain space for 20 entries (since only 25% of the
space would be used). It is more efficient to use variable-length records, so that
each record will occupy only the necessary amount of space (plus a small amount
of control information, managed by UFAS-EXTENDED).

Under UFAS-EXTENDED, all file organizations support variable-length records.

Note that when variable-length records are used, the maximum record length for
the file is declared at file-allocation time.

1.4.2 Control Intervals (CIs)

One of the most important concepts in UFAS-EXTENDED is the Control Interval
(CI). A CI is the unit of transfer to and from disk. Each CI contains one or more
records, (a minimum of 2 records for indexed sequential files), according to the
size declared by the user. UFAS-EXTENDED CIs correspond to IDS/II pages. The
main characteristics of CIs are:

• All CIs are the same size (data CIs, index CIs or label CIs),
• Records cannot be split across CIs; a CI contains an integral number of records,

up to a maximum of 255,
• The maximum record length cannot exceed the declared CI size,
• The maximum size of a CI is 32,256 bytes (32K - 512),
• The declared CI size for Fixed Block Organization (FBO) disk subsystems

corresponds to an integral number of blocks (described later in this Section). In
the case of Variable Block Organization (VBO) disk subsystems, the CI size
cannot be larger than one track and CIs do not overflow tracks.

• The size of a CI is always a multiple of 512 bytes; you can specify any size for a
CI (up to 5 digits long), but UFAS-EXTENDED always rounds the figure up to a
multiple of 512. Table 6-1 gives you the recommended filling capacity of a CI
for each type of disk drive.

• The maximum number of CIs in a file is limited to 16,777,215 (2**24 - 1)

Further information about CIs is contained in the sections specific to each type of
file organization.

Introduction to UFAS-EXTENDED

47 A2 04UF Rev06 1-7

Figure 1-2 shows how the CI is the unit of transfer between UFAS-EXTENDED
and the storage media.

User Programs

System Utilities

Logical
Records

Control
IntervalUFAS-EXTENDED

GCOS 7

Figure 1-2. Control Interval as Unit of Transfer

1.4.3 Control Intervals and Address Spaces

Read on if you wish to learn more about CIs and the physical characteristics of disk
volumes. The relationship between the logical layout of the file and the physical
layout of the file is discussed. Note that the discussion applies only to disk files;
tape files are discussed in Section 7.

Layout of CIs Within a File

A file is a structured amount of space, consisting of several address spaces used to
group data of the same category. The layout of CIs within a file depends upon the
file organization. Figure 1-3 shows the logical layout of CIs for sequential and
relative files.

Address
Space 1 CI CI CI CI CI CI

Address Space 2

CI

Figure 1-3. CI Layout in Sequential and Relative Files

UFAS-EXTENDED User’s Guide

1-8 47 A2 04UF Rev06

• Address space 1 contains control information such as the description of the other
address spaces and any user labels. This control information is used and
managed by UFAS-EXTENDED, and is always located at the beginning of the
first track used by the file. The address space 1 always occupies one track on a
VBO disk. For FBO volumes, address space 1 occupies a minimum of 16
Kbytes.

• Address space 2 contains the data CIs.

Secondary Index CIsDataCIsPrimary Index CIs

Address
Space 1

Address
Space 5

Address
Space 7

Address
Space 6

Address
Space 2

Address
Space 3

Address
Space 4

Figure 1-4. CI Layout in an Indexed Sequential File

• Address space 1 contains control information such as the description of the other
address spaces and any user labels. This control information is used and
maintained by UFAS-EXTENDED. Address space 1 always occupies one disk
track (VBO), or the first sixteen Kbytes of the file (FBO volumes).

• Address space 2 contains the data CIs,

• Address spaces 3 and 4 contain the primary index CIs, and address spaces 5, 6
and 7 contain the secondary index CIs.

The terms primary index and secondary index are defined later in Section 4.

To see how the logical layout described above is mapped onto disks, it is first
necessary to describe briefly the physical characteristics of disks.

1.4.4 Different Types of Disk Volumes

A disk volume is a fixed number of plates mounted one above the other on a
common spindle.

Each plate has two recording surfaces, top and bottom (except the upper surface of
the top disk and the lower surface of the bottom disk, which are protective covers
and are not used for data storage).

The physical disk volume is different from the logical volume. The logical volume
determines the place reservation of the file. There are two types of logical volume:

• FBO (Fixed Block Organization), used since the GCOS 7-V5 release.
• VBO (Variable Block Organization), as used in earlier releases.

Introduction to UFAS-EXTENDED

47 A2 04UF Rev06 1-9

There are two different physical architectures:

• The FSA (Fixed Sector Architecture) disks with FBO organization (MS/FSA
device class).

• The non-FSA or CKD disks (device class: MS/500 or MS/B10),which can be
formatted by the VOLPREP into VBO or FBO volumes.

1.4.4.1 FBO Disk Volumes

FBO disk volumes are either FSA (MS/FSA) disks or non-FSA disks formatted as
FBO format (MS/B10 or MS/D55). These volumes are organized in fixed length
data blocks.

The size of a data block is 512 bytes on the FSA disks and 4096 bytes on the non-
FSA, FBO formatted. The size of the CIs (file blocks) is a multiple of 512.

CIs are physically mapped onto the data blocks so that volume space is not wasted.
A CI always occupies an integral number of data blocks.

CI

Figure 1-5. Mapping a CI to a Data Block

In Figure 1-5, a particular CI is mapped onto 7 data blocks, that is 3584 (512 x 7)
bytes.

UFAS-EXTENDED User’s Guide

1-10 47 A2 04UF Rev06

1.4.4.2 VBO Disk Volumes

The VBO disk volumes are organized in tracks and cylinders. They are located on
the non-FSA disks using the VBO format (MS/B10 or MS/D500).

Disk Track

Each recording surface is divided into a number of concentric bands, known as
tracks, on which data is recorded. A track is the area covered by one read/write
head during one revolution of the disk. Figure 1-6 illustrates a single track on a
recording surface.

SPINDLE

1 HEAD

DISK

TRAC

Figure 1-6. Disk Track

Disk Cylinder

The tracks in the same relative position on each recording surface logically form a
cylinder. For example, the outermost tracks (one from each recording surface) form
one cylinder. Figure 1-7 illustrates cylinders.

Disk Address

A location on a disk volume is specified as:

• a data block address on FBO volumes,
• a cylinder track address on VBO volumes.

Cylinders are numbered consecutively from the outermost (cylinder 000) to the
innermost.

Tracks are numbered according to the recording surface on which they occur. All
tracks on the first recording surface (the lower surface of the top disk) are
numbered 00; all tracks on the second recording surface (the upper surface of the
second disk) are numbered 01, and so on down to the last surface.

Introduction to UFAS-EXTENDED

47 A2 04UF Rev06 1-11

Figure 1-7 illustrates the physical layout and addressing system for disk volumes.

DISKS

TRACK 08
TRACK 09

TRACK 06
TRACK 07

TRACK 04
TRACK 05

TRACK 02
TRACK 03

TRACK 00
TRACK 01

CYLINDER 707
CYLINDER 000

Figure 1-7. Physical Layout of a VBO Disk Volume

Disk Extents

A disk file can occupy one or more extents. An extent is a group of contiguous
tracks in the case of VBO volumes or in the case of FBO volumes contiguous data
blocks in the same disk volume.

Figure 1-8 illustrates the relationship between disk volumes, files and extents,
where:

• file A is a single-extent, single-volume file.
• file B is a multi-extent, single-volume file.
• file C is a multi-extent, multi-volume file.

UFAS-EXTENDED User’s Guide

1-12 47 A2 04UF Rev06

A C B C B C

Figure 1-8. Files, Volumes, and Extents

Logical/Physical Layout

Figure 1-9 shows a single file which consists of 4 extents. Extents 1 and 2 are
located on volume X, and extents 3 and 4 are located on volume Y.

File
Extent 1

Volume X

File
Extent 2

Volume Y

File
Extent 3

File
Extent 4

Figure 1-9. Physical Layout of a File

Introduction to UFAS-EXTENDED

47 A2 04UF Rev06 1-13

Figure 1-10 shows the relationship between the physical layout and the logical
layout of the file.

Address Space 2

Address Space 4

Address Space 3

Address Space 1 (1 track)

Address Space 6

Address Space 7

Address Space 5

File Extent 1 File Extent 2 File Extent 3 File Extent 4

Figure 1-10. Logical/Physical Layout of a File

• Address-space boundaries are independent of extent boundaries,

• Address spaces are logically addressed using CI numbers; this means that
UFAS-EXTENDED files can be transferred to a different set of extents without
any special reprocessing,

• You can move UFAS-EXTENDED files between disks with different physical
characteristics (block, number of tracks per cylinder, track capacity) without any
loss of coherence.

Disk-file design and space allocation are described later in Section 6.

UFAS-EXTENDED User’s Guide

1-14 47 A2 04UF Rev06

❑

47 A2 04UF Rev06 2-1

 2. Sequential Organization

2.1 Summary

This section covers the following topics:

• sequential-file concepts,

• types of open mode,

• sequential-access mode,

• using a sequential file for the first time,

• format of a data CI in a sequential file.

UFAS-EXTENDED User’s Guide

2-2 47 A2 04UF Rev06

2.2 Brief Review of Sequential Organization

A sequential file can be stored on disk or tape.

Access to the records it contains can only be sequential. To retrieve record n, you
must first read down to and including record (n - 1). After record n has been read,
the next READ statement will read record (n + 1).

NOTE:
In GPL, however, you can access the nth record directly in a sequential disk file,
using this as start point for subsequents READs.

You can write record n only after you have written record (n - 1).

Figure 2-1 shows a logical picture of records in a sequential file.

Rec 1 Rec 2 Rec 3 Rec 4 Rec (n-1) Rec n Rec (n+1)

Figure 2-1. Layout of Records in a Sequential File

A program using a sequential file must have its organization declared as
SEQUENTIAL (ORGANIZATION IS SEQUENTIAL in COBOL). This is the
default value if you omit an ORGANIZATION IS clause.

Sequential Organization

47 A2 04UF Rev06 2-3

2.3 Types of Open Mode

When you open a file, you must state an open mode, for example in the COBOL
OPEN statement. The declared open mode determines which verbs you can use to
access the file. You can open a sequential file in four modes:

INPUT

OUTPUT

I-O

EXTEND (GPL equivalent APPEND)

Figure 2-2 shows the ways of opening a sequential file and the verbs used to access
such a file.

INPUT X

OUTPUT X

I-O* X

EXTEND X

COBOL
VERBCOBOL

OPEN MODE
READ

X

WRITE REWRITE

*I-O can be applied only to disk files

Figure 2-2. Accessing a Sequential File

• Opening a file in OUTPUT mode deletes any previous contents of the file; this
mode should normally be used only when you wish to create a new sequential
file,

• EXTEND mode causes the WRITE verb to append extra records to the end of
the file; in all other respects EXTEND mode is equivalent to OUTPUT mode,

• In I-O mode, a REWRITE must be preceded by a READ of the record to be
updated. Do not try to change the length of variable-length records.

UFAS-EXTENDED User’s Guide

2-4 47 A2 04UF Rev06

MULTIVOLUME FILES

(described later in Section 5)

Where space is allocated for a file on more than one volume, volumes are switched
automatically in the OUTPUT, EXTEND, INPUT and I-O open modes as follows:

OUTPUT or EXTEND open modes:

The current volume is released and subsequent write operations continue at the first
allocated extent on the next volume. Note that the first volume must remain on line
because it contains the control information which is required or updated by UFAS-
EXTENDED. The volume switch will occur only when all the allocated space on
the current volume is completely used up.

INPUT and I-O open modes:

After the last record in the last extent of the current volume has been read, the next
record to be read will be the first record on the first extent allocated to the file on
the next volume.

Sequential Organization

47 A2 04UF Rev06 2-5

2.4 Type of Access Mode in COBOL-85

You can access a sequential file in only one access mode:

ACCESS MODE IS SEQUENTIAL

In COBOL the access-mode clause must state SEQUENTIAL. This is the default
value.

2.5 Using a Sequential File for the First Time

When you first access a newly allocated sequential file, you should open it in
OUTPUT mode and place records in it. If the file is on disk, it is in fact possible to
open in I-O mode, but this is not advised. You can use such utilities as
LOAD_FILE (JCL equivalent CREATE), SORT_FILE (JCL equivalent SORT),
and MERGE_FILE (JCL equivalent MERGE) as well as COBOL programs.

UFAS-EXTENDED User’s Guide

2-6 47 A2 04UF Rev06

2.6 Format of a Data CI in a Sequential File

The following information will give you a better understanding of how space
requirements are calculated (described later in Section 6). There is no user
programming required to maintain, or take into account, the control fields shown.
UFAS-EXTENDED does all the necessary processing.

Neither fixed-length nor variable-length records are ever split over two CIs and the
size of a CI is always a multiple of 512. Therefore, there may be unused space in a
CI. UFAS-EXTENDED always rounds up the size of a CI (CISIZE parameter)
given by the user to a multiple of 512. Table 6-1 gives you the CI sizes that are
recommended for each type of disk drive.

Each stored record has a 4-byte header which contains the record length. A user
program cannot access this header. The unit of data transfer between UFAS-
EXTENDED and programs remains the logical record, containing only user-
declared data fields. Each programming language handles the length of each
variable record differently, for example, in COBOL the DEPENDING ON clause is
used.

Figure 2-3 shows the format of a CI for a sequentially organized file for fixed-
length records and Figure 2-4 shows the same for variable-length records.

Data Record

Data Record

Data Record

Unused Space

CI Header Information 9 bytes for FBO files
 8 bytes for VBO files

1 byte CI
trailer if FBO

 Data Record

 Data Record

 Data Record

{
{

Record Header
4 bytes
Record Header
4 bytes
Record Header
4 bytes
Record Header
4 bytes
Record Header
4 bytes
Record Header
4 bytes

Figure 2-3. Format of a data CI in a Sequential File (Fixed-Length
Records)

Sequential Organization

47 A2 04UF Rev06 2-7

Unused Space

REC 3

REC 1

REC 2

and so on up
to record n

REC n

REC 3

CI Header Information 9 bytes for FBO files
8 bytes for VBO files

1 byte CI
trailer if FBO

{
{

Record Header
4 bytes
Record Header
4 bytes

Record Header
4 bytes

REC 2
(contd.)

Record Header
4 bytes

Figure 2-4. Format of a Data CI in a Sequential File (Variable-Length
Records)

UFAS-EXTENDED User’s Guide

2-8 47 A2 04UF Rev06

❑

47 A2 04UF Rev06 3-1

 3. Relative Organization

3.1 Summary

This section covers the following topics:

• relative-file concepts,

• types of open mode,

• types of access mode,

• sequential-access mode,

• random-access mode,

• dynamic-access mode,

• using a relative file for the first time,

• format of a data CI in a relative file,

• example of an application,

• advantages and disadvantages.

UFAS-EXTENDED User’s Guide

3-2 47 A2 04UF Rev06

3.2 Brief Review of Relative Organization

A relative file must reside on disk. A record in a relative file can be accessed
directly by its unique record number. To read record n, you do not need to read
through records 1 to (n - 1). Similarly, in OUTPUT, to write record m, you do not
need to write records 1 to (m - 1).

Figure 3-1 shows a logical picture of records in a relative file.

Rec 1 Rec 2 Rec n Rec (n + 1)

EMPTYEMPTY

Rec 3 Rec (n-1) Rec m

Figure 3-1. Relative File Record Layout

A relative file consists of a series of record positions or slots each of which is
identified by a relative record number (RRN). Each record position, which can
contain one logical record, can be accessed directly via its RRN.

The RRNs are 1, 2, 3,... The maximum record number depends on the size of the
file. If a file is built to hold 1240 records, then the highest RRN is 1240.

When a relative file is first allocated, it consists of empty record positions. Any
attempt to retrieve a record directly from an empty position causes an error.

When the nth record is directly accessed, the record positions 1 to (n - 1) may be
empty. In Figure 3-1, record positions 3 and (n - 1) are empty.

You can establish the RRN either by loading the file sequentially or by converting
a key field into an RRN. Appendix A gives some examples of randomizing
algorithms for key fields.

A program using a relative file must have its organization declared as RELATIVE
(ORGANIZATION IS RELATIVE in COBOL).

Relative Organization

47 A2 04UF Rev06 3-3

3.3 Types of Open Mode

When you open a file, you must state an open mode. You can open a relative file in
four modes:

INPUT

OUTPUT

I-O

EXTEND (GPL equivalent APPEND)

The choice of open mode depends on the access mode declared for the file. The
various combinations are described in the following sections.

UFAS-EXTENDED User’s Guide

3-4 47 A2 04UF Rev06

3.4 Types of Access Mode in COBOL

You can access a relative file in three access modes:

 { SEQUENTIAL }
ACCESS MODE IS { RANDOM }
 { DYNAMIC }

3.4.1 Sequential-Access Mode in COBOL-85

Sequential-access mode allows the program to carry out standard sequential
processing. The open modes are discussed below.

INPUT mode:

When you open a file in INPUT mode, then the first record read is RRN 1, then
RRN 2 and so on (unless you use the START verb to specify the first record).
Empty record positions are skipped. For example, if record position 4 is empty, the
records read in sequential order are 1,2,3,5,6...

The data name given in the START verb must be the data item that is specified in
the RELATIVE KEY phrase of the associated SELECT clause.

OUTPUT mode:

Opening a file in OUTPUT mode deletes any previous contents of the file. The first
record is written into record position 1, then record position 2, and so on. This is
used only when you wish to initially load a relative file.

I-O mode:

The REWRITE and DELETE verbs must be preceded by a READ verb when
access is sequential. Since the maximum record size is reserved for each record
position, a record written using the REWRITE verb may be of a different length
than the one being overwritten.

EXTEND mode:

The EXTEND phrase can be used only in COBOL-85.

Figure 3-2 shows the COBOL verbs available to the programmer when ACCESS
MODE IS SEQUENTIAL.

Relative Organization

47 A2 04UF Rev06 3-5

C

X

X

X X

O

I X

I-O X

X

 X

NPUT

UTPUT

EXTEND

READ REWRITE DELETE START
(RRN)

WRITEOBOL
OPEN MODE

COBOL
VERB

Figure 3-2. Sequential Access to a Relative File

3.4.2 Random-Access Mode in COBOL-85

In random-access mode, each file access must reference a valid RRN specifying
the record position required. The value given in the RELATIVE KEY IS phrase
indicates the record to be accessed.

Figure 3-3 shows the COBOL verbs available to the programmer when ACCESS
MODE IS RANDOM.

X X

XX

 X

 X

VERB
OPEN
MODE

READ
(RRN)

WRITE
(RRN)

REWRITE
(RRN)

DELETE
(RRN)

INPUT

OUTPUT

I-O

Figure 3-3. Relative File Random Access

The difference between WRITE and REWRITE in I-O mode is that a WRITE
statement loads an empty location but REWRITE overwrites an existing valid
record in the file. Since the maximum record size is reserved for each record
position, a record written using the REWRITE verb may be of a different length
than the one being overwritten.

UFAS-EXTENDED User’s Guide

3-6 47 A2 04UF Rev06

3.4.3 Dynamic-Access Mode in COBOL-85

In dynamic-access mode, you can combine sequential access with random access.
Using the COBOL verb START, you indicate at what record location in the file
sequential access is to begin. Verbs which do not specify an RRN are taken as
sequential, whereas those with a valid RRN are used for random access (see above,
in this Section).

Figure 3-4 shows the COBOL verbs available when ACCESS MODE is dynamic.

X

X

X X

 X

 X

X X

READ
[RRN]

WRITE
[RRN]

REWRITE
[RRN]

DELETE
[RRN]

START
[RRN]

VERB
OPEN
MODE

INPUT

OUTPUT

I-O

Figure 3-4. Relative File Dynamic Access

If a relative file is to be referenced by a START verb, the RELATIVE KEY phrase
must be specified for that file in the FILE-CONTROL entry.

3.5 Using a Relative File for the First Time

When you first access a new relative file, you must open it either in OUTPUT
mode or in I-O mode. You can use the LOAD_FILE command (JCL equivalent
CREATE) as described in Section 8.

Relative Organization

47 A2 04UF Rev06 3-7

3.6 Format of a Data CI in a Relative File

The following information will help you understand how space requirements are
calculated (described later in Section 6). There is no user programming required to
maintain or take into account the control fields shown. UFAS-EXTENDED does
all the necessary processing. Figure 3-5 shows the CI format for fixed-length
records and Figure 3-6 shows the CI format for variable-length records.

Data Record

Data Record

Unused Space

CI Header Information 9 bytes for FBO files
 8 bytes for VBO files

Empty Record Location

Record Header
4 bytes

Record Header
4 bytes

Record Header
4 bytes

Record Header
4 bytes

Record Header
4 bytes

Record Header
4 bytes

1 byte CI
trailer if FBO

{
{

Empty Record Location

Data Record

Data Record

Figure 3-5. Relative File Data CI Format (fixed length records)

UFAS-EXTENDED User’s Guide

3-8 47 A2 04UF Rev06

Data Record

Data Record

Data Record

Data Record

1 byte CI
trailer if
FBO

Unused Space

CI Header Information 9 bytes for FBO files
 8 bytes for non VBO files

Empty Record Location

Empty Record Location

Record Header
4 bytes

Unused
Space

Unused
Space

Unused
Space

{
{

Record Header
4 bytes

Record Header
4 bytes

Record Header
4 bytes

Record Header
4 bytes

Record Header
4 bytes

Figure 3-6. Relative File Data CI Format (variable length records)

In either case, a record is never split over 2 CIs and the size of a CI is always a
multiple of 512. There may, therefore, be unused space in a CI. UFAS-
EXTENDED always rounds up the size of a CI (CISIZE parameter) given by the
user to a multiple of 512. Table 6-1 gives you the CI sizes recommended for each
type of disk drive.

Note that each record location has a 4-byte record header. This header contains
information on whether the record location is empty or not.

For variable-length records, the maximum record length is reserved for each record
position. Therefore, no file space is saved by choosing variable record format for a
relative file. However, there may be other advantages for the programmer to code
the application using variable-length instead of fixed-length records.

For full details on space calculations, see Section 6.

Relative Organization

47 A2 04UF Rev06 3-9

3.7 Example of an Application

A user has a file where each record details a spare part. There are 5,000 spare parts.
The file is to be used on-line as part of a stock control system.

When the file was designed, each spare part was given a number, from 1 to 5,000.
The numbers are published in a catalog used by customers when ordering.

Figure 3-7 shows the ordering procedure.

Spare
Parts
Catalog

Terminal Operator
Keys in Number

Using this Number
Program Addresses
Relative File

GCOS 7

Spare
Parts
File

Customer Telephones
Order by Using Catalog Number

Figure 3-7. Relative File Application

A file record might have the format:

PART
DESCRIPTION

CURRENT
STOCK

MINIMUM
ORDER

UNIT
PRICE

RE-ORDER
LEVEL

AVAILABILITY
DATE

The user program updates records based on the order value. (The same program
will probably also record the order for billing and shipment.)

Hence, the order is always made using the latest information on stock level and
current price.

The on-line user program would access the file in RANDOM mode. The file would
be opened in I-O mode, to allow changes.

UFAS-EXTENDED User’s Guide

3-10 47 A2 04UF Rev06

If the parts had been numbered in such a way that all parts belonging to a
subassembly were in consecutive record locations, then the user program might
operate in DYNAMIC mode so that a sequential listing of a part of the file could be
made at the terminal.

Each evening, or perhaps once a week, when the on-line operation is not active, a
program might be run which inspects every record in the file in order to compile a
report for replenishing stock items which are at or below the reorder level. Here
access to the file is sequential.

However, even in batch mode, you may find it more efficient to address the file
directly than to perform sequential processing. If a job is run every day to update a
file and if, say, only 2% of the records are accessed in the run, then direct access is
more efficient (in the case above, only 100 records are accessed) rather than
sequential (up to possibly 5000 record accesses). Note that this choice can be made
only if the user program can be supplied with the locations (RRNs) of the records
to be updated.

47 A2 04UF Rev06 4-1

 4. Indexed Sequential Organization

4.1 Summary

This section covers the following topics:
• indexed-sequential-file concepts,
• types of open mode,
• types of access mode,

− sequential access,
− random access,
− dynamic access,

• using an indexed sequential file for the first time,
• adding records,
• deleting records,
• secondary keys,
• creating secondary indexes,
• updating secondary indexes,
• structure of a UFAS-EXTENDED indexed sequential file,

− address space 1
− address space 2
− address space 3
− address space 4
− address space 5
− address space 6
− address space 7

• primary-index handling,
• secondary-index handling,
• structure of primary and secondary indexes,
• allowing for free space,
• inserting records,

− simple insertion,
− insertion requiring CI compaction,
− insertion requiring CI splitting,
− reorganization of index CIs.

• format of a data CI in an indexed sequential file,
• example of an application.

UFAS-EXTENDED User’s Guide

4-2 47 A2 04UF Rev06

4.2 Brief Review of Indexed Sequential Organization

An indexed sequential file can reside only on a disk. Each record in an indexed
sequential file is identified by a value called a key. There are two kinds of key:
primary keys and secondary keys.

The primary key is the main key by which a set of records is organized or accessed.
It must be present as a data field within the record and each record may have only
one primary key. Two different records cannot have the same primary key value.

A secondary key is any key, other than the primary key, used to access data. You
can specify up to 15 secondary keys, but they must be present as data fields within
the record. Several different records may have the same secondary key value
(DUPLICATES are allowed), but split keys are not permitted.

Records can be read using the primary or secondary keys. To write a new record or
to update an existing record, the primary key must be used. Figure 4-1 shows a
logical picture of records and their keys in an indexed sequential file.

Primary KEY Secondary KEY

FIELD 1 FIELD 2 FIELD 3 FIELD 4 FIELD 5

Figure 4-1. Indexed Sequential Record Keys

For each key, its length and its location within the record must be the same for all
records in the file. The location of the key (that is, its offset from the beginning of
the record) is defined by the user at file-allocation time. Each key is uniquely
identified by its location and its length; this means that no two keys can have the
same location and the same length. This topic is further discussed in Section 6.
Although any two keys must be distinct, it is permissible for them to have the same
KEYLOC (position of the byte of each key in the record).

The key can exist anywhere in the record, subject to the restriction that for
variable-length records the defined key fields must always be present. If a file
contains variable-length records and the highest-key location is byte m and its
length is n bytes, then the minimum length of the record for the file is (m - 1) + n.

CAUTION:
The maximum key length is 251 bytes. It is not possible to have a key split into
several parts.

Indexed Sequential Organization

47 A2 04UF Rev06 4-3

As shown in Figure 1-4, an indexed sequential file has index areas, in addition to
data records. These indexes provide the path between the user-supplied key value
and the address of the record to be accessed. In other words, these indexes are used
to locate records in a data file. UFAS-EXTENDED maintains these indexes.

In the following example, an order file has:

primary key = order number
secondary key = customer number
secondary key = product number

QUANTITY FULL ADDRESS101 391 0891

QUANTITY FULL ADDRESS102 201 0371

QUANTITY FULL ADDRESS179 391 0893

QUANTITY FULL ADDRESS213 251 0891

Order
Number

Customer
Number

Product
Number

Duplicates are
not allowed

Duplicates are
allowed

• Customer number 391 has 2 orders (101 and 179) for two different products
(891 and 893).

• Product 891 has been ordered by 2 different customers (391 and 251).

UFAS-EXTENDED User’s Guide

4-4 47 A2 04UF Rev06

Indexes are used in two different ways:

Sequential access: the order file may be accessed sequentially, that is, in
order number sequence,

Random access: individual records in the file are accessed on the basis
of a given value for a key; for example, retrieve all the
orders of a customer whose customer number is 391.

A program using an indexed sequential file must have its organization declared as
INDEXED (ORGANIZATION IS INDEXED).

Indexed Sequential Organization

47 A2 04UF Rev06 4-5

4.3 Types of Open Mode

When you open a file, you must state an open mode. You can open an index
sequential file in four modes:

INPUT

OUTPUT

I-O

EXTEND (GPL equivalent APPEND)

EXTEND open mode is a recent feature of UFAS-EXTENDED and is available
only in COBOL-85.

The choice of open mode depends on the access mode declared for the file. The
various combinations are described below.

UFAS-EXTENDED User’s Guide

4-6 47 A2 04UF Rev06

4.4 Types of Access Mode in COBOL-85

You can access an indexed sequential file in three modes:

 { SEQUENTIAL }
ACCESS MODE IS { RANDOM }
 { DYNAMIC }

4.4.1 Sequential-Access Mode in COBOL-85

Choose this mode to process all the records of the file. You can open a file for
INPUT, OUTPUT, or I-O mode.

INPUT and I-O mode:

• Records are read by a program in ascending order by primary-key or secondary-
key value. When records are being read using a secondary key where duplicates
(non unique keys) are allowed, duplicate records are read in the same order as
they were written.

• Use the START verb to specify the logical position within the file at which
processing begins.

I-O only:

When using the REWRITE verb, which must be preceded by a READ, you must
not change the primary-key value.

OUTPUT mode:

• Opening a file in OUTPUT mode deletes the previous contents of the file.
• Open a file for OUTPUT to populate the file; this can be done by a utility such

as the LOAD FILE (JCL equivalent CREATE) command (described later in
Section 8), or by a COBOL program.

• Records written by the program must be in ascending order of primary key.

EXTEND mode:

• Available only in COBOL-85.
• Records must be written in ascending order of primary key.

Figure 4-2 shows the COBOL verbs available when ACCESS MODE IS
SEQUENTIAL.

Indexed Sequential Organization

47 A2 04UF Rev06 4-7

COBOL
VERB

COBOL
OPEN MODE

READ

X

WRITE REWRITE DELETE

X

X X

START
(KEY)

INPUT X

OUTPUT X

I-O X

EXTEND X

Figure 4-2. Sequential Access to an Indexed Sequential File

4.4.2 Random-Access Mode in COBOL-85

Random access is performed by a key value. To read a record, the user program
supplies the key value (primary key value or secondary key value, if any) of the
required record. To write a record to a file, the program uses the value of the
record’s primary-key field to place a record in the file.

Note that all primary-key values used in a file must be unique.

Figure 4-3 shows the COBOL verbs available when ACCESS MODE IS
RANDOM.

X X

INPUT X

OUTPUT X

I-O X X

READ
(KEY)

WRITE
(KEY)

REWRITE
 (KEY)

DELETE
 (KEY)

COBOL
VERBCOBOL

OPEN MODE

Figure 4-3. Random Access to an Indexed Sequential File

In I-O mode:

• WRITE is used to add a new record to a file, that is, a new primary-key value.
• REWRITE is used to overwrite an existing record (having the same record

length and the same primary-key value).

UFAS-EXTENDED User’s Guide

4-8 47 A2 04UF Rev06

4.4.3 Dynamic-Access Mode in COBOL-85

In dynamic-access mode, you can mix sequential with random access in the same
program. Using the COBOL verb START, indicate the record location in the file at
which sequential access is to begin. Verbs without key values are taken as
sequential, whereas those with key values are processed for random access as
described in paragraph 4.4.2.

Figure 4-4 shows the COBOL verbs available when ACCESS MODE IS
DYNAMIC.

INPUT

OUTPUT

I-O

COBOL
VERB

COBOL
OPEN MODE

READ
(KEY)

WRITE
(KEY)

REWRITE
(KEY)

DELETE
(KEY)

START
(KEY)

X

X

X

X X X

X

X

Figure 4-4. Dynamic Access to an Indexed Sequential File

Note that the meaning of a WRITE verb in dynamic-access mode depends on how
you open a file.

CAUTION:
When you open the file in OUTPUT or EXTEND mode:

Records written by WRITE statements must be in ascending order of primary
key. This is particularly important when you open the file in EXTEND mode.

When you open the file in I-O mode:

The primary-key value of the record written need not be greater than the primary-
key values of records written by previous WRITE statements (you do not have to
write records in ascending order of primary key).

Indexed Sequential Organization

47 A2 04UF Rev06 4-9

4.5 Using an Indexed Sequential File for the First Time

When you first access a new indexed sequential file, you must open it either in
OUTPUT mode or in I-O mode. You can use a utility such as the LOAD FILE
(JCL equivalent CREATE) command as described in Section 8.

It is recommended that you open the file in OUTPUT mode; if any secondary keys
are associated with this file, then run the SORT_INDEX utility (JCL equivalent
SORTIDX) after the file is loaded. In this case, use the APPLY NO-SORTED-
INDEX clause in a COBOL step.

4.6 Adding Records

You may add records with new primary-key values to the file, provided that there is
space available. Primary key values in the additional records may be greater than
the highest value or lower than the lowest value already present in the file. The new
values can, of course, also lie between the existing high and low values. When
designing a file, be sure to allocate sufficient file space for later expansion. See
"Choosing Free Space" in Section 6.

4.7 Deleting Records

When you delete records, the space freed can be re-used during later insertions into
the file. For further details, see this later in Section ("Insertion Requiring CI
Compaction").

UFAS-EXTENDED User’s Guide

4-10 47 A2 04UF Rev06

4.8 Secondary Keys

Up to 15 secondary keys can also be used; duplicate key values are allowed for
secondary keys. In a TDS application, there must not be more than 2 or 3
secondary keys. Avoid specifying meaningless duplicates (KEY = SPACE or
ZERO).

4.8.1 Creating Secondary Indexes

Although there are two ways of creating secondary indexes, it is recommended that
you use the first of those below.

• It is assumed that the records to be loaded are already sorted in primary key
order. When you wish to load the file (first time use), you can use:

− either the LOAD_FILE command (JCL equivalent CREATE),

− or a COBOL program (using WRITE verbs) with the APPLY NO-SORTED-
INDEX ON clause and the ALTERNATE RECORD KEY in the SELECT
clause.

After records are initially loaded in an indexed sequential file, use the
SORT_INDEX (SRTIDX) command (JCL equivalent SORTIDX) to sort and
load the secondary indexes.

• UFAS-EXTENDED builds secondary indexes automatically when the file is:

− updated (open in I-O mode),
− created by a COBOL program without using the APPLY NO-SORTED-

INDEX clause (open in OUTPUT mode),
− loaded with the LOAD_FILE command and the parameter ORDER=0 (JCL

equivalent FILELOAD=NORDER in CREATE).

This means that a newly inserted record is immediately available from its
primary key or from any secondary keys.

The simplified format for SRTIDX is as follows:

 SRTIDX [OUTFILE =] (outfile-file-description)

For example,

 S: SRTIDX (SD3.IQS.CUSTOMERS)

where SD3.IQS.CUSTOMERS is the file whose secondary indexes are to be
created. The keys stored in the secondary index are sorted into ascending
order.

Indexed Sequential Organization

47 A2 04UF Rev06 4-11

For further information about this utility, see the IOF Terminal User’s Reference
Manual or the Data Management Utilities User’s Guide for the equivalent JCL
utility SORTIDX.

Secondary indexes will be built automatically if a COBOL program loads a file by
using the WRITE verb when there is no APPLY NO-SORTED-INDEX ON clause
in the I-O-CONTROL Section of the ENVIRONMENT DIVISION. The same is
true if the program opens the file in I-O mode. Note that in these circumstances any
duplicate records will be written in the order in which they are provided (and not
sorted on the primary key as they would be with SORTIDX).

For performance reasons, it is recommended that you use the APPLY NO-
SORTED-INDEX ON clause when a file is being initially loaded by a COBOL
program in OUTPUT or EXTEND mode. THE APPLY NO-SORTED-INDEX ON
clause is effective only when the file is opened in output mode.

For more information on the APPLY NO-SORTED-INDEX ON clause, see the
COBOL-85 Reference Manual.

4.8.2 Updating Secondary Indexes

Secondary indexes are updated automatically as the records are updated, according
to ANSI COBOL standards; therefore, no user action is required.

UFAS-EXTENDED User’s Guide

4-12 47 A2 04UF Rev06

4.9 Structure of a UFAS-Extended Indexed Sequential File

It is useful to know about the structure of an indexed sequential file because this
knowledge will help you interpret the information given by the LIST_FILE
command (JCL equivalent FILLIST). For instance, if you find that there have been
a lot of CI splits for a particular file, it is time to redefine the file with a larger free
space allocation and rebuild it.

As shown in Figure 1-4, an indexed sequential file consists of up to 7 address
spaces. These are further detailed in Figure 4-5. Address spaces 3, 4, 5, 6 and 7 are
specific to indexed sequential files.

4.9.1 Address Space 1

This address space contains CIs control information for UFAS-EXTENDED.
Address space 1 always occupies at least the first blocks (16 Kbytes) of an FBO
file , or the first track of a VBO file.

4.9.2 Address Space 2

This address space contains user data structured in logical records in the CIs.

4.9.3 Address Space 3

This address space contains a part of the index used to access the data through the
primary key for an indexed sequential file. It contains that part of the index (high-
level index) that does not point to data CIs. It can be empty for a small file using a
single level index.

4.9.4 Address Space 4

This address space contains the part of the index used to access data through the
primary key for an indexed sequential file. Address space 4 contains that part of the
index (low-level index) that points to data CIs.

Indexed Sequential Organization

47 A2 04UF Rev06 4-13

4.9.5 Address Space 5

This address space contains the lowest part of the indexes that are used to access
the data through secondary keys. It is also known as the dense index. An index is
said to be dense because it contains an entry for every stored record in the indexed
file. For each secondary index, there is one entry at this level for each record in the
data area.

For example, if we have 100 records in the file and 3 secondary keys per record,
the number of entries will be 100 x 3 = 300.

Address space 5 exists only for indexed sequential files with secondary keys.

4.9.6 Address Space 6

For each secondary key that has been specified for the file, there is an index with
the same structure as the primary index.

Address Space 6 contains the high-level index associated with each secondary key.
It does the same job for secondary indexes as address space 3 does for primary
indexes. It exists only for indexed sequential files with secondary keys.

UFAS-EXTENDED User’s Guide

4-14 47 A2 04UF Rev06

4.9.7 Address Space 7

Address space 7 contains the low-level index associated with each secondary key.
It does the same job for secondary indexes as address space 4 does for primary
indexes.

C
I

C
I

C
I

C
I

C
I

C
I

C
I

C
I

C
I

C
I

C
I

C
I

C
I

C
I

C
I

C
I

C
I

C
I

C
I

Address Spaces

Lowest-level primary index CIs

Higher-level primary index CIs

UFAS-EXTENDED file-control information

Higher-level secondary index CIs

Lowest-level secondary index CIs

Dense level secondary index CIs

1 57623 4

Figure 4-5. Detailed Layout of an Indexed Sequential File

4.9.8 Primary-Index Handling

A primary index generally comprises several levels. In a single-level index, and at
the lowest level of a multi-level index, an entry points directly to an individual data
CI. At the higher levels of a multi-level index, an entry points to an index CI at the
next lower level; a multi-level index is used where the size of a file is such that it
would give rise to excessive search time using a single-level index.

Figure 4-6 shows two index address spaces, higher (address space 3), and lower
(address space 4) and the data address space (address space 2).

Within each address space reserved for the indexes, the index entries are contained
within CIs.

The size of a CI in all address spaces, including address space 2, is the same.

Indexed Sequential Organization

47 A2 04UF Rev06 4-15

The primary index takes into account the order of the records. It consists of only
one entry per data CI corresponding to its record with the highest key value. The
ascending key sequence allows UFAS-EXTENDED to locate keys that are not
included in the index.

• UFAS-EXTENDED builds as many levels of higher index as necessary and at
each level only one CI is inspected for record access.

• Each index entry records the highest primary-key value present in the CI to
which it refers. Hence, in Figure 4-6, using a 3-character key, the highest
primary-key value present in the 17th data CI is EAP.

Assume that the record with the key named JFO is to be retrieved. UFAS-
EXTENDED begins at the highest level of index. Within the highest index CI
(RST), UFAS-EXTENDED starts its search from the JKA entry which points to the
index CI (JKA) in address space 4. This is the lowest-level index. Within this index
CI, UFAS-EXTENDED finds the index entry JKA which points to the 18th data
CI. UFAS-EXTENDED concludes that the record key JFO, if it is present, is in the
18th CI.

UFAS-EXTENDED User’s Guide

4-16 47 A2 04UF Rev06

4.9.9 Secondary-Index Handling

You can specify up to 15 secondary keys for a file. For performance reasons, the
number of secondary keys used in a transactional environment should be small.
The indexes for these keys are held in address spaces 5, 6 and 7, as shown in
Figure 4-5.

EUL

FIB

JKA

HAA

RAA

PNZ

RST

REB

ACC

ADE

EAP

BID

KLM

KRR

NOU

PNN

LLL

BUD

CCE

EAP

DEA

DIA

EAP

JKA

PNN

RST

NOP

PNN

PLA

PAA

REA

RFU

RST

Highest Index CI

Address Space 3

Address Space 4

Address Space 2

Data
CIs

. . .
CI’s
1 to 16

. . .

. . .
CI’s
21 to n

. . .

CI 17

HAB

GIA

GLL

JKA

JFO

CI 19CI 18 CI 20

Figure 4-6. UFAS-EXTENDED Indexed File Structure
(without secondary keys)

Indexed Sequential Organization

47 A2 04UF Rev06 4-17

4.9.10 Structure of a Primary and Secondary Index

Figure 4-7 shows how two secondary indexes access the data area through address
space 5. To keep matters simple, this example shows only 5 entries per index CI;
usually there are many more entries per CI.

Secondary Index 1

Address Space 6
Higher level
non dense
secondary
index CIs

Address Space 7
Lowest level
non dense
secondary
index CI

Address Space 5
Dense level
of secondary
indexes

Address Space 2
Data area CIs

Address Space 4
Lowest level
of primary
index CIs

Address Space 3
Higher level
of primary
index CIs

Secondary Index 2

Figure 4-7. Primary and Secondary Index Structure

UFAS-EXTENDED User’s Guide

4-18 47 A2 04UF Rev06

4.10 Allowing for Free Space

At allocation time, you can specify the amount of space to be left empty in a CI by
using the CIFSP parameter in the BUILD FILE command (JCL equivalent
PREALLOC) as described in Section 6. When you load the file for the first time in
OUTPUT mode, space will be left empty according to the CIFSP parameter in
order to allow for later record insertions.

Figure 4-8 shows free space left in CIs after the initial loading of the file.

CI 0 CI 1 CI 2 CI 3 CI 4 CI 5

Figure 4-8. Free Space in an Indexed Sequential File

The shaded areas represent free space.

Indexed Sequential Organization

47 A2 04UF Rev06 4-19

4.11 Inserting Records

Within the space allocated to the file, UFAS-EXTENDED automatically makes
new CIs available to the file as necessary. When a record is to be inserted into a CI,
UFAS-EXTENDED reads the current CI in which the record should be inserted (on
the basis of the primary key). Some of the insertion mechanisms are described in
the following sections.

4.11.1 Simple Insertion

This occurs when enough space is present in the CI without moving records within
the CI. See Figure 4-9.

CI (FXX)

FAB

FBB

FNA

FNQ

FDM

FXX

CI (FXX)

FLX

FLX

FAB

FBB

FNA

FNQ

FDM

FXX

Key

record to be inserted

CI Header Information

record descriptors

CI Header Information

record descriptors

Figure 4-9. Simple Insertion

Each record in the CI contains a pointer to the next higher record by key value
within the CI. Note that the physical sequence of records within the CI is not the
same as the key sequence. These pointers allow logical chaining of the CIs.
For an explanation of the "record descriptors", see Section 4.

UFAS-EXTENDED User’s Guide

4-20 47 A2 04UF Rev06

4.11.2 Insertion Requiring CI Compaction

This applies when enough space is present in the CI, but UFAS-EXTENDED must
compact the records in the CI in order to retrieve space made available as a result
of record deletion.

The records remain in the same order as before they were compacted. See Figure 4-
10. (Links between records are not shown.)

CI (FXX)

FAB

FBB

FDM FNA

FNQ

FPX

FAB

FBB FDM

FXX

FXX

CI (FXX)

FNQ

FNA FPX

Key

record to be inserted

CI Header Information

Record Descriptors

Free Space

CI Header Information

Free Space

Free Space Free Space

Free
Space

Record Descriptors

Figure 4-10. Insertion Requiring CI Compaction

CIs containing variable-length records often need to be compacted.

UFAS-EXTENDED compacts the records in the CI so that all free space is
collected at the end. During the compaction, the new record is inserted. Because
the Cls are compacted and not reorganized as in earlier releases of UFAS, the costs
associated with the updating of address space 5 are avoided.

Indexed Sequential Organization

47 A2 04UF Rev06 4-21

4.11.3 Insertion Requiring CI Splitting

This occurs when the appropriate CI does not contain enough space. This means
that UFAS-EXTENDED must find another CI. See Figure 4-11.

BLB
DBX
DBA

DBZ
ELG
DCZ
GHH
GHA
DCC
EFF
FAB

PLX
PRA
PVB
SMX
NER
GHI

FPA

DBX
GHH
SMX

BLB
DBX
DBA

DCC
DBZ

DCZ
EFF
ELG

PLX
PRA
PVB
SMX
NER
GHI

FAB
FPA
GHA
GHH

DBX
ELG
GHH
SMX

Index CI (SMX)

Space index-
entries

Address
Space 4

Lowest-
level
Indexes

Address
Space 2

Record to be inserted

Before CI Splitting
After CI Splitting

CI (DBX) CI (GHH) CI (SMX) CI (free)

Index CI (SMX)

Address
Space 4

Lowest-
level
Indexes

CI (GHH)CI (SMX)CI (DBX) CI (ELG)

Address Space 2

Figure 4-11. Insertion Requiring CI Splitting

UFAS-EXTENDED User’s Guide

4-22 47 A2 04UF Rev06

Figure 4-11 shows what is known as CI splitting. UFAS-EXTENDED splits the CI
called GHH. After this CI is split, records DBZ, DCC, DCZ, EFF, and ELG, remain
in the old CI (now called CI (ELG)), but the new record FPA is inserted into the
new CI (GHH) along with records GHH, GHA, and FAB.

Note that there are links between each CI to allow sequential access to take place.

UFAS-EXTENDED automatically manages the spare entries in index CIs;
normally there are many more entries per index CI than appear in this example.

CAUTION:
If a file with secondary indexes using the Deferred Update mechanism is split,
the mechanism is no longer taken into account and return code WDNAV is
issued; instead, the Before Journal takes effect automatically.

4.11.4 Insertion Requiring Reorganization of Index Cls

In the previous paragraph, where we described an insertion causing a CI to be split,
we assumed that there was at least one spare index entry in the lowest level index
in question. When there is no spare index entry, UFAS-EXTENDED uses more
complex mechanisms to insert a record.

The content of the low-level index CI is split into two index CIs. During this
splitting operation, no data record is moved; only index CIs are affected. As a result
of this splitting, an index entry is made in the high-level index (address space 3 or
6). This entry, in turn, can lead to a reorganization of the high-level indexes.

Figure 4-12 shows how a record identified by key 1210 is to be inserted into the
data CI 13, but CI 13 is full; hence the CI needs to be split, but there is no free
entry in address space 4.

In the right-hand column of Figure 4-12, the index CI (1786) is split and there is
room for the index entry 1100. Next the data CI (13) is split; records whose keys
are 1000, 1020, and 1100 are placed in the new data CI (nn) and record 1214
remains in the data CI (13) where the new record 1210 is also placed.

NOTE:
An indexed Ufas file frequently modified (delete of records and/or insertion
of new records) gives rise to many splittings of Data’s CI or Index’s CI. It is
strongly recommended to reorganize it periodically by using the LDF/CREATE
utility. This allows to reduce the disk space and improves the sequential access
time to records.

Indexed Sequential Organization

47 A2 04UF Rev06 4-23

1000

1020

1210

CI 12

CI 13

CI 14

CI 15

CI 12

CI 13

CI 14

CI 15

1000

1100

1214

1020

1210
1214

Record to be inserted

Index CI (4312)
CI Header

Key = 0419

Key = 1786

Key = 4312

Free

BEFORE AFTER

Key = 0419

Key = 1786

Key = 1214

Key = 4312

Key = 0613

Key = 1214

Key = 1100

Free
Key = 0613

Key = 1214

Key = 1316

Key = 1786

Key = 1316

Key = 1786

Free

Free

Data CI (13)

1100

Address
Space 3

Address
Space 3

Address
Space 4 Address

Space 4

Index CI (4312)

Index CI (1786)

Index CI (1214)

Index CI (1786)

CI Header

CI Header

CI Header

CI Header

Address
Space 2

Address
Space 2

CI Header

CI Header

Data CI (nn)

Data CI (13)

CI Header

Figure 4-12. Insertion Requiring Reorganization of Index CIs

UFAS-EXTENDED User’s Guide

4-24 47 A2 04UF Rev06

4.12 Format of a Data Ci In an Indexed Sequential File

You may find the following information useful for calculating file space. No user
programming is required to maintain, or take into account, the control fields shown
in Figure 4-13. UFAS-EXTENDED does all the necessary processing.

CI Format (fixed-length or variable-length records)

RD (H) RD (G) RD (C)

RD (B) RD (A)RD (E) RD (D) RD (I)

CI Header Information
20 bytes for VBO files

Record Header
5 Bytes Data Record A

21 bytes for FBO files

RD (F)

1 byte CI
trailer if FBO

Record Header
5 Bytes

Record Header
5 BytesData Record B

Data Record E
Record Header
5 Bytes

Record Header
5 Bytes

Record Header
5 Bytes Data Record H

Data Record F

Data Record I

Data Record C

Each record descriptor (RD) is 2 bytes long.

Each record header is 5 bytes long.

Indicates unused space, including any space occupied by logically deleted
records which are not yet physical deleted

Record Header
5 Bytes

Figure 4-13. Data CI Format in an Indexed Sequential File

Indexed Sequential Organization

47 A2 04UF Rev06 4-25

Comments on Figure 4-13

• The maximum number of records allowed in a CI is 255.

• The size of a data CI for an indexed sequential file must be large enough to
accommodate at least 2 records.

• There is one record descriptor for each active or deleted record in the CI. In
Figure 4-13, records D and G are marked for deletion. When records in a CI are
marked for deletion, they are not physically removed immediately; thus the
associated record descriptors may or may not be empty (See "Insertion
Requiring CI Compaction" above.)

• The record descriptors point to the records (an offset from the CI header).

• The CI size will be a multiple of 512 bytes. You can specify a CI of any size (up
to five digits long), but UFAS-EXTENDED always rounds this figure up to a
multiple of 512. Table 6-1 gives you the recommended CI sizes for each non-
FSA disk drive. Table 6-2 gives you the recommended CI sizes for files being
allocated on FSA disks.

• For full details concerning space calculation, see Section 6.

4.13 Example of an Application

A large organization maintains a personnel file where there is one record for each
employee. The record format is:

Employee
Name

Home
Address

Social
Security
Number

Next-of-kin
Name &
Address

Date of
Birth

Date of
Hire

Qualification
level

This file is to be accessed non-sequentially. Therefore, choose either relative or
indexed sequential file organization. If you choose relative, each employee will
have to be allocated an RRN. This would be very inflexible because old RRNs
remain in the file as people leave or retire. In addition, new employees would have
to receive a new number (for security reasons, old numbers could not be re-used).

Instead, you can build an indexed sequential file using a unique number, for
example, the employee’s social security number. Thus you need not invent a new
classification system, and space previously occupied by deleted records can be re-
used by new key values automatically.

UFAS-EXTENDED User’s Guide

4-26 47 A2 04UF Rev06

❑

47 A2 04UF Rev06 5-1

 5. File Assignment, Buffer Management, and
File Integrity

5.1 Summary

This section covers the following topics:

• GCL commands/JCL statements,
• user-program reference,
• file-assignment parameter group ASGi,
• types of volume:

− resident,
− work,
− named,

• multivolume files:
− partial/extensible processing of multivolume files,

• managing multivolume devices (MOUNT),
• sharing devices between files (POOL),
• file sharing,
• overriding rules,
• file-define parameter group DEFi,
• manipulating buffers:

− POOLSIZE,
− BUFPOOL,
− NBBUF,
− tuning buffers,
− JOR statistics,

• journalization:
− Before Journal,
− After Journal,

• file integrity,
− file creation,
− file opening,

• file extension,
• permanent I-O errors.

UFAS-EXTENDED User’s Guide

5-2 47 A2 04UF Rev06

5.2 GCL Commands

GCL commands are used to assign and allocate UFAS-EXTENDED files in the
IOF environment.

You can use the following parameters of the GCL command EXEC PG to reference
UFAS-EXTENDED files:

ASGi assigns a file to a program (described in Section 5),

ALCi declares space requirements for a temporary or
permanent disk file (described in Section 6). In certain
commands, like COPY_FILE and COMPARE_FILE,
you can allocate a file dynamically by specifying the
DYNALC and ALLOCATE parameters.

DEFi provides file attributes for the assigned files (described
in Section 6). These attributes can also be introduced
through the INDEF and OUTDEF parameters of a file
management utility.

GCL Keywords:

POOL optimizes device usage (described in Section 5),

POOLSIZE defines the maximum size of the UFAS-EXTENDED
buffer pool. (described in Section 5).

These statements are discussed here as they apply to UFAS-EXTENDED files. For
a complete description, see the IOF Terminal User’s Reference Manual.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-3

5.3 JCL Statements

JCL statements are used to assign and allocate UFAS-EXTENDED files in the
batch and TDS environments.

The files, and the manner in which they are to be used, are specified in the job
description. JCL statements which can reference UFAS-EXTENDED files are:

ASSIGN assigns a file to a program,

ALLOCATE declares space requirements for a temporary or new
permanent disk file,

DEFINE provides file attributes and file usage information, such
as the number of buffers allocated to a file (NBBUF
parameter),

POOL optimizes device usage,

SIZE declares the declared working set and the memory area
shared by buffers (POOLSIZE parameter).

These statements are discussed in this manual as they apply to UFAS-EXTENDED
files. For a complete description, see the JCL Reference Manual.

In addition to these JCL statements, there is in the CREATE utility, for example,
the OUTALC parameter for dynamically allocating a file. The INDEF and
OUTDEF parameters provide file attributes to be used by UFAS-EXTENDED. All
these parameters are covered in the Data Management Utilities User’s Guide.

UFAS-EXTENDED User’s Guide

5-4 47 A2 04UF Rev06

5.4 User-Program Reference

COBOL programs are independent of the physical attributes of the files they use. A
COBOL program references an "internal-file-name" with which the real file is
associated at run time (see the next section on file assignment). The program
describes only the logical characteristics of the file to be processed. Examples of
such attributes are:

• record length
• record format (fixed or variable)
• file organization (sequential, relative or indexed)
• access mode.
• open mode

In some programming languages, the programmer can declare the number of
buffers or the block size, etc. However, for GCOS7, it is good practice to declare
this information in the GCL or JCL and not in the program. If this advice is
followed, the file characteristics can be altered without changing and re-compiling
the program. As it will be discussed later in this Section, the values defined in the
label override the JCL statements/GCL commands, which, in turn, override the
values declared in the program.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-5

5.5 File-Assignment Parameter Group ASGi in the GCL Command
EXEC_PG

For each internal-file-name (FILEi) used in a program, there must be a file-
assignment parameter group introduced through ASGi.

MUPPRG

 LIB = MY.LMLIB
 FILE1 = IFB
 ASG1 = FA.X:PLM:MS/D500
 FILE2 = IFA
 ASG2 = FA.Y
 FILE3 = FX2
 ASG3 = SYS.OUT;

EXEC_PG MUPPRG

Disk volume
PLM

User program Disk volume
PDVA

FILE

REPORT

FA.X FA.Y

FILE

Figure 5-1. Using the File Assignment Parameter Group

The program MUPPRG accesses two disk files, FA.Y on disk volume PDVA and
FA.X on disk volume PLM. A report is produced through the standard SYSOUT
mechanism.

The file FA.X is permanent, uncataloged, and therefore has probably been allocated
(and loaded) in a previous job. It is assumed that the file FA.Y is cataloged; thus it
is unnecessary to specify the device class or the media. Similarly, if the file FA.Y is
a resident or a temporary file, the device class or media need not be specified. If it
is cataloged, it has been made known to the catalog in a previous program or job
through the BUILD_FILE, or CREATE_FILE, or MODIFY FILE_STATUS
commands. The media on which the file resides will be found by GCOS7 in the
catalog.

Figure 5-1 shows a simple form of the file-assignment parameter group ASGi.
Figure 5-2 gives the complete syntax of the parameter group ASGi as it applies to
UFAS-EXTENDED files.

UFAS-EXTENDED User’s Guide

5-6 47 A2 04UF Rev06

EXEC_PG program-name
 FILEi = internal-file-name
 ASGi = (external-file-name

 [{ WRITE }]
 [{ READ }]
 [ACCESS = { SPREAD }]
 [{ SPWRITE }]
 [{ RECOVERY }]
 [{ ALLREAD }]

 [{ NORMAL }]
 [SHARE = { ONEWRITE }]
 [{ MONITOR }]

 [{ }]
 [NBEFN = {dec3 |ALL }]
 [{ }]

 [{ }]
 [FIRSTVOL = { dec3 |EOF }]
 [{ }]

 [{ }]
 [LASTVOL = { dec3 |EOF }]
 [{ }]

 [{ DEASSIGN }]
 [END = { PASS }]
 [{ LEAVE }]
 [{ UNLOAD }]

 [{ DEASSIGN }]
 [ABEND = { PASS }]
 [{ LEAVE }]
 [{ UNLOAD }]

 [MOUNT = dec3]

 [{ NO }]
 [POOL = { FIRST }]
 [{ NEXT }]

 [DEFER = bool]

 [OPTIONAL = bool]

Figure 5-2. Parameters for Assigning a file (1/2)

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-7

 [CATNOW = { bool }]

 [{ ddd }]
 [EXPDATE = { yy/dd }]
 [{ yy/mm/dd }]

 [{ 6250 }]
 [DENSITY = { }]
 [{ 1600 }]

 [VOLWR = { bool |0 }]) ;

Figure 5-2 Parameters for Assigning a file (2/2)

For an explanation of these parameters, see the IOF Terminal User’s Reference
Manual.

For cataloged files, the minimum information required by a file-assignment
parameter group ASGi, is the name by which the file is referenced in the program,
that is, the internal-file-name (FILEi parameter of the EXEC_PG command) and
the external-file-name (ASGi parameter).

For uncataloged files, the minimum information required is as follows:

• the internal-file-name,
• the external-file-name,
• the disk or tape cartridge volume where the file resides,
• the device class.

Volume and device class need not be specified if the file is RESIDENT.

UFAS-EXTENDED User’s Guide

5-8 47 A2 04UF Rev06

5.6 Types of Volume

There are 3 types of volume:

• resident
• work
• named

Each type is described in the following sub-sections.

5.6.1 Resident Volume

When a GCOS7 session begins, the operator can name certain disk volumes as
RESIDENT. These disks are kept on-line for the whole session. If no volume name
and no device class is specified at assignment time (see the ASGi parameter group
in sub-section 5.5), the system assumes that the file is either cataloged or allocated
on these resident volumes; see Figure 5-3.

COMM ’THE NEXT GCL STATEMENT REFERS TO A PREVIOUSLY
 ALLOCATED FILE ON A RESIDENT DISK VOLUME OR A
 CATALOGED FILE’;

EXEC_PG MYPROGRAM
 FILE1 = IFLQ
 ASG1 = PY.RMSX;

COMM ’THE NEXT STATEMENT REFERS TO A TEMPORARY FILE
 ON A RESIDENT DISK VOLUME’;

EXEC_PG MYPG
 FILE1 = INLBNB
 ASG1 = TFX.P$TEMPRY;

Figure 5-3. Using Resident Volumes

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-9

5.6.2 Work Volume

The second type is a WORK volume. Whereas a RESIDENT volume must be a
disk, a WORK volume must be a tape or a cartridge. A WORK volume is a tape
prepared by a utility such as the PREPARE_TAPE (PRPTP) (JCL equivalent
VOLPREP) command.

When the user specifies a WORK volume, the operator will be instructed to mount
a WORK volume for the job at execution time. To write to a work tape, a program
must know whether the tape file is permanent (default) or temporary ($TEMPRY).

If a temporary file is written, the volume remains a WORK tape. However, if a
permanent file is written, the tape volume loses its WORK status to become a
normal named volume; see Figure 5-4.

COMM ’THE FOLLOWING FILE ASSIGNMENT PARAMETER GROUP ASGi
 REFERENCES A TEMPORARY FILE ON A WORK TAPE. AT THE
 END OF THIS PROGRAM THE TAPE WILL STILL HAVE THE
 ATTRIBUTE WORK’;

 EXEC_PG MYPROGRAM
 FILE1 = INITX
 ASG1 = (FIT.PM:WORK:MT/T9$TEMPRY);

COMM ’THE NEXT STATEMENT ESTABLISHES A NEW PERMANENT FILE
 ON A WORK VOLUME’;

 EXEC_PG MYPG
 FILE1 = INQLP
 ASG1 = (FIT.PM:WORK:MT:T9 EXPDATE=240);

COMM ’NOTE IN THIS EXAMPLE TWO ASGi PARAMETER GROUPS USING
 THE SAME FILENAME FIT.PM.THIS IS ACCEPTED BY GCOS 7
 SINCE THE STATUS OF THE FILES IS DIFFERENT;I.E.,
 TEMPORARY UNCATALOGED AND PERMANENT UNCATALOGED. THE
 NEXT TIME THE USER USES THE PERMANENT FILE FIT.PM,
 HE MUST SUPPLY THE PROPER VOLUME NAME (THE VOLUME
 NAME OF THE WORK TAPE WHICH IS DISPLAYED IN THE JOB
 OCCURRENCE REPORT)’;

Figure 5-4. Using a Work Volume

UFAS-EXTENDED User’s Guide

5-10 47 A2 04UF Rev06

Work tapes are also used when a tape file overruns the supplied volumes. See
"Multivolume Files" later in this Section.

5.6.3 Named Volume

The third and most usual type of volume declaration is the volume name. Each
standard disk and tape volume has a name. This name, stored on the volume label,
can be set up by the following commands:

PREPARE DISK (PRPD) labels and formats a disk volume

PREPARE TAPE (PRPTP) labels and formats a tape volume

For a complete explanation of these commands, see the IOF Terminal User’s
Reference Manual (Part 2).

The JCL equivalent for formatting disk and tape volumes is the VOLPREP utility.

COMM ’THE FOLLOWING THREE FILE ASSIGNMENT PARAMETER GROUP
 ASGi REFER TO UNCATALOGED FILES ON NAMED VOLUMES’;

 EXEC_PG MYPROG
 FILE1 = BINB
 ASG1 = LM.PL:BD41:MS/D500
 FILE2 = BINC
 ASG2 = GHAC:1487D:MT/T9$TEMPRY
 FILE3 = FRED
 ASG3 = XA.BPLQ:TXAMB:MT/T9;

COMM ’NOTE THAT NAMED VOLUMES MAY CONTAIN TEMPORARY OR
 PERMANENT FILES THROUGH IT WILL PROBABLY BE AN
 INSTALLATION POLICY TO PLACE TEMPORARY TAPE FILES ON
 WORK VOLUMES’;

Figure 5-5. Using a named volume

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-11

5.7 Multivolume Files

A single file may be spread across several volumes. All the volumes for the file
must be of exactly the same type (all disk and same disk type, or all tape). For
information on multivolume files and types of OPEN mode, see section 2.

For a multivolume file, always supply volume names, via ASGi parameters, in the
order they were specified when the file was first allocated on disk or first written
on tape.

The maximum number of volumes allowed for a single file is 10 for a non-
cataloged file.

COMM ’THE NEXT STATEMENT ASSIGNS A MULTIVOLUME FILE NAMED
 MST.PLN’;

 EXEC_PG MYPG
 FILE1 = FILA
 ASG1 = (MST.PLN:11451/11452/11453:MS/D500);

COMM ’THE NEXT STATEMENT ASSIGNS A MULTIVOLUME TAPE FILE WHICH
 IS TO BE WRITTEN ON WORK TAPES’;

 EXEC_PG MYPROGRAM
 FILE1 = FILB
 ASG1 = (N.MSTPLN:WORK:MT/T9 EXPDATE = 340);

COMM ’EXPDATE ENSURES THAT THE FILE N.MSTPLN WILL BE RETAINED
 FOR 340 DAYS.’;

Figure 5-6. Using a Multivolume Uncataloged Disk or Tape File

Figure 5-7 shows the form of the above example for a cataloged disk file.

EXEC_PG MYPROGRAM
 FILE1 = FILA
 ASG1 = MST.PLN;

Figure 5-7. Using a Multivolume Cataloged File

UFAS-EXTENDED User’s Guide

5-12 47 A2 04UF Rev06

Multivolume files can be temporary or permanent. If you specify that the file is on
a WORK volume, then the system will automatically use as many WORK volumes
as required. The sequence in which they are used will be listed in the Job
Occurrence Report, and these names will then have to be used in subsequent
references to the file (if the file is not temporary).
Work tapes may also be used if you do not supply enough volumes for a file
opened in OUTPUT or EXTEND mode. On reaching the end of the last volume
specified, the system asks the operator to mount a work volume. The operator can
refuse the request, in which case the program is aborted.

5.7.1 Partial/Extensible Processing of Multivolume Files

This facility is available only for sequential disk or tape/cartridge files.

Suppose that you know that a program requires records only from a subset of the
volumes of a file. GCOS7 allows you to supply this subset of all the volumes. The
advantage is that the preceding volumes are not read unnecessarily. Similarly, when
you open a file in EXTEND open mode, you need specify only the volume-name
list starting at the last volume containing records. Figure 5-8 applies to tape files
only. For UFAS disk files, the first volume in the list must always be the first
volume of the file.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-13

LBA LBB LBC LBD LBE

PM2 PM3 PM4 PM6

148 ?

PM1

File FNAL.A

File HMQC.41

File NCU.BX. opened in EXTENDED mode, is to grow using work volumes.
Currently, only one volume, 148, accomodates the file.
If the files FNAL.A, HMQC.41 and NCU.BX are cataloged, the above example
becomes:

EXEC_PG GROFIL
 LIB = MY.LIB:MSD:MS/D500
 FILE1 = FLA
 ASG1 = (FNAL.A FIRSTVOL = 3 LASTVOL = 4)

 FILE2 = FLB
 ASG2 = (HMQC.41 FIRSTVOL = 4)

 FILE3 = FLC
 ASG3 = NCU.BX;

Program reads records only within volumes LBC and LBD. Does not read to
end-of-file, so LBE is not needed

File NCU.BX

PM4 is the last volume currently used. This file is opened in EXTENDED mode and
any future expansion will occur on reserved volumes PM5 and later, PM6.

PM5

Figure 5-8. Partial/Extensible Processing of Multivolume Tape Files

UFAS-EXTENDED User’s Guide

5-14 47 A2 04UF Rev06

5.7.2 Managing Multivolume Devices (MOUNT)

This facility is available only for sequential disk or tape/cartridge files.

Disk files: In the examples shown so far, all of the volumes of a
multivolume file will be placed on-line simultaneously.
Therefore a file-assignment parameter group ASGi
referencing 5 volumes will use 5 devices.

The following remark applies only to non-fixed disks.
To reduce the number of devices, use the MOUNT
parameter (for sequential files only) in the file-
assignment parameter group ASGi. MOUNT specifies
the maximum number of devices to be used at any one
time for the file. The default value, for disk files, is the
number of volumes.

Tape Files: To specify the maximum number of tape drives to
accommodate the file, use MOUNT. The most
effective values are MOUNT=1 and MOUNT= 2. The
default value is MOUNT = 1 for tape files.

If MOUNT = 1, then only one tape drive will be
reserved for the file. After a volume is used, the
volume will be replaced by the next volume in
sequence. Although minimizing device reservation,
this technique halts the program while the operator
changes volumes, unless premounting is used on
another device.

If MOUNT = 2, only two tape devices are used for the
file. However, in this case the operator can mount each
volume in advance and volume switching is not
delayed by operator intervention. See Figure 5-9.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-15

MA1 MA2 MA3 MA4

MA1 MA2 MA3 MA4

MA1 MA2 MA3 MA4

MT01 MT02 MT01 MT02

MT01 MT01 MT01 MT01

MT01 MT02 MT03 MT04

EXEC_PG MYPROGRAM
 FILE1 = GLBE
 ASG1 = (REL.X MOUNT = 4);

4 Magnetic Tape
Units are reserved

EXEC_PG MYPG
 FILE1 = GLBE
 ASG1 = (REL.X MOUNT = 1);

EXEC_PG PROGRAM
 FILE1 = GLBE
 ASG1 = (REL.X MOUNT = 2);

COMM ’MAXIMUM NUMBER OF DEVICES USED’;

COMM ’MINIMUM NUMBER OF DEVICES USED’;

COMM ’MOUNTING IN ADVANCE BY OPERATOR’;

Only 1 Magnetic Tape
Unit is reserved

2 Magnetic Tape
Units are reserved

Figure 5-9. Managing Multivolume Devices

The use of MOUNT applies to cataloged and permanent uncataloged and
temporary tape files (described later in sub-section 7.2).

When the programmer specifies that a file is on a WORK volume and the file is
multivolume, GCOS7 operates as if MOUNT = 1 is specified.
The MOUNT value continues to have effect when a file overflows onto WORK
volumes.

UFAS-EXTENDED User’s Guide

5-16 47 A2 04UF Rev06

5.8 Sharing Devices between Files (POOL)

The MOUNT parameter optimizes device use for a single file which is
multivolume. A second form of device management concerns the sharing of
devices between files.

In the examples shown so far, all the files referred to by the file-assignment
parameter group ASGi must be on-line when the program starts executing.
Therefore, in Figure 5-8 a total of 6 tape drives must be available. Yet in that
example it may be that the file FNAL.A is completely processed before processing
begins on file HMQC.41. Therefore, it would be better to use the same drives for
both files.

This can be done by specifying a device pool in the POOL parameter of the
EXEC_G command and the POOL parameter of the file-assignment parameter
group ASGi. Both are described in the IOF Terminal User’s Reference Manual
(Part 2).

The device-pool technique depends on the logic of the processing program. When
the program has finished processing a file, the program must signal to GCOS7 that
the file can be de-assigned, causing the devices used to become available. In
COBOL this is done by specifying WITH LOCK in the CLOSE verb.

The program SLICK uses 3 disk files, DF.A, DF.B and DF.C. The file DF.A is
processed before the processing of DF.C begins.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-17

EX58

DF.C

BD18

DF.B

BD14

DF.A

SLICK

OPEN FDFA, FDFB
.
.
.
CLOSE FDFA WITH LOCK
OPEN FDFC
.
.
.
CLOSE FDFB, FDFC

EXEC_PG SLICK
 LIB = AX.LIB
 POOL = 1*MS/D500
 FILE1 = FDFA
 ASG1 = (DF.A POOL = FIRST)
 FILE2 = FDFA
 ASG2 = DF.B
 FILE3 = FDFC
 ASG3 = (DF.C POOL = NEXT);

Figure 5-10. Pool Device

In Figure 5-10, a device pool consisting of one MS/D500 disk drive is defined.
There are two files to be placed on pool devices - DF.A and DF.C (the POOL
parameter). Only one file with POOL is to be loaded when the program is started -
DF.A (the FIRST parameter). The file DF.C is not mounted and does not require a
disk drive, until the program opens the file (at which point the single-pool device
will be available). The result is that only two disk drives are used by the program.

Note that the device used by file DF.B is not a member of the pool (no POOL in
ASG2).

In one program, there cannot be more than one pool for each type of device.

In the above example, only one device is pooled. In general a device pool may
contain more than one device. So if either or both disk files DF.A and DF.C were
on two volumes, then the pool parameter would be:

 POOL 2*MS/D500

You can specify a device pool for disk and tape device types. The files may be
temporary or permanent. The use of MOUNT with device pools is not restricted.

For complete details on the POOL parameter, see the IOF Terminal User’s
Reference Manual (Part 2). The POOL parameter specified at file assignment is
explained in the same manual.

UFAS-EXTENDED User’s Guide

5-18 47 A2 04UF Rev06

5.9 File Sharing

Sharing means that a file being accessed by a program can be accessed by other
concurrently running programs. File sharing applies only to disk files.

The SHARE parameter specifies the sharing conditions applicable to a file. You
can use the SHARE parameter to specify the maximum permitted level of
concurrent file access.

For cataloged files you need specify only the ACCESS values. The sharing mode is
held in the catalog as part of the file attributes.

Two cases of shared access illustrated in Figures 5-11 and 5-12 are handled through
the file-assignment parameter group ASGi.

EXEC_PG MYPG

 FILE1 = IFA
 ASG1 = (XP.ML
 SHARE = NORMAL
 ACCESS = READ)...;

EXEC_PG MY

 FILE1 = MX
 ASG1 = (XP.ML
 SHARE = NORMAL
 ACCESS = READ)...;

Figure 5-11. Sharing a File with Another Step

The file XP.ML is referenced by both steps.

Some cases of file sharing are treated below:

NORMAL Many concurrent readers or one writer per file. Sharing
is controlled at the file level. This is the default value.

ONEWRITE Many readers and one concurrent writer per file.
Sharing is controlled at the file level.

DANGER:
Do not use SHARE = FREE, (that is, totally free file sharing) for UFAS-
EXTENDED files.

If a cataloged file has an associated parameter which specifies a different value for
SHARE from that specified in the catalog, then the catalog value will override the
value given at assignment time, and the program will be given exclusive access to
the file (that is, ACCESS = READ becomes ACCESS = SPREAD, and
ACCESS=WRITE becomes ACCESS=SPWRITE). Do not use this feature to avoid
sharing a file with other programs, but use ACCESS=SPREAD or
ACCESS=SPWRITE where appropriate.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-19

Figure 5-12 shows the keyword values for ACCESS and SHARE with their

ACCESS

WRITE

SPWRITE

READ

SPREAD

READ

SPREAD

WRITE

SPWRITE

SHARE

Keyword Values

Exclusive Use (default value).

Exclusive Use.

Read a file while several jobs read the file.

Exclusive Read.

Read a file while several jobs read the file and one job writes
to the file.

Exclusive Read.

Write to a file while several jobs read the file.

Exclusive Use..

Type of Sharing Requested

NORMAL

NORMAL

NORMAL

NORMAL

ONEWRITE

ONEWRITE

ONEWRITE

ONEWRITE

Figure 5-12. ACCESS and SHARE Values

Figure 5-12 shows the types of sharing that the user may request. Whether sharing
is granted, depends on the current use of the file.

For example, a file already assigned with the values:

 ACCESS = READ
and
 SHARE = ONEWRITE

may be shared with another job which specifies:

 ACCESS = WRITE
and
 SHARE = ONEWRITE

GCOS7 does NOT check that the organization of the file supports the mode of
sharing that you requested. Observe the following guidelines.

• you cannot share a file opened in OUTPUT mode, (opening a file in OUTPUT
means that a file is being initially loaded),

• you can share indexed sequential files in ONEWRITE. It is important to note
that when a CI split occurs, the whole file is not locked. This means that there
should be fewer access conflicts. During the CI split, there can be several
readers.

UFAS-EXTENDED User’s Guide

5-20 47 A2 04UF Rev06

File Assignment/sharing with END = PASS

When a file is assigned with END = PASS, the file cannot be assigned to another
job that also passes the file with END = PASS until the file is released by the first
job. This restriction prevents deadlock occurring between the jobs.

WRITE/
NORMAL

SPWRITE/
NORMAL

READ/
NORMAL

SPREAD/
NORMAL

READ/
ONEWRITE

SPREAD/
ONEWRITE

WRITE/
ONEWRITE

SPWRITE/
ONEWRITE

READ
NORMAL

SPREAD *
NORMAL

READ
NORMAL

SPREAD *
NORMAL

SPREAD *
NORMAL

SPREAD *
NORMAL

SPREAD *
NORMAL

SPREAD *
NORMAL

READ
NORMAL

SPREAD *
NORMAL

READ
ONEWRITE

SPREAD *
NORMAL

SPREAD *
NORMAL

SPREAD *
NORMAL

SPREAD *
ONEWRITE

WRITE
ONEWRITE

SPWRITE *
ONEWRITE

WRITE
ONEWRITE

SPWRITE *
ONEWRITE

SPWRITE *
ONEWRITE

SPWRITE *
ONEWRITE

WRITE/
NORMAL

SPWRITE/
NORMAL

READ/
NORMAL

SPREAD/
NORMAL

READ/
ONEWRITE

WRITE/
ONEWRITE

SPWRITE/
ONEWRITE

SPREAD/
ONEWRITE

SPREAD*
ONEWRITE

Requested ACCESS/SHARE Modes

SPWRITE *
ONEWRITE

SPWRITE *
ONEWRITE

Current
ACCESS/
SHARE
Modes

Figure 5-13. File-Sharing Rules

Blank entries mean that sharing is denied. Entries marked * mean that sharing is
permitted only to a request from the same step.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-21

5.10 Overriding Rules

CAUTION:
Avoid giving contradictory values for the various file attributes. Values are
tested, for example that the file opened does not have a record size different
from that declared in the program. In COBOL 85, there are further checks and
ANY mismatch between program and file may lead to an abort with return code
OVRVIOL.

When a program opens a file, sufficient information must be available to UFAS-
EXTENDED for file processing. Such attributes as the CI size (block size on tape
files), record size, record format, number of buffers, must be declared or provided
by default. The sources of this information are as follows:

• The existing file label. No label information is available when:
− you write an output file to tape; see sub-section 7.7,
− you allocate a disk file in the same program using the file-allocation

parameter group ALCi; see Section 6.

For an existing disk or input tape file, any values declared in the label will
override all other values supplied from the program or through the GCL or JCL.

• The file-allocation parameter group ALCi (JCL statement ALLOCATE) and the
file-define parameter group DEFi (JCL statement DEFINE), which may be
associated with a file-assignment parameter group ASGi file reference (JCL
statement ASSIGN).

Any values declared in the GCL or JCL, (for example, number of buffers, or
CISIZE) will override any equivalent value in the program; the file-define
parameter group DEFi is described in sub-sections 5.11 and 6.8.4.

• Attributes from the executing program; the user program provides a complete set
of attributes (usually by default).

Outlined below are the general overriding rules for the define parameters.

General Overriding Rule 1:

Rule 1 applies if the file concerned already exists.

(1) File label (including the VTOC - Volume Table of Contents for a disk file),

(2) Catalog (for a cataloged file),

(3) Define parameters,

(4) File definition value (for example, the FD in a COBOL program, or the
utility’s implicit value if you are using a system utility).

In Rule 1, (1) overrides (2) which overrides (3) which overrides (4), but see the
warning above.

UFAS-EXTENDED User’s Guide

5-22 47 A2 04UF Rev06

The FPARAM parameter allows you to force the define parameter values which
you enter to override the corresponding values in the file label.

• If FPARAM = 0 (the default value), then for an existing file, the file label
overrides the define parameters.

• If FPARAM = 1, then the define parameters override the file label (for an
existing file). Use this facility only in special cases, for example, the file is non-
standard and/or the file is being reloaded to conform to the characteristics given
via the define parameters.

• FPARAM cannot be used to override the catalog entry information for a
cataloged file.

General Overriding Rule 2:

Rule 2 applies if the file concerned does not exist. Therefore it applies to files
being dynamically created, for example through use of the parameter group ALCi
(JCL equivalent ALLOCATE).

(1) Define parameters,

(2) Default file attributes (automatically provided by the COBOL program or by a
utility),

(3) File definition value (FD).

In Rule 2, (1) overrides (2), which overrides (3), but see the warning above.

There are no default values for the parameters within the file-define parameter
group DEFi (JCL equivalent DEFINE). If you do not enter a value for a file-define
parameter, an effective value will still be derived using the above rules. For
example, the following file attributes are chosen automatically if they are not given
in the DEFi parameter group (JCL equivalent DEFINE):

• CISIZE is set to 2048 bytes (If the CREATE_FILE or CREATE_FILESET
commands are being used, CISIZE is set to 3584 bytes for MS/D500 and
MS/B10 disk devices),

• CIFSP = 0.

The CIFSP parameter can be specified in the DEFi parameter group (JCL
equivalent DEFINE) to modify the amount of free space to be defined for a file
which is dynamically allocated. For more information on how to leave free space in
a file, see sub-section 6.7.2.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-23

5.11 Using the File-Define Parameter Group DEFi

As explained in the previous sub-section, file attributes defined in the catalog
override those defined in the parameter group DEFi. Thus it is recommended that
you define file attributes in the catalog whenever possible.

If the DEFi parameter is present in the EXEC_PG command (JCL equivalent
DEFINE), it is associated (via the internal-file-name) with a file-assignment
parameter group ASGi (JCL equivalent ASSIGN).

 EXEC_PG MYPROGRAM
 FILE1 = TFX
 ASG1 = JC.JHB ...
 DEF1 = (file-define parameters);

Use the DEFi parameter (JCL equivalent DEFINE) to perform the following tasks:

• to specify execution parameters effective only for the current job, for example,
the number of buffers,

• to describe file attributes when:

− a new disk file is being built (file-allocation parameter group ALCi),
− an output tape is written,
− an unlabeled tape file is being read.

• to process non-standard tape file formats.

See below for the format of the file-define parameter group DEFi as applicable to
buffers (the full syntax is given in sub-section 6.8.4). Note that, although it is
possible to specify the type of journalization with DEFi, you are strongly advised
to do this in the catalog.

EXEC_PG MYPROG
 FILEi = ifn
 ASGi = efn
 DEFi = ([BUFPOOL = name4]
 [NBBUF = dec3])

Note that there are no default values in the file-define parameter group DEFi. The
file-define parameters supplement or override declarations of the program. This
topic was discussed in sub-section 5.10.

For a complete explanation of these parameters, see the IOF Terminal User’s
Reference Manual, Part 2 and the JCL Reference Manual.

UFAS-EXTENDED User’s Guide

5-24 47 A2 04UF Rev06

5.12 Buffer Management

This sub-section presents an overview of buffer management which should help
you to understand what is going on behind the scene when a program executes.
Luckily, the average programmer operates at a fairly abstract level, divorced from
the need to know about buffer addressing. The real drudgery of buffer management
is performed by UFAS-EXTENDED and other software modules with which it
interfaces, for example, the Virtual Memory Manager (VMM).

The use of buffers involves working with large quantities of data in main memory
so that the number of disk accesses can be reduced.

When a CI is requested, it is temporarily held in an area of main storage, known as
a buffer. A good analogy for understanding buffers is to think of them as parking
lots for holding file information in main memory. Whenever possible, COBOL
READ and WRITE statements read from and write to buffers in memory.

If a required CI is already in a buffer, no read operation from disk needs to be
performed. Management of buffers consists in minimizing the number of I/O
operations. You can control the declared buffers through the following three
parameters:

POOLSIZE specified in the EXEC_PG command (JCL equivalent:
SIZE statement)

BUFPOOL Specified in the DEFi parameter group, (JCL
equivalent: DEFINE)

NBBUF Specified in the DEFi parameter group, (JCL
equivalent: DEFINE)

EXEC_PG MYPROG
 [SIZE=dec8] } program level
 [POOLSIZE = dec8]... }

 FILE1 = ifn1 }
 ASG1 = efn1 }
 DEF1 = ([BUFPOOL = name4 NBBUF = dec3]) }file level
 FILE2 = ifn2 }
 ASG2 = efn2 }
 DEF2 = ([BUFPOOL = name4 NBBUF = dec3]. ..); }

The use of large buffer pools is no longer restricted to TDS applications: a new
functionality is provided for heavy batch steps. See the examples in Section 5.12.4
for full details.

The following sections describe the use of buffers as they apply to TDS, batch, and
IOF applications.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-25

.

.

.

.

4000

.

.

.

.

.

.

.

POOLSIZE (max. 20,000 buffers)

Data
Segments

Internal
Structure
etc.

 Buffer pool
 TDS name

Pseudo buffer
pool, DEFT

Buffer pool
BUFPOOL = name

Code
Segments

Figure 5-14. Layout of Buffer Space

Note that it is the ICA attribute of the dimension which guarantees that a step will
have a specified amount of memory available to it. The MINMEM option in the
JCL statement SIZE is no longer meaningful with ARM. Within the total amount of
buffer space allocated through use of the POOLSIZE parameter in the JCL
statement SIZE, the following are set up:

• a pseudo buffer pool, named DEFT (buffers cannot be shared among the files),
• a buffer pool with the same name as the TDS application.
• in appropriate cases, a non-TDS buffer pool with name given by BUFPOOL =

name in the DEFINE statement.

Note that the number of buffers in a job is limited to 20,000. For TDS applications,
buffers are assigned in the main buffer pool, TDS name, using the RESERVE
AREAS CLAUSE. For batch and IOF applications, use the NBBUF parameter of
the JCL statement DEFINE to assign buffers in the other pools. The number of
buffers in a pool should correspond to the total of NBBUF for all the files attached
to the pool.

In the pseudo buffer pool (represented by the broken rectangles), five buffers are
shown.

UFAS-EXTENDED User’s Guide

5-26 47 A2 04UF Rev06

5.12.1 Declaring the Size of the Overall Buffer Space (POOLSIZE)

The maximum total amount of main memory reserved for buffers is specified in the
POOLSIZE parameter. Use this parameter to specify in kilobytes the amount of
main memory in which UFAS-EXTENDED creates and manipulates buffers during
program execution. It must be emphasized that you should specify a much higher
value than the default value (27 Kbytes).

It is recommended that you allocate the total buffer space required (POOLSIZE) in
multiples of 4 Kbytes.

If several buffer pools are declared (described in the next sub-section), then the
POOLSIZE value is the total amount of memory occupied by all the buffer pools.

TDS APPLICATIONS ONLY:

It is recommended that for all TDS applications (including TDS controlled and
non-controlled files), a portion of memory be reserved for all buffer pools
including the pseudo buffer pool known as DEFT.

• Plan on reserving from 20 to 50% or even more of the total memory size for the
allocation of buffers, depending on the type of machine.

• Share the portion of memory reserved for buffers among the different TDS
applications, depending on such factors as the importance of the application and
the number of simultaneities and files.

• Estimate the number of buffers which the buffer pool may hold (developed in
sub-section 5.12.3).

• Adjust the Declared Working Set.

When you increase the value of POOLSIZE, you should correspondingly increase
the declared working set (DWS). Both parameters are specified in the JCL
statement SIZE.

• Adjust the number of buffers to the POOLSIZE value.

The relationship between the POOLSIZE value and the number of buffers is further
developed in sub-section 5.12.3.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-27

BATCH/IOF APPLICATIONS ONLY:

Use the following formula to calculate an approximate value of the POOLSIZE
parameter:

POOLSIZE = (Average nbpg * 4 Kbytes) * NBBUF

where nbpg is the number of pages needed to hold a CI, that is:

nbpg = CISIZE rounded up to a multiple of 4 bytes.
 4096

Assume that this formula produces the result of 400 Kbytes for POOLSIZE. Then
you can specify this parameter as follows:

EXEC PG MYPROGRAM
SIZE = 500
POOLSIZE = 400;

5.12.2 Defining a Buffer Pool (BUFPOOL)

Buffer pools reduce the amount of storage allocated to buffers by sharing buffer
space among several files. When a buffer is needed, it is taken from a pool of
available buffers. When UFAS-EXTENDED receives a request to read a certain CI,
it looks to see if one of its existing buffers already contains that CI. If no buffer
contains it, then UFAS-EXTENDED finds from its pool of buffers one that is not
currently in use and loads the contents of the requested CI into it.

Use of buffer pools is recommended whenever possible, particularly in applications
which access many files randomly.

To name a buffer pool, specify the BUFPOOL parameter in the file-define
parameter group DEFi (JCL equivalent DEFINE).

TDS APPLICATIONS ONLY:

A large UFAS-EXTENDED buffer pool can result in substantial performance
improvements:

• up to 50% reduction in the number of I/O operations,

• improved response times.

By default, a TDS application has available:

• one buffer pool for all the TDS-controlled files, whose name corresponds to that
of the TDS application,

UFAS-EXTENDED User’s Guide

5-28 47 A2 04UF Rev06

• a pseudo buffer pool which is automatically provided for the non-controlled
files.

The disadvantage of using the DEFT pseudo buffer pool is that the buffers are not
shared among the non-controlled files such as H_CTLN.

In TDS applications, the use of a single buffer pool (tdsname) is normally
recommended. However, do not include in the common buffer pool files which are
accessed:

• in sequential mode: these files require only a few buffers (two if they are
declared sequential, otherwise about 10 buffers),

• in direct mode if they have only a few CIs: such files should be placed together
in a specific buffer pool for which the number of buffers is equal to the total
number of CIs.

A second buffer pool can also be used for input files containing tables such as the
name and address of customers or the product details in a stock application.
Another possible use concerns indexed sequential files accessed sequentially (to
avoid saturation of the main buffer pool).

You must specify in the DEFi parameter group (JCL equivalent DEFINE) for each
file in a buffer pool:

• the name of the buffer pool (BUFPOOL),

• the number of buffers (NBBUF).

If you omit one of these values, then the default values are as follows:

• the buffer pool is named according to the TDS application (tds-name),

• the number of buffers declared in the "RESERVE n AREAS" clause will apply.

Note that the number of buffers specified in the "RESERVE n AREAS" clause is
the default value for all the buffer pools in a TDS application.

BATCH/IOF APPLICATIONS ONLY:

You can define no buffer pools, or one, or several, although the use of more than
one buffer pool is appropriate only in very rare cases. It is particularly
advantageous to specify a buffer pool for a step randomly accessing more than five
files. If a buffer pool is being used, do not include sequential files in it. Use the
LMC mechanism instead.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-29

5.12.3 Defining the Number of Buffers (RESERVE AREAS/NBBUF)

When you open a file, UFAS-EXTENDED allocates a number of buffers to
accommodate the CIs transferred from disk. NBBUF specifies the number of
buffers per file. You specify this parameter in the file-define parameter group DEFi
described earlier, or in the JCL equivalent DEFINE.

The minimum number of buffers, for all types of access on all types of
organization, is 1 per file.

The default values for NBBUF are as follows:

• a file accessed in non-sequential access mode has 1 buffer (NBBUF = 1)

• a file accessed in sequential access mode has 2 buffers (NBBUF = 2)

• an indexed sequential file accessed directly has 1 buffer. Additional buffers are
reserved for CI splitting.

• an IDS/II area has 4 buffers.

In dynamic-access mode, UFAS-EXTENDED keeps its buffers in memory as long
as possible.

You may specify a number of buffers:

• either for each individual file,

• or at the level of the buffer pool in which files share buffers.

Whenever possible, it is recommended that you use a buffer pool and that you
specify the same NBBUF value for each file belonging to the same buffer pool.

TDS APPLICATIONS ONLY:

Choose the number of buffers (specified in the RESERVE AREAS clause) so that
the size of the memory reserved for buffers (POOLSIZE) is effectively used. The
maximum number of buffers per TDS application is 20,000. Up to 32,000 buffers
may be defined for the whole system.

Specify an estimated value, such as:

Number of Buffers = POOLSIZE divided by (No. of pages * 4 Kbytes)

For example, if the CISIZE is 6 Kbytes, then 2 pages are required because each
page occupies 4 Kbytes. Note that the:

No. of pages = CISIZE divided by 4096 rounded up
to a multiple of 4 Kbytes.

UFAS-EXTENDED User’s Guide

5-30 47 A2 04UF Rev06

You can refine your estimate by comparing the figure given for USED SIZE and
POOLSIZE in the JOR. If USED SIZE is less than POOLSIZE, then increase the
number of buffers up to the maximum specified in the RESERVE AREAS clause;
otherwise decrease the value of the POOLSIZE parameter and the declared-
working-set.

If you are using two or more buffer pools, specify the same number of buffers
(NBBUF value in the DEFINE statements) for each file belonging to the same
buffer pool (see the second TDS example in the next sub-section).

BATCH/IOF APPLICATIONS ONLY:

The default values for the buffer parameters mean that each file is allocated 1 or 2
buffers so that:

POOLSIZE >= (no. of pages * number of buffers)

You can override the default NBBUF values by specifying a value in the NBBUF
parameter within the file-define parameter group DEFi (JCL equivalent DEFINE).

It is a good general rule that NBBUF for each file should be not less than 6 plus the
number of secondary indexes. Using this rule for sequential files with several
secondary indexes, instead of the normally recommended 100 buffers, will result in
greatly improved performance.

In the first IOF and batch example, the number of buffers per file is defined on a
file-by-file basis through use of the NBBUF parameter.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-31

5.12.4 Examples of Buffer Usage

FIRST TDS EXAMPLE: - One buffer pool matching the name of the TDS
application, in this case TSIC.

It is assumed that 1,000 buffers are specified in the "RESERVE n AREAS" clause.

$JOB TDS-EX USER=BULL1;
$JOBLIB SM,TSIC.SMLIB;
STEP TSIC,FILE=(TSIC.LMLIB),REPEAT
DUMP=NO;
SIZE 4500 POOLSIZE=4000;
ASSIGN IFN1 EFN1;
ASSIGN IFN2 EFN2;
ASSIGN IFN3 EFN3;
ASSIGN IFN4 EFN4;
ASSIGN IFN5 EFN5;
ASSIGN IFN6 EFN6;
ASSIGN IFN7 EFN7;
ASSIGN IFN8 EFN8;
ASSIGN IFN9 EFN9;
ASSIGN IFN10 EFN10;
...
...
ASSIGN IFN50 EFN50;
ASSIGN IFN51 EFN51;
...
...
ASSIGN IFN70 EFN70;
ASG DBUGFILE,TSIC.DEBUG,FILESTAT=CAT,SHARE=DIR;
ASG BLIB,.FORM.BIN,SHARE=DIR,ACCESS=READ;
$ASG H_BJRNL DVC=MS/D500 MD=FSD99 FILESTAT=TEMPRY;
ASG H_FORM,.FORM.OBJET,FILESTAT=CAT
SHARE=MONITOR,ACCESS=READ;
$DEFINE H_CTLM ,JOURNAL=BEFORE;
ENDSTEP;
$ENDJOB;

The average CISIZE is estimated at 3,584 bytes. If the declared POOLSIZE value
for these buffers is 4,000 Kbytes, then the required number of buffers is:

4000 Kbytes divided by 4 Kbytes = 1000 buffers.

NOTE:
The 4000 Kbytes includes the space occupied by the buffers of the non-
controlled files.

UFAS-EXTENDED User’s Guide

5-32 47 A2 04UF Rev06

SECOND TDS EXAMPLE: Using two or more Buffer Pools.

In addition to the main buffer pool (in this case named TSIC), a second buffer pool
named PARA is used by two files.

It is assumed that 1,000 buffers are specified in the "RESERVE n AREAS" clause.

$JOB TDS-EX USER=BULL2;
$JOBLIB SM,TSIC.SMLIB,TSIC.TEST;
STEP TSIC,FILE=(TSIC.LMLIB),REPEAT
DUMP=NO;
SIZE 5000 POOLSIZE=4400;
ASSIGN IFN1 PARAM1;
DEFINE IFN1 NBBUF=100 BUFPOOL=PARA;
ASSIGN IFN2 PARAM2;
DEFINE IFN2 NBBUF=100 BUFPOOL=PARA;
ASSIGN IFN4 EFN4;
ASSIGN IFN5 EFN5;
ASSIGN IFN6 EFN6;
ASSIGN IFN7 EFN7;
ASSIGN IFN8 EFN8;
ASSIGN IFN9 EFN9;
ASSIGN IFN10 EFN10;
...
...
ASSIGN IFN50 EFN50;
ASSIGN IFN51 EFN51;
...
...
ASSIGN IFN70 EFN70;
ASG DBUGFILE,TSIC.DEBUG,FILESTAT=CAT,SHARE=DIR;
ASG BLIB,.FORM.BIN,SHARE=DIR,ACCESS=READ;
$ASG H_BJRNL DVC=MS/D500 MD=FSD99 FILESTAT=TEMPRY;
ASG H_FORM,.FORM.OBJET,FILESTAT=CAT
SHARE=MONITOR,ACCESS=READ;
$DEFINE H_CTLM ,JOURNAL=BEFORE;
$DEFINE H_CTLN ,BUFPOOL=TSIC;
ENDSTEP;
$ENDJOB;

The average buffer size for the files belonging to the default buffer pool (TSIC) is
estimated at 3,584 bytes.

The two files belonging to the buffer pool PARA have a total number of 100
buffers (the size of the CI is 2048 bytes).The contents of these files will reside in
memory because the buffer pool to which they belong may contain the 100 buffers.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-33

The global size (POOLSIZE) declared for the buffer pool is 4400 Kbytes. From
this figure must be taken the 400 Kbytes for the PARAM1 and PARAM2 files,
whose 100 buffers are contained in the buffer pool named PARA.. (The amount of
space set aside for these buffers is calculated by multiplying 100 by
4 Kbytes=400 Kbytes.)

The remaining 4000 Kbytes are occupied by the buffer pool TSIC. The number of
buffers is calculated as follows:

4000 Kbytes divided by 4 Kbytes = 1000 buffers.

Note that the non-controlled file H_CTLN is declared in the main buffer pool TSIC
(DEFINE H_CTLN BUFPOOL=TSIC).

FIRST IOF EXAMPLE: No Buffer Pool is Specified

EXEC_PG PG=LMNAME LIB=.LMLIB
SIZE 700 POOLSIZE=1320
FILE1=IFN1 ASG1= EFN1
DEF1=(IFN1 NBBUF=200)
FILE2=IFN2 ASG2= EFN2
DEF2=(IFN2 NBBUF=30)
FILE3=IFN3 ASG3= EFN3
DEF3=(IFN3 NBBUF=50);

When no buffer pool is specified, the pool size is computed as follows.

For each file compute (BUFFER SIZE * NBBUF) and add up the size obtained for
each file.

In this example, a total of 280 buffers is declared.

Assume that the files have the following CISIZE values:

File CISIZE
EFN1 2048
EFN2 3584
EFN3 6144

Then the POOLSIZE to be specified is:

EFN1 200 * (2048 rounded up to a multiple of 4 Kbytes)
 = (200 * 4 Kbytes) = 800 Kbytes
EFN2 30 * (3584 rounded up to a multiple of 4 Kbytes)
 = (30 * 4 Kbytes) = 120 Kbytes
EFN3 50 * (6144 rounded up to a multiple of 4 Kbytes)
 = (50 * 8 Kbytes) = 400 Kbytes

Total size occupied = 1320 Kbytes

UFAS-EXTENDED User’s Guide

5-34 47 A2 04UF Rev06

SECOND IOF EXAMPLE: A buffer pool is specified for an IOF application
accessing more than 5 or 6 files.

EXEC_PG PG=LMNAME LIB=.LMLIB
SIZE 500 POOLSIZE=4000
FILE1=IFN1 ASG1= EFN1
DEF1=(IFN1 NBBUF=1000 BUFPOOL=PL01)
FILE2=IFN2 ASG2= EFN2
DEF2=(IFN2 NBBUF=1000 BUFPOOL=PL01)
FILE3=IFN3 ASG3= EFN3
DEF3=(IFN3 NBBUF=1000 BUFPOOL=PL01)
FILE4=IFN4 ASG4= EFN4
DEF4=(IFN4 NBBUF=1000 BUFPOOL=PL01)
FILE5=IFN5 ASG5= EFN5
DEF5=(IFN5 NBBUF=1000 BUFPOOL=PL01)
FILE6=IFN6 ASG6= SEQFILE;

Calculating the POOLSIZE in an IOF application having one buffer pool.

In this example, 1000 buffers are declared in a pool named PL01. The file
SEQFILE is a sequential file and does not belong to this pool.

Assume that the files have the following CISIZE values:

File CISIZE
EFN1 2048
EFN2 3584
EFN3 6144
EFN4 6144
EFN5 3584
EFN6 2048

If the average buffer size is 4 Kbytes, then the POOLSIZE to be specified is:

(1000 * 4 Kbytes) = 4 Mbytes

The values specified in the following two examples for a batch application are
equally valid for an IOF application; instead of specifying JCL statements, you
must specify the equivalent GCL commands.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-35

FIRST BATCH EXAMPLE: No buffer pool is present.

$JOB B-EXPLS USER=BULL7 HOLD HOLDOUT;
STEP LMNAME .LM;
SIZE 700 POOLSIZE=600;
ASSIGN IFN1 EFN1;
DEFINE IFN1 NBBUF=20;
ASSIGN IFN2 EFN2;
DEFINE IFN2 NBBUF=30;
ASSIGN IFN3 EFN3;
DEFINE IFN3 NBBUF=50;
ENDSTEP;
$ENDJOB;

You follow the same procedure as that described in the first IOF example.

In this example, 100 buffers are declared. Assume that the files have the following
CISIZE values:

File CISIZE
EFN1 2048
EFN2 3584
EFN3 6144

The POOLSIZE value to be specified is 600 Kbytes which is calculated as follows:

EFN1 20 * (2048 rounded up to a multiple of 4 Kbytes)
 (20 * 4 Kbytes) = 80 Kbytes
EFN2 30 * (3584 rounded up to a multiple of 4 Kbytes)
 (30 * 4 Kbytes) = 120 Kbytes
EFN3 50 * (6144 rounded up to a multiple of 4 Kbytes)
 (50 * 8 Kbytes) = 400 Kbytes

Total = 600 Kbytes

UFAS-EXTENDED User’s Guide

5-36 47 A2 04UF Rev06

SECOND BATCH EXAMPLE: A buffer pool is specified for a batch application
accessing more than 5 or 6 files.

$JOB B-EXPLS USER=BULL7;
STEP LMNAME .LM;
SIZE 500 POOLSIZE=400;
ASSIGN IFN1 EFN1;
DEFINE IFN1 NBBUF=100 BUFPOOL=PL01;
ASSIGN IFN2 EFN2;
DEFINE IFN2 NBBUF=100 BUFPOOL=PL01;
ASSIGN IFN3 EFN3;
DEFINE IFN3 NBBUF=100 BUFPOOL=PL01;
ASSIGN IFN4 EFN4;
DEFINE IFN4 NBBUF=100 BUFPOOL=PL01;
ASSIGN IFN5 EFN5;
DEFINE IFN5 NBBUF=100 BUFPOOL=PL01;
ASSIGN IFN6 EFN6;
DEFINE IFN6 NBBUF=100 BUFPOOL=PL01;
ASSIGN IFN7 SEQFILE;
ENDSTEP;
$ENDJOB;

In this example 100 buffers are declared in a buffer pool named PL01.
The file SEQFILE is a sequential file and does not belong to the buffer pool.

The total amount of memory reserved for buffers (POOLSIZE) is equal to the
NBBUF value multiplied by the number of pages.

Assume that the files have the following CISIZE values:

File CISIZE
EFN1 2048
EFN2 3584
EFN3 6144
EFN4 6144
EFN5 3584
EFN6 2048

If the average CISIZE is 3584, then the POOLSIZE value to be specified is:

100 * (3584 rounded up to a multiple of 4 Kbytes)
 = (100 * 4 Kbytes)
 = 400 Kbytes

Note that the POOLSIZE value (400 Kbytes) includes the space needed by the two
buffers of the sequential file.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-37

NOTES:
1. When different NBBUF values are specified for files belonging to the

same buffer pool, only the highest NBBUF value is taken into account;
hence the convention for specifying the highest NBBUF value for all such
files.

2. If all the files belonging to the same buffer pool have the same CISIZE, the
average buffer size is equal to:

CISIZE rounded up to a multiple of 4 Kbytes.

For heavy BATCH applications: up to 4000 buffers may be specified for a BATCH
step. Note that up to 32000 buffers are available for the whole system (including all
the TDS and BATCH applications). This functionality may be used for heavy steps
randomly accessing UFAS files. It should drastically decrease the number of
physical IOs.

The following recommendations must be strictly respected to avoid aborts:

Do not launch such BATCH steps while TDS applications are running to avoid
TDS or BATCH aborts with RC=SYSOV when more than 32,000 buffers are
needed.

Specify for the BATCH step a POOLSIZE and a DWS large enough to avoid aborts
with RC=CMWSOV. Gather within the same large BUFFER POOL all the UFAS
files which are not accessed in sequential mode.

POOL SIZE COMPUTATION FOR HEAVY BATCH APPLICATIONS.

The computation of the POOLSIZE will depend on:

• the number of buffers declared for the buffer pool(s): up to 4000 buffers.

• the average buffer size.

NOTE:
For heavy batch steps running during the night, with a low multi-level and large
memory available, it is better to compute the POOLSIZE taking into account
the maximum CISIZE rather than the average.

UFAS-EXTENDED User’s Guide

5-38 47 A2 04UF Rev06

FIRST EXAMPLE: GENERAL CASE.

JOB B-EXPLS USER=BULL7
STEP LMNAME .LM ;
SIZE 45000 POOLSIZE=16000;
ASSIGN IFN1 EFN1;
DEFINE IFN1 NBBUF= 4000 BUFPOOL=PL01;
ASSIGN IFN2 EFN2;
DEFINE IFN2 NBBUF= 4000 BUFPOOL=PL01;
ASSIGN IFN3 EFN3;
DEFINE IFN3 NBBUF= 4000 BUFPOOL=PL01;
ASSIGN IFN4 EFN4;
DEFINE IFN4 NBBUF= 4000 BUFPOOL=PL01;
ASSIGN IFN5 EFN5;
DEFINE IFN5 NBBUF= 4000 BUFPOOL=PL01;
ASSIGN IFN6 EFN6;
DEFINE IFN6 NBBUF= 4000 BUFPOOL=PL01;
ASSIGN IFN7 SEQFILE;
ENDSTEP;
ENDJOB;

In this example, 4000 buffers are specified for the six first files which are accessed
randomly. These files belong to the same buffer pool called PL01. The seventh file,
being sequential, does not belong to the buffer pool called PL01. It has only two
buffers, allocated implicitly.

If all the files have the same CISIZE of 4096 bytes, then the buffer pool size will
be:
 (4000 * 4K) = 16000 Kbytes.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-39

SECOND BATCH EXAMPLE: TWO BUFFERS POOLS ARE SPECIFIED.

It may be useful to declare a second buffer pool, in order to gather together files
having a specific behaviour.

For example, small files having only a few CIs and accessed very often may be
resident in memory.

JOB B-EXPLS USER=BULL7
STEP LMNAME .LM ;
SIZE 60000 POOLSIZE=20000;
ASSIGN IFN1 EFN1;
DEFINE IFN1 NBBUF= 3000 BUFPOOL=PL01;
ASSIGN IFN2 EFN2;
DEFINE IFN2 NBBUF= 3000 BUFPOOL=PL01;
ASSIGN IFN3 EFN3;
DEFINE IFN3 NBBUF= 3000 BUFPOOL=PL01;
ASSIGN IFN4 EFN4;
DEFINE IFN4 NBBUF= 3000 BUFPOOL=PL01;
ASSIGN IFN5 EFN5;
DEFINE IFN5 NBBUF= 3000 BUFPOOL=PL01;
ASSIGN IFN6 EFN6;
DEFINE IFN6 NBBUF= 1000 BUFPOOL=PL02;
ASSIGN IFN7 EFN7;
DEFINE IFN7 NBBUF= 1000 BUFPOOL=PL02;
ENDSTEP;
ENDJOB;

In this example, 4000 buffers have been declared in two pools named PL01 with
3000 buffers, and PL02 with 1000 buffers.

POOL SIZE COMPUTATION WHEN SEVERAL BUFFER POOLS ARE
SPECIFIED.

The pool size to be specified is the total amount of the memory dedicated to each
buffer pool.

If the average buffer size in PL01 is estimated to be 4K, and the average buffer size
in PL02 is estimated to be 8K, then the POOLSIZE to be specified will be :

 (3000 * 4K) + (1000 * 8K) = 20000K
 (for PL01) (for PL02)

UFAS-EXTENDED User’s Guide

5-40 47 A2 04UF Rev06

5.12.5 Tuning Buffers

To avoid wasting resources, you can modify an application’s buffer parameters. The
greater the number of buffers you specify, the fewer the disk I/O operations. The
optimum setting for the buffer-related parameters can only be determined
accurately by testing with different values. The maximum total size of the area
reserved for buffers (POOLSIZE) and the number of buffers defined for the pool
have a major impact on the performance of an application, in particular, TDS
applications. Use the JOR statistics (described in the next sub-section) to verify
how efficient the processing is and then tune the necessary parameters accordingly.

At the end of each step, the following information is printed in the JOR:

• for each UFAS-EXTENDED file and for all the files belonging to the same
buffer pool:

− GETCICOUNT, the total number of CI accesses including label, index and
data CIs.

− HITCOUNT, the number of buffers reused from the buffer pool (no I/O
operation required).

• for the whole step:

− Number of buffers deleted (SEGDL)

− Number of buffers created (SEGCR)

To make the best use of buffers, UFAS-EXTENDED may create a buffer, re-
activate an existing buffer ("remember" buffer), or delete a buffer. For further
information on how UFAS-EXTENDED handles buffers, see Appendix E.

You can observe how the values affecting buffers work in practice by studying the
JOR statistics.

By adjusting the number of buffers in direct relation to the size of the area reserved
(POOLSIZE), it is possible to achieve the most efficient buffer use, in other words
the highest hit ratio. A hit is the number of CI accesses involving no physical I/O
operation. The hit ratio is the number of existing CIs accessed in the buffer pool to
the total number of CIs accessed (buffer pool and physical I/O operations).

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-41

Tune application programs as follows:

• Choose the NBBUF value for each file, or for the whole buffer pool, so that the
maximum number of buffers already allocated to the buffer pool is reused.

• The hit ratio is defined as:

• HITCOUNT divided by GETCICOUNT

− Choose the POOLSIZE value in relation to the NBBUF value. Adding more
buffers can significantly reduce disk access times. The trade-off is that you
must specify a large enough POOLSIZE value. Normally, USED SIZE is
slightly less than POOLSIZE.

Creation/Deletion of Buffers Within a Step

Buffer Creation

New buffers continue to be created until either the maximum number of buffers
(given in the RESERVE AREAS clause), or the maximum total amount of main
memory reserved for buffers (POOLSIZE) is reached. When one of these limits is
reached, UFAS-EXTENDED uses a previously created buffer, provided the
existing buffers are not busy, or are not used for DEFERRED UPDATES.
Otherwise UFAS-EXTENDED will delete one or more of the existing buffers to
make space available for new buffer(s).

The SEGCR counter indicates the number of buffers which are created for the step.
This number also includes about 5 control structures created at file opening time.

Buffer Deletion

A buffer is deleted:

• when no existing buffer of the same size as the requested one can be re-used,

• when files are closed,

• at a checkpoint,

• at the end of the step (normal or abnormal termination).

The SEGDL counter indicates the number of deleted buffers. Note that SEGDL
does not include the deletion of the control structures.

UFAS-EXTENDED User’s Guide

5-42 47 A2 04UF Rev06

When the value for POOLSIZE and the number of buffers are correctly set, ensure
that the number of buffers created (given by the SEGCR counter in the JOR) is
close to the number of buffers defined in the RESERVE AREAS clause. The most
efficient operation is when:

SEGCR divided by number of buffers

is approaching 1 for a batch step and is the lowest value for a TDS application. To
optimize this ratio, ensure that as many CISIZE values as possible have the same
size. However, in a TDS application, it is recommended that UFAS-EXTENDED
files have up to 3 or 4 different CISIZE values.

5.12.6 UFAS-EXTENDED Statistics as Presented in the JOR

This sub-section explains the statistics that may appear in the JOR. To ensure that
the buffer pool is being properly used, it is important to check these statistics.

>>> IFN=<internal file name>
 REWRITECNT=a DELETECNT=b WRITECNT=c READCNT=d

>>> EFN=<external file name>
 GETCICOUNT=e HITCOUNT=f IOCOUNT=g

==> POOL=<pool name>
 NBFILES=h NBBUF=i GETCICOUNT=j
 HITCOUNT=k

>>> XUFAS STEP STATISTICS STEP=<step name>
 POOLSIZE=l USED SIZE=m NBPOOLS=n
 AVAIL CI=p FREE CI=q TOTAL CI=r
 SEGCR=s SEGDL=t

 READIOCT=u WRITEIOCT=v

File Statistics are displayed for both the internal and external file names.

For each internal file name, IFN statistics give the number of logical records:

• rewritten
• deleted,
• written,
• read.

REWRITECNT indicates the number of records rewritten to the
internal file in question.

DELETECNT indicates the number of records deleted from the
internal file

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-43

WRITECNT indicates the number of records written to the internal
file

READCNT indicates the number of records read in the internal file

IMPORTANT:
In COBOL 85, if you rewrite a record with a length different from the length of
the existing record in the file, the rewrite operation is treated as a record
deletion followed by a record insertion. Consequently, the number of records
deleted from and written to the file is reflected in the DELETECNT and
WRITECNT counters, and not in the REWRITECNT counter.

IFN statistics are not displayed for IDS areas because IDS uses specific verbs such
as SEARCH and STORE.

For each external file name, EFN statistics give three counters concerning the
number of all CIs accessed.

GETCICOUNT is the total number of accesses to CIs which are either
located on disks or found in the buffer pool.

HITCOUNT is the number of accesses to CIs already allocated to
the buffer pool.

IOCOUNT is the number of physical I/O requests (each I/O
request involves one CI).

Buffer Pool Statistics (POOL) give:

pool name (in the case of a TDS application, this usually
corresponds to the name of the TDS application),

NBFILES is the maximum number of files that have been
simultaneously opened in a given pool.

NBBUF is the maximum number of buffers declared for the
pool. NBBUF is meaningless for the pseudo buffer
pool containing non-controlled files in TDS.

GETCICOUNT is the total number of accesses to CIs (data, index, and
label CIs).

HITCOUNT is the number of CIs accessed without an I/O
operation.

1
3

3

UFAS-EXTENDED User’s Guide

5-44 47 A2 04UF Rev06

The remaining counters appear at step level:

POOLSIZE is the declared amount of memory dedicated to buffers
in the step. The value of POOLSIZE is expressed in
bytes.

USED SIZE is the size of the POOLSIZE that has actually been
used. USED SIZE should be slightly less than the
POOLSIZE. The value of USED SIZE is expressed in
bytes.

NBPOOLS is the maximum number of simultaneously opened
pools.

AVAIL CI indicates the number of entries available at system
level when the step is completed.

FREE CI indicates the number of entries which are not active
(i.e., available entries + entries not active but reserved)
at step termination.

TOTAL CI indicates the maximum number of active entries used
at system level by all the jobs in execution.

SEGCR is the number of buffers (including control structures)
that have been created.

SEGDL is the number of buffers that have been deleted.

READIOCT is the number of read I/O operations performed (see
Note below).

WRITEIOCT is the number of write I/O operations performed (see
Note below).

NOTE:
The sum of the number of READIOCT and WRITEIOCT values is usually
equal to the accumulated value of IOCOUNT which appears at file level. In the
case of a TDS abort and subsequent restart, the IOCOUNT value may not
correspond exactly to the sum of READIOCT and WRITEIOCT.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-45

Example of File Statistics

>>> IFN=FILUP

 REWRITECNT=0 DELETECNT=1 WRITECNT=92 READCNT=608

>>> EFN=TDS1.FILUP

 GETCICOUNT=1242 HITCOUNT=1068 IOCOUNT=270

For the file TDS1.FILUP (whose IFN is FILUP):

• no record has been updated,
• one record has been deleted,
• 92 new records have been written,
• 608 records have been read.

These operations involved 1,242 CI accesses of which 1,068 required no physical
I/O operation, because the requested CIs were already in memory; 270 I/O
operations were done for this file.

Note that:

GETCICOUNT = HITCOUNT + number of physical READ I/O operations

IOCOUNT = physical READ I/O operations + physical WRITE I/O operations.

Example of Buffer Pool Statistics

Here is the printout of the POOL statistics, followed by an explanation.

==> POOL=TDS1

 NBFILES=34 NBBUF=500 GETCICOUNT=10225 HITCOUNT=7951

==> POOL=DEFT

 NBFILES=1 NBBUF=MEANINGLESS GETCICOUNT=11 HITCOUNT=8

In this example,

• 34 TDS controlled files have been simultaneously opened in the TDS application
named TDS1.

• the number of buffers shared among these files was 500 (RESERVE AREAS
clause),

• the total number of accesses to CIs (data, index, and label CIs) performed for all
the TDS-controlled files was 10,225.

• out of the 10,225 CI accesses, 7,951 of the required CIs were already located in
the buffer pool, that is, 7951 buffers were re-activated.

UFAS-EXTENDED User’s Guide

5-46 47 A2 04UF Rev06

One non-controlled file (the minimum) caused 11 CIs to be accessed, of which 8
were already located in the buffer pool, thus reducing the number of physical I/O
operations.

Example of Step Statistics

>>>XUFAS STEP STATISTICS STEP = TDS1
 POOLSIZE = 3072000 USED SIZE = 2339288 NBPOOLS = 2
 AVAIL CI = 110 FREE CI = 1215 TOTAL CI = 1005
 SEGCR = 572 SEGDL = 567

 READIOCT = 2243 WRITEIOCT = 1438

In this example, for the transactional application called TDS1, the defined
POOLSIZE is 3,072,000 bytes, and reflects the $SIZE statement where
POOLSIZE=3,000 (Kbytes) has been specified.

The actual size used by the buffers was 2,339,288 bytes (DEFT pool included).

Two pools have been used. Note that TDS usually creates a pool, whose name is
the TDS name, for the controlled files, and the default pool called DEFT for the
non-controlled files. The DEFT pool is always created for a TDS application.

110 buffer entries are available for any job when it is activated. 1215 buffer
entries are available and not reserved by any job. A total of 1005 buffer
entries have been created.

In this TDS1 step, 572 buffers (segments) have been created (control structures are
included), whereas 567 have been deleted.

2,243 physical READ operations and 1,438 physical WRITE operations were
performed on all the UFAS-EXTENDED files.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-47

5.13 Journalization

The following two sub-sections explain some of the journalization techniques
supported for UFAS-EXTENDED files. For maximum protection, use the
JOURNAL = BOTH option. This involves extra I/O operations. If the file is
cataloged, it is preferable to define the journal entry in the catalog. For more
details, refer to the File Recovery Facilities User’s Guide.

5.13.1 Before Journal

GCOS7 copies each data CI before it is changed by the processing program and
places it in the Before Journal.

You request this system facility either through the catalog, or through the file-
define parameter group DEFi (JCL equivalent DEFINE), for example,

EXEC_PG MYPROGRAM
 FILE = INOU
 ASGI = JC.FDB
 DEF1 = (JOURNAL = BEFORE);

If the program aborts, these "before" images may be used to restore (rollback) the
file’s contents. Figure 5-15 summarizes Journal support for UFAS-EXTENDED
files.

File Organization

Open Mode

OUTPUT
EXTEND

(APPEND) I-O

Sequential tape

Sequential disk

Relative

Indexed Sequential

-

Yes

Yes

Yes

No

No

Yes*

No

No

No

Yes*

Yes**

Figure 5-15. Using the Before Journal

The APPEND open mode is the GPL equivalent of the EXTEND open mode in
COBOL.

UFAS-EXTENDED User’s Guide

5-48 47 A2 04UF Rev06

The asterisk (*) indicates that such a file can be journalized only in direct-access
mode. In the EXTEND/APPEND column, only GPL files can be journalized in
direct-access mode.

The asterisks (**) indicates that sequential file can only be opened in EXTEND
mode in COBOL-85.

The symbol (-) indicates that this open mode is not applicable.

When the Before Journal is not specified, the only way to guarantee file recovery is
by taking checkpoints.

5.13.2 After Journal

GCOS7 copies each logical record, after it has been updated, and writes it to the
After Journal on the disk specified. If a software error or a volume failure occurs,
the "after" images may be used to restore (rollforward) the file’s contents.

Athough it is recommended that journal entries be defined in the catalog, you can
specify them through the file-define parameter group DEFi, for example,

EXEC_PG MYPROGRAM
 FILE = INOU
 ASG1 = JC.FDB
 DEF1 = (JOURNAL = AFTER);

File Organization

Open Mode

OUTPUT
EXTEND

(APPEND) I-O

Sequential tape

Sequential disk

Relative

Indexed Sequential

-

Yes

Yes

Yes

No

No

No

No

No

No

No

Yes*

Figure 5-16. Using the After Journal

The asterisk (*) indicates that an indexed sequential file can be opened in
EXTEND mode only in COBOL-85.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-49

The symbol (-) indicates that this open mode is not applicable.

The APPEND open mode is the GPL equivalent of the EXTEND open mode in
COBOL.

In a TDS application, it can be preferable to use the After Journal with the Deferred
Update mechanism instead of the Before Journal since this reduces I/O overheads
and thus improves response times. However, if CI splitting occurs while the
Deferred Update mechanism is in use, the return code WDNAV will be sent.

UFAS-EXTENDED User’s Guide

5-50 47 A2 04UF Rev06

5.14 File Integrity

UFAS-EXTENDED protects files against aborts, system crashes and persistent I-O
errors. UFAS-EXTENDED takes action to avoid leaving files unstable and, where
this is not possible, the user is warned with a return code.

An unstable file is a file that is not closed properly, and as a result, the header or
trailer labels have not been written properly. An unstable index means that either
there are records with no index path to them, or there are index entries that do not
point to any records.

5.14.1 File Creation

When you open a file in OUTPUT:

• you create new records for the file and any previous records are deleted. Only
the records written to the file between the opening and closing of the file are
considered the new contents of the file.

The only way to ensure file recovery is by using the checkpoint mechanism. You
cannot use the Before or the After Journal at file creation time.

When you open a file in EXTEND mode (GPL equivalent is APPEND):

• it is the same as opening it in OUTPUT mode except that, at opening time, new
records are written after the last record.

After a GCOS7 crash, you may be asked at restart time to reply to the REPEAT
FROM CHECKPOINT question for a file:

• If you answer YES, the file is restored to the state it was in at the time the last
checkpoint was taken and the step continues until the program ends.

• If you answer NO, the file remains unstable.

In the event of an abort, at the time of the last checkpoint you are asked to reply to
the REPEAT FROM CHECKPOINT question for a file:

• If you answer YES, the file is restored to the state it was in at the time the last
checkpoint was taken and the step continues until the program ends.

• If you answer NO, the file is closed and remains in the state it was in at the time
of the abort.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-51

5.14.1.1 Files without Secondary Keys

If a user program aborts, or if the operator issues a CANCEL_JOB command, the
file is closed as it was at abort time.

If a system crashes, the file is not closed, but is left in an unstable state. Any
attempt to reopen the file other than in OUTPUT mode, will return the DATANAV
return code.

5.14.1.2 Files with Secondary Keys

The recommended procedure for creating secondary keys is described in sub-
section 4.8.1.

For files with secondary keys, primary keys are created first, then secondary keys
are created. When the user program uses the COBOL clause APPLY NO-SORTED-
INDEX ON, the secondary keys are not built at file creation time, in which case
you must use the SORT_INDEX (JCL equivalent SORTIDX) command to sort and
load the secondary indexes later. In GPL, when a file is opened in OUTPUT mode,
secondary indexes are never created.

If an abort or a crash occurs when secondary indexes are being created, the
secondary keys are left unstable. Any attempt to open the file (other than in INPUT
or OUTPUT mode, or while SORT_INDEX is executing) will return the
SCIDXNAV return code. If you open the file in INPUT mode, any attempted
access via secondary keys will also return the SCIDXNAV return code.

UFAS-EXTENDED User’s Guide

5-52 47 A2 04UF Rev06

5.14.2 File Processing

5.14.2.1 INPUT Open Mode

Journalized file: If the file is unstable, it can be read (INPUT open
mode) only through use of the file recovery utilities.

Non-journalized file: A stable or an unstable file can be opened in INPUT
open mode and read in sequential access mode only.
In the case of an unstable file, this open mode will be
useful for restoring the file.

Trying to read a file in direct access mode through unstable paths, however, will be
denied and:

• the return code FLNAV (file is not available) will be returned if the primary
index is unstable,

• or the return code SCIDXNAV (secondary index is not available) will be
returned if the secondary index is unstable.

5.14.2.2 EXTEND Mode

In COBOL-85, you may also use the Before Journal and the After Journal for the
sequential indexed files (refer to figures 5.15 & 5.16) in EXTEND mode (GPL
equivalent APPEND).

5.14.2.3 Files Without Secondary Keys

If an abort occurs while UFAS-EXTENDED is splitting a CI, the split will be
terminated before the abort occurs. The file is then closed and is left in a stable
state.

If the system crashes, the file is not closed, but is left unstable.

There are 3 cases to consider:

File Not Protected by Journalization

Any attempt to reopen the file, will be accepted.

If you reopen the file in INPUT open mode,

Its indexes are considered as damaged and any key access will be denied, causing
the return code FLNAV to be returned.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-53

If you reopen the file in I-O open mode,

The file is automatically salvaged by the UFAS-EXTENDED File Salvager; this
salvaging can detect whether a CI was being split at the time of the crash and will
restore the file consistency as at that point.

NOTE:
In batch mode, when the Before Journal is not used and records are inserted
after a checkpoint, but before a system crash, the return code DUPKEY will be
returned if the program tries to insert these records again after a warm restart.
The records will not be inserted and the processing will continue normally. This
return code is ignored.

File Protected by the Before Journal

Such instability can be avoided by using the Before Journal with such files. If you
are using the Before Journal, the Before images are rewritten automatically at
warm restart; therefore no salvaging is required.

File Protected by Deferred Updates and the After Journal

Such instability can be avoided by using the After Journal and Deferred Updates
(used only in a TDS application). The After Journal protects against all kinds of
incidents by keeping an image of each record after it has been updated. As an
alternative to the Before Journal, you can use the Deferred Update option. Deferred
Update means that all updates are not written immediately to the files. If an
incident occurs, the program discards the updates.

UFAS-EXTENDED User’s Guide

5-54 47 A2 04UF Rev06

5.14.2.4 Files With Secondary Keys

If an abort occurs while UFAS-EXTENDED is splitting a CI, the split will be
completed before the abort occurs. The file is then closed and left in a stable state.
Moreover, the whole set of accesses needed to complete an update request is
protected in the same way as splitting so that secondary indexes remain consistent
with primary indexes and data.

If a system crash occurs, the file is not closed but is left in an unstable state. Its
primary and secondary indexes are damaged.

There are 3 cases to consider:

1 File Not Protected by Journalization

The salvaging mechanism is different according to the type of index.

Primary indexes are salvaged automatically as discussed in sub-section
5.14.2.3.

You must rebuild secondary indexes by using the SORT_INDEX (JCL
equivalent SORTIDX) utility. In this case, the UFAS-EXTENDED salvager
issues a message in the JOR requesting that you run the GCL utility
SORT_INDEX against the file. If you attempt to access the file via a
secondary key before using the SORT_INDEX (SRTIDX) utility (JCL
equivalent SORTIDX), your attempt will be rejected and the return code
SCIDXNAV will be returned.

2 File Protected by the Before Journal

If the file was protected by Before Journal, it is automatically reopened in input-
output mode at system restart; the purpose being to rollback the data part and the
dense level of secondary indexes to their last stable state. It is important to note
that, in this context, the other index levels are not rollbacked, having not been
journalized. This means that a possibility of index/data incoherence may occur,
specially when splittings occured before the system crash. This is the reason why it
is recommended to execute the SORTIDX utility after the rollback phase to restore
the coherency. If it is not achieved, programms accessing such files in read access
mode may get some ADDROUT return codes when trying to access records
implied by the incoherency situation.

3 File Protected by Deferred Updates and the After Journal
(TDS applications only)

As for files without secondary keys above.

File Assignment, Buffer Management, and File Integrity

47 A2 04UF Rev06 5-55

NOTE:
Secondary-index salvaging is not automatic and is more time consuming than
primary-index salvaging.

5.14.3 File Extension

UFAS-EXTENDED supports file extension, both dynamic and static, for sequential
and indexed sequential files.

A relative file does not support static file extension. However, a relative file that is
accessed sequentially can be dynamically extended only in OUTPUT or EXTEND
(COBOL-85 only) open mode. The GPL equivalent of EXTEND is APPEND.
When a relative file is opened in APPEND mode, extra space is usually allocated
from the end of the relative file, but in GPL you can specify the record address
from which you wish to extend the relative file.

Dynamic Extension:

If during a run the allocated space is filled and more space is required, the file will
be extended if you specify the INCRSIZE parameter in the BUILD_FILE (JCL
equivalent PREALLOC) or CREATE FILE (JCL equivalent FILALLOC)
command that is described later in Section 6.

If you wish to change the value of the INCRSIZE parameter for a cataloged file,
use the MODIFY_FILE (JCL equivalent FILMODIF) command that is also
described in Section 6.

Static Extension:

Use the MODIFY_FILE_SPACE (MDFSP) command (described later in
Section 6). The JCL equivalent is the PREALLOC statement with the EXTEND
parameter.

In both cases a file is extended only if there is enough space on the disk to
accommodate the extension.

If a crash occurs during file extension, UFAS-EXTENDED can resume
automatically and complete the extension when you reopen the file.

UFAS-EXTENDED User’s Guide

5-56 47 A2 04UF Rev06

5.14.4 Permanent I-O Errors

If the After Journal is specified, you can restore the file from a previously saved
copy of the file through the use of the RESTORE_FILE (JCL equivalent FILREST)
command; then use the static rollforward utility to roll forward the file. For more
details on the ROLLFWD utility, refer to the File Recovery Facilities User’s Guide.

If the After Journal is not specified, you can restore the file only from a previously
saved copy, using the RESTORE_FILE (JCL equivalent FILREST) command.

47 A2 04UF Rev06 6-1

 6. Designing and Allocating UFAS-
EXTENDED Disk Files

6.1 Summary

This section covers the following topics:

• what happens when you allocate a file,

• CISIZE,
− recommended filling capacity for CIs,
− storage capacity for the different disk devices,

• choosing the initial size (SIZE),

• choosing the increment size (INCRSIZE),

• simulating how a file is allocated (CREATE_FILE),

• calculating space requirements for:
− a sequential file,
− a relative file,

• detailed design guidelines for indexed sequential files,
− choosing CISIZE,
− choosing Free Space (CIFSP),
− mass insertion,

• calculating file space for an indexed sequential file:
− without secondary indexes,
− with secondary indexes,

• file-allocation commands/DMU utilities.

UFAS-EXTENDED User’s Guide

6-2 47 A2 04UF Rev06

6.2 Preliminary Remarks

In the previous section we looked at some of the most important aspects of UFAS-
EXTENDED. What we are going to discuss here is of equal importance since we
will be seeing how to design and allocate space for UFAS-EXTENDED disk files.
Further information is provided in Appendix E.

First, you need to understand the reasons behind the GCL or JCL statements that
you type in at your terminal to be really confident and competent in allocating
UFAS-EXTENDED files.

The GCL commands for allocating UFAS-EXTENDED files are described towards
the end of Section 6. You will find a complete description of the JCL statements in
the JCL Reference Manual and the utilities are covered in the Data Management
Utilities (DMU) User’s Guide.

You can allocate files only on disk volumes that have been prepared (labeled and
formatted) with the following commands:

PREPARE DISK (PRPD) (JCL equivalent VOLPREP),

PREPARE VOLUME (PRPV) JCL equivalent VOLPREP (See Table 8-2).

For a description of these commands, see the IOF Terminal User’s Reference
Manual (Part 2), the JCL Reference Manual, and the DMU User’s Guide.

Before records can be written to a disk file, you must allocate file space and ensure
that the file’s attributes are known to the system.

There are several methods of allocating a disk file:

• using the GCL command BUILD_FILE (BF) (JCL equivalent PREALLOC)
described later in this Section,

• using the GCL command CREATE_FILE (CRF) (JCL equivalent FILALLOC)
described later in this Section (you can simulate how a file is to be allocated),

• using the file-allocation parameter group ALCi with its associated parameter
group (JCL equivalent ALLOCATE) described later in this Section,

• using the GCL parameter DYNALC (JCL equivalent OUTALC) in the file
management utilities.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-3

6.3 What Happens when you Allocate a File

This sub-section explains background information that will help you understand
why files are allocated the way they are.

The execution of a file allocation command such as BUILD_FILE (JCL equivalent
PREALLOC) reserves space for a disk file, and creates the necessary file labels
which contain details of the file organization.

It is recommended that you allocate a file on an FSA disk in units of blocks,
100KB, or records (for a description of the UNIT parameter, see later in this
Section). The values CYL and TRACK are maintained for reasons of compatibility
with existing GCL/JCL. At allocation time, an FBO disk file is always allocated in
blocks, no matter what allocation unit was specified (cylinder, record, block, or
quantum of 100KB). The corresponding values for the units of cylinder and track
are:

• 1 cylinder = 1 000 Kbytes,

• 1 track = 50 Kbytes.

UFAS-EXTENDED reserves space on FSA disks in units of blocks and on non-
FSA disks in units of disk tracks or cylinders (described in Section 1). Blocks, disk
tracks, or cylinders are allocated to the VBO disk file as a series of one or more
extents.

An extent is a group of one or more contiguous blocks (tracks or cylinders for
VBO files). On any one volume, you may allocate a file up to 16 extents (the
default value is 5 extents). However, you can limit the number of extents to one for
example, with the MAXEXT keyword in the BUILD_FILE command.

If you specify the size in CIs (UNIT = CI for VBO files, UNIT=BLOCK for FBO
files),

• the BUILD_FILE (JCL equivalent PREALLOC) command calculates the
number of tracks in the case of VBO disk files (based on the CISIZE) and
allocates the file:

− in blocks for FBO files,
− in tracks for VBO files.

The maximum number of CIs in a file is:

16 777 215 (2**24 - 1)

If you specify the size in units of records (UNIT = RECORD),

• the BUILD_FILE (JCL equivalent PREALLOC) command calculates the
number of tracks (or blocks) based on the RECSIZE and CISIZE and allocates
the file accordingly.

UFAS-EXTENDED User’s Guide

6-4 47 A2 04UF Rev06

If you specify the size in units of tracks (UNIT = TRACK), or cylinders (UNIT =
CYL),

• the BUILD_FILE (JCL equivalent PREALLOC) command allocates the file as a
number of blocks for FBO files and as a number of tracks or cylinders for VBO
files. You should specify TRACK or CYLINDER in the UNIT parameter only
for files being allocated on VBO disk volumes.

The effect of leaving free space in an UFAS-EXTENDED indexed sequential file
being allocated in units of records (UNIT=RECORD) is covered later in this
Section.

Where a multivolume file is to be allocated, you can specify the amount of space to
be taken on each volume (SPLIT) as well as the position at which the allocation is
to start.

The start address can be identified by:

• blocks for FBO disk files,

• cylinder and addresses for VBO disk files.

When you specify the SPLIT parameter, only one extent may be allocated per
volume. You cannot use the SPLIT parameter when UNIT = CI or UNIT =
RECORD.

UFAS-EXTENDED allocates space by scanning the list of available free-space
extents.
UFAS-EXTENDED chooses the smallest extent of those greater than or equal to
the space required, if any.

List of Free Extents

40 23 6025

For example, if the extents were 40, 23, 25, and 60 cylinders, a request for 24
would be allocated on the 25-cylinder extent, leaving unused extents of 40, 23, 1,
and 60 cylinders.

40 23 1 60

List of Remaining Free Extents

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-5

If the space that you request is larger than the largest available free extent, UFAS-
EXTENDED allocates the largest extent. UFAS-EXTENDED then chooses the
remaining space still required:

either by searching for the smallest of the extents that are large enough,

or by choosing the largest, and then searching for space for the remainder.

Thus, if you request 86 cylinders with the above space list (60+40), UFAS-
EXTENDED allocates the 60- and 26-cylinder extents.

14 23 1

List of Remaining Free Extents

6.3.1 Choosing the CI Size (CISIZE)

It is important to choose the size of a CI carefully.The CISIZE parameter specifies
the CI size in bytes. The size of a CI is always a multiple of 512. UFAS-
EXTENDED always rounds up the size of a CI that you specify to a multiple of
512 if the size specified is not already such a multiple. Table 6-1 gives you the CI
sizes that are recommended for each VBO disk drive. These CI sizes make the best
use of disk space, but in TDS applications, the most important factor may be the
response time, related to the number of index levels.

The larger the CISIZE, the larger the buffer(s) needed to process the file and the
longer the processing time needed to split a CI. The advantage of specifying a large
CISIZE is two-fold: fewer CI splitting operations will occur and there will be fewer
I/O operations. Note that the buffer size = CISIZE when VERSION = CURRENT,
or (CISIZE + 32) when VERSION = PREVIOUS, in both cases rounded up to a
multiple of 4 Kbytes.

When you write variable-length records to a file, the number of records placed in a
CI will depend on the cumulative total of record-lengths that fit in a CI. A record is
never split over 2 CIs.

UFAS-EXTENDED User’s Guide

6-6 47 A2 04UF Rev06

6.3.2 Recommended CI Sizes by Space Occupied

Table 6-1 shows the recommended CISIZE values for files being allocated on VBO
disk volumes.

Table 6-1. Recommended CISIZE values

32256
19456
12800
 9216
 7168
 6144
 5120
 4096
 3584
 3072
 2560
 2048
 1536
 1024
 512

28672
14336
 9216
 6656
 5120
 4096
 3584
 3072
 2560
 2048
 1536
 1024
 512

 1 (98%)
 2 (98%)
 3 (95%)
 4 (91%)
 5 (88%)
 6 (84%)
 7 (86%)
 8 (84%)
10 (88%)
12 (84%)
15 (79%)
21 (74%)
34 (60%)

 24
 48
 72
 96
120
144
168
192
240
288
360
504
816

MS/D500

 15
 30
 45
 60
 75
 90
105
120
135
165
195
225
285
390
600

 1 (81%)
 2 (98%)
 3 (96%)
 4 (93%)
 5 (90%)
 6 (93%)
 7 (90%)
 8 (83%)
 9 (79%)
11 (85%)
13 (81%)
15 (78%)
19 (69%)
26 (54%)
40 (42%)

MS/B10

CISIZE CIs per
Track

Data CIs
per Track

CIs per
Cylinder

Data CIs
per Cylinder

CISIZE

VBO disk drives are divided into classes as follows:

Device Class Name Disk Unit Family
MS/B10 1 Gigabyte disk drive
MS/D500 MSU1007

The CISIZE values shown in Table 6-1 make the best use of the available disk
space. The file designer must also take into account other criteria such as the
memory cost of buffers for a given CISIZE. Buffers are discussed in Section 5. For
files accessed in TDS applications, the number of index levels is the most
important factor.
The percentages in the 2nd column show the efficiency of track space used
compared with the maximum track capacity.
From V5, data is accessed in fixed-sized memory units known as pages. A page can
contain only one CI. Because it is important that the actual I/O transfers be done in
efficient sizes, you can calculate the number of pages required by using the
following formula:

CISIZE divided by 4096 (rounded up to a multiple of 4 Kbytes)

For instance, a CI whose size is 4 096 requires a buffer capable of holding 1 page.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-7

6.3.3 Disk-Storage Capacity

Table 6-2 shows the disk-storage capacity for FSA disk volumes.

Table 6-2. Number of CIs per FSA Disk Volume

512
1024
1536
2048
2560
3072
3584
4096
4608
5120
5632
6144
6656
7168
7680
8192
8704
9216
9728

10240
12288
14336
16384
18432
20480
22528
24576
26624
28672
30720
32256

628400
314200
209466
157100
125680
104733
89771
78550
69822
62840
57127
52366
48338
44885
41893
39 275
36 964
34 911
33 073
31 420
26183
22442
19637
17455
15710
14281
13091
12084
11221
10473
9974

1302800
651400
434266
325700
260560
217133
186114
162850
144755
130280
118436
108566
100215
93057
86853
81425
76635
72377
68568
65140
54283
46528
40712
36188
32570
29609
27141
25053
23264
21713
20679

Volume Capacity
CISIZE

(in bytes) FSA
320 MB

FSA
660 MB

LSS V1
1600 MB

LSS V2
2500 MB

2669600
1334800
889866
667400
533920
444933
381371
333700
296622
266960
242690
222466
205353
190685
177973
166850
157035
148311
140505
133480
111233
95342
83425
74155
66740
60672
55616
51338
47671
44493
42374

4154100
2077050
1384700
1038525
830820
692350
593442
519262
461566
415410
377645
346175
319546
296721
276940
259631
244358
230783
218636
207705
173087
148360
129815
115391
103852
94411
86543
79886
74180
69235
65938

Dividing the CISIZE into the capacity of the volume gives the maximum number
of CIs which can be allocated on the volume for the particular CISIZE chosen. For
example, by dividing 320 megabytes by 4 096, it is possible to fit a maximum of
78 550 CIs on a 320 Megabyte volume.

Table 6-3 shows disk-storage capacity and the total number of cylinders that you
may allocate on a non-FSA disk volume.

UFAS-EXTENDED User’s Guide

6-8 47 A2 04UF Rev06

Table 6-3. Storage Capacity of Non-FSA Disk Volumes

Cylinders per volume

Additional Cylinders
for Adternate Tracks

Tracks per Cylinder

Total Number of Tracks
(excluding alternates)

Bytes per Track
available to the User

Bytes per Cylinder

Total Capacity
(Megabytes, approx)

 707

 2

 24

 16968

 29013

696312

 500

 1730

 5

 15

 25950

 39381

590715

 1000

MS/B10

Non-FSA Disk Volume

MS/D500

Tables 6-4 and 6-5 compare the capacity obtained when you allocate with a given
CI size on volumes of the same type, but where the first is formatted in FBO with 4
Kbyte data blocks, whereas the second is formatted in VBO.

It is assumed that the whole volume is available (no DSMGT area) and that the file
is mono-extent (on FBO volumes, CIs can still be split over two consecutive
tracks).

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-9

Table 6-4. Comparative Capacity of VBO and FBO MS/D500 Volumes

VBO FBOCISIZE Percentage
difference

576912
356328
254220
203616
169680
135744
118776
101808
 84840
 84840
 67872
 67872
 67872
 67872
 50904
 50904
 50904
 50904
 50904
 50904
 33936
 33936
 33936
 33936
 33936
 16968
 16968
 16968
 16968
 16968
 16968
 16968
 16968
 16968
 16968
 16968
 16968
 0
 0
 0

101808
101808
101808
101808
101808
101808
101808
101808
 50904
 50904
 50904
 50904
 50904
 50904
 50904
 50904
 50904
 33936
 33936
 33936
 33936
 33936
 25452
 25452
 25452
 25452
 25452
 25452
 20361
 20361
 20361
 16968
 16968
 16968
 14544
 14544
 14544
 12726
 12726
 12726

 512
 1024
 1536
 2048
 2560
 3072
 3584*
 4096
 4608
 5120
 5632
 6144
 6156
 6656
 7168
 7680
 8192
 8704
 9216
 9728
 to
12288
12800
 to
14336
14848
 to
16384
16896
 to
20480
20992
 to
24576
25088
 to
28672
29184
 to
32256

-82,35%
-71,43%
-60,00%
-50,00%
-40,00%
-25,00%
-14,29%
 0,00%
-40,00%
-40,00%
-25,00%
-25,00%
-25,00%
-25,00%
 0,00%
 0,00%
 0,00%
-33,33%
-33,33%
 0,00%
 0,00%
 0,00%
-25,00%
-25,00%
-25,00%
 50,00%
 50,00%
 50,00%
 20,00%
 20,00%
 20,00%
 0,00%
 0,00%
 0,00%
-14,29%
-14,29%
-14,29%
 -
 "
 -

MS/D500

* FILALLOC default value

Number of CI’s

UFAS-EXTENDED User’s Guide

6-10 47 A2 04UF Rev06

Table 6-5. Comparative Capacity of VBO and FBO MS/B10 Volumes

Number of CI’s
VBO FBOCISIZE

Percentage
difference

MS/B10

* FILALLOC default value

207600
207600
207600
207600
207600
207600
207600
207600
103800
103800
103800
103800
103800
103800
103800
103800
103800
 69200
 69200
 69200
 69200
 51900
 51900
 51900
 41520
 41520
 41520
 41520
 34600
 34600
 29657
 29657
 25950
 25950

1038000
 674700
 493050
 389250
 337350
 285450
 233550
 207600
 181650
 181650
 155700
 155700
 155700
 129750
 129750
 103800
 103800
 103800
 103800
 77850
 77850
 77850
 51900
 51900
 51900
 51900
 25950
 25950
 25950
 25950
 25950
 25950
 25950
 25950

-80,0%
-69.23%
-57.89%
-46.67%
-38.46%
-27.27%
-11.11%
 0.00%
-42.86%
-42.86%
-33.33%
-33.33%
-33.33%
-20.00%
-20.00%
 0.00%
 0.00%
-33.33%
-33.33%
-11.11%
-11.11%
-33.33%
 0.00%
 0.00%
-20.00%
-20.00%
 60.00%
 60.00%
 33.33%
 33.33%
 14.29%
 14.29%
 0.00%
 0.00%

 512
 1024
 1536
 2048
 2560
 3072
 3584*
 4096
 4608
 5120
 5632
 6144
 6156
 6656
 7168
 7680
 8192
 8704
 9216
 9728
12288
12800
13312
16384
16896
19456
19968
20480
20992
24576
25088
28672
29184
32256

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-11

6.3.4 Choosing the Initial Size (SIZE)

The SIZE parameter specifies the total amount of space to be allocated to a file.
You can use this parameter in the BUILD_FILE (JCL equivalent PREALLOC)
command, CREATE_FILE (JCL equivalent FILALLOC) command, the file-
allocation parameter group ALCi (JCL equivalent ALLOCATE), and the DYNALC
parameter (JCL equivalent OUTALC).

If you give a value for SIZE, this implies that the allocation is to be done in global
mode. Global means that you give the total amount of space to be allocated and
GCOS7 decides how to spread this over the volume(s) concerned.

In global mode, the volume(s) concerned are specified via the FILE parameter of
the GCL commands BUILD_FILE and CREATE_FILE or one of the JCL
statements PREALLOC, FILALLOC, or OUTALC .

The alternative to global mode is split mode (requested via the SPLIT parameter of
the BUILD_FILE command). Split mode means that you choose the amount of
space to be allocated on each volume. In addition, you can optionally specify the
disk address(es) at which allocation is to start. In split mode, the volume(s)
concerned and the amount of space on each are given via the SPLIT parameter.

Because you can extend indexed sequential files and sequential files (explained in
the next sub-section), do not allocate more space than needed for the first creation.
However, in the case of TDS applications, frequent file extensions are costly.

SIZE must be:

• less than 32 768 tracks if UNIT = 100KB, TRACK, or CYL,
• less than 16 777 216 if UNIT = BLOCK or CI,
• less than 2 130 706 306 if UNIT = RECORD.

UFAS-EXTENDED User’s Guide

6-12 47 A2 04UF Rev06

6.3.5 Choosing the Increment Size (INCRSIZE)

The INCRSIZE parameter specifies the amount of space by which a file is
automatically extended when it becomes full. INCRSIZE is measured in blocks,
units of 100 Kbytes, cylinders, tracks, CIs, or records, depending on the unit
specified by the UNIT parameter. For files being allocated on FSA disks, it is
recommended that BLOCK or 100KB be specified in the UNIT parameter
(described later in this Section).

The INCRSIZE parameter can be specified in the BUILD_FILE (JCL equivalent
PREALLOC) command, CREATE_FILE (JCL equivalent FILALLOC) command,
or the file-allocation parameter group ALCi (JCL equivalent ALLOCATE). The
value declared does not override a non-zero value already declared in the catalog,
or subsequently set by MODIFY_FILE (CATMODIF). In cases of conflict, the
catalog value of INCRSIZE is always used.

The default value for INCRSIZE is 0, which means no automatic increment and the
maximum value is 32 767.

The value of INCRSIZE should be large enough to avoid too many extensions.
Ideally the file space will have been correctly estimated at the outset but, if an
extension is necessary, the file space increment should be large enough (20 to 30%
of the value specified in the SIZE parameter at the time of creation).

For static extension, use the SIZE parameter of the MODIFY_FILE_SPACE
command (described later in this Section), or the JCL statement PREALLOC with
the EXTEND parameter.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-13

6.4 Simulating File Allocation

Instead of actually allocating a file, you can simulate its allocation by using the
CREATE_FILE command (syntax is given later in this Section). This utility is
quick and easy. You start with rough estimates, for example an estimate of the file
size, and then refine each estimate in turn. No longer do you have to spend your
time trying to calculate how many CIs are occupied by the address space 1
information or by the indexes in the case of an indexed sequential file. If you are
working in line mode, ensure that the IMMED parameter is set to 0 so that you can
modify the characteristics of the model file by supplying appropriate commands. If
you do not specify the characteristics of the file that you wish to allocate, default
values are applied for the following parameters:

• FILEFORM
• FILEORG
• RECFORM
• CISIZE
• RECSIZE
• UNIT
• SIZE
• INCRSIZE

To display the current characteristics of the file to be allocated, you then use the
REPORT command. This utility gives the number of blocks, quanta of 100 Kbytes,
cylinders (or tracks in the case of non-FSA disks). For a description of the
REPORT command, see the IOF Terminal User’s Reference Manual.

UFAS-EXTENDED User’s Guide

6-14 47 A2 04UF Rev06

6.5 Calculating Space Requirements fir a Sequential File

You should be familiar with sequential-file concepts before proceeding. These
concepts are described in Section 2.

User-supplied values for the calculation are RECSIZE (defined in the user
program), CISIZE (chosen by the file designer) and the number of records that the
file is to hold.

For a sequential file, the value that you enter for CISIZE must be within the
following limits:

• must be greater than or equal to RECSIZE + 12 for VBO files
(RECSIZE + 14 for FBO files),

• cannot exceed one track for a file being allocated on a VBO disk volume.

6.5.1 Fixed-Length Records

If you know the number of records in the file to be allocated, then an easy method
of allocating the file is to set UNIT=RECORD in the BUILD_FILE command, and
UFAS-EXTENDED automatically allocates the file. Otherwise you will need to
use the CREATE_FILE utility or do the following calculations.

First calculate the number of records in a CI:

• Number of records per CI =

• (CISIZE - CI Header) divided by (RECSIZE + 4) rounded down

• To take account of the CI header information, subtract from the CISIZE:

− 10 for files being allocated on FSA disks,

− 8 for files being allocated on non-FSA disks.

− add 4 to the size of the record to take account of the record-header
information that occupies 4 bytes, (see Figure 2-3).

Then find number of CIs required:

Number of CIs =

(number of records) divided by (number of records per CI), rounded up

If you allocate file space by using the BUILD_FILE command and UNIT = CI,
then SIZE = number of CIs will suffice.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-15

In the case of a non-FSA disk volume, calculate the number of tracks required (and
possibly from this the number of cylinders) by using the following formula:

Tracks = (number of CIs) divided by (CIs-per-track) plus 1, rounded up

The 1 extra track is that required for address space 1. If allocation is done in CIs, or
in records, then this is automatically added, but you must take it into account if
UNIT=TRACK or CYL. To find out the number of CIs per track, see Table 6-1.

Example of allocating an FBO disk file

A file PK.LOP of 2 349 records, each 220 bytes in length, is to be allocated on an
MS/FSA volume.

A simulation of the file’s allocation (described later in this Section) indicates that
90 blocks are required.

CREATE_FILE PK.LOP:VOL1:MS/FSA
 FILESTAT = CAT
 UFAS = SEQ
 UNIT = BLOCK
 SIZE = 90
 CISIZE = 6144
 RECFORM = F
 RECSIZE = 220;

Example of allocating a VBO disk file

A file PC.WTM of 3 000 records, each 90 bytes in length, is to be allocated on an
MS/D500 volume BD18. The CISIZE is to be 4 096.

An easy method of allocating the file is to specify in the BUILD_FILE command
UNIT=RECORD, SIZE=3000. Then UFAS-EXTENDED automatically calculates
the number of tracks required.

Otherwise you need to use the CREATE_FILE utility or do the following
calculations.

• Number of records per CI = (4096 - 8) divided by (90 + 4) = 43 records per CI

• Number of data CIs = 3000 divided by 43 = 70 CIs

With a CISIZE of 4096, there are 6 CIs per MS/D500 track (Table 6-1).

Tracks = (70 divided by 6) plus 1 = 13 tracks

UFAS-EXTENDED User’s Guide

6-16 47 A2 04UF Rev06

The BUILD_FILE command is:

BUILD_FILE PC.WTM:BD18:MS/D500
 FILESTAT = CAT
 UFAS = SEQ
 UNIT = CI (or UNIT = TRACK or UNIT = CYL
 SIZE = 70 SIZE = 13 SIZE = 1)
 CISIZE = 4096
 RECSIZE = 90;

Table 6-3 gives 24 tracks per cylinder for an MS/D500 disk drive. Therefore 1
cylinder will cater for 13 tracks.

Further examples of allocating files using the BUILD_FILE command are given
later in this Section.

6.5.2 Variable-Length Records

Using the same notation as for fixed-length records but with an average record
length (arl) instead of RECSIZE:

• Number of records per CI = (CISIZE - CI Header) divided by (arl + 4), rounded
down.

• Number of CIs = (number of records) divided by (number of records per CI),
rounded up

• Tracks = (number of CIs) divided by (CIs-per-track) plus 1, rounded up

Example of allocating an FBO disk file

Assume you wish to allocate a file PK.RIT of 2,000 variable-length records whose
average length is 25 bytes and maximum length is 98 bytes. You wish to allocate
the file on an MS/FSA volume PKT. The CISIZE is 3584.

• Number of records per CI = (3584-10) divided by (25+4) = 123.24

• = 123 records per CI

Number of data CIs = 2000 divided by 123 = 16.23 = 17 CIs

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-17

To take into account the space occupied by address space 1, add 5 to give 22 CIs in
all. Note that you can modify this estimate through use of the CREATE_FILE
command (described earlier in this Section).

CRF PK.RIT:PKT:MS/FSA
 FILESTAT = CAT
 UFAS = SEQ
 UNIT = BLOCK
 SIZE = 22
 CISIZE = 3584
 RECFORM = V
 RECSIZE = 98;

Example of allocating a VBO disk file

Assume you wish to allocate a file, PC.VWT of 4500 variable-length records
whose average length is 40 bytes and maximum length is 120 bytes. You wish to
allocate the file on an MS/D500 volume MX42. The CISIZE chosen is 1536.

• Number of records per CI = (1536 - 8) divided by (40 + 4)

• = 34 records per data CI

Note that, if you wish to allocate file space in units of records (UNIT=RECORD
with SIZE=4500), then specify 120, instead of 40 for the record size.

Number of CIs = 4500 divided by 34 = 133 CIs

With a CISIZE of 1536, there are 15 CIs per MS/D500 track (See Table 6-1)

Tracks = (133 divided by 15) + 1 = 9.86, rounded up = 10 tracks.

giving:

BUILD_FILE PC.VWT:MX42:MS/D500

FILESTAT = CAT
UFAS = SEQ
UNIT = CI (or UNIT = TRACK or UNIT = CYL
SIZE = 133 SIZE = 10 SIZE = 1)
CISIZE = 1536
RECSIZE = 120
RECFORM = V;

UFAS-EXTENDED User’s Guide

6-18 47 A2 04UF Rev06

6.6 Calculating Space Requirements for a Relative File

You should be familiar with the relative-file concepts before proceeding. These
concepts are described in Section 3.

User-supplied values for the calculation are RECSIZE (defined in the user
program), CISIZE (chosen by the file designer) and the number of records that the
file is to hold.

The calculations for a relative file are the same for both fixed-length and variable-
length records.

For a relative file, the value you enter for CISIZE must be within the following
limits:

• must be greater than or equal to RECSIZE + 12 for a VBO file (RECSIZE + 14
for an FBO file),

• cannot exceed one track for a VBO file.

An easy method of allocating a file is to specify in the BUILD_FILE command
UNIT=RECORD, SIZE=number of records. Then UFAS-EXTENDED
automatically calculates the number of blocks/tracks required. Otherwise you need
to use the REPORT command of CREATE_FILE or do the following calculations.

1. Calculate the number of records in a CI:

Number of records per CI = (CISIZE - CI Header) divided by (RECSIZE + 4),
rounded down

Take account of the CI header information, subtract from the CISIZE:

10 for FBO files,
8 for VBO files.

(Add 4 to the size of the record to allow for the record-header that occupies 4
bytes. See Figures 3-5 and 3-6.)

1. Find the number of CIs required:

Number of CIs = (number of records) divided by (number of records per CI),
rounded up

2. For VBO volumes, you may compute the number of tracks:

Tracks = (number of CIs) divided by (CIs-per-track), plus 1, rounded up

(One track is added to cater for address space 1.)

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-19

Example of allocating an FBO file

A file POR.CL of 4,510 records, each 112 bytes in length is allocated on an
MS/FSA disk volume RR1. The CISIZE chosen is 4608 and the unit of allocation
chosen is blocks.

• Number of records per CI = (4608 - 10) divided by (112 + 4)

• = 39 records per CI

• Number of CIs = 4510 divided by 39 = 116 CIs rounded up

To allow for address space 1, add a few extra CIs, say 5, which gives 121. Specify
121 in the SIZE parameter. Note that you can modify your estimate by simulating a
file allocation (described earlier in this Section).

CRF POR.CL:RR1:MS/FSA
 FILESTAT = CAT
 UFAS = RELATIVE
 UNIT = CI
 SIZE = 121
 CISIZE = 4608
 RECSIZE = 112;

Example of allocating a VBO file

A file CLX.AA of 2080 records, RECSIZE = 134 is allocated on an MS/D500 disk
volume 26P. The CISIZE chosen is 2560.

• Number of records per CI = (2560 - 8) divided by (134 + 4) = 18 records per CI.

• Number of CIs = 2080 divided by 18 = 116 CIs rounded up.

With a CISIZE of 2560, there are 10 CIs per MS/D500 track (Table 6-1)

tracks = 116 divided by 10, plus 1 = 13 tracks rounded up.

giving:

BF CLX.AA:26P:MS/D500
 FILESTAT = CAT
 UFAS = RELATIVE
 UNIT = CI or (UNIT = TRACK or UNIT = CYL
 SIZE = 116 SIZE = 13 SIZE = 1)
 CISIZE = 2560
 RECSIZE = 134;

UFAS-EXTENDED User’s Guide

6-20 47 A2 04UF Rev06

Table 6-3 gives 24 tracks per cylinder for an MS/D500 disk drive. Therefore 1
cylinder will cater for 13 tracks. This means that 11 tracks are not used when you
allocate in units of cylinders. To avoid this situation, it is better to allocate in unit
of tracks.

As described earlier in Section 3, you do the same calculations for variable-length
records as for fixed-length records.

Further examples of allocating files are given later in this Section 6.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-21

6.7 Design Guidelines for Indexed Sequential Files

Before reading this sub-section, make sure that you are familiar with indexed
sequential file organization (described in Section 4).

Indexed sequential file design can be difficult to grasp, so go more slowly through
this sub-section.

At allocation time, the user supplies the following parameters:

CISIZE = Size of a the file-allocation parameter group ALCi CI
(data, index, label) (unit = bytes)

CIFSP = Free space left in a CI (unit = percentage)

SIZE = Initial space for the file being allocated on:

for FBO files (UNIT = BLOCK, 100KB, CYL, or
RECORD),

for VBO files (UNIT = CI, TRACK, CYL, or
RECORD).

A default value of zero is provided for CIFSP. If you wish to extend the file
incrementally (that is, by predefined increments), specify the INCRSIZE parameter
in the BUILD_FILE, CREATE_FILE command, or the file-allocation parameter
group ALCi. The JCL equivalents are the PREALLOC statement, the FILALLOC
utility and the OUTALC parameter group or the ALLOCATE statement.

An important factor affecting file access is the access mode.

The performance of a randomly accessed indexed sequential file is the same
throughout its life. Performance depends on the blocking factor, where:

blocking factor = (CISIZE - CI Header) divided by (RECSIZE + 7) and must
be >= 2

(The blocking factor is the number of records per CI). For this reason, most
attention will be concentrated on performance in direct-access mode.

As shown in Figure 4-13, the CI header is 21 bytes long (+ 1 byte for CI Trailer)
for FBO files and 20 bytes long for VBO files.

You add 7 to the RECSIZE because each record header is 5 bytes long and each
record descriptor is 2 bytes long. See Figure 4-13.

UFAS-EXTENDED User’s Guide

6-22 47 A2 04UF Rev06

6.7.1 Choosing the CISIZE for an Indexed Sequential File

The choice of a CISIZE is determined by the type of application you wish to run.
In the case of TDS applications, choose a CISIZE which produces only 2 index
levels. Use the following formulas to calculate the number of entries per index for:

• a primary key:

no. of Entries per Index CI = (CISIZE - 10) divided by (KEYSIZE + 4)

• a secondary key:

no. of Entries per Index CI = (CISIZE - 10) divided by (KEYSIZE + 8)

To avoid having more than 2 index levels, ensure that the number of entries per
index is greater than the square root of the number of CIs in the file. If this
condition is not true, increase the CISIZE value to reduce the number of data CIs
and index CIs.

Ensure that the CISIZE is large enough to accommodate at least 2 records. The
value you enter for CISIZE must be within the following limits:

• must be greater than or equal to

2 * (RECSIZE + 7) + CI Header,

• cannot exceed one track for a VBO disk file.

A CISIZE that is about 4 Kbytes is an efficient value. A good rule is to limit the
blocking factor as follows:

blocking factor = (CISIZE - CI Header) divided by (RECSIZE + 7)
subject to the limitation: 10 <= blocking factor <= 255

Tables 6-1 and 6-2 relate the CISIZE value to the number of pages required.

6.7.2 Choosing Free Space (CIFSP)

At file allocation time, the CIFSP parameter allows you to specify the percentage
of free space to be left within each CI when the file is initially loaded. This free
space allows records to be inserted into the CI subsequently without causing CI
splitting. However, the specified free space must be large enough to hold at least
one record or an integral number of records. For example, if there are 10 records
per CI, then you can specify 20% free space to account for the subsequent insertion
of 2 records.

Note that the CIFSP parameter in the DEFi parameter group (JCL equivalent
DEFINE) is used only at time of file allocation.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-23

If you create a file sequentially and use it without insertions, set the value of CIFSP
in the BUILD_FILE command (JCL equivalent PREALLOC) to 0. If insertions to
the file are randomly distributed, an efficient value for free space is:
 CIFSP = 20
If insertions into the file are concentrated locally, you do not need distributed free-
space and hence you need not specify the CIFSP parameter.

EXAMPLE:

At initial loading time, a file
allocated with 20 % free space
(CIFSP = 20). This means that
the file is full at 80 % capacity.

Full at 80 %
Capacity

20 % free
space

CI at the time of
initial loading

After insertion I-O mode, this
file is 90 % filled with records and
has 10 % free space.

CI after record
insertion

Full at 90 %
Capacity

10 % free
space

Figure 6-1. Using CIFSP

❑

The maximum free space is obtained when only one record is loaded in each CI.
You may request this by specifying a value of 100 for CIFSP. Alternatively, you
can calculate the percentage of free space that gives one record loaded per CI; any
value between this and 100 is equivalent to specifying 100.

The default value is 0.
The maximum value is 100.

In the case of a volatile file, you may find the CIFSP parameter useful for reducing
the high splitting rate.

UFAS-EXTENDED User’s Guide

6-24 47 A2 04UF Rev06

When you wish to allocate a file in units of records (UNIT= RECORD), the
number of records specified in the SIZE parameter corresponds to the number of
records which will be initially loaded. If you specify a value in the CIFSP
parameter, UFAS-EXTENDED automatically calculates the required amount of
free space to be left in the CI for the subsequent insertion of further records. For
example, if the following parameters are specified:

UNIT = RECORD
SIZE = 1000
CIFSP = 20

UFAS-EXTENDED allocates a file for holding 1,000 records and in addition
leaves 20% free space in the CI.

For other units of allocation, the requested size is allocated.

6.7.3 Mass Insertion

UFAS-EXTENDED uses this mode only when it is adding records to the end or to
the beginning of a file that is opened in I-O mode. The end of a file means that the
key value of the records to be added in ascending order is higher than the highest
key value of the records already in the file. The beginning of the file means that the
key value of the records to be added in descending order is lower than the lowest
key value of the records already in the file. When UFAS-EXTENDED adds a large
number of records in sequential (ascending or descending) order, full CIs are
created.

In this mode, UFAS-EXTENDED does not split each full CI into two CIs, each
approximately half full. Instead, it leaves the original CI almost full and creates a
new CI that is almost empty.

IMPORTANT:
Note that you can no longer use the CIFSP parameter in the file-define
parameter group (DEFi) (JCL equivalent DEFINE) to control the split ratio in
the case of mass insertion.

6.7.4 Files With Secondary Keys

In general, avoid using secondary indexes. In a TDS application, do not specify
more than 3 secondary keys.

1
3

3

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-25

6.7.5 Calculating Space Requirements

To avoid calculating space requirements, you can use the CREATE_FILE
command to simulate a file allocation. This utility was described earlier in this
Section.

In the following sub-sections, the CREATE_FILE (JCL equivalent FILALLOC)
command and the BUILD_FILE command (JCL equivalent PREALLOC) are used
to explain how to allocate a file, but you could also use the file-allocation
parameter group ALCi (JCL equivalent ALLOCATE), or the DYNALC parameter
(JCL equivalent OUTALC).

Before you use the BUILD_FILE command with UNIT = CI or with UNIT =
RECORD, decide on the size of:

• the CI size (CISIZE) in bytes,
• the record size (RECSIZE) in bytes,
• the number of records in the file,
• the keysize in bytes.

When you wish to allocate a file in units of CIs, calculate the total number of CIs
for the SIZE parameter in the BUILD_FILE (JCL equivalent PREALLOC)
command. Follow a similar procedure if UNIT = TRACK, or UNIT = CYL, except
that you must calculate the SIZE parameter in the appropriate units.

The CI must be large enough to hold at least 2 records. The maximum number of
records per data CI is 255.

For calculations with variable-length records, use the average record length, but the
maximum record length is given as the RECSIZE parameter in the BUILD_FILE
command.

The format of a CI is shown in Figure 4-13.

All rounding up or down is to the next integer value, except CISIZE which UFAS-
EXTENDED always rounds up to the next multiple of 512, unless such a multiple
of 512 is specified.

UFAS-EXTENDED User’s Guide

6-26 47 A2 04UF Rev06

6.7.5.1 File Without Secondary Indexes

The unit of allocation (UNIT =) in the BUILD_FILE command (JCL equivalent
PREALLOC), CREATE_FILE (JCL equivalent FILALLOC) command or the file-
allocation parameter group ALCi (JCL equivalent ALLOCATE) determines how
you calculate space for indexed sequential files.

In the case of FBO files, it is best to use the new units of allocation: either
BLOCK, or a quantum of 100 Kbytes (100KB). These units of allocation can be
used only for an FBO file. With RECORD as the unit of allocation, you simply
enter the number of records in the SIZE parameter. However, with CI, or CYL, or
TRACK as the unit of allocation, you must do some calculations unless you have
decided to use the REPORT option in the CREATE_FILE command. These cases
are described separately below.

UNIT = RECORD

Enter the number of records in the SIZE parameter of the BUILD_FILE command
(JCL equivalent PREALLOC).

UNIT = CI

This means that the SIZE parameter of the BUILD_FILE command is quoted in
CIs. Therefore the user must calculate the number of CIs required for the file. To
do this, and to use the BUILD_FILE command, you must know the following:

The number of records to be loaded into the file.

RECSIZE The size of the record in bytes. For a file with variable-
length records, use the average length of the records
for these calculations.

CISIZE The size of the data, label, and index CIs in bytes.

KEYSIZE The length of the key field in bytes.

You can allocate a VBO file in the previous UFAS format with VERSION =
PREVIOUS in the PREALLOC statement only. For further details, see
Appendix F.

An easy method of allocating a file is to specify in the BUILD_FILE command:

UNIT = RECORD, SIZE = number of records.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-27

Then UFAS-EXTENDED automatically calculates the number of:

• blocks required for an FBO disk file,

• tracks required for a VBO disk file.

Otherwise, if you allocate space in units of CIs, use the REPORT command of
CREATE_FILE or do the following calculations.

Use the following formula to determine:

1. The number of records per CI

(CISIZE - CI Header) divided by (RECSIZE + 7), rounded down
(Subject to a minimum of 2 and a maximum of 255 records per CI.)

Subtract from the CISIZE:

22 for FBO files,
20 for VBO files.

2. The number of data CIs in the file

(total number of records) divided by (number of records per CI), rounded up

You can now use the BUILD_FILE (JCL equivalent PREALLOC) command
without needing to know how much disk space will be allocated for the file
because this is done automatically by UFAS-EXTENDED.

Example of allocating an FBO disk file

Assume you wish to allocate a file called ED.BRT on an FSA disk volume using
UNIT=BLOCK.

User-supplied information:

• number of records = 7,436
• RECSIZE = 230 bytes
• CISIZE = 3584
• KEYSIZE = 15 bytes
• KEYLOC = 6

Number of records per CI = (3584 - 22) divided by (230 + 7) = 15

Number of CIs = 7436 divided by 15 = 496 CIs rounded up

After simulating the file allocation through use of the CREATE_FILE command, a
file size of 505 should be specified. The data occupies 496 blocks and 9 extra
blocks are required for control space information including the space occupied by
the primary index. In all 505 blocks must be specified in order to fit 7436 records
in the file.

UFAS-EXTENDED User’s Guide

6-28 47 A2 04UF Rev06

CRF ED.BRT:Vol8:MS/FSA
 EXPDATE = 450
 FILESTAT = CAT
 UFAS = INDEXED
 UNIT = BLOCK
 SIZE = 505
 CISIZE = 3584
 RECSIZE = 230
 KEYLOC = 6
 KEYSIZE = 15;

Example of allocating a VBO disk file

Suppose you wish to allocate a file called JC.EXM on an MS/D500 disk drive
using UNIT = CI.

User-supplied information:

number of records = 5060 records
RECSIZE = 200 bytes
CISIZE = 4096 bytes (With a CISIZE of 4096,

Table 6-1 shows that for an
MS/D500, there are 6 data CIs
per track).

KEYSIZE = 10 bytes
KEYLOC = 5

To use the BUILD_FILE (JCL equivalent PREALLOC) command, find the number
of data CIs required as follows:

Number of records per CI:
(4096 - 20) divided by (200 + 7) = 19.69 = 19 records rounded down

Number of CIs
5060 divided by 19 = 267 data CIs rounded up

The 267 data CIs are stored in address space 2. You need take no action for address
spaces 1, 3, and 4, this aspect being managed internally by UFAS-EXTENDED.

You may now use the BUILD_FILE (JCL equivalent PREALLOC) as follows:
BUILD_FILE JC.EXM:TNDA:MS/D500
 EXPDATE = 199
 FILESTAT = CAT
 UFAS = INDEXED
 UNIT = CI or (UNIT = RECORD SIZE = 5060)
 SIZE = 267
 CISIZE = 4096
 RECSIZE = 200
 KEYLOC = 5
 KEYSIZE = 10;

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-29

UNIT = CYL (or UNIT = TRACK)

Both these units of allocation should be used only for files being allocated on non-
FSA disks.

Where you have a fixed amount of space to allocate for the file and are interested
in how many records will fit in this space, you would allocate using cylinder or
track.

Unlike allocation by CI or record, which are easy to use, allocation by cylinder or
track has a drawback. To allocate by track or cylinder, you must know how many
tracks or cylinders are to be allocated. To calculate the number of tracks or
cylinders for the different address spaces, it is best to simulate a file allocation by
using the CREATE_FILE command that is described earlier in this Section.

If the unit of allocation is the cylinder, then the number of cylinders to be allocated
is given by:

(number of tracks) divided by (number of tracks per cylinder), rounded up

User-supplied information:

The number of tracks in the SIZE parameter of the BUILD_FILE (JCL equivalent
PREALLOC) command,

RECSIZE the size of the records in bytes; where the file consists
of variable-length records, UFAS-EXTENDED takes
the maximum value specified in this parameter,

CISIZE the size of the data CI in bytes,

KEYSIZE the length, in bytes, of the key field.

KEYLOC the location of the start position of the record key in
the record, expressed as the position of its leftmost
byte (first byte of record has position 1).

EXAMPLE:

Suppose that you wish to allocate a file called JC.EXN on an MS/D500 disk drive
using UNIT = TRACK. User-supplied information:

Number of tracks = 95 tracks

RECSIZE 200 bytes
CISIZE 5120 bytes
KEYSIZE 20 bytes
KEYLOC 53

❑

UFAS-EXTENDED User’s Guide

6-30 47 A2 04UF Rev06

Table 6-1 shows that with a CISIZE of 5120, there are 5 data CIs per track on an
MS/D500.

You can now use the BUILD_FILE command as follows:

BF FILE = JC.EXN:TNDA:MS/D500
FILESTAT = CAT
EXPDATE = 199
UFAS = INDEXED
UNIT = TRACK
SIZE = 95
CISIZE = 5120
RECSIZE = 200
KEYSIZE = 20
KEYLOC = 53;

You can find out the number of records in the file by using the CREATE_FILE
(JCL equivalent FILALLOC). The amount of space allocated to each address space
is given by the LIST_FILE command. It is possible to find out the number of
records by multiplying the number of CIs by the number of records per CI.

6.7.5.2 File With Secondary Indexes

Secondary indexes are placed in address spaces 5, 6, and 7. Allocating space for
these address areas is similar to that for address spaces 2, 3, and 4 respectively,
except that you must take account of several secondary indexes. As with indexed
sequential files without secondary indexes, the unit of allocation may be blocks, or
a quantum of 100 Kbytes for FBO files, but you can also choose records. However,
cylinders, tracks, and CIs should be used only for VBO disk files.

With RECORD as the unit of allocation, you simply enter the number of records in
the SIZE parameter. With CYL or TRACK as the unit of allocation, you must do
some calculations. These cases are described separately below.

UNIT = RECORD

An easy way of allocating space for a file is to enter the number of records in the
SIZE parameter of the BUILD_FILE command (JCL equivalent PREALLOC).

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-31

UNIT = CI

To use the BUILD_FILE (JCL equivalent PREALLOC) command correctly, you
must have the following information:

Number of records to be loaded into the file,

RECSIZE the number of bytes in each data record; for variable-
length records, use the average record length for these
calculations,

CISIZE the number of bytes in a CI,

KEYSIZE(i) size of each key, in bytes; KEYSIZE(0) is the keysize
of the primary key in bytes,

KEYSIZE(1) to KEYSIZE(15) are the sizes of up to
15 secondary indexes,

KEYLOC(i) position of the first byte of each key in the record.

SECIDX (keyloc:keysize [:DUPREC] ...)

Explanation of KEYSIZE and KEYLOC:

Primary Key

Secondary Key Secondary Key

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

KEYSIZE (0) = 4 KEYLOC (0) = 1
KEYSIZE (1) = 3 KEYLOC (1) = 3
KEYSIZE (2) = 4 KEYLOC (2) = 9

To use the SECIDX parameter of the BUILD_FILE command, specify SECIDX as
follows.
SECIDX = (9:4)

This means that the secondary key starts at byte 9 and is 4 bytes long. If you enter
:DUPREC after the key length, then duplicates are allowed. A duplicate is 2 or
more records with identical secondary key values. If you do not enter :DUPREC,
then by default duplicates are not allowed.

UFAS-EXTENDED User’s Guide

6-32 47 A2 04UF Rev06

The maximum length of a secondary key is 251 bytes.

As a secondary key field cannot extend beyond the end of the record, the value of
KEYSIZE must satisfy the following conditions:

(KEYLOC + KEYSIZE) <= (RECSIZE + 1)

A secondary key field cannot start at the same position as the primary key nor at
the same position as another secondary key. As long as this restriction is observed,
key fields may overlap each other.

To use the BUILD_FILE command, you must calculate the number of data CIs to
be loaded into the file to satisfy the SIZE parameter as follows:

Number of records per CI
(CISIZE - CI Header) divided by (RECSIZE + 7), rounded down

For files being allocated on FSA disks, the CI header is 22 bytes long and for files
being allocated on non-FSA disks, the CI header is 20 bytes long.

Number of CIs
(number of records) divided by (number of records per CI), rounded up

NOTE:
See Appendix C, for the hexadecimal layout of address spaces in an indexed
sequential file.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-33

Example of allocating an FBO disk file

Assume you wish to allocate a file called PK.NEY on an FSA disk volume, using
UNIT=BLOCK.

User-supplied information:

No of records = 3115

RECSIZE = 108 bytes
CISIZE = 4096 bytes

KEYSIZE (0) = 14-byte primary key
KEYLOC (0) = 4

KEYSIZE (1) = 6-byte secondary key
KEYLOC (1) = 19

KEYSIZE (2) = 39-byte secondary key
KEYLOC (2) = 30

KEYSIZE (3) = 17-byte secondary key
KEYLOC (3) = 74

KEYSIZE (4) = 9-byte secondary key
KEYLOC (4) = 95

1. Calculate the number of data CIs to be loaded into the file.

Number of records per CI = (4096-22) divided by (108+7) = 35 records,
rounded down

Number of data CIs = 3115 divided by 35 = 89

2. Simulate the file allocation through use of the CREATE_FILE command
(described earlier in this Section). Make a rough estimate of the size of the file
taking into account the extra blocks required for the address space 1 and the
primary/secondary indexes.

Then refine this estimate by modifying the values you give in the SIZE
parameter of the CREATE_FILE command. In this case, at least 214 blocks
are required in order to fit 3,115 records into the file.

UFAS-EXTENDED User’s Guide

6-34 47 A2 04UF Rev06

3. Allocate the file when the file characteristics seem appropriate.

 CRF PK.NEY:VOL44:MS/FSA
 FILESTAT = CAT
 EXPDATE = 210
 UFAS = INDEXED
 UNIT = BLOCK
 SIZE = 214
 CISIZE = 4096
 RECSIZE = 108
 RECFORM = F
 KEYLOC = 4
 KEYSIZE = 14
 SECIDX = (19:6 30:39 74:17 95:9);

Example of allocating a VBO disk file

Suppose you wish to allocate a file called JC.EXO on an MS/B10 disk drive, using
UNIT = CI.

User-supplied information:

• number of records = 2915 records
• RECSIZE = 200 bytes
• CISIZE = 3584 bytes;

• KEYSIZE(0) = 20-byte primary key
• KEYLOC(0) = 5

The SECIDX parameter must be specified when secondary keys are to be defined.

KEYSIZE(1) = 10-byte secondary key
KEYLOC(1) = 30

KEYSIZE(2) = 50-byte secondary key
KEYLOC(2) = 45

KEYSIZE(3) = 40-byte secondary key and a duplicate key is required
KEYLOC(3) = 96

KEYSIZE(4) = 30-byte secondary key and a duplicate key is required
KEYLOC(4) = 138

Because the number of records is provided, you can allocate the file space in units
of records; otherwise you need to do the following calculations if you decide to
allocate the file space in units of CIs.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-35

To use the BUILD_FILE (JCL equivalent PREALLOC) command, you must first
find the number of data CIs required:

• Number of records per CI

• (3584 - 20) divided by (200 + 7) = 17.21 = 17 records per data CI, rounded
down

• Number of CIs

• 2915 divided by 17 = 172 data CIs in the file, rounded up

Use the BUILD_FILE (JCL equivalent PREALLOC) command as follows:

BF JC.EXO:TNDA:MS/B10
 FILESTAT = CAT
 EXPDATE = 199
 UFAS = INDEXED
 UNIT = CI OR UNIT = RECORD SIZE = 2915
 SIZE = 172
 CISIZE = 3584
 RECSIZE = 200
 KEYLOC = 5
 KEYSIZE = 20
 SECIDX = (30:10 45:50 96:40:DUPREC 138:30:DUPREC);

You can find out the number of records in the file by using the CREATE_FILE
(JCL equivalent FILALLOC). The amount of space allocated to each address space
is given by the LIST_FILE command. It is possible to find out the number of
records by multiplying the number of CI by the number of records per CI.

UNIT = CYL (or UNIT = TRACK)

Both these units of allocation should be used only for files being allocated on non-
FSA disks.

Where you have a fixed amount of space to allocate for the file, you would allocate
using cylinder or track.

Unlike allocation by CI or record, which are easy to use, allocation by cylinder or
track means that you must know how many tracks or cylinders to allocate. To
calculate the number of tracks or cylinders for the different address spaces, it is
best to simulate a file allocation by using the CREATE_FILE command that is
described later in this Section.

To display the current characteristics of the file to be allocated, you use the
REPORT command. Depending on the results, you decide whether or not to
allocate the file. For a description of the REPORT command, see the IOF Terminal
User’s Reference Manual.

UFAS-EXTENDED User’s Guide

6-36 47 A2 04UF Rev06

If the unit of allocation is the cylinder, then the number of cylinders to be allocated
is given by:

(number of tracks) divided by (number of tracks per cylinder), rounded up

EXAMPLE:

Suppose you wish to allocate a file called JC.EXP on an MS/D500 disk drive,
using UNIT = TRACK.

❑

User-supplied information:

• Number of Tracks = 95

• RECSIZE = 200 bytes

• CISIZE = 6656 bytes

• KEYSIZE(0) = 20-bytes primary key

• KEYLOC(0) = 5

The SECIDX parameter must be specified when secondary keys are to be defined.

KEYSIZE(1) = 10-byte secondary key
KEYLOC(1) = 30

KEYSIZE(2) = 50-byte secondary key
KEYLOC(2) = 45

KEYSIZE(3) = 40-byte secondary key and a duplicate key is required.
KEYLOC(3) = 96

KEYSIZE(4) = 30-byte secondary key and a duplicate key is required.
KEYLOC(4) = 138

To find out the number of CIs per track, see Table 6-1. For an MS/B10 disk drive
with a CISIZE of 6656, there are 5 data CIs per track.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-37

Use the BUILD_FILE command as follows:

BF JC.EXP:TNDA:MS/B10
 EXPDATE = 199
 FILESTAT = CAT
 UFAS = INDEXED
 UNIT = TRACK (or UNIT = RECORD SIZE = 7360 *

 SIZE = 95 UNIT = CYL SIZE = 2 cylinders)
 CISIZE = 6656
 RECSIZE = 200
 RECFORM = F
 KEYLOC = 5
 KEYSIZE = 20
 SECIDX = (30:10 45:50 96:40:DUPREC 138:30:DUPREC);

You can find out the number of records in the file by using the CREATE_FILE
(JCL equivalent FILALLOC) command. The amount of space allocated to each
address space is given by the LIST_FILE command. It is possible to find out the
number of records by multiplying the number of CIs in address space 2 by the
number of records per CI.

* This figure was calculated through use of the CREATE_FILE command.

UFAS-EXTENDED User’s Guide

6-38 47 A2 04UF Rev06

6.8 File Allocation Commands

The following sub-sections provide the syntax for GCL commands that are most
commonly used at file allocation time. A number of examples is provided after
each GCL command. The parameters are described in the IOF Terminal User’s
Reference Manual (Part 2).

A JCL --> GCL Correspondence Table and a GCL --> JCL Correspondence Table
are provided in Appendix D. JCL statements are described in the JCL Reference
Manual and the utilities are described in the Data Management Utilities User’s
Guide.

6.8.1 BUILD_FILE

Allocates space for a disk file and creates labels that describe the file’s
characteristics. The BUILD_FILE command creates the necessary file labels that
are set up to contain details of the file organization.

Important points:

The recommended units of allocation for files being allocated on FSA disks are
BLOCK and 100 KBytes.

However, to make the transition to FBO volume devices easier, the previous
allocation units (CI, RECORD, CYL, and TRACK) can still be specified.

If you specify CI in the UNIT parameter, a CI will be transformed into a number of
blocks at allocation time.

If you specify CYL in the UNIT parameter, a cylinder will be transformed into
1,000 Kbytes at allocation time.

If you specify TRACK in the UNIT parameter, a track will be transformed into 50
Kbytes at allocation time.

This suggests that it is best to specify BLOCK or 100KB for FBO files.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-39

Syntax:

{ BUILD_FILE }
{ }
{ BF }

 FILE = file78

 { CAT }
 { CAT{1|2|3|4|5} }
 [FILESTAT = { }]
 { UNCAT }
 { TEMPRY }

 { ddd }
 [EXPDATE = { yy/ddd }]
 { yy/mm/dd }

 [UFAS = SEQ]

- -

 [UNIT = { CYL | BLOCK | 100KB | RECORD | TRACK | CI }]

 [SIZE = dec10]

 [SPLIT = (split-criteria)]

 [SPLITDVC = device-class]

 [INCRSIZE = dec5]

 [MAXEXT = { 5 | dec2 }]

 [CISIZE = dec5]

 [RECSIZE = dec5]

 [KEYLOC = dec5]

 [KEYSIZE = dec3]

 [CIFSP = { 0 | dec3 }]

 [COLLATE = { EBCDIC | ASCII | BCD }]

 [SECIDX = (ddddd:dd[:DUPREC]...)]

 [DDLIB1 = lib78]

 [AREA = name30]

 [INDEX = name30]

 [SCHEMA = name30]

 [RECFORM = { F | FB | V | VB | U }]

 [SILENT = { bool | 0 }]

UFAS-EXTENDED User’s Guide

6-40 47 A2 04UF Rev06

6.8.1.1 Examples of File Allocation Using BUILD_FILE

In the following examples, all the files are allocated in the UFAS-EXTENDED
format. Do not hesitate to simulate a file’s allocation through use of the
CREATE_FILE command (described earlier in this Section).

Examples of Allocating Sequential Files

BF PK.ALI:PAN:MS:FSA
 FILESTAT = CAT
 UFAS = SEQ
 UNIT = BLOCK
 SIZE = 287
 CISIZE = 3584
 RECSIZE = 228
 RECFORM = V;

Build a cataloged sequential file named
PK.ALI on volume named PAN. The unit
of allocation is BLOCK. The file SIZE is
287 blocks. The CISIZE is 3584. The
RECSIZE is 228. The record format is
variable.

BF PK.CT:VOL 11:MS/FSA
 FILESTAT = CAT
 UFAS = SEQ
 UNIT = 100KB
 SIZE =5
 CISIZE = 4096
 RECSIZE = 154;

This command allocates a cataloged file
in units of 100KB. The total amount of
space required is 500KB. The record
format, by default, is fixed and each
record is 154 bytes long.

BF LP.PJM$RES
 FILESTAT = UNCAT
 UFAS = SEQ
 UNIT = CI
 SIZE = 600
 CISIZE = 1000
 RECSIZE = 190;

This command allocates a resident file.
Space is reserved for 600 data CIs.
Because 1000 is not a multiple of 512,
UFAS-EXTENDED rounds up the CI
size to the next multiple of 512; that is,
1024 bytes. The record format, by
default, is fixed and each record will be
190 bytes. Each data CI will hold 5
records; therefore, the total capacity of
the file is 5 x 600 =3,000 records.

BF FILE = F2:V9:MS/D500
 FILESTAT = UNCAT
 UFAS = SEQ
 SIZE = 1
 CISIZE = 2048
 RECSIZE = 100;

Build an uncataloged UFAS-
EXTENDED sequential file named F2
on the volume named V9; by default, the
unit of allocation is CYL, the file is 1
cylinder, the CI size is 2048 bytes, the
record size is 100 bytes.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-41

BF POW.LM$RES
 UFAS = SEQ
 SIZE = 5000
 UNIT = RECORD
 INCRSIZE = 1000
 CISIZE = 2048
 RECSIZE = 60;

Build a UFAS-EXTENDED sequential
file named POW.LM on resident
volumes; the file size is 5000 records, the
increment size is 1000 records, the CI
size is 2048 bytes, the record size is 60
bytes.

BF JKL.MY
 UFAS = SEQ
 SPLIT = (V8:4 V9:6 V6:7)

 SPLITDVC = MS/D500

 INCRSIZE = 2
 CISIZE = 1024
 RECSIZE = 200
 RECFORM = F;

4 cylinders are to be allocated on the
volume V8, 6 cylinders on V9, and 7
cylinders on V6. V8,V9,V6 are MS/D500
disk volumes. The increment size is 2
cylinders, the CI size is 1024 bytes, the
record size is 200 bytes, record format is
fixed. By default, the file is cataloged.

Example of Allocating an FBO Relative file

BF PK.LOY:V44:MS/FSA
 EXPDATE = 340
 UNIT = BLOCK
 SIZE = 30
 UFAS = RELATIVE
 CISIZE = 19456
 RECSIZE = 88
 FILESTAT = CAT;

A relative file named PK.LOY is
allocated on an FSA disk, volume V44.
The CISIZE is 19456. The RECSIZE is
88. A file allocation simulated by the
CREATE_FILE command shows that
this file can hold 6119 records.

Example of Allocating a VBO Relative File

BF MPTSP.DD
 EXPDATE = 300
 UNIT = CYL
 SPLIT = (D18A:10
D18B:10)
 SPLITDVC = MS/D500
 UFAS = RELATIVE
 CISIZE = 1024
 RECSIZE = 52
 FILESTAT = CAT;

In this example, the relative file
MPTSP.DD is allocated on two volumes,
D18A and D18B; each volume will
contain 10 cylinders. The file is split
evenly between the two disks, hence
reducing head movement in random
access. The file has a retention period of
300 days.

UFAS-EXTENDED User’s Guide

6-42 47 A2 04UF Rev06

Example of Allocating Indexed Sequential Files

BF LM.TOR1:LU5:MS/FSA
 FILESTAT = CAT
 UFAS = INDEXED
 UNIT = BLOCK
 SIZE = 198
 CISIZE = 4096
 RECSIZE = 211
 RECFORM = F
 KEYLOC = 1
 KEYSIZE = 16
 CIFSP = 12;

An indexed sequential file, LM.TOR1 is
allocated on an FSA disk volume LU5.
The file is allocated in units of blocks. A
file simulation indicates that 198 blocks
are required. The CISIZE is 4096. No
secondary keys are requested. Each CI
will be left with 12% free space. As there
are 18 records per CI, this means that it
will be possible to subsequently insert 2
records in each CI.

BF PC.UIX:TNDA:MS/D500
 FILESTAT = CAT
 UFAS = INDEXED
 UNIT = CI
 SIZE = 26352
 CISIZE = 3072
 RECSIZE = 211
 KEYLOC = 10
 KEYSIZE = 21
 CIFSP = 22;

In this example, an indexed sequential
file, PC.UIX, is allocated on MS/D500
volume TNDA. 26,352 data CIs are
requested. UFAS-EXTENDED
automatically adds the space for the
header track (address space 1) and index
area. The records are fixed length 211
bytes, and contain a 21-byte key starting
at position 10. No secondary keys are
required. The user has requested that
each CI be 3072 bytes long. When the
file is opened and loaded sequentially,
each CI will be left with 22% free space.
This free space will reduce the frequency
of splitting to accommodate later
insertions.

In this example, you must specify 22% free space in the CIFSP parameter to allow
for the subsequent insertion of 3 records.

No. of records per Cl = (3072 - 20) divided by (211 + 7) = 14 records

Hence one record requires the following amount of space:

100 divided by 14 = 7.15%

and three records require 22%.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-43

The following example shows how a file DEPT1.MY is created in an
autoattachable catalog. For further details including file generations, see the
Catalog Management User’s Guide and the IOF Terminal Reference User’s Manual
(Part 1).

CREATE_DIR
 NAME = DEPT1;

The system administrator creates Master
Directory DEPT1 under the root in the
Site Catalog.

CREATE_CATALOG
 NAME = DEPT1.CATALOG
 VOLUME = K141:MS/D500
 NBOBJECT = 10;

An automatically attachable catalog is
created using the CREATE_CATALOG
command. Once the catalog has been
created, the system knows that all
cataloged objects whose names begin
with DEPT1 are to be created or
retrieved in DPT1.CATALOG.

BF FILE = DPT1.MY
 UFAS = INDEXED
 SPLIT = (BD14:10 BD15:10)
 SPLITDVC = MS/D500
 CISIZE = 512
 RECSIZE = 115
 KEYLOC = 25
 KEYSIZE = 30;

A cataloged indexed sequential file
DPT1.MY is to be allocated on two
MS/D500 volumes, each containing 10
cylinders.
The CI size in 512 bytes. The records
size in 115. The primary key starts at
byte 25 and is 30 bytes long.

BF F1:V7:MS/D500
 FILESTAT = UNCAT
 UFAS = INDEXED
 SIZE = 4
 CISIZE = 4096
 KEYLOC = 25
 KEYSIZE = 30
 RECSIZE = 120;

Build the file named F1 on the MS/D500
volume named V7. It is to be an
uncataloged UFAS-EXTENDED indexed
sequential file. The file size is 4
cylinders. The CI size is 4096 bytes. The
key field starts at byte 25. The primary
key is 30 bytes long. The logical record
is 120 bytes long. No secondary keys are
required

BF PHK.JK
 UFAS = INDEXED
 SPLIT = (V1:2 V2:3 V3:5)
 SPLITDVC = MS/D500

 INCRSIZE = 2
 CISIZE = 1024
 RECSIZE = 100
 RECFORM = V
 KEYLOC = 12
 KEYSIZE = 8
 SECIDX = (8:4 30:8:DUPREC);

2 cylinders are to be allocated on volume
V1, 3 cylinders on V2, and 5 cylinders
on V3. V1, V2, V3 are MS/D500 disk
volumes. The increment size is 2
cylinders. The CI size is 1024 bytes. The
record format is variable. The key field
starts at byte 12. The key is 8 bytes long.
There are two secondary keys: one starts
in byte 8 and is 4 bytes long the second
starts in byte 30 and is 8 bytes long.
Duplicate values are permitted with the
second secondary key but not with the
first.

UFAS-EXTENDED User’s Guide

6-44 47 A2 04UF Rev06

6.8.2 CREATE_FILE

The CREATE_FILE command (JCL equivalent FILALLOC) allocates space for a
disk file, optionally using an existing file as a model. As described in earlier in this
Section, you can use the CREATE_FILE command to simulate a file allocation.
File simulation using this command is also described earlier in this Section.

Specify BLOCK and 100 KB in the UNIT parameter only for FBO files. (These are
the recommended UNIT parameter values for such disk files).

Syntax:

{ CREATE_FILE }
{ }
{ CRF }

 { FILE }
 { } = file78
 { OUTFILE }

 { LIKE }
 [{ } = (input-file-description)]
 { INFILE }

 [IMMED = { bool | 0 }]

 { CAT }
 { CAT{1|2|3|4|5} }
 [FILESTAT = { }]
 { UNCAT }
 { TEMPRY }

 { ddd }
 [EXPDATE = { yy/ddd }]
 { yy/mm/dd }

 [MORE = { bool | 0 }]

- - - - - - - - - - - - - - - - - - - -

 [UNIT = { CYL | BLOCK | 100KB | TRACK }]

 [SIZE = dec8]

 [INCRSIZE = dec5]

 [SILENT = { bool | 0 }]

 [PRTFILE = file78]

 [COMFILE = file78]

 [COMMAND = char255]

 [REPEAT = bool]

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-45

Example Comment
CRF A.MYF:DK1:MS/FSA
 LIKE = B.MYF
 IMMED;

Create a cataloged file on the FSA volume
named DK1. The file characteristics will be
like those of the B.MYF file and the
allocation is done without user dialog. Note
that the file will be cataloged (by default
FILESTAT = CAT)

CRF F2:V1:MS/D500
 LIKE = F1:V3:MS/D500
 IMMED = 1
 FILESTAT = UNCAT;

Create the uncataloged file named F2 on the
MS/D500 volume named V1.
The file named F1 is used as a model.
Creation is immediate, so you are not given
the opportunity to change the file
characteristics.

CRF FILE = F9:V9:MS/M500
 FILESTAT = UNCAT;

Create the uncataloged file named F9. There
is no model file. Therefore the default
characteristics apply initially.
Default characteristics:
The file organization is sequential.
The CISIZE is 3584.
The record format is fixed.
The increment size is 1 cylinder.
The unit of allocation is in cylinders.
The record size is 200 bytes.
You may modify these characteristics by
using the appropriate command(s) while you
are in the CREATE_FILE domain (before
actually creating the file).

CRF FILE
=P2.F6:V8:MS/D500
 LIKE = P2.F5
 FILESTAT = CAT
 IMMED = 1;

The cataloged file named P2.F6 is created
on the MS/D500 volume named V8 and
placed in the appropriate catalog. The
cataloged file named P2.F5 is used as a
model. Creation is immediate.

UFAS-EXTENDED User’s Guide

6-46 47 A2 04UF Rev06

CRF FILE
=P2.F6:V8:MS/D500
 LIKE = P2.F5
 FILESTAT = CAT;

As the previous example, except that the
creation is not immediate. You will enter the
CREATE_FILE domain and you can modify
the file characteristics by using the
appropriate commands as described below

CRF FILE =
MINE6:VV:MS/D500
 LIKE = P2.F5
 FILESTAT = UNCAT;

As the previous example, except that the file
will be named MINE6, it will be
uncataloged, and will reside on the
MS/D500 volume named VV.

CRF FILE = XYZ$RES
 COMFILE = X.CRMF
 FILESTAT = UNCAT;

Create an uncataloged file without a model,
using parameters read from the file
X.CRMF.

In the previous example, you can enter the following commands in the COMFILE
or in the COMMAND string:

• CATALOG (CAT) modifies or defines the file-catalog attributes,

• CHANGE (CH) modifies or defines file attributes,

• CREATE (CR) creates the resulting file,

• DELSIDX (DSX) deletes one or all secondary keys,

• FILTYPE (FT) overrides or modifies the file organization and form,

• LISTIDX (LSX) lists one or all secondary keys,

• NUMSIDX (NSX) renumbers the secondary keys,

• QUIT (Q) leaves the utility,

• REPORT (RP) displays the characteristics of the file to be created,

• SECIDX (SX) defines or modifies a secondary key,

or you can enter these commands at your terminal as in the following example:

CRF .MYFILE$RES
 LIKE = P1.YOUFILE
 EXPDATE = 365;

(create a cataloged file, valid for one year
with a dialog at the user’s terminal).

All the above commands are described in the IOF Terminal User’s Reference
Manual.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-47

6.8.3 The File-Allocation Parameter Group ALCi

The file-allocation parameter group ALCi (JCL equivalent ALLOCATE) allocates
space for disk files. The file-allocation parameter group ALCi is associated,
through the internal-file-name, with a file-assignment parameter group ASGi in the
same program. ALCi is normally used for temporary files, unless the default file-
allocation parameters are not suitable for the file. You cannot use ALCi to allocate
space for IDS/II files.

Format:

EXEC_PR MYPROG

 FILEi = ifn
 ASGi = efn
 ALCi = ([SIZE = dec10]
(

 [INCRSIZE = dec5]

 [UNIT = { CYL | BLOCK | 100KB | RECORD }]

 [CHECK = { bool | 0 }]
)

Specify BLOCK and 100KB in the UNIT parameter for FBO files only. (These are
the recommended UNIT parameter values for such disk files).

For an explanation of these parameters, see the IOF Terminal User’s Reference
Manual.

The following information is supplied by the file-assignment parameter group
ASGi (described in Section 5):

• whether the file is temporary ($TEMPRY) or permanent,
• where the space is to be allocated (resident disk volume ($RES) or non-resident

volume),
• the expiration date (EXPDATE).

The program supplies the following attributes:

• file is UFAS (in COBOL, ORGANIZATION IS UFF); (note that UFF is the
COBOL default),

• logical-record length,
• record format; fixed or variable (in COBOL FLR and VLR),

• for an indexed sequential file, KEYSIZE and KEYLOC; in COBOL the
RECORD KEY IS clause specifies the record key that is the primary key for the
file.

UFAS-EXTENDED User’s Guide

6-48 47 A2 04UF Rev06

The following file attributes are chosen automatically if they are not given in the
file-define parameter group DEFi (described above).

• CISIZE is set to 2048 bytes,
• CIFSP = 0.

The space calculations are the same as those already described for BUILD_FILE.
Because UNIT=CI and UNIT=RECORD are not available in ALCi (JCL
equivalent ALLOCATE), the calculation must result in a value of:

• blocks,
• 100KB units,
• cylinders,
• tracks.

Examples Comment

EXEC_PG PROG 1
 FILE = inf1
 ASG1 = X$TEMPRY
 ALC1 = (SIZE = 10);

Automatic file allocation for a
temporary file; by default, the unit of
allocation is CYL.

EXEC_PG APROG
 FILE1 = OUTFILE
 ASG1 = A:VOL2:MS/D500
 ALC1 = CHECK;

Default automatic allocation
parameters; abort if file already exists.

EXEC_PG MYP
 FILE1 = DMFILE
 ASG1 =
(ZABC:BO12:MS/D500
 EXPDATE = 30)
 ALC1 = (SIZE = 10
 INCRSIZE = 10).

An uncataloged disk file is assigned
to internal file name DMFILE. If the
file does not exist, it is allocated with
an expiration date of 30 days from the
current date. Because CATNOW is
not specified, the file will be
uncataloged.

EXEC_PG PG = PL24
 LIB = P2.F3
 FILE 1 = F1
 ASG1 = WKF$TEMPRY
 ALC1 = (SIZE = 10);

Execute the load module LP24 which
is stored in the cataloged library
P2.F3. Assign the temporary file
WKF to the internal file F1. WKF
will be dynamically created with a
size of 10 units.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-49

6.8.4 The File-Define Parameter Group DEFi

The file-define parameter group DEFi (JCL equivalent DEFINE):

• Overrides and complements file parameters provided in user programs,
• Complements the file description in the file label,
• Provides for buffer management,
• Requests journalization.

Syntax:

EXEC_PG MYPROG
 FILEi = ifn
 ASGi = efn
 DEFi = ([FILEFORM = { UFAS }]

 [FILEORG = { SEQ | RELATIVE | INDEXED }]

 [BLKSIZE = dec5]

 [RECSIZE = dec5]

 [RECFORM = { F | V | U | FB | VB }]

 [NBBUF = dec4]

 [SYSOUT = bool]

 [DATAFORM = { SARF | SSF | DOF | ASA }]

 [ERROPT = { SKIP | ABORT | IGNORE | RETCODE }]

 [BUFPOOL = name4]

 [CISIZE = dec5]

 [BPB = dec3]

 [CKPTLIM = { NO | EOV | dec8 }]

 [FPARAM = bool]

 [COMPACT = bool]

 [TRUNCSSF = bool]

 [CONVERT = bool]

 [BSN = bool]

 [disk-file-specific-parameters]

)

UFAS-EXTENDED User’s Guide

6-50 47 A2 04UF Rev06

where disk-file-specific-parameters are:

 [JOURNAL = { BEFORE | AFTER | NONE | BOTH }]

 [COLLATE = { BCD | ASCII | EBCDIC }]

 [WRCHECK = bool]

 [READLOCK = { NORMAL | EXCL | STAT }]

 [LOCKMARK = bool]

 [ADDRFORM = { LRRR | LRRRR | TTRDD | SFRA }]

 [KEYLOC = dec5]

 [KEYSIZE = dec3]

 [CIFSP = dec3]

 [LTRKSIZE = dec3]

As mentioned in Section 5, the file-define parameters are used to define/modify file
characteristics and/or processing options. In Section 5, you are shown how to use
some of these file-define parameters.

For a complete explanation of these parameters, see Part 2 of the IOF Terminal
User’s Reference Manual.

Examples Comment

EXEC_PG TULLOW
 POOLSIZE = 100
 SIZE = 150
 FILE1 = ifn1
 ASG1 = CORJ1
 DEF1 = (NBBUF = 20
 FILEORG = INDEXED
 BUFPOOL = B5)

Assign the file named CORJ1 to the
internal file named ifn1.
This indexed sequential file has 20
buffers defined that it shares in the buffer
pool named B5.

FILE2 = ifn2
ASG2 = CORJ2
DEF2 = (NBBUF = 20
 FILEORG = INDEXED
 BUFPOOL = B5)

Assign the file named CORJ2 to the
internal file named ifn2.
This indexed sequential file has 20
buffers defined that it shares in the buffer
pool named B5.

FILE3 = ifn3
ASG3 = CORJ3

Assign the file named CORJ3 to the
internal file named ifn3.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-51

DEF3 = (NBBUF = 20
 FILEORG = INDEXED
 BUFPOOL = B5)

This indexed sequential file has 20
buffers defined that it shares in the buffer
pool named B5.

FILE4 = ifn4
ASG4 = CORJ4
DEF4 = (NBBUF = 20
 FILEORG = INDEXED
 BUFPOOL = B5)

Assign the file named CORJ4 to the
internal file named ifn4.
This indexed sequential file has 20
buffers defined that it shares in the buffer
pool named B5.

FILE5 = ifn5
ASG5 = CORJ5
DEF5 = (NBBUF = 20
 FILEORG = INDEXED
 BUFPOOL = B5)

Assign the file named CORJ5 to the
internal file named ifn5
This indexed sequential file has 20
buffers defined that it shares in the buffer
pool named B5.

FILE6 = ifn6
ASG6 = CORJ6
DEF6 = (NBBUF = 20
 FILEORG = INDEXED
 BUFPOOL = B5)

Assign the file named CORJ6 to the
internal file named ifn6
This indexed sequential file has 20
buffers defined that it shares in the buffer
pool named B5.

FILE7 = OUT
ASG7 = OUTF
ALC7 = (SIZE = 10
 UNIT = CYL
 INCRSIZE = 2);

Assign the file named OUTF to the
internal file named OUT.
10 cylinders are to be allocated and the
increment size is 2 cylinders.
The OUTF file does not belong to the
buffer pool.

UFAS-EXTENDED User’s Guide

6-52 47 A2 04UF Rev06

6.8.5 LIST_FILE

The LIST_FILE command (JCL equivalent FILLIST) lists the label, catalog and
usage information for a disk, or tape file. The listed information is presented in six
sections. Each section may be requested or omitted.

Syntax:

{ LIST_FILE }
{ }
{ LSF }

 { FILE }
 { } = (input-file-description)
 { INFILE }

 [CONTROL = { bool | 0 }]

 [ORG = { bool | 0 }]

 [SPACE = { bool | 0 }]

 [USAGE = { bool | 0 }]

 [SUBFILES = { bool | 0 }]

 [SAVINFO = { bool | 0 }]

 [ALL = { bool | 0 }]

 [CATONLY { bool | 0 }]

 [SILENT = { bool | 0 }]

 [PRTFILE = file78]

For a description of these parameters, see Part 2 of the IOF Terminal User’s
Reference Manual.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-53

6.8.6 LIST_FILE_SPACE

The LIST_FILE_SPACE command (JCL equivalent FILLIST) lists information
about the extents of a file.

Syntax:

{ LIST_FILE_SPACE }
{ }
{ LSFSP }

 { FILE }
 { } = file78
 { INFILE }

 [SILENT = { bool | 0 }]

 [PRTFILE = file78]

For a description of these parameters, see the Part 2 of the IOF Terminal User’s
Reference Manual.

Examples Comment

LSFSP A.MYFILE; List allocation of a cataloged file

LSFSP F3:X:MS/D500; List allocation of an uncataloged file.

LSFSP A.MYFILE
 PRTFILE = A.OUT;

List allocation of a cataloged file; report
is stored in A.OUT, errors appear at the
terminal.

LSFSP A.MYFILE
 SILENT
 PRTFILE = A.OUT;

Same as the previous example, but errors
are reported in A.OUT and not at the
terminal.

UFAS-EXTENDED User’s Guide

6-54 47 A2 04UF Rev06

6.8.7 MODIFY_FILE

The MODIFY_FILE command (JCL equivalent FILMODIF) modifies the
characteristics of a file. Specify BLOCK in the UNIT parameter for FBO files only.
(BLOCK is the recommended value for such disk files).

Syntax:

{ MODIFY_FILE }
{ }
{ MDF }

 FILE = file78

 [NEWNAME = file44]

 { ddd }
 [EXPDATE = { yy/ddd }]
 { yy/mm/dd }

 [UNIT = { BLOCK | CYL | TRACK }]

 [INCRSIZE = dec5]

 { NORMAL }
 { ONEWRITE }
 { MONITOR }
 [SHARE = { }]
 { DIR }
 { FREE }
 { UNSPEC }

 { NORMAL }
 { ONEWRITE }
 [DUALSHR = { }]
 { FREE }
 { NONE }

 { NO }
 { BEFORE }
 [JOURNAL = { AFTER }]
 { BOTH }
 { PRIVATE }

 [SLOCK = { IO | IN | AP | IA | OFF }]

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-55

 [UNLOCK = bool]
 [SYMGEN = name5]
 [CLEARMD = bool]
 [FIRSTVOL = dec2]
 [LASTVOL = dec2]
 [VOLSET = name6]
 [CLRVSET = bool]
 [MOUNT = dec1]
 [SILENT = { bool | 0 }]
 [FORCE = bool]
 [IOC = { DEFAULT | BYPASS | FORCE }]
 [LOGSUBF = bool]

For a complete explanation of these parameters, see Part 2 of the IOF Terminal
User’s Reference Manual.

Examples Comment

MDF A.BC
NEWNAME = A.XC
EXPDATE = 365

Change name and expiration date.

MDF PROJ.F3
SHARE = ONEWRITE
DUALSHR = NORMAL;

Change sharing conditions.

UFAS-EXTENDED User’s Guide

6-56 47 A2 04UF Rev06

6.8.8 MODIFY_FILE_SPACE

The MODIFY_FILE_SPACE command (JCL equivalent FILMODIF) extends the
existing space allocated to a file. This command cannot be used with relative files.
For further information on file extension, see Section 5. For dynamic extension, see
under Choosing the Increment Size earlier in this Section. Specify BLOCK and
100KB in the UNIT parameter for FBO files only. (These are the recommended
values for such disk files).

Syntax:

{ MODIFY_FILE_SPACE }
{ }
{ MDFSP }

 NAME = file44

 { CAT }
 [FILESTAT = { CAT{1|2|3|4|5} }]
 { UNCAT }

 [VOL = { volume24 | RESIDENT }]

 [SPLITDVC = device-class]

- - - - - - - - - - - - - - - - - - - -

 [UNIT = { CYL | BLOCK | 100KB | TRACK | SECTOR }]

 [SIZE = dec8]

 [SPLIT = (split-criteria)]

 [REPEAT = bool]

 [SILENT = { bool | 0 }]

 [MAXEXT = { 16 | dec2 }]
For an explanation of these parameters, see Part 2 of the IOF Terminal User’s
Manual.

Designing and Allocating UFAS-EXTENDED Disk Files

47 A2 04UF Rev06 6-57

Examples Comment
MDFSP A.B.C. SIZE = 30; Extend a cataloged file by 30 blocks

on the last currently used volume that
is registered in the catalog. The last
volume must contain the end of the
file.

MDFSP F1 UNCAT 30
VOL2:MS/FSA;

Extend an uncataloged file by 30
blocks on the FSA volume named
VOL2.
VOL2 must contain the end of the
file.

MDFSP MF UNCAT
 SPLIT = (VOL2:15 VOL3:10)
 SPLITDVC = MS/D500;

Extend an uncataloged file by 15
cylinders on volume VOL2 and 10 on
volume VOL3.
VOL2 must contain the end of the
file.

MDFSP P1.F4
 FILESTAT = CAT SIZE = 300
 VOL = V4:MS/FSA

Extend the cataloged file named
P1.F4 which is implemented on
volume V9 by 300 blocks (where
UNIT = BLOCK).
If V4 does not contain the end-of-
file, then the system will retrieve the
V9 name from the catalog and access
the file organization information.
Extension will start on V9 and will
continue on V4 only if there is not
enough free space on V9.

MDFSP NAME = MYFILE
 FILESTAT = UNCAT
 SPLIT = (V3:2 V6:4)
 SPLITDVC = MS/D500;

Extend the uncataloged file named
MYFILE by 6 cylinders. The
extension consists of two cylinders on
the volume named V3 and 4 cylinders
on the volume V6. V3 and V6 are
MD/D500 volumes. Note that V3
must contain the end of file (before
the current extension).

MDFSP NAME = MYFILE
 SIZE = 2
 FILESTAT = UNCAT;

Extend the uncataloged file named
MYFILE by 2 cylinders. MYFILE
resides on a resident volume and will
be extended on this volume, and on
other resident volume(s) of the same
device class (if this is necessary).

UFAS-EXTENDED User’s Guide

6-58 47 A2 04UF Rev06

❑

47 A2 04UF Rev06 7-1

 7. Magnetic Tape and Cartridge Tape Files

7.1 Summary

The cartridge tape unit introduced in Release V5 has the same characteristics as
those of a magnetic tape unit. Section 7 discusses only the standard
GCOS7/EBCDIC tape format. This is the native format (LABEL = NATIVE in
JCL).

• types of tape file,

• labels,

• types of tape volume,

• types of record (fixed-length and variable-length),

• blocking of variable-length records,

• blocking of fixed-length records,

• choosing the block size,

• creating a cataloged magnetic tape or cartridge tape file,

• referencing tape files,

• minimum length of a physical record.

UFAS-EXTENDED User’s Guide

7-2 47 A2 04UF Rev06

7.2 Types of Tape File

A tape file can be a permanent cataloged or permanent uncataloged file, or a
temporary file.

Tape File

Permanent Temporary

Cataloged Uncataloged

Figure 7-1. Types of Tape File

Files may be mono-volume or multi-volume.

Tape volumes may be multifile.

Tape volumes are either private or WORK. This aspect of tape handling has already
been covered in Section 5. You can give tape files expiration dates.

Magnetic Tape and Cartridge Tape Files

47 A2 04UF Rev06 7-3

7.3 Tape Labels

A label is a series of records placed before and after the actual data to be processed.
A standard GCOS7/EBCDIC tape file is recorded with labels that contain
information about the volume and file attributes:

• the volume name,

• the volume sequence number (for multivolume files); this is the relative number
of the given volume (media list) in the set of volumes containing the whole file,

• the recording technique and recording density,

• the external-file-name,

the blocksize (BLKSIZE =)

the size of the logical record (RECSIZE =)

the record format (RECFORM =)

You can obtain this type of information for a tape file by using the LIST_FILE
(JCL equivalent FILLIST) command. For a complete description of the volume
label and formats, see Appendix B.

The file designer needs to know how much space on a tape will be required to
accommodate a given number of records. When programs are coded, the unit of
transfer between the program and the file is the logical record, but information
recorded on tape is in the form of blocks, (sometimes called physical records). A
block contains one or more logical records, and optionally, control information that
is not visible to the user program.

UFAS-EXTENDED User’s Guide

7-4 47 A2 04UF Rev06

7.4 File Attributes

The following sections describe the attributes of a magnetic tape file.

7.4.1 Record Size (RECSIZE)

Supplies the size of the logical record. For COBOL programs it need not be coded
since COBOL requires that the program-declared value be maintained for the file.
Hence, if you omit this parameter in the file-define parameter group DEFi (JCL
equivalent DEFINE), the value is taken from the program.

For magnetic tape files, the minimum record size is 18 bytes. This limit refers to
the number of bytes written (paragraph 7.8). For variable-length record files, the
record size corresponds to the value of the longest record in the file.

7.4.2 Block Size (BLKSIZE)

Supplies the block size with which the file is to be written. If the program declares
a value (in COBOL the clause BLOCK CONTAINS), then it is overridden by the
value in the file-define parameter group DEFi (described earlier in paragraph
6.8.4).

Note that when RECFORM = V or VB, the BLKSIZE value must be equal to or
greater than (RECSIZE + 4).

Magnetic Tape and Cartridge Tape Files

47 A2 04UF Rev06 7-5

7.4.3 Record Format (RECFORM)

The five record formats available on tape are as follows:

fixed length (RECFORM = F),

fixed length blocked (RECFORM = FB),

variable length (RECFORM = V),

variable length blocked (RECFORM = VB),

undefined length (RECFORM = U).

RECFORM defines the record format. For COBOL, the record format (fixed or
variable) must be the same as that declared or implied in the program. Whether the
format chosen is blocked or unblocked is not relevant.

In FORTRAN, only fixed length (blocked or unblocked) is allowed.

EXAMPLE:

A program writes 90-byte records to a tape file. The records are fixed length and
there will be 10 to a block.

EXEC PG MYPROGRAM
 FILE1 = TFIXT
 ASG1 = (CMQ.PC EXPDATE = 20)
 DEF1 = (BLKSIZE = 900, RECFORM = FB);

The RECSIZE value will be supplied from the program.

❑

UFAS-EXTENDED User’s Guide

7-6 47 A2 04UF Rev06

7.4.3.1 Fixed-Length Records

With fixed-length records (Figure 7-2), all the logical records in the file are the
same length. If they are blocked, that is, there is more than one logical record in
each block, then all the blocks of the file will contain the same number of records
and therefore all blocks will be the same length. The one exception is the last block
of the file which will be shorter than the others if there are not enough records to
fill it.

logical record

block

logical record

block

logical record

block

logical record

block

logical record logical record

block

logical record

Fixed Length Blocked Record (2 Records in each Block)

Fixed Length Unblocked Record

Figure 7-2. Fixed-Length Records: Blocked and Unblocked

Note that when RECFORM = F or FB, the BLKSIZE value must be an integral
multiple of RECSIZE.

7.4.3.2 Variable-Length Records

Variable-length records may have any length up to a user-specified maximum.
They can also be blocked. The maximum block size is user-specified and must be
large enough to accommodate at least one record of maximum length. Blocks (or
physical records) vary in length, thus making efficient use of the available space.

Each logical record has an associated RDW (Record Descriptor Word). This is a
4-byte control element that is provided and maintained for the record by GCOS7.
The RDW contains the length of the record.

Each block for both blocked and unblocked files has an associated BDW (Block
Descriptor Word). This 4-byte control element is provided and maintained for each
block by GCOS7. The BDW contains the length of the block.

Magnetic Tape and Cartridge Tape Files

47 A2 04UF Rev06 7-7

Note that the BDW and RDW are not accessible from user programs. The unit of
transfer to and from the executing program is the logical record, containing data
fields. Each programming language determines the length of each logical record in
its own manner.

Figure 7-3 shows a series of variable-length records. Assume a program writes
records A, B, ... etc., and that the maximum record length is 125 bytes (record C).

 50 bytes 30 bytes 125 bytes

45 bytes 48 bytes

15 bytes

 record
 A

record
 C

record
B

record
D

record
E

record
F

Figure 7-3. Variable-Length Records

Therefore, the file attributes are:

RECSIZE = 125
BLKSIZE = 129
RECFORM = V

RECSIZE is 125 because the maximum record length in the file is 125 bytes.

BLKSIZE is 129 because the maximum record length (125) is added to the RDW
(4 bytes).

RECFORM is V because the format of the file records is variable length,
unblocked.

UFAS-EXTENDED User’s Guide

7-8 47 A2 04UF Rev06

Figure 7-4 shows how these records are written to the file.

BSN record ARDWBDW

4 4 50

BSN RDWBDW

BSN RDWBDW

BSN RDWBDW

BSN RDWBDW

BSN RDWBDW

4 4 125

4 4 15

4 4 45

4 4 48

4 4 30

record B

38 bytes

58 bytes

record C

133 bytes

record D

23 bytes

record E

53 bytes

record F

56 bytes

Figure 7-4. Variable-Length Unblocked Records

Magnetic Tape and Cartridge Tape Files

47 A2 04UF Rev06 7-9

BSN: Block Serial Numbers are generated and managed by GCOS7.

• BSN = 0 means that no block serial numbers are to be on the tape.
• BSN = 1 means that block serial numbers are to be on the tape.

The six logical records introduced in Figure 7-3 are written as six separate physical
records each containing an RDW and BDW. The maximum physical length written
(record C) is 133 bytes, (that is, 4 bytes greater than that specified by BLKSIZE).
This is because the value given to BLKSIZE excludes the BDW in the same
manner as RECSIZE excludes the RDW.

If you wish to block this variable-length record file, the RECFORM parameter
must take the form VB, as follows:

RECSIZE = 125
BLKSIZE = 129
RECFORM = VB

Figure 7-5 shows the physical records that are written.

BSN RDWBDW

record C

133 bytes

RDWrecord A record B

4 4 50 4 30

92 bytes

4 4 125

4 4 15 4 45 4 48

124 bytes

record D record E RDW

BSN BDW RDW

BSN BDW RDW RDW record F

Figure 7-5. Variable-Length Blocked Records

UFAS-EXTENDED User’s Guide

7-10 47 A2 04UF Rev06

The six logical records are written as three separate physical records. The logical
records are blocked up to the maximum block size specified, (that is, 129 plus the
BDW).

Blocks contain variable numbers of records and vary in length.

Magnetic Tape and Cartridge Tape Files

47 A2 04UF Rev06 7-11

7.5 Choosing the Block Size

The choice of block size depends on:

• whether the blocks are fixed length or not

• how much memory is available for buffers.

The value of BLKSIZE depends on RECFORM and RECSIZE as follows:

• if RECFORM = F, BLKSIZE must be equal to RECSIZE,

• if RECFORM = FB, BLKSIZE must be a multiple of RECSIZE,

• if RECFORM = V, BLKSIZE must be equal to RECSIZE + 4,

• if RECFORM = VB, BLKSIZE must be a multiple of RECSIZE + 4,

• if RECFORM = U, BLKSIZE must be equal to the maximum record size.

Each block is separated by a gap to allow for the start/stop motion of the tape drive.
The data capacity of a tape reel is greater for a large block size than for a small one.

Reel capacity can be calculated only for fixed-length and fixed-length blocked
files. For variable-length and variable-length blocked files, you must calculate the
capacity assuming an average block size.

These reel-capacity calculations must take the following into account:

• the recording density to be used,
• the size of the gap between each physical record,
• the length of the tape.

You can find these values in the various Operator Guides (see Preface) that are
available for each type of drive.

The formula for calculating the capacity is:

Number of Blocks =
 Length of Tape-Header and Trailer Sections

 (Bytes per Block/Density) + Length of Inter Block Gap

In this calculation you must also take account of BSNs (Block Serial Numbers).
BSNs occur only on tape and are 4 bytes long. GCOS7, by default, writes BSNs
with each block and expects BSNs to be present on input files. If a file on output is
not to have BSNs, then the parameter BSN must be set to zero in the file-define
parameter group DEFi associated with the file-assignment parameter group ASGi.

UFAS-EXTENDED User’s Guide

7-12 47 A2 04UF Rev06

7.6 Creating a Magnetic-Tape or a Cartridge-Tape File

You can create a file only on tape volumes which have been prepared (labeled)
with the following commands:

• PREPARE TAPE (PRPTP)
• PREPARE VOLUME (PRPV) (only in interactive mode).

The JCL equivalent is the VOLPREP utility that is described in the Data
Management Utilities User’s Guide.

To create a cataloged tape file, use the CREATE MT FILE (CRMTF) command
(JCL equivalent PREALLOC).

To create an uncataloged tape file, use the file-allocation parameter groups ASGi
and DEFi (paragraph 7.7). In JCL, you use the ASSIGN and DEFINE statements.

The rest of this section shows you how to create a cataloged magnetic
tape/cartridge tape file.

Syntax:

{ CREATE_TAPE_FILE }
{ CREATE_MT_FILE }
{ CREATE_CT_FILE }
{ CRTPF }
{ CRMTF }
{ CRCTF }

 FILE = file78

 [BLKSIZE = dec5]

 [RECSIZE = dec5]

 [WORKMT = { bool | 0 }]

 [RECFORM = { FB | F | VB | V | U }]

 [COMPACT = { bool | 0 }]

 { ddd }
 [EXPDATE = { yy/ddd }]
 { yy/mm/dd }

 [NBSN = { bool | 0 }]

 [MOUNT = { 1 | dec1 }]

Magnetic Tape and Cartridge Tape Files

47 A2 04UF Rev06 7-13

 [ANSI = { bool | 0 }]

 [END = UNLOAD]

 [SILENT = { bool | 0 }]

- - - - - - - - - - - - - - - - - - - -

 [REPEAT = { bool |0 }]

 [CATALOG = { 1 | 2 | 3 | 4 | 5 }]
For an explanation of the parameters, see the IOF Terminal User’s Reference
Manual.

To learn more about label and volume formats, see Appendix B.

Examples Comment

CRTPF F.TRA:V2:MT/T9
 BLKSIZE = 4000
 RECSIZE = 1000
 ANSI;

Create an ANSI file

CRMTF F.SRC:VN:VT/T9
 BLKSIZE = 2000
 RECSIZE = 2000
 RECFORM = F
 COMPACT
 EXPDATE = 10/08/95;

Create a UFAS-EXTENDED file with
expiry date and compact recording of
blank characters.

CRCTF X.WK
 WORKMT;

Create file X.WK; when the file X.WK is
first used, it will be allocated on a work
tape.

CRMTF P1.

FILE7:MYTAPE:MT/T9/D1600
 BLKSIZE = 4096
 RECSIZE = 128
 EXPDATE = 100;

Create the cataloged tape file named
P1.FILE7 on the 9-track 1600 BPI tape
volume named MYTAPE.
The block size is 4096 bytes, the record
size is 128 bytes, and the expiry date is
100 days after today. By default, the
record format (RECFORM) is fixed
blocked (FB).

UFAS-EXTENDED User’s Guide

7-14 47 A2 04UF Rev06

7.7 Referencing Tape Files

To specify a GCOS7/EBCDIC tape file for input, use the file-assignment parameter
ASGi with its associated parameter group (see Section 5). The JCL equivalent is
ASSIGN. The label information supplies the BLKSIZE value (which will override
any declared in the user program). The record length and record format from the
label will be checked against the program declared values for consistency. The
program must declare that the file is of sequential organization.

Note that in COBOL it is not necessary to declare explicitly that the file is of type
UFF or LEVEL-64 because no distinction is made for tape files.

For output tape-files, there is no label information concerning the file attributes.
Therefore, they must be declared through the program and/or through the file-
define parameter DEFi with its associate parameter group. The format of this
parameter, as it applies to the processing of output-tape files.

Syntax:

([FILEFORM = { UFAS | ANSI | NSTD }]

 [FILEORG = { SEQ | RELATIVE | INDEXED }]

 [BLKSIZE = dec5]

 [RECSIZE = dec5]

 [RECFORM = { F | V | U | FB | VB | FS | FBS }]

 [NBBUF = dec4]

 [SYSOUT = bool]

 [DATAFORM = { SARF | SSF | DOF | ASA }]

 [ERROPT = { SKIP | ABORT | IGNORE | RETCODE }]

 [BUFPOOL = name4]

 [CISIZE = dec5]

 [BPB = dec3]

 [CKPTLIM = { NO | EOV | dec8 }]

 [FPARAM = bool]

 [COMPACT = bool]

Magnetic Tape and Cartridge Tape Files

47 A2 04UF Rev06 7-15

 [TRUNCSSF = bool]

 [CONVERT = bool]

 [BSN = bool]

 [tape-file-specific-parameters]
)

where tape-file-specific-parameters are:

 [FUNCMASK = hexa8]

 [DATACODE = { BCD | ASCII | EBCDIC }]

 [BLKOFF = dec3]

NOTE:
Only those parameters that are of interest are shown for the file-define
parameter group DEFi. For full details of DEFi, see the IOF Terminal User’s
Reference Manual. The JCL equivalent is the DEFINE statement that is
described in the JCL Reference Manual.

UFAS-EXTENDED User’s Guide

7-16 47 A2 04UF Rev06

7.8 Minimum Length of a Physical Record

On a magnetic tape, the length of a physical record is at least 18 bytes. This
physical record includes the BSN, if present, and BDW and RDW if the
RECFORM = V or VB. Therefore, the minimum length of the logical record as
defined by RECSIZE or through the user program is:

18 bytes if the file is fixed length (blocked or unblocked)
without BSNs.

14 bytes if the file is fixed length (blocked or unblocked)
with BSNs.

10 bytes if the file is variable length (blocked or
unblocked) without BSNs.

 6 bytes if the file is variable length (blocked or
unblocked) with BSNs.

7.9 Compacted Data On Tape

The sequential access method allows the compaction of data on tape by deleting
repetitive spaces. The COMPACT attribute must be supplied at tape file creation
through the DEFINE statement.

The following restrictions are applied to the compacted file:

• The blocksize given by the user must be at least equal to the maximum record
size + 4 bytes for the record header, + 1 byte control character per 128 characters
of data.

• The record size before and after compaction must not be greater than 32 Kbytes
- 1 (otherwise the compaction fails with return code TSEQL 24, RECSZERR).

• Only variable record format is allowed.

47 A2 04UF Rev06 8-1

 8. File Manipulation and Maintenance

8.1 Summary

This section covers the following topics:

• sorting and merging files,

• loading files,

converting a file from the UFAS file format to the UFAS-EXTENDED file
format,

• manipulating the contents of files,

converting VBO files to FBO format,

using the Data Services Language (DSL),

• list of file-level utilities,

• list of volume-level utilities.

8.2 Sorting and Merging Files

You can sort and merge UFAS-EXTENDED disk and tape files by using
SORT_FILE and MERGE_FILE. These utilities are described in the IOF Terminal
User’s Reference Manual. The JCL equivalents are the SORT and MERGE utilities
which are described in the SORT/MERGE User Guide.

UFAS-EXTENDED User’s Guide

8-2 47 A2 04UF Rev06

8.3 Load_File

This utility loads a file (JCL equivalent CREATE). The input file and the output
file may be a UFAS or a UFAS-EXTENDED disk file, or a tape file. The output
file, for our purposes, will be UFAS-EXTENDED.

Syntax:

{ LOAD_FILE }
{ }
{ LDF }

 { FILE }
 { } = (output-file-description)
 { OUTFILE }

 INFILE = (input-file-description)

 { CAT }
 { CAT{1|2|3|4|5} }
 [DYNALC = { }]
 { UNCAT }
 { TEMPRY }

 { ALLOCATE }
 [{ } = (file-allocation-parameters)]
 { OUTALC }

 { DEF }
 [{ } = (file-define-parameters)]
 { OUTDEF }

 [INDEF = (file-define-parameters)]

 { DSLFILE }
 [{ } = { file78 | ::TN }]
 { COMFILE }

 [START = dec8]

 [INCR = dec8]

 [HALT = dec8]

 [APPEND = { bool | 0 }]

 [ORDER = bool]

File Manipulation and Maintenance

47 A2 04UF Rev06 8-3

 [PADCHAR = { char1 | hexa2 }]

 [KEYLOC = dec5]

 [TAPEND = { 1 | dec3 }]

 [SILENT = { bool | 0 }]

- - - - - - - - - - - - - - - - - - - -
 [PRINT = { ALPHA | HEXA | BOTH }]

 [PRTFILE = file78]

 [TITLE = char114]

 [REPEAT = bool]

 [FMEDIA = { bool | 0]

 [IMPORT = bool]

 [EXPORT = bool]

For an explanation of the parameters, see the IOF Terminal User’s Reference
Manual.

Examples Comment

LDF (MYFILE ACCESS =
 SPWRITE
 EXPDATE = 94/07/31)
 INFILE = FRAN
 DYNALC = CAT;

Load and dynamically allocate file
MYFILE with expiry date and exclusive
access.

LDF FILE = P1.F1
 INFILE
 =MYDATA:V1:MS/D500

Load the cataloged file named P1.F1
with data from the uncataloged file
named MYDATA which resides on the
MS/D500 volume named V1.

LDF FILE = P1.F1:V2MS/D500
 INFILE =
MYDATA:V1:MS/D500
 DYNALC = CAT
 ALLOCATE = (SIZE = 5
 UNIT = CYL);

As the previous example, except that the
file P1.F1 is to be dynamically created on
the MS/D500 volume named V2. Its size
will be 5 cylinders.

LDF FILE2:V3:MS/D500
 INFILE =
MYDAT1:V7:MS/D500;

Load the uncataloged file named FILE2
which resides on the MS/D500 volume
named V3 with data from the
uncataloged file named MYDAT1 which
resides on the MS/D500 volume named
V7.

UFAS-EXTENDED User’s Guide

8-4 47 A2 04UF Rev06

8.3.1 Converting UFAS Files to the UFAS-EXTENDED File Format

You can use the LOAD_FILE command (JCL equivalent CREATE) to convert a
UFAS file to the UFAS-EXTENDED file format.

Proceed as follows:

If you use the DYNALC parameter in the LOAD_FILE command, you can
combine steps 1 and 2 (See the first example below).

1. allocate a new UFAS-EXTENDED file using the BUILD_FILE command,

2. use the LOAD_FILE command to move logical records from the UFAS file to
the UFAS-EXTENDED file,

3. delete the old UFAS file,

4. rename the UFAS-EXTENDED file to the same name as that in the UFAS
version (use the MODIFY_FILE command with the NEWNAME parameter;
see Table 8-1).

NOTE:
If there are many files to be converted, use the LOAD_FILESET command
with a star (*).

Examples Comment

LDFST (DUP* ACCESS =
SPWRITE
 EXPDATE = 365
 INSET = ORG*
 DYNALC = CAT;

Load and allocate files DUP* with expiry
date and exclusive access from
ORG*files.

LDFST P1.**:V1:MS/D500
 INSET = P2
 DYNALC = CAT;

Load the fileset P1.** with data from the
fileset P2.**
The member files of P1.** are
dynamicaly created on the volume
named V1. The files will be created as
cataloged files.

LDFST
FILESET = **:V2:MS/D500
INSET
=**:V3:MS/D500$UNCAT
DYNALC = UNCAT;

All uncataloged files on V3 are loaded
into the correspondingly named files on
V2
Dynamic allocation takes place on V2.
There are multi-volume files on V3.

File Manipulation and Maintenance

47 A2 04UF Rev06 8-5

8.3.2 Converting VBO files to FBO format

A file migration tool in the IOF (Interactive Operator Facility) domain enables you
to migrate files from VBO to FBO format. The MAINTAIN_MIGRATION
(MNMIG) tool can only be used interactively, and you must have SYSADMIN
rights. It helps you to produce a JCL program that is used to migrate files either
directly or indirectly to a target FBO volume.

Full details are given in the File Migration Tool User’s Guide.

UFAS-EXTENDED User’s Guide

8-6 47 A2 04UF Rev06

8.4 Data Services Language (DSL)

This language, which is available with the SORT_FILE (JCL equivalent SORT),
MERGE_FILE (JCL equivalent MERGE), COMPARE_FILE (JCL equivalent
COMPARE), LOAD_FILE (JCL equivalent CREATE) and PRINT_FILE (JCL
equivalent PRINT) commands allows you to:

• select/omit records from the input file,

• re-order data fields within each record,

• change the length of records,

• declare the key fields for SORT FILE/MERGE FILE,

• sum duplicate-key records for SORT FILE/MERGE FILE.

For further information on the DSL for SORT_FILE and MERGE_FILE, see the
SORT/MERGE Utilities User’s Guide.

For further information on the DSL for COMPARE_FILE, LOAD_FILE and
PRINT_FILE commands, see the Data Management Utilities (DMU) User’s Guide.

File Manipulation and Maintenance

47 A2 04UF Rev06 8-7

8.5 File-Level Utilities

Table 8-1 shows the set of file-level utilities available for UFAS-EXTENDED disk
and tape files.

Table 8-1. File-Level Utilities (1/2)

GCL Commands Function

BUILD_FILE (BF)

CLEAR_FILE (CLRF)

COMPARE_FILE (CMPF)

COMPARE_FILESET (CMPFST)

COPY_FILE (CPF)

COPY_FILESET (CPFST)

CREATE_CT_FILE (CRCTF)

CREATE_MT_FILE (CRMTF)

CREATE_FILE (CRF)

CREATE_FILESET (CRFST)

DELETE_FILE (DLF)

DELETE_FILESET (DLFST)

EXPAND_FILESET (EXPFST)

LIST_FILE (LSF)

LIST_FILESET (LSFST)

LIST_FILE_SPACE (LSFSP)

LOAD_FILE (LDF)

Allocates space for a disk file.

Logically erases the contents of a file without deallocating it.

Logically compares the contents of two sorted files.

Logically compares the contents of each sorted file of a fileset
to a sorted reference file.

Copies the contents of a file into another file of identical type.

Copies the contents of a set of files into another set of files of
identical types.

Creates a cataloged cartridge file.

Creates a cataloged tape file.

Allocates space for a disk file, possibly by referencing an
existing file to be used as a model. Can be used to simulate a
file allocation.

Allocates space for a set of disk files, possibly by referencing
an existing file to be used as a model.

Deallocates a disk or a cataloged tape file and erases its entry
in the catalog.

Deallocates a fileset.

Produces a report which displays the names of all the member
files of filesets.

Lists the label, catalog and usage information for a disk or a
tape file.

Lists the characteristics of the files of a fileset.

Lists the space allocated to a file.

Loads a UFAS-EXTENDED file; copies an IDS/II area.

UFAS-EXTENDED User’s Guide

8-8 47 A2 04UF Rev06

Table 8-1. File-Level Utilities (2/2)

GCL Commands Function

LOAD_FILESET (LDFST)

MAINTAIN_FILE (MNF)

MERGE_FILE (MRGF)

MODIFY_FILE (MDF)

MODIFY_FILE_SPACE (MDFSP)

MODIFY_FILE_STATUS
(MDFSTAT)

PRINT_FILE (PRF)

PRINT_FILESET (PRFST)

RESTORE_FILE (RSTF)

RESTORE_FILESET (RSTFST)

SAVE_FILE (SVF)

SAVE_FILESET (SVFST)

SORT_FILE (SRTF/SORT)

SORT_INDEX (SRTIDX)

Loads a set UFAS_EXTENDED files; copies an
IDS/II fileset.

Dumps physical records from a disk or tape file; modifies
physical records on a disk file.

Activates the MERGE utility which merges two to eight sorted
files into a new file or into an existing file.

Modifies the characteristics of a file.

Extends the space allocated.

Changes the catalog status of a file.

Prints records from a file.

Prints records from a fileset.

Restore the contents of a disk file from a tape file or from a
UFAS-EXTENDED sequential disk file where it was previously
saved by the SAVE_FILE or SAVE_FILESET commands; also
restores the contents of a single-volume disk file from a tape
previously created by the SAVE_DISK command.

Restores the contents of a set of disk files from a tape file or
from a UFAS-EXTENDED sequential disk file or from a set of
files where it was previously saved by the SAVE_FILESET
command; also restores the contents of a set of single-volume
disk files from a tape previously created by the SAVE_DISK
command.

Saves the contents of disk file into a sequential
UFAS-EXTENDED disk file or into a tape file.

Saves the contents of a set of disk files into a sequential
UFAS-EXTENDED disk file, or on to a set of
UFAS-EXTENDED disk files, or on to a tape file or on to a set
of tape files.

Activates the SORT utility which sorts one or more files into a
new file or into an existing file.

Sorts and loads the secondary indexes of a UFAS-EXTENDED
Indexed sequential file.

For further details on the BUILD_FILE and CREATE_FILE commands, see
Section 6. For other commands, see the IOF Terminal User’s Reference Manual.

File Manipulation and Maintenance

47 A2 04UF Rev06 8-9

8.6 Volume-Level Utilities

Table 8-2 shows the set of volume-level utilities available for UFAS-EXTENDED
disk and tape volumes.

Table 8-2. Volume-Level Utilities

GCL Commands Function

CLEAR_VOLUME (CLRV)

LIST_VOLUME (LSV)

MAINTAIN_VOLUME (MNV)

MODIFY_DISK (MDD)

PREPARE_DISK (PRPD)

PREPARE_TAPE (PRPTP)

PREPARE_VOLUME (PRPV)

RESTORE_DISK (RSTD)

SAVE_DISK (SVD)

Erases the contents of a volume.

Lists the contents (names and characteristics) of a native disk,
or tape volume.

Dumps physical records from a disk, or tape volume. Changes
physical records on a disk volume.

Declares defective tracks on a disk volume.

Labels and formats a disk volume; you can do the same
operation interactively using PREPARE_VOLUME.

Labels a tape volume; you can do the same operation
interactively using PREPARE_VOLUME.

Prepares (labels) a disk, or labels a tape volume. Used only in
interactive mode.

To label and format a disk volume from within a file, use
PREPARE_DISK.

To label and format a tape volume from within a file, use
PREPARE_TAPE.

Restores a native disk volume from a native tape file created by
the SAVE_DISK command.

Saves a native disk volume into a native tape file.

For further details, see the IOF Terminal User’s Reference Manual.

UFAS-EXTENDED User’s Guide

8-10 47 A2 04UF Rev06

8.7 Visibility of Physical and Logical Space Allocated to UFAS Disk
Files

The address space 1 of any UFAS disk file contains how many CIs are allocated,
and how many (allocated) CIs are formatted.

This information appears in the USAGE listing of LIST_FILE[SET] or
LIST_VOLUME (JCL equivalents FILLIST or VOLIST) when the USAGE option
is specified.

When a UFAS disk file has just been created, the physical extents (as listed by the
SPACE option) match very closely the logical information (ad listed by the
USAGE option).

When a UFAS disk file is extended by using the MODIFY_FILE_SPACE GCL
command (or PREALLOC with the EXTEND option), the address space 1 cannot
be immediately updated. This means that the USAGE information also remains
unchanged (maximum, ratio, number of allocated CIs per address space). The
SPACE information, however, gives all the physical extents.

The extra physical space not yet logically described in address space 1 will be
described as soon as the current logically described space in address space 1
becomes insufficient in at least 1 other address space when a record is added or
modified under UFAS access method control.

The same occurs when an input file is restored or copied onto a larger than
necessary output file. The output address space 1 is simply a copy of the input
address space 1 and so does not take into account the surplus output space. On the
other hand, if the output file is smaller than the input file then either the output file
is automatically extended or, if this is not possible, the operation is aborted.

This effect may be propagated if such files are saved/restored or duplicated to any
other files, already existing or not.

47 A2 04UF Rev06 A-1

 A. Randomizing Formulas for Relative Files

A.1 Randomizing Techniques

As explained in Section 3, relative files are organized around a Relative Record
Number (RRN). It is the RRN which is randomized (or converted) to a disk storage
location (or disk address).

Randomizing methods ensure that records are distributed evenly throughout the
file. Thus, up to 90% of the file may be used depending on the particular
randomizing technique. Optimizing the available space, however, also generates
duplicate relative addresses which increase access time.

When you choose a randomizing technique, you must consider the advantages of
file space against file-access time.

There are many techniques available, four of which are explained in this Appendix,
as follows:

• prime-number division,

• square, enfold, and extract,

• radix conversion,

• frequency analysis.

When you are evaluating which of the above methods to choose, the following
criteria will be a guide:

• efficient use of mass storage,

• frequency and distribution of synonyms,

• processing time required for the randomizing calculation,

• even distribution of the RRNs throughout the file.

UFAS-EXTENDED User’s Guide

A-2 47 A2 04UF Rev06

A.2 Prime-Number Division

The most widely accepted method of transforming a key into a relative record
address is to divide the record key field by a prime number. (A prime number is a
number divisible only by itself or one). The prime number used should be the
largest prime number that is smaller than the total number of possible record
locations allocated to the file. The larger the prime number used, the less likely are
synonyms to be generated.

Table A-1. Prime Numbers

 5
 13
 23
 37
 47
 61
 73
 89
103
113
137
151
167
181

 197
 223
 233
 251
 269
 281
 307
 317
 347
 359
 379
 397
 419
 433

 449
 463
 487
 503
 523
 557
 571
 593
 607
 619
 643
 659
 677
 701

 727
 733
 761
 787
 811
 827
 853
 863
 883
 911
 937
 953
 977
 997

 1019
 1033
 1051
 1069
 1093
 1109
 1129
 1163
 1187
 1213
 1229
 1249
 1279
 1291

 1303
 1321
 1367
 1399
 1427
 1439
 1453
 1481
 1489
 1511
 1543
 1559
 1579
 1601

 1613
 1627
 1663
 1693
 1709
 1733
 1753
 1783
 1801
 1831
 1867
 1877
 1901
 1931

 1951
 1987
 1999
 2017
 2039
 2069
 2087
 2111
 2131
 2143
 2179
 2213
 2239
 2267

 2281
 2297
 2333
 2347
 2371
 2383
 2399
 2423
 2447
 2473
 2531
 2549
 2579
 2609

 2633
 2659
 2677
 2689
 2707
 2719
 2741
 2767
 2791
 2803
 2837
 2857
 2887
 2909

2957
3001
3041
3083
3137
3187
3221
3259
3313
3343
3373
3433

 3467
 3517
 3541
 3581
 3617
 3659
 3697
 3733
 3779
 3823
 3863
 3911

 3931
 4001
 4021
 4073
 4111
 4153
 4211
 4241
 4271
 4327
 4363
 4421

 4457
 4507
 4547
 4591
 4639
 4663
 4721
 4759
 4799
 4861
 4909
 4943

 4973
 5009
 5051
 5099
 5147
 5189
 5233
 5281
 5333
 5393
 5419
 5449

 5501
 5527
 5573
 5641
 5659
 5701
 5743
 5801
 5839
 5861
 5897
 5953

 6029
 6067
 6101
 6143
 6199
 6229
 6271
 6311
 6343
 6373
 6427
 6481

 6551
 6577
 6637
 6679
 6709
 6763
 6803
 6841
 6883
 6947
 6971
 7001

 7043
 7109
 7159
 7211
 7243
 7307
 7349
 7417
 7477
 7507
 7541
 7573

 7603
 7649
 7691
 7727
 7789
 7841
 7879
 7927
 7963
 7991
 8009
 8027

1. Every third prime number between 2 and 2939

2. Every fifth prime number between 2953 and 8033

When you divide the record key by the prime number selected, discard the quotient
and use the remainder as an address.

Randomizing Formulas for Relative Files

47 A2 04UF Rev06 A-3

EXAMPLE:

Assume you have a 800-record file whose record keys range from 0 (zero) to
999 999 999. Space is to be allocated to this file for 1 000 record "slots". The
divisor is 997 - the highest prime number below 1 000. This leaves only three
record locations unused out of the 1 000 allocated.

❑

If, for example, the record key to be processed is 777 775 925; then

777 775 925 / 997 = 780 116 with a remainder of 273.

Thus, this record will be stored in relative record address 273.

NOTE:
If the record key to be divided is alphabetic or alphanumeric, it can be treated as
a binary field. In this case, the prime number would also be in binary form. The
final calculations are also performed binarily so that the relative address is
produced in a usable form.

UFAS-EXTENDED User’s Guide

A-4 47 A2 04UF Rev06

A.3 Square, Enfold, and Extract

In this randomizing technique, the record key field is squared, the result is split in
half, and then the two halves are added together. You extract the number of digits
needed for the address from the middle of the result. Normally, the two low-order
(rightmost) characters are ignored and you extract starting from the third low-order
character and continue to the fourth-order character and so on.

EXAMPLE 1:

A file of 8 000 records with record keys ranging from (0) zero to 999 999 999. You
wish to allocate a file for 10 000 record locations.

❑

If the record key to be processed is 493 725 816, then:

Extracted result: 86,310 relative record address

628,631,037

Squared: 243,765,181,384,865,856

Enfolded: 243,765,181 + 384,865,856

This result is obviously not suitable as it stands for a file of only 10 000 record
locations. It would be usable only in the unlikely event of a 99 999-record file. For
example 1, only four digits should have been extracted, yielding a maximum
address value of 9 999. This is still of no use where, for example, only 7 000 record
locations are to be allocated to the file.

Randomizing Formulas for Relative Files

47 A2 04UF Rev06 A-5

EXAMPLE 2:

A file of 4 000 records with record keys in the same range as for the first example,
(from (0) zero to 999 999 999) is to have file space allocated to it sufficient for
6 000 record locations.

If the key to be processed is the same as that used in Example 1, the initial
extracted result (for four digits) would give a relative record address of 6 310.

Apart from this relative record address not being suitable for a file with only 6 000
record locations, the maximum address value that could be produced is still about
9 999.

In this case, reduce the initial expected result in order to adapt the the highest value
to the available file space. Here, multiplying the preliminary extracted result by 0.6
will have the desired effect:

6 310 * 0.6 = 3 786 relative record address.

❑

UFAS-EXTENDED User’s Guide

A-6 47 A2 04UF Rev06

A.4 Radix Conversion

For this technique, it is assumed that the record key is a number of a radix other
than 10. The key is then converted "back" to radix 10, digit by digit. The sum of
this process has the number of digits needed for the relative record address
extracted from it, starting with the low-order characters. You can then adapt this
initial extracted result to the available file space as that used in "Square, Enfold,
and Extract".

EXAMPLE:

A file containing 6 000 records with record keys ranging from 0 (zero) to 99 999 is
to have space allocated to it sufficient for 7 500 record locations.

For example, if the record key to be processed is 14 623, and it is assumed to be a
radix 11 number, then:

1 4 6 2 3 becomes:

(1*11**4) + (4*11**3) + (6*11**2) + (2*11**1) + (3*11**0) =

(1 * 14641) + (4 * 1331) + (6 * 121) + (2 * 11) + (3 * 1) =

(14641) + (5324) + (726) + (22) + (3) = 20716

Preliminary extracted result = 0716

Relative record address = (0716 * 0.75) = (0)537

❑

Randomizing Formulas for Relative Files

47 A2 04UF Rev06 A-7

A.5 Frequency Analysis

This method has two uses:

• to determine the pattern of distribution for a given file, indicating which
positions are best for truncating or extracting relative record addresses from the
record keys; in other words you can use it to evaluate the most suitable
randomizing technique for a file,

• to develop relative addresses from the record keys, in extended form; in other
words, it is a randomizing method in its own right.

Using Frequency Analysis to Evaluate a Randomizing Technique

Frequency analysis consists of analyzing the keys of all the records in the file, to
determine how frequently a digit appears in each given record key position. For
each digit position in the key, examine the records to determine the number of
times each digit (0 to 9) appears.

For example, in a file consisting of 16 045 records,

• 0 (zero) might occur in the fifth key position in 5 168 records,
• 1 might occur in the fifth key position for 5 638 different records,
• 2 might occur in that position for 4 958 records,
• 3 might occur for 281 records,
• the numbers 4 to 9 might not appear in this key position for any record.

This frequency-analysis count gives the actual distribution of digits appearing in
every key position. If the distribution were perfectly even, each of the digits would
occur the same number of times. Because there are 10 digits, this means that, with
a total of 16 045 records, each digit would occur approximately 1 605 times in any
one key position.

To determine the deviation from such an ideal distribution, measure the difference
between it and the real digit occurrence for each key position.

Thus, if 0 occurs in the fifth key position of 5 168 records, the deviation would be:

 (5 168 - 1 605) = 3 563.

• Do this for each digit in that key position before adding all the results to find the
total deviation for the key position.

• Then express the total deviation as a percentage of the total number of items.

The lower the figure, the more even the distribution. In this example, 0% could
arise only if there were exactly 1 605 occurrences of each of the digits 0 to 9 in a
given key position throughout the file.

UFAS-EXTENDED User’s Guide

A-8 47 A2 04UF Rev06

Table A-2. Pattern of distribution

Digits

0

1

2

3

4

5

6

7

8

9

Total
 Deviation

Total
File

% File

 Total

 26610

 17061

 15610

 9106

 7843

 19833

 4409

 4007

 4053

 3783

 2

 0

 0

 2198

 576

 1195

 12076

 0

 0

 0

 0

 22133

 16045

 138

 3

 0

 4408

 3792

 2231

 2459

 3155

 0

 0

 0

 0

 16045

 16045

 100

 4

 1852

 3147

 1174

 2724

 1194

 1267

 1243

 1228

 1227

 989

 5821

 16045

 36

 5

 5168

 5638

 4958

 281

 0

 0

 0

 0

 0

 0

21903

16045

 137

 6

 1807

 2120

 1745

 1684

 1378

 1647

 1560

 1329

 1415

 1360

 1961

16045

 12

Key Position Number

 1

 16045

 0

 0

 0

 0

 0

 0

 0

 0

 0

28885

16045

 180

 7

 1738

 1748

 1743

 1610

 1617

 1688

 1660

 1450

 1411

 1434

 1035

 16045

 6

The pattern of distribution indicates which positions are best for truncating or
extracting relative record addresses from the record keys. Note that the total
variance for key position 3 in the Example of 16 045 (100% of the total file) is
coincidental.

Randomizing Formulas for Relative Files

47 A2 04UF Rev06 A-9

A.5.1 Using Frequency Analysis to Develop Randomized Relative Record
Addresses

• Express each individual key digit count as a percentage of the total number of
records in the file, 16 045 in the example above,

• Calculate the cumulative total (in the last column of Table A-2) for all key-
position occurrences for each digit.

Table A-3. Developing a relative address

Digits

0

1

2

3

4

5

6

7

8

9

 1

 100
 39915

 17061

 15610

 9106

 7843

 19833

 4409

 4007

 4053

 3783

 %
Constant

 %
Constant

%
Constant

%
Constant

%
Constant

%
Constant

%
Constant

%
Constant

%
Constant

 %
Constant

 2

 26610

 17061

 14
 16703

 4
 9288

 7
 8118

 75
 27270

 4409

 4007

 4053

 3783

 3

 26610

 27
 19364

 24
 17483

 14
 9743

 15
 8431

 20
 21816

 4409

 4007

 4053

 3783

 4

 12
 28207

 20
 18767

 7
 16156

 17
 9880

 7
 8118

 8
 20626

 8
 4585

 8
 4167

 8
 4215

 6
 3896

 5

 32
 30868

 35
 20047

 31
 18030

 2
 9197

 7843

 19833

 4409

 4007

 4053

 3783

 6

 11
 28074

 13
 18170

 11
 16469

 10
 9561

 9
 8196

 10
 20825

 10
 4629

 8
 4167

 9
 4235

 8
 3934

 7

 11
 28074

 11
 17999

 11
 16469

 10
 9561

 10
 8235

 11
 20924

 10
 4629

 9
 4187

 9
 4235

 9
 3953

 Total

 26610

 17061

 15610

 9106

 7843

 19833

 4409

 4007

 4053

 3783

Key Position Number

UFAS-EXTENDED User’s Guide

A-10 47 A2 04UF Rev06

• From the percentages of individual key-digit count and all key-digit totals thus
produced, calculate an adjusted constant for each digit in every record key
position, by using the following formula:

 Constant = ((KN% / 2) * dT) + dT ... where:
 Kn% = individual key percentage for digit y
 dT = all-key total for digit y

Thus the constant for converting a 1 appearing in the fifth key position is as
follows:

 (17 061 + ((35% / 2) * 17 061)
 = 17 061 + 2 985.7
 = 20 046.7
 = 20 047 rounded up.

Whether rounding is done at this stage depends on the total range of values
produced from the total number of record positions to be allocated to the file. To
obtain the value range, calculate the minimum and maximum values:

Key 1

Key 2

Key 3

Key 4

Key 5

Key 6

Key 7

0

5

5

0

0

0

0

0

4

4

9

3

9

9

 39915

 8118

 8431

 3896

 9197

 3934

 3953

 77444

Digit Constant Digit Constant

Max. Value* Min. Value*

* Rounding to the nearest decimal integer is assumed.

 39915

 27270

 21816

 28207

 30868

 28074

 28074

204224

Randomizing Formulas for Relative Files

47 A2 04UF Rev06 A-11

The range of values that would be produced by the file measured in our example is:

 204 224 - 77 444 = 126 780

For a relative file consisting of 16 045 records, it would be reasonable to allocate
about 20 000 record locations. Clearly, the assumption made to round the constant
value is justified.

Before you can use the aggregate constant values as relative record addresses for
storing records, do the following two operations:

• Adjust the range of values from 126 780 to 20 000,
• Deduct a constant from whatever value is produced (the lowest value produced

should be 1),

Multiply the value produced from Table A-3 by 0.157 to reduce the range of
possibilities to 19 904, thereby "wasting" only 96 record locations out of the
20 000 allocated.

You can find the constant to be deducted by applying the ratio 0.157 to the
minimum aggregate constant value produced for the example file.

 77 444 * 0.157 = 12 159 rounded up
 204 224 * 0.157 = 32 064 rounded up

Thus, by applying a standard constant of 12 159, you will distribute "wasted"
record locations evenly: 48 at either end of the file. These are a token allowance for
any new records that might be added in the future with keys producing aggregate
constant values outside the range allowed for by the frequency analysis of the
original file.

UFAS-EXTENDED User’s Guide

A-12 47 A2 04UF Rev06

EXAMPLE:

Record key = 0451185
Constants = 39 915 + 8 118 + 2 1816 + 18 767 + 20 047 + 4 235 + 20 924 =
133 822
Constants Aggregate = 133 822
Adjusted Aggregate = (133 822 * 0.157) = 21 011 rounded up
Relative Record Address = (21 011 - 12 159) = 8 852

The advantage of treating the constants as in Table A-3 is that records are located
according to the mean frequency of their key values, although this effect would
nevertheless be diffused.
For instance, the most probable key-value combination, 0511110, would be stored
in relative record address 14 675; and the least probable key-value combination in
the file, 0339399, would be stored in relative record address 6.
To compensate, there might be many duplicate relative addresses (which your
program must handle also), although this would obviously depend on the actual
key-value combinations in the file.
Alternatively, consider only the five low-order digits in the constants aggregate,
which for record key 0451185 would mean ignoring the leading 1, leaving 33 822.
In this randomizing solution, you need multiply only the maximum total number,
99 999, by 0.2 to produce a relative record address that can be used for a 20 000-
record file.

❑

A.6 Non-Numeric Keys

Where key fields include alphabetic, special characters or alphanumeric characters,
one method of randomizing would be to treat the field as a binary number and
perform binary arithmetic on it. This has the advantage of avoiding unnecessary
duplicate relative addresses.

Another method of randomizing is to convert each character into two numeric
digits. You then manipulate the resultant key by decimal arithmetic according to the
particular randomizing method employed. This method is useful where binary
arithmetic is impracticable, but it does result in doubling the length of the keys.

47 A2 04UF Rev06 B-1

 B. Label and Volume Formats of Magnetic
Tapes

B.1 Magnetic-Tape Conventions

A wide range of magnetic-tape handlers featuring various recording densities and
transfer rates is available. Within this range are handlers capable of processing 7 -
or 9-track tape, using either the non-return-to-zero invert (NRZI) or the phase
encoded (PE) technique of recording.

Such a wide range of tape handlers allows the user to choose peripheral devices not
only on system performance-to-cost ratios, but also on the desire to interchange
tapes with other equipment manufacturers.

GCOS7 software creates and reads tapes:

• in EBCDIC code with odd parity (called GCOS7/EBCDIC),
• in ASCII code, on 9-track tape, with odd parity (called GCOS7/ASCII).

GCOS7/ASCII tapes must be labeled and may not contain U-type data blocks
(undefined), that is, data blocks with an undefined record format.

This Appendix gives detailed information on the standard formats. A standard tape
format:

• contains labels in a range of formats defined later in Figure B-1 or contains no
labels, ($NONE) (in JCL, LABEL = NONE) in which case the first tape mark
indicates the end of recorded data,

• contains data blocks corresponding to one of the five accepted data-block
standards:

F FB V VB U

Magnetic-tape files may be cataloged or uncataloged. For a cataloged file, use the
CREATE_MT_FILE (CRMTF) command to declare the file to the system and the
catalog. For a description of the CREATE_MT_FILE, see Section 7. For
uncataloged files, the necessary information is supplied via the file-define
parameter DEFi (described in Section 7).

UFAS-EXTENDED User’s Guide

B-2 47 A2 04UF Rev06

B.1.1 Reel/File Relationship

A file can be placed on a single reel of tape, or on several reels of tape. When one
file occupies one reel of tape, the file is considered to be a single section, that is, a
single-volume file. In this instance, a file section equates to a volume (each reel of
tape is a magnetic tape volume). When one file extends over two or more reels of
tape, the file is considered a multisection, that is, a multivolume file; here again, a
file section equates to a volume (section 1 is on volume 1, section 2 is on volume 2,
etc.)

NOTE:
Non-standard format tapes and unlabeled tapes are single volume files only.

In COBOL, you can force the end of volume (CLOSE reel option) and make
the end-of-reel visible for a multivolume file. See the COBOL 85 Reference
Manual for details.

B.1.2 File Organization

Sequential file organization is used for magnetic-tape files. The records in the file,
sorted or unsorted, are always read by the program sequentially. No random
accesses are possible. When a record is to be inserted or deleted, the entire volume
(reel) must be copied. A record may not be read in update mode and then written
back in the same location. Old-master/new-master is the normal type of processing
for magnetic tape.

B.1.3 Data Organization

DATA BLOCKS

Data blocks can consist of one or more records, depending upon the record size,
and are of fixed or variable length.

Minimum and maximum block lengths depend on the software, the hardware, and
the use of the tape for information interchange with other systems.

SOFTWARE AND HARDWARE LIMITATIONS

The hardware allows a minimum block length of 18 characters. The minimum
buffer must be at least this size.

Label and Volume Formats of Magnetic Tapes

47 A2 04UF Rev06 B-3

The hardware and software allow an unlimited maximum block length. Language
restrictions and the amount of memory space available for buffers determine this
limit.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) STANDARDS
FOR INTERCHANGE

ANSI standards allow a minimum block length of 18 characters and a maximum
block length of 2048 characters for interchange tapes. All GCOS7 systems can
create and read blocks within these limits.

DATA RECORDS

Records within magnetic tape blocks may be fixed length, variable length, or
undefined (GCOS7/EBCDIC only). If interchange is desired, limit the maximum
record size to the maximum block size allowed by the American National
Standards Institute standard, 2048 characters.

COMPACTED DATA

Data can be compacted on magnetic tapes by suppressing repetitive blanks.

To do this, apply the COMPACT parameter in the CREATE_MT_FILE command,
and this attribute becomes a characteristic of the file, stored in the file label, and
valid during the entire existence of the file.

The following restrictions apply to a compacted file:

• only variable record format is allowed,
• the BLKSIZE given by the user must be at least equal to RECSIZE + 4 bytes

with an additional byte as a control character for each 128 characters of data,

For details of the COMPACT parameter, see the IOF Terminal User’s Reference
Manual.

UFAS-EXTENDED User’s Guide

B-4 47 A2 04UF Rev06

B.2 Native Magnetic Tape Label and Volume Formats

B.2.1 General Information

GCOS7 magnetic-tape software creates and processes tapes that conform to the
EBCDIC and ASCII code and collating sequences.

LABELS

Magnetic-tape labels are special 80-character blocks that identify reels (volumes),
files, and sections of files stored on magnetic tape.

All labels are identified by their first four characters:

• the first three characters indicate the type of label,
• the fourth character indicates the number of the label within that type (HDR2 =

second file header label).

Table B-1 lists the label identifiers, their meaning, and the number that may be
used per reel or file according to the GCOS 7/EBCDIC and GCOS 7/ASCII
standards.

Label and Volume Formats of Magnetic Tapes

47 A2 04UF Rev06 B-5

Table B-1. Label Types

VOL

UVL

HDR

UHL

EOV

EOF

UTL

8 per reel

8 per section

8 per section

8 per reel

8 per file

8 per section

1 per reel

9 per reel

9 per section

26 per section

9 per reel

9 per file

26 per section

Identifier Meaning GCOS 7/EBCDIC GCOS 7/ASCI

Maximum Number

Volume header label

User volume header label

File header label

User header label

End-of-volume trailer label

End-of-life trailer label

User trailer label

For an explanation of section, refer to the paragraph "Reel/File Relationship"
earlier in this Appendix.

The software reads all the labels in Table B-1 (see Figure B-1 at the end of this
Appendix) but processes only the VOL1, HDR1, HDR2, EOF1, EOF2, EOV1 and
EOV2 labels. All other labels are bypassed. The software creates tapes with the
formats shown in Figure B-2.

TAPE MARKS

The hexadecimal character 13 (the ASCII DC3 character and the EBCDIC TM
character both have this hexadecimal equivalent) is used as a tape mark. The
software writes one tape mark to separate labels from data, one to indicate the end
of a reel, and two tape marks to indicate the end of a file. Since tape marks are not
placed in the input buffer when they are read, the programmer need never be
concerned with them when processing standard tapes.

UFAS-EXTENDED User’s Guide

B-6 47 A2 04UF Rev06

REFLECTIVE MARKERS

Two reflective tabs are pasted on the nonrecording side of the tape. One tab, the
beginning-of-tape (BOT) marker, is about 10 feet from the start of the reel. The
other tab, the end-of-tape (EOT) marker, is about 18 feet from the end of the tape.
These markers are detected by a photoelectric system.

GCOS7/EBCDIC STANDARD FORMAT

The GCOS7/EBCDIC format is the label format used by the magnetic tape
software to process tapes written in EBCDIC or BCD code.

HEADER LABELS

Header label blocks are the identifying blocks that precede data on standard-format
tapes.

Table B-2. Volume Header Label 1 (GCOS7/EBCDIC)

Contains VOL1 to identify this as a volume
header label.

Contains information supplied by the
programmer that uniquely identifies this reel.
It may be 1-6 alphanumeric characters long,
left justified, with trailing blanks.

Not currently used. Set to zero.

Contains blanks.

Contains data supplied by the programmer
to identify the owner of the volume.
Any alphanumeric characters may be used.

Contains blanks.

Position LengthField Name Description

1

5

11

12

42

52

Label Identifier

Volume Serial Number

Volume Security

Reserved

Owner’s Name

Reserved

4

6

1

30

10

29

Label and Volume Formats of Magnetic Tapes

47 A2 04UF Rev06 B-7

VOL - Volume Header Label

Each reel of magnetic tape is considered a volume and must contain a volume
header label (VOL1) to identify it. The VOL1 label, placed as the first data on tape
by the magnetic-tape software, contains the information indicated in Table B-2.

HDR - File Header Labels

The file header labels (HDR1 and HDR2) are automatically created by the software
when a new file or file section is opened, and are automatically read each time a
file or file section is opened. HDR1 contains operating system data and device
dependent information. Table B-3 describes the format of HDR1.

UFAS-EXTENDED User’s Guide

B-8 47 A2 04UF Rev06

Table B-3. File Header Label 1 (GCOS7/EBCDIC) (1/2)

Contains HDR1 to identify this as a
file header label.

Contains the 17 rightmost characters
of the external file name. If the name is
longer than 17, then the remaining characters
are placed in the HDR2 label.

Contains the first volume identifier.
It may be 1-6 alphanumeric characters,
left justified, with trailing blanks.

Contains the sequence number of
this volume, decimal 0001 for a
single-volume file and for the first
volume of a multivolume file.

Contains the sequence number of
this file within a multifile set; it is
decimal 0001 for a single-volume
file and for the first volume of a
multivolume file.

Contains the file generation
number (1 to 9999). If not used,it
contains 0001.

Contains the file version number
(decimal 0 to 99). If not used, it
contains 0.

1

5

22

28

32

36

40

4

17

6

4

4

4

2

Label Identifier

File Identifier

Volume Serial
Number

Volume Sequence
Number

File Sequence
Number

Generation Number

Version Number

Relative
Position Length DescriptionField Name

Label and Volume Formats of Magnetic Tapes

47 A2 04UF Rev06 B-9

Table B-3. File Header Label 1 (GCOS7/EBCDIC) (2/2)

42

48

54

55

61

74

6

6

1

6

13

7

Contains the date when the file was created.
The date is in the following format - a blank
followed by two numeric characters that
represent the year, followed by three numeric
characters that represent the sequence day
within the year (88001 = Jan 1, 1988).

Contains the date the file expires.
The format is the same as the format of the
creation date.

Contains decimal 1 if the file is cataloged.
Contains zero otherwise.

Not used. Set to zero.

Contains a unique code that identifies the
operating system that created this file.
This format is GCOS-4 64 nnn; nnn is the
version number of the system (e.g., 001, 002).

Contains blanks.

Relative
Position Length DescriptionField Name

Creation Date

Expiration Date

File Security Indicator

Block Count

System Code

Reserved

The HDR2 file label contains information on the file organization. Note that when
an input tape does not have a HDR2 label, the BLKSIZE, RECSIZE, and
RECFORM must be user-supplied either in the application program or in the DEFi
(JCL equivalent DEFINE) parameter. Table B-4 gives the format of HDR2.

UFAS-EXTENDED User’s Guide

B-10 47 A2 04UF Rev06

Table B-4. File Header Label 2 (GCOS7/EBCDIC) (1/2)

Relative
Position Length DescriptionField Name

1

5

6

11

16

17

18

35

4

1

5

5

1

1

17

2

Contains HDR2 to identify this as a file header
label.

Contains a single character record format
code, F, V, or U.

Contains the maximum block length,
excluding BSNs.
Minimum value is 00018.

Contains the maximum record length present
in the file including the record header.

A one-byte code specifying the recording
density.

2 = D800
3 = D1600
4 = D6250

A one-byte code :

0 = first volume of a multi-volume
1 = not first volume.

Not currently used.
Contains blanks.

Contains blanks. Declares file to be
EBCDIC/odd parity.

Label Identifier

Record Format
Indicator

Block Length

Record Length

Recording Density

Initial Volume Indicator

Job Program Identifier

Recording Technique

Label and Volume Formats of Magnetic Tapes

47 A2 04UF Rev06 B-11

Table B-4. File Header Label 2 (GCOS7/EBCDIC) (2/2)

Control Character
Identifier

BSN Indicator

Block Format Code

Reserved

Remainder of the file
name

Reserved

 1

 1

 1

 13

 27

 1

37

38

39

40

53

80

Contains C if the data is compact, otherwise
contains blank.

Contents : 1 = BSN present
 0 = No BSN
The value 1 is the GCOS 7 default value.

Indicates whether file is blocked or unblocked.
Blank = unblocked
B = blocked

Contains blanks.

Contains leftmost 27 characters of the
external file name. If external file name length
is less than or equal to 17 bytes, then this field
contain blanks.

Contains blank.

Relative
Position Length DescriptionField Name

TRAILER LABELS

Trailer label blocks are the identifying blocks that follow data on GCOS7/EBCDIC
standard format tapes.

EOF - End-of-File Trailer Labels

The software places the end-of-file trailer labels on the tape each time an output
file is closed. When the EOF labels are encountered on an input file, they indicate
that all data in the file has been processed (end-of-file). In this case, up to eight
end-of-file labels can be read, but only the first two are processed.

The software then compares the data blocks count contained in this label with the
number of data blocks input during processing. For a multivolume file, the count in
this label reflects the number of data blocks in the last volume only. Since the block
count is for data blocks only, it does not include tape marks or label blocks
(software or user). The EOF1 label has the same format as the corresponding
HDR1 label, with a few exceptions. Table B-5 shows the EOF1 format.

UFAS-EXTENDED User’s Guide

B-12 47 A2 04UF Rev06

Table B-5. End-of-File Trailer Label 1 (GCOS7/EBCDIC)

Label Identifier

Block Count

Contains EOF1.

(Same as HDR1 label).

Contains a decimal number that indicates the
number of blocks in the file (single-volume
files) or in this section of the file (multivolume
files.)

(Same as HDR1 label).

1

5

55

61

 4

50

6

20

Relative
Position Length DescriptionField Name

For an explanation of section, refer to the paragraph "Reel/File Relationship"
earlier in this Appendix.

The EOF2 label is the same as the HDR2 label except for the label identifier
(EOF2).

EOV - End-of-Volume Trailer Labels

The software places end-of-volume trailer labels at the end of a tape when the file
on the tape extends to another reel. When an EOV label is encountered on an input
file, this label indicates that all the data in a file section has been processed (end-of-
section). In this case, up to eight end-of-volume labels can be read, but only the
first is processed.

The software compares the data block count contained in the label with the number
of data blocks input while processing this section of the file. The count is for data
blocks only and does not include tape marks or label blocks (software or user). An
EOV1 label has the same format as the corresponding HDR1 label, with a few
exceptions. Table B-6 shows the EOV1 format.

Label and Volume Formats of Magnetic Tapes

47 A2 04UF Rev06 B-13

Table B-6. End-of-Volume Trailer Label 1 (GCOS7/EBCDIC)

Label Identifier

Block Count

Contains EOV1.

(Same as HDR1 label).

Contains a decimal number that indicates the
number of blocks in the volume of the file.

(Same as HDR1 label).

1

5

55

61

 4

50

6

20

Relative
Position Length DescriptionField Name

The EOV2 label is the same as the HDR2 label except for the label identifier
(EOV2).

VOLUME FORMATS

Figure B-1 shows magnetic tape volume formats that can be read by
GCOS7/EBCDIC. GCOS7 software reads all labels but processes only the VOL1,
HDR1, HDR2, EOF1, EOF2, EOV1, and EOV2 labels. All others are bypassed.

By comparison, when a tape volume is accepted (on input) by AVR (Automatic
Volume Recognition) as having no labels ($NONE), the access method software
assumes the tape contains a series of data blocks bounded by a single tape mark.
This tape mark is taken as the end-of-file.

UFAS-EXTENDED User’s Guide

B-14 47 A2 04UF Rev06

VOL
1-8

HDR
1-8

UHL
1-8

T
M DATA BLOCKS OF FILE T

M
EOF
1-8

UTL
1-8

T
M

T
M

DATA BLOCKS OF FILE

Multivolume File

Single-Volume File

Single-Volume File ($NONE)

Multifile Single Volume

T
M

VOL
1-8

HDR
1-8

UHL
1-8

T
M

T
M

UTL
1-8

T
M

EOV
1-8

VOL
1-8

HDR
1-8

UHL
1-8

T
M

T
M

EOF
1-8

UTL
1-8

T
M

T
MDATA BLOCKS OF LAST REEL

DATA BLOCKS OF FIRST REEL

VOL
1-8

HDR
1-8

UHL
1-8

T
M

UTL
1-8

T
M

HDR
1-8

UHL
1-8

T
MFILE A

T
M

EOF
1-8

UTL
1-8

T
M

T
M

EOF
1-8FILE B

T
M

Figure B-1. Magnetic Tape Label Formats Read by GCOS7/EBCDIC (1/2)

Multifile Multivolume

VOL
1-8

HDR
1-8

UHL
1-8

UTL
1-8

T
M

HDR
1-8

UHL
1-8

T
M

T
M

EOF
1-8

FIRST SECTION
OF FILE B

UTL
1-8

EOV
1-8

VOL
1-8

HDR
1-8

UHL
1-8

LAST SECTION
OF FILE B

FILE C

T
M FILE A

T
M

T
M

T
M

T
M

UTL
1-8

EOV
1-8

T
M

HDR
1-8

UHL
1-8

T
M

T
M

UTL
1-8

T
M

EOF
1-8

T
M

Figure B-1. Magnetic Tape Label Formats Read by GCOS7/EBCDIC (2/2)

Label and Volume Formats of Magnetic Tapes

47 A2 04UF Rev06 B-15

NOTE:
For a labeling scheme to be accepted as GCOS7/EBCDIC (described in the
CREATE_MT_FILE (JCL equivalent PREALLOC) command as ANSI=0 and
in the file-define parameter group DEFi (JCL equivalent DEFINE) as
DATACODE= EBCDIC), the minimum requirements are VOL1, HDR1, EOF1,
EOV1 labels. If HDR2, EOF2, or EOV2 labels are present, they will also be
processed, but they are not mandatory.

UFAS-EXTENDED User’s Guide

B-16 47 A2 04UF Rev06

Table B-7. Magnetic-Tape Formats Written by GCOS7/EBCDIC

T
M

T
M

T
M

T
MHDR2HDR1 DATA BLOCKS EOF1 EOF2VOL1

T
MHDR1VOL1

T
M

T
M

T
MHDR2HDR1 DATA BLOCKSVOL1 EOV1 EOV2

T
MDATA BLOCKS OF FILE

T
MHDR2VOL1

T
M

T
M

T
M

A volume of Multivolume Multifile

HDR1
DATA BLOCKS

OF FILE A HDR2HDR1EOF2EOF1

T
M

DATA BLOCKS OF
1st SECTION OF FILE B

T
MEOV1 EOV2

T
MHDR2VOL1

T
M

T
M

T
MHDR1

DATA BLOCKS
OF FILE A HDR2HDR1EOF2EOF1

T
M

T
M

Multifile Single Volume

DATA BLOCKS
OF FILE B EOF1 EOF2

T
M

Volume containing a single-volume file or the last section of multivolume file

Empty labeled Volume : after PREPARE_TAPE (PRPTP)

Volume containing an intermediate file section of a multivolume file

Single volume unlabeled file ($none) : GCOS 7/EBCDIC only

Label and Volume Formats of Magnetic Tapes

47 A2 04UF Rev06 B-17

B.2.2 GCOS7/ASCII Standard Format

The GCOS7/ASCII format is the label format used by the magnetic tape software
to process tapes written in the ASCII code.

HEADER LABELS

Header label blocks are the identifying blocks that precede data on standard-format
tapes.

Table B-8. 8. Volume Header Label 1 (GCOS7/ASCII)

Contains VOL1

Contains a unique identification code supplied
by the user. The code may be 1 to 6 alpha-
numeric characters long, left justified with
trailing blanks.

An alphanumeric character indicating
restrictions on access to the volume. A space
indicates no restrictions

Contains spaces.

Alphanumeric characters identifying the
owner. Default is all spaces.

Contains spaces.

3 = 1974 version of International standard
(ISO/1001), the current version generated by
GCOS 7.
1,2 = previous versions of the International
standard.

4

6

1

26

14

28

1

Label Identifier

Volume Serial Number

Volume Access

Reserved

Owner’s Name

Reserved

Label Standard Version

1

5

11

12

38

52

80

Relative
Position Length DescriptionField Name

VOL - Volume Header Label

Each reel of magnetic tape is a volume and must contain a volume header label
(VOL1) to identify it. The VOL1 label, placed as the first data on the tape by the
magnetic-tape software, contains the information shown in Table B-7.

UFAS-EXTENDED User’s Guide

B-18 47 A2 04UF Rev06

HDR - File Header Labels

The file header labels (HDR1 and HDR2) are automatically created by the software
when a new file or file section is opened. HDR1 contains operating system data
and device dependent information. Table B-8 shows the format of HDR1.

Table B-9. File Header Label 1 (GCOS7/ASCII) (1/2)

Label Identifier

File Identifier

Volume Serial Number

Volume Sequence
Number

File Sequence Number

Generation Number

Version Number

Creation Date

1

5

22

28

32

36

40

12

4

17

6

4

4

4

2

6

Contains HDR1 to identify this as a file label.

Contains the external file name for ASCII
magnetic-tape files, this cannot exceed 17
characters.

Contains the first volume identifier.

Contains the sequence number of this file
within a multifile set; it is decimal 1 for a single
volume file and for the first file of a
multivolume set.

Contains the sequence number of the file
within a multifile set; 0001 for a single-file
volume and for the first file of a multivolume
set.

Contains the file generation number
(1 to 9999).
Default (no generations) is 0001.

Contains the file version number (00 to 99). If
not used, contains 0.

Contains the date on which the file was
created. The date is in the following format
- a blank followed by two numeric characters
which represent the year, followed by three
numeric characters which represent the day
within the year.

Relative
Position Length DescriptionField Name

Label and Volume Formats of Magnetic Tapes

47 A2 04UF Rev06 B-19

Table B-9. File Header Label 1 (GCOS7/ASCII) (2/2)

6

1

6

13

7

48

54

55

61

74

Expiration Date

File Security Indicator

Block Count

System Code

Reserved

Contains the date on which the file expires.
The format is the same as that of the
creation date.

Contains decimal 1 if the file is cataloged,
and spaces if it is not.

Not used, contains zero.

Contains a unique code that identifies the
operating system. The format is
GCOS-4 LL nnn, where LL is the level
number (61, 62, 64 or 66) and nnn is the
version number of the system (001, etc).

Contains blanks.

Relative
Position Length DescriptionField Name

The HDR2 file label contains information on the file organization. Table B-9 shows
the format of the HDR2 label.

UFAS-EXTENDED User’s Guide

B-20 47 A2 04UF Rev06

Table B-10. File Header Label 2 (GCOS7/ASCII)

Contains HDR2 to identify this as a file header
label.

Contains a single character record format
code.F for fixed length and V for variable
length.

Contains the maximum block length including
the block header. The minimum value is
00018.

Contains the maximum record length including
the record header.

Contains blanks.

Indicates whether BSNs are used.
0 = no BSN
6 = Level 64/66 BSN
6 = Level 61 BSN

Contains blanks.

4

1

5

5

35

2

28

1

5

6

11

16

51

53

Label Identifier

Record-Format Indicator

Block Length

Record Length

Reserved

BSN Indicator

Reserved

Relative
Position Length DescriptionField Name

TRAILER LABELS

Trailer label blocks are the identifying blocks that follow data on GCOS7/ASCII
standard-format tapes.

EOF - End-of-File Trailer Labels

The software places the end-of-file trailer labels on the tape each time an output
file is closed. When EOF labels are encountered on an input file, they indicate that
all data in the file has been processed (end-of-file). For files in GCOS7/ASCII
format, up to nine end-of-file labels can be read, but only the first two are
processed.

Label and Volume Formats of Magnetic Tapes

47 A2 04UF Rev06 B-21

The software then compares the data-blocks count in this label with the number of
data blocks input during processing. For a multivolume file, the count in this label
reflects the number of data blocks in the last volume only. Since the block count is
for data blocks only, it does not include tape marks or label blocks (software or
user). The EOF1 label has the same format as the corresponding HDR1 label, with
a few label exceptions. Table B-10 shows the EOF1 format.

Table B-11. End-of-File Label 1 (GCOS7/ASCII)

Contains EOF1.

(Same as HDR1 label).

Contains a decimal number that indicates the
number of blocks in the file (single-volume
files) or in this section of the file (multivolume
files).

(Same as HDR1 label).

4

50

6

20

1

5

55

61

Label Identifier

Block Count

Relative
Position Length DescriptionField Name

The EOF2 label is the same as the HDR2 label except for the label identifier
(EOF2).

EOV - End-of-Volume Trailer Labels

The software places the end-of-volume at the end of a reel of tape when the file (or
last file for a multivolume, multifile set) extends onto another reel. When an EOV
label is encountered on an input file, this label indicates that all the data in a file
section has been processed (end-of-section). In the case of GCOS7/ASCII tapes,
there may be up to nine EOV labels, but only the first is processed.

The software compares the data-block count contained in the label with the number
of data blocks input while processing this section of the file. The count is for data
blocks only, and does not include tape marks or label blocks (software or user). An
EOV1 label has the same format as the EOF1 label except for the label identifier
(EOV1).

VOLUME FORMATS

Figure B-3 shows the magnetic-tape formats that can be read by GCOS7/ASCII.
GCOS7 software reads all labels but processes only the VOL1, HDR1, HDR2,
EOF1, EOF2 and EOV1 labels. All other labels are bypassed.

UFAS-EXTENDED User’s Guide

B-22 47 A2 04UF Rev06

T
M

Multivolume File

Single-Volume File

DATA BLOCKS OF FILE

DATA BLOCKS OF
FIRST REEL

DATA BLOCKS OF
LAST REEL

Multifile Single Volume

FILE A

FILE B

Multifile Multivolume

First section
of file B

Last section
of file B

FILE C

VOL
1

UVL
1-9

HDR
1-9

UHL
1-26

T
M

EOF
1-9

UTL
1-26

T
M

T
M

T
M

VOL
1

UVL
1-9

HDR
1-9

UHL
1-26

T
M

EOF
1-9

UTL
1-26

T
M

T
M

VOL
1

UVL
1-9

HDR
1-9

UHL
1-26

T
M

EOF
1-9

UTL
1-26

T
M

T
M

VOL
1

UVL
1-9

HDR
1-9

UHL
1-26

T
M

T
M

EOF
1-9

UTL
1-26

T
M

HDR
1-9

UHL
1-26

T
M

T
M

EOF
1-9

UTL
1-26

T
M

T
M

FILE AVOL
1

UVL
1-9

HDR
1-9

UHL
1-26

T
M

T
M

EOF
1-9

UTL
1-26

T
M

HDR
1-9

UHL
1-26

T
M

T
M

EOF
1-9

UTL
1-26

T
M

VOL
1

UVL
1-9

HDR
1-9

UHL
1-26

T
M

EOF
1-9

UTL
1-26

T
M

HDR
1-9

UHL
1-26

T
M

T
M

EOF
1-9

UTL
1-26

T
M

T
M

T
M

Figure B-2. Magnetic Tape Label Formats Accepted by GCOS7/ASCII

47 A2 04UF Rev06 C-1

 C. Hexadecimal Layout of Address Spaces in
an Indexed Sequential File

This Appendix helps you analyze CI layouts and debug CIs for indexed sequential
files. The layouts are intended only as a guide.

The following example represents a UFAS-EXTENDED file allocated on a non-
FSA disk. In the case of a FBO file, an extra byte precedes the CI header and an
extra byte follows the end of the CI.

1 2 3 4 5 6 7 8

07DA0026

0200C3C1

C3C1F2F4

F0F0F6F8

F4F20000

00000F00

1200C3F7

C3F7F4F5

F5F2F3F0

00000000

F2F0F0F2

F4F20000

00000900

0C00C3F6

C3F7F2F6

F3F9F7F2

F1F30000

00001900

00C70000

00000300

0600C3C1

C3C3F2F1

F1F6F3F8

F6F60000

00001300

1600C3F7

C3F7F5F5

0000C3C1

C3C1F2F2

F2F6F5F8

F3F60000

00000D00

100003F7

C3F7F4F1

F4F7F4F2

F1F80000

F1F1F8F1

F1F70000

00000700

0A00C3C6

C3F6F6F3

F3F2F9F8

F6F10000

00001700

F8F70000

00000500

0800C3C3

C3C6F2F1

F8F9F0F4

F8F40000

00001500

1800C3F7

INDEX CI (Address spaces 3, 4, 6 and 7)

C3C1F1F8

F2F2F9F2

F9F20000

00000B00

0E00C3F6

C3F7F3F7

F4F2F8F2

F9F90000

00000100

0400C3C1

C3C1F2F7

F0F7F4F7

F5F10000

00001100

1400C3F7

C3F7F4F9

UFAS-EXTENDED User’s Guide

C-2 47 A2 04UF Rev06

KEY TO INDEX CI LAYOUT

i) CI Header

Amount of space used within the CI is 2018 (2016 in the case of an FSA disk file).

Amount of free space available within the CI. (The CISIZE is 2048).

Key type. 00 = primary key (index), 01 = secondary key (index). Here the primary
key size is 6 characters and the keyloc is 35.

CI number within the address space. Here the first CI is shown (000000)

Last active line number of the CI (index entry). Here it is 00C7.

ii) Index entry

CI number of the lower level CI in which the highest referenced key is to be found.
For example, a CI index in address spaces 3 and 6 points to a CI index in address
space 4 and 7 respectively, whereas a CI index in address spaces 4 and 7 points to a
data CI.

Referenced CI status.
00 = one or more valid records in the CI
80 = all records in the CI have been deleted

The highest key value in the index CI of the next lowest level. Here it is
C3C1F1F1F8F1.

There is only one CI header, but there are many index entries.

Hexadecimal Layout of Address Spaces in an Indexed Sequential File

47 A2 04UF Rev06 C-3

075B00A5

40404040

40404040

F2404040

40404040

00CD03F1

40404040

D440E2E3

00000000

40404040

40404040

404040C6

40404040

C3F0F9F1

40C3C1F0

C1C3D2D6

00080008

40404040

40404040

E6F6F0F7

40404040

F2F0C3F0

F4F0F940

E540D9C9

0000FFFF

40404040

4040F34B

404040C4

40404040

F0F0F940

E5F24040

D5C740F1

FF000001

40100000

F1404040

E8D5C1C4

40404040

40404040

40404040

100000CD

CD02C34B

40404040

4040D3D6

40404040

40404040

C6E6F6F0

01404040

F3F44BF0

C3C1F0F3

C1C4C9D5

40404040

40404040

F3404040

40404040
40404040
40404040
E3D94040
40404040

40404040
00000000

40404040
4040C3C1
40C6E6F6
40404040
40404040

40404040
00000000

40404040
F0F8F7F6
F3F54040
40404040
40404040

40000000
00000000

40404040
40E5F340
40D6D7D9
40404040
40404040

00000000
00000000

40404040
FFE740D7
D3C5C440
404040C3
4040C6E6
40E6C8C5
D54BE2E3
40404040

00000000
059B04CE

40404040
D961C3D9
40404040
C1F1F1F8
F6F0F240
D540C46B
C54BE2D9
40404040

00000000
04010334

40404040
40C961D6
40404040
F1404040
4040D4C9
D76BD14B
C16BD3C7
40404040

00000000
0267019A

100000CD
40C6C1C9
40404040
40404040
E9D6D740
D74BE2E3
40404040
40404040

00000668
00CD0000

1 2 3 4 5 6 7 8 9 10 11 12

DATA CI (address space 2)

1415 13

40404040

F3F8C340

F5F8C340

C740E2D4

40401000

40404040

E3C1E2D2

UFAS-EXTENDED User’s Guide

C-4 47 A2 04UF Rev06

KEY TO DATA CI LAYOUT

Since the records are large, only part of the data CI is shown.

CI Header: length 20 bytes

Amount of space used within the CI.

Amount of free space available within the CI.

Key type (always 00).

CI number within the address space. Here it is the first CI (000000).

Last logical line number of the CI. Here it is 0008.

Last physical line number of the CI. Here it is 0008. In the case of an empty CI it
would be FFFFFF.

First line number of the CI. Here the first record is shown (0000).

Reserved.

The number of the next CI, in this case 1. If this were the last CI, it would be set to
FFFFFF.

Record header: length 5 bytes

Record status
1 = active record
0 = deleted record

Record length, including header, here 205 bytes.

Number of the next line in the chain of records found in the CI. If a record has the
highest key of the CI, this zone is FF.

Record descriptor: length 2 bytes

CI offset related to the end of the header of line 00.

As for 13, line 01.

As for 13.

Hexadecimal Layout of Address Spaces in an Indexed Sequential File

47 A2 04UF Rev06 C-5

1 2 3 4 5 6 78 9

00A6075A

00000000

0400FFFF

00000000

00090000

00000000

FFFFFF00

00000000

00FFFFFF

00040000

C6E6F6F1

FFFFFF00

00000000

00000000

FF000000

00000000

FFFF0000

00000000

0000C6E6

F8FFFFFF

00050000

00000000

00000A00

00000000

00FFFFFF

00000000

0000FFFF

F5F4F700

FF000003

00000000

00000000

00000000

000000FF

00000000

00000000

00000000

00C6E6F6

00000000

00000000

00000000

FFFF0000

00000000

FFFFFF00

000100C6

F3F3FFFF

00000600

00000080

0000000B

00000000

0000FFFF

00000000

E6F6F0F7

FFFF0000

00000000

00000000

00000000

00000000

FF000000

00000000

00000200

FFFFFFFF

00000007

00000000

0000FFFF

00000000

000000FF

00000000

01000000

Dense Index CI (address space 5)

KEY TO DENSE INDEX CI LAYOUT

CI Header: 20 bytes

Amount of space used within the CI.

Record header

Record status
0001 (1) = active record
0000 (0) = deleted record

Reserved (12 bits)

Spanning flag (2bits)
00 (0) = No record exists with identical key
01 (4) = This is the first record in a group of records
having identical keys
11 (c) = This is an intermediate record in a group of
records having identical keys
10 (8) = This is the last record in a group of records
having identical keys.

UFAS-EXTENDED User’s Guide

C-6 47 A2 04UF Rev06

Record length including header;

Number of the next line in the chain of records found in the CI. If a record has the
highest key in the CI, this zone is set to FF.

Record key.

Duplicate number. Indicates a duplicate key group if the spanning flag is other
than 00.

SFRA space (Simple File Relative Address) of variable length. This contains the
addresses of data records having the secondary key referenced in 7.

SFRA = data CI number (3 bytes) + line number (1 byte)

47 A2 04UF Rev06 D-1

 D. JCL - GCL / GCL - JCL Correspondence
Tables

This list is not comprehensive because there are some JCL statements that have no
equivalent in GCL.

Table D-1. JCL-GCL Correspondence (1/2)

CMPF
CMPFST

LDF
LDFST

DLF
DLFST

CRF
CRFST

CPF
CPFST

LSF
LSFST
LSFSP

MNF

CLRF
MDFSTAT
MDF

COMPARE

CREATE

DEALLOC

FILALLOC

FILDUPLI

FILLIST

FILMAINT

FILMODIF

JCL GCL Abbreviation

COMPARE_FILE
COMPARE_FILESET

LOAD_FILE
LOAD_FILESET

DELETE_FILE
DELETE_FILESET

CREATE_FILE
CREATE_FILESET

COPY_FILE
COPY_FILESET

LIST_FILE
LIST_FILESET
LIST_FILE_SPACE

MAINTAIN_FILE

CLEAR_FILE
MODIFY_FILE_STATUS
MODIFY_FILE

UFAS-EXTENDED User’s Guide

D-2 47 A2 04UF Rev06

Table D-1 JCL-GCL Correspondence (2/2)

JCL GCL Abbreviation

RESTORE_CATALOG
RESTORE_FILE
RESTORE_FILESET

SAVE_CATALOG
SAVE_FILE
SAVE_FILESET

BUILD_LIBRARY

CLEAR_LIBRARY
DELETE_LIBRARY

MERGE_FILE

BUILD_FILE
CREATE_MT_FILE
MODIFY_FILE_SPACE

PRINT_FILE
PRINT_FILESET

EXPAND_FILESET

SORT_FILE

SORT_INDEX

LIST_VOLUME

MAINTAIN_VOLUME

MODIFY_DISK

CLEAR_VOLUME
PREPARE_DISK
PREPARE_TAPE

RESTORE_DISK

SAVE_DISK

FILREST

FILSAVE

LIBALLOC

LIBDELET

MERGE

PREALLOC

PRINT

SETLIST

SORT

SORTIDX

VOLLIST

VOLMAINT

VOLMODIF

VOLPREP

VOLREST

VOLSAVE

RSTCAT
RSTF
RSTFST

SVCAT
SVF
SVFST

BLIB

CLRLIB
DLLIB

MRGF

BF
CRMTF
MDFSP

PRF
PRFST

EXPFST

SRTF

SRTIDX

LSV

MNV

MDD

CLRV
PRPD
PRPTP

RSTD

SVD

JCL - GCL / GCL - JCL Correspondence Tables

47 A2 04UF Rev06 D-3

Table D-2. GCL-JCL Correspondence (1/2)

JCLGCL Abbreviation

BUILD_FILE

BUILD_LIBRARY

CLEAR_FILE

CLEAR_LIBRARY

CLEAR_VOLUME

COMPARE_FILE

COMPARE_FILESET

COPY_FILE

COPY_FILESET

CREATE_FILE

CREATE_FILESET

CREATE_CT_FILE

CREATE_MT_FILE

DELETE_FILE

DELETE_FILESET

DELETE_LIBRARY

EXPAND_FILESET

LIST_FILE

LIST_FILEST

LIST_FILE_SPACE

LIST_VOLUME

LOAD_FILE

LOAD_FILESET

BF

BLIB

CLRF

CLRLIB

CLRV

CMPF

CMPFST

CPF

CPFST

CRF

CRFST

CRCTF

CRMTF

DLF

DLFST

DLLIB

EXPFST

LSF

LSFST

LSFSP

LSV

LDF

LDFST

PREALLOC

LIBALLOC

FILMODIF

LIBDELET

VOLPREP

COMPARE

COMPARE

FILDUPLI

FILDUPLI

FILALLOC

FILALLOC

FILALLOC

PREALLOC

PREALLOC

DEALLOC

DEALLOC

LIBDELET

SETLIST

FILLIST

FILLIST

VOLLIST

CREATE

CREATE

UFAS-EXTENDED User’s Guide

D-4 47 A2 04UF Rev06

Table D-2 GCL-JCL Correspondence (2/2)

JCLGCL Abbreviation

MAINTAIN_FILE

MAINTAIN_VOLUME

MERGE_FILE

MODIFY_DISK

MODIFY_FILE

MODIFY_FILE_SPACE

MODIFY_FILE_STATUS

PREPARE_DISK

PREPARE_TAPE

PREPARE_VOLUME

PRINT_FILE

PRINT_FILSET

RESTORE_CATALOG

RESTORE_DISK

RESTORE_FILE

RESTORE_FILESET

SAVE_CATALOG

SAVE_DISK

SAVE_FILE

SAVE_FILESET

SORT_FILE

SORT_INDEX

MNF

MNV

MRGF

MDD

MDF

MDFSP

MDSTAT

PRPD

PRPTP

PRPV

PRF

PRFST

RSTCAT

RSTD

RSTF

RSTFST

SVCAT

SVD

SVF

SVFST

SRTF

SRTIDX

FILMAINT

VOLMAINT

MERGE

VOLMODIF

FILMODIF

PREALLOC

FILMODIF

VOLPREP

VOLPREP

VOLPREP

PRINT

PRINT

FILREST

VOLREST

FILREST

FILREST

FILSAVE

VOLSAVE

FILSAVE

FILSAVE

SORT

SORTIDX

47 A2 04UF Rev06 E-1

 E. More About Buffers

As explained in Section 5, you can control the use of buffers by specifying the
three parameters: POOLSIZE, NBBUF and BUFPOOL. This Appendix contains
further information about buffers and memory resources.

Buffer Algorithm

Buffers can be in one of the following states:

• busy
• remember
• empty

A busy buffer is one that contains a CI that is being accessed.

A remember buffer is one that contains a CI that is kept in memory in order to be
reused subsequently. Whenever a buffer can be "remembered", this avoids an I/O
operation.

An empty buffer is a buffer whose contents are meaningless, for example, after the
abort of a commitment unit.

When a program needs to process a record, UFAS-EXTENDED first checks if the
record is in one of the remember buffers. If it is, that remember buffer is activated
and the search ends. This means that no physical read needs to be made. A record is
kept of the number of times a remember buffer is reused. This count is printed out
in the JOR at the end of the job (HITCOUNT).

If the required record is not in a remember buffer, a data CI must be read.

UFAS-EXTENDED finds space in allocated memory to accommodate these CIs
(data or index). Figure E-1 describes how buffers are handled.

UFAS-EXTENDED checks whether all buffers have been allocated, that is,
whether the maximum number of buffers for this file has been reached. If all
buffers have been allocated, one remember buffer will be deleted and a CI will be
read into it.

UFAS-EXTENDED User’s Guide

E-2 47 A2 04UF Rev06

If the maximum number of buffers is not reached, a new buffer will be created
provided the maximum size of the memory allocated to buffers is not reached.

If the maximum size of the buffer pool is reached, one or more buffers will be
deleted to make space for the requested CI.

B

A

Yes

No

No

Yes

A

B

B

Yes

Yes

Yes

No

No

No

No

No

Yes

Yes

Request for a CI
(Add 1 to GETCICOUNT)

Add 1 to HITCOUNT

Is the CI
already in the buffer

Pool ?

Is the max.
No. of buffers (NBBUF)

reached ?

Is there an
empty or remember
buffer the same size

as the requested
CI ?

Is the
total buffer space

(POOLSIZE)
full ?

Is there an
empty or remember
buffer the same size

as the requested
CI ?

Is there an
empty or remember
buffer greater than

the requested
CI ?

Are the
empty or remember
buffers smaller than

the requested
CI ?

BUFNAV or CMWSOV

read the requested
CI : add 1 to
READIOCT

DELETE a differently
sized buffer

(Add 1 to SEGDL)

CREATE a buffer
(Add 1 to SEGCR)

The contents of the
new CI overwrites
the contents of the

old CI

read the requested
CI : add 1 to
READIOCTDELETE n buffers

(Add n to SEGDL)

PROCESSING

Figure E-1. Buffer Handling

47 A2 04UF Rev06 F-1

 F. UFAS Files under UFAS-EXTENDED

This Appendix applies only if you are allocating UFAS files under UFAS-
EXTENDED through the VERSION = PREVIOUS parameter.

Compatibility between UFAS-EXTENDED and UFAS

For reasons of compatibility UFAS-EXTENDED continues to fully support the old
UFAS files. However, you are recommended to convert such files to the new fixed-
block file format.

For coupled systems, both systems must run with the same version of UFAS
because there is no dynamic sharing facility and no backup (TCRF) facility
between a UFAS-EXTENDED and a UFAS system or vice versa.

If a file is unstable in a release, the file must be recovered in that release.

Since Release V6, the VERSION = PREVIOUS parameter can be specified only in
the JCL statement PREALLOC, and not in the BUILD_FILE command.

Features of UFAS

The size of an index CI can be different from the size of a data CI, because it is
computed by UFAS on the basis of the CASIZE parameter.

UFAS supports 18,500 buffers in a TDS application where VERSION =
PREVIOUS.

800 files can be shared at system level and 500 files can be simultaneously opened
for a TDS application.

UFAS-EXTENDED User’s Guide

F-2 47 A2 04UF Rev06

CONTROL AREA (CA)

One or more CIs make up an allocated area of the file known as a Control Area
(CA). A CA is the unit of expansion for such an indexed sequential file. For a given
file all CAs contain the same number of CIs. Only address space 2 (containing
data) and address space 5 (containing all secondary keys) have their CIs grouped
into CAs. This is important when you are allocating space for such an indexed
sequential file. See the BUILD FILE command in Section 6. Once you have
specified the size of a CA, UFAS-EXTENDED builds CAs dynamically as the file
grows.

Choosing the CASIZE

CASIZE is the number of data CIs per CA. CASIZE is also the number of index
entries in an index CI. Maximize the CASIZE within the following limits if
possible:

 20 <= CASIZE <= 100

This means that the most efficient range of values for CASIZE is from 20 to 100
CIs. However, you may use a value greater than 100 if this eliminates a level of
indexes, with a consequent saving of I/Os during processing.

For example, if you have a CISIZE of 4096 and a CASIZE of 100, Table 6-1 shows
that there are 144 CIs per cylinder for an MS/D500 disk drive. In other words, one
CA is approximately equal to one cylinder on an MS/D500 disk drive.

If you omit CASIZE, then UFAS-EXTENDED automatically calculates the
CASIZE. CASIZE is initially chosen so that the number of data CIs that will fit it
occupy one cylinder minus two tracks, and CAFSP = 0.

To leave free space at initial file loading time in each CA which is an integral
number of empty CIs, specify the amount of free space to be left by using the
CAFSP parameter in the BUILD FILE command.

Mass Insertion

Mass Insertion mode is not available for UFAS files with VERSION set to
PREVIOUS.

UFAS Files under UFAS-EXTENDED

47 A2 04UF Rev06 F-3

Example Showing how to Allocate a File with the UFAS File Format

This example shows you how to allocate a file in the UFAS file format
(VERSION=PREVIOUS).

PREALLOC R.HANS:V1:MS/D500 Allocates the file named R.HANS on the
MS/D500 volume named V1

 UFAS = INDEXED
 SIZE = 5000 UNIT =
RECORD
 INCRSIZE = 1000
 CISIZE = 2048
 CIFSP = 25

 RECSIZE = 120
 KEYLOC = 1
 KEYSIZE = 4
 VERSION = PREVIOUS
 CASIZE = 30
 CAFSP = 10;

The file size is 5000 records; the
increment size is 1000 records. The CI
size is 2048 bytes and the CI free space
is 25% (allows the subsequent insertion
of 4 records). The record size is 120
bytes; the key field starts in byte 1. The
key is 4 bytes long. The file is allocated
in UFAS format. Each CA contains 30
CIs. The CA free space is 10% (allows
the insertion of 3 CIs)

UFAS-EXTENDED User’s Guide

F-4 47 A2 04UF Rev06

❑

47 A2 04UF Rev06 G-1

 G. Batch Performance Improvement

G.1 Overview

The Batch Booster option provides greatly improved I/O (input/output)
performance. This feature enables multiple block I/O operations during disk
access, instead of block by block operations. This optimizes ELAPSE and CPU
time during file accesses.

The Batch Booster is also known as the BPB (blocks per buffer) option, since it is
requested via the BPB parameter. The terms "Batch Booster" and "BPB
Processing" are used interchangeably to refer to the features described in this
Appendix.

The Batch Booster is a billed option (MI) of GCOS 7 HPS AP and EXMS Version
V7. The Batch Booster is described in more detail in the manual Batch Booster.

G.1.1 How to Activate the Batch Booster Option

The statements or keywords used to activate the Batch Booster are as described
below.

G.1.1.1 Activation External to the Program

The Batch Booster can be activated in the step enclosure or by a utility as shown in
the following table:

Statement Keyword Parameter

JCL Step Enclosure

DEFINE BPB

UFAS-EXTENDED User’s Guide

G-2 47 A2 04UF Rev06

JCL Utilities

INDEF
OUTDEF
PRTDEF

BPB

G.1.1.2 Activation Within a Program

The Batch Booster cannot be initiated by a COBOL or C Language program.

In GPL, use H_FD, or H_DEFINE/H_DCFILE with the BPB parameter.

G.1.2 How BPB Processing Works

UFAS-EXTENDED transfers several CIs from or to the buffers in a single
Input/Output. The number of CIs depends on the value you set with the BPB
parameter. This value must be in the range 2 to 255.

The value of BPB is automatically decreased by the access method to comply with
the rule:

BPB * CISIZE must be less than 64K bytes.

Batch Performance Improvement

47 A2 04UF Rev06 G-3

G.2 Conditions for BPB Processing

BPB processing is possible under the following conditions:

• file access must be at record level
• the value of the BPB parameter must be greater than 1
• the application must be BATCH monoprocess
• the file organization must be SEQUENTIAL or RELATIVE
• file assignment must be:

ONEWRITE/SPREAD
ONEWRITE/SPWRITE
NORMAL/SPREAD
NORMAL/SPWRITE
NORMAL/READ
NORMAL/WRITE
or MONITOR/READ with READLOCK=STAT

• open mode must be INPUT, OUTPUT, or APPEND
• access mode must be SEQUENTIAL
• version must be CURRENT
• there must be no journalization
• there must be no GAC (General Access Control)

When these conditions are not met, BPB processing is ineffective. The value of
BPB is ignored and the processing is executed as if the value were set to 1. The
process is not usually aborted, and there is no error message or return code. This is
not the case, however, with the use of the multi SCB mechanism (for instance,
access to UFAS files under IQS). If this mechanism is used with a BPB parameter
greater than 1, you will receive the return code CONFLICT.

UFAS-EXTENDED User’s Guide

G-4 47 A2 04UF Rev06

G.3 Support of Data Management Utilities

BPB processing is effective with the following data management utilities which
work at record level:

COMPARE on both input files, and on the output file, provided that
the files are not relative files in direct access.

CREATE on the input or the output file, provided that the file is not
a relative file in direct access.

PRINT on the input file.

FILSAVE on the output file provided that it is a UFAS disk file.

G.3.1 File Transfer

The file transfer utility supports BPB processing on the local file only. Therefore:

• at the sending site, BPB is effective for the input file

• at the receiving site, BPB is effective for the output file.

G.3.2 SORT/MERGE Utilities

G.3.2.1 Sort

The conditions under which Sort calls the UFAS Access Method are given below.

Mono-Process Sort

For files of UFAS Indexed Organization, Sort always calls UFAS access method
(but the UFAS BPB does not apply in this case).

Batch Performance Improvement

47 A2 04UF Rev06 G-5

For Input UFAS Sequential or UFAS Relative files, Sort calls the UFAS access
method in the following cases:

• SHARE = FREE, DIR, ONEWRITE, or (SHARE=MONITOR and
READLOCK=STAT)

• or "all volumes are not mounted for the file",

• or TRUNCSSF,

• or concatenation,

• or REPEAT and CKPTLIM,

• or the DSL contains: KEYADDR or ADDATA or ADDROUT.

For Output UFAS Sequential or UFAS Relative files, Sort calls the UFAS access
method in the following cases:

• SHARE not = NORMAL,
• or "all volumes are not mounted for the file",
• or REPEAT and CKPTLIM.

NOTE:
For SHARE = MONITOR, (READLOCK = STAT) or (ACCESS = SPREAD or
SPWRITE) are mandatory for INFILE. For OUTFILE, ACCESS = SPWRITE
is mandatory when SHARE = MONITOR.

Multi-Process Sort

For files UFAS Indexed Organization, Sort always calls the UFAS access method
(but the UFAS BPB does not apply in this case).

For Input UFAS Sequential or UFAS Relative files, Sort calls the UFAS access
method in the following cases:

SHARE = FREE, DIR, ONEWRITE, or (SHARE=MONITOR and
READLOCK=STAT)

• or "all volumes are not mounted for the file",

• or TRUNCSSF,

• or concatenation,

• or the DSL contains
(KEYADDR or ADDATA or ADDROUT)
and
(START
or HALT
or (((INVREC^=CONTINUE) or (ERROPT^=IGNORE)) and (RECFORM=V))

UFAS-EXTENDED User’s Guide

G-6 47 A2 04UF Rev06

For Output UFAS Sequential or UFAS Relative files, Sort calls the UFAS access
method in the following cases:

• SHARE not = NORMAL,
• or "all volumes are not mounted for the file".

NOTE:
For SHARE = MONITOR, (READLOCK = STAT) or (ACCESS = SPREAD or
SPWRITE) are mandatory for INFILE. For OUTFILE, ACCESS = SPWRITE
is mandatory when SHARE = MONITOR.

G.3.2.2 Merge

Merge calls the UFAS access method under the same conditions as Sort (except
that the DSL conditions do not apply).

G.4 Usage In GCL

This appendix describes the usage of BPB in batch and consequently via JCL.
However, GCL can also benefit from BPB.

In GCL, BPB is available via the GCL command EXEC_PG and the GCL
commands which call the GCOS 7 utilities.

For more details, see the manual Batch Booster.

47 A2 04UF Rev06 i-1

Index

A

address space 1-8
hex layout C-1

After Journal 5-48
ALCi parameter group 6-47
ASGi

file assignment parameters 5-5
ASGi parameter group 7-14
ASSIGN 7-14

B

Before Journal 5-47
BLKSIZE 7-4
buffer management 5-24
buffer pool 5-27
buffer space 5-26
buffers

algorithm E-1
batch usage 5-35
busy E-1
creation 5-41
deletion 5-41
IOF usage 5-33
number 5-29
remember E-1
states E-1
TDS usage 5-31
tuning 5-40

BUFPOOL 5-27
BUILD_FILE 6-38

C

CI 1-7
debugging C-1
layout C-1
maximum allocation 6-7

CIFSP parameter 6-23
CISIZE

indexed sequential 6-22
control interval 1-7
CREATE_FILE 6-44
cylinder

maximum allocation 6-8

D

data block 1-9
data CI format

indexed sequential 4-24
relative file 3-7
sequential file 2-6

Data Services Language 8-6
DEFi 5-23
DEFi parameter group 6-49
device sharing 5-16
DSL 8-6

E

EXEC_PG 5-5
extensible processing 5-12

UFAS-EXTENDED User’s Guide

i-2 47 A2 04UF Rev06

F

FBO disk volumes 1-9
file attribute definition 5-23
file sharing 5-18
files

allocation 6-4
converting UFAS 8-4
creation 5-50
extensions 5-55
increment size 6-12
initial size 6-11
integrity 5-50
merging 8-1
migrating VBO-FBO 8-5
processing 5-51
restoring 5-55
simulated allocation 6-13
sorting 8-1

fixed length records 1-6
free space 6-23

G

GCL/JCL correspondence D-1

I

INCRSIZE parameter 6-12
indexed sequential 4-2

CI size 6-22
dynamic access 4-8
file structure 4-12
open modes 4-5
random access 4-7
record insertion 4-18
secondary keys 4-9
sequential access 4-6

J

JCL/GCL correspondence D-1
job occurrence report 5-42
JOR 5-42

L

LIST_FILE 6-52
LIST_FILE_SPACE 6-53
LOAD_FILE 8-2
logical records 1-4

M

MAINTAIN_MIGRATION 8-5
mass insertion 6-24
MNMIG 8-5
MODIFY_FILE 6-54
MODIFY_FILE_SPACE 6-56
MOUNT parameter 5-14
multivolume devices 5-14
multivolume files 2-4, 5-11

N

NBBUF 5-29

O

overriding rules 5-21

P

partial processing 5-12
POOLparameter 5-16
POOLSIZE 5-26

R

randomizing A-1
RECFORM 7-5
RECSIZE 7-4
relative file 3-2

dynamic access 3-6
open modes 3-3
random access 3-5
sequential access 3-4

RESERVE AREAS 5-29

Index

47 A2 04UF Rev06 i-3

S

sequential access 2-2
sequential file

open modes 2-3
SHARE parameter 5-18
SIZE parameter 6-11
space requirements

calculation 6-25
indexed sequential 6-21
relative files 6-18, 6-21

statistics 5-42

T

tape files
attributes 7-4
block size 7-11
creation 7-12
data organization B-2
file organization B-2
labels 7-3
multivolume B-2
record length 7-16
referencing 7-14
types 7-2

tapes
conventions B-1
header labels B-6
labels B-4
marks B-5
trailer labels B-11
volume formats B-13, B-21

trailer labels
EOF B-11, B-21
EOV B-12, B-21

U

UFAS file conversion 8-4
utilities

file level 8-7
volume level 8-9

V

variable length records 1-6
volume

named 5-10
resident 5-8
work 5-9

UFAS-EXTENDED User’s Guide

i-4 47 A2 04UF Rev06

Technical publication remarks form

Title : DPS7000/XTA NOVASCALE 7000 UFAS-EXTENDED User's Guide File and Volume
Management

Reference Nº : 47 A2 04UF 06 Date: September 2002

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please include your complete mailing address below.

NAME : Date :

COMPANY :

ADDRESS :

Please give this technical publication remarks form to your BULL representative or mail to:

Bull - Documentation Dept.

1 Rue de Provence
BP 208
38432 ECHIROLLES CEDEX
FRANCE
info@frec.bull.fr

Technical publications ordering form

To order additional publications, please fill in a copy of this form and send it via mail to:

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Phone: +33 (0) 2 41 73 72 66
FAX: +33 (0) 2 41 73 70 66
E-Mail: srv.Duplicopy@bull.net

CEDOC Reference # Designation Qty

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

[_ _] : The latest revision will be provided if no revision number is given.

NAME: Date:

COMPANY:

ADDRESS:

PHONE: FAX:

E-MAIL:

For Bull Subsidiaries:

Identification:

For Bull Affiliated Customers:

Customer Code:

For Bull Internal Customers:

Budgetary Section:

For Others: Please ask your Bull representative.

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

47 A2 04UF 06
REFERENCE

	UFAS-EXTENDED User's Guide - 47 A2 04UF Rev06
	Preface
	Table of Contents
	Table of Graphics

	1. Introduction to UFAS-EXTENDED
	1.1 Summary
	1.2 Overview of UFAS-EXTENDED
	1.3 UFAS-EXTENDED Features
	1.4 Essential Concepts
	1.4.1 Logical Records
	1.4.2 Control Intervals (CIs)
	1.4.3 Control Intervals and Address Spaces
	1.4.4 Different Types of Disk Volumes
	1.4.4.1 FBO Disk Volumes
	1.4.4.2 VBO Disk Volumes

	2. Sequential Organization
	2.1 Summary
	2.2 Brief Review of Sequential Organization
	2.3 Types of Open Mode
	2.4 Type of Access Mode in COBOL-85
	2.5 Using a Sequential File for the First Time
	2.6 Format of a Data CI in a Sequential File

	3. Relative Organization
	3.1 Summary
	3.2 Brief Review of Relative Organization
	3.3 Types of Open Mode
	3.4 Types of Access Mode in COBOL
	3.4.1 Sequential-Access Mode in COBOL-85
	3.4.2 Random-Access Mode in COBOL-85
	3.4.3 Dynamic-Access Mode in COBOL-85

	3.5 Using a Relative File for the First Time
	3.6 Format of a Data CI in a Relative File
	3.7 Example of an Application

	4. Indexed Sequential Organization
	4.1 Summary
	4.2 Brief Review of Indexed Sequential Organization
	4.3 Types of Open Mode
	4.4 Types of Access Mode in COBOL-85
	4.4.1 Sequential-Access Mode in COBOL-85
	4.4.2 Random-Access Mode in COBOL-85
	4.4.3 Dynamic-Access Mode in COBOL-85

	4.5 Using an Indexed Sequential File for the First Time
	4.6 Adding Records
	4.7 Deleting Records
	4.8 Secondary Keys
	4.8.1 Creating Secondary Indexes
	4.8.2 Updating Secondary Indexes

	4.9 Structure of a UFAS-Extended Indexed Sequential File
	4.9.1 Address Space 1
	4.9.2 Address Space 2
	4.9.3 Address Space 3
	4.9.4 Address Space 4
	4.9.5 Address Space 5
	4.9.6 Address Space 6
	4.9.7 Address Space 7
	4.9.8 Primary-Index Handling
	4.9.9 Secondary-Index Handling
	4.9.10 Structure of a Primary and Secondary Index

	4.10 Allowing for Free Space
	4.11 Inserting Records
	4.11.1 Simple Insertion
	4.11.2 Insertion Requiring CI Compaction
	4.11.3 Insertion Requiring CI Splitting
	4.11.4 Insertion Requiring Reorganization of Index Cls

	4.12 Format of a Data Ci In an Indexed Sequential File
	4.13 Example of an Application

	5. File Assignment, Buffer Management, and File Integrity
	5.1 Summary
	5.2 GCL Commands
	5.3 JCL Statements
	5.4 User-Program Reference
	5.5 File-Assignment Parameter Group ASGi in the GCL Command EXEC_PG
	5.6 Types of Volume
	5.6.1 Resident Volume
	5.6.2 Work Volume
	5.6.3 Named Volume

	5.7 Multivolume Files
	5.7.1 Partial/Extensible Processing of Multivolume Files
	5.7.2 Managing Multivolume Devices (MOUNT)

	5.8 Sharing Devices between Files (POOL)
	5.9 File Sharing
	5.10 Overriding Rules
	5.11 Using the File-Define Parameter Group DEFi
	5.12 Buffer Management
	5.12.1 Declaring the Size of the Overall Buffer Space (POOLSIZE)
	5.12.2 Defining a Buffer Pool (BUFPOOL)
	5.12.3 Defining the Number of Buffers (RESERVE AREAS/NBBUF)
	5.12.4 Examples of Buffer Usage
	5.12.5 Tuning Buffers
	5.12.6 UFAS-EXTENDED Statistics as Presented in the JOR

	5.13 Journalization
	5.13.1 Before Journal
	5.13.2 After Journal

	5.14 File Integrity
	5.14.1 File Creation
	5.14.1.1 Files without Secondary Keys
	5.14.1.2 Files with Secondary Keys

	5.14.2 File Processing
	5.14.2.1 INPUT Open Mode
	5.14.2.2 EXTEND Mode
	5.14.2.3 Files Without Secondary Keys
	5.14.2.4 Files With Secondary Keys

	5.14.3 File Extension
	5.14.4 Permanent I-O Errors

	6. Designing and Allocating UFAS-EXTENDED Disk Files
	6.1 Summary
	6.2 Preliminary Remarks
	6.3 What Happens when you Allocate a File
	6.3.1 Choosing the CI Size (CISIZE)
	6.3.2 Recommended CI Sizes by Space Occupied
	6.3.3 Disk-Storage Capacity
	6.3.4 Choosing the Initial Size (SIZE)
	6.3.5 Choosing the Increment Size (INCRSIZE)

	6.4 Simulating File Allocation
	6.5 Calculating Space Requirements fir a Sequential File
	6.5.1 Fixed-Length Records
	6.5.2 Variable-Length Records

	6.6 Calculating Space Requirements for a Relative File
	6.7 Design Guidelines for Indexed Sequential Files
	6.7.1 Choosing the CISIZE for an Indexed Sequential File
	6.7.2 Choosing Free Space (CIFSP)
	6.7.3 Mass Insertion
	6.7.4 Files With Secondary Keys
	6.7.5 Calculating Space Requirements
	6.7.5.1 File Without Secondary Indexes
	6.7.5.2 File With Secondary Indexes

	6.8 File Allocation Commands
	6.8.1 BUILD_FILE
	6.8.1.1 Examples of File Allocation Using BUILD_FILE

	6.8.2 CREATE_FILE
	6.8.3 The File-Allocation Parameter Group ALCi
	6.8.4 The File-Define Parameter Group DEFi
	6.8.5 LIST_FILE
	6.8.6 LIST_FILE_SPACE
	6.8.7 MODIFY_FILE
	6.8.8 MODIFY_FILE_SPACE

	7. Magnetic Tape and Cartridge Tape Files
	7.1 Summary
	7.2 Types of Tape File
	7.3 Tape Labels
	7.4 File Attributes
	7.4.1 Record Size (RECSIZE)
	7.4.2 Block Size (BLKSIZE)
	7.4.3 Record Format (RECFORM)
	7.4.3.1 Fixed-Length Records
	7.4.3.2 Variable-Length Records

	7.5 Choosing the Block Size
	7.6 Creating a Magnetic-Tape or a Cartridge-Tape File
	7.7 Referencing Tape Files
	7.8 Minimum Length of a Physical Record
	7.9 Compacted Data On Tape

	8. File Manipulation and Maintenance
	8.1 Summary
	8.2 Sorting and Merging Files
	8.3 Load_File
	8.3.1 Converting UFAS Files to the UFAS-EXTENDED File Format
	8.3.2 Converting VBO files to FBO format

	8.4 Data Services Language (DSL)
	8.5 File-Level Utilities
	8.6 Volume-Level Utilities
	8.7 Visibility of Physical and Logical Space Allocated to UFAS Disk Files

	A. Randomizing Formulas for Relative Files
	A.1 Randomizing Techniques
	A.2 Prime-Number Division
	A.3 Square, Enfold, and Extract
	A.4 Radix Conversion
	A.5 Frequency Analysis
	A.5.1 Using Frequency Analysis to Develop Randomized Relative Record Addresses

	A.6 Non-Numeric Keys

	B. Label and Volume Formats of Magnetic Tapes
	B.1 Magnetic-Tape Conventions
	B.1.1 Reel/File Relationship
	B.1.2 File Organization
	B.1.3 Data Organization

	B.2 Native Magnetic Tape Label and Volume Formats
	B.2.1 General Information
	B.2.2 GCOS7/ASCII Standard Format

	C. Hexadecimal Layout of Address Spaces in an Indexed Sequential File
	D. JCL - GCL / GCL - JCL Correspondence Tables
	E. More About Buffers
	F. UFAS Files under UFAS-EXTENDED
	G. Batch Performance Improvement
	G.1 Overview
	G.1.1 How to Activate the Batch Booster Option
	G.1.1.1 Activation External to the Program
	G.1.1.2 Activation Within a Program

	G.1.2 How BPB Processing Works

	G.2 Conditions for BPB Processing
	G.3 Support of Data Management Utilities
	G.3.1 File Transfer
	G.3.2 SORT/MERGE Utilities
	G.3.2.1 Sort
	G.3.2.2 Merge

	G.4 Usage In GCL

	Index

