
COBOL85

Reference Manual

 D
PS

7
0
0
0
/
X
TA

N
O

VA
S
C

A
LE

 7
0
0
0

Languages: COBOL

REFERENCE
47 A2 05UL 04





DPS7000/XTA
NOVASCALE 7000

COBOL85
Reference Manual

Languages: COBOL

November 1997

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

REFERENCE
47 A2 05UL 04



The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not
limited to, copying, distributing, modifying, and making derivative works.

Copyright  Bull SAS 1994, 1997

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of this
book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

Intel® and Itanium® are registered trademarks of Intel Corporation.

Windows® and Microsoft® software are registered trademarks of  Microsoft Corporation.

UNIX® is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Linux® is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Bull will not be liable for errors contained
herein, or for incidental or consequential damages in connection with the use of this material.



47 A2 05UL Rev04 iii

Preface

COBOL (Common Business Oriented Language), a programming language used for
commercial data processing applications, was developed by the Conference on data
Systems Languages (CODASYL) American National Standard COBOL x3.23.1985 as
specified by the American National Standards Committee or the identical International
Standards Organization (ISO) standard No. 1989, is the standard for the language
implemented by the GCOS (General Comprehensive Operating Supervisor) DPS 7000
COBOL Compiler.

MANUAL OBJECTIVES

This manual is designed to provide a complete description of the DPS 7000 COBOL
language as developed for use with the DPS 7000 Computer System.

|Underlined text delimited by vertical bars| or boxed elements in formats (as shown
immediately below)

           {    DPS7                       }
           { |-----------------|           }
           { |                 | {GCOS    }}
          [{ | [HIS-SERIES-60] | {        }}
           { |                 | {LEVEL-64}}
           { |-----------------|           }
           {    computer-name              }

in this manual indicate DPS 7000 extensions to American National Standard COBOL.
Use of these extensions in COBOL source programs intended to be compiled
interchangeably by more than one COBOL compiler may lead to different compilation
and/or execution results.

This COBOL manual has been developed as the basic reference source for all DPS 7000
COBOL language rules, including language structure, format and usage.

Only those features described in this manual should be used in the source program input
to the DPS 7000 COBOL compiler.  Any other COBOL statement may result in
undefined output.



GCOS 7 COBOL 85 Reference Manual

iv 47 A2 05UL Rev04

INTENDED AUDIENCE

Persons concerned with COBOL DPS 7000 programming:

• Programmers

• System engineers

STRUCTURE OF THE DOCUMENT

The first part (Chapter 1 through Chapter 4) of the manual covers general characteristics
of the language in narrative form.

The second part (Chapter 5 through Chapter 13) of the manual consists of the specific
format descriptions for all COBOL Statements, clauses, and phrases available in this
release.  Specific rules related to language or syntax requirements appear under each
format description, followed by general rules for usage of the term in a program.

A third part (Chapters 14 through 18) gives description of segmentation, COBOL source
text manipulation facility, debugging facility, COBOL reference format, and intrinsic
functions.



Preface

47 A2 05UL Rev04 v

ASSOCIATED DOCUMENTS

The following publications of the DPS 7000 manual set should also be referred to:

Program Checkout Facility User's Guide ......................................................47 A2 15UP

COBOL 85 User's Guide .............................................................................. 47 A2 06UL

SORT/MERGE Utilities User's Guide ...........................................................47 A2 08UF

GCOS 7-V6 Networks: Overview and Generation ....................................... 47 A2 71UC
GCOS 7-V6 Networks: Operations Reference Manual................................. 47 A2 72UC
GCOS 7-V6 Networks: DSAC User's Guide ................................................ 47 A2 75UC
GCOS 7-V6 Networks: AUPI User's Guide.................................................. 47 A2 76UC

Networks Overview (V7) ............................................................................. 47 A2 92UC
Networks Generation (7) ............................................................................. 47 A2 93UC
Networks User's Guide (V7) ........................................................................ 47 A2 94UC

MCS User's Guide ...................................................................................... 47 A2 32UC

JCL Reference Manual................................................................................. 47 A2 11UJ
JCL User's Guide ......................................................................................... 47 A2 12UJ

Library Maintenance Reference Manual .......................................................47 A2 01UP
Library Maintenance User's Guide................................................................47 A2 02UP

GCOS 7-V6 Data Management Utilities User's Guide...................................47 A2 26UF

TDS COBOL Programmer's Guide (V6) .......................................................47 A2 21UT
TDS COBOL Programmer's Guide (V7) .......................................................47 A2 33UT
TDS C Programmer's Guide.........................................................................47 A2 07UT

UFAS-EXTENDED User's Guide..................................................................47 A2 04UF

IOF Terminal User's Reference Manual Part 1 (V6)...................................... 47 A2 31UJ
IOF Terminal User's Reference Manual Part 2 (V6)...................................... 47 A2 32UJ
IOF Terminal User's Reference Manual Part 3 (V6)...................................... 47 A2 33UJ
IOF Terminal User's Reference Manual Part 4 (V6)...................................... 47 A2 34UJ
IOF Terminal User's Reference Manual Part 1 (V7)...................................... 47 A2 38UJ
IOF Terminal User's Reference Manual Part 2 (V7)...................................... 47 A2 39UJ
IOF Terminal User's Reference Manual Part 3 (V7)...................................... 47 A2 40UJ

GCL Programmer's Manual (V7) .................................................................. 47 A2 36UJ



GCOS 7 COBOL 85 Reference Manual

6 47 A2 05UL Rev04

ACKNOWLEDGMENT

This acknowledgment has been reproduced from the CODASYL COBOL Journal of
Development, 1984, as requested in that publication, prepared and published by the
CODASYL Programming Language Committee.

"Any organization interested in reproducing the COBOL report and specifications in
whole or in part, using ideas from this report as the basis for an instruction manual or for
any other purpose, is free to do so.  However, all such organization are requested to
reproduce the following acknowledgment paragraphs in their entirety as part of the
preface to any such publication.  Any organization using a short passage from this
document, such as in a book review, is requested to mention "COBOL" in
acknowledgment of the source, but need not quote the acknowledgment.

COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL
Programming Language Committee as to the accuracy and functioning of the
programming system and language.  Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein:

FLOW MATIC (trademark of Sperry Rand Corporation), Programming for the
Univac (R) I and II, data Automation Systems copyrighted 1958, 1959, by Sperry
Rand Corporation; IBM Commercial Translator Form No F 28 8013, copyrighted
1959 by IBM; FACT DSI 27A5260 2760, copyrighted 1960 by Minneapolis-
Honeywell.

have specifically authorized the use of this material in whole or in part in the COBOL
specifications.  Such authorization extends to the reproduction and use of COBOL
specifications in programming manuals or similar publications."



47 A2 05UL Rev04 vii

Table of Contents

1. Concepts ............................................................................................................ 1-1

1.1 INTRODUCTION .................................................................................................... 1-1

1.2 FILES ..................................................................................................................... 1-1

1.2.1 File Attributes ........................................................................................................ 1-1
1.2.1.1 Sequential Organization.......................................................................................... 1-2
1.2.1.2 Relative Organization ............................................................................................. 1-2
1.2.1.3 Indexed Organization.............................................................................................. 1-2
1.2.1.4 Logical Records ...................................................................................................... 1-3

1.2.2 File Processing ..................................................................................................... 1-4
1.2.2.1 Record Operations.................................................................................................. 1-4
1.2.2.2 File Operations ....................................................................................................... 1-6
1.2.2.3 Exception Handling................................................................................................. 1-7

1.3 REPORT WRITER.................................................................................................. 1-9

1.3.1 Report Section ...................................................................................................... 1-9
1.3.2 Report Structure ................................................................................................... 1-10
1.3.2.1 Vertical Spacing...................................................................................................... 1-10
1.3.2.2 Horizontal Spacing.................................................................................................. 1-10
1.3.2.3 Data Manipulation................................................................................................... 1-10
1.3.2.4 Report Subdivisions ................................................................................................ 1-11

1.3.3 Procedure Division Report Writer Statements .................................................... 1-12

1.4 TABLE HANDLING ................................................................................................ 1-13

1.4.1 Table Definition ..................................................................................................... 1-13
1.4.2 Initial Values of Tables ......................................................................................... 1-15
1.4.3 References to Table Items .................................................................................... 1-15
1.4.4 Subscripting .......................................................................................................... 1-16

1.5 SHARED MEMORY AREA ..................................................................................... 1-19



GCOS 7 COBOL 85 Reference Manual

viii 47 A2 05UL Rev04

1.6 PROGRAM AND RUN UNIT ORGANIZATION AND COMMUNICATION ............... 1-20

1.6.1 Program and Run Unit Organization ................................................................... 1-20
1.6.2 Accessing Data and Files ..................................................................................... 1-21
1.6.2.1 Names .................................................................................................................... 1-21
1.6.2.2 Objects ................................................................................................................... 1-22
1.6.2.3 Name Resolution .................................................................................................... 1-24

1.6.3 Program Classes ................................................................................................... 1-24
1.6.3.1 Common Programs................................................................................................. 1-24
1.6.3.2 Initial Programs....................................................................................................... 1-25

1.6.4 Inter-Program Communication ............................................................................ 1-25
1.6.4.1 Transfer of Control.................................................................................................. 1-25
1.6.4.2 Passing Parameters to Programs............................................................................ 1-27
1.6.4.3 Sharing Data........................................................................................................... 1-28
1.6.4.4 Sharing Files........................................................................................................... 1-28

1.6.5 Intra-Program Communication ............................................................................ 1-29
1.6.5.1 Transfer of Control.................................................................................................. 1-29
1.6.5.2 Shared Data............................................................................................................ 1-29

1.6.6 Segmentation ........................................................................................................ 1-30

1.7 COMMUNICATION FACILITY ................................................................................ 1-31

1.7.1 MCS (Message Control System) .......................................................................... 1-31
1.7.2 The COBOL Object Program ................................................................................ 1-32
1.7.3 Relationship to MCS and Communication Devices ............................................ 1-32
1.7.4 The Concept of Messages and Message Segments ........................................... 1-35
1.7.5 The Concept of Queues ........................................................................................ 1-35
1.7.6 The Concept of Transaction Communication ..................................................... 1-38

1.8 INTRINSIC FUNCTION FACILITY ......................................................................... 1-39

2. Notation Used in Formats and Rules ....................................................... 2-1

2.1 DEFINITION OF A GENERAL FORMAT ................................................................ 2-1

2.2 FORMATS ELEMENTS .......................................................................................... 2-2

2.2.1 Upper-case and Lower-case Words ..................................................................... 2-2
2.2.2 Level-Numbers ...................................................................................................... 2-2
2.2.3 Brackets and Braces ............................................................................................. 2-3
2.2.4 Ellipsis ................................................................................................................... 2-3

2.3 FORMAT PUNCTUATION ...................................................................................... 2-4

2.4 USE OF SPECIAL CHARACTER WORDS IN FORMATS ...................................... 2-4



Table of Contents

47 A2 05UL Rev04 ix

3. COBOL Language Concepts ....................................................................... 3-1

3.1 COBOL CHARACTER SET .................................................................................... 3-1

3.2 LANGUAGE STRUCTURE ..................................................................................... 3-4

3.2.1 Separators ............................................................................................................. 3-4
3.2.2 Character-Strings .................................................................................................. 3-5
3.2.2.1 COBOL Words........................................................................................................ 3-6
3.2.2.2 Literals.................................................................................................................... 3-10
3.2.2.3 Picture Character-Strings........................................................................................ 3-15
3.2.2.4 Comment-Entries.................................................................................................... 3-15

3.3 CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION ..................... 3-16

3.3.1 Logical Record Concept ....................................................................................... 3-16
3.3.1.1 Physical Aspects of a File ....................................................................................... 3-16
3.3.1.2 Conceptual Characteristics of a File........................................................................ 3-16
3.3.1.3 Record Concepts .................................................................................................... 3-17

3.3.2 Concepts of Levels ............................................................................................... 3-17
3.3.3 Concept of Classes of Data .................................................................................. 3-18
3.3.4 Selection of Character Representation and Radix .............................................. 3-19
3.3.4.1 Size of an Elementary Item..................................................................................... 3-19
3.3.4.2 Data Types ............................................................................................................. 3-19

3.3.5 Algebraic Signs ..................................................................................................... 3-22
3.3.6 Standard Rules for Data Alignment ..................................................................... 3-22
3.3.7 Data Allocation ...................................................................................................... 3-24
3.3.7.1 Alignment ............................................................................................................... 3-24
3.3.7.2 Unused Space ........................................................................................................ 3-25
3.3.7.3 Allocation................................................................................................................ 3-25
3.3.7.4 Size of Elementary Items........................................................................................ 3-27
3.3.7.5 Synchronization of Boundaries................................................................................ 3-28

3.3.8 Definition of a Legible Equivalent ....................................................................... 3-32
3.3.8.1 Legible Input Equivalent.......................................................................................... 3-33
3.3.8.2 Legible Output Equivalent....................................................................................... 3-34

3.3.9 Uniqueness of Reference ..................................................................................... 3-36
3.3.9.1 Qualification............................................................................................................ 3-36
3.3.9.2 Subscripting............................................................................................................ 3-39
3.3.9.3 Function-Identifier................................................................................................... 3-41
3.3.9.4 Reference Modifier ................................................................................................. 3-42
3.3.9.5 Identifier ................................................................................................................. 3-44
3.3.9.6 Condition-Name...................................................................................................... 3-44

3.4 EXPLICIT AND IMPLICIT SPECIFICATIONS ........................................................ 3-45

3.4.1 Explicit and Implicit Procedure Division References ......................................... 3-45
3.4.2 Explicit and Implicit Transfers of Control ........................................................... 3-46
3.4.3 Explicit and Implicit Attributes ............................................................................. 3-47
3.4.4 Explicit and Implicit Scope Terminators ............................................................. 3-48



GCOS 7 COBOL 85 Reference Manual

x 47 A2 05UL Rev04

3.5 ACCESSING DATA I TEMS .................................................................................... 3-49

3.5.1 External Data Records and Items ......................................................................... 3-49
3.5.2 Local Data Items ................................................................................................... 3-49

3.6 EXTERNAL SWITCH ............................................................................................. 3-49

3.7 SCOPE OF NAMES ............................................................................................... 3-50

3.7.1 Conventions for Program-names ......................................................................... 3-51
3.7.2 Conventions for Index-names .............................................................................. 3-52
3.7.3 Conventions for Other Names ............................................................................. 3-52

4. The COBOL Program: a Summary ............................................................ 4-1

4.1 STRUCTURE OF A COBOL PROGRAM ............................................................... 4-2

4.1.1 General Format ..................................................................................................... 4-2
4.1.2 Syntax Rule ........................................................................................................... 4-2
4.1.3 General Rules ........................................................................................................ 4-2

4.2 CONTROL DIVISION ............................................................................................. 4-3

4.3 IDENTIFICATION DIVISION .................................................................................. 4-3

4.4 ENVIRONMENT DIVISION..................................................................................... 4-3

4.5 DATA DIVISION ..................................................................................................... 4-4

4.6 PROCEDURE DIVISION ........................................................................................ 4-5

4.7 END PROGRAM HEADER ..................................................................................... 4-6

4.7.1 Format ................................................................................................................... 4-6
4.7.2 Syntax Rules ......................................................................................................... 4-6
4.7.3 General Rules ........................................................................................................ 4-6

5. Control Division ............................................................................................... 5-1

5.1 GENERAL DESCRIPTION ..................................................................................... 5-1

5.2 CONTROL DIVISION ............................................................................................. 5-2



Table of Contents

47 A2 05UL Rev04 xi

5.3 SUBSTITUTION SECTION .................................................................................... 5-3

5.4 DEFAULT SECTION .............................................................................................. 5-6

6. Identification Division .................................................................................... 6-1

6.1 GENERAL DESCRIPTION ..................................................................................... 6-1

6.2 IDENTIFICATION DIVISION .................................................................................. 6-2

6.3 PROGRAM-ID ........................................................................................................ 6-3

6.4 DATE-COMPILED .................................................................................................. 6-4

7. Environment Division .................................................................................... 7-1

7.1 GENERAL DESCRIPTION ..................................................................................... 7-1

7.2 ORGANIZATION .................................................................................................... 7-1

7.3 ENVIRONMENT DIVISION..................................................................................... 7-2

7.4 SOURCE-COMPUTER ........................................................................................... 7-3

7.5 OBJECT-COMPUTER ............................................................................................ 7-5

7.6 SPECIAL-NAMES .................................................................................................. 7-8

7.7 FILE-CONTROL-ENTRY ........................................................................................ 7-15

7.8 I-O-CONTROL........................................................................................................ 7-37

8. Data Division - Overview .............................................................................. 8-1

8.1 FILE SECTION ....................................................................................................... 8-3

8.2 WORKING-STORAGE SECTION ........................................................................... 8-4



GCOS 7 COBOL 85 Reference Manual

xii 47 A2 05UL Rev04

8.2.1 Non-Contiguous Working-Storage ...................................................................... 8-4
8.2.2 Working-Storage Records .................................................................................... 8-4
8.2.3 Working-Storage ................................................................................................... 8-4

8.3 CONSTANT SECTION ........................................................................................... 8-5

8.4 LINKAGE SECTION ............................................................................................... 8-6

8.4.1 Parameters ............................................................................................................ 8-6
8.4.2 Based Data Items .................................................................................................. 8-6
8.4.3 Non-Contiguous Linkage Storage ....................................................................... 8-7
8.4.4 Linkage Records ................................................................................................... 8-7
8.4.5 Initial Values .......................................................................................................... 8-7

8.5 COMMUNICATION SECTION ................................................................................ 8-8

8.6 REPORT SECTION................................................................................................ 8-9

8.6.1 Report Description Entry ...................................................................................... 8-9
8.6.2 Report Group Description Entry .......................................................................... 8-9

8.7 RECORD DESCRIPTION STRUCTURE ................................................................ 8-10

8.8 FILE DESCRIPTION .............................................................................................. 8-11

8.9 SORT-MERGE FILE DESCRIPTION- COMPLETE ENTRY SKELETON ............... 8-16

8.10 COMMUNICATION DESCRIPTION - COMPLETE ENTRY SKELETON ................ 8-17

8.11 REPORT DESCRIPTION - COMPLETE ENTRY SKELETON ................................ 8-32

8.12 DATA DESCRIPTION - COMPLETE ENTRY SKELETON ..................................... 8-34



Table of Contents

47 A2 05UL Rev04 xiii

8.13 REPORT GROUP DESCRIPTION - COMPLETE ENTRY SKELETON .................. 8-37

8.13.1 Presentation Rules Tables ................................................................................... 8-41
8.13.2 REPORT HEADING Group Presentation Rules ................................................... 8-44
8.13.3 PAGE HEADING Group Presentation Rules ........................................................ 8-47
8.13.4 Body Group Presentation Rules .......................................................................... 8-49
8.13.5 PAGE FOOTING Presentation Rules ................................................................... 8-54
8.13.6 REPORT FOOTING Presentation Rules ............................................................... 8-56

9. Data Division - Clauses ................................................................................. 9-1

9.1 BLANK WHEN ZERO ............................................................................................. 9-2

9.2 BLOCK CONTAINS ............................................................................................... 9-3

9.3 CODE ..................................................................................................................... 9-4

9.4 CODE-SET ............................................................................................................. 9-5

9.5 COLUMN NUMBER ............................................................................................... 9-7

9.6 CONTROL.............................................................................................................. 9-8

9.7 DATA-NAME/FILLER ............................................................................................. 9-10

9.8 DATA RECORDS ................................................................................................... 9-11

9.9 EXTERNAL ............................................................................................................ 9-12

9.10 GLOBAL ................................................................................................................ 9-13

9.11 GROUP INDICATE ................................................................................................. 9-14

9.12 JUSTIFIED ............................................................................................................. 9-15

9.13 LABEL RECORDS ................................................................................................. 9-16

9.14 LEVEL-NUMBER ................................................................................................... 9-17

9.15 LINAGE .................................................................................................................. 9-18



GCOS 7 COBOL 85 Reference Manual

xiv 47 A2 05UL Rev04

9.16 LINE NUMBER ....................................................................................................... 9-21

9.17 NEXT GROUP........................................................................................................ 9-23

9.18 OCCURS ................................................................................................................ 9-24

9.19 PAGE ..................................................................................................................... 9-27

9.20 PICTURE................................................................................................................ 9-31

9.20.1 Editing Rules ......................................................................................................... 9-39
9.20.2 Precedence Rules ................................................................................................. 9-43

9.21 RECORD ................................................................................................................ 9-45

9.22 REDEFINES ........................................................................................................... 9-49

9.23 RENAMES .............................................................................................................. 9-51

9.24 REPORT ................................................................................................................ 9-53

9.25 SIGN ...................................................................................................................... 9-54

9.26 SOURCE ................................................................................................................ 9-56

9.27 SUM ....................................................................................................................... 9-57

9.28 SYNCHRONIZED ................................................................................................... 9-60

9.29 TYPE...................................................................................................................... 9-63

9.30 USAGE ................................................................................................................... 9-68

9.31 VALUE ................................................................................................................... 9-73

9.32 VALUE OF ............................................................................................................. 9-77



Table of Contents

47 A2 05UL Rev04 xv

10. Procedure Division - Overview ................................................................... 10-1

10.1 GENERAL DESCRIPTION ..................................................................................... 10-1

10.1.1 The Procedure Division Declaratives .................................................................. 10-1
10.1.2 Procedures ............................................................................................................ 10-1
10.1.3 Execution .............................................................................................................. 10-2
10.1.4 Procedure Division Structure ............................................................................... 10-2
10.1.4.1 Procedure Division Header ..................................................................................... 10-2
10.1.4.2 Procedure Division Body......................................................................................... 10-4

10.2 STATEMENTS AND SENTENCES ........................................................................ 10-5

10.2.1 Conditional Statements and Sentences .............................................................. 10-5
10.2.1.1 Definition of Conditional Statement......................................................................... 10-5
10.2.1.2 Definition of Conditional Phrase.............................................................................. 10-6
10.2.1.3 Definition of Conditional Sentence .......................................................................... 10-6

10.2.2 Compiler Directing Statements and Compiler Directing Sentences .................. 10-6
10.2.2.1 Definition of Compiler Directing Statement ............................................................. 10-6
10.2.2.2 Definition of Compiler Directing Sentence............................................................... 10-6

10.2.3 Imperative Statements and Imperative Sentences .............................................. 10-7
10.2.3.1 Definition of Imperative Statement.......................................................................... 10-7
10.2.3.2 Definition of Imperative Sentence ........................................................................... 10-8

10.2.4 Delimited Scope Statements ................................................................................ 10-8

10.3 ARITHMETIC EXPRESSIONS ............................................................................... 10-9

10.3.1 Definition of Arithmetic Expression .................................................................... 10-9
10.3.2 Arithmetic Operators ............................................................................................ 10-9
10.3.3 Formation and Evaluation Rules ......................................................................... 10-10

10.4 BOOLEAN EXPRESSIONS .................................................................................... 10-12

10.4.1 Definition of a Boolean Expression ..................................................................... 10-12
10.4.2 Boolean Operators ................................................................................................ 10-12
10.4.3 Boolean Formation and Evaluation Rules ........................................................... 10-12

10.5 CONDITIONAL EXPRESSIONS ............................................................................. 10-14

10.5.1 Simple Conditions ................................................................................................ 10-14
10.5.1.1 Relation Condition .................................................................................................. 10-14
10.5.1.2 Class Condition....................................................................................................... 10-18
10.5.1.3 Condition-name Condition (Conditional Variable) .................................................... 10-19
10.5.1.4 Switch-status Condition........................................................................................... 10-19
10.5.1.5 Sign Condition ........................................................................................................ 10-20



GCOS 7 COBOL 85 Reference Manual

xvi 47 A2 05UL Rev04

10.5.2 Complex Conditions ............................................................................................. 10-20
10.5.2.1 Negated Conditions................................................................................................. 10-21
10.5.2.2 Combined Conditions.............................................................................................. 10-21
10.5.2.3 Precedence of Logical Operators and Use of Parentheses...................................... 10-21

10.5.3 Abbreviated Combined Relation Condition ........................................................ 10-22
10.5.4 Order of Evaluation of Conditions ....................................................................... 10-24

10.6 CATEGORIES OF STATEMENTS ......................................................................... 10-25

10.6.1 Specific Statement Formats ................................................................................. 10-27

10.7 COMMON OPTIONS AND RULES FOR STATEMENT FORMATS ....................... 10-28

10.7.1 Intermediate Data Item .......................................................................................... 10-28
10.7.2 The ROUNDED Phrase .......................................................................................... 10-28
10.7.3 The SIZE ERROR Phrase ...................................................................................... 10-29
10.7.4 The CORRESPONDING Phrase ............................................................................ 10-30
10.7.5 The Arithmetic Statements ................................................................................... 10-31
10.7.6 Overlapping Operands ......................................................................................... 10-31
10.7.7 Multiple Results in Arithmetic Statements .......................................................... 10-32
10.7.8 Incompatible Data ................................................................................................. 10-32
10.7.9 The INVALID KEY Condition ................................................................................ 10-33
10.7.10 The AT END Condition ......................................................................................... 10-34
10.7.11 The FROM Option ................................................................................................. 10-34
10.7.12 The INTO Option ................................................................................................... 10-35

11. Procedure Division - Statements(ACCEPT to GO TO) ....................... 11-1

11.1 ACCEPT ................................................................................................................. 11-2

11.2 ADD........................................................................................................................ 11-6

11.3 ALTER ................................................................................................................... 11-8

11.4 ASSIGN .................................................................................................................. 11-9

11.5 CALL ...................................................................................................................... 11-12

11.6 CANCEL ................................................................................................................. 11-17

11.7 CLOSE ................................................................................................................... 11-19

11.8 COMPUTE ............................................................................................................. 11-23



Table of Contents

47 A2 05UL Rev04 xvii

11.9 CONTINUE............................................................................................................. 11-25

11.10 DELETE ................................................................................................................. 11-26

11.11 DISABLE ................................................................................................................ 11-28

11.12 DISPLAY ................................................................................................................ 11-30

11.13 DIVIDE ................................................................................................................... 11-32

11.14 ENABLE ................................................................................................................. 11-35

11.15 EVALUATE ............................................................................................................ 11-37

11.16 EXAMINE ............................................................................................................... 11-41

11.17 EXIT ....................................................................................................................... 11-43

11.18 GENERATE............................................................................................................ 11-45

11.19 GO TO.................................................................................................................... 11-47

12. Procedure Division - Statements (IF to REWRITE) .............................. 12-1

12.1 IF ............................................................................................................................ 12-2

12.2 INITIALIZE ............................................................................................................. 12-4

12.3 INITIATE ................................................................................................................ 12-6

12.4 INSPECT................................................................................................................ 12-7

12.5 MERGE .................................................................................................................. 12-17

12.6 MOVE..................................................................................................................... 12-22

12.7 MULTIPLY ............................................................................................................. 12-26



GCOS 7 COBOL 85 Reference Manual

xviii 47 A2 05UL Rev04

12.8 OPEN ..................................................................................................................... 12-28

12.9 PERFORM.............................................................................................................. 12-33

12.10 PURGE................................................................................................................... 12-45

12.11 READ ..................................................................................................................... 12-46

12.12 RECEIVE................................................................................................................ 12-52

12.13 RELEASE ............................................................................................................... 12-55

12.14 RETURN ................................................................................................................ 12-56

12.15 REWRITE ............................................................................................................... 12-58

13. Procedure Division - Statements (SEARCH to WRITE) ...................... 13-1

13.1 SEARCH ................................................................................................................ 13-2

13.2 SEND ..................................................................................................................... 13-7

13.3 SET ........................................................................................................................ 13-12

13.4 SORT ..................................................................................................................... 13-17

13.5 START ................................................................................................................... 13-25

13.6 STOP ..................................................................................................................... 13-29

13.7 STRING.................................................................................................................. 13-30

13.8 SUBTRACT ............................................................................................................ 13-33

13.9 SUPPRESS ............................................................................................................ 13-35

13.10 TERMINATE........................................................................................................... 13-36



Table of Contents

47 A2 05UL Rev04 xix

13.11 TRANSFORM ......................................................................................................... 13-37

13.12 UNSTRING............................................................................................................. 13-40

13.13 USE ........................................................................................................................ 13-45

13.14 WRITE.................................................................................................................... 13-49

14. Segmentation ................................................................................................... 14-1

14.1 GENERAL DESCRIPTION ..................................................................................... 14-1

14.1.1 Scope ..................................................................................................................... 14-1
14.1.2 Organization .......................................................................................................... 14-1
14.1.2.1 Program Segments ................................................................................................. 14-1
14.1.2.2 Fixed Portion .......................................................................................................... 14-2
14.1.2.3 Independent Segments ........................................................................................... 14-2

14.1.3 Segment Classification ......................................................................................... 14-3
14.1.4 Segmentation Control .......................................................................................... 14-3

14.2 STRUCTURE OF PROGRAM SEGMENTS............................................................ 14-4

14.2.1 Segment Numbers ................................................................................................ 14-4
14.2.2 SEGMENT-LIMIT Clause ....................................................................................... 14-5

14.3 RESTRICTIONS ON PROGRAM FLOW ................................................................ 14-6

14.3.1 The ALTER Statement .......................................................................................... 14-6
14.3.2 The PERFORM Statement .................................................................................... 14-6
14.3.3 The MERGE Statement ......................................................................................... 14-7
14.3.4 The SORT Statement ............................................................................................ 14-7



GCOS 7 COBOL 85 Reference Manual

xx 47 A2 05UL Rev04

15. COBOL Source Text Manipulation Facilities ......................................... 15-1

15.1 INTRODUCTION .................................................................................................... 15-1

15.2 COPY ..................................................................................................................... 15-2

15.3 REPLACE .............................................................................................................. 15-6

16. Debugging Facility .......................................................................................... 16-1

16.1 INTRODUCTION .................................................................................................... 16-1

16.2 CONCEPTS............................................................................................................ 16-1

16.3 A COMPILE-TIME SWITCH ................................................................................... 16-2

16.4 AN OBJECT-TIME SWITCH .................................................................................. 16-2

16.5 THE USE FOR DEBUGGING STATEMENT .......................................................... 16-3

16.6 DEBUGGING LINES .............................................................................................. 16-9

17. Reference Format ............................................................................................ 17-1

17.1 GENERAL DESCRIPTION ..................................................................................... 17-1

17.2 REFERENCE FORMAT REPRESENTATION ........................................................ 17-2

17.2.1 Sequence Numbers .............................................................................................. 17-3
17.2.2 Continuation of Lines ........................................................................................... 17-3
17.2.3 Blank Lines ........................................................................................................... 17-4
17.2.4 Comment Lines ..................................................................................................... 17-4
17.2.5 Pseudo-Texts ........................................................................................................ 17-4

17.3 DIVISION, SECTION AND PARAGRAPH FORMATS ............................................ 17-5

17.3.1 Division Header ..................................................................................................... 17-5
17.3.2 Section Header ...................................................................................................... 17-5
17.3.3 Paragraph Header, Paragraph-name and Paragraph .......................................... 17-5



Table of Contents

47 A2 05UL Rev04 xxi

17.4 DATA DIVISION ENTRIES ..................................................................................... 17-6

17.5 DECLARATIVES .................................................................................................... 17-6

17.6 END PROGRAM HEADER ..................................................................................... 17-6

18. Intrinsic Functions .......................................................................................... 18-1

18.1 INTRODUCTION .................................................................................................... 18-1

18.1.1 Purpose of Intrinsic Function Module ................................................................. 18-1
18.1.2 Language Concepts .............................................................................................. 18-1
18.1.2.1 Function-Name ....................................................................................................... 18-1
18.1.2.2 Value Returned by a Function................................................................................. 18-2
18.1.2.3 Function-Identifier................................................................................................... 18-2

18.2 GENERAL DESCRIPTION ..................................................................................... 18-3

18.2.1 Function Definition and Returned Value ............................................................. 18-3
18.2.2 Arguments ............................................................................................................. 18-3

18.3 TYPES OF FUNCTIONS ........................................................................................ 18-5

18.4 DEFINITION OF FUNCTIONS................................................................................ 18-6

18.5 ACOS FUNCTION .................................................................................................. 18-9

18.6 ANNUITY FUNCTION ............................................................................................ 18-10

18.7 ASIN FUNCTION.................................................................................................... 18-11

18.8 ATAN FUNCTION .................................................................................................. 18-12

18.9 CHAR FUNCTION .................................................................................................. 18-13

18.10 COS FUNCTION .................................................................................................... 18-14

18.11 CURRENT-DATE FUNCTION ................................................................................ 18-15

18.12 DATE-OF-INTEGER FUNCTION ........................................................................... 18-17



GCOS 7 COBOL 85 Reference Manual

xxii 47 A2 05UL Rev04

18.13 DAY-OF-INTEGER FUNCTION .............................................................................. 18-18

18.14 FACTORIAL FUNC TION........................................................................................ 18-19

18.15 INTEGER FUNCTION ............................................................................................ 18-20

18.16 INTEGER-OF-DATE FUNCTION ........................................................................... 18-21

18.17 INTEGER-OF-DAY FUNCTION .............................................................................. 18-22

18.18 INTEGER-PART FUNCTION.................................................................................. 18-23

18.19 LENGTH FUNCTION ............................................................................................. 18-24

18.20 LOG FUNCTION .................................................................................................... 18-25

18.21 LOG10 FUNCTION ................................................................................................ 18-26

18.22 LOWER-CASE FUNCTION .................................................................................... 18-27

18.23 MAX FUNCTION .................................................................................................... 18-28

18.24 MEAN FUNCTION .................................................................................................. 18-29

18.25 MEDIAN FUNCTION .............................................................................................. 18-30

18.26 MIDRANGE FUNCTION ......................................................................................... 18-31

18.27 MIN FUNCTION ..................................................................................................... 18-32

18.28 MOD FUNCTION.................................................................................................... 18-33

18.29 NUMVAL FUNCTION ............................................................................................. 18-34

18.30 NUMVAL-C FUNCTION ......................................................................................... 18-35

18.31 ORD FUNCTION .................................................................................................... 18-36



Table of Contents

47 A2 05UL Rev04 xxiii

18.32 ORD-MAX FUNCTION ........................................................................................... 18-37

18.33 ORD-MIN FUNCTION............................................................................................. 18-38

18.34 PRESENT-VALUE FUNCTION .............................................................................. 18-39

18.35 RANDOM FUNCTION ............................................................................................ 18-40

18.36 RANGE FUNCTION ............................................................................................... 18-41

18.37 REM FUNCTION .................................................................................................... 18-42

18.38 REVERSE FUNCTION ........................................................................................... 18-43

18.39 SIN FUNCTION ...................................................................................................... 18-44

18.40 SQRT FUNCTION .................................................................................................. 18-45

18.41 STANDARD-DEVIA TION FUNCTION .................................................................... 18-46

18.42 SUM FUNCTION .................................................................................................... 18-47

18.43 TAN FUNCTION ..................................................................................................... 18-48

18.44 UPPER-CASE FUNCTION ..................................................................................... 18-49

18.45 VARIANCE FUNCTION .......................................................................................... 18-50

18.46 WHEN-COMPILED FUNCTION .............................................................................. 18-51



GCOS 7 COBOL 85 Reference Manual

xxiv 47 A2 05UL Rev04

Appendices

A. COBOL Reserved Words .............................................................................. A-1

B. Collating Sequences ...................................................................................... B-1

C. The ANSI Flagger ............................................................................................ C-1

D. The COBOL Obsolete Features .................................................................. D-1

E. COBOL 85 Substantive Changes ............................................................... E-1

E.1 CHANGES NOT AFFECTING EXISTING PROGRAMS ......................................... E-1

E.2 CHANGES WHICH MAY AFFECT EXISTING PROGRAMS .................................. E-9

F. Composite Language Skeleton .................................................................. F-1

F.1 GENERAL DESCRIPTION ..................................................................................... F-1

F.2 MISCELLANEOUS FORMATS .............................................................................. F-41

F.3 GENERAL FORMAT FOR COPY AND REPLACE STATEMENTS ........................ F-43

F.4 GENERAL FORMAT FOR SEPARATELY COMPILED PROGRAM ....................... F-44

F.5 GENERAL FORMAT FOR CONTAINED-PROGRAM ............................................. F-45



Table of Contents

47 A2 05UL Rev04 xxv

F.6 GENERAL FORMAT FOR A SEQUENCE OF
SEPARATELY COMPILED PROGRAMS ............................................................... F-46

Glossary .............................................................................................................................. g-1

Index  .............................................................................................................................. i-1



GCOS 7 COBOL 85 Reference Manual

xxvi 47 A2 05UL Rev04



Table of Contents

47 A2 05UL Rev04 xxvii

Illustrations

Figures

1-1 COBOL Communication Environment..................................................................... 1-33
1-2 Hierarchy of Queues ............................................................................................... 1-37
12-1 Perform Test before Varying with One Condition .................................................... 12-38
12-2 Perform Test before Varying with Two Conditions................................................... 12-39
12-3 Perform Test after Varying with One Condition ....................................................... 12-40
12-4 Perform Test after Varying with Two Conditions...................................................... 12-42

Tables

3-1 The Complete COBOL Character Set ..................................................................... 3-2
3-2 Data Item Class and Category ................................................................................ 3-19
3-3 Data Representation in the DPS 7 System.............................................................. 3-21
3-4 Boundary Requirements for Synchronized Data ...................................................... 3-28
3-5 Legible Equivalents of Elementary Numeric Data Items.......................................... 3-35
7-1 File Status Keys...................................................................................................... 7-34
7-2 DPS 7000 Specific File Status Keys........................................................................ 7-36
8-1 Communication Status Key Condition .................................................................... 8-29
8-2 Error Key Values..................................................................................................... 8-31
8-3 Permissible Clause Combinations in Format 3 Entries ............................................ 8-40
8-4 REPORT HEADING Group Presentation Rules....................................................... 8-44
8-5 PAGE HEADING Group Presentation Rules ........................................................... 8-47
8-6 Body Group Presentation Rules .............................................................................. 8-49
8-7 PAGE FOOTING Presentation Rules...................................................................... 8-54
8-8 REPORT FOOTING Presentation Rules ................................................................. 8-56
9-1 Page Regions ......................................................................................................... 9-30
9-2 Categories of Data and Editing ............................................................................... 9-39
9-3 Results of Sign Control Symbols in Editing ............................................................. 9-40
9-4 Picture Character Precedence Chart....................................................................... 9-44
10-1 Combination of Symbols in Arithmetic Expressions................................................. 10-10
10-2 Combination of Symbols in Boolean Expressions.................................................... 10-13
10-3 Combinations of Conditions, Operators, Parentheses.............................................. 10-22
11-1 Relationship of File Categories and Formats of the CLOSE Statement ................... 11-20
12-1 Legality of Types of MOVE Statements................................................................... 12-25
12-2 Opening Available and Unavailable Files ................................................................ 12-29
12-3 Permissible Access Modes for Different File Organizations..................................... 12-32
13-1 Permissible SET Statement Operands.................................................................... 13-15
18-1 Table of Functions ................................................................................................. 18-6



GCOS 7 COBOL 85 Reference Manual

28 47 A2 05UL Rev04



47 A2 05UL Rev04 1-1

1. Concepts

1.1 INTRODUCTION

COBOL offers many features which allow the user to obtain a necessary function without
programming the function in detail.  In this chapter each of these features is discussed,
considering the reason for its inclusion in the language and the concept of its use and
organization.

1.2 FILES

A file is a collection of records which may be placed into or retrieved from a storage
medium.  The user not only chooses the file organization, but also chooses the file
processing method and sequence.  Although the file organization and processing method
are restricted for sequential media, no such restrictions exist for mass storage media.

When describing the capabilities of COBOL programs to manipulate files, the following
conventions are used.  The term 'file-name' means the user-defined word used in the
COBOL source program to reference a file.  The terms 'file referenced by file-name' and
'file' mean the physical file regardless of the file-name used in the COBOL program.  The
term 'file connector' means the entity containing information concerning the file.  All
accesses to physical files occur through file connectors.

1.2.1 File Attributes

A file has several attributes which apply to the file at the time it is created and cannot be
changed throughout the lifetime of the file.  The primary attribute is the organization of
the file, which describes its logical structure.  There are three organizations: sequential,
relative, and indexed.  Other fixed attributes are prime record key, alternate record keys,
code set, the minimum and maximum logical record size, the record type (fixed or
variable), the collating sequence of the keys for indexed files, the blocking factor, the
padding character, and the record delimiter.



GCOS 7 COBOL 85 Reference Manual

1-2 47 A2 05UL Rev04

1.2.1.1 Sequential Organization

Sequential files are organized so that each record, except the last, has a unique
successor record; each record, except the first, has a unique predecessor record.  The
successor relationships are established by the order of execution of WRITE statements
when the file is created.  Once established, successor relationships do not change except
in the case where records are added to the end of a file.

A sequentially organized mass storage file has the same logical structure as a file on any
sequential medium; however, a sequential mass storage file may be updated in place.
When this technique is used, new records cannot be added to the file and each replaced
record must be the same size as the original record.

1.2.1.2 Relative Organization

A file with relative organization is a mass storage file from which any record may be
stored or retrieved by providing the value of its relative record number.

Conceptually, a file with relative organization comprises a serial string of areas, each
capable of holding a logical record.  Each of these areas is denominated by a relative
record number.  Each logical record in a relative file is identified by the relative record
number of its storage area.  For example, the tenth record is the one addressed by
relative number 10 and is in the tenth record area, whether or not records have been
written in any of the first through the ninth record areas.

In order to achieve more efficient access to records in a relative file, the number of
character positions reserved on the medium to store a particular logical record may be
different from the number of character positions in the description of that record in the
program.

1.2.1.3 Indexed Organization

A file with indexed organization is a mass storage file from which any record may be
accessed by giving the value of a specified key in that record.  For each key data item
defined for the records of a file, an index is maintained.  Each such index represents the
set of values from the corresponding key data item in each record.  Each index,
therefore, is a mechanism which can provide access to any record in the file.

Each indexed file has a primary index which represents the prime record key of each
record in the file.  Each record is inserted in the file, changed, or deleted from the file
based solely upon the value of its prime record key.  The prime record key of each
record must be unique, and it must not be changed when updating a record.  The prime
record key is declared in the RECORD KEY clause of the file control entry for the file.

Alternate record keys provide alternative means of retrieval for the records of a file.
Such keys are named in the ALTERNATE RECORD KEY clauses of the file control
entry.  The value of a particular alternate record key in each record need not be unique.
When these values may not be unique, the DUPLICATES phrase is specified in the
ALTERNATE RECORD KEY clause.



Concepts

47 A2 05UL Rev04 1-3

1.2.1.4 Logical Records

A logical record is the unit of data which is retrieved from or stored into a file.  The
number of records that may exist in a file is limited only by the capacity of the storage
media.  There are two types of records: fixed length and variable length.  When the file is
created, it is declared to contain either fixed length or variable length records.  In any
case, the content of a record area does not reflect any information added by the
operating system, nor does the length of the record used by the COBOL programmer
reflect these additions.

Fixed Length Records

Fixed length records must contain the same number of character positions for all the
records in the file.  All input-output operations on the file can process only this one record
size.  Fixed length records may be explicitly selected by specifying format 1 of the
RECORD clause in the file description entry for the file regardless of the individual
record descriptions |, or by specifying FLR in the file control entry for the file.|

Variable Length Records

Variable length records may contain differing numbers of character positions among the
records on the file.  To define variable length records explicitly, the VARYING phrase |or
the DEPENDING phrase may be specified in the RECORD clause in the file description
entry or the sort-merge file description entry for the file, or the VLR clause may be
specified in the file control entry for the file.|The length of a record is affected by the data
item referenced in the DEPENDING phrase of the RECORD clause or the DEPENDING
phrase of an OCCURS clause or by the length of the record description entry for the file.

Implicit Record Types

When a file is not explicitly defined as fixed or variable length record (see the previous
two paragraphs), it is implicitly fixed length except if one of the following conditions is
true, in which case it is implicitly variable length record:

• the REPORT clause is specified for the file, or

• several record descriptions defining different record sizes are specified for the file, or

• a record description containing an OCCURS clause with the DEPENDING phrase is
specified for the file;



GCOS 7 COBOL 85 Reference Manual

1-4 47 A2 05UL Rev04

1.2.2 File Processing

A file can be processed by performing operations upon individual records or upon the file
as a unit.  Unusual conditions that occur during processing are communicated back to
the program.

1.2.2.1 Record Operations

The ACCESS MODE clause of the file control entry specifies the manner in which the
object program operates upon records within a file.  The access mode may be
sequential, random, or dynamic.

For files that are organized as relative or indexed, any of the three access modes can be
used to access the file regardless of the access mode used to create the file.  A file with
sequential organization may only be accessed in sequential mode.

The organization, format, and contents of an output report may be specified using the
report writer feature.  (See "Report Writer", this chapter.)

Sequential Access Mode

A file can be accessed sequentially irrespective of the file organization.

For sequential organization, the order of sequential access is the order in which the
records were originally written.

For relative organization, the order of sequential access is ascending based on the value
of the relative record numbers.

Only records which currently exist in the file are made available.  The START statement
may be used to establish a starting point for a series of subsequent sequential retrievals.

For indexed organization, the order of sequential access is ascending |or descending|
based on the value of the key of reference according to the collating sequence of the file.
Any of the keys associated with the file may be established as the key of reference
during the processing of the file.  The order of retrieval from a set of records which have
duplicate key of reference values is the original order |or reverse of original order| of
arrival  of those records into the set.  The START statement may be used to establish a
starting point within an indexed file for a series of subsequent retrievals.



Concepts

47 A2 05UL Rev04 1-5

Random Access Mode

When a file is accessed in random mode, input-output statements are used to access the
records in a programmer-specified order.  The random access mode may only be used
with relative or indexed file organizations.

For a file with relative organization, the programmer specifies the desired record by
placing its relative record number in a relative key data item.  With the indexed
organization, the programmer specifies the desired record by placing the value of one of
its record keys in a record key or an alternate record key data item.

Dynamic Access Mode

With dynamic access mode, the programmer may change at will from sequential
accessing to random accessing, using appropriate forms of input-output statements.  The
dynamic access mode may only be used on files with relative or indexed organizations.

Open Mode

The open mode of the file is related to the actions to be performed upon records in the
file.  The open modes and purposes are: input, to retrieve records; output, to place
records into a file; extend, to append records to an existing file; I-O to retrieve and
update records.  The open mode is specified in the OPEN statement.

When the open mode is input, a file may be accessed by a READ statement.  The
START statement may also be used for files organized as indexed or relative which are
in sequential or dynamic access modes.

When the open mode is output, the records are placed into the file by issuing WRITE,
GENERATE, or TERMINATE statements.

When the open mode is extend, new records are added to the logical end of a file by
issuing WRITE, GENERATE, or TERMINATE statements.

Only mass storage files may be referenced in the open I-O mode.  The additional
capabilities of mass storage devices permits updating in place, thus READ and
REWRITE statements may always be used.  A mass storage file may be updated in the
same manner as a file on a sequential medium, by transcribing the entire file into
another file (perhaps in a separate area of mass storage) using READ and WRITE
statements.  However, it is sometimes more efficient to update a mass storage file in
place.  This mass storage file maintenance technique uses the REWRITE statement to
return to their previous locations on the storage medium only those records which have
changed.  READ and REWRITE statements are the only operations allowed while
updating in place sequentially organized files.  However, for indexed or relative
organized files, the following additional functions may be applied: the START statement
may be used in sequential or dynamic access mode to alter the sequence of record
retrieval; the DELETE statement may be used with any access mode to remove a record
logically from a file; the WRITE statement may be used in random or dynamic access
mode to insert a new record into the file.



GCOS 7 COBOL 85 Reference Manual

1-6 47 A2 05UL Rev04

Current Volume Pointer

The current volume pointer is a conceptual entity used in this document to facilitate
exact specification of the current physical volume of a sequential file.  The status of the
current volume pointer is affected by the CLOSE, OPEN, READ, and WRITE
statements.

File Position Indicator

The file position indicator is a conceptual entity used in this document to facilitate exact
specification of the next record to be accessed within a given file during certain
sequences of input-output operations.  The setting of the file position indicator is affected
only by the OPEN, READ, and START statements.  The concept of a file position
indicator has no meaning for a file opened in the output or extend mode.

Linage Concepts

The LINAGE clause may be used when specifying an output report.  It facilitates
definition of a logical page, and the positioning within that logical page of top and bottom
margins and a footing area.  Use of the LINAGE clause implicitly defines an associated
special register, the LINAGE-COUNTER, which acts as a pointer to a line within the page
body.

1.2.2.2 File Operations

Several COBOL statements operate upon files as entities or as collections of records.
These are the CLOSE, MERGE, OPEN, and SORT statements.

Sorting

1. In many sort applications it is necessary to apply some special processing to the
contents of a sort file.  The special processing may consist of addition, deletion,
creation, altering, editing, or other modification of the individual records in the file.
It may be necessary to apply the special processing before or after the records are
re-ordered by the sort, or special processing may be required in both places.  The
COBOL sort feature allows the user to express these procedures and to specify at
which point, before or after the sort, they are to be executed.  A COBOL program
may contain any number of sorts, and each of them may have its own input and
output procedures.  The sort feature automatically causes execution of these
procedures at the specified point.

2. Within an input procedure, the RELEASE statement is used to create the sort file.
That is, at the completion of execution of the input procedure those records that
have been processed by use of the RELEASE statement (rather than the WRITE
statement) comprise the sort file, and this file is available only to the SORT
statement.  Execution of the SORT statement arranges the entire set of records in
the sort file according to the keys specified in the SORT statement.  The sorted
records are made available from the sort file by use of the RETURN statement
during execution of the output procedure.



Concepts

47 A2 05UL Rev04 1-7

3. The sort file has no label procedures which the programmer can control and the
rules for blocking and for allocation of internal storage are peculiar to the SORT
statement.  The RELEASE and RETURN statements imply nothing with respect to
buffer areas, blocks, or reels.  A sort file, then may be considered as an internal file
which is created (RELEASE statement) from the input file, processed (SORT
statement), and then made available (RETURN statement) to the output file.  The
sort file itself is referred to and accessed only by the SORT statement.  A sort-
merge file description can be considered to be a particular type of file description.
That is, a sort file, like any file, is a set of records.

Merging

1. In some applications it is necessary to apply some special processing to the
contents of a merged file.  The special processing may consist in addition, deletion,
altering, editing, or other modification of the individual records in the file.  The
COBOL merge feature allows the user to express an output procedure to be
executed as the merged output is created.  The merged records are made available
from the merged file by use of the RETURN statement in the output procedure.

2. The merge file has no label procedures which the programmer can control and the
rules for blocking and for allocation of internal storage are peculiar to the MERGE
statement.  The RETURN statement implies nothing with respect to buffer areas,
blocks, or reels.

3. A merge file, then, may be considered as an internal file which is created from input
files by combining them (MERGE statement) as the file is made available
(RETURN statement) to the output file.  The merge file itself is referred to and
accessed only by the MERGE statement.  A sort-merge file description may be
considered to be a particular type of file description.  That is, a merge file, like any
file, is a set of records.

1.2.2.3 Exception Handling

During the execution of any input or output operation, unusual conditions may arise
which preclude normal completion of the operation.  There are three methods by which
these conditions are communicated to the object program: status keys, exception
declaratives, and optional phrases associated with the imperative statement.

I-O Status

I-O status is a conceptual entity used in this document to facilitate exact specification of
the status of the execution of an input-output operation.  The setting of an I-O status is
affected only by the CLOSE, DELETE, OPEN, READ, REWRITE, START, and WRITE
statements.  The I-O status value for a given file is made available to the program via
the data-name specified in the FILE STATUS clause of the file entry for that file.  The I-
O status value is placed into this data item during the execution of the input-output
statement and prior to the execution of any imperative statement associated with that
input-output statement or prior to the execution of any exception declarative.



GCOS 7 COBOL 85 Reference Manual

1-8 47 A2 05UL Rev04

Exception Declaratives

A USE AFTER EXCEPTION procedure, when one is specified for the file, is executed
whenever an input or output condition arises which results in an unsuccessful input-
output operation.  However, the exception declarative is not executed if the condition is
invalid key and the INVALID KEY phrase is specified, or if the condition is at end and the
AT END phrase is specified.

Optional Phrases

The INVALID KEY phrases may be associated with the DELETE, READ, REWRITE,
START, or WRITE statements.  Some of the conditions that give rise to an invalid key
condition are when a requested key does not exist in the file (DELETE, READ, or START
statements), when a key is already in a file and duplicates are not allowed (WRITE
statement), and when a key does not exist in the file or when it was not the last key read
(REWRITE statement).  If the invalid key condition occurs during the execution of a
statement for which the INVALID KEY phrase has been specified, the statement
identified by that INVALID KEY phrase is executed.

The AT END phrase may be associated with a READ statement.  The at end condition
occurs in a sequentially accessed file when no next logical record exists in the file, when
the number of significant digits in the relative record number is larger than the size of the
relative key data item, when an optional file is not present, or when a READ statement is
attempted and the at end condition already exists.  If the at end condition occurs during
the execution of a statement for which the AT END phrase has been specified, the
statement identified by that AT END phrase is executed.



Concepts

47 A2 05UL Rev04 1-9

1.3 REPORT WRITER

The report writer is a special purpose feature which places its emphasis on the
organization, format, and contents of an output report.  Although a report can be
produced using the standard COBOL language, the report writer language features
provide a more concise facility for report structuring and report production.  Much of the
Procedure Division programming which would normally be supplied by the programmer
is instead provided automatically by the report writer control system (RWCS).  Thus the
programmer is relieved of writing procedures for moving data, constructing print lines,
counting lines on a page, numbering pages, producing heading and footing lines,
recognizing the end of logical data subdivisions, updating sum counters, etc.  All these
operations are accomplished by the report writer control system as a consequence of
source language statements that appear primarily in the Report Section of the Data
Division of the source program.

1.3.1 Report Section

The Report Section of a COBOL Data Division contains one or more report description
entries (RD entries), each of which forms the complete description of a report.

The report named in the report description entry is not assigned directly to an output file.
Instead, it is associated with a file-name in the File Section and that file-name is
associated with a file when an OPEN statement specifying the file-name is executed.

More than one report may be associated with the same file-name and the CODE clause
is used to differentiate among the reports.  For an external file connector referenced by a
file-name, separately compiled programs may specify different reports for the same file-
name.  The file description entry of a file-name to which a report is assigned may not
contain record description entries which describe data records.  This file description entry
must specify the name of a report description entry for each report associated with that
file-name in this program.

The report description entry contains a set of clauses that names the report and supplies
specific information about the format of the printed page and the organization of the
subdivisions of the report.An identification code may be given in the report description
entry so that each report may be identified separately in an intermediate output file.

Following each report description entry are one or more 01 level-number entries, each
followed by a hierarchical structure similar to COBOL record descriptions.  Each 01
level-number entry and its subordinate entries describes a report group.  Each report
group consists of zero, one, or more print lines that are regarded as a unit.  A report
group that is to be printed is printed entirely on one logical page; it is never split across
pages.



GCOS 7 COBOL 85 Reference Manual

1-10 47 A2 05UL Rev04

1.3.2 Report Structure

When structuring a report, major consideration must be given to vertical and horizontal
spacing requirements, manipulation of data, and the physical and logical subdivisions of
a report.

1.3.2.1 Vertical Spacing

The report writer feature allows the user to describe report groups containing multiple
lines.  The vertical positioning of the lines on a page is specified by the LINE NUMBER
clause that is associated with each line.  The NEXT GROUP clause indicates how many
lines to space after presenting the last line of the group.  The first LINE NUMBER clause
of the next group indicates additional spacing information to be used in positioning of
that group.

1.3.2.2 Horizontal Spacing

The report writer allows the user to position the fields of data on a report line by means of
the COLUMN NUMBER clause.  The report writer control system supplies space fill
between all defined fields.

1.3.2.3 Data Manipulation

When the report writer feature is used, data movement to a report group is directed by
Report Section clauses rather than Procedure Divisions statements.  The Report Section
clauses which effect the manipulation of data are the SOURCE, SUM, and VALUE
clauses.

The SOURCE clause specifies the sending data item of an implicit MOVE statement.
The receiving printable item is defined by the description of the report group item in
which the SOURCE clause appears.

The SUM clause automatically causes the establishment of a sum counter.  The object
of the SUM clause names the data item(s) which are added to the sum counter when a
GENERATE statement is executed.  The move of the sum counter contents to the
receiving printable item, defined by the description of the report group item in which the
SUM clause appears, is accomplished automatically when that report group is presented.

The VALUE clause defines a literal that appears in the printable item of a report group
each time that report group is presented.

In summary, a data item in a report group is presented only if it has a COLUMN
NUMBER clause specifying where it is to be presented.The value that is placed in a
printable item is determined by the SOURCE, SUM, or VALUE clause stated in the
report group description.  Under no circumstances may a report group printable item
receive a value directly via a Procedure Division statement.



Concepts

47 A2 05UL Rev04 1-11

1.3.2.4 Report Subdivisions

The physical and logical organization of a report interact to determine what is presented
on a page.

Physical Subdivision of a Report

The PAGE clause specifies the length of the page, the size of the heading and footing
areas, and the size of the area in which the detail lines will appear.  The report writer
control system uses the LINE number and NEXT group clauses to position these report
groups, and when necessary, to advance to a new page with automatic production of
PAGE HEADING and PAGE FOOTING report groups.

Logical Subdivision of a Report

Detail groups may be structured into a nested set of control groups.

Each control group may begin with a control heading and end with a control footing
report group.

When nested control groups are defined, the recognition of a change in value of a
control data item in a control hierarchy is called a control break and the heading and
footing lines associated with the control data-name are called control heading and control
footing report groups.

During the execution of a GENERATE statement, the report writer control system uses
the control hierarchy to check automatically for control breaks.  If a control break has
occurred, all controls that are minor to it are considered to have changed, even though
they may not in fact have changed.  The occurrence of a control break causes the
following sequence of events to take place:

1. All control footing report groups are presented up to and including the one at the
level at which the control break occurred.

2. All control heading report groups are presented from the control break level down to
the most minor control.

3. The detail report group named in the GENERATE statement is presented.



GCOS 7 COBOL 85 Reference Manual

1-12 47 A2 05UL Rev04

1.3.3 Procedure Division Report Writer Statements

The report writer statements that appear in the Procedure Division are: INITIATE,
GENERATE, TERMINATE, SUPPRESS, and USE BEFORE REPORTING.

The INITIATE statement causes the report writer control system to perform automatically
a number of initialization functions.  A report must be initiated before any detail
processing may take place.

The GENERATE statement which specifies a data-name causes the named DETAIL
report group to be formatted and written to the output device.  In addition, it triggers the
report writer control system to perform the many implicit actions described above.

The GENERATE statement which specifies a report-name provides a means of
summary reporting.  A report produced by this type of statement has all detail print lines
suppressed automatically and consists of only the summary totals accumulated during
the processing of the DETAIL report group.  The report writer control system processing
for a GENERATE report-name statement is identical to that which occurs for a
GENERATE data-name statement, except that the former results in the suppression of
detail print lines.

The TERMINATE statement causes the report writer control system to perform all of the
automatic functions associated with the termination of a report.  The TERMINATE
statement must be executed before the file containing the report is closed.

The SUPPRESS statement provides the object time facility to suppress the printing of an
entire report group.

The BEFORE REPORTING phrase of the USE statement provides a mechanism
whereby Procedure Division statements may be executed at specific instances within the
automatic procedures performed by the report writer control system.  The statements in
the USE BEFORE REPORTING phrase may alter the contents of data items that are
referenced by SOURCE clauses.  Thus control is possible over the contents of data
items referenced within report groups that are produced automatically.



Concepts

47 A2 05UL Rev04 1-13

1.4 TABLE HANDLING

Tables of data are common components of business data processing problems.
Although the repeating items that make up a table could be otherwise described by a
series of separate data description entries all having the same level-number and all
subordinate to the same group item, there are two reasons why this approach is not
satisfactory.  First, from a documentation stand-point, the underlying homogeneity of the
items would not be readily apparent; and second, the problem of making available an
individual element of such a table would be severe when there is a decision as to which
element is to be made available at object time.

Tables of data items are defined in COBOL by including an OCCURS clause in their data
description entries.  This clause specifies that the item is to be repeated as many times
as stated.  The item is considered to be a table element and its name and description
apply to each repetition or occurrence.  Since each occurrence of a table element does
not have assigned to it a unique data-name, reference to a desired occurrence may be
made only by specifying the data name of the table element together with the occurrence
number of the desired table element.  The occurrence number is known as a subscript.

The number of occurrences of a table element may be specified to be fixed or variable.

1.4.1 Table Definition

To define a one-dimensional table, the programmer uses an OCCURS clause as part of
the data description of the table element, but the OCCURS clause must not appear in the
description of group items which contain the table element.  Example 1 shows a one-
dimensional table defined by the item TABLE-ELEMENT.

Example 1:

01 TABLE-1.
   02 TABLE-ELEMENT OCCURS 20 TIMES.
      03 DOG...
      03 FOX...

In example 2, TABLE-ELEMENT defines a one-dimensional table, but DOG does not
since there is an OCCURS clause in the description of the group item (TABLE-
ELEMENT) which contains DOG.

Example 2:

02 TABLE-1.
   03 TABLE-ELEMENT OCCURS 20 TIMES.
      04 DOG OCCURS 5 TIMES.
         05 EASY...
         05 FOX...

In both examples, the complete set of occurrences of TABLE-ELEMENT has been
assigned the name TABLE-1.  However, it is not necessary to give a group name to the
table unless it is desired to refer to the complete table as a group item.

None of the three one-dimensional tables which appear in the following two examples
has a group name.



GCOS 7 COBOL 85 Reference Manual

1-14 47 A2 05UL Rev04

Example 3:

01 TABLE.
   02 BAKER...
   02 CHARLIE OCCURS 20 TIMES...
   02 DOG...

Example 4:

01 TABLE.
   02 BAKER OCCURS 20 TIMES...
   02 CHARLIE...
   02 DOG OCCURS 5 TIMES...

Defining a one-dimensional table within each occurrence of an element of another one-
dimensional table gives rise to a two-dimensional table.  To define a two-dimensional
table, then, an OCCURS clause must appear in the data description of the element of
the table, and in the description of only one group item which contains that table
element.  Thus, in example 5, DOG is an element of a two-dimensional table; it occurs 5
times within each element of the item BAKER which itself occurs 20 times.  BAKER is an
element of a one-dimensional table.

Example 5:

02 BAKER OCCURS 20 TIMES...
   03 CHARLIE...
   03 DOG OCCURS 5 TIMES...

In the general case, to define an n-dimensional table, the OCCURS clause should
appear in the data description of the element of the table and in the description of (n-1)
group items which contain the element.



Concepts

47 A2 05UL Rev04 1-15

1.4.2 Initial Values of Tables

In the Working-Storage or Constant Section, initial values of elements within tables are
specified in one of the following ways:

1. The table may be described as a series of separate data description entries all
subordinate to the same group item, each of which specifies the value of an
element, or part of an element, of the table.  In defining the record and its elements,
any data description clause (USAGE, PICTURE, etc.) may be used to complete the
definition, when required.  The hierarchical structure of the table is then shown by
use of the REDEFINES entry and its associated subordinate entries.  The
subordinate entries, following the REDEFINES entry, which are repeated due to
OCCURS clauses, must not contain VALUE clauses.

2. All the dimensions of a table may be initialized by associating the VALUE clause
with the description of the entry defining the entire table.  The lower level entries will
show the hierarchical structure of the table; lower level entries must not contain
VALUE clauses.

1.4.3 References to Table Items

Whenever the user references a table element or a condition-name associated with a
table element, the reference must indicate which occurrence of the element is intended,
except in a USE FOR DEBUGGING statement and SEARCH statement.  For access to a
one-dimensional table the occurrence number of the desired element provides complete
information.  For tables of more than one dimension, an occurrence number must be
supplied for each dimension of the table.  In example 5, then, a reference to the fourth
BAKER or the fourth CHARLIE would be complete, whereas a reference to the fourth
DOG would not.  To reference DOG, which is an element of a two-dimensional table, the
user must reference, for example, the fourth DOG in the fifth BAKER.



GCOS 7 COBOL 85 Reference Manual

1-16 47 A2 05UL Rev04

1.4.4 Subscripting

Occurrence numbers are specified by appending one or more subscripts to the data-
name.

The subscript can be represented either by an integer, a data-name which references an
integer numeric elementary item or an index-name associated with the table |, or an
arithmetic expression which produces an integer result.  If such an arithmetic expression
is used, it must be enclosed in parentheses|.  A data-name or index-name  may be
followed by either the operator + or the operator - and an integer, which is used as an
increment or decrement, respectively.  It is permissible to mix integers, data-names,
index-names |, and  arithmetic expressions.|

The subscripts, enclosed in parentheses, are written immediately following any
qualification for the name of the table element.  |These parentheses are in addition to
those, if any, that bound arithmetic  expressions subscripts|.  The number of subscripts in
such a reference  must equal the number of dimensions in the table whose element is
being referenced.  That is, there must be a subscript for each OCCURS clause in the
hierarchy containing the data-name including the data-name itself.

When more than one subscript is required, they are written in the order of successively
less inclusive dimensions of the data organization.  If a multi-dimensional table is
thought of as a series of nested tables and the most inclusive or outermost table in the
nest is considered to be the major table with the innermost or least inclusive table being
the minor table, the subscripts are written from left to right in the order major,
intermediate, and minor.

A reference to an item must not be subscripted if the item is not a table element or an
item or condition-name within a table element.

The lowest permissible occurrence number is 1.  The highest permissible occurrence
number in any particular case is the maximum number of occurrences of the item as
specified in the OCCURS clause.

Using Integers, Data-Names |or Arithmetic Expressions|

When an integer, data-name |or an arithmetic expression is| used to  represent a
subscript, it may be used to reference items within different tables.  These tables need
not have elements of the same size.  The same integer, data-name |or arithmetic
expression| may appear  as the only subscript with one item and as one of two or more
subscripts with another item.



Concepts

47 A2 05UL Rev04 1-17

Using Index-Names

In order to facilitate such operations as table searching and manipulating specific items,
a technique called indexing is available.  To use this technique, the programmer assigns
one or more index-names to an item whose data description entry contains an OCCURS
clause.  An index associated with an index-name acts as a subscript, and its value
corresponds to an occurrence number for the item to which the index-name is
associated.

The INDEXED BY phrase, by which the index-name is identified and associated with its
table, is an optional part of the OCCURS clause.  There is no separate entry to describe
the index associated with index-name since its definition is completely hardware
oriented.  At object time the contents of the index correspond to an occurrence number
for that specific dimension of the table with which the index is associated.  The initial
value of an index at object time is undefined, and the index must be initialized before
use.  The initial value of an index is assigned with the PERFORM statement with the
VARYING phrase, the SEARCH statement with the ALL phrase, or the SET statement.

The use of an integer, a data-name, |or an arithmetic expression| as a  subscript
referencing a table element or an item within a table element does not cause the
alteration of any index associated with that table.

An index-name can be used to reference only the table to which it is associated via the
INDEXED BY phrase.

Data that is arranged in the form of a table is often searched.  The SEARCH statement
provides facilities for producing serial and non-serial (for example binary) searches.  It is
used to search a table for a table element that satisfies a specific condition and to adjust
the value of the associated index to indicate that table element.

Relative indexing is an additional option for making references to a table element or to
an item within a table element.  When the name of a table element is followed by a
subscript of the form (index-name + or - integer), the occurrence number required to
complete the reference is the same as if index-name were set up or down by integer via
the SET statement before the reference.  The use of relative indexing does not cause the
object program to alter the value of the index.

The value of an index can be made accessible to an object program by storing the value
in an index data item.  Index data items are described in the program by a data
description entry containing a USAGE IS INDEX clause.  The index value is moved to
the index data item by the execution of a SET statement.



GCOS 7 COBOL 85 Reference Manual

1-18 47 A2 05UL Rev04

Example:

Assuming the following data definition:

02 XCOUNTER...

02 BAKER OCCURS 20 TIMES INDEXED BY BAKER-INDEX...
   03 CHARLIE...
   03 DOG OCCURS 5 TIMES...
      04 EASY
      88 MAX VALUE IS...
      04 FOX...
         05 GEORGE OCCURS 10 TIMES...
            06 HARRY...
            06 JIM...

References to BAKER and CHARLIE require only one subscript, references to DOG,
EASY, MAX, and FOX require two, and references to GEORGE, HARRY and JIM require
three.

To illustrate the requirement of order from major to minor, HARRY (18, 2, 7) means the
HARRY in the seventh GEORGE, in the second DOG, in the eighteenth BAKER.

Mixing integers, data-names, and index-names is illustrated by HARRY (BAKER-INDEX,
4, XCOUNTER + 5).



Concepts

47 A2 05UL Rev04 1-19

1.5 SHARED MEMORY AREA

This feature is basically oriented toward saving memory space in the object program as it
allows more than one file to share the same file area and input-output areas.

When the RECORD option of the SAME clause is used, only the record area is shared
and the input-output areas for each file remain independent.  In this case any number of
the files sharing the same record area may be active at one time.  This factor can give
rise to an increase in the speed of the object program.

To illustrate this point, consider file maintenance.  If the programmer assigns the same
record area to both the old and new files, he not only saves memory in the object
program, but because this technique eliminates a move of each record from the input to
the output area, significant time savings result.  An additional benefit of this technique is
that the programmer need not define the record in detail as a part of both the old and
new files.  Rather, he defines the record completely in one case and simply includes the
level 01 entry in the other.  Because these record areas are in fact the same area, one
set of names suffices for all processing requirements without requiring qualification.



GCOS 7 COBOL 85 Reference Manual

1-20 47 A2 05UL Rev04

1.6 PROGRAM AND RUN UNIT ORGANIZATION AND COMMUNICATION

Complete data processing problems are frequently solved by developing a set of
separately compilable but logically coordinated programs which at some time prior to
execution may be compiled and assembled into a complete problem solution.  The
organization of COBOL programs and run units supports this approach of dividing large
problem solutions into small, more manageable, portions which may be programmed and
validated independently.

1.6.1 Program and Run Unit Organization

there are two levels of computer programs in a COBOL environment.  These are the
source level and the object level.

At the source level, the most inclusive unit of a computer program is a source program.
A source program may contain other source programs.  A source program is a
syntactically correct set of COBOL statements as specified in this document and consists
of an Identification Division followed optionally by an Environment Division and/or a Data
Division and/or a Procedure Division.  A source program which itself is not contained
within another source program |may optionally contain a Control Division.  Such a
program| can be converted by a compiler into an object program that either alone, or
together with other object programs, is capable of being executed.  In general, a source
program which is contained within another program cannot itself be converted by a
compiler into an object program, since the specifications in this document explicitly
permit a contained source program to reference data in a containing source program.

The Procedure Division of a source program is organized into a sequence of procedures
of two types.  Declarative procedures, normally termed declaratives, are procedures
which will be executed only when special conditions occur during the execution of a
program.  Non-declarative procedures are procedures which will be executed according
to the normal flow of control within a program.  Declaratives may contain non-declarative
procedures but these will be executed only during the execution of the declaratives which
contain them.  Non-declarative procedures may contain other non-declarative
procedures but must not contain a declarative.  Neither declarative nor non-declarative
procedures can contain programs.  In other words, in COBOL the terms 'procedure' and
'program' are not synonyms.

At the object level the most inclusive unit of organization of computer programs is the
run unit.  A run unit is a complete problem solution consisting of an object program or of
several inter-communicating object programs.  A run unit is an independent entity that
can be executed without communicating with, or being coordinated with, any other run
unit except that it may process data files and messages or set and test switches that
were written or will be read by other run units.

When a program is called, parameters upon which it is to operate may be passed to it by
the program which calls it.  As any separately compiled program may be the first
program executed in a run unit, the first executed program of a run unit may receive
parameters.



Concepts

47 A2 05UL Rev04 1-21

A run unit may also contain object code and data storage areas derived from the
compilation of programs written in languages other than COBOL; in this case certain
rules define the requirements for the relationship between the COBOL and the non-
COBOL program.  (See the GCOS 7-V6 COBOL 85 User's Guide.)

1.6.2 Accessing Data and Files

Some data items have associated with them a storage concept determining where data
item values and other attributes of data items are represented with respect to the
program of a run unit.  Likewise, file connectors have associated with them a storage
concept determining where information concerning the positioning and status of a file
and other attributes of file processing are represented with respect to the program of a
run unit.

1.6.2.1 Names

A data-name names a data item.  A file-name names a file connector.  These names are
classified as either global or local.

A global name may be used to refer to the object with which it is associated either from
within the program in which the global name is declared or from within any other program
which is contained in the program which declares the global name.

A local name, however, may be used only to refer to the object with which it is
associated from within the program in which the local name is declared.  Some names
are always global; other names are always local; and some other names are either local
or global depending upon specifications in the program in which the names are declared.

A record-name is global if the GLOBAL clause is specified in the record description entry
by which the record-name is declared, or, in the case of record description entries in the
File |or Communication| Section, if the GLOBAL clause is specified in the file |or
communication| description entry for the file-name |or cd-name| associated with the
record description entry.  A data-name is global if the GLOBAL clause is specified either
in the data description entry by which the data-name is declared or in another entry to
which that description is subordinate.  A condition-name declared in a data description
entry is global if that entry is subordinate to another entry in which the GLOBAL clause is
specified.

A file-name is global if the GLOBAL clause is specified in the file description entry for
that file-name.

|A cd-name is global if the GLOBAL clause is specified in the communication description
entry for that cd-name.| A report-name is  global if the GLOBAL clause is specified in the
report description entry for that report-name.

However, specific rules sometimes prohibit specification of the GLOBAL clause for
certain data description, file description, or record description entries.

If a name declared in a data description entry is not global, the name is local.

Global names are transitive across programs contained within other programs.



GCOS 7 COBOL 85 Reference Manual

1-22 47 A2 05UL Rev04

1.6.2.2 Objects

Accessible data items usually require that certain representations of data be stored.  File
connectors usually require that certain information concerning files be stored.  The
storage associated with a data item or a file connector may be external or internal to the
program in which the object is declared.

Object Types

1. Working Storage Records

Working storage records are allocations of sufficient storage to satisfy the record
description entries in that section.  Each record description entry in a program
declares a different object.  Renaming and redefining do not declare new objects;
they provide alternate groupings or descriptions for objects which have already
been declared.

2. File Connectors

File connectors are storage areas which contain information about a file and are
used as the linkage between a file-name and a physical file and between a file-
name and its associated record area.

3. Record Areas for Files

No particular record description entry in the File Section is considered to declare the
storage area for the record.
Rather, the storage area is the maximum required to satisfy associated record
description entries.  These entries may describe fixed or variable length records.  In
this presentation, record description entries are said to be associated in two cases.
First, when record description entries are subordinate to the same file description
entry, they are always associated.  Second, when record description entries are
subordinate to different file description entries and these file description entries are
referenced in the same SAME RECORD AREA clause, they are associated.  All
associated record description entries are re-definitions of the same storage area.

4. Other Objects

Examples of other objects declared in COBOL programs are: communication
description entries, report description entries, and control information associated
with the Communication, Linkage, and Report Sections.



Concepts

47 A2 05UL Rev04 1-23

Object Attributes

A data item or file connector is external if the storage associated with that object is
associated with the run unit rather than with any particular program within the run unit.
An external object may be referenced by any program which describes the object.
References to an external object from different programs using separate descriptions of
the object are always to the same object.

An object is internal if the storage associated with that object is associated only with the
program that describes the object.

External and internal objects may have either global or local name.

1. Working-Storage Records

A data record described in the Working-Storage Section is given the external
attribute by the presence of the EXTERNAL clause in its data description entry.
Any data item described by a data description entry subordinate to an entry
describing an external record also attains the external attribute.  If a record or data
item does not have the external attribute, it is part of the internal data of the
program in which it is described.

2. File Connectors

A file connector is given the external attribute by the presence of the EXTERNAL
clause in the associated file description entry.  If the file connector does not have
the external attribute, it is internal to the program in which the associated file-name
is described.

3. Record Areas for Files

The data records described subordinate to a file description entry which does not
contain the EXTERNAL clause or a sort-merge file description entry, as well as any
data items described subordinate to the data description entries for such records,
are always internal to the program describing the file-name.  If the EXTERNAL
clause is included in the file description entry, the data records and the data items
attain the external attribute.

4. Other Objects

Data records, subordinate data items, and various associated control information
described in the Linkage, Communication, and Report Sections of a program are
always considered to be internal to the program describing that data.  Special
considerations apply to data described in the Linkage Section whereby an
association is made between the data records described and other data items
accessible to other programs.  (See "Passing Parameters to Programs", this
chapter.)



GCOS 7 COBOL 85 Reference Manual

1-24 47 A2 05UL Rev04

1.6.2.3 Name Resolution

Certain conventions apply when programs contained within other programs assign the
same names to data items, conditions, and file connectors.  Consider the situation when
program A contains program B which itself contains program C; further, programs A and
B, but not program C, contain Data Division entries for a condition-name, data-name, or
a file-name named DUPLICATE-NAME.

1. If either DUPLICATE-NAME references an internal object, two different, though
identically named objects exist.  If both DUPLICATE-NAMEs reference an external
object, only one object exists.

2. Program A's reference to DUPLICATE-NAME is always to the object which it
declares.  Program B's reference to DUPLICATE-NAME is always to the object
which it declares.

3. If DUPLICATE-NAME is a local name in both programs A and B, program C cannot
refer to that name.

4. If DUPLICATE-NAME in program B is a global name, program C may access the
object referenced by the name in program B, regardless of whether or not
DUPLICATE-NAME is a global name in program A.

5. If DUPLICATE-NAME in program A is a global name but in program B it is a local
name, program C's reference to DUPLICATE-NAME is to the object referenced by
the name declared in program A.

1.6.3 Program Classes

All programs which form part of a run unit may possess none, one, or more of the
following attributes: common and initial.

1.6.3.1 Common Programs

A common program is one which, despite being directly contained within another
program, may be called by any program directly or indirectly contained in that other
program.  The common attribute is attained by specifying the COMMON phrase in a
program's Identification Division.  The COMMON phrase facilitates the writing of
subprograms which are to be used by all the programs contained within a program.



Concepts

47 A2 05UL Rev04 1-25

1.6.3.2 Initial Programs

An initial program is one whose program state is initialized when the program is called.
Thus, whenever an initial program is called, its program state is the same as when the
program was first called in that run unit.  During the process of initializing an initial
program, that program's internal data is initialized; thus an item of the program's internal
data whose description contains a VALUE clause is initialized to that defined value, but
an item whose description does not contain a VALUE clause is initialized to an undefined
value.  Files with internal file connectors associated with the program are not in the open
mode.  The control mechanisms for all PERFORM statements contained in the program
are set to their initial states.  The initial attribute is attained by specifying the INITIAL
phrase in the program's Identification Division.

1.6.4 Inter-Program Communication

When the complete solution to a data processing problem is subdivided into more than
one program, the constituent programs must be able to communicate with each other.
This communication may take four forms: the transfer of control, the passing of
parameters, the reference to common data, and the reference to common files.  These
four inter-program communication forms are provided both when the communicating
programs are separately compiled and when one of the communicating programs is
contained within the other program.  The precise mechanisms provided in the last two
cases differ from those in the first two cases; for example, a program contained within
another program may reference a data-name or file-name possessing a global name in
the containing program.  (See "Names", this chapter.)

1.6.4.1 Transfer of Control

The CALL statement provides the means whereby control may be transferred from one
program to another program within a run unit.  A called program may itself contain CALL
statements.

When control is transferred to a called program, execution proceeds from statement to
statement beginning with the first non-declarative statement.  If control reaches a STOP
RUN statement, this signals the logical end of the run unit.  If control reaches an EXIT
PROGRAM statement, this signals the logical end of the called program only, and control
then reverts to the next executable statement following the CALL statement in the calling
program.  Thus the EXIT PROGRAM statement terminates only the execution of the
program in which it occurs, while the STOP RUN statement terminates the execution of a
run unit.

The CALL statement may be used to call a program which is not written in COBOL.  A
COBOL program may also be called from a program which is not written in COBOL.  In
both cases, only those parts of the parameter passing mechanism which apply to the
COBOL program are specified in this document.  (For more details, refer to the COBOL
85 User's Guide, Calling and Called Programs).



GCOS 7 COBOL 85 Reference Manual

1-26 47 A2 05UL Rev04

Names of Programs

In order to call a program, a CALL statement identifies the program's name.  The names
assigned to programs which directly or indirectly are contained within another program
must be unique.

The names assigned to each of the separately compiled programs which constitute a run
unit must also be unique.

Scope of the CALL Statement

In the following, the calling program may or may not possess any of the program
attributes, it may either be separately compiled or not, and it may either be contained
within programs or contain programs:

1. Any calling program may call any separately compiled program in the run unit.

2. A calling program may call any program which is directly contained within the
calling program.

3. Any calling program may call any program possessing the common attribute which
is directly contained within a program which itself directly or indirectly contains the
calling program, unless the calling program is itself contained within the program
possessing the common attribute.

4. A calling program may call a program which neither possesses the common
attribute nor is separately compiled if, and only if, that program is directly contained
within the calling program.

Scope of Names of Programs

Certain conventions apply when, within a separately compiled program, a name identical
to that specified for another separately compiled program in the run unit is specified for a
contained program.

Consider the situation when program A contains program B and program DUPLICATE-
NAME, program B contains program BB, and program DUPLICATE-NAME contains
program DD.

The name DUPLICATE-NAME has also been specified for a separately compiled
program.

1. If program A, but not any of the programs it contains, calls program DUPLICATE-
NAME, the program activated is the one contained within program A.

2. If either program B or program BB calls program DUPLICATE-NAME then:

a. If the program DUPLICATE-NAME contained within program A possesses the
common attribute, it is called.

b. If the program DUPLICATE-NAME contained within program A does not possess
the common attribute, the separately compiled program is called.



Concepts

47 A2 05UL Rev04 1-27

3. If either program DD or program DUPLICATE-NAME contained within program A
calls program DUPLICATE-NAME, the program called is the separately compiled
program.

4. If any other separately compiled program in the run unit or any other program
contained within such a program calls the program DUPLICATE-NAME, the
program called is the separately compiled program named DUPLICATE-NAME.

1.6.4.2 Passing Parameters to Programs

A program calls another program in order to have the called program perform, on behalf
of the calling program, some defined part of the solution of a data processing problem.
In many cases it is necessary for the calling program to define to the called program the
precise part of the problem solution to be executed by making certain data values, which
the called program requires, available to the called program.  One method for ensuring
the availability of these data values is by passing parameters to a program, as is
described in this paragraph.  Another method is to share the data.  (See below.) The data
values passed as parameters also may identify some data to be shared; hence the two
methods are not mutually independent.

Identifying Parameters

Data passed as parameter by a program calling another program must be accessible to
the calling program and the data item receiving the data must be declared in the Data
Division of the called program.  In the called program the parameters required are
identified by listing references to the names assigned, in that program's data description
entries, to the parameters in that program's Procedure Division header.  In the calling
program the values of the parameters to be passed by the calling program are identified
by listing references in the CALL statements used to call the called program.  These lists
establish, on a positional basis at object time, the correspondence between the values as
they are known to each program; that is, the first parameter on one list corresponds to
the first parameter on the other, the second to the second, etc.  Thus a program, which
may be called by another program, may include:

PROGRAM-ID. EXAMPLE.

PROCEDURE DIVISION USING NUM, PCODE, COST.

and may be called by executing:

CALL "EXAMPLE" USING NBR, PTYPE, PRICE.

thereby establishing the following correspondence:

   Called Program (EXAMPLE)     Calling Program

     NUM                         NBR
     PCODE                       PTYPE
     COST                        PRICE

Only the positions of the data-names are significant, not the names themselves.



GCOS 7 COBOL 85 Reference Manual

1-28 47 A2 05UL Rev04

Values of Parameters

The calling program controls the methods by which a called program evaluates the
values of the parameters passed to it and by which the called program returns results as
modified parameter values.

The individual parameters referenced in the CALL statement's USING phrase may be
passed either by reference or by content.  A called program is allowed to access and
modify the value of the data item referenced in the calling program's CALL statement as
a parameter passed by reference.  This permission to access and modify a data item in
the calling program is denied to the called program if the data item is specified in the
CALL statement as a parameter passed by content.  The value of the parameter is
evaluated when the CALL statement is executed and is presented to the called program.
This value may be changed by the called program during the course of its execution, but
the value of the corresponding data item in the calling program is not modified.  Thus a
parameter passed by reference may be used by a called program to return a result to the
calling program whereas a parameter passed by content cannot be so used.

The parameters referenced in a called program's Procedure Division header must be
described in the Linkage Section of that program's Data Division.

1.6.4.3 Sharing Data

Two programs in a run unit may reference common data in the following circumstances:

1. The data content of an external data record may be referenced from any program
provided that program has described that data record.  (See above, "Objects").

2. If a program is contained within another program, both programs may refer to data
possessing the global attribute either in the containing program or in any program
which directly or indirectly contains the containing program.  (See above, "Names".)

3. The mechanism whereby a parameter value is passed by reference from a calling
program to a called program establishes a common data item; the called program,
which may use a different identifier, may refer to a data item in the calling program.

1.6.4.4 Sharing Files

Two programs in a run unit may reference common file connectors in the following
circumstances:

1. An external file connector may be referenced from any program which describes
that file connector.  (See above, "Objects".)

2. If a program is contained within another program, both programs may refer to a
common file connector by referring to an associated global file-name either in the
containing program or in any program which directly or indirectly contains the
containing program.  (See above, "Names".)



Concepts

47 A2 05UL Rev04 1-29

1.6.5 Intra-Program Communication

The procedures which constitute the Procedure Division of a program communicate with
one another by transferring control or by referring to common data.

1.6.5.1 Transfer of Control

There are four methods of transferring control within a program:

1. A GO TO statement.

2. A PERFORM statement.

3. An input procedure associated with a SORT statement, or an output procedure
associated with a SORT or a MERGE statement.

4. A declarative procedure which is activated whenever certain conditions, including
errors and exceptions, occur.

An input-output procedure can be considered as an implicit PERFORM statement which
is executed in conjunction with a SORT or MERGE statement; and, for this reason, the
restrictions on the PERFORM statement apply equally to input-output procedures.

Stricter restrictions than those for the PERFORM statement apply to declarative
procedures.

1.6.5.2 Shared Data

All the data declared in a program's Data Division may be referenced by statements in
the procedures, input-output procedures, and declaratives which constitute that program.
Under certain conditions a program may reference data items whose declarations are not
included in its Data Division.  (See above, "Accessing Data and Files".)



GCOS 7 COBOL 85 Reference Manual

1-30 47 A2 05UL Rev04

1.6.6 Segmentation

The segmentation facility permits the user to subdivide physically the Procedure Division
of a COBOL object program.  All source paragraphs which contain the same segment-
number in their section headers will be considered at object time to be one segment.
Since segment-numbers can range from 00 through 99, it is possible to subdivide any
object program into a maximum of 100 segments.

Program segments may be of three types: fixed permanent, fixed overlayable, and
independent as determined by the programmer's assignment of segment-numbers.

Fixed segments are always in computer storage during the execution of the entire
program; i.e., they cannot be overlayed except when the system is executing another
program, in which case fixed segments may be 'rolled out' temporarily.

Fixed overlayable segments may be overlayed during program execution, but any such
overlaying is transparent to the user, i.e., they are logically identical to fixed segments,
but physically different from them.

Independent segments may be overlayed, but such overlaying will result in the
initialization of those segments.  Therefore, independent segments are logically different
from fixed permanent/fixed overlayable segments, and physically different from fixed
segments.



Concepts

47 A2 05UL Rev04 1-31

1.7 COMMUNICATION FACILITY

The communication facility provides the ability to access, process, and create messages
or portions thereof.  It provides the ability to communicate through a message control
system with local and remote communication devices.

1.7.1 MCS (Message Control System)

The implementation of the communication facility requires that a message control
system (MCS) be present in the COBOL object program's environment.

The message control system (MCS) is the logical interface to the operating system under
which the COBOL object program operates.  The primary functions of the message
control system are the following:

1. To act as an interface between the COBOL object program and the network of
communication devices, in much the same manner as an operating system acts as
an interface between the COBOL object program and such devices as card readers,
printers, magnetic tape, and mass storage devices.

2. To perform line discipline, including such tasks as dial-up, polling, and
synchronization.

3. To perform device-dependent tasks, such as character translation and insertion of
control characters, so that the COBOL user can create device-independent
programs.

The first function, that of interfacing the COBOL object program with the communication
devices, is the most obvious to the COBOL user.  In fact, the COBOL user may be totally
unaware that the other two functions exist.  Messages from communication devices are
placed in input queues by the message control system while awaiting disposition by the
COBOL object program.  Output messages from the COBOL object program are placed
in output queues by the message control system while awaiting transmission to
communication devices.  The structures, formats, and symbolic names of the queues are
defined by the user to the message control system at some time prior to the execution of
the COBOL object program.  Symbolic names for message sources and destinations are
also defined at that time.  The COBOL user must specify in his COBOL program
symbolic names which are known to the message control system.

During execution of a COBOL object program, the message control system performs all
necessary actions to update the various queues as required.



GCOS 7 COBOL 85 Reference Manual

1-32 47 A2 05UL Rev04

1.7.2 The COBOL Object Program

The COBOL object program interfaces with the message control system when it is
necessary to send data, receive data, or to interrogate the status of the various queues
which are created and maintained by the message control system.  In addition, the
COBOL object program may direct the message control system to establish or break the
logical connection between the communication device and a specified portion of the
message control system queue structure.  The method of handling the physical
connection is a function of the message control system.

1.7.3 Relationship to MCS and Communication Devices

The interfaces which exist in a COBOL communication environment are established by
the use of a communication description entry (CD entry) in the Communication Section
of the Data Division.  There are two such interfaces:

1. The interface between the COBOL object program and the message control
system, and;

2. The interface between the message control system and the communication
devices.

The COBOL source program uses three statements to control the interface with the
message control system:

1. The RECEIVE statement, which causes data in a queue to be passed to the
COBOL object program,

2. The SEND statement, which causes data associated with the COBOL object
program to be passed to one or more queues, and;

3. The ACCEPT MESSAGE COUNT statement, which causes the message control
system to indicate to the COBOL object program the number of complete messages
in the specified queue structure.

The COBOL source program uses two statements to control the interface between the
message control system and the communication devices:

1. The ENABLE statement, which establishes logical connection between the message
control system and one or more given communication devices, and;

2. The DISABLE statement, which breaks a logical connection between the message
control system and one or more given communication devices.



Concepts

47 A2 05UL Rev04 1-33

These relationships are shown in Figure 1-1, COBOL Communication Environment, and
explained below (Enabling and Disabling Queues).

R ECEIVE

RECEIVE

S E N D

S E N D

R E C E I V E

S E N D

Input Queues

O u t p u t  Q u e u e s

(transact ion communicat ion)

C O B O L P rog ram

M C S/Com m unica tion  Device
In terface

M e ssag e  C o n tro l S yste m
(M C S)

(com m u n ica tio n  u sing  qu eu es )

C o m m un ica tio n
D ev ice s

E
N
A
B
L
E
/
D
I
S
A
B
L
E

C O BO L/M CS
In terface

C
o
m
m
u
n
i
c
a
t
i
o
n

D
e
s
c
r
i
p
t
i
o
n

(C D )

Figure 1-1. COBOL Communication Environment

Invoking the COBOL Object Program

There are two methods of invoking a COBOL communication object program: scheduled
initiation and message control system (MCS) invocation.  Regardless of the method of
invocation, the only operating difference between the two methods is that MCS
invocation causes certain areas in the referenced communication description entry (CD
entry) to be filled.



GCOS 7 COBOL 85 Reference Manual

1-34 47 A2 05UL Rev04

Scheduled Initiation of the COBOL Program

A COBOL object program using the communication facility may be scheduled for
execution through the normal means available in the program's operating environment,
such as job control language.  In that case, the COBOL program can use three methods
to determine what messages, if any, are available in the input queues:

1. The ACCEPT MESSAGE COUNT statement,

2. The RECEIVE statement with a NO DATA phrase, and

3. The RECEIVE statement without a NO DATA phrase (in which case a program wait
is implied if no data is available).

Invocation of the COBOL Object Program by MCS

It is sometimes desirable to schedule a COBOL object communication program only
when there is work available for it to do.  Such scheduling occurs if the message control
system (MCS) determines what COBOL object program is required to process the
available message and subsequently causes that program to be scheduled for execution.
Each object program scheduled by the MCS establishes a run unit.  Prior to the
execution of the COBOL object program, the message control system places the
symbolic queue and sub-queue names in the associated data items of the
communication description entry that specifies the FOR INITIAL INPUT clause, or the
message control system places the symbolic terminal name in the associated data item
of the communication description entry that specifies the FOR INITIAL I-O clause.

A subsequent RECEIVE statement directed to that communication description entry will
result in the available message being passed to the COBOL object program.

Determining the Method of Scheduling

A COBOL source program can be written so that its object program can operate with
either of the above two modes of scheduling.  In order to determine which method was
used to load the COBOL object program, the following is one technique that may be
used:

1. One communication description entry (CD entry) must contain a FOR INITIAL I-O
clause.

2. When the program contains a CD with the FOR INITIAL INPUT clause, the
Procedure Division may contain statements to test the initial value of the symbolic
queue name in that communication description entry.  If it is space filled, job control
statements were used to schedule the COBOL object programs.  If not space filled,
the message control system has invoked the COBOL object program and initialized
the data item with the symbolic name of the queue containing the message to be
processed.

3. When the program contains a CD entry with the FOR INITIAL I-O clause, the
Procedure Division may contain statements to test the initial value of the symbolic
terminal name in that CD.
If it is space filled, job control statements were used to schedule the COBOL object
program.  If not space filled, the MCS has invoked the COBOL object program and
initialized the data item with the symbolic name of the communication terminal that
is source of the message to be processed.



Concepts

47 A2 05UL Rev04 1-35

1.7.4 The Concept of Messages and Message Segments

A message consists of some arbitrary amount of information, usually character data,
whose beginning and end are defined or implied.  As such, messages comprise the
fundamental but not necessarily the most elementary unit of data to be processed in a
COBOL communication environment.

Messages may be logically subdivided into smaller units of data called message
segments which are delimited within a message by means of end of segment indicators
(ESI).  A message consisting of one or more segments is delimited from the next
message by means of an end of message indicator (EMI).  In a similar manner, a group
of several messages may be logically separated from succeeding messages by means of
an end of group indicator (EGI).

When a message or message segment is received by the COBOL program, a
communication description interface area is updated by the message control system to
indicate which, if any, delimiter was associated with the text transferred during the
execution of that RECEIVE statement.

On output the delimiter, if any, to be associated with the text released to the message
control system during execution of a SEND statement is specified or referenced in the
SEND statement.  Thus the presence of these logical indicators is recognized and
specified both by the message control system and by the COBOL object program;
however, no indicators are included in the message text processed by COBOL programs.

A precedence relationship exists between the indicators EGI, EMI, and ESI.  EGI is the
most inclusive indicator and ESI is the least inclusive indicator.  The existence of an
indicator associated with message text implies the association of all less inclusive
indicators with that text.  For example, the existence of the EGI implies the existence of
EMI and ESI.

1.7.5 The Concept of Queues

The following discussion applies only when the COBOL communication environment is
established using a communication description entry without the FOR I-O clause.

Queues consist of one or more messages from or to one or more communication
devices, and as such, form the data buffers between the COBOL object program and the
message control system.  Input queues are logically separate from output queues.

The message control system logically places in queues or removes from queues only
complete messages.  Portions of messages are not logically placed in queues until the
entire message is available to the message control system.  That is, the message control
system will not pass a message segment to a COBOL object program unless all
segments of that message are in the input queue; even though the COBOL source
program uses the SEGMENT phrase of the RECEIVE statement.  For output messages,
the message control system will not transmit any segment of a message until all its
segments are in the output queue.  Interrogation of the queue depth, or number of
messages that exist in a given queue, reflects only the number of complete messages
that exist in the queue.

The process by which messages are put into a queue is called enqueueing.  The process
by which messages are removed from a queue is called dequeueing.



GCOS 7 COBOL 85 Reference Manual

1-36 47 A2 05UL Rev04

Independent Enqueueing and Dequeueing

It is possible that a message may be received by the message control system from a
communication device prior to the execution of the COBOL object program.  As a result,
the message control system enqueues the message in the proper input queue (provided
that input queue is enabled) until the COBOL object program requests dequeueing with
the RECEIVE statement.  It is also possible that a COBOL object program will cause the
enqueueing of messages in an output queue which are not transmitted to a
communication device until after the COBOL object program has terminated.  Two
common reasons for this occurrence are:

1. When the output queue is disabled.

2. When the COBOL object program creates output messages at a speed faster than
the destination can receive them.

Enabling and Disabling Queues

Usually, the message control system will enable and disable queues based on time of
day, message activity, or other factors unrelated to the COBOL program.  However, the
COBOL program has the ability to enable and disable queues itself through use of the
ENABLE and DISABLE statements.

Enqueueing and Dequeueing Methods

In systems that allow the user to specify certain MCS functions, it may be necessary that
the user specify to the message control system, prior to execution of programs which
reference these facilities, the selection algorithm and other designated MCS functions to
be used by the message control system in placing messages in the various queues.  A
typical selection algorithm for example would specify that all messages from a given
source be placed in a given input queue, or that all messages to be sent to a given
destination be placed in a given output queue.

Dequeueing is often done on a first in, first out basis.  Thus messages dequeued from
either an input or output queue are those messages which have been in the queue for
the longest period of time.  However, the message control system can, upon prior
specification by the user, dequeue on some other basis, e.g., priority queueing can be
employed.

Queue Hierarchy

In order to control more explicitly the messages being enqueued and dequeued, it is
possible to define in the message control system a hierarchy of input queues, i.e.,
queues comprising queues.  In COBOL, four levels of queues are available to the user.
In order of decreasing significance, the queue levels are named queue, sub-queue-1,
sub-queue-2, and sub-queue-3.  The full queue structure is depicted in the figure
"Hierarchy of Queues" below, where queues and sub-queues have been named with the
letters A through O.  Messages have been named with a letter according to their source
(X, Y, or Z) and with a sequential number.



Concepts

47 A2 05UL Rev04 1-37

A

B

D E F G

H             I                J            K             L             M             N              O

Z 1
X 2

X 3
X 4
X 5

X 1
Y 3
Y 5
Z 5

Z6
Z7
Y6

Y 7
Y 8

Y 1
Y 2

X 6 Z2
Z3
Z4
Y4

Q U E U E

S U B -Q U E U E (1)

S U B -Q U E U E (2)

S U B -Q U E U E (3)

M E SS A G E

C

{

{

{

{

{

{

Figure 1-2. Hierarchy of Queues

Let us assume that the message control system is operating under the following
queueing algorithm:

1. Messages are placed in queues according to the contents of some specified data
field in each message.

2. With the RECEIVE statement, if the user does not specify a given sub-queue level,
the message control system will choose the sub-queue from that level in the
alphabetic order, e.g., if sub-queue-1 is not specified by the user, the message
control system will dequeue from sub-queue-1 B.

The following examples illustrate the effect of the above algorithm (see the figure
"Hierarchy of Queues" above):

1. The program executes a RECEIVE statement, specifying via the communication
description entry:

    Queue A
    Message control system returns: Message Z1

2. The program executes a RECEIVE statement, specifying via the communication
description entry:

    Queue A
    Sub-queue-1 C
    Message control system returns: Message Y7



GCOS 7 COBOL 85 Reference Manual

1-38 47 A2 05UL Rev04

3. The program executes a RECEIVE statement, specifying via the communication
description entry:

    Queue A
    Sub-queue-1 B
    Sub-queue-2 E
    Message control system returns: Message X1

4. The program executes a RECEIVE statement, specifying via the communication
description entry:

    Queue A
    Sub-queue-1 C
    Sub-queue-2 G
    Sub-queue-3 N
    Message control system returns: Message X6

If the COBOL programmer wishes to access the next message in a queue, regardless of
which sub-queue that message may be in, he specifies the queue name only.  The
message control system, when supplying the message, will return to the COBOL object
program any applicable sub-queue names via the data items in the associated
communication description entry.  If, however, he desires the next message in a given
sub-queue, he must specify both the queue name and any applicable sub-queue names.

For output, the COBOL user specifies only the destination(s) of the message, and the
message control system places the message in the proper queue structure.

There is no one-to-one relationship between a communication device and a
source/destination.  A source or destination may consist of one or more physical
device(s).  The device or devices which comprise a source/destination are defined to the
message control system.

1.7.6 The Concept of Transaction Commu nication

In contrast with the previously described queueing mechanism, some applications
require a direct dialogue between a communication device and the object program.  In
this case, it is unnecessary to queue messages for processing since they are to be
processed immediately.  It is possible in COBOL to specify this kind of processing by
using the CD that specifies the FOR I-O clause.  A CD that specifies the FOR I-O clause
can communicate with only one terminal; however, a run unit may contain more than one
CD that specifies the FOR I-O clause and these CDs can communicate with the same or
a different terminal.  When the INITIAL phrase is used in a CD that specifies the FOR I-
O clause, the program may be scheduled by the MCS.



Concepts

47 A2 05UL Rev04 1-39

1.8 INTRINSIC FUNCTION FACILITY

Data processing problems frequently require the use of values which are not directly
accessible in the data storage associated with the object program.  These data values
must be derived through performing some operations on other data.  An intrinsic function
represents a temporary data item whose value is derived automatically at the time of
reference during the execution of object program.

The value returned by a function is considered to be a data value.  A mechanism is
provided at object time to assign a data value to a function when it is referenced.  In
order to determine the value of a function, the evaluation mechanism may require
access to data values provided by the referencing program.  These data values are
provided by specifying parameters, known as arguments, when referencing the function.
Specific functions may place constraints on these arguments such as range, etc.  If, at
the time a function is referenced, the arguments specified for that reference do not have
values that comply with the specified constraints, the returned value for the function is
undefined.



GCOS 7 COBOL 85 Reference Manual

1-40 47 A2 05UL Rev04



47 A2 05UL Rev04 2-1

2. Notation Used in Formats and Rules

2.1 DEFINITION OF A GENERAL FORMAT

In this manual, the general format is the specific arrangement of the elements of a
clause or a statement, followed by information defining the clause or statement.  When
more than one specific arrangement is permitted, the general format is separated into
numbered formats.  Clauses must be written in the sequence given in the general
formats.  (Clauses that are optional must appear in the sequence shown if they are
used.) In certain cases, stated explicitly in the rules associated with a given format, the
clauses can appear in sequences other than that shown.  Applications, requirements or
restrictions are shown as rules.

Throughout this document, specifications that do not pertain to the American National
Standard COBOL 1985 are enclosed in boxes.

The following types of rules appear adjacent to each format in this manual:

1. Syntax Rules: Those rules that define or clarify the order in which words or
elements are arranged to form larger elements such as phrases, clauses, or
statements.  Syntax rules also impose restrictions on individual words or elements.
These rules are used to define or clarify how the statement must be written, i.e., the
order of the elements of the statement and restrictions on what each element can
represent.

2. General Rules: Those rules that define or clarify the semantics of the statement and
the effect of the statement on execution or compilation.



GCOS 7 COBOL 85 Reference Manual

2-2 47 A2 05UL Rev04

2.2 FORMATS ELEMENTS

Elements that make up a clause or a statement consists of uppercase words, lower-case
words, level-numbers, brackets, braces, connectives and special characters.

2.2.1 Upper-case and Lower-case Words

The underlined uppercase words in the format are called keywords and are required
when the functions of which they are a part are used.

Uppercase words that are not underlined are optional to the user and may or may not be
present in the source program.  Uppercase words, whether underlined or not, must be
spelled correctly.

Lower-case words represent information to be supplied by the user.  In a general format,
the lower-case words are generic terms used to represent COBOL words, literals,
PICTURE character-strings, comment-entries, or a complete syntactical entry that must
be furnished by the user.  Where generic terms are repeated in a general format, a
number or letter appendage to the term serves to identify that term for explanation or
discussion (for example, identifier-1, identifier-2).

The rules governing the use of characters in COBOL words, character-strings, literals,
and other source program entries are given in Chapter 3.

2.2.2 Level-Numbers

When specific level-numbers appear in data description entry formats, those specific
level-numbers are required when such entries are used in a COBOL program.  In this
manual the form 01, 02, 03, 04, 05, 06, 07, 08, 09 is used to indicate level-numbers 1
through 9.  The leading zero is optional.



Notation Used in Formats and Rules

47 A2 05UL Rev04 2-3

2.2.3 Brackets and Braces

When a portion of a general format is enclosed in brackets, [ ], it is optional, and may be
included or omitted according to the user's objectives.  When a portion of a general
format is enclosed in braces, { }, one of the options contained within the braces must be
selected.  In both cases, a choice is indicated by vertically stacking the possibilities.
When brackets or braces enclose a portion of a format, but only one possibility is shown,
the function of the brackets or braces is to delimit that portion of the format to which a
following ellipsis applies (See "Ellipsis", below).

2.2.4 Ellipsis

In the text of this manual, the ellipsis (...) may show the omission of a portion of a source
program; this meaning becomes apparent in context.  In general formats, the ellipsis
represents the position at which repetition can occur at the user's option.

The option of the format that can be repeated is determined as follows:

1. given ... in a clause or statement format,

2. scan right to left and determine the ] or } immediately to the left of the ... ,

3. Continue scanning right to left and determine the logically matching [ or {,

4. then, the ... applies to the words between the determined pair of delimiters.



GCOS 7 COBOL 85 Reference Manual

2-4 47 A2 05UL Rev04

2.3 FORMAT PUNCTUATION

The separators comma and semi-colon may be used to improve the readability of the
program.  Their use is optional and they are not shown in formats.  In the source
program, separators comma, semi-colon, |'Horizontal Tabulation'| and space are
interchangeable.

If desired, a semi-colon or comma may be used between statements in the Procedure
Division.

Paragraphs within the Identification and Procedure Divisions and entries within the
Environment and Data Division must be terminated by the separator period.

2.4 USE OF SPECIAL CHARACTER WORDS IN FORMATS

The special character words "+", "-", "<", ">", "=", ">=", "<=",  when
appearing in formats, although not underlined, are required when such portions of the
formats are used.



47 A2 05UL Rev04 3-1

3. COBOL Language Concepts

3.1 COBOL CHARACTER SET

The most basic and indivisible unit of the language is the character.  The set of
characters used to form COBOL character-strings and separators consists of the digits 0
through 9, the 26 uppercase and 26 lower-case letters of the English alphabet, the space
(blank), and special characters; all are listed in Part 1 of the table "COBOL Characters"
below.

The characters used for punctuation are shown in Part 2 of the table "COBOL
Characters" below.  Editing characters, which may be a single character or a fixed 2-
character combination, are shown in Part 3 of the table.  Characters used in relation
conditions are listed in Part 4 of the table.

The following characters are used to form COBOL words:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9
- (hyphen)
_ (underscore)

Non-numeric literals, comment-entries and comment lines can include any character of
the computer's entire character set.

|Unless the user employs the NCASEQ option in the COBOL JCL statement, all lower-
case letters used while writing a source program, except those in non-numeric literals,
and except the symbols 'f', 'g', 'h', 'i', 'j', 'k', 'm', 'n', 'o', 'q', 't', 'u', 'w', 'y', and possibly any
lower-case currency sign of PICTURE character strings, are treated as uppercase by the
compiler.|

|If the user employs the NCASEQ option in the COBOL JCL statement, only lower-case
letters used while writing reserved words and the symbols 'a', 'b', 'c', 'd', 'e', 'l', 'p', 'r', 's',
'v', 'x' and 'z' of PICTURE characters-strings are treated as uppercase by the compiler.
Lower-case letters will appear in lower-case form in the output only if the printer
configuration has lower-case capability.|



GCOS 7 COBOL 85 Reference Manual

3-2 47 A2 05UL Rev04

COBOL Characters

Table 3-1. The Complete COBOL Character Set

             Characters              Meaning

A B C D E F G H I J K L M             upper-case letters
N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m             lower-case letters
n o p q r s t u v w x y z

  0 1 2 3 4 5 6 7 8 9                 digits

                                     space (blank)

            Special Characters      Meaning

                                  ' Horizontal Tabulation '
                   +              plus sign
                   -               minus sign (hyphen)
                   *               asterisk
                   /               slante (solidus)
                   =              equal sign
                   $              currency sign
                   ,               comma
                   ;               semi-colon
                   .               period (decimal point)
                   "               quotation mark
                   '               apostrophe
                   (               left parenthesis
                   )               right parenthesis
                   >              greater than symbol
                   <              less than symbol
                   :               colon
                   _              underscore

Punctuation Characters

                Character         Meaning

                   ,               comma
                   ;               semi-colon
                   .               period
                   "               quotation mark
                   '               apostrophe
                   (               left parenthesis
                   )               right parenthesis
                                  space
                                  ' Horizontal Tabulation '
                   =              equal sign
                   :               colon



COBOL Language Concepts

47 A2 05UL Rev04 3-3

COBOL Characters (cont)

Editing Characters

                Character         Meaning

                   B              space
                   0              zero
                   +              plus
                   -               minus
                   CR             credit
                   DB             debit
                   Z              zero suppress
                   *               check protect
                   $              currency sign
                   ,               comma
                   .               period (decimal point)
                   /               stroke (virgule, slash)

Relation Characters

                Character         Meaning

                   >              greater than
                   <              less than
                   =              equal to

The currency symbol will vary from country to country according to the customer's
specification.  The currency symbol (cs) denotes a single character position that
corresponds to the hexadecimal 5B character position in the EBCDIC collating sequence;
in this manual, it is represented in EBCDIC by the $ sign (see Appendix B).

The currency symbol may be altered through the use of the CURRENCY SIGN IS literal
clause in the SPECIAL NAMES paragraph of the Environment Division (see Chapter 7).
If the CURRENCY SIGN IS clause is not specified in the program, the default condition
is CURRENCY SIGN IS cs, where cs is defined as above.

The comma character represents a decimal point when the DECIMAL-POINT IS
COMMA clause is used in the SPECIAL-NAMES paragraph of the Environment Division
(see Chapter 7).



GCOS 7 COBOL 85 Reference Manual

3-4 47 A2 05UL Rev04

3.2 LANGUAGE STRUCTURE

The individual characters of the language are concatenated to form character-strings and
separators.  A separator may be concatenated with another separator or with a character-
string.  A character-string may only be concatenated with a separator.  The
concatenation of character-strings and separators forms the text of a source program.

3.2.1 Separators

A separator is a character or two contiguous characters formed according to the following
rules:

1. The punctuation characters space and |'Horizontal Tabulation'| are separators.
Anywhere a space |or an 'Horizontal Tabulation'| is used as a separator or a part of
a separator, more than one space |and/or 'Horizontal Tabulation'| may be used.  All
spaces |and/or 'Horizontal Tabulation'|following the separators comma, semi-colon,
or period are considered part of that separator and are not considered to be the
separator space |or 'Horizontal Tabulation'.|

2. Except when the comma is used in a PICTURE character-string, the punctuation
characters comma and semi-colon, immediately followed by a space |or an
'Horizontal Tabulation',| are separators that may be used anywhere the separator
space |or 'Horizontal Tabulation'| is used.  They may be used to improve program
readability.

3. The punctuation character period, when followed by a space |or an 'Horizontal
Tabulation'| is a separator.  It must be used only to indicate the end of a sentence,
or as shown in formats.

4. The punctuation characters right and left parenthesis are separators.  Parentheses
may appear only in balanced pairs of left and right parentheses delimiting
subscripts, a list of function arguments, reference modifiers, arithmetic expressions,
|boolean expressions,| or conditions.

5. The punctuation characters quotation mark |and apostrophe| are separators.  An
opening quotation mark |or apostrophe| must be immediately preceded by a space,
|'Horizontal Tabulation'| or left parenthesis; a closing quotation mark |or apostrophe,
both| when paired with an opening quotation mark |or apostrophe, and when paired
with the separator 'B"' or 'B'',| must be immediately followed by one of the
separators space, |'Horizontal Tabulation',| comma, semi-colon, period or right
parenthesis.

6. Pseudo-text delimiters (two successive equal signs ==) are separators.  An opening
pseudo-text delimiter must be immediately preceded by a space |or an 'Horizontal
Tabulation';| a closing pseudo-text delimiter must be immediately followed by one of
the separator space, |'Horizontal Tabulation',| comma, semi-colon, or period.

Pseudo-text delimiters may appear only in balanced pairs delimiting pseudo-text.



COBOL Language Concepts

47 A2 05UL Rev04 3-5

7. |The character 'B' immediately followed by the punctuation character quotation
mark or apostrophe is a separator.  This separator must be immediately preceded
by a space or a left parenthesis.|

8. The punctuation character colon is a separator and is required when shown in the
general formats.

9. The separators space |or 'Horizontal Tabulation'| may optionally immediately
precede all separators except:

As specified by reference format rules (see "Reference Format", Chapter 4).

The separator closing quotation mark.  In this case, a preceding space |or
'Horizontal Tabulation'| is considered as part of the non-numeric literal and not
as a separator.

The opening pseudo-text delimiter, where the preceding space |or 'Horizontal
Tabulation'| is required.

10. The separators space |or 'Horizontal Tabulation'| may optionally immediately follow
any separator except the opening quotation mark.  In this case, a following space
|or 'Horizontal Tabulation'| is considered as part of the non-numeric literal and not
as a separator.

Any punctuation character which appears as part of the specification of a PICTURE
character-string or numeric literal is not considered as a punctuation character, but rather
as a symbol used in the specification of that PICTURE character-string or numeric literal.
PICTURE character-strings are delimited only by the separators space, |'Horizontal
Tabulation',| comma, semi-colon, or period.

The rules established for the formation of separators do not apply to the characters which
comprise the contents of non-numeric literals, comment-entries, or comment lines.

3.2.2 Character-Strings

A character-string is a character or a sequence of contiguous characters which forms a
COBOL word, a literal, a PICTURE character-string, or a comment entry.  A character-
string is delimited by separators.



GCOS 7 COBOL 85 Reference Manual

3-6 47 A2 05UL Rev04

3.2.2.1 COBOL Words

A COBOL word is a character-string of not more than 30 characters which forms a user-
defined word, a system-name, a reserved word or a function-name.  Each character of a
COBOL word is selected from the set of letters, digits, the hyphen, and the character _
(underscore).  The hyphen may not appear as the first or last character.  Each lower-
case letter is considered to be equivalent to its corresponding uppercase letter.  Within a
source program, reserved words and user-defined words form disjoint sets; reserved
words and system-names form disjoint sets; function-names, system-names and user-
defined words form intersecting sets.  The same COBOL word may be used as a
function-name, a system-name and as a user-defined word within a source program; and
the class of a specific occurrence of this COBOL word is determined by the context of
the clause or phrase in which it occurs.

User-Defined Words

A User-defined word is a COBOL word that must be supplied by the user to satisfy the
format of a clause or statement.  Each character of a user-defined word is selected from
the letters A through Z (uppercase), |the letters a through z (lower-case),| the digits 0
through 9, the character - (hyphen) |and the character _ (underscore)| , except that the
hyphen may not appear as the first or last character |and that the underscore may appear
in library-names or text-names or in other types of user-defined words only if the word
commences with "H_" or "h_" (underlining suppressed on "H_" and "h_" to make the
underscore characters visible)|.

The types of user-defined words are:

1. alphabet-name
2. cd-name
3. class-name
4. condition-name
5. data-name
6. file-name
7. index-name
8. level-number
9. library-name
10. mnemonic-name
11. paragraph-name
12. program-name
13. record-name
14. report-name
15. section-name
16. segment-number
17. symbolic_character
18. text-name



COBOL Language Concepts

47 A2 05UL Rev04 3-7

Within a given source program, but excluding any contained program, the user-defined
words are grouped into the following disjoint sets:

1. alphabet-names
2. cd-names
3. class-names
4. condition-names, data-names, and record-names
5. file-names
6. index-names
7. library-names
8. mnemonic-names
9. paragraph-names
10. program-names
11. report-names
12. section-names
13. symbolic_characters
14. text-names

All user-defined words, except segment-numbers and level-numbers, can belong to one
and only one of these disjoint sets.  Further, all user-defined words within a given disjoint
set must be unique, except as specified in the rules for uniqueness of reference (see
"Uniqueness of Reference", this chapter).

With the exception of section-names, paragraph-names, segment-number, and level-
number, all user-defined words must contain at least one alphabetic character.
Segment-numbers and level-numbers need not be unique; a given specification of a
segment-number or level-number may be identical to any other segment-number or
level-number.

CONDITION-NAME: A condition-name is a name which is assigned to a specific value,
set of values, or range of values, within a complete set of values that a data item may
assume.  The data item itself is called a conditional variable.

Condition-names may be defined in the Data Division or in the SPECIAL-NAMES
paragraph within the Environment Division where a condition-name must be assigned to
the "on" status or "off" status, or both, of external switches.

A condition-name is used in conditions as an abbreviation for the relation condition: this
relation condition posits that the associated conditional variable is equal to one of the set
of values to which that condition-name is assigned.  A condition-name is also used in a
SET statement, indicating that the associated value is to be moved to the conditional
variable.

MNEMONIC-NAME: A mnemonic-name assigns a user-defined word to a hardware or
operating system feature.  These associations are established in the SPECIAL-NAMES
paragraph of the Environment Division (see the "SPECIAL-NAMES Paragraph",
Chapter 7).

PARAGRAPH-NAME: A paragraph-name is a word which names a paragraph in the
Procedure Division.  Paragraph-names are equivalent if, and only if, they are composed
of the same sequence of the same number of digits and/or characters.

SECTION-NAME: A section-name is a word which names a section in the Procedure
Division.  Section-names are equivalent if, and only if, they are composed of the same
sequence of the same number of digits and/or characters.



GCOS 7 COBOL 85 Reference Manual

3-8 47 A2 05UL Rev04

System-Names

A system-name is a COBOL word which is used to communicate with the operating
environment.

There are three types of system-name:

1. computer-name (e.g. DPS7 ...)

2. input-output technique (e.g. UNBANNERED ...)

3. a specific feature of the hardware/software environment (e.g. SYSIN, SYSOUT,
SWITCH-1 ...)

Reserved Words

A reserved word is a COBOL word |whose spelling (independent of whether it is written in
upper case or lower case), is the same as a word| that is one of a specified list of words
(see Appendix A).  It may be used in COBOL source programs, but it must not appear in
the programs as user-defined words.  Reserved words can only be used as specified in
the general formats.

There are three types of reserved words:

1. Required Words

2. Optional Words

3. Special Purpose Words.

REQUIRED WORDS: A required word is a word whose presence is required when the
format in which the word appears is used in a source program.

Required words are of two types:

1. Key Words.  Within each format, such words are uppercase and underlined.

2. Special Character Words.  These are the arithmetic operators and relation
characters.

OPTIONAL WORDS: Within each format, uppercase words that are not underlined are
called optional words and may be specified at the user's option with no effect on the
semantics of the format.

SPECIAL PURPOSE WORDS: There are two types of special purpose words:

1. Special Registers

2. Figurative Constants.



COBOL Language Concepts

47 A2 05UL Rev04 3-9

Special Registers: Certain reserved words are used to name and reference special
registers.  Special registers are certain compiler-generated storage areas whose primary
use is to store information produced in conjunction with the use of specific COBOL
features.  Unless specified otherwise in these specifications, one special register of each
type is allocated for each program.  In the general formats of this specification, a special
register may be used, unless otherwise restricted, wherever data-name or identifier is
specified provided that the special register is the same category as the data-name or
identifier.  If qualification is allowed, special registers may be qualified as necessary to
provide uniqueness (See "Qualification", this chapter).

1. |TALLY

The reserved word TALLY is the name for a special register used in conjunction
with the EXAMINE statement (see Chapter 11).  The primary use of the TALLY
register is to hold information produced by the EXAMINE statement.  The word
TALLY  may also be used wherever an integer elementary data item may be used.
TALLY is always defined as an unsigned integer whose PICTURE is 9(5).|

2. LINE-COUNTER

The reserved word LINE-COUNTER is a name for a line counter that is generated
for each Report Description entry in the Report Section of the Data Division.  The
implicit description is that of an unsigned integer that must be capable of
representing a range of values from 0 through 999999.  The value in LINE-
COUNTER is maintained by the Report Writer Control System (RWCS), and is
used to determine the vertical positioning of a report.  LINE-COUNTER may be
referenced only in the SOURCE clause of the Report Section and in Procedure
Division statements; however, only the Report Writer Control System (RWCS) may
change the value of LINE-COUNTER (See "LINE-COUNTER Rules", Chapter 8).

3. PAGE-COUNTER

The reserved word PAGE-COUNTER is a name for a page counter that is
generated for each Report Description entry in the Report Section of the Data
Division.  The implicit description is that of an unsigned integer that must be
capable of representing a range of values from 1 through 999999.  The value in
PAGE-COUNTER is maintained by the Report Writer Control System (RWCS) and
is used by the program to number the pages of a report.  PAGE-COUNTER may be
referenced only in the SOURCE clause of the Report Section and in Procedure
Division statements (See "PAGE-COUNTER Rules", Chapter 8).

4. LINAGE-COUNTER

The reserved word LINAGE-COUNTER is a name for a line counter generated by
the presence of a LINAGE clause in a File Description entry.  |LINAGE-COUNTER
is always defined as an  unsigned integer whose PICTURE is 9(6).| LINAGE-
COUNTER may be  referenced only in Procedure Division statements; however,
only the input-output control system may change the value of LINAGE-COUNTER.



GCOS 7 COBOL 85 Reference Manual

3-10 47 A2 05UL Rev04

5. DEBUG-ITEM

The reserved word DEBUG-ITEM is the name for a special register generated
automatically that supports the Debugging Facility.  Only one DEBUG-ITEM is
allocated per program.  The names of the subordinate data items in DEBUG-ITEM
are also reserved words.  (See "The Debugging Facility", Chapter 16).

|6.     LENGTH OF data-name

The reserved words LENGTH OF followed by a data-name are the qualified name
for a special register that is generated to contain the number of character positions
that the data item referenced by data-name contains.  The implicit description is
that of an unsigned integer whose size is the number of characters necessary to
contain its value.  This register may only be referenced by Procedure Division
statements where a numeric literal is allowed.  Every data-name may be qualified.
If data-name is USAGE BIT, it must be aligned.  If the data description of data-
name contains an occurs clause, it must be subscripted; the DEPENDING ON
clause, if any is ignored.|

Figurative Constants: Certain reserved words are used to name and reference specific
constant values.  These reserved words are specified in Figurative Constant Values
below.

Function-Names

A function-name is a word that is one of a specified list of words which may be used in
COBOL source programs.  The same word, in a different context, may appear in a
program as a user-defined word or a system-name.

3.2.2.2 Literals

A literal is a character-string whose value is implied by an ordered set of characters of
which the literal is composed or by specification of a reserved word which references a
figurative constant.  Every literal belong to one of the types boolean, non-numeric or
numeric.

|Boolean Literals

A boolean literal is a character-string delimited on the left by the separator 'B"' and on the
right by the quotation mark separator.  The character-string consists only of boolean
characters.  The value of a boolean literal is the string of boolean characters itself,
excluding the delimiting separators.  All boolean literals are of the category boolean (See
the "PICTURE clause", Chapter 9).

Boolean literals of 1 through 256 boolean characters in length are allowed by the
compiler.

The separator 'B'' and the apostrophe may be used as boolean literal delimiters instead
of 'B"' and the quotation mark provided that the first non-numeric or boolean literal
(whichever is encountered first) is delimited by an apostrophe or 'B''.  In this case, all
boolean literals must be delimited by 'B'' and the apostrophe.|



COBOL Language Concepts

47 A2 05UL Rev04 3-11

Non-numeric Literals

A non-numeric literal is a character-string delimited at the beginning and at the end by
the separator quotation mark.  The string of characters may include any character in the
computer's character set, |some or all of which may be symbolic-character-string.|

|Non-numeric literals of 1 through 256 characters in length are allowed by the compiler.|

American National Standard COBOL allows for non-numeric literals of 1 through 160
characters in length.

FORMAT:

  { character-1                       }
" { |-------------------------------| }... "
  { | " {symbolic-character-1}... " | }
    |-------------------------------|

SYNTAX RULES:

1. Character-1 may be any character in the computer character set.

2. If character-1 is to represent the quotation mark, two contiguous quotation mark
characters must be used to represent a single occurrence of that character.

|3.     Symbolic-character-1 must be formed from the character set '0', '1', ..., '9'.

4.     Symbolic-character-1 must not contain more than thirty (30) characters.

5.     If more than one symbolic-character-1 is specified, the separator comma or space
must appear between two consecutive occurrences of symbolic-character-1.

6.     The first or the only symbolic-character-1 of a series must be immediately preceded
by a quotation mark.|

GENERAL RULES:

1. The value of a non-numeric literal in the object program is the value represented by
character-1 |or the character represented by symbolic-character-1.

2. The separator comma or space that appears between two consecutive occurrences
of symbolic-character-1 is not part of the value of the non-numeric literal.

3. The punctuation quotation mark that delimits the symbolic-character-string is not
part of the value of the non-numeric literal.|

4. The separator quotation mark that delimits the non-numeric literal is not part of the
value of the non-numeric literal.

5. All other punctuation characters that appear in the non-numeric literal are part of
the value of the non-numeric literal.



GCOS 7 COBOL 85 Reference Manual

3-12 47 A2 05UL Rev04

6. All non-numeric literals are of category alphanumeric.

|7. Symbolic-character-1 must be a numeric value that specifies the ordinal number of
a character within EBCDIC character set.  At object time, each symbolic-character
in the non-numeric literal is replaced by the character from the native character set
it represents.

8. A symbolic-character in a non-numeric literal occupies one character-position.

9. The apostrophe may be used as a non-numeric literal delimiter instead of the
quotation mark provided that the first non-numeric or boolean literal (whichever is
encountered first) is delimited by an apostrophe or 'B''.  In this case, all non-numeric
literals must be delimited by apostrophes, and apostrophes within non-numeric
literals are represented by 2 contiguous apostrophes.|

Numeric Literals

A numeric literal is a character-string whose characters are selected from the digits '0'
through '9' the plus sign, the minus sign, the character 'E', and/or the decimal point.

|There are two representations for a numeric literal, fixed-point and floating-point.|

The rules for the formation of |fixed-point| numeric literals are as follows:

1. A literal must contain at least 1 digit but no more |than 30 digits.|

American National Standard COBOL allows for literals of 1 through 18 characters in
length.

2. A literal must not contain more than one sign character.  If a sign is used, it must
appear as the leftmost character of the literal.  If the literal is unsigned, the literal is
positive.

3. A literal must not contain more than one decimal point.  The decimal point is treated
as an assumed decimal point, and may appear anywhere within the literal except as
the rightmost character.  If the literal contains no decimal point, it is an integer.

A literal that conforms to the rules for the formation of |fixed-point| numeric literals
but is enclosed in quotation marks, is a non-numeric literal and is treated as such by
the compiler.

4. The value of a |fixed-point| numeric literal is the algebraic quantity represented by
the characters in the literal.  Every |fixed-point| numeric literal is category numeric
(see the "PICTURE" clause, Chapter 9).  The size of a numeric literal in Standard
Data Format characters is equal to the number of digits in the string of characters
as specified by the user.



COBOL Language Concepts

47 A2 05UL Rev04 3-13

|The rules for the formation of floating-point numeric literals are  as follows:

1. A floating-point numeric literal must contain at least five and no more than 36
characters and be in the form:|

   [ + ]      { + }
   [   ] k.mE {   } n
   [ - ]      { - }

|Where:

The brackets indicate that the selection of a positive or negative sign is optional.

The symbols 'k' and 'm' represent the significand.  Each represents zero or more
digits.  The significand must contain at least one digit and no more than 30.

The symbol 'E' is a required character that separates the exrad from the significand
in floating-point notation.

The symbol 'n' represents the digits of the exrad.  The exrad must contain at least
one and no more than two digits.

2. The significand may be signed.  If a sign is used, it must appear as the leftmost
character of the significand.  If the significand is unsigned, the floating-point literal is
positive.  The exrad must be signed.

3. The significand must contain a decimal point.  The exrad must be an integer.

4. The value of a floating-point literal is the product of the value of its significand and
the quantity derived by raising ten to the power indicated by the exrad.

5. If all the digits in the significand are zero: the sign of the significand, if present,
must be positive; the sign of the exrad must be positive; and all the digits of the
exrad must be zero.|

Figurative Constant Values

Figurative constant values are generated by the compiler and referenced through the use
of the reserved words given below.  These words must not be bounded by quotation
marks when used as figurative constants.  The singular and plural forms of figurative
constants are equivalent and may be used interchangeably.

Figurative constant values and the reserved words used to reference them are as
follows:

1. [ALL] ZERO, [ALL] ZEROS, [ALL] ZEROES

Represents the numeric value '0', |or one or more of the boolean character '0',|or
one or more of the character '0' from the computer's character set.

2. [ALL] SPACE, [ALL] SPACES

Represents one or more of the character space from the computer's character set.



GCOS 7 COBOL 85 Reference Manual

3-14 47 A2 05UL Rev04

3. [ALL] HIGH-VALUE, [ALL] HIGH-VALUES

Except in the ALPHABET |or alphabet-name| clause, represents one or more of the
character that has the highest ordinal position in the program collating sequence.

4. [ALL] LOW-VALUE, [ALL] LOW-VALUES

Except in the ALPHABET |or alphabet-name| clause, represents one or more of the
character that has the lowest ordinal position in the program collating sequence.

5. [ALL] QUOTE, [ALL] QUOTES

Represents one or more of the character '"'.  The word QUOTE or QUOTES cannot
be used in place of a quotation mark in a source program to bound a non-numeric
literal.  Thus, QUOTE ABD QUOTE is incorrect as a way of stating the non-numeric
literal |"ABD".  If the apostrophe is the non-numeric literal delimiter, the figurative
constant QUOTE represents one or more of the character ''' (apostrophe).|

6. [ALL] literal

Represents all or part of the string generated by successive concatenations of the
characters comprising the literal.  The literal must be |either a boolean literal or| a
non-numeric  literal.  The literal must not be a figurative constant.

7. [ALL] symbolic-character

Represents one or more of the character specified as the value of this symbolic-
character in the SYMBOLIC CHARACTERS clause of the SPECIAL-NAMES
paragraph (See the "SPECIAL-NAMES Paragraph", Chapter 7).

When a figurative constant represents a string of one or more characters, the compiler
determines the length of the string from the context in which it appears in the program,
according to the following rules:

1. When a figurative constant is specified in a VALUE clause, or when a figurative
constant is associated with another data item (e.g., when the figurative constant is
moved to or compared with another data item), the string of characters specified by
the figurative constant is repeated, character by character, on the right, until the
size of the resultant string is greater than or equal to the number of character
positions in the associated data item.  This resultant string is then truncated from
the right until it is equal to the number of character positions in the associated data
item.  This is done prior to, and independent of, the application of any JUSTIFIED
clause that may be associated with the data item.

2. When a figurative constant, other than ALL literal, is not associated with another
data item (as when the figurative constant appears in a DISPLAY, STOP, STRING,
or UNSTRING statement), the length of the string is one character.

3. When the figurative constant ALL literal is not associated with another data item,
the length of the string is the length of the literal.



COBOL Language Concepts

47 A2 05UL Rev04 3-15

A figurative constant may be used whenever 'literal' appears in a format with the
following exceptions:

1. If the literal is restricted to a numeric literal, the only figurative constant permitted is
ZERO (ZEROS, ZEROES).

|2. If the literal is restricted to a boolean literal, the only figurative constants permitted
are ZERO (ZEROS, ZEROES) and ALL literal.|

3. Associating the figurative constant ALL literal where the length of the literal is
greater than one with a data item that is numeric or numeric edited is an obsolete
feature in the current revision of American National Standard COBOL.  This
obsolete feature is to be deleted from the next revision of American National
Standard COBOL.

4. When a figurative constant other than ALL literal is used, the word ALL is redundant
and is used for readability only.

Except in the ALPHABET |or alphabet-name| clause, when the figurative constants
HIGH-VALUE(S) or LOW-VALUE(S) are used in the source program, the actual
characters associated with each figurative constant depend upon the program collating
sequence specified (see "OBJECT-COMPUTER Paragraph" and "SPECIAL-NAMES
Paragraph" in the Environment Division, Chapter 7).

Each reserved word which is used to reference a figurative constant value is a distinct
character-string with the exception of the constructs using the word ALL, such as ALL
literal, ALL SPACES, etc., which are composed of two distinct character-strings.

3.2.2.3 Picture Character-Strings

A PICTURE character-string consists of certain symbols which are composed of the
currency symbol and certain combinations of characters in the COBOL character set.  An
explanation of the PICTURE character-string and the rules that govern its use are given
under the appropriate paragraph (See the "PICTURE clause", Chapter 9).

Any punctuation character which appears as part of the specification of a PICTURE
character-string is not considered as a punctuation character, but rather as a symbol
used in the specification of that PICTURE character-string.

3.2.2.4 Comment-Entries

A comment-entry is any entry in the Identification Division that may be any combination
of characters from the computer's character set.  Comment-entry is an obsolete element
in the current revision of American National Standard COBOL because it is to be deleted
from the next revision of American National Standard COBOL.



GCOS 7 COBOL 85 Reference Manual

3-16 47 A2 05UL Rev04

3.3 CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION

To make data as computer-independent as possible, the characteristics or properties of
the data are described in relation to a Standard Data Format rather than an equipment-
oriented format.  This Standard Data Format is oriented to general data processing
applications and uses the decimal system to represent numbers (regardless of the radix
used by the computer) and all characters of the COBOL character set to describe non-
numeric data items.

3.3.1 Logical Record Concept

In order to separate the logical characteristics of data from the physical characteristics of
the data storage media, separate clauses or phases are used.  The following paragraphs
discuss the characteristics of files.

3.3.1.1 Physical Aspects of a File

The physical aspects of a file describe the data as it appears on the input or output
media and include such features as:

1. The mode in which the data file is recorded on the external medium.

2. The grouping of logical records within the physical limitations of the file medium.

3. The means by which the file can be identified.

3.3.1.2 Conceptual Characteristics of a File

The conceptual characteristics of a file are the explicit definition of each logical entity
within the file itself.  In a COBOL program, the input or output statements refer to one
logical record.

It is important to distinguish between a physical record and a logical record.  A COBOL
logical record is a group of related information, uniquely identifiable and treated as a
unit.

A physical record is a physical unit of information whose size and recording mode is
convenient to a particular computer for the storage of data on an input or output device.
The size of a physical record is hardware dependent and bears no direct relationship to
the size of information contained on a device.



COBOL Language Concepts

47 A2 05UL Rev04 3-17

A logical record may be contained within a single physical unit; or several logical records
may be contained within a single physical unit; or a logical record may require more than
one physical unit to contain it.  There are several source language methods available for
describing the relationship of logical records and physical units.  When a permissible
relationship has been established, control of the accessibility of logical records as related
to the physical unit must be provided by the interaction of the object program on the
hardware and/or software system.  In this manual, references to records means to logical
records, unless the term "physical record" is specifically used.

The concept of a logical record is not restricted to file data but is carried over into the
definition of working storage.  Thus, working storage may be grouped into logical records
and defined by a series of Record Description entries.

When a logical record is transferred to or from a physical unit, any translation required by
the presence of a CODE-SET clause is accomplished.  Padding characters are added or
deleted as necessary.  None of the clauses used to describe the data in the logical record
have any effect on this transfer.

3.3.1.3 Record Concepts

The Record Description consists of a set of Data Description entries which describe the
characteristics of a particular record.  Each Data Description entry consists of a level-
number followed by a data-name, if required, followed by a series of independent
clauses, as required.

3.3.2 Concepts of Levels

A level concept is inherent in the structure of a logical record.  This concept arises from
the need to specify subdivisions of a record for the purpose of data reference.  Once a
subdivision has been specified, it may be further subdivided to permit more detailed data
reference.

Subdivisions of a Record

The most basic subdivisions of a record, that is, those not further subdivided, are called
elementary items; consequently, a record is said to consist of a sequence of elementary
items, or the record itself may be an elementary item.

In order to refer to a set of elementary items, the elementary items are combined into
groups.  Each group consists of a named sequence of one or more elementary items.
Groups, in turn, may be combined into groups of two or more groups, etc.  Thus, an
elementary item may belong to more than one group.



GCOS 7 COBOL 85 Reference Manual

3-18 47 A2 05UL Rev04

Level Numbers

A system of level-numbers shows the organization of elementary items and group items.
Since records are the most inclusive data items, level-numbers for records start at 01.
Less inclusive data items are assigned higher (not necessarily successive) level-
numbers not greater in value than 49.  There are special level-numbers 66, 77 and 88,
which are exceptions to this rule (see below).  Separate entries are written in the source
program for each level-number used.

A group includes all group and elementary items following it until a level-number less
than or equal to the level-number of that group is encountered.  All items which are
immediately subordinate to a given group item must be described using identical level-
numbers greater than the level-number used to describe that group item.

Three types of entries exist for which there is no true concept of level.  These are:

1. Entries that specify elementary items or groups introduced by a RENAMES clause.

2. Entries that specify non-contiguous working-storage and linkage data items.

3. Entries that specify condition-names.

Entries describing items by means of RENAMES clauses for the purpose of re-grouping
data items have been assigned the special level-number 66.

Entries that specify non-contiguous data items, which are not subdivisions of other items,
and are not themselves subdivided, have been assigned the special level-number 77.

Entries that specify condition-names, to be associated with particular values of a
conditional variable, have been assigned the special level-number 88.

3.3.3 Concept of Classes of Data

The categories of data items are alphabetic, |boolean,| numeric, numeric edited,
alphanumeric, and alphanumeric edited (see the "PICTURE clause", Chapter 9).  These
are grouped into the classes: alphabetic, |boolean,| numeric, and alphanumeric.  For
alphabetic, |boolean,| and numeric the classes and categories are synonymous.  The
alphanumeric class includes the categories of alphanumeric edited, numeric edited, and
alphanumeric (without editing).  Every elementary item except for an index data item |or
a pointer| belongs to one of the classes and further to one of the categories.  The class of
a group item is treated at object time as alphanumeric, regardless of the class of
elementary items subordinate to that group item.

Every data item which is a function is an elementary item, and belongs to one of the
categories alphanumeric or numeric, and to the corresponding class; the category of
each function is determined by the definition of the function.  This definition is made in
these specifications.



COBOL Language Concepts

47 A2 05UL Rev04 3-19

The following table depicts the relationship of the class and categories of data items.

Table 3-2. Data Item Class and Category

|=================|==============|=====================|
|  LEVEL OF ITEM  |    CLASS     |      CATEGORY       |
|-----------------|--------------|---------------------|
|                 |  Alphabetic  |  Alphabetic         |
|                 |--------------|---------------------|
|                 |   Boolean    |  Boolean            |
|                 |--------------|---------------------|
|  Elementary     |  Numeric     |  Numeric            |
|                 |--------------|---------------------|
|                 |              | Numeric Edited      |
|                 | Alphanumeric | Alphanumeric Edited |
|                 |              | Alphanumeric        |
|-----------------|--------------|---------------------|
|                 |              | Alphabetic          |
|                 |              | Boolean             |
| Non Elementary  | Alphanumeric | Numeric             |
|     (Group)     |              | Numeric Edited      |
|                 |              | Alphanumeric Edited |
|                 |              | Alphanumeric        |
|=================|==============|=====================|

3.3.4 Selection of Character Representation and Radix

The value of a numeric item may be represented in either binary or decimal form.  In
addition there are several ways of expressing decimal.  The selection of radix is
dependent upon factors included in such clauses as USAGE (see Chapter 9).

3.3.4.1 Size of an Elementary Item

The size of an elementary data item or a group item is the number of characters in
Standard Data Format of the item.  Synchronization and usage may cause a difference
between this size and the actual number of characters required for internal
representation

3.3.4.2 Data Types

The types of data supported by GCOS COBOL are listed in the table "Data
Representation in the DPS7 System" below, according to factors included in the USAGE
and PICTURE clauses.  The usage of an item specifies the format of the data item in
computer storage (see "USAGE", Chapter 9).  The following paragraphs describe how
each data type is represented in internal memory.



GCOS 7 COBOL 85 Reference Manual

3-20 47 A2 05UL Rev04

DISPLAY Data Item

Character-strings are defined, explicitly or implicitly, by a USAGE IS DISPLAY clause.
Character-strings, represented in EBCDIC code, are stored in memory in contiguous
bytes with one character per byte.  These character-strings may be non-numeric data as
well as decimal numbers.

Packed Decimal Number

A packed decimal number (USAGE IS COMP, PACKED DECIMAL, COMP-3 or COMP-
8) is represented as a series of contiguous bytes, each containing two 4-bit digit encoding
portions, except for the rightmost byte.  The leftmost four bits of this byte represent a
digit, while the rightmost four bits define a sign except as noted below (Algebraic Signs).
However, if the USAGE IS COMP |or COMP-3,| and the PICTURE character-string does
not show a sign, the rightmost four bits represent the rightmost digit.  In a usage COMP-5
data item, the sign has the ASCII representation (see the "USAGE clause", Chapter 9).

Usage BINARY Fixed-Point Data

A Usage BINARY Fixed Point number is represented as a 16-bit, 32-bit, 48-bit or 64-bit
integer depending on the number of decimal positions specified in the PICTURE clause.
|Differing in that from the COMP-1  and COMP-2 usages,| the characteristics specified in
the PICTURE  clause for a usage BINARY data item are significant.

Usage BIT Data Item

A usage BIT data item is represented as a series of consecutive bits, one bit per
character position as specified in the PICTURE clause.  When the SYNCHRONIZED
clause is not present in a usage BIT data item description, this data item is not
necessarily aligned on  a byte boundary.

Fixed Binary Data

Fixed binary data can be specified as either 16-bit binary (USAGE IS COMP-1 and no
PICTURE, or a PICTURE showing less than 5 digits) or 32 bit binary (USAGE IS COMP-
2 or COMP-1 with a PICTURE showing more than 4 digits).  The short binary data item
consists of two contiguous bytes; the long binary data item, of four contiguous bytes.  In
both types of data, a decimal point is assumed to be to the right of the least significant
bit.  Negative values are stored in two's complement form.

Floating Binary Data

Floating binary data can be specified either as 32-bit binary (USAGE IS COMP-9), or 64-
bit binary (USAGE IS COMP-10), or 128-bit binary (USAGE IS COMP-15).  The short
floating binary data item gives Single Precision (a precision of approximately 7 decimal
digits).  The long floating binary data item gives Double Precision (a precision of
approximately 16 decimal digits).  The extended floating point binary data item gives
Quadruple Precision (a precision of approximately 27 decimal digits).|



COBOL Language Concepts

47 A2 05UL Rev04 3-21

Index Data Item

An index data item (USAGE IS INDEX) consists of 48 bits (six bytes).  (See "Indexing",
later in this chapter, for a description of its use.)

|Pointer Data Item

A pointer data item (USAGE IS POINTER) is a 32 bit direct ITS (four bytes) data item.|

Table 3-3. Data Representation in the DPS 7 System

|===================|===========================|=======|
|       USAGE       |    Machine Description    |PICTURE|
|-------------------|---------------------------|-------|
|   DISPLAY         | EBCDIC byte               |   R   |
|-------------------|---------------------------|-------|
|* COMPUTATIONAL    | Packed decimal (possibly  |   R   |
|   or COMP         | without sign position     |       |
|                   | depending on PICTURE)     |       |
|-------------------|---------------------------|-------|
|  PACKED DECIMAL   | Packed decimal (always    |   R   |
|                   | with sign position)       |       |
|-------------------|---------------------------|-------|
|  BINARY           | 16, 32, 48 or 64 bit      |   R   |
|                   | fixed binary              |       |
|-------------------|---------------------------|-------|
|  COMPUTATIONAL-1  | 16-bit fixed binary       |   NR  |
|   or COMP-1       | (possibly 32-bit fixed    |       |
|                   | binary depending on       |       |
|                   | PICTURE)                  |       |
|-------------------|---------------------------|-------|
|  COMPUTATIONAL-2  | 32-bit fixed binary       |   NR  |
|   or COMP-2       |                           |       |
|-------------------|---------------------------|-------|
|* COMPUTATIONAL-3  | Packed decimal (possibly  |   R   |
|   or COMP-3       | without sign position     |       |
|                   | depending on PICTURE)     |       |
|-------------------|---------------------------|-------|
|  COMPUTATIONAL-5  | Packed decimal (always    |   R   |
|   or COMP-5       | with sign position, sign  |       |
|                   | has ASCII representation) |       |
|-------------------|---------------------------|-------|
|  COMPUTATIONAL-8  | Packed decimal (always    |   R   |
|   or COMP-8       | with sign position)       |       |
|-------------------|---------------------------|-------|
|  COMPUTATIONAL-9  | Floating binary           |   NA  |
|   or COMP-9       | single precision          |       |
|-------------------|---------------------------|-------|
|  COMPUTATIONAL-10 | Floating binary           |   NA  |
|   or COMP-10      | double precision          |       |
|-------------------|---------------------------|-------|
|  COMPUTATIONAL-15 | Floating binary           |   NA  |
|   or COMP-15      | quadruple precision       |       |
|-------------------|---------------------------|-------|
|  BIT              | 1 bit per character       |   R   |
|                   | position                  |       |
|-------------------|---------------------------|-------|
|  POINTER          | 32 bit direct ITS         |   NA  |
|-------------------|---------------------------|-------|
|  INDEX            | 6 bytes                   |   NA  |
|===================|===========================|=======|

NOTES: R   =  PICTURE clause required in data description entry



GCOS 7 COBOL 85 Reference Manual

3-22 47 A2 05UL Rev04

NR =  PICTURE clause not required in data description entry

NA =  PICTURE clause not allowed in data description entry.

|* These items have the same meaning, unless specified otherwise in the Default Section
of the Control Division.|

3.3.5 Algebraic Signs

Algebraic signs fall into two categories: operational signs, which are associated with
signed numeric data items and signed numeric literals to indicate their algebraic
properties; and editing signs, which appear, for example, on edited reports to identify the
sign of the item.

The SIGN clause permits the programmer to state explicitly the location of the
operational sign for DISPLAY data items.  This clause is optional; if it is not used, the
operational sign is overpunch in the trailing position.

Editing signs are inserted into a data item through the use of the sign control symbols of
the PICTURE clause.

3.3.6 Standard Rules for Data Alignment

The standard rules for positioning data within an elementary item depend on the category
of the receiving item.  These rules are:

1. When the receiving data item is described as numeric:

a. For fixed-point numeric items, the actual radix point of the value of the sending
data item is aligned with the radix point of the receiving item and the data is moved
to the receiving digit positions with zero fill or truncation on either end as required.
When a radix point is not explicitly specified, the data item is treated as if it had an
assumed radix point immediately following its rightmost digit.

|b. For floating-point numeric items, the sending field is normalized to remove
leading zero digits.  That is, the most significant non-zero digit of the value of the
sending item is aligned at the leftmost digit position of the significand of the
receiving item and the data is moved to the receiving digit positions with zero fill or
truncation on the right as required.  The exrad of the receiving data item is adjusted
by a value equal to the number of digit positions between the most significant non-
zero digit of the sending item and its radix point.  If the most significant non-zero
digit is to the left of the radix point, the adjustment is positive; if it is to the right of
the radix point, the adjustment is negative.

If the absolute value of the exrad, as adjusted, is larger than the maximum number
that can be accommodated by the exrad of the receiving data item, the results of
the operation are undefined.|

2. When the receiving data item is described as numeric edited:

a. For a fixed-point numeric edited data item, the actual radix point of the value of
the sending data item is aligned with the decimal point of the receiving item and the



COBOL Language Concepts

47 A2 05UL Rev04 3-23

data is moved with zero fill or truncation at either end, as required, within the
receiving character positions of the data item, except where editing requirements
cause replacement of the leading zeros.  When a decimal point is not explicitly
specified, the data item is treated as if it had an assumed decimal point
immediately following its rightmost digit.

|b. For a floating-point numeric edited data item, the most significant non-zero digit
of the value of the sending item is aligned at the leftmost digit position of the
significand of the receiving item and the data is moved with zero fill or truncation on
the right, as required.  The adjusted exrad value is aligned at the rightmost digit
position of the exrad of the receiving data item and is zero filled on the left, as
required.  If the absolute value of the exrad, as adjusted, is larger than the
maximum number that can be accommodated by the exrad of the receiving data
item, the results of the operation are undefined.|

3. If the receiving data item is alphanumeric (other than a numeric edited data item),
alphanumeric edited, or alphabetic, the sending data is moved to the receiving
character positions, and aligned at the leftmost character position in the data item
with space fill or truncation to the right, as required.

|4. If the receiving data item is boolean, the sending data is moved to the receiving
boolean positions and aligned at the leftmost boolean position in the data item with
boolean character zero fill or truncation to the right, as required.|

If the JUSTIFIED clause is specified for the receiving item, these standard rules are
modified as described under "JUSTIFIED", Chapter 9.



GCOS 7 COBOL 85 Reference Manual

3-24 47 A2 05UL Rev04

3.3.7 Data Allocation

The natural addressing boundaries for data are the byte, half-word (two bytes), word (four
bytes), and double-word (eight bytes).  While data may be stored in memory during
program execution without regard for these boundaries, alignment of data on natural
boundaries reduces the access time for accessing and storage of data.  Use of the
SYNCHRONIZED clause to allocate data on natural boundaries enhances the speed of
processing at the expense of efficient utilization of space, of easy communication
between programs, and of easy exchange of programs.

The description of data allocation is given in three parts:

• Alignment
• Unused space
• Allocation

The allocation rules apply to any 01-level group item with no REDEFINES clause or any
group item with a REDEFINES clause independently of any of its subordinate items
described with a REDEFINES clause and items subordinated to those items.

3.3.7.1 Alignment

The rules for alignment in the order of application are:

1. All level 77 and elementary level 01 index data items begin on a byte boundary,
other level 77 and elementary level 01 data items begin on the synchronized
boundary as described below in SYNCHRONIZATION BOUNDARIES.

2. All level 01 group data items begin on a word boundary, |or a double word boundary
if the record contains a COMP-10 OR COMP-15 item,| including in the LINKAGE
SECTION.  Therefore the user must ensure that the operands referenced in any
USING clause within a CALL statement are properly aligned.

3. SYNC alignment is described below in "Synchronization Boundaries".

4. The default alignment for all data types, |other than USAGE BIT boolean,| is byte if
SYNC is not specified.

|5. The default alignment for USAGE BIT boolean is bit if SYNC is not specified.|



COBOL Language Concepts

47 A2 05UL Rev04 3-25

3.3.7.2 Unused Space

In addition to the space allocated for an elementary data item, unused space (called
"FILLER") may be allocated in the following situations:

1. Following each occurrence, including the last, of a repeating group data item, in
order to align the next occurrence of that data item on its required boundary.  This
is called a "type 1 FILLER".

2. Following a data item (elementary or group), or following the last occurrence of a
repeating data item, in order to align the next data item on its required boundary, |or
following the last elementary item in a group in order to terminate this group on a
byte boundary.| This is called a "type 2 FILLER".

Such a FILLER is in addition to any type 1 FILLER which follows the last occurrence
of a repeating data item.

|3. Preceding a SYNCHRONIZED RIGHT elementary data item, or following a
SYNCHRONIZED LEFT data item, when the size of this elementary item is less
than the size of the memory portion comprised between the leftmost natural
boundary and the rightmost natural boundary which define this item (e.g. a
SYNCHRONIZED USAGE BIT boolean item whose size is not a multiple of eight).
This is called a "type 3 FILLER".  Such a FILLER is in addition to any necessary
preceding type 2 or type 3 FILLER.|

When the SYNCHRONIZED clause is specified for an elementary item which contains a
REDEFINES clause or which is subordinate to an item which contains a REDEFINES
clause, the elementary item must not require the addition of any type 1 or type 2 unused
bytes.  The user must provide the necessary FILLER to align this item on the proper
boundary.

3.3.7.3 Allocation

The rules for allocation are:

1. Elementary items are allocated in source language order from the first data item in
the record (or the redefining group) to the last.  The first elementary item in a record
is allocated on a word boundary |or a double word boundary if the record contains a
COMP-10 OR COMP-15 item.| The first elementary item in a redefining group is
given the same address as the redefined item.

2. If previously allocated space does not end on the required boundary for alignment
of the current elementary item, then unused space is allocated until the boundary
requirement is satisfied (type 2 FILLER).  |If the current elementary item is the first
elementary item subordinate to a group, the required boundary is at least byte
boundary.|

3. For a non repeating elementary item, space is allocated according the rules given
below in "Size of Elementary Items".

4. For a repeating elementary item, the space allocated is the product of the space
allocated for one such item (see "Size of Elementary Items" below) and the number
of occurrences.

5. The space allocated for a non repeating group is the sum of the spaces allocated to
its direct subordinate items.  |If necessary, a type 2 FILLER is included at the end of



GCOS 7 COBOL 85 Reference Manual

3-26 47 A2 05UL Rev04

the group to extend its size to the full last allocated byte.| If the first direct
subordinate item is SYNCHRONIZED and if it requires the allocation of a type 2
FILLER, this type 2 FILLER is not included in the space allocated for the group.
Any other type 2 FILLER |and any type 3 FILLER| due to the subordinate items are
included in the space allocated for the group.

6. The space allocated for a repeating group is determined as follows:

The space allocated for one occurrence of the group as defined in rule 5 is
increased to include the type 1 FILLER necessary to align the next occurrence the
same way the first occurrence was aligned with respect to the most stringent
boundaries required for the subordinate SYNCHRONIZED items.

In other terms:

• |If the repeating group contains no SYNCHRONIZED COMP-1,
SYNCHRONIZED COMP-2, SYNCHRONIZED COMP-9, SYNCHRONIZED
COMP-10 nor SYNCHRONIZED COMP-15 item, no FILLER is allocated

• If the repeating group contains SYNCHRONIZED COMP-1 with no PICTURE
or with a PICTURE showing less than 5 digit positions items but no
SYNCHRONIZED COMP-2, COMP-9, COMP-10 or COMP-15 items, its size is
rounded to a multiple of 2

• If the repeating group contains SYNCHRONIZED POINTER,
SYNCHRONIZED COMP-1 with a PICTURE showing more than 4 digit
positions, SYNCHRONIZED  COMP-2 or SYNCHRONIZED COMP-9 items but
no SYNCHRONIZED COMP-10 and no SYNCHRONIZED COMP-15 items, its
size is rounded to a multiple of 4.

• If the repeating group contains SYNCHRONIZED COMP-10 or
SYNCHRONIZED COMP-15 items, its size is rounded to a multiple of 8.|

The allocated space for the entire group data item is then the product of the space
allocated for one occurrence and the number of occurrences.



COBOL Language Concepts

47 A2 05UL Rev04 3-27

3.3.7.4 Size of Elementary Items

The size of an elementary item depends on its USAGE, its PICTURE and its SIGN
clauses.

The size of a USAGE DISPLAY item is the number of characters specified in its
PICTURE clause.  When the first character in the PICTURE character-string is "S", this
symbol is counted in the item size only if the applicable SIGN clause contains the
SEPARATE phrase.

The size in bytes of a USAGE PACKED DECIMAL item is the integer part of the quotient
of n+2 divided by 2, where "n" is the number of digits specified by the PICTURE clause.

The size of a USAGE BINARY item is 2 bytes if its PICTURE describes less than 5
digits, 4 bytes if it describes 5 to 9 digits, 6 bytes if it describes 10 to 14 digits, 8 bytes if
it describes more than 14 digits.

|The size of a USAGE COMP-1 item is 2 bytes if it has no PICTURE or  if its PICTURE
describes less than 5 digits.  Otherwise, it is 4  bytes.

The size of a USAGE COMP-2 item is 4 bytes.

The size in bytes of a USAGE COMP-3 OR COMP-5 item is the integer part of the
quotient of n+s+1 divided by 2, where "n" is the number of digits specified by the
PICTURE clause, "s" is 1 if the PICTURE string contains an "S", and "s" is 0 (zero) if the
PICTURE string contains no "S".

The size in bytes of a USAGE COMP-8 item is the integer part of the quotient of n+2
divided by 2, where "n" is the number of digits specified by the PICTURE clause.

The size of a USAGE COMP-9 item is 4 bytes.

The size of a USAGE COMP-10 item is 8 bytes.

The size of a USAGE COMP-15 item is 16 bytes.|

The size of a USAGE INDEX item is 6 bytes.

|The size of a USAGE BIT item is the number of boolean positions specified in its
PICTURE clause.  If the USAGE BIT item's description contains the SYNCHRONIZED
clause, the space allocated for it includes any necessary type 3 FILLER.

The size of a USAGE POINTER item is 4 bytes.|



GCOS 7 COBOL 85 Reference Manual

3-28 47 A2 05UL Rev04

3.3.7.5 Synchronization of Boundaries

The alignment of a SYNCHRONIZED item depends on its USAGE as shown below:

Table 3-4. Boundary Requirements for Synchronized Data

          -----------------------------------------
         | Usage          | Synchronized Boundary |
         |----------------|-----------------------|
         | BINARY         |   Half-word or word   |
         | BIT            |   Byte                 |
         | COMP           |   Byte                |
         | COMP-1         |   Half-word or word    |
         | COMP-2         |   Word                 |
         | COMP-3         |   Byte                 |
         | COMP-5         |   Byte                 |
         | COMP-8         |   Byte                 |
         | COMP-9         |   Word                 |
         | COMP-10        |   Double-word          |
         | COMP-15        |   Double-word          |
         | DISPLAY        |   Byte                |
         | INDEX          |   Not applicable      |
         | PACKED DECIMAL |   Byte                |
         | POINTER        |   Word                 |
         |----------------------------------------|

Examples (Type 1 FILLER)

Example 1:

    01 A.
    02 B PIC XXX.
    02 C OCCURS 2.
    03 D PIC X.
    03 E SYNC COMP-2.

The following equivalent declaration shows the type 1 FILLER inserted by the
compiler:

    01 A.
    02 B PIC XXX.
    02 C OCCURS 2.
    03 D PIC X.
    03 E COMP-2.
    03 FILLER PIC XXX.

The offset of E (I) must be a multiple of 4.  The offset of C (1) is a multiple of 4 plus
3, this leads E(1) to be correctly aligned.  In order to obtain next occurrences of E
on the correct boundaries, all occurrences of C must have an offset in multiples of 4
plus 3 also.  Thus the compiler inserted the PIC XXX FILLER to make the length of
one occurrence of C be always a multiple of 4.



COBOL Language Concepts

47 A2 05UL Rev04 3-29

Example 2:

If C contained two COMP-1 items instead of a COMP-2 item, the size of an
occurrence of C would need to be a multiple of 2 only.  Then, a PIC X FILLER
would be enough:

    01 A.
    02 B PIC XXX.
    02 C OCCURS 2.
    03 D PIC X.
    03 E.
    04 E1 COMP-1 SYNC.
    04 E2 COMP-1 SYNC.

becomes

    01 A.
    02 B PIC XXX.
    02 C OCCURS 2.
    03 D PIC X.
    03 E.
    04 E1 COMP-1.
    04 E2 COMP-1.
    03 FILLER PIC X.

Example 3:

If the SYNCHRONIZED item is subordinate to more than one repeating group, the
compiler may insert more than one type 1 FILLER:

    01 A.
    02 B PIC XXX.
    02 C OCCURS 2.
    03 D PIC X.
    03 EF OCCURS 2.
    04 E COMP-2 SYNC.
    04 F PIC XX.

becomes

    01 A.
    02 B PIC XXX.
    02 C OCCURS 2.
    03 D PIC X.
    03 EF OCCURS 2.
    04 E COMP-2.
    04 F PIC XX.
    04 FILLER PIC XX.
    03 FILLER PIC XXX.



GCOS 7 COBOL 85 Reference Manual

3-30 47 A2 05UL Rev04

Examples (Type 2 FILLER)

Example 1:

    01 A.
    02 B.
    03 C PIC X.
    03 D PIC XX.
    02 E.
    03 F COMP-1 SYNC.
    03 G COMP-2 SYNC.

The following equivalent declaration shows two type 2 FILLER inserted by the
compiler:

    01 A.
    02 B.
    03 C PIC X.
    03 D PIC XX.
    02 FILLER PIC X.
    02 E.
    03 F COMP-1.
    03 FILLER PIC XX.
    03 G COMP-2.

The PIC XX FILLER due to G is included in E since G is subordinate to E and it is
not the first element of E.  The PIC X FILLER due to F is not included in E because
F is the first element of E.

Example 2:

A 3-bit type 2 FILLER is inserted before the group C and a 6-bit type 2 FILLER is
added at its end to make it start and end on byte boundaries.  A 3-bit type 2 FILLER
is added at the end of the record A to make it end on a byte boundary.

    01 A BIT.
    02 B PIC 1(5).
    02 C.
    03 D PIC 1(5).
    03 E PIC 1(5).
    02 F PIC 1(5).

becomes

    01 A BIT.
    02 B PIC 1(5).
    02 FILLER PIC 111.
    02 C.
    03 D PIC 1(5).
    03 E PIC 1(5).
    03 FILLER PIC 1(6).
    02 F PIC 1(5).
    02 FILLER PIC 111.



COBOL Language Concepts

47 A2 05UL Rev04 3-31

Example (Type 3 FILLER)

Type 3 FILLER are inserted to align SYNCHRONIZED USAGE BIT items.

    01 A BIT.
    02 B SYNC LEFT PIC 1.
    02 CSYNC RIGHT PIC 1.

becomes

    01 A BIT.
    02 B PIC 1.
    02 FILLER PIC 1(7).
    02 FILLER PIC 1(7).
    02 C PIC 1.

Example (Redefining)

Re-definitions do not affect the allocation of the redefined data.

This is a combination of Type 1 FILLER examples 1 and 2.

    01 A.
    02 B PIC XXX.
    02 C OCCURS 2.
    03 D PIC X.
    03 E.
    04 E1 COMP-1 SYNC.
    04 E2 COMP-1 SYNC.
    03 EE REDEFINES E COMP-2 SYNC.

becomes

    01 A.
    02 B PIC XXX.
    02 C OCCURS 2.
    03 D PIC X.
    03 E.
    04 E1 COMP-1.
    04 E2 COMP-1.
    03 EE REDEFINES E COMP-2.
    03 FILLER PIC X.

This is an error: the type 1 FILLER will make all occurrences of E1 and E2 be
aligned on half words, but only those occurrences of EE which have an odd
subscript will be word aligned.



GCOS 7 COBOL 85 Reference Manual

3-32 47 A2 05UL Rev04

3.3.8 Definition of a Legible Equivalent

The legible equivalent specifies the form of the data under which it is represented on an
external medium, for the purpose of ACCEPTing it or DISPLAYing it.  The specification
is given in terms of conceptual data items that would be used as an editing/de-editing
area between the program and the external device.  The legible equivalent consists of
one, two or three contiguous conceptual data items whose usage is DISPLAY, and whose
description is deduced from the description of the data item of which it is a legible
equivalent.

The legible equivalent rules as specified in the current paragraph do not apply when the
WITH CONVERSION phrase is used in a DISPLAY statement.  (See the "DISPLAY
Statement", Chapter 11).

There are several legible equivalents:

• depending on whether it is the input (ACCEPT) or output (DISPLAY) form

• depending on the suffix appended to the hardware-name used to specify the device on
which the data is ACCEPTed or DISPLAYed.  The possible suffixes are:

-0 to specify that there is no legible equivalent; data is transferred to or from the
external medium without conversion except when the WITH CONVERSION phrase is
used in a DISPLAY statement.  (See the "DISPLAY Statement", Chapter 11.)

-1 to specify that the legible equivalent is the DISPLAY representation of the data in
memory, i.e. that no editing takes place; it is the same form on input and output.

-2 to specify that the legible equivalent is the DISPLAY representation of the data in
memory; in addition, for numeric data on output, sign and decimal point editing takes
place, and on input, a rather flexible form is permitted.

-X to specify that the legible equivalent is the hexadecimal representation of the value
of the data in memory independent of its description in the program.

In all cases group items behave as elementary alphanumeric items.

The following describe the various legible equivalents.



COBOL Language Concepts

47 A2 05UL Rev04 3-33

3.3.8.1 Legible Input Equivalent

The legible input equivalent is the form of the data on the external medium from which it
will be read by an ACCEPT statement.

If the hardware-name suffix is -X, the representation of the legible input equivalent of a
data item is the hexadecimal representation of the bit-coded value of the data item in
memory.  The following does not apply when the suffix is -X.

The representation of the legible input equivalent of an elementary data item whose
category is alphabetic, alphanumeric, alphanumeric-edited, or numeric-edited is exactly
the same as that of the data item of which it is the legible input equivalent.

The representation of the legible input equivalent of an elementary data item whose
category is boolean is exactly the same as that of the data item of which it is the legible
input equivalent, except that if this data item is of usage BIT, the usage of the legible
input equivalent is DISPLAY.

The representation of the legible input equivalent of a POINTER data item is always an 8
hexadecimal character-string.

The representation of the legible input equivalent of an elementary data item whose
category is numeric depends upon the suffix associated to the hardware-name.

a) Hardware-name suffix is -1

The legible input equivalent is described by a picture character-string deduced from
the picture and/or usage of the accepting data, as shown in the table "Legible
Equivalents of Elementary Numeric Data Items" below.

b) Hardware-name suffix is -2

The legible input equivalent has the form of a COBOL numeric literal, including
floating point numeric literals; it may contain blanks before and/or after the literal;
the point or the comma may be used as decimal mark; if the form is that of a
floating point literal, the "E" may be upper-case or lower-case.  The size of the
legible input equivalent is the number of characters of the data on the external
medium.

Elementary index-data-items cannot be ACCEPTed and therefore they have no legible
input equivalent.

Index-names are not identifiers and therefore cannot be ACCEPTed.

The representation of the legible input equivalent of a group item is the same as that of a
re-definition of that group item as an elementary alphanumeric data-item whose length
would be the same as that of the group.



GCOS 7 COBOL 85 Reference Manual

3-34 47 A2 05UL Rev04

3.3.8.2 Legible Output Equivalent

The legible output equivalent is the form of the data on the external medium upon which
it will be written by a DISPLAY statement.

If the hardware-name suffix is -X, the representation of the legible output equivalent of a
data item is the hexadecimal representation of the bit-coded value of the data item in
memory.  The following does not apply when the suffix is -X.

The representation of the legible output equivalent of an elementary data item whose
category is alphabetic, alphanumeric, alphanumeric-edited, or numeric-edited is exactly
the same as that of the data item of which it is the legible output equivalent.

The representation of the legible output equivalent of an elementary data item whose
category is boolean is exactly the same as that of the data item of which it is the legible
output equivalent, except that if this data item is of usage BIT, the usage of the legible
output equivalent is DISPLAY.

The representation of the legible output equivalent of a POINTER data item is always an
8 hexadecimal character-string.

The representation of the legible output equivalent of an elementary data item whose
category is numeric depends upon the suffix associated to the hardware-name.  It is
described by a picture character-string deduced from the picture and/or usage of the
displayed data, as shown in the table "Legible Equivalents of Elementary Numeric Data
Items" below.  The representation of the decimal mark is that implied by the DECIMAL-
POINT clause.

Elementary index-data-items cannot be DISPLAYed and therefore they have no legible
output equivalent.

Index-names are not identifiers and therefore cannot be DISPLAYed.

The representation of the legible output equivalent of a group item s the same as that of
a re-definition of that group item as an elementary alphanumeric data-item whose length
would be the same as that of the group.



COBOL Language Concepts

47 A2 05UL Rev04 3-35

Table 3-5. Legible Equivalents of Elementary Numeric Data Items

|==========================|=================|=================|
|   Hardware-name suffix   |      -1         |      -2         |
|--------------------------|-----------------|-----------------|
|   Applicable statements  | ACCEPT, DISPLAY |   DISPLAY       |
|--------------------------|-----------------|-----------------|
| DISPLAY                  |                 |                 |
|    SIGN TRAILING SEPARATE|                 |                 |
|         S9(p)            | 9(p)+           | -(p)9           |
|         S9(p)V9(q)       | 9(p)V9(q)+      | -(p)9.9(q)      |
|         S9(p)P(r)        | 9(p)P(r)+       | -(p+r)9         |
|         SP(r)9(q)        | P(r)9(q)+       | -.9(r+q)        |
|    other                 |                 |                 |
|         S9(p)            | +9(p)           | -(p)9           |
|         S9(p)V9(q)       | +9(p)V9(q)      | -(p)9.9(q)      |
|         S9(p)P(r)        | +9(p)P(r)       | -(p+r)9         |
|         SP(r)9(q)        | +P(r)9(q)       | -.9(r+q)        |
|         S9(p)VES9(e)     | +9(p)VF+9(e)    | -9(p).e+9(e)    |
|         S9(p)V9(q)ES9(e) | +9(p)V9(q)F+9(e)| -9(p).9(q)E+9(e)|
|         SV9(q)ES9(e)     | +V9(q)F+9(e)    | -.9(q)E+9(e)    |
|         9(p)             | 9(p)            | Z(p-1)9         |
|         9(p)V9(q)        | 9(p)V9(q)       | Z(p-&)9.9(q)    |
|         9(p)P(r)         | 9(p)P(r)        | Z(p+r-1)9       |
|         P(r)9(q)         | P(r)9(q)        | .9(r+q)         |
|         9(p)VES9(e)      | 9(p)VF+9(e)     | 9(p).e+9(e)     |
|         9(p)V9(q)ES9(e)  | 9(p)V9(q)F+9(e) | 9(p).9(q)E+9(e) |
|         V9(q)ES9(e)      | V9(q)F+9(e)     | .9(q)E+9(e)     |
|--------------------------|-----------------|-----------------|
| BINARY                   | same as DISPLAY | same as DISPLAY |
|--------------------------|-----------------|-----------------|
| PACKED-DECIMAL           | same as DISPLAY | same as DISPLAY |
|--------------------------|-----------------|-----------------|
| COMP-1  no picture       | +9(5)           | -(5)9           |
|         [S]9(p)    p<5   | +9(5)           | -(5)9           |
|                    p>4   | +9(10)          | -(10)9          |
|--------------------------|-----------------|-----------------|
| COMP-2                   | +9(10)          | -5(10)9         |
|--------------------------|-----------------|-----------------|
| COMP-3                   | same as DISPLAY | same as DISPLAY |
|--------------------------|-----------------|-----------------|
| COMP-5                   | same as DISPLAY | same as DISPLAY |
|--------------------------|-----------------|-----------------|
| COMP-8                   | same as DISPLAY | same as DISPLAY |
|--------------------------|-----------------|-----------------|
| COMP-9                   | +V9(7)F+99      | -9.9(6)E+99     |
|--------------------------|-----------------|-----------------|
| COMP-10                  | +V9(16)F+99     | -9.9(15)E+99    |
|--------------------------|-----------------|-----------------|
| COMP-15                  | +V9(27)F+99     | -9.9(26)E+99    |
|==========================|=================|=================|



GCOS 7 COBOL 85 Reference Manual

3-36 47 A2 05UL Rev04

NOTE

|"E" and "F" in the description of the legible equivalent indicate that
the picture character-string is that of the exrad of a floating point

legible equivalent, whereas the picture character-string that precedes
to the left is that of the significand. "E" will be present in the legible

equivalent whereas "F" is shown here for documentation only but will
not be present in the legible equivalent (i.e. the exrad representation
will immediately follow the significand representation). On output, the
first digit of the significand of a floating point legible equivalent will be
a non-zero digit unless the data item has a value zero in which case
all digits of the legible equivalent will be "0" and signs "+" or " " as

implied by the picture of the legible equivalent.|

3.3.9 Uniqueness of Reference

Every user-defined name in a COBOL program is assigned, by the user, to name a
resource which is to be used in solving a data processing problem (See "User-Defined
Words", this chapter).  In order to use a resource, a statement in a COBOL program
must contain a reference which uniquely identifies that resource.  In order to ensure
uniqueness of reference, a user-defined name may be qualified, subscripted, or
reference modified as described in the following paragraphs.

When the same name has been assigned in separate programs to two or more
occurrences of a resource of a given type, and when qualification by itself does not allow
the reference in one of those programs to differentiate between the two identically
named resources, then certain conventions which limit the scope of names apply.  These
conventions ensure that the resource identified is that described in the program
containing the reference (See "Scope of Names", this chapter).

Unless otherwise specified by the rules for a statement, any subscripting and reference
modification are evaluated only once as the first operation of the execution of that
statement.

3.3.9.1 Qualification

Every user-defined name explicitly referenced in a COBOL source program must be
uniquely referenced because either:

1. No other name has the identical spelling and hyphenation.

2. It is unique within the context of a REDEFINES clause (see the "REDEFINES
Clause", Chapter 8).



COBOL Language Concepts

47 A2 05UL Rev04 3-37

3. The name exists within a hierarchy of names such that reference to the name can
be made unique by mentioning one or more of the higher-level names in the
hierarchy.

These higher-level names are called qualifiers and this process that specifies
uniqueness is called qualification.  Identical user-defined names may appear in a
source program; however, uniqueness must then be established through
qualification for each user-defined name explicitly referenced, except in the case of
re-definition.  All available qualifiers need not be specified so long as uniqueness is
established.  Reserved words naming the special registers require qualification to
provided uniqueness of reference whenever a source program would result in more
than one occurrence of any of these special registers.  A paragraph-name or
section-name appearing in a program may not be referenced from any other
program, |however a global paragraph-name or section-name may be referenced in
GO TO statements from programs contained (directly or not) in the program in
which the global paragraph-name or section-name is declared.|

4. A program is contained within a program or contains another program (See "Scope
of Names", this chapter).

Regardless of the above, the same data-name must not be used as the name of an
external record and as the name of any other external data item described in any
program contained within or containing the program which describes that external data
record.  The same data-name must not be used as the name of an item possessing the
global attribute and as the name of any other data item described in the program which
describes that global data item.

The general formats for qualification are:

Format 1

                    {IN}                  {IN } {file-name}
                 { {{  } data-name-2}... [{  } {         } ] }
{data-name-1   } {  {OF}                  {OF } { cd-name }   }
{              } {                                           }
{condition-name} { {IN}  file-name                           }
                 { {  }                                      }
                   {OF}  cd-name

Format 2

               { IN }
paragraph-name {    } section-name
               { OF }

Format 3

          { IN }
text-name {    }  library-name
          { OF }



GCOS 7 COBOL 85 Reference Manual

3-38 47 A2 05UL Rev04

Format 4

               { IN }
LINAGE-COUNTER {    }  file-name
               { OF }

Format 5

Format 6

{PAGE-COUNTER}  { IN  }
{            }  {    }  report-name
{LINE-COUNTER}  { OF  }

               {IN}               {IN }
             { {  } data-name-4  [{  } report-name ] }
             { {OF}               {OF }               }
data-name-3  {                                       }
             { {IN}                                  }
             { {  }  report-name                     }
               {OF}

The rules for qualification are as follows:

1. For each non-unique user-defined name that is explicitly referenced, uniqueness
must be established through a sequence of qualifiers which precludes any
ambiguity of reference.

2. IN and OF are logically equivalent.

3. A name can be qualified even though it does not need qualifications; if there is
more than one combination of qualifiers that ensures uniqueness, then any such set
can be used.

4. In Format 1, each qualifier must be the name associated with a level indicator, the
name of a group item to which the item being qualified is subordinate, or the name
of the conditional variable with which the condition-name being qualified is
associated.  Qualifiers are specified in the order of successively more inclusive
levels in the hierarchy.

5. In Format 1, data-name-1 or data-name-2 may be a record-name.

6. If explicitly referenced, a paragraph-name must not be duplicated within a section.
When a paragraph-name is qualified by a section-name, the word SECTION must
not appear.  A paragraph-name need not be qualified when referred to from within
the same section.  A paragraph-name or section-name appearing in a program may
not be referenced from any other program, |however a global paragraph-name or
section-name may be referenced in GO TO statements from programs contained
(directly or not) in the program in which the global paragraph-name or section-name
is declared.|

7. If more than one COBOL library is available to the compiler during compilation,
text-name must be qualified each time it is referenced; |otherwise standard
searching rules apply.|

8. LINAGE-COUNTER must be qualified each time it is referenced if more than one
File Description entry containing a LINAGE clause has been specified in the source
program.



COBOL Language Concepts

47 A2 05UL Rev04 3-39

9. PAGE-COUNTER and LINE-COUNTER must be qualified each time they are
referenced in the Procedure Division if more than one Report Description entry is
specified in the source program.  In the Report Section, an unqualified reference to
PAGE-COUNTER or LINE-COUNTER is qualified implicitly by the name of the
report in whose Report Description entry the reference is made.  Whenever the
PAGE-COUNTER and LINE-COUNTER of a different report is referenced, PAGE-
COUNTER and LINE-COUNTER must be qualified explicitly by the report-name
associated with the  different report.

3.3.9.2 Subscripting

Function

Subscripts are used when reference is made to an individual element within a table of
like elements that have not been assigned individual data-names (see the "OCCURS
Clause", Chapter 8).

Format

                       { ALL                            }
                       { integer-1                      }
                       {               { + }            }
                       { data-name-2  [{   } integer-2] }
{ condition-name-1 }   {               { -  }            }
{                  } ( {                                }...)
{ data-name-1      }   {               { + }            }
                       { index-name-1 [{   } integer-3] }
                       {               { -  }            }
                       {                                }
                       { |---------------------------|  }
                       { | ( arithmetic-expression ) |  }
                         |---------------------------|

Syntax Rules

1. The data description entry containing data-name-1 or the data-name associated
with condition-name-1 must contain an OCCURS clause or must be subordinate to
a data description entry which contains an OCCURS clause.

2. Except as defined in syntax rule 4, when a reference is made to a table element,
the number of subscripts must equal the number of OCCURS clauses in the
description of the table element being referenced.  When more than one subscript
is required, the subscripts are written in the order of successively less inclusive
dimensions of the table.

3. Index-name-1 must correspond to a data description entry in the hierarchy of the
table being referenced which contains an INDEXED BY phrase specifying that
index-name.

4. Each table element reference must be subscripted except when such reference
appears:

a. In a USE FOR DEBUGGING statement.

b. As the subject of a SEARCH statement.



GCOS 7 COBOL 85 Reference Manual

3-40 47 A2 05UL Rev04

c. In a REDEFINES clause.

d. In a KEY IS phrase of an OCCURS clause.

5. Data-name-2 may be qualified and must be a numeric elementary item representing
an integer.

6. Integer-1 may be signed and, if signed, it must be positive.

7. The subscript ALL may be used only when the subscripted identifier is used as a
function argument and may not be used when condition-name-1 is specified.

General Rules

1. The value of the subscript must be a positive integer.  The lowest possible
occurrence number represented by a subscript is 1.  The first element of any given
dimension of a table is referenced by an occurrence number of 1.  Each successive
element within that dimension of the table is referenced by occurrence numbers of
2, 3, ... .  The highest permissible occurrence number for any given dimension of
the table is the maximum number of occurrences of the item as specified in the
associated OCCURS clause.

2. The value of the index referenced by index-name-1 corresponds to the occurrence
number of an element in the associated table.

3. The value of the index referenced by index-name-1 must be initialized before it is
used as a subscript.  An index may be given an initial value by either a PERFORM
statement with the VARYING phrase, a SEARCH statement with the ALL phrase, or
a SET statement.  An index may be modified only by the PERFORM, SEARCH,
and SET statements.

4. If integer-2 or integer-3 is specified, the value of the subscript is determined by
incrementing by the value of integer-2 or integer-3 (when the operator + is used) or
by decrementing by the value of integer-2 or integer-3 (when the operator - is used)
either the occurrence number represented by the value of the index referenced by
index-name-1 or the value of the data item referenced by data-name-2.



COBOL Language Concepts

47 A2 05UL Rev04 3-41

3.3.9.3 Function-Identifier

Purpose of a Function-Identifier

A function-identifier is a syntactically correct combination of character-strings and
separators that uniquely references the data item resulting from the evaluation of a
function.

General Format

FUNCTION function-name-1 [({argument-1} ... )]

                         [reference-modifier]

Syntax Rules

1. Argument-1 must be an identifier, a literal or an arithmetic expression.  Specific
rules governing the number, class and category of argument-1 are given in the
definition of each function.

2. A reference-modifier may be specified only for functions of the category
alphanumeric.

3. A function-identifier which references an alphanumeric function may be specified
anywhere in the general formats that an identifier is permitted and where the rules
associated with the general formats do not specifically prohibit reference to
functions, except as follows:

- As a receiving operand of any statement.

- Where the rules associated with the general formats require the data item
being referenced to have particular characteristics (such as class and
category, usage, size, sign and permissible values) and the evaluation of the
function according to its definition and the particular arguments specified
would not have these characteristics.

4. A function-identifier which references an integer or numeric function may be used
only in an arithmetic expression.

General Rules

1. The class and other characteristics of the function being referenced are determined
by the function definition.

2. At the time reference is made to a function, its arguments are evaluated individually
in the order specified in the list of arguments, from left to right.  An argument being
evaluated may itself be a function-identifier or may be an expression containing
function-identifiers.  There is no restriction preventing the function referenced in
evaluating an argument from being the same function as that for which the
argument is specified.



GCOS 7 COBOL 85 Reference Manual

3-42 47 A2 05UL Rev04

3.3.9.4 Reference Modifier

Function

Reference modification defines a data item by specifying a leftmost character and length
for the data item.

Format

{ data-name-1                                    }
{ FUNCTION function-name-1 [({argument-1} ... )] }

                        (leftmost-character-position : [length] )

Note : Data-name-1 and FUNCTION function-name-1 (argument-1) are shown in the
above format to provide context and are not part of the reference-modifier.

Syntax Rules

1. Data-name-1 must reference a data item whose usage is DISPLAY.

2. Leftmost-character-position and length must be arithmetic expressions.

3. Unless otherwise specified, reference modification is allowed anywhere an identifier
referencing a data item of the class alphanumeric |if data-name-1 is of the class
alphanumeric, or boolean if data-name-1 is of the class boolean,| is permitted.

4. Data-name-1 may be qualified or subscripted.

5. The function referenced by function-name-1 and its arguments, if any, must be an
alphanumeric function.

General Rules

1. Each character of a data item referenced by data-name-1 or by function-name-1
and its arguments, if any, is assigned an ordinal number incrementing by one from
the leftmost position to the rightmost position.  The leftmost position is assigned the
ordinal number one.  If the data description entry for data-name-1 contains a SIGN
IS SEPARATE clause, the sign position is assigned an ordinal number within that
data item.

2. If the data item referenced by data-name-1 is described as |boolean,| numeric,
numeric edited, alphanumeric, or alphanumeric edited, it is operated upon for
purposes of reference modification as if it were redefined as an alphanumeric data
item of the same size as the data item referenced by data-name-1.



COBOL Language Concepts

47 A2 05UL Rev04 3-43

3. Reference modification for an operand is evaluated immediately after evaluation of
any subscripts that are specified for that operand.

If an ALL subscript is specified for an operand, the reference-modifier is applied to
each of the implicitly specified elements of the table.

If reference modification is specified in a function reference, the reference
modification is evaluated immediately after evaluation of the function.

4. Reference modification creates a unique data item which is a subset of the data
item referenced by data-name-1 or by function-name-1 and its arguments, if any.
This unique data item is defined as follows:

a. The evaluation of leftmost-character-position specifies the ordinal position of
the leftmost character of the unique data item in relation to the leftmost
character of the data item referenced by data-name-1 or function-name-1 and
its arguments, if any.  Evaluation of leftmost-character-position must result in a
positive non-zero integer less than or equal to the number of characters in the
data item referenced by data-name-1 or function-name-1 and its arguments, if
any.

b. The evaluation of length specifies the size of the data item to be used in the
operation.  The evaluation of length must result in a positive non-zero integer.
The sum of leftmost-character-position and length minus the value one must
be less than or equal to the number of characters in the data item referenced
by data-name-1 or function-name-1 and its arguments, if any.  If length is not
specified, the unique data item extends from and includes the character
identified by leftmost-character-position up to and including the rightmost
character of the data item referenced by data-name-1 or function-name-1 and
its arguments, if any.

5. The unique data item is considered an elementary data item without the JUSTIFIED
clause.  When a function is referenced, the unique data item has the class and
category of alphanumeric.  When data-name-1 is specified, the unique data item
has the same class and category as that defined for the data item referenced by
data-name-1 except that the categories numeric, numeric edited, and alphanumeric
edited are considered category alphanumeric.



GCOS 7 COBOL 85 Reference Manual

3-44 47 A2 05UL Rev04

3.3.9.5 Identifier

An identifier is a syntactically correct sequence of character-strings and separators used
to reference data uniquely.

When a data item other than a function is being referenced, identifier is a term used to
reflect that data-name, if not unique in a program, must be followed by a syntactically
correct combination of qualifiers, subscripts, or reference modifiers necessary for
uniqueness of reference.

General Format

Format 1

function-identifier-1

Format-2

                                         {cd-name    }
              {IN}                  {IN } {           }
data-name-1 [ {  } data-name-2]... [{  } {file-name  }]
              {OF}                  {OF } {           }
                                         {report-name}

            [ ( {subscript}... )]

            [ (leftmost-character-position :  [length] )]

Syntax Rule

The words IN and OF are equivalent.

3.3.9.6 Condition-Name

If explicitly referenced, a condition-name must be unique or be made unique through
qualification and/or subscripting except when the scope of names conventions by
themselves ensure uniqueness of reference (See "Scope of Names", this chapter).

If qualification is used to make a condition-name unique, the associated conditional
variable may be used as the first qualifier.  If qualification is used, the hierarchy of
names associated with the conditional variable or the conditional variable itself must be
used to make the condition-name unique.

If references to a conditional variable require subscripting, reference to any of its
condition-names also requires the same combination of subscripting.

The format and restrictions on the combined use of qualification and subscripting of
condition-names is exactly that of "identifier" except that data-name-1 is replaced by
condition-name-1.

In the general formats of the chapters that follow, "condition-name" refers to a condition-
name qualified or subscripted, as necessary.



COBOL Language Concepts

47 A2 05UL Rev04 3-45

3.4 EXPLICIT AND IMPLICIT SPECIFICATIONS

There are four types of explicit and implicit specifications that occur in COBOL source
programs:

1. Explicit and implicit Procedure Division references

2. Explicit and implicit transfers of control

3. Explicit and implicit attributes

4. Explicit and implicit scope terminators.

3.4.1 Explicit and Implicit Procedure Division References

A COBOL source program can reference data items either explicitly or implicitly in
Procedure Division statements.  An explicit reference occurs when the name of the
referenced item is written in a Procedure Division statement or when the name of the
referenced item is copied into the Procedure Division by the processing of a COPY
statement.  An implicit reference occurs when the item is referenced by a Procedure
Division statement without the name of the referenced item being written in the source
statement.  An implicit reference also occurs, during the execution of a PERFORM
statement, when the index or data item referenced by the index-name or identifier
specified in the VARYING, AFTER or UNTIL phrase is initialized, modified or evaluated
by the control mechanism associated with that PERFORM statement.  Such an implicit
reference occurs if and only if the data item contributes to the execution of the
statement.



GCOS 7 COBOL 85 Reference Manual

3-46 47 A2 05UL Rev04

3.4.2 Explicit and Implicit Transfers of Control

The mechanism that controls program flow transfers control from statement to statement
in the sequence in which they were written in the source program unless an explicit
transfer of control overrides this sequence or there is no next executable statement to
which control can be passed.  The transfer of control from statement to statement occurs
without the writing of an explicit Procedure Division statement, and, therefore, is an
implicit transfer of control.

COBOL provides both explicit and implicit means of altering the implicit control transfer
mechanism.

In addition to the implicit transfer of control between consecutive statements, implicit
transfer of control also occurs when the normal flow is altered without the execution of a
procedure branching statement.  COBOL provides the following types of implicit control
flow alterations which override the statement-to-statement transfers of control:

1. If a paragraph is being executed under control of another COBOL statement (for
example, PERFORM, USE, SORT and MERGE) and the paragraph is the last
paragraph in the range of the controlling statement, then an implied transfer of
control occurs from the last statement in the paragraph to the control mechanism of
the last executed controlling statement.  Further, if a paragraph is being executed
under the control of a PERFORM statement which causes iterative execution, and
that paragraph is the first paragraph in the range of that PERFORM statement, an
implicit transfer of control occurs between the control mechanism associated with
that PERFORM statement and the first statement in that paragraph for each
iterative execution of the paragraph.

2. When a SORT or MERGE statement is executed, an implicit transfer of control
occurs to any associated input or output procedures.

3. When any COBOL statement is executed which results in the execution of a
declarative section, an implicit transfer of control to the declarative section occurs.
Note that another implicit transfer of control occurs after execution of the
declarative section, as described in paragraph 1 above.

An explicit transfer of control consists of an alteration of the implicit control transfer
mechanism by the execution of a procedure branching or conditional statement (See
"Categories of Statements", Chapter 10).  An explicit transfer of control can be caused
only by the execution of a procedure branching or conditional statement.  The procedure
branching statement EXIT PROGRAM causes an explicit transfer of control only when
the statement is executed in a called program.

In this manual, the term "next executable statement" is used to refer to the next COBOL
statement to which control is transferred according to the rules above and the rules
associated with each language element.



COBOL Language Concepts

47 A2 05UL Rev04 3-47

There is no next executable statement when the program contains no Procedure Division
or following:

1. The last statement in a declarative section when the paragraph in which it appears
is not being executed under the control of some other COBOL statement.

2. The last statement in a declarative section when the statement is in the range of an
active perform statement executed in a different section and this last statement of
the declarative section is not also the last statement of the procedure that is the exit
of the active PERFORM statement.

3. The last statement in a program when the paragraph in which it appears is not being
executed under the control of some other COBOL statement in that program.

4. A STOP RUN statement or EXIT PROGRAM statement that transfers control
outside the COBOL program.

5. The end program header.

When there is no next executable statement and control is not transferred outside the
COBOL program, the program flow of control is undefined unless the program execution
is in the non-declarative procedures portion of a program under control of a CALL
statement, in which case an implicit EXIT PROGRAM statement is executed.

3.4.3 Explicit and Implicit Attributes

Attributes may be implicitly or explicitly specified.  Any attribute which has been explicitly
specified is called an explicit attribute.  If an attribute has not been specified explicitly,
then the attribute takes on the default specification.  Such an attribute is known as an
implicit attribute.

For example, the usage of a data item need not be specified, in which case a data item's
usage is DISPLAY.



GCOS 7 COBOL 85 Reference Manual

3-48 47 A2 05UL Rev04

3.4.4 Explicit and Implicit Scope Terminators

Scope terminators serve to delimit the scope of certain Procedure Division statements
(See "Delimited Scope Statements", Chapter 10).

Scope terminators are of two types: explicit and implicit.

The explicit scope terminators are the following:

END-ADD END-MULTIPLY END-SEARCH

END-CALL END-PERFORM END-START

END-COMPUTE END-READ END-STRING

END-DELETE END-RECEIVE END-SUBTRACT

END-DIVIDE END-RETURN END-UNSTRING

END-EVALUATE END-REWRITE END-WRITE

END-IF

The implicit scope terminators are the following:

1. At the end of any sentence, the separator period which terminates the scope of all
previous statements not yet terminated.

2. Within any statement containing another statement, the next phrase of the
containing statement following the contained statement terminates the scope of any
unterminated contained statement.  Examples of such phrases are ELSE, WHEN,
NOT AT END, etc.



COBOL Language Concepts

47 A2 05UL Rev04 3-49

3.5 ACCESSING DATA ITEMS

Data items may be classified according to which programs in a run unit may access
them.

The following classifications, which are disjoint, arise:

1. External data records and items.

2. Local data items.

In addition, if a data item can be referenced by a program, it may be passed as a
parameter to other programs called by that program.

3.5.1 External Data Records and Items

An external data record is a logical record which is described in the Working-Storage or
the Constant Section of one or more programs of a run unit.  An external data item is a
data item which constitutes a part of an external data record.  External data items and
external data records may be referenced from any program which describes them.  An
external data record attains the external attribute by including the EXTERNAL clause in
the Data Description entry for that record in each program which describes that record.
An external data item attains the external attribute by including its Data Description entry
within the description of an external record.

3.5.2 Local Data Items

A local data item is a data item which is described without the EXTERNAL clause in a
program.

3.6 EXTERNAL SWITCH

An external switch is a JCL switch which is used to indicate that one of two alternate
states exist.  These alternate states are referred to as the "on" status and the "off" status
of the associated external switch.  The status of an external switch may be interrogated
by testing condition-names associated with that switch.  The association of a condition-
name with an external switch and the association of a user-specified mnemonic-name
with SWITCH-n that names an external switch is established in the SPECIAL-NAMES
paragraph of the Environment Division (see Chapter 7).  The scope of an external switch
is the run unit.  SWITCH-n that names such an external switch refers to one and only
one such switch, the status of which is available to each object program functioning
within that run unit.  The status of certain external switches may be altered by the SET
statement (See the "SET Statement", Chapter 13).



GCOS 7 COBOL 85 Reference Manual

3-50 47 A2 05UL Rev04

3.7 SCOPE OF NAMES

When programs are directly or indirectly contained within other programs, each program
may use identical user-defined words to name objects independent of the use of these
user-defined words by other programs (See "User-Defined Words", this chapter).  When
identically named objects exist, a program's reference to such a name, even when it is a
different type of user-defined word, is to the object which that program describes rather
than to the object, possessing the same name, described in another program.

The following types of user-defined words may be referenced only by statements and
entries in that program in which the user-defined word is declared |except when the
name is global and the program contains other programs:|

1. cd-name

2. paragraph-name

3. section-name

The following types of user-defined words may be referenced by any COBOL program:

1. library-name

2. text-name

The following types of user-defined words when they are declared in a Communication
Section may be referenced only by statements and entries in that program which
contains that section |except when the name is global and the program contains other
programs:|

1. condition-name

2. data-name

3. record-name

The following types of names, when they are declared within a Configuration Section,
may be referenced only by statements and entries either in that program which contains
a Configuration Section or in any program contained within that program:

1. alphabet-name

2. class-name

3. condition-name

4. mnemonic-name

5. symbolic-character



COBOL Language Concepts

47 A2 05UL Rev04 3-51

Specific conventions, for declarations and references, apply to the following types of
user-defined words when the conditions listed above do not apply:

1. condition-name

2. data-name

3. file-name

4. index-name

5. program-name

6. record-name

7. report-name

|8. cd-name

9. paragraph-name

10. section-name|

3.7.1 Conventions for Program-names

The program-name of a program is declared in the PROGRAM-ID paragraph of the
program's Identification Division.  A program-name may be referenced only by the CALL
statement, the CANCEL statement, and the end program header.  The program-names
allocated to programs constituting a run unit are not necessarily unique but, when two
programs in a run unit are identically named, at least one of those two programs must be
directly or indirectly contained within another separately compiled program which does
not contain the other of those two programs.

The following rules regulate the scope of a program-name.

1. If the program-name is that of a program which does not possess the common
attribute and which is directly contained within another program, that program-name
may be referenced only by statements included in that containing program.

2. If the program-name is that of a program which does possess the common attribute
and which is directly contained within another program, that program-name may be
referenced only by statements included in that containing program and any
programs directly or indirectly contained within that containing program, except that
program possessing the common attribute and any programs contained within it.

3. If the program-name is that of a program which is separately compiled, that
program-name may be referenced by statements included in any other program in
the run unit, except programs it directly or indirectly contains.



GCOS 7 COBOL 85 Reference Manual

3-52 47 A2 05UL Rev04

3.7.2 Conventions for Index-names

If a data item possessing either or both the external or global attributes includes a table
accessed with an index, that index also possesses correspondingly either or both
attributes.  Therefore, the scope of an index-name is identical to that of the data-name
which names the table whose index is named by that index-name and the scope of name
rules for data-names apply.  Index-names cannot be qualified.

3.7.3 Conventions for Other Names

The conventions for Conditions-Names, Data-names, File-names, Record-names,
Report-Names, |Cd-names, Paragraph-names, and Section-Names| are given below.

When condition-names, data-names, file-names, record-names, report-names, |cd-
names, paragraph-names, and section-names| are declared in a source program, these
names may be referenced only by that program except when one or more of the names
is global and the program contains other programs.

The requirements governing the uniqueness of the names allocated by a single program
to be condition-names, data-names, file-names, record-names, report-names, |cd-
names, paragraph-names, and section-names| are explained elsewhere in these
specifications (See "User-Defined Words", this chapter).

A program cannot reference any condition-name, data-name, file-name, record-name,
report-name, |cd-name paragraph-name, or section-name| declared in any program it
contains.

A global name may be referenced in the program in which it is declared or in any
programs which are directly or indirectly contained within that program.

When a program, program B, is directly contained within another program, program A,
both programs may define a condition-name, a data-name, a file-name, a record-name,
a report-name, a |cd-name, a paragraph-name, or a section-name| using the same user-
defined word.  When such a duplicated name is referenced in program B, the following
rules are used to determine the referenced object:

1. The set of names to be used for determination of a referenced object consists of all
names which are defined in program B and all global names which are defined in
program A and in any programs which directly or indirectly contain program A.
Using this set of names, the normal rules for qualification and any other rules for
uniqueness of reference are applied until one or more objects is identified.

2. If only one object is identified, it is the referenced object.



COBOL Language Concepts

47 A2 05UL Rev04 3-53

3. If more than one object is identified, no more than one of them can have a name
local to program B.  If zero or one of the objects has a name local to program B, the
following rules apply:

a. If the name is declared in program B, the object in program B is the referenced
object.

b. Otherwise, if program A is contained within another program, the referenced
object is:

1) The object in program A if the name is declared in program A.

2) The object in the containing program if the name is not declared in program
A and is declared in the program containing program A.  This rule is applied to
further containing programs until a single valid name has been found.

|If the referenced object is a global paragraph-name or a global section-name and it is
not declared in the program which contains the reference, this reference is legal only if it
appears in a GO TO statement excluding any DEPENDING phrase.|



GCOS 7 COBOL 85 Reference Manual

3-54 47 A2 05UL Rev04



47 A2 05UL Rev04 4-1

4. The COBOL Program: a Summary

A COBOL source program is a syntactically correct set of COBOL statements.

With the exception of COPY and REPLACE statements and the end program header,
the statements, entries, paragraphs, and sections of a COBOL source program are
grouped into the following divisions: |Control,| Identification, Environment, Data, and
Procedure.

The end of a COBOL program is indicated either by the end program header, if
specified, or by the absence of additional source program lines.

The purpose and general composition of the COBOL divisions are summarized below.
The end program header structure is also presented.  Specific language and usage
requirements for each COBOL statement and term appear in Chapters 5 through 13.



GCOS 7 COBOL 85 Reference Manual

4-2 47 A2 05UL Rev04

4.1 STRUCTURE OF A COBOL PROGRAM

The following gives the general format and order of presentation of the entries and
statements which constitute a COBOL source program.

4.1.1 General Format

[control-division]

identification-division

[environment-division]

[data-division]

[procedure-division]

[end-program-header]

4.1.2 Syntax Rule

The generic terms |control-division,| identification-division, data-division, procedure-
division, and end-program-header represent |a COBOL Control Division,| a COBOL
Identification Division, a COBOL Environment Division, a COBOL Data Division, a
COBOL Procedure Division, and a COBOL end program header, respectively.

4.1.3 General Rules

1. The beginning of a division in a program is indicated by the appropriate division
header.  The end of a division is indicated by one of the following:

a. The division header of a succeeding division in that program.

b. The end program header.

c. That physical position after which no more source program lines occur.

2. All separately compiled source programs in a sequence of programs must be
terminated by an end program header except for the last program of the sequence.



The COBOL Program: a Summary

47 A2 05UL Rev04 4-3

4.2 CONTROL DIVISION

|The Control Division consists of the Substitution Section and the Default Section.

The Control Division directs the compiler to replace specified words or literals in the
source program with other words at program compilation using the Substitution Section.
The Default Section allows the compiler default conditions to be specified if other than
standard defaults are required.|

4.3 IDENTIFICATION DIVISION

The Identification Division uniquely identifies a COBOL program.  It contains the
program-name, which names the source program input, the listing of the compiled
program that is printed out and the object compile unit.  The Identification Division can
indicate the author of the program, the installation where the program is compiled, the
date on which the program is written and the date on which it is compiled.  It can also
include security information.

4.4 ENVIRONMENT DIVISION

The Environment Division specifies a standard method of expressing those aspects of a
data processing problem that are dependant upon the physical characteristics of a
specific computer.  This division allows specification of the configuration of the compiling
computer and the object computer.  In addition, information relating to input-output
control, special hardware characteristics, and control techniques can be given.

Two sections make up the Environment Division: the Configuration Section and the
Input-Output Section.

The Configuration Section describes the computer configuration on which the source
program is to be compiled, and the configuration on which the compiled program is to be
run.  It also relates system names used by the compiler to names introduced by the
programmer in the source program.

The Input-Output Section contains the information needed to control transmission and
handling of data between external media and the object program.  This section describes
the name, type of organization, and access mode of each data file, and may associate
the file with a peripheral device.  It may also designate memory areas to be shared by
files.



GCOS 7 COBOL 85 Reference Manual

4-4 47 A2 05UL Rev04

4.5 DATA DIVISION

The Data Division describes the data that the program is to accept as input, manipulate,
process, or produce as output.  Data to be processed falls into the following categories:

1. Data that is contained in files and enters a specified area of the internal memory of
the computer or leaves memory from a specified area.

2. Data that is developed internally and placed into intermediate or working storage, or
placed into specific format for output reporting purposes.

3. Data whose value is assigned in the source program.

4. Data made available to one program through another program containing a CALL
statement.

The sections of the Data Division are the File, Working-Storage, |Constant,| Linkage,
Communication and Report Sections.

The File Section describes the structure of data files; each file is defined by a file
description entry and one or more record description entries.

The Working-Storage Section describes records and non-contiguous data items that are
not part of external files, but are developed and processed internally.

|The Constant Section defines data items whose values do not change during the
execution of the program.|

The Linkage Section of a COBOL program is meaningful if the program is to be called by
another program in the same run unit.  This section, appearing in the called program,
describes data items that may be referred to by both the called and calling programs, but
are available only through the calling program.  If the program uses based data items,
descriptions of these items are to be found in the Linkage Section.

The Communication Section describes the characteristics of the information that is
exchanged between the program and the communication system during communication
processing.

The Report Section describes the content and format of Reports that are to be
generated.



The COBOL Program: a Summary

47 A2 05UL Rev04 4-5

4.6 PROCEDURE DIVISION

The Procedure Division contains the specific instructions for solving a data processing
problem, using the data described in the Data Division.  The Procedure Division is
written as a group of consecutive procedures, each composed of a series of closely
related operations that collectively perform a particular function.

This division comprises two kinds of procedures: declarative procedures, which are
optional, and non-declarative procedures.  If used, declarative procedures must all be
grouped at the beginning of the Procedure Division.  Use of the declarative procedures
permits the execution of procedures that are not performed in the regular sequence of
coding, but are initiated as a result of a condition that the programmer cannot test
directly.  Each declarative procedure must contain a compiler-directing sentence and
may include one or more paragraphs.

A procedure is composed of a paragraph, or a group of successive paragraphs, or a
section, or a group of successive sections within the Procedure Division.  If one
paragraph is in a section, then all paragraphs must be in sections.

A section consists of a section header followed by zero, one or more successive
paragraphs.

A paragraph consists of a paragraph-name followed by a period followed by a space and
by zero, one, or more successive sentences.

A sentence consists of one or more statements and is terminated by a period followed by
a space.

A statement is a syntactically valid combination of words and symbols beginning with a
COBOL verb.

Execution of the procedures in the Procedure Division begins with the first statement in
the division, excluding declaratives.  Statements are then executed in the order in which
they are presented for compilation, except where the rules indicate some other order.



GCOS 7 COBOL 85 Reference Manual

4-6 47 A2 05UL Rev04

4.7 END PROGRAM HEADER

The end program header indicates the end of the named COBOL program.

4.7.1 Format

END PROGRAM  program-name.

4.7.2 Syntax Rules

1. The program-name must conform to the rules for forming a user-defined word.

2. The program-name must be identical to a program-name declared in a preceding
PROGRAM-ID paragraph.

4.7.3 General Rules

1. The end program header indicates the end of the specified COBOL source
program.

2. If the next source statement after the program terminated by the end program
header is a COBOL statement, |it can be any COBOL statement pertaining to the
Procedure Division of a containing program or| it must be |the Control Division or|
the Identification Division header of a program to be compiled separately from that
program terminated by the end program header.



47 A2 05UL Rev04 5-1

5. Control Division

5.1 GENERAL DESCRIPTION

The Control Division provides for the substitution, replacement and modification of
source program text; and declaration of default options for the computer system for
which the program is to be compiled.



GCOS 7 COBOL 85 Reference Manual

5-2 47 A2 05UL Rev04

5.2 CONTROL DIVISION

Description

The Control Division directs the compiler to replace COBOL text within the source
program at program compilation using the Substitution Section.  The Default Section
allows the compiler default conditions to be specified if other than standard defaults are
required.

Format

|--------------------------------------------|
| CONTROL DIVISION .                          |
|                                            |
| [SUBSTITUTION SECTION . [replace-entry]]    |
|                                            |
| [DEFAULT SECTION . [[default-entry]... . ]] |
|--------------------------------------------|

Syntax Rules

1. The Control Division is optional.  If it is specified, it must appear before the
Identification Division.

2. The Control Division must not be stated in a program which is contained directly or
indirectly within another program.

The entries stated in the Control Division of a program which contains other
programs apply to each contained program.

3. The Control Division must not contain nor be preceded by any REPLACE
statement.  Further, if the replace-entry is present in the Substitution Section of the
Control Division of a source program, that source program, including all contained
programs, must contain no REPLACE statement.  (See the "REPLACE Statement",
Chapter 15).

4. COPY statements must not appear in the replace-entry.  However, a replace-entry
may be part of the text copied by a COPY statement provided that this COPY
statement does not have the REPLACING option.

General Rules

1. All COPY statements appearing in the source program are resolved before any
CONTROL DIVISION entries.

2. Resolution of the entries appearing in the Control Division is accomplished in the
following order:

a. The entry in the Substitution Section
b. All entries in the Default Section.



Control Division

47 A2 05UL Rev04 5-3

5.3 SUBSTITUTION SECTION

Description

The Substitution Section provides the means of replacing source program text by other
source program text.

Format

|---------------------------------------------------------------|
|                                                               |
| SUBSTITUTION SECTION                                           |
|    [ REPLACE                                                  |
|          {== pseudo-text-1 ==}    {== pseudo-text-2 ==}       |
|          {identifier-1       }    {identifier-2       }       |
|         {{                   } BY {                   }}      |
|         {{literal-1          }    {literal-2          }}      |
|         {{word-1             }    {word-2             }}... .]|
|         {                                              }      |
|         {{LEADING }              {literal}             }      |
|         {{        } literal-3 BY {SPACE   }             }      |
|          {TRAILING}              {SPACES  }                    |
|                                                               |
|---------------------------------------------------------------|

Syntax Rules

1. Pseudo-text-1 must contain one or more text-words.

2. Pseudo-text-2 may contain zero, one or more text-words.

3. Character-strings within pseudo-text-1 and pseudo-text-2 may be continued.
However, both characters of a pseudo-text delimiter must be on the same line.

4. Word-1 or word-2 may be any single COBOL word, except PICTURE and PIC.

5. Literal-3 and literal-4 must be non-numeric literals.

6. A PICTURE character-string may appear in pseudo-text-1 or pseudo-text-2
provided it is immediately preceded by "PICTURE", "PICTURE IS", "PIC", or "PIC
IS".

7. The words PICTURE or PIC may appear in pseudo-text-1 or pseudo-text-2 provided
they are immediately followed by a PICTURE character-string possibly preceded by
the word IS.

8. If the Substitution Section contains one or more REPLACE  clause(s), the source
program must contain no REPLACE  statement.  (See the "REPLACE Statement",
Chapter 15).



GCOS 7 COBOL 85 Reference Manual

5-4 47 A2 05UL Rev04

General Rules

1. The compilation of a source program containing a REPLACE clause in the
Substitution Section is logically equivalent to processing all COPY statements to
produce an intermediate source program, and then processing all REPLACE
operands against the intermediate source program to produce the final source
program.

2. When a REPLACE clause is processed, the (possibly intermediate) source program
text is searched and each properly matched occurrence of pseudo-text-1, identifier-
1, literal-1, word-1 and leading or trailing literal-3 in words in the source program
text is replaced by the corresponding pseudo-text-2, identifier-2, literal-2, word-2,
literal-4, or deleted.

3. For purposes of matching, identifier-1, literal-1, and word-1 are treated as pseudo-
text containing only identifier-1, literal-1, or word-1, respectively.

4. The comparison operation to determine text replacement occurs in the following
manner:

a. Starting with the leftmost source program text-word and the first pseudo-text-1,
identifier-1, literal-1, word-1, or literal-3 that was specified in the REPLACE
clause, the entire REPLACE clause operand that precedes the reserved word
BY is compared to an equivalent number of contiguous source program text-
words, or in the case of literal-3 to the equivalent number of LEADING or
TRAILING characters of the leftmost text-word when it is a word.

b. Pseudo-text-1, identifier-1, literal-1, or word-1 match the source program text
if, and only if, the ordered sequence of text-words that forms pseudo-text-1,
identifier-1, literal-1, or word-1 is equal, character for character, to the ordered
sequence of source program text-words.  For purposes of matching, each
occurrence of a separator comma or semi-colon in pseudo-text-1 or in the
source program text is considered to be a single space except when pseudo-
text-1 consists solely of either a separator comma or semi-colon, in which case
it participates in the match as a text-word.  Each sequence of one or more
space separators is considered to be a single space.

c. Literal-3 matches the source program text if, and only if, the leftmost text-word
commences (LEADING) or finishes (TRAILING) with the same sequence of
characters as that forms literal-3.

d. If no match occurs, the comparison is repeated with each next successive
pseudo-text-1, identifier-1, word-1, literal-1, or literal-3, if any, in the REPLACE
clause until either a match is found or there is no next successive REPLACE
operand.

e. When all the REPLACE clause operands have been compared and no match
has occurred, the leftmost source program text-word remains unchanged.  The
next successive source program text-word is then considered as the leftmost
source program text-word, and the comparison cycle starts again with the first
pseudo-text-1, identifier-1, word-1, literal-1, or literal-3 specified in the
REPLACE clause.



Control Division

47 A2 05UL Rev04 5-5

f. Whenever a match occurs between pseudo-text-1, identifier-1, word-1 or
literal-1, and the source program text, the corresponding pseudo-text-2,
identifier-2, word-2 or literal-2 is placed into the source program.  Whenever a
match occurs between literal-3 and a text-word, the matching leading or
trailing characters of the word are either replaced by the characters that form
literal-4, or if the SPACE or SPACES phrase is used, are deleted; the
replacement is effected only if it results in a legal word.  The source program
text-word immediately following the rightmost text-word that participated in the
match is then considered as the leftmost source program text-word.  The
comparison cycle starts again with the first pseudo-text-1, identifier-1, word-1,
literal-1 or literal-3 specified in the REPLACE clause.

g. The comparison operation continues until the rightmost text-word in the source
program text has either participated in a match or been considered as a
leftmost source program text-word and participated in a complete comparison
cycle.

5. A comment line occurring in the source program text or pseudo-text-1 is interpreted,
for purposes of matching, as a single space.  Comment lines appearing in pseudo-
text-2 and library text are copied into the source program unchanged.

6. The text produced as a result of the complete processing of a REPLACE statement
must not contain a COPY statement.

7. The syntactic correctness of the entire COBOL source program cannot be
determined until all REPLACE clauses have been completely processed.

8. Each word in pseudo-text-2 that is to be placed in the resultant program is placed in
the same area of the resultant program as it appears in pseudo-text-2.  Literal-2,
word-2 or the first word of identifier-2, is placed in the same area as the first text-
word replaced.

9. For purposes of compilation, text-words after replacement are placed in the source
program according to the rules for the reference format.



GCOS 7 COBOL 85 Reference Manual

5-6 47 A2 05UL Rev04

5.4 DEFAULT SECTION

DESCRIPTION

The Default Section specifies language elements or functions that are to be used as
defaults during compilation of the program.

Format

|------------------------------------------------------|
|                                                      |
|DEFAULT SECTION.                                      |
|                       {OMITTED     }                 |
|    [SYMBOLIC QUEUE  IS {            }]                |
|                       {MESSAGE UNIT }                 |
|                                                      |
|                     {LEADING }                       |
|    [DISPLAY SIGN  IS {        } [SEPARATE  CHARACTER]] |
|                     {TRAILING}                       |
|                                                      |
|                       {BINARY         }              |
|                       {DISPLAY        }              |
|                       {COMPUTATIONAL-1}              |
|                       {COMP-1         }              |
|                       {COMPUTATIONAL-2}              |
|    {COMPUTATIONAL}    {COMP-2          }              |
|   [{             } IS {COMPUTATIONAL-3}]             |
|    {COMP         }    {COMP-3          }              |
|                       {COMPUTATIONAL-5}              |
|                       {COMP-5         }              |
|                       {COMPUTATIONAL-8}              |
|                       {COMP-8         }              |
|                       {PACKED-DECIMAL }              |
|                                                      |
|                       {NOT STANDARD }                 |
|             {integer [{            }]}               |
|             {         {BINARY      } }               |
|    [TEMP IS {                        }]              |
|             {NOT STANDARD             }               |
|             {BINARY                  }               |
|                                                      |
|               { SYSIN             }                  |
|               {[ALTERNATE] CONSOLE }                  |
|    [ACCEPT IS {                   }]                 |
|               { ALTERNATE-CONSOLE }                  |
|               { TERMINAL          }                  |
|                { SYSOUT            }                 |
|                {[ALTERNATE] CONSOLE }                 |
|    [DISPLAY IS {                   }]                |
|                { ALTERNATE-CONSOLE }                 |
|                { TERMINAL          }                 |
|                                                      |
|------------------------------------------------------|



Control Division

47 A2 05UL Rev04 5-7

|----------------------------------------------------------|
|                                                          |
|    [SYSIN IS SYSIN-p ]                                    |
|                                                          |
|            {ALTERNATE-CONSOLE}    {ALTERNATE-CONSOLE-p }  |
|    [ACCEPT {                 } IS {                   }] |
|            {ALTERNATE CONSOLE }    {ALTERNATE  CONSOLE-p}  |
|                                                          |
|    [ACCEPT CONSOLE  IS CONSOLE-p ]                         |
|                                                          |
|    [ACCEPT TERMINAL  IS TERMINAL-p ]                       |
|                                                          |
|    [SYSOUT IS SYSOUT-p ]                                  |
|                                                          |
|             {ALTERNATE-CONSOLE}    {ALTERNATE-CONSOLE-p } |
|    [DISPLAY {                 } IS {                   }]|
|             {ALTERNATE CONSOLE }    {ALTERNATE  CONSOLE-p} |
|                                                          |
|    [DISPLAY CONSOLE  IS CONSOLE-p ]                        |
|                                                          |
|    [DISPLAY TERMINAL  IS TERMINAL-p ]                      |
|                                                          |
|                    {FILE [COMMUNICATION ]}                |
|    [COBOL 1974  FOR {                    }].              |
|                    {COMMUNICATION [FILE ]}                |
|                                                          |
|----------------------------------------------------------|

Syntax Rules

1. Integer must range from 1 through 30.

2. COMP is an abbreviation for COMPUTATIONAL.

COMP-n is an abbreviation for COMPUTATIONAL-n.

3. The suffix -p in ALTERNATE-CONSOLE-p, CONSOLE-p, SYSIN-p, SYSOUT-p
and TERMINAL-p may be -0, -1, -2 or -X.

General Rules

1. The SYMBOLIC QUEUE clause is given for documentation only.  It is accepted for
compatibility.

2. The DISPLAY SIGN clause specifies for DISPLAY numeric data the default position
and mode of representation of the operational sign.  If this clause is not present,
DISPLAY SIGN IS TRAILING is assumed.

3. The COMPUTATIONAL clause specifies the format of a data item described with
the USAGE IS COMPUTATIONAL clause, in the computer storage.  If this clause is
not present COMPUTATIONAL IS COMPUTATIONAL-3 is assumed.



GCOS 7 COBOL 85 Reference Manual

5-8 47 A2 05UL Rev04

4. The TEMP clause specifies the number of significant digit positions kept in
intermediate results of arithmetic expressions.  If this clause is not present, or if the
integer phrase is not present in the clause, TEMP IS 30 is assumed, unless the
compilation level is ANSI or below in which case TEMP IS 18 is assumed.  When
NOT STANDARD is specified, the number of significant digits is not always
guaranteed when faster computations may be achieved.  When BINARY is
specified, intermediate computations will use binary floating point intermediate
results.

5. The ACCEPT clause specifies the standard device from which data is made
available when the ACCEPT statement is used without the FROM phrase.  When
this clause is absent, ACCEPT IS SYSIN is assumed.

6. The DISPLAY clause specifies the standard device to which data is transferred
when the DISPLAY statement is used without the UPON phrase.  When this clause
is absent, DISPLAY IS SYSOUT is assumed.

7. The SYSIN clause specifies the legible equivalent for ACCEPT statements that
reference either SYSIN or a mnemonic-name associated with SYSIN.  If this clause
is not present, SYSIN IS SYSIN-1 is assumed.  (See "Legible Equivalent", Chapter
3).

8. The ACCEPT ALTERNATE-CONSOLE or ACCEPT ALTERNATE CONSOLE
clause specifies the legible equivalent for ACCEPT statements that reference either
ALTERNATE-CONSOLE or ALTERNATE CONSOLE or a mnemonic-name
associated with ALTERNATE-CONSOLE or ALTERNATE CONSOLE.  If this clause
is not present, ACCEPT ALTERNATE-CONSOLE IS ALTERNATE-CONSOLE-2 is
assumed.  (See "Legible Equivalent", Chapter 3).

9. The ACCEPT CONSOLE clause specifies the legible equivalent for ACCEPT
statements that reference either CONSOLE or a mnemonic-name associated with
CONSOLE.  If this clause is not present, ACCEPT CONSOLE IS CONSOLE-2 is
assumed.  (See "Legible Equivalent", Chapter 3).

10. The ACCEPT TERMINAL clause specifies the legible equivalent for ACCEPT
statements that reference either TERMINAL or a mnemonic-name associated with
TERMINAL.  If this clause is not present, ACCEPT TERMINAL IS TERMINAL-2 is
assumed.  (See "Legible Equivalent", Chapter 3).

11. The SYSOUT clause specifies the legible equivalent for DISPLAY statements that
reference either SYSOUT or a mnemonic-name associated with SYSOUT.  If this
clause is not present, SYSOUT IS SYSOUT-1 is assumed.  (See "Legible
Equivalent", Chapter 3).

12. The DISPLAY ALTERNATE-CONSOLE or DISPLAY ALTERNATE CONSOLE
clause specifies the legible equivalent for DISPLAY statements that reference either
ALTERNATE-CONSOLE or ALTERNATE CONSOLE or a mnemonic-name
associated with ALTERNATE-CONSOLE or ALTERNATE CONSOLE.  If this clause
is not present, DISPLAY ALTERNATE-CONSOLE IS ALTERNATE-CONSOLE-2 is
assumed.  (See "Legible Equivalent", Chapter 3).



Control Division

47 A2 05UL Rev04 5-9

13. The DISPLAY CONSOLE clause specifies the legible equivalent for DISPLAY
statements that reference either CONSOLE or a mnemonic-name associated with
CONSOLE.  If this clause is not present, DISPLAY CONSOLE IS CONSOLE-2 is
assumed.  (See "Legible Equivalent", Chapter 3).

14. The DISPLAY TERMINAL clause specifies the legible equivalent for DISPLAY
statements that reference either TERMINAL or a mnemonic-name associated with
TERMINAL.  If this clause is not present, DISPLAY TERMINAL IS TERMINAL-2 is
assumed.  (See "Legible Equivalent", Chapter 3).

15. The COBOL 1974 clause specifies that the syntax and semantic rules of COBOL 74
apply for the entries, clauses and statements related to files (if FILE is specified)
and communications (if COMMUNICATION is specified).  However, the COBOL
1974 clause does not prevent from using the GLOBAL clause in the File and
Communication Sections, the GLOBAL phrase in USE statements and the scope
terminators and the NOT phrases in input/output statements.  The Report Writer is
not affected by the presence of any COBOL 1974 clause.



GCOS 7 COBOL 85 Reference Manual

5-10 47 A2 05UL Rev04



47 A2 05UL Rev04 6-1

6. Identification Division

6.1 GENERAL DESCRIPTION

The Identification Division must be included in every source program.  This division
identifies the program.  In addition, the user may include the date the program is written
and such other information as desired under the paragraphs in the general format shown
below.



GCOS 7 COBOL 85 Reference Manual

6-2 47 A2 05UL Rev04

6.2 IDENTIFICATION DIVISION

Description

The Identification Division identifies the source program and the resultant output listing,
and may document other related information, as desired.

The AUTHOR paragraph, INSTALLATION paragraph, DATE-WRITTEN paragraph,
DATE-COMPILED paragraph and SECURITY paragraph are obsolete elements in
Standard COBOL because they are to be deleted from the next revision of Standard
COBOL.

Organization

Fixed paragraph names identify the type of information contained in the paragraph.  The
PROGRAM-ID and DATE-COMPILED paragraphs are defined separately on the
following pages.  Although the other paragraphs are not declared, their format is similar.

Format

The Identification Division must conform to the following format:

 IDENTIFICATION DIVISION

                              {COMMON [INITIAL ]}
 PROGRAM-ID. program-name [IS {                } PROGRAM].
                              {INITIAL [COMMON ]}

[AUTHOR. [comment-entry]... ]

[INSTALLATION. [comment-entry]...]

[DATE-WRITTEN. [comment-entry]...]

[DATE-COMPILED. [comment-entry]...]

[SECURITY. [comment-entry]...]

Syntax Rules

1. The Identification division must begin with the reserved words IDENTIFICATION
DIVISION followed by a period and a space.

2. The comment-entry may be any combination of the characters from the computer's
character set.  The continuation of the comment-entry by the use of the hyphen in
the indicator area is not permitted; however, the comment-entry may be contained
on one or more lines.



Identification Division

47 A2 05UL Rev04 6-3

6.3 PROGRAM-ID

Description

The PROGRAM-ID paragraph gives the name by which the program is identified and
assigns selected program attributes to that program.

Format

                             {COMMON [INITIAL ]}
PROGRAM-ID. program-name [IS {                } PROGRAM].
                             {INITIAL [COMMON ]}

Syntax Rules

1. The program-name must conform to the rules for formation of a user-defined word.

2. A unique program-name must be assigned to every program contained directly or
indirectly within the same separately compiled program.

3. The COMMON phrase may be used only if the program is contained within another
program.

General Rules

1. The program-name identifies the source program, the object program, and all
listings pertaining to a particular program.

2. The COMMON phrase specifies that the program has the common attribute.  A
common program is contained within another program but may be called from
programs other than that containing it.  (See "Scope of Names", Chapter 3.)

3. The INITIAL phrase specifies that the program has the initial attribute.  When an
initial program is called, it and any program contained within it are placed in their
initial state.  (See "Initial State of a Program", in the Glossary).



GCOS 7 COBOL 85 Reference Manual

6-4 47 A2 05UL Rev04

6.4 DATE-COMPILED

Description

The DATE-COMPILED paragraph provides the compilation date in the Identification
Division source program listing.  The DATE-COMPILED paragraph is an obsolete
element in Standard COBOL because it is to be deleted from the next revision of
Standard COBOL.

Format

      DATE-COMPILED. [comment-entry]...

Syntax Rule

The comment-entry may be any combination of the characters from the computer's
character set.  The continuation of the comment-entry by the use of the hyphen in the
indicator area is not permitted; however, the comment entry may be contained on one or
more lines.

General Rule

The paragraph-name DATE-COMPILED causes the current date to be inserted during
program compilation.  If a DATE-COMPILED paragraph is present, it is replaced during
compilation with a paragraph of the form:

      DATE-COMPILED. current-date.



47 A2 05UL Rev04 7-1

7. Environment Division

7.1 GENERAL DESCRIPTION

The Environment Division specifies a standard method of expressing those aspects of a
data processing problem that are dependent upon the physical characteristics of a
specified computer.  This division allows specification of the configuration of the
compiling computer and the object computer.  In addition, information relating to input-
output control, special hardware characteristics and control techniques may be specified.

The Environment Division is optional in a COBOL source program.

7.2 ORGANIZATION

Two sections make up the Environment Division: the Configuration Section and the
Input-Output Section.

The Configuration Section specifies the characteristics of the source computer and the
object computer.  This section is divided into three paragraphs: the SOURCE-
COMPUTER paragraph, which describes the computer configuration on which the source
program is compiled; the OBJECT-COMPUTER paragraph, which describes the
computer configuration on which the object program produced by the compiler is to be
executed; the SPECIAL-NAMES paragraph, which provides a means for specifying the
currency sign, choosing the decimal point, specifying symbolic characters, relating
implementor-names to user-specified mnemonic names, relating alphabet-names to
character sets or collating sequences, and relating class-names to sets of characters.

The Input-Output Section specifies the information needed to control transmission and
handling of data between external media and the object program.  This section is divided
into two paragraphs: the FILE-CONTROL paragraph, which names and associates the
files with external media; and the I-O-CONTROL paragraph, which defines special
control techniques to be used in the object program.



GCOS 7 COBOL 85 Reference Manual

7-2 47 A2 05UL Rev04

7.3 ENVIRONMENT DIVISION

Description

The Environment Division defines those aspects of a program that are dependent upon
hardware configurations and considerations.

Format

The following is the general format of the sections and paragraphs in the Environment
Division, and defines the order of presentation in the source program.  The definitions of
the entries for the contents of the paragraphs shown below are given on the following
pages.

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER. [source-computer-entry.]]

[OBJECT-COMPUTER. [object-computer-entry.]]

[SPECIAL-NAMES. [[special-names-entry].]]]

[INPUT-OUTPUT SECTION .

FILE-CONTROL. {file-control-entry}...

[I-O-CONTROL. [[input-output-control-entry].]]]

Syntax Rule

The Configuration Section must not be stated in a program which is contained directly or
indirectly within another program.

General Rule

The entries explicitly or implicitly stated in the Configuration Section of a program which
contains other programs apply to each contained program.



Environment Division

47 A2 05UL Rev04 7-3

7.4 SOURCE-COMPUTER

Description

The SOURCE-COMPUTER paragraph provides a means of describing the computer
upon which the program is to be compiled.

Format

 SOURCE-COMPUTER.
 {    DPS7                        }
 { |-----------------|            }
 { |                 | {GCOS    } }
[{ | [HIS-SERIES-60] | {        } }
 { |                 | {LEVEL-64} }
 { |-----------------|            }
 {                                }
 {    computer-name               }

   |---------------------------------------------------------|
   |                       {WORDS     }                      |
   |                       {CHARACTERS}                      |
   |              {integer {          }                   }  |
   |              {        {MODULES   }                   }  |
   |              {        {BYTES     }                   }  |
   | [MEMORY SIZE {                                       }] |
   |              {ADDRESS                                }  |
   |              {               {THROUGH}               }  |
   |              {    {literal-1 {       } literal-2}... }  |
   |                              {THRU   }                  |
   |---------------------------------------------------------|

     [WITH DEBUGGING MODE]. ]

Syntax Rules

1. Computer-name may be any user-defined word.

|2.     Each literal may be numeric or non-numeric; when numeric, it must be an unsigned
integer. Figurative constants are not allowed.

3.     The words THROUGH and THRU are equivalent.|



GCOS 7 COBOL 85 Reference Manual

7-4 47 A2 05UL Rev04

General Rules

|1.     The MEMORY SIZE clause is given for documentation purposes only.  It is
accepted for compatibility.|

2. All clauses of the SOURCE-COMPUTER paragraph apply to the program in which
they are explicitly or implicitly specified and to any program contained within that
program.

3. When the SOURCE-COMPUTER paragraph is not specified and the program is not
contained within a program including a SOURCE-COMPUTER paragraph, |the
source computer is DPS7.

4.     When the SOURCE-COMPUTER paragraph is specified, but the source-computer-
entry is not specified, the effect is as though the SOURCE-COMPUTER paragraph
is replaced in the source program with a paragraph of the form:

SOURCE-COMPUTER. DPS7.|

5. The WITH DEBUGGING MODE clause serves as a compile-time switch over the
debugging statements of the program (See "The Debugging Facility", Chapter 16).

a. When the WITH DEBUGGING MODE clause is specified in a program |and
the NDEBUGMD option is not used in the CBL JCL statement,| any USE FOR
DEBUGGING statement, all associated debugging sections, and all statements
contained in all debugging lines in that program and in any program contained
in that program are compiled as part of the object program.

b. When the WITH DEBUGGING MODE clause is not specified in a program nor
in any program that contains it, directly or indirectly, |and the DBUGMD option
is not used in the CBL JCL statement,| any USE FOR DEBUGGING
statement, all associated debugging sections, and all debugging lines are
considered as comment lines.

6. The WITH DEBUGGING MODE is not functional until all COPY and REPLACE
statements are processed.



Environment Division

47 A2 05UL Rev04 7-5

7.5 OBJECT-COMPUTER

Description

The OBJECT-COMPUTER paragraph provides a means of describing the computer on
which the compiled program is to be executed.  The MEMORY SIZE clause and the
SEGMENT-LIMIT clause are obsolete elements in Standard COBOL because they are to
be deleted from the next revision of Standard COBOL.

Format

 OBJECT-COMPUTER.

 {    DPS7                        }
 { |-----------------|            }
 { |                 | {GCOS    } }
[{ | [HIS-SERIES-60] | {        } }
 { |                 | {LEVEL-64} }
 { |-----------------|            }
 {    computer-name               }

                           {   WORDS     }
                           {   CHARACTERS}
               {   integer {   MODULES   }                      }
               {           { |-------|   }                      }
               {           { | BYTES |   }                      }
  [MEMORY SIZE {             |-------|                          }]
               { |--------------------------------------------| }
               { |                    {THROUGH}               | }
               { | ADDRESS {literal-1 {       } literal-2}... | }
                 |                    {THRU   }               |
                 |--------------------------------------------|

                                    {   alphabet-name}
                                    { |------------| }
                                    { | NATIVE     | }
                                    { | STANDARD-1 | }
     [PROGRAM COLLATING SEQUENCE IS { | STANDARD-2 | }]
                                    { | ASCII      | }
                                    { | EBCDIC     | }
                                    { | GBCD       | }
                                    { | JIS        | }
                                      |------------|
   |-------------------------------------------------|
   | [SEGMENT-LIMIT IS segment-number]               |
   |                                                 |
   | [MAXIMUM DATA SEGMENT  SIZE IS integer-2]        |
   |                                                 |
   | [MAXIMUM PROCEDURE SEGMENT  SIZE IS integer-3]   |
   |                                                 |
   | [MAXIMUM INITIAL DATA  SEGMENT SIZE IS integer-4 |
   |       [PLUS integer-5 TIMES  integer-6]]         | .]
   |-------------------------------------------------|



GCOS 7 COBOL 85 Reference Manual

7-6 47 A2 05UL Rev04

Syntax Rules

1. Computer-name may be any user-defined word.

|2.     Each literal may be numeric or non-numeric; when numeric, it must be an unsigned
integer.  Figurative constants are not allowed.|

3. Segment-number must be an integer ranging in value from 1 through 49.

|4.     The words THROUGH and THRU are equivalent.

5.     Integer-2 must not exceed 4194304.  Integer-3 must not exceed 65536.  Integer-4
must not exceed 4194304, integer-5 must not exceed 32767, integer-6 must not
exceed 4194304.|

General Rules

1. All clauses of the OBJECT-COMPUTER paragraph apply to the program in which
they are explicitly or implicitly specified and to any program contained within that
program.

2. The MEMORY SIZE clause is given for documentation purposes only.  It is
accepted for compatibility.

|3.     When the OBJECT-COMPUTER paragraph is not specified and the program is
contained within a program including an OBJECT-COMPUTER paragraph, the
object computer is DPS7.

4.     When the OBJECT-COMPUTER paragraph is specified, but the object-computer-
entry is not specified, the effect is as though the OBJECT-COMPUTER paragraph
is replaced in the source-program with a paragraph of the form:

OBJECT-COMPUTER. DPS7.|

5. If the PROGRAM COLLATING SEQUENCE clause is specified, the collating
sequence |explicitly stated| or associated with alphabet-name is used to determine
the truth value of any non-numeric comparisons that are:

a. Explicitly specified in relation conditions (See "Relation Condition", Chapter
10).

b. Explicitly specified in condition-name conditions.  (See "Condition-Name
Condition", Chapter 10).

c. Implicitly specified by the presence of a CONTROL clause in a Report
Description entry (See Chapter 8).

6. If the PROGRAM COLLATING SEQUENCE clause is not specified, the native
collating sequence is used |, namely, the EBCDIC collating sequence.

7.     For DPS7, EBCDIC and NATIVE are equivalent.  However, should the program be
executed on another system, there may be a change in the meaning of NATIVE.|



Environment Division

47 A2 05UL Rev04 7-7

8. If the PROGRAM COLLATING SEQUENCE is specified, the initial program
collating sequence is the collating sequence |explicitly stated or| associated with the
alphabet-name specified in that clause.

9. The program collating sequence established in the OBJECT-COMPUTER
paragraph is applied to any non-numeric merge or sort keys unless the COLLATING
SEQUENCE phrase is specified in the respective MERGE or SORT statement (See
the "MERGE Statement" Chapter 12 and the "SORT Statement" Chapter 13).

|10.   For the meaning of the explicitly stated collating sequences, see the "SPECIAL-
NAMES" paragraph, later in this section.

11.    The MAXIMUM DATA SEGMENT SIZE clause specifies the approximate size in
bytes of the largest data segment which will be created by the compiler for the
described data whose length is not greater than the specified size.  If this clause is
not present, MAXIMUM DATA SEGMENT SIZE IS 4096 is assumed.  This clause
whether explicit or implicit is overridden by the DSEGMAX option of CBL JCL
statement.

12.    The MAXIMUM PROCEDURE SEGMENT SIZE clause specifies the approximate
size in bytes of the largest procedure segment which will be created by the
compiler.  If this clause is not present, MAXIMUM PROCEDURE SEGMENT SIZE
IS 4096 is assumed.  This clause, whether explicit or implicit, is overridden by the
PSEGMAX option of the CBL JCL statement.

13.    The MAXIMUM INITIAL DATA SEGMENT SIZE clause specifies the maximum size
and the number of areas allocated in the stack segment to contain data described in
INITIAL programs.  Integer-4 specifies the maximum size in bytes of the first or
unique area.  Integer-5 specifies the maximum number of additional areas.  Integer-
6 specifies the maximum size in bytes of each additional area.  If the clause is not
present, MAXIMUM INITIAL DATA SEGMENT SIZE IS 65536 is assumed.  This
clause whether explicit or implicit is overridden by the ISEGMAX option of the CBL
JCL statement.|



GCOS 7 COBOL 85 Reference Manual

7-8 47 A2 05UL Rev04

7.6 SPECIAL-NAMES

Description

The SPECIAL-NAMES paragraph provides a means for specifying the currency sign,
choosing the decimal point, specifying symbolic characters, relating implementor-names
to user-specified mnemonic-names, relating alphabet-names to character sets or
collating sequences, and relating class-names to sets of characters.

Format

SPECIAL-NAMES

      [SWITCH-n IS mnemonic-name-1            ]
      [    [ON STATUS IS condition-name-1     ]
      [    [OFF STATUS IS condition-name-2]]  ]
      [                                       ]
      [SWITCH-n IS mnemonic-name-1            ]
      [    [OFF STATUS IS condition-name-2    ]
      [    [ON STATUS IS condition-name-1]]   ]...
      [                                       ]
      [SWITCH-n ON  STATUS IS condition-name-1 ]
      [    [OFF STATUS IS condition-name-2]   ]
      [                                       ]
      [SWITCH-n OFF  STATUS IS condition-name-2]
      [    [ON STATUS IS condition-name-1]    ]

      {LNm }
     [{    } IS mnemonic-name-2]...
      {LN-m}

      [CHANNEL-p IS mnemonic-name-3]...

      {SYSIN  }
     [{       } IS mnemonic-name-4]...
      {SYSIN-q}

      {SYSOUT  }
     [{        } IS mnemonic-name-5]...
      {SYSOUT-q}

      {CONSOLE  }
     [{         } IS mnemonic-name-6]...
      {CONSOLE-q}

   {  {ALTERNATE-CONSOLE  }   }
   {  {ALTERNATE-CONSOLE-q}   }
  [{|-----------------------| } IS mnemonic-name-7]...
   {| {ALTERNATE CONSOLE  } | }
   {| {ALTERNATE CONSOLE-q} | }
    |-----------------------|

      {TERMINAL  }
     [{          } IS mnemonic-name-8]...
      {TERMINAL-q}



Environment Division

47 A2 05UL Rev04 7-9

    |---|          |---|
  [ | [ | ALPHABET | ] | alphabet-name-1 IS
    |---|          |---|

          { NATIVE                               }
          { STANDARD-1                           }
          { STANDARD-2                           }
          { ASCII                                }
          { EBCDIC                               }]...
          { GBCD                                 }
          { JIS                                  }
          {            {THROUGH}                 }
          {           [{       } literal-2 ]     }
          {{literal-1 [{THRU   }           ]}... }
                      [                    ]
                      [{ALSO literal-3}... ]

      [SYMBOLIC CHARACTERS { {symbolic-character-1}...

                                      { alphabet-name-2}
                                      { |------------| }
                                      { | NATIVE     | }
           {IS }                      { | STANDARD-1 | }
           {   } {integer}...}... [IN { | STANDARD-2  | }]]...
           {ARE}                      { | ASCII      | }
                                      { | EBCDIC     | }
                                      { | GBCD       | }
                                      { | JIS        | }
                                        |------------|

      [CLASS class-name-1 IS
                               {THROUGH}
                   {literal-4 [{       } literal-5]}... ]...
                               {THRU   }

      [CURRENCY SIGN IS literal-6
                             |----------------------------|
                             | [OBJECT SIGN IS literal-7] | ]
                             |----------------------------|

                        {   COMMA           }
      [DECIMAL-POINT IS { |---------------| }
                        { | DECIMAL-POINT | }
                          |---------------|
         |-----------------------------|
         |            {COMMA        }  |
         | [OBJECT IS {             }] | ].
         |            {DECIMAL-POINT}  |
         |-----------------------------|

Syntax Rules

1. "n" in SWITCH-n is an unsigned integer ranging from 0 through 31 and written
without leading zeroes.

2. LNm and LN-m are equivalent.

3. "m" in LNm and LN-m is an unsigned integer ranging from 1 through 255 and
written without leading zeroes.



GCOS 7 COBOL 85 Reference Manual

7-10 47 A2 05UL Rev04

4. "p" in CHANNEL-p is an unsigned integer ranging from 1 through 12, and written
without leading zeroes.

5. "q" in SYSIN-q, SYSOUT-q, CONSOLE-q, ALTERNATE-CONSOLE-q and
TERMINAL-q is the digit 0, 1 or 2 or the letter X.

6. If the literal phrase of the ALPHABET clause is specified, a given character must
not be specified more than once in that clause.

7. The literals specified in the literal phrase of the ALPHABET clause:

a. If numeric, must be unsigned integers and must have a value within the range
of one (1) through the maximum number of characters in the native character
set (256).

b. If non-numeric and associated with a THROUGH or ALSO phrase, must each
be one character in length.

8. Literal-1, literal-2, literal-3, literal-4 and literal-5 must not specify a symbolic-
character figurative constant.

9. Literal-6 |and literal-7| are non-numeric literals.

10. The words THRU and THROUGH are equivalent.

11. The same symbolic-character-1 must appear only once in a SYMBOLIC
CHARACTERS clause.

12. The relationship between each symbolic-character-1 and the corresponding integer-
1 is by position in the SYMBOLIC CHARACTERS clause.  The first symbolic-
character-1 is paired with the first integer-1; the second symbolic-character-1 is
paired with the second integer-1; and so on.

13. There must be a one to one correspondence between occurrences of symbolic-
character-1 and occurrences of integer-1.

14. The ordinal position specified by integer-1 must exist in the native character set.  If
the IN phrase is specified, the ordinal position must exist in the character set named
by alphabet-name-2.

15. The literals specified in the literal-4 phrase:

a. If numeric, must be unsigned integers and must have a value within the range
of one through the maximum number of characters in the native character set.

b. If non-numeric and associated with a THROUGH phrase, must each be one
character in length.

16. Literal-6 |and literal-7 must not be symbolic-character figurative constants|, they
may be non symbolic-character figurative constants.|



Environment Division

47 A2 05UL Rev04 7-11

General Rules

1. All clauses specified in the SPECIAL-NAMES paragraph for a program also apply to
programs contained within that program.The condition names specified in the
containing program's SPECIAL-NAMES paragraph may be referenced from any
contained program.

2. SWITCH-n references an external switch, whose "on" status and/or "off" status may
be associated with condition-names.  The status of that switch may be interrogated
by testing these condition-names (see "Switch-Status Condition", Chapter 10).

|3.     SWITCH-n references an external switch whose status may be altered by execution
of a SET statement which specifies as its operand the mnemonic-name associated
with that switch, or SWITCH-n itself (see the "SET Statement", Chapter 13).|

4. Mnemonic-name-2 may only be specified in the ADVANCING phrase of the WRITE
statement.  It then specifies that the printer page is advanced to the line whose
absolute number in the page is "m" as specified in the related LN-m (or lnm).

5. Mnemonic-name-3 may only be specified in the ADVANCING phrase of the WRITE
statement.  It then specifies that the printer page is advanced to a position
governed by the "p"th channel of the vertical-format unit, "p" being as specified in
the related CHANNEL-p.

6. The suffix -q in the SYSIN, SYSOUT, CONSOLE, ALTERNATE-CONSOLE,
|ALTERNATE CONSOLE,| or TERMINAL clause specify the form of the data read
or written on the external medium when an ACCEPT or DISPLAY statement
referencing the special mnemonic-name is executed (See "Definition of a Legible
Equivalent", Chapter 3).

7. Mnemonic-name-4 may only be specified in the FROM phrase of the ACCEPT
statement.  It then specifies that the statement accepts data from the file whose
internal file name (ifn) is H_RD.

8. Mnemonic-name-5 may only be specified in the UPON phrase of the DISPLAY
statement.  It then specifies that the statement displays data on the file whose
internal file name (ifn) is H_PR.  The data is displayed in SSF format.

9. Mnemonic-name-6 may only be specified in the FROM phrase of the ACCEPT
statement and in the UPON phrase of the DISPLAY statement.  It then specifies
that the statement accepts data from, or displays data upon, the operator console.

10. Mnemonic-name-7 may only be specified in the FROM phrase of the ACCEPT
statement and in the UPON phrase of the DISPLAY statement.  If the program
interactively runs with an IOF terminal, it specifies that the statement accepts data
from, or displays data upon, that very console.  Otherwise it then specifies that the
statement accepts data from, or displays data upon, the alternate operator console
specified in the CONSOLE JCL statement.  If no alternate console is specified, data
is accepted from, or displayed upon, the console from which the job is submitted.



GCOS 7 COBOL 85 Reference Manual

7-12 47 A2 05UL Rev04

11. Mnemonic-name-8 may only be specified in the FROM phrase of the ACCEPT
statement and in the UPON phrase of the DISPLAY statement.  If the program
interactively runs with an IOF terminal, it specifies that the statement accepts data
from, or displays data upon, that very console.  Otherwise it specifies that the
statement accepts data from, or displays data upon the alternate operator console
specified in the CONSOLE JCL statement; if no alternate console is specified, data
is accepted from, or displayed upon, the console from which the job is submitted.

12. The ALPHABET clause provides a means for relating a name to a specified
character code set and/or collating sequence.  When alphabet-name-1 is
referenced in the PROGRAM COLLATING SEQUENCE clause (see the "OBJECT-
COMPUTER Paragraph") or the COLLATING SEQUENCE phrase of a MERGE or
SORT statement (see the "MERGE Statement" Chapter 12 or the "SORT
Statement" Chapter 13), the ALPHABET clause specifies a collating sequence.
When alphabet-name-1 is referenced in a CODE-SET clause in a file description
entry, it specifies a character code set.

a. If the STANDARD-1 phrase is specified, the character code set or collating
sequence identified is that defined in American National Standard X3.4-1977,
Code for Information Interchange.  If the STANDARD-2 phrase is specified,
the character code set identified is the International Version of the ISO 7-bit
code defined in International Standard 646, 7-Bit Coded Character Set for
Information Processing Interchange.  Each character of the standard character
set is associated with its corresponding character of the native character set.

b. If the NATIVE or EBCDIC phrase is specified, it is the EBCDIC character set
or collating sequence that is used.

c. If the GBCD phrase is specified, it is the Honeywell Bull 100/400/600 character
set or collating sequence that is used.

d. If the JIS phrase is specified, the Japanese Industry Standard collating
sequence is used.

e. If the literal phrase is specified, the alphabet-name may not be referenced in a
CODE-SET clause (see the "CODE-SET Clause", Chapter 9).  The collating
sequence identified is that defined according to the following rules:

Rule 1:
The value of each literal specifies:

(i) The ordinal number of a character within the native character set, if the
literal is numeric.  This value must not exceed the value which represents the
number of characters in the native character set.

(ii) The actual character within the native character set, if the literal is non-
numeric.  If the value of the non-numeric literal contains multiple characters,
each character in the literal, starting with the leftmost character, is assigned
successive ascending positions in the collating sequence being specified.

Rule 2:
The order in which the literals appear in the ALPHABET clause specifies, in
ascending sequence, the ordinal number of the character within the collating
sequence being specified.

Rule 3:
Any characters within the native collating sequence, which are not explicitly
specified in the literal phrase, assume a position, in the collating sequence
being specified, greater than any of the explicitly specified characters.  The



Environment Division

47 A2 05UL Rev04 7-13

relative order within the set of these unspecified characters is unchanged from
the native collating sequence.

Rule 4:
If the THROUGH phrase is specified, the set of contiguous characters in the
native character set beginning with the character specified by the value of
literal-1, and ending with the character specified by the value of literal-2, is
assigned a successive ascending position in the collating sequence being
specified.  In addition, the set of contiguous characters specified by a given
THROUGH phrase may specify characters of the native character set in either
ascending or descending sequence.

Rule 5:
If the ALSO phrase is specified, the characters of the native character set
specified by the value of literal-1 and literal-3 are assigned to the same ordinal
position in the collating sequence being specified or in the character code set
that is used to represent the data, and if alphabet-name-1 is referenced in a
SYMBOLIC CHARACTERS clause, only literal-1 is used to represent the
character in the native character set.

13. The character that has the highest ordinal position in the program collating
sequence specified is associated with the figurative constant HIGH-VALUE, except
if this figurative constant is specified as a literal in the SPECIAL-NAMES paragraph.
If more than one character has the highest position in the program collating
sequence, the last character specified is associated with the figurative constant
HIGH-VALUE.

14. The character that has the lowest ordinal position in the program collating sequence
specified is associated with the figurative constant LOW-VALUE, except if this
figurative constant is specified as a literal in the SPECIAL-NAMES paragraph.  If
more than one character has the lowest position in the program collating sequence,
the first character specified is associated with the figurative constant LOW-VALUE.

15. When specified as literals in the SPECIAL-NAMES paragraph, the figurative
constants HIGH-VALUE and LOW-VALUE are associated with those characters
having the highest and lowest positions, respectively, in the native collating
sequence.

16. If the IN phrase is not specified, symbolic-character-1 represents the character
whose ordinal position in the native character set is specified by integer-1.  If the IN
phrase is specified, integer-1 specifies the ordinal position of the character that is
represented in the character set named by alphabet-name-2.

17. The internal representation of symbolic-character-1 is the internal representation of
the character that is represented in the native character set.



GCOS 7 COBOL 85 Reference Manual

7-14 47 A2 05UL Rev04

18. The CLASS clause provides a means for relating a name to the specified set of
characters listed in that clause.  Class-name-1 can be referenced only in a class
condition.  The characters specified by the values of the literals in this clause define
the exclusive set of characters of which this class-name-1 consists.

The value of each literal specifies:

a. The ordinal number of a character within the native character set, if the literal
is numeric.  This value must not exceed the value which represents the
number of characters in the native character set.

b. The actual character within the native character set, if the literal is non-
numeric.  If the value of the non-numeric literal contains multiple characters,
each character in the literal is included in the set of characters identified by
class-name-1.

19. If the THROUGH phrase is specified, the contiguous characters in the native
character set beginning with the character specified by the value of literal-4, and
ending with the character specified by the value of literal-5, are included in the set
of characters identified by class-name-1.  In addition, the contiguous characters
specified by a given THROUGH phrase may specify characters of the native
character set in either ascending or descending sequence.

20. Literal-6, which appears in the CURRENCY SIGN IS literal clause, is used in the
PICTURE clause to represent the currency symbol.  The literal is limited to a single
character and must not be one of the following:

a. digits 0 through 9;

b. alphabetic characters 'A', 'B', 'C', 'D', 'E', 'L', 'P', 'R', 'S', 'V', 'X', 'Z', or the space;
c. special characters '*', '+', '-', ',', '.', ';', '(', ')', '"', '=', '/', '|and Horizontal

Tabulation'..|

If this clause is not present, only the currency sign defined in the COBOL
character set may be used as the currency symbol in the PICTURE clause.

|21.   Literal-7 which appears in the OBJECT SIGN IS literal clause, is used at object time
while editing to represent the currency symbol.  The literal is limited to a single
character.  When the OBJECT SIGN clause is not present, but the CURRENCY
SIGN clause is present, literal-6 is then used instead of literal-7; if neither clause is
present, the dollar sign ($) is then used.|

22. The clause DECIMAL-POINT IS COMMA means that the function of comma and
period are exchanged in the character-string of the PICTURE clause and in numeric
literals.  |The clause DECIMAL-POINT IS DECIMAL-POINT means that the function
of comma and period are those specified by default; this clause is meaningful when
the clause OBJECT IS COMMA is also used.

23.    The clause OBJECT IS COMMA means that the comma is used at object time
while editing to represent the decimal point, and the period to represent the fixed
insertion comma.  The clause OBJECT IS DECIMAL-POINT means that the period
is used at object time while editing to represent the decimal point, and the comma
to represent the fixed insertion comma.  When neither clause is used, the same
characters are used at object time as those specified in the PICTURE clause.|



Environment Division

47 A2 05UL Rev04 7-15

7.7 FILE-CONTROL-ENTRY

Description

The FILE-CONTROL paragraph allows specification of file-related information.

Format 1 (Sequential Files)

       |------------|
SELECT | [EXTERNAL ] | [OPTIONAL ] file-name
       |------------|
                  {internal-file-name            }
                  {internal-file-name-PRINTER    }
                  {internal-file-name-CARD-READER}
                  {internal-file-name-CARD-PUNCH }
                 {{internal-file-name-MSD        } [literal-1]}
                 {{internal-file-name-TAPE       }            }
       ASSIGN TO {{internal-file-name-SYSIN       }            }
                 {{internal-file-name-SYSOUT     }            }
                 { literal-1                                  }

                       [AREA ]
      [RESERVE integer [     ]]
                       [AREAS]

                        |----------|
                        | [UFF   ] |
     [[ORGANIZATION IS] | [ANSI   ] | SEQUENTIAL ]
                        | [QUEUED] |
                        |----------|

                            {data-name-1}
   [   PADDING CHARACTER IS {           }]
   [                        {literal-2  }]
   [ |----------------------|            ]
   [ | NO PADDING  CHARACTER |            ]
     |----------------------|

                           {STANDARD-1}
      [RECORD DELIMITER  IS {          }]
                           {IMPLIED   }

      [ACCESS MODE IS SEQUENTIAL ]

      [FILE STATUS IS data-name-10]
    |-------------------|
    |       {ASA }      |
    | [WITH {SSF }]     |
    |       {SARF}      |
    |                   |
    |       {FLR}       |
    | [WITH {   }]      |
    |       {VLR}       |
    |                   |
    | [WITH [NO] BSN ]   |
    |                   |
    | [WITH OVERRIDING] | .
    |-------------------|



GCOS 7 COBOL 85 Reference Manual

7-16 47 A2 05UL Rev04

Format 2 (Relative Files)

       |------------|
SELECT | [EXTERNAL ] | [OPTIONAL ] file-name
       |------------|

                  {internal-file-name    }
                 {{                      } [literal-1]}
       ASSIGN TO {{internal-file-name-MSD }            }
                 { literal-1                          }

                       [AREA ]
      [RESERVE integer [     ]]
                       [AREAS]

                        |-------|
      [ORGANIZATION IS] | [UFF ] | RELATIVE
                        |-------|

      [ACCESS MODE IS
                       [   RELATIVE KEY IS data-name-2 ]
          { SEQUENTIAL [ |---------------------------| ]}
          {            [ | ACTUAL KEY IS data-name-3 | ]}
          {              |---------------------------|  }]
          {                                             }
          {          {   RELATIVE KEY IS data-name-2 }  }
          {{RANDOM } {                               }  }
          {{       } { |---------------------------| }  }
           {DYNAMIC} { | ACTUAL  KEY IS data-name-3 | }
                       |---------------------------|

      [FILE STATUS IS data-name-10]

    |-------------------|
    |       {FLR}       |
    | [WITH {   }]      |
    |       {VLR}       |
    |                   |
    | [WITH OVERRIDING] | .
    |-------------------|



Environment Division

47 A2 05UL Rev04 7-17

Format 3 (Indexed Files)

       |------------|
SELECT | [EXTERNAL ] | [OPTIONAL ] file-name
       |------------|

                  {internal-file-name    }
                 {{                      } [literal-1]}
       ASSIGN TO {{internal-file-name-MSD }            }
                 { literal-1                          }

                       [AREA ]
      [RESERVE integer [     ]]
                       [AREAS]

                        |-------|
      [ORGANIZATION IS] | [UFF ] | INDEXED
                        |-------|

                      {SEQUENTIAL}
      [ACCESS MODE IS {RANDOM     }]
                      {DYNAMIC   }

       RECORD KEY IS data-name-4

      [ALTERNATE RECORD  KEY IS data-name-5 [WITH DUPLICATES ]]...

      [FILE STATUS IS data-name-10]

    |-------------------|
    |       {FLR}       |
    | [WITH {   }]      |
    |       {VLR}       |
    |                   |
    | [WITH OVERRIDING] | .
    |-------------------|

Format 4 (Sort-Merge Files)

SELECT file-name

                 {H-SORT                }
                 {internal-file-name    }
       ASSIGN TO {                      }
                 {internal-file-name-MSD}
                 {literal-1             }

    |--------------|
    |       {FLR}  |
    | [WITH {   }] | .
    |       {VLR}  |
    |--------------|



GCOS 7 COBOL 85 Reference Manual

7-18 47 A2 05UL Rev04

Syntax Rules

1. The SELECT clause must be specified first in the File-Control entry.  The clauses
which follow the SELECT clause may appear in any order.

2. Each file-name in the Data Division must be specified only once in the FILE-
CONTROL paragraph.  Each file-name specified in a SELECT clause must have a
File Description entry or a Sort-Merge File Description entry in the Data Division of
the same program.

3. If file-name represents a sort or merge file, the OPTIONAL phrase must not be
specified and only the ASSIGN clause |and possibly the WITH FLR or VLR clause|
are permitted to follow file-name in the FILE-CONTROL paragraph.

4. Internal-file-name must only consist of letters and digits, and must not exceed 8
characters in length.  The only exception to this rule is that the internal-file-name
associated to a sort-merge file may be H-SORT, thus containing an hyphen.

When used, the qualifier following the internal-file-name is adjacent to it, with no
intervening space.

H-SORT is allowed as internal-file-name only for sort-merge files.

Within a given program, internal-file-names must be unique, except that files
referenced in the same MULTIPLE FILE TAPE clause may have the same internal-
file-name.  In that case the number of characters comprising the internal-file-name
must not have a length such that when it is suffixed by the position of the file, it
exceeds 8 characters (see the COBOL 85 User's Guide).

5. Literal-1 must be a non-numeric literal and must not be a figurative constant.  The
contents of literal-1 are described in the following rules; the terms "word" and
"separator" are used with a meaning different from that they have when the COBOL
text is concerned.  This meaning is defined in rules a. through e.:

a. A word is the concatenation of any positive number of any character except
the space, the comma and the equal sign.

b. There are three types of separators: the separator space, the separator comma
and the separator equal.

c. The character space is a separator space.  If more than one consecutive
characters space are used, all the consecutive characters space are
considered as one separator space.

d. The character comma is a separator comma.  The character comma may be
immediately preceded or followed by any number of characters space; in this
case, these characters space are not considered as separator space but as
part of the separator comma.

e. The equal sign is a separator equal.  The equal sign may be immediately
preceded and/or immediately followed by any number of characters space; in
this case, these characters space are not considered as separator space but as
part of the separator equal.



Environment Division

47 A2 05UL Rev04 7-19

f. Literal-1 contains either a parameter or a series of parameters.  Parameters
are defined below in the following rule.  In a series of parameters, two
consecutive parameters are separated by a separator space or a separator
comma.  The leftmost parameter may be preceded by the separator space.
The rightmost parameter may be followed by the separator space.

g. There are two types of parameters: the positional parameters and the key-word
parameters.  A positional parameter is a word.  A key-word parameter consists
in two words separated by a separator equal, the word at the left of the
separator equal is the name of this parameter, the word at the right of the
separator equal is the value of this parameter.

h. Literal-1 must consist in one or two positional parameters followed by zero,
one or more key-word parameters.

i. If there is one positional parameter, it is considered as a file literal.  If there are
two positional parameters, the first one is considered as an internal-file-name,
possibly suffixed as shown in the format of the ASSIGN clause, the second
one is a file literal.  A file literal must conform to the file description syntax
described in the IOF Terminal User's Reference Manual.  An internal-file-name
must conform to the syntax described above in the previous syntax rules.

j. Key-word parameters names are SHARE, END, ABEND, ACCESS, DENSITY,
POOL, FIRSTVOL and LASTVOL.  Corresponding allowed values are those
described in the JCL Reference Manual.

6. If literal-1 is present and if it is preceded by an internal-file-name, literal-1 must
contain no internal-file-name.  If literal-1 is present and is not preceded by an
internal-file-name, literal-1 must contain an internal-file-name.

7. Data-name-10 may be qualified.

8. Data-name-10 must be defined in the Data Division as a two-character data item of
the category alphanumeric, and must not be defined in the File Section, Report
Section, or Communication Section.

Format 1 (Sequential Files)

9. When the ORGANIZATION clause is specified, but UFF, ANSI and QUEUED are
not specified, UFF is implied.

10. Data-name-1 may be qualified.

11. Data-name-1 must be defined in the Data Division as a one-character data item of
the category alphanumeric, and must not be defined in the Communication Section,
the File Section or the Report Section.

12. Literal-2 must be a one character non-numeric literal.

13. If the STANDARD-1 phrase is specified, the external medium must be a magnetic
tape file.



GCOS 7 COBOL 85 Reference Manual

7-20 47 A2 05UL Rev04

14. The STANDARD-1 phrase may be specified only when the following conditions are
met:

a. The organization of the file is sequential;

b. The file is not a mass storage file;

c. The specified internal-file-name is not suffixed or is suffixed with -TAPE;

d. The CODE-SET clause is explicitly specified for the file as |STANDARD-1 or
STANDARD-2| or with an alphabet-name defined as STANDARD-1 or
STANDARD-2 in the SPECIAL-NAMES paragraph.

15. The RECORD DELIMITER clause may be specified only for variable length
records.

Format 2 (Relative Files)

16. Data-name-2 |and data-name-3| may be qualified.

17. Data-name-2 must be defined as an unsigned integer data item whose description
does not contain the PICTURE symbol 'P'.

|18.   The data item referenced by data-name-3 is a 5 byte TTRDD type address.|

19. Data-name-2 must not be defined in a Record Description entry associated with that
file-name.

20. The ACCESS MODE IS RANDOM clause must not be specified for file-names
specified in the USING or GIVING phrase of a SORT or MERGE statement.

21. If a relative file is to be referenced by a START statement, either the RELATIVE
KEY phrase, |or the ACTUAL KEY phrase| within the ACCESS MODE clause must
be specified for that file.

Format 3 (Indexed Files)

22. The ACCESS MODE IS RANDOM clause must not be specified in the USING or
GIVING phrase of a SORT or MERGE statement.

23. Data-name-4 and data-name-5 may be qualified.

24. Neither data-name-4 nor data-name-5 may reference a group data item which has a
variable occurrence data item subordinate to it.

25. Data-name-4 must reference a data item of the category alphanumeric within a
Record Description entry associated with the file-name to which the RECORD KEY
clause is subordinate.

26. Data-name-5 must reference a data item of the category alphanumeric within a
Record Description entry associated with the file-name to which the ALTERNATE
RECORD KEY clause is subordinate.



Environment Division

47 A2 05UL Rev04 7-21

27. If the indexed file contains variable length records, the prime record key and each
alternate record key must be contained within the first x character positions of the
record, where x equals the minimum record size specified for the file (see the
"RECORD Clause", Chapter 9).

28. Data-name-5 must not reference an item whose leftmost character position
corresponds to the leftmost character position of the prime record key or of any
other alternate record key associated with that file.

Format 4 (SORT-MERGE Files)

29. Each sort or merge file described in the Data Division must be specified only once
in the FILE-CONTROL paragraph.  Each sort or merge file specified in the SELECT
clause must have a Sort-Merge File Description entry in the Data Division of the
same program.

General Rules

|1.     The EXTERNAL phrase causes the file associated with the file-name to be an
external file.  Programs which are compiled separately, but are part of the same run
unit may share files.  A shared file must be specified as an external file in the File
Control entry for the file in all programs which reference the file.  The EXTERNAL
phrase must not be specified if the file connector referenced by file-name is an
external file connector.  (See the "EXTERNAL Clause in FD Entry", Chapter 9.)

2.     All rules for input-output concerning the order of operations applied to an external
file apply across the independently compiled programs.

3.     An external file must have, in each File-Control entry in the run unit, the same
values for each of these clauses or phrases: ASSIGN, RESERVE,
ORGANIZATION, ACCESS (except for the KEY phrase), ASA, BSN, SSF, SARF,
FLR and VLR.|

4. If the file connector referenced by file-name is an external file connector (see the
"EXTERNAL FD Entry Clause", Chapter 9), all File Control entries in the run unit
which reference this file connector must have:

a. The same specification for the OPTIONAL phrase.

b. The same internal-file-name.

c. A consistent specification of the RECORD DELIMITER clause, namely if the
STANDARD-1 phrase is present, they must all have the RECORD DELIMITER
STANDARD-1 clause.

d. The same value for integer-1.

e. The same organization.

f. The same specification for the PADDING CHARACTER clause.  If data-name-
1 is specified, it must reference an external data item.



GCOS 7 COBOL 85 Reference Manual

7-22 47 A2 05UL Rev04

g. The same Data Description entry for data-name-4 with the same relative
location within the associated record.

h. The same Data Description entry for data-name-5, the same relative location
within the associated record, the same number of alternate record keys, and
the same DUPLICATES phrase.

i. The same access mode.

j. The same external data item for data-name-2 |or data-name-3| in the
RELATIVE KEY or |ACTUAL KEY| phrase.

5. The OPTIONAL phrase applies only to files opened in the input, I-O, or extend
mode.  Its specification is required for files that are not necessarily present each
time the program is executed.

6. The ASSIGN clause specifies the association of the file referenced by file-name to
the internal-file-name used in the JCL statements to refer to the file.  The suffix that
is optionally connected by an hyphen to the internal file name, is given for
documentation only, except in certain cases specified below under SEQUENTIAL
FILES.  If literal-1 is specified, it contains an external file-name to which ifn may be
assigned.  The order of precedence at open time, for file assignment is:

a. the last executed ASSIGN verb containing the TO FILE phrase referencing the
file

b. then the JCL ASSIGN statement,

c. then the literal-1 in the ASSIGN clause of the FILE-CONTROL entry.

If the target file belongs to a Queued file, the file literal in literal-1 must specify the
member name except if the QUEUED organization qualifier is specified, in which
case, the file literal in literal-1 defines the whole queued file and no member name
must appear in it but an ASSIGN statement containing the MEMBER phrase must
be executed prior to the OPEN statement.

7. The RESERVE clause allows the user to specify the number of input-output areas
allocated.  If the RESERVE clause is specified, the number of input-output areas
allocated is equal to the value of integer-1.  If the RESERVE clause is not specified
the number of input-output areas allocated is 2 for the files whose ACCESS MODE
IS SEQUENTIAL, 1 otherwise.

8. The ORGANIZATION clause specifies the logical structure of a file.  The file
organization is established at the time a file is created, is known as the physical file
organization and cannot subsequently be changed.

9. When the ORGANIZATION clause is not specified, sequential organization is
implied.



Environment Division

47 A2 05UL Rev04 7-23

10. A disk file whose physical organization is sequential, can be assigned to a file
whose SELECT clause specifies that its ORGANIZATION IS RELATIVE provided
that overriding is validated explicitly or implicitly and:

a. the applicable OPEN statements are for INPUT regardless of the ACCESS
MODE or,

b. the applicable OPEN statements are for I-O and the ACCESS MODE IS
SEQUENTIAL clause is specified.

However, the START statement cannot be used unless |an ACTUAL KEY is
specified or| the file record format is fixed blocked.

11. A file whose physical organization is relative or indexed, can be assigned to a file-
name whose SELECT clause specifies that its ORGANIZATION IS SEQUENTIAL,
provided that the applicable OPEN statements are for INPUT or I-O, and provided
that overriding is validated explicitly or implicitly.

12. A file whose physical organization is indexed, can be assigned to a file-name whose
SELECT clause specifies that its ORGANIZATION IS RELATIVE, provided that the
applicable OPEN statements are for INPUT, the ACCESS MODE IS SEQUENTIAL,
and overriding is validated explicitly or implicitly.

|13.   The Organization qualifier, UFF, ANSI or QUEUED specifies the data management
access method expected for the file.  UFF specifies that the file is expected to be a
UFAS file and ANSI an ANSI file.  The organization qualifier QUEUED states that
the file is a library member and the member name is to be specified at execution
time using an ASSIGN statement that contains the TO MEMBER phrase.  In the
absence of a qualifier, the file is expected to be a UFAS file, except in the following
case:

The SELECT clause specifies an internal-file-name suffixed by -TAPE and the File
Description Entry for file-name, in the Data Division, contains a CODE-SET clause
with ASCII, STANDARD-1, or alphabet-name specified as ASCII or STANDARD-1,
the file is an ANSI file.|

14. If the ACCESS MODE clause is not specified, sequential access is assumed.

15. When the FILE STATUS clause is specified, a value will be moved by the operating
system into the data item specified by data-name-1 after the execution of every
statement that references that file either explicitly or implicitly.  This value indicates
the status of execution of the statement (see "File Status Keys Table", at the end of
this chapter).



GCOS 7 COBOL 85 Reference Manual

7-24 47 A2 05UL Rev04

|16.   The WITH FLR and WITH VLR phrases respectively specify whether the record
format is fixed length or variable length.  If none is specified,| the record format
depends on the file description given in the DATA DIVISION:

- If the format 1 of the RECORD clause is used in the FD entry, the file has
fixed length records.

- If the format 2 of the RECORD clause is used in the FD entry, the file has
variable length records.

- If the format 3 of the RECORD clause is used with the DEPENDING ON
phrase in the FD entry, the file has variable length records.

- If no RECORD clause is present or if the format 3 of the RECORD clause is
used with no DEPENDING ON phrase in the FD entry, variable length record
is assumed if the REPORT clause is present or if at least one of the records
specified for the file has subordinate to it an entry containing the OCCURS
clause with the DEPENDING ON phrase, or if at least 2 records of different
length are specified for the file; otherwise, fixed length records are assumed.

|17.   The WITH OVERRIDING clause specifies that the identity of the fixed file attributes
of this file to those of the actual file is not checked.  WITH OVERRIDING is implicit
for a file that has not been created by a COBOL 85 program, or that was not
cataloged at the time of creation.|

Format 1 (Sequential Files)

18. The PADDING CHARACTER clause specifies the character which is to be used for
block padding on sequential files.  During input operations, any portion of a block
which exists beyond the last logical record and consists entirely of padding
characters will be by-passed.  During input operations, a logical record which
consists solely of padding characters will be ignored.  During output operations, any
portion of a block which exists beyond the last logical record will be filled entirely
with padding characters.

19. If the PADDING CHARACTER clause is not specified, the creation or recognition of
padding characters occurs only if the internal-file-name contains the qualifier -
TAPE, or if the ANSI organization is specified.  See the default padding character
rule, below.

20. Literal-2 or the value of the data item referenced by data-name-1, at the time the
OPEN statement which creates the file is executed, is used as the value of the
padding character.  The padding character is a fixed file attribute.

21. If the CODE-SET clause is specified for the file, conversion of the padding
character specified by literal-1 or the content of data-name-1 is established for the
file when the file is opened.

22. If the PADDING CHARACTER clause is not specified, the value used for the
padding character is that of the character that has the highest ordinal position in the
code-set implicitly or explicitly specified for the file.

|23.   If the NO PADDING CHARACTER clause is specified, no logical records will be
ignored during input operations based on the criteria that they consist solely of
padding characters.|



Environment Division

47 A2 05UL Rev04 7-25

24. The RECORD DELIMITER clause is used to indicate the method of determining the
length of a variable length record on the external medium.  Any method used will
not be reflected in the record area or the record size used within the program.

25. If the STANDARD-1 phrase is specified, the method used for determining the length
of a variable record is that specified in American National Standard X3.27-1978,
Magnetic Tape Labels and File Structure for Information Interchange, and
International Standard 1001 1979, Magnetic Tape Labels and File Structure for
Information Interchange.

26. If the IMPLIED phrase is specified, or if the RECORD DELIMITER clause is not
specified, the method used for determining the length of a variable length record is
that implied by the |explicit or| implicit organization qualifier specified in the
ORGANIZATION clause of the file-control entry.

27. At the time of a successful execution of an OPEN statement, the record delimiter is
the one specified in the RECORD DELIMITER clause in the File Control entry
associated with the file-name specified in the OPEN statement.

28. Records in the file are accessed in the sequence dictated by the file organization.
This sequence is specified by predecessor-successor record relationships
established by the execution of WRITE statements when the file is created or
extended.

29. Among the suffixes which may be connected to the internal-file-name, the following
have the specified implication:

-PRINTER and -SYSOUT imply the SSF attribute |unless the WITH ASA or the
WITH SARF phrase is specified.|

-|SYSIN and -SYSOUT imply that the file may already be in the open mode when
an OPEN statement is executed, or may not be in the open mode when a CLOSE
statement is executed.|

-TAPE imply the ANSI organization qualifier when the File Description Entry for the
file-name contains a CODE-SET clause with |ASCII, STANDARD-1, or| alphabet-
name specified as ASCII or STANDARD-|1, and no other organization qualifier is
explicitly specified.|

|30.   When the ORGANIZATION IS ANSI SEQUENTIAL clause of the file-control-entry
is used, the file is assumed to be in ANSI standard format.  The code-set is ASCII,
regardless of whether the CODE-SET clause is used or not.  No other CODE-SET
clause can be used.

31.    The WITH ASA clause specifies that the first character of the record will be
interpreted as a vertical form command if the file is written to a printing device (see
the "WRITE Statement", Chapter 13).  It is the user's responsibility to correctly set
the first character of the record.

32.    The WITH SSF clause specifies that the System Standard Format is applied to a
file.

33.    The WITH SARF clause specifies that the file is always viewed by the program as a
SARF file; thus if the file is actually an SSF file, control records and SSF headers
are delivered to the program.

34.    If the WITH SSF, WITH ASA and WITH SARF clauses are absent, when an SSF
file is read, control records and SSF headers are not sent to the program.



GCOS 7 COBOL 85 Reference Manual

7-26 47 A2 05UL Rev04

35.    The WITH [NO] BSN option specifies that if the file is a tape file, the blocks [do not]
contain serial numbers.  In the absence of the options, WITH BSN is assumed.|

Format 2 (Relative Files)

36. If the access mode is sequential, records in the file are accessed in the sequence
dictated by the file organization.  This sequence is the order of ascending relative
record numbers of existing records in the file.

37. If the access mode is random, the value of the RELATIVE |or ACTUAL| KEY data
item indicates the record to be accessed.

38. When the access mode is dynamic, records in the file may be accessed
sequentially and/or randomly (see "General Rules" above).

39. All records stored in a relative file are uniquely identified by the relative record
numbers |or by their addresses on the disk.| The relative record number of a given
record specifies the record's logical ordinal position in the file.  The first logical
record has a relative record number of one (1), and subsequent logical records
have relative record numbers of 2, 3, 4, etc.

40. The data item specified by data-name-2 is used to communicate a relative record
number between the user and the Mass Storage Control System (MSCS).

|41.   The data item specified by data-name-3 is used to communicate a record disk
address between the user and the Mass Storage Control System (MSCS).|

42. The relative key data item associated with the execution of an input-output
statement is the data item referenced by data-name-2 in the ACCESS MODE
clause.

Format 3 (Indexed Files)

43. When the access mode is sequential, records in the file are accessed in the
sequence dictated by the file organization.  This sequence is the order of ascending
|or descending| record key values within a given key of reference.

44. If the access mode is random, the value of the record key data item indicates the
record to be accessed.

45. When the access mode is dynamic, records in the file may be accessed
sequentially and/or randomly (see "General Rules" above).



Environment Division

47 A2 05UL Rev04 7-27

46. The RECORD KEY clause specifies the prime record key for the file with which this
clause is associated.  The values of the prime record key must be unique among
records of the file.  This prime record key provides an access path to records in an
indexed file.

47. An ALTERNATE RECORD KEY clause specifies an alternate record key for the file
with which this clause is associated.  This alternate record key provides an alternate
access path to records in an indexed file.

48. The data descriptions of data-name-4 and data-name-5 as well as their relative
locations within a record must be the same as that used when the file was created.
The number of alternate record keys for the file must also be the same as that used
when the file was created.

49. The DUPLICATES phrase specifies that the value of the associated alternate record
key may be duplicated within any of the records of the file.  If the DUPLICATES
phrase is not specified, the value of the associated alternate record key must not be
duplicated among any of the records in the file.

|50.   An external file must have, in each SELECT clause in the run-unit, the same data
description entry for data-name-4, as well as the same relative location within the
associated record.|

I-O Status

51. If the FILE STATUS clause is specified in a File-Control entry, a value is placed into
the specified two-character data item during the execution of a CLOSE, DELETE,
OPEN, READ, REWRITE, START or WRITE statement and before any applicable
USE procedure is executed, to indicate to the COBOL program the status of that
input-output operation.

Status Key 1

52. The leftmost character position of the FILE STATUS data item is known as Status
Key 1 and is set to indicate one of the following conditions upon completion of the
input-output operation.

"0" indicates Successful Completion

"1" indicates At End

"2" indicates Invalid Key

"3" indicates Permanent Error

"4" indicates Logical Error

"9" indicates DPS 7 Specific



GCOS 7 COBOL 85 Reference Manual

7-28 47 A2 05UL Rev04

The meanings of the above indications are as follows:

0 - Successful Completion.  The input-output statement was successfully executed.

1 - At End.  A sequential READ statement was unsuccessfully executed as a result of
one of the following:

a. No next |(or previous one, if the PREVIOUS phrase is used)| logical record
exists  in the file or an optional file was not present.

b. The relative key data item is not large enough.

2 - Invalid Key.  The input-output statement was unsuccessfully executed as a result of
one of the following:

a. Sequence Error

b. Duplicate Key

c. No Record Found or Optional File not present.

d. Boundary Violation or Relative Key Data Item not large enough.

3 - Permanent Error.  The input-output statement was unsuccessfully executed as the
result of a boundary violation for a sequential file or as the result of an input-output
error, such as data check, parity error, or transmission error.The permanent error
condition remains in effect for all subsequent input-output operations on the file
unless a specific mechanism is invoked to correct the permanent error condition.

4 - Logical Error: the execution of the input-output statement was unsuccessful as a
result of violating a user-defined limit or because of the state of the file.

9 - DPS 7 Specific.  The input-output statement was unsuccessfully executed as a
result of a condition such as file not open, etc.  This value is used only to indicate a
condition not indicated by other defined values of Status Key 1, or by specified
combinations of the values of Status Key 1 and Status Key 2.

Status Key 2

53. The rightmost character position of the FILE STATUS data item is known as Status
Key 2 and is used to further describe the results of the input-output operation.  This
character will contain a value as follows:

a. When Status Key 1 contains a value of "0" indicating a successful completion,
Status Key 2 may contain a value indicating further information.  These values
indicate that:

1. For any input-output statement, the value "0" indicates that no further
information is available concerning the input-output operation;



Environment Division

47 A2 05UL Rev04 7-29

2. For a READ statement, the value "2" indicates that the key value for the
current key of reference is equal to the value of that same key in the next
record |(or previous one, if the PREVIOUS phrase is used)| within the current
key  of reference.

3. For a REWRITE or WRITE statement, the value "2" indicates that the
record just written created a duplicate key value for at least one alternate
record key for which duplicates are allowed.

4. For a READ statement, the value "4" indicates that the length of the record
being processed does not conform to the fixed file attributes for that file.

5. For an OPEN statement, the value "5" indicates that the referenced optional
file is not present at the time of the successfully executed OPEN statement; if
the open mode is I-O or extend, the file has been created.

6. For a CLOSE statement with the NO REWIND, REEL or UNIT , or FOR
REMOVAL phrase, or for an OPEN statement with the NO REWIND phrase,
the value "7" indicates that the referenced file is a non reel/unit medium.

b. When Status Key 1 contains a value of "1" indicating an at end condition,
status key 2 is used to designate the cause of the condition as follows:

1. A value of "0" in status key 2 indicates that a sequential READ statement is
attempted and no next logical record exists in the file because the end of the
file has been reached, |(or, if the PREVIOUS phrase is used, no previous
logical record exists in the file because the beginning of the file has been
reached)|, or a sequential READ statement is attempted for the first time on an
optional input file that is not present.

2. A value of "4" in status key 2 indicates that a sequential READ statement is
attempted for a relative file and the number of significant digits in the relative
number is larger than the size of the relative key data item described for that
file.

3. A value of "5" in status key 2 indicates that a sequential READ statement is
attempted for the first time on an optional input file that is not present.

c. When status key 1 contains a value of "2" indicating an INVALID KEY
condition, status key 2 is used to designate the cause of that condition as
follows:

1. A value of "1" in status key 2 indicates a sequence error for a sequentially
accessed indexed file.  The prime record key value has been changed by the
COBOL program between the successful execution of a READ statement and
the execution of the next REWRITE statement for that file, or the ascending
sequence requirements for successive record key values has been violated
(see the "WRITE Statement", Chapter 13).

2. A value of "2" in status key 2 indicates a duplicate key.  An attempt has
been made to write or rewrite a record that would create a duplicate prime
record key or a duplicate alternate record key without the DUPLICATE phrase
in an indexed file, or an attempt has been made to write a record that would
create a duplicate key in a relative file.

3. A value of "3" in status key 2 indicates that no record has been found.  An
attempt has been made to access a record identified by a key, and that record
does not exist in the file.



GCOS 7 COBOL 85 Reference Manual

7-30 47 A2 05UL Rev04

4. A value of "4" in status key 2 indicates a boundary violation.  An attempt has
been made to write beyond the externally-defined boundaries of a relative or
indexed file or a sequential WRITE statement has been attempted for a
relative file and the number of significant digits in the relative record number is
larger than the size of the relative key data item described for that file.

5. A value of "5" in status key 2 indicates that a START, a DELETE, a
REWRITER or a random READ statement has been attempted on an optional
input file that is not present.

d. When status key 1 contains a value of "3", indicating a permanent error
condition, status key 2 is used to designate the cause of that condition as
follows:

1. A value of "0" in status key 2 indicates that no further information is
available concerning the input-output operation.

2. A value of "4" indicates that an attempt has been made to write beyond the
externally-defined boundaries of a sequential file.

3. A value of "5" indicates that an OPEN statement with the INPUT, I-O, or
EXTEND phrase is attempted on a non-optional file that is not present.

4. A value of "7" indicates that an OPEN statement is attempted on a file and
that file will not support the open mode specified in the OPEN statement; the
possible violations are:

a. The EXTEND or OUTPUT phrase is specified but the file will not support
write operations.

b. The I-O phrase is specified but the file will not support the input and output
operations that are permitted for the organization of that file when opened in
the I-O mode.

c. The INPUT phrase is specified but the file will not support read operations.

5. A value of "8" indicates that an OPEN statement is attempted on a file
previously closed with lock.

6. A value of "9" indicates that conflict has been detected between the fixed
file attributes and the attributes specified for that file in the program.



Environment Division

47 A2 05UL Rev04 7-31

e. When status key 1 contains a value of "4" indicating a logical error condition,
status key 2 is used to designate the cause of that condition as follows:

1. A value of "1" indicates that an OPEN statement is attempted for a file in
the open mode.

2. A value of "2" indicates that a CLOSE statement is attempted for a file not
in the open mode.

3. A value of "3" indicates that for a mass storage file in the sequential access
mode, the last input-output statement executed for the associated file prior to
the execution of a DELETE or REWRITE statement was not a successfully
executed READ statement.

4. A value of "4" indicates that a boundary violation exists because:

a. An attempt is made to write or rewrite a record that is larger than the largest
or smaller than the smallest record allowed by the RECORD clause of the
associated file-name, or

b. An attempt is made to rewrite a record to a sequential file and the record is
not the same size as the being replaced.

5. A value of "6" indicates that a READ statement is attempted on a file
opened in the input or I-O mode and no valid next record |(or previous one, if
the PREVIOUS phrase is used)| has been established because:

a. |The preceding START statement was unsuccessful, or|

b. The preceding READ statement was unsuccessful but did not cause an "at
end condition", or

c. The preceding READ statement caused an "at end condition".

6. A value of "7" indicates that the execution of a READ or START statement
is attempted on a file not opened in the input or I-O mode.

7. A value of "8" indicates:

a. The execution of a random WRITE statement is attempted on a relative or
indexed file not opened in the I-O or output mode.

b. The execution of a sequential WRITE statement is attempted on a file not
opened in the output or extended mode.

8. A value of "9" indicates that the execution of a DELETE or REWRITE
statement is attempted on a file not opened in the I-O mode.



GCOS 7 COBOL 85 Reference Manual

7-32 47 A2 05UL Rev04

f. When status key 1 contains a value of "9" indicating a DPS 7 specific
restriction, status key 2 is used to designate the cause of that condition as
follows.

Note that the values of status key 2 marked with a * may only appear when the
clause COBOL-74 FOR FILES is used.

VALUE MEANING

    1 An error in Block Serial Number Checking.
    2 * The block just read has a wrong size or the record being

rewritten has not the same length as the record it replaces.
    3 The return code "BUSY" is got after an attempt to

dynamically assign a file not declared as QUEUED during
the execution of an OPEN statement referencing that file.

    4 The return code "BUSY" is got after an attempt to
dynamically assign a file declared as QUEUED during the
execution of an OPEN statement referencing that file.

    5 * The maximum record size of the file just opened is not equal
to the maximum record size specified in the program.

    6 * An access to the file is attempted though the file is not open.
    7 * The file is already open when an attempt is made to execute

an OPEN statement.
    9 * The statement is not allowed after the OPEN option used

(e.g. READ cannot be executed for a file opened in
OUTPUT).

    I* The statement is not allowed on an optional file that is not
present.

    J * The file description, as completed by JCL, IS
INCONSISTENT OR IN CONFLICT WITH THE FILE
CHARACTERISTICS.

    K An unrecoverable error occurred while printing and one or
more pages must be printed again.

    L The function requested is not available.
    M The internal-file-name specified in the ASSIGN TO clause of

the SELECT sentence is not assigned to an external file
($ASSIGN statement missing in JCL).

    N The internal-file-name specified in the ASSIGN TO clause of
the SELECT sentence is assigned to an unknown external
file (through the $ASSIGN JCL statement).

    O The location or the size of the Record Key, or the location or
the size or the number of the Alternate Record Key(s), of an
indexed file is not that specified in the program.

    P The form of the file does not fit with the ORGANIZATION
specified in the program.

    Q A DELETE statement is attempted though the file has been
given by JCL the NODELER attribute at allocation time.

    R A $JOB JCL statement has been read.
    S An incomplete record has been read at the physical end of

paper tape.



Environment Division

47 A2 05UL Rev04 7-33

VALUE MEANING

    O The location or the size of the Record Key, or the location or
the size or the number of the Alternate Record Key(s), of an
indexed file is not that specified in the program.

    P The form of the file does not fit with the ORGANIZATION
specified in the program.

    Q A DELETE statement is attempted though the file has been
given by JCL the NODELER attribute at allocation time.

    R A $JOB JCL statement has been read.
    S An incomplete record has been read at the physical end of

paper tape.
    T Too large a block has been read and it has been truncated.
    U Too large a record has been read and it has been truncated.
    W An attempt is made to open a file described with an

ORGANIZATION clause that specifies QUEUED and the
corresponding actual member name designate no existing
member (see the "ASSIGN Statement" rules for details on
actual member name setting).

All these values of Status Key 2 correspond to abnormal situations leading to
an abortion of execution if no declaratives are used.



GCOS 7 COBOL 85 Reference Manual

7-34 47 A2 05UL Rev04

Valid Combinations of Status Keys 1 and 2

54. The permissible combinations of the values of Status Key 1 and Status Key 2 are
shown in the tables below together with the statements and the file organization for
which the combination is applicable.

Table 7-1. File Status Keys (1/2)

C orrect execution
F ile  not open (2)
F ile  already open (2)
D uplicate key
Length inconsistant
F ile  absent (1)
N on reel/un it file

SRI

SRI

S
S

00
00
00
02
04
05
07

OPENMEANINGSTATUS
KEY 1-2

CLOSE READ WRITE REWRITE DELETE START

I

I

I

R

I

SUCCESS

SR I
SR I

S

SR I

I
SR I

SRI

I

SR I

I

SR I SRI

AT END

10
10
14
15

SR I
SR I

R
SR I

 End of file  reached
 Tem porary end of file  reached (3)
 R elative key too large
|File  absent (1)|

Key of the recoed has been
m odified s ince the last READ

21

21 Keys are not subm itted in
ascending order a t creation time

SEQUENCE
ERROR

DUPLICATE
KEY

22 RI R IThe record w ith  the same key
already axistsI

N
V
A
L
I
D

K
E
Y

NO
RECORD
FOUND

BOUDARY
VIOLATION

23

23

23

24

24

24

24

N o record with the specified
key exists
R ecord has been previously
deleted or w as not found
or

RI R I RI R I

R I RI
no current record exists or current
record has a lready been updated 
or de le ted

RI

The key falls outside the lim its 
o f the file
N o room  in the overflow area,
or the key is greater than the 
largest key of the fi le
or
P rim e area overflow at 
creation tim e
Attem p to write beyond 
the fi le l im its

|F ile  absent (1)| R IRI R I RI25



Environment Division

47 A2 05UL Rev04 7-35

Table 7-1. File Status Keys (2/2)

N o further inform ation
A ttem p to write beyond fi le l im its
F ile  not present
F ile  does not support open m ode
F ile  closed with  lock
A ttributes conflict

SR I

SR I
SR I
SR I
SR I

PERMANENT
ERROR

LOGICAL
ERROR

30
34
35
37
38
39

S RI S R I SR I
S

S RI S RI SR I

F ile  already open
F ile  not open
Last statement not successfu l READ
(sequencia l access)
Boundary v iolation
N o valid next or previous record
F ile  not opened in input or I-O
F ile  not opened in output,
extend or I-O
F ile  not opened in I-O

41
42
43

44
46
47
48

49

OPENMEANING
STATUS
KEY 1-2 CLOSE READ WRITE REWRITE DELETE START

SR I
SR I

SRI
SRI

SRI

SRI

SRI

SR I

SR I

SRI

SRI

SRI

NOTES: S stands for SEQUENTIAL file

R stands for RELATIVE file

I stands for INDEXED file

(1) OPTIONAL files

(2) EXTERNAL files, SYSIN files, SYSOUT files

(3) EXTERNAL files



GCOS 7 COBOL 85 Reference Manual

7-36 47 A2 05UL Rev04

Table 7-2. DPS 7000 Specific File Status Keys

STATUS
KEY 1-2 MEANING OPEN CLOSE READ WRITE RE-

WRITE
DELETE START

91 Block serial number error S

92* Wrong block size SRI

93 Dynamically assigned file is
busy

SRI

94 Dynamically assigned file is
busy

S

95* Wrong record size

96* File not open SRI SRI SRI

97* File already open SRI SRI SRI RI

99* Statement disallowed
according to open mode

SRI SRI SRI

9I* Dummy file SRI RI

9J* Inconsistency in file
description

SRI SRI RI

9K Form recovey SRI S

9L Function not available SRI SRI SRI SRI SRI RI

9M IFN not assigned SRI

9N External file name unknown SRI

9O Key location or size
unexpected

SRI

9P File organization unexpected I

9Q Delete not allowed SRI I

9R Job card has been read S

9S Incomplete record read at
physical end of paper tape

S

9T Block truncated S

9U Record larger than specified
record area

SRI

9W Assigned subfile unknown S

NOTES: S stands for SEQUENTIAL file

R stands for RELATIVE file

I stands for INDEXED file

* values which may only arrear if the clause COBOL74 for files is
used



Environment Division

47 A2 05UL Rev04 7-37

7.8 I-O-CONTROL

Description

The I-O-CONTROL paragraph specifies |the input-output techniques,| the points at which
rerun is to be established, and the memory area which is to be shared by different files
and the location of files on a multiple file reel.  The RERUN clause and the MULTIPLE
FILE TAPE clause within the I-O-CONTROL paragraph are obsolete elements in
Standard COBOL because they are to be deleted from the next revision of Standard
COBOL.

Format

I-O-CONTROL.

     |-------------------------------------------------|
   [ | [APPLY {NO-SORTED-INDEX  ON {file-name-4}..}. ]. |
     |        {OPTIMIZE ON {file-name-5}         }     |
     |-------------------------------------------------|

       [RERUN ON  CHECKPOINT-FILE
                   { integer-1 RECORDS}
             EVERY {                  } OF file-name-6]...
                   {         {REEL}   }
                   {[END OF] {    }   }
                             {UNIT}

             [RECORD    ]
       [SAME [SORT       ] AREA
             [SORT-MERGE]

                      FOR file-name-7 {file-name-8}... ]...

       [MULTIPLE FILE  TAPE CONTAINS
             {file-name-9 [POSITION integer-2]}... ]... . ]

Syntax Rules

1. The order of appearance of the APPLY clauses is immaterial.

2. Any file-name referenced in the I-O-CONTROL paragraph must be specified in the
FILE-CONTROL paragraph of the same program.

|3.     Each file-name-4 must be a file whose ORGANIZATION IS [UFF] INDEXED.|

|4.     Each file-name-5 must be described with an ORGANIZATION clause that does not
contain the QUEUED phrase.|

5. A file-name that represents a sort or merge file cannot appear in |an APPLY
clause,| a RERUN clause, or a MULTIPLE FILE clause.|

|6.     A file-name that represents an external file cannot appear in a RERUN clause or a
SAME clause.|



GCOS 7 COBOL 85 Reference Manual

7-38 47 A2 05UL Rev04

7. The END OF REEL/UNIT clause may only be used if file-name-6 is a sequentially
organized file.

8. Only one RERUN clause may be specified for a given file-name-6.

9. File-name-7 and file-name-8 must not reference an external file connector.

10. SORT and SORT-MERGE are equivalent.

11. A file-name that represents a sort or merge file cannot appear in the SAME clause
unless the SORT, SORT-MERGE or RECORD clause is used.

12. More than one SAME clause may be included in a program, subject to the following
restrictions:

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA clause.

c. A file-name that represents a sort or merge file must not appear in more than
one SAME SORT AREA or SAME SORT-MERGE AREA clause.

d. If one or more file-names of a SAME AREA clause appear in the SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause must
appear in the SAME RECORD AREA clause.  However, additional file-names
not appearing in that SAME AREA clause may also appear in that SAME
RECORD AREA clause.  The rule that only one of the files mentioned in a
SAME AREA clause can be open at any given time takes precedence over the
rule that all files mentioned in a SAME RECORD AREA clause can be open at
any given time.

e. If a file-name that does not represent a sort or merge file appears in a SAME
AREA clause and one or more SAME SORT AREA or SAME SORT-MERGE
AREA clauses, all of the files named in that SAME AREA clause must be
named in that SAME SORT AREA or SAME SORT-MERGE AREA clause(s).

13. The files referenced in the SAME AREA, SAME RECORD AREA, SAME SORT
AREA, or SAME SORT-MERGE AREA clause need not all have the same
organization or access.

14. A file-name that represents a report file can appear in a MULTIPLE FILE TAPE
clause or in a SAME clause for which the RECORD phrase is not specified.



Environment Division

47 A2 05UL Rev04 7-39

General Rules

|1.     When the APPLY NO-SORTED-INDEX clause is used, the alternate key index is
not sorted during the creation of an indexed file.|

|2.     
When the APPLY OPTIMIZE CLAUSE is used, the fast access UFAS method
applies.|

3. When the RERUN... EVERY integer-1 RECORDS clause is used, the rerun
information is written on the standard device whenever approximately integer-1
records of the file referenced by file-name-6 have been processed.  Other actions
take place at this time if the run unit uses files that are monitored by GAC (see the
COBOL 85 User's Guide).  File-name-6 may reference either an input or an output
file.

4. When the RERUN...END OF REEL or END OF UNIT clause is used, the rerun
information is written on the standard device whenever the end of a reel, or unit, is
reached.  In addition, normal reel, or unit, closing functions for file-name-6 are
performed.  File-name-6 may reference either an input or output file.

5. The SAME AREA clause specifies that two or more files referenced by data-name-
7, data-name-8, ... that do not represent sort or merge files are to use the same
memory area during processing.  The area being shared includes all storage areas
assigned to the files specified; therefore, it is not valid to have more than one of the
files open at the same time.  (see Syntax Rule 11.d above).

6. The SAME RECORD AREA clause specifies that two or more files referenced by
data-name-7, data-name-8, ... are to use the same memory area for processing of
the current logical record.  All of the files may be open at the same time.  A logical
record in the SAME RECORD AREA is considered as a logical record of each
opened file open in the output mode whose file-name appears in this SAME
RECORD AREA clause and of the most recently read file open in the input mode
whose file-name appears in this SAME RECORD AREA clause.  This is equivalent
to an implicit re-definition of the area, i.e., records are aligned on the leftmost
character position explicitly described for the record (i.e. regardless of declared or
implied SSF headers).

7. If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least
one of the file-names must represent a sort or merge file.  This clause specifies that
storage is shared as follows:

a. The SAME SORT AREA or SAME SORT-MERGE AREA clause specifies a
memory area which will be made available for use in sorting or merging each
sort or merge file named.  Thus any memory area allocated for the sorting or
merging of a sort or merge file is available for reuse in sorting or merging any
of the other sort or merge files.

b. In addition, storage areas assigned to files that do not represent sort or merge
files may be allocated as needed for sorting or merging the sort or merge files
named in the SAME SORT AREA or SAME SORT-MERGE AREA clause.



GCOS 7 COBOL 85 Reference Manual

7-40 47 A2 05UL Rev04

c. Files other than sort or merge files do not share the same storage area with
each other.  If the user wishes these files to share the same storage area with
each other, he must also include in the program a SAME AREA or SAME
RECORD AREA specifying file-names associated with these files.

d. During the execution of a SORT or MERGE statement that refers to a sort or
merge file named in this clause, any non sort or merge files associated with
file-names named in this clause must not be in the open mode.

8. The MULTIPLE FILE TAPE clause is required when more than one file shares the
same physical reel of tape |unless the relative position of files on a multiple file reel
are specified using the FSN parameter in the ASSIGN JCL statement.| Regardless
of the number of files on a single reel, only those files that are used in the object
program need be specified.  If all file-names have been listed in consecutive order,
the POSITION phrase need not be given.  If any file in the sequence is not listed,
the position relative to the beginning of the tape must be given.  Not more than one
file on the same tape reel may be open at one time.



47 A2 05UL Rev04 8-1

8. Data Division - Overview

The Data Division describes the data that the object program is to accept as input, to
manipulate, to create, or to produce as output.

Data to be processed falls into three categories:

a) That which is contained in files and enters or leaves the internal memory of the
computer from a specified input or output device.

b) That which is developed internally and placed into intermediate or working storage,
or placed into specific format for output reporting purposes.

c) Constants which are defined by the user.

The Data Division is subdivided into sections.  These are the File, Working-Storage,
|Constant,| Linkage, Communication, and Report Sections.

The File Section describes the structure of data, sort or merge files.  Each file is defined
by a File Description entry or a Sort-Merge Description entry and one or more Record
Description entries, or by a File Description entry and one or more Report Description
entries.  Record description entries are written immediately following the File Description
entry.  When the File Description entry specifies a file to be used as a Report Writer
output file, no Record Description entries are permitted for that file.  Report Description
entries appear in a separate section of the Data Division, the Report Section.

The Working-Storage Section describes records and subordinate data items which are
not part of external data files but are developed and processed internally.  It also
describes data items whose values are assigned in the source program and do not
change during the execution of the object program.

|The Constant Section only describes data items whose values are assigned in the
source program and do not change during the execution of the object program.|

The Linkage Section appears in the called program and describes data items that are to
be referred to by the calling program and the called program.  Its structure is the same as
the Working-Storage Section.

The Communication Section defines the data items in the source program that will serve
as the interface between The Message Control System (MCS) and the program.

The Report Section describes the content and format of reports that are to be generated.



GCOS 7 COBOL 85 Reference Manual

8-2 47 A2 05UL Rev04

Format

        DATA DIVISION .

       [FILE SECTION .
            [file-description-entry           ]
            [    {record-description-entry}...]
            [sort-merge-file-description-entry]... ]
            [    {record-description-entry}...]
            [report-file-description-entry    ]

       [WORKING-STORAGE SECTION .

            [77-level-description-entry]
            [                          ]... ]
            [record-description-entry  ]

     |----------------------------------------|
     | [CONSTANT SECTION .                     |
     |      [77-level-description-entry]      |
     |      [                          ]... ] |
     |      [record-description-entry  ]      |
     |----------------------------------------|

       [LINKAGE SECTION .
            [77-level-description-entry]
            [                          ]... ]
            [record-description-entry  ]

       [COMMUNICATION SECTION .
            [communication-description-entry
                 [record-description-entry]... ]... ]

       [REPORT SECTION .
            [report-description-entry
                 {report-group-description-entry}... ]... ]

NOTE: Within a file-description-entry the record-description-entry is required if the
REPORT clause is not specified; it must be omitted if the REPORT clause is
specified.  (See "File Description", this chapter).



Data Division - Overview

47 A2 05UL Rev04 8-3

8.1 FILE SECTION

In a COBOL program the File Description entry (FD) and the Sort-Merge File Description
entry (SD) represent the highest level of their respective organizations in the File
Section.  The Sort-Merge File Description (SD) is a special type of file description.  The
File Section header is followed by a File Description entry consisting of a level indicator
(FD, or SD), a file-name and a series of independent clauses.  The clauses of a File
Description entry specify the size of the logical and physical records, the presence or
absence of label records, the names of the data records or reports which comprise the
file and finally, the number of lines to be written on a logical printer page.  The entry itself
is terminated by a period.

An SD File Description gives information about the size and the names of the data
records associated with the file to be sorted or merged.  The rules for record blocking
and internal storage associated to a sort or merge file are peculiar to the SORT and
MERGE statements.

The initial value of data items in the File Section is undefined.



GCOS 7 COBOL 85 Reference Manual

8-4 47 A2 05UL Rev04

8.2 WORKING-STORAGE SECTION

The Working-Storage Section is composed of the section header, followed by Record
Description entries and/or description entries for non-contiguous data items.

8.2.1 Non-Contiguous Working-Storage

Items and constants in Working-Storage which bear no hierarchical relationship to one
another need not be grouped into records, provided they do not need to be further
subdivided.  Instead, they are classified and defined as non-contiguous elementary
items.  Each of these items is defined in a separate data description entry which begins
with special level-number 77.

The following data clauses are required in each data description entry:

1. level-number 77

2. |optionally,| data-name

3. The PICTURE clause or the USAGE IS INDEX|, COMP-1, COMP-2, COMP-9,
COMP-10, COMP-15 or POINTER| clause.

Other data description clauses are optional and can be used to complete the descriptions
of the item if necessary.

8.2.2 Working-Storage Records

Data elements in Working-Storage which bear a definite hierarchical relationship to one
another must be grouped into records according to the rules for formation of Record
Descriptions.  Data elements in the Working-Storage Section which bear no hierarchical
relationship to any other data item may be described as records which are single
elementary items.  All clauses which are used in Record Descriptions in the File Section
can be used in Record Descriptions in the Working-Storage Section.

8.2.3 Working-Storage

The initial value of any item in the Working-Storage Section except an index data item is
specified by using the VALUE clause with the data item.  The initial value of any index
data item or any data item not associated with a VALUE clause is undefined.



Data Division - Overview

47 A2 05UL Rev04 8-5

8.3 CONSTANT SECTION

|The Constant Section is exactly like the Working-Storage Section except that:

1.     All data items in the Constant Section must have a VALUE clause.

(Note that reference is made here not to every data "description", but to every data
"item".  This allows for the use of the REDEFINES and RENAMES clauses).

2.     The data items of the Constant Section may be referenced only where literals may
be referenced, i.e., their contents may not be altered during program execution.|



GCOS 7 COBOL 85 Reference Manual

8-6 47 A2 05UL Rev04

8.4 LINKAGE SECTION

The Linkage Section in a program is meaningful only if the object program is to function
under the control of a CALL statement, and the CALL statement in the calling program
contains a USING phrase, |or if the program uses based data item descriptions.|

Record descriptions or non-contiguous data item descriptions whose names are
referenced in the USING phrase of the PROCEDURE DIVISION header and their re-
definitions define parameters which are passed to the program when it is called.  |Data
Descriptions in the Linkage Section that do not define parameters, define based data
items.|

The structure of the Linkage Section is the same as that previously described for the
Working-Storage Section, beginning with a section header, followed by Record
Description entries, and/or data description entries for non-contiguous data items.

8.4.1 Parameters

The Linkage Section is used for describing data that is available through the calling
program but is to be referred to in both the calling and the called program.  The
mechanism by which a correspondence is established between the data items described
in the Linkage Section of a called program and data items described in the calling
program is described elsewhere in this manual (see "Procedure Division Header" in
Chapter 10 and the "CALL Statement" in Chapter 11).  In the case of index-names, no
such correspondence is established.  Index-names in the called and calling program
always refer to separate indices.

Data items defined in the Linkage Section of the called program must not be associated
with data items defined in the Report Section of the calling program.  If a data item in the
Linkage Section is accessed in a program which is not a called program, the effect is
undefined |unless the OPTIONS parameter is used in the STEP JCL statement used to
run the object program.|

8.4.2 Based Data Items

|A based data item is not to be allocated but its description can be mapped on any
storage.  The correspondence between a based data item and the mapped area is
established by the execution of a SET statement (see the "SET Statement", Chapter 13).
In the case of index-names, no such correspondence is established.  Index-names
associated with a based record description and index-names associated with data items
allocated in the mapped area always refer to separate indices.  Any reference to a based
data item or to its subordinate data items must be chronologically preceded by the
execution of a SET statement that defines a valid address for that based data item.|



Data Division - Overview

47 A2 05UL Rev04 8-7

8.4.3 Non-Contiguous Linkage Storage

Items in the Linkage Section which bear no hierarchical relationship to one another need
not be grouped into records and are classified and defined as non-contiguous elementary
items.  Each of these items is defined in a separate data description entry which begins
with the special level-number 77.

The following data clauses are required in each data description entry:

1. level-number 77

2. |optionally,| data-name

3. the PICTURE clause or the USAGE IS INDEX|, COMP-1, COMP-2, COMP-9,
COMP-10, COMP-15 or POINTER clause|

Other description clauses are optional and can be used to complete the description of the
item if necessary.

8.4.4 Linkage Records

Data elements in the Linkage Section which bear a definite hierarchical relationship to
one another must be grouped into records according to the rules for formation of Record
Descriptions.  Data elements in the Linkage Section which bear no hierarchical
relationship to any other data item may be described as records which are single
elementary items.

8.4.5 Initial Values

The VALUE clause must not be specified in the Linkage Section except in condition-
name entries (level 88).



GCOS 7 COBOL 85 Reference Manual

8-8 47 A2 05UL Rev04

8.5 COMMUNICATION SECTION

In a COBOL program the Communication Description entries (CD) represent the highest
level of organization in the Communication Section.  The Communication Section
header is followed by a Communication Description entry consisting of a level indicator
(CD), a cd-name and a series of independent clauses.  For input these clauses indicate
the queues and sub-queues, the message date and time, the source, the text length, the
status and end keys, and the message count.  For output these clauses specify the
destination count, the text length, the status and error keys, and destinations.  The entry
itself is terminated by a period.  These record areas may be implicitly re-defined by user-
specified Record Description entries following the various Communication Description
clauses.



Data Division - Overview

47 A2 05UL Rev04 8-9

8.6 REPORT SECTION

In the Report Section the description of each report must begin with a Report Description
entry (RD entry) and be followed by the entries that describe the report groups within the
report.

8.6.1 Report Description Entry

In addition to naming the report, the Report Description entry defines the format of each
page of the report by specifying the vertical boundaries of the region within which each
type of the report group may be printed.  The Report Description entry also specifies the
control data items.  When the report is produced, changes in the values of the control
data items cause the detail information of the report to be processed in groups called
control groups.

Each report named in the REPORTS clause of a File Description entry in the File
Section must be the subject of a Report Description entry in the Report Section.
Furthermore each report in the Report Section must be named in one and only one File
Description entry.

8.6.2 Report Group Description Entry

The report groups that will comprise the report are described following the Report
Description entry.  The description of each report group begins with a Report Group
Description entry; that is an entry that has a 01 level-number and a TYPE clause.
Subordinate to the Report Group Description entry, there may appear group and
elementary entries that further describe the characteristics of the report group.



GCOS 7 COBOL 85 Reference Manual

8-10 47 A2 05UL Rev04

8.7 RECORD DESCRIPTION STRUCTURE

A Record Description consists of a set of Data Description entries which describe the
characteristics of a particular record.  Each Data Description entry consists of a level-
number followed by the data name or FILLER clause, if specified, followed by a series of
independent clauses as required.  A Record Description may have a hierarchical
structure and therefore the clauses used with an entry may vary considerably, depending
upon whether or not it is followed by subordinate entries.  The structure of a record
description and the elements allowed in a Record Description Entry are explained under
the appropriate paragraphs.  (See "Concepts of Levels" and "Intra-Record Data
Structures", Chapter 3 and "Data Description Complete Entry Skeleton", this chapter).



Data Division - Overview

47 A2 05UL Rev04 8-11

8.8 FILE DESCRIPTION

DESCRIPTION:

The File Description entry furnishes information concerning the physical structure,
identification, and record names or report-names pertaining to a given file.

Format 1 (Sequential Non-Report File)

FD file-name

  [IS EXTERNAL]

  [IS GLOBAL]

                                           {RECORDS   }
  [BLOCK CONTAINS [integer-1 TO ] integer-2 {          }]
                                           {CHARACTERS}

          {CONTAINS integer-3 CHARACTERS                         }
          {                                                      }
          {         |---|              |---|                     }
          {CONTAINS | [ | integer-8 TO | ] | integer-9 CHARACTERS}
          {         |---|              |---|                     }
  [RECORD {            |----------------------------|            }]
          {            | [DEPENDING ON data-name-1] |            }
          {            |----------------------------|            }
          {                                                      }
          {IS VARYING IN SIZE [[FROM integer-4] [TO  integer-5]   }
          {     CHARACTERS] [DEPENDING ON data-name-1]           }

         {RECORD IS  } {STANDARD }
  [LABEL {           } {        }]
         {RECORDS ARE} {OMITTED  }

                       {data-name-2}
  [VALUE OF  {name-1 IS {           }}... ]
                       {literal-1  }

        {RECORD IS  }
  [DATA {           } {data-name-3}... ]
        {RECORDS ARE}

             {data-name-4}                        {data-name-5}
  [LINAGE IS {           } LINES [WITH FOOTING  AT {           }]
             {integer-5  }                        {integer-6  }

                   {data-name-6}                   {data-name-7}
     [LINES AT TOP {           }] [LINES AT BOTTOM  {           }]]
                   {integer-7  }                   {integer-8  }

                 {   alphabet-name}
                 { |------------| }
                 { | NATIVE     | }
                 { | STANDARD-1 | }
    [CODE-SET IS { | STANDARD-2  | }].
                 { | ASCII      | }
                 { | EBCDIC     | }
                 { | GBCD       | }
                 { | JIS        | }
                   |------------|



GCOS 7 COBOL 85 Reference Manual

8-12 47 A2 05UL Rev04

Format 2 (Sequential Report File)

FD file-name

      [IS EXTERNAL]

      [IS GLOBAL]

                                               {RECORDS   }
      [BLOCK CONTAINS [integer-1 TO ] integer-2 {          }]
                                               {CHARACTERS}

              {CONTAINS integer-3 CHARACTERS             }
      [RECORD {                                          }]
              {CONTAINS integer-6 TO integer-7 CHARACTERS}

             {RECORD IS  } {STANDARD }
      [LABEL {           } {        }]
             {RECORDS ARE} {OMITTED  }

                           {data-name-2}
      [VALUE OF  {name-1 IS {           }}... ]
                           {literal-1  }

                   {   alphabet-name}
                   { |------------| }
                   { | NATIVE     | }
                   { | STANDARD-1 | }
      [CODE-SET IS { | STANDARD-2  | }]
                   { | ASCII      | }
                   { | EBCDIC     | }
                   { | GBCD       | }
                   { | JIS        | }
                     |------------|

      {REPORT IS  }
      {           } {report-name-1}... .
      {REPORTS ARE}



Data Division - Overview

47 A2 05UL Rev04 8-13

Format 3 (Relative File)

FD file-name

  [IS EXTERNAL]

  [IS GLOBAL]

                                           {RECORDS   }
  [BLOCK CONTAINS [integer-1 TO ] integer-2 {          }]
                                           {CHARACTERS}

          {CONTAINS integer-3 CHARACTERS                        }
          {                                                     }
          {         |---|              |---|                    }
          {CONTAINS | [ | integer-8 TO | ] | integer-9          }
          {         |---|              |---|         CHARACTERS }
  [RECORD {            |----------------------------|           }]
          {            | [DEPENDING ON data-name-1] |           }
          {            |----------------------------|           }
          {                                                     }
          {IS VARYING IN SIZE [[FROM integer-4] [TO  integer-5]  }
          {     CHARACTERS] [DEPENDING ON data-name-1]          }

         {RECORD IS  } {STANDARD }
  [LABEL {           } {        }]
         {RECORDS ARE} {OMITTED  }

                       {data-name-2}
  [VALUE OF  {name-1 IS {           }}... ]
                       {literal-1  }

        {RECORD IS  }
  [DATA {           } {data-name-3}... ]
        {RECORDS ARE}

               {   alphabet-name}
               { |------------| }
               { | NATIVE     | }
               { | STANDARD-1 | }
  [CODE-SET IS { | STANDARD-2  | }] .
               { | ASCII      | }
               { | EBCDIC     | }
               { | GBCD       | }
               { | JIS        | }
                 |------------|



GCOS 7 COBOL 85 Reference Manual

8-14 47 A2 05UL Rev04

Format 4 (Indexed File)

FD file-name

  [IS EXTERNAL]

  [IS GLOBAL]

                                           {RECORDS   }
  [BLOCK CONTAINS [integer-1 TO ] integer-2 {          }]
                                           {CHARACTERS}

          {CONTAINS integer-3 CHARACTERS                        }
          {                                                     }
          {         |---|              |---|                    }
          {CONTAINS | [ | integer-8 TO | ] | integer-9          }
          {         |---|              |---|        CHARACTERS  }
  [RECORD {            |----------------------------|           }]
          {            | [DEPENDING ON data-name-1] |           }
          {            |----------------------------|           }
          {                                                     }
          {IS VARYING IN SIZE [[FROM integer-4] [TO  integer-5]  }
          {     CHARACTERS] [DEPENDING ON data-name-1]          }

         {RECORD IS  } {STANDARD }
  [LABEL {           } {        }]
         {RECORDS ARE} {OMITTED  }

                       {data-name-2}
  [VALUE OF  {name-1 IS {           }}... ]
                       {literal-1  }

        {RECORD IS  }
  [DATA {           } {data-name-3}... ]
        {RECORDS ARE}

               {   alphabet-name}
               { |------------| }
               { | NATIVE     | }
               { | STANDARD-1 | }
  [CODE-SET IS { | STANDARD-2  | }] .
               { | ASCII      | }
               { | EBCDIC     | }
               { | GBCD       | }
               { | JIS        | }
                 |------------|



Data Division - Overview

47 A2 05UL Rev04 8-15

Syntax Rules

All Formats

1. The level indicator FD identifies the beginning of a File Description entry and must
precede the file-name.

2. The clauses which follow file-name may appear in any order.

Formats 1 and 2

3. File-name may only reference a sequential file.

Formats 1, 3 and 4

4. One or more Record Description entries must follow the File Description entry.

Format 2

5. Each report named in the REPORT clause must be the subject of a Report
Description entry in the Report Section.

6. No Record Description entries which define data records may follow the File
Description entry.

Format 3

7. File-name may only reference a relative file.

Format 4

8. File-name may only reference an indexed file.

General Rules

1. A File Description entry associates file-name with a file connector.

2. If the File Description entry for a sequential file contains the LINAGE clause and the
EXTERNAL clause, the LINAGE-COUNTER data item is an external data item.  If
the File Description entry for a sequential file contains the LINAGE clause and the
GLOBAL clause, the special register LINAGE-COUNTER is a global name.

|3.     When the file is external, the maximum record length implied by the Record
Description Entries subordinate to the File Description Entry must be the same in
each File Description Entry in the run-unit.|



GCOS 7 COBOL 85 Reference Manual

8-16 47 A2 05UL Rev04

8.9 SORT-MERGE FILE DESCRIPTION- COMPLETE ENTRY SKELETON

Description

The Sort-merge File Description furnishes information concerning the physical structure
and record-names pertaining a sort or merge file.

Format

             |-------------|
SD file-name | [IS GLOBAL ] |
             |-------------|

          {CONTAINS integer-4 CHARACTERS                        }
          {                                                     }
          {         |---|              |---|                    }
          {CONTAINS | [ | integer-1 TO | ] | integer-2          }
          {         |---|              |---|         CHARACTERS }
  [RECORD {            |----------------------------|           }]
          {            | [DEPENDING ON data-name-1] |           }
          {            |----------------------------|           }
          {                                                     }
          {IS VARYING IN SIZE [[FROM integer-3] [TO  integer-4]  }
          {     CHARACTERS] [DEPENDING ON data-name-1]          }

          {RECORD IS  }
    [DATA {           } {data-name-2}... ].
          {RECORDS ARE}

Syntax Rules

1. The level indicator SD identifies the beginning of the Sort-merge file Description
entry and must precede the file-name.

2. The clauses that follow the name of the file are optional and their order of
appearance is immaterial.

3. One or more record description entries must follow the Sort-merge file Description
entry; however, no input-output statements may be executed for this file.



Data Division - Overview

47 A2 05UL Rev04 8-17

8.10 COMMUNICATION DESCRIPTION - COMPLETE ENTRY SKELETON

Description

The Communication Description specifies the interface area between the Message
Control System (MCS) and a COBOL PROGRAM.

Format 1

CD cd-name FOR [INITIAL ] INPUT

    |-------------|
    | [IS GLOBAL] |
    |-------------|

    [[[SYMBOLIC QUEUE IS data-name-1]               ]
    [                                               ]
    [       [SYMBOLIC SUB-QUEUE-1 IS data-name-2]   ]
    [                                               ]
    [       [SYMBOLIC SUB-QUEUE-2 IS data-name-3]   ]
    [                                               ]
    [       [SYMBOLIC SUB-QUEUE-3 IS data-name-4]   ]
    [                                               ]
    [       [MESSAGE DATE  IS data-name-5]           ]
    [                                               ]
    [       [MESSAGE TIME  IS data-name-6]           ]
    [                                               ]
    [       [SYMBOLIC SOURCE IS data-name-7]        ]
    [                                               ]
    [       [TEXT LENGTH  IS data-name-8]            ].
    [                                               ]
    [       [END KEY  IS data-name-9]                ]
    [                                               ]
    [       [STATUS KEY  IS data-name-10]            ]
    [                                               ]
    [       [MESSAGE COUNT IS data-name-11]]        ]
    [                                               ]
    [ [data-name-1 data-name-2 data-name-3          ]
    [       data-name-4 data-name-5 data-name-6     ]
    [       data-name-7 data-name-8 data-name-9     ]
    [       data-name-10 data-name-11]              ]



GCOS 7 COBOL 85 Reference Manual

8-18 47 A2 05UL Rev04

Format 2

CD cd-name FOR OUTPUT

    |-------------|
    | [IS GLOBAL] |
    |-------------|

      [DESTINATION COUNT  IS data-name-1]

      [TEXT LENGTH  IS data-name-2]

      [STATUS KEY  IS data-name-3]

      [DESTINATION TABLE  OCCURS integer-1 TIMES
           [INDEXED BY {index-name-1}... ]]

      [ERROR KEY  IS data-name-4]

      [SYMBOLIC DESTINATION IS data-name-5].

Format 3

CD cd-name FOR [INITIAL ] I-O

    |-------------|
    | [IS GLOBAL] |
    |-------------|

    [[[MESSAGE DATE  IS data-name-1]              ]
    [                                            ]
    [      [MESSAGE TIME  IS data-name-2]         ]
    [                                            ]
    [      [SYMBOLIC TERMINAL IS data-name-3]    ]
    [                                            ]
    [      [TEXT LENGTH  IS data-name-4]          ] .
    [                                            ]
    [      [END KEY  IS data-name-5]              ]
    [                                            ]
    [      [STATUS KEY  IS data-name-6]]          ]
    [                                            ]
    [ [data-name-1 data-name-2 data-name-3       ]
    [       data-name-4 data-name-5 data-name-6] ]



Data Division - Overview

47 A2 05UL Rev04 8-19

Syntax Rules

All Formats

1. A CD entry must appear only in the Communication Section.

Formats 1 and 3

2. Within a single program, the INITIAL clause may be specified in only one CD entry.
The INITIAL clause must not be used in a program that specifies the USING phrase
of the Procedure Division Header.  (See the "Procedure Division Header", Chapter
10.)

3. Except for the INITIAL clause, the optional clauses may be written in any order.

4. If neither option for specifying the interface area is used, a level 01 Data
Description entry must follow the CD entry.

Either option may be followed by a level 01 Data Description entry.

Format 1

5. Record Description entries following an input CD implicitly re-define the record area
established by the input CD entry and must describe a record of exactly 87
Standard Data Format characters.  Multiple re-definitions of this record are
permitted; however, only the first re-definition may contain VALUE clauses.  The
Message Control System (MCS) always references the record according to the data
description defined in general rule 2 (see the "VALUE Clause", Chapter 9).

6. Data-name-1, data-name-2, ..., data-name-11 must be unique within the CD.
Within this series, any data-name may be replaced by the reserved word FILLER.
|Ending consecutive FILLER's may be omitted in a data-name series that follows
the mandatory INPUT clause.|

Format 2

7. The optional clauses may be written in any order.

8. If none of the optional clauses of the CD is specified, a level 01 Data Description
entry must follow the CD entry.

9. Record Description entries subordinate to an output CD entry implicitly re-define the
record area established by the output CD entry.  Multiple re-definitions of this record
are permitted; however, only the first re-definition may contain VALUE clauses.
The Message Control System (MCS) always references the record according to the
Data Description defined in General Rule 16 (see the "VALUE Clause", Chapter 9).

10. Data-name-1, data-name-2, ... , data-name-5 must be unique within a CD entry.

11. If the DESTINATION TABLE OCCURS clause is not specified, one (1) ERROR
KEY and one (1) SYMBOLIC DESTINATION area are assumed.  In this case,
subscripting is not permitted when referencing these data items.



GCOS 7 COBOL 85 Reference Manual

8-20 47 A2 05UL Rev04

12. If the DESTINATION TABLE OCCURS clause is specified, data-name-4 and data-
name-5 may be referenced only by subscripting.

Format 3

13. Record Description entries following an input-output CD entry implicitly re-define the
record area established by the input-output CD entry and must describe a record of
exactly 33 Standard Data Format characters.  Multiple re-definitions of this record
are permitted; however, only the first re-definition may contain VALUE clauses.
The Message Control System (MCS) always references the record according to the
Data Description defined in General Rule 24 (see the "VALUE Clause", Chapter 9).

14. Data-name-1, data-name-2, ... , data-name-6 must be unique within the CD entry.
Within this series, any data-name may be replaced by the reserved word FILLER.
|Ending consecutive FILLER's may be omitted in a data-name series that follows
the mandatory I-O clause.|

General Rules

Format 1

1. The input CD information constitutes the communication between the Message
Control System (MCS) and the program, about he message to be handled.  This
information does not come from the terminal as part of the message.

2. For each input CD entry, a record area of 87 contiguous character positions is
allocated.  This record area is defined to the Message Control System as follows:

a. The SYMBOLIC QUEUE clause defines data-name-1 as the name of an
elementary alphanumeric data item of 12 characters occupying positions 1
through 12 in the record.

b. The SYMBOLIC SUB-QUEUE-1 clause defines data-name-2 as the name of
an elementary alphanumeric data item of 12 characters occupying positions 13
through 24 in the record.

c. The SYMBOLIC SUB-QUEUE-2 clause defines data-name-3 as the name of
an elementary alphanumeric data item of 12 characters occupying positions 25
through 36 in the record.

d. The SYMBOLIC SUB-QUEUE-3 clause defines data-name-4 as the name of
an elementary alphanumeric data item of 12 characters occupying positions 37
through 48 in the record.

e. The MESSAGE DATE clause defines data-name-5 as the name of a data item
whose implicit description is that of an integer of 6 digits without an operational
sign occupying character positions 49 through 54 in the record.

f. The MESSAGE TIME clause defines data-name-6 as the name of a data item
whose implicit description is that of an integer of 8 digits without an operational
sign occupying character positions 55 through 62 in the record.



Data Division - Overview

47 A2 05UL Rev04 8-21

g. The SYMBOLIC SOURCE clause defines data-name-7 as the name of an
elementary alphanumeric data item of 12 characters occupying positions 63
through 74 in the record.

h. The TEXT LENGTH clause defines data-name-8 as the name of an
elementary data item whose implicit description is that of an integer of 4 digits
without an operational sign occupying character positions 75 through 78 in the
record.i. The END KEY clause defines data-name-9 as the name of an
elementary alphanumeric data item of 1 character occupying position 79 in the
record.

i. The STATUS KEY clause defines data-name-10 as the name of an elementary
alphanumeric data item of 2 characters occupying positions 80 and 81 in the
record.

j. The MESSAGE COUNT clause defines data-name-11 as the name of an
elementary data item whose implicit description is that of an integer of 6 digits
without an operational sign occupying character positions 82 through 87 in the
record.

The second option may be used to replace the above clauses by a series of data-
names which, taken in order, correspond to the data-names defined by these
clauses.

Use of either option results in a record whose implicit description is equivalent to the
following:

IMPLICIT DESCRIPTION COMMENT

01 data-name-0.
     02 data-name-1 PICTURE X(12). SYMBOLIC QUEUE
     02 data-name-2 PICTURE X(12). SYMBOLIC SUB-QUEUE-

1
     02 data-name-3 PICTURE X(12). SYMBOLIC SUB-QUEUE-

2
     02 data-name-4 PICTURE X(12). SYMBOLIC SUB-QUEUE-

3
     02 data-name-5 PICTURE 9(06). MESSAGE DATE
     02 data-name-6 PICTURE 9(08). MESSAGE TIME
     02 data-name-7 PICTURE X(12). SYMBOLIC SOURCE
     02 data-name-8 PICTURE 9(04). TEXT LENGTH
     02 data-name-9 PICTURE X. END KEY
     02 data-name-10 PICTURE XX. STATUS KEY
     02 data-name-11 PICTURE 9(06). MESSAGE COUNT

In the above, the information given under 'COMMENT' is for clarification and is not
part of the Data Description.

3. The contents of the data items referenced by data-name-2, data-name-3 and data-
name-4, when not being used, must contain spaces.

4. The data-items referenced by data-name-1, data-name-2, data-name-3 and data-
name-4 contain symbolic names designating queues, sub-queues, ..., respectively.
These symbolic names must follow the rules for the formation of system-names,
and must have been previously defined to the Message Control System (MCS).



GCOS 7 COBOL 85 Reference Manual

8-22 47 A2 05UL Rev04

5. A RECEIVE statement causes the serial return of the next message or portion of a
message from the queue as specified by the entries of the CD.

At the time of execution of a RECEIVE statement, the input CD area must contain,
in the contents of data-name-1, the name of a symbolic queue.  The data items
specified by data-name-2, data-name-3 and data-name-4 may contain symbolic
sub-queue names or spaces.  When a given level of the queue structure is
specified, all higher levels must also be specified.  If less than all the levels of the
queue hierarchy are specified, the MCS determines the next message or portion of
a message to be accessed within the queue and/or sub-queue specified in the input
CD.

After the execution of a RECEIVE statement, the contents of the data items
referenced by data-name-1 through data-name-4 will contain the symbolic names of
all the level of the queue structure.

6. Whenever a program is scheduled by the Message Control System (MCS) to
process a message, that program establishes a run unit, and the symbolic names of
the queue structure that demanded this activity will be placed in the data items
referenced by data-name-1 through data-name-4 of the CD associated with the
INITIAL clause as applicable.  In all other cases, the contents of the data items
referenced by data-name-1 through data-name-4 of the CD associated with the
INITIAL clause are initialized to spaces.

The symbolic names are inserted, or the initialization to spaces is completed, prior
to the execution of the first Procedure Division statement.

The execution of a subsequent RECEIVE statement naming the same contents of
the data items referenced by data-name-1 through data-name-4 will return the
actual message that caused the program to be scheduled.  Only at that time will the
remainder of the CD be updated.

7. If the Message Control System (MCS) attempts to schedule a program lacking an
INITIAL clause, the results are undefined.

8. During the execution of a RECEIVE statement, the Message Control System (MCS)
provides in the data item referenced by data-name-5 the date on which it
recognized that the message was complete, in the form YYMMDD (year, month,
day).  The contents of the data items referenced by data-name-5 are not updated by
the MCS other than as part of the execution of a RECEIVE statement.

9. During the execution of a RECEIVE statement, the Message Control System (MCS)
provides in the data item referenced by data-name-6 the time at which it recognized
that the message was complete, in the form HHMMSSTT (hours, minutes, seconds,
hundredth of a second).  The contents of the data items referenced by data-name-6
are not updated by the MCS other than as part of the execution of a RECEIVE
statement.

10. During the execution of a RECEIVE statement, the MCS provides, in the data item
referenced by data-name-7, the symbolic name of the communications terminal that
is the source of the message being transferred.  This symbolic name must follow
the rules for the formation of system names.  However, if the symbolic name of the
communication terminal is not known to the MCS, the contents of the data item
referenced by data-name-7 will contain spaces.

11. The MCS indicates via the contents of the data item referenced by data-name-8 the
number of character positions filled as a result of the execution of the RECEIVE
statement.  (See the "RECEIVE Statement", Chapter 12).



Data Division - Overview

47 A2 05UL Rev04 8-23

12. The contents of the data item referenced by data-name-9 are set only by the MCS
as part of the execution of a RECEIVE statement according to the following rules:

a. When the RECEIVE MESSAGE phrase is specified, then:

(i) If an end of group has been detected, the contents of the data item
referenced by data-name-9 are set to 3.

(ii) If an end of message has been detected, the contents of the data item
referenced by data-name-9 are set to 2.

(iii) If less than a message is transferred, the contents of the data item
referenced by data-name-9 are set to 0.

b. When the RECEIVE SEGMENT phrase is specified, then:

(i) If an end of group has been detected, the contents of the data item
referenced by data-name-9 are set to 3.

(ii) If an end of message has been detected, the contents of the data item
referenced by data-name-9 are set to 2.

(iii) If an end of segment has been detected, the contents of the data item
referenced by data-name-9 are set to 1.

(iv) If less than a message segment is transferred, the contents of the data
item referenced by data-name-9 are set to 0.

c. When more than one of the above conditions is satisfied simultaneously, the
rule first satisfied in the order listed determines the contents of the data-item
referenced by data-name-9.

13. The contents of the data item referenced by data-name-10 indicate the status
condition of the previously executed RECEIVE, ACCEPT MESSAGE COUNT,
ENABLE INPUT, or DISABLE INPUT statement.

The actual association between the contents of the data item referenced by data-
name-10 and the status condition itself is defined in the table "Communication
Status Key Condition" below.

14. The contents of the data item referenced by data-name-11 indicate the number of
messages that exist in a queue, sub-queue-1, ... .  The MCS updates the contents
of the data item referenced by data-name-11 only as part of the execution of an
ACCEPT MESSAGE COUNT statement.

15. During the execution of a RECEIVE, an ENABLE INPUT, or a DISABLE INPUT
statement, the queue specified in the CD must have been defined as an input
queue; |otherwise, the statement will not be executed and the STATUS KEY item
will be updated with the code 99 (see "Communication Status Key Condition Table",
below).|

Format 2

16. The nature of the output CD information is such that it is not sent to the terminal,
but constitutes the communication between the program and the MCS about the
message being handled.

17. For each output CD entry, a record area of contiguous character positions is
allocated according to the following formula: (10 plus (13 times integer-1)).  The
implicit description of this record area is:



GCOS 7 COBOL 85 Reference Manual

8-24 47 A2 05UL Rev04

a. The DESTINATION COUNT clause defines data-name-1 as the name of a
data item whose implicit description is that of an integer of 4 digits, without an
operational sign, occupying character positions 1 through 4 in the record.

b. The TEXT LENGTH clause defines data-name-2 as the name of an
elementary data item whose implicit description is that of an integer of 4 digits,
without an operational sign, occupying character positions 5 through 8 in the
record.

c. The STATUS KEY clause defines data-name-3 to be an elementary
alphanumeric data item of 2 characters occupying positions 9 and 10 in the
record.

d. Character positions 11 through 23 and every set of 13 characters thereafter
will form table items of the following description:

(i) The ERROR KEY clause defines data-name-4 as the name of an
elementary alphanumeric data item of 1 character.

(ii) The SYMBOLIC DESTINATION clause defines data-name-5 as the name
of an elementary alphanumeric data item of 12 characters.

Use of the above clauses results in a record whose implicit description is equivalent to
the following:

IMPLICIT DESCRIPTION       COMMENT

01 data-name-0.
   02 data-name-1         PICTURE 9(04).      DESTINATION COUNT
   02 data-name-2         PICTURE 9(04).      TEXT LENGTH
   02 data-name-3         PICTURE XX.         STATUS KEY
   02 data-name OCCURS    DESTINATION TABLE
   integer-1 TIMES.
      03 data-name-4      PICTURE X.          ERROR KEY
      03 data-name-5      PICTURE X(12).      SYMBOLIC DESTINATION

In the above, the information given under 'COMMENT' is for clarification and is not
part of the Data Description.



Data Division - Overview

47 A2 05UL Rev04 8-25

18. During the execution of a SEND, PURGE, ENABLE OUTPUT or DISABLE
OUTPUT statement, the contents of the data item referenced by data-name-1 will
indicate to the MCS the number of symbolic destinations that are to be used from
the area referenced by data-name-5.

The MCS finds the first symbolic destination name in the first occurrence of the
area referenced by data-name-5, the second symbolic destination name in the
second occurrence of the area referenced by data-name-5, ... , up to and including
the occurrence of the area referenced by data-name-5 indicated by the contents of
data-name-1.

If during the execution of a SEND, PURGE, ENABLE OUTPUT or DISABLE
OUTPUT statement the value of the data item referenced by data-name-1 is not in
the range of 1 through integer-1, an error condition is indicated, no action is taken,
and the execution of the SEND, PURGE, ENABLE OUTPUT or DISABLE OUTPUT
statement is terminated.

19. It is the responsibility of the user to insure that the values of the data items
referenced by data-name-1, data-name-2 and data-name-5 are valid at the time of
execution of the SEND, PURGE, ENABLE OUTPUT, or DISABLE OUTPUT
statement.

20. As part of the execution of a SEND statement, the MCS will interpret the contents
of the data item referenced by data-name-2 to be the user's indication of the
number of leftmost character positions of the data item referenced by the identifier,
in the associated SEND statement, from which the data is to be transferred (see the
"SEND Statement", Chapter 13).

21. Each occurrence of the data item referenced by data-name-5 contains a symbolic
destination name previously known to the MCS.  These symbolic destination names
must follow the rules for the formation of system-names.

22. The contents of the data item referenced by data-name-3 indicate the status
condition of the previously executed SEND, PURGE, ENABLE OUTPUT, or
DISABLE OUTPUT statement.

The actual association between the contents of the data item referenced by data-
name-3 and the status condition itself is defined in the table "Communication Status
Key Condition" below.

23. If, during the execution of a DISABLE OUTPUT, ENABLE OUTPUT, PURGE or
SEND statement, the MCS determines an error has occurred, the contents of the
data item referenced by data-name-3 and the contents of each occurrence of data-
name-4, up to and including the occurrence specified by the contents of data-name-
1 are updated.

The actual association between the contents of the data item referenced by data-
name-4 and the error condition itself is defined in the table "Error Key Values"
below.

24. During the execution of a SEND, an ENABLE OUTPUT, or a DISABLE OUTPUT
statement, the queue specified in the CD must have been defined as an output
queue or the queue must correspond to a terminal which is already logged on with
the application; |otherwise, the statement will not be executed and the STATUS
KEY item will be updated with the code 9F.|



GCOS 7 COBOL 85 Reference Manual

8-26 47 A2 05UL Rev04

Format 3

25. The input-output CD information constitutes the communication between the MCS
and the program about the message being handled.  This information does not
come from the terminal as part of the message.

26. For each input-output CD, a record area of 33 contiguous character positions is
allocated.  This record area is defined to the MCS as follows:

a. The MESSAGE DATE clause defines data-name-1 as the name of a data item
whose implicit description is that of an integer of 6 digits, without an
operational sign, occupying character positions 1 through 6 in the record.

b. The MESSAGE TIME clause defines data-name-2 as the name of a data item
whose implicit description is that of an integer of 8 digits, without an
operational sign, occupying character positions 7 through 14 in the record.

c. The SYMBOLIC TERMINAL clause defines data-name-3 as the name of an
elementary alphanumeric data item of 12 characters occupying positions 15
through 26 in the record.

d. The TEXT LENGTH clause defines data-name-4 as the name of an
elementary data item whose implicit description is that of an integer of 4 digits,
without an operational sign, occupying character positions 27 through 30 in the
record.

e. The END KEY clause defines data-name-5 as the name of an elementary
alphanumeric data item of 1 character occupying position 31 in the record.

f. The STATUS KEY clause defines data-name-6 as the name of an elementary
data item of 2 characters occupying positions 32 and 33 in the record.

The second option may be used to replace the above clauses by a series of data-
names which, taken in order, correspond to the data-names defined by these
clause.

Use of either option results in a record whose implicit description is equivalent to the
following:

IMPLICIT DESCRIPTION COMMENT

01 data-name-0.
    02 data-name-1

PICTURE 9(06). MESSAGE DATE

    02 data-name-2 PICTURE 9(08). MESSAGE TIME
    02 data-name-3 PICTURE X(12). SYMBOLIC TERMINAL
    02 data-name-4 PICTURE 9(04). TEXT LENGTH
    02 data-name-5 PICTURE X. END KEY
    02 data-name-6 PICTURE XX. STATUS KEY

In the above, the information under 'COMMENT' is for clarification and is not part of
the data description.

27. When a program is scheduled by the MCS to process a message, the first
RECEIVE statement referencing the input-output CD with the INITIAL clause
returns the actual message that caused the program to be scheduled.



Data Division - Overview

47 A2 05UL Rev04 8-27

28. Data-name-1 has the format (YYMMDD) (year, month, day).  Its contents represent
the date on which the MCS recognizes that the message is complete.

The contents of the data item referenced by data-name-1 are updated only by the
MCS as part of a RECEIVE statement.

29. Data-name-2 has the format 'HHMMSSTT' (hours, minutes, seconds, hundredth of
a second) and its contents represent the time at which the MCS recognizes that the
message is complete.

The contents of the data referenced by data-name-2 are updated only by the MCS
as part of the execution of a RECEIVE statement.

30. Whenever a program is scheduled by the MCS to process a message, that program
establishes a run unit and the symbolic name of the communication terminal that is
the source of the message that invoked this program is placed in the data item
referenced by data-name-3 of the input-output CD associated with the INITIAL
clause as applicable.  This symbolic name must follow the rules for the formation of
system-names.

In all other cases, the contents of the data item referenced by data-name-3 of the
input-output CD associated with the INITIAL clause are initialized to spaces.

The symbolic name is inserted, or the initialization to spaces is completed, prior to
the execution of the first Procedure Division statement.

31. If the Message Control System (MCS) attempts to schedule a program lacking an
INITIAL clause, the results are undefined.

32. When the INITIAL clause is specified for an input-output CD and the program is
scheduled by the MCS, the contents of the data item referenced by data-name-3
must not be changed by the program.  If these contents are changed, the execution
of any statement referencing cd-name is unsuccessful, and the data item
referenced by data-name-6 is set to indicate unknown source or destination, as
applicable (see the table "Communication Status Key Condition" below).

33. For an input-output CD without the INITIAL clause, or for an input-output CD with
the INITIAL clause when the program is not scheduled by the MCS, the program
must specify the symbolic name of the source or destination in data-name-3 prior to
the execution of the first statement referencing cd-name.

After executing the first statement referencing cd-name, the contents of the data
item referenced by data-name-3 must not be changed by the program.  If these
contents are changed, the execution of any statement referencing cd-name is
unsuccessful, and the data item referenced by data-name-6 is set to indicate
unknown source or destination, as applicable (see the table "Communication Status
Key Condition" below).



GCOS 7 COBOL 85 Reference Manual

8-28 47 A2 05UL Rev04

34. The Message Control System indicates, through the contents of the data item
referenced by data-name-4, the number of character positions filled as a result of
the execution of the RECEIVE statement (see the "RECEIVE Statement", Chapter
12).

As part of the execution of a SEND statement, the MCS interprets the contents of
the data item referenced by data-name-4 as the user's indication of the number of
the leftmost character positions of the data item referenced by the associated
SEND identifier from which data is transferred (see the "SEND Statement", Chapter
13).

35. The contents of the data item referenced by data-name-5 are set only by the MCS
as part of the execution of a RECEIVE statement according to the following rules:

a. When the RECEIVE MESSAGE phrase is specified, then:

(i) If an end of group has been detected, the contents of the data item
referenced by data-name-5 are set to 3.

(ii) If an end of message has been detected, the contents of the data item
referenced by data-name-5 are set to 2.

(iii) If less than a message is transferred, the contents of the data item
referenced by data-name-5 are set to 0.

b. When the RECEIVE SEGMENT phrase is specified, then:

(i) If an end of group has been detected, the contents of the data item
referenced by data-name-5 are set to 3.

(ii) If an end of message has been detected, the contents of the data item
referenced by data-name-5 are set to 2.

(iii) If an end of segment has been detected, the contents of the data item
referenced by data-name-5 are set to 1.

(iv) If less than a message is transferred, the contents of the data item
referenced by data-name-5 are set to 0.

c. When more than one of the above conditions is satisfied simultaneously, the
rule first satisfied in the order listed determines the contents of the data item
referenced by data-name-5.

36. The contents of the data item referenced by data-name-6 indicates the status
condition of the previously executed DISABLE, ENABLE, PURGE, RECEIVE or
SEND statement.

The actual association between the contents of the data item referenced by data-
name-6 and the status condition itself is defined in the table "Communication Status
Key Condition" below.

All Formats

The following table indicates the possible contents of the data items referenced by data-
name-10 for Format 1, by data-name-3 for Format 2 and by data-name-6 for format 3 at
the completion of each statement shown.  An "X" on a line in a statement column
indicates that the associated code shown for that line is possible for that statement.

|Status codes from '91' through '9G' are DPS 7 extensions to the American National
Standard.|



Data Division - Overview

47 A2 05UL Rev04 8-29

Table 8-1. Communication Status Key Condition  (1/2)

00 X X X X X X X X X  X X

10               X      X

15   X X X X X X

20 X   X     X     X

20   X     X

20       X     X X   X X

21   X     X       X

30       X     X X     X

40   X X X X X X

50                 X X

60                 X X

65                     X

70             X

80     X X   X X X     X

91                    X X

92                 X X X

93                 X

94                  X X

95                 X

95                   X X

ACCEPT (with COUNT)
  DISABLE input (with TERMINAL)
    DISABLE input (without TERMINAL)
      DISABLE output
        ENABLE input (with TERMINAL)
          ENABLE input (without TERMINAL)
             ENABLE output
               PURGE
                 RECEIVE
                    SEND input-output
                       SEND output

S
T
A
T
U
S

K
E
Y

C
O
D
E

No error detected, action completed.

1 or more destinations disabled, action completed.

Symbolic source or 1 or more queues or destinations
already disabled/enabled.

1 or more queues/subqueues unknown*, no action taken.

Source unknown*, no action taken.

No action taken for 1 or more destinations unknown*.
Action taken for known desti nations.
data-name-4 (ERROR KEY) indica tes known or unknown

Symbolic source is unknown. No action taken.

DESTINATION COUNT invalid, no action taken

Password invalid, no enabling/ disab ling action taken.

Character count > length of sending field, no action taken.

Partial segment with 0 character count or no sending area
specified, no action taken. 

Output queue capacity exceeded.

1 or more destinations do not have portions associated
with them. Action completed for other destinations.

A combination of at least two status key conditions 10,
15 and 20 have occurred.

Message data not transferred to queue due to unavailability
of mass storage.

Message data not transferred due to unav ailability
of memory space.

No data can be input from the terminal to the queue to
which a DISABLE statement has been issued.

All message data not transferred because maximum message
size exceeded, message truncated.

Message too long. Truncated to maximum size specified.

Message discarded due to queue allocation overflow.



GCOS 7 COBOL 85 Reference Manual

8-30 47 A2 05UL Rev04

Table 8-1. Communication Status Key Condition (2/2)

96                 X

97                    X X

98                  X X X

99   X X    X X     X

9A                  X

9B                 X

9C                 X

9D                 X

9E                 X

9F        X     X     X X

9G                    X X

ACCEPT (with COUNT)

  DISABLE input (with TERMINAL)
    DISABLE input (without TERMINAL)
      DISABLE output
        ENABLE input (with TERMINAL)
          ENABLE input (without TERMINAL)
             ENABLE output
               PURGE
                 RECEIVE
                   SEND input-output
                      SEND output

S
T
A
T
U
S

K
E
Y

C
O
D
E

Message data returned but at least 1 previous message lost.

identifier-2 (see SEND statement) differ "0", "1", "2" or "3"

Message data not transferred due to I/O error on disk file.

Access to queue in conflict with JCL definition.

RVI has been detected, queue corresponding to symbolic
source has been disabled.

Terminal corresponding to symbolic source has been 
disconnected.

Terminal corresponding to symbolic source has been
disconnected.

Shutdown is announced, application is required to terminate.

Access to queue in conflict with JCL definition, or
related terminal not logged on to application.

Message not transferred, checkpoint should be taken before
attempting further data transfers.
Applicable to queues with the restart option (controlled
or ROLLBACK).

BREAK has been detected, queue corresp onding to symbolic 
source has been disabled.

* unknown means symbolic queue not defined in JCL.

NOTE: Status codes from '9A' through '9G' are available to an application only if the
related program queue has been defined with the 'BREAK' option in the
Communication Network Configuration (See the manual GCOS 7-V6 Networks:
Overview and Generation).

The table below indicates the possible contents of the data item referenced by data-
name-4 for format 2 at the completion of each statement shown.  An 'X' on a line in a
statement column indicates that the associated error key value shown for that line is
possible for that statement.



Data Division - Overview

47 A2 05UL Rev04 8-31

Table 8-2. Error Key Values

No error.

Symbol ic  des t ina t ion  unknown.

Symbol ic dest inat ion disabled.

No par t ia l  message wi th  re ferenced symbol ic
dest inat ion.

Symbol ic dest inat ion already enabled/disabled.

Outpu t  queue  capac i t y  exceeded .

Reserved for  future use.

S E N D

P U R G E

E N A B L E  O U T P U T

DISABLE OUTPUT

ERROR KEY VALUE

X

X

X X

7-9

0

1

2

4

5

6

X

X

X

X X

X X

X

X

X



GCOS 7 COBOL 85 Reference Manual

8-32 47 A2 05UL Rev04

8.11 REPORT DESCRIPTION - COMPLETE ENTRY SKELETON

Description

The Report Description entry names a report, specifies any identifying characters to be
prefixed to each print line, and describes the physical structure and organization of that
report.

Format

RD report-name [IS GLOBAL ]

      [CODE literal]

      {CONTROL IS  } {{data-name-1}...        }
     [{            } {                        }]
      {CONTROLS ARE} { FINAL  [data-name-1]... }

            [LIMIT IS  ]           [LINE ]
      [PAGE [          ] integer-1 [     ] [HEADING  integer-2]
            [LIMITS ARE]           [LINES]

           [FIRST DETAIL  integer-3] [LAST  DETAIL  integer-4]

           [FOOTING integer-5]].

Syntax Rules

1. The report-name must appear in one and only one REPORT clause.

2. The order of appearance of the clauses following the report-name is immaterial.

3. Report-name is the highest permissible qualifier that may be specified for LINE-
COUNTER, PAGE-COUNTER and all data-names defined within the Report
Section.

PAGE-COUNTER Rules

1. PAGE-COUNTER is the reserved word used to reference a special register that is
automatically created for each report specified in the Report Section (See "Special
Registers", Chapter 3).

2. In the Report Section, a reference to PAGE-COUNTER can only appear in a
SOURCE clause.  In the Procedure Division, PAGE-COUNTER may be used in any
context in which a data item with an integral value can appear.



Data Division - Overview

47 A2 05UL Rev04 8-33

3. If more than one PAGE-COUNTER exists in a program, PAGE-COUNTER must be
qualified by a report-name whenever it is referenced in the Procedure Division.

In the Report Section an unqualified reference to PAGE-COUNTER is qualified
implicitly by the name of the report in whose Report Description entry the reference
is made.  Whenever the PAGE-COUNTER of a different report is referenced,
PAGE-COUNTER must be explicitly qualified by the report-name associated with
the different report.

4. Execution of the INITIATE statement causes the Report Writer Control System to
set the PAGE-COUNTER of the referenced report to one (1).

5. PAGE-COUNTER is automatically incremented by one (1) each time the Report
Writer Control System executes a page advance.

6. PAGE-COUNTER may be altered by Procedure Division statements.

LINE-COUNTER Rules

1. LINE-COUNTER is the reserved word used to reference a special register that is
automatically created for each report specified in the Report Section (See "Special
Registers", Chapter 3).

2. In the Report Section a reference to LINE-COUNTER can only appear in a
SOURCE clause.  In the Procedure Division, LINE-COUNTER may be used in any
context in which a data item with an integral value may appear.  However, only the
Report Writer Control System can change the contents of LINE-COUNTER.

3. If more than one LINE-COUNTER exists in a program, LINE-COUNTER must be
qualified by a report-name whenever it is referenced in the Procedure Division.

In the Report Section an unqualified reference to LINE-COUNTER is qualified
implicitly by the name of the report in whose Report Description entry the reference
is made.  Whenever the LINE-COUNTER of a different report is referenced, LINE-
COUNTER must be explicitly qualified by that report-name associated with the
different report.

4. Execution of an INITIATE statement causes the Report Writer Control System to
set the LINE-COUNTER of the referenced report to zero (0).  The Report Writer
Control System also automatically resets LINE-COUNTER to zero each time it
executes a page advance.

5. The value of LINE-COUNTER is not affected by the processing of non-printable
report groups nor by the processing of a printable report group whose printing is
suppressed by means of the SUPPRESS statement.

6. At the time each print line is presented, the value of LINE-COUNTER represents
the line number on which the print line is presented.  The value of LINE-COUNTER
after the presentation of a report group is governed by the presentation rules for the
report group (See "Presentation Rules Tables", this chapter).



GCOS 7 COBOL 85 Reference Manual

8-34 47 A2 05UL Rev04

8.12 DATA DESCRIPTION - COMPLETE ENTRY SKELETON

Description

A Data Description entry specifies the characteristics of a particular item of data.

Format 1

             [data-name]
level-number [         ]
             [FILLER   ]

    [REDEFINES data-name]

    [IS EXTERNAL]

    [IS GLOBAL]

    {PICTURE}                     |--------------------------|
   [{       } IS character-string | [DEPENDING ON data-name] |
    {PIC    }                     |--------------------------|

               {   BINARY             }
               { |-----|              }
               { | BIT |              }
               { |-----|              }
               {   COMPUTATIONAL      }
               {   COMP               }
               { |------------------| }
               { | COMPUTATIONAL-1  | }
               { | COMP-1           | }
               { | COMPUTATIONAL-2  | }
               { | COMP-2           | }
               { | COMPUTATIONAL-3  | }
               { | COMP-3           | }
   [[USAGE IS] { | COMPUTATIONAL-5  | }
               { | COMP-5           | }
               { | COMPUTATIONAL-8  | }
               { | COMP-8           | }
               { | COMPUTATIONAL-9  | }
               { | COMP-9           | }
               { | COMPUTATIONAL-10 | }
               { | COMP-10          | }
               { | COMPUTATIONAL-15 | }
               { | COMP-15          | }
               { | POINTER          | }
               { |------------------| }
               {   DISPLAY            }
               {   INDEX              }
               {   PACKED-DECIMAL     }



Data Division - Overview

47 A2 05UL Rev04 8-35

                {LEADING }
     [[SIGN IS] {        } [SEPARATE  CHARACTER]]
                {TRAILING}

      [OCCURS integer TIMES                                      ]
      [                                                          ]
      [    {ASCENDING }                                          ]
      [   [{          } KEY IS {data-name-4}... ]...             ]
      [    {DESCENDING}                                          ]
      [                                                          ]
      [    [INDEXED BY {index-name-1}... ]                       ]
      [                                                          ]
      [OCCURS integer-2 TO  integer-1 TIMES DEPENDING  ON data-name]
      [                                                          ]
      [    {ASCENDING }                                          ]
      [   [{          } KEY IS {data-name-4}... ]...             ]
      [    {DESCENDING}                                          ]
      [                                                          ]
      [    [INDEXED BY {index-name-1}... ]                       ]

      {SYNCHRONIZED} [LEFT  ]
     [{            } [     ]].
      {SYNC        } [RIGHT ]

      {JUSTIFIED}
     [{         } RIGHT]
      {JUST     }

      [BLANK WHEN ZERO ]

                { literal-1}
      [VALUE IS { |------| }] .
                { | NULL | }
                  |------|

Format 2

  66 data-name-1
                            {THROUGH}
       RENAMES data-name-2 [{       } data-name-3].
                            {THRU   }

Format 3

  88 condition-name
                     |------|
                   { | NULL |                              }
      {VALUE IS  } { |------|                              }
      {          } {              {THROUGH}                }
      {VALUES ARE} {  {literal-1 [{       } literal]-2}... }
                   {              {THRU   }                }

        |----------------------------------|
        | [WHEN SET TO FALSE IS literal-3] | .
        |----------------------------------|



GCOS 7 COBOL 85 Reference Manual

8-36 47 A2 05UL Rev04

Syntax Rules

1. Level-number in Format 1 may be any number from 01 through 49, or 77 (See the
"Level-Number Clause", Chapter 9).

2. In Format 1, the data-name-1 or FILLER clause, if specified, must immediately
follow the level-number; the REDEFINES clause, if specified, must immediately
follow the data-name-1 or FILLER clause, if either is specified; otherwise, it must
immediately follow the level-number.  The remaining clauses may be written in any
order.

3. The EXTERNAL clause may be specified only in Data Description entries whose
level-numbers are 01 |or 77, in the Working-Storage Section and the Constant
Section.|

4. The EXTERNAL clause and the REDEFINES clause must not be specified in the
same Data Description entry.

5. The GLOBAL clause may be specified only in Data Description entries whose level-
number is 01.

6. Data-name-1 in format 1 must be specified for any entry containing the GLOBAL or
EXTERNAL clause or for record descriptions associated with a File Description
entry which contains the EXTERNAL or GLOBAL clause.

7. The PICTURE clause must be specified for every elementary item except |a
COMP-9, COMP-10, COMP-15, POINTER item or | an index data item, and the
subject of the RENAMES clause, in which case use of this clause is prohibited, |or a
COMP-1 or COMP-2 item, in which case use of this clause is optional.

8. The words THRU and THROUGH are equivalent.

General Rules

1. The clauses SYNCHRONIZED, PICTURE, JUSTIFIED and BLANK WHEN ZERO
must not be specified except for an elementary data item.

2. Format 3 is used for each condition-name.  Each condition-name requires a
separate entry with level-number 88.  Format 3 contains the name of the condition
and the value, values, or range of values associated with the condition-name.  The
condition-name entries for a particular conditional variable must immediately follow
the entry describing the item with which the condition-name is associated.  A
condition-name can be associated with any Data Description entry which contains a
level-number except the following:

a. Another condition-name
b. A level 66 item
c. A group containing items with descriptions including JUSTIFIED,

SYNCHRONIZED or USAGE (other than USAGE IS DISPLAY)
d. An index data item

3. Multiple level 01 entries subordinate to any given level indicator other than the level
indicator RD for Report Description entries, represent implicit re-definitions of the
same area.



Data Division - Overview

47 A2 05UL Rev04 8-37

8.13 REPORT GROUP DESCRIPTION - COMPLETE ENTRY SKELETON

Description

The Report Group Description entry specifies the characteristics of a report group and of
the individual items within a report group.

Format 1

  01 [data-name-1]2
                      {integer-1 [ON NEXT PAGE]}
      [LINE NUMBER IS {                        }]
                      {PLUS integer-2          }

                     {integer-3     }
      [NEXT GROUP  IS {PLUS  integer-4}]
                     {NEXT PAGE      }

               {{REPORT HEADING }               }
               {{RH            }               }
               {                               }
               {{PAGE HEADING }                 }
               {{PH          }                 }
               {                               }
               {{CONTROL HEADING } {data-name-2}}
               {{CH             } {FINAL       }}
               {                               }
       TYPE IS {{DETAIL}                       }
               {{DE    }                       }
               {                               }
               {{CONTROL FOOTING } {data-name-3}}
               {{CF             } {FINAL       }}
               {                               }
               {{PAGE FOOTING }                 }
               {{PF          }                 }
               {                               }
               {{REPORT FOOTING }               }
               {{RF            }               }

     [[USAGE IS] DISPLAY ].

Format 2

  level-number [data-name-1]

                      {integer-1 [ON NEXT PAGE ]}
      [LINE NUMBER IS {                        }]
                      {PLUS integer-2          }

     [[USAGE IS] DISPLAY ].



GCOS 7 COBOL 85 Reference Manual

8-38 47 A2 05UL Rev04

Format 3

  level-number [data-name-1]

      {PICTURE}
      {       } IS character-string
      {PIC    }

     [[USAGE IS] DISPLAY ]

                {LEADING }
     [[SIGN IS] {        } SEPARATE  CHARACTER]
                {TRAILING}

      {JUSTIFIED}
     [{         } RIGHT]
      {JUST     }

      [BLANK WHEN ZERO ]

                      {integer-1 [ON NEXT PAGE ]}
      [LINE NUMBER IS {                        }]
                      {PLUS integer-2          }

      [COLUMN NUMBER IS integer-3]

     { SOURCE IS identifier-1                            }
     {                                                   }
     { VALUE IS literal-1                                }
     {                                                   }
     {{SUM {identifier-2}... [UPON  {data-name-2}... ]}...}
     {                                                   }
     {               {data-name-3}                       }
     {     [RESET ON {           }]                      }
                     {FINAL      }

      [GROUP INDICATE].



Data Division - Overview

47 A2 05UL Rev04 8-39

Syntax Rules

1. The Report Group Description entry can appear only in the Report Section.

2. Except for the data-name clause, which when present must immediately follow the
level-number, the clauses may be written in any sequence.

3. In Format 2 the level-number may be any integer from 02 to 48 inclusive.  In
Format 3 the level-number may be any integer from 02 to 49 inclusive.

4. A description of a report group may consist of one, two or three hierarchic levels:

a. The first entry that describes a report group must be a Format 1 entry.

b. Both Format 2 and Format 3 entries may be immediately subordinate to a
Format 1 entry.

c. At least one Format 3 entry must be immediately subordinate to a Format 2
entry.

d. Format 3 entries must define elementary data items.

5. In a Format 1 entry, data-name-1 is required only when:

a. A DETAIL report group is referenced by a GENERATE statement,

b. A DETAIL report group is referenced by the UPON phrase of a SUM clause,

c. A report group is referenced in a USE BEFORE REPORTING sentence,

d. The name of a CONTROL FOOTING report group is used to qualify a
reference to a sum counter.

If specified, data-name-1 may be referenced only by a GENERATE statement, the
UPON phrase of a SUM clause, a USE BEFORE REPORTING sentence, or as a
sum counter qualifier.

6. A Format 2 entry must contain at least one optional clause.

7. In a Format 2 entry, data-name-1 is optional.  If present it may be used only to
qualify a sum counter reference.

8. In the Report Section, the USAGE clause is used only to declare the usage of
printable items.

a. If the USAGE clause appears in a Format 3 entry, that entry must define a
printable item.

b. If the USAGE clause appears in a Format 1 or Format 2 entry, at least one
subordinate entry must define a printable item.

9. An entry that contains a LINE NUMBER clause must not have a subordinate entry
that also contains a LINE NUMBER clause.



GCOS 7 COBOL 85 Reference Manual

8-40 47 A2 05UL Rev04

10. In Format 3:

a. A GROUP INDICATE clause may appear only in a TYPE DETAIL report
group.

b. A SUM clause may appear only in a TYPE CONTROL FOOTING report group.

c. An entry that contains a COLUMN NUMBER clause but no LINE NUMBER
clause must be subordinate to an entry that contains a LINE NUMBER clause.

d. Data-name-1 is optional but may be specified in any entry.  Data-name-1 may
be referenced only if the entry defines a sum counter.

e. An entry that contains a VALUE clause must also have a COLUMN NUMBER
clause.

11. The following table shows all permissible clause combinations for a Format 3 entry.
The table is read from left to right along the selected row.

An 'M' indicates that the presence of the clause is mandatory.

A 'P' indicates that the presence of the clause is permitted, but not required.

A blank indicates that the clause is not permitted.

Table 8-3. Permissible Clause Combinations in Format 3 Entries

PIC COLUMN SOURCE SUM VALUE JUST

BLANK
WHEN
ZERO

GROUP
INDICATE USAGE LINE SIGN

M M P P

M M M P P P P

M P M P P P P P

M P M P P P P P

M M M P P P P P

General Rules

Format 1 is the report group entry.  The report group is defined by the contents of this
entry and all of its subordinate entries.



Data Division - Overview

47 A2 05UL Rev04 8-41

8.13.1 Presentation Rules Tables

Description

The tables and rules, below, specify:

1. The permissible combinations of LINE NUMBER and NEXT GROUP clauses for
each type of report group,

2. The requirements that are placed on the use of these clauses, and

3. The interpretation that the RWCS gives to these clauses.

Organization

There is an individual Presentation Rules Table for each of the following types of report
groups: REPORT HEADING, PAGE HEADING, PAGE FOOTING, REPORT FOOTING.
In addition, DETAIL report groups, CONTROL HEADING report groups, and CONTROL
FOOTING report groups are treated jointly in the Body Group Presentation Rules Table
(See the "Body Group Presentation Rules", this chapter).

Columns 1 and 2 of a Presentation Rules Table list all of the permissible combinations of
LINE NUMBER and NEXT GROUP clauses for the designated report group TYPE.
Consequently, for the purpose of identifying the set of presentation rules that apply to a
particular combination of LINE NUMBER and NEXT GROUP clauses, a Presentation
Rules Table is read from left to right, along the selected row.

The Applicable Rules columns of a Presentation Rules Table are partitioned into two
parts.  The first part specifies the rules that apply if the report description contains a
PAGE clause, and the second part specifies the rules that apply if the PAGE clause is
omitted.  The purpose of the rules named in the Applicable Rules columns is discussed
below:

1. Upper Limit Rules and Lower Limit Rules

These rules specify the vertical subdivisions of the page within which the specified
report group may be presented.

In the absence of a PAGE clause the printed report is not considered to be
partitioned into vertical subdivisions.  Consequently, within the Tables no Upper
Limit Rule and Lower Limit Rule is specified for a report description in which the
PAGE clause is omitted.



GCOS 7 COBOL 85 Reference Manual

8-42 47 A2 05UL Rev04

2. Fit Test Rules

The Fit Test Rules are applicable only to body groups, and hence Fit Test Rules are
specified only within the Body Group Presentation Rules Table.  At object time the
RWCS applies the Fit Test Rules to determine whether the designated body group
can be presented on the page to which the report is currently positioned.

However, even for body groups there are no Fit Test Rules when the PAGE clause
is omitted from the Report Description entry.

3. First Print Line Position Rules

The First Print Line Position Rules specify where on the report medium the RWCS
shall present the first print line of the given report group.

The Presentation Rules Tables do not specify where on the report medium the
RWCS shall present the second and subsequent print lines (if any) of a report
group.  Certain general rules determine where the second and subsequent print
lines of a report group shall be presented.  For this information, refer to the
"General Rules" of the "LINE NUMBER Clause" in Chapter 9.

4. Next Group Rules

The next Group Rules relate to the proper use of the NEXT GROUP clause.

5. Final LINE-COUNTER Setting Rules

The terminal values that the RWCS places in LINE-COUNTER after presenting
report groups are specified by the Final LINE-COUNTER Setting Rules.

LINE NUMBER Clause Notation

Column 1 of the Presentation Rules Table uses a shorthand notation to describe the
sequence of LINE NUMBER clauses that may appear in the description of a report
group.  The meaning of the abbreviations used in column 1 is as follows:

1. The letter 'A' represents one or more absolute LINE NUMBER clauses, none of
which have the NEXT PAGE phrase, that appear in consecutive order within the
sequence of LINE NUMBER clauses in the Report Group Description entry.

2. The letter 'R' represents one or more relative LINE NUMBER clauses that appear in
consecutive order within the sequence of LINE NUMBER clauses in the Report
Group Description entry.

3. The letters 'NP' represent one or more absolute LINE NUMBER clauses that appear
in consecutive order within the sequence of LINE NUMBER clauses in the Report
Group Description entry with the phrase NEXT PAGE appearing in the first and only
in the first LINE NUMBER clause.

When two abbreviations appear together, they refer to a sequence of LINE
NUMBER clauses that consist of two specified consecutive sequences.  For
example 'AR' refers to a Report Group Description entry within which the 'A'
sequence (defined in rule 1 above) is immediately followed by the 'R' sequence
(defined in rule 2 above).



Data Division - Overview

47 A2 05UL Rev04 8-43

LINE NUMBER Clause Sequence Substitutions

Where 'AR' is shown to be a permissible sequence in the Presentation Rules Table, 'A' is
also permissible and the same presentation rules are applicable.

Where 'NP R' is shown to be a permissible sequence in the Presentation Rules Table,
'NP' is also permissible and the same presentation rules are applicable.

Saved Next Group Integer Description

Saved Next Group Integer is a data item that is addressable only by the RWCS.  When
an absolute NEXT GROUP clause specifies a vertical positioning value which cannot be
accommodated on the current page, the RWCS stores that value in Saved Next Group
Integer.  After page advance processing, the RWCS positions the next body group using
the value stored in Saved Next Group Integer.



GCOS 7 COBOL 85 Reference Manual

8-44 47 A2 05UL Rev04

8.13.2 REPORT HEADING Group Presentation Rules

*The following table points to the appropriate Presentation Rules for all permissible
combinations of LINE NUMBER and NEXT GROUP clauses in a REPORT HEADING
report group.

Table 8-4. REPORT HEADING Group Presentation Rules

APPLICABLE RULES ***
** If the PAGE clause is specified If the PAGE clause

is omitted
Sequence of

LINE
NUMBER
clauses *

NEXT
GROUP
clause

Upper
Limit

Lower
Limit

First
Print Line
Position

Next
Group

Final
Line-

Counter
Setting

First
Print Line
Position

Final
Line

Counter
Setting

A R
Absolute 1 2a 3a 4a 5a

Illegal Combination
(see the LINE

NUMBER clause)
AR

Relative 1 2a 3a 4b 5b
Illegal Combination

(see the LINE
NUMBER clause)

AR
NEXT
PAGE 1 2b 3a 4c 5c

Illegal Combination
(see the LINE

NUMBER clause)
AR

1 2a 3a 5d
Illegal Combination

(see the LINE
NUMBER clause)

R
Absolute 1 2a 3b 4a 5a

Illegal Combination
(see the LINE

NUMBER clause)
R

Relative 1 2a 3b 4b 5b 3d 5b

R
NEXT
PAGE 1 2b 3b 4c 5c

Illegal Combination
(see the LINE

NUMBER clause)
R

1 2a 3b 5d 3d 5d

3c 5e 3c 5e

*   The meaning of the abbreviations used in column 1 has
been previously stated. (See "LINE NUMBER Clause
Notation", above).

**  A blank entry in column 1 or column 2 indicates that the
named clause is totally absent from the Report Group
Description entry.

*** A blank entry in the Applicable Rules column indicates the
absence of the named rule for the given combination of LINE
NUMBER and NEXT GROUP clauses.



Data Division - Overview

47 A2 05UL Rev04 8-45

1. Upper Limit Rule

The First line number on which the REPORT HEADING report group can be
presented is the line number specified by the HEADING phrase of the PAGE
clause.

2. Lower Limit Rules

a. The last line number on which the REPORT HEADING report group can be
presented is the line number that is obtained by subtracting 1 from the value of
integer-3 of the FIRST DETAIL phrase of the PAGE clause.

b. The last line number on which the REPORT HEADING report group can be
presented is the line number specified by integer-1 of the PAGE clause.

3. First Print Line Position Rules

a. The first print line of the REPORT HEADING report group is presented on the
line number specified by the integer of its LINE NUMBER clause.

b. The first print line of the REPORT HEADING report group is presented on the
line number obtained by adding the integer of the first LINE NUMBER clause
and the value obtained by subtracting 1 from the value of integer-2 of the
HEADING phrase of the PAGE clause.

c. The REPORT HEADING report group is not presented.

d. The first print line of the REPORT HEADING report group is presented on the
line number obtained by adding the contents of its LINE-COUNTER (in this
case, zero) to the integer of the first LINE NUMBER clause.

4. Next Group Rules

a. The NEXT GROUP integer must be greater than the line number on which the
final print line of the REPORT HEADING report group is presented.  In
addition, the NEXT GROUP integer must be less than the line number
specified by the value of integer-3 of the FIRST DETAIL phrase of the PAGE
clause.

b. The sum of the NEXT GROUP integer and the line number on which the final
print line of the REPORT HEADING report group is presented must be less
than the value of integer-3 of the FIRST DETAIL phrase of the PAGE clause.

c. NEXT GROUP NEXT PAGE signifies that the REPORT HEADING report
group is to be presented entirely by itself on the first page of the report.  The
RWCS processes no other report group while positioned to the first page of the
report.



GCOS 7 COBOL 85 Reference Manual

8-46 47 A2 05UL Rev04

5. Final LINE-COUNTER Setting Rules

a. After the REPORT HEADING report group is presented, The RWCS places
the NEXT GROUP integer into LINE-COUNTER as the final LINE-COUNTER
setting.

b. After the REPORT HEADING report group is presented, the RWCS places the
sum of the NEXT GROUP integer and the line number on which the final print
line of the REPORT HEADING report group was presented into LINE-
COUNTER as the final LINE-COUNTER setting.

c. After the REPORT HEADING report group is presented, the RWCS places
zero into LINE-COUNTER as the final LINE-COUNTER setting.

d. After the REPORT HEADING report group is presented, the final LINE-
COUNTER setting is the line number on which the final print line of the
REPORT HEADING report group was presented.

e. LINE-COUNTER is unaffected by the processing of a non-printable report
group.



Data Division - Overview

47 A2 05UL Rev04 8-47

8.13.3 PAGE HEADING Group Presentation Rules

The table below points to the appropriate Presentation Rules for all permissible
combinations of LINE NUMBER and NEXT GROUP clauses in a PAGE HEADING report
group.

Table 8-5. PAGE HEADING Group Presentation Rules

APPLICABLE RULES ***
** If the PAGE clause is specified ****

Sequence of
LINE NUMBER

clauses *

NEXT
GROUP
clause

Upper
Limit

Lower
Limit

First Print
Line

Position

Next
Group

Final
Line-

Counter
Setting

A R
1 2 3a 4a

R
1 2 3b 4a

3c 4b

*   The meaning of the abbreviations used in column 1 has
been previously stated.  (See "LINE NUMBER Clause
Notation" above.)

**  A blank entry in column 1 or column 2 indicates that the
named clause is totally absent from the Report Group
Description entry.

*** If the PAGE clause is omitted from the Report Description
entry, then a PAGE HEADING report group may not be
defined.  (See the "TYPE Clause", Chapter 9).

**** A blank entry in an Applicable Rules column indicates the
absence of the named rule for the given combination of LINE
NUMBER and NEXT GROUP clauses.



GCOS 7 COBOL 85 Reference Manual

8-48 47 A2 05UL Rev04

Presentation Rules

1. Upper Limit Rule

If a REPORT HEADING report group has been presented on the page on which the
PAGE HEADING report group is to be presented, then the first line number on
which the PAGE HEADING report group can be presented is one greater than the
final LINE-COUNTER setting established by the REPORT HEADING.  Otherwise
the first line number on which the PAGE HEADING report group can be presented
is the line number specified by the HEADING phrase of the PAGE clause.

2. Lower Limit Rule

The last line number on which the PAGE HEADING report group can be presented
is the line number that is obtained by subtracting one (1) from the value of integer-3
of the FIRST DETAIL phrase of the PAGE clause.

3. First Print Line Position Rules

a. The first print line of the PAGE HEADING report group is presented on the line
number specified by the integer of its LINE NUMBER clause.

b. If a REPORT HEADING report group has been presented on the page on
which the PAGE HEADING report group is to be presented, then the sum of
the final LINE-COUNTER setting established by the REPORT HEADING
report group and the integer of the first LINE NUMBER clause of the PAGE
HEADING report group defines the line number on which the first print line of
the PAGE HEADING report group is presented.

Otherwise the sum of the integer of the first LINE NUMBER clause of the
PAGE HEADING report group and the value obtained by subtracting one (1)
from the value of integer-2 of the HEADING phrase of the PAGE clause
defines the line number on which the first print line of the PAGE HEADING
report group is presented.

c. The PAGE HEADING report group is not presented.

4. Final LINE-COUNTER Setting Rules

a. The final LINE-COUNTER setting is the line number on which the final print
line of the PAGE HEADING report group was presented.

b. LINE-COUNTER is unaffected by the processing of a non-printable report
group.



Data Division - Overview

47 A2 05UL Rev04 8-49

8.13.4 Body Group Presentation Rules

The table below points to the appropriate Presentation Rules for all permissible
combinations of LINE NUMBER and NEXT GROUP clauses in CONTROL HEADING,
DETAIL and CONTROL FOOTING report groups.

Table 8-6. Body Group Presentation Rules

APPLICABLE RULES ***
** If the PAGE clause is specified If the PAGE

clause is omitted

Sequence
of LINE

NUMBER
clauses *

NEXT
GROUP
clause

Upper
Limit

Lower
Limit

Fit
Test

First
Print
Line

Position

Next
Group

Final
Line-

Counter
Setting

First
Print
Line

Position

Final
Line

Counter
Setting

AR Absolute 1 2a 3a 4a 5 6a Illegal
Combination (see

the LINE NUMBER
clause)

AR Relative 1 2 3a 4a 6b Illegal
Combination (see

the LINE NUMBER
clause)

AR NEXT
PAGE

1 2 3a 4a 6c Illegal
Combination (see

the LINE NUMBER
clause)

AR 1 2 3a 4a 6d Illegal
Combination (see

the LINE NUMBER
clause)

R Absolute 1 2 3b 4b 5 6a Illegal
Combination (see

the LINE NUMBER
clause)

R Relative 1 2 3b 4b 6b 4d 6f
R NEXT

PAGE
1 2 3b 4b 6c Illegal

Combination (see
the LINE NUMBER

clause)
R 1 2 3b 4b 6d 4d 6d

NP R Absolute 1 2 3c 4a 5 6a Illegal
Combination (see

the LINE NUMBER
clause)

NP R Absolute 1 2 3c 4a 6b Illegal
Combination (see

the LINE NUMBER
clause)

NP R NEXT
PAGE

1 2 3c 4a 6c Illegal
Combination (see

the LINE NUMBER
clause)



GCOS 7 COBOL 85 Reference Manual

8-50 47 A2 05UL Rev04

NP R 1 2 3c 4 6d Illegal
Combination (see

the LINE NUMBER
clause)

4c 6e 4c 6e

* The meaning of the abbreviations used in column 1 has been previously stated.
(See "LINE NUMBER Clause Notation", above).

** A blank entry in column 1 or column 2 indicates that the named clause is totally
absent from the Report Group Description entry.

*** A blank entry in an Applicable Rules column indicates the absence of the named
rule for the given combination of LINE NUMBER and NEXT GROUP clauses.

Presentation Rules

1. Upper Limit Rule

The first line number on which a body group can be presented is the line number
specified by the FIRST DETAIL phrase of the PAGE clause.

2. Lower Limit Rules

The last line number on which a CONTROL HEADING report group or DETAIL
report group can be presented is the line number specified by the LAST DETAIL
phrase of the PAGE clause.

The last line number on which a CONTROL FOOTING report group can be
presented is the line number specified by the FOOTING phrase of the PAGE
clause.

3. Fit Test Rules

a. If the value in LINE-COUNTER is less than the integer of the first absolute
LINE NUMBER clause, then the body group shall be presented on the page to
which the report is currently positioned.

Otherwise the RWCS executes page advance processing.  After the PAGE
HEADING report group (if defined) has been processed, the RWCS
determines whether the Saved Next Group Integer location was set when the
final body group was presented on the preceding page.  (See final "LINE-
COUNTER Setting Rule" 6a.) If Saved Next Group Integer was not so set, the
body group shall be presented on the page to which the report is currently
positioned.  If Saved Next Group Integer was so set, the RWCS moves the
Saved Next Group Integer into LINE-COUNTER, resets Saved Next Group
Integer to zero, and re-applies Fit Test Rule 3a.



Data Division - Overview

47 A2 05UL Rev04 8-51

b. If a body group has been presented on the page to which the report is currently
positioned, the RWCS computes a trial sum in a work location.  The trial sum
is computed by adding the contents of LINE-COUNTER to the integers of all
LINE NUMBER clauses of the report group.  If the trial sum is not greater than
the body group's Lower Limit integer, then the report group is presented on the
current page.  If the trial sum exceeds the body group's Lower Limit integer,
then the RWCS executes page advance processing.  After the PAGE
HEADING report group (if defined) has been processed, the RWCS re-applies
Fit Test Rule 3b.

If no body group has yet been presented on the page to which the report is
currently positioned, the RWCS determines whether the Saved Next Group
Integer location was set when the final body group was presented on the
preceding page.  (See "Final LINE-COUNTER Setting Rule" 6a, below).

If Saved Next Group Integer was not so set, the body group shall be presented
on the page to which the report is currently positioned.

If Saved Next Group Integer was so set, the RWCS moves the Saved Next
Group Integer into LINE-COUNTER, resets Saved Next Group Integer to zero,
and computes a trial sum in a work location.

The trial sum is computed by adding the contents of LINE-COUNTER to the
integer one (1) and the integers of all but the first LINE NUMBER clause of the
body group.  If the trial sum is not greater than the body group's Lower Limit
integer, then the body group is presented on the current page.  If the trial sum
exceeds the body group's Lower Limit integer, then the RWCS executes page
advance processing.  After the PAGE HEADING report group (if defined) has
been processed, the RWCS presents the body group on that page.

c. If a body group has been presented on the page to which the report is currently
positioned, the RWCS executes page advance processing.  After the PAGE
HEADING report group (if defined) has been processed, the RWCS re-applies
Fit Test Rule 3c.

If no body group has yet been presented on the page to which the report is
currently positioned, the RWCS determines whether the Saved Next Group
Integer location was set when the final body group was presented on the
preceding page.  (See "Final LINE-COUNTER Setting Rule" 6a.) If Saved Next
Group Integer was not so set, the body group shall be presented on the page
to which the report is currently positioned.  If Saved Next Group Integer was so
set, the RWCS moves the Saved Next Group Integer into LINE-COUNTER
and resets Saved Next Group Integer to zero.  If then the value in LINE-
COUNTER is less than the integer of the first absolute LINE NUMBER clause,
the body group shall be presented on the page to which the report is currently
positioned.  Otherwise the RWCS executes page advance processing.  After
the PAGE HEADING report group (if defined) has been processed, the RWCS
presents the body group on that page.



GCOS 7 COBOL 85 Reference Manual

8-52 47 A2 05UL Rev04

4. First Print Line Position Rules

a. The first print line of the body group is presented on the line number specified
by the integer of its LINE NUMBER clause.

b. If the value in LINE-COUNTER is equal to or greater than the line number
specified by the FIRST DETAIL phrase of the PAGE clause, and if no body
group has previously been presented on the page to which the report is
currently positioned, then the first print line of the current body group is
presented on the line immediately following the line indicated by the value
contained in LINE-COUNTER.

If the value in LINE-COUNTER is equal to or greater than the line number
specified by the FIRST DETAIL phrase of the PAGE clause, and if a body
group has previously been presented on the page to which the report is
currently positioned, then the first print line of the current body group is
presented on the line that is obtained by adding the contents of LINE-
COUNTER and the integer of the first LINE NUMBER clause of the current
body group.
If the value in LINE-COUNTER is less than the line number specified by the
FIRST DETAIL phrase of the PAGE clause, then the first print line of the body
group is presented on the line specified by the FIRST DETAIL phrase.

c. The body group is not presented.

d. The sum of the contents of LINE-COUNTER and the integer of the first LINE
NUMBER clause defines the line number on which the first print line is
presented.

5. Next Group Rule

The integer of the absolute NEXT GROUP clause must specify a line number that is
not less than that specified in the FIRST DETAIL phrase of the PAGE clause, and
that is not greater than that specified in the FOOTING phrase of the PAGE clause.

6. Final LINE-COUNTER Setting Rules

a. If the body group that has just been presented is a CONTROL FOOTING
report group and if the CONTROL FOOTING report group is not associated
with the highest level at which the RWCS detected a control break, then the
final LINE-COUNTER setting is the line number on which the final print line of
the CONTROL FOOTING report group was presented.

For all other cases the RWCS makes a comparison of the line number on
which the final print line of the body group was presented and the integer of
the NEXT GROUP clause.  If the former is less than the latter, then the RWCS
places the NEXT GROUP integer into LINE-COUNTER as the final LINE-
COUNTER setting.  If the former is equal to or greater than the latter, then the
RWCS places the line number specified by the FOOTING phrase of the PAGE
clause into LINE-COUNTER as the final LINE-COUNTER setting; in addition
the RWCS places the NEXT GROUP integer into the Saved Next Group
Integer location.



Data Division - Overview

47 A2 05UL Rev04 8-53

b. If the body group that has just been presented is a CONTROL FOOTING
report group, and if the CONTROL FOOTING report group is not associated
with the highest level at which the RWCS detected a control break, then the
final LINE-COUNTER setting is the line number on which the final print line of
the CONTROL FOOTING report group was presented.

For all other cases the RWCS computes a trial sum in a work location.  The
trial sum is computed by adding the integer of the NEXT GROUP clause to the
line number on which the final print line of body group was presented.  If the
sum is less than the line number specified by the FOOTING phrase of the
PAGE clause, then the RWCS places that sum into LINE-COUNTER as the
final LINE-COUNTER setting.  If the sum is equal to or greater than the line
number specified by the FOOTING phrase of the PAGE clause, then the
RWCS places the line number specified by the FOOTING phrase of the PAGE
clause into LINE-COUNTER as the final LINE-COUNTER setting.

c. If the body group that has just been presented is a CONTROL FOOTING
report group, and if the CONTROL FOOTING report group is not associated
with the highest level at which the RWCS detected a control break, then the
final LINE-COUNTER setting is the line number on which the final print line of
the CONTROL FOOTING report group was presented.

For all other cases the RWCS places the line number specified by the
FOOTING phrase of the PAGE clause into LINE-COUNTER as the final LINE-
COUNTER SETTING.

d. The final LINE-COUNTER setting is the number on which the final print line of
the body group was presented.

e. LINE-COUNTER is unaffected by the processing of a non-printable body
group.

f. If the body group that has just been presented is a CONTROL FOOTING
report group, and if the CONTROL FOOTING report group is not associated
with the highest level at which the RWCS detected a control break, then the
final LINE-COUNTER setting is the line number on which the final print line of
the CONTROL FOOTING report group was presented.

For all other cases the RWCS places the sum of the line number on which the
final print line was presented and the NEXT GROUP integer into LINE-
COUNTER as the final LINE-COUNTER setting.



GCOS 7 COBOL 85 Reference Manual

8-54 47 A2 05UL Rev04

8.13.5 PAGE FOOTING Presentation Rules

The table below points to the appropriate Presentation Rules for all permissible
combinations of LINE NUMBER and NEXT GROUP clauses in a PAGE FOOTING report
group.

Table 8-7. PAGE FOOTING Presentation Rules

APPLICABLE RULES ***
** If the PAGE clause is specified ****

Sequence of
LINE NUMBER

clauses *

NEXT
GROUP
clause

Upper
Limit

Lower
Limit

First Print
Line

Position

Next
Group

Final
Line-

Counter
Setting

A R Absolute 1 2 3a 4a 5a

A R Relative 1 2 3a 4b 5b

A R 1 2 3a 5c

3b 5d

*   The meaning of the abbreviations used in column 1 has
been previously stated.  (See "LINE NUMBER Clause
Notation", above.)

**  A blank entry in column 1 or column 2 indicates that the
named clause is totally absent from the Report Group
Description entry.

*** A blank entry in an Applicable Rules column indicates the
absence of the named rule for the given combination of LINE
NUMBER and NEXT GROUP clauses.

**** If the PAGE clause is omitted from the Report Description
entry, then a PAGE FOOTING report group may not be
defined.  (See the "TYPE Clause", Chapter 9).



Data Division - Overview

47 A2 05UL Rev04 8-55

Presentation Rules

1. Upper Limit Rule

The first line number on which the PAGE FOOTING report group can be presented,
is the line number obtained by adding one to the value of integer-5 of the FOOTING
phrase of the PAGE clause.

2. Lower Limit Rule

The last line number on which the PAGE FOOTING report group can be presented
is the line number specified by integer-1 of the PAGE clause.

3. First Print Line Position Rules

a. The First print line of the PAGE FOOTING report group is presented on the
line specified by the integer of its LINE NUMBER clause.

b. The PAGE FOOTING report group is not presented.

4. NEXT GROUP rules

a. The NEXT GROUP integer must be greater than the line number on which the
final print line of the PAGE FOOTING report group is presented.  In addition,
the NEXT GROUP integer must not be greater than the line number specified
by integer-1 of the PAGE clause.

b. The sum of the NEXT GROUP integer and the line number on which the final
print line of the PAGE FOOTING report group is presented must not be greater
than the line number specified by integer-1 of the PAGE clause.

5. Final LINE-COUNTER Setting Rules

a. After the PAGE FOOTING report group is presented, the RWCS places the
NEXT GROUP integer into LINE-COUNTER as the final LINE-COUNTER
setting.

b. After the PAGE FOOTING report group is presented, the RWCS places the
sum of the NEXT GROUP integer and the line number on which the final print
line of the PAGE FOOTING report group was presented into LINE-COUNTER
as the final LINE-COUNTER setting.

c. After the PAGE FOOTING report group is presented the final LINE-COUNTER
setting is the line number on which the final print line of the PAGE FOOTING
report group was presented.

d. LINE-COUNTER is unaffected by the processing of a non-printable report
group.



GCOS 7 COBOL 85 Reference Manual

8-56 47 A2 05UL Rev04

8.13.6 REPORT FOOTING Presentation Rules

The table below points to the appropriate Presentation Rules for all permissible
combinations of LINE NUMBER and NEXT GROUP clauses in a REPORT FOOTING
report group.

Table 8-8. REPORT FOOTING Presentation Rules

APPLICABLE RULES ***
** If the PAGE clause is specified If the PAGE clause

is omitted
Sequence of
LINE
NUMBER
clauses *

NEXT
GROUP
clause

Upper
Limit

Lower
Limit

First
Print Line
Position

Next
Group

Final
Line-

Counter
Setting

First
Print Line
Position

Final
Line

Counter
Setting

A R 1a 2 3a 4a Illegal Combination
(see the LINE

NUMBER clause)

R 1a 2 3b 4a 3d 4a

NP R 1b 2 3c 4a Illegal Combination
(see the LINE

NUMBER clause)

3e 4b 3e 4b

* The meaning of the abbreviations used in column 1 has
been previously stated.  (See "LINE NUMBER Clause
Notation", above.)

**  A blank entry in column 1 or column 2 indicates that the
named clause is totally absent from the Report Group
Description entry

*** A blank entry in an Applicable Rules column indicates the
absence of the named rule for the given combination of LINE
NUMBER and NEXT GROUP clauses.



Data Division - Overview

47 A2 05UL Rev04 8-57

Presentation Rules

1. Upper Limit Rules

a. If a PAGE FOOTING report group has been presented on the page to which
the report is currently positioned, then the first line number on which the
REPORT FOOTING report group can be presented is one greater than the
final LINE-COUNTER setting established by the PAGE FOOTING report
group.

Otherwise the first line number on which the REPORT FOOTING report group
can be presented is the line number obtained by adding one and the value of
integer-5 of the PAGE clause.

b. The first line number on which the REPORT FOOTING report group can be
presented, is the line number specified by the HEADING phrase of the PAGE
clause.

2. Lower Limit Rule

The last line number on which the REPORT FOOTING report group can be presen-
ted is the line number specified by integer-1 of the PAGE clause.

3. First Print Line Position Rules

a. The first print line of the REPORT FOOTING report group is presented on the
line specified by the integer of its LINE NUMBER clause.

b. If a PAGE FOOTING report group has been presented on the page to which
the report is currently positioned, then the sum of the final LINE-COUNTER
setting established by the PAGE FOOTING report group and the integer of the
first LINE NUMBER clause of the REPORT FOOTING report group defines the
line number on which the first print line of the REPORT FOOTING report
group is presented.  Otherwise the sum of the integer of the first LINE
NUMBER clause of the REPORT FOOTING report group, and the line number
specified by the value of integer-5 of the FO    OTING phrase of the PAGE
clause defines the line number on which the first line of the REPORT
FOOTING report group is presented.

c. The NEXT PAGE phrase in the first absolute LINE NUMBER clause directs
that the REPORT FOOTING report group is presented on a page on which no
other report group has been presented.  The first print line of the REPORT
FOOTING report group is presented on the line number specified by the
integer of its LINE NUMBER clause.

d. The sum of the contents of LINE-COUNTER and the integer of the first LINE
NUMBER clause defines the line number on which the first print line is
presented.

e. The REPORT FOOTING report group is not presented.

4. Final LINE-COUNTER Setting Rules

a. The final LINE-COUNTER setting is the line number on which the final print
line of the REPORT FOOTING report group is presented.

b. LINE-COUNTER is unaffected by the processing of a non-printable report
group.



GCOS 7 COBOL 85 Reference Manual

8-58 47 A2 05UL Rev04



47 A2 05UL Rev04 9-1

9. Data Division - Clauses

This chapter describes the clauses used in the Data Division.  For ease of reference,
they are presented in alphabetical order.

The following clauses are described in this chapter:

     BLANK WHEN ZERO           NEXT GROUP
     BLOCK CONTAINS            OCCURS
     CODE                      PAGE
     CODE-SET                  PICTURE
     COLUMN NUMBER             RECORD
     CONTROL                   REDEFINES
     DATA-NAME/FILLER          RENAMES
     DATA RECORDS              REPORT
     EXTERNAL                  SIGN
     GLOBAL                    SOURCE
     GROUP INDICATE            SUM
     JUSTIFIED                 SYNCHRONIZED
     LABEL RECORDS             TYPE
     LEVEL-NUMBER              USAGE
     LINAGE                    VALUE
     LINE NUMBER               VALUE OF



GCOS 7 COBOL 85 Reference Manual

9-2 47 A2 05UL Rev04

9.1 BLANK WHEN ZERO

Description

The BLANK WHEN ZERO clause permits the blanking of an item when its value is zero.

Format

BLANK WHEN ZERO

Syntax

1. The BLANK WHEN ZERO clause can be specified only for an elementary item
whose PICTURE is specified numeric or numeric edited.  (See the "PICTURE
Clause", this chapter.)

2. The numeric or numeric edited Data Description entry to which the BLANK WHEN
ZERO clause applies, must be described either implicitly or explicitly as USAGE IS
DISPLAY.

|3.     This clause cannot be used for variable length items.|

General Rules

1. When the BLANK WHEN ZERO clause is used, the item will contain nothing but
spaces if the value of the item is zero.

2. When the BLANK WHEN ZERO clause is used for an item whose PICTURE is
numeric, the category of the item is considered to be numeric edited.



Data Division - Clauses

47 A2 05UL Rev04 9-3

9.2 BLOCK CONTAINS

Description

The BLOCK CONTAINS clause specifies the size of a physical record.

Format

                                        {RECORDS   }
BLOCK CONTAINS [integer-1 TO ] integer-2 {          }
                                        {CHARACTERS}

General Rules

1. When the CHARACTERS phrase is specified the physical record size is specified in
terms of the number of character positions required to store the physical record
regardless of the type of characters used to represent the items within the physical
record.  |If the file is implicitly or explicitly in SSF format, with records of fixed
length, the user must take into account the 8 characters of the SSF header when
calculating the size of the block.|

2. If integer-1 is not specified, integer-2 represents the exact size of the physical
block.  If integer-1 and integer-2 are both specified, they refer to the minimum and
maximum sizes of the physical record respectively.

3. When the RECORDS option is selected, it specifies the size of a block in terms of
logical records.  The block size is integer-2 times the largest record defined within
the FD, plus any block control characters that may be defined for that particular file
organization.

4. The default for this clause is: BLOCK CONTAINS 1 RECORDS.

5. If the associated file connector is an external file connector, all BLOCK CONTAINS
clauses in the run unit which are associated with that file connector must have the
same value for integer-1 and integer-2.



GCOS 7 COBOL 85 Reference Manual

9-4 47 A2 05UL Rev04

9.3 CODE

Description

The CODE clause specifies a two-character literal that identifies each print line as
belonging to a specific report.

Format

CODE literal-1

Syntax Rules

1. Literal-1 must be a two-character non-numeric literal.

2. If the CODE clause is specified for any report in a file, then it must be specified for
all reports in that file.

General Rules

1. When the CODE clause is specified, literal-1 is automatically placed in the first two
character positions of each Report Writer logical record.

2. The positions occupied by literal-1 are not included in the description of the print
line, but are included in the logical record size.



Data Division - Clauses

47 A2 05UL Rev04 9-5

9.4 CODE-SET

Description

The CODE-SET clause specifies the character code set used to represent data on the
external media.

Format

            {   alphabet-name}
            { |------------| }
            { | NATIVE     | }
            { | STANDARD-1 | }
CODE-SET IS { | STANDARD-2  | }
            { | ASCII      | }
            { | EBCDIC     | }
            { | GBCD       | }
            { | JIS        | }
              |------------|

Syntax Rules

1. If the CODE-SET clause is specified for a file, all data in that file must be described
as usage is DISPLAY and any signed numeric data must be described with the
SIGN IS SEPARATE clause.

2. The alphabet-name clause referenced by the CODE-SET clause must not specify
the literal phrase.

|3.     The CODE-SET clause may be specified for a file whose ORGANIZATION is not
SEQUENTIAL.|

General Rules

1. If the CODE-SET clause is specified:

a. Upon successful execution of an OPEN statement, the character set used to
represent the data on the external media is the one referenced by alphabet-
name, |NATIVE, STANDARD-1, STANDARD-2, ASCII, EBCDIC or JIS in the
File Description entry associated with the file-name specified| in the OPEN
statement (see the "SPECIAL NAMES Paragraph", Chapter 7).

b. It specifies the algorithm for converting the character set on the external media
from/to the native character set during the execution of an input or output
operation.

|2.     For an indexed file, the CODE-SET clause specifies the collating sequence.  This is
the sequence of values of a given key of reference used to process the file
sequentially.|



GCOS 7 COBOL 85 Reference Manual

9-6 47 A2 05UL Rev04

3. If the CODE-SET clause is not specified, the native character code set is assumed
for data on the external media, |except that if the ORGANIZATION is of ANSI type,
CODE-SET IS ASCII is assumed.|

4. If the associated file connector is an external file connector, all CODE-SET clauses
in the run unit which are associated with the same file connector must have the
same character set.

|5.     If the ORGANIZATION is of ANSI type, only CODE-SET IS STANDARD-1, CODE-
SET IS ASCII, CODE-SET IS alphabet-name with the alphabet-name clause
referencing STANDARD-1 or ASCII are permitted.|

6. CODE-SET IS |NATIVE or EBCDIC or| alphabet-name specified as NATIVE or
EBCDIC means that the file code set is the EBCDIC character set.

7. CODE-SET IS |ASCII or STANDARD-1 or| alphabet-name specified as ASCII or
STANDARD-1 means that the file code set is the ASCII character set.

If the internal-file-name specified for the file in a SELECT clause of the
Environment Division is suffixed by -TAPE, the file is expected to be an ANSI file
unless an organization qualifier is explicitly specified.

8. CODE-SET IS |STANDARD-2 or| alphabet-name specified as STANDARD-2 means
that the file code set is the International Reference Version of the ISO 7-bit code
defined in International Standard 646, 7-bit Coded Character Set for Information
Processing Interchange.

9. CODE-SET IS |GBCD or| alphabet-name specified as GBCD means that the file
code set is the Honeywell Series 100/400/600 character set.

10. CODE-SET IS |JIS or| alphabet-name specified as JIS means that the file code set
is the Japanese Industry Standard character set.



Data Division - Clauses

47 A2 05UL Rev04 9-7

9.5 COLUMN NUMBER

Description

The COLUMN NUMBER clause identifies a printable item and specifies the position of
the item on a print line.

Format

COLUMN NUMBER IS integer-1

Syntax Rules

1. The COLUMN NUMBER clause can be specified only at the elementary level within
a report group.  The COLUMN NUMBER clause, if present, must appear in or be
subordinate to an entry that contains a LINE NUMBER clause.

2. Within a given print line, the printable items must be defined in ascending column
number order such that each printable item defined occupies a unique sequence of
contiguous character positions.

General Rules

1. The COLUMN NUMBER clause indicates that the object of a SOURCE clause or
the object of a VALUE clause or the sum counter defined by a SUM clause is to be
presented on the print line.  The absence of a COLUMN NUMBER clause indicates
that the entry is not to be presented on a print line.

2. Integer-1 specifies the column number of the leftmost character position of the
printable item.

3. The Report Writer Control System supplies space characters for all positions of a
print line that are not occupied by printable items.

4. The leftmost position of the print line is considered to be column number 1.



GCOS 7 COBOL 85 Reference Manual

9-8 47 A2 05UL Rev04

9.6 CONTROL

Description

The CONTROL clause establishes the levels of the control hierarchy for the report.

Format

{CONTROL IS  } {{data-name-1}...        }
{            } {                        }
{CONTROLS ARE} { FINAL  [data-name-1]... }

Syntax Rules

1. Data-name-1 must not be defined in the Report Section.  Data-name-1 may be
qualified.

2. Each recurrence of data-name-1 must identify a different data item.

3. Data-name-1 must not have subordinate to it a variable-occurrence data item.



Data Division - Clauses

47 A2 05UL Rev04 9-9

General Rules

1. Data-name-1 and the word FINAL specify the levels of the control hierarchy.
FINAL, if specified, is the highest control, data-name-1 is the major control, the next
recurrence of data-name-1 is an intermediate control, etc.  The last recurrence of
data-name-1 is the minor control.

2. The execution of the chronologically first GENERATE statement for a given report
causes the RWCS to save the values of all control data items associated with that
report.  On subsequent executions of all GENERATE statements for that report,
control data items are tested by the RWCS for a change of value.  A change of
value in any control data item causes a control break to occur.  This control break is
associated with the highest level for which a change of value is noted (see the
"GENERATE Statement", Chapter 11).

3. The Report Writer Control system tests for a control break by comparing the
contents of each control data item with the prior contents of each control data item
that was saved when the previous GENERATE statement for the same report was
executed.  The RWCS applies the inequality relation test as follows:

a. If the control data item is a numeric data item, the relation test is for the
comparison of two numeric operands.

b. If the control data item is an index data item, the relation test is for the
comparison of two index data items.

|c.     If the control data item is a boolean data item, the relation test is for
comparison of two boolean data items.

d.     If the control data item is a pointer data item, the relation test is for comparison
of two pointer data items.|

e. If the control data item is a data item other than as described in paragraph 3a,
3b, |3c and 3d| , the relation test is for the comparison of two non-numeric
operands.

The inequality relation test is further explained in the appropriate paragraph (see
"Relation Condition", Chapter 10).

4. FINAL is used when the most inclusive control group in the report is not associated
with a control data-name.



GCOS 7 COBOL 85 Reference Manual

9-10 47 A2 05UL Rev04

9.7 DATA-NAME/FILLER

Description

A data-name specifies the name of the data being described.  The key word FILLER may
be used to specify a data item which is not referenced explicitly.

Format

 {data-name}
[{         }]
 { FILLER  }

Syntax Rules

1. In the File, Working-Storage, |Constant,| Communication and Linkage Sections, a
data-name or the key word FILLER, if either is specified, must be the first word
following the level-number in each Data Description entry.

2. In the Report Section a data-name need not appear in a Data Description entry and
the key word FILLER must not be used.

General Rules

1. If this clause is omitted, the data item being described is treated as though FILLER
had been specified.

2. The key word FILLER may be used to name a data item.  Under no circumstances
can a FILLER item be referred to explicitly.

However, the key word FILLER may be used to name a conditional variable
because such use does not require explicit reference to the data item itself, but only
to the value contained therein.

3. In the Report Section, data-name must be given in the following cases:

a. When the data-name represents a report group to be referred to by a
GENERATE or a USE statement in the Procedure Division.

b. When reference is to be made to the sum counter in the Procedure Division or
Report Section.

c. When a DETAIL report group is referenced in the UPON phrase of the SUM
clause.

d. When the data-name is required to provide sum counter qualification.



Data Division - Clauses

47 A2 05UL Rev04 9-11

9.8 DATA RECORDS

Description

The DATA RECORDS clause serves only as documentation for the names of data
records within their associated file.  The DATA RECORDS clause is an obsolete element
in Standard COBOL because it is to be deleted from the next revision of Standard
COBOL.

Format

     {RECORD IS  }
DATA {           } {data-name-1}...
     {RECORDS ARE}

Syntax Rule

Data-name-1 is the name of a data record and must have a 01 level-number Record
Description, with the same name, associated to it.

General Rule

1. The presence of more than one data-name indicates that the file contains more
than one type of data record.  These records may be of differing sizes, different
formats, etc.  The order in which they are listed is not significant.

2. Conceptually, all data records within a file share the same area.  This is in no way
altered by the presence of more than one type of data record within the file.



GCOS 7 COBOL 85 Reference Manual

9-12 47 A2 05UL Rev04

9.9 EXTERNAL

Description

The EXTERNAL clause specifies that a data record |or a non-contiguous data-item| or a
file connector is external.  The constituent data items and group data items of an
external data record are available to every program in the run unit which describes that
record.

Format

IS EXTERNAL

Syntax Rules

1. The EXTERNAL clause may be specified only in File Description entries |or in
Record Description entries| or in level-77 Data Description entries, in the Working-
Storage |or the Constant Section.|

2. In the same program, the data-name specified as the subject of the entry whose
level-number is 01 |or 77| that includes the EXTERNAL clause must not be the
same data-name specified for any other Data Description entry which includes the
EXTERNAL clause.

3. |The VALUE clause may be used in any Data Description entry which includes, or is
subordinate to an entry which includes the EXTERNAL clause.| The VALUE clause
may be specified for condition-names entries associated with any Data Description
entry which includes or is subordinate to an entry which includes the EXTERNAL
clause.

General Rules

1. The data contained in the record named by the data-name clause is external and
may be accessed and processed by any program in the run unit which describes
and, optionally, redefines it subject to the following rules.

2. Within a run unit, if two or more programs describe the same external data record,
each record-name of the associated Record Description entries must be the same,
and the records must define the same number of standard data format characters.
However, a program which describes an external record may contain a Data
Description entry including the REDEFINES clause which redefines the complete
external record, and this complete re-definition need not occur identically in other
programs in the run unit.  (See the "REDEFINES Clause", this chapter).

3. Use of the EXTERNAL clause does not imply that the associated file-name or data-
name is a global name (see the "GLOBAL Clause", this chapter).

4. The file connector associated with this File Description entry is an external file
connector.



Data Division - Clauses

47 A2 05UL Rev04 9-13

9.10 GLOBAL

Description

The GLOBAL clause specifies that a data-name, a file-name |, a cd-name| or a report-
name is a global name.  A global name is available to every program contained within
the program which declares it.

Format

IS GLOBAL

Syntax Rules

1. The GLOBAL clause may be specified only in Data Description entries whose level-
number is 01 in the File Section or in the Working-Storage Section |or in the
Communication Section or in the Linkage Section, File Description entries, Sort-
Merge File Description entries, Communication Description entries| or Report
Description entries.

2. In the same Data Division, the Data Description entries for any two data items for
which the same data-name is specified must not include the GLOBAL clause.

3. If the SAME RECORD AREA clause is specified for several files, the Record
Description entries or the File Description entries for these files must not include the
GLOBAL clause.

General Rules

1. A data-name, file-name |, cd-name| or report-name described using a GLOBAL
clause is a global name.  All data-names subordinate to a global name are global
names.  All condition-names associated with a global name are global names.

2. A statement in a program contained directly or indirectly within a program which
describes a global name may reference that name without describing it again.

3. If the GLOBAL clause is used in a Data Description entry which contains the
REDEFINES clause, it is only the subject of that REDEFINES clause which
possesses the global attribute.



GCOS 7 COBOL 85 Reference Manual

9-14 47 A2 05UL Rev04

9.11 GROUP INDICATE

Description

The GROUP INDICATE clause specifies that the associated printable item is presented
only on the first occurrence of its report group after a control break or page advance.

Format

GROUP INDICATE

Syntax Rule

The GROUP INDICATE clause may only be specified in a DETAIL report group entry
that defines a printable item.

General Rules

1. If a GROUP INDICATE clause is specified, it causes the SOURCE or VALUE
clause to be ignored and spaces supplied, except:

a. On the first presentation of the DETAIL report group in the report, or

b. On the first presentation of the DETAIL report group after every page advance,
or

c. On the first presentation of the DETAIL report group after every control break.

2. If the Report Description entry specifies neither a PAGE clause nor a CONTROL
clause, then a GROUP INDICATE printable item is presented the first time its
DETAIL is presented after the INITIATE statement is executed.  Thereafter, spaces
are supplied for indicated items with SOURCE or VALUE clauses.



Data Division - Clauses

47 A2 05UL Rev04 9-15

9.12 JUSTIFIED

Description

The JUSTIFIED clause permits alternate positioning of data within a receiving data item.

Format

{JUSTIFIED}
{         } RIGHT
{JUST     }

Syntax Rules

1. The JUSTIFIED clause can be specified only at the elementary item level.

2. JUST is an abbreviation for JUSTIFIED.

3. The JUSTIFIED clause cannot be specified for any data item described as numeric
or for which editing is specified.

4. The JUSTIFIED clause may be specified only for a data item described, implicitly or
explicitly, as USAGE IS DISPLAY.

|5.     The JUSTIFIED clause must not be specified for a variable-length data item.|

General Rules

1. When the receiving data item is described with the JUSTIFIED clause and the
sending data item is larger than the receiving data item, the leftmost characters are
truncated.  When the receiving data item is described with the JUSTIFIED clause
and it is larger than the sending data item, the data is aligned at the rightmost
character position in the data item, and space fill |or boolean character zero fill in
case of boolean data items,| is provided for the leftmost character positions.

2. When the JUSTIFIED clause is omitted, the standard rules for aligning data within
an elementary item apply (see "Standard Rules for Data Alignment", Chapter 3).



GCOS 7 COBOL 85 Reference Manual

9-16 47 A2 05UL Rev04

9.13 LABEL RECORDS

Description

The LABEL RECORDS clause specifies whether labels are present.  The LABEL
RECORDS clause is an obsolete element in Standard COBOL because it is to be
deleted from the next revision of Standard COBOL.

Format

       {RECORD IS  } {STANDARD }
[LABEL {           } {        }]
       {RECORDS ARE} {OMITTED  }

Syntax Rule

The LABEL RECORDS clauses specified in the File Description entries associated with
file-names specified in a MULTIPLE FILE TAPE clause in the I-O-CONTROL paragraph
must reflect a uniform labelling convention.

General Rules

1. OMITTED specifies that no explicit labels exist for the file or the device to which the
file is assigned.

2. STANDARD specifies that labels exist for the file or the device to which the file is
assigned, and the labels conform to DPS 7 label specifications.

3. If the file connector associated with this file is an external file connector (see the
"EXTERNAL Clause", this chapter), all LABEL RECORDS clauses in the run unit
which are associated with that file connector must have the same specification.



Data Division - Clauses

47 A2 05UL Rev04 9-17

9.14 LEVEL-NUMBER

Description

The level-number indicates the position of a data item within the hierarchical structure of
a logical record or report group.  In addition, it is used to identify entries for Working-
Storage items, Linkage items, |Constant items,| Condition-names and the RENAMES
clause.

Format

level-number

Syntax Rules

1. A level-number is required as the first element in each Data Description entry (see
"Record Description", Chapter 8).

2. Data Description entries subordinate to a CD, FD or SD entry must have level-
numbers 01 through 49, 66 or 88.

3. Data Description entries subordinate to an RD entry must have level-numbers 01
through 49 only.

4. Data Description entries in the Working-Storage, |Constant| and Linkage Section
must have level-numbers 01 through 49, 66, 77 or 88.

General Rules

1. The level-number 01 identifies the first entry in each Record Description or report
group.

2. Special level-numbers have been assigned to certain entries where there is no real
concept of hierarchy:

a. Level-number 66 is assigned to identify RENAMES entries and can be used
only as described by Format 2 of the Data Description skeleton.

b. Level-number 77 is assigned to identify non-contiguous working storage data
items, |non-contiguous constant data items| or non-contiguous linkage data
items, and can be used only as described in Format 1 of the Data Description
skeleton.

c. Level-number 88 is assigned to entries that define condition-names associated
with a conditional variable, and can be used only as described by Format 3 of
the Data Description skeleton.

3. Multiple level 01 entries subordinate to any given level indicator, other than RD,
represent implicit re-definitions of the same area.



GCOS 7 COBOL 85 Reference Manual

9-18 47 A2 05UL Rev04

9.15 LINAGE

Description

The LINAGE clause provides a means for specifying the depth of a logical page in terms
of number of lines.  It also provides for specifying the size of the top and bottom margins
on the logical page, and the line number, within the page body, at which the footing area
begins.

Format

          {data-name-1}
LINAGE IS {           } LINES
          {integer-1  }

                        {data-name-2}
       [WITH FOOTING AT {           }]
                        {integer-2  }

                     {data-name-3}
       [LINES AT TOP {           }]
                     {integer-3  }

                        {data-name-4}
       [LINES AT BOTTOM {           }]
                        {integer-4  }

Syntax Rules

1. Data-name-1, data-name-2, data-name-3, data-name-4 must reference elementary
unsigned numeric integer data items.

2. Data-name-1, data-name-2, data-name-3, data-name-4 may be qualified.

3. Integer-2 must not be greater than integer-1.

4. Integer-3, integer-4 may be zero.

|5.     If the LINAGE clause is applied to an external file, only integers are permitted in the
clause, and must be the same in all programs of the run-unit where the file is
declared.|



Data Division - Clauses

47 A2 05UL Rev04 9-19

General Rules

1. The LINAGE clause provides a means for specifying the size of a logical page in
terms of number of lines.  The logical page size is the sum of the values referenced
by each phrase except the FOOTING phrase.  If the LINES AT TOP or LINES AT
BOTTOM phrases are not specified, the values of these items are zero.  If the
FOOTING phrase is not specified, no end-of-page condition independent of the
page overflow condition exists.

There is not necessarily any relationship between the size of the logical page and
the size of a physical page.

2. Integer-1 or the value of the data item referenced by data-name-1 specifies the
number of lines that can be written and/or spaced on the logical page.  The value
must be greater than zero.  That part of the logical page in which these lines can be
written and/or spaced is called the page body.

3. Integer-2 or the value of the data item referenced by data-name-2 specifies the line
number within the page body at which the footing area begins.  The value must be
greater than zero and not greater than integer-1 or the value of the data item
referenced by data-name-1.

The footing area comprises the area of the page body between the line represented
by integer-2 or the value of the data item referenced by data-name-2 and the line
represented by integer-1 or the value of the data item referenced by data-name-1,
inclusive.

4. Integer-3 or the value of the data item referenced by data-name-3 specifies the
number of lines that comprise the top margin on the logical page.  The value may
be zero.

5. Integer-4 or the value of the data item referenced by data-name-4 specifies the
number of lines that comprise the bottom margin on the logical page.  The value
may be zero.

6. Integer-1, integer-3, integer-4, if specified, are used at the time the file is opened by
the execution of an OPEN statement with the OUTPUT phrase, to specify the
number of lines that comprise each of the indicated sections of a logical page.
Integer-2, if specified, will be used at that time to define the footing area.  These
values are used for all logical pages written for that file during a given execution of
the program.

7. The values of the data items, referenced by data-name-1, data-name-3, and data-
name-4, if specified, are used as follows:

a. The values of the data items, at the time an OPEN statement with the
OUTPUT phrase is executed for the file, are used to specify the number of
lines that are to comprise each of the indicated sections for the first logical
page.

b. The values of the data items, at the time a WRITE statement with the
ADVANCING PAGE phrase is executed or page overflow condition occurs
(see the "WRITE Statement, Chapter 13), are used to specify the number of
lines that are to comprise each of the indicated sections for the next logical
page.

8. The value of the data item referenced by data-name-2, if specified, at the time an
OPEN statement with the OUTPUT phrase is executed for the file, is used to define



GCOS 7 COBOL 85 Reference Manual

9-20 47 A2 05UL Rev04

the footing area for the first logical page.  At the time a WRITE statement with the
ADVANCING PAGE phrase is executed or a page overflow condition occurs, it is
used to define the footing area for the next logical page.

9. A LINAGE-COUNTER is generated by the presence of a LINAGE clause.  The
value in the LINAGE-COUNTER at any given time represents the line number at
which the device is positioned within the current page body.  The rules governing
the LINAGE-COUNTER are as follows:

a. A separate LINAGE-COUNTER is supplied for each file described in the File
Section whose File Description entry contains a LINAGE clause.

b. LINAGE-COUNTER may be referenced only in Procedure Division statements;
however, only the Input-Output Control System may change the value of
LINAGE-COUNTER.  Since more than one LINAGE-COUNTER may exist in a
program, the user must qualify LINAGE-COUNTER by file-name when
necessary.

c. LINAGE-COUNTER is automatically modified, according to the following rules,
during the execution of a WRITE statement to an associated file:

(i) When the ADVANCING PAGE phrase of the WRITE statement is specified,
the LINAGE-COUNTER is automatically reset to one (1).  During the resetting
of LINAGE-COUNTER to the value one (1) the value of LINAGE-COUNTER is
implicitly incremented to exceed the value specified by integer-1 or the data
item referenced by data-name-1.
(ii) When the ADVANCING identifier-2 or integer-1 phrase of the WRITE
statement is specified, the LINAGE-COUNTER is incremented by integer-1 or
the value of the data item referenced by identifier-2.
(iii) When the ADVANCING phrase of the WRITE statement is not specified,
the LINAGE-COUNTER is incremented by the value one (1).  (see the "WRITE
Statement", Chapter 13).
(iv) The value of LINAGE-COUNTER is automatically reset to one (1) when
the device is repositioned to the first line that can be written on for each of the
succeeding logical pages (see the "WRITE Statement", Chapter 13).

d. The value of LINAGE-COUNTER is automatically set to one (1) at the time an
OPEN statement with the OUTPUT phrase is executed for the associated file.

10. Each logical page is contiguous to the next with no additional spacing provided.

11. If the file connector associated with this File Description entry is an external file
connector, all File Description entries in the run unit which are associated with this
file connector must have:

a. A LINAGE clause if any File Description entry has a LINAGE clause.
b. The same corresponding values for integer-1, integer-2, integer-3 and integer-

4, if specified.
c. The same corresponding external data items referenced by data-name-1, data-

name-2, data-name-3 and data-name-4.



Data Division - Clauses

47 A2 05UL Rev04 9-21

9.16 LINE NUMBER

Description

The LINE NUMBER clause specifies vertical positioning information for its report group.

Format

               {integer-1 [ON NEXT PAGE ]}
LINE NUMBER IS {                        }
               {PLUS integer-2          }

Syntax Rules

1. Integer-1 and integer-2 must not exceed three significant digits in length.

Neither integer-1 nor integer-2 may be specified in such a way as to cause any line
of a report group to be presented outside of the vertical subdivision of the page
designated for that report group type, as defined by the PAGE clause (see the
"PAGE Clause", this chapter).

Integer-2 may be zero |except in the first LINE NUMBER clause that appears in a
Report Group description.|

2. Within a given Report Group Description entry, an entry that contains a LINE
NUMBER clause must not contain a subordinate entry that also contains a LINE
NUMBER clause.

3. Within a given Report Group Description entry, all absolute LINE NUMBER clauses
must precede all relative LINE NUMBER clauses.

4. Within a given Report Group Description entry, successive absolute LINE NUMBER
clauses must specify integers that are in ascending order.  The integers need not be
consecutive.

5. If the PAGE clause is omitted from a given Report Description entry, only relative
LINE NUMBER clauses can be specified in any Report Group Description entry
within that report.

6. Within a given Report Group Description entry a NEXT PAGE phrase can appear
only once and, if present, must be in the first LINE NUMBER clause in that Report
Group Description entry.

7. A LINE NUMBER clause with the NEXT PAGE phrase can appear only in the
description of body groups and in a REPORT FOOTING report group.



GCOS 7 COBOL 85 Reference Manual

9-22 47 A2 05UL Rev04

8. Every entry that defines a printable item (see the "COLUMN NUMBER Clause", this
chapter) must either contain a LINE NUMBER clause, or be subordinate to an entry
that contains a LINE NUMBER clause.

9. The first LINE NUMBER clause specified within a PAGE FOOTING report group
must be an absolute LINE NUMBER clause.

General Rules

1. A LINE NUMBER clause must be specified to establish each print line of a report
group.

2. The RWCS effects the vertical positioning specified by a LINE NUMBER clause,
before presenting the print line established by that LINE NUMBER clause.

3. Integer-1 specifies an absolute line number.  An absolute line number specifies the
line number on which the print line is presented.

4. Integer-2 specifies a relative line number.  If a relative LINE NUMBER clause is not
the first LINE NUMBER clause in the Report Group Description entry, then the line
number on which its print line is presented is determined by calculating the sum of
the line number on which the previous print line of the report group was presented
and integer-2 of the relative LINE NUMBER clause.  If integer-2 is zero, the line will
be printed on the same line as the previous print line.

If a relative LINE NUMBER clause is the first LINE NUMBER clause in the Report
Group Description entry, then the line number on which its print line is presented is
determined by specified rules (see "Presentation Rules Tables", Chapter 8).

5. The NEXT PAGE phrase specifies that the report group is to be presented
beginning on the indicated line number on a new page (see "Presentation Rules
Tables", Chapter 8).



Data Division - Clauses

47 A2 05UL Rev04 9-23

9.17 NEXT GROUP

Description

The NEXT GROUP clause specifies information for vertical positioning of a page
following the presentation of the last line of a report group.

Format

              {integer-1     }
NEXT GROUP IS {PLUS  integer-2}
              {NEXT PAGE      }

Syntax Rules

1. A report group entry must not contain a NEXT GROUP clause unless the
description of that report group contains at least one LINE NUMBER clause.

2. Integer-1 and integer-2 must not exceed three significant digits in length.

3. If the PAGE clause is omitted from the Report Description entry only a relative
NEXT GROUP clause may be specified in any Report Group Description entry
within that report.

4. The NEXT PAGE phrase of the NEXT GROUP clause must not be specified in a
PAGE FOOTING report group.

5. The NEXT GROUP clause must not be specified in a REPORT FOOTING report
group or in a PAGE HEADING report group.

General Rules

1. Any positioning of the page specified by the NEXT GROUP clause takes place after
the presentation of the report group in which the clause appears (see "Presentation
Rules Tables", Chapter 8).

2. The Report Writer Control System uses the vertical positioning information supplied
by the NEXT GROUP clause along with information from the TYPE and PAGE
clauses, and the value in LINE-COUNTER, to determine a new value for LINE-
COUNTER (see "Presentation Rules Tables", Chapter 12.

3. The NEXT GROUP clause is ignored by the RWCS when it is specified on a
CONTROL FOOTING report group that is at a level other than the highest level at
which a control break is detected.

4. The NEXT GROUP clause of a body group refers to the next body group to be
presented, and therefore can affect the location at which the next body group is
presented.  The NEXT GROUP clause of a REPORT HEADING report group can
affect the location at which the PAGE HEADING report group is presented.  The
NEXT GROUP clause of a PAGE FOOTING report group can affect the location at
which the REPORT FOOTING report group is presented (see "Presentation Rules
Tables", Chapter 8).



GCOS 7 COBOL 85 Reference Manual

9-24 47 A2 05UL Rev04

9.18 OCCURS

Description

The OCCURS clause eliminates the need for separate entries for repeated data items
and supplies information required for the application of subscripts.

Format 1

OCCURS integer-2 TIMES

    {ASCENDING }
   [{          } KEY IS {data-name-2}... ]...
    {DESCENDING}

    [INDEXED BY {index-name-1}... ]

Format 2

OCCURS integer-1 TO  integer-2 TIMES DEPENDING  ON data-name-1

    {ASCENDING }
   [{          } KEY IS {data-name-2}... ]...
    {DESCENDING}

    [INDEXED BY {index-name-1}... ]

Syntax Rules

1. The OCCURS clause must not be specified in a data description entry that:

a. Has a 01, 66, 77 or an 88 level-number, or

b. Has a variable occurrence data-item subordinate to it.

2. Data-name-1 and data-name-2 may be qualified.

3. The first specification of data-name-2 must be the name of either the entry
containing the OCCURS clause or an entry subordinate to the entry containing the
OCCURS clause.  Subsequent specification of data-name-2 must be subordinate to
the entry containing the OCCURS clause.

4. Data-name-2 must be specified without the subscripting normally required.

5. Where both integer-1 and integer-2 are used, integer-1 must be greater than or
equal to zero and integer-2 must be greater than integer-1.

6. Data-name-1 must describe an integer.

|7.     Data-name-1 and data-name-2 must not reference a boolean or a pointer data
item.|



Data Division - Clauses

47 A2 05UL Rev04 9-25

8. In Format 2, the data item defined by data-name-1 must not occupy a character
position within the range of the first character position defined by the Data
Description entry containing the OCCURS clause and the last character position
defined by the Record Description entry containing that OCCURS clause.

9. If the OCCURS clause is specified in a Data Description entry included in a Record
Description entry containing the EXTERNAL clause, data-name-1, if specified, must
reference a data item possessing the external attribute which is described in the
same Data Division.

10. If the OCCURS clause is specified in a Data Description entry subordinate to one
containing the GLOBAL clause, data-name-1, if specified, must be a global name
and must reference a data item which is described in the same Data Division.

11. A Data Description entry that contains Format 2 of the OCCURS clause may only
be followed, within that record description, by Data Description entries which are
subordinate to it.

12. The data item identified by data-name-2 must not contain an OCCURS clause
except when data-name-2 is the subject of the entry.

13. There must not be any entry that contains an OCCURS clause between the
description of the data items identified by the data-names in the KEY IS phrase and
the subject of this entry.

14. An INDEXED BY phrase is required if the subject of this entry, or an entry
subordinate to this entry, is to be referenced by indexing.  The index-name
identified by this clause is not defined elsewhere since its allocation and format are
dependent on the hardware, and not being data, cannot be associated with any data
hierarchy.

15. Index-name-1 must be a unique word within the program.

16. The INDEXED BY clause must not be specified if integer-2 is greater than 65500
nor must it be specified if one occurrence of the data item described in the entry
containing the OCCURS clause is larger than 65500 bytes.

General Rules

1. The OCCURS clause is used in defining tables and other homogeneous sets of
repeated data items.  Whenever the OCCURS clause is used, the data-name which
is the subject of this entry must be either subscripted or indexed whenever it is
referred to in a statement other than SEARCH or USE FOR DEBUGGING.  Further,
if the subject of this entry is the name of a group item, then all data-names
belonging to the group must be subscripted or indexed whenever they are used as
operands, except as the object of a REDEFINES clause (See "Subscripting
Indexing Identifier", Chapter 3).

2. Except for the OCCURS clause itself, all data description clauses associated with
an item whose description includes an OCCURS clause apply to each occurrence of
the item described.



GCOS 7 COBOL 85 Reference Manual

9-26 47 A2 05UL Rev04

3. The number of occurrences of the subject entry is defined as follows:

a. In Format 1, the value of integer-2 represents the exact number of
occurrences.

b. In Format 2, the current value of the data item referenced by data-name-1
represents the number of occurrences.

This format specifies that the subject of this entry has a variable number of
occurrences.  The value of integer-2 represents the maximum number of
occurrences and the value of integer-1 represents the minimum number of
occurrences.  This does not imply that the length of the subject of the entry is
variable, but that the number of occurrences is variable.

At the time the subject of the entry is referenced or any data item subordinate
or superordinate to the subject of the entry is referenced, the value of the data
item referenced by data-name-1 must fall within the range integer-1 through
integer-2.  The contents of the data item whose occurrence numbers exceed
the value of the data item referenced by data-name-1 are undefined.

4. When a group item, having subordinate to it an entry that specifies Format 2 of the
OCCURS clause, is referenced, the part of the table area used in the operation is
determined as follows:

a. If the data item referenced by data-name-1 is outside the group, only that part
of the table area that is specified by the value of the data item referenced by
data-name-1 at the start of the operation will be used.

b. If the data item referenced by data-name-1 is included in the same group and
the group data item is referenced as a sending item, only that part of the
sending area that is specified by the value of the data item referenced by data-
name-1 at the start of the operation will be used.  If the group is a receiving
item, the maximum length of the group will be used.

5. When the KEY IS phrase is specified, the repeated data must be arranged in
ascending or descending order according to the values contained in each data-
name-2.  The ascending or descending order is determined according to the rules
for comparison of operands (see "Comparison of Numeric Operands" and
"Comparison of Non-numeric Operands", Chapter 10).  The data-names are listed
in their descending order of significance.

6. If Format 2 is specified in a Record Description entry and if the associated File
Description or Sort-Merge Description implies that records are variable length, then
if the DEPENDING ON phrase of the RECORD clause is not specified, the contents
of the data item referenced by data-name-1 of the OCCURS clause must be set to
the number of occurrences to be written before the execution of any RELEASE,
REWRITE, or WRITE statement.



Data Division - Clauses

47 A2 05UL Rev04 9-27

9.19 PAGE

Description

The PAGE clause defines the length of a page and the vertical subdivisions within which
report groups are presented.

Format

     [LIMIT IS  ]           [LINE ]
PAGE [          ] integer-1 [     ]
     [LIMITS ARE]           [LINES]

    [HEADING integer-2]

    [FIRST DETAIL  integer-3]

    [LAST DETAIL  integer-4]

    [FOOTING integer-5]

Syntax Rules

1. The HEADING, FIRST DETAIL, LAST DETAIL, and FOOTING phrases may be
written in any order.

2. Integer-1 must not exceed three (3) significant digits in length.

3. Integer-2 must be greater than or equal to one (1).

4. Integer-3 must be greater than or equal to integer-2.

5. Integer-4 must be greater than or equal to integer-3.

6. integer-5 must be greater than or equal to integer-4.

7. Integer-1 must be greater than or equal to integer-5.

8. The following rules indicate the vertical subdivision of the page in which each TYPE
of report group may appear when the PAGE clause is specified (see "Page
Regions", below).

a. A REPORT HEADING report group that is to be presented on a page by itself,
if defined, must be defined such that it can be presented in the vertical
subdivision of the page that extends from the line number specified by integer-
2 to the line number specified by integer-1, inclusive.

A REPORT HEADING report group that is not to be presented on a page by
itself, if defined, must be defined such that it can be presented in the vertical
subdivision of the page that extends from the line number specified by integer-
2 to the line number specified by integer-3 minus 1, inclusive.

b. A PAGE HEADING report group, if defined, must be defined such that it can
be presented in the vertical subdivision of the page that extends from the line



GCOS 7 COBOL 85 Reference Manual

9-28 47 A2 05UL Rev04

number specified by integer-2 to the line number specified by integer-3 minus
1, inclusive.

c. A CONTROL HEADING or DETAIL report group, if defined, must be defined
such that it can be presented in the vertical subdivision of the page that
extends from the line number specified by integer-3 to the line number
specified by integer-4, inclusive.

d. A CONTROL FOOTING report group, if defined, must be defined such that it
can be presented in the vertical subdivision of the page that extends from the
line number specified by integer-3 to the line number specified by integer-5,
inclusive.

e. A PAGE FOOTING report group, if defined, must be defined such that it can
be presented in the vertical subdivision of the page that extends from the line
number specified by integer-5 plus 1 to the line number specified by integer-1,
inclusive.

f. A REPORT FOOTING report group that is to be presented on a page by itself,
if defined, must be defined such that it can be presented in the vertical
subdivision of the page that extends from the line number specified by integer-
2 to the line number specified by integer-1, inclusive.

A REPORT FOOTING report group that is not to be presented on a page by
itself, if defined, must be defined such that it can be presented in the vertical
subdivision of the page that extends from the line number specified by integer-
5 plus 1 to the line number specified by integer-1 inclusive.

9. All report groups must be described such that they can be presented on one page.
The RWCS never splits a multi-line report group across page boundaries.

General Rules

1. The vertical format of a report page is established using the integer values specified
in the PAGE clause.

a. Integer-1 defines the size of a report page by specifying the number of lines
available on each page.

b. HEADING integer-2 defines the first line number on which a REPORT
HEADING or PAGE HEADING report group may be presented.

c. FIRST DETAIL integer-3 defines the first line number on which a body group
may be presented.  REPORT HEADING (without NEXT GROUP NEXT PAGE)
and PAGE HEADING report groups may not be presented on or beyond the
line number specified by integer-3.

d. LAST DETAIL integer-4 defines the last line number on which a CONTROL
HEADING or DETAIL report group may be presented.

e. FOOTING integer-5 defines the last line number on which a CONTROL
FOOTING report group may be presented.  REPORT FOOTING (without LINE
integer-1 NEXT PAGE) and PAGE FOOTING report groups must follow the
line number specified by integer-5.

2. If the PAGE clause is specified the following implicit values are assumed for any
omitted phrases:



Data Division - Clauses

47 A2 05UL Rev04 9-29

a. If the HEADING phrase is omitted, a value of one (1) is assumed for integer-2.

b. If the FIRST DETAIL phrase is omitted, a value equal to integer-2 is given to
integer-3.

c. If the LAST DETAIL and the FOOTING phrases are both omitted, the value of
integer-1 is given to both integer-4 and integer-5.

d. If the FOOTING phrase is specified and the LAST DETAIL phrase is omitted,
the value of integer-5 is given to integer-4.

e. If the LAST DETAIL phrase is specified and the FOOTING phrase is omitted,
the value of integer-4 is given to integer-5.

3. If the PAGE clause is omitted, the report consists of a single page of indefinite
length.

4. The presentation rules for each TYPE of report group are specified in the
appropriate paragraph (see "Presentation Rules Tables", Chapter 8).



GCOS 7 COBOL 85 Reference Manual

9-30 47 A2 05UL Rev04

Page Regions

Page regions that are established by the PAGE clause are described below:

Table 9-1. Page Regions

|===============================|===============|===============|
| Report Groups that may be     |     First     |     Last      |
|   presented in the region     |  Line Number  |  Line Number  |
|                               | of the region | of the region |
|-------------------------------|---------------|---------------|
| REPORT HEADING described with |               |               |
|   NEXT GROUP NEXT PAGE        |               |               |
|                               |   integer-2   |   integer-1   |
| REPORT FOOTING described with |               |               |
|   LINE integer-1 NEXT PAGE    |               |               |
|-------------------------------|---------------|---------------|
| REPORT HEADING not described  |               |               |
|   with NEXT GROUP NEXT PAGE   |               |   integer-3   |
|                               |   integer-2   |   minus 1     |
| PAGE HEADING                  |               |               |
|-------------------------------|---------------|---------------|
| CONTROL HEADING               |               |               |
|                               |   integer-3   |   integer-4   |
| DETAIL                        |               |               |
|---------------------------------------------------------------|
| CONTROL FOOTING               |   integer-3   |   integer-5   |
|---------------------------------------------------------------|
| PAGE FOOTING                  |               |               |
|                               |   integer-5   |               |
| REPORT FOOTING not described  |   plus 1      |   integer-1   |
|  with LINE integer-1 NEXT PAGE|               |               |
|===============================|===============|===============|



Data Division - Clauses

47 A2 05UL Rev04 9-31

9.20 PICTURE

Description

The PICTURE clause describes the general characteristics and editing requirements of
an elementary item.

Format

{PICTURE }                     |--------------------------|
{        } IS character-string | [DEPENDING ON data-name] |
{PIC     }                     |--------------------------|

Syntax Rules

1. A PICTURE clause can be specified only at the elementary item level.

2. A character-string consists of certain allowable combinations of characters in the
COBOL character set used as symbols.  The allowable combinations determine the
category of the elementary item.

3. The lower-case letters corresponding to the uppercase letters representing the
PICTURE symbols A, B, |E, L,| P, S, V, X, Z, CR and DB are equivalent to their
uppercase representations in a PICTURE character string.  All other lower-case
letters are not equivalent to their corresponding uppercase representation.

4. The maximum number of characters allowed in the character-string is 30.

|5.     The DEPENDING ON clause must not be specified in the Report Section.

6.     Data-name must describe an elementary integer.  It must not be defined in the
Report Section.  Data-name may be qualified.|

7. The PICTURE clause must be specified for every elementary item except an index
data item, |a data item whose USAGE is COMPUTATIONAL-9,
COMPUTATIONAL-10, COMPUTATIONAL-15 or POINTER| or the subject of the
RENAMES clause.  In these cases the use of this clause is prohibited.  |It may be
omitted for a data-item whose USAGE is COMPUTATIONAL-1 or
COMPUTATIONAL-2.|

8. PIC is an abbreviation for PICTURE.

9. The asterisk when used as the Zero Suppression symbol and the clause BLANK
WHEN ZERO may not appear in the same entry.



GCOS 7 COBOL 85 Reference Manual

9-32 47 A2 05UL Rev04

|10.   The DEPENDING ON clause must be specified if, and only if, the PICTURE
character-string contains the character 'L'.

11.    The DEPENDING ON clause must not appear in a Data Description entry which
contains a JUSTIFIED clause.|

General Rules

1. There are six categories of data that can be described with a PICTURE clause:
|boolean,| alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric
edited.

|2.     To define an item as boolean:

a. The PICTURE character string can only contain the symbol '1' and

b. Its contents, when represented in Standard Data Format, must be a
combination of the numeric characters '0' and '1'.|

3. To define an item as alphabetic:

a. The PICTURE character-string can contain only the symbols 'A' |, 'L';| and

b. Its contents when represented in Standard Data Format must be one or more
alphabetic characters.

4. To define an item as numeric:

a. When it is fixed point:

(1) The PICTURE character-string can contain only the symbols '9', 'P', 'S' and 'V'.

The number of digit positions that can be described by the PICTURE character
string must range from 1 to 18 inclusive |(or 1 to 30 if the compilation is run
with LEVEL=NSTD)|; and

(2) If unsigned, its contents when represented in Standard Data Format must be
one or more numeric characters; if signed, the item may also contain a '+', '-',
or other representation of an operational sign (see the "SIGN Clause", this
chapter).



Data Division - Clauses

47 A2 05UL Rev04 9-33

|b. When it is floating-point:

(1) Its PICTURE character-string must be of the form:

       |-------------|
       | [S] kVm ESn |
       |-------------|

where:

(a) The brackets indicate that the presence of the symbol 'S' is optional.

(b) The symbols 'k' and 'm' represent the significand.  Each represents zero, one
or more occurrences of the symbol '9'.  The significand must contain at least
one '9'.  The number of digit positions that can be described by the PICTURE
character-string of the significand must range from 1 to 30 inclusive.

(c) The symbol 'E' indicates the use of floating-point representation and is not
counted in the size of the item and does not appear internally.

(d) The symbol 'n' represents the digits of the exrad.  It consists of one or more
occurrences of the symbol '9'.  The number of digit positions that can be
described by the PICTURE character-string of the exrad must at least be one
but not more than two.

(2) If unsigned, the significand, when represented in Standard Data Format, must
contain one or more numeric characters.  If signed, the significand must contain a
leading separate sign character followed by one or more numeric characters.

(3) The exrad must be signed and, when represented in Standard Data Format,
must contain a leading separate sign character followed by one or more numeric
characters.|

5. To define an item as alphanumeric:

a. Its PICTURE character-string is restricted to certain combinations of the symbols
|'A', 'L', 'X', '9',| and the item is treated as if the character-string contained all
'X's.  A PICTURE character-string which contains all 'A's |(or only 'A's and the
symbol 'L')| or all '9's does not  define an Alphanumeric item, and,

b. Its contents when represented in Standard Data Format must be one or more
characters in the computer's character set.

6. To define an item as alphanumeric edited:

a. Its PICTURE character-string is restricted to certain combinations of the
following symbols: 'A', 'X', '9', 'B', '0'(zero), and '/' (slant); and must contain at
least one 'A' or 'X' and must contain at least one 'B' or '0' (zero) or '/' (slant).

b. Its contents when represented in Standard Data Format must be one or more
characters in the computer's character set.



GCOS 7 COBOL 85 Reference Manual

9-34 47 A2 05UL Rev04

7. To define an item as numeric edited:

a. When it is fixed-point:

(1) Its PICTURE character-string is restricted to certain combinations of the
symbols 'B', '/', 'P', 'V', 'Z', '0', '9', ',', '.', '*',
'+', '-', 'CR', 'DB',  and the currency symbol.  The allowable
combinations are determined from the order of precedence of symbols and the
editing rules; and

(a) The number of digit positions that can be represented in the PICTURE
character-string must range from 1 to 18 inclusive |(or 1 to 30 if the
compilation is run with LEVEL=NSTD)| ; and

(b) The character-string must contain at least one '0', 'B', '/', 'Z', '*',
'+', '-', ',', '.', 'CR', 'DB' , or the currency symbol.

(2) The content of each of the character position must be consistent with the
corresponding PICTURE symbol.

|b. When it is floating-point:

(1) Its PICTURE character-string must be in the form:|

     |-------------|
     | {+}         |
     | { }K.mE + n |
     | {-}         |
     |-------------|

|Where:

(a) The braces indicate that a positive or negative sign must be specified.

(b) The symbols 'k' and 'm' represent the significand.  Each represents zero, one
or more occurrences of the symbol '9'.  The significand must contain at least
one '9'.  The number of digit positions that can be described by the PICTURE
character-string must range from 1 to 30 inclusive.

(c) The symbol 'E' is an insertion character delimiting the exrad and is included in
the size of the data item.

(d) The symbol 'n' represents the exrad.  It consists of one or two occurrences of
the symbol '9'.

(2) The size of a floating-point numeric edited data item is: 4 + k + m + n.  The
minimum size is six characters.|



Data Division - Clauses

47 A2 05UL Rev04 9-35

8. The size of an elementary item where size means the number of character positions
occupied by the elementary item in Standard Data Format, is determined by the
number of allowable symbols that represent character positions.  An unsigned non-
zero integer which is enclosed in parentheses following the symbols 'A', ',', 'X',
'9',|'1',| 'P', 'Z', '*', 'B', '/', '0', '+', '-', or the currency symbol indicates the number of
consecutive occurrences of the symbol.  Note that the following symbols may
appear only once in a given PICTURE: |'E', 'L',| 'V', '.', 'CR', and 'DB'.  The symbol
'S' may appear |twice in a floating-point numeric PICTURE character-string but| only
once in any fixed-point numeric PICTURE character-string.

|The number of valid character positions contained within a variable-length data
item may vary.  (See "General Rule" 9, the PICTURE symbol 'L'.)|

9. The function of the symbols used to describe an elementary item are explained as
follows:

A Each 'A' in the character-string represents a character position which can
contain only an alphabetic character and is counted in the size of the item.

B Each 'B' in the character-string represents a character position into which the
space character will be inserted and is counted in the size of the item.

|E The 'E' indicates that the symbols that follow to the right in the character-string
represent the exrad of a floating-point numeric or numeric-edited data item.
The 'E' may appear only once in a PICTURE character-string.  When used in
the character-string of a floating-point numeric-edited data item, the 'E'
represents the character-position into which the character 'E' is inserted.  Each
'E' is counted in the size of the data item being described.  When used in the
character-string of a floating-point numeric data item, the 'E' is not counted in
the size of the item.

L The 'L' is used to define a variable-length data item; and, when present, must
appear as the first symbol in the PICTURE character-string.

The 'L' can be used to describe a data item of the category alphanumeric or
alphabetic.  While the size of the data item is fixed, the number of valid
character positions contained in the data item varies.  The PICTURE
character-string describes the fixed size of the data item; the 'L' is not counted
in determining the size of the data item.

When referenced in the Procedure Division, the data item is considered to
contain a number of valid character positions equal to the value of the data
item referenced by data-name.  The content of any character positions in
excess of the number specified by data-name is undefined.  The valid
character positions are contiguous and begin at the leftmost character position
in the data item.

When such a data item is explicitly referenced, or implicitly referenced by an
INITIALIZE statement or a receiving field by a statement with the
CORRESPONDING phrase, any character positions participate in the
operation.



GCOS 7 COBOL 85 Reference Manual

9-36 47 A2 05UL Rev04

During the execution of any statement which explicitly or implicitly references
a variable-length data item, the value of the data item referenced by data-
name must be within the range one (1) through the size of the data item as
defined by the PICTURE character-string.

If a group item which contains a variable-length data item is referenced, all
character positions in the variable-length data item participate in the operation;
i.e., the variability of the valid contents of the data item(s) is ignored, as is its
USAGE, category, synchronization, etc.|

P Each 'P' in the character-string indicates an assumed decimal scaling position
and is used to specify the location of an assumed decimal point when the point
is not within the number that appears in the data item.  The scaling position
character 'P' is not counted in the size of the data item.  Scaling position
characters are counted in determining the maximum number of digit positions
|(18, or 30 if the compilation is run with LEVEL=NSTD)| in numeric edited
items or numeric items.  The scaling position character 'P' can appear only as
a continuous string of 'P's in the leftmost or rightmost digit positions within a
PICTURE character-string; since the scaling position character 'P' implies an
assumed decimal point (to the left of 'P's if 'P's are leftmost PICTURE symbols
and to the right if 'P's are rightmost PICTURE symbols), the assumed decimal
point symbol 'V' is redundant as either the leftmost or rightmost character
within such a PICTURE description.  The character 'P' and the insertion
character '.' (period) cannot both occur in the same PICTURE character-string.

In certain operations that reference a data item whose PICTURE character-
string contains the symbol 'P', the algebraic value of the data item is used
rather than the actual representation of the data item.  This algebraic value
assumes the decimal point in the prescribed location and zero in place of the
digit position specified by the symbol 'P'.  The size of the value is the number
of digit positions represented by the PICTURE character-string.  These
operations are any of the following:

a. Any operation requiring a numeric sending operand.

b. A MOVE statement where the sending operand is numeric and its PICTURE
character-string contains the symbol 'P'.

c. A MOVE statement where the sending operand is numeric-edited and its
PICTURE character-string contains the symbol 'P' and the receiving operand is
numeric or numeric-edited.

d. A comparison where both operands are numeric.

In all other operations the digit positions specified with the symbol 'P' are
ignored and are not counted in the size of the operand.



Data Division - Clauses

47 A2 05UL Rev04 9-37

S For a fixed-point data item, the 'S' is used in a character-string to indicate the
presence, but neither the representation nor, necessarily, the position of an
operational sign; it must be written as the leftmost character in the PICTURE
character-string.  the 'S' is not counted in determining the size (in terms of
Standard Data Format characters) of the elementary data item unless the entry
is subject to a SIGN clause which specifies the optional SEPARATE
CHARACTER phrase (see the "SIGN Clause", this chapter).

|For a floating-point numeric item, the 'S' in a PICTURE character-string
indicates the presence of a leading separate sign character on the significand
and exrad.  It must be written as the leftmost character in the PICTURE
character-string of the significand and immediately following the 'E' which
precedes the PICTURE character-string of the exrad.  Each occurrence of the
'S' is counted as one character in determining the size (in terms of Standard
Data Format characters) of the elementary data item.|

V The 'V' is used in a character-string to indicate the location of the assumed
decimal point and may only appear once in a character-string.  The 'V' does
not represent a character position and therefore is not counted in the size of
the elementary item.  When the assumed decimal point is to the right of the
rightmost symbol in the string representing a digit position or scaling position,
the 'V' is redundant.

X Each 'X' in the character-string is used to represent a character position which
contains any allowable character from the computer's character set and is
counted in the size of the item.

Z Each 'Z' in a character-string may only be used to represent the leftmost
leading numeric character positions which will be replaced by a space
character when the content of that character position is a leading zero.  Each
'Z' is counted in the size of the item.

9 Each '9' in the character-string represents a digit position which contains a numeric
character and is counted in the size of the item.

|1 Each '1' in the character-string represents a boolean position which contains a
boolean character.  Each '1' is counted in the size of the data item being
described.|

0 Each '0' (zero) in the character-string represents a character position into
which the character zero will be inserted.  The '0' is counted in the size of the
item.

/ Each '/' (slant) in the character-string represents a character position into which
the slant character will be inserted.  The '/' is counted in the size of the item.

, Each ',' (comma) in the character-string represents a character position into
which the character ',' will be inserted.  This character position is counted in the
size of the item.



GCOS 7 COBOL 85 Reference Manual

9-38 47 A2 05UL Rev04

. When the character '.' (period) appears in the character-string it is an editing
symbol which represents the decimal point for alignment purposes and in
addition, represents a character position into which the character '.' will be
inserted.  The character '.' is counted in the size of the item.  For a given
program the functions of the period and comma are exchanged if the clause
DECIMAL-POINT IS COMMA is stated in the SPECIAL-NAMES paragraph.  In
this exchange the rules for the period apply to the comma and the rules for the
comma apply to the period wherever they appear in a PICTURE clause.

+ - CR DB  These symbols are used as editing sign control symbols.  When used
they represent the character position into which the editing sign control symbol
is placed.  |Except for a FLOATING-  POINT PICTURE character-string, within
which both '+' and '-' may appear,| these symbols are mutually exclusive in any
given character-string, and each character used in the symbol is counted in
determining the size of the data item.  Both CR and  DB will be uppercase in
the receiving data item.

* Each '*' (asterisk) in the character-string represents a leading numeric
character position into which an asterisk is placed when the content of that
position is a leading zero.  Each * is counted in the size of the item.

CS The currency symbol in the character-string represents a character position
into which a currency symbol is to be placed.  The currency symbol in a
character-string is represented either by the currency sign (see "COBOL
Character Set", Chapter 3) or by the single character specified in the
CURRENCY SIGN clause in the SPECIAL-NAMES paragraph (Chapter 7).
The currency symbol is counted in the size of the item.



Data Division - Clauses

47 A2 05UL Rev04 9-39

9.20.1 Editing Rules

10. There are two general methods of performing editing in the PICTURE clause, either
by insertion or suppression and replacement.  There are four types of insertion
editing available.  They are:

a. Simple insertion

b. Special insertion

c. Fixed insertion

d. Floating insertion.

There are two types of suppression and replacement editing:

a. Zero suppression and replacement with spaces

b. Zero suppression and replacement with asterisks.

11. The type of editing which may be performed upon an item is dependent upon the
category to which the item belongs.  The table below specifies which type of editing
may be performed upon a given category.

Table 9-2. Categories of Data and Editing

    |=======================|====================================|
    |     CATEGORY          |           Type of Editing          |
    |-----------------------|------------------------------------|
    | Alphabetic            | None                               |
    |-----------------------|------------------------------------|
    | Boolean               | None                               |
    |-----------------------|------------------------------------|
    | Numeric               | None                               |
    |-----------------------|------------------------------------|
    | Alphanumeric          | None                               |
    |-----------------------|------------------------------------|
    | Alphanumeric edited   | Simple insertion '0', 'B' and '/'  |
    |-----------------------|------------------------------------|
    | Numeric edited        | All, subject to General Rule 12    |
    |=======================|====================================|

12. Floating insertion editing and editing by Zero Suppression and Replacement are
mutually exclusive in a PICTURE clause.  Only one type of Replacement may be
used with Zero Suppression in a PICTURE clause.  |Neither floating insertion
editing nor editing by zero suppression and replacement may be applied to a
floating-point numeric edited item.|



GCOS 7 COBOL 85 Reference Manual

9-40 47 A2 05UL Rev04

13. Simple Insertion Editing: the ',' (comma) 'B' (space) |'E'| '0' (zero) and '/' (slant) are
used as the insertion characters.  The insertion characters are counted in the size of
the item and represent the position in the item into which the character will be
inserted.  If the insertion character ',' (comma) is the last symbol in the PICTURE
character-string, the PICTURE clause must be the last clause of the Data
Description entry and must be immediately followed by the separator period (.).
This results in the combination of ',.' appearing in the Data Description entry or, if
the DECIMAL POINT IS COMMA clause is used, in two consecutive periods.

14. Special Insertion Editing: the '.' (period) is used as the insertion character.  In
addition to being an insertion character, it also represents the decimal point for
alignment purposes.  The insertion character used for the actual decimal point is
counted in the size of the item.  The use of the assumed decimal point, represented
by the symbol 'V', and the actual decimal point, represented by the insertion
character, in the same PICTURE character-string is disallowed.  If the insertion
character is the last symbol in the PICTURE character-string, the PICTURE clause
must be the last clause of that Data Description entry and must be immediately
followed by the separator period (.).  This results in two consecutive periods
appearing in the Data Description entry, or the combination of ',.' if the DECIMAL
POINT IS COMMA clause is used.  The result of special insertion editing is the
appearance of the insertion character in the item in the same position as shown in
the character-string.

15. Fixed Insertion Editing: the currency symbol and the editing sign control symbols '+',
'-', 'CR', 'DB' are the insertion characters.  Only one currency symbol and only one
of the editing sign control symbols can be used in a given PICTURE character-
string.  When the symbols 'CR' and 'DB' are used, they represent two character
positions in determining the size of the item and they must represent the rightmost
character positions that are counted in the size of the item.  If these character
positions contain the symbols 'CR' or 'DB', the uppercase letters are the insertion
characters.  The symbol '+' or '-', when used, must be either the leftmost or
rightmost character position to be counted in the size of the item.  The currency
symbol must be the leftmost character position to be counted in the size of the item
except that it can be preceded by either a '+' or a '-' symbol.  Fixed insertion editing
results in the insertion character occupying the same character position in the
edited item as it occupied in the PICTURE character-string.

Editing sign control symbols produce the results shown in the table below
depending upon the value of the data item.

Table 9-3. Results of Sign Control Symbols in Editing

    |===========================|================================|
    |                           |               Result           |
    |                           |--------------------------------|
    |   Editing Symbol in       |   Date Item      |  Data Item  |
    | Picture Character String  | positive or zero |   Negative  |
    |---------------------------|------------------|-------------|
    |             +             |          +       |     -       |
    |---------------------------|------------------|-------------|
    |             -             |        space     |     -       |
    |---------------------------|------------------|-------------|
    |             CR            |      two spaces  |     CR      |
    |---------------------------|------------------|-------------|
    |             DB            |      two spaces  |     DB      |
    |===========================|================================|



Data Division - Clauses

47 A2 05UL Rev04 9-41

16. Floating Insertion Editing: the currency symbol and editing sign control symbols '+'
or '-' are the floating insertion characters and as such are mutually exclusive in a
given PICTURE character-string.

Floating insertion editing is indicated in the character-string by a string of at least
two of the floating insertion characters.  This string of floating insertion characters
may contain any of the simple insertion symbols or have simple insertion characters
immediately to the right of this string.  These simple insertion characters are part of
the floating string.  When the floating insertion character is the currency symbol,
this string of floating insertion characters may have the fixed insertion characters
'CR' and 'DB' immediately to the right of this string.

The leftmost character of the floating insertion string represents the leftmost limit of
the floating symbols in the data item.  The rightmost character of the floating string
represents the rightmost limit of the floating symbols in the data item.

The second floating character from the left represents the leftmost limit of the
numeric data that can be stored in the data item.  Non-zero numeric data may
replace all the characters at or to the right of this limit.

In a PICTURE character string, there are only two ways of representing floating
insertion editing.  One way is to represent any or all of the leading numeric
character positions on the left of the decimal point by the insertion character.  The
other way is to represent all of the numeric character positions in the PICTURE
character-string by the insertion character.

If the insertion character positions are only to the left of the decimal point in the
PICTURE character-string, the result is that a single floating insertion character will
be placed into the character position immediately preceding either the decimal point
or the first non-zero digit in the data represented by the insertion symbol string,
whichever is farther to the left in the PICTURE character-string.  The character
positions preceding the insertion character are replaced with spaces.

If all the numeric character positions in the PICTURE character string are
represented by the insertion characters, at least one of the insertion characters
must be to the left of the decimal point.

When the floating insertion character is the editing control symbol '+' or '-', the
character inserted depends on the value of the data item.

    |===========================|================================|
    |                           |               Result           |
    |                           |--------------------------------|
    |   Editing Symbol in       |   Date Item      |  Data Item  |
    | Picture Character String  | positive or zero |   Negative  |
    |---------------------------|------------------|-------------|
    |             +             |          +       |     -        |
    |---------------------------|------------------|-------------|
    |             -              |        space     |     -        |
    |===========================|================================|

If all numeric character positions in the PICTURE character-string are represented
by the insertion character, the result depends upon the value of the data.  If the
value is zero the entire data item will contain spaces.  If the value is not zero, the
result is the same as when the insertion character is only to the left of the decimal
point.

To avoid truncation, the minimum size of the PICTURE character-string for the
receiving data item must be the number of characters in the sending data item, plus



GCOS 7 COBOL 85 Reference Manual

9-42 47 A2 05UL Rev04

the number of non-floating insertion characters being edited into the receiving data
item, plus one character position for the floating insertion character.  If the
truncation does occur, the value of the data that is used for editing is the value after
truncation (see the "Standard Rules for Data Alignment", Chapter 3).

17. Zero Suppression Editing: the suppression of leading zeros in numeric character
positions is indicated by the alphabetic character 'Z' or the character '*' (asterisk) as
suppression symbols in a PICTURE character-string.  These symbols are mutually
exclusive in a given PICTURE character-string.  Each suppression symbol is
counted in determining the size of the item.  If 'Z' is used, the replacement
character will be the space; if the asterisk is used, the replacement character will be
'*'.

Zero suppression and replacement is indicated in a PICTURE character-string by
using a string of one or more of the allowable symbols, to represent leading numeric
character positions which are to be replaced when the associated character position
in the data contains a leading zero.  Any of the simple insertion characters
embedded in the string of symbols or to the immediate right of this string are part of
the string.

In a PICTURE character-string, there are only two ways of representing zero
suppression.  One way is to represent any or all of the leading numeric character
positions to the left of the decimal point by suppression symbols.  The other way is
to represent all of the numeric character positions in the PICTURE character-string
by suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any leading
zero in the data which corresponds to a symbol in the string is replaced by the
replacement character.  Suppression terminates either at the first non-zero digit in
the data represented by the suppression symbol string or at the decimal point,
whichever is encountered first.

If all numeric character positions in the PICTURE character-string are represented
by suppression symbols, and the value of the data is not zero, the result is the same
as if the suppression characters were only to the left of the decimal point.  If the
value is zero and the suppression symbol is 'Z', the entire data item, including any
editing characters, is spaces.  If the value is zero and the suppression symbol is '*',
the entire data item, including any insertion editing symbol except the actual
decimal point will be '*'.  In this case, the actual decimal point will appear in the data
item.

18. The symbols '+', '-', '*', 'Z' and the currency symbol, when used as floating
replacement characters, are mutually exclusive within a given character-string.



Data Division - Clauses

47 A2 05UL Rev04 9-43

9.20.2 Precedence Rules

19. The table "Picture Character Precedence Chart" below shows the order of
precedence when using characters as symbols in a character-string.  An 'X' at an
intersection indicates that the symbol(s) at the top of the column may precede (but
not necessarily immediately), in a given character-string, the symbol(s) at the left of
the row.  Arguments appearing in braces indicate that the symbols are mutually
exclusive.  The currency symbol is indicated by the symbol 'cs'.

20. At least one of the symbols 'A', 'X', 'Z',|'1',| '9' or '*', or at least two of the symbols '+',
'-' or 'cs', must be present in a PICTURE character-string.

21. Non-floating insertion symbols '+' and '-', floating insertion symbols 'Z', '*', '+', '-' and
'CS', and the symbol 'P' appear twice in the table "Picture Character Precedence
Chart" below.  The leftmost column and uppermost row for each symbol represents
its use to the left of the decimal point position |or immediately following the symbol
'E'.| The second appearance of the symbol in the chart represents its use to the
right of the decimal point position.



GCOS 7 COBOL 85 Reference Manual

9-44 47 A2 05UL Rev04

Table 9-4. Picture Character Precedence Chart

First
Symbol

Second
Symbol

Non-Floating
Insertion

Symbols

Floating
Insertion

Symbols

Other
Symbols

Non
Floating
Insertion
Symbols

Floating
Insertion
Symbols

Others
Symbols

CR
DB

B

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

0

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

/

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

,

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

.

X

X

X

X

X

X

X

X

X

X

X

+
-

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

+
-

cs

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

E

X

X

X

Z

X

X

X

X

X

X

X

X

X

X

X

X

Z

X

X

X

X

X

X

X

+
-

X

X

X

X

X

X

X

X

X

X

+
-

X

X

X

X

X

cs

X

X

X

X

X

X

X

X

X

X

X

X

cs

X

X

X

X

X

X

X

9

X

X

X

X

X

X

X

X

X

X

X

X

A
X

X

X

X

X

X

L

X

X

S

X

X

X

X

X

V

X

X

X

X

X

X

X

X

X

X

X

X

P

X

X

X

X

P

X

X

X

X

X

X

X

X

X

X

X

1

X

B

0

/

,

.

+

{ + - }

{CR DB}

cs

E

{ Z * }

{ Z * }

{ + - }

{ + - }

cs

cs

9

{ A X }

L

S

V

P

P

1



Data Division - Clauses

47 A2 05UL Rev04 9-45

9.21 RECORD

Description

The RECORD clause specifies the size of data records.

Format 1

RECORD CONTAINS integer-1 CHARACTERS

Format 2

RECORD IS VARYING IN SIZE [[FROM integer-2]

         [TO INTEGER-3][DEPENDING  ON data-name-1]

Format 3:

                |---|              |---|
RECORD CONTAINS | [ | integer-4 TO  | ] | integer-5 CHARACTERS
                |---|              |---|
          |-------------------------------|
          | [DEPENDING ON data-name-2]    |
          |-------------------------------|

Syntax Rules

|1.     If the RECORD clause is not specified and the REPORT clause is specified in the
File Description entry for the file, the following implicit RECORD clause is       
provided:|

RECORD CONTAINS 1 TO 132 CHARACTERS.

Format 1

2. No Record Description entry for the file may specify a number of character positions
greater than integer-1.

3. If the REPORT clause is specified in the File Description entry for the file, integer-1
must be greater than or equal to the length of the longest print line augmented by
two (2) if the CODE clause is specified for the reports.

Format 2

4. Record Descriptions for the file must not describe records which contain a lesser
number of character positions than that specified by integer-2 nor records which
contain a greater number of character positions than that specified by integer-3.

5. If the REPORT clause is specified in the File Description entry for the file, the
format 2 of the RECORD clause is not allowed.

6. Integer-3 must be greater than integer-2.



GCOS 7 COBOL 85 Reference Manual

9-46 47 A2 05UL Rev04

7. In a Sort-Merge Description entry, all the sort or merge keys specified in any SORT
or MERGE statement referencing a sort or merge file must be contained within the
first integer-2 number of character positions.

8. For an indexed file, all the record keys for the file must be contained within the first
integer-2 number of character positions.

9. Data-name-1 must describe an elementary unsigned integer in the Working-Storage
or Linkage section.

Format 3:

|10.   Data-name-2 must describe an elementary unsigned integer in the File, Working-
Storage or Linkage Section.

11.    The DEPENDING ON clause in format 3 is kept for compatibility with previous
releases.|

12. If the REPORT clause is specified in the File Description entry for the file, |the
DEPENDING ON phrase must not be used,| integer-5 specifies the maximum
record size for the file; integer-5 must be greater than or equal to the length of the
longest print line, augmented by two (2) if the CODE clause is specified for the
reports.

General Rules

All Formats

1. If the RECORD clause is not specified, the size of each data record is completely
defined in the Record Description entry.

2. If the associated file connector is an external file connector, all File Description
entries in the run unit which are associated with that file connector must specify the
same values for integer-1 or integer-2, and integer-3.  If the RECORD clause is not
specified, all Record Description entries associated with this file connector must be
the same length.

Format 1

3. Format 1 is used to specify fixed-length records.  Integer-1 specifies the number of
character positions contained in each record of the file.  |However, the use of the
VLR phrase of the SELECT clause overrides the use of format 1.|

Format 2

4. Format 2 is used to specify variable length records.  Integer-2 specifies the
minimum number of character positions to be contained in any record of the file.
Integer-3 specifies the maximum number of character positions to be contained in
any record of the file.  |However, the use of the FLR phrase of the SELECT clause
overrides the use of format 2.|



Data Division - Clauses

47 A2 05UL Rev04 9-47

5. The number of character positions associated with a Record Description is
determined by the sum of the number of character positions in all elementary data
items excluding re-definitions and renamings, plus any implicit FILLER due to
synchronization.  If a table is specified:

a. The minimum number of table elements described in the record is used in the
summation above to determine the minimum number of character positions
associated with the Record Description.

b. The maximum number of table elements described in the record is used in the
summation above to determine the maximum number of character positions
associated with the Record Description.

6. If integer-2 is not specified, the minimum number of character positions to be
contained in any record of the file is equal to the least number of character positions
described for a record in that file.

7. If integer-3 is not specified, the maximum number of character positions to be
contained in any record of the file is equal to the greatest number of character
positions described for a record in that file.

8. If data-name-1 is specified, the number of character positions in the record must be
placed into the data item referenced by data-name-1 before any RELEASE,
REWRITE or WRITE statement is executed for that file.

9. If data-name-1 is specified, the execution of a DELETE, RELEASE, REWRITE,
START or WRITE statement or the unsuccessful execution of a READ or RETURN
statement does not alter the contents of the data item referenced by data-name-1.

10. During the execution of a RELEASE, REWRITE or WRITE statement, the number
of character positions in the record is determined by the following conditions:

a. If data-name-1 is specified, by the contents of the data item referenced by
data-name-1.

b. If data-name-1 is not specified and the record does not contain a variable
occurrence data item, by the number of character positions in the record.

c. If data-name-1 is not specified and the record does contain variable
occurrence data items, by the sum of the fixed portion and that portion of the
table described by the number of occurrences at the time of execution of the
output statement.

11. If data-name-1 is specified, after the successful execution of a READ or RETURN
statement for the file, the contents of the data item referenced by data-name-1 will
indicate the number of character positions in the record just read.

12. If the INTO phrase is specified in the READ or RETURN statement, the number of
character positions in the current record that participates as the sending data items
in the implicit MOVE statement, is determined by the following conditions:

a. If data-name-1 is specified, by the contents of the data item referenced by
data-name-1.

b. If data-name-1 is not specified, by the value that would have been moved into
the data item referenced by data-name-1 had data-name-1 been specified.



GCOS 7 COBOL 85 Reference Manual

9-48 47 A2 05UL Rev04

Format 3

13. Format 3 of the RECORD clause specifies variable length records.  Integer-4 and
integer-5 refer to the minimum number of characters in the smallest size data
record and the maximum number of characters in the largest size data record,
respectively.  |However, the use of the FLR phrase of the SELECT clause overrides
the use of format 2.|

14. The size of each data record is specified in terms of the number of character
positions required to store the logical record, regardless of the types of characters
used to represent the items within the logical record.  The size of a record is
determined by the sum of the number of characters in all fixed-length elementary
items plus the sum of the maximum number of characters in any variable-length
item subordinate to the record.  This sum may be different from the actual size of
the record (see "Data Types", Chapter 3, and the "SYNCHRONIZED Clause" and
the "USAGE Clause", this chapter).

15. |If data-name-2 is specified, the number of character positions in the record must be
placed into the data item referenced by data-name-2 before any RELEASE,
REWRITE or WRITE statement is executed for the file.  After the successful
execution of a READ or RETURN statement for the file, the contents of the data
item referenced by data-name-2 will indicate the number of character positions in
the record just read.  The execution of a DELETE or START statement, or the
unsuccessful execution of a READ or RETURN statement, does not alter the
contents of the data item referenced by data-name-2.|

16. During the execution of a RELEASE, REWRITE or WRITE statement, the number
of character positions in the record is determined by the following conditions:

|a.    If data-name-2 is specified, by the contents of the data item referenced by
data-name-2.|

b. If |data-name-2 is not specified and| the record does not contain a variable
occurrence data item, by the number of character positions in the record.

c. If |data-name-2 is not specified and| the record does contain a variable
occurrence data item, by the sum of that fixed portion and that portion of the
table described by the number of occurrences at the time of the execution of
the output.

If the number of character positions in the logical record to be written is less
than integer-2 or greater than integer-3, the output statement is unsuccessful
and, except during execution of a RELEASE statement, the associated I-O
Status is set to a value indicating the cause of the condition.  (See "I-O
Status".)



Data Division - Clauses

47 A2 05UL Rev04 9-49

9.22 REDEFINES

Description

The REDEFINES clause allows the same computer storage area to be described by
different Data Description entries.

Format

             [data-name-1]
level-number [           ] REDEFINES data-name-2
             [FILLER     ]

Note : Level-number, data-name-1 and FILLER are shown in the above format to
improve clarity.  Level-number, data-name-1 and FILLER are not part of the
REDEFINES clause.

Syntax Rules

1. The REDEFINES clause, when specified, must immediately follow the subject of
the entry.

2. The level-number of data-name-2 and the subject of the entry must be identical, but
must not be 66 or 88.

3. This clause must not be used in level 01 entries in the File Section.

4. This clause must not be used in level 01 entries in the Communication Section.

5. The Data Description entry for data-name-2 cannot contain an OCCURS clause.
However, data-name-2 may be subordinate to an item whose Data Description entry
contains an OCCURS clause.  In this case, the reference to data-name-2 in the
REDEFINES clause may not be subscripted.  Neither the original definition, nor the
re-definition can include a variable occurrence data item.

6. If the data item referenced by data-name-2 is either declared to be an external data
record or is specified with a level-number other than 01, the number of character
positions it contains must be greater than or equal to the number of character
positions in the data item referenced by the subject of this entry.  If the data item
referenced by data-name-2 is specified with a level-number of 01 and it is not
declared to be an external data record, there is no such constraint.

7. Data-name-2 must not be qualified even if it is not unique, since no ambiguity of
reference exists in this case because of the required placement of the REDEFINES
clause within the source program.



GCOS 7 COBOL 85 Reference Manual

9-50 47 A2 05UL Rev04

8. Multiple re-definitions of the same character positions are permitted.  Multiple re-
definitions of the same character positions must all use the data-name of the entry
that originally defined the area.  However data-name-2 may be subordinate to an
entry whose Data Description contains a REDEFINES clause.

9. The entries giving the new description of the character positions must not contain
any VALUE clause except in condition-name entries.

10. No entry having a level-number numerically lower than the level-number of data-
name-2 and the subject of the entry may occur between the Data Description
entries of data-name-2 and the subject of the entry.

11. The entries giving the new description of the character positions must follow the
entries defining the area of data-name-2 without intervening entries that define new
character positions.

|12.   The REDEFINES clause must not be specified in a Data Description entry that
defines an elementary data item whose usage is implicitly or explicitly BIT.

13.    Data-name-2 must not reference an elementary data item whose usage is implicitly
or explicitly BIT.|

General Rules

1. Storage allocation starts at data-name-2 and continues over a storage area
sufficient to contain the number of character positions in the data item referenced
by the data-name-1 or FILLER clause.

2. When the same character position is defined by more than one Data Description
entry, the data-name associated with any of those Data Description entries can be
used to reference that character position.



Data Division - Clauses

47 A2 05UL Rev04 9-51

9.23 RENAMES

Description

The RENAMES clause permits alternative, possibly overlapping, groupings of
elementary items.

Format

                                     {THROUGH}
66  data-name-1 RENAMES data-name-2 [{       } data-name-3]
                                     {THRU   }

Note : Level-number 66 and data-name-1 are shown in the above format to improve
clarity.  Level-number and data-name-1 are not part of the RENAMES clause.

Syntax Rules

1. Any number of RENAMES entries may be written for a logical record.

2. All RENAMES entries referring to data items within a given logical record must
immediately follow the last Data Description entry of the associated Record
Description entry.

3. Data-name-1 cannot be used as a qualifier, and can only be qualified by the names
of the associated level 01, FD, CD, or SD entries.  Neither data-name-2 nor data-
name-3 may have an OCCURS clause in its Data Description entry nor may they be
subordinate to an item that has an OCCURS clause in its Data Description entry.
(See the "OCCURS Clause", this chapter).

4. Data-name-2 and data-name-3 must be names of elementary items or groups of
elementary items in the same logical record, and cannot be the same data-name.
A 66 level entry cannot rename another 66 level entry nor can it rename a 01, 77 or
88 level entry.

5. Data-name-2 and data-name-3 may be qualified.

6. None of the items within the range including data-name-2 and data-name-3, if
specified, can be variable occurrence data items.

7. The words THRU and THROUGH are equivalent.

8. The beginning of the area described by data-name-3 must not be to the left of the
beginning of the area described by data-name-2.  The end of the area described by
data-name-3 must be to the right of the end of the area described by data-name-2.
Data-name-3, therefore, cannot be subordinate to data-name-2.

|9.     If the THROUGH phrase is specified, neither data-name-2 nor data-name-3 may
reference an elementary data item whose usage is implicitly or explicitly BIT.|



GCOS 7 COBOL 85 Reference Manual

9-52 47 A2 05UL Rev04

General Rules

1. When data-name-3 is specified, data-name-1 is a group item that includes all
elementary items starting with data-name-2 (if data-name-2 is an elementary item)
or the first elementary item in data-name-2 (if data-name-2 is a group item), and
concluding with data-name-3 (if data-name-3 is an elementary item) or the last
elementary item in data-name-3 (if data-name-3 is a group item).

2. When data-name-3 is not specified, all the data attributes of data-name-2 become
the data attributes for data-name-1.



Data Division - Clauses

47 A2 05UL Rev04 9-53

9.24 REPORT

Description

The REPORT clause specifies the names of reports that comprise a report file.

Format

{REPORT IS  }
{           } {report-name-1}...
{REPORTS ARE}

Syntax Rules

1. Each report-name specified in a REPORT clause must be the subject of a Report
Description entry in the Report Section of the same program.  The order of
appearance of the report-names is not significant.

2. A report-name must appear in only one REPORT clause.

3. The subject of a File Description entry that specifies a REPORT clause may be
referred in the Procedure Division only by the USE statement, the CLOSE
statement or the OPEN statement with the OUTPUT or EXTEND phrase.

General Rules

1. The presence of more than one report-name in a REPORT clause indicates that the
file contains more than one report.

2. After execution of an INITIATE statement and before the execution of a
TERMINATE statement for the same report file, the report file is under the control
of the RWCS.  While a report file is under the control of the RWCS no input-output
statement may be executed which references that report file.

3. If the associated file connector is an external file connector, in the run unit, every
File Description entry which is associated with that file connector must describe it as
a report file.



GCOS 7 COBOL 85 Reference Manual

9-54 47 A2 05UL Rev04

9.25 SIGN

Description

The SIGN clause specifies the position and the mode of representation of the operational
sign when it is necessary to describe these properties explicitly.

Format

          {LEADING }
[SIGN IS] {        } [SEPARATE  CHARACTER]
          {TRAILING}

Syntax Rules

1. The SIGN clause may be specified only for a numeric Data description entry whose
PICTURE contains the character 'S', or for a group item containing at least one
such numeric Data Description entry.

2. Numeric Data Description entries to which the SIGN clause applies must be
described implicitly or explicitly as USAGE IS DISPLAY.

3. If the CODE-SET clause is specified in a File Description entry, any signed numeric
Data Description entries associated with that File Description entry must be
described with the SIGN IS SEPARATE clause.

4. If the SIGN clause is included in a Report Group Description entry, the SEPARATE
CHARACTER phrase must be specified.

|5.     The SIGN clause may not be specified for a floating-point numeric data item.|

General Rules

1. The optional SIGN clause, if present, specifies the position and the mode of
representation of the operational sign for the numeric Data Description entry to
which it applies, or for each fixed-point numeric Data Description entry subordinate
to the group to which it applies.  The SIGN clause applies only to numeric Data
Description entries whose PICTURE contains the character 'S'; the 'S' indicates the
presence of, but neither the representation nor, necessarily, the position of, the
operational sign.

2. If a SIGN clause is specified in a group item subordinate to a group item for which a
SIGN clause is specified, the SIGN clause specified in the subordinate group takes
precedence for that subordinate group item.

3. If a SIGN clause is specified in an elementary numeric Data Description entry
subordinate to a group item for which a SIGN clause is specified, the SIGN clause
specified in the subordinate elementary numeric Data Description entry takes
precedence for that elementary numeric data item.



Data Division - Clauses

47 A2 05UL Rev04 9-55

4. A fixed-point numeric Data Description entry whose PICTURE contains the
character 'S', but to which no optional SIGN clause applies, has an operational sign,
but neither the representation, nor necessarily, the position of the operational sign is
specified by the character 'S'.  In this (default) case, the SIGN IS TRAILING clause
(without the SEPARATE phrase) is assumed, |unless the DISPLAY SIGN clause of
the Control Division specifies otherwise (see Chapter 5).|

General rules 5 through 7 do not apply to such signed numeric data items.

5. If the optional SEPARATE CHARACTER phrase is not present, then:

a. The operational sign will be presumed to be associated with the leading (or,
respectively, trailing) digit position of the elementary fixed-point numeric data
item.

b. The letter 'S' in a PICTURE character-string is not counted in determining the
size of the item (in terms of Standard Data Format characters).

6. If the optional SEPARATE CHARACTER phrase is present, then:

a. The operational sign will be presumed to be the leading (or, respectively,
trailing) character position of the elementary fixed-point numeric data item; this
character position is not a digit position.

b. The letter 'S' in a PICTURE character-string is counted in determining the size
of the item (in terms of Standard Data Format characters).

c. The operational signs for positive and negative are the Standard Data Format
characters '+' and '-', respectively.

7. Every numeric Data Description entry whose PICTURE contains the character 'S' is
a signed numeric Data Description entry.  If a SIGN clause applies to such an entry
and conversion is necessary for purposes of computation or comparisons,
conversion takes place automatically.



GCOS 7 COBOL 85 Reference Manual

9-56 47 A2 05UL Rev04

9.26 SOURCE

Description

The SOURCE clause identifies the sending data item that is moved to an associated
printable item defined within a Report Group Description entry.

Format

SOURCE IS identifier-1

Syntax Rules

1. Identifier-1 may be defined in any section of the Data Division.  If identifier-1 is a
Report Section item it can only be:

a. PAGE-COUNTER, or

b. LINE-COUNTER, or

c. Sum counter that is part of the report within which the SOURCE clause
appears.

2. Identifier-1 specifies the sending data item of the implicit MOVE statement that the
RWCS will execute to move the contents of the data item referenced by identifier-1
to the printable item.  Identifier-1 must be defined such that it conforms to the rules
for sending items in the MOVE statement.  (See the "MOVE Statement", Chapter
12).

General Rule

The RWCS formats the print lines of a report group just prior to presenting the report
group.  (See the "TYPE Clause", this chapter).  It is at this time that the implicit MOVE
statements specified by SOURCE clauses are executed by the RWCS.



Data Division - Clauses

47 A2 05UL Rev04 9-57

9.27 SUM

Description

The SUM clause establishes a sum counter and names the data items to be summed.

Format

{SUM {identifier-1}... [UPON  {data-name-1}... ]}...

               {data-name-2}
     [RESET ON {           }]
               {FINAL      }

Syntax Rules

1. The data item that is the subject of the Report Group Description entry in which the
SUM clause appears must not be defined as alphabetic |or boolean.| Identifier-1
must reference a numeric data item.  If identifier-1 is defined in the Report Section,
identifier-1 must reference a sum counter.

If the UPON phrase is omitted, any identifiers in the associated SUM clause which
are themselves sum counters must be defined either in the same report group that
contains this SUM clause or in a report group which is at a lower level in the control
hierarchy of this report.

If the UPON phrase is specified, any identifiers in the associated SUM clause must
not be sum counters.

2. Data-name-1 must be the name of a DETAIL report group described in the same
report as the CONTROL FOOTING report group in which the SUM clause appears.
Data-name-1 may be qualified by a report-name.

3. A SUM clause can appear only in the description of a CONTROL FOOTING report
group.

4. Data-name-2 must be one of the data-names specified in the CONTROL clause for
this report.  Data-name-2 must not be a lower level control than the associated
control for the report group in which the RESET phrase appears.

FINAL, if specified in the RESET phrase, must also appear in the CONTROL clause
for this report.

5. The highest permissible qualifier of a sum counter is the report-name.



GCOS 7 COBOL 85 Reference Manual

9-58 47 A2 05UL Rev04

General Rules

1. The SUM clause establishes a sum counter.  The sum counter is a compiler-
generated numeric data item with an operational sign.  The size and decimal point
location of the sum counter depend on the category of the data item specified by
the Report Group Description entry in which the SUM clause is defined.  They are
determined as follows:

a. If the associated data item is numeric, the size and decimal point location of
the sum counter are the same as those of that data item.

b. If the associated data item is numeric edited, the size of the sum counter is the
number of digit positions of that data item, and the decimal point location is the
same as that of the associated data item.

c. If the associated data item is alphanumeric or alphanumeric edited, the size of
the sum counter is the size of this data item, excluding any editing characters,
or 18 decimal digits |(30 decimal digits if the compilation is run with
LEVEL=NSTD),| whichever is smaller, and the sum counter is an integer.

2. At object time, the Report Writer Control System (RWCS) adds into the sum
counter the value contained in each data referenced by identifier-1.  This addition is
consistent with the rules for arithmetic statements (see "Arithmetic Statements" and
"Overlapping Operands", Chapter 10).

3. Only one sum counter exists for an elementary report entry regardless of the
number of SUM clauses specified in the elementary report entry.

4. If the elementary report entry for a printable item contains a SUM clause, the sum
counter serves as a source data item.  The RWCS moves the data contained in the
sum counter, according to the rules of the MOVE statement, to the printable item
for presentation.

5. If a data-name appears as the subject of an elementary report entry that contains a
SUM clause, the data-name is the name of the sum counter; the data-name is not
the name of the printable item that the entry may also define.

6. It is permissible for Procedure Division statements to alter the contents of sum
counters.

7. Addition of the values of the data items referenced by identifiers into sum counters
is performed by the RWCS during the execution of GENERATE and TERMINATE
statements.  There are three categories of sum counter incrementing called
subtotalling, cross footing, and rolling forward.  Subtotalling is accomplished during
execution of GENERATE statements only, after any control break processing but
before processing of the DETAIL report group.  (See the "GENERATE Statement",
Chapter 11).  Cross footing and rolling forward are accomplished during the
processing of CONTROL FOOTING report groups.  (See the "TYPE Clause", this
chapter).

8. The UPON phrase provides the capability to accomplish selective subtotalling for
the DETAIL report groups named in the phrase.



Data Division - Clauses

47 A2 05UL Rev04 9-59

9. The RWCS adds each individual addend into the sum counter at a time that
depends upon the characteristics of the addend.

a. When the addend is a sum counter defined in the same CONTROL FOOTING
report group, then the accumulation of that addend into the sum counter is
termed cross footing.

Cross footing occurs when a control break takes place and at the time the
CONTROL FOOTING report group is processed.

Cross footing is performed according to the sequence in which sum counters
are defined within the CONTROL FOOTING report group.  That is, all cross
footing into the first sum counter defined in the CONTROL FOOTING report
group is completed, and then all cross footing into the second sum counter
defined in the CONTROL FOOTING report group is completed.  This
procedure is repeated until all cross footing operations are completed.

When one of the addends is the sum counter defined by the Data Description
entry in which that SUM clause appears, the initial value of that sum counter at
the time of summation is used in the summing operation.

b. When the addend is a sum counter defined in a lower level CONTROL
FOOTING report group, then the accumulation of that addend into the sum
counter is termed rolling forward.  A sum counter in a lower level CONTROL
FOOTING report group is rolled forward when a control break occurs and at
the time that the lower level CONTROL FOOTING report group is processed.

c. When the addend is not a sum counter the accumulation into a sum counter of
such an addend is called subtotalling.  If the SUM clause contains the UPON
phrase, the addends are subtotalled when a GENERATE statement for the
designated DETAIL report group is executed.  If the SUM clause does not
contain the UPON phrase, the addends which are not sum counters are
subtotalled when any GENERATE data-name statement is executed for the
report in which the SUM clause appears.

10. If two or more of the identifiers specify the same addend, then the addend is added
into the sum counters as many times as the addend is referenced in the SUM
clause.  It is permissible for two or more of the data-names to specify the same
DETAIL report group.  When a GENERATE data-name statement for such a
DETAIL report group is given, the incrementing occurs repeatedly, as many times
as data-name appears in the UPON phrase.

11. The subtotalling that occurs when a GENERATE report-name statement is
executed is discussed in the appropriate paragraph (see the "GENERATE
Statement", Chapter 11).

12. In the absence of an explicit RESET phrase, the RWCS will set a sum counter to
zero at the time that the RWCS is processing the CONTROL FOOTING report
group within which the sum counter is defined.  If an explicit RESET phrase is
specified, then the RWCS will set the sum counter to zero at the time that the
RWCS is processing the designated level of the control hierarchy.  (See the "TYPE
Clause", this chapter).

Sum counters are initially set to zero by the RWCS during the execution of the
INITIATE statement for the report containing the sum counter.



GCOS 7 COBOL 85 Reference Manual

9-60 47 A2 05UL Rev04

9.28 SYNCHRONIZED

Description

The SYNCHRONIZED clause specifies the alignment of an elementary item on its
natural addressing boundaries in the computer memory.

Format

{SYNCHRONIZED} [LEFT  ]
{            } [     ]
{SYNC        } [RIGHT ]

Syntax Rules

1. This clause can appear only with an elementary item.

2. SYNC is an abbreviation for SYNCHRONIZED.

3. SYNCHRONIZED not followed by either RIGHT or LEFT is equivalent to
SYNCHRONIZED LEFT.

General Rules

1. This clause specifies that the subject data item is to be aligned in the computer
such that no other data item occupies any of the character positions between the
leftmost and the rightmost boundaries delimiting this data item.

If the number of character positions required to store this data item is less than the
number of character positions between those natural boundaries, the unused
character positions (or portions thereof) must not be used for any other data item.
Such unused character positions however are included in:

a. The size of any group item(s) to which the elementary item belongs, and

b. the number of character positions allocated when any such group item is the
object of a REDEFINES clause.  The unused character positions are not
included in the character positions re-defined when the elementary item is the
object of a REDEFINES clause.

2. SYNCHRONIZED specifies that the elementary item is to be positioned between
natural boundaries in such a way as to effect efficient utilization of the elementary
data item.

3. SYNCHRONIZED LEFT specifies that the elementary item is to be positioned such
that it will begin at the left character position of the natural boundary in which the
elementary item is placed.



Data Division - Clauses

47 A2 05UL Rev04 9-61

4. SYNCHRONIZED RIGHT specifies that the elementary data item is to be
positioned such that it will terminate at the right character position of the natural
boundary in which the elementary item is placed.

5. Whenever a SYNCHRONIZED item is referenced in the source program, the
original size of the item as shown in the PICTURE clause, the USAGE clause or the
SIGN clause, is used in determining any action that depends on size such as
justification, truncation or overflow.

6. If the Data Description of an item contains an operational sign and any form of the
SYNCHRONIZED clause, the sign of the item appears in this sign position explicitly
or implicitly specified by the SIGN clause.

7. When the SYNCHRONIZED clause is specified in the Data Description entry of a
data item that also contains an OCCURS clause or in a Data Description entry of a
data item subordinate to a Data Description entry that contains an OCCURS clause,
then:

a. Each occurrence of the data item is SYNCHRONIZED.

b. Any implicit FILLER generated for other data items within that same table are
generated for each occurrence of these data items (see "General Rule" 3b).

8. Data Allocation in Chapter 3 specifies how elementary items associated with this
clause are handled regarding:

a. The format of records groups containing elementary items whose data
description contains the SYNCHRONIZED clause.

b. Any necessary generation of implicit FILLER, if the elementary item
immediately preceding an item containing the SYNCHRONIZED clause does
not terminate at an appropriate natural boundary.  Such automatically
generated FILLER positions are included in

(i) The size of any group to which the FILLER item belongs, and

(ii) The number of character positions allocated when the group item of which
the FILLER item is part appears as the object of a REDEFINES clause.



GCOS 7 COBOL 85 Reference Manual

9-62 47 A2 05UL Rev04

9. Alignment boundaries depend upon the USAGE specified for the elementary items,
as shown below:

          |==================|=====================|
          |     USAGE        |Alignment Boundaries |
          |------------------|---------------------|
          | BINARY           | Half-word or word   |
          | |BIT             | Byte|                |
          | COMPUTATIONAL    | Byte                |
          | |COMPUTATIONAL-1 | Half word or word    |
          | COMPUTATIONAL-2  | word                 |
          | COMPUTATIONAL-3  | Byte                 |
          | COMPUTATIONAL-5  | Byte                 |
          | COMPUTATIONAL-8  | Byte                 |
          | COMPUTATIONAL-9  | Byte                 |
          | COMPUTATIONAL-10 | Double-word          |
          | COMPUTATIONAL-15 | Double-word|         |
          | DISPLAY          | Byte                |
          | INDEX            | Byte                |
          | PACKED DECIMAL   | Byte                |
          | |POINTER         | Word|                |
          |==================|=====================|

10. The rules for synchronization of the records, as this effects the synchronization of
elementary items, are specified in Data Allocation, Chapter 3.



Data Division - Clauses

47 A2 05UL Rev04 9-63

9.29 TYPE

Description

The TYPE clause specifies the particular type of report group that is described by this
entry and indicates the time at which the report group is to be processed by the Report
Writer Control System.

Format

        {{REPORT HEADING }               }
        {{RH            }               }
        {                               }
        {{PAGE HEADING }                 }
        {{PH          }                 }
        {                               }
        {{CONTROL HEADING } {data-name-1}}
        {{CH             } {FINAL       }}
        {                               }
TYPE IS {{DETAIL }                       }
        {{DE    }                       }
        {                               }
        {{CONTROL FOOTING } {data-name-2}}
        {{CF             } {FINAL       }}
        {                               }
        {{PAGE FOOTING }                 }
        {{PF          }                 }
        {                               }
        {{REPORT FOOTING }               }
        {{RF            }               }

Syntax Rules

1. RH is an abbreviation for REPORT HEADING.

PH is an abbreviation for PAGE HEADING.

CH is an abbreviation for CONTROL HEADING.

DE is an abbreviation for DETAIL.

CF is an abbreviation for CONTROL FOOTING.

PF is an abbreviation for PAGE FOOTING.

RF is an abbreviation for REPORT FOOTING.

2. Report groups specified by REPORT HEADING, PAGE HEADING, CONTROL
HEADING FINAL, CONTROL FOOTING FINAL, PAGE FOOTING, and REPORT
FOOTING may each appear no more than once in the description of a report.



GCOS 7 COBOL 85 Reference Manual

9-64 47 A2 05UL Rev04

3. PAGE HEADING and PAGE FOOTING report groups may be specified only if a
PAGE clause is specified in the corresponding Report Description entry.

4. Data-name-1, data-name-2 and FINAL, if present, must be specified in the
CONTROL clause of the corresponding Report Description entry.  At most, one
CONTROL HEADING report group and one CONTROL FOOTING report group can
be specified for each data-name or FINAL in the CONTROL clause of the Report
Description entry.  However, neither a CONTROL HEADING report group nor a
CONTROL FOOTING report group is required for a data-name or FINAL specified
in the CONTROL clause of the Report Description entry.

5. In CONTROL FOOTING, PAGE HEADING, PAGE FOOTING, and REPORT
FOOTING report groups, SOURCE clauses and associated USE statements must
not reference any of the following:

a. Group data items containing a control data item.

b. Data items subordinate to a control data item.

c. A re-definition or renaming of any part of a control data item.

In PAGE HEADING and PAGE FOOTING report groups, SOURCE clauses and
USE statements must not reference control data-names.

6. When a GENERATE report-name statement is specified in the Procedure Division,
the corresponding Report Description entry must include no more than one DETAIL
report group.  If no GENERATE data-name statements are specified for such a
report, a DETAIL report group is not required.

7. The description of a report must include at least one body group.

General Rules

1. DETAIL report groups are processed by the RWCS as a direct result of GENERATE
statements.  If a report group is other than TYPE DETAIL, its processing is an
automatic RWCS function.

2. The REPORT HEADING phrase specifies a report group that is processed by the
RWCS only once, per report, as the first report group of that report.  The REPORT
HEADING report group is processed during the execution of the chronologically first
GENERATE statement for that report.

3. The PAGE HEADING phrase specifies a report group that is processed by the
RWCS as the first report group on each page of that report except under the
following conditions:

a. A PAGE HEADING report group is not processed on a page that is to contain
only a REPORT HEADING report group or only a REPORT FOOTING report
group.

b. A PAGE HEADING report group is processed as the second report group on a
page when it is preceded by a REPORT HEADING report group that is not to
be presented on a page by itself.  (See "Presentation Rules Tables", Chapter
8).



Data Division - Clauses

47 A2 05UL Rev04 9-65

4. The CONTROL HEADING phrase specifies a report group that is processed by the
RWCS at the beginning of a control group for a designated control data-name or, in
the case of FINAL, is processed during the execution of the chronologically first
GENERATE statement for that report.  During the execution of any GENERATE
statement at which the RWCS detects a control break, any CONTROL HEADING
report groups associated with the highest control level of the break and lower levels
are processed.

5. The DETAIL phrase specifies a report group that is processed by the RWCS when a
corresponding GENERATE statement is executed.

6. The CONTROL FOOTING phrase specifies a report group that is processed by the
RWCS at the end of a control group for a designated control data-name.

In the case of FINAL, the CONTROL FOOTING report group is processed only
once per report as the last body group of that report.  During the execution of any
GENERATE statement in which the RWCS detects a control break, any CONTROL
FOOTING report group associated with the highest level of the control break or
more minor levels is presented.  All CONTROL FOOTING report groups are
presented during the execution of the TERMINATE statement if there has been at
least one GENERATE statement executed for the report.  (See the "TERMINATE
Statement", Chapter 13).

7. The PAGE FOOTING phrase specifies a report group that is processed by the
RWCS as the last report group on each page except under the following conditions:

a. A PAGE FOOTING report group is not processed on a page that is to contain
only a REPORT HEADING report group or only a REPORT FOOTING report
group.

b. A PAGE FOOTING report group is processed as the second to last report
group on a page when it is followed by a REPORT FOOTING report group that
is not to be processed on a page by itself (see "Presentation Rules Tables",
Chapter 8).

8. The REPORT FOOTING phrase specifies a report group that is processed by the
RWCS only once per report and as the last report group of that report.  The
REPORT FOOTING report group is processed during the execution of a
corresponding TERMINATE statement, if there has been at least one GENERATE
statement executed for the report.  (See the "TERMINATE Statement", Chapter 13).

9. The sequence of steps that the RWCS executes when it processes a REPORT
HEADING, PAGE HEADING, CONTROL HEADING, PAGE FOOTING, or
REPORT FOOTING report group is described below.

a. If there is a USE BEFORE REPORTING procedure that references the data-
name of the report group, the USE procedure is executed.

b. If a SUPPRESS statement has been executed or if the report group is not
printable, there is no further processing to be done for the report group.

c. If a SUPPRESS statement has not been executed and the report group is
printable, the RWCS formats the print lines and presents the report group
according to the presentation rules for that type of report group.  (See
"Presentation Rules Tables", Chapter 8).



GCOS 7 COBOL 85 Reference Manual

9-66 47 A2 05UL Rev04

10. The sequence of steps that the RWCS executes when it processes a CONTROL
FOOTING report group is described below.

The GENERATE rules specify that when a control break occurs, the RWCS
produces the CONTROL FOOTING report groups beginning at the minor level, and
proceeding upwards, through the level at which the highest control break was
sensed.  In this regard, it should be noted that even though no CONTROL
FOOTING report group has been defined for a given control data-name, the RWCS
will still have to execute the step described in paragraph 10f below if a RESET
phrase within the report description specifies that control data-name.

a. Sum counters are cross footed, i.e., all sum counters defined in this report
group that are operands of SUM clauses in the same report group are added to
their sum counters.  (See the "SUM Clause", this chapter).

b. Sum counters are rolled forward, i.e., all sum counters defined in the report
group that are operands of SUM clauses in higher level CONTROL FOOTING
report groups are added to the higher level sum counters.  (See the "SUM
Clause", this chapter).

c. If there is a USE BEFORE REPORTING procedure that references the data-
name of the report group the USE procedure is executed.

d. If a SUPPRESS statement has been executed or if the report group is not
printable, the RWCS next executes the step described in paragraph 10f below.

e. If a SUPPRESS statement has not been executed and the report group is
printable, the RWCS formats the print lines and presents the report group
according to the presentation rules for CONTROL FOOTING report groups.

f. Then the RWCS resets those sum counters that are to be reset when the
RWCS processes this level in the control hierarchy.  (See the "SUM Clause",
this chapter).

11. The DETAIL report group processing that the RWCS executes in response to a
GENERATE data-name statement is described in paragraphs 11a through 11e
below.

When the description of a report includes exactly one DETAIL report group, the
detail-related processing that the RWCS executes in response to a GENERATE
report-name statement is described in paragraphs 11a through 11e below.  These
steps are performed as though a GENERATE data-name statement were being
executed.

When the description of a report includes no detail report groups, the detail-related
processing that the Report Writer Control System executes in response to a
GENERATE report-name statement is described in paragraph 11a.  This step is
performed as though the description of the report included exactly one DETAIL
report group, and a GENERATE data-name statement were being executed.

a. The RWCS performs any subtotalling that has been designated for the DETAIL
report group.  (See the "SUM Clause", this chapter).

b. If there is a USE BEFORE REPORTING procedure that refers to the data-
name of the report group, the USE procedure is executed.

c. If a SUPPRESS statement has been executed or if the report group is not
printable there is no further processing done for the report group.



Data Division - Clauses

47 A2 05UL Rev04 9-67

d. If the DETAIL report group is being processed as a consequence of a
GENERATE report-name statement, there is no further processing done for
the report group.

e. If neither 11c nor 11d above applies, the RWCS formats the print lines and
presents the report group according to the presentation rules for DETAIL report
groups.  (See "Presentation Rules Tables", Chapter 8).

12. When the RWCS is processing a CONTROL HEADING, CONTROL FOOTING, or
DETAIL report group, as described in General Rules 9, 10, and 11, the RWCS may
have to interrupt the processing of that body group after determining that the body
group is to be presented, and execute a page advance (and process PAGE
FOOTING and PAGE HEADING report groups) before actually presenting the body
group.

13. During control break processing, the values of control data items that the RWCS
used to detect a given control break are referred to as prior values.

a. During control break processing of a CONTROL FOOTING report group, any
references to control data items in a USE procedure or SOURCE clause
associated with that CONTROL FOOTING report group are supplied with prior
values.

b. When a TERMINATE statement is executed, the RWCS makes the prior
control data item values available to SOURCE clause or USE procedure
references in CONTROL FOOTING and REPORT FOOTING report groups as
though a control break had been detected in the highest control data-name.

c. All other data item references within report groups and their USE procedures
access the current values that are contained within the data items at the time
the report group is processed.



GCOS 7 COBOL 85 Reference Manual

9-68 47 A2 05UL Rev04

9.30 USAGE

Description

The USAGE clause specifies the format of a data item in the computer storage.

Format

            {   BINARY             }
            { |-----|              }
            { | BIT |              }
            { |-----|              }
            {   COMPUTATIONAL      }
            {   COMP               }
            { |------------------| }
            { | COMPUTATIONAL-1  | }
            { | COMP-1           | }
            { | COMPUTATIONAL-2  | }
            { | COMP-2           | }
            { | COMPUTATIONAL-3  | }
            { | COMP-3           | }
 [USAGE IS] { | COMPUTATIONAL-5   | }
            { | COMP-5           | }
            { | COMPUTATIONAL-8  | }
            { | COMP-8           | }
            { | COMPUTATIONAL-9  | }
            { | COMP-9           | }
            { | COMPUTATIONAL-10 | }
            { | COMP-10          | }
            { | COMPUTATIONAL-15 | }
            { | COMP-15          | }
            { | POINTER          | }
            { |------------------| }
            {   DISPLAY            }
            {   INDEX              }
            {   PACKED-DECIMAL     }

Syntax Rules

1. The USAGE clause may be written in any Data Description entry with a level-
number other than 66 or 88.

2. If the USAGE clause is written in the Data Description entry for a group item, it may
also be written in the Data Description entry for any subordinate elementary item or
group item, but the same usage must be specified in both entries.



Data Division - Clauses

47 A2 05UL Rev04 9-69

|3.     Unless otherwise specified in the DEFAULT SECTION of the CONTROL DIVISION,
COMPUTATIONAL is equivalent to COMPUTATIONAL-3.  The use of the
COMPUTATIONAL IS phrase of the DEFAULT SECTION of the CONTROL
DIVISION allows the user to make COMPUTATIONAL equivalent to
COMPUTATIONAL-1, 2, 3, 5 or 8, to BINARY, to PACKED-DECIMAL or to
DISPLAY.  In the text below, the rules applicable to COMPUTATIONAL-1, 2, 3, 5 or
8, to BINARY, to PACKED-DECIMAL or to DISPLAY are also applicable to
COMPUTATIONAL if COMPUTATIONAL is, or has been made, equivalent to the
relevant USAGE.|

4. An elementary data item whose declaration contains, or an elementary data item
subordinate to a group data item whose declaration contains a USAGE clause
specifying BINARY, COMPUTATIONAL, |COMPUTATIONAL-3, -5 or -8| or
PACKED-DECIMAL must be declared with a PICTURE character-string that defines
a fixed-point numeric item, i.e.  a PICTURE character-string that contains only the
symbols 'P', 'S', 'V' and '9' (see the "PICTURE Clause", this chapter).

If the specified usage is BINARY, the PICTURE character-string must not contain
more than 18 digits.

|5.     An elementary data item whose declaration contains, or an elementary data item
subordinate to a group item whose declaration contains a USAGE clause with the
BIT phrase must be declared with a PICTURE character-string that describes a
boolean data item, i.e. a PICTURE character-string that contains only the symbol '1'
(see the "PICTURE Clause", this chapter).

6.     The PICTURE clause is not mandatory for data whose USAGE IS
COMPUTATIONAL-1 or 2.  When absent, a PICTURE S9(4) or S9(9) is assumed
respectively.  When present the PICTURE clause must specify an integer without
scaling position.  The sign is always considered to be present, even if the PICTURE
character string does not show it.  When the USAGE IS COMPUTATIONAL-1, and
the PICTURE clause shows more than 4 digit positions the item is allocated,
synchronized and handled as if it was a COMPUTATIONAL-2 item.

7.     An entry describing a COMPUTATIONAL-9 ,-10 or -15 item must not contain a
PICTURE clause.  The ALL literal figurative constant must not be used in a VALUE
clause, a MOVE statement, or a condition involving a COMPUTATIONAL-9 ,-10 or
-15 item.|

8. COMP is an abbreviation for COMPUTATIONAL.

|COMP-n is an abbreviation for COMPUTATIONAL-n.|

9. The USAGE clause for a report group item can specify only USAGE IS DISPLAY.

10. A usage other than DISPLAY must not be specified for a data item whose Data
Description entry contains the BLANK WHEN ZERO, JUSTIFIED or SIGN clause.

11. An index data item can be referenced explicitly only in a SEARCH or SET
statement, a relation condition, the USING phrase of a Procedure Division header,
or the USING phrase of a CALL statement.

12. PICTURE or VALUE clauses cannot be used for data items whose usage is INDEX.



GCOS 7 COBOL 85 Reference Manual

9-70 47 A2 05UL Rev04

13. An elementary data item described with a USAGE IS INDEX clause must not be a
conditional variable.

|14.   A pointer data item can be referenced explicitly only in a SET statement, a relation
condition, the USING phrase of a Procedure Division header or the USING phrase
of a CALL statement.

15.    The PICTURE clause cannot be used for data items whose usage is pointer.

16.    DPS8 usages are accepted and interpreted as the closest DPS 7 usage, namely:
COMP-6, COMP-7, COMP-11, COMP-12, COMP-13 and COMP-14 become
COMP-2, COMP-1, COMP-9, COMP-10 COMP-9 and COMP-10 respectively.|

General Rules

1. The usage of a group item is always implicitly DISPLAY.  If the USAGE clause is
written at a group level, it applies to each elementary item in the group, but not to
the group item itself.

2. The USAGE clause specifies the manner in which a data item is represented in the
storage medium of the computer.  It does not affect the use of the data item,
although the specifications for some statements in the Procedure Division may
restrict the USAGE clause of some operands referred to.  The USAGE clause may
affect the radix or type of character representation of the item.

3. The USAGE IS BINARY clause specifies that a radix of two (2) is used to represent
a numeric item in the storage of the computer.

|4.     The USAGE IS BIT clause specifies that bits are used to represent a boolean data
item.  The alignment of an elementary boolean data item whose usage is either
explicitly or implicitly BIT is determined by the following rules:

a. If the current data item is the first elementary data item in a group, the current
data item is aligned on the same character boundary as the group item.

b. If the current data item is the first data item following the last data item of a
group, the current data item is aligned on a character boundary.

c. If the preceding data item does not have a USAGE IS BIT clause implicitly or
explicitly stated, the current data item is aligned on a character boundary.

d. If the preceding data item has a USAGE IS BIT clause implicitly or explicitly
stated, and a SYNCHRONIZED clause, the current data item is aligned on a
character boundary.

e. If the preceding data item has a USAGE IS BIT clause and none of the above
rules apply, the current data item is aligned on the bit following the preceding
data item.

This alignment may cause the generation of implicit FILLER positions.|



Data Division - Clauses

47 A2 05UL Rev04 9-71

5. The USAGE IS COMPUTATIONAL, |COMPUTATIONAL-1, COMPUTATIONAL-3,
COMPUTATIONAL-5, COMPUTATIONAL-8, COMPUTATIONAL-9,
COMPUTATIONAL-10 or COMPUTATIONAL-15| clause is used to represent a
numeric item in the storage of the computer.  If a group item is described with such
a USAGE, the elementary items in the group have this USAGE.  The group item
itself does not have it (cannot be used in computations).

6. The USAGE IS DISPLAY clause (whether specified explicitly or implicitly) specifies
that a Standard Data Format is used to represent a data item in the storage of the
computer (one character stored in one byte coded in EBCDIC), and that the data
item is aligned on a character boundary.

7. If the USAGE clause is not specified for an elementary item, or for any group to
which the item belongs, the usage is implicitly DISPLAY.

8. When a MOVE statement or an input-output statement that references a group data
item which contains a data item whose usage is not DISPLAY is executed, no
conversion of that data item takes place.

9. The USAGE IS INDEX clause specifies that a data item is an index data item and
contains a value which must correspond to an occurrence number of a table
element.

10. The USAGE IS PACKED-DECIMAL clause specifies that a radix of 10 is used to
represent a numeric item in the storage of the computer.  Furthermore, this clause
specifies that each digit position must occupy the minimum possible configuration in
computer storage.

|11.   The USAGE IS POINTER clause specifies that a data item is a pointer data item
and contains a value which must correspond to the address of a data item.|

12. The following representation is given to data depending on their USAGE.

BINARY

PICTURE clause shows:

less than 5 digit positions 16-bit signed binary data with the leftmost bit
showing the sign

5 to 9 digit positions 32-bit signed binary data with the leftmost bit
showing the sign

10 to 14 digit positions 48-bit signed binary data with the leftmost bit
showing the sign

15 to 18 digit positions 64-bit signed binary data with the leftmost bit
showing the sign

In all cases, if the item is unsigned and is a
receiving item, the sign is '+', irrespective of the
sign of the actual result



GCOS 7 COBOL 85 Reference Manual

9-72 47 A2 05UL Rev04

COMPUTATIONAL

|COMPUTATIONAL-1

PICTURE clause shows

less than 5 digit positions 16-bit signed binary data

more than 4 digit positions 32-bit signed binary data

PICTURE clause not
present

16-bit signed binary data

COMPUTATIONAL-2 32-bit signed binary data

COMPUTATIONAL-3 | (COMPUTATIONAL by default)

PICTURE clause shows:

a sign packed decimal data with the 4 rightmost bits
showing the sign

no sign packed decimal data with the 4 rightmost bits
showing the rightmost digit

in both cases, if unused, the leftmost digit
must be zero

|COMPUTATIONAL-5 same as COMPUTATIONAL-3 except that,
when signed, the sign has the ASCII
representation i.e.: hexadecimal 'A', 'B', 'C', 'E'
and 'F' for '+' ('B' is the standard representation
for '+') and hexadecimal 'D' for '-'

COMPUTATIONAL-8 same as PACKED-DECIMAL

COMPUTATIONAL-9 floating single precision 32 bit binary

COMPUTATIONAL-10 floating double precision 64 bit binary

COMPUTATIONAL-15 floating quadruple precision 128 bit binary|

INDEX 32-bit signed binary displacement followed by
16 bit signed binary occurrence number.

PACKED-DECIMAL

PICTURE clause shows:

a sign packed decimal data with the 4 rightmost bits
showing the sign

no sign packed decimal data with the 4 rightmost bits
showing a sign; if the item is a receiving item,
the sign is "+", irrespective of the sign of the
actual result

|POINTER 32 bit direct ITS |



Data Division - Clauses

47 A2 05UL Rev04 9-73

9.31 VALUE

Description

The VALUE clause defines the value of Report Section printable items, the initial value
of Communication Section, Working-Storage Section and Constant Section data items,
and the values associated with condition-names.

Format 1

VALUE IS literal

Format 2

{VALUE IS  }               {THROUGH }
{          }   {literal-1 [{       } literal-2]}...
{VALUES ARE}               {THRU    }

      |----------------------------------|
      | [WHEN SET TO FALSE IS literal-3] |
      |----------------------------------|

Format 3

|---------------|
| VALUE IS NULL  |
|---------------|

Syntax Rules

All Formats

1. |The VALUE clause may be specified in any entry which is part of the description of
an external data record.| The VALUE clause may be specified for condition-names
entries associated with such Data Description entries.

Formats 1 and 2

|2.     The VALUE clause may be used with a variable length data item.  In this case, the
initial value of the data item will be determined as if the data item were not
described as variable length, i.e., as if its PICTURE character-string did not contain
the symbol 'L'.|

3. A signed numeric literal must have associated with it a signed numeric PICTURE
character-string |or usage COMP-1, COMP-2, COMP-9, COMP-10 or COMP-15.|

4. All numeric literals in a VALUE clause of an item must have a value which is within
the range of values indicated by the PICTURE clause |or implied by its USAGE
clause,| and must not have a value that would require truncation of non-zero digits.
Non-numeric literals in a VALUE clause of an item must not exceed the size
indicated by the PICTURE clause.



GCOS 7 COBOL 85 Reference Manual

9-74 47 A2 05UL Rev04

Format 2

5. The words THRU and THROUGH are equivalent.

6. Format 2 must be used only in connection with a condition-name.

|7.     If the conditional variable associated with the condition-name is a boolean data
item, the THROUGH phrase must not be specified.

8.     Literal-3 must not be equal to any literal-1, and in any literal-1 through literal-2 pair,
if literal-3 is greater than literal-1, it must not be less than or equal to literal-2.

Format 3

9.     A format 3 VALUE clause must have an elementary pointer data item associated
with it.|

General Rules

1. The VALUE clause must not conflict with other clauses in the Data Description of
the item, or in the Data Description within the hierarchy of the item.  The following
rules apply:

a. If the category of the item is numeric, all literals in the VALUE clause must be
numeric.  If the literal defines the value of a Working-Storage or |Constant|
Section item, the literal is aligned in the data item according to standard
alignment rules (See "Standard Rules for Data Alignment", Chapter 3).

b. If the category of the item is alphabetic, alphanumeric, alphanumeric edited, or
numeric edited, all literals in the VALUE clause must be non-numeric literals.
The literal is aligned in the data item as if the data item had been described as
alphanumeric.  Editing characters in the PICTURE clause are included in
determining the size of the data item (See the "PICTURE Clause", this
chapter), but have no effect on initialization of the data item.  Therefore, the
VALUE for an edited item must be in an edited form.

|c.     If the category of the item is boolean, all literals in the VALUE clause must be
boolean literals.  Boolean literals are aligned in the data item according to the
standard alignment rules (See "Standard Alignment Rules", Chapter 3).

d.     If the data item is a pointer data item, only the VALUE IS NULL clause is
allowed.|

e. Initialization is not affected by any BLANK WHEN ZERO or JUSTIFIED clause
that may be specified.



Data Division - Clauses

47 A2 05UL Rev04 9-75

Condition-name Rules

2. In a condition-name entry, the VALUE clause is required.  The VALUE clause and
the condition-name itself are the only two items permitted in the entry.  The
characteristics of a condition-name are implicitly those of its conditional variable.

3. Format 2 can be used only in connection with condition-name.  Wherever the THRU
phrase is used, literal-1 must be less than the corresponding literal-2.

|4.     The FALSE phrase only has meaning if the associated condition-name is
referenced in a SET condition-name TO FALSE statement (See the "SET
Statement", Chapter 13).

5.     Format 3 may be used in connection with a condition-name whose conditional
variable is a pointer data item.|

Data Description Entries Other Than Condition-names

6. Rules governing the use of the VALUE clause differ in the respective sections of the
Data Division:

a. In the File and Linkage Sections, the VALUE clause may be used only in
condition-name entries.  Therefore the initial value of the data-item of the File
Section is undefined.

b. In the Working-Storage |, Constant| and Communication Sections, the VALUE
clause must be used in condition-name entries.  VALUE clauses in the
Working-Storage, |Constant| and Communication Sections of a program take
effect only when the program is placed into its initial state.  If the VALUE
clause is used in the description of the data item, the data item is initialized to
the defined value.  If the VALUE clause is not associated with a data item, the
initial contents of the data item are undefined.

c. In the Report Section, if the elementary report entry containing the VALUE
clause does not contain a GROUP INDICATE clause, then the printable item
will assume the specified value each time its report group is printed.  However,
when the GROUP INDICATE clause is also present, the specified value will be
presented only when certain object time conditions exist (see the "GROUP
INDICATE Clause", this chapter).

7. The VALUE clause must not be stated in a Data Description entry that contains a
REDEFINES clause or in an entry that is subordinate to an entry containing a
REDEFINES clause.  The rule does not apply to condition-name entries.

8. If the VALUE clause is used in an entry at the group level, the literal must be a
figurative constant or a non-numeric literal and the group area is initialized without
consideration for the individual elementary or group items contained within this
group.  The VALUE clause cannot be stated at the subordinate levels within this
group.

9. The VALUE clause must not be specified for a group containing items subordinate
to it with descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE (other
than USAGE IS DISPLAY).



GCOS 7 COBOL 85 Reference Manual

9-76 47 A2 05UL Rev04

10. If a VALUE clause is specified in a Data Description entry of a data item which is
associated with a variable occurrence data item, the initialization of the data item
behaves as if the value of the data item reference by the DEPENDING ON phrase
in the OCCURS clause specified for the variable occurrence data item is set to the
maximum number of occurrences as specified by that OCCURS clause.  A data
item is associated with a variable occurrence data item in any of the following
cases:

a. It is a group data item which contains a variable occurrence data item.

b. It is a variable occurrence data item.

c. It is a data item which is subordinate to a variable occurrence data item.

If a VALUE clause is associated with the data item referenced by a DEPENDING
ON phrase, that value is considered to be placed in the data item after the variable
occurrence data item is initialized (See the "OCCURS Clause", this chapter).

11. A format 1 VALUE clause specified in a Data Description entry that contains an
OCCURS clause or in an entry that is subordinate to an OCCURS clause causes
every occurrence of the associated data item to be assigned the specified value.



Data Division - Clauses

47 A2 05UL Rev04 9-77

9.32 VALUE OF

Description

The VALUE OF clause particularizes the description of an item in the label records
associated with a file.  The VALUE OF clause is an obsolete element in Standard
COBOL because it is to be deleted from the next revision of Standard COBOL.

Format

                    {data-name-1}
VALUE OF {name-1 IS {           }}
                    {literal-1  }

Syntax Rules

1. Data-name-1 should be qualified when necessary, but cannot be subscripted nor
can data-name-1 be an item described with the USAGE IS INDEX clause.

2. Data-name-1 must be in the Working-Storage |or the Constant| Section.

3. Name-1 must obey the rules for the formation of a COBOL word.

General Rule

1. This clause is given for documentation only.  It is accepted for compatibility.



GCOS 7 COBOL 85 Reference Manual

9-78 47 A2 05UL Rev04



47 A2 05UL Rev04 10-1

10. Procedure Division - Overview

This chapter introduces the Procedure Division.

10.1 GENERAL DESCRIPTION

10.1.1 The Procedure Division Declaratives

Declarative sections must be grouped at the beginning of the Procedure Division
preceded by the key word DECLARATIVES and followed by the key words END
DECLARATIVES.  (See the "USE Statement", Chapter 13.)

10.1.2 Procedures

A procedure is composed of a paragraph, or group of successive paragraphs, or a
section, or a group of successive sections within the Procedure Division.  If one
paragraph is in a section, all paragraphs must be in sections.  A procedure-name is a
word used to refer to a paragraph or section in the source program in which it occurs.  It
consists of a paragraph-name (which may be qualified) or a section-name.

The end of the Procedure Division and the physical end of the program is that physical
position in a COBOL source program after which no further procedures appear.

A section consists of a section header followed by zero, one, or more successive
paragraphs.  A section ends immediately before the next section or at the end of the
Procedure Division or, in the declaratives portion of the Procedure Division, at the key
words END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a period and a space and by
zero, one, or more successive sentences.  A paragraph ends immediately before the
next paragraph-name or section-name or at the end of the Procedure Division or, in the
declaratives portion of the Procedure Division, at the key words END DECLARATIVES.

A sentence consists of one or more statements and is terminated by the separator
period.



GCOS 7 COBOL 85 Reference Manual

10-2 47 A2 05UL Rev04

A statement is a syntactically valid combination of words and symbols beginning with a
COBOL verb.

The term 'identifier' is defined as the word or words necessary to make unique reference
to a data item.

10.1.3 Execution

Execution begins with the first statement of the Procedure Division, excluding
declaratives.  Statements are then executed in the order in which they are presented for
compilation, except where the rules indicate some other order.

10.1.4 Procedure Division Structure

10.1.4.1 Procedure Division Header

The Procedure Division is identified by, and must begin with, the following header:

PROCEDURE DIVISION [USING  {data-name-1}...].

The USING phrase is necessary only if the object program is to be  invoked by a CALL
statement and that statement includes a USING phrase.

The USING phrase of the Procedure Division header identifies the names used by the
program for any parameters passed to it by a calling program.  The parameters passed
to a called program are identified in the USING phrase of the calling program's CALL
statement.  The correspondence between the two lists of names is established on a
positional basis.  The data description of each parameter in the CALL statement must be
the same as the data description of the corresponding parameter in the USING phrase of
the Procedure Division header.  (See the "CALL Statement", Chapter 11.)

Data-name-1 must be defined as a level 01 entry or a level 77 entry in the Linkage
Section.  A particular user-defined word may not appear more than once as data-name-
1.  Data-name-1 must not be the name of a data item possessing the external attribute.
The Record Description entry for data-name-1 must not contain a REDEFINES clause.
Data-name-1 may, however, be the object of a REDEFINES clause elsewhere in the
Linkage Section.



Procedure Division - Overview

47 A2 05UL Rev04 10-3

The following additional rules apply:

1. If the reference to the corresponding data item in the CALL statement declares the
parameter to be passed by content, the value of the item is moved when the CALL
statement is executed and placed into a system-defined storage item possessing
the attributes declared in the Linkage Section for data-name-1.

|If the called program is not in the same separately compiled program as the calling
program,| the data description of each parameter in the BY CONTENT phrase of
the CALL statement must be the same, meaning no conversion or extension or
truncation, as the data description of the corresponding parameter in the USING
phrase of the Procedure Division header.  (See the "CALL Statement", Chapter 11.)

2. If the reference to the corresponding data item in the CALL statement declares the
parameter to be passed by reference, the object program operates as if the data
item in the called program occupies the same storage area as the data item in the
calling program.  The description of the data item in the called program must
describe the same number of character positions as described by the description of
the corresponding data item in the calling program.

3. At all times in the called program, references to data-name-1 are resolved in
accordance with the description of the item given in the Linkage Section of the
called program.

4. Data items defined in the Linkage Section of the called program may be referenced
within the Procedure Division of that program if, and only if, they satisfy one of the
following conditions:

a. They are operands of the USING phrase of the Procedure Division header.

b. They are subordinate to operands of the USING phrase of the Procedure
Division header.

c. They are defined with a REDEFINES or RENAMES clause, the object of which
satisfies the above conditions.

d. They are items subordinate to any item which satisfies the condition in rule 4c.

e. They are condition-names or index-names associated with data items that
satisfy any of the above four conditions.



GCOS 7 COBOL 85 Reference Manual

10-4 47 A2 05UL Rev04

10.1.4.2 Procedure Division Body

The body of the Procedure Division must conform to one of the following formats:

Format 1

[DECLARATIVES.

{section-name [GLOBAL] SECTION  [segment-number].

USE statement.

[paragraph-name [GLOBAL]. [sentence]...]...}...

END DECLARATIVES.]

{section-name [GLOBAL] SECTION  [segment-number].

[paragraph-name [GLOBAL]. [sentence]...]...}...

Format 2

{paragraph-name [GLOBAL]. [sentence]...}...



Procedure Division - Overview

47 A2 05UL Rev04 10-5

10.2 STATEMENTS AND SENTENCES

There are four types of statements: imperative statements, conditional statements,
compiler directing statements, and delimited scope statements.
There are three types of sentences: imperative sentences, conditional sentences, and
compiler directing sentences.

10.2.1 Conditional Statements and Sentences

10.2.1.1 Definition of Conditional Statement

A conditional statement specifies that the truth value of a condition is to be determined
and that the subsequent action of the object program is dependent on this truth value.

A conditional statement is one of the following:

1. An EVALUATE, IF, SEARCH or RETURN statement.

2. A READ statement that specifies the AT END, NOT AT END, INVALID KEY, or
NOT INVALID KEY phrase.

3. A WRITE statement that specifies the INVALID KEY, NOT INVALID KEY, END-OF-
PAGE, or NOT END-OF-PAGE phrase.

4. A START, REWRITE or DELETE statement that specifies the INVALID KEY or
NOT INVALID KEY phrase.

5. An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) that
specifies the SIZE ERROR or NOT ON SIZE ERROR phrase.

6. A RECEIVE statement that specifies a NO DATA or WITH DATA phrase.

7. A STRING or UNSTRING statement that specifies the ON OVERFLOW or NOT ON
OVERFLOW phrase.

8. A CALL statement that specifies the ON OVERFLOW, ON EXCEPTION, |NOT ON
OVERFLOW,| or NOT ON EXCEPTION phrase.



GCOS 7 COBOL 85 Reference Manual

10-6 47 A2 05UL Rev04

10.2.1.2 Definition of Conditional Phrase

A conditional phrase specifies the action to be taken upon determination of the truth
value of a condition resulting from the execution of a conditional statement.

A conditional phrase is one of the following:

1. AT END or NOT AT END phrase when specified within a READ statement.

2. INVALID KEY or NOT INVALID KEY phrase when specified within a DELETE,
READ, REWRITE, START, or WRITE statement.

3. END-OF-PAGE or NOT END-OF-PAGE phrase when specified within a WRITE
statement.

4. SIZE ERROR or NOT ON SIZE ERROR phrase when specified within an ADD,
COMPUTE, DIVIDE, MULTIPLY, or SUBTRACT statement.

5. NO DATA or WITH DATA phrase when specified within a RECEIVE statement.

6. ON OVERFLOW or NOT ON OVERFLOW phrase when specified within a STRING
or UNSTRING statement.

7. ON OVERFLOW, ON EXCEPTION, |NOT ON OVERFLOW,| or NOT ON
EXCEPTION phrase when specified within a CALL statement.

10.2.1.3 Definition of Conditional Sentence

A conditional sentence is a conditional statement, optionally preceded by an imperative
statement, terminated by the separator period.

10.2.2 Compiler Directing Statements and Compiler Directing Sentences

10.2.2.1 Definition of Compiler Directing Statement

A compiler directing statement consists of a compiler directing verb and its operands.
The compiler directing verbs are COPY, REPLACE and USE (see the "COPY
Statement" and the "REPLACE Statement" in Chapter 15, and the "USE Statement" in
Chapter 13).  A compiler directing statement causes the compiler to take a specific
action during compilation.

10.2.2.2 Definition of Compiler Directing Sentence

A compiler directing sentence is a single compiler directing statement terminated by the
separator period.



Procedure Division - Overview

47 A2 05UL Rev04 10-7

10.2.3 Imperative Statements and Imperative Sentences

10.2.3.1 Definition of Imperative Statement

An imperative statement begins with an imperative verb and specifies an unconditional
action to be taken by the object program or is a conditional statement that is delimited by
its explicit scope terminator (delimited scope statement).  An imperative statement may
consist of a sequence of imperative statements, each possibly separated from the next
by a separator.

The imperative verbs are:

ACCEPT EXIT RELEASE
ADD (1) GENERATE REWRITE (2)
ALTER GO TO SEND
CALL (7) INITIALIZE SET
CANCEL INITIATE SORT
CLOSE INSPECT START (2)
COMPUTE (1) MERGE STOP
CONTINUE MOVE STRING (3)
DELETE (2) MULTIPLY (1) SUBTRACT (1)
DISABLE OPEN SUPPRESS
DISPLAY PERFORM TERMINATE
DIVIDE (1) PURGE |TRANSFORM|
ENABLE READ (5) UNSTRING (3)
|EXAMINE| RECEIVE (4) WRITE (6)

(1) Without the optional ON SIZE ERROR and NOT ON SIZE ERROR phrases

(2) Without the optional INVALID KEY and NOT INVALID KEY phrases

(3) Without the optional ON OVERFLOW and NOT ON OVERFLOW phrases

(4) Without the optional NO DATA and WITH DATA phrases

(5) Without the optional AT END, NOT AT END, INVALID KEY, and NOT INVALID
KEY phrases

(6) Without the optional INVALID KEY, NOT INVALID KEY, END-OF-PAGE, and NOT
END-OF-PAGE phrases

(7) Without the optional ON EXCEPTION, ON OVERFLOW, NOT ON EXCEPTION,
and |NOT ON OVERFLOW| phrases

Whenever 'imperative-statement' appears in the general format of statements,
'imperative-statement' refers to that sequence of consecutive imperative statements that
must be ended by a period or by any phrase associated with a statement containing that
'imperative-statement'.

10.2.3.2 Definition of Imperative Sentence

An imperative sentence is an imperative statement terminated by the separator period.



GCOS 7 COBOL 85 Reference Manual

10-8 47 A2 05UL Rev04

10.2.4 Delimited Scope Statements

Definition

A delimited scope statement is any statement which includes its explicit scope
terminator.  (See "Explicit and Implicit Scope Terminators", Chapter 3.)

Scope of Statements

Scope terminators delimit the scope of certain Procedure Division statements.
Statements which include their explicit scope terminators are termed delimited scope
statements.  (See "Explicit and Implicit Scope Terminators" in Chapter 3, and "Delimited
Scope Statements", this chapter.) The scope of statements which are contained within
statements (nested) may also be implicitly terminated.

When statements are nested within other statements, a separator period which
terminates the sentence also implicitly terminates all nested statements.

Whenever any statement is contained within another statement, the next phrase of the
containing statement following the contained statement terminates the scope of any
unterminated contained statement.

When a delimited scope statement is nested within another delimited scope statement
with the same verb, each explicit scope terminator terminates the statement begun by
the most recently preceding, and as yet unterminated, occurrence of that verb.

When statements are nested within other statements which allow optional conditional
phrases, any optional conditional phrase encountered is considered to be the next phrase
of the nearest preceding unterminated statement with which that phrase is permitted to
be associated according to the general format and the syntax rules for that statement,
but with which no such phrase has already been associated.  An unterminated statement
is one which has not been previously terminated either explicitly or implicitly.  (See
"Explicit and Implicit Scope Terminators", Chapter 3.)



Procedure Division - Overview

47 A2 05UL Rev04 10-9

10.3 ARITHMETIC EXPRESSIONS

10.3.1 Definition of Arithmetic Expression

An arithmetic expression can be:

• An identifier of a numeric elementary item

• A numeric literal

• The figurative constant ZERO (ZEROS, ZEROES)

• Such identifiers, figurative constants and literals, separated by arithmetic operators

• Two arithmetic expressions separated by an arithmetic operator, or

• An arithmetic expression enclosed in parentheses.

Any arithmetic expression may be preceded by a unary operator.  The permissible
combinations of identifiers, numeric literals, arithmetic operators, and parentheses are
given in the table "Combination of Symbols in Arithmetic Expressions" below.

Those identifiers and literals appearing in an arithmetic expression must represent either
numeric elementary items or numeric literals on which arithmetic may be performed.

10.3.2 Arithmetic Operators

There are five binary arithmetic operators and two unary arithmetic operators that may
be used in arithmetic expressions.  They are represented by specific characters that
must be preceded by a space and followed by a space:

Binary Arithmetic Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
** Exponentiation

Unary Arithmetic Operator Meaning
+ The effect of multiplication by the numeric

literal +1
- The effect of multiplication by the numeric

literal -1.



GCOS 7 COBOL 85 Reference Manual

10-10 47 A2 05UL Rev04

10.3.3 Formation and Evaluation Rules

1. Parentheses may be used in arithmetic expressions to specify the order in which
elements are to be evaluated.  Expressions within parentheses are evaluated first,
and, within nested parentheses, evaluation proceeds from the least inclusive set to
the most inclusive set.  When parentheses are not used, or parenthesized
expressions are at the same level of inclusiveness, the following hierarchical order
of execution is implied:

1st.  Unary plus and minus
2nd.  Exponentiation
3rd.  Multiplication and division
4th.  Addition and subtraction

2. Parentheses are used either to eliminate ambiguities in logic where consecutive
operations of the same hierarchical level appear, or to modify the normal
hierarchical sequence of execution in expressions where it is necessary to have
some deviation from the normal precedence.  When the sequence of execution is
not specified by parentheses, the order of execution of consecutive operations of
the same hierarchical level is from left to right.

3. The ways in which identifiers, literals, operators, and parentheses may be combined
in an arithmetic expression are summarized in the table "Combination of Symbols
in Arithmetic Expressions" below, where:

a. The letter 'P' indicates a permissible pair of symbols.

b. The letter 'X' indicates an invalid pair.

Table 10-1. Combination of Symbols in Arithmetic Expressions

FIRST SECOND SYMBOL

SYMBOL Identifier
or

Literal
* / ** - + Unary + or - ( )

Identifier or
Literal

X P X X P

* / ** + - P X P P X
Unary + or - P X X P X
( P X P P X
) X P X X P



Procedure Division - Overview

47 A2 05UL Rev04 10-11

4. An arithmetic expression may only begin with the symbol '(', '+', '-', an identifier, or a
literal and may only end with a ')', an identifier, or a literal.  There must be a one-to-
one correspondence between left and right parentheses of an arithmetic expression
such that each left parenthesis is to the left of its corresponding right parenthesis.  If
the first operator in an arithmetic expression is a unary operator, it must be
immediately preceded by a left parenthesis if that arithmetic expression
immediately follows an identifier or another arithmetic expression.

5. The following rules apply to evaluation of exponentiation in an arithmetic
expression:

a. If the value of an expression to be raised to a power is zero, the exponent
must have a value greater than zero.  Otherwise, the size error condition exists
(see the "SIZE ERROR Phrase", this chapter).

b. If the evaluation yields both a positive and negative real number, the value
returned as the result is the positive number.

c. If no real number exists as the result of the evaluation, the size error condition
exists.

6. Arithmetic expressions allow the user to combine arithmetic operations without the
restrictions on composite of operands and/or receiving data items.  When no
reference to a resultant identifier exists in a statement, an intermediate-data-item is
used to store the results of arithmetic expressions (see "Intermediate Data Item",
this chapter).



GCOS 7 COBOL 85 Reference Manual

10-12 47 A2 05UL Rev04

10.4 BOOLEAN EXPRESSIONS

10.4.1 Definition of a Boolean Expression

|A boolean expression is an identifier referencing a boolean data item, a boolean literal,
the figurative constants ZERO (ZEROS, ZEROES) or ALL literal, where literal is a
boolean literal, such identifiers, figurative constants and/or literals separated by a
boolean operator, two boolean expressions separated by a boolean operator, or a
boolean expression enclosed in parentheses.  Any boolean expression may be preceded
by the unary boolean operator.  The permissible combinations of variables, boolean
literals, boolean operators and parentheses are given in the table "Combination of
Symbols in Boolean Expressions" below.|

10.4.2 Boolean Operators

|There are three binary boolean operators and one unary boolean operator.  They may
be used only in boolean expressions.  They are represented by the following reserved
words that must be both preceded and followed by the separator space.

Binary Boolean Operator: Meaning:

B-AND Boolean Conjunction
B-OR Boolean Inclusive Disjunction
B-EXOR Boolean Exclusive Disjunction

Unary Boolean Operator: Meaning:

B-NOT Boolean Negation|

10.4.3 Boolean Formation and Evaluation Rules

|1.     Whenever two boolean expressions are separated only by 'B-AND', 'B-OR' or 'B-
EXOR', or whenever a boolean expression is immediately preceded by 'B-NOT', the
'B-AND', 'B-OR', 'B-EXOR' or 'B-NOT' is a boolean operator.

2.     Parentheses may be used in boolean expressions to specify the order in which
elements are to be evaluated.  Expressions within parentheses are evaluated first
and, within nested parentheses, evaluation proceeds from the least inclusive set to
the most inclusive set.  When parentheses are not used, or parenthesized
expressions are at the same level of inclusiveness, the following hierarchical order
of execution is implied:

1st - Negation (B-NOT)
2nd - Conjunction (B-AND)
3rd - Disjunction (B-OR and B-EXOR)



Procedure Division - Overview

47 A2 05UL Rev04 10-13

3.     Parentheses are used either to eliminate ambiguities in logic, where consecutive
operations of the same hierarchical level appear, or to modify the normal
hierarchical sequence of execution in expressions where it is necessary to have
some deviation from the normal precedence.  When the sequence of execution is
not specified by parentheses, the order of execution of consecutive operations of
the same hierarchical level is from left to right.

4.     The ways in which identifiers referencing boolean data items, boolean literals,
boolean operators, and parentheses may be combined in a boolean expression are
summarized in the table "Combinations of Symbols in Boolean Expressions" below.

        In this table:

a. The letter 'P' indicates a permissible pair.
b. The character 'X' indicates an invalid pair.

Table 10-2. Combination of Symbols in Boolean Expressions

    |===============|============================================|
    |     FIRST     |             SECOND SYMBOL                  |
    |               | --------- |------------|-----------|---|---|
    |     SYMBOL    |  Identif. |   B-AND    |           |   |   |
    |               |     or    |   B-OR     |   B-NOT   | ( | ) |
    |               |  Literal  |   B-EXOR   |           |   |   |
    |---------------|-----------|------------|-----------|---|---|
    |  Identifier   |     X     |      P     |       X   | X | P |
    |  or Literal   |           |            |           |   |   |
    |---------------|-----------|------------|-----------|---|---|
    |  B-AND, B-OR  |     P     |      X     |       P   | P | X |
    |  B-EXOR       |           |            |           |   |   |
    |---------------|-----------|------------|-----------|---|---|
    |  B-NOT        |     P     |      X     |       X   | P | X |
    |---------------|-----------|------------|-----------|---|---|
    |   (           |     P     |      X     |       P   | P | X |
    |---------------|-----------|------------|-----------|---|---|
    |   )           |     X     |      P     |       X   | X | P |
    |===============|============================================|

5.     A boolean expression may only begin with the symbol '(', an identifier that
references a boolean data item, a boolean literal or the operator 'B-NOT'.  A
boolean expression may only end with the symbol ')', an identifier that references a
boolean data item or a boolean literal.  There must be a one-to-one correspondence
between left and right parentheses of a boolean expression such that each left
parenthesis is to the left of its corresponding right parenthesis.

6.     Binary boolean operations are performed without regard for the usage of the
operands.  If the two operands are of equal size, the operation proceeds by
conjoining or disjoining boolean characters in corresponding boolean character
positions starting from the high order end and continuing to the lower order end.  If
the operands are of unequal length, then the operation proceeds as though the
shorter operand was extended on the low order end by a sufficient number of
boolean zeroes to make the operands of equal size.

7.     The result of the evaluation of a boolean expression is a hypothetical data item
whose size is that of the largest boolean item referenced in the expression.|



GCOS 7 COBOL 85 Reference Manual

10-14 47 A2 05UL Rev04

10.5 CONDITIONAL EXPRESSIONS

Conditional expressions identify conditions that are tested to enable the object program
to select between alternate paths of control depending upon the truth value of the
condition.  A conditional expression has a truth value represented by either 'true' or
'false'.  Conditional expressions are specified in the EVALUATE, IF, PERFORM, and
SEARCH statements.  There are two categories of conditions associated with conditional
expressions: simple conditions and complex conditions.  Each may be enclosed within
any number of paired parentheses, in which case its category is not changed.

10.5.1 Simple Conditions

The simple conditions are the relation, class, condition-name, switch-status, and sign
conditions.

A simple condition has a truth value of 'true' or 'false'.  The inclusion in parentheses of
simple conditions does not change the simple condition truth value.

10.5.1.1 Relation Condition

A relation condition causes a comparison of two operands, each of which may be the
data item referenced by an identifier, a literal, an index-name, the value resulting from
an arithmetic |or a boolean| expression.  A relation condition has a truth value of 'true' if
the relation exists between the operands.  Comparison of two numeric operands |or two
boolean operands| is permitted regardless of the formats specified in their respective
USAGE clauses.  However, for all other comparisons the operands must have the same
usage.  If either of the operands is a group item, the non-numeric comparison rules
apply|; however, if one of the operands is a boolean expression, both operands must be
boolean expressions.|

The format for a relation condition |not involving boolean or pointer expressions| is as
follows:

{identifier-1           }
{literal-1              }
{arithmetic-expression-1}
{index-name-1           }

        {   IS [NOT] GREATER  THAN      }
        {   IS [NOT] LESS  THAN         }
        {   IS [NOT] EQUAL  TO          }
        {   IS GREATER THAN OR  EQUAL TO}
        {   IS LESS THAN OR  EQUAL TO   }
        {   IS [NOT] >                 } {identifier-2           }
        {   IS [NOT] <                 } {literal-2              }
        {   IS [NOT] =                 } {arithmetic-expression-2}
        {   IS >=                      } {index-name-2           }
        {   IS <=                      }
        { |---------------|            }
        { | IS UNEQUAL TO |            }
        { | EQUALS        |            }
        { | EXCEEDS       |            }
          |---------------|



Procedure Division - Overview

47 A2 05UL Rev04 10-15

|The format for a relation condition involving boolean expressions is as follows:|

|---------------------------------------------------------------|
|                      {IS [NOT] EQUAL  TO}                      |
|                      {IS [NOT] =       }                      |
| boolean-expression-1 {                 } boolean-expression-2 |
|                      {IS UNEQUAL TO    }                      |
|                      {EQUALS           }                      |
|---------------------------------------------------------------|
|The format for a relation condition involving pointer expressions is as follows:|

|---------------------------------------------------------|
| {ADDRESS OF  identifier-3}                               |
| {identifier-4           }                               |
| {NULL                 }                                 |
|           {IS [NOT] EQUAL  TO}                           |
|           {IS [NOT] =       } {ADDRESS  OF identifier-5} |
|           {                 } {identifier-6           } |
|           {IS UNEQUAL TO    } {NULL                    } |
|           {EQUALS           }                           |
|---------------------------------------------------------|

The first operand (identifier-1, literal-1, arithmetic-expression-1, index-name-1, |or
boolean-expression-1)| is called the subject of the condition; the second operand
(identifier-2, literal-2, arithmetic-expression-2, index-name-2, |or boolean-expression-2)|
is called the object of the condition.  The relation condition must contain at least one
reference to a variable.

The relational operators specify the type of comparison to be made in a relation
condition.  A space must precede and follow each reserved word comprising the
relational operator.  When used, NOT and the next key word or relation character are
one relational operator that defines the comparison to be executed for truth value; e.g.,
NOT EQUAL is a truth test for an unequal comparison; NOT GREATER is a truth test for
an equal or less comparison.  The meaning of the relational operators is given as follows:

|=============================|==================================|
|     Relational Operator     |         Meaning                  |
|-----------------------------|----------------------------------|
| IS [NOT] GREATER THAN       | Greater than or not greater than |
| IS [NOT] >                  |                                  |
|-----------------------------|----------------------------------|
| IS [NOT] LESS THAN          | Less than or not less than       |
| IS [NOT] <                  |                                  |
|-----------------------------|----------------------------------|
| IS [NOT] EQUAL TO           | Equal to or not equal to         |
| IS [NOT] =                  |                                  |
|-----------------------------|----------------------------------|
| IS GREATER THAN OR EQUAL TO | Greater than or equal to         |
| IS >=                       |                                  |
|-----------------------------|----------------------------------|
| IS LESS THAN OR EQUAL TO    | Less than or equal to            |
| IS <=                       |                                  |
|-----------------------------|----------------------------------|
| |EQUALS                     | Equal to                          |
|-----------------------------|----------------------------------|
| IS UNEQUAL TO               | Not equal to                      |
|-----------------------------|----------------------------------|
| EXCEEDS                     | Greater than|                     |
|=============================|==================================|



GCOS 7 COBOL 85 Reference Manual

10-16 47 A2 05UL Rev04

1. Comparison of Numeric Operands

For operands whose class is numeric, a comparison is made with respect to the
algebraic value of the operands.  The length of the literal or arithmetic expression
operands, in terms of the number of digits represented, is not significant.  Zero is
considered a unique value regardless of the sign.

Comparison of these operands is permitted regardless of the manner in which their
usage is described.  Unsigned numeric operands are considered positive for
purposes of comparison.

2. Comparison of Non-numeric Operands

For non-numeric operands, or one numeric and one non-numeric operands, a
comparison is made with respect to a specified collating sequence of characters.
(See "OBJECT-COMPUTER Paragraph", Chapter 7).  If one of the operands is
specified as numeric, it must be an integer data item or an integer literal and:

a. If the non-numeric operand is an elementary data item or a non-numeric literal,
the numeric operand is treated as though it were moved to an elementary
alphanumeric data item of the same size as the numeric data item (in terms of
standard data format characters), and the content of this alphanumeric data
item were then compared to the non-numeric operand.  (See the "MOVE
Statement" in Chapter 12, and the "PICTURE Clause" character 'P' in
Chapter 9.)

b. If the non-numeric operand is a group item, the numeric operand is treated as
though it were moved to a group item of the same size as the numeric data
item (in terms of standard data format characters), and the content of this
group item were then compared to the non-numeric operand.  (See the "MOVE
Statement" in Chapter 12, and the "PICTURE Clause" character 'P' in
Chapter 9.)

c. A non-integer numeric operand cannot be compared to a non-numeric
operand.

The size of an operand is the total number of standard data format characters in the
operand.  Numeric and non-numeric operands may be compared only when their
usage is the same.

There are two cases to consider: operands of equal size and operands of unequal
size.

a. Operands of Equal Size.

If the operands are of equal size, comparison effectively proceeds by
comparing characters in corresponding character positions starting from the
high order end and continuing until either a pair of unequal characters is
encountered or the low order end of the operand is reached, whichever comes
first.  The operands are determined to be equal if all pairs of corresponding
characters are equal.

The first encountered pair of unequal characters is compared to determine
their relative position in the collating sequence.  The operand that contains the
character that is positioned higher in the collating sequence is considered to be
the greater operand.



Procedure Division - Overview

47 A2 05UL Rev04 10-17

b. Operands of Unequal Size.

If the operands are of unequal size, comparison proceeds as though the
shorter operand were extended on the right by sufficient spaces to make the
operands of equal size.

3. Comparisons Involving Index-Names and/or Index Data Items.

Relation tests may be made only between:

a. Two index-names.  The result is the same as if the corresponding occurrence
numbers were compared.

b. An index-name and a numeric data item or a numeric literal.  The occurrence
number that corresponds to the value of the index-name is compared to the
data item or literal.  |If the data item or the literal are not numeric then the
result will be undefined.|

c. An index data item and an index-name or another index data item.  The actual
values are compared without conversion.

|4.     Comparison of boolean operands

A comparison of boolean operands is made regardless of their usage.  If the
operands are of equal size, comparison effectively proceeds by comparing boolean
characters in corresponding boolean character positions starting from the high order
end and continuing until either a pair of unequal boolean characters is encountered
or the low order end of the operand is reached, whichever comes first.  The
operands are determined to be equal if all pairs of boolean characters compare
equally through the last pair, when the low order end is reached.  If the operands
are of unequal size, comparison proceeds as though the shorter operand were
extended on the right by sufficient boolean character zeros to make the operands of
equal size.

5.     Comparison of pointer operands

Identifier-4 and identifier-6 must be described with the USAGE IS POINTER
clause.|



GCOS 7 COBOL 85 Reference Manual

10-18 47 A2 05UL Rev04

10.5.1.2 Class Condition

The class condition determines whether the operand is numeric, alphabetic, alphabetic-
lower, alphabetic-upper, |boolean|, or contains only the characters in the set of
characters specified by the CLASS clause as defined in the SPECIAL-NAMES paragraph
of the ENVIRONMENT DIVISION.  The class of an operand is determined as follows:

• An operand is numeric if it consists entirely of the characters 0, 1, 2, 3, ... , 9, with or
without an operational sign.

• An operand is alphabetic if it consists entirely of the uppercase letters A, B, ... , Z,
space or the lower-case letters a, b, ... , z, space or any combination of the uppercase
and lower-case letters and spaces.

• An operand is alphabetic-lower if it consists entirely of the lower-case letters a, b, c, ...
z, and space.

• An operand is alphabetic-upper if it consists entirely of the uppercase letters A, B, C, ..
, Z, and space.

• An operand is Boolean if it consists entirely of the characters 0 and 1.|

An operand is in conformance with class-name-1 if it consists entirely of the characters
listed in the definition of class-name-1 in the SPECIAL-NAMES paragraph.

The general format for the class condition is as follows:

                      {  NUMERIC          }
                      {  ALPHABETIC       }
                      {  ALPHABETIC-LOWER }
identifier-1 is [NOT] {  ALPHABETIC-UPPER  }
                      { |---------------| }
                      { | BOOLEAN       | }
                      { |---------------| }
                      { class-name-1      }

Identifier-1 must reference a data item whose usage is explicitly or implicitly DISPLAY.
If identifier-1 is a function-identifier, it must reference an alphanumeric function.

When used, NOT and the next key word specify one class condition that defines the
class test to be executed for truth value; e.g. NOT NUMERIC is a truth test for
determining that an operand is non-numeric.

The NUMERIC test cannot be used with an item whose data description describes the
item as alphabetic or as a group item composed of elementary items whose data
description indicates the presence of operational sign(s).  If the data description of the
item being tested does not indicate the presence of an operational sign, the item being
tested is determined to be numeric only if the content is numeric and an operational sign
is not present.  If the data description of the item does indicate the presence of an
operational sign, the item being tested is determined to be numeric only if the content is
numeric and a valid operational sign is present.  Valid operational signs for data items
described with the SIGN IS SEPARATE clause are the standard data format characters
'+' and '-'.  Valid sign(s) for data items not described with the SIGN IS SEPARATE clause
(see Chapter 9) are '+' and '-' overpunched in the trailing location.



Procedure Division - Overview

47 A2 05UL Rev04 10-19

The ALPHABETIC test cannot be used with an item whose data description describes the
item as numeric.  The result of the test is true if the content of the data item referenced
by identifier-1 consists entirely of alphabetic characters.

The ALPHABETIC-LOWER test cannot be used with an item whose data description
describes the item as numeric.  The result of the test is true if the content of the data
item referenced by identifier-1 consists entirely of the lower-case alphabetic characters a
through z and space.

The ALPHABETIC-UPPER test cannot be used with an item whose data description
describes the item as numeric.  The result of the test is true if the content of the data
item referenced by identifier-1 consists entirely of the uppercase alphabetic characters A
through Z and space.

The BOOLEAN test must not be used with an item whose data description describes the
item as alphabetic or numeric.  The result of the test is true if the contents of the data
item referenced by identifier-1 consist entirely of boolean characters.

The class-name-1 test must not be used with an item described as numeric.

10.5.1.3 Condition-name Condition (Conditional Variable)

In a condition-name condition, a conditional variable is tested to determine whether or
not its value is equal to one of the values associated with condition-name-1.  The general
format for the condition-name condition is as follows:

condition-name-1

If condition-name-1 is associated with a range or ranges of values, then the conditional
variable is tested to determine whether or not its value falls in this range including the
end values.

The rules for comparing a conditional variable with a condition-name value are the same
as those specified for relation conditions.

The result of the test is 'true' if one of the values corresponding to the condition-name-1
equals the value of its associated conditional variable.

10.5.1.4 Switch-status Condition

A switch-status condition determines the 'on' or 'off' status of a JCL switch.  The switch
and the 'on' or 'off' value associated with the condition must be named in the SPECIAL-
NAMES paragraph of the Environment Division.  The general format for the switch-status
condition is as follows:

condition-name-1

The result of the test is 'true' if the switch is set to the specified position corresponding to
condition-name-1.



GCOS 7 COBOL 85 Reference Manual

10-20 47 A2 05UL Rev04

10.5.1.5 Sign Condition

The sign condition determines whether or not the algebraic value of an arithmetic
expression is less than, greater than, or equal to zero.  The general format for a sign
condition is as follows:

                                 { POSITIVE }
arithmetic-expression-1 IS [NOT] { NEGATIVE  }
                                 { ZERO     }

When used, NOT and the next key word specify one sign condition that defines the
algebraic test to be executed for truth value; e.g., NOT ZERO is a truth test for a non-
zero (positive or negative) value.  An operand is positive if its value is greater than zero,
negative if its value is less than zero, and zero if its value is equal to zero.

Arithmetic-expression-1 must contain at least one reference to a variable.

10.5.2 Complex Conditions

A complex condition is formed by combining simple conditions and/or complex
conditions with logical connectors (logical operators 'AND' and 'OR') and by negating
these conditions with logical negation (the logical operator 'NOT').  The truth value of a
complex condition, whether parenthesized or not, is that truth value which results from
the interaction of the stated logical operators on its constituent conditions.

The logical operators and their meanings are:

Logical Operator Meaning

AND Logical conjunction; the truth value is 'true' if both of the
conjoined conditions are true; 'false' if one or both of the
conjoined conditions is false.

OR Logical inclusive OR; the truth value is 'true' if one or both
of the included conditions is true; 'false' if both included
conditions are false.

NOT Logical negation or reversal of truth value; the truth value
is 'true' if the condition is false; 'false' if the condition is
true.

The logical operators must be preceded by a space and followed by a space.



Procedure Division - Overview

47 A2 05UL Rev04 10-21

10.5.2.1 Negated Conditions

A condition is negated by use of the logical operator 'NOT' which reverses the truth value
of the condition to which it is applied.  Thus, the truth value of a negated condition is
'true' if and only if the truth value of the condition being negated is 'false'; the truth value
of a negated condition is 'false' if and only if the truth value of the condition being
negated is 'true'.  Including a negated condition in parentheses does not change its truth
value.

The general format for a negated condition is

NOT condition-1

10.5.2.2 Combined Conditions

A combined condition results from connecting conditions with one of the logical operators
'AND' or 'OR.' The general format of a combined condition is

              { AND }
condition-1 { {     } condition-2 } ...
              { OR  }

10.5.2.3 Precedence of Logical Operators and Use of Parentheses

In the absence of the relevant parentheses in a complex condition, the precedence (i.e.,
binding power) of the logical operators determines the conditions to which the specified
logical operators apply and implies the equivalent parentheses.  The order of precedence
is 'NOT', 'AND', 'OR'.  Thus, specifying 'condition-1 OR NOT condition-2 AND condition-
3' implies and is equivalent to specifying 'condition-1 OR ((NOT condition-2) AND
condition 3)'.

Where parentheses are used in a complex condition, they determine the binding of
conditions to logical operators.  Parentheses can, therefore, be used to depart from the
normal precedence of logical operators as specified above.  Thus, the example complex
condition above can be given a different meaning by specifying it as '(condition-1 OR
(NOT condition-2)) AND condition-3'.  (See "Order of Evaluation of Conditions", this
chapter.)

The table below indicates the ways in which conditions and logical operators may be
combined and parenthesized.  There must be a one-to-one correspondence between left
and right parentheses such that each left parenthesis is to the left of its corresponding
right parenthesis.



GCOS 7 COBOL 85 Reference Manual

10-22 47 A2 05UL Rev04

Table 10-3. Combinations of Conditions, Operators, Parentheses

|==========|==================|==================================|
|          |  In a conditional|   In a left-to-right sequence    |
|          |  expression      |       of elements:               |
|----------|---------|--------|----------------|-----------------|
|          |         |        | Element, when  | Element, when   |
| Given the|May      |May     |not first, may  |not last, may    |
| following|element  |element |be immediately  |be immediately   |
| element  |be first?|be last?|preceded by only|followed by only |
|----------|---------|--------|----------------|-----------------|
| simple   |   Yes   |   Yes  |OR, NOT, AND, ( | OR, AND, )      |
| condition|         |        |                |                 |
|----------|---------|--------|----------------|-----------------|
| OR or AND|   No    |   No   |simple-condi-   |simple condi-    |
|          |         |        |        tion, ) |   tion, NOT, (  |
|----------|---------|--------|----------------|-----------------|
|   NOT    |   Yes   |   No   |OR, AND, (      |simple condi-    |
|          |         |        |                |   tion, (       |
|----------|---------|--------|----------------|-----------------|
|   (      |   Yes   |   No   |OR, NOT, AND, ( |simple-condi-    |
|          |         |        |                |   tion, NOT, (  |
|----------|---------|--------|----------------|-----------------|
|   )      |   No    |   Yes  |simple-condi-   |OR, AND, )       |
|          |         |        |   tion, )      |                 |
|==========|==================|==================================|

Thus, the element pair 'OR NOT' is permissible while the pair 'NOT OR' is not
permissible; the pair 'NOT (' is permissible while 'NOT NOT' is not permissible.

10.5.3 Abbreviated Combined Relation Condition

When simple or negated simple relation conditions are combined with logical
connectives in a consecutive sequence such that a succeeding relation condition
contains a subject or subject and relational operator that is common with the preceding
relation condition, and no parentheses are used within such a consecutive sequence, any
relation condition except the first may be abbreviated by the omission of the subject of
the relation condition, or the omission of the subject and relational operator of the
relation condition.

The format for an abbreviated combined relation condition is:

                    { AND }
relation-condition {{     } [NOT] [relational-operator] object}...
                    { OR  }



Procedure Division - Overview

47 A2 05UL Rev04 10-23

Within a sequence of relation conditions both of the above forms of abbreviation may be
used.  The effect of using such abbreviations is as if the last preceding stated subject
were inserted in place of the omitted subject, and the last stated relational operator were
inserted in place of the omitted relational operator.  The result of such implied insertion
must comply with the rules given in the table "Combinations of Conditions, Operators,
Parentheses" above.  The insertion of an omitted subject and/or relational operator
terminates once a complete simple condition is encountered within a complex condition.

The interpretation applied to the case of the word NOT in an abbreviated combined
relation condition is as follows:

If the word immediately following NOT is GREATER, >, LESS, <, EQUAL, =, then the
NOT participates as part of the relational operator; otherwise the NOT is interpreted as a
logical operator and, therefore, the implied insertion of subject or relational operator
results in a negated relation condition.

Some examples of abbreviated combined and negated combined relation conditions and
expanded equivalents follow.

Abbreviated Combined
Relation Condition Expanded Equivalent

a > b AND NOT < c OR d ((a > b) AND ( a NOT < c)) OR
(a NOT < d)

a NOT EQUAL b OR c (a NOT EQUAL b) OR
(a NOT EQUAL c)

NOT a = b OR c (NOT (a = b)) OR (a = c)

NOT (a GREATER b OR < c) NOT ((a GREATER b) OR (a < c))

NOT (a NOT > b AND c
AND NOT d)

NOT ((((a NOT > b) AND (a NOT > c))
AND (NOT (a NOT > d))))

a / b UNEQUAL c AND NOT d ((a / b) UNEQUAL c) AND
(NOT ((a  / b) UNEQUAL d))



GCOS 7 COBOL 85 Reference Manual

10-24 47 A2 05UL Rev04

10.5.4 Order of Evaluation of Conditions

Parentheses, both explicit and implicit, denote a level of inclusiveness within a complex
condition.  Two or more conditions connected by only the logical operator 'AND' or only
the logical operator 'OR' at the same level of inclusiveness establish a hierarchical level
within a complex condition.  Thus, an entire complex condition may be considered to be
a nested structure of hierarchical levels with the entire complex condition itself being the
most inclusive hierarchical level.  Within this context, the evaluation of the conditions
within an entire complex condition begins at the left of the entire complex condition and
proceeds according to the following rule recursively applied where necessary:

1. The constituent connected conditions within a hierarchical level are evaluated in
order from left to right, and evaluation of that hierarchical level terminates as soon
as a truth value for it is determined regardless of whether all the constituent
connected conditions within that hierarchical level have been evaluated.

2. Values are established for arithmetic expressions and function if and when the
conditions containing them are evaluated.  Similarly, negated conditions are
evaluated if and when it is necessary to evaluate the complex condition that they
represent.  (See "Formation and Evaluation Rules" above.)



Procedure Division - Overview

47 A2 05UL Rev04 10-25

10.6 CATEGORIES OF STATEMENTS

Category   Verbs

{ ADD

{ COMPUTE

Arithmetic { DIVIDE
{ |EXAMINE| (TALLYING)
{ INSPECT (TALLYING)
{ MULTIPLY
{ SUBTRACT

|Boolean| { |COMPUTE|

{ COPY

Compiler directing { REPLACE
{ USE

{ ADD (SIZE ERROR)

{ CALL (ON EXCEPTION/OVERFLOW)

{ COMPUTE (SIZE ERROR)

{ DELETE (INVALID KEY)

{ DIVIDE (SIZE ERROR)

{ EVALUATE

{ IF

{ MULTIPLY (SIZE ERROR)

{ READ (AT END or INVALID KEY)

Conditional { RECEIVE (NO DATA)
{ RETURN
{ REWRITE (INVALID KEY)
{ SEARCH
{ START (INVALID KEY)
{ STRING (ON OVERFLOW)
{ SUBTRACT (SIZE ERROR)
{ UNSTRING (ON OVERFLOW)
{ WRITE (INVALID KEY or END-OF-PAGE)



GCOS 7 COBOL 85 Reference Manual

10-26 47 A2 05UL Rev04

{ ACCEPT (DATE, DAY, DAY-OF-WEEK, or TIME)

{ ACCEPT (MESSAGE COUNT)

{ |EXAMINE|

{ INITIALIZE

{ INSPECT (CONVERTING)

{ INSPECT (REPLACING)

Data Movement { MOVE
{ SET (TO TRUE)
{ STRING
{ |TRANSFORM|
{ UNSTRING

Ending { STOP

Input-Output

{ ACCEPT (identifier)
{ CLOSE
{ DELETE
{ DISABLE
{ DISPLAY
{ ENABLE
{ OPEN
{ PURGE
{ READ
{ RECEIVE
{ REWRITE
{ SEND
{ SET (TO ON, TO OFF)
{ START
{ STOP (literal)
{ WRITE

Inter-Program { CALL
Communicating { CANCEL

No Operation { CONTINUE
{ EXIT

Ordering

{ MERGE
{ RELEASE
{ RETURN
{ SORT

Procedure Branching

{ ALTER
{ CALL
{ EXIT (PROGRAM)
{ GO TO
{ PERFORM



Procedure Division - Overview

47 A2 05UL Rev04 10-27

Report Writing

{ GENERATE
{ INITIATE
{ SUPPRESS
{ TERMINATE

Scope Delimiting

{ ADD (END-ADD)
{ CALL (END-CALL)
{ COMPUTE (END-COMPUTE)
{ DELETE (END-DELETE)
{ DIVIDE (END-DIVIDE)
{ EVALUATE (END-EVALUATE)
{ IF (END-IF)
{ MULTIPLY (END-MULTIPLY)
{ PERFORM (END-PERFORM)
{ READ (END-READ)
{ RECEIVE (END-RECEIVE)
{ RETURN (END-RETURN)
{ REWRITE (END-REWRITE)
{ SEARCH (END-SEARCH)
{ START (END-START)
{ STRING (END-STRING)
{ SUBTRACT (END-SUBTRACT)
{ UNSTRING (END-UNSTRING)
{ WRITE (END-WRITE)

Table Handling { SEARCH
{ SET (TO, UP BY or DOWN BY)

IF is a verb in the COBOL sense; it is recognized that it is not a verb in English.

10.6.1 Specific Statement Formats

The specific statement formats, together with a detailed discussion of the restrictions and
limitations associated with each, appear hereafter in alphabetic order.



GCOS 7 COBOL 85 Reference Manual

10-28 47 A2 05UL Rev04

10.7 COMMON OPTIONS AND RULES FOR STATEMENT FORMATS

The subordinate paragraphs provide a description of the common options and conditions
that pertain to or appear in several different statements.

10.7.1 Intermediate Data Item

An intermediate data item is a signed numeric data item provided by the compiler that
contains the results developed in the course of an arithmetic operation prior to the final
result being moved to the resultant identifier, if any.  This data item is 18 |(up to 30 if the
compilation is run with the LEVEL = NSTD parameter) digits in length and contains the
18 (or 30 if the compilation is run with the LEVEL = NSTD parameter)| most significant
digits of the result being developed during the execution of an arithmetic operation.
During execution of an arithmetic operation, the magnitude of the mathematical result is
maintained and all low-order digits which are truncated are considered to be zero for the
remainder of this arithmetic operation.  The TEMP clause of |the Default Section of the
Control Division may change the above rules.|

10.7.2 The ROUNDED Phrase

If, after decimal point alignment, the number of places in the fractions of the result of an
arithmetic operation is greater than the number of places provided for the fraction of the
resultant identifier, truncation is relative to the size provided for the resultant identifier.
When rounding is requested, the absolute value of the resultant identifier is increased by
one in the low-order position whenever the most significant digit of the excess is greater
than or equal to five.

When the low-order integer positions in a resultant identifier are represented by the
character 'P' in the PICTURE clause for that resultant identifier, rounding or truncation
occurs relative to the rightmost integer position for which storage is allocated.

If the result is described with the USAGE IS BINARY clause, the value of the result will
be exactly the same as it was described with the USAGE IS DISPLAY clause.



Procedure Division - Overview

47 A2 05UL Rev04 10-29

10.7.3 The SIZE ERROR Phrase

The size error condition occurs under the following circumstances:

1. Violation of the rules for evaluation of exponentiation always terminates the
arithmetic operation and always causes a size error condition.  (See "Formation and
Evaluation Rules" above.)

2. Division by zero always terminates the arithmetic operation and always causes a
size error condition.

3. If, after radix point alignment, the absolute value of a result exceeds the largest
value that can be contained in the associated resultant identifier, a size error
condition exists.  |In this case, the size error condition applies only to the final
results of an arithmetic operation and does not apply to intermediate results.  The
algebraic value of the final result of the arithmetic operation(s) is accurate to the
precision specified by the resultant identifier, except when the TEMP clause of the
Default Section of the Control Division permits some loss of precision.|

If the ROUNDED phrase is specified, rounding takes place before checking for size
error.

If the ON SIZE ERROR phrase is specified and a size error condition exists after the
execution of the arithmetic operations specified by an arithmetic statement, the values of
the affected resultant identifiers remain unchanged from the values they had before
execution of the arithmetic statement.  The values of resultant identifiers for which no
size error condition exists are the same as they would have been if the size error
condition had not resulted for any of the resultant identifiers.  After completion of the
arithmetic operations, control is transferred to the imperative-statement specified in the
ON SIZE ERROR phrase and execution continues according to the rules for each
statement specified in that imperative-statement.  If a procedure branching or conditional
statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the
execution of the imperative-statement specified in the ON SIZE ERROR phrase, control
is transferred to the end of the arithmetic statement and the NOT ON SIZE ERROR
phrase, if specified, is ignored.

If the ON SIZE ERROR phrase is not specified and a size error condition exists after the
execution of the arithmetic operations specified by an arithmetic statement, the values of
the affected resultant identifiers are undefined.  The values of resultant identifiers for
which no size error condition exists are the same as they would have been if the size
error condition had not resulted for any of the resultant identifiers.  After completion of
the arithmetic operations, control is transferred to the end of the arithmetic statement
and the NOT ON SIZE ERROR phrase, if specified, is ignored.



GCOS 7 COBOL 85 Reference Manual

10-30 47 A2 05UL Rev04

If the size error condition does not exist after the execution of the arithmetic operations
specified by an arithmetic statement, the ON SIZE ERROR phrase, if specified, is
ignored and control is transferred to the end of the arithmetic statement or to the
imperative-statement specified in the NOT ON SIZE ERROR phrase if it is specified.  In
the latter case, execution continues according to the rules for each statement specified in
that imperative statement.  If a procedure branching or conditional statement which
causes explicit transfer of control is executed, control is transferred in accordance with
the rules for that statement; otherwise, upon completion of the execution of the
imperative-statement specified in the NOT ON SIZE ERROR phrase, control is
transferred to the end of the arithmetic statement.

For the ADD statement with the CORRESPONDING phrase and the SUBTRACT
statement with the CORRESPONDING phrase, if any of the individual operations
produces a size error condition, imperative-statement-1 in the SIZE ERROR phrase is
not executed until all the individual additions or subtractions are completed.

If the result is described with the usage is binary clause and the ON SIZE ERROR
phrase is specified, the size error condition and the value of the result will be exactly the
same as if the result was described with the USAGE IS DISPLAY clause.

10.7.4 The CORRESPONDING Phrase

For the purpose of this discussion, identifier-1 and identifier-2 are the identifiers specified
in a statement which contains the CORRESPONDING phrase.

1. Rules for valid identifiers are:

a. All identifiers must refer to group items.

b. The REDEFINES or OCCURS clause may be specified in the data description
entry of any of the identifiers.

c. Identifiers may be subordinate to a data description entry containing a
REDEFINES or OCCURS clause.

d. No identifier may be defined with level-number 66, with level number 77, level
number 88 or with the USAGE IS INDEX clause.

e. No identifier may be reference modified.

2. Data items subordinate to identifier-1 correspond with data items subordinate to
identifier-2, if the following rules apply:

a. Both data items must have the same data-name.

b. All possible qualifiers for the sending data item, up to but not including
identifier-1, must be identical to all possible qualifiers for the receiving data
item up to but not including identifier-2.

c. In an ADD or SUBTRACT statement, only elementary numeric data items will
be considered.

d. In a MOVE statement, the corresponding sending and/or receiving data items
must be elementary.  The class of any corresponding pair of data items may
differ.



Procedure Division - Overview

47 A2 05UL Rev04 10-31

e. A data item with a level-number of 66 or 88 or with a data description entry
containing a REDEFINES, OCCURS, USAGE IS POINTER or |USAGE IS
INDEX clause| is not considered.  Any data item subordinate to a data item
which is not eligible for correspondence will also be ignored.

f. FILLER data items and data items subordinate thereto are ignored.

10.7.5 The Arithmetic Statements

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and
SUBTRACT statements.  They have several common features.

1. The data descriptions of the operands need not be the same; any necessary
conversion and decimal point alignment is supplied throughout the calculation.

2. The maximum size of each operand is eighteen decimal digits, |(or thirty if the
compilation is run with the LEVEL = NSTD parameter).|

3. For ADD, DIVIDE, MULTIPLY, and SUBTRACT statements, the composite of
operands, which is a hypothetical data item resulting from the super-imposition of
specific operands in a statement aligned on their decimal points, must not contain
more than 18 decimal digits (or 30 if LEVEL 64).

4. Each arithmetic operation is evaluated using an intermediate data item provided for
the result of the arithmetic operation.  If the size of the result being developed is
larger than this intermediate data item, truncation occurs.  The content of the
intermediate data item is moved to the resultant identifier according to the rules for
the MOVE statement.  Rounding is performed and the size error condition is
determined only during this move.  (See the "ROUNDED Phrase", and the "SIZE
ERROR Phrase" in this chapter, and the "MOVE Statement" in Chapter 12.)

10.7.6 Overlapping Operands

When a sending and a receiving item in any statement share a part or all of their storage
areas, yet are not defined by the same data description entry, the result of the execution
of such as statement is undefined.  In addition, the results are undefined for some
statements in which sending and receiving items are defined by the same data
description entry.  These cases are addressed in the general rules associated with those
statements.



GCOS 7 COBOL 85 Reference Manual

10-32 47 A2 05UL Rev04

10.7.7 Multiple Results in Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have
multiple results.  Such statements behave as though they had been written in the
following way:

1. A statement whose execution accesses all data items that are part of the initial
evaluation of the statement, performs any necessary arithmetic or combining of
these data items and stores the result of this operation in a temporary location.  See
the individual statements for the rules indicating which items are part of the initial
evaluation.

2. A sequence of statements whose execution transfers or combines the value in this
temporary location with each single resulting data item.  These statements are
considered to be written in the same left-to-right sequence that the multiple results
are specified.

The result of the statement

ADD a, b, c, TO c, d(c), e

is equivalent to

ADD a, b, c GIVING temp
ADD temp TO c
ADD temp TO d(c)
ADD temp TO e

and the result of the statement

MULTIPLY a (i) BY i, a (i)

is equivalent to

MOVE a (i) TO temp
MULTIPLY temp BY i
MULTIPLY temp BY a (i)

in both cases, 'temp' is an intermediate result item provided by the compiler.

10.7.8 Incompatible Data

Except for the class condition, when the content of a data item is referenced in the
Procedure Division and the content of that data item is not compatible with the class
specified for that data item by its PICTURE clause or function definition, then the result
of such a reference is undefined.  (See "Class Condition", this chapter.)



Procedure Division - Overview

47 A2 05UL Rev04 10-33

10.7.9 The INVALID KEY Condition

The format of the INVALID KEY phrase is:

[INVALID KEY imperative-statement-1]
[NOT INVALID  KEY imperative-statement-2]

The invalid key condition can occur as a result of the execution of a DELETE, READ,
REWRITE, START or WRITE statement.  When the invalid key condition occurs,
execution of the input-output statement which recognized the condition is unsuccessful
and the file is not affected.  (See the "DELETE Statement" in Chapter 11, the "READ
Statement" and the "REWRITE Statement" in Chapter 12, the "START Statement" and
the WRITE Statement in Chapter 13.)

If the invalid key condition exists after the execution of the input-output operation
specified in an input-output statement, the following actions occur in the order shown:

1. The I-O status of the file connector associated with the statement is set to a value
indicating the invalid key condition.  (See "I-O Status" of the statement concerned.)

2. If the INVALID KEY phrase is specified in the input-output statement, any USE
AFTER EXCEPTION procedure associated with the file connector is not executed
and control is transferred to the imperative statement specified in the INVALID KEY
phrase.  Execution then continues according to the rules for each statement
specified in that imperative statement.  If a procedure branching or conditional
statement which causes explicit transfer of control is executed, control is transferred
in accordance with the rules for that statement; otherwise, upon completion of the
execution of the imperative statement specified in the INVALID KEY phrase, control
is transferred to the end of the input-output statement and the NOT INVALID KEY
phrase, if specified, is ignored.

3. If the INVALID KEY phrase is not specified in the input-output statement, a USE
AFTER EXCEPTION procedure must be associated with the file connector and that
procedure is executed and control is transferred according to the rules of the USE
statement.  The NOT INVALID KEY phrase, if specified, is ignored.

If the invalid key condition does not exist after the execution of the input-output operation
specified by an input-output statement, the INVALID KEY phrase, if specified, is ignored.
The I-O status of the file connector associated with the statement is updated and the
following actions occur in the order shown:

1. If an exception condition which is not an invalid key condition exists, control is
transferred according to the rules of the USE statement following the execution of
any USE AFTER EXCEPTION procedures associated with the file connector.  (See
"I-O Status" of the statement concerned.)

2. If no exception condition exists, control is transferred to the end of the input-output
statement or to the imperative statement specified in the NOT INVALID KEY phrase
if it is specified.  In the latter case, execution continues according to the rules for
each statement specified in that imperative statement.  If a procedure branching or
conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement; otherwise, upon
completion of the execution of the imperative statement specified in the NOT
INVALID KEY phrase, control is transferred to the end of the input-output
statement.



GCOS 7 COBOL 85 Reference Manual

10-34 47 A2 05UL Rev04

10.7.10 The AT END Condition

The format of the AT END phrase is:

[AT END imperative-statement-1]

[NOT AT END  imperative-statement-2]

The at end condition can occur as a result of the execution of a READ, or RETURN
statement.

If an at end condition does not occur at the time of execution of a statement containing
the NOT AT END phrase, control is transferred to imperative-statement-2 in the NOT AT
END phrase after updating of the I-O status associated with the file-name.  If an
exception condition which is not an at end condition occurs, this transfer of control takes
place after execution of the procedures, if any, specified by the USE AFTER
STANDARD EXCEPTION statement applicable to the file-name.

10.7.11 The FROM Option

The format of the FROM phrase is:

record-name-1 FROM identifier-1

Record-name-1 and identifier-1 must not refer to the same storage area.

The result of the execution of a RELEASE, REWRITE or WRITE statement with the
FROM phrase is equivalent to the execution of the following statements in the order
specified:

1. The statement:

    MOVE identifier-1 TO record-name-1

according to the rules specified for the MOVE statement.

2. The same RELEASE, REWRITE or WRITE statement without the FROM phrase.

After the execution of the RELEASE, REWRITE or WRITE statement is complete, the
information in the area referenced by identifier-1 is available, even though the
information in the area referenced by record-name-1 is not available except as specified
by the SAME RECORD AREA clause.



Procedure Division - Overview

47 A2 05UL Rev04 10-35

10.7.12 The INTO Option

The format of the INTO phrase is:

file-name-1 INTO identifier-1

The storage area associated with identifier-1 and the record area associated with file-
name-1 must not be the same storage area.

The INTO phrase may be specified in READ or RETURN statements:

1. If only one record description is subordinate to the file description entry, or

2. If all record-names associated with file-name-1 and the data item associated with
identifier-1 describe a group item or an elementary alphanumeric item.

The results of the execution of a READ or RETURN statement with the INTO phrase are
equivalent to the application of the following rules in the order specified:

1. The execution of the same READ or RETURN statement without the INTO phrase.

2. The current record is moved from the record area to the area specified by identifier-
1 |as if it were an alphanumeric to alphanumeric elementary move except that there
is no conversion of data from one form of internal representation to another.| The
size of the current record is determined by rules specified for the RECORD clause.
If the file description entry contains a RECORD VARYING clause, the implied move
is a group move.

The implied MOVE statement does not occur if the execution of the READ or
RETURN statement was unsuccessful.  Any subscripting associated with identifier-1
is evaluated after the record has been read and immediately before it is moved to
the data item.  The record is available in both the record area and the data
referenced by identifier-1.



GCOS 7 COBOL 85 Reference Manual

10-36 47 A2 05UL Rev04



47 A2 05UL Rev04 11-1

11. Procedure Division - Statements
(ACCEPT to GO TO)

This chapter describes the statements from ACCEPT to GO TO (inclusive).  The
statements concerned are as follows:

• ACCEPT

• ADD

• ALTER

• |ASSIGN|

• CALL

• CANCEL

• CLOSE

• COMPUTE

• CONTINUE

• DELETE

• DISABLE

• DISPLAY

• DIVIDE

• ENABLE

• EVALUATE

• |EXAMINE|

• EXIT

• GENERATE

• GO TO



GCOS 7 COBOL 85 Reference Manual

11-2 47 A2 05UL Rev04

11.1 ACCEPT

Description

The ACCEPT statement causes low volume data to be made available to the specified
data item.

Format 4 allows you to obtain the file-literal associated to a file.

Format 1

                          {    mnemonic-name-1      }
                          { |---------------------| }
                          { |  SYSIN              | }
ACCEPT identifier-1 [FROM  { | [ALTERNATE ] CONSOLE | }
                          { |  ALTERNATE-CONSOLE  | }
                          { |  TERMINAL           | }
                            |---------------------|

Format 2

                         {DATE       }
                         {DAY        }
ACCEPT identifier-2 FROM  {           }
                         {DAY-OF-WEEK}
                         {TIME       }

Format 3

ACCEPT cd-name-1 MESSAGE COUNT

Format 4

|-----------------------------------------|
| ACCEPT identifier-3 FROM  FILE  file-name |
|-----------------------------------------|

Syntax Rules

1. Mnemonic-name-1 in format 1 must also be specified in the SPECIAL-NAMES
paragraph of the Environment Division, and must be associated with CONSOLE,
ALTERNATE-CONSOLE, |ALTERNATE CONSOLE,| TERMINAL, or SYSIN.

2. Cd-name-1 must reference an input CD.

|3.     Identifier-2 must not reference a boolean data item.

4.     Identifier-3 must be described as an alphanumeric item.|



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-3

General Rules

Format 1

1. The ACCEPT statement causes the transfer of data from the hardware device.  The
data replaces the content of the data item referenced by identifier-1.  Conversion is
applied to the transfer, |depending on the suffixed device name.  (See "Legible
Equivalent" in Chapter 3, and "Default Section" in Chapter 5).|

2. If mnemonic-name-1 is associated with SYSIN, or if SYSIN is explicitly specified,
data is accepted from the file whose internal-file-name is H_RD.

If mnemonic-name-1 is associated with CONSOLE, |or if CONSOLE is explicitly
specified,| data is accepted from the main operator console.

If mnemonic-name-1 is associated with ALTERNATE-CONSOLE |or ALTERNATE
CONSOLE, or if ALTERNATE-CONSOLE or ALTERNATE CONSOLE are explicitly
specified,| data is accepted from the alternate operator console specified in the
CONSOLE JCL statement.  If no alternate console is specified, data is accepted
from the console from which the job is submitted.

If mnemonic-name-1 is associated with TERMINAL, |or if TERMINAL is explicitly
specified,| data is accepted from the alternate operator console specified in the
CONSOLE JCL statement.  If no alternate console is specified, data is accepted
from the console from which the job is submitted.  If the program is interactively run
from an I0F terminal, data is accepted from that very terminal.

To determine the size of a data transfer, a required size is defined.  The required
size depends on the category of the receiving data item and the suffix implicitly or
explicitly appended to the hardware name associated with mnemonic-name-1 |or
specified in the FROM phrase|.

a. The suffix is -0: The required size is the number of character positions in the
receiving area.

b. The suffix is -2 and the receiving data item is numeric: The number of
characters received is considered to be the required size; when the hardware
name associated with mnemonic-name-1 |or specified in the FROM phrase| is
SYSIN and if the standard method applies (see the COBOL 85 User's Guide),
as many records as necessary to get a non blank character are read, if end-of-
file is reached, the program is in error.

c. Other cases: The required size is the number of characters in the legible input
equivalent.

3. If the size of the transferred data is equal to the required size, it is stored in the
receiving data item.



GCOS 7 COBOL 85 Reference Manual

11-4 47 A2 05UL Rev04

4. If the size of the transferred data is not equal to the required size, then:

a. If the required size exceeds the total size of transferred data, then additional
data is requested if the hardware name associated with mnemonic-name-1 |[or
specified in the FROM phrase]| is SYSIN and the standard method applies
(see the COBOL 85 User's Guide).  After additional data is transferred, rules 3
and 4 apply.  If end-of-file is reached or if the hardware name is not SYSIN or
if the hardware name is SYSIN and the console method applies (see the
COBOL 85 User's Guide), the transferred data is padded with as many
characters as necessary to get the required size.  The padding characters are
zeros |if the receiving data item is of category boolean or if it is usage
POINTER or| if the suffix implicitly or explicitly appended to the hardware
name is -X, or blank characters otherwise.

b. If the size of the transferred data exceeds the required size, only the leftmost
characters of the transferred data are used to be stored in the receiving data
item.  If the remaining characters of the transferred data are all blank
characters or if the suffix implicitly or explicitly appended to the hardware
name associated with mnemonic-name-1 |[or specified in the FROM phrase]|
is -0, the characters in excess are ignored, else the program is in error.

5. If the FROM option is not given, data is accepted from the file whose internal-file-
name is H_RD, i.e.  the standard device is that implied by SYSIN.  |However,
another default may be specified in the ACCEPT clause of the Default Section in
the Control Division.|

Format 2

6. The ACCEPT statement causes the information requested to be transferred to the
data item specified by identifier-2 according to the rules for the MOVE statement.
(See the "MOVE Statement" in Chapter 12.) DATE, DAY, DAY-OF-WEEK and
TIME are conceptual data items and, therefore, are not described in the COBOL
program.

7. DATE is composed of the data elements year of century, month of year, and day of
month.  The sequence of the data element codes is from high order to low order
(left to right), year of century, month of year, and day of month.  Therefore,
February 14, 1982 would be expressed as 820214.  DATE, when accessed by a
COBOL program, behaves as if it had been described in a COBOL program as an
unsigned elementary numeric integer data item six digits in length.

8. DAY is composed of the data elements year of century and day of year.  The
sequence of the data element codes is from high order to low order (left to right)
year of century, day of year.  Therefore, February 14, 1982 would be expressed as
82045.  DAY, when accessed by a COBOL program, behaves as if it had been
described in a COBOL program as an unsigned elementary numeric integer data
item five digits in length.



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-5

9. TIME is composed of the data elements hours, minutes, seconds and hundredths of
a second.  TIME is based on elapsed time after midnight on a 24-hour clock basis -
thus, 2:41 p.m. would be expressed as 14410000.  TIME, when accessed by a
COBOL program, behaves as if it had been described in a COBOL program as an
unsigned elementary numeric integer data item eight digits in length.  The minimum
value of TIME is 00000000; the maximum value is 23595999.

10. DAY-OF-WEEK is composed of a single data element whose content represents
the day of the week.  DAY-OF-WEEK, when accessed by a COBOL program,
behaves as if it had been described in the COBOL program as an unsigned
elementary numeric integer data item one digit in length.  In DAY-OF-WEEK, the
value 1 represents Monday, 2 represents Tuesday, ..., 7 represents Sunday.

Format 3

11. The ACCEPT statement causes the MESSAGE COUNT field specified for cd-
name-1 to be updated to indicate the number of complete messages that exist in
the queue structure designated by the contents of the data items specified by data-
name-1 (SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE-3)
of the area referenced by cd-name-1.

12. Upon execution of the ACCEPT MESSAGE COUNT statement, the content of the
area specified by a Communication Description entry must contain at least the
name of the symbolic queue to be tested.  Testing the condition causes the content
of the data items referenced by data-name-10 (STATUS KEY) and data-name-11
(MESSAGE COUNT) of the area associated with the Communication Description
entry to be appropriately updated.

Format 4

|13. A file-literal corresponding to the current assignment of  file-name is built and then
moved to identifier-3.  If file-name is not assigned, identifier-3 is set to spaces.

14. Information such as access, end, abend, ... if any, are lost.|

15. If file-name is defined with an ORGANIZATION clause that specifies QUEUED, the
member name that could have been determined by any execution of an ASSIGN
verb containing the TO MEMBER phrase is not part of the value returned by a
format 4 ACCEPT statement.  This information is got when identifier-1 is used in a
format 1 ASSIGN statement.|



GCOS 7 COBOL 85 Reference Manual

11-6 47 A2 05UL Rev04

11.2 ADD

Description

The ADD statement sums two or more numeric operands to be and stores the result.

Format 1

    {identifier-1}
ADD {            }... TO  {identifier-2 [ROUNDED ]}...
    {literal-1   }

    [ON SIZE ERROR  imperative-statement-1]

    [NOT ON SIZE  ERROR imperative-statement-2]

    [END-ADD]

Format 2

    {identifier-1}       {identifier-2}
ADD {            }... TO {            }
    {literal-1   }       {literal-2   }

            GIVING {identifier-3 [ROUNDED ]}...

    [ON SIZE ERROR  imperative-statement-1]

    [NOT ON SIZE  ERROR imperative-statement-2]

    [END-ADD]

Format 3

    {CORRESPONDING}
ADD {             } identifier-1 TO  identifier-2 [ROUNDED ]
    {CORR         }

    [ON SIZE ERROR  imperative-statement-1]

    [NOT ON SIZE  ERROR imperative-statement-2]

    [END-ADD]



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-7

Syntax Rules

1. In formats 1 and 2, each identifier must refer to an elementary numeric item, except
that in format 2 each identifier following the word GIVING must refer to either an
elementary numeric item or an elementary numeric edited item.  In Format 3, each
identifier must refer to a group item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18 digits |(up to 30 if the
compiler is run with the LEVEL=NSTD parameter).| In format 1 the composite of
operands is determined by using all of the operands in a given statement.  In format
2 the composite of operands is determined by using all of the operands in a given
statement excluding the data items that follow the word GIVING .  In format 3 the
composite of operands is determined separately for each pair of corresponding data
items.

4. CORR is an abbreviation for CORRESPONDING.

General Rules

1. If format 1 is used, the values of the operands preceding the word TO are added
together and the sum is stored in a temporary data item.  The value in this
temporary data item is added to the value of the data item referenced by identifier-
2, storing the result into the data item referenced by identifier-2, and repeating this
process for each occurrence of identifier-2 in the left-to-right order in which
identifier-2 is specified.

2. If format 2 is used, the values of the operands preceding the word GIVING are
added together, then the sum is stored as the new content of each data item
referenced by identifier-3.

3. If format 3 is used, data items in identifier-1 are added to and stored in
corresponding data items in identifier-2.

4. The compiler insures that enough places are carried so as not to lose any significant
digits during execution.

5. Additional rules and explanations relative to this statement are given under the
appropriate paragraphs.  (See "Scope of Statements", "Intermediate Data Item", the
"ROUNDED Phrase", the "Arithmetic Statements", "Overlapping Operands", the
"SIZE ERROR Phrase", the "CORRESPONDING Phrase", and "Multiple Results in
Arithmetic Statements"  in Chapter 10.)



GCOS 7 COBOL 85 Reference Manual

11-8 47 A2 05UL Rev04

11.3 ALTER

Description

The ALTER statement modifies a predetermined sequence of operations.

The ALTER statement is an obsolete element in Standard COBOL because it is to be
deleted from the next revision of Standard COBOL.

Format

ALTER {procedure-name-1 TO  [PROCEED TO] procedure-name-2}...

Syntax Rules

1. Each procedure-name-1 is the name of a paragraph that contains a single sentence
consisting of a GO TO statement without the DEPENDING phrase.

2. Each procedure-name-2 is the name of a paragraph or section in the Procedure
Division.

General Rules

1. Execution of the ALTER statement modifies the GO TO statement in the paragraph
named procedure-name-1, so that subsequent executions of the modified GO TO
statement cause transfer of control to procedure-name-2.  Modified GO TO
statements in independent segments may, under some circumstances, be returned
to their initial states.

2. A GO TO statement in a section with a segment-number greater than 49 must not
be referred to by an ALTER statement in a section with a different segment-
number.

All other uses of the ALTER statement are valid and are performed even if
procedure-name-1 is in an overlayable fixed segment.



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-9

11.4 ASSIGN

Description

|The ASSIGN statement associates a member name to a queued file, or assigns a file.|

Format 1

|----------------------------------------------------|
|ASSIGN file-name-1                                  |
|                                                    |
|          {[NOT] GREATER  THAN       }               |
|          {[NOT] LESS  THAN          }               |
|          {[NOT] EQUAL  TO           }               |
|          { GREATER THAN OR  EQUAL TO} {identifier-1}|
|TO MEMBER { LESS  THAN OR EQUAL TO   } {literal-1   }|
|          {[NOT] >                  } {ACTUAL       }|
|          {[NOT] <                  }               |
|          {[NOT] =                  }               |
|          { >=                      }               |
|          { <=                      }               |
|----------------------------------------------------|

Format 2

|------------------------------------------|
|                           {identifier-2} |
|ASSIGN file-name-2 TO  FILE  {literal-2   } |
|                           {file-name-3 } |
|------------------------------------------|

Syntax Rules

|1. File-name-1 must be described with an ORGANIZATION clause that specifies
QUEUED, with no ifn-suffix except possibly -MSD.

2. Identifier-1 must be described as an alphanumeric item.

3. Literal-1 must be a non-numeric literal.

4. The description of file-name-1 or file-name-2 must specify a file literal in the
ASSIGN phrase of the SELECT entry.

5. Identifier-2 must be described as an alphanumeric item.

6. Literal-2 must be a non numeric literal.|



GCOS 7 COBOL 85 Reference Manual

11-10 47 A2 05UL Rev04

General Rules

Format 1

|1. File-name-1 must not be in the open state.

2. File-name-1 must have been assigned to a queued file, either by JCL or by a
previously executed Format 2 ASSIGN statement.

3. The file connector associated to file-name-1 contains the name of the member
being assigned to file-name-1, let's call this name the "actual member name".  The
initial value of the actual member name or its value after the execution of a format
2 ASSIGN file-name-1 statement is ALL LOW-VALUES.  The execution of the
format 1 ASSIGN statement records in actual member name the name of the
member of the queued file assigned to file-name-1 which meets the condition
specified with regard to the compared name.  The compared name is the value of
identifier-1 if identifier-1 is specified, or literal-1 if literal-1 is specified, or the current
value of actual member name if ACTUAL is specified.  Comparison is done
according to the NATIVE collating sequence.

If TO MEMBER GREATER THAN or TO MEMBER > is specified, actual member
name is set to the least member name greater than the compared name.

If TO MEMBER LESS THAN or TO MEMBER < is specified, actual member name
is set to the greatest member name less than the compared name.

If TO MEMBER EQUAL TO or TO MEMBER = is specified, actual member name is
set to the member name equal to the compared name.

If TO MEMBER NOT GREATER THAN or TO MEMBER NOT > or TO MEMBER
LESS THAN OR EQUAL TO or TO MEMBER <= is specified, actual member name
is set to the greatest member name less than or equal to the compared name.

If TO MEMBER NOT LESS THAN or TO MEMBER NOT < or TO MEMBER
GREATER THAN OR EQUAL TO or TO MEMBER >= is specified, actual member
name is set to the least member name greater than or equal to the compared name.

If TO MEMBER NOT EQUAL TO or TO MEMBER NOT = is specified, actual
member name is set to any member name different from the compared name.

If no member name meets the required condition, actual member name is set to
ALL LOW-VALUES.

4. When an OPEN statement is executed for a file, and the file is a queued file, it is
the member whose name is the actual-member-name recorded in the file connector
associated with the file which is opened.  If such a member does not exist, when a
OPEN statement without the OUTPUT phrase associated with this file is executed,
the OPEN is unsuccessful, and the file status data item, if any, is set to "9W".|



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-11

Format 2

|5. File-name-2 and file-name-3 must not be in the open state.

6. The value of literal-2 or identifier-2 must be of the form of a file literal possibly
followed by assignment parameters.  The syntax of the contents of literal-2 or
identifier-2 is the same as that of the literal in the ASSIGN clause of the File-Control
entry except that no internal-file-name must be specified.  (See "FILE-CONTROL
ENTRY", Chapter 7).

7. Previously to any other processing or checking, file-name-2 is deassigned if
previously assigned.

8. If identifier-2 or literal-2 contains no valid file-literal, the ASSIGN statement is
unsuccessful.|

9. If file-name-3 is specified, then file-name-2 is assigned the same as file-name-3 is.
If file-name-3 is declared as QUEUED, any member name which it may have been
assigned to using the format 1 ASSIGN verb is not taken into account, in that case
file-name-2 should also be declared as QUEUED.|

10. The effect of an ASSIGN statement is to record assignment information rather than
actually assign the file.  This will take place when a subsequent OPEN or Format 1
ASSIGN statement is executed just before the opening operation begins.|

11. When an OPEN statement is executed for a file, and the last executed ASSIGN
statement for that file was unsuccessful, the OPEN statement is unsuccessful, and
the file status data item, if any, is set to "9M".|



GCOS 7 COBOL 85 Reference Manual

11-12 47 A2 05UL Rev04

11.5 CALL

Description

The CALL statement causes control to be transferred from one object program to
another, within the run unit.

Format

     {identifier-1}
CALL {            } [USING
     {literal-1   }
                      |------------|
   {[BY REFERENCE] {[ | ADDRESS  OF | ] identifier-2}...}
   {                  |------------|                   }
   {                                                   }
   {            {   identifier-3              }        }... ]
   {            { |-------------------------| }        }
   { BY CONTENT { | literal-2               | }...     }
                { | arithmetic-expression-1 | }
                { | boolean-expression-1    | }
                  |-------------------------|

   |----------------------|
   | [GIVING identifier-4 |
   |----------------------|

        {EXCEPTION}
    [ON {         } imperative-statement-1]
        {OVERFLOW }

            {   EXCEPTION  }
    [NOT ON { |----------| } imperative-statement-2]
            { | OVERFLOW | }
              |----------|

    [END-CALL]

Syntax Rules

1. Literal-1 must be a non-numeric literal such that it can be a program-name.

2. Identifier-1 must be defined as an alphanumeric data item such that its value can
be a program-name.

3. Each of the operands in the USING phrase must have been defined as a data item
in the File Section, Working-Storage Section, |Constant Section,| Communication
Section, or Linkage Section, and must be a level 01 or 77 data item or an
elementary data item, |or a group data item.  If identifier-2 references a data item
whose usage is bit, its level-number must be 01 or 77.|

4. The same data-name may be referenced more than once in a CALL statement.

5. Identifier-2 must not be a function-identifier.



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-13

|6. The words EXCEPTION and OVERFLOW are synonymous and may be used
interchangeably.

7. Literal-2, arithmetic-expression-1 or boolean-expression-1 may be used only when
the called program is not externally compiled to the calling program.|

|8. Identifier-4 must reference either

a.     an elementary item of USAGE COMP-1, COMP-2, COMP-9, COMP-10 or
POINTER,

b.     an elementary item of USAGE ALPHABETIC or ALPHANUMERIC of one
character in length.|

General Rules

1. Literal-1 or the content of the data item referenced by identifier-1 is the name of the
called program.  The program in which the CALL statement appears is the calling
program.  If the program being called is a COBOL program, literal-1 or the content
of the data item referenced by identifier-1 must contain the program-name
contained in the PROGRAM-ID paragraph of the called program.

2. If, when a CALL statement is executed, the program specified by the CALL
statement is made available for execution, control is transferred to the called
program.  After control is returned from the called program, the ON EXCEPTION
phrase, if specified, is ignored and control is transferred to the end of the CALL
statement or, if the NOT ON EXCEPTION phrase is specified, to imperative-
statement-2.  If control is transferred to imperative-statement-2, execution
continues according to the rules for each statement specified in imperative-
statement-2.  If a procedure branching or conditional statement which causes
explicit transfer of control is executed, control is transferred in accordance with the
rules for that statement; otherwise, upon completion of the execution of imperative-
statement-2, control is transferred to the end of the CALL statement.

3. If it is determined, when a CALL statement is executed, that the program specified
by the CALL statement cannot be made available for execution at the time, one of
the two actions listed below will occur.

a. If the ON EXCEPTION phrase is specified in the CALL statement, control is
transferred to imperative-statement-1.  Execution then continues according to
the rules for each statement specified in imperative-statement-1.  If a
procedure branching or conditional statement which causes explicit transfer of
control is executed, control is transferred in accordance with the rules for that
statement; otherwise, upon completion of the execution of imperative-
statement-1, control is transferred to the end of the CALL statement and the
NOT ON EXCEPTION phrase, if specified, is ignored.

b. If the ON EXCEPTION phrase is not specified in the CALL statement, the NOT
ON EXCEPTION phrase, if specified, is ignored and the run unit aborts.



GCOS 7 COBOL 85 Reference Manual

11-14 47 A2 05UL Rev04

4. Two or more programs in the run unit may have the same program-name, and the
reference in a CALL statement to such a program-name is resolved by using the
scope of names conventions for program-names.  (See "Conventions for Program-
Names" in Chapter 3.)

For example, when only two programs in the run unit have the same name as that
specified in a CALL statement:

a. One of those two programs must also be contained directly or indirectly either
within the separately compiled program which includes that CALL statement or
within the separately compiled program which itself directly or indirectly
contains the program which includes that CALL statement, and

b. The other of those two programs must be a different separately compiled
program.

The mechanism used in this example is as follows:

a. If one of the two programs having the same name as that specified in the
CALL statement is directly contained within the program which includes that
CALL statement, that program is called.

b. If one of the two programs having the same name as that specified in the
CALL statement possesses the common attribute and is directly contained
within another program which directly or indirectly contains the program which
includes the CALL statement, that common program is called unless the
calling program is contained within that common program.

c. Otherwise, the separately compiled program is called.

5. If the called program does not possess the initial attribute, it, and each program
directly or indirectly contained within it, is in its initial state the first time it is called
within a run unit and the first time it is called after a CANCEL to the called program.

On all other entries into the called program, the state of the program and each
program directly or indirectly contained within it remains unchanged from its state
when last exited.  This includes the internal data.

6. If the called program possesses the initial attribute, it and each program directly or
indirectly contained within it, is placed into its initial state every time the called
program is called within a run unit.

7. Files associated with a called program's internal file connectors are not in the open
mode when the program is in an initial state.  (See "Initial State of a Program" in the
Glossary.)

On all other entries into the called program, the states and positioning of all such
files are the same as when the called program was last exited.

8. The process of calling a program or exiting from a called program does not alter the
status or positioning of a file associated with any external file connector.



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-15

9. The USING phrase may be included in the CALL statement only if there is a USING
phrase in Procedure Division header of the called program and the number of
operands in each USING phrase must be identical.

10. The sequence of appearance of parameters, in the USING phrase of the CALL
statement and in the corresponding USING phrase in the called program's
Procedure Division header determines the correspondence between the parameters
used by the calling and called programs.  This correspondence is positional and not
by name equivalence; the first parameter in one USING phrase corresponds to the
first parameter in the other, the second to the second, etc.  The data description of
each parameter in the CALL statement must be the same as the data description of
the corresponding parameter in the USING phrase of the Procedure Division
header.  (See the "Procedure Division Header" in Chapter 10.)

11. The values of the parameters referenced in the USING phrase of the CALL
statement are made available to the called program at the time the CALL statement
is executed.

12. Both the BY CONTENT and BY REFERENCE phrases are transitive across the
parameters which follow them until another BY CONTENT or BY REFERENCE
phrase is encountered.  If neither the BY CONTENT nor the BY REFERENCE
phrase is specified prior to the first parameter, the BY REFERENCE phrase is
assumed.

13. If the BY REFERENCE phrase is either specified or implied for a parameter, the
object program operates as if the corresponding data item in the called program
occupies the same storage area as the data item in the calling program.  The
description of the data item in the called program must describe the same number
of character positions as described by the description of the corresponding data
item in the calling program.

14. If the BY CONTENT phrase is specified or implied for a parameter, the called
program cannot change the value of this parameter as referenced in the CALL
statement's USING phrase, though the called program may change the value of the
data item referenced by the corresponding data-name in the called program's
Procedure Division header.  |Previous to actually call the called program, each BY
CONTENT parameter is moved to a dummy data name with the following rules:|

|a.    If the called program is in the same separately compiled program as the
calling program the dummy data name has the same description as the
corresponding data name in the USING phrase of the called program.  The
move is done according to the rules of the MOVE statement for identifier-3, or
literal.2, and according to the rules for the COMPUTE statement without the
ROUNDED phrase for arithmetic-expression-1 or boolean-expression-1.

b.     If the called program is in another separately compiled program than the
calling program, the dummy data name is assumed to be of the same
description as identifier-3 and the move is a group move.|



GCOS 7 COBOL 85 Reference Manual

11-16 47 A2 05UL Rev04

15. Called programs may contain CALL statements.  However, a called program must
not execute a CALL statement that directly or indirectly calls the calling program.  If
a CALL statement is executed within the range of a declarative, that CALL
statement cannot directly or indirectly reference any called program to which control
has been transferred and which has not completed execution.

16. The END-CALL phrase delimits the scope of the CALL statement.  (See "Scope of
Statements" in Chapter 10.)

|17. When the ADDRESS OF option of the USING phrase is used, the data which is
available to the called program is the address of the data item referenced by
identifier-2, and not the data item itself.  This address is handled as if it were a data
item described with the USAGE IS POINTER clause.|

|18. The GIVING phrase is used when the called program is written in C Language and
return a value (External Function).  After execution of the called program, the return
value is made available in the data item referenced by identifier-4.|



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-17

11.6 CANCEL

Description

The CANCEL statement ensures that the next time the referenced program is called it
will be in its initial state.

Format

       {literal-1   }
CANCEL {            }...
       {identifier-1}

Syntax Rules

1. Literal-1 must be a non-numeric literal such that it can be program-name.

2. Identifier-1 must reference an alphanumeric data item such that its value can be a
program-name.

General Rules

1. Literal-1 or the content of the data item referenced by identifier-1 identifies the
program to be cancelled.

2. Subsequent to the execution of an explicit or implicit CANCEL statement, the
program referred to therein ceases to have any logical relationship to the run unit in
which the CANCEL statement appears.  If the program referenced by a successfully
executed explicit or implicit CANCEL statement in a run unit is subsequently called
in that run unit, that program is in its initial state.

3. A program named in a CANCEL statement in another program must be callable by
that other program.  (See "Scope of Names" in Chapter 3, and the "CALL
Statement" in Chapter 11.)

4. When an explicit or implicit CANCEL statement is executed, all programs contained
within the program referenced by the CANCEL statement are also cancelled.  The
result is the same as if valid CANCEL statement were executed for each contained
program in the reverse order in which the programs appear in the separately
compiled program.

5. A program named in the CANCEL statement must not refer directly or indirectly to
any program that has been called and has not yet executed an EXIT PROGRAM
statement.

6. A logical relationship to a cancelled program is established only by execution of a
subsequent CALL statement naming that program.



GCOS 7 COBOL 85 Reference Manual

11-18 47 A2 05UL Rev04

7. A called program is cancelled either by being referred to as the operand of a
CANCEL statement, by the termination of the run unit of which the program is a
member, or by execution of an EXIT PROGRAM statement in a called program that
possesses the initial attribute.

8. No action is taken when an explicit or implicit CANCEL statement is executed
naming a program that has not been called in this run unit or has been called and is
at present cancelled.  Control is transferred to the next executable statement
following the explicit CANCEL statement.

9. The contents of data items in external data records described by a program are not
changed when that program is cancelled.

10. During execution of an explicit or implicit CANCEL statement, an implicit CLOSE
statement without any optional phrases is executed for each file in the open mode
that is associated with an internal file connector in the program named in the
explicit CANCEL statement.  Any USE procedures associated with any of these files
are not executed.



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-19

11.7 CLOSE

Description

The CLOSE statement terminates the processing of reels/units and files with optional
rewind and/or lock or removal where applicable.

Format

                             |----------------|
                    {REEL} [ | WITH NO  REWIND | ]
                   [{    } [ |----------------| ]]
                   [{UNIT} [   FOR REMOVAL       ]]
CLOSE {file-name-1 [                             ]}...
                   [      {NO REWIND }            ]
                   [ WITH {         }            ]
                          {LOCK     }

Syntax Rules

1. The files referenced in the CLOSE statement need not all have the same
organization or access.

2. The REEL or UNIT phrase must only be used for sequential files.

General Rules

Except where otherwise stated in the general rules below, the terms 'reel' and 'unit' are
synonymous and completely interchangeable in the CLOSE statement.  Treatment of
sequential mass storage files is logically equivalent to the treatment of a file on tape or
analogous sequential media.  Treatment of a file contained in a multiple file tape
environment is logically equivalent to the treatment of a sequential single-reel/unit file if
the file is wholly contained on one reel, or to the treatment of a sequential multi-reel/unit
file if the file is contained on more than one reel.

1. A CLOSE statement may only be executed for a file in an open mode.  |However,
when the file is an external file actually associated with SYSIN or with SYSOUT a
CLOSE statement is accepted even though the file is not in an open mode; no
action is then performed and the CLOSE is successful.|

2. For the purpose of showing the effect of various types of CLOSE statements as
applied to various storage media, all files are divided into the following categories:

a. Non-reel/unit.  A file whose input or output medium is such that the concepts of
rewind and reels/units have no meaning.

b. Sequential single-reel/unit.  A sequential file that is entirely contained on one
reel/unit.



GCOS 7 COBOL 85 Reference Manual

11-20 47 A2 05UL Rev04

c. Sequential multi-reel/unit.  A sequential file that is contained on more than one
reel/unit.

d. Non-sequential single/multi-reel/unit.  A file with organization other than
sequential, which resides on a mass storage device.

3. The results of executing each type of CLOSE for each category of file are
summarized in the table below.

Table 11-1. Relationship of File Categories and Formats of the CLOSE Statement

|=================|==============================================|
|                 |               File Category                  |
|      CLOSE      |----------------------------------------------|
|    Statement    |  Non-   |Sequential|Sequential|Non-Sequential|
|     Format      |Reel/Unit|  Single- |  Multi   | Single/Multi-|
|                 |         |Reel/Unit |Reel/Unit |  Reel/Unit   |
|-----------------|---------|----------|----------|--------------|
| CLOSE           |    C    |   C,G    |  C,G,A   |      C       |
|-----------------|---------|----------|----------|--------------|
| CLOSE WITH LOCK |   C,E   |  C,G,E   | C,G,E,A  |     C,E      |
|-----------------|---------|----------|----------|--------------|
| CLOSE WITH      |   C,H   |   C,B    |  C,B,A   |      X       |
| NO REWIND       |         |          |          |              |
|-----------------|---------|----------|----------|--------------|
| CLOSE REEL/UNIT |    F    |   F,G    |   F,G    |      X       |
|-----------------|---------|----------|----------|--------------|
| CLOSE REEL/UNIT |    F    |  F,D,G   |  F,D,G   |      X       |
| FOR REMOVAL     |         |          |          |              |
|-----------------|---------|----------|----------|--------------|
| CLOSE REEL/UNIT |   F,H   |   F,B    |   F,B    |      X       |
| WITH NO REWIND  |         |          |          |              |
|=================|==============================================|

The definitions of the symbols in the table "Relationship of File Categories and
Formats of the CLOSE Statement" are given below.  Where the definition depends
on whether the file is an input, output or input-output file, alternate definitions are
given; otherwise, a definition applies to input, output, and input-output files.

A. Effect on Previous Reels/Units

Input Files and Input-Output Files:

All reels/units in the file prior to the current reel/unit are closed except those
controlled by a prior CLOSE REEL/UNIT statement.  If the current reel/unit is
not the last in the file, the reels/units in the file following the current one are
not processed.

Output Files:

All reels/units in the file prior to the current reel/unit are closed except those
controlled by a prior CLOSE REEL/UNIT statement.

B. No Rewind of Current Reel

The current reel/unit is left in its current position.



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-21

C. Close File

Input Files and Input-Output Files (Sequential Access Mode):

If the file is positioned at its end and label records are specified for the file, the
labels are processed according to the standard label convention.  The behavior
of the CLOSE statement when label records are specified but not present, or
when label records are not specified but are present, is undefined.  If the file is
positioned at its end and label records are not specified for the file, label
processing does not take place.  If the file is positioned other than at its end,
the closing operations are executed, but there is no ending label processing.

Input Files and Input-Output Files (Random or Dynamic Access Mode); Output
Files (Random, Dynamic, or Sequential Access Mode):

If label records are specified for the file, the labels are processed according to
the standard label convention.  The behavior of the CLOSE statement when
label records are specified but not present, or when label records are not
specified but are present, is undefined.  If label records are not specified for
the file, label processing does not take place, but closing operations are
executed.

D. Reel/Unit Removal

The current reel or unit is rewound when applicable, and the reel or unit is
logically removed from the run unit; however, the reel or unit may be accessed
again, in its proper order of reels or units within the file, if a CLOSE statement
without the REEL or UNIT phrase is subsequently executed for this file
followed by the execution of an OPEN statement for the file.

E. File Lock

This file is locked and cannot be opened again during this execution of this run
unit.

F. Close Reel/Unit

Input Files and Input-Output Files:

The following operations take place:

1. If the current reel/unit is the last or only reel/unit for the file or the reel is a non
reel/unit medium, there is no reel/unit swap and the current volume pointer
remains unchanged.

2. If another reel/unit exists for the file, a reel/unit swap occurs, the current
volume pointer is updated to point to the next reel/unit existing in the file and
the standard beginning reel/unit label procedure is executed.  If no data
records exist for the current volume, another reel/unit swap occurs.

Output Files (Reel/Unit Media):

The following operations take place:

1. The standard ending reel/unit label procedure is executed.



GCOS 7 COBOL 85 Reference Manual

11-22 47 A2 05UL Rev04

2. A reel/unit swap.  The current volume pointer is updated to point to the new
reel/unit.

3. The standard beginning reel/unit label procedure is executed.

4. The next executed WRITE statement that references that file directs the next
logical data record to the next reel/unit of the file.

Output Files (Non-Reel/Unit Media):

Execution of this statement is considered successful.  The file remains in the
open mode, and no action takes place except as specified in general rule 4.

G. Rewind

The current reel or analogous device is positioned at its physical beginning.

H. Optional Phrases Ignored

The CLOSE statement is executed as if none of the optional phrases is
present.

X. Illegal

This is an illegal combination of a CLOSE option and a file category.  The
results at object time are undefined.

4. The execution of the CLOSE statement causes the value of the I-O status
associated with file-name-1 to be updated.  (See "I-O Status" of the CLOSE
statement.)

5. If an optional file is not present, no end-of-file or reel/unit processing is performed
for the file and the file position indicator and the current volume pointer are
unchanged.

6. Following the successful execution of a CLOSE statement without the REEL or
UNIT phrase, the record area associated with file-name-1 is no longer available.
The unsuccessful execution of such a CLOSE statement leaves the availability of
the record area undefined.

7. Following the successful execution of a CLOSE statement without the REEL or
UNIT phrase, the file is removed from the open mode, and the file is no longer
associated with the file connector.

8. If more than one file-name-1 is specified in a CLOSE statement, the result of
executing this CLOSE statement is the same as if a separate CLOSE statement
had been written for each file-name-1 in the same order as specified in the CLOSE
statement.

9. The WITH NO REWIND and FOR REMOVAL phrases will have no effect at object
time if they do not apply to the storage media on which the file resides.



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-23

11.8 COMPUTE

Description

The COMPUTE statement assigns to one or more data items the value of an arithmetic
|or boolean| expression.

Format-1

COMPUTE {identifier-1 [ROUNDED ]}...

                   {   =        }
                   { |--------| }
                   { | FROM   | } arithmetic-expression-1
                   { | EQUALS | }
                     |--------|

      [ON SIZE ERROR  imperative-statement-1]

      [NOT ON SIZE  ERROR imperative-statement-2]

      [END-COMPUTE]

Format-2

|---------------------------------------------------------|
|                           {FROM  }                      |
| COMPUTE {identifier-2}... { =     } boolean-expression-1 |
|                           {EQUALS}                      |
|---------------------------------------------------------|

Syntax Rules

1. Identifier-1 must reference either an elementary numeric item or an elementary
numeric edited item.

|2. Identifier-2 must reference an elementary boolean data item.

3. The words FROM and EQUALS are equivalent to each other and to the symbol =.
They may be used interchangeably and the choice is generally made for
readability.|



GCOS 7 COBOL 85 Reference Manual

11-24 47 A2 05UL Rev04

General Rules

1. An arithmetic |or boolean| expression consisting of a single identifier or literal
provides a method of setting the value of the data item referenced by identifier-1 |or
identifier-2| equal to the literal or the value of the data item referenced by the single
identifier.

2. If more than one identifier is specified for the result of the operation, that is
preceding |FROM, EQUALS or| =, the value of the arithmetic |or boolean|
expression is developed, and then this value is stored as the new value of each of
the data items referenced by identifier-1 |or identifier-2|.

3. The COMPUTE statement allows the user to combine arithmetic operations without
the restrictions on composite of operands and/or receiving data items imposed by
the arithmetic statements ADD, SUBTRACT, MULTIPLY, and DIVIDE.  (see
"Intermediate Data Item" in Chapter 10.)

4. Additional rules and explanations relative to this statement are given under the
appropriate paragraphs.  (See "Scope of Statements", "Intermediate Data Item", the
"ROUNDED Phrase", the "Arithmetic Statements", "Overlapping Operands", the
"SIZE ERROR Condition", and "Multiple Results in Arithmetic Statements" in
Chapter 10.)

|5. The size of the hypothetical data item resulting from the evaluation of boolean-
expression-1 is the size of the largest boolean item referenced in the expression.
All rules referring to sending data items refer to this hypothetical data item and
these sending data items are moved to the data item referenced by identifier-2
according to the rules for the MOVE statement.|



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-25

11.9 CONTINUE

Description

The CONTINUE statement is a no operation statement.  It indicates that no executable
statement is present.

Format

CONTINUE

Syntax Rules

The CONTINUE statement may be used anywhere a conditional statement or an
imperative-statement may be used.

General Rules

The CONTINUE statement has no effect on the execution of the program.



GCOS 7 COBOL 85 Reference Manual

11-26 47 A2 05UL Rev04

11.10 DELETE

Description

The DELETE statement logically removes a record from a mass storage file.

Format

DELETE file-name-1 RECORD

     [INVALID KEY imperative-statement-1]

     [NOT INVALID  KEY imperative-statement-2]

     [END-DELETE]

Syntax Rules

1. The INVALID KEY and the NOT INVALID KEY phrases must not be specified for a
DELETE statement which references a file which is in sequential access mode.

2. The INVALID KEY phrase must be specified for a DELETE statement which
references a file which is not in sequential access mode and for which an applicable
USE AFTER STANDARD EXCEPTION procedure is not specified.

General Rules

1. The file referenced by file-name-1 must be a mass storage file and must be open in
the I-O mode at the time of the execution of this statement.  (See the "OPEN
Statement" in Chapter 12.)

2. For files in the sequential access mode, the last input-output statement executed for
file-name-1 prior to the execution of the DELETE statement must have been a
successfully executed READ statement.  The Operating System logically removes
from the file the record that was accessed by that READ statement.

3. For a relative file in random or dynamic access mode, the Operating System
logically removes from the file that record identified by the content of the relative
key data item associated with file-name-1.  If the file does not contain the record
specified by the key, the invalid key condition exists.  (See the "Invalid Key
Condition" in Chapter 10.)

4. For an indexed file in random or dynamic access mode, the Operating System
logically removes from the file the record identified by the content of the prime
record key data item associated with the file-name-1.  If the file does not contain the
record specified by the key, the invalid key condition exists.  (See the "Invalid Key
Condition" in Chapter 10.)

5. After the successful execution of a DELETE statement, the identified record has
been logically removed from the file and can no longer be accessed.



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-27

6. The execution of a DELETE statement does not affect the content of the record
area or the content of the data item referenced by the data-name specified in the
DEPENDING ON phrase of the RECORD clause associated with file-name-1.

7. The file position indicator is not affected by the execution of a DELETE statement.

8. The execution of the DELETE statement causes the value of the I-O status
associated with file-name-1 to be updated.  (See "I-O Status" of the DELETE
statement.)

9. Transfer of control following the successful or unsuccessful execution of the
DELETE operation depends on the presence or absence of the optional INVALID
KEY and NOT INVALID KEY phrases in the DELETE statement.

10. The END-DELETE phrase delimits the scope of the DELETE statement.  A
description of the function of the END-DELETE phrase is given in the appropriate
paragraph.  (See "Scope of Statements" in Chapter 10.)

11. If, during the execution of a DELETE statement with the NOT INVALID KEY phrase,
an invalid key condition does not occur, control is transferred to imperative-
statement-2 at the appropriate time as follows:

a. If the execution of the DELETE statement is successful, after the record is
deleted and after updating the I-O status associated with file-name-1.

b. If the execution of the DELETE statement is unsuccessful for a reason other
than an invalid key condition, after updating the I-O status associated with file-
name-1, and after executing the procedure, if any, specified by a USE AFTER
STANDARD EXCEPTION PROCEDURE statement applicable to file-name-1.



GCOS 7 COBOL 85 Reference Manual

11-28 47 A2 05UL Rev04

11.11 DISABLE

Description

The DISABLE statement notifies the message control system (MCS) to inhibit data
transfer between specified output queues and destinations for output or between
specified sources and input queues for input or between the program and one specified
source or destination for input-output.

The WITH KEY phrase is an obsolete element in Standard COBOL because it is to be
deleted from the next revision of Standard COBOL.

Format

        {INPUT [TERMINAL ]}                     {identifier-1}
DISABLE {I-O  TERMINAL    } cd-name-1 [WITH KEY  {            }]
        {OUTPUT          }                     {literal-1   }

Syntax Rules

1. Cd-name-1 must reference an input CD when the INPUT phrase is specified.

2. Cd-name-1 must reference an input-output CD when the I-O TERMINAL phrase is
specified.

3. Cd-name-1 must reference an output CD when the OUTPUT phrase is specified.

4. Literal-1 or the content of the data item referenced by identifier-1 must be defined
as alphanumeric.

General Rules

1. The DISABLE statement provides a logical disconnection between the MCS and the
specified sources or destinations.  When this logical disconnection is already in
existence, or is to be handled by some other means external to this program, the
DISABLE statement is not required in this program.  No action is taken when a
DISABLE statement is executed which specifies a source or destination which is
already disconnected, except that the value in the STATUS KEY indicates this
condition.  The logical path for the transfer of data between the COBOL programs
and the MCS is not affected by the DISABLE statement.

2. The MCS will insure that the execution of a DISABLE statement will cause the
logical disconnection at the earliest time the source or destination is inactive.  The
execution of the DISABLE statement will never cause the remaining portion of the
message to be terminated during transmission to or from a terminal.



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-29

3. When the INPUT phrase without the optional word TERMINAL is specified, the
logical paths between the queue and sub-queues specified by the contents of data-
name-1 (SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE-3)
of the area referenced by cd-name-1 and all the associated enabled sources are
deactivated.

4. When the INPUT phrase with the optional word TERMINAL is specified, the logical
paths between the source (as defined by the content of the data item referenced by
data-name-7 (SYMBOLIC SOURCE) ) and all of its associated queues and sub-
queues are deactivated.

5. When the I-O TERMINAL phrase is specified, the logical path between the source
(as defined by the content of the data item referenced by data-name-3 (SYMBOLIC
TERMINAL) ) and the program is deactivated.

6. When the OUTPUT phrase is specified, the logical paths are deactivated for all
destinations specified by the content of each occurrence of data-name-5 up to and
including the occurrence specified by the content of data-name-1 of the area
referenced by cd-name-1.

7. Literal-1 or the content of the data item referenced by identifier-1 will be matched
with a password built into the system.  The DISABLE statement will be honored only
if literal-1 or the content of the data item referenced by identifier-1 match the
system password.  When literal-1 or the content of the data item referenced by
identifier-1 do not match the system password, the value of the STATUS KEY item
in the area referenced by cd-name-1 is updated.

The MCS is capable of handling a password of from one to ten characters inclusive.



GCOS 7 COBOL 85 Reference Manual

11-30 47 A2 05UL Rev04

11.12 DISPLAY

Description

The DISPLAY statement causes low volume data to be transferred to an appropriate
hardware device.

Format

        |-------------------| {identifier-1}
DISPLAY | [WITH CONVERSION ] | {            }...
        |-------------------| {literal-1   }

          {    mnemonic-name-1      }
          { |---------------------| }
          { |  SYSOUT             | }
    [UPON { | [ALTERNATE ] CONSOLE | }] [WITH NO  ADVANCING]
          { |  ALTERNATE-CONSOLE  | }
          { |  TERMINAL           | }
            |---------------------|

Syntax Rules

1. If the mnemonic option is chosen, it can only be associated with the following
device names: CONSOLE, ALTERNATE-CONSOLE, |ALTERNATE CONSOLE,|
TERMINAL, SYSOUT, or corresponding suffixed device names in the SPECIAL-
NAMES paragraph in the Environment Division.

2. If literal-1 is numeric, then it must be an unsigned integer.

General Rules

1. The DISPLAY statement causes the content of each operand to be transferred to
the hardware device in the order listed.

|2. If WITH CONVERSION is specified, and identifier-1 references an elementary
numeric data item, the data item is moved to a temporary data item of USAGE IS
DISPLAY and of the same PICTURE as identifier-1 except it is always signed (with
SIGN IS LEADING SEPARATE) if the PICTURE clause is not specified, the data is
moved to a temporary data item of USAGE IS DISPLAY, in a legible form,
according to its USAGE.  The temporary item is then transferred to the hardware
device in lieu of the data item referenced by identifier-1.|

If WITH CONVERSION is omitted, then no conversion is applied between literal-1
or the data item referenced by identifier-1 and the hardware |device, except if
mnemonic-name-1 refer to a suffixed device name.  (See "Legible Equivalent" in
Chapter 3).  In this case, the contents of each operand are moved to its Legible
Output Equivalent or set of concatenated Legible Output Equivalent.  The Legible
Output Equivalents are then transferred without conversion or alignment to the
hardware device, in order listed, and without intervening separators or blanks.|



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-31

3. If mnemonic-name-1 is associated with SYSOUT, |or if SYSOUT is explicitly
specified,| data is displayed upon the file whose internal-file-name is H_PR.

If mnemonic-name-1 is associated with CONSOLE, |or if CONSOLE is explicitly
specified,| data is displayed upon the main operator console.

If mnemonic-name-1 is associated with ALTERNATE-CONSOLE or ALTERNATE
CONSOLE, |or if ALTERNATE-CONSOLE or ALTERNATE CONSOLE are
explicitly specified,| data is displayed upon the alternate operator console specified
in the CONSOLE JCL statement.  If no alternate console is specified, data is
displayed upon the console from which the job is submitted.

If mnemonic-name-1 is associated with TERMINAL, |or if TERMINAL is explicitly
specified,| data is displayed upon the alternate operator console specified in the
CONSOLE JCL statement.  If no alternate console is specified, data is displayed
upon the console from which the job is submitted.  When the program interactively
runs with an I0F terminal, data will be displayed upon that very terminal.

4. If a figurative constant is specified as one of the operands, only a single occurrence
of that constant is displayed.

5. If the hardware device is capable of receiving data of the same size as the data
item being transferred, then the data item is transferred.

6. If a hardware device is not capable of receiving data of the same size as the data
item being transferred, then one of the following applies:

a. If the size of the data item being transferred exceeds the size of the data that
the hardware device is capable of receiving in a single transfer, the data
beginning with the leftmost character is stored aligned to the left in the
receiving hardware device, and additional data is requested.

b. If the size of the data item that the hardware device is capable of receiving
exceeds the size of the data being transferred, the transferred data is stored
aligned to the left in the receiving hardware device.

7. When a DISPLAY statement contains more than one operand, the size of the
sending item is the sum of the sizes associated with the operands, and the values
of the operands are transferred in the sequence in which the operands are
encountered without modifying the positioning of the hardware device between the
successive operands.

8. If the UPON phrase is not specified, data is displayed upon the file whose internal-
file-name is H_PR, i.e. the standard device is that implied by SYSOUT.  |However,
another default may be specified in the DISPLAY clause of the Default Section of
the Control Division.|

9. If the WITH NO ADVANCING phrase is specified, then the positioning of the
hardware device will not be reset to the next line or changed in any other way
following the display of the last operand.

10. If the WITH NO ADVANCING phrase is not specified, then after the last operand
has been transferred to the hardware device, the positioning of the hardware device
will be reset to the leftmost position of the next line of the device.



GCOS 7 COBOL 85 Reference Manual

11-32 47 A2 05UL Rev04

11.13 DIVIDE

Description

The DIVIDE statement divides one numeric data item into others and sets the values of
data items equal to the quotient and remainder.

Format 1

       {identifier-1}
DIVIDE {           } INTO  {identifier-2 [ROUNDED ]}...
       {literal-1   }

    [ON SIZE ERROR  imperative-statement-1]

    [NOT ON SIZE  ERROR imperative-statement-2]

    [END-DIVIDE]

Format 2

       {identifier-1}      {identifier-2}
DIVIDE {            } INTO  {            }
       {literal-1   }      {literal-2   }

              GIVING {identifier-3 [ROUNDED ]}...

    [ON SIZE ERROR  imperative-statement-1]

    [NOT ON SIZE  ERROR imperative-statement-2]

    [END-DIVIDE]

Format 3

       {identifier-1}    {identifier-2}
DIVIDE {            } BY  {            }
       {literal-1   }    {literal-2   }

              GIVING {identifier-3 [ROUNDED ]}...

    [ON SIZE ERROR  imperative-statement-1]

    [NOT ON SIZE  ERROR imperative-statement-2]

    [END-DIVIDE]



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-33

Format 4

       {identifier-1}      {identifier-2}
DIVIDE {            } INTO  {            }
       {literal-1   }      {literal-2   }

           GIVING identifier-3 [ROUNDED ] REMAINDER identifier-4

    [ON SIZE ERROR  imperative-statement-1]

    [NOT ON SIZE  ERROR imperative-statement-2]

    [END-DIVIDE]

Format 5

       {identifier-1}    {identifier-2}
DIVIDE {            } BY  {            }
       {literal-1   }    {literal-2   }

           GIVING identifier-3 [ROUNDED ] REMAINDER identifier-4

    [ON SIZE ERROR  imperative-statement-1]

    [NOT ON SIZE  ERROR imperative-statement-2]

    [END-DIVIDE]

Syntax Rules

1. Each identifier must refer to an elementary numeric item, except that any identifier
associated with the GIVING or REMAINDER phrase must refer to either an
elementary numeric item or an elementary numeric edited item.

2. Each literal must be a numeric literal.

3. The composite of operands, which is the hypothetical data item resulting from the
super-imposition of all receiving data items (except the REMAINDER data item) of
a giving statement aligned on their decimal points, must not contain more than 18
digits |(up to 30 if the compiler is run with the LEVEL=NSTD parameter).|

General Rules

1. When Format 1 is used, literal-1 or the value of the data item referenced by
identifier-1 is stored in a temporary data item.  The value in the temporary data item
is then divided into the value of the data item referenced by identifier-2.  The value
of the dividend (the data item referenced by identifier-2) is replaced by this quotient;
similarly the temporary data item is divided into each successive occurrence of
identifier-2 in the left-to-right order in which identifier-2 is specified.

2. When Format 2 is used, literal-1 or the value of the data item referenced by
identifier-1 is divided into literal-2 or the value of the data item referenced by
identifier-2 and the result is stored in each data item referenced by identifier-3.



GCOS 7 COBOL 85 Reference Manual

11-34 47 A2 05UL Rev04

3. When format 3 is used, literal-1 or the value of the data item referenced by
identifier-1 is divided by literal-2 or the value of the data item referenced by
identifier-2 and the result is stored in each data item referenced by identifier-3.

4. When Format 4 is used, literal-1 or the value of the data item referenced by
identifier-1 is divided into literal-2 or the value of the data item referenced by
identifier-2 and the result is stored in the data item referenced by identifier-3.  The
remainder is then calculated and the result is stored in the data item referenced by
identifier-4.  If identifier-4 is subscripted, then the subscript is evaluated
immediately before the remainder is stored in the data item referenced by identifier-
4.

5. When Format 5 is used, literal-1 or the value of the data item referenced by
identifier-1 is divided by literal-2 or the value of the data item referenced by
identifier-2 and the division operation continues as specified for format 4 above.

6. Formats 4 and 5 are used when a remainder from the division operation is desired,
namely identifier-4.  The remainder in COBOL is defined as the result of subtracting
the product of the quotient (identifier-3) and the divisor from the dividend.  If
identifier-3 is defined as a numeric edited item, the quotient used to calculate the
remainder is an intermediate field which contains the unedited quotient.  If
ROUNDED is specified, the quotient used to calculate the remainder is an
intermediate field which contains the quotient of the DIVIDE statement, truncated
rather than rounded.  This intermediate field is defined as a numeric field which
contains the same number of digits, the same decimal point location, and the same
presence or absence of a sign as the quotient (identifier-3).

7. In Formats 4 and 5, the accuracy of the REMAINDER data item (identifier-4) is
defined by the calculation described above.

Appropriate decimal alignment and truncation (not rounding) will be performed for
the value of the data item referenced by identifier-4, as needed.

8. When the ON SIZE ERROR phrase is used in formats 4 and 5, the following rules
pertain:

a. If the size error occurs on the quotient, no remainder calculation is meaningful.
Thus, the contents of the data items referenced by both identifier-3 and
identifier-4 will remain unchanged.

b. If the size error occurs in the remainder, the content of the data item
referenced by identifier-4 remains unchanged.  However, as with other
instances of multiple results of arithmetic statements, the user will have to do
his own analysis to recognize which situation has actually occurred.

9. Additional rules and explanations relative to this statement are given under the
appropriate paragraphs.  (See "Scope of Statements", "Intermediate Data Item", the
"ROUNDED Phrase", the "Arithmetic Statements", "Overlapping Operands", the
"SIZE ERROR Condition", and "Multiple Results in Arithmetic Statement" in
Chapter 10.  See also general rules 6 through 8 above for a discussion of the
ROUNDED phrase and the SIZE ERROR phrase as they pertain to formats 4 and
5.)



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-35

11.14 ENABLE

Description

The ENABLE statement notifies the message control system (MCS) to allow data
transfer between specified output queues and destinations for output or between
specified sources and input queues for input or between the program and one specified
source or destination for input-output.

The WITH KEY phrase is an obsolete element in Standard COBOL because it is to be
deleted from the next revision of Standard COBOL.

Format

       {INPUT [TERMINAL ]}                     {identifier-1}
ENABLE {I-O  TERMINAL    } cd-name-1 [WITH KEY  {            }]
       {OUTPUT          }                     {literal-1   }

Syntax Rules

1. Cd-name-1 must reference an input CD when the INPUT phrase is specified.

2. Cd-name-1 must reference an input-output CD when the I-O TERMINAL phrase is
specified.

3. Cd-name-1 must reference an output CD when the OUTPUT phrase is specified.

4. Literal-1 or the content of the data item referenced by identifier-1 must be defined
as alphanumeric.

General Rules

1. The ENABLE statement provides a logical connection between the MCS and the
specified sources or destinations.  When this logical connection is already in
existence, or is to be handled by some other means external to this program, the
ENABLE statement is not required in this program.  No action is taken when an
ENABLE statement is executed which specifies a source or destination which is
already connected, except that the value in the STATUS KEY indicates this
condition.  The logical path for the transfer of data between the COBOL programs
and the MCS is not affected by the ENABLE statement.

2. When the INPUT phrase without the optional word TERMINAL is specified, the
logical paths between the queue and sub-queues specified by the contents of data-
name-1 (SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE-3)
of the area referenced by cd-name-1 and all the associated sources are activated.



GCOS 7 COBOL 85 Reference Manual

11-36 47 A2 05UL Rev04

3. When the INPUT phrase with the optional word TERMINAL is specified, the logical
paths between the source (as defined by the content of the data item referenced by
data-name-7 (SYMBOLIC SOURCE) ) and all of its associated queues and sub-
queues are activated.

4. When the I-O TERMINAL phrase is specified, the logical path between the source
(as defined by the content of the data item referenced by data-name-3 (SYMBOLIC
TERMINAL) ) and the program is activated.

5. When the OUTPUT phrase is specified, the logical paths are activated for all
destinations specified by the content of each occurrence of data-name-5 up to and
including the occurrence specified by the content of data-name-1 of the area
referenced by cd-name-1.

6. Literal-1 or the content of the data item referenced by identifier-1 will be matched
with a password built into the system.  The ENABLE statement will be honored only
if literal-1 or the content of the data item referenced by identifier-1 match the
system password.  When literal-1 or the content of the data item referenced by
identifier-1 do not match the system password, the value of the STATUS KEY item
in the area referenced by cd-name-1 is updated.

The MCS is capable of handling a password of from one to ten characters inclusive.



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-37

11.15 EVALUATE

Description

The EVALUATE statement describes a multi-branch, multi-join structure.  It can cause
multiple conditions to be evaluated.  The subsequent action of the object program
depends on the results of these evaluations.

Format

         {identifier-1}       {identifier-2}
         {literal-1   }       {literal-2   }
EVALUATE {expression-1} [ALSO  {expression-2}]...
         {TRUE        }       {TRUE         }
         {FALSE       }       {FALSE        }

       {    ANY                                       }
       {    condition-1                               }
       { |----------------------------|               }
       { | [NOT] boolean-expression-1 |               }
       { |----------------------------|               }
       {    TRUE                                      }
{{WHEN {    FALSE                                      }
       {          {identifier-3           }           }
       {   [NOT] {{literal-3              }           }
       {          {arithmetic-expression-1}           }
       {                                              }
       {         {THROUGH} {identifier-4           }  }
       {        [{       } {literal-4              }]}}
                 {THRU   } {arithmetic-expression-2}

       {    ANY                                       }
       {    condition-2                               }
       { |----------------------------|               }
       { | [NOT] boolean-expression-2 |               }
       { |----------------------------|               }
       {    TRUE                                      }
[ALSO  {    FALSE                                      }]... }...
       {          {identifier-5           }           }
       {   [NOT] {{literal-5              }           }
       {          {arithmetic-expression-3}           }
       {                                              }
       {         {THROUGH} {identifier-6           }  }
       {        [{       } {literal-6              }]}}
                 {THRU   } {arithmetic-expression-4}

             imperative-statement-1}...

 [WHEN OTHER imperative-statement-2]

 [END-EVALUATE]



GCOS 7 COBOL 85 Reference Manual

11-38 47 A2 05UL Rev04

Syntax Rules

1. The operands or the words TRUE and FALSE which appear before the first WHEN
phrase of the EVALUATE statement are referred to individually as selection
subjects and collectively, for all those specified, as the set of selection subjects.

2. The operands or the words TRUE, FALSE, and ANY which appear in a WHEN
phrase of an EVALUATE statement are referred to individually as selection objects
and collectively, for all those specified in a single WHEN phrase, as the set of
selection objects.

3. The words THROUGH and THRU are equivalent.

4. Two operands connected by a THROUGH phrase must be of the same class |and
must not reference boolean data items.| The two operands thus connected
constitute a single selection object.

5. The number of selection objects within each set of selection objects must be equal
to the number of selection subjects.

6. Each selection object within a set of selection objects must correspond to the
selection subject having the same ordinal position within the set of selection
subjects according to the following rules:

a. Identifiers, literals, arithmetic expressions |, or boolean expressions| appearing
within a selection object must be valid operands for comparison to the
corresponding operand in the set of selection subjects.  (See "Relation
Condition" in Chapter 10.)

b. Condition-1, condition-2 or the words TRUE or FALSE appearing as a
selection object must correspond to a conditional expression or the words
TRUE or FALSE in the set of selection subjects.

c. The word ANY may correspond to a selection subject of any type.



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-39

General Rules

1. The execution of the EVALUATE statement operates as if each selection subject
and selection object were evaluated and assigned a numeric non-numeric |or
boolean| value, a range of numeric or non-numeric values, or a truth value.  These
values are determined as follows:

a. Any selection subject specified by identifier-1, identifier-2 and any selection
object specified by identifier-3, identifier-5, without either the NOT or the
THROUGH phrases, are assigned the value and class of the data item
referenced by the identifier.

b. Any selection subject specified by literal-1, literal-2 and any selection object
specified by literal-3, literal-5, without either the NOT or the THROUGH
phrases, are assigned the value and class of the specified literal.  If literal-3,
literal-5 is the figurative constant ZERO, it is assigned the class of the
corresponding selection subject.

c. Any selection subject in which expression-1, expression-2, is specified as an
arithmetic expression and any selection object, without either the NOT or the
THROUGH phrases, in which arithmetic-expression-1, arithmetic-expression-3,
is specified are assigned a numeric value according to the rules for evaluating
an arithmetic expression.  (See "Arithmetic Expressions" in Chapter 10.)

|d. Any selection subject in which expression-1, expression-2 is specified as a
boolean expression and any selection object without the NOT phrase in which
boolean-expression-1, boolean-expression-2 is specified are assigned a
boolean value according to the rules for evaluating boolean expressions (See
"Boolean Expressions" in Chapter 10).|

e. Any selection subject in which expression-1, expression-2 is specified as a
conditional expression and any selection object in which condition-1, condition-
2 is specified are assigned a truth value according to the rules for evaluating
conditional expressions.  (See "Conditional Expressions" in Chapter 10.)

f. Any selection subject or any selection object specified by the words TRUE or
FALSE is assigned a truth value.  The truth value 'true' is assigned to those
items specified with the word TRUE, and the truth value 'false' is assigned to
those items specified with the word FALSE.

g. Any selection object specified by the word ANY is not further evaluated.

h. If the THROUGH phrase is specified for a selection object, without the NOT
phrase, the range of values includes all permissible values of the selection
subject that are greater than or equal to the first operand and less than or
equal to the second operand according to the rules for comparison.  (see
"Relation Condition" in Chapter 10.)

i. If the NOT phrase is specified for a selection object, the values assigned to
that item are all permissible values of the selection subject not equal to the
value, or not included in the range of values, that would have been assigned to
the item had the NOT phrase not been specified.



GCOS 7 COBOL 85 Reference Manual

11-40 47 A2 05UL Rev04

2. The execution of the EVALUATE statement then proceeds as if the values assigned
to the selection subjects and selection objects were compared to determine if any
WHEN phrase satisfies the set of selection subjects.  This comparison proceeds as
follows:

a. Each selection object within the set of selection objects for the first WHEN
phrase is compared to the selection subject having the same ordinal position
within the set of selection subjects.  One of the following conditions must be
satisfied if the comparison is to be satisfied:

(1)  If the items being compared are assigned numeric, non-numeric |pointer or
boolean| values, or a range of numeric or non-numeric values, the comparison
is satisfied if the value, or one of the range of values, assigned to the selection
object is equal to the value assigned to the selection subject according to the
rules for comparison.  (See "Relation Condition" in Chapter 10.)

(2)  If the items being compared are assigned truth values, the comparison is
satisfied if the items are assigned the identical truth value.

(3)  If the selection object being compared is specified by the word ANY, the
comparison is always satisfied regardless of the value of the selection subject.

b. If the above comparison is satisfied for every selection object within the set of
selection objects being compared, the WHEN phrase containing that set of
selection objects is selected as the one satisfying the set of selection subjects.

c. If the above comparison is not satisfied for one or more selection object within
the set of selection objects being compared, that set of selection objects does
not satisfy the set of selection subjects.

d. This procedure is repeated for subsequent sets of selection objects, in the
order of their appearance in the source program, until either a WHEN phrase
satisfying the set of selection subjects is selected or until all sets of selection
objects are exhausted.

3. After the comparison operation is completed, execution of the EVALUATE
statement proceeds as follows:

a. If a WHEN phrase is selected, execution continues with the first imperative-
statement-1 following the selected WHEN phrase.

b. If no WHEN phrase is selected and a WHEN OTHER phrase is specified,
execution continues with imperative-statement-2.

c. The scope of execution of the EVALUATE statement is terminated when
execution reaches the end of imperative-statement-1 of the selected WHEN
phrase or the end of imperative-statement-2, or when no WHEN phrase is
selected an no WHEN OTHER phrase is specified.  (See "Scope of
Statements" in Chapter 10.)



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-41

11.16 EXAMINE

Description

|The EXAMINE statement counts and/or replaces occurrence of a given character in a
data item.|

Format

|----------------------------------------------------------------|
|                                                                |
|EXAMINE identifier-5                                            |
|-------                                                         |
|              {ALL        } {literal-1   }                      |
|    {TALLYING {LEADING     } {            }                     }|
|    {         {UNTIL FIRST } {identifier-1}                     }|
|    {                                                          }|
|    {                  {literal-2   }                          }|
|    {    [REPLACING BY  {            }]                         }|
|    {                  {identifier-2}                          }|
|    {                                                          }|
|    {          { ALL         } {literal-3   }    {literal-4   }}|
|    {REPLACING { LEADING      } {            } BY  {            }}|
|    {          {[UNTIL] FIRST } {identifier-3}    {identifier-4}}|
|                                                                |
|----------------------------------------------------------------|

Syntax Rules

|1. Identifier-5 must have a usage which is DISPLAY, explicitly or implicitly.

2. Each literal and every identifier except identifier-5 must name a single character or
single-character data item, respectively, belonging to a class consistent with that of
identifier-5.  Also, each literal may be any figurative constant except ALL (the
figurative constant is understood to refer to a single instance of that constant's
value).

3. Signed numeric literals are not permitted in the EXAMINE statement.|



GCOS 7 COBOL 85 Reference Manual

11-42 47 A2 05UL Rev04

General Rules

|1. Identifier-5 is examined, character by character, from left to right, whether identifier-
5 is numeric or non-numeric.  However, if it is numeric and has an operational sign
(as indicated by an S in its PICTURE character-string), its sign is ignored by the
EXAMINE statement.

2. Execution of the EXAMINE statement with the TALLYING option creates an integral
count that is placed in the special register TALLY.  The value of this count depends
on the TALLYING option used:

a. When ALL is used, the number of occurrences in identifier-5 of literal-1 or
identifier-1 is counted.

b. When LEADING is used, the count is equal to the number of occurrences in
identifier-5 of literal-1 or identifier-1, before the first occurrence of a character
other than literal-1 or identifier-1, or the right-hand boundary is encountered.

c. When UNTIL FIRST is used, the count is equal to the number of characters in
identifier-5 that are not equal to literal-1 or identifier-1, encountered before the
first occurrence of literal-1 or identifier-1, or the right-hand boundary.

3. The word TALLY (the special TALLY register), may be used as a data-name
wherever an integer elementary data item may appear.

4. When either REPLACING option is used, replacement rules are as follows, subject
to General Rule 2 above:

a. When ALL is used then the item following BY (literal-2, identifier-2 or literal-4,
identifier-4) is substituted for each occurrence of the item following ALL (literal-
1, identifier-1 or literal-3, identifier-3), respectively.

b. When LEADING is used, the substitution of the item following BY (literal-2,
identifier-2 or literal-4, identifier-4) terminates as soon as a character other
than the item following LEADING (literal-1, identifier-1 or literal-3, identifier-3)
or the right-hand boundary of the data item is encountered.

c. When UNTIL FIRST is used, the substitution of the item following BY (literal-2,
identifier-2 or literal-4, identifier-4) terminates as soon as the item following
UNTIL FIRST (literal-1, identifier-1 or literal-3, identifier-3) or the right-hand
boundary of the data item is encountered.

d. When FIRST is used, the first occurrence of the item following FIRST (literal-
1, identifier-1 or literal-3, identifier-3) is replaced by the item following BY
(literal-2, identifier-2 or literal-4, identifier-4).|



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-43

11.17 EXIT

Description

The EXIT statement provides a common end point for a series of procedures, or marks
the logical end of a called program.

Format

               |-----------------------|
EXIT [ PROGRAM  | [GIVING  identifier-1] | ].
               |-----------------------|

Syntax Rules

1. The EXIT statement without the PROGRAM phrase must appear only in a sentence
by itself and comprise the only sentence in the paragraph.

2. If an EXIT PROGRAM statement appears in a consecutive sequence of imperative
statements within a sentence, it must appear as the last statement in that sequence.

3. The EXIT PROGRAM statement must not appear in a declarative procedure in
which the GLOBAL phrase is specified.

4. |Identifier-1 must reference either:

a. an elementary data item of USAGE COMP-1, COMP-2, COMP-9, COMP-10
or pointer,

b. an elementary data item of USAGE ALPHABETIC or ALPHANUMERIC of one
character in length.|



GCOS 7 COBOL 85 Reference Manual

11-44 47 A2 05UL Rev04

General Rules

1. An EXIT statement without the optional phrase PROGRAM serves only to enable
the user to assign a procedure-name to a given point in a program.  Such an EXIT
statement has no other effect on the compilation or execution of the program.

2. If the EXIT PROGRAM statement is executed in a program which is not under the
control of a calling program, the EXIT PROGRAM statement causes execution of
the program to continue with the next executable statement.

3. The execution of an EXIT PROGRAM statement in a called program which does not
possess the initial attribute causes execution to continue with the next executable
statement following the CALL statement in the calling program.  The program state
of the calling program is not altered and is identical to that which existed at the time
it executed the CALL statement except that the contents of data items and the
contents of data files shared between the calling and called program may have
been changed.  The program state of the called program is not altered except that
the ends of the ranges of all PERFORM statements executed by that called
program are considered to have been reached.

4. Besides the actions specified in general rule 3, the execution of an EXIT
PROGRAM statement in a called program which possesses the initial attribute is
equivalent also to executing a CANCEL statement referencing that program.  (See
the "CANCEL Statement" in Chapter 11.)

5. |The GIVING phrase is used when the calling program is written in C Language and
needs a return value.  The content of the data item referenced by identifier-1 is
made available to the calling program after control is transferred to the calling
program.|



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-45

11.18 GENERATE

Description

The GENERATE statement directs the Report Writer Control System (RWCS) to
produce a report in accordance with the Report Description that was specified in the
Report Section of the Data Division.

Format

         {data-name-1  }
GENERATE {             }
         {report-name-1}

Syntax Rules

1. Data-name-1 must name a TYPE DETAIL report group and may be qualified by a
report name.

2. Report-name-1 may be used only if the referenced Report Description contains:

a.  A CONTROL clause, and

b.  Not more than one DETAIL report group, and

c.  At least one body group.

General Rules

1. In response to a GENERATE report-name-1 statement, the RWCS performs
summary processing.  If all of the GENERATE statements that are executed for a
report are of the form GENERATE report-name-1, then the report that is produced
is called a summary report.  A summary report is one in which no DETAIL report
group is presented.

2. In response to a GENERATE data-name-1 statement, the RWCS performs detail
processing that includes certain processing that is specific for the DETAIL report
group designated by the GENERATE statement.  Normally, the execution of a
GENERATE data-name-1 statement causes the RWCS to present the designated
DETAIL report group.

3. During the execution of the chronologically first GENERATE statement for a given
report, the RWCS saves the values within the control data items.  During the
execution of the second and subsequent GENERATE statements for the same
report, and until a control break is detected, the RWCS utilizes this set of control
values to determine whether a control break has occurred.  When a control break
occurs, the RWCS saves the new set of control values, which it thereafter uses to
sense for a control break until another control break occurs.

4. During report presentation, an automatic function of the RWCS is to process PAGE
HEADING and PAGE FOOTING report groups, if defined, when the RWCS must
advance the report to a new page for the purpose of presenting a body group (see
"Presentation Rules Tables", Chapter 8).



GCOS 7 COBOL 85 Reference Manual

11-46 47 A2 05UL Rev04

5. When the chronologically first GENERATE statement for a given report is executed,
the RWCS processes, in order, the report groups that are named below, provided
that such report groups are defined within the Report Description.  The RWCS also
processes PAGE HEADING and PAGE FOOTING report groups as described in
General Rule 4.  The actions taken by the RWCS when it processes each type of
report group are explained under the appropriate paragraph (see "TYPE Clause",
Chapter 9).

a. The REPORT HEADING report group is processed.

b. The PAGE HEADING report group is processed.

c. All CONTROL HEADING report groups are processed from major to minor.

d. If a GENERATE data-name-1 statement is being executed, the processing for
the designated DETAIL report group is performed.  If a GENERATE report-
name-1 statement is being executed certain of the steps that are involved in
the processing of a DETAIL report group are performed (See the "TYPE
Clause", Chapter 9).

6. When a GENERATE statement other than the chronologically first is executed for a
given report, the RWCS performs the steps enumerated below, as applicable.  The
RWCS also processes PAGE HEADING and PAGE FOOTING report groups as
described in General Rule 4.  The actions taken by the RWCS when it processes
each type of report group are explained under the appropriate paragraph (see the
"TYPE Clause", Chapter 9).

a. Sense for control break.  The rules for determining the equality of control data
items are the same as those specified for relation conditions.  If a control break
has occurred then:

(1)  Enable the CONTROL FOOTING USE procedures and CONTROL
FOOTING SOURCE clauses to access the control data item values that the
RWCS used to detect a given control break (see the "TYPE Clause", Chapter
9).

(2)  Process the CONTROL FOOTING report groups in the order minor to
major.  Only CONTROL FOOTING report groups that are not more major than
the highest level at which a control break occurred are processed.

(3)  Process the CONTROL HEADING report groups in the order major to
minor.  Only the CONTROL HEADING report groups that are not more major
than the highest level at which a control break occurred are processed.

b. If a GENERATE data-name-1 statement is being executed, the processing for
the designated DETAIL report group is performed.  If a GENERATE report-
name-1 statement is being executed, certain of the steps that are involved in
the processing of a DETAIL report group are performed (see the "TYPE
Clause", Chapter 9).

7. GENERATE statements for a report can be executed only after an INITIATE
statement for the report has been executed and before a TERMINATE statement
for the report has been executed.



Procedure Division - Statements (ACCEPT to GO TO)

47 A2 05UL Rev04 11-47

11.19 GO TO

Description

The GO TO statement causes control to be transferred from one part of the Procedure
Division to another.

The optionality of procedure-name-1 in format 1 of the GO TO statement is an obsolete
element in Standard COBOL because it is to be deleted from the next revision of
Standard COBOL.

Format 1

GO TO [procedure-name-1]

Format 2

GO TO {procedure-name-1}... DEPENDING  ON identifier-1

Syntax Rules

1. Identifier-1 must reference a numeric elementary data item which is an integer.

2. When a paragraph is referenced by an ALTER statement, that paragraph can
consist only of a paragraph header followed by a format 1 GO TO statement.

3. A format 1 GO TO statement, without procedure-name-1, can only appear in a
single statement paragraph.

4. If a GO TO statement represented by format 1 appears in a consecutive sequence
of imperative statements within a sentence, it must appear as the last statement in
that sequence.

General Rules

1. When a GO TO statement represented by format 1 is executed, control is
transferred to procedure-name-1 (or to another procedure-name, if the GO TO
statement has been modified by an ALTER statement).

2. If procedure-name-1 is not specified in a GO TO statement represented by format
1, an ALTER statement referring to this GO TO statement must be executed prior
to the execution of this GO TO statement.

3. When a GO TO statement represented by format 2 is executed, control is
transferred to procedure-name-1, etc., depending on the value of identifier-1 being
1, 2 ..., n.  If the value of identifier-1 is anything other than the positive or unsigned
integers 1, 2 ..., n, then no transfer occurs and control passes to the next statement
in the normal sequence for execution.



GCOS 7 COBOL 85 Reference Manual

11-48 47 A2 05UL Rev04



47 A2 05UL Rev04 12-1

12. Procedure Division - Statements
(IF to REWRITE)

This chapter describes the statements from IF to REWRITE (inclusive).

The statements concerned are as follows:

• IF

• INITIALIZE

• INITIATE

• INSPECT

• MERGE

• MOVE

• MULTIPLY

• OPEN

• PERFORM

• PURGE

• READ

• RECEIVE

• RELEASE

• RETURN

• REWRITE



GCOS 7 COBOL 85 Reference Manual

12-2 47 A2 05UL Rev04

12.1 IF

Description

The IF statement causes a condition (See "Conditional Expressions" in Chapter 10) to be
evaluated.  The subsequent action of the object program depends on whether the value
of the condition is true or false.

Format

                    {{statement-1}...}
IF condition-1 THEN {                }
                    { NEXT SENTENCE   }

           {ELSE {statement-2}... [END-IF ]}
           {ELSE NEXT  SENTENCE            }
           {END-IF                        }

Syntax Rules

1. Statement-1 and statement-2 represent either an imperative statement or a
conditional statement optionally preceded by an imperative statement.  A further
description of the rules governing statement-1 and statement-2 is given elsewhere.
(See "Scope of Statements" in Chapter 10.)

2. The ELSE NEXT SENTENCE phrase may be omitted if it immediately precedes the
terminal period of the sentence.

3. If the END-IF phrase is specified, the NEXT SENTENCE phrase must not be
specified.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-3

General Rules

1. The scope of an IF statement may be terminated by any of the following:

a. An END-IF phrase at the same level of nesting.

b. A separator period.

c. If nested, by an ELSE phrase associated with an IF statement at a higher level
of nesting.  (See "Scope of Statements" in Chapter 10.)

2. When an IF statement is executed, the following transfers of control occur:

a. If the condition is true and statement-1 is specified, control is transferred to the
first statement of statement-1 and execution continues according to the rules
for each statement specified in statement-1.  If a procedure branching or
conditional statement is executed which causes an explicit transfer of control,
control is explicitly transferred in accordance with the rules of that statement.
Upon completion of the execution of statement-1, the ELSE phrase, if
specified, is ignored and control passes to the end of the IF statement.

b. If the condition is true and the NEXT SENTENCE phrase is specified instead
of statement-1, the ELSE phrase, if specified, is ignored and control passes to
the next executable sentence.

c. If the condition is false and statement-2 is specified, statement-1 or its
surrogate NEXT SENTENCE is ignored, control is transferred to the first
statement of statement-2, and execution continues according the rules for
each statement specified in statement-2.  If a procedure branching or
conditional statement is executed which causes an explicit transfer of control,
control is explicitly transferred in accordance with the rules of that statement.
Upon completion of the execution of statement-2, control passes to the end of
the IF statement.

d. If the condition is false and the ELSE phrase is not specified, statement-1 is
ignored and control passes to the end of the IF statement.

e. If the condition is false and the ELSE NEXT SENTENCE phrase is specified,
statement-1 is ignored and control passes to the next executable sentence.

3. Statement-1 and/or statement-2 may contain an IF statement.  In this case, the IF   
statement is said to be nested.  More detailed rules on nesting are given in the   
appropriate paragraph.  (See "Scope of Statements" in Chapter 10.)

IF statements within IF statements may be considered as paired IF, ELSE and
END-  IF combinations, proceeding from left to right.  Thus, any ELSE or END-IF   
encountered is considered to apply to the immediately preceding IF that has not   
been already paired with an ELSE or END-IF.



GCOS 7 COBOL 85 Reference Manual

12-4 47 A2 05UL Rev04

12.2 INITIALIZE

Description

The INITIALIZE statement provides the ability to set selected types of data fields to
predetermined values, e.g., numeric data to zeroes or alphanumeric data to spaces.

Format

INITIALIZE {identifier-1}...

              {   ALPHABETIC         }
              { |---------|          }
              { | BOOLEAN |          }         {identifier-2}
   [REPLACING { |---------|          } DATA BY  {            }... ]
              {   ALPHANUMERIC       }         {literal-1   }
              {   NUMERIC            }
              {   ALPHANUMERIC-EDITED}
              {   NUMERIC-EDITED     }

Syntax Rules

1. Literal-1 and the data item referenced by identifier-2 represent the sending area; the
data item referenced by identifier-1 represents the receiving area.

2. Each category stated in the REPLACING phrase must be a permissible category as
a receiving operand in a MOVE statement where the corresponding data item
referenced by identifier-2 or literal-1 is used as the sending operand.  (See the
"MOVE Statement" in Chapter 12.)

3. The same category cannot be repeated in a REPLACING phrase.

4. The description of the data item referenced by identifier-1 and any items
subordinate to identifier-1 may not contain the DEPENDING phrase of the
OCCURS clause.

5. An index |or pointer| data item may not appear as an operand of an INITIALIZE
statement.

|6.     If the data item referenced by identifier-1 contains a RENAMES clause:

a. If that item is elementary, it is initialized according to its category;

b. If that item is a group item, it is initialized as if it was an elementary item of the
category alphanumeric.|



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-5

General Rules

1. The key word following the word REPLACING corresponds to a category of data as
defined elsewhere in this document.  (See "Concept of Classes of Data" in Chapter
3.)

2. Whether identifier-1 references an elementary item or a group item, all operations
are performed as if a series of MOVE statements had been written, each of which
has an elementary item as its receiving field, subject to the following rules:

If the REPLACING phrase is specified and if identifier-1 references a group item,
any elementary item within the data item referenced by identifier-1 is initialized only
if it belongs to the category specified in the REPLACING phrase.

If the REPLACING phrase is specified and if identifier-1 references an elementary
item, that item is initialized only if it belongs to the category specified in the
REPLACING phrase.

This initialization takes place as follows: The data item referenced by identifier-2 or
literal-1 acts as the sending operand in an implicit MOVE statement to the identified
item.

All such elementary receiving fields, including all occurrences of table items within
the group, are affected; the only exceptions are those fields specified in general
rules 3 and 4.

3. Index |or pointer| data items and elementary FILLER data items are not affected by
the execution of an INITIALIZE statement.

4. Any item that is subordinate to a receiving area identifier and which contains the
REDEFINES clause or any item that is subordinate to such an item is excluded
from this operation.  However, a receiving area identifier may itself have a
REDEFINES clause or be subordinate to a data item with a REDEFINES clause.

5. When the statement is written without the REPLACING phrase, data items of the
categories alphabetic, alphanumeric and alphanumeric edited are set to spaces;
data items of the categories numeric, numeric edited |and boolean| are set to zeros.
In this case, the operation is as if each affected data item is the receiving area in an
elementary MOVE statement with the indicated source literal (i.e., spaces or zeros).

6. In all cases, the content of the data item referenced by identifier-1, etc., is set to the
indicated value in the order (left to right) of the appearance of identifier-1, etc., in
INITIALIZE statement.  Within this sequence, where identifier-1, etc., references a
group item, affected elementary items are initialized in the sequence of their
definition within the group.

7. If identifier-1, etc., occupy the same storage area as identifier-2, the result of the
execution of this statement is undefined, even if they are defined by the same data
description entry.  (See "Overlapping Operands" in Chapter 10.)



GCOS 7 COBOL 85 Reference Manual

12-6 47 A2 05UL Rev04

12.3 INITIATE

Description

The INITIATE statement causes the Report Writer Control System (RWCS) to begin the
processing of a report.

Format

INITIATE {report-name-1}...

Syntax Rule

Each report-name-1 must be defined by a Report Description entry in the Report Section
of the Data Division.

General Rules

1. The INITIATE statement performs the following initialization functions for each
named report:

a. All sum counters are set to zero

b. LINE-COUNTER is set to zero

c. PAGE-COUNTER is set to one (1).

2. The INITIATE statement does not place the file to which the report is assigned in
the open mode; therefore, an OPEN statement with either the OUTPUT phrase or
the EXTEND phrase for the file must be executed prior to the execution of the
INITIATE statement.

3. A subsequent INITIATE statement for a particular report-name-1 must not be
executed unless an intervening TERMINATE statement has been executed for that
report-name-1.

4. If more than one report-name-1 is specified in an INITIATE statement, the result of
executing this INITIATE statement is the same as if a separate INITIATE statement
had been written for each report name in the same order as specified in the
INITIATE statement.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-7

12.4 INSPECT

Description

The INSPECT statement tallies or replaces occurrences of single characters or groups of
characters in a data item.

Format 1

INSPECT identifier-1 TALLYING  {identifier-2 FOR

                 {BEFORE}         {identifier-4}
   { CHARACTERS [{      } INITIAL {            }]...}
   {             {AFTER }         {literal-2   }    }
   {                                                }
   {{ALL    }  {identifier-3}                       }... }...
   {{       } {{            }                       }
   {{LEADING}  {literal-1   }                       }
   {                                                }
   {     {BEFORE}         {identifier-4}            }
   {    [{      } INITIAL {            }]... }...   }
         {AFTER }         {literal-2   }

Format 2

INSPECT identifier-1 REPLACING

                   {identifier-5}
   { CHARACTERS BY  {            }                   }
   {               {literal-3   }                   }
   {                                                }
   {     {BEFORE}         {identifier-4}            }
   {    [{      } INITIAL {            }]..  .      }
   {     {AFTER }         {literal-2   }            }
   {                                                }...
   {{ALL    }  {identifier-3}    {identifier-5}     }
   {{LEADING} {{            } BY  {            }     }
   {{FIRST  }  {literal-1   }    {literal-3   }     }
   {                                                }
   {     {BEFORE}         {identifier-4}            }
   {    [{      } INITIAL {            }]... }..  . }
         {AFTER }         {literal-2   }



GCOS 7 COBOL 85 Reference Manual

12-8 47 A2 05UL Rev04

Format 3

INSPECT identifier-1 TALLYING  {identifier-2 FOR

                     {BEFORE}         {identifier-4}
       { CHARACTERS [{      } INITIAL {            }]...}
       {             {AFTER }         {literal-2   }    }
       {                                                }
       {{ALL    }  {identifier-3}                       }... }...
       {{       } {{            }                       }
       {{LEADING}  {literal-1   }                       }
       {                                                }
       {     {BEFORE}         {identifier-4}            }
       {    [{      } INITIAL {            }]... }...   }
             {AFTER }         {literal-2   }

      REPLACING

                       {identifier-5}
       { CHARACTERS BY  {            }                   }
       {               {literal-3   }                   }
       {                                                }
       {     {BEFORE}         {identifier-4}            }
       {    [{      } INITIAL {            }]...        }
       {     {AFTER }         {literal-2   }            }
       {                                                }...
       {{ALL    }  {identifier-3}    {identifier-5}     }
       {{LEADING} {{            } BY  {            }     }
       {{FIRST  }  {literal-1   }    {literal-3   }     }
       {                                                }
       {     {BEFORE}         {identifier-4}            }
       {    [{      } INITIAL {            }]... }...   }
             {AFTER }         {literal-2   }

Format 4

                              {identifier-6}    {identifier-7}
INSPECT identifier CONVERTING  {            } TO  {            }
                              {literal-4   }    {literal-5   }

           {BEFORE}         {identifier-4}
          [{      } INITIAL {            }]...
           {AFTER }         {literal-2   }



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-9

Syntax Rules

All Formats

1. Identifier-1 must reference either a group item or any category of elementary item
described, implicitly or explicitly, as USAGE IS DISPLAY.

2. Identifier-3, ... identifier-n must reference an elementary item described, implicitly
or explicitly.as USAGE IS DISPLAY.

3. Each literal must be non-numeric literal and must not be a figurative constant that
begins with the word ALL.  If literal-1, literal-2, or literal-4 is a figurative constant, it
refers to an implicit one character data item.

4. No more than one BEFORE phrase and one AFTER phrase can be specified for
any one ALL, LEADING, CHARACTERS, FIRST or CONVERTING phrase.

Formats 1 and 3 Only

5. Identifier-2 must reference an elementary numeric data item.

Formats 2 and 3 Only

6. The size of literal-3 or the data item referenced by identifier-5 must be equal to the
size of literal-1 or the data item referenced by identifier-3.  When a figurative
constant is used as literal-3, the size of the figurative constant is equal to the size of
literal-1 or the size of the data item referenced by identifier-3.

7. When the CHARACTERS phrase is used, literal-2, literal-3 or the size of the data
item referenced by identifier-4, identifier-5 must be one character in length.

Format 4

8. The size of literal-5 or the data item referenced by identifier-7 must be equal to the
size of literal-4 or the data item referenced by identifier-6.  When a figurative
constant is used as literal-5, the size of the figurative constant is equal to the size of
literal-4 or the size of the data item referenced by identifier-6.

9. The same character must not appear more than once either in literal-4 or in the data
item referenced by identifier-6.



GCOS 7 COBOL 85 Reference Manual

12-10 47 A2 05UL Rev04

General Rules

All Formats

1. Inspection (which includes the comparison cycle, the establishment of boundaries
for the BEFORE or AFTER phrase, and the mechanism for tallying and/or
replacing) begins at the leftmost character position of the data item referenced by
identifier-1, regardless of its class, and proceeds from left to right to the rightmost
character position as described in general rules 5 through 7.

2. For use in the INSPECT statement, the content of the data item referenced by
identifier-1, identifier-3, identifier-4 identifier-5, identifier-6, or identifier-7 will be
treated as follows:

a. If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6, or
identifier-7 reference an alphabetic or alphanumeric data item, the INSPECT
statement treats the contents of each such identifier as a character-string.

b. If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6, or
identifier-7 reference an alphanumeric edited, numeric edited, unsigned
numeric or |boolean| data items, the data item is inspected as though  it had
been re-defined as alphanumeric (see "General Rule" 2a) and the INSPECT
statement had been written to reference the re-defined data item.

c. If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6, or
identifier-7 reference a signed numeric data item, the data item is inspected as
though it had been moved to an unsigned numeric data item with length equal
to the length of the signed item excluding any separate sign position, and then
the rules in general rule 2b had been applied.  (See the "MOVE Statement" in
Chapter 12.) If identifier-1 is a signed numeric item, the original value of the
sign is retained upon completion of the INSPECT statement.

3. In general rules 5 through 17 all references to literal-1, literal-2, literal-3, literal-4 or
literal-5 apply equally to the content of the data item referenced by identifier-3,
identifier-4, identifier-5, identifier-6 or identifier-7, respectively.

4. If any identifier is subscripted or is a function-identifier, the subscript or function-
identifier is evaluated only once as the first operation in the execution of the
INSPECT statement.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-11

Formats 1 and 2 Only

5. During inspection of the content of the data item referenced by identifier-1, each
properly matched occurrence of literal-1 is tallied (format 1) or replaced by literal-3
(format 2).

6. The comparison operation to determine the occurrences of literal-1 to be tallied or
to be replaced, occurs as follows:

a. The operands of the TALLYING or REPLACING phrase are considered in the
order they are specified in the INSPECT statement from left to right.  The first
literal-1 is compared to an equal number of contiguous characters, starting
with the leftmost character position in the data item referenced by identifier-1.
Literal-1 matches that portion of the content of the data item referenced by
identifier-1 if they are equal, character for character and:

(1)  If neither LEADING nor FIRST is specified; or

(2)  If the LEADING adjective applies to literal-1 and literal-1 is a leading
occurrence as defined in general rules 10 and 13; or

(3)  If the FIRST adjective applies to literal-1 and literal-1 is the first
occurrence as defined in general rule 13.

b. If no match occurs in the comparison of the first literal-1 the comparison is
repeated with each successive literal-1, if any, until either a match is found or
there is no next successive literal-1.  When there is no next successive literal-
1, the character position in the data item referenced by identifier-1 immediately
to the right of the leftmost character position considered in the last comparison
cycle is considered as the leftmost character position, and the comparison
cycle begins again with the first literal-1.

c. Whenever a match occurs, tallying or replacing takes place as described in
general rules 10 and 13.  The character position in the data item referenced by
identifier-1 immediately to the right of the rightmost character position that
participated in the match is now considered to be the leftmost character
position of the data item referenced by identifier-1, and the comparison cycle
starts again with the first literal-1.

d. The comparison operation continues until the rightmost character position of
the data item referenced by identifier-1 has participated in a match or has
been considered as the leftmost character position.  When this occurs,
inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied one character operand
participates in the cycle described in paragraphs 6a through 6d above as if it
had been specified by literal-1, except that no comparison to the content of the
data item referenced by identifier-1 takes place.  This implied character is
considered always to match the leftmost character of the content of the data
item referenced by identifier-1 participating in the current comparison cycle.



GCOS 7 COBOL 85 Reference Manual

12-12 47 A2 05UL Rev04

7. The comparison operation defined in general rule 6 is restricted by the BEFORE
and AFTER phrase as follows:

a. If neither the BEFORE or AFTER phrase is specified, literal-1 or the implied
operand of the CHARACTERS phrase participates in the comparison operation
as described in general rule 6.  Literal-1 or the implied operand of the
CHARACTERS phrase is first eligible to participate in matching at the leftmost
position of identifier-1.

b. If the BEFORE phrase is specified, the associated literal-1 or the implied
operand of the CHARACTERS phrase participates only in those comparison
cycles which involve that portion of the content of the data item referenced by
identifier-1 from its leftmost character position up to, but not including, the first
occurrence of literal-2 within the content of the data item referenced by
identifier-1.  The position of this first occurrence is determined before the first
cycle of the comparison operation described in general rule 6 is begun.  If, on
any comparison cycle, literal-1 or the implied operand of the CHARACTERS
phrase is not eligible to participate, it is considered not to match the content of
the data item referenced by identifier-1.  If there is no occurrence of literal-2
within the content of the data item referenced by identifier-1, its associated
literal-1 or the implied operand of the CHARACTERS phrase participates in
the comparison operation as though the BEFORE phrase had not been
specified.

c. If the AFTER phrase is specified, the associated literal-1 or the implied
operand of the CHARACTERS phrase participate only in those comparison
cycles which involve that portion of the content of the data item referenced by
identifier-1 from the character position immediately to the right of the rightmost
character position of the first occurrence of literal-2 within the content of the
data item referenced by identifier-1 to the rightmost character position of the
data item referenced by identifier-1.  This is the character position at which
literal-1 or the implied operand of the CHARACTERS phrase is first eligible to
participate in matching.  The position of this first occurrence is determined
before the first cycle of the comparison operation described in general rule 6 is
begun.  If, on any comparison cycle, literal-1 or the implied operand of the
CHARACTERS phrase is not eligible to participate, it is considered not to
match the content of the data item referenced by identifier-1.  If there is no
occurrence of literal-2 within the content of the data item referenced by
identifier-1, its associated literal-1 or the implied operand of the
CHARACTERS phrase is never eligible to participate in the comparison
operation.

Format 1

8. The required words ALL and LEADING are adjectives that apply to each succeeding
literal-1 or identifier-3 until the next adjective appears.

9. The content of the data item referenced by identifier-2 are not initialized by the
execution of the INSPECT statement.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-13

10. The rules for tallying are as follows:

a. If the ALL phrase is specified, the content of the data item referenced by
identifier-2 is incremented by one for each occurrence of literal-1 matched
within the content of the data item referenced by identifier-1.

b. If the LEADING phrase is specified, the content of the data item referenced by
identifier-2 is incremented by one for the first and each subsequent contiguous
occurrence of literal-1 matched within the content of the data item referenced
by identifier-1, provided that the leftmost such occurrence is at the point where
comparison began in the first comparison cycle in which literal-1 was eligible to
participate.

c. If the CHARACTERS phrase is specified, the content of the data item
referenced by identifier-2 is incremented by one for each character matched,
in the sense of general rule 6e, within the content of the data item referenced
by identifier-1.

11. If identifier-1, identifier-3, or identifier-4 occupies the same storage area as
identifier-2, the result of the execution of this statement is undefined, even if they
are defined by the same data description entry.  (See "Overlapping Operands" in
Chapter 10.)

Format 2

12. The required words ALL, LEADING, and FIRST are adjectives that apply to each
succeeding BY phrase until the next adjective appears.

13. The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched, in the
sense of general rule 6e, in the content of the data item referenced by
identifier-1 is replaced by literal-3.

b. When the adjective ALL is specified, each occurrence of literal-1 matched in
the content of the data item referenced by identifier-1 is replaced by literal-3.

c. When the adjective LEADING is specified, the first and each successive
contiguous occurrence of literal-1 matched in the content of the data item
referenced by identifier-1 is replaced by literal-3, provided that the leftmost
occurrence is at the point where comparison began in the first comparison
cycle in which literal-1 was eligible to participate.

d. When the adjective FIRST is specified, the leftmost occurrence of literal-1
matched within the content of the data item referenced by identifier-1 is
replaced by literal-3.  This rule applies to each successive specification of the
FIRST phrase regardless of the value of literal-1.

14. If identifier-3, identifier-4 or identifier-5 occupies the same storage area as
identifier-1, the result of the execution of this statement is undefined, even if they
are defined by the same data description entry.  (See "Overlapping Operands" in
Chapter 10.)



GCOS 7 COBOL 85 Reference Manual

12-14 47 A2 05UL Rev04

Format 3

15. A Format 3 INSPECT statement is interpreted and executed as though two
successive INSPECT statements specifying the same identifier-1 had been written
with one statement being a format 1 statement with TALLYING phrases identical to
those specified in the format 3 statement, and the other statement being a format 2
statement with REPLACING phrases identical to those specified in the format 3
statement.  The general rules given for matching and counting apply to the format 1
statement and the general rules given for matching and replacing apply to the
format 2 statement.Subscripting associated with any identifier in the format 2
statement is evaluated only once before executing the format 1 statement.

Format 4

16. A format 4 INSPECT statement is interpreted and executed as though a format 2
INSPECT statement specifying the same identifier-1 had been written with a series
of ALL phrases, one for each character of literal-4.  The effect is as if each of these
ALL phrases referenced, as literal-1, a single character of literal-4 and referenced,
as literal-3, the corresponding single character of literal-5.  Correspondence
between the characters of literal-4 and the characters of literal-5 is by ordinal
position within the data item.

17. If identifier-4, identifier-6, or identifier-7 occupies the same storage area as
identifier-1, the result of the execution of this statement is undefined, even if they
are defined by the same data description entry.  (See "Overlapping Operands" in
Chapter 10.)

Examples:

In each of the following examples of the INSPECT statement, COUNT-n is assumed to
be zero immediately prior to execution of the statement.  The results shown for each
example, except the last, are the result of executing the two successive INSPECT
statements shown above them.

Example 1:

INSPECT ITEM TALLYING
  COUNT-0 FOR ALL "AB", ALL "D"
  COUNT-1 FOR ALL "BC"
  COUNT-2 FOR LEADING "EF"
  COUNT-3 FOR LEADING "B"
  COUNT-4 FOR CHARACTERS;

INSPECT ITEM REPLACING
  ALL "AB" BY "XY", "D" BY "X"
  ALL "BC" BY "VW"
  LEADING "EF" BY "TU"
  LEADING "B" BY "S"
  FIRST "G" BY "R"
  FIRST "G" BY "P"
  CHARACTERS BY "Z"



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-15

Initial Value                                       Final Value
 of         COUNT-0 COUNT-1 COUNT-2 COUNT-3 COUNT-4     of
ITEM                                                   ITEM

EFABDBCGABEFGG 3      1       1       0       5   TUXYXVWRXYZZPZ

BABABC         2      0       0       1       1   SXYXYZ

BBBC           0      1       0       2       0   SSVW

Example 2:

INSPECT ITEM TALLYING
  COUNT-0 FOR CHARACTERS
  COUNT-1 FOR ALL "A";

INSPECT ITEM REPLACING
  CHARACTERS BY "Z" ALL "A" BY "X"

Initial Value                             Final Value
 of            COUNT-0      COUNT-1        of
ITEM                                      ITEM

BBB               3            0          ZZZ

ABA               3            0          ZZZ

Example 3:

INSPECT ITEM TALLYING
  COUNT-0 FOR ALL "AB" BEFORE "BC"
  COUNT-1 FOR LEADING "B" AFTER "D"
  COUNT-2 FOR CHARACTERS AFTER "A" BEFORE "C";

INSPECT ITEM REPLACING
  ALL "AB" BY "XY" BEFORE "BC"
  LEADING "B" BY "W" AFTER "D"
  FIRST "E" BY "V" AFTER "D"
  CHARACTERS BY "Z" AFTER "A" BEFORE "C"

Initial Value                                 Final Value
 of               COUNT-0 COUNT-1  COUNT-2        of
ITEM                                             ITEM

BBEABDABABBCABEE    3        0        2       BBEXYZXYXYZCABVE

ADDDDC              0        0        4       AZZZZC

ADDDDA              0        0        5       AZZZZZ

CDDDDC              0        0        0       CDDDDC

BDBBBDB             0        3        0       BDWWWDB



GCOS 7 COBOL 85 Reference Manual

12-16 47 A2 05UL Rev04

Example 4:

INSPECT ITEM TALLYING
  COUNT-0 FOR ALL "AB" AFTER "BA" BEFORE "BC";

INSPECT ITEM REPLACING
  ALL "AB" BY "XY" AFTER "BA" BEFORE "BC"

Initial Value                               Final Value
 of                       COUNT-0             of
ITEM                                        ITEM

ABABABABC                   1               ABABXYABC

Example 5:

INSPECT ITEM CONVERTING
  "ABCD" TO "XYZX" AFTER QUOTE BEFORE "#".

The above INSPECT is equivalent to the following INSPECT:

INSPECT item REPLACING
  ALL "A" BY "X" AFTER QUOTE BEFORE "#"
  ALL "B" BY "Y" AFTER QUOTE BEFORE "#"
  ALL "C" BY "Z" AFTER QUOTE BEFORE "#"
  ALL "D" BY "X" AFTER QUOTE BEFORE "#".

Initial Value of ITEM               Final Value of ITEM

AC"AEBDFBCD#AB"D                    AC"XEYXFYZX#AB"D



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-17

12.5 MERGE

Description

The MERGE statement combines two or more identically sequenced files on a set of
specified keys, and during the process makes records available, in merged order, to an
output procedure or to an output file.

Format

                      {ASCENDING }
MERGE file-name-1 {ON {          } KEY {data-name-1 [FOR DATE ]}... }...
                      {DESCENDING}

                           {   alphabet-name }
                           { |------------|  }
                           { | NATIVE     |  }
                           { | STANDARD-1 |  }
    [COLLATING SEQUENCE IS { | STANDARD-2  |  }]
                           { | ASCII      |  }
                           { | EBCDIC     |  }
                           { | GBCD       |  }
                           { | JIS        |  }
                             |------------|

     USING file-name-2 {file-name-3}...

    {OUTPUT PROCEDURE  IS
    {                          {THROUGH}                  }
    {        procedure-name-1 [{       } procedure-name-2]}
    {                          {THRU   }                  }
    {                                                     }
    {GIVING {file-name-4}...                              }

Syntax Rules

1. A MERGE statement may appear anywhere in the Procedure Division except in the
declaratives portion or in an input or output procedure associated with a SORT or
MERGE statement.

2. File-name-1 must be described in a sort-merge file description entry in the Data
Division.

3. If the file referenced by file-name-1 contains variable length records, the size of the
records contained in the files referenced by file-name-2 and file-name-3 must not
be less than the smallest record nor greater than the largest record described for
file-name-1.  If the file referenced by file-name-1 contains fixed length records, the
size of the records contained in the files referenced by file-name-2 and file-name-3
must not be greater than the largest record described for file-name-1.

4. Data-name-1 is a key data-name.  Key data-names are subject to the following
rules:

a. The data items identified by key data-names must be described in records
associated with file-name-1.

b. Key data-names may be qualified.



GCOS 7 COBOL 85 Reference Manual

12-18 47 A2 05UL Rev04

c. The data items identified by key data-names must not be group items that
contain variable occurrence data items.

d. If file-name-1 has more than one record description, the data items identified
by key data-names need be described in only one of the record descriptions.
The same character positions referenced by a key data-name in one record
description entry are taken as the key in all records of the file.

e. None of the data items identified by key data-names can be described by an
entry that either contains an OCCURS clause or is subordinate to an entry that
contains an OCCURS clause.

f. If the file referenced by file-name-1 contains variable length records, all the
data items identified by key data-names must be contained within the first x
character positions of the record, where x equals the minimum record size
specified for the file referenced by file-name-1.

|g.    The data items identified by KEY data-names must not be described as
boolean or pointer data items.|

h.     If the FOR DATE phrase is specified data-name-1 must be described as PIC
99 USAGE DISPLAY.

5. File-name-2, file-name-3, and file-name-4 must be described in a file description
entry, not in a sort-merge description entry, in the Data Division.

6. No two files specified in any one MERGE statement may reside on the same
multiple file reel.

7. File-names must not be repeated within the MERGE statement.

8. No pair of file-names in a MERGE statement may be specified in the same SAME
AREA or SAME SORT-MERGE AREA clause.  The only file-names in a MERGE
statement that can be specified in the same SAME RECORD AREA clause are
those associated with the GIVING phrase.  (See the "SAME AREA Clause".)

9. The words THRU and THROUGH are equivalent.

10. If file-name-4 references an indexed file, the first specification of data-name-1 must
be associated with an ASCENDING phrase and the data item referenced by that
data-name-1 must occupy the same character positions in its record as the data
item associated with the prime record key that file.

11. If the GIVING phrase is specified and the file referenced by file-name-4 contains
variable length records, the size of the records contained in the file referenced by
file-name-1 must not be less than the smallest record nor greater than the largest
record described for file-name-4.  If the file referenced by file-name-4 contains fixed
length records, the size of the records contained in the file referenced by file-name-
1 must not be greater than the largest record described for file-name-4.

12. Procedure-name-1 represents the name of an output procedure.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-19

General Rules

1. The MERGE statement merges all records contained on the files referenced by file-
name-2 and file-name-3.

2. If the file referenced by file-name-1 contains only fixed length records, any record in
the file referenced by file-name-2 or file-name-3 containing fewer character
positions than that fixed length is space filled on the right beginning with the first
character position after the last character in the record when that record is released
to the file referenced by file-name-1.

3. The data-names following the word KEY are listed from left to right in the MERGE
statement in order of decreasing significance without regard to how they are divided
into KEY phrases.  The leftmost data-name is the major key, the next data-name is
the next more significant key, etc.

a. When the ASCENDING phrase is specified, the merged sequence will be from
the lowest value of the contents of the data items identified by the key data-
names to the highest value, according to the rules for comparison of operands
in a relation condition.

b. When the DESCENDING phrase is specified, the merged sequence will be
from the highest value of the contents of the data items identified by the KEY
data-names to the lowest value, according to the rules for comparison of
operands in a relation condition.

4. When, according to the rules for the comparison of operands in a relation condition,
the contents of all the key data items of one data record are equal to the contents of
the corresponding key data items of one or more other data records, the order of
return of these records:

a. follows the order of the associated input files as specified in the MERGE
statement.

b. is such that all records associated with one input file are returned prior to the
return of records from another input file.

5. The collating sequence that applies to the comparison of the non-numeric key data
items specified is determined at the beginning of the execution of the MERGE
statement in the following order of precedence:

a. First, the collating sequence established by the COLLATING SEQUENCE
phrase, if specified, in that MERGE statement.

b. Second, the collating sequence established as the program collating
sequence.

6. The results of the merge operation are undefined unless the records in the files
referenced by file-name-2 and file-name-3 are ordered as described in the
ASCENDING or DESCENDING KEY phrases associated with the MERGE
statement.



GCOS 7 COBOL 85 Reference Manual

12-20 47 A2 05UL Rev04

7. All the records in the files referenced by file-name-2 and file-name-3 are transferred
to the file referenced by file-name-1.  At the start of execution of the MERGE
statement, the files referenced by file-name-2 and file-name-3 must not be in the
open mode.  For each of the files referenced by file-name-2 and file-name-3 the
execution of the MERGE statement causes the following actions to be taken:

a. The processing of the file is initiated.  The initiation is performed as if an
OPEN statement with the INPUT phrase had been executed.  If an output
procedure is specified, this initiation is performed before control passes to the
output procedure.

b. The logical records are obtained and released to the merge operation.  Each
record is obtained as if a READ statement with the NEXT and the AT END
phrases had been executed.

c. The processing of the file is terminated.  The termination is performed as if a
CLOSE statement without optional phrases had been executed.  If an output
procedure is specified, this termination is not performed until after control
passes the last statement in the output procedure.

These implicit functions are performed such that any associated USE procedures
are executed.

8. The output procedure may consist of any procedure needed to select, modify, or
copy the records that are made available one at a time by the RETURN statement
in merged order from the file referenced by file-name-1.  The range includes all
statements that are executed as the result of a transfer of control by CALL, EXIT,
GO TO, and PERFORM statements in the range of the output procedure, as well as
all statements in declarative procedures that are executed as a result of the
execution of statements in the range of the output procedure.  The range of the
output procedure must not cause the execution of any MERGE, RELEASE, or
SORT statement.

9. If an output procedure is specified, control passes to it during execution of the
MERGE statement.  The compiler inserts a return mechanism at the end of the last
statement in the output procedure.  When control passes the last statement in the
output procedure, the return mechanism provides for termination of the merge, and
then passes control to the next executable statement after the MERGE statement.
Before entering the output procedure, the merge procedure reaches a point at which
it can select the next record in merged order when requested.  The RETURN
statements in the output procedure are the requests for the next record.

10. During the execution of the output procedure, no statement may be executed
manipulating the file referenced by or accessing the record area associated with,
file-name-2 or file-name-3.  During the execution of any USE AFTER EXCEPTION
procedure implicitly invoked while executing the MERGE statement, no statement
may be executed manipulating the file referenced by, or accessing the record area
associated with, file-name-2, file-name-3, or file-name-4.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-21

11. If the GIVING phrase is specified, all the merged records are written on the file
referenced by file-name-4 as the implied output procedure for the MERGE
statement.  At the start of the execution of the MERGE statement, the file
referenced by file-name-4 must not be in the open mode.  For each of the files
referenced by file-name-4, the execution of the MERGE statement causes the
following actions to be taken:

a. The processing of the file is initiated.  The initiation is performed as if an
OPEN statement with the OUTPUT phrase had been executed.

b. The merged logical records are returned and written onto the file.  Each record
is written as if a WRITE statement without any optional phrases had been
executed.
For a relative file, the relative key data item for the first record returned
contains the value '1'; for the second record returned, the value '2', etc.  After
execution of the MERGE statement, the content of the relative key data item
indicates the last record returned to the file.

c. The processing of the file is terminated.  The termination is performed as if a
CLOSE statement without optional phrases had been executed.

These implicit functions are performed such that any associated USE procedures
are executed; however, the execution of such a USE procedure must not cause the
execution of any statement manipulating the file referenced by, or accessing the
record area associated with, file-name-4.  On the first attempt to write beyond the
externally defined boundaries of the file, any USE AFTER STANDARD
EXCEPTION/ERROR procedure specified for the file is executed; if control is
returned from that USE procedure or if no such USE procedure is specified, the
processing of the file is terminated as in paragraph 11c above.

12. If the file referenced by file-name-4 contains only fixed length records, any record in
the file referenced by file-name-1 containing fewer character positions than that
fixed length is space filled on the right beginning with the first character position
after the last character in the record when that record is returned to the file
referenced by file-name-4.

13. Segmentation can be applied to programs containing the MERGE statement.
However, the following restrictions apply:

If the MERGE statement appears in a section that is not in an independent
segment, then any output procedure referenced by that MERGE statement must
appear totally within non-independent segments, or wholly contained in a single
independent segment.

If a MERGE statement appears in an independent segment, then any output
procedure referenced by that MERGE statement must be contained totally within
non-independent segments, or wholly within the same independent segment as that
MERGE statement.

14.    If the FOR DATE phrase is supplied the MERGE proceeds following the "Rule 61"
for the corresponding data-name-1 (refer to SORT/MERGE Utilities User Guide).
The resulting sequence will be:

61 62 ... 99 00 01 ... 59 60



GCOS 7 COBOL 85 Reference Manual

12-22 47 A2 05UL Rev04

12.6 MOVE

Description

The MOVE statement transfers data, in accordance with the rules of editing, to one or
more data areas.

Format 1

     {identifier-1}
MOVE {            } TO  {identifier-2}...
     {literal-1   }

Format 2

     {CORRESPONDING}
MOVE {             } identifier-1 TO  {identifier-2} ...
     {CORR         }

Syntax Rules

1. Literal-1 or the data item referenced by identifier-1 represents the sending area.
The data item referenced by identifier-2 represents the receiving area.

2. CORR is an abbreviation for CORRESPONDING.

3. When the CORRESPONDING phrase is used, all identifiers must be group items.

4. An index data item must not appear as an operand of a MOVE statement.

General Rules

1. If the CORRESPONDING phrase is used, selected items within identifier-1 are
moved to selected items within identifier-2 according to the rules specified under
the appropriate paragraph.  (See the CORRESPONDING Phrase.) The results are
the same as if the user had referred to each pair of corresponding identifiers in
separate format 1 MOVE statements.

2. Literal-1 or the content of the data item referenced by identifier-1 is moved to the
data item referenced by each identifier-2 in the order in which it is specified.  The
rules referring to identifier-2 also apply to the other receiving areas.  Any length
evaluation or subscripting associated with identifier-2 is evaluated immediately
before the data is moved to the respective data item.

If identifier-1 is reference modified, subscripted, or is a function-identifier, the
reference-modifier, subscript, of function-identifier is evaluated only once,
immediately before data is moved to the first of the receiving operands.  The length
of the data item referenced by identifier-1 is evaluated only once, immediately
before the data is moved to the first of the receiving operands.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-23

The evaluation of the length of identifier-1 or identifier-2 may be affected by the
DEPENDING ON phrase of the OCCURS clause.

The result of the statement:

    MOVE a (b) TO b, c (b)

is equivalent to:

    MOVE a (b) TO temp
    MOVE temp TO b
    MOVE temp TO c (b)

where 'temp' is an intermediate result item provided by the compiler.

3. Any move in which the receiving operand is an elementary item and the sending
operand is either a literal or an elementary item is an elementary move.  Every
elementary item belongs to one of the following categories: numeric, alphabetic,
alphanumeric, numeric edited, alphanumeric edited, |boolean.| (See the "PICTURE
Clause" in Chapter 9.)

Numeric literals belong to the category numeric, non-numeric literals belong to the
category alphanumeric and |boolean literals belong to the category boolean.| The
figurative constant ZERO (ZEROS, ZEROES), when moved to a numeric or
numeric edited item, belongs to the category numeric.  |When moved to a boolean
item it belongs to the category boolean.| In all other cases, it belongs to the
category alphanumeric.  The figurative constant SPACE (SPACES) belongs to the
category alphabetic.  |The figurative ALL literal, where literal is a boolean literal,
belongs to the category boolean.| All other figurative constants belong to the
category alphanumeric.

The following rules apply to an elementary move between these categories.

a. The figurative constant SPACE, an alphanumeric edited data item, |a boolean
data item,| or an alphabetic data item must not be moved to a numeric or
numeric edited data item.

b. A numeric literal, |a boolean literal,| the figurative constant ZERO, a numeric
data item, a numeric edited data item, or |a boolean data item| must not be
moved to an  alphabetic data item.

c. A non-integer numeric literal or a non-integer numeric data item must not be
moved to an alphanumeric or alphanumeric edited data item.

|d.    A numeric data item, a numeric edited data item, a numeric literal or figurative
constant other than ZERO or ALL literal, where literal is a boolean literal, must
not be moved to a boolean data item.

e.     A boolean data item must not be moved to a numeric or numeric edited data
item.|

f. All other elementary moves are legal and are performed according to the rules
given in General Rule 4.



GCOS 7 COBOL 85 Reference Manual

12-24 47 A2 05UL Rev04

4. Any necessary conversion of data from one form of internal representation to
another takes place during legal elementary moves, along with any editing specified
for, or de-editing implied by, the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving item,
alignment and any necessary space filling takes place as previously defined.
(See "Standard Rules for Data Alignment" in Chapter 3.)

If the sending operand is described as being signed numeric, the operational
sign is not moved; if the operational sign occupies a separate character
position, that character is not moved and the size of the sending operand is
considered to be one less than its actual size in terms of standard data format
characters.  (See the "SIGN Clause" in Chapter 9.) If the sending operand is
numeric edited, no de-editing takes place.  If the usage of the sending operand
is different from that of the receiving operand, conversion of the sending
operand to the internal representation of the receiving operand takes place.  If
the sending operand contains the PICTURE symbol 'P', all digit positions
specified with this symbol are considered to have the value zero and are
counted in the size of the sending operand.

b. When a numeric or numeric edited item is a receiving item, alignment by
decimal point and any necessary zero filling takes place as previously defined
except where zeros are replaced because of editing requirements.  (See
"Standard Rules for Data Alignment" in Chapter 3.) When the sending operand
is numeric edited, de-editing is implied to establish the operand's unedited
numeric value, which may be signed; then the unedited numeric value is
moved to the receiving field.

(1) When a signed numeric item is the receiving item, the sign of the sending
operand is placed in the receiving item.  (See the "SIGN Clause" in Chapter 9.)
Conversion of the representation of the sign takes place as necessary.

If the sending operand is unsigned, a positive sign is generated for the
receiving item.

(2) When an unsigned numeric item is a receiving item, the absolute value of
the sending operand is moved and no operational sign is generated for the
receiving item.

(3) When the sending operand is described as being alphanumeric, data is
moved as if the sending operand were described as an unsigned numeric
integer.

c. When a receiving field is described as alphabetic, justification and any
necessary space filling takes place as previously defined.  (See "Standard
Rules for Data Alignment" in Chapter 3.)

|d.    When a boolean item is the receiving item, justification and any necessary
boolean character zero filling takes place as previously defined.  (See
"Standard Rules for Data Alignment" in Chapter 3.)|



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-25

5. Any move that is not an elementary move is treated exactly as if it were an
alphanumeric to alphanumeric elementary move, except that there is no conversion
of data from one form of internal representation to another.  In such a move, the
receiving area will be filled without consideration for the individual elementary or
group items contained within either the sending or receiving area, except as noted
in the OCCURS clause.  (See the "OCCURS Clause" in Chapter 9.)

6. Data in the following table summarizes the legality of the various types of MOVE
statements.  The general rule reference indicates the rule that prohibits the move or
that describes the behavior of a legal move.

Table 12-1. Legality of Types of MOVE Statements

CATEGORY OF RECEIVING DATA ITEM

CATEGORY OF
SENDING
OPERAND

ALPHABETIC ALPHANUMERIC
EDITED

ALPHANUMERIC

BOOLEAN INTEGER
NUMERIC NON-

INTEGER NUMERIC
EDITED

ALPHABETIC Yes/4c Yes/4a No/3a No/3a
ALPHANUMERIC Yes/4c Yes/4a Yes/4d Yes/4b
ALPHANUMERIC
   EDITED

Yes/4c Yes/4a No/3a No/3a

BOOLEAN No/3b Yes/4a Yes/4d No/3a
NUMERIC
   INTEGER

No/3b Yes/4a No/3d Yes/4b

NUMERIC
 NON-INTEGER

No/3b No/3c No/3d Yes/4b

NUMERIC
   EDITED

No/3b Yes/4a No/3d Yes/4b



GCOS 7 COBOL 85 Reference Manual

12-26 47 A2 05UL Rev04

12.7 MULTIPLY

Description

The MULTIPLY statement causes numeric data items to be multiplied and sets the
values of data items equal to the results.

Format 1

         {identifier-1}
MULTIPLY {            } BY  {identifier-2 [ROUNDED ]}...
         {literal-1   }

      [ON SIZE ERROR  imperative-statement-1]

      [NOT ON SIZE  ERROR imperative-statement-2]

      [END-MULTIPLY]

Format 2

         {identifier-1}    {identifier-2}
MULTIPLY {            } BY  {            }
         {literal-1   }    {literal-2   }

               GIVING {identifier-3 [ROUNDED ]}...

      [ON SIZE ERROR  imperative-statement-1]

      [NOT ON SIZE  ERROR imperative-statement-2]

      [END-MULTIPLY]

Syntax Rules

1. Each identifier must refer to a numeric elementary item, except that in format 2
each identifier following the word GIVING must refer to either an elementary
numeric item or an elementary numeric edited item.

2. Each literal must be a numeric literal.

3. The composite of operands, which is that hypothetical data item resulting from the
super-imposition of all receiving data items of a given statement aligned in their
decimal points, must not contain more than 18 digits |(up to 30 if the compiler is run
with the LEVEL=NSTD parameter).|



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-27

General Rules

1. When format 1 is used, literal-1 or the value of the data item referenced by
identifier-1 is stored in a temporary data item.  The value in this temporary data
item is then multiplied by the value of the data item referenced by identifier-2.  The
value of the multiplier (the value of the data item referenced by identifier-2) is
replaced by this product; similarly, the temporary data item is multiplied by each
successive occurrence of identifier-2 in the left-to_right order in which identifier-2 is
specified.

2. When format 2 is used, literal-1 or the value of the data item referenced by
identifier-1 is multiplied by literal-2 or the value of the data item referenced by
identifier-2 and the result is stored in the data items referenced by each identifier-3.

3. Additional rules and explanations relative to this statement are given under the
appropriate paragraphs.  (See "Scope of Statements", the "ROUNDED Phrase", the
"SIZE ERROR Phrase", the "Arithmetic Statements", "Overlapping Operands", and
"Multiple Results in Arithmetic Statements" in Chapter 10.)



GCOS 7 COBOL 85 Reference Manual

12-28 47 A2 05UL Rev04

12.8 OPEN

Description

The OPEN statement initiates the processing of files.

Format

     {INPUT {file-name-1 [WITH NO  REWIND]}... }
OPEN {OUTPUT {file-name-2 [WITH NO  REWIND]}...} ...
     {I-O {file-name-3}...                    }
     {EXTEND {file-name-4}...                 }

Syntax Rules

1. The OPEN statement for a report file must contain only the OUTPUT phrase or the
EXTEND phrase.

2. The NO REWIND phrase must only be used with sequential files.  (See the "CLOSE
Statement" in Chapter 11.)

3. The I-O phrase must only be used for mass storage files.

4. The EXTEND phrase must only be used for files in the sequential access mode for
which neither the MULTIPLE FILE attribute nor the LINAGE clause is specified.

5. The files referenced in the OPEN statement need not all have the same
organization or access.

General Rules

1. The successful execution of an OPEN statement determines the availability of the
file and results in the file being in an open mode.  The successful execution of an
OPEN statement associates the file with the file-name through the file connector.

A file is available if it is physically present and is recognized by the I-O control
system.  The table below shows the results of opening available and unavailable
files.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-29

Table 12-2. Opening Available and Unavailable Files

    |================|====================|======================|
    |                |  FILE IS AVAILABLE | FILE IS UNAVAILABLE  |
    |----------------|--------------------|----------------------|
    | INPUT          | Normal OPEN        |OPEN is unsuccessful  |
    |----------------|--------------------|----------------------|
    | INPUT          | Normal OPEN        | Normal OPEN;         |
    | (optional file)|                    |The first READ causes |
    |                |                    | the AT END condition |
    |                |                    | or the INVALID KEY   |
    |                |                    |     condition.       |
    |----------------|--------------------|----------------------|
    | I-O            | Normal OPEN        |OPEN is unsuccessful  |
    |----------------|--------------------|----------------------|
    | I-O            | Normal OPEN        |The OPEN causes the   |
    | (optional file)|                    |  file to be created. |
    |----------------|--------------------|----------------------|
    | OUTPUT         |Contents are deleted|The OPEN causes the   |
    |                | then normal OPEN   |   file to be created |
    |----------------|--------------------|----------------------|
    | EXTEND         | Normal OPEN        |OPEN is unsuccessful  |
    |----------------|--------------------|----------------------|
    | EXTEND         | Normal OPEN        |The OPEN causes the   |
    | (optional file)|                    |  file to be created. |
    |================|====================|======================|

2. The successful execution of an OPEN statement makes the associated record area
available to the program.  If the file connector associated with file-name is an
external file connector, there is only one record area associated with the file
connector for the run unit.

3. When a file is not in an open mode, no statement may be executed which
references the file, either explicitly or implicitly, except for a MERGE statement with
the USING or GIVING phrase, an OPEN statement, or a SORT statement with the
USING or GIVING phrases, |or an ASSIGN statement.  However, this restriction
does not apply if the file has been declared as SYSIN or SYSOUT in the SELECT
clause or if it is actually a SYSIN or a SYSOUT file.|

4. The OPEN statement for a report file must be executed prior to the execution of an
INITIATE statement for any report contained in the file.

5. An OPEN statement must be successfully executed prior to the execution of any of
the permissible input-output statements.  In the table "Permissible Access Modes
For Different File Organizations" below, 'X' at an intersection indicates that the
specified statement, used in the access mode given for that row, may be used with
the file organization and open mode given at the top of the column.

6. A file may be opened with the INPUT, OUTPUT, EXTEND and I-O phrases in the
same run unit.  Following the initial execution of an OPEN statement for a file, each
subsequent OPEN statement execution for the same file must be preceded by the
execution of a CLOSE statement, without the REEL, UNIT or LOCK phrase, for that
file.

7. Execution of the OPEN statement does not obtain or release the first data record.



GCOS 7 COBOL 85 Reference Manual

12-30 47 A2 05UL Rev04

8. If label records are specified for the file, the beginning labels are processed as
follow:

a. When the INPUT phrase is specified, the execution of the OPEN statement
causes the labels to be checked.

b. When the OUTPUT phrase is specified, the execution of the OPEN statement
causes the labels to be written.

The behavior of the OPEN statement when label records are specified but not
present, or when labels records are not specified but are present, is undefined.

9. If during the execution of an OPEN statement a file attribute conflict condition
occurs, the execution of the OPEN statement is unsuccessful.

10. The NO REWIND phrase must only be used with sequential single-reel/unit files.
(See the "Close Statement" in Chapter 11.)

11. The NO REWIND phrase will be ignored if it does not apply to the storage media on
which the file resides.

12. If the storage medium for the file permits rewinding, the following rules apply:

a. When neither the EXTEND nor the NO REWIND phrase is specified, execution
of the OPEN statement causes the file to be positioned at its beginning.

b. When the NO REWIND phrase is specified, execution of the OPEN statement
does not cause the file to be repositioned; the file must be already positioned
at its beginning prior to execution of the OPEN statement.

13. If a file opened with the INPUT phrase is an optional file which is not present, the
OPEN statement sets the File Position Indicator to indicate that an optional file is
not present.

14. When files are opened with the INPUT or I-O phrase, the file position indicator is set
as follow:

a. For sequential and relative files, the file position indicator is set to 1.

b. For indexed files, the file position indicator is set to the characters that have
the lowest ordinal position in the collating sequence associated with the file
and the prime record key is established as the Key of reference.

15. When the EXTEND phrase is specified, the OPEN statement positions the file
immediately after the last logical record for that file.

The last logical record for a file is:

a. For sequential files, the last record written in the file.

b. For relative files, the currently existing record with the highest relative record
number.

c. For indexed files, the currently existing record with the highest Prime Key
value.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-31

16. When the EXTEND phrase is specified and the LABEL RECORDS clause indicates
label records are present, the execution of the OPEN statement includes the
following steps:

a. The beginning file labels are processed only in the case of a single reel/unit
file.

b. The beginning reel/unit labels on the last existing reel/unit are processed as
though the file was being opened with the INPUT phrase.

c. The existing ending file labels are processed as though the file is being opened
with the INPUT phrase.  These labels are then deleted.

d. Processing then proceeds as though the file had been opened with the
OUTPUT phrase.

17. The OPEN statement with the I-O phrase must reference a mass storage file.  The
execution of the OPEN statement with the I-O phrase places the referenced file in
the open mode for both input and output operations.

18. When the I-O phrase is specified and the LABEL RECORDS clause indicates label
records are present, the execution of the OPEN statement includes the following
steps:

The labels are checked.

The new labels are written.

19. For an optional file that is unavailable, the successful execution of an OPEN
statement with the EXTEND or I-O phrase creates the file.  This creation takes
place as if the following statements were executed in the order shown:

    OPEN OUTPUT file-name. CLOSE file-name.

These statements are followed by execution of the OPEN statement specified in the
source program.

The successful execution of an OPEN statement with the OUTPUT phrase creates
the file.  After the successful creation of a file, that file contains no data records.

20. For sequential files, upon successful execution of the OPEN statement, the Current
Volume Pointer is set:

a. To point to the first or only reel/unit for an available input or input-output file.

b. To point to the reel/unit containing the last logical record for an extend file.

c. To point to the new reel/unit for an unavailable output, input-output or extend
file.

21. The execution of the OPEN statement causes the value of the I-O status associated
with file-name to be updated.  (See "I-O Status" in Chapter 7.)



GCOS 7 COBOL 85 Reference Manual

12-32 47 A2 05UL Rev04

22. If more than one file-name is specified in an OPEN statement, the result of
executing this OPEN statement is the same as if a separate OPEN statement had
been written for each file-name in the same order as specified in the OPEN
statement.

23. The minimum and maximum record sizes for a file are established at the time the
file is created and must not subsequently be changed.

Table 12-3. Permissible Access Modes for Different File Organizations

                 |===============================================|
                 |              FILE  ORGANIZATION               |
                 |-----------------------------------------------|
                 |  SEQUENTIAL   |    RELATIVE   |    INDEXED    |
        |--------|---------------|---------------|---------------|
        |  Open  |   |   |   |   |   |   |   |   |   |   |   |   |
        |  Mode  |IN |OUT|I-O|EXT|IN |OUT|I-O|EXT|IN |OUT|I-O|EXT|
    |---|--------|---------------|---------------|---------------|
|   | S |        |   |   |   |   |   |   |   |   |   |   |   |   |
|   | E | READ   | X |   | X |   | X |   | X |   | X |   | X |   |
|   | Q |--------|---|---|---|---|---|---|---|---|---|---|---|---|
|   | U | WRITE  |   | X |   | X |   | X |   | X |   | X |   | X |
|   | E |--------|---|---|---|---|---|---|---|---|---|---|---|---|
|   | N | REWRITE|   |   | X |   |   |   | X |   |   |   | X |   |
| F | T |--------|---|---|---|---|---|---|---|---|---|---|---|---|
| I | I | START  |   |   |   |   | X |   | X |   | X |   | X |   |
| L | A |--------|---|---|---|---|---|---|---|---|---|---|---|---|
| E | L | DELETE |   |   |   |   |   |   | X |   |   |   | X |   |
|   |---|--------|---|---|---|---|---|---|---|---|---|---|---|---|
| A |   | READ   |   |   |   |   | X |   | X |   | X |   | X |   |
| C | R |--------|---|---|---|---|---|---|---|---|---|---|---|---|
| C | A | WRITE  |   |   |   |   |   | X | X |   |   | X | X |   |
| E | N |--------|---|---|---|---|---|---|---|---|---|---|---|---|
| S | D | REWRITE|   |   |   |   |   |   | X |   |   |   | X |   |
| S | O |--------|---|---|---|---|---|---|---|---|---|---|---|---|
|   | M | START  |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |--------|---|---|---|---|---|---|---|---|---|---|---|---|
| M |   | DELETE |   |   |   |   |   |   | X |   |   |   | X |   |
| O |---|--------|---|---|---|---|---|---|---|---|---|---|---|---|
| D |   | READ   |   |   |   |   | X |   | X |   | X |   | X |   |
| E |   |--------|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |READ    |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |    NEXT|   |   |   |   | X |   | X |   | X |   | X |   |
|   | D |--------|---|---|---|---|---|---|---|---|---|---|---|---|
|   | Y | WRITE  |   |   |   |   |   | X | X |   |   | X | X |   |
|   | N |--------|---|---|---|---|---|---|---|---|---|---|---|---|
|   | A | REWRITE|   |   |   |   |   |   | X |   |   |   | X |   |
|   | M |--------|---|---|---|---|---|---|---|---|---|---|---|---|
|   | I | START  |   |   |   |   | X |   | X |   | X |   | X |   |
|   | C |--------|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   | DELETE |   |   |   |   |   |   | X |   |   |   | X |   |
|===|===|========|===|===|===|===|===|===|===|===|===|===|===|===|



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-33

12.9 PERFORM

Description

The PERFORM statement is used to transfer control explicitly to one or more
procedures, and to return control implicitly whenever execution of the specified
procedure is complete.  The PERFORM statement is also used to control execution of
one or more imperative statements which are within the scope of that PERFORM
statement.

Format 1

                           {THROUGH}
PERFORM [procedure-name-1 [{       } procedure-name-2]]
                           {THRU   }

    [imperative-statement-1 END-PERFORM]

Format 2

                           {THROUGH}
PERFORM [procedure-name-1 [{       } procedure-name-2]]
                           {THRU   }

    {identifier-1}
    {            } TIMES
    {integer-1   }

    [imperative-statement-1 END-PERFORM]

Format 3

                           {THROUGH}
PERFORM [procedure-name-1 [{       } procedure-name-2]]
                           {THRU   }

               {BEFORE}
    [WITH TEST {      }] UNTIL  condition-1
               {AFTER }

    [imperative-statement-1 END-PERFORM]



GCOS 7 COBOL 85 Reference Manual

12-34 47 A2 05UL Rev04

Format 4

                           {THROUGH}
PERFORM [procedure-name-1 [{       } procedure-name-2]]
                           {THRU   }

               {BEFORE}
    [WITH TEST {      }]
               {AFTER }

             {identifier-2}      {identifier-3}
     VARYING {            } FROM  {index-name-2}
             {index-name-1}      {literal-1   }

                 {identifier-4}
              BY {            } UNTIL  condition-1
                 {literal-2   }

           {identifier-5}      {identifier-6}
    [AFTER {            } FROM  {index-name-4}
           {index-name-3}      {literal-3   }

                 {identifier-7}
              BY {            } UNTIL  condition-2]...
                 {literal-4   }

    [imperative-statement-1 END-PERFORM]

Syntax Rules

1. If procedure-name-1 is omitted, imperative-statement-1 and the END-PERFORM
phrase must be specified; if procedure-name-1 is specified, imperative-statement-1
and the END-PERFORM phrase must not be specified.

2. In Format 4, if procedure-name-1 is omitted, the AFTER phrase must not be
specified.

3. If neither the TEST BEFORE nor the TEST AFTER phrase is specified, the TEST
BEFORE phrase is assumed.

4. Each identifier represents a numeric elementary item described in the data division.
In Format 2, identifier-1 must be described as a numeric integer.

5. Each literal represents a numeric literal.

6. The words THRU and THROUGH are equivalent.

7. If an index-name is specified in the VARYING or AFTER phrase, then:

a. The identifier in the associated FROM and BY phrases must reference an
integer data item.

b. The literal in the associated FROM phrase must be a positive integer.

c. The literal in the associated BY phrase must be a non-zero integer.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-35

8. If an index-name is specified in the FROM phrase, then:

a. The identifier in the associated VARYING or AFTER phrase must reference an
integer data item.

b. The identifier in the associated BY phrase must reference an integer data item.

c. The literal in the associated BY phrase must be an integer.

9. Literal in the BY phrase must not be zero.

10. Condition-1, condition-2, ... may be any conditional expression (see "Conditional
Expressions", Chapter 10).

11. Where procedure-name-1 and procedure-name-2 are both specified and either is
the name of a procedure in the declaratives portion of the Procedure Division, both
must be procedure-names in the same declarative Section.

General Rules

1. The data items referenced by identifier-4 and identifier-7 must not have a zero
value.

2. If an index-name is specified in the VARYING or AFTER phrase, and an identifier is
specified in the associated FROM phrase, then the data item referenced by the
identifier must have a positive value.

3. When procedure-name-1 is specified, the PERFORM statement is referred to as an
out-of-line PERFORM statement; when procedure-name-1 is omitted, the
PERFORM statement is referred to as an in-line PERFORM statement.

4. The statements contained within the range of procedure-name-1 (through
procedure-name-2 if specified) for an out-of-line PERFORM statement or contained
within the PERFORM statement itself for an in-line PERFORM statement are
referred to as the specified set of statements.

5. The END-PERFORM phrase delimits the scope of the in-line PERFORM statement.
(See "Scope of Statements" in Chapter 10.)

6. An in-line PERFORM statement functions according to the following General Rules
for an otherwise identical out-of-line PERFORM statement, with the exception that
the statements contained within the in-line PERFORM statement are executed in
place of the statements contained within the range of procedure-name-1 (through
procedure-name-2 if specified).  Unless specially qualified by the word in-line or
out-of-line, all the general rules which apply to the out-of-line PERFORM statement
also apply to the in-line PERFORM statement.

7. When the PERFORM statement is executed, control is transferred to the first
statement of the specified set of statements (except as indicated in General Rules
10b, 10c and 10d).  This transfer of control occurs only once for each execution of a
PERFORM statement.



GCOS 7 COBOL 85 Reference Manual

12-36 47 A2 05UL Rev04

For those cases where a transfer of control to the specified set of statements does
take place, an implicit transfer of control to the end of the PERFORM statement is
established as follows:

a. If procedure-name-1 is a paragraph-name and procedure-name-2 is not
specified, the return is after the last statement of procedure-name-1.

b. If procedure-name-1 is a section-name and procedure-name-2 is not specified,
the return is after the last statement of the last paragraph in procedure-name-
1.

c. If procedure-name-2 is specified and it is a paragraph-name, the return is after
the last statement of the paragraph.

d. If procedure-name-2 is specified and it is a section-name, the return is after
the last statement of the last paragraph in the section.

e. If an in-line PERFORM statement is specified, an execution of the PERFORM
statement is completed after the last statement contained within it has been
executed.

8. There is no necessary relationship between procedure-name-1 and procedure-
name-2 except that a consecutive sequence of operations is to be executed
beginning at the procedure named procedure-name-1 and ending with the execution
of the procedure named procedure-name-2.  In particular, GO TO and PERFORM
statements may occur between procedure-name-1 and the end of procedure-name-
2.  If there are two or more logical paths to the return point, then procedure-name-2
may be the name of a paragraph consisting of the EXIT statement, to which all of
these paths must lead.

9. If control passes to the specified set of statements by means other than a
PERFORM statement, control will pass through the last statement of the set to the
next executable statement as if no PERFORM statement referenced the set.

10. The PERFORM statements operate as follows:

a. Format 1 is the basic PERFORM statement.  The specified set of statements
referenced by this type of PERFORM statement is executed once, and then
control passes to the end of the PERFORM statement.

b. Format 2 is the PERFORM ... TIMES.  The specified set of statements is
performed the number of times specified by integer-1 or by the initial value of
the data item referenced by identifier-1 for that execution.  If, at the time of the
execution of a PERFORM statement, the value of the data item referenced by
identifier-1 is equal to zero or is negative, control passes to the end of the
PERFORM statement.  Following the execution of the specified set of
statements the specified number of times, control is transferred to the end of
the PERFORM statement.

During execution of the PERFORM statement, reference to identifier-1 cannot
alter the number of times the specified set of statements is to be executed
from that which was indicated by the initial value of the data item referenced
by identifier-1.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-37

c. Format 3 is the PERFORM ... UNTIL.  The specified set of statements is
performed until the condition specified by the UNTIL phrase is true.  When the
condition is true, control is transferred to the end of the PERFORM statement.
If the condition is true when the PERFORM statement is entered, and the
TEST BEFORE phrase is specified or implied, no transfer to procedure-name-
1 takes place, and control is passed to the end of the PERFORM statement.  If
the TEST AFTER phrase is specified, the PERFORM statement functions as if
the TEST BEFORE phrase were specified except that the condition is tested
after the specified set of statements has been executed.  Any subscripting or
reference modification associated with the operands specified in condition-1 is
evaluated each time the condition is tested.

d. Format 4 is the PERFORM ... VARYING.  This variation of the PERFORM
statement is used to augment the values referenced by one or more identifiers
or index-names in an orderly fashion during the execution of a PERFORM
statement.  In the following discussion, every reference to identifier as the
object of the VARYING, AFTER, and FROM (current value) phrases also
refers to index-names.  If index-name-1 or index-name-3 is specified, the
value of the associated index at the beginning of the PERFORM statement
must be set to an occurrence number of an element in the table.  If index-
name-2 or index-name-4 is specified, the value of the data item referenced by
identifier-2 or identifier-5 at the beginning of the PERFORM statement must be
equal to an occurrence number of an element in a table associated with index-
name-2 or index-name-4.  Subsequent augmentation, as described below, of
index-name-1 or index-name-3 must not result in the associated index being
set to a value outside the range of the table associated with index-name-1 or
index-name-3; except that, at the completion of the PERFORM statement, the
index associated with index-name-1 may contain a value that is outside the
range of the associated table by one increment or decrement value.

If identifier-2 or identifier-5 is subscripted, the subscripts are evaluated each
time the content of the data item referenced by the identifier is set or
augmented.  If identifier-3, identifier-4, identifier-6, or identifier-7 is
subscripted, the subscripts are evaluated each time the content of the data
item referenced by the identifier is used in a setting or augmenting operation.
Any subscripting or reference modification associated with the operands
specified in condition-1 or condition-2 is evaluated each time the condition is
tested.

1) If the TEST BEFORE phrase is specified or implied:

When the data item referenced by one identifier is varied, the content of the
data item referenced by identifier-2 is set to literal-1 or the current value of the
data item referenced by identifier-3 at the point of initial execution of the
PERFORM statement; then, if the condition of the UNTIL phrase is false, the
specified set of statements is executed once.  The value of the data item
referenced by identifier-2 is augmented by the specified increment or
decrement value (literal-2 or the value of the data item referenced by
identifier-4) and condition-1 is evaluated again.  The cycle continues until this
condition is true, at which point control is transferred to the end of the
PERFORM statement.  If condition-1 is true at the beginning of execution of
the PERFORM statement, control is transferred to the end of the PERFORM
statement.



GCOS 7 COBOL 85 Reference Manual

12-38 47 A2 05UL Rev04

When the data items referenced by two identifiers are varied, the content of
the data item referenced by identifier-2 is set to literal-1 or the current value of
the data item referenced by identifier-3 and then the content of the data item
referenced by identifier-5 is set to literal-3 or the current value of the data item
referenced by identifier-6.  After the contents of the data items referenced by
the identifiers have been set, condition-1 is evaluated; if true, control is
transferred to the end of the PERFORM statement; if false, condition-2 is
evaluated.  If condition-2 is false, the specified set of statements is executed
once, then the content of the data item referenced by identifier-5 is augmented
by literal-4 or the content of the data item referenced by identifier-7 and
condition-2 is evaluated again.  This cycle of evaluation and augmentation
continues until this condition is true.  When condition-2 is true, the content of
the data item referenced by identifier-2 is augmented by literal-2 or the content
of the data item referenced by identifier-4, the content of the data item
referenced by identifier-5 is set to literal-3 or the current value of the data item
referenced by identifier-6, and condition-1 is reevaluated.  The PERFORM
statement is completed if condition-1 is true; if not, the cycle continues until
condition-1 is true.

Entrance

Condition-1
True

Exit

False

Set identifier-2 equal to
current FROM value

Execute specified set
of statements

Augment identifier-2 with
current BY value

Figure 12-1. Perform Test before Varying with One Condition



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-39

At the termination of the PERFORM statement, the data item referenced by
identifier-5 contains literal-3 or the current value of the data item referenced by
identifier-6.  The data item referenced by identifier-2 contains a value that
exceeds the last used setting by one increment or decrement value, unless
condition-1 was true when the PERFORM statement was entered, in which
case, the data item referenced by identifier-2 contains literal-1 or the current
value of the data item referenced by identifier-3.

Entrance

Condit ion-1
True Exit

False

False

Condit ion-2 True

S et identifier-5 to
its  current FR O M  value

S et identifier-2 to
 curren t F RO M  value

E xecute  specified set
o f statem ents

Augm ent identifie r-2
with current B Y va lue

S et identifier-5 to
its current FR O M  value

A ugm ent identifier-5
w ith curren t B Y value

Figure 12-2. Perform Test before Varying with Two Conditions



GCOS 7 COBOL 85 Reference Manual

12-40 47 A2 05UL Rev04

2) If the TEST AFTER phrase is specified:

When the data item referenced by one identifier is varied, the content of the
data item referenced by identifier-2 is set to literal-1 or the current value of the
data item referenced by identifier-3 at the point of execution of the PERFORM
statement; then the specified set of statements is executed once and
condition-1 of the UNTIL phrase is tested.  If the condition is false, the value of
the data item referenced by identifier-2 is augmented by the specified
increment or decrement value (literal-2 or the value of the data item
referenced by identifier-4) and the specified set of statements is executed
again.  The cycle continues until condition-1 is tested and found to be true, at
which point control is transferred to the end of the PERFORM statement.

Condit ion-1
True

Exit

False

Entrance

Set identifier-2 equal to
current FR O M  value

Execute spec ified se t
of s ta tem ents

A ugm ent identifier-2
with  current BY value

Figure 12-3. Perform Test after Varying with One Condition



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-41

When the data items referenced by two identifiers are varied, the content of
the data item referenced by identifier-2 is set to literal-1 or the current value of
the data item referenced by identifier-3, then the content of the data item
referenced by identifier-5 is set to literal-3 or the current value of the data item
referenced by identifier-6, and the specified set of statements is then
executed.  Condition-2 is then evaluated; if false, the content of the data item
referenced by identifier-5 is augmented by literal-4 or the content of the data
item referenced by identifier-7 and the specified set of statements is again
executed.  The cycle continues until condition-2 is again evaluated and found
to be true, at which time condition-1 is evaluated.  If false, the content of the
data item referenced by identifier-2 is augmented by literal-2 or the content of
the data item referenced by identifier-4, the content of the data item
referenced by identifier-5 is set to literal-3 or the current value of the data item
referenced by identifier-6 and the specified set of statements is again
executed.  This cycle continues until condition-1 is again evaluated and found
to be true, at which time control is transferred to the end of the PERFORM
statement.

After completion of the PERFORM statement, each data item varied by an
AFTER or VARYING phrase contains the same value it contained at the end of
the most recent execution of the specified set of statements.

During the execution of the specified set of statements associated with the
PERFORM statement, any change to the VARYING variable (the data item
referenced by identifier-2 and index-name-1), the BY variable (the data item
referenced by identifier-4), the AFTER variable (the data item referenced by
identifier-5 and index-name-3), or the FROM variable (the data item
referenced by identifier-3 and index-name-2) will be taken into consideration
and will affect the operation of the PERFORM statement.

When the data items referenced by two identifiers are varied, the data item
referenced by identifier-5 goes through a complete cycle (FROM, BY, UNTIL)
each time the content of the data item referenced by identifier-2 is varied.
When the contents of three or more data items referenced by identifiers are
varied, the mechanism is the same as for two identifiers except that the data
item being varied by each AFTER phrase goes through a complete cycle each
time the data item being varied by the preceding AFTER phrase is augmented.



GCOS 7 COBOL 85 Reference Manual

12-42 47 A2 05UL Rev04

False

Condit ion-2

Condit ion-1

True

True
Exit

False

Entrance

S e t ide n tif ie r-2  to
 c u rre n t F R O M  v a lue

S e t iden tif ie r-5  to
its  c u rre n t F R O M  va lue

E xe cu te  s pec if ied  se t
o f s ta tem en ts

A ugm e nt iden tif ie r-5
w ith  cu rren t B Y  v a lue

A ugm e nt iden tif ie r-2
w ith  cu rren t B Y  v a lue

Figure 12-4. Perform Test after Varying with Two Conditions



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-43

11. The range of a PERFORM statement consists logically of all those statements that
are executed as a result of executing the PERFORM statement through execution
of the implicit transfer of control to the end of the PERFORM statement.  The range
includes all statements that are executed as the result of a transfer of control by
CALL, EXIT, GO TO, and PERFORM statements in the range of the PERFORM
statement, as well as all statements in declarative procedures that are executed as
a result of the execution of statements in the range of the PERFORM statement.
The statements in the range of a PERFORM statement need not appear
consecutively in the source program.

12. Statements executed as the result of a transfer of control caused by executing an
EXIT PROGRAM statement are not considered to be part of the range of the
PERFORM statement when:

a. That EXIT PROGRAM statement is specified in the same program in which the
PERFORM statement is specified, and

b. The EXIT PROGRAM statement is within the range of the PERFORM
statement.

13. Procedure-name-1 and procedure-name-2 must not name sections or paragraphs in
any other program in the run unit, irrespective of whether or not the other program
contains or is contained within the program which includes the PERFORM
statement.  Statements in other programs in the run unit may only be obeyed as a
result of executing a PERFORM statement, if the range of that PERFORM
statement includes CALL and EXIT PROGRAM statements.

14. If the range of a PERFORM statement includes another PERFORM statement, the
sequence of procedures associated with the included PERFORM must itself either
be totally included in, or totally excluded from, the logical sequence referred to by
the first PERFORM.  Thus, an active PERFORM statement, whose execution point
begins within the range of another active PERFORM statement, must not allow
control to pass to the exit of the other active PERFORM statement; furthermore,
two or more such active PERFORM statements may not have a common exit.



GCOS 7 COBOL 85 Reference Manual

12-44 47 A2 05UL Rev04

See the following illustrations for examples of legal PERFORM constructs:

          x  PERFORM a THRU m

          a  ------------------------------|
                                           |
          d  PERFORM f THRU j              |
                                           |
          f  -----------------------|      |
                                    |      |
          j  -----------------------|      |
                                           |
          m  ------------------------------|

          x  PERFORM a THRU m

          a  ------------------------------|
                                           |
          d  PERFORM f THRU j              |
                                           |
          h                                |
                                           |
          m  ------------------------------|

          f  -----------------------|
                                    |
          j  -----------------------|

          x  PERFORM a THRU m

          a  ------------------------------|
                                           |
          f  -----------------------|      |
                                    |      |
          m  -----------------------|------|
                                    |
          j  -----------------------|

          d  PERFORM f THRU j

15. A PERFORM statement that appears in a section that is not in an independent
segment can have within its range, in addition to any declarative sections whose
execution is caused within that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more non-independent
segments.

b. Sections and/or paragraphs wholly contained in a single independent segment.

16. A PERFORM statement that appears in an independent segment can have within
its range, in addition to any declarative sections whose execution is caused within
that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more non-independent
segments.

b. Sections and/or paragraphs wholly contained in the same independent
segment as that PERFORM statement.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-45

12.10 PURGE

Description

The PURGE statement eliminates from the message control system (MCS) a partial
message which has been released by one or more SEND statements.

Format

PURGE cd-name-1

Syntax Rules

Cd-name-1 must reference an output CD or input-output CD.

General Rules

1. Execution of a PURGE statement causes the MCS to eliminate any partial message
awaiting transmission to the destinations specified in the CD referenced by  cd-
name-1.

2. Any message that has associated with it an EMI or EGI is not affected by the
execution of a PURGE statement.

3. The content of the status key data item and the content of the error key data item (if
applicable) of the area referenced by cd-name-1 are updated by the MCS.



GCOS 7 COBOL 85 Reference Manual

12-46 47 A2 05UL Rev04

12.11 READ

Description

1. For sequential access, the READ statement makes available the next |or previous|
logical record from a file.

2. For random access, the READ statement makes available a specified record from a
mass storage file.

Format 1

                     |-------------|
                   [{|  PREVIOUS  }|]
                     |-------------|
READ file-name-1   [{             } ] RECORD [INTO  identifier-1]
                   [{     NEXT    } ]

     [AT END imperative-statement-1]

     [NOT AT END  imperative-statement-2]

     [END-READ]

Format 2

READ file-name-1 RECORD [INTO  identifier-1] [KEY  IS data-name-1]

[INVALID KEY imperative-statement-1]

[NOT INVALID  KEY imperative-statement-2]

[END-READ]

Syntax Rules

1. The storage area associated with identifier-1 and the record area associated with
file-name-1 must not be the same storage area.

2. Data-name-1 must be the name of a data item specified as a Record Key
associated with file-name-1.

3. Data-name-1 may be qualified.

4. Format 1 must be used for all files in sequential access mode.

5. The NEXT |or PREVIOUS| phrase must be specified for files in dynamic access
mode, when records are to be retrieved sequentially.

6. Format 2 is used for files in random access mode or for files in dynamic access
mode when records are to be retrieved randomly.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-47

7. The INVALID KEY or the AT END phrase must be specified if no applicable USE
AFTER STANDARD EXCEPTION procedure is specified for file-name-1.

8. File-name-1 must not be the name of a report file or the name of a sort or merge
file.

|9.     The PREVIOUS phrase applies only to indexed files.|

General Rules

1. The file referenced by file-name-1 must be open in the input or I-O mode at the
time this statement is executed.  (See the "OPEN Statement" in this chapter).

2. For files in the sequential access mode, the NEXT phrase is optional and has no
effect on the execution of the READ statement.

3. The execution of the READ statement causes the value of the I-O status associated
with file-name-1 to be updated.

4. The setting of the file position indicator at the start of the execution of a format-1
READ statement is used in determining the record to be made available according
to the following rules.
Comparisons for records in sequential files relate to the record number.
Comparisons for records in relative files relate to the relative key number.
Comparisons for records in indexed files relate to the value of the current key of
reference.  For indexed files, the comparisons are made according to the collating
sequence of the file.

a. If the file position indicator indicates that no valid next record has been
established, execution of the READ statement is unsuccessful.

b. If the file position indicator indicates that an optional input file is not present or
that the at end condition already exists, execution proceeds as specified in
general rule 11.

c. If the file position indicator indicates that no next logical record exists, the file
position indicator is set to indicate that the at end condition already exists and
execution proceeds as specified in general rule 11.

d. If the file position indicator was established by a previous OPEN or Format 1
START statement, the first existing record in the file whose record number,
relative record number, or key value is greater than or equal to the file position
indicator is selected.

|If the file position indicator was established by a previous Format 2 START
statement, it is the last existing record in the file whose key value is equal to
the file position indicator which is selected.|

e. If the file position indicator was established by a previous READ statement,
and the current key of reference (if any) does not allow duplicates.  |When the
PREVIOUS phrase is used, the last existing record in the file whose key value
is less than the file position indicator is selected, otherwise| the first existing
record in the file whose record number, relative record number, or key value is
greater than the file position indicator is selected.



GCOS 7 COBOL 85 Reference Manual

12-48 47 A2 05UL Rev04

f. For relative files, if the RELATIVE KEY phrase is specified for file-name-1 and
the number of significant digits in the relative record number of the selected
record is larger than the size of the relative key data item, the result will be
unpredictable.

g. For indexed files, if the file position indicator was established by a previous
READ statement and the current key of referenced does allow duplicates.
|When the PREVIOUS phrase is used, the last record in the file whose key
value is either equal to the file position indicator and whose logical position
within the set of duplicates is immediately before the record that was made
available by that previous READ statement or whose key value is less than the
file position indicator is selected, otherwise| the first record in the file whose
key value is either equal to the file position indicator and whose logical position
within the set of duplicates is immediately after the record that was made
available by the previous READ statement or whose key value is greater than
the file position indicator, is selected.

If a record is found which satisfies the above rules, it is made available in the record
area associated with file-name-1.

If no record is found which satisfies the above rules, the file position indicator is set
to indicate that no next logical record exists and execution proceeds as specified in
general rule 11.

If a record is made available, the file position indicator is set to the record number
or the value of the current key of reference of the record made available.

5. Regardless of the method used to overlap access time with processing time, the
concept of the READ statement is unchanged; a record is available to the object
program prior to the execution of imperative-statement-2, if specified, or prior to the
execution of any statement following the READ statement, if imperative-statement-
2 is not specified.

6. When the logical records of a file are described with more than one record
description, these records automatically share the same record area in storage; this
is equivalent to an implicit re-definition of the area.  The contents of any data items
which lie beyond the range of the current data record are undefined at the
completion of the execution of the READ statement.

7. The INTO phrase may be specified in a READ statement:

a. If only one record description is subordinate to the file description entry, or

b. If all record-names associated with file-name-1 and the data item referenced
by identifier-1 describe a group item or an elementary alphanumeric item.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-49

8. The result of the execution of a READ statement with the INTO phrase is equivalent
to the application of the following rules in the order specified:

a. The execution of the same READ statement without the INTO phrase.

b. The current record is moved from the record area to the area specified by
identifier-1 according to the rules for the MOVE statement without the
CORRESPONDING phrase.  The size of the current record is determined by
the rules specified for the RECORD clause.  If the file description entry
contains a RECORD VARYING clause, the implied move is a group move.
The implied MOVE statement does not occur if the execution of the READ
statement was unsuccessful.  Any subscripting associated with identifier-1 is
evaluated after the record has been read and immediately before it is moved
to the data item.  The record is available in both the record area and the data
item referenced by identifier-1.

9. For sequential READ, if, during the execution of a READ statement, the end of
reel/unit is recognized or a reel/unit contains no logical records, and the logical end
of the file has not been reached, the following operations are executed:

a. The standard ending reel/unit label procedure.

b. A reel/unit swap.  The current volume pointer is updated to point to the next
reel/unit existing for the file.

c. The standard beginning reel/unit label procedure.

10. If at the time of the execution of a format 2 READ statement, the file position
indicator indicates that an optional input file is not present, the invalid key condition
exists and execution of the READ statement is unsuccessful.

11. For a format 1 READ statement, if the file position indicator indicates that no next
logical record exists, or that an optional input file is not present, or that the at end
condition already exists, the following occurs in the order specified:

a. A value, derived from the setting of the file position indicator, is placed into the
I-O status associated with file-name-1 to indicate the at end condition.

b. If the AT END phrase is specified in the statement causing the condition,
control is transferred to imperative-statement-1 in the AT END phrase.  Any
USE AFTER STANDARD EXCEPTION procedure associated with file-name-1
is not executed.

c. If the AT END phrase is not specified, a USE AFTER STANDARD
EXCEPTION procedure must be associated with file-name-1, and that
procedure is executed.  Return from that procedure is to the next executable
statement following the end of the READ statement.

When the at end condition occurs, execution of the READ statement is
unsuccessful.



GCOS 7 COBOL 85 Reference Manual

12-50 47 A2 05UL Rev04

12. If neither an at end nor an invalid key condition occurs during the execution of a
READ statement, the AT END phrase or the INVALID KEY phrase is ignored, if
specified, and the following actions occur:

a. The file position indicator is set and the I-O status associated with file-name-1
is updated.

b. If an exception which is not an at end or an invalid key condition exists, control
is transferred according to the rules of the USE statement following the
execution of any USE AFTER EXCEPTION procedure applicable to
file-name-1.

c. If no exception condition exists, the record is made available in the record area
and any implicit move resulting from the presence of an INTO phrase is
executed.  Control is transferred to the end of the READ statement or to
imperative-statement-2, if specified.  In the latter case, execution continues
according to the rules for each statement specified in imperative-statement-2.
If a procedure branching or conditional statement which causes explicit
transfer of control is executed, control is transferred in accordance with the
rules for that statement; otherwise, upon completion of the execution of
imperative-statement-2, control is transferred to the end of the READ
statement.

13. Following the unsuccessful execution of a READ statement, the content of the
associated record area is undefined, the key of reference is undefined for indexed
files, and the file position indicator is set as follow:

a. For a format 2 READ statement, the file position indicator is set to indicate that
no valid next record has been established.

b. For a format 1 READ statement, the following rules apply:

If the file position indicator indicates that no next logical record exists or that
the at end condition already exists, the file position indicator is unchanged.

If the file position indicator indicates that an optional input file is not present,
the file position indicator is set to indicate that the at end condition already
exists.

In all other cases, the file position indicator is set to indicate that no valid next
record has been established.

14. For a relative file if the RELATIVE KEY phrase is specified for file-name-1, the
execution of a format 1 READ statement moves the relative record number of the
record made available to the relative key data item according to the rules for the
MOVE statement.

15. For a relative file, the execution of a Format 2 READ statement sets the file position
indicator to the value contained in the data item referenced by the RELATIVE KEY
phrase for the file, and the record whose relative record number equals the file
position indicator is made available in the record area associated with file-name-1.
If the file does not contain such a record, the invalid key condition exists and
execution of the READ statement is unsuccessful.  (See the "Invalid Key
Condition", Chapter 10.)



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-51

16. For a relative or indexed file for which dynamic access mode is specified, a format
1 READ statement with the NEXT phrase specified causes the next logical record to
be retrieved from that file.

|For an indexed file for which dynamic access mode is specified, a Format 1 READ
statement with the PREVIOUS phrase specified causes the previous logical record
to be retrieved from that file.|

17. For an indexed file being sequentially accessed |and when the PREVIOUS phrase
is not used|, records having the same duplicate value in an Alternate Record Key
which is the Key of Reference are made available in the same order in which they
are released by execution of WRITE statements, or by execution of REWRITE
statements which create such duplicate values.

|When the PREVIOUS phrase is used, they are made available in the reverse
order.|

18. For an indexed file if the KEY phrase is specified in a Format 2 READ statement,
data-name-1 is established as the Key of Reference for this retrieval.  If the
dynamic access mode is specified, this Key of Reference is also used for retrievals
by any subsequent executions of Format 1 READ statements for the file until a
different Key of Reference is established for the file.

19. For an indexed file, if the KEY phrase is not specified in a Format 2 READ
statement, the Prime Record Key is established as the key of reference for this
statement.  If the dynamic access mode is specified, this key of reference is also
used for retrievals by any subsequent execution of Format 1 READ statements for
the file until a different key of reference is established for the file.

20. For an indexed file, execution of a Format 2 READ statement sets the file position
indicator to the value in the key of reference.  This value is compared with the value
contained in the corresponding data item of the stored records in the file, until the
first record having an equal value is found.  In the case of an alternate key with
duplicate values, the first record found is the first record of a sequence of duplicates
which was released to the Operating System.  The record so found is made
available in the record area associated with file-name-1.  If no record can be so
identified, the invalid key condition exists and execution of the READ statement is
unsuccessful.  (See the "Invalid Key Condition", Chapter 10.)

21. If the number of character positions in the record that is read is less than the
minimum size specified by the record description entries for file-name-1, the portion
of the record area which is to the right of the last valid character read is undefined.
If the number of character positions in the record that is read is greater than the
maximum size specified by the record description entries for file-name-1, the record
is truncated on the right to the maximum size.  In either of these cases, the READ
statement is successful and the I-O status is set indicating a record length conflict
has occurred.

22. The END-READ phrase delimits the scope of the READ statement.A description of
the function of the END-READ phrase is given in the appropriate paragraph.  (See
"Scope of Statements" in Chapter 10.)



GCOS 7 COBOL 85 Reference Manual

12-52 47 A2 05UL Rev04

12.12 RECEIVE

Description

The RECEIVE statement makes available a message or a message segment and
information about that data.

The RECEIVE statement allows a specific imperative statement when no data is
available.

Format

                  {MESSAGE}
RECEIVE cd-name-1 {       } INTO  identifier-1
                  {SEGMENT}

      [NO DATA  imperative-statement-1]

      [WITH DATA imperative-statement-2]

      [END-RECEIVE]

Syntax Rules

1. Cd-name-1 must reference an input CD or input-output CD.

General Rules

1. If cd-name-1 references an input CD, the contents of the data items specified by
data-name-1 (SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC SUB-
QUEUE-3) of the area referenced by cd-name-1 designate the queue structure
containing the message.  (See the "Communication Description - Complete Entry
Skeleton" in Chapter 8.)

2. If cd-name-1 references an input-output CD, the content of the data item specified
by data-name-3 (SYMBOLIC TERMINAL) of the area referenced by cd-name-1
designates the source of the message.  (See the "Communication Description -
Complete Entry Skeleton" in Chapter 8.)

3. The message, message segment, or portion of a message or segment is transferred
to the receiving character positions of the area referenced by identifier-1 aligned to
the left without space fill.

4. When during the execution of a RECEIVE statement, the MCS makes data
available in the data item referenced by identifier-1, the NO DATA phrase, if
specified, is ignored and control is transferred to the end of the RECEIVE statement
or, if the WITH DATA phrase is specified, to imperative-statement-2.  If control is
transferred to imperative-statement-2, execution continues according to the rules
for each statement specified in imperative-statement-2.  If a procedure branching or
conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement; otherwise, upon
completion of the execution of imperative-statement-2, control is transferred to the
end of the RECEIVE statement.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-53

5. When, during the execution of a RECEIVE statement, the MCS does not make data
available in the data item referenced by identifier-1, one of the three actions listed
below will occur.

a. If the NO DATA phrase is specified in the RECEIVE statement, the RECEIVE
operation is terminated with the indication that action is complete and control is
transferred to imperative-statement-1.  Execution then continues according to
the rules for each statement specified in imperative-statement-1.  If a
procedure branching or conditional statement which causes explicit transfer of
control is executed, control is transferred in accordance with the rules for that
statement; otherwise, upon completion of the execution of imperative-
statement-1, control is transferred to the end of the RECEIVE statement and
the WITH DATA phrase, if specified, is ignored.

b. If the NO DATA phrase is not specified in the RECEIVE statement, execution
of the object program is suspended until data is made available in the data
item referenced by identifier-1.

c. If one or more queues or subqueues are unknown to the MCS, the appropriate
status key code is stored and control is then transferred as if data had been
made available.  (See "Communication Status Key Condition", Chapter 8).

6. The data items identified by cd-name-1 are appropriately updated by the Message
Control System (MCS) at each execution of a RECEIVE statement (See the
"Communication Description", Chapter 8).

7. A single execution of a RECEIVE statement never returns to the data item
referenced by identifier-1 more than a single message (when the MESSAGE phrase
is used) or a single segment (when the SEGMENT phrase is used).  However, the
MCS does not pass any portion of a message to the object program until the entire
message is available to the MCS, even if the SEGMENT phrase of the RECEIVE
statement is specified.

8. When the MESSAGE phrase is used, end of segment indicators are ignored, and
the following rules apply to the data transfer:

a. If a message is the same size as the area referenced by identifier-1, the
message is stored in the area referenced by identifier-1.

b. If a message size is less than the area referenced by identifier-1, the message
is aligned to the leftmost character position of the area referenced by identifier-
1 and the contents of the character positions not occupied by characters of the
message are not changed.

c. If a message size is greater than the area referenced by identifier-1 the
message fills the area referenced by identifier-1 left to right starting with the
leftmost character of the message.  Further RECEIVE statements which
reference the same queue and sub-queue must be executed to transfer the
remainder of the message into the area referenced by identifier-1.  The
remainder of the message, for the purposes of applying rules 8a, 8b and 8c is
treated as a new message.

d. If an end of group indicator is associated with the text accessed by the
RECEIVE statement, the existence of an end of message indicator is implied.



GCOS 7 COBOL 85 Reference Manual

12-54 47 A2 05UL Rev04

9. When the SEGMENT phrase is used, the following rules apply:

If a segment is the same size as the area referenced by identifier-1, the segment is
stored in the area referenced by identifier-1.

If the segment size is less than the area referenced by identifier-1, the segment is
aligned to the leftmost character position of the area referenced by identifier-1 and
the contents of character positions not occupied by characters of the segment are
not changed.

If a segment size is greater than the area referenced by identifier-1, the segment
fills the area referenced by identifier-1 left to right starting with the leftmost
character of the segment.  Further RECEIVE statements which reference the same
queue, sub-queue, ... , must be executed to transfer the remainder of the segment
into the area referenced by identifier-1.  The remainder of the segment, for the
purpose of applying rules 9a, 9b, and 9c, is treated as a new segment.

If an end of message indicator or end of group indicator is associated with the text
accessed by the RECEIVE statement, the existence of an end of segment indicator
is implied.

10. Once the execution of a RECEIVE statement has returned a portion of a message,
only subsequent execution of RECEIVE statements in that run unit can cause the
remaining portion of the message to be returned.

11. The END-RECEIVE phrase delimits the scope of the RECEIVE statement.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-55

12.13 RELEASE

Description

The RELEASE statement transfers records to the initial phase of a SORT operation.

Format

RELEASE record-name-1 [FROM  identifier-1]

Syntax Rules

1. Record-name-1 must be the name of a logical record in a Sort-Merge File
Description entry and it may be qualified.

2. A RELEASE statement may be used only within the range of an input procedure
associated with a SORT statement for the file-name whose sort-merge file
description entry contains record-name-1.

3. If identifier-1 is a function-identifier, it must reference an alphanumeric function.
When identifier-1 is not a function-identifier, record-name-1 and identifier-1 must
not refer to the same storage area.

General Rules

1. The execution of a RELEASE statement causes the record named by record-name-
1 to be released to the initial phase of a sort operation.

2. The logical record released by the execution of the RELEASE statement is no
longer available in the record area unless the sort-merge file-name associated with
record-name-1 is specified in a SAME RECORD AREA clause.  The logical record
is also available to the program as a record of other files referenced in the same
SAME RECORD AREA clause as the associated output file, as well as the file
associated with record-name-1.

3. The result of the execution of a RELEASE statement with the FROM phrase is
equivalent to the execution of the following statements in the order specified:

a. The statement: MOVE identifier-1 to record-name-1  according to the
rules specified for the MOVE statement.

b. The same RELEASE statement without the FROM phrase.

4. After the execution of the RELEASE statement is complete, the information in the
area referenced by identifier-1 is available, even though the information in the area
referenced by record-name-1 is not available except as specified by the SAME
RECORD AREA clause.



GCOS 7 COBOL 85 Reference Manual

12-56 47 A2 05UL Rev04

12.14 RETURN

Description

The RETURN statement obtains either sorted records from the final phase of a SORT
operation or merged records during a MERGE operation.

Format

RETURN file-name-1 RECORD [INTO  identifier-1]

        AT END imperative-statement-1

       [NOT AT END  imperative-statement-2]

       [END-RETURN]

Syntax Rules

1. The storage area associated with identifier-1 and the record area associated with
file-name-1 must not be the same storage area.

2. File-name-1 must be described by a sort-merge file description entry in the Data
Division.

3. A RETURN statement may only be used within the range of an output procedure
associated with a SORT or MERGE statement for file-name-1.

General Rules

1. When the logical records in a file are described with more than one record
description, these records automatically share the same storage area; this is
equivalent to an implicit re-definition of the area.  The contents of any data items
which lie beyond the range of the current data record are undefined at the
completion of the execution of the RETURN statement.

2. The execution of the RETURN statement causes the next existing record in the file
referenced by file-name-1, as determined by the keys listed in the SORT or
MERGE statement, to be made available in the record area associated with file-
name-1.  If no next logical record exists in the file referenced by file-name-1, the at
end condition exists and control is transferred to imperative-statement-1 of the AT
END phrase.  Execution continues according to the rules for each statement
specified in imperative-statement-1.  If a procedure branching or conditional
statement which causes explicit transfer of control is executed, control is transferred
according to the rules for that statement; otherwise, upon completion of the
execution of imperative-statement-1, control is transferred to the end of the
RETURN statement and the NOT AT END phrase is ignored, if specified.  When
the at end condition occurs, execution of the RETURN statement is unsuccessful
and the contents of the record area associated with file-name-1 are undefined.
After the execution of imperative-statement-1 in the AT END phrase, no RETURN
statement may be executed as part of the current output procedure.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-57

3. If an at end condition does not occur during the execution of a RETURN statement,
then after the record is made available and after executing any implicit move
resulting from the presence of an INTO phrase, control is transferred to imperative-
statement-2, if specified; otherwise, control is transferred to the end of the RETURN
statement.

4. The END-RETURN phrase delimits the scope of the RETURN statement.

5. The INTO phrase may be specified in a RETURN statement if only one record
description is subordinate to the sort-merge file description entry, or if all record-
names associated with file-name-1 and the data item referenced by identifier-1
describe a group item or an elementary alphanumeric item.

6. The result of the execution of a RETURN statement with the INTO phrase is
equivalent to the application of the following rules in the order specified:

a. The execution of the same RETURN statement without the INTO phrase.

b. The current record is moved from the record area to the area specified by
identifier-1 according to the rules for the MOVE statement without the
CORRESPONDING phrase.  The size of the current record is determined by
rules specified for the RECORD clause.  If the file description entry contains a
RECORD VARYING clause, the implied move is a group move.  The implied
MOVE statement does not occur if the execution of the RETURN statement
was unsuccessful.  Any subscripting associated with identifier-1 is evaluated
after the record has been read and immediately before it is moved to the data
item.  The record is available in both the record area and the data item
referenced by identifier-1.



GCOS 7 COBOL 85 Reference Manual

12-58 47 A2 05UL Rev04

12.15 REWRITE

Description

The REWRITE statement logically replaces a record existing in a mass storage file.

Format

REWRITE record-name-1 [FROM  identifier-1]

        [INVALID KEY imperative-statement-1]

        [NOT INVALID  KEY imperative-statement-2]

        [END-REWRITE]

Syntax Rules

1. If identifier-1 is a function-identifier, it must reference an alphanumeric function.
When identifier-1 is not a function-identifier, record-name-1 and identifier-1 must
not refer to the same storage area.

2. Record-name-1 is the name of a logical record in the File Section of the Data
Division and may be qualified.

3. The INVALID KEY and the NOT INVALID KEY phrases must not be specified for a
REWRITE statement which references a sequential file or a relative file in
sequential access mode.

4. The INVALID KEY phrase must be specified in REWRITE statement for relative
and indexed files in the random or dynamic access mode, and for which an
appropriate USE AFTER STANDARD EXCEPTION procedure is not specified.

5. Record-name-1 must not be defined within a Sort or Sort-Merge File Description
entry.

General Rules

All Files

1. The file referenced by the file-name associated with record-name-1 must be a mass
storage file and must be open in the I-O mode at the time of execution of this
statement (see the "OPEN Statement" in Chapter 12).



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-59

Sequential Files

2. For files in the sequential access mode, the last input-output statement executed for
the associated file prior to the execution of the REWRITE statement must have
been a successfully executed READ statement.  The Operating System logically
replaces the record that was accessed by the READ statement.

3. The number of character positions in the record referenced by record-name-1 may
or may not be equal to the number of character positions in the record being
replaced.

4. The logical record released by a successful execution of the REWRITE statement is
no longer available in the record area unless the file-name associated with record-
name-1 is specified in a SAME RECORD AREA clause.  The logical record is
available to the program as a record of other files referenced in the SAME
RECORD AREA clause as the associated output file, as well as the file associated
with record-name-1.

5. The result of the execution of a REWRITE statement with the FROM phrase is
equivalent to the execution of the following statements in the order specified:

a. The statement: MOVE identifier-1 to record-name-1 according to the rules
specified for the MOVE statement.

b. The same REWRITE statement without the FROM phrase.

6. After the execution of the REWRITE statement is complete, the information in the
area referenced by identifier-1 is available, even though the information in the area
referenced by record-name-1 is not available except as specified by the SAME
RECORD AREA clause.

7. The file position indicator is not affected by the execution of a REWRITE statement.

8. The execution of the REWRITE statement causes the value of the I-O status of the
file-name associated with record-name-1, to be updated.  (see "I-O Status" in
Chapter 7).

9. The execution of the REWRITE statement releases a logical record to the operating
system.

10. Transfer of control following the successful or unsuccessful execution of the
REWRITE operation depends on the presence or absence of the optional INVALID
KEY and NOT INVALID KEY phrases in the REWRITE statement.  (See the "Invalid
Key Condition" in Chapter 10.)

11. The END-REWRITE phrase delimits the scope of the REWRITE statement.  A
description of the function of the END-REWRITE phrase is given in the appropriate
paragraph.  (See "Scope of Statements" in Chapter 10.)



GCOS 7 COBOL 85 Reference Manual

12-60 47 A2 05UL Rev04

12. For sequential files, the number of character positions in the record referenced by
record-name-1 must not be unequal to the number of character positions in the
record being replaced.

For relative and indexed files, the number of character positions in the record
referenced by record-name-1 must not be larger than the largest or smaller than the
smallest number of character positions allowed by the RECORD IS VARYING
clause associated with the file-name associated with record-name-1.

In either of these cases the execution of the REWRITE statement is unsuccessful,
the updating operation does not take place, the content of the record area is
unaffected and the I-O status of the file associated with record-name-1 is set to a
value indicating the cause of the condition.

Relative Files

13. For a file accessed in either random or dynamic access mode, the Operating
System logically replaces the record specified by the content of the RELATIVE KEY
data item of the file-name associated with record-name-1.  If the file does not
contain the record specified by the key, the invalid key condition exists.  When the
invalid key condition is recognized, the execution of the REWRITE statement is
unsuccessful, the updating operation does not take place, the contents of the record
area are unaffected and the I-O status of the file-name associated with record-
name-1 is set to a value indicating the cause of the condition.  (See "I-O Status" in
Chapter 7, the "Invalid Key Condition" in Chapter 10.)

Indexed Files

14. For a file in the sequential access mode, the record to be replaced by a REWRITE
statement is specified by the value of the Prime Record Key.  When the REWRITE
statement is executed the value of the Prime Record Key of the record to be
replaced must be equal to the value of the Prime Record Key of the last record read
from this file.

15. For a file in the random or dynamic access mode, the record to be replaced by the
REWRITE statement is specified by the Prime Record Key.

16. Execution of the REWRITE statement for a record which has an Alternate Record
Key occurs as follows:

a. When the value of a specific Alternate Record Key is not changed, the order of
retrieval when that key is the Key of Reference remains unchanged.

b. When the value of a specific Alternate Record Key is changed, the subsequent
order of retrieval of that record may be changed when that specific Alternate
Record Key is the Key of Reference.  When duplicate key values are
permitted, the record is logically positioned last within the set of duplicate
records containing the same Alternate Record Key value as the Alternate
Record Key value that was placed in the record.



Procedure Division - Statements  (IF to REWRITE)

47 A2 05UL Rev04 12-61

17. The invalid key condition exists under the following circumstances:

a. When the file is open in the sequential access mode, and the value of the
Prime Record Key of the record to be replaced is not equal to the value of the
Prime Record Key of the last record read from the file, or

b. When the file is open in the dynamic or random access mode, and the value of
the Prime Record Key of the record to be replaced is not equal to the value of
the Prime Record Key of any record existing in the file, or

c. When the value of an ALTERNATE RECORD KEY of the record to be
replaced, for which duplicates are not allowed, equals the value of the
corresponding data item of a record already existing in the file.

18. When the invalid key condition is recognized, the execution of the REWRITE
statement is unsuccessful, the updating operation does not take place, the content
of the record area is unaffected and the I-O status of the file-name associated with
record-name-1 is set to a value indicating the cause of the condition.



GCOS 7 COBOL 85 Reference Manual

12-62 47 A2 05UL Rev04



47 A2 05UL Rev04 13-1

13. Procedure Division - Statements
(SEARCH to WRITE)

This chapter describes the statements from SEARCH to WRITE (inclusive).

The statements concerned are:

• SEARCH

• SEND

• SET

• SORT

• START

• STOP

• STRING

• SUBTRACT

• SUPPRESS

• TERMINATE

• |TRANSFORM|

• UNSTRING

• USE

• WRITE



GCOS 7 COBOL 85 Reference Manual

13-2 47 A2 05UL Rev04

13.1 SEARCH

Description

The SEARCH statement is used to search a table for a table element that satisfies the
specified condition and to adjust the value of the associated index to indicate that table
element.

Format 1

                             {identifier-2}
SEARCH identifier-1 [VARYING  {            }]
                             {index-name-1}

    [AT END imperative-statement-1]

                      {imperative-statement-2}
    {WHEN CONDITION-1 {                      }}... [END-SEARCH ]
                      {NEXT SENTENCE          }

Format 2

SEARCH ALL identifier-1

   [AT END imperative-statement-1]

         {            {IS EQUAL TO}
         {            {|--------| } {identifier-3           }}
         {data-name-1 {| EQUALS | } {literal-1              }}
    WHEN {            {|--------| } {arithmetic-expression-1}}
         {            {IS =       }
         {                                                   }
         {condition-name-1                                   }

         {            {IS EQUAL TO}
         {            {|--------| } {identifier-4           }}
         {data-name-2 {| EQUALS | } {literal-2              }}
   [AND  {            {|--------| } {arithmetic-expression-2}}]...
         {            {IS =       }
         {                                                   }
         {condition-name-2                                   }

   {imperative-statement-2}
   {                      } [END-SEARCH]
   {NEXT SENTENCE          }



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-3

Syntax Rules

1. In both Formats 1 and 2, identifier-1 must not be subscripted or reference modified,
but its description must contain an OCCURS clause including an INDEXED BY
phrase.  The description of identifier-1 in Format 2 must also contain the KEY IS
phrase in its OCCURS clause.

2. Identifier-2, when specified, must reference a data item described as USAGE IS
INDEX or as a numeric elementary data item without any positions to the right of
the assumed decimal point.  Identifier-2 may not be subscripted by the first (or only)
index-name specified in the INDEXED BY phrase in the OCCURS clause
associated with identifier-1.

3. In Format 1, condition-1 may be any conditional expression (see "Conditional
Expressions", Chapter 10).

4. In Format 2, all referenced condition-names must be defined as having only a
single value.  The data-name associated with a condition-name must appear in the
KEY IS phrase in the OCCURS clause referenced by identifier-1.  Each data-name-
1, data-name-2 may be qualified.  Each data-name-1, data-name-2 must be
subscripted by the first index-name associated with identifier-1 along with other
subscripts as required, and must be referenced in the KEY IS phrase in the
OCCURS clause referenced by identifier-1.  Identifier-3, identifier-4 or identifiers
specified in arithmetic-expression-1, arithmetic-expression-2 must not be
referenced in the KEY IS phrase in the OCCURS clause referenced by identifier-1
or be subscripted by the first index-name associated with identifier-1.

In Format 2, when a data-name in the KEY IS phrase in the OCCURS clause
referenced by identifier-1 is referenced, or when a condition-name associated with a
data-name in the KEY IS phrase in the OCCURS clause referenced by identifier-1
is referenced, all preceding data-names in the KEY IS phrase in the OCCURS
clause referenced by identifier-1 or their associated condition-names must also be
referenced.

5. If the END-SEARCH phrase is specified, the NEXT SENTENCE phrase must not be
specified.

6. The words IS EQUAL TO are equivalent to the words IS = |, and both are
equivalent to the word EQUALS.|



GCOS 7 COBOL 85 Reference Manual

13-4 47 A2 05UL Rev04

General Rules

1. The scope of a SEARCH statement may be terminated by any of the following:

a. An END-SEARCH phrase at the same level of nesting.

b. A separator period.

c. An ELSE or END-IF phrase associated with a previous IF statement.  (See
"Scope of Statements" in Chapter 10.)

2. If Format 1 of the SEARCH statement is used, a serial type of search operation
takes place, starting with the current index setting.

a. If, at the start of execution of the SEARCH statement, the index-name
associated with identifier-1 contains a value that corresponds to an occurrence
number that is greater than the highest permissible occurrence number for
identifier-1, the SEARCH is terminated immediately.  The number of
occurrences of identifier-1, the last of which is the highest permissible, is
discussed in the OCCURS clause.  (See the "OCCURS Clause", Chapter 9).
Then, if the AT END phrase is specified, imperative-statement-1 is executed; if
the AT END phrase is not specified, control passes to the end of the SEARCH
statement.

b. If, at the start of execution of the SEARCH statement, the index-name
associated with identifier-1 contains a value that corresponds to an occurrence
number that is not greater than the highest permissible occurrence number for
identifier-1 (the number of occurrences of identifier-1, the last of which is the
highest permissible is discussed in the OCCURS clause) the SEARCH
statement operates by evaluating the conditions in the order that they are
written, making use of the index settings, wherever specified, to determine the
occurrence of those items to be tested.  If none of the conditions is satisfied,
the index-name for identifier-1 is incremented to obtain reference to the next
occurrence.  The process is then repeated using the new index-name settings
unless the new value of the index-name settings for identifier-1 corresponds to
a table element outside the permissible range of occurrence values, in which
case the search terminates as indicated in 2a above.  If one of the conditions
is satisfied upon its evaluation, the search terminates immediately and control
passes to the imperative statement associated with that condition, if present,
or, if the NEXT SENTENCE phrase is associated with that condition, to the
next executable sentence; the index-name remains set at the occurrence
which caused the condition to be satisfied.

3. In a Format 2 SEARCH statement, the results of the SEARCH ALL operation are
predictable only when:

a. The data in the table is ordered in the same manner as described in the KEY
IS phrase of the OCCURS clause referenced by identifier-1, and

b. The contents of the key(s) referenced in the WHEN phrase are sufficient to
identify a unique table element.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-5

4. If Format 2 of the SEARCH statement is used, a non-serial type of search operation
may take place; the initial setting of the index-name for identifier-1 is ignored and
its setting is varied during the search operation in a manner such that at no time is it
set to a value that exceeds the value which corresponds to the last element of the
table, or that is less than the value that corresponds to the first element of the table.
The length of the table is discussed in the OCCURS clause (See Chapter 9).  The
OCCURS Clause).  If any of the conditions specified in the WHEN phrase cannot
be satisfied for any setting of the index within the permitted range, control is passed
to imperative-statement-1 of the AT END phrase, when specified, or to the end of
the SEARCH statement when this phrase is not specified; in either case the final
setting of the index is not predictable.  If all the conditions can be satisfied, the
index indicates an occurrence that allows the conditions to be satisfied, and control
passes to imperative-statement-2, if specified, or to the next executable sentence if
the NEXT SENTENCE phrase is specified.

5. After execution of imperative-statement-1 or imperative-statement-2, that does not
terminate with a GO TO statement, control passes to the end of the SEARCH
statement.

6. In Format 2, the index-name that is used for the search operation is the first (or
only) index-name specified in the INDEXED BY phrase in the OCCURS clause
referenced by identifier-1.  Any other index-names for identifier-1 remain
unchanged.

7. In Format 1, if the VARYING phrase is not used, the index-name that is used for the
search operation is the first (or only) index-name specified in the INDEXED BY
phrase in the OCCURS clause referenced by identifier-1.  Any other index-names
for identifier-1 remain unchanged.

8. In Format 1, if the VARYING index-name-1 phrase is specified, and if index-name-1
appears in the INDEXED BY phrase in the OCCURS clause referenced by
identifier-1, that index-name is used for this search.  If this is not the case, or if the
VARYING identifier-2 phrase is specified, the first (or only) index-name given in the
INDEXED BY phrase in the OCCURS clause referenced by identifier-1 is used for
the search.  In addition, the following operations will occur:

a. If the VARYING index-name-1 phrase is used, and if index-name-1 appears in
the INDEXED BY phrase in the OCCURS clause referenced by another table
entry, the occurrence number represented by index-name-1 is incremented by
the same amount as, and at the same time as, the occurrence number
represented by the index-name associated with identifier-1 is incremented.

b. If the VARYING identifier-2 phrase is specified, and identifier-2 is an index
data item, then the data item referenced by identifier-2 is incremented by the
same amount as, and at the same time as, the index associated with identifier-
1 is incremented.  If identifier-2 is not an index data item, the data item
referenced by identifier-2 is incremented by the value one (1) at the same time
as the index referenced by the index-name associated with identifier-1 is
incremented.



GCOS 7 COBOL 85 Reference Manual

13-6 47 A2 05UL Rev04

9. If identifier-1 references a data item subordinate to a data item that contains an
OCCURS clause, an index-name must be associated with each dimension of the
table through the INDEXED BY phrase of the OCCURS clause.  Only the setting of
the index-name associated with identifier-1 (and the data item identifier-2 or index-
name-1, if present) is modified by the execution of the SEARCH statement.  To
search a multi-dimensional table it is necessary to execute a SEARCH statement
several times.  Prior to each execution of a SEARCH statement, SET statements
must be executed whenever index-names must be adjusted to appropriate settings.

10. A description of the function of the END-SEARCH phrase is given in the appropriate
paragraph.  (See "Scope of Statements" in Chapter 10.)



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-7

13.2 SEND

Description

The SEND statement causes a message, a message segment, or a portion of a message
or segment to be released to one or more to output queues maintained by the Message
Control System (MCS).

Format 1

SEND cd-name-1 FROM  identifier-1

Format 2

                                   {WITH identifier-2}
SEND cd-name-1 [FROM  identifier-1] {WITH ESI          }
                                   {WITH EGI         }
                                   {WITH EMI         }

                        {{identifier-3} [LINE ]}
     {BEFORE}           {{integer-1   } [LINES]}
    [{      } ADVANCING {                      }]
     {AFTER }           { mnemonic-name-1      }
                        { PAGE                 }

    [REPLACING LINE]

Syntax Rules

1. Cd-name-1 must reference an output CD or input-output CD.

2. Identifier-2 must reference a one character integer without an operational sign.

3. Identifier-3 must reference an integer data item.

4. Mnemonic-name-1, if specified, must correspond to the word "PAGE".

5. Integer-1 or the value of the data item referenced by identifier-3 may be zero.

6. If identifier-1 is a function-identifier, it must reference an alphanumeric function.



GCOS 7 COBOL 85 Reference Manual

13-8 47 A2 05UL Rev04

General Rules

All Formats

1. When a receiving communications device (printer, display screen, card punch, etc.)
is oriented to a fixed line size:

a. Each message or message segment begins at the leftmost character position
of the physical line.

b. A message or message segment that is smaller than the physical line size is
released so as to appear space filled to the right.

c. Excess characters of a message or message segment are not truncated.
Characters are packed to a size equal to that of the physical line and then
transmitted to the output device.  The process continues on the next line with
the excess characters.

2. When a receiving communication device (paper tape punch, another computer,
etc.) is oriented to handle variable length messages, each message or message
segment will begin on the next available character position of the communications
device.

3. As part of the execution of a SEND statement, the MCS will interpret the content of
the TEXT LENGTH data item of the area referenced by cd-name-1 to be the user's
indication of the number of leftmost character positions of the data item referenced
by identifier-1 from which data is to be transferred.  (See the "Communication
Description - Complete Entry Skeleton" in Chapter 8.)

If the content of the TEXT LENGTH data item of the area referenced by cd-name-1
is zero, no characters of the data item referenced by identifier-1 are transferred.

If the content of the TEXT LENGTH data item of the area referenced by cd-name-1
is outside the range of zero through the size of the data item referenced by
identifier-1 inclusive, an error is indicated by the value of the STATUS KEY data
item of the area referenced by cd-name-1, and no data is transferred (see
"Communication Status Key Conditions", Chapter 8).

4. As part of the execution of a SEND statement, the content of the STATUS KEY
data item of the area referenced by cd-name-1 is updated by the MCS (see the
"Communication Description", Chapter 8).

5. The effect of having special control characters within the content of the data item
referenced by identifier-1 is undefined.

6. A single execution of a Format 1 SEND statement releases only a single portion of
message segment or a single portion of a message to the MCS.

A single execution of a Format 2 SEND statement never releases to the MCS more
than a single message or a single message segment as indicated by the content of
the data item referenced by identifier-2 or by the specified indicator ESI, EMI, or
EGI.

However, the MCS will not transmit any portion of a message to a communications
device until the entire message has been released to the MCS.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-9

7. During the execution of the run unit, the disposition of a portion of a message which
is not terminated by an EMI or EGI or which has not been eliminated by the
execution of a PURGE statement is undefined.  However, the message does not
logically exist for the MCS and hence cannot be sent to a destination.

After the execution of a STOP RUN statement, any portion of a message
transferred from the run unit via a SEND statement, but not terminated by an EMI
or EGI is purged from the system.  Thus no portion of the message is sent.

8. Once the execution of a SEND statement has released a portion of a message to
the MCS, only subsequent execution of SEND statements in the same run unit can
cause the remaining portion of the message to be released.

Format 2

9. The content of the data item referenced by identifier-2 indicates that the content of
the data item referenced by identifier-1, when specified, is to have an associated
End of Message Indicator, End of Group Indicator, or no indicator (which implies a
portion of a message or a portion of a segment).  If identifier-1 is not specified, only
the indicator is transmitted to the MCS.

If the content if the data-item
referenced by identifier-2 is

then the content data item
referenced by identifier-1
has an associated

which means

'0' no indicator Portion of a message
or of a segment

'1' End of Segment
Indicator (ESI)

End of current segment

'2' End of Message
Indicator (EMI)

End of current message

'3' End of Group Indicator
(EGI)

End of the current group of
messages

Any character other than '1', '2', or '3' will be interpreted as '0'.

If the content of the data item referenced by identifier-2 is other than '1', '2', or '3',
and identifier-1 is not specified, then an error is indicated by the value in the
STATUS KEY data item of the area referenced by cd-name-1, and no data is
transferred.



GCOS 7 COBOL 85 Reference Manual

13-10 47 A2 05UL Rev04

10. The WITH EMI phrase indicates to the MCS that the message is complete.

The WITH EGI phrase indicates to the MCS that the group of messages is
complete.

The WITH ESI phrase indicates to the MCS that the message segment is complete.

The MCS will recognize these indications and establish whatever is necessary to
maintain segment, message, or group control.

11. The hierarchy of ending indicators is EGI, EMI, and ESI.  An EGI need not be
preceded by an ESI or EMI.  An EMI need not be preceded by an ESI.  An EGI
need not be preceded by an EMI.

NOTE: For more explanation, see the MCS User's Guide.

12. The ADVANCING phrase allows control of the vertical positioning of each message
or message segment on a communication device where vertical positioning is
applicable.  If vertical positioning is not applicable on the device, the MCS will
ignore the vertical positioning specified or implied.

13. If identifier-2 is specified and the content of the data item referenced by identifier-2
is zero, the ADVANCING phrase and the REPLACING phrase, if specified, are
ignored by the MCS.

14. On a device where vertical positioning is applicable and the ADVANCING phrase is
not specified, automatic advancing occurs as if the user had specified AFTER
ADVANCING 1 LINE.

15. If the ADVANCING phrase is implicitly or explicitly specified and vertical positioning
is applicable, the following rules apply:

a. If integer-1 or identifier-3 is specified, characters transmitted to the
communication device are repositioned vertically downward the number of
lines equal to integer-1 or the value of the data item referenced by identifier-3.

b. If the value of the data item referenced by identifier-3 is negative, the results
are undefined.

c. If the BEFORE phrase is used, the message or message segment is
represented on the communication device before vertical positioning according
to General Rule 15a above.

d. IF the AFTER phrase is used, the message or message segment is
represented on the communication device after vertical positioning according
to General Rule 15a above.

e. If PAGE is specified, characters transmitted to the communication device are
represented on the device before or after (depending upon the phrase used)
the device is repositioned to the next (new) page.  If PAGE is specified but
page has no meaning in conjunction with a specific device, then advancing
occurs as if the user had specified BEFORE or AFTER (depending upon the
phrase used) ADVANCING 1 LINE.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-11

16. When a receiving communication device is a character-imaging device on which it
is possible to present two or more characters at the same position and the device
permits the choice of either the second or subsequent characters appearing
superimposed on characters already displayed at that position or each character
appearing in the place of the characters previously transmitted to that line:

a. If the REPLACING phrase is specified, the characters transmitted by the
SEND statement replace all characters which may have previously been
transmitted to the same line beginning with the leftmost character position of
the line.

b. If the REPLACING phrase is not specified, the characters transmitted by the
SEND statement appear superimposed upon the characters which may have
previously been transmitted to the same line beginning with the leftmost
character position of the line.

17. When a receiving communication device does not support the replacement of
characters, regardless of whether or not the REPLACING phrase is specified, the
characters transmitted by the SEND statement appear superimposed upon the
characters which may have previously been transmitted to the same line, beginning
with the leftmost character position of the line.

18. When a receiving communication device does not support the super-imposition of
two or more characters at the same position, regardless of whether or not the
REPLACING phrase is specified, the characters transmitted by the SEND statement
replace all characters which may have previously been transmitted to the same line
beginning with the leftmost character position of the line.



GCOS 7 COBOL 85 Reference Manual

13-12 47 A2 05UL Rev04

13.3 SET

Description

1. The SET statement establishes reference points for table handling operations by
setting indices associated with table elements.

2. The SET statement is also used to alter the status of external switches.

3. The SET statement is also used to alter the value of conditional variables.

|4.     The SET statement is also used to store a value in a pointer data-item or associate
an address with a data item declared in linkage section.|

Format 1

    {identifier-1}        {identifier-2}
SET {            } ... TO  {index-name-2}
    {index-name-1}        {integer-1   }

Format 2

                      {UP BY   } {identifier-3}
SET {index-name-3}... {       } {            }
                      {DOWN BY } {integer-2   }

Format 3

     {SWITCH-n       }       {ON  }
SET {{               }... TO  {   }}...
     {mnemonic-name-1}       {OFF}

Format 4

                           {   TRUE    }
SET {condition-name}... TO  { |-------| }
                           { | FALSE | }
                             |-------|

Format 5

|---------------------------------------------------------------|
|     {identifier-4          }       {identifier-6           }  |
| SET {                      }... TO  {ADDRESS OF identifier-7}  |
|     {ADDRESS OF  data-name-1}       {NULL                    }  |
|---------------------------------------------------------------|



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-13

Syntax Rules

1. When SWITCH-n is specified, n must be an unsigned integer ranging from 0 to 31
and written without leading zeros.

2. Identifier-1 and identifier-2 must each reference an index data item or an
elementary item described as an integer.

3. Identifier-3 must reference an elementary numeric integer.

4. Integer-1 and integer-2 may be signed.  Integer-1 must be positive.

5. Each mnemonic-name must be associated with an external switch (SWITCH-n), the
status of which may be altered (see the "SPECIAL-NAMES Paragraph" in
Chapter 7).

6. Condition-name must be associated with a conditional variable.

|7.     In format 4, if the FALSE phrase is specified, the FALSE phrase must be specified
in the VALUE clause of the Data Description entry for Condition-name.

8.     identifier-4 and identifier-6 must be described with USAGE IS POINTER clause.

9.     Data-name-1 must be level 01 or 77 item defined in the linkage section.  It must not
appear in the USING phrase of the PROCEDURE DIVISION.  It must not be subject
of REDEFINES.

10.    Identifier-7 may be subscripted or reference modified.|

General Rules

Formats 1 and 2

1. Index-names are associated with a given table by being specified in the INDEXED
BY phrase of the OCCURS clause for that table.

2. If index-name-1 is specified, the value of the index after the execution of the SET
statement must correspond to an occurrence number of an element in the table
associated with index-name-1.  The value of the index associated with an index-
name after the execution of a PERFORM or SEARCH statement may be set to an
occurrence number that is outside the range of its associated table (see the
"SEARCH Statement" in Chapter 13, and the "PERFORM Statement" in Chapter
12).

If index-name-2 is specified, the value of the index before the execution of the SET
statement must correspond to an occurrence number of an element in the table
associated with index-name-1.

If index-name-3 is specified, the value of the index both before and after the
execution of the SET statement must correspond to an occurrence number of an
element in the table associated with index-name-3.



GCOS 7 COBOL 85 Reference Manual

13-14 47 A2 05UL Rev04

Format 1

3. In Format 1, the following action occurs:

a. Index-name-1 is set to a value causing it to refer to the table element that
corresponds in occurrence number to the table element referenced by index-
name-2, identifier-2, or integer-1.  If identifier-2 references an index data item,
or if index-name-2 is related to the same table as index-name-1, no
conversion takes place.

b. If identifier-1 references an index data item, it may be set equal to either the
content of index-name-2 or identifier-2, where identifier-2 also references an
index data item; no conversion takes place in either case.

c. If identifier-1 does not reference an index data item, it may be set only to an
occurrence number that corresponds to the value of index-name-2.  Neither
identifier-2 nor integer-1 can be used in this case.

d. The process is repeated for each recurrence of index-name-1 and identifier-1,
if specified.  Each time the value of index-name-2 or the data item referenced
by identifier-2 is used as it was at the beginning of the execution of the
statement.  Any subscripting associated with identifier-1 is evaluated
immediately before the value of the respective data item is changed.

Format 2

4. In Format 2, the content of index-name-3 are incremented (UP BY) or decremented
(DOWN BY) by a value that corresponds to the number of occurrences represented
by the value of integer-2 or the data item referenced by identifier-3; thereafter, the
process is repeated for each recurrence of index-name-3.  For each repetition, the
value of the data item referenced by identifier-3 is used as it was at the beginning of
execution of the statement.

5. Data in the table below represents the validity of various operand combinations in
Formats 1 of the SET statement.  The General Rule Reference indicates the
applicable General Rule.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-15

Table 13-1. Permissible SET Statement Operands

sending
Item

Receiving Item

Integer Data Item Index Index Data Item
Permissible Rule Permissible Rule Permissible Rule

Integer
Literal

no 3c valid 3a no 3b

Integer
Data Item

no 3c valid 3a no 3b

Index valid 3c valid 3a valid 3b+
Index
Data Item

no 3c valid 3a valid 3b+

+ There is no conversion.

Format 3

6. The status of each external switch explicitly referenced by its name SWITCH-n or
associated with the specified mnemonic-name is modified such that the truth value
resultant from evaluation of a condition-name associated with that switch will reflect
an "on" status if the ON phrase is specified or an "off" status if the OFF phrase is
specified (see "Switch-Status Condition", Chapter 10).

Format 4

7. If the TRUE phrase is specified, the literal in the VALUE clause associated with
condition-name1 is placed in the conditional variable according to the rules of the
VALUE clause.  If more than one literal is specified in the VALUE clause, the
conditional variable is set to the value of the first literal that appears in the VALUE
clause.

|8.     If the FALSE phrase is specified, the literal in the FALSE phrase of the VALUE
clause associated with condition-name is placed in the condition variable according
to the rules of the VALUE clause.|

9. If multiple condition-names are specified, the results are the same as if a separate
SET statement had been written for each condition-name-1 in the same order as
specified in the SET statement.



GCOS 7 COBOL 85 Reference Manual

13-16 47 A2 05UL Rev04

|Format 5

10. The pointer data item referenced by identifier-4 is set to the contents of the pointer
data item referenced by identifier-6, if specified, or to the address of the data item
referenced by identifier-7, if specified, or to an invalid address (HIGH-VALUE) if the
reserved word NULL is specified.

11. The setting of ADDRESS OF data-name-1 causes the data item referenced by
data-name-1 to occupy the same storage area as the data item whose address was
previously set in the pointer data item referenced by identifier-6, if specified, or as
the data item referenced by identifier-7, if specified.  If the reserved word NULL is
specified, or if the data item referenced by identifier-6 contains an invalid address,
the result of any subsequent reference that needs to access the contents of data-
name-1 will be unpredictable.

12. If identifier-7 is specified and it does not reference an external data item, and if the
program in which this data item is declared is a called program, the address of
identifier-7 as computed by the SET statement becomes invalid when control
returns to the calling program.|



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-17

13.4 SORT

Description

The SORT statement creates a sort file by executing an input procedure or by
transferring records from another file, sorts the records in the sort file on a set of
specified keys; and in the final phase of the sort operation, makes available each record
from the sort file, in sorted order, to an output procedure or to an output file.

The format 2 allows to sort a table.

Format 1

                     {ASCENDING }
SORT file-name-1 {ON {          } KEY {data-name-1 [FOR DATE ]}... }...
                     {DESCENDING}

                        {   ORDER      }
    [WITH DUPLICATES IN { |----------| }]
                        { | SEQUENCE | }
                          |----------|

                           {   alphabet-name-1}
                           { |------------|   }
                           { | NATIVE     |   }
                           { | STANDARD-1 |   }
    [COLLATING SEQUENCE IS { | STANDARD-2  |   }  ]
                           { | ASCII      |   }
                           { | EBCDIC     |   }
                           { | GBCD       |   }
                           { | JIS        |   }
                             |------------|

    {INPUT PROCEDURE  IS                                 }
    {                        {THROUGH}                  }
    {      procedure-name-1 [{       } procedure-name-2]}
    {                        {THRU   }                  }
    {                                                   }
    {USING {file-name-2}...                             }

    {OUTPUT PROCEDURE  IS                                }
    {                        {THROUGH}                  }
    {      procedure-name-3 [{       } procedure-name-4]}
    {                        {THRU   }                  }
    {                                                   }
    {GIVING {file-name-3}...                            }



GCOS 7 COBOL 85 Reference Manual

13-18 47 A2 05UL Rev04

Format 2

|----------------------------------------------------------------------|
|                      {ASCENDING }                                    |
| SORT data-name-2 [ON {          } KEY [data-name-1 [FOR DATE ]].. ].. |
|                      {DESCENDING}                                    |
|                                                                      |
|                         { ORDER    }                                 |
|     [WITH DUPLICATES IN {          }]                                |
|                         { SEQUENCE }                                 |
|                                                                      |
|                            { alphabet-name-1}                        |
|                            { NATIVE         }                        |
|                            { STANDARD-1     }                        |
|     [COLLATING SEQUENCE IS { STANDARD-2      } ]                      |
|                            { ASCII          }                        |
|                            { EBCDIC         }                        |
|                            { GBCD           }                        |
|                            { JIS            }                        |
|----------------------------------------------------------------------|

Syntax Rules

All Formats

1. A SORT statement may appear anywhere in the Procedure Division except in the
declaratives portion or in an input procedure or an output procedure associated with
a SORT or a MERGE statement.

|2.     The words ORDER and SEQUENCE are equivalent.|

Format 1

3. File-name-1 must be described in a Sort-Merge File description entry in the Data
Division.

4. If the USING phrase is specified and the file referenced by file-name-1 contains
variable-length records, the size of the records contained in the file referenced by
file-name-2 must not be less than the smallest record nor larger than the largest
record described for file-name-1.  If the file referenced by file-name-1 contains
fixed-length records, the size of the records contained in the file referenced by file-
name-2 must not be larger than the largest record described for the file referenced
by file-name-1.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-19

5. Data-name-1 is a KEY data-name.  KEY data-names are subject to the following
rules:

a. The data items identified by KEY data-names must be described in records
associated with file-name-1.

b. KEY data-names may be qualified.

c. The data items identified by KEY data-names must not be variable length data
items, nor may they name group items which contain variable-occurrence data
items.

d. If file-name-1 has more than one record description, then the data items
identified by KEY data-names need be described in only one of the record
descriptions.  The same character positions which are referenced by a key
data-name in one record description entry are taken as the key in all records of
the file.

e. None of the data items identified by key data-names can be described by an
entry which either contains an OCCURS clause or is subordinate to an entry
which contains an OCCURS clause.

f. If the file referenced by file-name-1 contains variable length records, all the
data items identified by key data-names must be contained within the first x
character positions of the record, where x equals the minimum record size
specified for the file referenced by file-name-1.

|g.    The data items identified by key data-names must not be described as boolean
or pointer data items.|

h.     If the FOR DATE phrase is specified, data-name-1 must be described as
PIC 99 USAGE DISPLAY.

6. The words THRU and THROUGH are equivalent.

7. file-name-2 and file-name-3 must be described in a file description entry, not in a
Sort-Merge File Description entry, in the Data Division.

8. The files referenced by file-name-2 and file-name-3 may reside on the same
multiple file reel.

9. If file-name-3 references an indexed file, then the major key must be associated
with the ASCENDING phrase and the first data-name must specify the same
character positions in its record as are specified for the prime record key for that
file.

10. No pair of file-names in the same SORT statement may be specified in the same
SAME SORT AREA or SAME SORT-MERGE AREA clause.  File-names
associated with the GIVING phrase may not be specified in the same SAME AREA
clause.  (See the "I-O-CONTROL" paragraph in Chapter 7.)

11. If the GIVING phrase is specified and the file referenced by file-name-3 contains
variable length records, the size of the records contained in the file referenced by
file-name-1 must not be less than the smallest record nor larger than the largest
record described for file-name-3.  If the file referenced by file-name-3 contains
fixed-length records, the size of the records contained in the file referenced by file-
name-1 must not be larger than the largest record described for the file referenced
by file-name-3.



GCOS 7 COBOL 85 Reference Manual

13-20 47 A2 05UL Rev04

Format 2

12. Data-name-2 can be qualified and must have an occurs clause in its Data
Description entry.

13. The data-item referenced by data-name-1 must be the same as the data-item
referenced by data-name-2, or an entry subordinate to the data-item referenced by
data-name-2.

14. The data-item referenced by data-name-1 must not be described by the entry
containing an OCCURS clause unless it refers to the same data item referenced by
data-name-2.  The data-item referenced by data-name-1 must not be subordinate to
an entry containing an OCCURS clause that is also subordinate to data-name-2.

15. The KEY phrase can be omitted only if the description of the table referenced by
data-name-2 contains a KEY phrase.

16. If the FOR DATE phrase is specified, data-name-1 must be described as PIC 99
USAGE DISPLAY.

General Rules

All Formats

1. The data-names following the word KEY are listed from left to right in the SORT
statement in order of decreasing significance without regard to how they are divided
into KEY phrases.  The leftmost data-name is the major key, the next data-name is
the next most significant key, etc.

a. When the ASCENDING phrase is specified, the sorted sequence will be from
the lowest value of the contents of the data items identified by the KEY data-
names to the highest value, according to the rules for comparison of operands
in a relation condition.

b. When the DESCENDING phrase is specified, the sorted sequence will be from
the highest value of the contents of the data items identified by the KEY data-
names to the lowest value, according to the rules for comparison of operands
in a relation condition.

2. If the DUPLICATES phrase is specified and the contents of all the key data items
associated with one data record are equal to the contents of the corresponding key
data items associated with one or more other data records, then the order of return
of these records is:

a. the order of the associated input files as specified in the SORT statement.
Within a given input file the order is that in which the records are accessed
from that file.

b. the order in which these records are released by an input procedure, when an
input procedure is specified.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-21

3. If the DUPLICATES phrase is not specified and the contents of all the key data
items associated with one data record are equal to the contents of the
corresponding key data items associated with one or more other data records, then
the order of return of these records is undefined.

4. The collating sequence that applies to the comparison of the non-numeric key data
items specified is determined at the beginning of the execution of the SORT
statement in the following order of precedence:

a. First, the collating sequence established by the COLLATING SEQUENCE
phrase, if specified, in the SORT statement.

b. Second, the collating sequence established as the program collating
sequence.

5.     If the FOR DATE phrase is specified the SORT proceeds following the "Rule 61" for
the corresponding data-name-1 (refer to SORT/MERGE Utilities User's Guide.).

Format 1

5. If the file referenced by file-name-1 contains only fixed-length records, any record in
the file referenced by file-name-2 containing fewer character positions than that
fixed length is space filled on the right beginning with the first character position
after the last character in the record when that record is released to the file
referenced by file-name-1.

6. The execution of the SORT statement consists of three distinct phases as follows:

a. Records are made available to the file referenced by file-name-1.  This is
achieved either by the execution of RELEASE statements in the input
procedure or by the implicit execution of READ statements for file-name-2.
When this phase commences, the file referenced by file-name-2 must not be
in the open mode.  When this phase terminates, the file referenced by file-
name-2 is not in the open mode.

b. The file referenced by file-name-1 is sequenced.  No processing of the files
referenced by file-name-2 and file-name-3 takes place during this phase.

c. The records of the file referenced by file-name-1 are made available in sorted
order.  The sorted records are either written to the file referenced by file-name-
3 or, by the execution of a RETURN statement, are made available for
processing by the output procedure.  When this phase commences, the file
referenced by file-name-3 must not be in the open mode.  When this phase
terminates, the file referenced by file-name-3 is not in the open mode.

7. The input procedure may consist of any procedure needed to select, modify, or
copy the records that are made available one at a time by the RELEASE statement
to the file referenced by file-name-1.  The range includes all statements that are
executed as the result of a transfer of control by CALL, EXIT, GO TO, and
PERFORM statements in the range of the input procedure, as well as all statements
in declarative procedures that are executed as a result of the execution of
statements in the range of the input procedure.  The range of the input procedure
must not cause the execution of any MERGE, RETURN, or SORT statement.



GCOS 7 COBOL 85 Reference Manual

13-22 47 A2 05UL Rev04

8. If an input procedure is specified, control is passed to the input procedure before
the file referenced by file-name-1 is sequenced by the SORT statement.  The
compiler inserts a return mechanism at the end of the last statement in the input
procedure and when control passes the last statement in the input procedure, the
records that have been released to the file referenced by file-name-1 are sorted.

9. If the USING phrase is specified, all the records in the file(s) referenced by file-
name-2 are transferred to the file referenced by file-name-1.  For each of the files
referenced by file-name-2 the execution of the SORT statement causes the
following actions to be taken:

a. The processing of the file is initiated.  The initiation is performed as if an
OPEN statement with the INPUT phrase had been executed.

b. The logical records are obtained and released to the sort operation.  Each
record is obtained as if a READ statement with the NEXT and the AT END
phrases had been executed.

For a relative file, the content of the relative key data item is undefined after
the execution of the SORT statement if file-name-2 is not referenced in the
GIVING phrase.

c. The processing of the file is terminated.  The termination is performed as if a
CLOSE statement without optional phrases had been executed.  This
termination is performed before the file referenced by file-name-1 is
sequenced by the SORT statement.

These implicit functions are performed such that any associated USE AFTER
EXCEPTION/ERROR procedures are executed; however, the execution of
such a USE procedure must not cause the execution of any statement
manipulating the file referenced by, or accessing the record area associated
with, file-name-2.

10. The output procedure may consist of any procedure needed to select, modify, or
copy the records that are made available one at a time by the RETURN statement
in sorted order from the file referenced by file-name-1.  The range includes all
statements that are executed as the result of a transfer of control by CALL, EXIT,
GO TO, and PERFORM statements in the range of the output procedure, as well as
all statements in declarative procedures that are executed as a result of the
execution of statements in the range of the output procedure.  The range of the
output procedure must not cause the execution of any MERGE, RELEASE, or
SORT statement.

11. If an output procedure is specified, control passes to it after the file referenced by
file-name-1 has been sequenced by the SORT statement.  The compiler inserts a
return mechanism at the end of the last statement in the output procedure and when
control passes the last statement in the output procedure, the return mechanism
provides for termination of the sort and then passes control to the next executable
statement after the SORT statement.  Before entering the output procedure, the sort
procedure reaches a point at which it can select the next record in sorted order
when requested.  The RETURN statements in the output procedure are the requests
for the next record.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-23

12. If the GIVING phrase is specified, all the sorted records are written on the file
referenced by file-name-3 as the implied output procedure for the SORT statement.
For each of the files referenced by File-name-3, the execution of the SORT
statement causes the following actions to be taken:

a. The processing of the file is initiated.  The initiation is performed as if an
OPEN statement with the OUTPUT phrase has been executed.  This initiation
is performed after the execution of any input procedure.

b. The sorted logical records are returned and written onto the file.  The records
are written as if a WRITE statement without any optional phrases had been
executed.

For a relative file, the relative key item for the first record returned contains the
value '1'; for the second record returned, the value '2', etc.  After execution of
the SORT statement, the content of the relative key data item indicates the
last record returned to the file.

c. The processing of the file is terminated.  The termination is performed as if a
CLOSE statement without optional phrases had been executed.

These implicit functions are performed such that any associated USE AFTER
EXCEPTION/ERROR procedures are executed; however, the execution of such a
USE procedure must not cause the execution of any statement manipulating the file
referenced by, or accessing the record area associated with, file-name-3.  On the
first attempt to write beyond the externally defined boundaries of the file, any USE
AFTER STANDARD EXCEPTION/ERROR procedure specified for the file is
executed; if control is returned from that USE procedure or if no such USE
procedure is specified, the processing of the file is terminated as in paragraph 12c
above.

13. If the file referenced by file-name-3 contains only fixed length records, any record in
the file referenced by file-name-1 containing fewer character positions than that
fixed length is space filled on the right beginning with the first character position
after the last character in the record when that record is returned to the file
referenced by file-name-3.

14. Segmentation can be applied to programs containing the SORT statement.
However, the following restrictions apply:

If a sort statement appears in a section that is not in an independent segment, then
any input procedures or output procedures referenced by that SORT statement
must appear totally within non independent segments, or wholly contained in a
single independent segment.

If a SORT statement appears in an independent segment, then any input
procedures or output procedures referenced by that SORT statement must be
contained totally within non independent segments, or wholly within the same
independent segment as that SORT statement.



GCOS 7 COBOL 85 Reference Manual

13-24 47 A2 05UL Rev04

Format 2

15. The SORT statement sorts the table referenced by data-name-2 and presents the
sorted table in data-name-2 either in the order determined by the ASCENDING or
DESCENDING phrases, if specified, or in the order determined by the KEY phrase
associated with data-name-2.

16. To determine the relative order in which the table elements are stored after sorting,
the contents of corresponding key data items are compared according to the rules
for comparison of operands in a relation condition, starting with the most significant
key data item.

a. If the contents of the corresponding key data items are not equal and the key
is associated with the ASCENDING phrase, the table element containing the
key data item with the lower value has the lowest occurrence number;

b. If the contents of the corresponding key data items are not equal and the key
is associated with the DESCENDING phrase, the table element containing the
key data item with the higher value has the lowest occurrence number; and

c. If the contents of the corresponding key data items are equal, the
determination is based on the contents of the next most significant key data
item.

17. The number of occurrences of table elements referenced by data-name-2 is
determined by the rules in the OCCURS clause.

18. If the KEY phrase is not specified, the sequence is determined by the KEY phrase
in the Data Description entry of the table referenced by data-name-2.

19. If the KEY phrase is specified, it overrides any KEY phrase specified in the Data
Description entry of the table referenced by data-name-2.

20. If data-name-1 is omitted, the data item referenced by data-name-2 is the key data
item.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-25

13.5 START

Description

The START statement provides a basis for logical positioning within an indexed or
relative file, for subsequent sequential retrieval of records.

Format -1

START file-name-1

           {   IS EQUAL TO                }
           {   IS =                       }
           { |---------|                  }
           { | EQUALS  |                  }
           { | EXCEEDS |                  }
           { |---------|                  }
      [KEY {   IS GREATER  THAN            } data-name-1]
           {   IS >                       }
           {   IS NOT LESS  THAN           }
           {   IS NOT <                   }
           {   IS GREATER THAN OR  EQUAL TO}
           {   IS >=                      }

      [INVALID KEY imperative-statement-1]

      [NOT INVALID  KEY imperative-statement-2]

      [END-START]

Format -2

|---------------------------------------------------------|
|                                                         |
|  START file-name-1                                      |
|           {                              }              |
|           {   IS LESS THAN               }              |
|           {   IS <                       }              |
|       KEY {   IS NOT  GREATER THAN        } data-name-1  |
|           {   IS NOT >                   }              |
|           {   IS LESS THAN OR  EQUAL TO   }              |
|           {   IS <=                      }              |
|                                                         |
|      [INVALID KEY imperative-statement-1]               |
|                                                         |
|      [NOT INVALID  KEY imperative-statement-2]           |
|                                                         |
|      [END-START]                                        |
|---------------------------------------------------------|



GCOS 7 COBOL 85 Reference Manual

13-26 47 A2 05UL Rev04

Syntax Rules

1. File-name-1 must be the name of a relative or indexed file, if Format 1 is used |and
the name of an indexed file, if Format 2 is used.|

2. File-name-1 must not be the name of a sort or merge file.

3. Data-name-1 may be qualified.

4. The INVALID KEY phrase must be specified if no applicable USE AFTER
STANDARD EXCEPTION procedure is specified for file-name-1.

5. If the file referenced by file-name-1 is a relative file, data-name-1, if specified, must
be the data item specified in the RELATIVE KEY phrase in the ACCESS MODE
clause of the associated File Description entry.

6. If file-name-1 is the name of an indexed file, and if the KEY phrase is specified,
data-name-1 must reference either:

a. A data item specified as a record key associated with file-name-1, or

b. Any data item of category alphanumeric whose leftmost character position
within a record of the file corresponds to the leftmost character position of a
record key associated with file-name-1 and whose length is not greater than
the length of that record key.

General Rules

All Files

1. The file referenced by file-name-1 must be open in the INPUT or I-O mode at the
time that the START statement is executed (see the "OPEN Statement" in Chapter
12).

2. If the KEY phrase is not specified, the relational operator 'IS EQUAL TO' is implied.

3. The execution of the START statement does not alter either the content of the
record area, or the content of the data item referenced by the data-name specified
in the DEPENDING ON phrase of the RECORD clause associated with file-name-1.

4. The type of comparison specified by the relational operator in the KEY phrase
occurs between a key associated with a record in the file referenced by file-name-1
and a data item as specified in General Rules 10, 12, and 13.
If file-name-1 references an indexed file, the comparison is made on the ascending
key of reference according to the collating sequence of the file.
If file-name-1 references an indexed file and the operands are of unequal size,
comparison proceeds as though the longer one was truncated on the right such that
its length is equal to that of the shorter.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-27

All other numeric or non-numeric comparison rules apply (see "Comparison of
Numeric Operands" and "Comparison of Non-numeric Operands", Chapter 10).

a. For relative files, file position indicator is set to the relative record number of
the first logical record in the file whose key satisfies the comparison.
For indexed files, the file position indicator is set to the value of the key of
reference in the first logical record , |or last logical record if Format 2 is used|
whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, the invalid key
condition exists and the execution of the START statement is unsuccessful.
(See the "Invalid Key Condition" in Chapter 10.)

5. The execution of the START statement causes the value of the I-O status
associated with file-name-1 to be updated (see "I-O Status", Chapter 7).

6. If, at the time of the execution of the START statement, the file position indicator
indicates that an optional input file is not present, the invalid key condition exists
and the execution of the START statement is unsuccessful.  (See the "Invalid Key
Condition" in Chapter 10.)

7. Transfer of control following the successful or unsuccessful execution of the START
operation depends on the presence or absence of the optional INVALID KEY and
NOT INVALID KEY phrases in the START statement.  (see the "Invalid Key
Condition" in Chapter 10).

8. Following the unsuccessful execution of a START statement, the file position
indicator is set to indicate that no valid next record has been established.  Also, for
indexed files, the key of reference is undefined.

9. The END-START phrase delimits the scope of the START statement.  A description
of the function of the END-START phrase is given in the appropriate paragraph.
(See "Scope of Statements" in Chapter 10.)

Relative Files:

10. The comparison described in General Rule 4 uses the data item referenced by the
RELATIVE KEY phrase of the ACCESS MODE clause associated with file-name-1.



GCOS 7 COBOL 85 Reference Manual

13-28 47 A2 05UL Rev04

Indexed Files

11. A Key of Reference is established as follows:

a. If the KEY phrase is not specified, the Prime Record Key specified for file-
name-1 becomes the Key of Reference.

b. If the KEY phrase is specified, and data-name-1 is specified as a Record Key
for file-name-1, that Record Key becomes the Key of Reference.

c. If the KEY phrase is specified, and data-name-1 is not specified as a record
key for file-name-1, the record key whose leftmost character position
corresponds to the leftmost character position of the data item specified by
data-name-1, becomes the key of reference.

This Key of Reference is used to establish the ordering of records for the purpose of
this START statement, see "General Rule" 4; and, if the execution of the START is
successful, the Key of Reference is also used for subsequent sequential READ
statements.  (See the "READ Statement" in Chapter 12.)

12. If the KEY phrase is specified, the comparison described in General Rule 4 uses the
data item referenced by data-name-1.

13. If the KEY phrase is not specified, the comparison described in General Rule 4 uses
the data item referenced in the RECORD KEY clause associated with file-name-1.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-29

13.6 STOP

Description

The STOP statement causes a permanent or temporary suspension of the execution of
the run unit.  The literal variation of the STOP statement is an obsolete element in
Standard COBOL because it is to be deleted from the next revision of Standard COBOL.

Format

     {   RUN     }
     {   literal }
STOP { |-------| }
     { | ERROR | }
       |-------|

Syntax Rules

1. Literal may be any figurative constant except ALL literal.

2. If a STOP RUN statement appears in a consecutive sequence of imperative
statements within a sentence, it must appear as the last statement of that sequence.

3. If literal is numeric, then it must be an unsigned integer.

General Rules

1. If the RUN phrase is specified, execution of the run unit ceases and control is
transferred to the operating system.

2. During the execution of a STOP RUN statement, an implicit CLOSE statement
without any optional phrases is executed for each file that is in the open mode in the
run unit.  Any USE procedures associated with any of these files are not executed.

3. If the run unit has been accessing messages, the STOP RUN statement causes the
message control system (MCS) to eliminate from the queue any message partially
received by that run unit.  Any portion of a message transferred from the run unit
via a SEND statement, but not terminated by and EMI or EGI, is purged from the
system.

4. If STOP literal statement is specified, the literal is communicated to the operator
and execution of statements in the run unit is temporarily suspended.  When
execution of statements in the run unit resumes, such execution begins with the
next executable statement after the STOP literal statement.

|5.     The ERROR phrase has been implemented for debugging purpose.  If used, the
execution of the run unit aborts and control is transferred to the operating system.  It
is the way, in case of malfunction, to get a dump where all elements (hardware
registers, etc.) remain unchanged.|



GCOS 7 COBOL 85 Reference Manual

13-30 47 A2 05UL Rev04

13.7 STRING

Description

The STRING statement provides juxtaposition of the partial or complete contents of one
or more data items into a single data item.

Format

        {identifier-1}                 {identifier-2}
STRING {{            }... DELIMITED  BY {literal-2   }}...
        {literal-1   }                 {SIZE        }

       INTO identifier-3

      [WITH POINTER identifier-4]

      [ON OVERFLOW imperative-statement-1]

      [NOT ON OVERFLOW  imperative-statement-2]

      [END-STRING]

Syntax Rules

1. Each literal may be any figurative constant, except ALL literal.

2. All literals must be described as non-numeric literals, and all identifiers, except
identifier-4, must be described implicitly or explicitly as USAGE IS DISPLAY.

3. Identifier-3 must not be reference modified.

4. Identifier-3 must not represent an edited data item and must not be described with
the JUSTIFIED clause.

5. Identifier-4 must be described as an elementary numeric integer data item of
sufficient size to contain a value equal to 1 plus the size of the data item referenced
by identifier-3.  The symbol 'P' may not be used in the PICTURE character-string of
identifier-4.

6. Where identifier-1 or identifier-2 is an elementary numeric data item, it must be
described as an integer without the symbol 'P' in its PICTURE character-string.

7. None of the identifiers may reference boolean data items.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-31

General Rules

1. Identifier-1 or literal-1, represents the sending items.  Identifier-3 represents the
receiving item.

2. Literal-2 or the content of the data item referenced by identifier-2 indicates the
character(s) delimiting the move.  If the SIZE phrase is used, the content of the
complete data item defined by identifier-1 or literal-1, is moved.  When a figurative
constant is used as the delimiter, it is a single character non-numeric literal.

3. When a figurative constant is specified as literal-1 or literal-2, it refers to an implicit
one character data item whose USAGE IS DISPLAY.

4. When the STRING statement is executed, the transfer of data is governed by the
following rules:

a. Those characters from literal-1, or from the content of the data item referenced
by identifier-1, are transferred to the data item referenced by identifier-3 in
accordance with the rules for alphanumeric to alphanumeric moves, except
that no space-filling will be provided.  (See the "MOVE Statement", Chapter
12).

b. If the DELIMITED phrase is specified without the SIZE phrase, the content of
the data item referenced by identifier-1, or the value of literal-1, is transferred
to the receiving data item in the sequence specified in the STRING statement
beginning with the leftmost character and continuing from left to right until the
end of the sending data item is reached or the end of the receiving data item is
reached or until the character(s) specified by literal-2, or by the content of
identifier-2 are encountered.  The character(s) specified by literal-2 or by the
data item referenced by identifier-2 are not transferred.

c. If the DELIMITED phrase is specified with the SIZE phrase, the entire content
of literal-1, or the content of the data item referenced by identifier-1, is
transferred in the sequence specified in the STRING statement, to the data
item referenced by identifier-3 until all data has been transferred or the end of
the data item referenced by identifier-3 has been reached.

This behavior is repeated until all occurrences literal-1, or data items referenced by
identifier-1, have been processed.

5. If the POINTER phrase is specified, the data item referenced by identifier-4 must be
set to an initial value greater than zero prior to the execution of the STRING
statement.

6. If the POINTER phrase is not specified, the following general rules apply as if the
user had specified identifier-4 referencing a data item with an initial value of 1.



GCOS 7 COBOL 85 Reference Manual

13-32 47 A2 05UL Rev04

7. When characters are transferred to the data item referenced by identifier-3, the
moves behave as though the characters were moved one at a time from the source
into the character positions of the data item referenced by identifier-3 designated by
the value of the data item referenced by identifier-4 (provided the value of the data
item referenced by identifier-4 does not exceed the length of the data item
referenced by identifier-3), and then the data item referenced by identifier-4 was
increased by one prior to the move of the next character or prior to the end of
execution of the STRING statement.  The value of the data item referenced by
identifier-4 is changed during execution of the STRING statement only by the
behavior specified above.

8. At the end of execution of the STRING statement, only the portion of the data item
referenced by identifier-3 that was referenced during the execution of the STRING
statement is changed.  All other portions of the data item referenced by identifier-3
will contain data that was present before this execution of the STRING statement.

9. Before each move of a character to the data item referenced by identifier-3, if the
value associated with the data item referenced by identifier-4 is either less than one
or exceeds the number of character positions in the data item referenced by
identifier-3, no (further) data is transferred to the data item referenced by identifier-
3, and the NOT ON OVERFLOW phrase, if specified, is ignored and control is
transferred to the end of the STRING statement or, if the ON OVERFLOW phrase
is specified, to imperative-statement-1.  If control is transferred to imperative-
statement-1, execution continues according to the rules for each statement
specified in imperative-statement-1.  If a procedure branching or conditional
statement which causes explicit transfer of control is executed, control is transferred
in accordance with the rules for that statement; otherwise, upon completion of the
execution of imperative-statement-1, control is transferred to the end of the
STRING statement.

10. If, at the time of execution of a STRING statement with the NOT ON OVERFLOW
phrase, the conditions described in general rule 9 are not encountered, after
completion of the transfer of data according to the other general rules, the ON
OVERFLOW phrase, if specified, is ignored and control is transferred to the end of
the STRING statement or, if the NOT ON OVERFLOW phrase is specified, to
imperative-statement-2.  If control is transferred to imperative-statement-2,
execution continues according to the rules for each statement specified in
imperative-statement-2.  If a procedure branching or conditional statement which
causes explicit transfer of control is executed, control is transferred in accordance
with the rules for that statement; otherwise, upon completion of the execution of
imperative-statement-2, control is transferred to the end of the STRING statement.

11. The END-STRING phrase delimits the scope of the STRING statement.

12. If identifier-1, or identifier-2, occupies the same storage area as identifier-3, or
identifier-4, or if identifier-3 and identifier-4 occupy the same storage area, the
result of the execution of this statement is undefined, even if they are defined by
the same data description entry.  (See "Overlapping Operands" in Chapter 10.)



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-33

13.8 SUBTRACT

Description

The SUBTRACT statement is used to subtract one, or the sum of two or more, numeric
data items from one or more items, and set the values of one or more items equal to the
results.

Format 1

         {identifier-1}
SUBTRACT {            }... FROM  {identifier-2 [ROUNDED ]}...
         {literal-1   }

    [ON SIZE ERROR  imperative-statement-1]

    [NOT ON SIZE  ERROR imperative-statement-2]

    [END-SUBTRACT]

Format 2

         {identifier-1}         {identifier-2}
SUBTRACT {            }... FROM  {            }
         {literal-1   }         {literal-2   }

          GIVING {identifier-3 [ROUNDED ]}...

    [ON SIZE ERROR  imperative-statement-1]

    [NOT ON SIZE  ERROR imperative-statement-2]

    [END-SUBTRACT]

Format 3

         {CORRESPONDING}
SUBTRACT {             } identifier-1 FROM  identifier-2 [ROUNDED ]
         {CORR         }

    [ON SIZE ERROR  imperative-statement-1]

    [NOT ON SIZE  ERROR imperative-statement-2]

    [END-SUBTRACT]



GCOS 7 COBOL 85 Reference Manual

13-34 47 A2 05UL Rev04

Syntax Rules

1. Each identifier must refer to a numeric elementary item except that in Format 2,
each identifier following the word GIVING must refer to either an elementary
numeric item on an elementary numeric edited item.  In Format 3, each identifier
must refer to a group item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18 digits |(up to 30 if the
compiler is run with the LEVEL=NSTD parameter).| In format 1 the composite of
operands is determined by using all of the operands in a given statement.  In format
2 the composite of operands is determined by using all of the operands in a given
statement excluding the data items that follow the word GIVING.  In format 3 the
composite of operands is determined separately for each pair of corresponding data
items.

4. CORR is an abbreviation for CORRESPONDING.

General Rules

1. In Format 1, the values of the operands preceding the word FORM are added
together and the sum is stored in a temporary data item.  The value of this
temporary data item is subtracted from the value of the data item referenced by
identifier-2, storing the result into the data item referenced by identifier-2, and
repeating this process for each occurrence of identifier-2 in the left-to-right order in
which identifier-2 is specified.

2. In format 2, all literals and the values of the data items referenced by the identifiers
preceding the word FROM are added together, the sum is subtracted from literal-2
or the value of the data item referenced by identifier-2 and the result of the
subtraction is stored as the new content of each data item referenced by identifier-
3.

3. If format 3 is used, data items in identifier-1 are subtracted from and stored into
corresponding data items in identifier-2.

4. Additional rules and explanation relative to this statement are given under the
appropriate paragraph (see the "ROUNDED Option", the "SIZE ERROR Condition",
the "CORRESPONDING Option", the "Arithmetic Statements", "Overlapping
Operands", and "Multiple Results in Arithmetic Statements", Chapter 10).



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-35

13.9 SUPPRESS

Description

The SUPPRESS statement causes the Report Writer Control System (RWCS) to inhibit
the presentation of a report group.

Format

SUPPRESS PRINTING

SYNTAX RULE

The SUPPRESS statement may only appear in a USE BEFORE REPORTING
procedure.

General Rules

1. The SUPPRESS statement inhibits presentation only for the report group named in
the USE procedure within which the SUPPRESS statement appears.

2. The SUPPRESS statement must be executed each time the presentation of the
report group is to be inhibited.

3. When the SUPPRESS statement is executed, the RWCS is instructed to inhibit the
processing of the following report group functions:

a. The presentation of the print lines of the report group,

b. The processing of all LINE clauses in the report group,

c. The processing of the NEXT GROUP clause in the report group,

d. The adjustment of LINE-COUNTER.



GCOS 7 COBOL 85 Reference Manual

13-36 47 A2 05UL Rev04

13.10 TERMINATE

Description

The TERMINATE statement causes the Report Writer Control System (RWCS) to
complete the processing of the specified reports.

Format

TERMINATE {report-name-1}...

Syntax Rule

Each report-name given in a TERMINATE statement must be defined by an RD entry in
the Report Section of the Data Division.

General Rules

1. The TERMINATE statement causes the RWCS to produce all the CONTROL
FOOTING report groups beginning with the minor CONTROL FOOTING report
group.  Then the REPORT FOOTING report group is produced.  The RWCS makes
the prior set of control data item values available to the CONTROL FOOTING and
REPORT FOOTING SOURCE clauses and USE procedures, as though a control
break has been sensed in the most major control data-name.

2. If no GENERATE statements have been executed for a report during the interval
between the execution of an INITIATE statement and a TERMINATE statement, for
that report, the TERMINATE statement does not cause the RWCS to produce any
report groups or perform any of the related processing.

3. During report presentation, an automatic function of the RWCS is to process PAGE
HEADING and PAGE FOOTING report groups, if defined, when the RWCS must
advance the report to a new page for the purpose of presenting a body group (see
the table "Body Group Presentation Rules" in Chapter 8).

4. The TERMINATE statement cannot be executed for a report unless the
TERMINATE statement was chronologically preceded by an INITIATE statement for
that report and for which no TERMINATE statement has yet been executed.

5. If more than one report-name is specified in a TERMINATE statement, the result of
executing this TERMINATE statement is the same as if a separate TERMINATE
statement had been written for each report-name in the same order as specified in
the TERMINATE statement.

6. The TERMINATE statement does not close the file to which the report is assigned;
a CLOSE statement for the file must be executed.  Every report that is in an
initiated condition must be terminated before a CLOSE statement is executed for
the associated file.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-37

13.11 TRANSFORM

Description

|The TRANSFORM statement replaces specified characters in a data field according to a
transformation rule.|

Format

|--------------------------------------------------------------|
|                                                              |
| TRANSFORM identifier-1 CHARACTERS                            |
|                                                              |
|           {figurative-constant-1}    {figurative-constant-2} |
|      FROM {literal-1            } TO  {literal-2            } |
|           {identifier-2         }    {identifier-3         } |
|                                                              |
|--------------------------------------------------------------|

Syntax Rules

|1. Identifier-1 must not be a numeric data item.

2. The combination of the FROM and TO options determines the transformation rule.

3. Literal-1 and literal-2 must be non-numeric literals.

4. Identifier-2 and identifier-3 must be elementary alphabetic or alphanumeric items,
or fixed length group items.

5. Identifier-2 and identifier-3 must not exceed 255 characters in length.

6. A character may not be repeated in literal-1 or identifier-2.  If a character is
repeated, the results are unpredictable.

7. An uppercase character is not equivalent to the corresponding lower-case
character.

8. When figurative-constant-1 or figurative-constant-2 is used, a single instance of the
character is implied.|



GCOS 7 COBOL 85 Reference Manual

13-38 47 A2 05UL Rev04

General Rules

|1. The combination of the FROM and TO options determines the transformation rule
as specified in General Rules 2 thru 10, below.

2. If FROM figurative-constant-1 TO figurative-constant-2 is specified, then all
characters in the data item represented by identifier-1 equal to the single character
figurative-constant-1 are replaced by the single character figurative-constant-2.

3. If FROM figurative-constant-1 TO literal-1 is specified, then all characters in the
data item represented by identifier-1 equal to the single character figurative-
constant-1 are replaced by the single character literal-2.

4. If FROM figurative-constant-1 TO identifier-3 is specified, then all characters in the
data item represented by identifier-1 equal to the single character figurative-
constant-1 are replaced by the single character represented by identifier-3.

5. If FROM literal-1 TO figurative-constant-2 is specified, then, all characters in the
data item represented by identifier-1 equal to any character in literal-1 are replaced
by the single character figurative-constant-2.

6. If FROM literal-1 TO literal-2 is specified, literal-1 and literal-2 must be equal in
length or literal-2 must be a single character, then:

a. If literal-1 and literal-2 are equal in length, any character in the data item
represented by identifier-1 equal to a character in literal-1 is replaced by the
character in the corresponding position of literal-2.

b. If the length of literal-2 is one, all characters in the data item represented by
identifier-1 that are equal to any character in literal-1 are replaced by the single
character in literal-2.

7. If FROM literal-1 TO identifier-3 is specified, literal-1 and identifier-3 must be equal
in length or identifier-3 must be a single character, then:

a. If literal-1 and identifier-3 are equal in length, any character in the data item
represented by identifier-1 equal to a character in literal-1 is replaced by the
character in the corresponding position of the data item represented by
identifier-3.

b. If the length of identifier-3 is one, any character in the data item represented
by identifier-1 equal to any character in literal-1 is replaced by the single
character of the data item represented by identifier-3.

8. If FROM identifier-2 TO figurative-constant-2 is specified, then all characters in the
data item represented by identifier-1 equal to any character in the data item
represented by identifier-2 is replaced by the single character figurative-constant-2.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-39

9. If FROM identifier-2 TO literal-2 is specified, identifier-2 and literal-2 must be equal
in length or literal-2 must have a length of one, then:

a. If identifier-2 and literal-2 are equal in length, then any character in the data
item represented by identifier-1 equal to any character in the data item
represented by identifier-2 is replaced by the character in the corresponding
position of literal-2.

b. If the length of literal-2 is one, then all characters in the data item represented
by identifier-1 equal to any character in the data item represented by identifier-
2 are replaced by the single character literal-2.

10. If FROM identifier-2 TO identifier-3 is specified, then identifier-2 and identifier-3
must be of equal length or identifier-3 must have a length of one, then:

a. If identifier-2 and identifier-3 are equal in length, then any character in the data
item represented by identifier-1 equal to any character in the data item
represented by identifier-2 is replaced by the character in the corresponding
position of the data item represented by identifier-3.

b. If the length of identifier-3 is one, then all characters in the data item
represented by identifier-1 equal to any character in the data item represented
by identifier-2 are replaced by the single character in the data item represented
by identifier-3.|



GCOS 7 COBOL 85 Reference Manual

13-40 47 A2 05UL Rev04

13.12 UNSTRING

Description

The UNSTRING statement causes contiguous data in a sending field to be separated
and placed into multiple receiving fields.

Format

UNSTRING identifier-1

                           {identifier-2}
       [DELIMITED BY [ALL ] {            }
                           {literal-1   }

                           {identifier-3}
                 [OR [ALL ] {            }]... ]
                           {literal-2   }

        INTO {identifier-4

                    [DELIMITER IN identifier-5]

                    [COUNT IN identifier-6]}...

       [WITH POINTER identifier-7]

       [TALLYING IN identifier-8]

       [ON OVERFLOW imperative-statement-1]

       [NOT ON OVERFLOW  imperative-statement-2]

       [END-UNSTRING]



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-41

Syntax Rules

1. Each literal must be a non-numeric literal.  In addition, each literal may be any
figurative constant except ALL literal.

2. Identifier-1, identifier-2, identifier-3, and identifier-5 must reference data items
described, implicitly or explicitly, as category alphanumeric.

3. Identifier-4 may be described as the category alphabetic, alphanumeric, or numeric
(except that the symbol 'P' may not be used in the PICTURE character-string), and
must be described, implicitly or explicitly, as USAGE IS DISPLAY.

4. Identifier-6, and identifier-8 must reference integer data items (except that the
symbol 'P' may not be used in the PICTURE character-string).

5. Identifier-7 must be described as an elementary numeric integer data item of
sufficient size to contain a value equal to 1 plus the size of the data item referenced
by identifier-1.  The symbol 'P' may not be used in the PICTURE character-string of
identifier-7.

6. The DELIMITER IN phrase and the COUNT IN phrase may be specified only if the
DELIMITED BY phrase is specified.

7. Identifier-1 must not be reference modified.

General Rules

1. All references to identifier-2 and literal-1 apply equally to identifier-3 and literal-2,
respectively, and all recursions thereof.

2. The data item referenced by identifier-1 represents the sending area.

3. The data item referenced by identifier-4 represents the data receiving area.  The
data item referenced by identifier-5 represents the receiving area for delimiters.

4. Literal-1 or the data item referenced by identifier-2 specifies a delimiter.

5. The data item referenced by identifier-6 represents the count of the number of
characters within the data item referenced by identifier-1 isolated by the delimiters
for the move to the data item referenced by identifier-4.  This value does not
include a count of the delimiter character(s).

6. The data item referenced by identifier-7 contains a value that indicates a relative
character position within the area referenced by identifier-1.

7. The data item referenced by identifier-8 is a counter which is incremented by 1 for
each occurrence of the data item referenced by identifier-4 accessed during the
UNSTRING operation.



GCOS 7 COBOL 85 Reference Manual

13-42 47 A2 05UL Rev04

8. When a figurative constant is used as the delimiter, it stands for a single character
non-numeric literal.

When the ALL phrase is specified, one occurrence or two or more contiguous
occurrences of literal-1 (figurative constant or not) or the content of the data item
referenced by identifier-2 are treated as if they were only one occurrence, and one
occurrence of literal-1 or the data item referenced by identifier-2 is moved to the
receiving data item according to the rules in general rule 13d.

9. When any examination encounters two contiguous delimiters, the current receiving
area is space filled if it is described as alphabetic or alphanumeric, or zero filled if it
is described as numeric.

10. Literal-1 or the content of the data item referenced by identifier-2 can contain any
character in the computer's character set.

11. Each literal-1 or the data item referenced by identifier-2 represents one delimiter.
When a delimiter contains two or more characters, all of the characters must be
present in contiguous positions of the sending item, and in the order given to be
recognized as a delimiter.

12. When two or more delimiters are specified in the DELIMITED BY phrase, an 'OR'
condition exists between them.  Each delimiter is compared to the sending field.  If
a match occurs, the character(s) in the sending field is considered to be a single
delimiter.  No character(s) in the sending field can be considered a part of more
than one delimiter.

Each delimiter is applied to the sending field in the sequence specified in the
UNSTRING statement.

13. When the UNSTRING statement is initiated, the current receiving area is the data
item referenced by identifier-4.  Data is transferred from the data item referenced
by identifier-1 to the data item referenced by identifier-4 according to the following
rules:

a. If the POINTER phrase is specified, the string of characters referenced by
identifier-1 is examined beginning with the relative character position indicated
by the content of the data item referenced by identifier-7.  If the POINTER
phrase is not specified, the string of characters is examined beginning with the
leftmost character position.

b. If the DELIMITED BY phrase is specified, the examination proceeds left to
right until either a delimiter specified by literal-1 or the value of the data item
referenced by identifier-2 is encountered.  (See "General Rule" 11).  If the
DELIMITED BY phrase is not specified, the number of characters examined is
equal to the size of the current receiving area.  However, if the sign of the
receiving item is defined as occupying a separate character position, the
number of characters examined is one less than the size of the current
receiving area.

If the end of the data item referenced by identifier-1 is encountered before the
delimiting condition is met, the examination terminates with the last character
examined.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-43

c. The characters thus examined (excluding the delimiting character(s), if any)
are treated as an elementary alphanumeric data item, and are moved into the
current receiving area according to the rules for the MOVE statement.  (See
the "MOVE Statement", Chapter 12).

d. If the DELIMITER IN phrase is specified the delimiting character(s) are treated
as an elementary alphanumeric data item and are moved into the data item
referenced by identifier-5 according to the rules for the MOVE statement (see
the "MOVE Statement", Chapter 12).  If the delimiting condition is the end of
the data item referenced by identifier-1, then the data item referenced by
identifier-5 is space filled.

e. If the COUNT IN phrase is specified, a value equal to the number of
characters thus examined (excluding the delimiter character(s), if any) is
moved into the area referenced by identifier-6 according to the rules for an
elementary move.

f. If the DELIMITED BY phrase is specified the string of characters is further
examined beginning with the first character to the right of the delimiter.  If the
DELIMITED BY phrase is not specified the string of characters is further
examined beginning with the character to the right of the last character
transferred.

g. After data is transferred to the data item referenced by identifier-4, the current
receiving area is the data item referenced by the next recurrence of identifier-
4.  The behavior described in paragraph 13b through 13f is repeated until
either all the characters are exhausted in the data item referenced by
identifier-1, or until there are no more receiving areas.

14. The initialization of the contents of the data items associated with the POINTER
phrase or the TALLYING phrase is the responsibility of the user.

15. The content of the data item referenced by identifier-7 will be incremented by one
for each character examined in the data item referenced by identifier-1.  When the
execution of an UNSTRING statement with a POINTER phrase is completed, the
content of the data item referenced by identifier-7 will contain a value equal to the
initial value plus the number of characters examined in the data item referenced by
identifier-1.

16. When the execution of an UNSTRING statement with a TALLYING phrase is
completed, the content of the data item referenced by identifier-8 contains a value
equal to its value at the beginning of the execution of the statement plus a value
equal to the number of identifier-4 receiving data items accessed during execution
of the statement.

17. Either of the following situations causes an overflow condition:

a. An UNSTRING is initiated, and the value in the data item referenced by
identifier-7 is less than 1 or greater than the size of the data item referenced
by identifier-1.

b. If, during execution of an UNSTRING statement, all receiving areas have been
acted upon, and the data item referenced by identifier-1 contains characters
that have not been examined.



GCOS 7 COBOL 85 Reference Manual

13-44 47 A2 05UL Rev04

18. When an overflow condition exists, the UNSTRING operation is terminated, the
NOT ON OVERFLOW phrase, if specified, is ignored and control is transferred to
the end of the UNSTRING statement or, if the ON OVERFLOW phrase is specified,
to imperative-statement-1.  If control is transferred to imperative-statement-1,
execution continues according to the rules for each statement specified in
imperative-statement-1.  If a procedure branching or conditional statement which
causes explicit transfer of control is executed, control is transferred in accordance
with the rules for that statement; otherwise, upon completion of the execution of
imperative-statement-1, control is transferred to the end of the UNSTRING
statement.

19. The END-UNSTRING phrase delimits the scope of the UNSTRING statement.

20. If, at the time of execution of an UNSTRING statement, the conditions described in
general rule 17 are not encountered, after completion of the transfer of data
according to the other general rules, the ON OVERFLOW phrase, if specified, is
ignored and control is transferred to the end of the UNSTRING statement or, if the
NOT ON OVERFLOW phrase is specified, to imperative-statement-2.  If control is
transferred to imperative-statement-2, execution continues according to the rules
for each statement specified in imperative-statement-2.  If a procedure branching or
conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement; otherwise, upon
completion of the execution of imperative-statement-2, control is transferred to the
end of the UNSTRING statement.

21. If identifier-1, identifier-2, or identifier-3, occupies the same storage area as
identifier-4, identifier-5, identifier-6, identifier-7, or identifier-8, or if identifier-4,
identifier-5, or identifier-6, occupies the same storage area as identifier-7 or
identifier-8, or if identifier-7 and identifier-8 occupy the same storage area, the
result of the execution of this statement is undefined, even if they are defined by
the same data description entry.  (See "Overlapping Operands" in Chapter 10.)



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-45

13.13 USE

Description

The USE statement specifies procedures for input-output error handling that are in
addition to the standard procedures provided by the input-output control system.

It is also used to specify Procedure Division statements that are executed just before a
report group named in the Report Section of the Data Division is presented.

Format 1

                            {EXCEPTION}
USE [GLOBAL] AFTER  STANDARD {         } PROCEDURE
                            {ERROR    }

            {{file-name-1}...}
            { INPUT          }
         ON { OUTPUT         }
            { I-O            }
            { EXTEND         }

Format 2

USE [GLOBAL] BEFORE REPORTING identifier-2

Format 3

USE FOR DEBUGGING

            { cd-name-1                      }
            {[ALL REFERENCES OF] identifier-1}
            {          |-------------------| }
         ON {          | [WITH CONVERSION] | }...
            {          |-------------------| }
            { procedure-name-1               }
            { file-name-1                    }
            { ALL PROCEDURES                  }



GCOS 7 COBOL 85 Reference Manual

13-46 47 A2 05UL Rev04

Syntax Rules

1. A USE statement, when present, must immediately follow a section header in the
declaratives portion of the Procedure Division and must appear in a sentence by
itself.  The remainder of the section must consist of zero, one or more procedural
paragraphs that define the procedures to be used.

2. The USE statement itself is never executed; it merely defines the conditions calling
for the execution of the USE procedures.

3. Appearance of file-name-1 in a USE statement must not cause the simultaneous
request for execution of more than one USE procedure.

4. In Format 1 the words ERROR and EXCEPTION are synonymous and may be used
interchangeably.

5. The files implicitly or explicitly referenced in the USE statement need not all have
the same organization or access.

6. The INPUT, OUTPUT, I-O, and EXTEND phrases may each be specified only once
in the declaratives portion of a given Procedure Division.

7. The same file-name can appear in a different specific arrangement of any Format
except Format 3.  An explanation of the use of Format 3 is given in the appropriate
chapter (see the "Debugging Facility", Chapter 16).  Appearance of a file-name in a
USE statement must not cause the simultaneous request for execution of more than
one USE procedure.

8. A sort or merge file may only be referenced in a Format 3 USE statement.

9. In Format 2, identifier-2 represents a report group.  Identifier-2 must not appear in
more than one Format 2 USE statement.

The GENERATE, INITIATE, or TERMINATE statements must not appear in a
paragraph within a USE BEFORE REPORTING procedure.  A PERFORM
statement in a USE BEFORE REPORTING procedure must not have GENERATE,
INITIATE, or TERMINATE statements in its range.

A USE BEFORE REPORTING procedure must not alter the value of any control
data item.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-47

General Rules

All Formats

1. Declarative procedures may be included in any COBOL source program
irrespective of whether the program contains or is contained within another
program.  A declarative is invoked when any of the conditions described in the USE
statement which prefaces the declarative occurs while the program is being
executed.

Only a declarative within the separately compiled program that contains the
statement which caused the qualifying condition is invoked when any of the
conditions described in the USE statement which prefaces the declarative occurs
while that separately compiled program is being executed.  If no qualifying
declarative exists in the separately compiled program, no declarative is executed.

2. Special precedence rules are followed when programs are contained within other
programs.  In applying these rules, only the first qualifying declarative will be
selected for execution.  The declarative which is selected for execution must satisfy
the rules for execution of that declarative.  The order of precedence for selecting a
declarative is:

a. The declarative within the program that contains the statement which caused
the qualifying condition.

b. The declarative in which the GLOBAL phrase is specified and which is within
the program directly containing the program which was last examined for a
qualifying declarative.

c. Any declarative selected by applying rule 2b to each more inclusive containing
program until rule 2b is applied to the outermost program.  If no qualifying
declarative is found, none is executed.

3. Within a Declarative procedure, there must not be any reference to any non-
declarative procedures.

4. Procedure-names associated with a USE statement may be referenced in a
different declarative section or in a non-declarative procedure only with a
PERFORM statement.



GCOS 7 COBOL 85 Reference Manual

13-48 47 A2 05UL Rev04

Rules For Specific Formats

5. When file-name-1, is specified explicitly in a Format 1 USE statement, no other
USE statement applies to file-name-1.

6. The procedures associated with a Format 1 USE statement are executed as follows
upon the unsuccessful execution of an input-output operation unless an AT END or
INVALID KEY phrase takes precedence;

a. If file-name-1 is specified, the associated procedure is executed when the
condition described in the USE statement occurs.

b. If INPUT is specified, the associated procedure is executed when the condition
described in the USE statement occurs for any file open in the input mode or in
the process of being opened in the input mode, except those files referenced
by file-name-1 in another Format 1 USE statement specifying the same
condition.

c. If OUTPUT is specified, the associated procedure is executed when the
condition described in the USE statement occurs for any file open in the output
mode or in the process of being opened in the output mode, except those files
referenced by file-name-1 in another Format 1 USE statement specifying the
same condition.

d. If I-O is specified, the associated procedure is executed when the condition
described in the USE statement occurs for any file open in the I-O mode in the
process of being opened in the I-O mode, except those files referenced by file-
name-1 in another Format 1 USE statement specifying the same condition.

e. If EXTEND is specified, the associated procedure is executed when the
condition described in the USE statement occurs for any file open in the
extend mode or in the process of being opened in the extend mode, except
those files referenced by file-name-1 in another Format 1 USE statement
specifying the same condition.

7. The procedures designated by a Format 1 USE statement are executed by the
input-output system after completing the standard input-output error routine, or upon
recognition of the invalid key or at end condition, when the INVALID KEY phrase or
AT END phrase, respectively, has not been specified in the input-output statement.

8. After execution of the USE procedure, control is transferred to the next executable
statement following the input-output statement whose execution caused the
exception.

9. Within a USE procedure, there must not be the execution of any statement that
would cause the execution of a USE procedure that had previously been invoked
and had not yet returned control to the invoking routine.

10. In a USE BEFORE REPORTING statement, the designated procedures are
executed by the Report Writer Control System just before the named report group is
produced (see the "TYPE Clause", Chapter 9).

11. An explanation of the USE FOR DEBUGGING statement is given in the Debugging
Facility, Chapter 16.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-49

13.14 WRITE

Description

The WRITE statement releases a logical record for an output or input-output file.  It can
also be used for vertical positioning of lines within a logical page.

Format 1

WRITE record-name-1 [FROM  identifier-1]

                          {identifier-2} [LINE ]
                         {{            } [     ]}
      {BEFORE}           {{integer-1   } [LINES]}
     [{      } ADVANCING {                      }]
      {AFTER }           {{mnemonic-name-1}     }
                         {{               }     }
                          {PAGE           }

          {END-OF-PAGE}
      [AT {           } imperative-statement-1]
          {EOP        }

              {END-OF-PAGE}
      [NOT AT {           } imperative-statement-2]
              {EOP        }

      [END-WRITE]

Format 2

WRITE record-name-1 [FROM  identifier-1]

      [INVALID KEY imperative-statement-1]

      [NOT INVALID  KEY imperative-statement-2]

      [END-WRITE]



GCOS 7 COBOL 85 Reference Manual

13-50 47 A2 05UL Rev04

Syntax Rules

1. If identifier-1 is a function-identifier, it must reference an alphanumeric function.
When identifier-1 is not a function-identifier, record-name-1 and identifier-1 must
not refer to the same storage area.

2. Format 1 must be used for sequential files.

3. Format 2 must be used for mass storage files with other than sequential
organization.

4. A WRITE statement must not reference a Report Group Description Entry.

5. Record-name-1 is the name of a logical record in the File Section of the Data
Division and may be qualified.

6. Record-name-1 must not be defined within a Sort-Merge File Description entry.

7. The ADVANCING mnemonic-name-1 phrase cannot be specified when writing a
record to a file which is associated with a File Description entry containing a
LINAGE clause.

8. Identifier-2 must reference an integer data item.

9. Integer-1 may be positive or zero, but must not be negative.

10. When mnemonic-name-1 is specified, the name is associated with a particular
feature.  The mnemonic name is defined in the SPECIAL-NAMES paragraph of the
Environment Division, and must be associated to LNm or CHANNEL-p (see
"SPECIAL-NAMES", Chapter 7).

11. The phrases ADVANCING PAGE and END-OF-PAGE must not both be specified in
a single WRITE statement.

12. If the END-OF-PAGE or the NOT END-OF-PAGE is specified, the LINAGE clause
must be specified in the File Description entry for the associated file.

13. The words END-OF-PAGE and EOP are equivalent.

14. When Format 2 is used, the INVALID KEY phrase must be specified if an applicable
USE AFTER STANDARD EXCEPTION procedure is not specified for the
associated file-name.

|15. The ADVANCING phrase cannot be specified when writing a record to a file whose
SELECT clause contains the WITH ASA phrase.|



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-51

General Rules

All Files

1. The file referenced by the file-name associated with record-name-1 must be open in
the Output, I-O, or Extend mode at the time of the execution of this statement (see
the "OPEN Statement", Chapter 12).

2. The logical record released by the successful execution of the WRITE statement is
no longer available in the record area unless the file-name associated with record-
name-1 is specified in a SAME RECORD AREA clause.  The logical record is also
available to the program as a record of other files referenced in the same SAME
RECORD AREA clause as the associated output file, as well as the file associated
with record-name-1.

3. The result of the execution of a WRITE statement with the FROM phrase is
equivalent to the execution of the following statements in the order specified:

a. The statement: MOVE identifier-1 to record-name-1 according to the rules
specified for the MOVE statement.

b. The same WRITE statement without the FROM phrase.

4. After the execution of the WRITE statement is complete, the information in the area
referenced by identifier-1 is available, even though the information in the area
referenced by record-name-1 is not available except as specified by the SAME
RECORD AREA clause.

5. The file position indicator is not affected by the execution of a WRITE statement.

6. The execution of the WRITE statement causes the value of the I-O status of the
file-name associated with record-name-1 to be updated (See "I-O Status", Chapter
7).

7. The execution of the WRITE statement releases a logical record to the operating
system.

8. The number of character positions in the record referenced by record-name-1 must
not be larger than the largest or smaller than the smallest number of character
positions allowed by the RECORD IS VARYING clause associated with the file-
name associated with record-name-1.  In either of these cases the execution of the
WRITE statement is unsuccessful, the WRITE operation does not take place, the
content of the record area is unaffected and the I-O status of the file associated with
record-name-1 is set to a value indicating the cause of the condition.

9. Transfer of control following the successful or unsuccessful execution of the WRITE
operation depends on the presence or absence of the optional INVALID KEY and
NOT INVALID KEY phrases in the WRITE statement.  (See the "Invalid Key
Condition"  in Chapter 10.)

10. The END-WRITE phrase delimits the scope of the WRITE statement.  A description
of the function of the END-WRITE phrase is given in the appropriate paragraph.
(See "Scope of Statements" in Chapter 10.)



GCOS 7 COBOL 85 Reference Manual

13-52 47 A2 05UL Rev04

Sequential Files

11. The successor relationship of a sequential file is established by the order of
execution of WRITE statements when the file is created.  The relationship does not
change except when records are added to the end of a file.

12. When a sequential file is open in the extend mode, the execution of the WRITE
statement will add records to the end of the file as though the file were open in the
output mode.  If there are records in the file, the first record written after the
execution of the OPEN statement with the EXTEND phrase is the successor of the
last record in the file.

13. When an attempt is made to write beyond the externally defined boundaries of a
sequential file, an exception condition exists and the contents of the record area are
unaffected.  The following actions take place:

a. The value of the I-O status of the file-name associated with record-name-1 is
set to a value indicating a boundary violation (See "I-O Status", Chapter 7).

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly or implicitly
specified for the file-name associated with record-name-1, that declarative
procedure will then be executed.

c. If a USE AFTER STANDARD EXCEPTION declarative is not explicitly or
implicitly specified for the file-name associated with record-name-1, the result
is undefined.

14. If the end of a reel/unit is recognized and the externally defined boundaries of the
file have not been exceeded, the following operations are executed:

a. The standard ending reel/unit label procedure.

b. A reel/unit swap.  The current volume pointer is updated to point to the next
reel/unit existing for the file.

c. The standard beginning reel/unit label procedure.

15. Both the ADVANCING phrase and the END-OF-PAGE phrase allow control of the
vertical positioning of each line on a representation of a printed page.

If the ADVANCING phrase is not used, automatic advancing will occur as if the user
had specified AFTER ADVANCING 1 LINE |, unless the SELECT clause given for
the file-name contains the WITH ASA phrase.  In that case, the first character of the
record is interpreted by the Operating System as an advancing information and is
not presented on the printed line.  If the WITH ASA phrase, appears in the SELECT
clause, advancing is provided as follows, according to the first characters of the
record.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-53

   (S)   AFTER ADVANCING 1 LINE
0  (G)   AFTER ADVANCING 2 LINES
-  (H)   AFTER ADVANCING 3 LINES
+  (I)   AFTER ADVANCING O LINES
1  (J)   AFTER ADVANCING mnemonic-name-1 (LN-m,m=head of page)
2  (K)   AFTER ADVANCING mnemonic-name-1 (CHANNEL-2)
3  (L)   AFTER ADVANCING mnemonic-name-1 (CHANNEL-3)
4  (M)   AFTER ADVANCING mnemonic-name-1 (CHANNEL-4)
5  (N)   AFTER ADVANCING mnemonic-name-1 (CHANNEL-5)
6  (O)   AFTER ADVANCING mnemonic-name-1 (CHANNEL-6)
7  (P)   AFTER ADVANCING mnemonic-name-1 (CHANNEL-7)
8  (Q)   AFTER ADVANCING mnemonic-name-1 (CHANNEL-8)
9  (R)   AFTER ADVANCING mnemonic-name-1 (CHANNEL-9)
A  (D)   AFTER ADVANCING mnemonic-name-1 (CHANNEL-10)
B  (E)   AFTER ADVANCING mnemonic-name-1 (CHANNEL-11)
C  (F)   AFTER ADVANCING mnemonic-name-1 (CHANNEL-12)|

|Both the first character and the following one enclosed between parentheses have
the same effect, except when a printer PRU 0711 is used.  In that case the
character between parentheses must be used when CMC7 printing is requested.|

If the ADVANCING phrase is used, advancing is provided as follows:

a. If integer-1 or the value of the data item referenced by identifier-2 is positive,
the representation of the printed page is advanced the number of lines equal to
that value.

b. If the value of the data item referenced by identifier-2 is negative, the results
are undefined.

c. If integer-1 or the value of the data item referenced by identifier-2 is zero, no
repositioning of the representation of the printed page is performed.

|d.    If mnemonic name is specified, the representation of the printed page is
advanced according to the following rules:

(i) If mnemonic-name-1 is associated to LN-m, the printer page is advanced to
the line whose absolute number in the page is "m" as specified in the related
LN-m.

(ii) If mnemonic-name-1 is associated to CHANNEL-p, the printer page is
advanced to a position governed by the "p"th, channel of the vertical-format
paper tape loop, "p" being as specified in the related CHANNEL-p.|

e. If the BEFORE phrase is used, the line is presented before the representation
of the printed page is advanced according to RULES a, b, c, |and d| above.|

f. If the AFTER phrase is used, the line is presented after the representation of
the printed page is advanced according to Rules a, b, c, |and d| above.

g. If PAGE is specified and the LINAGE clause is specified in the associated File
Description entry, the record is presented on the logical page before or after
(depending on the phrase used) the device is repositioned to the next logical
page.  The repositioning is to the first line that can be written on the next
logical page as specified in the LINAGE clause.



GCOS 7 COBOL 85 Reference Manual

13-54 47 A2 05UL Rev04

h. If PAGE is specified and the LINAGE clause is not specified in the associated
File Description entry, the record is presented on the physical page before or
after (depending on the phrase used) the device is repositioned to the next
physical page.  The repositioning to the next physical page is accomplished
when the physical page is full.  If physical page has no meaning in conjunction
with a specific device, advancing will act as if the user had specified BEFORE
or AFTER (depending on the phrase used) ADVANCING 1 LINE.

16. If the logical end of the representation of the printed page is reached during the
execution of a Format 1 WRITE statement with the END-OF-PAGE phrase,
imperative-statement-1 specified in the END-OF-PAGE phrase is executed.  The
logical end is specified in the LINAGE clause associated with record-name-1.

17. An end-of-page condition occurs when the execution of a given WRITE statement
with the END-OF-PAGE phrase causes printing or spacing within the footing area of
a page body.  This occurs when the execution of such a WRITE statement causes
the LINAGE-COUNTER to equal or exceed the value specified by integer-2 or the
data item referenced by data-name-2 of the LINAGE clause, if specified.  In this
case, the WRITE statement is executed and then imperative-statement-1 in the
END-OF-PAGE phrase is executed.

An automatic page overflow condition occurs when the execution of a given WRITE
statement (with or without an END-OF-PAGE phrase) cannot be fully
accommodated within the current page body.

This occurs when a WRITE statement, if executed, would cause the LINAGE-
COUNTER to exceed the value specified by integer-1 or the data item referenced
by data-name-1 of the LINAGE clause.  In this case, the record is presented on the
logical page before or after (depending on the phrase used) the device is
repositioned to the first line that can be written on the next logical page as specified
in the LINAGE clause.  Imperative-statement-1 in the END-OF-PAGE phrase, if
specified, is executed after the record is written and the device has been
repositioned.

A page overflow condition occurs when the execution of a given WRITE statement
would cause LINAGE-COUNTER to simultaneously exceed the value of both
integer-2 or the data item referenced by data-name-2 of the LINAGE clause and
integer-1 or the data item referenced by data-name-1 of the LINAGE clause.

If integer-2 or data-name-2 of the LINAGE clause is not specified, no end-of-page
condition distinct from the page overflow condition is detected.  In this case, the
end-of-page condition and page overflow condition occur simultaneously.



Procedure Division - Statements  (SEARCH to WRITE)

47 A2 05UL Rev04 13-55

Relative Files

18. When a relative file is opened in the output mode, records may be placed into the
file by one of the following:

a. If the access mode is sequential, the WRITE statement causes a record to be
released to the Operating System.  The first record will have a relative record
number of one (1), and subsequent records released will have relative record
numbers of 2, 3, 4,...  If the RELATIVE KEY phrase is specified for the file-
name associated with record-name-1, the relative record number of the record
being released is moved into the relative key data item during execution of the
WRITE statement according to the rules for the MOVE statement.

b. If the access mode is random or dynamic, prior to the execution of the WRITE
statement the value of the relative key data item must be initialized by the
program with the relative record number to be associated with the record in the
record area.  That record is then released to the Operating System by
execution of the WRITE statement.

19. When a relative file is open in the extend mode, records are inserted into the file.
The first record released has a relative record number one greater than the highest
relative record number existing in the file.  Subsequent records released have
consecutively higher relative record numbers.  If the RELATIVE KEY phrase is
specified for the file-name associated with record-name-1, the relative record
number of the record being released is moved into the relative key data item by the
Operating System during execution of the WRITE statement according to the rules
for the MOVE statement.

20. When a relative file is opened in the I-O mode and the access mode is random or
dynamic, records are to be inserted in the associated file.  The value of the relative
key data item must be initialized by the program with the relative record number to
be associated with the record in the record area.  Execution of a Format 2 WRITE
statement then causes the content of the record area to be released to the
Operating System.

21. The invalid key condition exists under the following circumstances:

a. When the access mode is random or dynamic, and the relative key data item
specifies a record which already exists in the file, or

b. When an attempt is made to write beyond the externally defined boundaries of
the file.

22. When the number of significant digits in the relative record number is larger than
the size of the relative key data item described for the file, the result will be
unpredictable.

23. When the invalid key condition is recognized, the execution of the WRITE
statement is unsuccessful, the content of the record area is unaffected, and the I-O
status of the file-name associated with record-name-1 is set to a value indicating
the cause of the condition.  Execution of the program proceeds according to the
rules for an invalid key condition (see "I-O STATUS", Chapter 7, and the "Invalid
Key Condition" in Chapter 10).



GCOS 7 COBOL 85 Reference Manual

13-56 47 A2 05UL Rev04

Indexed Files

24. Execution of a Format 2 WRITE statement causes the content of the record area to
be released.  The Operating System utilizes the contents of the Record Keys in
such a way that subsequent access of the record may be made based upon any of
those specified Record Keys.

25. The value of the Prime Record Key must be unique within the records in the file.

26. The data item specified as the Prime Record Key must be set by the program to the
desired value prior to the execution of the WRITE statement.

27. If the file is open in the sequential access mode, records must be released to the
Operating System in ascending order of Prime Record Key values according to the
collating sequence of the file.  When the file is open in the extend mode, the first
record released to the Operating System must have a Prime Record Key whose
value is greater than the highest Prime Record Key value existing in the file.

28. If the file is open in the random or dynamic access mode, records may be released
to the Operating System in any program-specified order.

29. When the ALTERNATE RECORD KEY clause is specified in the file control entry
for an indexed file, the value of the Alternate Record Key may be non-unique only if
the DUPLICATES phrase is specified for that data item.  In this case the Operating
System provides storage of records such that when records are accessed
sequentially, the order of retrieval of those records is the order in which they are
released to the Operating System.

30. The invalid key condition exists under the following circumstances:

a. When the file is open in the sequential access mode, and the file also is open
in the output or extend mode, and the value of the Prime Record Key is not
greater than the value of the Prime Record Key of the previous record, or

b. When the file is open in the output or I-O mode, and the value of the Prime
Record Key is equal to the value of a Prime Record Key of a record already
existing in the file, or

c. When the file is open in the output, extend or I-O mode, and the value of an
Alternate Record Key for which duplicates are not allowed equals the value of
the corresponding data item of a record already existing in the file, or

d. When an attempt is made to write beyond the externally defined boundaries of
the file.

31. When the invalid key condition is recognized the execution of the WRITE statement
is unsuccessful, the content of the record area is unaffected and the I-O status of
the file-name associated with record-name-1 is set to a value indicating the cause
of the condition.  Execution of the program proceeds according to the rules for an
invalid key condition (see "I-O STATUS", Chapter 7, and the "Invalid Key Condition"
in Chapter 10).



47 A2 05UL Rev04 14-1

14. Segmentation

14.1 GENERAL DESCRIPTION

COBOL segmentation is a facility that provides a means by which the user may
communicate with the compiler to specify object program overlay requirements.

The segmentation is an obsolete element in Standard COBOL because it is to be deleted
from the next revision of Standard COBOL.

14.1.1 Scope

COBOL segmentation deals only with segmentation of procedures.  As such, only the
Procedure Division and the Environment Division are considered in determining
segmentation requirements for an object program.

14.1.2 Organization

14.1.2.1 Program Segments

Although it is not mandatory, the Procedure Division for a source program is usually
written as a consecutive group of sections, each of which is composed of a series of
closely related operations that are designed to collectively perform a particular function.
However, when segmentation is used, the entire Procedure Division must be in sections.
Each section must then be specified as belonging to either the non-overlayable or the
overlayable portion of the program.

The use of segmentation only affects the physical management of the object program
during execution.  Segmentation neither imposes any syntactic restrictions nor implies
any semantic differences over the same program written without segmentation.



GCOS 7 COBOL 85 Reference Manual

14-2 47 A2 05UL Rev04

14.1.2.2 Fixed Portion

The fixed portion is defined as that part of the object program which is logically treated
as if it were always in memory.  This portion of the program is composed of two types of
segments: fixed permanent segments and fixed overlayable segments.

A fixed permanent segment is a segment in the fixed portion which cannot be overlaid by
any other part of the program.  A fixed overlayable segment is a segment in the fixed
portion which, although logically treated as if it were always in memory, can be overlaid
by another segment to optimize memory utilization.  Variation of the number of fixed
permanent segments in the fixed portion can be accomplished by using a special facility
called the SEGMENT-LIMIT clause (see "SEGMENT-LIMIT Clause", this chapter).  Such
a segment, if called for by the program, is always made available in its last used state.

14.1.2.3 Independent Segments

An independent segment is defined as part of the object program which can overlay, and
can be overlaid by, either a fixed overlayable segment or another independent segment.
An independent segment is in its initial state whenever control is transferred (either
implicitly or explicitly) to that segment for the first time during the execution of a
program.  On subsequent transfers of control to the segment, an independent segment is
also in its initial state when:

1. Control is transferred to that segment as a result of the implicit transfer of control
between consecutive statements from a segment with a different segment-number.

2. Control is transferred to that segment as the result of the implicit transfer of control
between a SORT or MERGE statement, in a segment with a different segment-
number, and an associated input or output procedure in that independent segment.

3. Control is transferred explicitly to that segment from a segment with a different
segment-number (with the exception noted in paragraph 2 below).

On subsequent transfer of control to the segment, an independent segment is in its last-
used state when:

1. Control is transferred implicitly to that segment from a segment with a different
segment-number (except as noted in paragraphs 1 and 2 above).

2. Control is transferred explicitly to that segment as the result of the execution of an
EXIT PROGRAM statement.

See "Explicit and Implicit Transfers of Control", Chapter 3.



Segmentation

47 A2 05UL Rev04 14-3

14.1.3 Segment Classification

Sections which are to be segmented are classified, using a system of segment-numbers
(see "Segment Numbers", this chapter) and the following criteria:

1. Logic Requirements - Sections which must be available for reference at all times, or
which are referred to very frequently, are normally classified as belonging to one of
the permanent segments; sections which are used less frequently are normally
classified as belonging either to one of the overlayable fixed segments or to one of
the independent segments, depending on logic requirements.

2. Frequency of Use - Generally, the more frequently a section is referred to, the lower
its segment-number, the less frequently it is referred to, the higher its segment-
number.

3. Relationship to Other Sections - Sections which frequently communicate with one
another should be given the same segment-numbers.

14.1.4 Segmentation Control

The logical sequence of the program is the same as the physical sequence except for
specific transfers of control.  If any reordering of the object program is required to handle
the flow from segment to segment, according to the rules given for Segment Numbers,
control transfers are provided to maintain the logical flow specified in the source
program.  All controls necessary for a segment to operate whenever the segment is used
are also provided.  Control may be transferred within a source program to any paragraph
in a section; that is, it is not mandatory to transfer control to the beginning of a section.



GCOS 7 COBOL 85 Reference Manual

14-4 47 A2 05UL Rev04

14.2 STRUCTURE OF PROGRAM SEGMENTS

14.2.1 Segment Numbers

Section classification is accomplished by means of a system of segment-numbers.  The
segment-number is included in the section header.

Format

section-name SECTION [segment-number].

Syntax Rules

1. The segment-number must be an integer ranging in value from 0 through 99.

2. If the segment-number is omitted from the section header, the segment-number is
assumed to be 0.

3. Sections in the declaratives must contain segment-numbers less than 50.

General Rules

1. All sections which have the same segment-number constitute a program segment.

2. Segments with segment-number 0 through 49 belong to the fixed portion of the
object program.

3. Segments with segment-number 50 through 99 are independent segments.



Segmentation

47 A2 05UL Rev04 14-5

14.2.2 SEGMENT-LIMIT Clause

Ideally, all program segments having segment-numbers ranging from 0 through 49
should be specified as permanent segments.  However, when the user wishes to control
the size of 'truly' permanent segments it may become necessary to decrease the number
of permanent segments.  The SEGMENT-LIMIT feature provides the user with a means
by which he can reduce the number of permanent segments in his program, while still
retaining the logical properties of fixed portion segments (segment-number 0 through
49).  The SEGMENT-LIMIT clause appears in the OBJECT-COMPUTER paragraph.

Format

[SEGMENT-LIMIT IS segment-number]

Syntax Rule

Segment-number must be an integer ranging in value from 1 to 49.

General Rules

1. When the SEGMENT-LIMIT clause is specified, only those segments having
segment-numbers from 0 up to, but not including, the segment-number designated
as the segment-limit, are considered as permanent segments of the object program.

2. Those segments having segment-numbers from the segment-limit through 49 are
considered as overlayable fixed segments.

3. When the SEGMENT-LIMIT clause is omitted, all segments having segment-
numbers from 0 through 49 are considered as permanent segments of the object
program.



GCOS 7 COBOL 85 Reference Manual

14-6 47 A2 05UL Rev04

14.3 RESTRICTIONS ON PROGRAM FLOW

When segmentation is used, the following restrictions are placed on the ALTER,
PERFORM, MERGE, and SORT statements.

14.3.1 The ALTER Statement

A GO TO statement in a section whose segment-number is greater than or equal to 50
must not be referred to by an ALTER statement in a section with a different segment-
number.

All other uses of the ALTER statement are valid and are performed even if the GO TO to
which the ALTER refers is in a fixed overlayable segment.

14.3.2 The PERFORM Statement

A PERFORM statement that appears in a section that is not in an independent segment
can have within its range, in addition to any declarative sections whose execution is
caused within that range, only one of the following.

1. Sections and/or paragraphs wholly contained in one or more non-independent
segments.

2. Sections and/or paragraphs wholly contained in a single independent segment.

A PERFORM statement that appears in an independent segment can have within its
range, in addition to any declarative sections whose execution is caused within that
range, only one of the following:

1. Sections and/or paragraphs wholly contained in one or more non-independent
segments.

2. Sections and/or paragraphs wholly contained in the same independent segment as
that PERFORM statement.



Segmentation

47 A2 05UL Rev04 14-7

14.3.3 The MERGE Statement

If the MERGE statement appears in a section that is not in an independent segment,
then any output procedure referenced by that MERGE statement must appear:

1. Totally within non-independent segments, or

2. Wholly contained in a single independent segment.

If a MERGE statement appears in an independent segment, then any output procedure
referenced by that MERGE statement must be contained:

1. Totally within non-independent segments, or

2. Wholly within the same independent segment as that MERGE statement.

14.3.4 The SORT Statement

If a SORT statement appears in a section that is not an independent segment, then any
input procedures or output procedures referenced by that SORT statement must appear:

1. Totally within non-independent segments, or

2. Wholly contained in a single independent segment.

If a SORT statement appears in an independent segment, then any input procedures or
output procedures referenced by that SORT statement must be contained:

1. Totally within non-independent segments, or

2. Wholly within the same independent segment as that SORT segment.



GCOS 7 COBOL 85 Reference Manual

14-8 47 A2 05UL Rev04



47 A2 05UL Rev04 15-1

15. COBOL Source Text Manipulation
Facilities

15.1 INTRODUCTION

The COBOL library facilities are the COPY statement and the REPLACE statement.
Each of these facilities can function either independently of the other or in conjunction
with the other to provide an extensive capability to insert and replace source program
text as part of the compilation of the source program.

COBOL libraries contain library texts that are available to the compiler at compile time.
The effect of the interpretation of the COPY statement is to generate, from a library text,
text which is treated by the compiler as part of the source program.

Similarly, COBOL source programs can be written in a programmer defined notation
which, at compile time, can be expanded into syntactically correct phrases, clauses, and
statements.  The effect of the interpretation of the REPLACE statement is to substitute
new text for text appearing in the source program and have the substituted text treated
by the compiler as part of the source program.



GCOS 7 COBOL 85 Reference Manual

15-2 47 A2 05UL Rev04

15.2 COPY

Description

The COPY statement incorporates text into a COBOL source program.

Format

                {IN}
COPY text-name [{  } library-name]
                {OF}

     [ REPLACING

            {== pseudo-text-1 ==}    {== pseudo-text-2 ==}
            {identifier-1       }    {identifier-2       }
        {   {                   } BY {                   }}
        {   {literal-1          }    {literal-2          }}
        {   {word-1             }    {word-2             }}... ]
        {                                                 }
        { |-------------------------------------|         }
        { | {LEADING }              {literal-4} |         }
        { | {        } literal-3 BY {SPACE     } |         }
          | {TRAILING}              {SPACES    } |
          |-------------------------------------|

Syntax Rules

1. If more than one COBOL library is available during compilation, text-name must be
qualified by the library-name identifying the COBOL library in which the text
associated with text-name resides.

Within one COBOL library, each text-name must be unique.

2. The COPY statement must be preceded by a space and terminated by the
separator period.

3. Pseudo-text-1 must contain one or more text words.

4. Pseudo-text-2 may contain zero, one or more text words.

5. Character-strings within pseudo-text-1 and pseudo-text-2 may be continued.  (See
"Continuation of Lines", Chapter 4.)

6. Word-1 or word-2 may be any single COBOL word, except 'COPY'.

|7. Literal-3 and literal-4 must be non-numeric literals.|



COBOL Source Text Manipulation Facilities

47 A2 05UL Rev04 15-3

8. A COPY statement may occur in the source program anywhere a character-string or
a separator, other than the quotation mark, may occur except that a COPY
statement must not occur within a COPY statement |, nor in a REPLACE statement
of the Substitution Section of the Control Division.|

9. A text word within pseudo-text and within library text must not exceed 322
characters in length.

10. Pseudo-text-1 must not consist entirely of a separator comma or a separator semi-
colon.

11. If the word COPY appears in a comment-entry or in the place where a comment-
entry may appear, it is considered part of the comment-entry.

General Rules

1. The compilation of a source program containing COPY statements is logically
equivalent to processing all COPY statements prior to the processing of the
resultant source program.

2. The effect of processing a COPY statement is that the library text associated with
text-name is copied into the source program, logically replacing the entire COPY
statement, beginning with the reserved word COPY and ending with the punctuation
character period, inclusive,

3. If the REPLACING phrase is not specified, the library text is copied unchanged.

If the REPLACING phrase is specified, the library text is copied and each properly
matched occurrence of pseudo-text-1, identifier-1, word-1, literal-1 |and leading or
trailing literal-3 in words| in the library text is replaced by the corresponding pseudo-
text-2, identifier-2, word-2, literal-2, |literal-4 or deleted.|

4. For purposes of matching, identifier-1, word-1, and literal-1 are treated as pseudo-
text containing only identifier-1, word-1, or literal-1, respectively.

5. The comparison operation to determine text replacement occurs in the following
manner:

a. The leftmost library text word which is not a separator comma or a separator
semi-colon, is the first text word used for comparison.  Any text word or space
preceding this text word is copied into the source program.  Starting with the
first text word for comparison and the first pseudo-text-1, identifier-1, word-1,
literal-1 |or literal-3| that was specified in the REPLACING phrase, the entire
REPLACING phrase operand that precedes the reserved word BY is compared
to an equivalent number of contiguous library text words, |or in the case of
literal-3 to the equivalent number of LEADING or TRAILING characters of the
leftmost text word when it is a word.|



GCOS 7 COBOL 85 Reference Manual

15-4 47 A2 05UL Rev04

b. Pseudo-text-1, identifier-1, word-1, or literal-1 match the library text if, and
only if, the ordered sequence of text words that forms pseudo-text-1, identifier-
1, word-1, or literal-1 is equal, character for character, to the ordered sequence
of library text words.  For purposes of matching, each occurrence of a
separator comma or semi-colon in pseudo-text-1 or in the library text is
considered to be a single space.  Each sequence of one or more space
separators is considered to be a single space.

|c.     Literal-3 matches the source program text if, and only if, the leftmost text word
commences (LEADING) or finishes (TRAILING) with the same sequence of
characters as that forms literal-3.|

d. If no match occurs, the comparison is repeated with each next successive
pseudo-text-1, identifier-1, word-1, literal-1, |or literal-3|, if any, in the
REPLACING phrase until either a match is found or there is no next
successive REPLACING operand.

e. When all the REPLACING phrase operands have been compared and no
match has occurred, the leftmost library text word is copied into the source
program.  The next successive library text word is then considered as the
leftmost library text word, and the comparison cycle starts again with the first
pseudo-text-1, identifier-1, word-1, literal-1, |or literal-3,| specified in the
REPLACING phrase.

f. Whenever a match occurs between pseudo-text-1, identifier-1, word-1, or
literal-1 and the library text, the corresponding pseudo-text-2, identifier-2,
word-2 or literal-2 is placed into the source program.  |Whenever a match
occurs between literal-3 and a text word, the matching leading or trailing
characters of the word are either replaced by the characters that form literal-4,
or if the SPACE or SPACES phrase is used, are deleted; the replacement is
done only if it results in a legal word.| The library text word immediately
following the rightmost text word that participated in the match is then
considered as the leftmost library text word.  The comparison cycle starts
again with the first pseudo-text-1, identifier-1, word-1, literal-1, |or literal-3,|
specified in the REPLACING phrase.

g. The comparison operation continues until the rightmost text word in the library
text has either participated in a match or been considered as a leftmost library
text word and participated in a complete comparison cycle.

6. Comment lines occurring in the library text and pseudo-text-1 are ignored for
purpose of matching; and the sequence of text words in the library text, if any, and
in pseudo-text-1 is determined by the rules for reference format.  (See "Reference
Format Representation", Chapter 17).  Comment lines or blank lines appearing in
pseudo-text-2 are copied into the resultant program unchanged whenever pseudo-
text-2 is placed into the source program as a result of text replacement.  Comment
lines or blank lines appearing in library text are copied into the resultant source
program unchanged with the following exception: comment line or blank line in
library text is not copied if that comment line or blank line appears within the
sequence of text words that match pseudo-text-1.



COBOL Source Text Manipulation Facilities

47 A2 05UL Rev04 15-5

7. Debugging lines are permitted within library text and pseudo-text.  Text words within
a debugging line participate in the matching rules as if the 'D' did not appear in the
Indicator Area.  A debugging line is specified within pseudo-text if the debugging
line begins in the source program after the opening pseudo-text-delimiter but before
the matching closing pseudo-text-delimiter.

8. The syntactic correctness of the library text cannot be independently determined.
Except for COPY and REPLACE statements, the syntactic correctness of the entire
COBOL source program cannot be determined until all COPY and REPLACE
statements have been completely processed.

9. Each text word copied from the library but not replaced is copied so as to start in
the same area of the line in the resultant program as it begins in the line within the
library.  However, if a text word copied from the library begins in area A but follows
another text word, which also begins in area A of the same line, and if replacement
of a preceding text word in the line by replacement text of greater length occurs, the
following text word begins in area B if it cannot begin in area A.  Each text word in
pseudo-text-2 that is to be placed in the resultant program begins in the same area
of the resultant program as it appears in pseudo-text-2.  Each identifier-2, literal-2,
and word-2 that is to be placed into the resultant program begins in the same area
of the resultant program as the leftmost library text word that participated in the
match would appear if it had not been replaced.

Library text must conform to the rules for COBOL Reference Format.

If additional lines are introduced into the source program as a result of a COPY
statement, each text word introduced appears on a debugging line if the COPY
statement begins on a debugging line or if the text word being introduced appears
on a debugging line in library text.  When a text word specified in the BY phrase is
introduced, it appears on a debugging line if the first library text word being
replaced is specified on a debugging line.  Except in the preceding cases, only
those text words that are specified on debugging lines where the debugging line is
within pseudo-text-2 appear on debugging lines in the resultant program.  If any
literal specified as literal-2 or within pseudo-text-2 or library text is of too great
length to be accommodated on a single line without continuation to another line in
the resultant program and the literal is not being placed on a debugging line,
additional continuation lines are introduced which contain the remainder of the
literal.  If replacement requires that the continued literal be continued on a
debugging line, the program is in error.

10. For purposes of compilation, text words after replacement are placed in the source
program according to the rules for Reference Format, (see Chapter 17).When
copying text words of pseudo-text-2 into the source program, additional spaces may
be introduced only between text words where there already exists a space
(including the assumed space between source lines.

11. If additional lines are introduced into the source program as a result of the
processing of COPY statements, the indicator area of the introduced line contains
the same character as the line on which the text being replaced begins, unless that
line contains an hyphen, in which case the introduced line contains a space.  In the
case where a literal is continued onto an introduced line which is not a debugging
line, a hyphen is placed in the indicator area.



GCOS 7 COBOL 85 Reference Manual

15-6 47 A2 05UL Rev04

15.3 REPLACE

Description

The REPLACE statement is used to replace source program text.

Format 1

          {== pseudo-text-1 ==}    {== pseudo-text-2 ==}
          { |--------------|  }    { |--------------|  }
        { { | identifier-1 |  } BY { | identifier-2 |  }}
        { { | literal-1    |  }    { | literal-2    |  }}
REPLACE { { | word-1       |  }    { | word-2       |  }}...
        {   |--------------|         |--------------|   }
        {                                               }
        { |-------------------------------------|       }
        { | {LEADING }              {literal-4} |       }
        { | {        } literal-3 BY {SPACE     } |       }
          | {TRAILING}              {SPACES    } |
          |-------------------------------------|

Format 2

REPLACE OFF

Syntax Rules

1. A REPLACE statement may occur anywhere in the source program where a
character-string may occur |except in the Substitution Section of the Control
Division.| It must be preceded by a separator period except when it is the first
statement in a separately compiled program.

2. A REPLACE statement must be terminated by a separator period.

3. Pseudo-text-1 must contain one or more text words.

4. Pseudo-text-2 must contain zero, one or more text words.

5. Character-strings within pseudo-text-1 and pseudo-text-2 may be continued.  (See
"Reference Format", Chapter 17).

6. A text word within pseudo-text must not exceed 322 characters in length.

7. Pseudo-text-1 must not consist entirely of a separator comma or a separator semi-
colon.

8. If the word REPLACE appears in a comment-entry or in the place where a
comment-entry may appear, it is considered part of the comment-entry.



COBOL Source Text Manipulation Facilities

47 A2 05UL Rev04 15-7

General Rules

1. The format 1 REPLACE statement specifies the text of the source program to be
replaced by the corresponding text.  Each matched occurrence of pseudo-text-1 in
the source program is replaced by the corresponding pseudo-text-2.

2. The format 2 REPLACE statement specifies that any text replacement currently in
effect is discontinued.

3. A given occurrence of the REPLACE statement is in effect from the point at which it
is specified until the next occurrence of the statement or the end of the separately
compiled program, respectively.

4. Any REPLACE statements contained in a source program are processed after the
processing of any COPY statements contained in a source program.

5. The text produced as a result of the processing of a REPLACE statement must not
contain a REPLACE statement.

|6. For purposes of matching, identifier-1, word-1, and literal-1 are treated as pseudo-
text containing only identifier-1, word-1, or literal-1, respectively.|

7. The comparison operation to determine text replacement occurs in the following
manner:

a. Starting with the leftmost source program text word and the first pseudo-text-1
|or literal-3,| pseudo-text-1 is compared to an equivalent number of contiguous
source program text words, |or in the case of literal-3 to the equivalent number
of LEADING or TRAILING characters of the leftmost text word when it is a
word.|

b. Pseudo-text-1 matches the source program text if and only if the ordered
sequence of text words that forms pseudo-text-1 is equal, character for
character, to the ordered sequence of source program text words.  For
purposes of matching, each occurrence of a separator comma, semi-colon, or
space in pseudo-text-1 or in the source program text is considered to be a
single space.  Each sequence of one or more space separators is considered
to be a single space.

|c.     Literal-3 matches the source program text if, and only if, the leftmost text word
commences (LEADING) or finishes (TRAILING) with the same sequence of
characters as that the forms literal-3.|

d. If no match occurs, the comparison is repeated with each next successive
occurrence of pseudo-text-1 |or literal-3,| a match is found or there is no next
successive occurrence of pseudo-text-1 |or literal-3.|

e. When all occurrences of pseudo-text-1 |or literal-3| have been compared and
no match has occurred, the next successive source program text word is then
considered as the leftmost source program text word, and the comparison
cycle starts again with the first occurrence of pseudo-text-1 |or literal-3|.



GCOS 7 COBOL 85 Reference Manual

15-8 47 A2 05UL Rev04

f. Whenever a match occurs between pseudo-text-1 and the source program
text, the corresponding pseudo-text-2, |identifier-2, literal-2 or word-2| replaces
the matched text in the source program.  |Whenever a match occurs between
literal-3 and a text.word, the matching leading or trailing characters of the word
are either replaced by the characters that form literal-4, or if the SPACE or
SPACES phrase is used, are deleted; the replacement is done only if it results
in a legal word.| The source program text word immediately following the
rightmost text word that participated in the match is then considered as the
leftmost source program text word.  The comparison cycle starts again with the
first occurrence of pseudo-text-1 |or literal-3.|

g. The comparison operation continues until the rightmost text word in the source
program text which is within the scope of the REPLACE statement has either
participated in a match or been considered as a leftmost source program text
word and participated in a complete comparison cycle.

8. Comment lines or blank lines occurring in the source program text and in pseudo-
text-1 are ignored for purposes of matching; and the sequence of text words in the
source program text and in pseudo-text-1 is determined by the rules for reference
format.  (See "Reference Format Representation", Chapter 17).  Comment lines or
blank lines in pseudo-text-2 are placed into the resultant program unchanged
whenever pseudo-text-2 is placed into the source program as a result of text
replacement.  A comment line or blank line in source program text is not replaced if
that comment line or blank line appears within the sequence of text words that
match pseudo-text-1.

9. Debugging lines are permitted in pseudo-text.  Text words within a debugging line
participate in the matching rules as if the 'D' did not appear in the indicator area.

10. Except for COPY and REPLACE statements, the syntactic correctness of the
source program text cannot be determined until after all COPY and REPLACE
statements have been completely processed.

11. Text words inserted into the source program as a result of processing a REPLACE
statement are placed in the source program according to the rules for reference
format.  (See "Reference Format", Chapter 17).  When inserting text words of
pseudo-text-2 into the source program, additional spaces may be introduced only
between text words where there already exists a space (including the assumed
space between source lines).

12. If additional lines are introduced into the source program as a result of the
processing of REPLACE statements, the indicator area of the introduced lines
contains the same character as the line on which the text being replaced begins,
unless that line contains a hyphen, in which case the introduced line contains a
space.

If any literal within pseudo-text-2 is of a length too great to be accommodated on a
single line without continuation to another line in the resultant program and the
literal is not being placed on a debugging line, additional continuation lines are
introduced which contain the remainder of the literal.  If replacement requires the
continued literal to be continued on a debugging line, the program is in error.



47 A2 05UL Rev04 16-1

16. Debugging Facility

16.1 INTRODUCTION

COBOL debugging is a facility that provides a means by which the user can describe his
debugging algorithm including the conditions under which data or procedure items are to
be monitored during the execution of the object program.

The decisions of what to monitor and what information to display on the output device
are explicitly in the domain of the user.  The COBOL debug facility simply provides a
convenient access to pertinent information.

Except for the debugging lines and the WITH DEBUGGING MODE concerning these
lines, the debugging facility is an obsolete element in Standard COBOL because it is to
be deleted from the next version or Standard COBOL.

16.2 CONCEPTS

The features of the COBOL language that support the debugging facility are:

1. A compile-time switch WITH DEBUGGING MODE |, which can be superseded by
the DEBUGMD and NDEGUGMD parameters of the CBL JCL statement.|

2. An object-time switch.

3. A USE FOR DEBUGGING statement.

4. A special register DEBUG-ITEM.

5. Debugging Lines.



GCOS 7 COBOL 85 Reference Manual

16-2 47 A2 05UL Rev04

16.3 A COMPILE-TIME SWITCH

The WITH DEBUGGING MODE clause is written as part of the SOURCE-COMPUTER
paragraph.  It serves as a compile time switch over the debugging statements written in
the program.

When the WITH DEBUGGING MODE clause is specified in a program and the
NDEBUGMD parameter is not specified in the $COBOL JCL statement, or if the
DEBUGMD parameter is specified,| all debugging sections and all debugging lines are
compiled as specified in this section of the document.

When the WITH DEBUGGING MODE clause is not specified and the DEBUGMD
parameter is not specified in the $COBOL JCL statement, or if the NDEBUGMD
parameter is specified,| all debugging lines and all debugging sections are compiled as if
they were comment lines.

16.4 AN OBJECT-TIME SWITCH

An object time switch dynamically activates the debugging code inserted by the
compiler.  This switch is operated by using the DEBUG parameter of the $STEP JCL
statement.  If the switch is 'on', (i.e. if the DEBUG option is present), all the effects of the
debugging language written in the source program are permitted.  If the switch is 'off', all
the effects for the USE FOR DEBUGGING statement are inhibited.

Unless the Program Checkout Facility is used, the object time switch has no effect on the
execution of the object program if the WITH DEBUGGING MODE clause is not specified
in the source program |and the DEBUGMD parameter is not specified in the $COBOL
JCL statement or if the NDEBUGMD parameter is specified.|



Debugging Facility

47 A2 05UL Rev04 16-3

16.5 THE USE FOR DEBUGGING STATEMENT

The USE FOR DEBUGGING statement identifies the user items that are to be monitored
by the associated debugging section.

Format

section-name SECTION [segment-number]

                     { cd-name-1                      }
                     {[ALL REFERENCES OF] identifier-1}
                     {          |-------------------| }
USE FOR DEBUGGING ON {          | [WITH CONVERSION ] | }...
                     {          |-------------------| }
                     { procedure-name-1               }
                     { file-name-1                    }
                     { ALL PROCEDURES                  }

Syntax Rules

1. Debugging section(s), if specified, must appear together immediately after the
DECLARATIVES header.

2. Except in the USE FOR DEBUGGING statement itself, there must be no reference
to any non-declarative procedure within the debugging section.

3. Statements appearing outside of the set of debugging sections must not reference
procedure-names defined within the set of debugging sections.

4. Except for the USE FOR DEBUGGING statement itself, statements appearing
within a given debugging section may reference procedure-names defined within a
different USE procedure only with a PERFORM statement.

5. Procedure-names defined within debugging sections must not appear within USE
FOR DEBUGGING statements.

6. Any given identifier, cd-name, file-name, or procedure-name may appear in only
one USE FOR DEBUGGING statement and may appear only once in that
statement.

7. The ALL PROCEDURES phrase can appear only once in a program.

8. When the ALL PROCEDURES phrase is specified, procedure-name-1 must not be
specified in any USE FOR DEBUGGING statement.

9. Identifier-1 must not reference any data item defined in the Report Section except
sum counters.

10. If the data description entry of the data item referenced by identifier-1 contains an
OCCURS clause or is subordinate to a data description entry that contains an
OCCURS clause, identifier-1 must be specified without the subscripting or indexing
normally required.



GCOS 7 COBOL 85 Reference Manual

16-4 47 A2 05UL Rev04

11. References to the special register DEBUG-ITEM are restricted to references from
within a debugging section.

|12. Identifier-1 must reference an elementary numeric data item if the WITH
CONVERSION phrase is specified.|

13. Identifier-1 must not be reference modified.

General Rules

1. Automatic execution of a debugging section is not caused by a statement appearing
in a debugging section.

2. When file-name-1 is specified in a USE FOR DEBUGGING statement, that
debugging section is executed:

a. After the execution of any OPEN or CLOSE statement that references             
file-name-1, and

b. After the execution of any READ statement (after any other specified USE
procedure) not resulting in the execution of an associated AT END or INVALID
KEY imperative statement, and

c. After the execution of any DELETE or START statement that references          
file-name-1.

3. When procedure-name-1 is specified in a USE FOR DEBUGGING statement that
debugging section is executed:

a. Immediately before each execution of the named procedure;

b. Immediately after the execution of an ALTER statement which references
procedure-name-1.

4. The ALL PROCEDURES phrase causes the effects described in General Rule 4 to
occur for every procedure-name in the program, except those appearing within a
debugging section.

5. When the ALL REFERENCES OF identifier-1 phrase is specified, that debugging
section is executed for every statement that explicitly references identifier-1 at each
of the following times:

a. In the case of a WRITE or REWRITE statement immediately before the
execution of that WRITE or REWRITE statement and after the execution of
any implicit move resulting from the presence of the FROM phrase.

b. In the case of a GO TO statement with a DEPENDING ON phrase,
immediately before control is transferred and prior to the execution of any
debugging section associated with the procedure-name to which control is to
be transferred.



Debugging Facility

47 A2 05UL Rev04 16-5

c. In the case of a PERFORM statement in which a VARYING, AFTER, or UNTIL
phrase references identifier-1, immediately after each initialization,
modification or evaluation of the contents of the data item referenced by
identifier-1.

d. In the case of any other COBOL statement, immediately after execution of that
statement.

If identifier-1 is specified in a phrase that is not executed or evaluated, the
associated debugging section is not executed.

6. When identifier-1 is specified without the ALL REFERENCES OF phrase, that
debugging section is executed at each of the following times:

a. In the case of a WRITE or REWRITE statement that explicitly references
identifier-1, immediately before the execution of that WRITE or REWRITE
statement and after the execution of any implicit move resulting from the
presence of the FROM phrase.

b. In the case of a PERFORM statement in which a VARYING, AFTER or UNTIL
phrase references identifier-1, immediately after each initialization,
modification or evaluation of the contents of the data item referenced by
identifier-1.

c. Immediately after the execution of any other COBOL statement that explicitly
references and causes the contents of the data item referenced by identifier-1
to be changed.

If identifier-1 is specified in a phrase that is not executed or evaluated, the
associated debugging section is not executed.

7. The associated debugging section is not executed for a specific operand more than
once as a result of the execution of a single statement, regardless of the number of
times that operand is explicitly specified.  In the case of a PERFORM statement
which causes iterative execution of a referenced procedure, the associated
debugging section is executed once for each iteration.

Within an imperative statement, each individual occurrence of an imperative verb
identifies a separate statement for the purpose of debugging.

8. When cd-name-1 is specified in a USE FOR DEBUGGING statement, that
debugging section is executed:

a. After the execution of any ENABLE, DISABLE, and SEND statement that
references cd-name-1,

b. After the execution of a RECEIVE statement referencing cd-name-1 that does
not result in the execution of the NO DATA imperative-statement, and

c. After the execution of an ACCEPT MESSAGE COUNT statement that
references cd-name-1.

9. A reference to identifier-1, cd-name-1, file-name-1 or procedure-name-1 as a
qualifier does not constitute reference to that item for the debugging described in
the general rules above.



GCOS 7 COBOL 85 Reference Manual

16-6 47 A2 05UL Rev04

10. Associated with each execution of a debugging section is the special register
DEBUG-ITEM, which provides information about the conditions that caused the
execution of a debugging section.  DEBUG-ITEM has the following implicit
description:

    01 DEBUG-ITEM.
       02 DEBUG-LINE       PICTURE IS X(6).
       02 FILLER           PICTURE IS X     VALUE SPACE.
       02 DEBUG-NAME       PICTURE IS X(30).
       02 FILLER           PICTURE IS X     VALUE SPACE.
       02 DEBUG-SUB-1      PICTURE IS S9999
                           SIGN IS LEADING SEPARATE CHARACTER.
       02 FILLER           PICTURE IS X     VALUE SPACE.
       02 DEBUG-SUB-2      PICTURE IS S9999
                           SIGN IS LEADING SEPARATE CHARACTER.
       02 FILLER           PICTURE IS X     VALUE SPACE.
       02 DEBUG-SUB-3      PICTURE IS S9999
                           SIGN IS LEADING SEPARATE CHARACTER.
       02 FILLER           PICTURE IS X     VALUE SPACE.
       02 DEBUG-CONTENTS   PICTURE IS X(n).

11. Prior to each execution of a debugging section, the content of the data item
referenced by DEBUG-ITEM is space-filled.

The contents of data items subordinate to DEBUG-ITEM are then updated,
according to the following general rules, immediately before control is passed to
that debugging section.  The contents of any data item not specified in the following
general rules remains spaces.

Updating is accomplished in accordance with the rules for the MOVE statement, the
sole exception being the move to DEBUG-CONTENTS when the move is treated
exactly as if it was an alphanumeric to alphanumeric elementary move with no
conversion of data from one form of internal representation to another.  |However, if
WITH CONVERSION is specified, DEBUG-CONTENTS contain the contents of a
USAGE DISPLAY data item of the same PICTURE as identifier-1 except that it is
always signed (with SIGN IS LEADING SEPARATE); if the PICTURE clause is not
specified, the data item is however converted into a standard legible form,
according to its USAGE.|

12. The contents of DEBUG-LINE is the internal line number given at compilation time
to any particular source statement, as shown in the compilation listing.

13. DEBUG-NAME contains the first 30 characters of the name that causes the
debugging section to be executed.

All qualifiers of the name are separated in DEBUG-NAME by the word 'IN' or 'OF'.
Subscripts/indices, if any, are not entered into DEBUG-name-

14. If the reference to a data item that causes the debugging section to be executed is
subscripted or indexed, the occurrence number of each level is entered in DEBUG-
SUB-1, DEBUG-SUB-2, DEBUG-SUB-3 respectively as necessary.

15. DEBUG-CONTENTS is a data item that is large enough to contain the data required
by the following general rules.



Debugging Facility

47 A2 05UL Rev04 16-7

16. If the first execution of the first non-declarative procedure in the program causes
the debugging section to be executed, the following conditions exist:

a. DEBUG-LINE identifies the first statement of that procedure.

b. DEBUG-NAME contains the name of that procedure.

c. DEBUG-CONTENTS contains 'START PROGRAM'.

17. If a reference to procedure-name-1 in an ALTER statement causes the debugging
section to be executed, the following conditions exist:

a. DEBUG-LINE identifies the ALTER statement that references
procedure-name-1.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains the applicable procedure-name associated with
the TO phrase of the ALTER statement.

18. If the transfer of control associated with the execution of a GO TO statement
causes the debugging section to be executed, the following conditions exist:

a. DEBUG-LINE identifies the GO TO statement whose execution transfers
control to procedure-name-1.

b. DEBUG-NAME contains procedure-name-1.

19. If reference to procedure-name-1 in the INPUT or OUTPUT phrase of a SORT or
MERGE statement causes the debugging section to be executed, the following
conditions exist:

a. DEBUG-LINE identifies the SORT or MERGE statement that references
procedure-name-1.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains:

(i) If the reference to procedure-name-1 is in the INPUT phrase of a SORT
statement, 'SORT INPUT'.

(ii) If the reference to procedure-name-1 is in the OUTPUT phrase of a SORT
statement, 'SORT OUTPUT'.

(iii) If the reference of procedure-name-1 is in the OUTPUT phrase of a
MERGE statement, 'MERGE OUTPUT'.



GCOS 7 COBOL 85 Reference Manual

16-8 47 A2 05UL Rev04

20. If the transfer of control from the control mechanism associated with a PERFORM
statement caused the debugging section associated with procedure-name-1 to be
executed, the following conditions exist:

a. DEBUG-LINE identifies the PERFORM statement that references procedure-
name-1.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains 'PERFORM LOOP'.

21. If procedure-name-1 is a USE procedure that is to be executed, the following
conditions exist:

a. DEBUG-LINE identifies the statement that causes execution of the USE
procedure.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains 'USE PROCEDURE'.

22. If an implicit transfer of control from the previous sequential paragraph to
procedure-name-1 causes the debugging section to be executed, the following
conditions exist:

a. DEBUG-LINE identifies the previous statement.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains 'FALL THROUGH'.

23. If references to file-name-1 or cd-name-1 causes the debugging section to be
executed, then:

a. DEBUG-LINE identifies the source statement that references file-name-1, or
cd-name-1.

b. DEBUG-NAME contains the name of file-name-1 or cd-name-1.

c. For READ, DEBUG-CONTENTS contains the entire record read.

d. For all other references to file-name-1, DEBUG-CONTENTS contains spaces.

e. For any reference to cd-name-1, DEBUG-CONTENTS contains the contents of
the area associated with the cd-name.

24. If a reference to identifier-1 causes the debugging section to be executed, then:

a. DEBUG-LINE identifies the source statement that references identifier-1,

b. DEBUG-NAME contains the name of identifier-1, and

c. DEBUG-CONTENTS contains the content of the data item referenced by
identifier-1 at the time that control passes to the debugging section (see
"General Rules" 5 and 6).



Debugging Facility

47 A2 05UL Rev04 16-9

16.6 DEBUGGING LINES

A debugging line is any line with a 'D'|, or a 'd'| in the indicator area of the line.  Any
debugging line that consists solely of spaces from margin A to margin R is considered
the same as a blank line.

The contents of a debugging line must be such that a syntactically correct program is
formed with or without the debugging lines being considered as comment lines.

After all COPY and REPLACE statements have been processed, a debugging line will be
considered to have all the characteristics of a comment line, if the WITH DEBUGGING
MODE clause is not specified in the SOURCE-COMPUTER paragraph |, unless the
DEBUGMD parameter is specified in the $COBOL JCL statement, or if the NDEBUGMD
parameter is specified.|

Successive debugging lines are allowed.

A debugging line is only permitted in the program after the OBJECT-COMPUTER
paragraph.



GCOS 7 COBOL 85 Reference Manual

16-10 47 A2 05UL Rev04



47 A2 05UL Rev04 17-1

17. Reference Format

17.1 GENERAL DESCRIPTION

The reference format which provides a standard method for describing COBOL source
programs and COBOL library texts, is described in terms of character positions in a line
on an input-output medium.  The COBOL compiler accepts source programs written in
reference format and produces an output listing of the source programs in reference
format.

The rules for spacing given in the discussion of the reference format take precedence
over all other rules for spacing.

The divisions of a COBOL source program must be ordered as follows: |the Control
Division, then| the Identification Division, then the Environment Division, then the Data
Division, then the Procedure Division, Each division must be written according to the
rules for the reference format.



GCOS 7 COBOL 85 Reference Manual

17-2 47 A2 05UL Rev04

17.2 REFERENCE FORMAT REPRESENTATION

The reference format for a line is represented as follows:

S eq uenc e  N um ber A rea

Ind ica to r A re a

A re a  B

1      2      3      4      5      6      7      8      9     10     11     12     13     . ..

A rea  A

M arg in M a rg in M arg in M arg in M arg in

L C A B R

Margin L is immediately to the left of the leftmost character position of a line.

Margin C is between the 6th and 7th character positions of a line.

Margin A is between the 7th and 8th character positions of a line.

Margin B is between the 11th and 12th character positions of a line.

Margin R is immediately to the right of the 72nd character position of a line.

The sequence number area occupies six character positions (1-6) and is between Margin
L and Margin C.

The Indicator Area is the 7th character position of a line.

Area A occupies character position 8, 9, 10 and 11, and is between Margin A and
Margin B.

Area B begins immediately to the right of Margin B and terminates immediately to the
left of Margin R.  It occupies a finite number of character positions.

|When 'Horizontal Tabulation' or 'BackSpace' characters are used in a position of a line
before the 12th position, the following steps are to be performed in order, before the
above rules apply:

• If there is a 'Horizontal Tabulation' character in one of the positions 1 to 6 of the line,
the characters following the 'Horizontal Tabulation' character are moved to positions 8
and following, and positions from that containing the 'Horizontal Tabulation' character
to position 7 inclusive are filled in with spaces;

•   If there is a 'Horizontal Tabulation' character in position 7 of the line, the characters
following the 'Horizontal Tabulation' character are moved to positions 12 and
following, and positions 7 to 11 inclusive are filled in with spaces;



Reference Format

47 A2 05UL Rev04 17-3

• If there is a 'BackSpace' character in position 7 or 8 of the line, the characters
following the 'BackSpace' character are moved to positions 7 and following;

•   If there is a 'Horizontal Tabulation' character in one of the positions 8 to 11 of the line,
the characters following the 'Horizontal Tabulation' character are moved to positions
12 and following, and positions from that containing the 'Horizontal Tabulation'
character to position 11 inclusive are filled in with spaces.|

17.2.1 Sequence Numbers

The sequence number area may be used to label a source program line.  The content of
the sequence number area is defined by the user and may consist of any character in the
computer's character set.  There is no requirement that the content of the sequence
number area appear in a particular sequence or be unique.  |However, the sequence of
the sequence numbers may be checked according to a JCL option.|

|Note that when the format is COBOL or COBOLX, the sequence number area does not
exist.  Character positions given above are with regards to the reference format
(including a possibly conceptual sequence number).|

17.2.2 Continuation of Lines

Any sentence, entry, phrase or clause may be continued by starting subsequent line(s) in
Area B.  These subsequent lines are called continuation line(s).  The line being continued
is called the continued line.  Any word, literal or PICTURE character-string may be
broken in such a way that part of it appears on a continuation line.

A hyphen in the Indicator Area of a line indicates that the first non-blank character in
Area B of the current line is the successor of the last non-blank character of the
preceding line, excluding intervening comment lines or blank lines, without any
intervening space.  However, if the continued line contains a non-numeric literal without
a closing quotation mark, the first non-blank character in Area B of the continuation line
must be a quotation mark, and the continuation starts with the character immediately
after that quotation mark.  All spaces at the end of the continued line are considered part
of the literal.  Area A of the continuation line must be blank.

If there is no hyphen in the Indicator Area of a line, it is assumed that the first non-blank
character in the line is preceded by a space.

Both characters composing the separator "==" must be on the same line.



GCOS 7 COBOL 85 Reference Manual

17-4 47 A2 05UL Rev04

17.2.3 Blank Lines

A blank line is one that is blank from Margin C to Margin R, inclusive.  A blank line can
appear anywhere in the source program.  See "Continuation of Lines" above.

17.2.4 Comment Lines

A comment line is any line with an asterisk (*) or slant (/) in the indicator area of the line.
A comment line may appear as any line in a source program after the Identification
Division header.  Any combination of the characters from the computer's character set
may be included in Area A and Area B of that line.  The asterisk or slant and the
characters in Area A and Area B will be produced on the listing but serve as
documentation only and will not be checked syntactically.  The slant in the indicator area
cause page ejection prior to printing the comment line in the listing of the source
program; an asterisk in the indicator area causes printing of the line at the next available
position in the listing.

Successive comment lines are allowed.  There may be comment lines between a
continued line and the related continuation line.

17.2.5 Pseudo-Texts

The character-strings and separators comprising pseudo-texts may start in either Area A
or Area B.  If, however, there is a hyphen in the indicator area of a line which follows the
opening pseudo-text delimiter, Area A of the line must be blank; and the normal rules for
continuation of lines apply to the formation of text words.  (See "Continuation of Lines"
above).



Reference Format

47 A2 05UL Rev04 17-5

17.3 DIVISION, SECTION AND PARAGRAPH FORMATS

17.3.1 Division Header

The division header must start in Area A.

17.3.2 Section Header

The section header must start in Area A.

A section consists of zero, one or more paragraphs in the Environment Division or
Procedure Division, or zero, one or more entries in the |Control Division or| Data
Division.

17.3.3 Paragraph Header, Paragraph-name and Paragraph

A paragraph consists of a paragraph-name followed by the separator period and by zero,
one or more sentences, or a paragraph header followed by one or more entries.

The paragraph header or paragraph-name starts in Area A of any line following the first
line of a division or a section.

The first sentence or entry in a paragraph begins either on the same line as the
paragraph header or paragraph-name or in Area B of the next non-blank line that is not a
comment line.  Successive sentences or entries either begin in Area B of the same line
as the preceding sentence or entry, or in Area B of the next non-blank line that is not a
comment line.

When the sentences or entries of a paragraph require more than one line, they may be
continued as described above.  (See "Continuation of Lines" above)



GCOS 7 COBOL 85 Reference Manual

17-6 47 A2 05UL Rev04

17.4 DATA DIVISION ENTRIES

Each Data Division entry begins with a level indicator or a level-number followed by a
space, followed by the name of the subject of the entry, followed by a sequence of
independent clauses describing the item.  The last clause is always terminated by a
separator period.

There are two types of Data Division entries: those which begin with a level indicator and
those which begin with a level-number.

A level indicator is any of the following: FD, SD, RD, CD.

In those entries that begin with a level indicator, the level indicator begins in Area A,
followed by at least one space, and then followed with the name of the subject of entry
and appropriate descriptive information.

Those entries that begin with level-numbers are called Data Description entries.

A level-number has a value taken from the set of values 01 through 49, 66, 77, 88.
Level-numbers in the range 01 through 09 may be written either as a single digit or as a
zero followed by a significant digit.  At least one space must separate a level-number
from the word following the level-number.

In those Data Description entries that begin with a level-number 01 or 77, the level-
number begins in Area A followed by at least one space, and then followed with its
associated record-name or item-name, if specified, and appropriate descriptive
information.

Successive Data Description entries may be indented according to level-number.  Any
indentation is with respect to margin A.  Each new Data Description entry may begin any
number of positions to the right of margin A, except Data Description entries that begin
with level 01 or 77 must begin in Area A.  The extend of indentation is determined only
by the width of the physical medium.  The entries in the output listing need be indented
only if the input is indented.  Indentation does not affect the magnitude of a level-
number.

17.5 DECLARATIVES

The key word DECLARATIVES and the combined key words END DECLARATIVES that
precede and follow, respectively, the Declaratives portion of the Procedure Division must
each appear on a line by itself.  Each must begin in Area A and be followed by the
separator period.

17.6 END PROGRAM HEADER

The End Program Header must start in Area A.



47 A2 05UL Rev04 18-1

18. Intrinsic Functions

18.1 INTRODUCTION

18.1.1 Purpose of Intrinsic Function Module

The Intrinsic Function module provides the capability to reference a data item whose
value is derived automatically at the time of reference during the execution of the object
program.

18.1.2 Language Concepts

18.1.2.1 Function-Name

In the Intrinsic Function module, a function is a temporary data item whose value is
determined by invoking a mechanism at the time the function is referenced during the
execution of a statement.  A function-name names a mechanism to determine the value
of a function.  A function-name is a COBOL word that is one of a specified list of COBOL
words which may be used in COBOL source programs.  See "Definitions of Functions" in
this chapter.



GCOS 7 COBOL 85 Reference Manual

18-2 47 A2 05UL Rev04

18.1.2.2 Value Returned by a Function

The value returned by a function is considered to be a data value.  A mechanism is
provided at object time to assign a data value to a function when it is referenced.  In
order to determine the function's value, the evaluation mechanism may require access to
data values provided by the referencing program.  These data values are provided by
specifying parameters, known as arguments, when referencing the function.  Specific
functions may place constraints on these arguments, such as range, etc.  If, at the time a
function is referenced, the arguments specified for that reference do not have values that
comply with the specified constraints, the returned value for the function is undefined
|unless specified in the "Returned Values" paragraph of the function description or an
abnormal return code is returned by the Mathematical Package.|

18.1.2.3 Function-Identifier

A function-identifier is used by the programmer to reference a function within the
Procedure Division of a COBOL source program.  See "Function-Identifier" in Chapter 3.



Intrinsic Functions

47 A2 05UL Rev04 18-3

18.2 GENERAL DESCRIPTION

18.2.1 Function Definition and Returned Value

Definition

The definition of a function identifies:

1. For alphanumeric functions, the size of the returned value.

2. For numeric and integer functions, the sign of the returned value and whether the
function is integer.

3. For some other cases, the value returned.

Date Conversion Function

The Gregorian calendar is used in the date conversion functions.  The starting date of
Monday, January 1 1601, was chosen to establish a simple relationship between the
Standard Date and DAY-OF-WEEK, that is, integer date 1 was a Monday, DAY-OF-
WEEK 1.

18.2.2 Arguments

Definition

Arguments specify values used in the evaluation of a function.  Arguments are specified
in the function-identifier.  These arguments can be specified as identifiers, as arithmetic
expressions, or as literals.  The definition of a function specifies the number of
arguments required, which can be zero, one, or more.  For some functions, the number
of arguments which can be specified may be variable.  The order in which arguments are
specified in a function-identifier determines the interpretation given to each value in
arriving at the function value.

Argument Types

Arguments may be required to have a certain class or a subset of a certain class.  The
types of argument are:

Numeric An arithmetic expression must be specified.  The value of
the arithmetic expression, including operational sign, is used
in determining the value of the function.

Alphabetic An elementary data item of the class alphabetic or a non-
numeric literal containing only alphabetic characters must be



GCOS 7 COBOL 85 Reference Manual

18-4 47 A2 05UL Rev04

specified.  The size associated with the argument can be
used in determining the value of the function.

Alphanumeric A data item of the class alphabetic or alphanumeric or a non-
numeric literal must be specified.  The size associated with
the argument can be used in determining the value of the
function.

Integer An arithmetic expression which will always result in an
integer value must be specified.  The value of the arithmetic
expression, including operational sign, is used in determining
the value of the function.

Permissible Values of Arguments

The rules for a function may place constraints on the permissible values for arguments in
order to permit meaningful determination of the function's value.  If, at the time a
function is referenced, the arguments specified for that reference do not have values
within the permissible range, the returned value for the function is undefined |unless
specified in the "Returned Values" paragraph of the function description or an abnormal
return code is returned by the Mathematical Package.|

Subscripting Using the Word ALL

When the definition of a function permits an argument to be repeated a variable number
of times, a table may be referenced by specifying the data-name and any qualifiers that
identify the table, followed immediately by subscripting where one or more of the
subscripts is the word ALL.

When ALL is specified as a subscript, the effect is as if each table element associated
with that subscript position were specified.  The order of the implicit specification of each
occurrence is from left to right, with the first (or leftmost) specification being the identifier
with each subscript specified by the word ALL replaced by one, the next specification
being the same identifier with the rightmost subscript specified by the word ALL
incremented by one.  This process continues with the rightmost ALL subscript being
incremented by one for each implicit specification until the rightmost ALL subscript has
been incremented through its range of values.  If there are any additional ALL subscripts,
the ALL subscript immediately to the left of the rightmost ALL subscript is incremented
by one, the rightmost ALL subscript is reset to one and the process of varying the
rightmost ALL subscript is repeated.  The ALL subscript to the left of the rightmost ALL
subscript is incremented by one through its range of values.  For each additional ALL
subscript, this process is repeated in turn until the leftmost ALL subscript has been
incremented by one through its range of values.  If the ALL subscript is associated with
an OCCURS DEPENDING ON clause, the range of values is determined by the object of
the OCCURS DEPENDING ON clause.  The evaluation of an ALL subscript must result
in at least one argument, otherwise the returned value is undefined.

18.3 TYPES OF FUNCTIONS

Data item functions are elementary data items and return alphanumeric, numeric, or
integer values.  Data item functions are treated as elementary data items and cannot be
receiving operands.



Intrinsic Functions

47 A2 05UL Rev04 18-5

The types of data item functions are:

Alphanumeric Functions

These are of the class and category alphanumeric.  The number of character positions in
this data item is specified in the function definition.  Alphanumeric functions have an
implicit usage of DISPLAY.

Numeric Functions

These are of the class and category numeric.  A numeric function is always considered to
have an operational sign.  Those characteristics of the returned value not otherwise
specified for a given function are defined by the "arithmetic expression intermediate
results rules" (see Chapter 10).

A numeric function may be used only in an arithmetic expression.

A numeric function may not be referenced where an integer operand is required, even
though a particular reference may yield an integer value.

Integer Functions

These are of the class and category numeric.  An integer function is always considered
to have an operational sign.  Those characteristics of the returned value not otherwise
specified for a given function are defined by the  "arithmetic expression intermediate
results rules" (see Chapter 10).

An integer function may be used only in an arithmetic expression.

An integer function can be referenced where an integer operand is required and where a
signed operand is allowed.



GCOS 7 COBOL 85 Reference Manual

18-6 47 A2 05UL Rev04

18.4 DEFINITION OF FUNCTIONS

The "Table of Functions" below summarized the functions that are available.
The Arguments column defines the type and number of arguments as follows:
A means alphabetic.
I means integer.
N means numeric.
X means alphanumeric.

The Type column defines the type of function as follows:
I means integer.
N means numeric.
X means alphanumeric.

Table 18-1. Table of Functions (1/3)

Function-Name Arguments Type Value Returned

ACOS N1 N Arccosine of N1

ANNUITY N1, I2 N Ratio of annuity paid for I2 periods
at interest of N1 to an initial
investment of one

ASIN N1 N Arcsine of N1

ATAN N1 N Arctangent of N1

CHAR I1 X Character in position I1 of program
collating sequence

COS N1 N Cosine of N1

CURRENT-DATE None X Current date and time and the
difference from Greenwich Mean
Time

DATE-OF-INTEGER I1 I Standard date equivalent
(YYYYMMDD) of integer date

DAY-OF-INTEGER I1 I Julian date equivalent
(YYYYDDD)of integer date

FACTORIAL I1 I Factorial of I1

INTEGER N1 I The greatest integer not greater
than N1

INTEGER-OF-DATE I1 I Integer date equivalent of standard
date (YYYYMMDD)



Intrinsic Functions

47 A2 05UL Rev04 18-7

Table 18-1. Table of Functions (2/3)

Function-Name Arguments Type Value Returned

INTEGER-OF-DAY I1 I Integer date equivalent of Julian
date (YYYYDDD)

INTEGER-PART N1 I Integer part of N1

LENGTH A1, N1, I Length of argument

LOG
or X1
N1 N Natural logarithm of N1

LOG10 N1 N Logarithm to base 10 of N1

LOWER-CASE A1 or X1 X All letters in the argument are
set to lower-case

MAX A1 ... or
I1  ... or
N1 ... or
X1  ...

Depends on
arguments

Value of maximum argument

(a function that has only alphabetic arguments is
type alphanumeric)

MEAN N1 N Arithmetic mean of arguments

MEDIAN N1 N Median of arguments

MIDRANGE N1 N Mean of minimum and
maximum arguments

MIN A1 ... or
I1  ... or
N1 ... or
X1  ...

Depends on
arguments

Value of minimum argument

(a function that has only alphabetic arguments is
type alphanumeric)

MOD I1, I2 I I1 modulo I2

NUMVAL X1 N Numeric value of numeric
simple string

NUMVAL-C X1, X2 N Numeric value of numeric string
with optional commas and
currency sign



GCOS 7 COBOL 85 Reference Manual

18-8 47 A2 05UL Rev04

Table 18-1. Table of Functions (3/3)

Function-Name Arguments Type Value Returned

ORD A1 or X1 I Ordinal position of the argument
in collating sequence

ORD-MAX A1 ... or
N1 ... or
X1 ...

I Ordinal position of maximum
argument

ORD-MIN A1 ... or
N1 ... or
X1 ...

I Ordinal position of minimum
argument

PRESENT-VALUE N1
N2 ...

N Present value of a series of
future period-end amounts, N2,
at a discount rate of N1

RANDOM I1 N Random number

RANGE I1 ... or
N1 ...

Depends on
arguments

Value of maximum argument
minus value of minimum
argument

REM N1, N2 N Remainder of N1/N2

REVERSE A1 or X1 X Reverse order of the characters
in the argument

SIN N1 N Sine of N1

SQRT N1 N Square root of N1

STANDARD-
DEVIATION

N1 N Standard deviation of
arguments

SUM I1 ... or N1 Depends on
arguments

Sum of arguments

TAN N1 N Tangent of N1

UPPER-CASE A1 or X1 X All letters in the argument are
set to upper-case

VARIANCE N1 N Variance of argument

WHEN-COMPILED None X Date and time the program was
compiled



Intrinsic Functions

47 A2 05UL Rev04 18-9

18.5 ACOS FUNCTION

Description

The ACOS function returns a numeric value in radians that approximates the arccosine
of argument-1.

Type

The type of this function is numeric.

General Format

FUNCTION ACOS (argument-1)

Arguments

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than or equal to -1 and less than or equal
to +1.

Returned Values

1. The returned value is the approximation of the arccosine of argument-1 and is
greater than or equal to zero and less than or equal to pi.



GCOS 7 COBOL 85 Reference Manual

18-10 47 A2 05UL Rev04

18.6 ANNUITY FUNCTION

Description

The ANNUITY function (annuity immediate) returns a numeric value that approximates
the ratio of an annuity paid at the end of each period for the number of periods specified
by argument-2 to an initial investment of one.  Interest is earned at the rate specified by
argument-1 and is applied at the end of the period, before the payment.

Type

The type of this function is numeric.

General Format

FUNCTION ANNUITY (argument-1 argument-2)

Arguments

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than or equal to zero.

3. Argument-2 must be a positive integer.

Returned Values

1. When the value of argument-1 is zero, the value of the function is the
approximation of:

          1 / argument-2

2. When the value of argument-1 is not zero, the value of the function is the
approximation of:

          argument-1 / (1 - (1 + argument-1) ** (- argument-2))



Intrinsic Functions

47 A2 05UL Rev04 18-11

18.7 ASIN FUNCTION

Description

The ASIN function returns a numeric value in radians that approximates the arcsine of
argument-1.

Type

The type of this function is numeric.

General Format

FUNCTION ASIN (argument-1)

Arguments

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than or equal to -1 and less than or equal
to +1.

Returned Values

1. The returned value is the approximation of the arcsine of argument-1 and is greater
than or equal to -pi/2 and less than or equal to +pi/2.



GCOS 7 COBOL 85 Reference Manual

18-12 47 A2 05UL Rev04

18.8 ATAN FUNCTION

Description

The ATAN function returns a numeric value in radians that approximates the arctangent
of argument-1.

Type

The type of this function is numeric.

General Format

FUNCTION ATAN (argument-1)

Arguments

1. Argument-1 must be class numeric.

Returned Values

1. The returned value is the approximation of the arctangent of argument-1 and is
greater than -pi/2 and less than +pi/2.



Intrinsic Functions

47 A2 05UL Rev04 18-13

18.9 CHAR FUNCTION

Description

The CHAR function returns a one-character alphanumeric value that is a character in the
program collating sequence having the ordinal position equal to the value of argument-1.

Type

The type of this function is alphanumeric.

General Format

FUNCTION CHAR (argument-1)

Arguments

1. Argument-1 must be an integer.

2. The value of argument-1 must be greater than zero and less than or equal to the
number of positions in the collating sequence.

Returned Values

1. If more than one character has the same position in the program collating
sequence, the character returned as the function value is that of the first literal
specified for that character position in the ALPHABET clause.

2. If the current program collating sequence was not specified by an ALPHABET
clause, the collating sequence is the default collating sequence as specified in the
OBJECT-COMPUTER general rules.  See OBJECT-COMPUTER, Chapter 7.



GCOS 7 COBOL 85 Reference Manual

18-14 47 A2 05UL Rev04

18.10 COS FUNCTION

Description

The COS function returns a numeric value that approximates the cosine of an angle or
arc, expressed in radians, that is specified by argument-1.

Type

The type of this function is numeric.

General Format

FUNCTION COS (argument-1)

Arguments

1. Argument-1 must be class numeric.

Returned Values

1. The returned value is the approximation of the cosine of argument-1 and is greater
than or equal to -1 and less than or equal to +1.



Intrinsic Functions

47 A2 05UL Rev04 18-15

18.11 CURRENT-DATE FUNCTION

Description

The CURRENT-DATE function returns a 21-character alphanumeric value that
represents the calendar date, time of day, and local time differential factor provided by
the system on which the function is evaluated.

Type

The type of this function is alphanumeric.

General Format

FUNCTION CURRENT-DATE

Arguments

None.

Returned Values

1. The character positions returned, numbered from left to right, are:

Character Contents
Positions

1-4 Four numeric digits of the year in the Gregorian calendar.

5-6 Two numeric digits of the month of the year, in the range 01
through 12.

7-8 Two numeric digits of the day of the month, in the range 01
through 31.

9-10 Two numeric digits of the hours past midnight, in the range
00 through 23.

11-12 Two numeric digits of the minutes past the hour, in the range
00 through 59.

13-14 Two numeric digits of the seconds past the minute, in the
range 00 through 59.

15-16 Two numeric digits of the hundredths of a second past the
second, in the range 00 through 99.  The value 00 is
returned if the system on which the function is evaluated
does not have the facility to provide the fractional part of a
second.



GCOS 7 COBOL 85 Reference Manual

18-16 47 A2 05UL Rev04

Character Contents
Positions

17 Either the character '-', the character '+', or the character '0'.
The character '-' is returned if the local time indicated in the
previous character positions is behind Greenwich Mean
Time.  The character '+' is returned if the local time indicated
is the same as or ahead of Greenwich Mean Time.  The
character '0' is returned if the system on which this function
is evaluated does not have the facility to provide the local
time differential factor.

18-19 If character position 17 is '-', two numeric digits are returned
in the range 00 through 12 indicating the number of hours
that the reported time is behind Greenwich Mean Time.  If
character position 17 is '+', two numeric digits are returned in
the range 00 through 13 indicating the number of hours that
the reported time is ahead of Greenwich Mean Time.  If
character position 17 is '0', the value 00 is returned.

20-21 Two numeric digits are returned in the range 00 through 59
indicating the number of additional minutes that the reported
time is ahead of or behind Greenwich Mean Time,
depending on whether character position 17 is '+' or '-',
respectively.  If character position 17 is '0', the value 00 is
returned.

2. If the system does not have the facility to provide fractional parts of a second, the
value 00 is returned in character positions 15 and 16.

3. If the system does not have the facility to provide the local time differential factor,
the value 00000 is returned in character positions 17 through 21.



Intrinsic Functions

47 A2 05UL Rev04 18-17

18.12 DATE-OF-INTEGER FUNCTION

Description

The DATE-OF-INTEGER function converts a date in the Gregorian calendar from integer
date form to standard date form (YYYYMMDD).

Type

The type of this function is integer.

General Format

FUNCTION DATE-OF-INTEGER (argument-1)

Arguments

1. Argument-1 is a positive integer that represents a number of days succeeding
December 31, 1600, in the Gregorian calendar.

Returned Values

1. The returned value represents the ISO Standard date of the integer specified in
argument-1.

2. The returned value is in the form (YYYYMMDD), where YYYY represents a year in
the Gregorian calendar, MM represents the month of that year, and DD represents
the day of that month.

|3.     The returned value is 0 (zero) if argument-1 is less than 1.|



GCOS 7 COBOL 85 Reference Manual

18-18 47 A2 05UL Rev04

18.13 DAY-OF-INTEGER FUNCTION

Description

The DAY-OF-INTEGER function converts a date in the Gregorian calendar from integer
date form to Julian date form (YYYYDDD).

Type

The type of this function is integer.

General Format

FUNCTION DAY-OF-INTEGER (argument-1)

Arguments

1. Argument-1 is a positive integer that represents a number of days succeeding
December 31, 1600, in the Gregorian calendar.

Returned Values

1. The returned value represents the Julian equivalent of the integer specified in
argument-1.

2. The returned value is an integer of the form (YYYYDDD), where YYYY represents a
year in the Gregorian calendar, and DDD represents the day of that year.

|3.     The returned value is 0 (zero) if argument-1 is less than 1.|



Intrinsic Functions

47 A2 05UL Rev04 18-19

18.14 FACTORIAL FUNCTION

Description

The FACTORIAL function returns an integer that is the factorial of argument-1.

Type

The type of this function is integer.

General Format

FUNCTION FACTORIAL (argument-1)

Arguments

1. Argument-1 must be an integer greater than or equal to zero.

Returned Values

1. If the value of argument-1 is zero, the value 1 is returned.

2. If the value of argument-1 is positive, its factorial is returned.



GCOS 7 COBOL 85 Reference Manual

18-20 47 A2 05UL Rev04

18.15 INTEGER FUNCTION

Description

The INTEGER function returns the greatest integer value that is less than or equal to
argument-1.

Type

The type of this function is integer.

General Format

FUNCTION INTEGER (argument-1)

Arguments

1. Argument-1 must be class numeric.

Returned Values

1. The returned value is the greatest integer less than or equal to the value of
argument-1.  For example, if the value of argument-1 is -1.5, -2 is returned; if the
value of argument-1 is +1.5, +1 is returned.



Intrinsic Functions

47 A2 05UL Rev04 18-21

18.16 INTEGER-OF-DATE FUNCTION

Description

The INTEGER-OF-DATE function converts a date in the Gregorian calendar from
standard date form (YYYYMMDD) to integer date form.

Type

The type of this function is integer.

General Format

FUNCTION INTEGER-OF-DATE (argument-1)

Arguments

1. Argument-1 must be an integer of the form YYYYMMDD, whose value is obtained
from the calculation:

            (YYYY * 10,000) + (MM * 100) + DD

a. YYYY represents the year in the Gregorian calendar.  It must be an integer
greater than 1600.

b. MM represents a month and must be a positive integer less than 13.

c. DD represents a day and must be a positive integer less than 32 provided that
it is valid for the specified month and year combination.

Returned Values

1. The returned value is an integer that is the number of days the date represented by
argument-1 succeeds December 31, 1600, in the Gregorian calendar.

|2.     The returned value is 0 (zero) if argument-1 contains illegal values for year, month
or day.|



GCOS 7 COBOL 85 Reference Manual

18-22 47 A2 05UL Rev04

18.17 INTEGER-OF-DAY FUNCTION

Description

The INTEGER-OF-DAY function converts a date in the Gregorian calendar from Julian
date form (YYYYDDD) to integer date form.

Type

The type of this function is integer.

General Format

FUNCTION INTEGER-OF-DAY (argument-1)

Arguments

1. Argument-1 must be an integer of the form YYYYDDD, whose value is obtained
from the calculation:

               (YYYY * 1000) + DDD

a. YYYY represents the year in the Gregorian calendar.  It must be an integer
greater than 1600.

b. DDD represents the day of the year.  It must be a positive integer less than
367 provided that it is valid for the year specified.

Returned Values

1. The returned value is an integer that is the number of days the date represented by
argument-1 succeeds December 31, 1600, in the Gregorian calendar.

|2.     The returned value is 0 (zero) if argument-1 contains illegal values for year, month
or day.|



Intrinsic Functions

47 A2 05UL Rev04 18-23

18.18 INTEGER-PART FUNCTION

Description

The INTEGER-PART function returns an integer that is the integer portion of argument-
1.

Type

The type of this function is integer.

General Format

FUNCTION INTEGER-PART (argument-1)

Arguments

1. Argument-1 must be class numeric.

Returned Values

1. If the value of argument-1 is zero, the returned value is zero.

2. If the value of argument-1 is positive, the returned value is the greatest integer less
than or equal to the value of argument-1.

For example, if the value of argument is +1.5, then +1 is returned.

3. If the value of argument-1 is negative, the returned value is the least integer greater
than or equal to the value of argument-1.

For example, if the value of argument is -1.5, then -1 is returned.



GCOS 7 COBOL 85 Reference Manual

18-24 47 A2 05UL Rev04

18.19 LENGTH FUNCTION

Description

The LENGTH function returns an integer equal to the length of the argument in character
positions.

Type

The type of this function is integer.

General Format

FUNCTION LENGTH (argument-1)

Arguments

1. Argument-1 may be a non-numeric literal or a data item of any class or category.

2. If argument-1 or any data item subordinate to argument-1 is described with the
DEPENDING phrase of the OCCURS clause, the contents of the data item
referenced by the data-name specified in the DEPENDING phrase are used at the
time the LENGTH function is evaluated.

3. If argument-1 is described with the DEPENDING phrase of the PICTURE clause,
the contents of the data item referenced by the data-name specified in the
DEPENDING phrase are used at the time the LENGTH function is evaluated.

Returned Values

1. If argument-1 is a non-numeric literal or an elementary data item, or argument-1 is
a group data item that does not contain a variable occurrence data item, the value
returned is an integer equal to the length of argument-1 in character positions.

2. If argument-1 is a group data item containing a variable occurrence data item, the
value returned is an integer determined by evaluation of the data item specified in
the DEPENDING phrase of the OCCURS clause for that variable occurrence data
item.  This evaluation is accomplished according to the rules in the OCCURS
clause dealing with the data item as a sending data item.  See the "OCCURS
Clause" and the "USAGE Clause" in Chapter 9.

3. If argument-1 is an elementary data item described with the DEPENDING phrase of
the PICTURE clause, the value returned is that of the data item referenced by the
data-name specified in the DEPENDING phrase.

4. The returned value includes implicit FILLER characters, if any.



Intrinsic Functions

47 A2 05UL Rev04 18-25

18.20 LOG FUNCTION

Description

The LOG function returns a numeric value that approximates the logarithm to the base e
(natural log) of argument-1.

Type

The type of this function is numeric.

General Format

FUNCTION LOG (argument-1)

Arguments

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than zero.

Returned Values

1. The returned value is the approximation of the logarithm to the base of argument-1.



GCOS 7 COBOL 85 Reference Manual

18-26 47 A2 05UL Rev04

18.21 LOG10 FUNCTION

Description

The LOG10 function returns a numeric value that approximates the logarithm to the base
10 of argument-1.

Type

The type of this function is numeric.

General Format

FUNCTION LOG10 (argument-1)

Arguments

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than zero.

Returned Values

1. The returned value is the approximation of the logarithm to the base 10 of
argument-1.



Intrinsic Functions

47 A2 05UL Rev04 18-27

18.22 LOWER-CASE FUNCTION

Description

The LOWER-CASE function returns a character string that is the same length as
argument-1 with each upper-case letter replaced by the corresponding lower-case letter.

Type

The type of this function is alphanumeric.

General Format

FUNCTION LOWER-CASE (argument-1)

Arguments

1. Argument-1 must be class alphabetic or alphanumeric and must be at least one
character in length.

Returned Values

1. The same character string as argument-1 is returned, except that each upper-case
letter is replaced by the corresponding lower-case letter.

2. The character string returned has the same length as argument-1.

3. If the computer character set does not include lower-case letters, no changes take
place in the character string.



GCOS 7 COBOL 85 Reference Manual

18-28 47 A2 05UL Rev04

18.23 MAX FUNCTION

Description

The MAX function returns the content of the argument-1 that contains the maximum
value.

Type

The type of this function depends on the argument types as follows:

Argument Type Function Type

Alphabetic Alphanumeric
Alphanumeric Alphanumeric
All arguments integer Integer
Numeric (some arguments may be
integer)

Numeric

General Format

FUNCTION MAX ({argument-1} ... )

Arguments

1. If more than one argument-1 is specified, all arguments must be of the same class.

Returned Values

1. The returned value is the content of the argument-1 having the greatest value.  The
comparisons used to determine the greatest value are made according to the rules
for simple conditions (see Chapter 10).

2. If more than one argument-1 has the same greatest value, the content of the
argument-1 returned is the leftmost argument-1 having that value.

3. If the type of the function is alphanumeric, the size of the returned value is the
same as the size of the selected argument-1.



Intrinsic Functions

47 A2 05UL Rev04 18-29

18.24 MEAN FUNCTION

Description

The MEAN function returns a numeric value that is the arithmetic mean (average) of its
arguments.

Type

The type of this function is numeric.

General Format

FUNCTION MEAN ({argument-1} ... )

Arguments

1. Argument-1 must be class numeric.

Returned Values

1. The returned value is the arithmetic mean of the argument-1 series.

2. The returned value is defined as the sum of the argument-1 series divided by the
number of occurrences referenced by argument-1.



GCOS 7 COBOL 85 Reference Manual

18-30 47 A2 05UL Rev04

18.25 MEDIAN FUNCTION

Description

The MEDIAN function returns the content of the argument whose value is the middle
value in the list formed by arranging the arguments in sorted order.

Type

The type of this function is numeric.

General Format

FUNCTION MEDIAN ({argument-1} ... )

Arguments

1. Argument-1 must be class numeric.

Returned Values

1. The returned value is the content of the argument-1 having the middle value in the
list formed by arranging all the argument-1 values in sorted order.

2. If the number of occurrences referenced by argument-1 is odd, the returned value is
such that at least half of the occurrences referenced by argument-1 are greater than
or equal to the returned value and at least half are less than or equal.  If the number
of occurrences referenced by argument-1 is even, the returned value is the
arithmetic mean of the values referenced by the two middle occurrences.

3. The comparisons used to arrange the argument-1 values in sorted order are made
according to the rules for simple conditions (see Chapter 10).



Intrinsic Functions

47 A2 05UL Rev04 18-31

18.26 MIDRANGE FUNCTION

Description

The MIDRANGE (middle range) function returns a numeric value that is the arithmetic
mean (average) of the values of the minimum argument and the maximum argument.

Type

The type of this function is numeric.

General Format

FUNCTION MIDRANGE ({argument-1} ... )

Arguments

1. Argument-1 must be class numeric.

Returned Values

1. The returned value is the arithmetic mean of the greatest argument-1 value and the
least argument-1 value.  The comparisons used to determine the greatest and least
values are made according to the rules for simple conditions (see Chapter 10).



GCOS 7 COBOL 85 Reference Manual

18-32 47 A2 05UL Rev04

18.27 MIN FUNCTION

Description

The MIN function returns the content of the argument-1 that contains the minimum
value.

Type

The type of this function depends on the argument types as follows:

Argument Type Function Type

Alphabetic Alphanumeric
Alphanumeric Alphanumeric
All arguments integer Integer
Numeric (some arguments may be
integer)

Numeric

General Format

FUNCTION MIN ({argument-1} ... )

Arguments

1. If more than one argument-1 is specified, all arguments must be of the same class.

Returned Values

1. The returned value is the content of the argument-1 having the least value.  The
comparisons used to determine the least value are made according to the rules for
simple conditions (see Chapter 10).

2. If more than one argument-1 has the same least value, the content of the
argument-1 returned is the leftmost argument-1 having that value.

3. If the type of the function is alphanumeric, the size of the returned value is the
same as the size of the selected argument-1.



Intrinsic Functions

47 A2 05UL Rev04 18-33

18.28 MOD FUNCTION

Description

The MOD function returns an integer value that is argument-1 modulo argument-2.

Type

The type of this function is integer.

General Format

FUNCTION MOD (argument-1 argument-2)

Arguments

1. Argument-1 and argument-2 must be integers.

2. The value of argument-2 must not be zero.

Returned Values

1. The returned value is argument-1 modulo argument-2.

The returned value is defined as:

argument-1 - (argument-2 * FUNCTION INTEGER (argument-1 / argument-2))

2. The following illustrates the expected results for some values of argument-1 and
argument-2.

              Argument-1    Argument-2     Return

                  11            5            1
                 -11            5            4
                  11           -5           -4
                 -11           -5           -1



GCOS 7 COBOL 85 Reference Manual

18-34 47 A2 05UL Rev04

18.29 NUMVAL FUNCTION

Description

The NUMVAL function returns the numeric value represented by the character string
specified by argument-1.  Leading and trailing spaces are ignored.

Type

The type of this function is numeric.

General Format

FUNCTION NUMVAL (argument-1)

Arguments

1. Argument-1 must be a non-numeric literal or alphanumeric data item whose content
has one of the following two formats:

                 [+]         {digit [ . [digit]]}
       - [space] [ ] [space] {                  } [space]
                 [-]         {. digit           }

or

               {digit [ . [digit]]}         [+ ]
               {                  }         [- ]
       [space] {                  } [space] [  ] [space]
               {. digit           }         [CR]
               {                  }         [DB]

where space is a string of zero or more spaces and digit is a string of one to 18 digits.

2. The total number of digits in argument-1 must not exceed 18.

3. If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES
paragraph, a comma must be used in argument-1 rather than a decimal point.

Returned Values

1. The returned value is the numeric value represented by argument-1.

2. The number of digits returned is 18.



Intrinsic Functions

47 A2 05UL Rev04 18-35

18.30 NUMVAL-C FUNCTION

Description

The NUMVAL-C function returns the numeric value represented by the character string
specified by argument-1.  Any optional currency sign specified by argument-2 and any
optional commas preceding the decimal point are ignored.

Type

The type of this function is numeric.

General Format

FUNCTION NUMVAL-C (argument-1 [argument-2])

Arguments

1. Argument-1 must be a non-numeric literal or alphanumeric data item whose content
has one of the following two formats:

                                 {digit [, digit]      }
        [+]                      {      ... [. [digit]]}
[space] [ ] [space] [cs] [space] {                     } [space]
        [-]                      {. digit              }

or

                      {digit [, digit]      }
                      {      ... [. [digit]]}         [+ ]
                      {                     }         [- ]
[space] [cs]  [space] {                     } [space] [  ] [space]
                      {. digit              }         [CR]
                      {                     }         [DB]

where space is a string of zero or more spaces, cs is the string of one or more
characters specified by argument-2, and digit is a string of one or more digits.

2. If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES
paragraph, the functions of the comma and decimal point in argument-1 are
reversed.

3. The total number of digits in argument-1 must not exceed 18.

4. Argument-2, if specified, must be a non-numeric literal or alphanumeric data item.

5. If argument-2 is not specified, the character used for cs is the currency symbol
specified for the program.

Returned Values

1. The returned value is the numeric value represented by argument-1.

2. The number of digits returned is 18.



GCOS 7 COBOL 85 Reference Manual

18-36 47 A2 05UL Rev04

18.31 ORD FUNCTION

Description

The ORD function returns an integer value that is the ordinal position of argument-1 in
the collating sequence for the program.  The lowest ordinal position is 1.

Type

The type of this function is integer.

General Format

FUNCTION ORD (argument-1)

Arguments

1. Argument-1 must be one character in length and must be class alphabetic or
alphanumeric.

Returned Values

1. The returned value is the ordinal position of argument-1 in the collating sequence
for the program.



Intrinsic Functions

47 A2 05UL Rev04 18-37

18.32 ORD-MAX FUNCTION

Description

The ORD-MAX function returns a value that is the ordinal number of the argument-1 that
contains the maximum value.

Type

The type of this function is integer.

General Format

FUNCTION ORD-MAX ({argument-1} ... )

Arguments

1. If more than one argument-1 is specified, all arguments must be of the same class.

Returned Values

1. The returned value is the ordinal number that corresponds to the position of the
argument-1 having the greatest value in the argument-1 series.

2. The comparisons used to determine the greatest valued argument are made
according to the rules for simple conditions (see Chapter 10).

3. If more than one argument-1 has the same greatest value, the number returned
corresponds to the position of the leftmost argument-1 having that value.



GCOS 7 COBOL 85 Reference Manual

18-38 47 A2 05UL Rev04

18.33 ORD-MIN FUNCTION

Description

The ORD-MIN function returns a value that is the ordinal number of the argument that
contains the minimum value.

Type

The type of this function is integer.

General Format

FUNCTION ORD-MIN ({argument-1} ... )

Arguments

1. If more than one argument-1 is specified, all arguments must be of the same class.

Returned Values

1. The returned value is the ordinal number that corresponds to the position of the
argument-1 having the least value in the argument-1 series.

2. The comparisons used to determine the least valued argument-1 are made
according to the rules for simple conditions (see Chapter 10).

3. If more than one argument-1 has the same least value, the number returned
corresponds to the position of the leftmost argument-1 having that value.



Intrinsic Functions

47 A2 05UL Rev04 18-39

18.34 PRESENT-VALUE FUNCTION

Description

The PRESENT-VALUE function returns a value that approximates the present value of a
series of future period-end amounts specified by argument-2 at a discount rate specified
by argument-1.

Type

The type of this function is numeric.

General Format

FUNCTION PRESENT-VALUE (argument-1 {argument-2} ... )

Arguments

1. Argument-1 and argument-2 must be of the class numeric.

2. The value of argument-1 must be greater than -1.

Returned Values

1. The returned value is an approximation of the summation of a series of calculations
with each term in the following form:

                  argument-2 / (1 + argument-1) ** n

There is one term for each occurrence of argument-2.  The exponent, n, is
incremented from one by one for each term in the series.



GCOS 7 COBOL 85 Reference Manual

18-40 47 A2 05UL Rev04

18.35 RANDOM FUNCTION

Description

The RANDOM function returns a numeric value that is a pseudo-random number from a
rectangular distribution.

Type

The type of this function is numeric.

General Format

FUNCTION RANDOM [(argument-1)]

Arguments

1. If argument-1 is specified, it must be zero or a positive integer.  It is used as the
seed value to generate a sequence of pseudo-random numbers.

2. If a subsequent reference specifies argument-1, a new sequence of pseudo-random
numbers is started.

3. If the first reference to this function in the run unit does not specify argument-1, the
seed value is 1.

4. In each case, subsequent references without specifying argument-1 return the next
number in the current sequence.

Returned Values

1. The returned value is greater than or equal to zero and less than one.

2. For a given seed value, the sequence of pseudo-random numbers will always be
the same.

3. The subset of the domain of argument-1 values that will yield distinct sequences of
pseudo-random numbers is 0 through 2147483647.



Intrinsic Functions

47 A2 05UL Rev04 18-41

18.36 RANGE FUNCTION

Description

The RANGE function returns a value that is equal to the value of the maximum
argument minus the value of the minimum argument.

Type

The type of this function depends on the argument types as follows:

Argument Type     Function Type

All arguments integer     Integer
Numeric (some arguments may be
integer)

    Numeric

General Format

FUNCTION RANGE ({argument-1} ... )

Arguments

1. Argument-1 must be class numeric.

Returned Values

1. The returned value is equal to the greatest value of argument-1 minus the least
value of argument-1.  The comparisons used to determine the greatest and least
values are made according to the rules for simple conditions (see Chapter 10).



GCOS 7 COBOL 85 Reference Manual

18-42 47 A2 05UL Rev04

18.37 REM FUNCTION

Description

The REM function returns a numeric value that is the remainder of argument-1 divided
by argument-2.

Type

The type of this function is numeric.

General Format

FUNCTION REM (argument-1 argument-2)

Arguments

1. Argument-1 and argument-2 must be class numeric.

2. The value of argument-2 must not be zero.

Returned Values

1. The returned value is the remainder of argument-1 / argument-2.

The returned value is defined as:

argument-1 - (argument-2 * FUNCTION INTEGER-PART
                                      (argument-1 / argument-2))



Intrinsic Functions

47 A2 05UL Rev04 18-43

18.38 REVERSE FUNCTION

Description

The REVERSE function returns a character string of exactly the same length as
argument-1 and whose characters are exactly the same as those of argument-1, except
that they are in reverse order.

Type

The type of this function is alphanumeric.

General Format

FUNCTION REVERSE (argument-1)

Arguments

1. Argument-1 must be class alphabetic or alphanumeric and must be at least one
character in length.

Returned Values

1. If argument-1 is a character string of length n, the returned value is a character
string of length n such that for 1 <= j <= n, the character in position j of the returned
value is the character from position n-j+1 of argument-1.



GCOS 7 COBOL 85 Reference Manual

18-44 47 A2 05UL Rev04

18.39 SIN FUNCTION

Description

The SIN function returns a numeric value that approximates the sine of an angle or arc,
expressed in radians, that is specified by argument-1.

Type

The type of this function is numeric.

General Format

FUNCTION SIN (argument-1)

Arguments

1. Argument-1 must be class numeric.

Returned Values

1. The returned value is the approximation of the sine of argument-1 and is greater
than or equal to -1 and less than or equal to +1.



Intrinsic Functions

47 A2 05UL Rev04 18-45

18.40 SQRT FUNCTION

Description

The SQRT function returns a numeric value that approximates the square root of
argument-1.

Type

The type of this function is numeric.

General Format

FUNCTION SQRT (argument-1)

Arguments

1. Argument-1 must be class numeric.

2. The value of argument-1 must be zero or positive.

Returned Values

1. The returned value is the absolute value of the approximation of the square root of
argument-1.



GCOS 7 COBOL 85 Reference Manual

18-46 47 A2 05UL Rev04

18.41 STANDARD-DEVIATION FUNCTION

Description

The STANDARD-DEVIATION function returns a numeric value that approximates the
standard deviation of its arguments.

Type

The type of this function is numeric.

General Format

FUNCTION STANDARD-DEVIATION ({argument-1} ... )

Arguments

1. Argument-1 must be class numeric.

Returned Values

1. The returned value is defined as the square of the standard deviation of the
argument-1 series.

2. The returned value is calculated as follows:

a. The difference between each argument-1 value and the arithmetic mean of the
argument-1 series is calculate and squared.

b. The values obtained are then added together.  This quantity is divided by the
number of values in the argument-1 series.

c. The square root of the quotient obtained is then calculated.  The returned
value is the absolute value of this square root.

3. If the argument-1 series consists of only one value, or if the argument-1 series
consists of all variable occurrence data items and the total number of occurrences
for all of them is one, the returned value is zero.



Intrinsic Functions

47 A2 05UL Rev04 18-47

18.42 SUM FUNCTION

Description

The SUM function returns a value that is sum of the arguments.

Type

The type of this function depends on the argument types as follows:

Argument Type     Function Type

All arguments integer     Integer
Numeric (some arguments may be
integer)

    Numeric

General Format

FUNCTION SUM ({argument-1} ... )

Arguments

1. Argument-1 must be class numeric.

Returned Values

1. The returned value is the sum of the arguments.

2. If the argument-1 series are all integers, the value returned is an integer.

3. If the argument-1 series are not all integers, a numeric value is returned.



GCOS 7 COBOL 85 Reference Manual

18-48 47 A2 05UL Rev04

18.43 TAN FUNCTION

Description

The TAN function returns a numeric value that approximates the tangent of an angle or
arc, expressed in radians, that is specified by argument-1.

Type

The type of this function is numeric.

General Format

FUNCTION TAN (argument-1)

Arguments

1. Argument-1 must be class numeric.

Returned Values

1. The returned value is the approximation of the tangent of argument-1.



Intrinsic Functions

47 A2 05UL Rev04 18-49

18.44 UPPER-CASE FUNCTION

Description

The UPPER-CASE function returns a character string that is the same length as
argument-1 with each lower-case letter replaced by the corresponding upper-case letter.

Type

The type of this function is alphanumeric.

General Format

FUNCTION UPPER-CASE (argument-1)

Arguments

1. Argument-1 must be class alphabetic or alphanumeric and must be at least one
character in length.

Returned Values

1. The same character string as argument-1 is returned, except that each lower-case
letter is replaced by the corresponding upper-case letter.

2. The character string returned has the same length as argument-1.



GCOS 7 COBOL 85 Reference Manual

18-50 47 A2 05UL Rev04

18.45 VARIANCE FUNCTION

Description

The VARIANCE function returns a numeric value that approximates the variance of its
arguments.

Type

The type of this function is numeric.

General Format

FUNCTION VARIANCE ({argument-1} ... )

Arguments

1. Argument-1 must be class numeric.

Returned Values

1. The returned value is the approximation of the variance of the argument-1 series.

2. The returned value is defined as the square of the standard deviation of the
argument-1 series.  See the paragraph "Returned Values" of the STANDARD-
DEVIATION function in this chapter.

3. If the argument-1 series consists of only one value, or if the argument-1 series
consists of all variable occurrence data items and the total number of occurrences
for all of them is one, the returned value is zero.



Intrinsic Functions

47 A2 05UL Rev04 18-51

18.46 WHEN-COMPILED FUNCTION

Description

The WHEN-COMPILED function returns the date and time the program was compiled as
provided by the system on which the program was compiled.

Type

The type of this function is alphanumeric.

General Format

FUNCTION WHEN-COMPILED

Arguments

None.

Returned Values

1. The character positions returned, numbered from left to right, are:

Character Contents

1-4 Four numeric digits of the year in the Gregorian calendar.

5-6 Two numeric digits of the month of the year, in the range 01
through 12.

7-8 Two numeric digits of the day of the month, in the range 01
through 31.

9-10 Two numeric digits of the hours past midnight, in the range
00 through 23.

11-12 Two numeric digits of the minutes past the hour, in the range
00 through 59.

13-14 Two numeric digits of the seconds past the minute, in the
range 00 through 59.

15-16 Two numeric digits of the hundredths of a second past the
second, in the range 00 through 99.  The value 00 is
returned if the system on which the program was compiled
did not have the facility to provide the fractional part of a
second.



GCOS 7 COBOL 85 Reference Manual

18-52 47 A2 05UL Rev04

Character Contents

17 Either the character '-', the character '+', or the character '0'.
The character '-' is returned if the local time of compilation,
reported in the previous character positions, is behind
Greenwich Mean Time.  The character '+' is returned if the
reported time is the same as or ahead of Greenwich Mean
Time.  The character '0' is returned if the system on which
the program was compiled did not have the facility to provide
the local time differential factor.

18-19 If character position 17 is '-', two numeric digits are returned
in the range 00 through 12 indicating the number of hours
that the reported time is behind Greenwich Mean Time.  If
character position 17 is '+', two numeric digits are returned in
the range 00 through 13 indicating the number of hours that
the reported time is ahead of Greenwich Mean Time.  If
character position 17 is '0', the value 00 is returned.

20-21 Two numeric digits are returned in the range 00 through 59
indicating the number of additional minutes that the reported
time is ahead of or behind Greenwich Mean Time,
depending on whether character position 17 is '+' or '-',
respectively.  If character position 17 is '0', the value 00 is
returned.

2. The returned value is the date and time of compilation of the source program that
contains this function.  If the program is a contained program, the returned value is
the compilation date and time associated with the separately compiled program in
which it is contained.

3. The returned value denotes the same time as the compilation date and time
provided in the listing of the source program, although their representations and
precisions may differ.



47 A2 05UL Rev04 A-1

A. COBOL Reserved Words

The following pages contain an alphabetized master list of all key words (reserved or not)
of the GCOS DPS 7 COBOL Compiler described in this manual.  They include also
words which are not reserved in the current implementation but which are used in the
CODASYL COBOL Journal Of Development, and as such are candidates to become
reserved words in a next revision of the Standard.  Reserved words of the Data
Manipulation Language (DML) are listed too.  The notations in the columns to the right of
the list indicate the reason for the inclusion of each word.

In col.1 the notation 'DPS7' indicates that the word is a DPS 7 reserved word.  (See note
below).  Only these words are processed as reserved words by the GCOS DPS 7
COBOL Compiler.

In col.1 the notations '(1)', '(2)', '(3)', '(4)', '(5)', '(6)', '(7)', and '(8)' also indicate that the
word is, or will be, a DPS7 key word, with the following qualification:

1) the word must not be used as a User-Defined Word if it is referenced in the
PROGRAM COLLATING SEQUENCE clause, or in a CODE-SET clause, or in the
COLLATING SEQUENCE phrase of a SORT or MERGE statement (except if it is
defined as an alphabet-name).

2) the word is a DML reserved word, i.e. it is reserved only when the DML facility is
used; otherwise, it may be used as a User-Defined Word though it is a DPS 7
COBOL key word.

3) the word must not be used as a User-Defined Word if it is referenced in the FROM
phrase of an ACCEPT statement, the UPON phrase of a DISPLAY statement, or in
a SET statement (except if it defined as a mnemonic-name which can be
referenced in that context).

4) the word is a DML reserved word; i.e., it is reserved only when the DML facility is
used; otherwise, it may be used as a User-Defined Word.

5) the word is a DML reserved word; i.e., it is reserved only when the DML facility is
used; otherwise, it may be used as a User-Defined Word, but it will become a
reserved word in another version of the compiler.

6) the word may be used as a User-Defined Word, but it will become a reserved word
in another version of the compiler.



GCOS 7 COBOL 85 Reference Manual

A-2 47 A2 05UL Rev04

7) the word may be used as a User-Defined Word though it is a DPS 7 COBOL key
word.

8) the word is a Function-Name; in a different context, it may appear in a program as a
user-defined word or a system-name, and in this case cannot be used as a
Function-Name.

Rules (1), (2), (3), (4), and (5) do not apply when the compilation level specified in the
LEVEL parameter of the $COBOL JCL statement is DSA (see specific rule below).

In col.2 the notation 'DSA' indicates that the word is reserved by the DPS 7 COBOL
Compiler when the compilation level is DSA In this case, any other word may be used as
a User-Defined Word with no restriction.  However, if such a word is a DPS 7 (completely
or partially) reserved word, and it is used in a DSA COBOL program, that DSA COBOL
program will not compile or execute correctly when the compilation level is other than
DSA.

In col.3 the notation 'ANSI' indicates that the word is reserved by American National
Standard COBOL specification X3.23-1985.  It is therefore one of the DPS 7 reserved
words.

In col.4 the notation 'JOD' indicates that the word is a reserved word in the CODASYL
Journal Of Development updated January 1985.  The notation 'SBS' in col.4 indicates
that the word is a reserved word in the subschema description in the CODASYL Journal
Of Development (as of January 1985).

When writing source language for a program to be compiled by the GCOS DPS 7
COBOL Compiler, the programmer should not use any of the listed words as a data-
name, procedure-name, or for any other unreserved use.  DPS 7 COBOL reserved
words should be used only as reserved in this manual.

Notes: DPS 7 reserved words include:

1. Words specified as reserved in the format descriptions in this
manual.

2. Words reserved for future implementation.

3. DPS Series COBOL compilers.



COBOL Reserved Words

47 A2 05UL Rev04 A-3

1 2 3 4

. DPS7 DSA ANSI JOD
< DPS7 DSA ANSI JOD
<= DPS7 DSA ANSI JOD
( DPS7 DSA ANSI JOD
+ DPS7 DSA ANSI JOD
* DPS7 DSA ANSI JOD
** DPS7 DSA ANSI JOD
) DPS7 DSA ANSI JOD
; DPS7 DSA ANSI JOD
- DPS7 DSA ANSI JOD
/ DPS7 DSA ANSI JOD
, DPS7 DSA ANSI JOD
> DPS7 DSA ANSI JOD
>= DPS7 DSA ANSI JOD
: DPS7 DSA ANSI JOD
= DPS7 DSA ANSI JOD
== DPS7 DSA ANSI JOD
ACCEPT DPS7 DSA ANSI JOD
ACCESS DPS7 DSA ANSI JOD
ACOS (8) ANSI JOD
ACTUAL DPS7 DSA
AD SBS
ADD DPS7 DSA ANSI JOD
ADDRESS DPS7
ADVANCING DPS7 DSA ANSI JOD
AFTER DPS7 DSA ANSI JOD
ALIAS DPS7 SBS
ALL DPS7 DSA ANSI JOD
ALPHABET DPS7 DSA ANSI JOD
ALPHABETIC DPS7 DSA ANSI JOD
ALPHABETIC-LOWER DPS7 DSA ANSI JOD
ALPHABETIC-UPPER DPS7 DSA ANSI JOD
ALPHANUMERIC DPS7 DSA ANSI JOD
ALPHANUMERIC-EDITED DPS7 DSA ANSI JOD
ALSO DPS7 DSA ANSI JOD
ALTER DPS7 DSA ANSI
ALTERING DPS7
ALTERNATE DPS7 DSA ANSI JOD
ALTERNATE-CONSOLE (3)
ALTERNATE-CONSOLE-X (7)
ALTERNATE-CONSOLE-0 (7)
ALTERNATE-CONSOLE-1 (7)
ALTERNATE-CONSOLE-2 (7)
ALTERNATE-CONSOLE-3 (7)
AND DPS7 DSA ANSI JOD
ANNUITY (8) ANSI JOD
ANSI (7)
ANY DPS7 DSA ANSI JOD
APPLY DPS7
ARE DPS7 DSA ANSI JOD
AREA DPS7 DSA ANSI JOD



GCOS 7 COBOL 85 Reference Manual

A-4 47 A2 05UL Rev04

1 2 3 4

AREAS DPS7 DSA ANSI JOD
ARITHMETIC JOD
ASA DPS7
ASCENDING DPS7 DSA ANSI JOD
ASCII (1)
ASIN (8) ANSI JOD
ASSIGN DPS7 DSA ANSI JOD
AT DPS7 DSA ANSI JOD
ATAN (8) ANSI JOD
ATTACH DPS7
ATTACH-OPTIONS DPS7
AUTHOR DPS7 DSA ANSI
B-AND DPS7 JOD
B-EXOR DPS7 JOD
B-LESS JOD
B-NOT DPS7 JOD
B-OR DPS7 JOD
BANNER (7)
BECOMES DPS7
BEFORE DPS7 DSA ANSI JOD
BEGINNING DPS7
BINARY DPS7 DSA ANSI JOD
BIND (4)
BIT DPS7 JOD
BITS DPS7 JOD
BLANK DPS7 DSA ANSI JOD
BLOCK DPS7 DSA ANSI JOD
BOOLEAN DPS7 JOD
BOTTOM DPS7 DSA ANSI JOD
BSN DPS7
BY DPS7 DSA ANSI JOD
BYTES (7)
CALL DPS7 DSA ANSI JOD
CANCEL DPS7 DSA ANSI JOD
CATALOGUE-NAME DPS7
CATALOGUED DPS7
CD DPS7 DSA ANSI JOD
CF DPS7 DSA ANSI JOD
CH DPS7 DSA ANSI JOD
CHANNEL-1 thru CHANNEL-12 (7)
CHAR (8) ANSI JOD
CHARACTER DPS7 DSA ANSI JOD
CHARACTERS DPS7 DSA ANSI JOD
CHECK DPS7 SBS
CHECKPOINT-FILE DPS7
CLASS DPS7 DSA ANSI JOD
CLOCK-UNITS DPS7 DSA ANSI
CLOSE DPS7 DSA ANSI JOD
COBOL DPS7 DSA ANSI
CODE DPS7 DSA ANSI JOD
CODE-SET DPS7 DSA ANSI JOD



COBOL Reserved Words

47 A2 05UL Rev04 A-5

1 2 3 4

COLLATING DPS7 DSA ANSI JOD
COLUMN DPS7 DSA ANSI JOD
COMMA DPS7 DSA ANSI JOD
COMMIT (5) JOD
COMMON DPS7 DSA ANSI JOD
COMMUNICATION DPS7 DSA ANSI JOD
COMP DPS7 DSA ANSI JOD
COMP-1 DPS7 DSA JOD
COMP-10 DPS7 JOD
COMP-11 DPS7 JOD
COMP-12 DPS7 JOD
COMP-13 DPS7 JOD
COMP-14 DPS7 JOD
COMP-15 DPS7 JOD
COMP-2 DPS7 DSA JOD
COMP-3 DPS7 DSA JOD
COMP-4 DPS7 JOD
COMP-5 DPS7 DSA JOD
COMP-6 DPS7 JOD
COMP-7 DPS7 JOD
COMP-8 DPS7 JOD
COMP-9 DPS7 JOD
COMPL DPS7
COMPLEMENTARY DPS7
COMPUTATIONAL DPS7 DSA ANSI JOD
COMPUTATIONAL-1 DPS7 DSA JOD
COMPUTATIONAL-10 DPS7 JOD
COMPUTATIONAL-11 DPS7 JOD
COMPUTATIONAL-12 DPS7 JOD
COMPUTATIONAL-13 DPS7 JOD
COMPUTATIONAL-14 DPS7 JOD
COMPUTATIONAL-15 DPS7 JOD
COMPUTATIONAL-2 DPS7 DSA JOD
COMPUTATIONAL-3 DPS7 DSA JOD
COMPUTATIONAL-4 DPS7 JOD
COMPUTATIONAL-5 DPS7 DSA JOD
COMPUTATIONAL-6 DPS7 JOD
COMPUTATIONAL-7 DPS7 JOD
COMPUTATIONAL-8 DPS7 JOD
COMPUTATIONAL-9 DPS7 JOD
COMPUTE DPS7 DSA ANSI JOD
CONFIGURATION DPS7 DSA ANSI JOD
CONNECT (4) JOD
CONSOLE (3) DSA
CONSOLE-X (7)
CONSOLE-0 (7)
CONSOLE-1 (7)
CONSOLE-2 (7)
CONSOLE-3 (7)
CONSTANT DPS7
CONSTRAINT SBS



GCOS 7 COBOL 85 Reference Manual

A-6 47 A2 05UL Rev04

1 2 3 4

CONTAINED JOD
CONTAINS DPS7 DSA ANSI JOD
CONTENT DPS7 DSA ANSI JOD
CONTINUE DPS7 DSA ANSI JOD
CONTROL DPS7 DSA ANSI JOD
CONTROLS DPS7 DSA ANSI JOD
CONVERSION DPS7
CONVERTING DPS7 DSA ANSI JOD
COPY DPS7 DSA ANSI JOD
CORR DPS7 DSA ANSI
CORRESPONDING DPS7 DSA ANSI
COS (8) ANSI JOD
COUNT DPS7 DSA ANSI JOD
CS-BASIC DPS7
CS-GENERAL DPS7
CURRENCY DPS7 DSA ANSI JOD
CURRENT (4) JOD
CURRENT-DATE (8) ANSI JOD
DATA DPS7 DSA ANSI JOD
DATE DPS7 DSA ANSI JOD
DATE-COMPILED DPS7 DSA ANSI
DATE-OF-INTEGER (8) ANSI JOD
DATE-WRITTEN DPS7 DSA ANSI
DAY DPS7 DSA ANSI JOD
DAY-OF-INTEGER (8) ANSI JOD
DAY-OF-WEEK DPS7 DSA ANSI JOD
DB (4) JOD
DB-ACCESS-CONTROL-KEY (4) JOD
DB-CONFLICT (4)
DB-CXT (4)
DB-DATA-NAME (4) JOD
DB-DESCRIPTIONS (4)
DB-DETAILED-STATUS (4)
DB-EXCEPTION (4) JOD
DB-KEY DPS7
DB-KEY-NAME (4)
DB-MESSAGE-LENGTH (4)
DB-MESSAGE-TEXT (4)
DB-PARAMETERS (4)
DB-PRIVACY-KEY (4)
DB-REALM-NAME (4)
DB-RECORD-NAME (4) JOD
DB-REGISTERS (4)
DB-SET-NAME (4) JOD
DB-STATEMENT-CODE (4)
DB-STATUS (4) JOD
DB-STATUS-CODE (4)
DE DPS7 DSA ANSI JOD
DEBUG-CONTENTS DPS7 DSA ANSI
DEBUG-ITEM DPS7 DSA ANSI
DEBUG-LINE DPS7 DSA ANSI



COBOL Reserved Words

47 A2 05UL Rev04 A-7

1 2 3 4

DEBUG-NAME DPS7 DSA ANSI
DEBUG-SUB-1 DPS7 DSA ANSI
DEBUG-SUB-2 DPS7 DSA ANSI
DEBUG-SUB-3 DPS7 DSA ANSI
DEBUGGING DPS7 DSA ANSI JOD
DECIMAL-POINT DPS7 DSA ANSI JOD
DECLARATIVES DPS7 DSA ANSI JOD
DEFAULT DPS7 JOD
DELETE DPS7 DSA ANSI JOD
DELIMITED DPS7 DSA ANSI JOD
DELIMITER DPS7 DSA ANSI JOD
DEPENDING DPS7 DSA ANSI JOD
DESCENDING DPS7 DSA ANSI JOD
DESTINATION DPS7 DSA ANSI JOD
DETACH DPS7
DETAIL DPS7 DSA ANSI JOD
DISABLE DPS7 DSA ANSI JOD
DISCONNECT (4) JOD
DISPLAY DPS7 DSA ANSI JOD
DISPLAY-1 DPS7 JOD
DISPLAY-2 DPS7 JOD
DISPLAY-3 DPS7 JOD
DISPLAY-4 DPS7 JOD
DIVIDE DPS7 DSA ANSI JOD
DIVISION DPS7 DSA ANSI JOD
DOWN DPS7 DSA ANSI JOD
DUPLICATE (4) JOD
DUPLICATES DPS7 DSA ANSI JOD
DYNAMIC DPS7 DSA ANSI JOD
EBCDIC (1)
EGI DPS7 DSA ANSI JOD
ELSE DPS7 DSA ANSI JOD
EMI DPS7 DSA ANSI JOD
EMPTY (4) JOD
ENABLE DPS7 DSA ANSI JOD
END DPS7 DSA ANSI JOD
END-ADD DPS7 DSA ANSI JOD
END-CALL DPS7 DSA ANSI JOD
END-COMPUTE DPS7 DSA ANSI JOD
END-DELETE DPS7 DSA ANSI JOD
END-DIVIDE DPS7 DSA ANSI JOD
END-EVALUATE DPS7 DSA ANSI JOD
END-IF DPS7 DSA ANSI JOD
END-MULTIPLY DPS7 DSA ANSI JOD
END-OF-PAGE DPS7 DSA ANSI JOD
END-PERFORM DPS7 DSA ANSI JOD
END-READ DPS7 DSA ANSI JOD
END-RECEIVE DPS7 DSA ANSI JOD
END-RETURN DPS7 DSA ANSI JOD
END-REWRITE DPS7 DSA ANSI JOD
END-SEARCH DPS7 DSA ANSI JOD



GCOS 7 COBOL 85 Reference Manual

A-8 47 A2 05UL Rev04

1 2 3 4

END-START DPS7 DSA ANSI JOD
END-STRING DPS7 DSA ANSI JOD
END-SUBTRACT DPS7 DSA ANSI JOD
END-INSTRING DPS7 DSA ANSI JOD
END-WRITE DPS7 DSA ANSI JOD
ENDING DPS7
ENTER DPS7 DSA ANSI
ENVIRONMENT DPS7 DSA ANSI JOD
EOP DPS7 DSA ANSI JOD
EQUAL DPS7 DSA ANSI JOD
EQUALS DPS7 JOD
ERASE (4) JOD
ERROR DPS7 DSA ANSI JOD
ESCAPE DPS7
ESI DPS7 DSA ANSI JOD
EVALUATE DPS7 DSA ANSI JOD
EVERY DPS7 DSA ANSI
EXAMINE DPS7
EXCEEDS DPS7 JOD
EXCEPTION DPS7 DSA ANSI JOD
EXCLUSIVE (4) JOD
EXIT DPS7 DSA ANSI JOD
EXTEND DPS7 DSA ANSI JOD
EXTERNAL DPS7 DSA ANSI JOD
FACTORIAL (8) ANSI JOD
FALSE DPS7 DSA ANSI JOD
FD DPS7 DSA ANSI JOD
FETCH JOD
FILE DPS7 DSA ANSI JOD
FILE-CONTROL DPS7 DSA ANSI JOD
FILE-ID DPS7
FILES DPS7 JOD
FILLER DPS7 DSA ANSI JOD
FINAL DPS7 DSA ANSI JOD
FIND (4) JOD
FINISH (4) JOD
FIRST DPS7 DSA ANSI JOD
FLR DPS7 DSA
FOOTING DPS7 DSA ANSI JOD
FOR DPS7 DSA ANSI JOD
FORMAT DPS7 JOD
FREE (4) JOD
FROM DPS7 DSA ANSI JOD
FUNCTION DPS7 ANSI JOD
GBCD (1)
GCOS (7)
GENERATE DPS7 DSA ANSI JOD
GET (4) JOD
GIVING DPS7 DSA ANSI JOD
GLOBAL DPS7 DSA ANSI JOD
GO DPS7 DSA ANSI JOD



COBOL Reserved Words

47 A2 05UL Rev04 A-9

1 2 3 4

GREATER DPS7 DSA ANSI JOD
GROUP DPS7 DSA ANSI JOD
H-2000 (7)
HBCD (1)
HEADING DPS7 DSA ANSI JOD
HIGH-VALUE DPS7 DSA ANSI JOD
HIGH-VALUES DPS7 DSA ANSI JOD
I-O DPS7 DSA ANSI JOD
I-O-CONTROL DPS7 DSA ANSI JOD
IBCD (1)
IDENTIFICATION DPS7 DSA ANSI JOD
IDS-II DPS7
IF DPS7 DSA ANSI JOB
IMPLIED (7)
IN DPS7 DSA ANSI JOD
INCLUDING (4)
INDEX DPS7 DSA ANSI JOD
INDEX-1 DPS7 JOD
INDEX-2 DPS7 JOD
INDEXED DPS7 DSA ANSI JOD
INDEXED-EXT (4)
INDICATE DPS7 DSA ANSI JOD
INITIAL DPS7 DSA ANSI JOD
INITIALIZE DPS7 DSA ANSI JOD
INITIATE DPS7 DSA ANSI JOD
INPUT DPS7 DSA ANSI JOD
INPUT-OUTPUT DPS7 DSA ANSI JOD
INSPECT DPS7 DSA ANSI JOD
INSTALLATION DPS7 DSA ANSI
INTEGER (8) ANSI JOD
INTEGER-OF-DATE (8) ANSI JOD
INTEGER-OF-DAY (8) ANSI JOD
INTEGER-PART (8) ANSI JOD
INTO DPS7 DSA ANSI JOD
INVALID DPS7 DSA ANSI JOD
INVOKING DPS7
IS DPS7 DSA ANSI JOD
JIS (1)
JUST DPS7 DSA ANSI JOD
JUSTIFIED DPS7 DSA ANSI JOD
KEEP (4) JOD
KEY DPS7 DSA ANSI JOD
KEY-LOCATION DPS7
KEYED DPS7
KEYS (4)
LABEL DPS7 DSA ANSI
LAST DPS7 DSA ANSI JOD
LD (4) JOD
LEADING DPS7 DSA ANSI JOD
LEFT DPS7 DSA ANSI SBS
LENGTH DPS7 DSA ANSI JOD



GCOS 7 COBOL 85 Reference Manual

A-10 47 A2 05UL Rev04

1 2 3 4

LESS DPS7 DSA ANSI JOD
LEVEL-64 (7)
LIMIT DPS7 DSA ANSI JOD
LIMITS DPS7 DSA ANSI JOD
LINAGE DPS7 DSA ANSI JOD
LINAGE-COUNTER DPS7 DSA ANSI JOD
LINE DPS7 DSA ANSI JOD
LINE-COUNTER DPS7 DSA ANSI JOD
LINES DPS7 DSA ANSI JOD
LINES-PER-PAGE DPS7
LINKAGE DPS7 DSA ANSI JOD
LN-1 thru LN-255 (7)
LN1 thru LN255 (7)
LOCALLY JOD
LOCK DPS7 DSA ANSI JOD
LOCKS DPS7
LOG (8) ANSI JOD
LOG10 (8) ANSI JOD
LOW-VALUE DPS7 DSA ANSI JOD
LOW-VALUES DPS7 DSA ANSI JOD
LOWER-CASE (8) ANSI JOD
MAPPING SBS
MAX (8) ANSI JOD
MAXIMUM (7)
MEAN (8) ANSI JOD
MEDIAN (8) ANSI JOD
MEMBER (4) JOD
MEMBERS (4)
MEMBERSHIP (4)
MEMORY DPS7 DSA ANSI
MERGE DPS7 DSA ANSI JOD
MESSAGE DPS7 DSA ANSI JOD
MIDRANGE (8) ANSI JOD
MIN (8) ANSI JOD
MINIMUM-DB-KEY (4)
MOD (8) ANSI JOD
MODE DPS7 DSA ANSI JOD
MODIFY (4) DSA JOD
MODULES DPS7 DSA ANSI
MONITORED (4)
MOVE DPS7 DSA ANSI JOD
MULTIPLE DPS7 DSA ANSI JOD
MULITPLY DPS7 DSA ANSI JOD
NATIVE DPS7 DSA ANSI JOD
NEGATIVE DPS7 DSA ANSI JOD
NEXT DPS7 DSA ANSI JOD
NO DPS7 DSA ANSI JOD
NO-RESIDENT-INDEX (7)
NO-SORTED-INDEX (7)
NONE JOD
NOT DPS7 DSA ANSI JOD



COBOL Reserved Words

47 A2 05UL Rev04 A-11

1 2 3 4

NULL (2) JOD
NUMBER DPS7 DSA ANSI JOD
NUMBER-OF-PAGES (4)
NUMERIC DPS7 DSA ANSI JOD
NUMERIC-EDITED DPS7 DSA ANSI JOD
NUMVAL (8) ANSI JOD
NUMVAL-C (8) ANSI JOD
OBJECT DPS7
OBJECT-COMPUTER DPS7 DSA ANSI JOD
OBJECT-PROGRAM DPS7
OCCURS DPS7 DSA ANSI JOD
OF DPS7 DSA ANSI JOD
OFF DPS7 DSA ANSI JOD
OMITTED DPS7 DSA ANSI
ON DPS7 DSA ANSI JOD
ONLY (4) JOD
OPEN DPS7 DSA ANSI JOD
OPERATIONAL DPS7
OPTIONAL DPS7 DSA ANSI JOD
OR DPS7 DSA ANSI JOD
ORD (8) ANSI JOD
ORD-MAX (8) ANSI JOD
ORD-MIN (8) ANSI JOD
ORDER DPS7 DSA ANSI JOD
ORGANIZATION DPS7 DSA ANSI JOD
OTHER DPS7 DSA ANSI JOD
OUTPUT DPS7 DSA ANSI JOD
OVERFLOW DPS7 DSA ANSI JOD
OVERRIDING (7)
OWNER (4) JOD
PACKED-DECIMAL DPS7 DSA ANSI JOD
PADDING DPS7 DSA ANSI JOD
PAGE DPS7 DSA ANSI JOD
PAGE-COUNTER DPS7 DSA ANSI JOD
PERFORM DPS7 DSA ANSI JOD
PERMANENT DPS7
PF DPS7 DSA ANSI JOD
PH DPS7 DSA ANSI JOD
PIC DPS7 DSA ANSI JOD
PICTURE DPS7 DSA ANSI JOD
PLUS DPS7 DSA ANSI JOD
POINTER DPS7 DSA ANSI JOD
POSITION DPS7 DSA ANSI JOD
POSITIVE DPS7 DSA ANSI JOD
PREATTACHED DPS7
PRESENT JOD
PRESENT-VALUE (8) ANSI JOD
PREVIOUS (7)
PRIMARY DPS7
PRINTING DPS7 DSA ANSI JOD
PRIOR (4) JOD



GCOS 7 COBOL 85 Reference Manual

A-12 47 A2 05UL Rev04

1 2 3 4

PROCEDURE DPS7 DSA ANSI JOD
PROCEDURES DPS7 DSA ANSI
PROCEED DPS7 DSA ANSI
PROCESS-AREA DPS7
PROGRAM DPS7 DSA ANSI JOD
PROGRAM-ID DPS7 DSA ANSI JOD
PROTECTED (4) JOD
PURGE DPS7 DSA ANSI JOD
QUEUE DPS7 DSA ANSI JOD
QUEUED (7)
QUOTE DPS7 DSA ANSI JOD
QUOTES DPS7 DSA ANSI JOD
RANDOM DPS7 DSA ANSI JOD
RANGE (8) ANSI JOD
RD DPS7 DSA ANSI JOD
READ DPS7 DSA ANSI JOD
READY (4)
REALM (4) JOD
REALM-NAME (4)
REALMS (4)
RECEIVE DPS7 DSA ANSI JOD
RECONNECT (4) JOD
RECORD DPS7 DSA ANSI JOD
RECORD-NAME (4) JOD
RECORDS DPS7 DSA ANSI JOD
REDEFINES DPS7 DSA ANSI JOD
REEL DPS7 DSA ANSI JOD
REFERENCE DPS7 DSA ANSI JOD
REFERENCES DPS7 DSA ANSI
RELATION JOD
RELATIVE DPS7 DSA ANSI JOD
RELEASE DPS7 DSA ANSI JOD
REM (8) ANSI JOD
REMAINDER DPS7 DSA ANSI JOD
REMOVAL DPS7 DSA ANSI JOD
RENAMES DPS7 DSA ANSI JOD
REPEATED JOD
REPLACE DPS7 DSA ANSI JOD
REPLACING DPS7 DSA ANSI JOD
REPORT DPS7 DSA ANSI JOD
REPORTING DPS7 DSA ANSI JOD
REPORTS DPS7 DSA ANSI JOD
RERUN DPS7 DSA ANSI
RESERVE DPS7 DSA ANSI JOD
RESET DPS7 DSA ANSI JOD
RETAINING (4) JOD
RETENTION DPS7
RETRIEVAL (4) JOD
RETURN DPS7 DSA ANSI JOD
REVERSE (8) ANSI JOD
REVERSED DPS7 DSA ANSI



COBOL Reserved Words

47 A2 05UL Rev04 A-13

1 2 3 4

REWIND DPS7 DSA ANSI JOD
REWRITE DPS7 DSA ANSI JOD
RF DPS7 DSA ANSI JOD
RH DPS7 DSA ANSI JOD
RIGHT DPS7 DSA ANSI JOD
ROLLBACK (4) JOD
ROUNDED DPS7 DSA ANSI JOD
RUN DPS7 DSA ANSI JOD
RUN-UNIT (4)
SAME DPS7 DSA ANSI JOD
SARF DPS7
SD DPS7 DSA ANSI JOD
SEARCH DPS7 DSA ANSI JOD
SECONDARY DPS7
SECTION DPS7 DSA ANSI JOD
SECURITY DPS7 DSA ANSI
SEGMENT DPS7 DSA ANSI JOD
SEGMENT-LIMIT DPS7 DSA ANSI JOD
SELECT DPS7 DSA ANSI JOD
SELECTED (4)
SELECTION DPS7 SBS
SELECTIVE (4)
SEND DPS7 DSA ANSI JOD
SENTENCE DPS7 DSA ANSI JOD
SEPARATE DPS7 DSA ANSI JOD
SEQUENCE DPS7 DSA ANSI JOD
SEQUENTIAL DPS7 DSA ANSI JOD
SET DPS7 DSA ANSI JOD
SETS (4)
SHARED (4) JOD
SIGN DPS7 DSA ANSI JOD
SIN (8) ANSI JOD
SIZE DPS7 DSA ANSI JOD
SORT DPS7 DSA ANSI JOD
SORT-MERGE DPS7 DSA ANSI JOD
SOURCE DPS7 DSA ANSI JOD
SOURCE-COMPUTER DPS7 DSA ANSI JOD
SPACE DPS7 DSA ANSI JOD
SPACES DPS7 DSA ANSI JOD
SPECIAL-NAMES DPS7 DSA ANSI JOD
SQRT (8) ANSI JOD
SS SBS
SSF DPS7
STANDARD DPS7 DSA ANSI JOD
STANDARD-DEVIATION (8) ANSI JOD
STANDARD-1 DPS7 DSA ANSI JOD
STANDARD-2 DPS7 DSA ANSI JOD
START DPS7 DSA ANSI JOD
STATION DPS7
STATISTICS (7)
STATUS DPS7 DSA ANSI JOD



GCOS 7 COBOL 85 Reference Manual

A-14 47 A2 05UL Rev04

1 2 3 4

STOP DPS7 DSA ANSI JOD
STORE (4) JOD
STREAM DPS7
STRING DPS7 DSA ANSI JOD
STRUCTURAL SBS
STRUCTURE SBS
SUB-QUEUE-1 DPS7 DSA ANSI JOD
SUB-QUEUE-2 DPS7 DSA ANSI JOD
SUB-QUEUE-3 DPS7 DSA ANSI JOD
SUB-SCHEMA DPS7 DSA JOD
SUBSTITUTION DPS7
SUBSTRACT DPS7 DSA ANSI JOD
SUM DPS7 DSA ANSI JOD
SUPPRESS DPS7 DSA ANSI JOD
SUSPEND DPS7
SWITCH-0 thru SWITCH-31 (3)
SYMBOLIC DPS7 DSA ANSI JOD
SYNC DPS7 DSA ANSI SBS
SYNCHRONIZED DPS7 DSA ANSI SBS
SYSIN (3)
SYSIN-X (7)
SYSIN-0 (7)
SYSIN-1 (7)
SYSIN-2 (7)
SYSIN-3 (7)
SYSOUT (3)
SYSOUT-X (7)
SYSOUT-0 (7)
SYSOUT-1 (7)
SYSOUT-2 (7)
SYSOUT-3 (7)
SYSTEM DPS7
TABLE DPS7 DSA ANSI JOD
TALLYING DPS7 DSA ANSI JOD
TAN (8) ANSI JOD
TAPE DPS7 DSA ANSI JOD
TEMP (7)
TENANT (4) JOD
TERMINAL DPS7 DSA ANSI JOD
TERMINAL-X (7)
TERMINAL-0 (7)
TERMINAL-1 (7)
TERMINAL-2 (7)
TERMINAL-3 (7)
TERMINATE DPS7 DSA ANSI JOD
TEST DPS7 DSA ANSI JOD
TEXT DPS7 DSA ANSI JOD
THAN DPS7 DSA ANSI JOD
THEN DPS7 DSA ANSI JOD
THROUGH DPS7 DSA ANSI JOD
THRU DPS7 DSA ANSI JOD



COBOL Reserved Words

47 A2 05UL Rev04 A-15

1 2 3 4

TIME DPS7 DSA ANSI JOD
TIMES DPS7 DSA ANSI JOD
TITLE DPS7 SBS
TO DPS7 DSA ANSI JOD
TOP DPS7 DSA ANSI JOD
TRAILING DPS7 DSA ANSI JOD
TRANSFORM DPS7
TRUE DPS7 DSA ANSI JOD
TYPE DPS7 DSA ANSI JOD
UFF (7)
UNBANNERED (7)
UNBIND (4)
UNEQUAL DPS7 JOD
UNIT DPS7 DSA ANSI JOD
UNSTRING DPS7 DSA ANSI JOD
UNTIL DPS7 DSA ANSI JOD
UP DPS7 DSA ANSI JOD
UPDATE (4) JOD
UPON DPS7 DSA ANSI JOD
UPPER-CASE (8) ANSI JOD
USAGE DPS7 DSA ANSI JOD
USAGE-MODE (4) JOD
USE DPS7 DSA ANSI JOD
USING DPS7 DSA ANSI JOD
VALID JOD
VALIDATE JOD
VALUE DPS7 DSA ANSI JOD
VALUES DPS7 DSA ANSI JOD
VARIANCE (8) ANSI JOD
VARYING DPS7 DSA ANSI JOD
VIA DPS7 SBS
VIRTUAL DPS7
VLR DPS7 DSA
WAIT JOD
WHEN DPS7 DSA ANSI JOD
WHEN-COMPILED (8) ANSI JOD
WITH DPS7 DSA ANSI JOD
WITHIN (4) JOD
WORDS DPS7 DSA ANSI
WORKING-STORAGE DPS7 DSA ANSI JOD
WRITE DPS7 DSA ANSI JOD
ZERO DPS7 DSA ANSI JOD
ZEROES DPS7 DSA ANSI JOD
ZEROS DPS7 DSA ANSI JOD



GCOS 7 COBOL 85 Reference Manual

A-16 47 A2 05UL Rev04



47 A2 05UL Rev04 B-1

B. Collating Sequences

The table below shows the EBCDIC character set and its correspondence with the
COBOL set.  It also gives the correspondence between the various alphabets accepted
as standard alphabet by the COBOL compiler.  The table is arranged in ascending
sequence of the EBCDIC code.  It gives the occurrence number of the character in each
collating sequence followed by its internal hexadecimal value.  In the NATIVE/EBCDIC
column, the occurrence number in the collating sequence is the 'symbolic-character'
used in non numeric literals.  The positions corresponding to low-value and high-value in
each alphabet are respectively included in dotted and plain line boxed.   In the graphic
column the space character is shown by 'b'.  Optional graphic symbols appear on the left
where 2 symbols are given.

GRAPHIC NATIVE
EBCDIC

STANDARD-1
ASCII

JIS GBCD

------------
|1    (00) |
------------

------------
|1    (00) |
------------

------------
|1    (00) |
------------

 2    (01)  2    (01)  2    (01)
 3    (02)  3    (02)  3    (02)
 4    (03)  4    (03)  4    (03)

 5    (04)  157  (9C)  157  (9C)
 6    (05)  10   (09)  10   (09)
 7    (06)  135  (86)  135  (86)
 8    (07)  128  (7F)  128  (7F)

 9    (08)  152  (97)  152  (97)
 10   (09)  142  (8D)  142  (8D)
 11   (0A)  143  (8E)  143  (8E)
 12   (0B)  12   (0B)  12   (0B)

 13   (0C)  13   (0C)  13   (0C)
 14   (0D)  14   (0D)  14   (0D)
 15   (0E)  15   (0E)  15   (0E)
 16   (0F)  16   (0F)  16   (0F)

 17   (10)  17   (10)  17   (10)
 18   (11)  18   (11)  18   (11)
 19   (12)  19   (12)  19   (12)
 20   (13)  20   (13)  20   (13)



GCOS 7 COBOL 85 Reference Manual

B-2 47 A2 05UL Rev04

GRAPHIC NATIVE
EBCDIC

STANDARD-1
ASCII

JIS GBCD

 21   (14)  158  (9D)  158  (9D)
 22   (15)  134  (85)  134  (85)
 23   (16)  9    (08)  9    (08)
 24   (17)  136  (87)  136  (87)
 25   (18)  25   (18)  25   (18)
 26   (19)  26   (19)  26   (19)
 27   (1A)  147  (92)  147  (92)
 28   (1B)  144  (8F)  144  (8F)

 29   (1C)  29   (1C)  29   (1C)
 30   (1D)  30   (1D)  30   (1D)
 31   (1E)  31   (1E)  31   (1E)
 32   (1F)  32   (1F)  32   (1F)

 33   (20)  129  (80)  129  (80)
 34   (21)  130  (81)  130  (81)
 35   (22)  131  (82)  131  (82)
 36   (23)  132  (83)  132  (83)

 37   (24)  133  (84)  133  (84)
 38   (25)  11   (0A)  11   (0A)
 39   (26)  24   (17)  24   (17)
 40   (27)  28   (1B)  28   (1B)

 41   (28)  137  (88)  137  (88)
 42   (29)  138  (89)  138  (89)
 43   (2A)  139  (8A)  139  (8A)
 44   (2B)  140  (8B)  140  (8B)

 45   (2C)  141  (8C)  141  (8C)
 46   (2D)  6    (05)  6    (05)
 47   (2E)  7    (06)  7    (06)
 48   (2F)  8    (07)  8    (07)

 49   (30)  145  (90)  145  (90)
 50   (31)  146  (91)  146  (91)
 51   (32)  23   (16)  23   (16)
 52   (33)  148  (93)  148  (93)

 53   (34)  149  (94)  149  (94)
 54   (35)  150  (95)  150  (95)
 55   (36)  151  (96)  151  (96)
 56   (37)  5    (04)  5    (04)

 57   (38)  153  (98)  153  (98)
 58   (39)  154  (99)  154  (99)
 59   (3A)  155  (9A)  155  (9A)
 60   (3B)  156  (9B)  156  (9B)



Collating Sequences

47 A2 05UL Rev04 B-3

GRAPHIC NATIVE
EBCDIC

STANDARD-1
ASCII

JIS GBCD

 61   (3C)  21   (14)  21   (14)
 62   (3D)  22   (15)  22   (15)
 63   (3E)  159  (9E)  159  (9E)
 64   (3F)  27   (1A)  27   (1A)

b  65   (40)  33   (20)  33   (20)  81   (50)
 66   (41)  161  (A0)  162  (A1)
 67   (42)  162  (A1)  163  (A2)
 68   (43)  163  (A2)  164  (A3)
 69   (44)  164  (A3)  165  (A4)
 70   (45)  165  (A4)  166  (A5)
 71   (46)  166  (A5)  167  (A6)
 72   (47)  167  (A6)  168  (A7)

 73   (48)  168  (A7)  169  (A8)
 74   (49)  169  (A8)  170  (A9)

[ o  75   (4A)  92   (5B)  92   (5B) 75    (4A)
.  76   (4B)  47   (2E)  47   (2E) 92    (5B)

<  77   (4C)  61   (3C)  61   (3C)  95   (5E)
(  78   (4D)  41   (28)  41   (28)  94   (5D)
+  79   (4E)  44   (2B)  44   (2B)  177  (B0)
! |  80   (4F)  34   (21)  34   (21)  93   (5C)

&  81   (50)  39   (26)  39   (26)  91   (5A)
 82   (51)  170  (A9)  171  (AA)
 83   (52)  171  (AA)  172  (AB)
 84   (53)  172  (AB)  173  (AC)

 85   (54)  173  (AC)  174  (AD)
 86   (55)  174  (AD)  175  (AE)
 87   (56)  175  (AE)  176  (AF)
 88   (57)  176  (AF)  227  (E2)

 89   (58)  177  (B0)  177  (B0)
 90   (59)  178  (B1)  228  (E3)  ---------

] !  91   (5A)  94   (5D)  94   (5D) |192  (BF)|
 $  92   (5B)  37   (24)  37   (24)  172  (AB)

 *  93   (5C)  43   (2A)  43   (2A)  173  (AC)
 )  94   (5D)  42   (29)  42   (29)  174  (AD)
 ;  95   (5E)  60   (3B)  60   (3B)  175  (AE)
 ^ ¬  96   (5F)  95   (5E)  95   (5E)  161  (A0)

 -  97   (60)  46   (2D)  46   (2D)  171  (AA)
 /  98   (61)  48   (2F)  48   (2F)  178  (B1)

 99   (62)  179  (B2)  229  (E4)
 100  (63)  180  (B3)  230  (E5)

 101  (64)  181  (B4)  231  (E6)
 102  (65)  182  (B5)  232  (E7)
 103  (66)  183  (B6)
 104  (67)  184  (B7)

 105  (68)  185  (B8)
 106  (69)  186  (B9)



GCOS 7 COBOL 85 Reference Manual

B-4 47 A2 05UL Rev04

GRAPHIC NATIVE
EBCDIC

STANDARD-1
ASCII

JIS GBCD

    107   (6A)  125   (7C)  125   (7C)
 ,  108   (6B)  45    (2C)  45    (2C)  128   (BB)
 %  109   (6C)  38    (25)  38    (25)  189   (BC)
 -  110   (6D)  96    (5F)  96    (5F)  187   (BA)
 >  111   (6E)  63    (3E)  63    (3E)  79    (4E)
 ?  112   (6F)  48    (3F)  48    (3F)  80    (4F)

 113   (70)  187   (BA)
 114   (71)  188   (BB)
 115   (72)  189   (BC)
 116   (73)  190   (BD)

 117   (74)  191   (BE)
 118   (75)  192   (BF)
 119   (76)  193   (C0)
 120   (77)  194   (C1)

 121   (78)  195   (C2)
 '  122   (79)  97    (60)  97    (60)
 :  123   (7A)  59    (3A)  59    (3A)  78    (4D)
 #  124   (7B)  36    (23)  36    (23)  76    (4B)

 @  125   (7C)  65    (40)  65    (40)  77    (4C)
 '  126   (7D)  40    (27)  40    (27)  176   (AF)
 =  127   (7E)  62    (3D)  62    (3D)  190   (BD)
 "  128   (7F)  35    (22)  35    (22)  191   (BE)

 129   (80)  196   (C3)
 a  130   (81)  98    (61)  178   (B1)
 b  131   (82)  99    (62)  179   (B2)
 c  132   (83)  100   (63)  180   (B3)

 d  133   (84)  101   (64)  181   (B4)
 e  134   (85)  102   (65)  182   (B5)
 f  135   (86)  103   (66)  183   (B6)
 g  136   (87)  104   (67)  184   (B7)

 h  137   (88)  105   (68)  185   (B8)
 i  138   (89)  106   (69)  186   (B9)

 139   (8A)  197   (C4)  187   (BA)
 140   (8B)  198   (C5)

 141   (8C)  199   (C6)  188   (BB)
 142   (8D)  200   (C7)  189   (BC)
 143   (8E)  201   (C8)  190   (BD)
 144   (8F)  202   (C9)  191   (BE)

 145   (90)  203   (CA)  192   (BF)
 j  146   (91)  107   (6A)  193   (C0)
 k  147   (92)  108   (6B)  194   (C1)
 l  148   (93)  109   (6C)  195   (C2)
 m  149   (94)  110   (6D)  196   (C3)
 n  150   (95)  111   (6E)  197   (C4)



Collating Sequences

47 A2 05UL Rev04 B-5

GRAPHIC NATIVE
EBCDIC

STANDARD-1
ASCII

JIS GBCD

o  151   (96)  112   (6F)  198   (C5)
p  152   (97)  113   (70)  199   (C6)

q  153   (98)  114   (71)  200   (C7)
r  154   (99)  115   (72)  201   (C8)

 155   (9A)  204   (CB)  202   (C9)
 156   (9B)  205   (CC)
 157   (9C)  206   (CD)
 158   (9D)  207   (CE)  203   (CA)
 159   (9E)  208   (CF)  204   (CB)
 160   (9F)  209   (D0)  205   (CC)

 161   (A0)  210   (D1)
 ∼  162   (A1)  127   (7E)  127   (7E)
s  163   (A2)  116   (73)  206   (CD)
t  164   (A3)  117   (74)  207   (CE)

u  165   (A4)  118   (75)  208   (CF)
v  166   (A5)  119   (76)  209   (D0)
w  167   (A6)  120   (77)  210   (D1)
x  168   (A7)  121   (78)  211   (D2)

y  169   (A8)  122   (79)  212   (D3)
z  170   (A9)  123   (7A)  213   (D4)

 171   (AA)  211   (D2)  214   (D5)
 172   (AB)  212   (D3)

 173   (AC)  213   (D4)  215   (D6)
 174   (AD)  214   (D5)  216   (D7)
 175   (AE)  215   (D6)  217   (D8)
 176   (AF)  216   (D7)  218   (D9)

 177   (B0)  217   (D8)
 178   (B1)  218   (D9)
 179   (B2)  219   (DA)
 180   (B3)  220   (DB)

 181   (B4)  221   (DC)
 182   (B5)  222   (DD)
 183   (B6)  223   (DE)
 184   (B7)  224   (DF)

 185   (B8)  225   (E0)  225   (E0)
 186   (B9)  226   (E1)  226   (E1)
 187   (BA)  227   (E2)  219   (DA)
 188   (BB)  228   (E3)  220   (DB)

 189   (BC)  229   (E4)  221   (DC)
 190   (BD)  230   (E5)  222   (DD)
 191   (BE)  231   (E6)  223   (DE)
 192   (BF)  232   (E7)  224   (DF)



GCOS 7 COBOL 85 Reference Manual

B-6 47 A2 05UL Rev04

GRAPHIC NATIVE
EBCDIC

STANDARD-1
ASCII

JIS GBCD

{  193   (C0)  124   (7B)  124   (7B)
A  194   (C1)  66    (41)  66    (41)  82    (51)
B  195   (C2)  67    (42)  67    (42)  83    (52)
C  196   (C3)  68    (43)  68    (43)  84    (53)

D  197   (C4)  69    (44)  69    (44)  85    (54)
E  198   (C5)  70    (45)  70    (45)  86    (55)
F  199   (C6)  71    (46)  71    (46)  87    (56)
G  200   (C7)  72    (47)  72    (47)  88    (57)
H  201   (C8)  73    (48)  73    (48)  89    (58)
I  202   (C9)  74    (49)  74    (49)  90    (59)

 203   (CA)  233   (E8)  233   (E8)
 204   (CB)  234   (E9)  234   (E9)

 205   (CC)  235   (EA)  235   (EA)
 206   (CD)  236   (EB)  236   (EB)
 207   (CE)  237   (EC)  237   (EC)
 208   (CF)  238   (ED)  238   (ED)

}  209   (D0)  126   (7D)  126   (7D)
J  210   (D1)  75    (4A)  75    (4A)  162   (A1)
K  211   (D2)  76    (4B)  76    (4B)  163   (A2)
L  212   (D3)  77    (4C)  77    (4C)  164   (A3)

M  213   (D4)  78    (4D)  78    (4D)  165   (A4)
N  219   (D5)  79    (4E)  79    (4E)  166   (A5)
O  215   (D6)  80    (4F)  80    (4F)  167   (A6)
P  216   (D7)  81    (50)  81    (50)  168   (A7)

Q  217   (D8)  82    (51)  82    (51)  169   (A8)
R  218   (D9)  83    (52)  83    (52)  170   (A9)

 219   (DA)  239   (EE)  239   (EE)
 220   (DB)  240   (EF)  240   (EF)

 221   (DC)  241   (F0)  241   (F0)
 222   (DD)  242   (F1)  242   (F1)
 223   (DE)  243   (F2)  243   (F2)
 224   (DF)  244   (F3)  244   (F3)

\  225   (E0)  93    (5C)  93    (5C)
 226   (E1)  160   (9F)  160   (9F)

S  227   (E2)  84    (53)  84    (53)  179   (B2)
T  228   (E3)  85    (54)  85    (54)  180   (B3)

U  229   (E4)  86    (55)  86    (55)  181   (B4)
V  230   (E5)  87    (56)  87    (56)  182   (B5)
W  231   (E6)  88    (57)  88    (57)  183   (B6)
X  232   (E7)  89    (58)  89    (58)  184   (B7)



Collating Sequences

47 A2 05UL Rev04 B-7

The following shows the graphic collating sequences in the various alphabets.

NATIVE and EBCDIC graphic collating sequences

. < ( + | & ! $ * ) ; - / , % _ > ? ` : # @ ' = " a b c d e f g h i j k l m n o p q r ~ s t u v w x y z
{ A B C D E F G H I } J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9

STANDARD-1 and ASCII graphic collating sequences

| " # $ % & ' ( ) * + < - ? 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O
P Q R S T U V W X Y Z ! _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { }

JIS graphic collating sequence

| " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O
P Q R S T U V W X Y Z ! - ' { } ~ a b c d e f g h i j k l m n o p q r s t u v w x y z

GBCD graphic collating sequence

0 1 2 3 4 5 6 7 8 9 | # @ : > ? b A B C D E F G H I & . | ( < J K L M N O P Q R - $ * ) ; ' +
/ S T U V W X Y Z _ , % = " !



GCOS 7 COBOL 85 Reference Manual

B-8 47 A2 05UL Rev04



47 A2 05UL Rev04 C-1

C. The ANSI Flagger

The American National Standard defines the elements of COBOL and the rules for their
use.  The standard is used by implementors as the reference authority in developing
compilers and by users for writing programs in COBOL.  The Standard defines required
modules and optional modules.  Required modules are gathered into three subsets:
Minimum, Intermediate, and High.  Any program written to conform to the Standard must
also conform to one of these subsets.

The ANSI Flagger issues a fatal diagnostic (or an observation message when the
LOBSERV parameter of the $CBL JCL statement is used) for each source clause or
statement that is not included in the level of compilation specified in the LEVEL
parameter of the $CBL JCL statement.  In the absence of this parameter, LEVEL = ANSI
is assumed.

The following list gives for each COBOL element implemented in DPS 7 COBOL the
level(s) to which it pertains, i.e.  the option(s) of the 'LEVEL =' parameter of the $CBL
JCL statement that should be used when compiling a program containing the element.

Used options have the following meaning:

NSTD implemented on DPS 7

ANSI specified in the 1985 COBOL American National Standard
(ANS), either in required or optional modules

HIGH included in the high level of required modules

INTR included in the intermediate level of required modules

MINI included in the minimum level of required modules

RPW included in the Report Writer optional module

1COM included in the Communication level 1 optional module

2COM included in the Communication level 2 optional module

1DEB included in the Debug level 1 optional module

2DEB included in the Debug level 2 optional module

1SEG included in the Segmentation level 1 optional module

2SEG included in the Segmentation level 2 optional module

The letter Z in the right margin indicates that the element is an obsolete element in the
Standard COBOL because it is to be deleted from the next revision of Standard COBOL.



GCOS 7 COBOL 85 Reference Manual

C-2 47 A2 05UL Rev04

LANGUAGE CONCEPTS

Character set
Characters used for words
   0,1,...,9, A,B,...,Z - (hyphen or
    minus) . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
lower-case accepted
      equivalent to upper-case . . .  NSTD
      not equivalent to upper-case .  NSTD
   _ (underscore) only if the word
    starts with "H_" . . . . . . . .  NSTD
Characters used for punctuation
   . " ( ) = space . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   ==. . . . . . . . . . . . . . . .  NSTD ANSI HIGH
   , ; . . . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   ' (apostrophe). . . . . . . . . .  NSTD
   : (colon) . . . . . . . . . . . .  NSTD ANSI HIGH
   horizontal tabulation . . . . . .  NSTD
Characters used in arithmetic
 operations
   + - * / **. . . . . . . . . . . .  NSTD ANSI HIGH
Characters used in relations
   > < = >= <= . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
Characters used in editing
   B 0 + - CR DB Z * $ , . / . . . .  NSTD ANSI HIGH INTR MINI
   E . . . . . . . . . . . . . . . .  NSTD
Characters used in subscripting + -.  NSTD ANSI HIGH INTR MINI
Single character substitution allowed NSTD ANSI HIGH INTR MINI
Double character substitution allowed NSTD ANSI HIGH INTR MINI
Separators
" ( ) . , ; space. . . . . . . . . .  NSTD ANSI HIGH INTR MINI
' (apostrophe) . . . . . . . . . . .  NSTD
horizontal tabulation. . . . . . . .  NSTD
: (colon). . . . . . . . . . . . . .  NSTD ANSI HIGH
Character-strings
COBOL words
   not more than 30 characters . . .  NSTD ANSI HIGH INTR MINI
   underscore accepted in a name
    provided it begins with "H_"; a
    name may end with underscore . .  NSTD
   User-defined words
      alphabet-name. . . . . . . . .  NSTD ANSI HIGH INTR MINI
      cd-name. . . . . . . . . . . .  NSTD ANSI           1COM
      class-name . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      condition-name . . . . . . . .  NSTD ANSI HIGH
      data-name
         begins with a letter. . . .  NSTD ANSI HIGH INTR MINI
         begins with a digit . . . .  NSTD ANSI HIGH INTR MINI
      file-name. . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      index-name . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      level-number . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      library-name . . . . . . . . .  NSTD ANSI HIGH
      mnemonic-name. . . . . . . . .  NSTD ANSI HIGH INTR MINI
      paragraph-name . . . . . . . .  NSTD ANSI HIGH INTR MINI
      program-name . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      record-name. . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      report-name. . . . . . . . . .  NSTD ANSI           RPW
      routine-name . . . . . . . . .  NSTD ANSI HIGH INTR MINI Z
      section-name . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      segment-number . . . . . . . .  NSTD ANSI           1SEG Z
         symbolic-character. . . . .  NSTD ANSI HIGH
         text-name . . . . . . . . .  NSTD ANSI HIGH INTR



The ANSI Flagger

47 A2 05UL Rev04 C-3

System-names
      computer-name. . . . . . . . .  NSTD ANSI HIGH INTR MINI
      implementor-name . . . . . . .  NSTD ANSI HIGH INTR MINI
      system-names are reserved words NSTD ANSI HIGH INTR MINI
      language-name. . . . . . . . .  NSTD ANSI HIGH INTR MINI Z
Reserved words
      Key words. . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      Special-character words
         arithmetic operators. . . .  NSTD ANSI HIGH
         + or - in subscripting. . .  NSTD ANSI HIGH INTR MINI
         relation characters . . . .  NSTD ANSI HIGH INTR MINI
      Optional words . . . . . . . .  NSTD ANSI HIGH INTR MINI
      Connectives
         qualifier connectives: OF,
          IN . . . . . . . . . . . .  NSTD ANSI HIGH
         series connectives: ,
          (separator comma ) and ;
          (separator semi-colon) . .  NSTD ANSI HIGH
         logical connectives: AND,
          OR, AND NOT, OR NOT. . . .  NSTD ANSI HIGH
      Special registers
         LINE-COUNTER, PAGE-COUNTER.  NSTD ANSI           RPW
         LINAGE-COUNTER. . . . . . .  NSTD ANSI HIGH
         DEBUG-ITEM. . . . . . . . .  NSTD ANSI           1DEB Z
        TALLY. . . . . . . . . . . .  NSTD
        LENGTH OF data-name. . . . .  NSTD
     Figurative constants
        ZERO . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        ZEROS, ZEROES. . . . . . . .  NSTD ANSI HIGH INTR MINI
        SPACE. . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        SPACES . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        HIGH-VALUE, LOW-VALUE. . . .  NSTD ANSI HIGH INTR MINI
        HIGH-VALUES, LOW-VALUES. . .  NSTD ANSI HIGH INTR MINI
        QUOTE. . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        QUOTES . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        Symbolic Character . . . . .  NSTD ANSI HIGH
        ALL. . . . . . . . . . . . .  NSTD ANSI HIGH
     I-O status. . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
Literals
   non-numeric literals have lengths
    from 1 through 160 characters. .  NSTD ANSI HIGH INTR MINI
   non-numeric literals have lengths
    from 1 through 256 characters. .  NSTD
   non-numeric literals may contain
    embedded symbolic characters . .  NSTD
      space not required after commas NSTD
   apostrophe accepted as non-numeric
    literal delimiter (for the entire
    program) . . . . . . . . . . . .  NSTD
   numeric literals have lengths from
    1 through 18 digits. . . . . . .  NSTD ANSI HIGH INTR MINI
   numeric literals have lengths from
    1 through 30 digits. . . . . . .  NSTD
   floating-point numeric literal. .  NSTD
Picture character-strings. . . . . .  NSTD ANSI HIGH INTR MINI
Comment-entries. . . . . . . . . . .  NSTD ANSI HIGH INTR MINI Z
Qualification
no qualification permitted . . . . .  NSTD ANSI HIGH INTR MINI
50 qualifiers permitted. . . . . . .  NSTD ANSI HIGH



GCOS 7 COBOL 85 Reference Manual

C-4 47 A2 05UL Rev04

Subscripting
3 levels . . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
7 levels . . . . . . . . . . . . . .  NSTD ANSI HIGH
over 7 levels. . . . . . . . . . . .  NSTD
subscripting with a literal. . . . .  NSTD ANSI HIGH INTR MINI
subscripting with a data-name. . . .  NSTD ANSI HIGH INTR MINI
relative subscripting. . . . . . . .  NSTD ANSI HIGH INTR MINI
subscripting with an expression. . .  NSTD
Reference modification . . . . . . .  NSTD ANSI HIGH
   expressions in reference
    modification . . . . . . . . . .  NSTD
Reference format
   Sequence numbers. . . . . . . . .  NSTD ANSI HIGH INTR MINI
      special processing of
       horizontal tabulation . . . .  NSTD
   Area A
      Division header. . . . . . . .  NSTD ANSI HIGH INTR MINI
      Section header . . . . . . . .  NSTD ANSI HIGH INTR MINI
      Paragraph header . . . . . . .  NSTD ANSI HIGH INTR MINI
      Data Division entries. . . . .  NSTD ANSI HIGH INTR MINI
      special processing of
       horizontal tabulation . . . .  NSTD
   Area B
      Paragraphs . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      Data Division entries. . . . .  NSTD ANSI HIGH INTR MINI
   Continuation of lines
      Non-numeric literals . . . . .  NSTD ANSI HIGH INTR MINI
      Words and numeric literals . .  NSTD ANSI HIGH
      PICTURE character-strings. . .  NSTD ANSI HIGH
      special processing of
       horizontal tabulation . . . .  NSTD
      special processing of backspace NSTD
   Blank lines . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   Comment lines
      Asterisk (*) comment lines . .  NSTD ANSI HIGH INTR MINI
      Stroke (/) comment lines . . .  NSTD ANSI HIGH INTR MINI
   Debugging lines with D in indicator
    area . . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
Source program structure
   Control division optional . . . .  NSTD
   Identification division required.  NSTD ANSI HIGH INTR MINI
   Environment division optional . .  NSTD ANSI HIGH INTR MINI
   Data division optional. . . . . .  NSTD ANSI HIGH INTR MINI
   Procedure division optional . . .  NSTD ANSI HIGH INTR MINI
   End program header. . . . . . . .  NSTD ANSI HIGH
   Nested source programs
      At the end of the procedure
       division. . . . . . . . . . .  NSTD ANSI HIGH
      Anywhere an imperative statement
       is allowed. . . . . . . . . .  NSTD



The ANSI Flagger

47 A2 05UL Rev04 C-5

CONTROL DIVISION.

Substitution Section
   The REPLACE clause. . . . . . . .  NSTD
      LEADING/TRAILING phrase. . . .  NSTD
Default Section
   The SYMBOLIC QUEUE clause . . . .  NSTD
   The DISPLAY SIGN clause . . . . .  NSTD
   The COMPUTATIONAL/COMP clause
      DISPLAY. . . . . . . . . . . .  NSTD
      BINARY . . . . . . . . . . . .  NSTD
      PACKED-DECIMAL . . . . . . . .  NSTD
      COMPUTATIONAL-1/COMP-1 . . . .  NSTD
      COMPUTATIONAL-2/COMP-2 . . . .  NSTD
      COMPUTATIONAL-3/COMP-3 . . . .  NSTD
      COMPUTATIONAL-5/COMP-5 . . . .  NSTD
      COMPUTATIONAL-8/COMP-8 . . . .  NSTD
   The TEMP clause . . . . . . . . .  NSTD
      NOT STANDARD phrase. . . . . .  NSTD
      BINARY phrase. . . . . . . . .  NSTD
   The ACCEPT clause
      SYSIN. . . . . . . . . . . . .  NSTD
      CONSOLE. . . . . . . . . . . .  NSTD
      ALTERNATE CONSOLE. . . . . . .  NSTD
      TERMINAL . . . . . . . . . . .  NSTD
   The DISPLAY clause
      SYSOUT . . . . . . . . . . . .  NSTD
      CONSOLE. . . . . . . . . . . .  NSTD
      ALTERNATE CONSOLE. . . . . . .  NSTD
      TERMINAL . . . . . . . . . . .  NSTD
   The SYSIN clause
      SYSIN-0. . . . . . . . . . . .  NSTD
      SYSIN-1. . . . . . . . . . . .  NSTD
      SYSIN-2. . . . . . . . . . . .  NSTD
      SYSIN-X. . . . . . . . . . . .  NSTD
   The ACCEPT ALTERNATE-CONSOLE clause
      ALTERNATE-CONSOLE-0. . . . . .  NSTD
      ALTERNATE-CONSOLE-1. . . . . .  NSTD
      ALTERNATE-CONSOLE-2. . . . . .  NSTD
      ALTERNATE-CONSOLE-X. . . . . .  NSTD
   The ACCEPT CONSOLE clause
      CONSOLE-0. . . . . . . . . . .  NSTD
      CONSOLE-1. . . . . . . . . . .  NSTD
      CONSOLE-2. . . . . . . . . . .  NSTD
      CONSOLE-X. . . . . . . . . . .  NSTD
   The ACCEPT TERMINAL clause
      TERMINAL-0 . . . . . . . . . .  NSTD
      TERMINAL-1 . . . . . . . . . .  NSTD
      TERMINAL-2 . . . . . . . . . .  NSTD
      TERMINAL-X . . . . . . . . . .  NSTD
   The SYSOUT clause
      SYSOUT-0 . . . . . . . . . . .  NSTD
      SYSOUT-1 . . . . . . . . . . .  NSTD
      SYSOUT-2 . . . . . . . . . . .  NSTD
      SYSOUT-X . . . . . . . . . . .  NSTD
   The DISPLAY ALTERNATE-CONSOLE clause
      ALTERNATE-CONSOLE-0. . . . . .  NSTD
      ALTERNATE-CONSOLE-1. . . . . .  NSTD
      ALTERNATE-CONSOLE-2. . . . . .  NSTD
      ALTERNATE-CONSOLE-X. . . . . .  NSTD



GCOS 7 COBOL 85 Reference Manual

C-6 47 A2 05UL Rev04

   The DISPLAY CONSOLE clause
      CONSOLE-0. . . . . . . . . . .  NSTD
      CONSOLE-1. . . . . . . . . . .  NSTD
      CONSOLE-2. . . . . . . . . . .  NSTD
      CONSOLE-X. . . . . . . . . . .  NSTD
   The DISPLAY TERMINAL clause
      TERMINAL-0 . . . . . . . . . .  NSTD
      TERMINAL-1 . . . . . . . . . .  NSTD
      TERMINAL-2 . . . . . . . . . .  NSTD
      TERMINAL-X . . . . . . . . . .  NSTD
   The COBOL 1974 clause
      FOR FILE . . . . . . . . . . .  NSTD
      FOR COMMUNICATION. . . . . . .  NSTD

IDENTIFICATION DIVISION.

The PROGRAM-ID paragraph . . . . . .  NSTD ANSI HIGH INTR MINI
         Program-name. . . . . . . .  NSTD ANSI HIGH INTR MINI
         COMMON clause . . . . . . .  NSTD ANSI HIGH
         INITIAL clause. . . . . . .  NSTD ANSI HIGH
The AUTHOR paragraph . . . . . . . .  NSTD ANSI HIGH INTR MINI Z
The INSTALLATION paragraph . . . . .  NSTD ANSI HIGH INTR MINI Z
The DATE-WRITTEN paragraph . . . . .  NSTD ANSI HIGH INTR MINI Z
The DATE-COMPILED paragraph. . . . .  NSTD ANSI HIGH           Z
   date updating . . . . . . . . . .  NSTD ANSI HIGH           Z
The SECURITY paragraph . . . . . . .  NSTD ANSI HIGH INTR MINI Z

ENVIRONMENT DIVISION.

may be empty . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
Configuration Section
   may be absent . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   may be empty. . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   The SOURCE-COMPUTER paragraph
     may be absent . . . . . . . . .  NSTD ANSI HIGH INTR MINI
     may be empty. . . . . . . . . .  NSTD ANSI HIGH INTR MINI
     HIS-SERIES-60 computer-name . .  NSTD
        GCOS . . . . . . . . . . . .  NSTD
        LEVEL-6. . . . . . . . . . .  NSTD
        LEVEL-61 . . . . . . . . . .  NSTD
        LEVEL-62 . . . . . . . . . .  NSTD
        LEVEL-64 . . . . . . . . . .  NSTD
        LEVEL-66-ASCII . . . . . . .  NSTD
        LEVEL-68 . . . . . . . . . .  NSTD
     computer-name
        DPS6 . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        DPS7 . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        DPS8 . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        GCOS . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        LEVEL-6. . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        LEVEL-61 . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        LEVEL-62 . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        LEVEL-64 . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        LEVEL-66-ASCII . . . . . . .  NSTD ANSI HIGH INTR MINI
        LEVEL-68 . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        any non reserved word. . . .  NSTD ANSI HIGH INTR MINI



The ANSI Flagger

47 A2 05UL Rev04 C-7

     The MEMORY SIZE clause
        integer WORDS. . . . . . . .  NSTD
        integer CHARACTERS . . . . .  NSTD
        integer MODULES. . . . . . .  NSTD
        integer BYTES. . . . . . . .  NSTD
        ADDRESS range. . . . . . . .  NSTD
        ADDRESS range series . . . .  NSTD
     WITH DEBUGGING MODE phrase. . .  NSTD ANSI HIGH INTR MINI
  The OBJECT-COMPUTER paragraph
     may be absent . . . . . . . . .  NSTD ANSI HIGH INTR MINI
     may be empty. . . . . . . . . .  NSTD ANSI HIGH INTR MINI
     HIS-SERIES-60 computer-name . .  NSTD
        GCOS . . . . . . . . . . . .  NSTD
           NATIVE is EBCDIC. . . . .  NSTD
        LEVEL-6. . . . . . . . . . .  NSTD
           NATIVE is EBCDIC. . . . .  NSTD
        LEVEL-61 . . . . . . . . . .  NSTD
           NATIVE is EBCDIC. . . . .  NSTD
        LEVEL-62 . . . . . . . . . .  NSTD
           NATIVE is EBCDIC. . . . .  NSTD
        LEVEL-64 . . . . . . . . . .  NSTD
           NATIVE is EBCDIC. . . . .  NSTD
        LEVEL-66-ASCII . . . . . . .  NSTD
           NATIVE is EBCDIC. . . . .  NSTD
        LEVEL-68 . . . . . . . . . .  NSTD
           NATIVE is EBCDIC. . . . .  NSTD
     computer-name
        DPS6 . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
           NATIVE is EBCDIC. . . . .  NSTD ANSI HIGH INTR MINI
        DPS7 . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
           NATIVE is EBCDIC. . . . .  NSTD ANSI HIGH INTR MINI
        DPS8 . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
           NATIVE is EBCDIC. . . . .  NSTD ANSI HIGH INTR MINI
        GCOS . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
           NATIVE is EBCDIC. . . . .  NSTD ANSI HIGH INTR MINI
        LEVEL-6. . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
           NATIVE is EBCDIC. . . . .  NSTD ANSI HIGH INTR MINI
        LEVEL-61 . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
           NATIVE is EBCDIC. . . . .  NSTD ANSI HIGH INTR MINI
        LEVEL-62 . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
           NATIVE is EBCDIC. . . . .  NSTD ANSI HIGH INTR MINI
        LEVEL-64 . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
           NATIVE is EBCDIC. . . . .  NSTD ANSI HIGH INTR MINI
        LEVEL-66-ASCII . . . . . . .  NSTD ANSI HIGH INTR MINI
           NATIVE is EBCDIC. . . . .  NSTD ANSI HIGH INTR MINI
        LEVEL-68 . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
           NATIVE is EBCDIC. . . . .  NSTD ANSI HIGH INTR MINI
        any non reserved word. . . .  NSTD ANSI HIGH INTR MINI
           NATIVE is EBCDIC. . . . .  NSTD ANSI HIGH INTR MINI
     The MEMORY SIZE clause
        integer WORDS. . . . . . . .  NSTD ANSI HIGH INTR MINI Z
        integer CHARACTERS . . . . .  NSTD ANSI HIGH INTR MINI Z
        integer MODULES. . . . . . .  NSTD ANSI HIGH INTR MINI Z
        integer BYTES. . . . . . . .  NSTD
        ADDRESS range. . . . . . . .  NSTD
        ADDRESS range series . . . .  NSTD



GCOS 7 COBOL 85 Reference Manual

C-8 47 A2 05UL Rev04

     The PROGRAM COLLATING SEQUENCE
      clause
        alphabet-name. . . . . . . .  NSTD ANSI HIGH INTR MINI
        NATIVE . . . . . . . . . . .  NSTD
        STANDARD-1 . . . . . . . . .  NSTD
        STANDARD-2 . . . . . . . . .  NSTD
        EBCDIC . . . . . . . . . . .  NSTD
        ASCII. . . . . . . . . . . .  NSTD
        GBCD . . . . . . . . . . . .  NSTD
        JIS. . . . . . . . . . . . .  NSTD
     The SEGMENT-LIMIT clause. . . .  NSTD ANSI           2SEG Z
     The MAXIMUM DATA SEGMENT clause  NSTD
     The MAXIMUM PROCEDURE SEGMENT
      clause . . . . . . . . . . . .  NSTD
     The MAXIMUM INITIAL DATA SEGMENT
      clause . . . . . . . . . . . .  NSTD
  The SPECIAL-NAMES paragraph
     Implementor-name IS mnemonic-name
        CHANNEL-1 through CHANNEL-12  NSTD ANSI HIGH INTR
        LN1 through LN102. . . . . .  NSTD ANSI HIGH INTR
        LN1 through LN255. . . . . .  NSTD ANSI HIGH INTR
        LN-1 through LN-255. . . . .  NSTD ANSI HIGH INTR
        SWITCH-1 through SWITCH-8. .  NSTD ANSI HIGH INTR MINI
        SWITCH-0 through SWITCH-31 .  NSTD ANSI HIGH INTR MINI
        SYSIN. . . . . . . . . . . .  NSTD ANSI HIGH
        SYSIN-0. . . . . . . . . . .  NSTD ANSI HIGH
        SYSIN-1. . . . . . . . . . .  NSTD ANSI HIGH
        SYSIN-2. . . . . . . . . . .  NSTD ANSI HIGH
        SYSIN-X. . . . . . . . . . .  NSTD ANSI HIGH
        SYSOUT . . . . . . . . . . .  NSTD ANSI HIGH
        SYSOUT-0 . . . . . . . . . .  NSTD ANSI HIGH
        SYSOUT-1 . . . . . . . . . .  NSTD ANSI HIGH
        SYSOUT-2 . . . . . . . . . .  NSTD ANSI HIGH
        SYSOUT-X . . . . . . . . . .  NSTD ANSI HIGH
        CONSOLE. . . . . . . . . . .  NSTD ANSI HIGH
        CONSOLE-0. . . . . . . . . .  NSTD ANSI HIGH
        CONSOLE-1. . . . . . . . . .  NSTD ANSI HIGH
        CONSOLE-2. . . . . . . . . .  NSTD ANSI HIGH
        CONSOLE-X. . . . . . . . . .  NSTD ANSI HIGH
        ALTERNATE-CONSOLE. . . . . .  NSTD ANSI HIGH
        ALTERNATE-CONSOLE-0. . . . .  NSTD ANSI HIGH
        ALTERNATE-CONSOLE-1. . . . .  NSTD ANSI HIGH
        ALTERNATE-CONSOLE-2. . . . .  NSTD ANSI HIGH
        ALTERNATE-CONSOLE-X. . . . .  NSTD ANSI HIGH
        ALTERNATE CONSOLE. . . . . .  NSTD
        ALTERNATE CONSOLE-0. . . . .  NSTD
        ALTERNATE CONSOLE-1. . . . .  NSTD
        ALTERNATE CONSOLE-2. . . . .  NSTD
        ALTERNATE CONSOLE-X. . . . .  NSTD
        TERMINAL . . . . . . . . . .  NSTD ANSI HIGH
        TERMINAL-0 . . . . . . . . .  NSTD ANSI HIGH
        TERMINAL-1 . . . . . . . . .  NSTD ANSI HIGH
        TERMINAL-2 . . . . . . . . .  NSTD ANSI HIGH
        TERMINAL-X . . . . . . . . .  NSTD ANSI HIGH
     ON STATUS . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
     OFF STATUS. . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
     Implementor-name series . . . .  NSTD ANSI HIGH INTR MINI



The ANSI Flagger

47 A2 05UL Rev04 C-9

     The alphabet-name clause
        STANDARD-1 . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        STANDARD-2 . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        NATIVE . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        implementor-name
           EBCDIC. . . . . . . . . .  NSTD ANSI HIGH INTR MINI
           ASCII . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
           GBCD. . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
           JIS . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        literal. . . . . . . . . . .  NSTD ANSI HIGH
     The CLASS clause. . . . . . . .  NSTD ANSI HIGH INTR MINI
     The CURRENCY SIGN clause. . . .  NSTD ANSI HIGH INTR MINI
        IS figurative constant except
         symbolic character. . . . .  NSTD
        OBJECT SIGN phrase . . . . .  NSTD
     The DECIMAL-POINT clause. . . .  NSTD ANSI HIGH INTR MINI
        COMMA. . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
        DECIMAL-POINT. . . . . . . .  NSTD
        OBJECT IS COMMA. . . . . . .  NSTD
        OBJECT IS DECIMAL-POINT. . .  NSTD
     The SYMBOLIC CHARACTER clause .  NSTD ANSI HIGH
        IN alphabet-name phrase. . .  NSTD ANSI HIGH
        IN NATIVE phrase . . . . . .  NSTD
        IN STANDARD-1 phrase . . . .  NSTD
        IN STANDARD-2 phrase . . . .  NSTD
        IN EBCDIC phrase . . . . . .  NSTD
        IN ASCII phrase. . . . . . .  NSTD
        IN GBCD phrase . . . . . . .  NSTD
        IN JIS phrase. . . . . . . .  NSTD

Input-Output Section

   The FILE-CONTROL paragraph
      The SELECT clause. . . . . . .  NSTD ANSI HIGH INTR MINI
      The SELECT OPTIONAL clause . .  NSTD ANSI HIGH
      The SELECT EXTERNAL clause . .  NSTD
      The ASSIGN TO implementor-name
       clause
         ifn . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
         ifn-CARD-READER . . . . . .  NSTD ANSI HIGH INTR MINI
         ifn-CARD-PUNCH. . . . . . .  NSTD ANSI HIGH INTR MINI
         ifn-PRINTER . . . . . . . .  NSTD ANSI HIGH INTR MINI
         ifn-TAPE. . . . . . . . . .  NSTD ANSI HIGH INTR MINI
         ifn-MSD . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
         ifn-SYSIN . . . . . . . . .  NSTD ANSI HIGH INTR MINI
         ifn-SYSOUT. . . . . . . . .  NSTD ANSI HIGH INTR MINI
         H-SORT (sort-merge file). .  NSTD ANSI HIGH INTR
         H_SORT (sort-merge file). .  NSTD
         any ifn accepted for sort-merge
          file . . . . . . . . . . .  NSTD ANSI HIGH INTR
         literal . . . . . . . . . .  NSTD ANSI HIGH INTR MINI



GCOS 7 COBOL 85 Reference Manual

C-10 47 A2 05UL Rev04

      The ORGANIZATION clause
         SEQUENTIAL. . . . . . . . .  NSTD ANSI HIGH INTR MINI
            default is UFF . . . . .  NSTD ANSI HIGH INTR MINI
            default is ANSI for files
             whose code-set is ASCII or
             STANDARD-1 when the ifn is
             suffixed by -TAPE . . .  NSTD ANSI HIGH INTR MINI
         UFF SEQUENTIAL. . . . . . .  NSTD
         QUEUED SEQUENTIAL . . . . .  NSTD
         ANSI SEQUENTIAL . . . . . .  NSTD
         RELATIVE. . . . . . . . . .  NSTD ANSI HIGH INTR
            default is UFF . . . . .  NSTD ANSI HIGH INTR
         UFF RELATIVE. . . . . . . .  NSTD
         INDEXED . . . . . . . . . .  NSTD ANSI HIGH INTR
            default is UFF . . . . .  NSTD ANSI HIGH INTR
         UFF INDEXED . . . . . . . .  NSTD
      The ACCESS MODE clause
         SEQUENTIAL. . . . . . . . .  NSTD ANSI HIGH INTR MINI
         RANDOM. . . . . . . . . . .  NSTD ANSI HIGH INTR
         DYNAMIC . . . . . . . . . .  NSTD ANSI HIGH
         The RELATIVE KEY phrase . .  NSTD ANSI HIGH INTR
      The ACTUAL KEY clause. . . . .  NSTD
      The RECORD KEY clause. . . . .  NSTD ANSI HIGH INTR
      The ALTERNATE RECORD KEY clause NSTD ANSI HIGH
      The FILE STATUS clause . . . .  NSTD ANSI HIGH INTR MINI
      The WITH ASA clause. . . . . .  NSTD
      The WITH SSF clause. . . . . .  NSTD
      The WITH SARF clause . . . . .  NSTD
      The WITH FLR clause. . . . . .  NSTD
      The WITH VLR clause. . . . . .  NSTD
      The WITH BSN clause. . . . . .  NSTD
      The WITH NO BSN clause . . . .  NSTD
      default is BSN . . . . . . . .  NSTD
      WITH ... is a clause in itself  NSTD
      PADDING CHARACTER clause . . .  NSTD ANSI HIGH
      RECORD DELIMITER clause. . . .  NSTD ANSI HIGH
      RESERVE AREA clause. . . . . .  NSTD ANSI HIGH
   The I-O-CONTROL paragraph
      APPLY NO-SORTED-INDEX. . . . .  NSTD
      The MULTIPLE FILE TAPE clause.  NSTD ANSI HIGH           Z
      The RERUN clause . . . . . . .  NSTD ANSI HIGH INTR MINI Z
         ON CHECKPOINT-FILE. . . . .  NSTD ANSI HIGH INTR MINI Z
         EVERY integer RECORDS . . .  NSTD ANSI HIGH INTR MINI Z
         EVERY END OF REEL/UNIT. . .  NSTD ANSI HIGH INTR MINI Z
      The SAME AREA clause . . . . .  NSTD ANSI HIGH INTR MINI
      The SAME RECORD AREA clause. .  NSTD ANSI HIGH INTR
      The SAME SORT AREA clause. . .  NSTD ANSI HIGH INTR
      The SAME SORT-MERGE AREA clause NSTD ANSI HIGH INTR
      SAME series. . . . . . . . . .  NSTD ANSI HIGH INTR MINI



The ANSI Flagger

47 A2 05UL Rev04 C-11

DATA DIVISION.

Communication Section. . . . . . . .  NSTD ANSI           1COM
File Section . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
Linkage Section. . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
Report Section . . . . . . . . . . .  NSTD ANSI           RPW
Working-Storage Section. . . . . . .  NSTD ANSI HIGH INTR MINI
Constant Section . . . . . . . . . .  NSTD
The Communication Description entry
   FOR INPUT clause. . . . . . . . .  NSTD ANSI           1COM
      INITIAL phrase . . . . . . . .  NSTD ANSI           2COM
      SYMBOLIC SUB-QUEUE-X clause. .  NSTD ANSI           2COM
      data-name series . . . . . . .  NSTD ANSI           2COM
   FOR OUTPUT clause . . . . . . . .  NSTD ANSI           1COM
      DESTINATION COUNT clause . . .  NSTD ANSI           1COM
      one or greater . . . . . . . .  NSTD ANSI           2COM
      DESTINATION TABLE clause . . .  NSTD ANSI           2COM
   FOR I-O clause. . . . . . . . . .  NSTD ANSI           1COM
      INITIAL clause . . . . . . . .  NSTD ANSI           2COM
      data-names series. . . . . . .  NSTD ANSI           2COM
   four levels of queue permitted. .  NSTD ANSI           1COM
The Data Description entry . . . . .  NSTD ANSI HIGH INTR MINI
The File Description entry . . . . .  NSTD ANSI HIGH INTR MINI
The Record Description entry . . . .  NSTD ANSI HIGH INTR MINI
The Report Description entry . . . .  NSTD ANSI           RPW
The Report Group Description entry .  NSTD ANSI           RPW
The Sort-Merge Description entry . .  NSTD ANSI HIGH INTR
The BLANK WHEN ZERO clause . . . . .  NSTD ANSI HIGH INTR MINI
The BLOCK CONTAINS clause
   integer CHARACTERS/RECORDS. . . .  NSTD ANSI HIGH INTR MINI
   integer-1 TO integer-2
    CHARACTERS/RECORDS . . . . . . .  NSTD ANSI HIGH
The CODE clause. . . . . . . . . . .  NSTD ANSI           RPW
The CODE-SET clause
   allowed for any file organization  NSTD
   alphabet-name . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   NATIVE. . . . . . . . . . . . . .  NSTD
   STANDARD-1. . . . . . . . . . . .  NSTD
   STANDARD-2. . . . . . . . . . . .  NSTD
   EBCDIC. . . . . . . . . . . . . .  NSTD
   ASCII . . . . . . . . . . . . . .  NSTD
   GBCD. . . . . . . . . . . . . . .  NSTD
   JIS . . . . . . . . . . . . . . .  NSTD
The COLUMN NUMBER clause . . . . . .  NSTD ANSI           RPW
The CONTROL clause . . . . . . . . .  NSTD ANSI           RPW
The data-name clause . . . . . . . .  NSTD ANSI HIGH INTR MINI
The DATA RECORDS clause. . . . . . .  NSTD ANSI HIGH INTR MINI Z
The EXTERNAL clause at level FD or 01 NSTD ANSI HIGH
The EXTERNAL clause at level 77. . .  NSTD
The GLOBAL clause. . . . . . . . . .  NSTD ANSI HIGH
   In SD entry . . . . . . . . . . .  NSTD
   In Communication Section. . . . .  NSTD
   In Linkage Section. . . . . . . .  NSTD
FILLER . . . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   may be at any level . . . . . . .  NSTD ANSI HIGH INTR MINI
   need not be present . . . . . . .  NSTD ANSI HIGH INTR MINI
The GROUP INDICATE clause. . . . . .  NSTD ANSI           RPW
The JUSTIFIED clause (may be abbreviated
 JUST) . . . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
The LABEL RECORDS clause
   STANDARD/OMITTED. . . . . . . . .  NSTD ANSI HIGH INTR MINI Z
Level-number
   1 through 49 (level-number may be 1



GCOS 7 COBOL 85 Reference Manual

C-12 47 A2 05UL Rev04

    or 2 digits) . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   66 or 88. . . . . . . . . . . . .  NSTD ANSI HIGH
   77. . . . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
The LINAGE clause. . . . . . . . . .  NSTD ANSI HIGH
The LINE NUMBER clause . . . . . . .  NSTD ANSI           RPW
The NEXT GROUP clause. . . . . . . .  NSTD ANSI           RPW
The OCCURS clause
   integer TIMES . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   ASCENDING/DESCENDING data-name. .  NSTD ANSI HIGH
   ASCENDING/DESCENDING data-name
    series NSTD ANSI HIGH INDEXED BY
     index-name. . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   integer-1 TO integer-2 DEPENDING ON
    data-name. . . . . . . . . . . .  NSTD ANSI HIGH
   integer-1 may be zero . . . . . .  NSTD ANSI HIGH
The PAGE clause. . . . . . . . . . .  NSTD ANSI           RPW
The PICTURE clause (may be abbreviated
 PIC)
   character-string may contain 30
    characters . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   data characters: A X 9. . . . . .  NSTD ANSI HIGH INTR MINI
   operational symbols: S V P. . . .  NSTD ANSI HIGH INTR MINI
   fixed insertion characters:
      0 B , . $ + - DB CR /. . . . .  NSTD ANSI HIGH INTR MINI
   replacement or floating characters:
      + - Z $ *. . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   currency sign substitution. . . .  NSTD ANSI HIGH INTR MINI
   decimal point substitution. . . .  NSTD ANSI HIGH INTR MINI
   L with DEPENDING ON . . . . . . .  NSTD
   floating point symbol: E. . . . .  NSTD
The RECORD clause. . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   VARYING IN SIZE phrase. . . . . .  NSTD ANSI HIGH
   FROM integer TO integer CHARACTERS NSTD ANSI HIGH
   DEPENDING ON. . . . . . . . . . .  NSTD ANSI HIGH
The REDEFINES clause
   may not be nested . . . . . . . .  NSTD ANSI HIGH INTR MINI
   may be nested . . . . . . . . . .  NSTD ANSI HIGH
   re-definition may be shorter at
    non 01 level . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
The RENAMES clause . . . . . . . . .  NSTD ANSI HIGH
The REPORT clause. . . . . . . . . .  NSTD ANSI           RPW
The SIGN clause. . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
The SOURCE clause. . . . . . . . . .  NSTD ANSI           RPW
The SUM clause . . . . . . . . . . .  NSTD ANSI           RPW
The SYNCHRONIZED clause (may be
 abbreviated SYNC) . . . . . . . . .  NSTD ANSI HIGH INTR MINI
The TYPE clause. . . . . . . . . . .  NSTD ANSI           RPW



The ANSI Flagger

47 A2 05UL Rev04 C-13

The USAGE clause
   BINARY. . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   COMPUTATIONAL (may be abbreviated
    COMP). . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      default is COMP-3. . . . . . .  NSTD ANSI HIGH INTR MINI
   COMPUTATIONAL-1 (may be abbreviated
    COMP-1). . . . . . . . . . . . .  NSTD
   COMPUTATIONAL-2 (may be abbreviated
    COMP-2). . . . . . . . . . . . .  NSTD
   COMPUTATIONAL-3 (may be abbreviated
    COMP-3). . . . . . . . . . . . .  NSTD
      unsigned is without sign . . .  NSTD
   COMPUTATIONAL-5 (may be abbreviated
    COMP-5). . . . . . . . . . . . .  NSTD
   COMPUTATIONAL-8 (may be abbreviated
    COMP-8). . . . . . . . . . . . .  NSTD
      byte aligned, unsigned is with
       plus sign . . . . . . . . . .  NSTD
   COMPUTATIONAL-9 (may be abbreviated
    COMP-9). . . . . . . . . . . . .  NSTD
   COMPUTATIONAL-10 (may be abbreviated
    COMP-10) . . . . . . . . . . . .  NSTD
   COMPUTATIONAL-15 (may be abbreviated
    COMP-15) . . . . . . . . . . . .  NSTD
   DISPLAY . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   INDEX . . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   PACKED-DECIMAL. . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   POINTER . . . . . . . . . . . . .  NSTD
The VALUE clause
   literal . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   literal series. . . . . . . . . .  NSTD ANSI HIGH
   literal THRU literal. . . . . . .  NSTD ANSI HIGH
   literal range series. . . . . . .  NSTD ANSI HIGH
   NULL. . . . . . . . . . . . . . .  NSTD
The VALUE OF clause
   implementor-name IS literal . . .  NSTD ANSI HIGH INTR MINI Z
   implementor-name IS data-name . .  NSTD ANSI HIGH



GCOS 7 COBOL 85 Reference Manual

C-14 47 A2 05UL Rev04

PROCEDURE DIVISION.

USING phrase in Procedure Division
 header. . . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   USING more than 5 data-names. . .  NSTD ANSI HIGH
Declaratives . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
Arithmetic expressions . . . . . . .  NSTD ANSI HIGH
Conditional expressions
   Simple conditions
      Relation condition
         relation operators
            [NOT] GREATER THAN . . .  NSTD ANSI HIGH INTR MINI
            [NOT] >. . . . . . . . .  NSTD ANSI HIGH INTR MINI
            [NOT] LESS THAN. . . . .  NSTD ANSI HIGH INTR MINI
            [NOT] <. . . . . . . . .  NSTD ANSI HIGH INTR MINI
            [NOT] EQUAL TO . . . . .  NSTD ANSI HIGH INTR MINI
            [NOT] =. . . . . . . . .  NSTD ANSI HIGH INTR MINI
            GREATER THAN OR EQUAL TO  NSTD ANSI HIGH INTR MINI
            LESS THAN OR EQUAL TO. .  NSTD ANSI HIGH INTR MINI
            >= . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
            <= . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
            EXCEEDS. . . . . . . . .  NSTD
            EQUALS . . . . . . . . .  NSTD
            UNEQUAL TO . . . . . . .  NSTD
         boolean operators: B-AND B-OR
          B-EXOR . . . . . . . . . .  NSTD
         comparison
            numeric operands . . . .  NSTD ANSI HIGH INTR MINI
            non-numeric operands
               operands must be of equal
                size . . . . . . . .  NSTD ANSI HIGH INTR MINI
               operands may be unequal
                in size. . . . . . .  NSTD ANSI HIGH INTR MINI
            index-names and/or index
             data items. . . . . . .  NSTD ANSI HIGH INTR MINI
            boolean operands . . . .  NSTD
            pointers . . . . . . . .  NSTD
      Class condition (may have a NOT
       option) . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      Switch-Status condition. . . .  NSTD ANSI HIGH INTR MINI
      Condition-Name condition . . .  NSTD ANSI HIGH
      Sign condition (may have a NOT
       option) . . . . . . . . . . .  NSTD ANSI HIGH
   Complex conditions
      logical operators AND, OR, NOT  NSTD ANSI HIGH
      Negated simple conditions. . .  NSTD ANSI HIGH
      Parenthesized conditions . . .  NSTD ANSI HIGH INTR MINI
      Combined and negated combined
       conditions. . . . . . . . . .  NSTD ANSI HIGH
   Abbreviated combined relation
    condition. . . . . . . . . . . .  NSTD ANSI HIGH



The ANSI Flagger

47 A2 05UL Rev04 C-15

The arithmetic statements
   arithmetic operands limited to 18
    digits . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   arithmetic operands limited to 30
    digits . . . . . . . . . . . . .  NSTD
   composite limited to 18 digits. .  NSTD ANSI HIGH INTR MINI
   composite limited to 30 digits. .  NSTD
   intermediate results limited to 18
    digits . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   intermediate results limited to 30
    digits . . . . . . . . . . . . .  NSTD
Overlapping operands . . . . . . . .  NSTD ANSI HIGH INTR MINI
Multiple results in arithmetic
 statements. . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI

The ACCEPT statement
   identifier. . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   only one transfer of data . . . .  NSTD ANSI HIGH INTR MINI
   no restriction on the number of
    transfers of data. . . . . . . .  NSTD ANSI HIGH
   FROM phrase
      mnemonic-name. . . . . . . . .  NSTD ANSI HIGH
      SYSIN. . . . . . . . . . . . .  NSTD
      CONSOLE. . . . . . . . . . . .  NSTD
      ALTERNATE CONSOLE. . . . . . .  NSTD
      TERMINAL . . . . . . . . . . .  NSTD
      file-name. . . . . . . . . . .  NSTD
   default media is SYSIN. . . . . .  NSTD ANSI HIGH INTR MINI
   DATE/DAY/DAY-OF-WEEK/TIME phrase.  NSTD ANSI HIGH
   MESSAGE COUNT phrase. . . . . . .  NSTD ANSI           1COM
The ADD statement
   identifier/literal. . . . . . . .  NSTD ANSI HIGH INTR MINI
   identifier/literal series . . . .  NSTD ANSI HIGH INTR MINI
   TO identifier . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   TO identifier series. . . . . . .  NSTD ANSI HIGH INTR MINI
   GIVING identifier . . . . . . . .  NSTD ANSI HIGH INTR MINI
   GIVING identifier series. . . . .  NSTD ANSI HIGH INTR MINI
   ROUNDED phrase. . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   SIZE ERROR phrase . . . . . . . .  NSTD ANSI HIGH INTR MINI
   ON SIZE ERROR phrase. . . . . . .  NSTD ANSI HIGH INTR MINI
   NOT ON SIZE ERROR phrase. . . . .  NSTD ANSI HIGH INTR MINI
   END-ADD phrase. . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   CORRESPONDING phrase. . . . . . .  NSTD ANSI HIGH
The ALTER statement
   procedure-name. . . . . . . . . .  NSTD ANSI HIGH INTR MINI Z
   procedure-name series . . . . . .  NSTD ANSI HIGH           Z
The ASSIGN statement . . . . . . . .  NSTD



GCOS 7 COBOL 85 Reference Manual

C-16 47 A2 05UL Rev04

The CALL statement
   literal . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   identifier. . . . . . . . . . . .  NSTD ANSI HIGH
   USING phrase. . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      identifier . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      literal. . . . . . . . . . . .  NSTD
      more than 5 operands . . . . .  NSTD ANSI HIGH
      may have any level-number. . .  NSTD
      may be subscripted . . . . . .  NSTD
      may be an expression . . . . .  NSTD
      BY REFERENCE phrase. . . . . .  NSTD ANSI HIGH
      BY CONTENT phrase. . . . . . .  NSTD ANSI HIGH
   USING ADDRESS OF identifier . . .  NSTD
   ON OVERFLOW phrase. . . . . . . .  NSTD ANSI HIGH
   ON EXCEPTION phrase . . . . . . .  NSTD ANSI HIGH
   NOT ON OVERFLOW phrase. . . . . .  NSTD
   NOT ON EXCEPTION phrase . . . . .  NSTD ANSI HIGH
   END-CALL phrase . . . . . . . . .  NSTD ANSI HIGH INTR MINI
The CANCEL statement . . . . . . . .  NSTD ANSI HIGH
The CLOSE statement
   single file-name. . . . . . . . .  NSTD ANSI HIGH INTR MINI
   file-name series. . . . . . . . .  NSTD ANSI HIGH INTR MINI
   REEL. . . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   UNIT. . . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   NO REWIND . . . . . . . . . . . .  NSTD ANSI HIGH
   FOR REMOVAL . . . . . . . . . . .  NSTD ANSI HIGH
   LOCK. . . . . . . . . . . . . . .  NSTD ANSI HIGH
The COMPUTE statement
   Arithmetic expression . . . . . .  NSTD ANSI HIGH
   Boolean expression. . . . . . . .  NSTD
   Identifier series . . . . . . . .  NSTD ANSI HIGH
   ROUNDED phrase. . . . . . . . . .  NSTD ANSI HIGH
   ON SIZE ERROR phrase. . . . . . .  NSTD ANSI HIGH
   NOT ON SIZE ERROR phrase. . . . .  NSTD ANSI HIGH
   END-COMPUTE phrase. . . . . . . .  NSTD ANSI HIGH
The CONTINUE statement . . . . . . .  NSTD ANSI HIGH INTR MINI
The DELETE statement . . . . . . . .  NSTD ANSI HIGH INTR
   INVALID KEY phrase. . . . . . . .  NSTD ANSI HIGH INTR
   NOT INVALID KEY phrase. . . . . .  NSTD ANSI HIGH INTR
   END-DELETE phrase . . . . . . . .  NSTD ANSI HIGH INTR
The DISABLE statement
   INPUT . . . . . . . . . . . . . .  NSTD ANSI           2COM
   INPUT TERMINAL. . . . . . . . . .  NSTD ANSI           2COM
   OUTPUT. . . . . . . . . . . . . .  NSTD ANSI           2COM
   KEY identifier/literal. . . . . .  NSTD ANSI           2COM Z
The DISPLAY statement
   only one transfer of data . . . .  NSTD ANSI HIGH INTR MINI
   no restriction on the number of
    transfers of data. . . . . . . .  NSTD ANSI HIGH
   WITH CONVERSION phrase. . . . . .  NSTD
   UPON phrase
      mnemonic-name. . . . . . . . .  NSTD ANSI HIGH
      SYSOUT . . . . . . . . . . . .  NSTD
      CONSOLE. . . . . . . . . . . .  NSTD
      ALTERNATE CONSOLE. . . . . . .  NSTD
      TERMINAL . . . . . . . . . . .  NSTD
   default media is SYSOUT . . . . .  NSTD ANSI HIGH INTR MINI
   WITH NO ADVANCING phrase. . . . .  NSTD ANSI HIGH



The ANSI Flagger

47 A2 05UL Rev04 C-17

The DIVIDE statement
   INTO identifier . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   INTO identifier series. . . . . .  NSTD ANSI HIGH INTR MINI
   BY identifier/literal . . . . . .  NSTD ANSI HIGH INTR MINI
   GIVING identifier . . . . . . . .  NSTD ANSI HIGH INTR MINI
   GIVING identifier series. . . . .  NSTD ANSI HIGH INTR MINI
   REMAINDER phrase. . . . . . . . .  NSTD ANSI HIGH
   ROUNDED phrase. . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   SIZE ERROR phrase . . . . . . . .  NSTD ANSI HIGH INTR MINI
   NOT SIZE ERROR phrase . . . . . .  NSTD ANSI HIGH INTR MINI
   END-DIVIDE phrase . . . . . . . .  NSTD ANSI HIGH INTR MINI
The ENABLE statement
   INPUT . . . . . . . . . . . . . .  NSTD ANSI           2COM
   INPUT TERMINAL. . . . . . . . . .  NSTD ANSI           2COM
   OUTPUT. . . . . . . . . . . . . .  NSTD ANSI           2COM
   KEY identifier/literal. . . . . .  NSTD ANSI           2COM Z
The ENTER statement. . . . . . . . .  NSTD ANSI HIGH INTR MINI Z
The EVALUATE statement
   Identifier/literal. . . . . . . .  NSTD ANSI HIGH
   Arithmetic expression . . . . . .  NSTD ANSI HIGH
   Boolean expression. . . . . . . .  NSTD
   Conditional expression. . . . . .  NSTD ANSI HIGH
   TRUE/FALSE. . . . . . . . . . . .  NSTD ANSI HIGH
   ALSO phrase . . . . . . . . . . .  NSTD ANSI HIGH
   WHEN phrase . . . . . . . . . . .  NSTD ANSI HIGH
   WHEN OTHER phrase . . . . . . . .  NSTD ANSI HIGH
   END-EVALUATE phrase . . . . . . .  NSTD ANSI HIGH
The EXAMINE statement. . . . . . . .  NSTD
The EXIT statement . . . . . . . . .  NSTD ANSI HIGH INTR MINI
The EXIT PROGRAM statement . . . . .  NSTD ANSI HIGH INTR MINI
The GENERATE statement . . . . . . .  NSTD ANSI           RPW
The GO TO statement
   procedure-name is required. . . .  NSTD ANSI HIGH INTR MINI
   procedure-name is optional. . . .  NSTD ANSI HIGH           Z
   DEPENDING ON phrase . . . . . . .  NSTD ANSI HIGH INTR MINI
The IF statement
   statements must be imperative
    statements . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   Imperative and/or conditional
    statements . . . . . . . . . . .  NSTD ANSI HIGH
   nested IF statements. . . . . . .  NSTD ANSI HIGH INTR MINI
   THEN optional word. . . . . . . .  NSTD ANSI HIGH INTR MINI
   NEXT SENTENCE phrase. . . . . . .  NSTD ANSI HIGH INTR MINI
   ELSE. . . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   END-IF phrase . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
The INITIALIZE statement
   Identifier series . . . . . . . .  NSTD ANSI HIGH
   REPLACING phrase. . . . . . . . .  NSTD ANSI HIGH
   REPLACING series. . . . . . . . .  NSTD ANSI HIGH
The INITIATE statement . . . . . . .  NSTD ANSI           RPW



GCOS 7 COBOL 85 Reference Manual

C-18 47 A2 05UL Rev04

The INSPECT statement
   only single character data item .  NSTD ANSI HIGH INTR MINI
   multi-character data item . . . .  NSTD ANSI HIGH
   TALLYING phrase . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      BEFORE/AFTER phrase. . . . . .  NSTD ANSI HIGH INTR MINI
      BEFORE/AFTER phrase series . .  NSTD ANSI HIGH
   TALLYING phrase series. . . . . .  NSTD ANSI HIGH
   REPLACING phrase. . . . . . . . .  NSTD ANSI HIGH INTR MINI
      BEFORE/AFTER phrase. . . . . .  NSTD ANSI HIGH INTR MINI
      BEFORE/AFTER phrase series . .  NSTD ANSI HIGH
   REPLACING phrase series . . . . .  NSTD ANSI HIGH
   TALLYING and REPLACING phrases. .  NSTD ANSI HIGH INTR MINI
   CONVERTING phrase . . . . . . . .  NSTD ANSI HIGH
The MERGE statement. . . . . . . . .  NSTD ANSI HIGH INTR
   COLLATING SEQUENCE phrase
      alphabet-name. . . . . . . . .  NSTD ANSI HIGH INTR
      NATIVE . . . . . . . . . . . .  NSTD
      STANDARD-1 . . . . . . . . . .  NSTD
      STANDARD-2 . . . . . . . . . .  NSTD
      EBCDIC . . . . . . . . . . . .  NSTD
      ASCII. . . . . . . . . . . . .  NSTD
      GBCD . . . . . . . . . . . . .  NSTD
      JIS. . . . . . . . . . . . . .  NSTD
The MOVE statement
   TO identifier . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   TO identifier series. . . . . . .  NSTD ANSI HIGH INTR MINI
   De-editing. . . . . . . . . . . .  NSTD ANSI HIGH
   CORRESPONDING phrase. . . . . . .  NSTD ANSI HIGH
      TO identifier series . . . . .  NSTD
The MULTIPLY statement
   BY identifier . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   BY identifier series. . . . . . .  NSTD ANSI HIGH INTR MINI
   GIVING identifier . . . . . . . .  NSTD ANSI HIGH INTR MINI
   GIVING identifier series. . . . .  NSTD ANSI HIGH INTR MINI
   ROUNDED phrase. . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   SIZE ERROR phrase . . . . . . . .  NSTD ANSI HIGH INTR MINI
   NOT SIZE ERROR phrase . . . . . .  NSTD ANSI HIGH INTR MINI
   END-MULTIPLY phrase . . . . . . .  NSTD ANSI HIGH INTR MINI
The OPEN statement
   single file-name. . . . . . . . .  NSTD ANSI HIGH INTR MINI
   file-name series. . . . . . . . .  NSTD ANSI HIGH INTR MINI
   INPUT . . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      NO REWIND. . . . . . . . . . .  NSTD ANSI HIGH
      REVERSED . . . . . . . . . . .  NSTD ANSI HIGH           Z
   OUTPUT. . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      NO REWIND. . . . . . . . . . .  NSTD ANSI HIGH
   I-O . . . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   EXTEND. . . . . . . . . . . . . .  NSTD ANSI HIGH
   INPUT, OUTPUT, I-O, and EXTEND
    series . . . . . . . . . . . . .  NSTD ANSI HIGH
   INPUT, OUTPUT, and I-O series . .  NSTD ANSI HIGH INTR MINI



The ANSI Flagger

47 A2 05UL Rev04 C-19

The PERFORM statement
   procedure-name. . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   procedure-name is optional. . . .  NSTD ANSI HIGH INTR MINI
   THRU phrase . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   IMPERATIVE-STATEMENT option . . .  NSTD ANSI HIGH INTR MINI
   END-PERFORM phrase. . . . . . . .  NSTD ANSI HIGH INTR MINI
   TIMES phrase. . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   UNTIL phrase. . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
       WITH TEST BEFORE/AFTER phrase  NSTD ANSI HIGH
   VARYING phrase. . . . . . . . . .  NSTD ANSI HIGH
       WITH TEST BEFORE/AFTER phrase  NSTD ANSI HIGH
   AFTER phrase. . . . . . . . . . .  NSTD ANSI HIGH
   6 AFTER phrase permitted. . . . .  NSTD ANSI HIGH
The PURGE statement. . . . . . . . .  NSTD ANSI           2COM
The READ statement
   file-name . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   INTO identifier . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   NEXT RECORD . . . . . . . . . . .  NSTD ANSI HIGH
   PREVIOUS RECORD . . . . . . . . . .NSTD
   KEY IS phrase . . . . . . . . . .  NSTD ANSI HIGH
   AT END phrase . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   NOT AT END phrase . . . . . . . .  NSTD ANSI HIGH INTR MINI
   INVALID KEY phrase. . . . . . . .  NSTD ANSI HIGH INTR
   NOT INVALID KEY phrase. . . . . .  NSTD ANSI HIGH INTR
   END-READ phrase . . . . . . . . .  NSTD ANSI HIGH INTR MINI
The RECEIVE statement
   MESSAGE . . . . . . . . . . . . .  NSTD ANSI           1COM
   SEGMENT . . . . . . . . . . . . .  NSTD ANSI           2COM
   INTO identifier . . . . . . . . .  NSTD ANSI           1COM
   NO DATA phrase. . . . . . . . . .  NSTD ANSI           1COM
   WITH DATA phrase. . . . . . . . .  NSTD ANSI           1COM
   END-RECEIVE phrase. . . . . . . .  NSTD ANSI           1COM
The RELEASE statement
   record-name . . . . . . . . . . .  NSTD ANSI HIGH INTR
   FROM phrase . . . . . . . . . . .  NSTD ANSI HIGH INTR
The RETURN statement
   file-name . . . . . . . . . . . .  NSTD ANSI HIGH INTR
   INTO phrase . . . . . . . . . . .  NSTD ANSI HIGH INTR
   AT END phrase . . . . . . . . . .  NSTD ANSI HIGH INTR
   NOT AT END phrase . . . . . . . .  NSTD ANSI HIGH INTR
   END-RETURN phrase . . . . . . . .  NSTD ANSI HIGH INTR
The REWRITE statement
   FROM identifier . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   INVALID KEY phrase. . . . . . . .  NSTD ANSI HIGH INTR
   NOT INVALID KEY phrase. . . . . .  NSTD ANSI HIGH INTR
   END-REWRITE phrase. . . . . . . .  NSTD ANSI HIGH INTR MINI
The SEARCH statement . . . . . . . .  NSTD ANSI HIGH



GCOS 7 COBOL 85 Reference Manual

C-20 47 A2 05UL Rev04

The SEND statement
   FROM identifier (portion of a
    message) . . . . . . . . . . . .  NSTD ANSI           2COM
   FROM identifier (complete message) NSTD ANSI           1COM
   WITH identifier phrase. . . . . .  NSTD ANSI           2COM
   WITH ESI. . . . . . . . . . . . .  NSTD ANSI           2COM
   WITH EMI. . . . . . . . . . . . .  NSTD ANSI           1COM
   WITH EGI. . . . . . . . . . . . .  NSTD ANSI           1COM
   BEFORE/AFTER ADVANCING
       Integer LINE/LINES. . . . . .  NSTD ANSI           1COM
       Identifier LINE/LINES . . . .  NSTD ANSI           1COM
       Mnemonic-name . . . . . . . .  NSTD ANSI           2COM
       PAGE. . . . . . . . . . . . .  NSTD ANSI           1COM
   REPLACING LINE. . . . . . . . . .  NSTD ANSI           2COM
The SET statement
   Index-name/identifier TO. . . . .  NSTD ANSI HIGH INTR MINI
   Index-name UP BY/DOWN BY. . . . .  NSTD ANSI HIGH INTR MINI
   mnemonic-name . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   SWITCH-0 through SWITCH-31. . . .  NSTD
   TO ON/OFF . . . . . . . . . . . .  NSTD
   Condition-name TO TRUE. . . . . .  NSTD ANSI HIGH
   Condition-name TO FALSE . . . . .  NSTD
   SET pointer . . . . . . . . . . .  NSTD
The SORT statement
   only one SORT statement, a STOP RUN
    statement,  and any associated
    input-output procedures allowed in
    the non-declarative portion of a
    program. . . . . . . . . . . . .  NSTD ANSI HIGH INTR
   program not limited to one SORT
    statement. . . . . . . . . . . .  NSTD ANSI HIGH INTR
   COLLATING SEQUENCE phrase
      alphabet-name. . . . . . . . .  NSTD ANSI HIGH INTR
      NATIVE . . . . . . . . . . . .  NSTD
      STANDARD-1 . . . . . . . . . .  NSTD
      STANDARD-2 . . . . . . . . . .  NSTD
      EBCDIC . . . . . . . . . . . .  NSTD
      ASCII. . . . . . . . . . . . .  NSTD
      GBCD . . . . . . . . . . . . .  NSTD
      JIS. . . . . . . . . . . . . .  NSTD
   WITH DUPLICATES IN SEQUENCE . . .  NSTD
The START statement
   EQUAL TO. . . . . . . . . . . . .  NSTD ANSI HIGH
   EQUALS. . . . . . . . . . . . . .  NSTD
   = . . . . . . . . . . . . . . . .  NSTD ANSI HIGH
   EXCEEDS . . . . . . . . . . . . .  NSTD
   GREATER . . . . . . . . . . . . .  NSTD ANSI HIGH
   > . . . . . . . . . . . . . . . .  NSTD ANSI HIGH
   LESS . . . . . . . . . . . . . . . NSTD
   < . . . . . . . . . . . . .  . . . NSTD
   NOT GREATER . . . . . . . . . . .  NSTD
   NOT > . . . . . . . . . . . . . .  NSTD
   LESS THAN OR EQUAL TO . . . . . .  NSTD
   <= . . . . . . . . . . . . . . . . NSTD
   NOT LESS. . . . . . . . . . . . .  NSTD ANSI HIGH
   NOT < . . . . . . . . . . . . . .  NSTD ANSI HIGH
   GREATER THAN OR EQUAL TO. . . . .  NSTD ANSI HIGH
   >=. . . . . . . . . . . . . . . .  NSTD ANSI HIGH
   subkey. . . . . . . . . . . . . .  NSTD ANSI HIGH
   INVALID KEY phrase. . . . . . . .  NSTD ANSI HIGH
   NOT INVALID KEY phrase. . . . . .  NSTD ANSI HIGH
   END-START phrase. . . . . . . . .  NSTD ANSI HIGH



The ANSI Flagger

47 A2 05UL Rev04 C-21

The STOP statement
   RUN . . . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   literal . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI Z
   ERROR . . . . . . . . . . . . . .  NSTD
The STRING statement . . . . . . . .  NSTD ANSI HIGH
The SUBTRACT statement
   identifier/literal series . . . .  NSTD ANSI HIGH INTR MINI
   FROM identifier . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   FROM identifier series. . . . . .  NSTD ANSI HIGH INTR MINI
   GIVING identifier . . . . . . . .  NSTD ANSI HIGH INTR MINI
   GIVING identifier series. . . . .  NSTD ANSI HIGH INTR MINI
   ROUNDED phrase. . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   SIZE ERROR phrase . . . . . . . .  NSTD ANSI HIGH INTR MINI
   NOT SIZE ERROR phrase . . . . . .  NSTD ANSI HIGH INTR MINI
   END-SUBTRACT phrase . . . . . . .  NSTD ANSI HIGH INTR MINI
   CORRESPONDING phrase. . . . . . .  NSTD ANSI HIGH
The SUPPRESS statement . . . . . . .  NSTD ANSI           RPW
The TERMINATE statement. . . . . . .  NSTD ANSI           RPW
The TRANSFORM statement. . . . . . .  NSTD
The UNSTRING statement . . . . . . .  NSTD ANSI HIGH
The USE statement
   GLOBAL phrase . . . . . . . . . .  NSTD ANSI HIGH
   EXCEPTION/ERROR PROCEDURE
      ON file-name . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      ON file-name series. . . . . .  NSTD ANSI HIGH
      ON INPUT/OUTPUT/I-O. . . . . .  NSTD ANSI HIGH INTR MINI
      ON EXTEND. . . . . . . . . . .  NSTD ANSI HIGH
   BEFORE REPORTING. . . . . . . . .  NSTD ANSI           RPW
The USE FOR DEBUGGING statement
   procedure-name. . . . . . . . . .  NSTD ANSI           1DEB Z
   procedure-name series . . . . . .  NSTD ANSI           1DEB Z
   ALL procedures. . . . . . . . . .  NSTD ANSI           1DEB Z
   [ALL REFERENCES OF] identifier
    series . . . . . . . . . . . . .  NSTD ANSI           2DEB Z
      WITH CONVERSION. . . . . . . .  NSTD
   file-name series. . . . . . . . .  NSTD ANSI           2DEB Z
   cd-name series. . . . . . . . . .  NSTD ANSI           2DEB Z
The WRITE statement
   record-name . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   FROM identifier . . . . . . . . .  NSTD ANSI HIGH INTR MINI
   BEFORE/AFTER ADVANCING
      integer LINES. . . . . . . . .  NSTD ANSI HIGH INTR MINI
      PAGE . . . . . . . . . . . . .  NSTD ANSI HIGH INTR MINI
      identifier LINES . . . . . . .  NSTD ANSI HIGH INTR MINI
      mnemonic-name. . . . . . . . .  NSTD ANSI HIGH
   AT END-OF-PAGE phrase . . . . . .  NSTD ANSI HIGH
   INVALID KEY phrase. . . . . . . .  NSTD ANSI HIGH INTR
   NOT END-OF-PAGE phrase. . . . . .  NSTD ANSI HIGH
   NOT INVALID KEY phrase. . . . . .  NSTD ANSI HIGH INTR
   END-WRITE phrase. . . . . . . . .  NSTD ANSI HIGH INTR MINI



GCOS 7 COBOL 85 Reference Manual

C-22 47 A2 05UL Rev04

Segmentation

Segment-number . . . . . . . . . . .  NSTD ANSI           1SEG Z
Fixed segment-number range 0
 through 49. . . . . . . . . . . . .  NSTD ANSI           1SEG Z
Non-fixed segment-number range 50
 through 99. . . . . . . . . . . . .  NSTD ANSI           1SEG Z
Sections with the same segment-number
 physically contiguous or not. . . .  NSTD ANSI           1SEG Z
Sections with the same segment-number
 not physically contiguous are not
 allowed . . . . . . . . . . . . . .  NSTD ANSI           2SEG Z

Library

The COPY statement . . . . . . . . .  NSTD ANSI HIGH INTR
   OF/IN library-name. . . . . . . .  NSTD ANSI HIGH
   REPLACING phrase. . . . . . . . .  NSTD ANSI HIGH
   REPLACING LEADING/TRAILING phrase  NSTD
The REPLACE statement. . . . . . . .  NSTD ANSI HIGH
   non pseudo-text . . . . . . . . .  NSTD



47 A2 05UL Rev04 D-1

D. The COBOL Obsolete Features

The purpose of the obsolete language element category is to limit the impact of deleting
features that are seen as obsolete or improperly specified.  Although the elements in this
category are obsolete, their abrupt removal from Standard COBOL would be a disservice
to COBOL users.  Features placed in the obsolete element category have the following
characteristics:

• Language elements to be deleted from Standard COBOL will first be identified as
obsolete language elements prior to being deleted.

• Obsolete language elements will be neither enhanced, modified, nor maintained.

• The interaction between obsolete language elements and other language elements is
undefined unless otherwise specified in Standard COBOL.

The following is a list of the obsolete language elements in third Standard COBOL.
Associated with each obsolete element in this list is a justification for placing that
element into the obsolete element category.

1. Double character substitution.  When a character set contains fewer than 51
characters, double characters must be substituted for the single characters.  This
feature has been placed in the obsolete element category.

These specifications are a carry-over from the time when most hardware could not
provide the complete COBOL character set.

This limitation on number of characters available in hardware no longer exists.

2. All literal and numeric or numeric edited form.  The figurative constant ALL literal,
when associated with a numeric or numeric edited item and when the length of the
literal is greater than one, has been placed in the obsolete element category.

The reason for making this element obsolete is that the results of moving an ALL
literal to a numeric data item are often unexpected.  For example:

      01 A PIC 99V99.

          MOVE ALL "99" TO A.
          MOVE ALL "123" TO A.

give values 99.00 and 31.00 respectively.



GCOS 7 COBOL 85 Reference Manual

D-2 47 A2 05UL Rev04

3. AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED and  SECURITY
paragraphs.  The AUTHOR, INSTALLATION, DATE-WRITTEN,  DATE-COMPILED
and SECURITY paragraphs in the Identification Division have been placed in the
obsolete element category.

The purpose of the AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-
COMPILED and SECURITY paragraphs can be achieved through the use of
comment lines within the Identification Division since these paragraphs have no
effect on the operating of a COBOL program.

The goal of cleaning up and regularizing the COBOL language has been achieved
by declaring many implementor-defined elements as obsolete.  The format of the
DATE-COMPILED and SECURITY paragraphs are examples of comment-entry
paragraphs which are defined by the implementor.

The interaction of the COPY statement with the comment-entries in the AUTHOR,
INSTALLATION, DATE-WRITTEN, DATE-COMPILED and SECURITY paragraphs
is often ambiguous, i.e. the presence of the word COPY in a comment-entry versus
the use of the COPY statement in a comment-entry.

4. MEMORY SIZE clause.  This MEMORY SIZE clause of the  OBJECT-COMPUTER
paragraph has been placed in the obsolete element category.

This anachronistic feature of the language is a carry-over from the time when many
systems required a specification of memory size allocation to load the run unit.
Memory capacity for a family of main frame models often ranged from 8K to 64K
maximum.  COBOL programs used the MEMORY SIZE clause to generate objects
for specific models.

This feature is considered to be a function more appropriately controlled by the host
operating system in today's computing environment.  In second Standard COBOL,
the MEMORY SIZE clause was optional.  Thus, there are no standard conforming
COBOL implementations that require the use of the MEMORY SIZE clause to
specify the object computer memory size.

5. RERUN clause.  The RERUN clause of the I-O-CONTROL paragraph  has been
placed in the obsolete element category.

Seven forms of the RERUN clause are provided.  The implementor is required to
support at least one form of the RERUN clause.

This function is considered to be a function more appropriately controlled by the
host operating system in today's computing environment.

The RERUN clause provides only one-half of a complete rerun/restart facility.  That
is, the syntax and semantics for restart are not specified.  Due to the variety in
forms of the RERUN clause, there is no guarantee that a program using this clause
would be transportable.

6. MULTIPLE FILE TAPE clause.  The MULTIPLE FILE TAPE clause in  the I-O-
CONTROL paragraph of the Environment Division has been placed in the obsolete
element category.

The MULTIPLE FILE TAPE clause should be a function of the operating system
and not the individual COBOL program.  Therefore, the MULTIPLE FILE TAPE
clause has been placed in the obsolete element category.



The COBOL Obsolete Features

47 A2 05UL Rev04 D-3

7. LABEL RECORDS clause.  The LABEL RECORDS clause in the file  description
entry has been placed in the obsolete element category and has been made an
optional clause.

Specifying the presence of file labels is considered a function of the operating
system and as such does not belong in the COBOL program.

8. VALUE OF clause.  The VALUE OF clause in the file description  entry has been
placed in the obsolete element category.

Describing file label items is considered a function of the operating system and
does not belong in the COBOL program.  Thus the VALUE OF clause has been
placed in the obsolete element category.

9. DATA RECORDS clause.  The DATA RECORDS clause of the file  description
entry has been placed in the obsolete element category.

The DATA RECORDS clause is redundant and may cause misleading
documentation.

10. ALTER statement.  The ALTER statement has been placed in the  obsolete element
category.

The use of the ALTER statement in a program results in a program which may be
difficult to understand and maintain.  The ALTER statement provides no unique
function since the GO TO DEPENDING statement can serve the same purpose.

11. KEY phrase of the DISABLE statement.  The KEY phrase of the  DISABLE
statement has been placed in the obsolete element category and has been made an
optional phrase.

The KEY phrase of the DISABLE statement is used as a password facility for
access to the DISABLE statement.  However the rules for determining when the
value in the KEY phrase matches the system password are not specified, thereby
resulting in a situation defined by the implementor.  Thus the function provided by
the KEY phrase is not portable.

12. KEY phrase of the ENABLE statement.  The KEY phrase of the  ENABLE statement
has been placed in the obsolete element category.

The KEY phrase of the ENABLE statement is used as a password facility for access
to the ENABLE statement.  However the rules for determining when the value in the
KEY phrase matches the system password are not specified, thereby resulting in a
situation defined by the implementor.  Thus the function provided by the KEY
phrase is not portable.

13. ENTER statement.  The ENTER statement has been placed in the  obsolete
element category.

The ENTER statement was a precursor of the CALL statement and the calling of
external subprograms.  The ENTER statement provides no portability because it is
optional and is defined by the implementor; thus the ENTER statement is not a
good candidate for standardization.

14. The optionality of procedure-name-1 in GO TO statement.  The  optionality of
procedure-name-1 in the GO TO statement has been placed in the obsolete
element category.



GCOS 7 COBOL 85 Reference Manual

D-4 47 A2 05UL Rev04

The optionality of procedure-name-1 in the GO TO statement is dependant upon
the ALTER statement.  If procedure-name-1 is not specified in format 1 of the GO
TO statement, then an ALTER statement referring to that GO TO statement must
be executed prior to the execution of the GO TO statement.  Since the ALTER
statement has been placed in the obsolete element category, the optionality of
procedure-name-1 in the GO TO statement has also been placed in the obsolete
element category.

15. REVERSED phrase of the OPEN statement.  The REVERSED phrase of  the
OPEN statement has been placed in the obsolete element category.

A sequential file may be opened for input to be read in reversed order.  The
necessary hardware to perform this function is not very widely available.  Hence,
this is an infrequently implemented feature and not a good candidate for
standardization.  Since this feature is on the hardware dependent list, it is an
optional feature which may or may not be implemented.

16. STOP literal statement.  The literal variation of the STOP  statement has been
placed in the obsolete element category.

General rule 4 of the STOP statement reads: "if STOP literal-1 is specified, the
execution of the run unit is suspended and literal-1 is communicated to the
operator.  Continuation of the execution of the run unit begins with the next
executable statement when the implementor-defined procedure governing run unit
re-initiation is instituted."

The function of the STOP literal statement is substantially defined by the
implementor and thus not portable.

17. Segmentation module.  The segmentation module has been placed  in the obsolete
element category.

In the current state of the art, the function provided by the segmentation module is
provided at the operating system level, external to the COBOL source code.  Thus
this feature remains in third Standard COBOL as an obsolete element to be deleted
in the next revision.

Making the segmentation module optional allows existing implementations to
continue offering the feature for compatibility reasons, without forcing new
implementations to provide a capability grounded in obsolete technology.

18. Debug module.  The debug module has been placed in the obsolete element
category.

In the current state of the art, the function provided by the debug module is
frequently provided through an interactive debug facility which does not require
COBOL source statements.  Thus, the feature remains in third Standard COBOL as
an obsolete element to be deleted in the next revision.

Making the debug module optional allows existing implementations to continue
offering the feature for compatibility reasons, without forcing new implementations
to provide a capability grounded in obsolete technology.



47 A2 05UL Rev04 E-1

E. COBOL 85 Substantive Changes

E.1 CHANGES NOT AFFECTING EXISTING PROGRAMS

The following is a list of the changes of substance included in third Standard COBOL that
are new features not impacting existing programs; for example, a new verb or an
additional capability for an old verb.

1. Lower-case letters.  Lower-case letters may be used in character-strings.  Except
when used in non-numeric literals, each is equivalent to the corresponding
uppercase letter.

2. Colon (:) character.  The COBOL character set has been expanded to include the
colon (:) character that is used in reference modification.

3. Punctuation characters.  The separators comma, semi-colon and space are
interchangeable within a source program.

4. User-defined words and system-names.  The same COBOL word may be used as a
system-name or as a user-defined word within a source program; the context into
which a COBOL word occurs determines what it is.

5. Symbolic-characters.  A symbolic-character is a user-defined word that specifies a
user-defined figurative constant.

6. Non-numeric literal.  A non-numeric literal has an upper limit of 160 characters in
length.  The upper limit was 120 in second Standard COBOL.

7. Figurative constant ZERO.  The figurative constant ZERO is allowed in arithmetic
expressions.

8. Uniqueness of reference.  A user-defined word need not be unique or be capable of
being made unique unless referenced.

9. Qualification.  50 levels of qualification are allowed.  Five levels of qualification
were possible in second Standard COBOL.

10. Subscripting.  A table may have up to seven dimensions.  Up to three dimensions
were allowed in second Standard COBOL.



GCOS 7 COBOL 85 Reference Manual

E-2 47 A2 05UL Rev04

11. Relative subscripting.  Relative subscripting allows a subscript to be followed by the
operator + or - which is followed by an integer.

12. Mixing subscripts and indexes.  Indexes and data-name subscripts may both be
written in a single set of subscripts used to reference an individual occurrence of a
multi-dimensional table.

13. Reference modification.  Reference modification is a new method of referencing
data by specifying a leftmost character and length for the data item.

14. Sequence number.  The sequence number may contain any character of the
computer's character set.  In second Standard COBOL the sequence number
contained only digits.

15. Data Division reference format.  The word following a level indicator, level-number
01, or level-number 77 on the same line may begin in area A.

16. End program header.  The end program header indicates the end the named
COBOL source program; the end program header may be followed by a COBOL
program that is to be compiled separately in the same invocation of the compiler.

17. Nested source programs.  Programs can be contained in other programs.

18. INITIAL clause in PROGRAM-ID paragraph.  The INITIAL clause specifies a
program whose state is initialized, whenever the program is called, to the same
state as when that program was first called in the run unit.

19. COMMON clause in PROGRAM-ID paragraph.  The COMMON clause specifies a
program that, despite being directly contained within another program, may be
called from any program directly or indirectly contained in that other program.

20. Environment Division.  The Environment Division is optional.  Within the
Environment Division, the Configuration Section is optional.  The SOURCE-
COMPUTER paragraph, the OBJECT-COMPUTER paragraph, as well as the
entries within the SOURCE-COMPUTER paragraph, OBJECT-COMPUTER
paragraph, SPECIAL-NAMES paragraph and I-O-CONTROL paragraph are also
optional.

21. SPECIAL-NAMES paragraph.  Condition-name need not be specified.

22. SPECIAL-NAMES paragraph.  The reserved word IS has been made optional in the
SPECIAL-NAMES paragraph to be consistent with the use of IS throughout the
COBOL specifications.

23. STANDARD-2 option.  The STANDARD-2 option within the ALPHABET clause of
the SPECIAL-NAMES paragraph allows the specification of ISO 7-bit character set
for a character code set or collating sequence.

24. ASSIGN clause.  A non-numeric literal may be specified in the ASSIGN clause.

25. OPTIONAL phrase.  The OPTIONAL phrase within the file control entry applies to
sequential files, relative files, and indexed files opened in the input, I-O, or extend
mode.  In second Standard COBOL, the OPTIONAL phrase within the file control
entry applied to sequential files opened in the input mode.



COBOL 85 Substantive Changes

47 A2 05UL Rev04 E-3

26. ORGANIZATION clause.  Within the ORGANIZATION clause of the file control
entry, the words ORGANIZATION IS have been made optional.

27. PADDING CHARACTER clause.  The PADDING CHARACTER clause in the file
control entry specifies the character which is to be used for block padding on
sequential files.

28. RECORD DELIMITER clause.  The RECORD DELIMITER clause in the file control
entry indicates the method of determining the length of a variable length record on
the external medium.

29. I-O-CONTROL paragraph.  The order of clauses is immaterial in the I-O-CONTROL
paragraph.

30. Data Division.  The Data Division is optional.

31. BLOCK CONTAINS clause.  Omission of the BLOCK CONTAINS clause is
permitted if the number of records contained in a block is specified by the operating
environment.  In second Standard COBOL, the absence of the BLOCK CONTAINS
clause denoted the standard physical record size designated by the implementor.

32. CODE-SET clause.  The CODE-SET clause may be specified for all files with
sequential organization.  In second Standard COBOL, the CODE-SET clause was
restricted to non-mass storage files.

33. LABEL RECORDS clause.  The LABEL RECORDS clause is optional; if not
specified, then the clause LABEL RECORDS ARE STANDARD is assumed.

34. LINAGE clause.  Data names within the LINAGE clause may be qualified.

35. EXTERNAL clause.  The EXTERNAL clause specifies that a data item or a file
connector is external and may be accessed and processed by any program in the
run unit.

36. GLOBAL clause.  The GLOBAL clause specifies that a data-name or a file-name is
a global name that is available to every program contained within the program
which declares it.

37. FILLER clause.  The use of the word FILLER is optional for data description entries.
The word FILLER can appear in a data description entry containing a REDEFINES
clause.  The word FILLER may be used in a data description entry of a group item.

38. OCCURS clause.  The data item specified in the DEPENDING ON phrase may
have a zero value.  Thus, the minimum number of occurrences may be zero.

39. PICTURE character-string.  A PICTURE character-string may be continued between
coding lines.

40. PICTURE clause.  The insertion character '.' (period) or ',' (comma) may be used as
the last character of a PICTURE character-string, provided it is immediately
followed by the separator period terminating the data description entry.



GCOS 7 COBOL 85 Reference Manual

E-4 47 A2 05UL Rev04

41. RECORD clause.  The VARYING phrase of the RECORD clause is used to specify
variable length records.  The DEPENDING phrase associated with the VARYING
phrase specifies a data item containing the number of character positions in a
record.

42. REDEFINES clause.  The size of the item associated with the REDEFINES clause
may be less than or equal to the size of the re-defined item.  In second Standard
COBOL, the two items had to have the same number of character positions.

43. SIGN clause.  Multiple SIGN clauses may be specified in the hierarchy of a data
description entry; the specification at the subordinate level takes precedence over
the specification at the containing group level.

44. SIGN clause.  The SIGN clause is allowed in a report group description entry.

45. USAGE clause.  BINARY and PACKED-DECIMAL are two new features of the
USAGE clause.

46. VALUE clause.  The VALUE clause may be specified in a data description entry
that contains an OCCURS clause.  The VALUE clause may be specified in a data
description entry that is subordinate to an entry containing an OCCURS clause.  In
second Standard COBOL, the VALUE clause was not permitted in a data
description entry containing an OCCURS clause or in a data description entry
subordinate to an entry containing an OCCURS clause.

47. Communication description entry.  The order of clauses in the communication
description entry is immaterial.

48. FOR I-O phrase in communication description entry.  The FOR I-O phrase in a
communication description entry provides for both input and output functions by one
CD entry.

49. LINE NUMBER clause.  The integer 0 may be specified as the relative line number
in the PLUS phrase of the LINE NUMBER clause.

50. Procedure Division.  A Linkage Section item which redefines, or is subordinate to
one which redefines, an item appearing in the Procedure Division header may be
referenced in the Procedure Division.

51. Scope terminators.  Scope terminators serve to delimit the scope of certain
procedural statements.  The scope terminators include: END-ADD, END-CALL,
END-COMPUTE, END-DELETE, END-DIVIDE, END-EVALUATE, END-IF, END-
MULTIPLY, END-PERFORM, END-READ, END-RECEIVE, END-RETURN, END-
REWRITE, END-SEARCH, END-START, END-STRING, END-SUBTRACT, END-
UNSTRING, END-WRITE.

52. Relational operators.  The relational operator IS GREATER THAN OR EQUAL TO
(>=) is equivalent to the relational operator IS NOT LESS THAN.  The relational
operator IS LESS THAN OR EQUAL TO (<=) is equivalent to the relational operator
IS NOT GREATER THAN.

53. Class conditions.  Class-name is associated with a set of characters specified by the
user in the CLASS clause within the SPECIAL-NAMES paragraph.



COBOL 85 Substantive Changes

47 A2 05UL Rev04 E-5

54. DAY-OF-WEEK phrase of ACCEPT statement.  The DAY-OF-WEEK phrase of the
ACCEPT statement provides access to an integer representing the day of week; for
example, 1 represents Monday, 2 represents Tuesday, and 7 represent Sunday.

55. ADD statement.  The word TO is an optional word in the format: ADD
identifier/literal TO identifier/literal GIVING identifier.

56. NOT ON SIZE ERROR phrase of ADD statement.  The NOT ON SIZE ERROR
phrase provides the programmer with the capability to specify procedures to be
executed when a size error condition does not exist for the ADD statement.

57. CALL statement.  The BY CONTENT phrase indicates that the called program
cannot change the value of a parameter in the CALL statement's USING phrase,
but the called program may change the value of the corresponding data item in the
called program's Procedure Division header.  The BY REFERENCE phrase causes
the parameter in the CALL statement's USING phrase to be treated the same as
specified in second Standard COBOL.

58. CALL statement.  The parameters passed in a CALL statement can be other than
01 or 77 level data item.  The parameters passed in a CALL statement may be
subscripted and/or reference modified.

59. ON EXCEPTION, NOT ON EXCEPTION phrases of a CALL statement.  The ON
EXCEPTION phrase of the CALL statement is equivalent to the ON OVERFLOW
phrase of the CALL statement.  The NOT ON EXCEPTION provides the
programmer with the capability to specify procedures to be executed when the
program specified by the CALL statement has been made available for execution.

60. REEL/UNIT phrase of the CLOSE statement.  The REEL/UNIT phrase of the
CLOSE statement can be applied to a single reel/unit file and is specifically
permitted for a report file.

61. FOR REMOVAL phrase of the CLOSE statement.  The FOR REMOVAL phrase of
the CLOSE statement is allowed for a sequential single reel/unit file.

62. NOT ON SIZE ERROR of COMPUTE statement.  The NOT ON SIZE ERROR
phrase provides the programmer with the capability to specify procedures to be
executed when a size error condition does not exist for the COMPUTE statement.

63. CONTINUE statement.  The CONTINUE statement indicates that there is no
executable statement present and causes an implicit transfer of control to the next
executable statement.

64. NOT INVALID KEY phrase of the DELETE statement.  The NOT INVALID KEY
phrase provides the programmer with the capability to specify procedures to be
executed when an invalid key condition does not exist for the DELETE statement.

65. DISPLAY statement.  The figurative constant ALL literal is permitted in the
DISPLAY statement.  In second Standard COBOL, the figurative constant ALL
literal was not permitted in the DISPLAY statement.

66. NOT ON SIZE ERROR phrase of DIVIDE statement.  The NOT ON SIZE ERROR
phrase provides the programmer with the capability to specify procedures to be
executed when a size error condition does not exist for the DIVIDE statement.



GCOS 7 COBOL 85 Reference Manual

E-6 47 A2 05UL Rev04

67. WITH NO ADVANCING phrase of the DISPLAY statement.  The WITH NO
ADVANCING phrase of the DISPLAY statement provides interaction with a
hardware device having vertical positioning.

68. EVALUATE statement.  The EVALUATE statement describes a multi-branch, multi-
join structure in which multiple conditions are evaluated to determine the
subsequent action of the object program.

69. EXIT PROGRAM statement.  The EXIT PROGRAM statement need not be the only
statement in a paragraph.

70. GO TO DEPENDING statement.  The number of procedure-names required in a
GO TO DEPENDING statement has been reduced to one.

71. IF statement.  The optional word THEN has been added to the general format of the
IF statement.

72. INITIALIZE statement.  The INITIALIZE statement provides the ability to set
selected types of data fields to predetermined values.

73. INSPECT statement.  Multiple occurrences of the BEFORE/AFTER phrase allow
the TALLYING/REPLACING operation to be initiated after the beginning of the
inspection of the data begins and/or terminated before the end of the inspection of
the data ends.

74. INSPECT statement.  The ALL/LEADING adjective can be distributed over multiple
occurrences of the REPLACING CHARACTERS phrase.

75. INSPECT CONVERTING statement.  The CONVERTING phrase provides a new
variation for the INSPECT statement.

76. MERGE statement.  Multiple file-names are allowed in the GIVING phrase of the
MERGE statement.  A file named in a MERGE statement may contain variable
length records.  A file named in either the USING or GIVING phrase of a MERGE
statement can be a relative file or an indexed file.

77. MOVE statement.  A numeric edited data item may be moved to a numeric or
numeric edited data item; thus, de-editing takes place.

78. NOT ON SIZE ERROR phrase of the MULTIPLY statement.  The NOT ON SIZE
ERROR phrase provides the programmer with the capability to specify procedures
to be executed when an on size error condition does not exist for the MULTIPLY
statement.

79. EXTEND phrase of the OPEN statement.  The EXTEND phrase of the OPEN
statement can be used with a a relative file or an indexed file.

80. PURGE statement.  The PURGE statement causes the message control system
(MCS) to eliminate any partial message that has been released by one or more
SEND statements.

81. PERFORM statement.  Procedure-name may be omitted resulting in an in-line
PERFORM of the imperative statement preceding the END-PERFORM phrase
terminating the PERFORM statement.



COBOL 85 Substantive Changes

47 A2 05UL Rev04 E-7

82. PERFORM statement.  The TEST AFTER phrase causes the condition to be tested
after the specified set of statements has been executed.  The TEST BEFORE
phrase causes the condition to be tested before the specified set of statements is
executed.

83. PERFORM statement.  At least six AFTER phrases must be permitted in the
VARYING phrase of the PERFORM statement.  A maximum of two AFTER phrases
existed in second Standard COBOL.

84. READ statement.  Variable length records are allowed when the READ statement
has an INTO phrase.  The NEXT phrase is allowed in a READ statement
referencing a file with sequential organization.

85. NOT AT END phrase of READ statement.  The NOT AT END phrase provides the
programmer with the capability to specify procedures to be executed when the at
end condition does not exist for the READ statement.

86. NOT INVALID KEY phrase of READ statement.  The NOT INVALID KEY phrase
provides the programmer with the capability to specify procedures to be executed
when an invalid key condition does not exist for the READ statement.

87. WITH DATA phrase of RECEIVE statement.  The WITH DATA phrase provides the
programmer with the capability to specify procedures to be executed when the MCS
makes data available during execution of a RECEIVE statement.

88. REPLACE statement.  The REPLACE statement causes each occurrence of
specified text in the source program to be replaced by the corresponding text
specified in the REPLACE statement.

89. RETURN statement.  Variable length records are allowed when the RETURN
statement has an INTO phrase.

90. NOT AT END phrase of the RETURN statement.  The NOT AT END phrase
provides the programmer with the capability to specify procedures to be executed
when an at end condition does not exist for the RETURN statement.

91. REWRITE statement.  A record of a different length can replace a record within
either a relative or indexed file.

92. NOT INVALID KEY phrase of REWRITE statement.  The NOT INVALID KEY
phrase provides the programmer with the capability to specify procedures to be
executed when an invalid key condition does not exist for the REWRITE statement.

93. SEND statement.  The REPLACING LINE phrase is a new feature of the SEND
statement.

94. SET statement.  Index-names and identifiers may now be mixed in a series of
operands preceding the word TO in a SET statement.  Two new variations of the
SET statement permit the setting of an external switch to be changed and permit
the value of a conditional variable to be changed.



GCOS 7 COBOL 85 Reference Manual

E-8 47 A2 05UL Rev04

95. SORT statement.  Multiple file-names are allowed in the GIVING phrase of the
SORT statement.  A file named in a SORT statement may contain variable length
records.  A file named in either the USING or GIVING phrase of a SORT statement
can be a relative or an indexed file.  The files named in the USING and GIVING
phrases can reside on the same physical reel.  If the DUPLICATES phrase is
specified, records whose key values are identical remain in the same order as they
were when they were input to the sort process when the sort process is completed.

96. SORT and MERGE statements.  The input and output procedures of a SORT or
MERGE statement may contain explicit transfers of control to points outside the
input or output procedure.  The remainder of the Procedure Division may contain
transfers of control to points inside the input or output procedure.  A paragraph-
name may be specified in the INPUT PROCEDURE phrase or the OUTPUT
PROCEDURE phrase.

97. NOT INVALID KEY phrase of START statement.  The NOT INVALID KEY phrase
provides the programmer with the capability to specify procedures to be executed
when an invalid key condition does not exist for the START statement.

98. STRING statement.  The identifier in the INTO phrase of the STRING statement
may be a group item.

99. NOT ON OVERFLOW phrase of STRING statement.  The NOT ON OVERFLOW
phrase provides the programmer with the capability to specify procedures to be
executed when an overflow condition does not exist for the STRING statement.

100. NOT ON SIZE ERROR phrase of the SUBTRACT statement.  The NOT ON SIZE
ERROR phrase provides the programmer with the capability to specify procedures
to be executed when a size error condition does not exist for the SUBTRACT
statement.

101. NOT ON OVERFLOW phrase of UNSTRING statement.  The NOT ON
OVERFLOW phrase provides the programmer with the capability to specify
procedures to be executed when an overflow condition does not exist for the
UNSTRING statement.

102. USE statement.  A USE AFTER EXCEPTION/ERROR declarative statement
specifying the name of a file takes precedence over a declarative statement
specifying the open mode of the file.

103. USE statement.  The GLOBAL phrase specifies that the associated declarative
procedures are invoked during the execution of any program contained within the
program which includes the USE statement.

104. USE BEFORE REPORTING statement.  The GLOBAL phrase specifies that the
associated declarative procedures are invoked during the execution of any program
contained within the program which includes the USE BEFORE REPORTING
statement.

105. NOT-END-OF-PAGE phrase of WRITE statement.  The NOT-END-OF-PAGE
phrase provides the programmer with the capability to specify procedures to be
executed when an end-of-page condition does not exist for the WRITE statement.

106. NOT INVALID KEY phrase of WRITE statement.  The NOT INVALID KEY phrase
provides the programmer with the capability to specify procedures to be executed
when an invalid key condition does not exist for the WRITE statement.



COBOL 85 Substantive Changes

47 A2 05UL Rev04 E-9

E.2 CHANGES WHICH MAY AFFECT EXISTING PROGRAMS

This section contains a list of the changes of substance included in third Standard
COBOL that are new features or changes that could impact existing programs; for
example, the addition of a rule for a previously undefined situation or the change of a
rule for an existing verb.

The general philosophy in developing third Standard COBOL was that clarifications of
unclear or ambiguous rules should be made in the interest of portability of programs and
of ease of development of new programs.  The addition of new features has also been
done with the intent of making new programs easier and lest costly to develop.  The
changes have been made with the intent of impacting existing programs as little as
possible.  The long term savings in program portability and development should
outweigh the short term costs of conversion of existing programs.

It should be noted that this section contains a list of changes having the potential to
impact existing programs.  In those cases where second Standard COBOL was unclear,
the clarification has been made in accordance with a de facto industry standard, if one
existed.  In any case, a clarification does not cause an incompatibility between
standards; it only causes the possibility of an incompatibility between any particular
implementation and third Standard COBOL.  The justifications included in the following
list address primarily the effects of the changes on COBOL programs which follow the
rules of second Standard COBOL.  The effects of the changes are not always known for
programs that: (1) violate the rules of second Standard COBOL, or (2) use features for
which the rules were not well defined in second Standard COBOL and thus where
dependent on a particular implementor's extension or interpretation of the rules.

1. Length of ALL literal.  When the figurative constant ALL is not associated with
another data item, the length of the string is the length of the literal.

The rules in second Standard COBOL for the size of the figurative constant ALL
literal differ depending on where the figurative constant has been used in the
program.

2. Alphabet-name clause.  The key word ALPHABET must precede alphabet-name
within the alphabet-name clause of the SPECIAL-NAMES paragraph.

In third Standard COBOL, system-names and user-defined words are allowed to
intersect.  The introduction of the key word ALPHABET in the alphabet-name
clause resolves the resulting possible ambiguity.

This feature makes it easier to move a program from implementation to
implementation; system-names no longer need to be changed.  To modify an
existing program, the key word ALPHABET must be inserted in front of the
alphabet-name clause.

3. Collating sequence.  The collating sequence used to access an indexed file is the
collating sequence associated with the native character set that was in effect for the
file at the time the file was created.

In second Standard COBOL, two interpretations were possible: the native collating
sequence, or the collating sequence specified by the PROGRAM COLLATING
SEQUENCE clause.



GCOS 7 COBOL 85 Reference Manual

E-10 47 A2 05UL Rev04

4. CURRENCY SIGN clause.  The literal specified within the currency sign clause may
not be a figurative constant.

5. RELATIVE KEY phrase.  The relative key data item specified in the RELATIVE
KEY phrase must not contain the PICTURE symbol 'P'.

6. LINAGE clause.  Files for which the LINAGE clause has been specified must not be
opened in the extend mode.

7. FOOTING phrase.  If the FOOTING phrase is not specified, no end-of-page
condition independent of the page overflow condition exists.

In second Standard COBOL, the specifications for the existence of the footing area
are contradictory between the LINAGE clause and the WRITE clause.  The solution
in third Standard COBOL reflects the intuition that if no footing area is specified,
then none is wanted.  Thus, if no FOOTING phrase is specified in the LINAGE
clause, then no footing area exists and no end-of-page condition occurs.

8. OCCURS clause.  When a receiving item is a variable length data item and
contains the object of the DEPENDING ON phrase, the maximum length of the item
will be used.

In second Standard COBOL, the length was computed based on the value of the
item in the DEPENDING ON phrase prior to the execution of the statement.  Using
the second Standard COBOL rules with a MOVE statement (or a READ INTO
statement) could have resulted in loss of data if the value of the DEPENDING ON
data item was not set to indicate the length of the sending data before the MOVE
was executed.

Programs which conform to second Standard COBOL will not be affected by this
change in third Standard COBOL.

To change an existing program which is affected, restructure the affected data
records so that there are no valid data items following the transferred part of a
variable length data item in a record.

9. PICTURE symbol 'P'.  When a data item described by a PICTURE containing the
character 'p' is referenced, the digit positions referenced by 'P' will be considered to
contain zeroes in the following operations: (1) any operation requiring a numeric
sending operand; (2) a MOVE statement where the sending operand is numeric and
its PICTURE character-string contains the symbol 'P'; (3) a MOVE statement where
the sending operand is numeric edited and its PICTURE character-string contains
the symbol 'P' and the receiving operand is numeric or numeric edited; (4) a
comparison operation where both operands are numeric.

In second Standard COBOL, digit positions described with a 'P' where considered to
contain zeroes when used in an operation involving conversion of data from one
form of internal representation to another.  Second Standard COBOL did not
specify what happened in operations not involving data conversion, or when
conversion was required.



COBOL 85 Substantive Changes

47 A2 05UL Rev04 E-11

10. Procedure Division header.  A data item appearing in the USING phrase of the
Procedure Division header must not have a REDEFINES clause in its data
description entry.

In second Standard COBOL, an item which was described with a REDEFINES
clause can be specified in the USING phrase of the Procedure Division header.  If
the calling program specifies two different parameters, the results are undefined.

In most cases, a program which specified a re-defining item in the USING phrase of
the Procedure Division header can be converted by substituting the re-defined item.

11. Exponentiation.  The following special cases of exponentiation are defined in third
Standard COBOL:

a. If an expression having a zero value is raised to a negative or zero power, the
size error condition exists.

b. If the evaluation of the exponentiation yields both a positive and a negative
number, the positive number is returned.

c. If no real number exists as the result of the evaluation, the size error condition
exists.

Second Standard COBOL did not state what would happen in these special cases of
exponentiation.

12. Order of execution for a conditional expression.  Two or more conditions connected
by only the logical operator AND or only the logical operator OR within a
hierarchical level are evaluated in order from left to right, and evaluation of that
hierarchical level terminates as soon as a truth value for it is determined regardless
of whether all the constituent connected conditions within that hierarchical level
have been evaluated.

By specifying the order of evaluation, program portability will be enhanced.

13. Class conditions.  The ALPHABETIC test is true for uppercase letters, lower-case
letters, and the space character.  The ALPHABETIC-UPPER test is true for
uppercase letters and the space character.  The ALPHABETIC-LOWER test is true
for lower-case letters and the space character.

In second Standard COBOL, the ALPHABETIC test was true for uppercase letters
and the space character.

The change from ALPHABETIC to ALPHABETIC-UPPER can be reliably
accomplished by an automated source code conversion program.

14. CANCEL statement.  The CANCEL closes all open files.

In second Standard COBOL, the status of files left in the open mode when the
program was cancelled is not defined.  The change in third Standard COBOL
produces a predictable result for processing this statement.

The only programs that will potentially be affected are those that cancelled
programs and expected files associated with the cancelled programs to remain
open after the execution of the CANCEL statement.



GCOS 7 COBOL 85 Reference Manual

E-12 47 A2 05UL Rev04

15. CLOSE statement.  The NO REWIND phrase cannot be specified in a CLOSE
statement having the REEL/UNIT phrase.

In second Standard COBOL, the rules for the NO REWIND phrase and the
REEL/UNIT phrase were sometimes in conflict.

16. COPY statement.  If the word COPY appears in a comment-entry or in the place
where a comment-entry may appear, it is considered part of the comment-entry.

In second Standard COBOL, the appearance of the word COPY in a comment-entry
was an undefined situation.  The specification of this situation within third Standard
COBOL will enhance program portability.

17. COPY statement.  After all COPY statements have been processed, a debugging
line will be considered to have all the characteristics of a comment line, if the WITH
DEBUGGING MODE is not specified in the SOURCE-COMPUTER paragraph.

Second Standard COBOL did not address the situation of a COPY statement or a
portion of a COPY statement appearing on a debugging line.

18. COPY statement.  Pseudo-text-1 must not consist entirely of a separator comma or
a separator semi-colon.

Second Standard COBOL allowed pseudo-text-1 to consist entirely of a separator
comma or a separator semi-colon but did not specify under what conditions
replacement took place.  Any attempt to define the semantics in this situation would
have caused a potential incompatibility.

19. DISPLAY statement.  After the last operand has been transferred to the hardware
device, the positioning of the hardware device will be reset to the leftmost position
of the next line of the device.

In second Standard COBOL, the positioning of the hardware device after the last
operand was undefined.  The new rule in third Standard COBOL is necessary for a
complete description of the NO ADVANCING phrase.

20. DIVIDE statement.  Any subscripts for identifier-4 in the REMAINDER phrase are
evaluated after the result of the DIVIDE operation is stored in identifier-3 of the
GIVING phrase.

In second Standard COBOL, the point at which any subscript in the REMAINDER
phrase is determined during the processing of the DIVIDE statement is undefined.

21. EXIT PROGRAM statement.  When there is no next executable statement in a
called program, an implicit EXIT PROGRAM statement is executed.

This situation was undefined in second Standard COBOL.  Defining it makes
programs more transportable.

22. EXIT PROGRAM statement.  The following new rule appears for the EXIT
PROGRAM statement: "...the ends of the ranges of all PERFORM statements
executed by the called program are considered to have been reached."

This situation is undefined in second Standard COBOL.



COBOL 85 Substantive Changes

47 A2 05UL Rev04 E-13

23. INSPECT statement.  The order of execution for evaluating subscripts in the
INSPECT statement is specified.  Subscripting associated with any identifier is
evaluated only once as the first operation in the execution of the INSPECT
statement.

The order of execution for evaluating subscripts in the INSPECT statement was
undefined in second Standard COBOL.

24. MERGE statement.  No two files in a MERGE statement may be specified in the
SAME AREA or SAME SORT-MERGE AREA clause.  The only files in a MERGE
statement that can be specified in the SAME RECORD AREA clause are those
associated with the GIVING phrase.

This rule, not present in second Standard COBOL, is a clarification of the
interaction of the SAME clause and the MERGE statement.  It adds syntactical
restrictions against situations which are likely to be troublesome.  These situations
probably appear in few existing programs.

25. PERFORM statement.  The order of initialization of multiple VARYING identifiers in
the PERFORM statement is specified.

The order of initialization of multiple VARYING identifiers in the PERFORM
statement was undefined in second Standard COBOL.  This change is the
resolution of an ambiguity and will promote program portability.

26. PERFORM statement.  Within the VARYING...AFTER phrase of the PERFORM
statement, identifier-2 is augmented before identifier-5 is set.  In second Standard
COBOL, identifier-5 was set before identifier-2 was augmented.

The situation where one VARYING variable depends on another is useful for
processing half a matrix along the diagonal; the rules in third Standard COBOL
specify this function properly while the rules in second Standard COBOL did not
specify this function properly.

27. PERFORM statement.  The order of execution for evaluating subscripts in the
PERFORM VARYING is specified.  This situation was undefined in second
Standard COBOL.

This change is the resolution of an ambiguity and will help promote program
portability.

28. READ statement.  The INTO phrase cannot be specified: (a) unless all records
associated with the file and the data item specified in the INTO phrase are group
items or elementary alphanumeric items, or (b) unless only one record description is
subordinate to the file description entry.

In second Standard COBOL, the semantics for the move of the record to the
identifier specified in the INTO phrase are not supplied.  For a file with multiple
elementary records, there is no statement as to whether any conversion of data
takes place or whether a group move is performed.  The new rules in third Standard
COBOL disallow a possible ambiguous situation.



GCOS 7 COBOL 85 Reference Manual

E-14 47 A2 05UL Rev04

29. RECEIVE statement. If a message size is greater than the area referenced, the
message fills the area referenced left to right starting with the leftmost character of
the message.  Further RECEIVE statements which reference the same queue, sub-
queue, ..., must be executed to transfer the remainder of the message in the area
referenced.

In second Standard COBOL, it was not clearly defined whether or not subsequent
RECEIVE statements were to be executed in order to receive the remainder of the
message.

30. RETURN statement.  The INTO phrase cannot be specified: (a) unless all records
associated with the file and the data item specified in the INTO phrase are group
items or elementary alphanumeric items, or (b) unless only one record description is
subordinate to the sort-merge file description entry.

In second Standard COBOL, the semantics for the move of the record to the
identifier specified in the INTO phrase of the RETURN statement are not supplied.
For a file with multiple elementary records, there is no statement as to whether any
conversion of data takes place or whether a group move is performed.

Programs affected by this change are those performing a RETURN INTO statement
on a file describing multiple elementary records that include at least one numeric
record.

31. STOP RUN statement.  The STOP RUN statement closes all files.

In second Standard COBOL, the state of files remaining in the open mode at run
completion was not specified.  In some cases, this situation could have led to
errors.

32. STOP RUN statement.  If the run unit has been accessing messages, the STOP
RUN statement causes the message control system (MCS) to eliminate from the
queue any message partially received by that run unit.

In second Standard COBOL, it is undefined what happens to partially received
messages when a run unit executes a STOP RUN statement.

33. STRING statement.  The order of execution for evaluating subscripts in the
STRING statement is specified.

In second Standard COBOL, the order of evaluation of subscripts is not specified; in
particular, the relative order of subscript evaluation and pointer modification is
undefined.

34. UNSTRING statement.  In the UNSTRING statement, any subscripting associated
with the DELIMITED BY identifier, the INTO identifier, the DELIMITER IN identifier,
or the COUNT IN identifier is evaluated once, immediately before the examination
of the sending fields for the delimiter.

35. WRITE statement.  The phrases ADVANCING PAGE and END-OF-PAGE must not
both be specified in a single WRITE statement.

In second Standard COBOL, it is possible to specify both of these phrases within
one WRITE statement but no rules are provided to identify their order of
processing.



COBOL 85 Substantive Changes

47 A2 05UL Rev04 E-15

36. File position indicator.  The concept of a current record pointer in second Standard
COBOL has been changed to a file position indicator.

37. File position indicator.  For a relative or indexed file in the dynamic access mode,
execution of an OPEN I-O statement followed by one or more WRITE statements
and then a READ NEXT statement will cause the READ statement to access the
first record in the file at the time of execution of the READ statement.

In second Standard COBOL, this sequence caused the READ statement to access
the first record at the time of execution of the OPEN statement.  If one of the
WRITE statements inserted a record with a key or relative record number lower
than that of any records previously existing in the file, a different record would be
accessed by the READ statement.

The semantics in third Standard COBOL bring the situation following an OPEN
statement into line with that following a READ statement.

38. File position indicator.  If an alternate key is the key of reference and the alternate
key is changed by a REWRITE statement to a value between the current value and
the next value in the file, a subsequent READ NEXT statement will obtain the same
record.
In second Standard COBOL, the subsequent READ statement would obtain the
record with the next value for that alternate key prior to the REWRITE statement.

39. Reserved words.  The following reserved words have been added:

ALPHABET END-DIVIDE EXTERNAL
ALPHABETIC-LOWER END-EVALUATE FALSE
ALPHABETIC-UPPER END-IF GLOBAL
ALPHANUMERIC END-MULTIPLY INITIALIZE
ALPHANUMERIC-EDITED END-PERFORM NUMERIC-EDITED
ANY END-READ ORDER
BINARY END-RECEIVE OTHER
CLASS END-RETURN PACKED-DECIMAL
COMMON END-REWRITE PADDING
CONTENT END-SEARCH PURGE
CONTINUE END-START REFERENCE
CONVERTING END-STRING REPLACE
DAY-OF-WEEK END-SUBTRACT STANDARD-2
END-ADD END-UNSTRING TEST
END-CALL END-WRITE THEN
END-COMPUTE EVALUATE TRUE
END-DELETE

In each case, the benefits to be derived from the additional facility provided through the
addition of each reserved word were deemed to outweigh the inconvenience caused by
removing this word from the realm of user-defined words.  It is the intention that the use
of the new REPLACE statement will mitigate the inconvenience to existing programs
which may use any of the new reserved words as user-defined words.



GCOS 7 COBOL 85 Reference Manual

E-16 47 A2 05UL Rev04

40. I-O status.  New I-O status values have been added.

Second Standard COBOL specified only a few I-O status code conditions.  As a
result, the user could not distinguish among many different exceptional conditions
which he might wish to treat in a variety of ways, and/or each implementor specified
a different set of implementor-defined status codes which covered a variety of
situations in a variety of ways.  Also, second Standard COBOL left the results of
many I-O situations undefined; that is: second Standard COBOL stated that certain
criteria were to be met, but not what happened when they were not met; hence,
execution of the object program becomes undefined.

The intention in third Standard COBOL is to define status codes for these undefined
I-O situations.  Thus the user can check for these error conditions and take
corrective action for specific error conditions where appropriate.

In general, the additions may impact programs:

a. If they test for specific implementor-defined status values to detect conditions
now defined.

b. If they rely on a successful completion status for any of the conditions now
defined.  (In the case of new I-O status values 04, 05, and 07, this only affects
programs which examine both character positions of the I-O status to check for
successful completion.)

c. If they rely on some implementor-dependent action such as abnormal
termination of the program when any of the newly defined conditions arise.

This change may have a substantial impact on those programs which check specific
I-O status values.

It should be noted that the first Standard COBOL did not provide any status code.

The individual I-O status values affected are described in the following paragraphs:

a. I-O status 04.  A READ statement is successfully executed  but the length of
the record processed does not conform to the fixed file attributes for the file.

Second Standard COBOL does not define the consequence if a READ
statement accesses a record containing more or fewer characters than the
maximum and minimum, respectively, specified for that file.  Thus, the result
of reading such a record is undefined.  The new I-O status value of 04 alerts
the user to this situation.

Since third Standard COBOL prevents an attempt to write or rewrite a record
that is too large or too small, this situation cannot occur for records written by a
program on an implementation of third Standard COBOL.

b. I-O status 05.  An OPEN statement is successfully executed  but the
referenced optional file is not present at the time the OPEN statement is
executed.

According to second Standard COBOL, the absence of an optional file is not
signaled to the program until the first READ statement for this file.  The new I-
O status value of 05 makes the information specific and available at the time
the file is referenced by an OPEN statement, allowing the program to take
more discerning action with respect to this condition.



COBOL 85 Substantive Changes

47 A2 05UL Rev04 E-17

c. I-O status 07.  The input-output statement is successfully  executed.  However,
for a CLOSE statement with the NO REWIND, REEL/UNIT, or FOR
REMOVAL phrase, or for an OPEN statement with the NO REWIND phrase ,
the referenced file is on a non-reel/unit medium.

According to second Standard COBOL, an OPEN statement with the NO
REWIND phrase can only be used with sequential single reel/unit files, and a
CLOSE statement with the NO REWIND, REEL/UNIT, or FOR REMOVAL
phrase is illegal for a non-reel/unit file.  However, with mass storage files,
these instances of OPEN or CLOSE can be considered successful in essence,
if the anomaly of the NO REWIND, REEL/UNIT, or FOR REMOVAL phrase is
overlooked.  The new I-O status value of 07 makes successful completion
possible, while preserving the information for the user in case he wishes to
take specific action.

d. I-O status 14.  A sequential READ statement is attempted for  a relative file
and the number of significant digits in the relative record number is larger than
the size of the relative key data item described for the file.

Second Standard COBOL states that successful execution of a format 1 READ
statement referencing a relative file updates the content of the relative key
data item (if specified) to contain the relative record number of the record
made available.  Second Standard COBOL does not define the result if the
number of significant digits of the relative record number is larger than the
relative key data item.  The new I-O status value 14 defines the result.

e. I-O status 24.  An attempt is made to write beyond the  externally defined
boundaries of a relative or indexed file; or a sequential WRITE statement is
attempted for a relative file and the number of significant digits in the relative
record number is larger than the size of the relative key data item described
for the file.

In second Standard COBOL, the I-O status value of 24 covers only an attempt
to write beyond the externally defined boundaries of a relative or indexed file.

Second Standard COBOL states that on successful execution of a WRITE
statement referencing a relative file, the relative record number of the record
released will be placed in the relative key data item (if specified).  It does not
define the result if the number of significant digits of the relative record
number is larger than the relative key data item.

Only programs which sequentially write more records than the maximum value
allowed by the PICTURE of the relative key data item may be affected by this
change.

f. I-O status 35.  An OPEN statement with the INPUT phrase is  attempted on a
non-optional file that is not present.

Second Standard COBOL requires that the OPTIONAL phrase must be
specified for input files that are not necessarily present each time the object
program is executed.  It does not specify what happens when a file which is
not declared as optional is absent.  The new I-O status value of 35 allows the
user to test for this condition.



GCOS 7 COBOL 85 Reference Manual

E-18 47 A2 05UL Rev04

g. I-O status 37.  An OPEN statement is attempted on a file  which is required to
be a mass storage file but is not.

This new I-O status value will be returned if either: (1) an OPEN I-O statement
is attempted for a non-mass storage file, or (2) an OPEN statement is
attempted for a non-mass storage file which is declared in the program to be a
relative or indexed file.

Second Standard COBOL does not specify what happens in these
circumstances.  The new I-O status value of 37 permits the user to test for this
error condition.

h. I-O status 38.  An OPEN statement is attempted on a file  previously closed
with lock.

Second Standard COBOL specify that a file closed with lock cannot be opened
again during the current execution of the run unit, but does not specify what
happens if an attempt is made to reopen the file.  The new I-O status value of
38 permits the user to test for this condition.

i. I-O status 39.  An OPEN statement is unsuccessful because a  conflict has
been detected between the fixed file attributes and the attributes specified for
that file in the program.

Fixed file attributes are attributes of a file which are fixed at the time the file is
created and which cannot be changed throughout the lifetime of the file.  They
are the organization, the code set, the minimum and maximum logical record
size, the record type (fixed or variable), the blocking factor, the padding
character, and the record delimiter.  For indexed files only, additional fixed file
attributes are the prime record key, the alternate record keys, and the collating
sequence of the keys.

Second Standard COBOL specifies that the file organization is established at
the time a file is created and subsequently cannot be changed.  It also
specifies for an OPEN INPUT, OPEN I-O, or OPEN EXTEND statement that
the file description of the file, which includes the CODE-SET, RECORD, and
BLOCK CONTAINS clauses must be equivalent to that used when the file was
created.  The ability to specify a padding character and a record delimiter are
new facilities not available in second Standard COBOL.  For indexed files,
second Standard COBOL specifies that the data descriptions and relative
locations within a record of the record key and alternate record key data items,
and the number of alternate record keys, must be the same as when the file
was created.  Second Standard COBOL does not provide the ability to
influence the collating sequence used for the keys of an indexed file.

Second Standard COBOL does not specify what happens if the fixed file
attributes conflict with the attributes specified for a file in the program.  The
new I-O status value of 39 allows the user to test for this condition.

j. I-O status 41.  An OPEN statement is attempted for a file in  the open mode.

Second Standard COBOL does not allow an OPEN statement to refer to a file
in open mode, but does not define the consequence of such a reference.  The
new I-O status value of 41 permits the user to test for the condition.



COBOL 85 Substantive Changes

47 A2 05UL Rev04 E-19

k. I-O status 42.  A CLOSE statement is attempted for a file  not in the open
mode.

Second Standard COBOL does not allow a CLOSE statement to refer to a file
which is not in the open mode, but does not define what happens if the file is
not in the open mode.  The new I-O status value of 42 permits the user to test
for this condition.

l. I-O status 43.  For a mass storage file in the sequential  access mode, the last
input-output statement executed for the associated file prior to the execution of
a DELETE or REWRITE statement was not a successfully executed READ
statement.

Second Standard COBOL specifies that for a file in sequential access mode,
the last input-output statement executed for the file prior to the execution of a
DELETE or REWRITE statement must have been a successfully executed
READ statement, but it does not specify what happens if the requirement is not
satisfied.  The new I-O status value of 43 allows the user to test for this
condition.

m. I-O status 44.  A boundary violation exists because an  attempt is made to
rewrite a record to a sequential file and the record is not the same size as the
record being replaced.

Second Standard COBOL specifies for a REWRITE statement that the number
of character positions in the new record must be equal to the number of
character positions in the record being replaced, but it does not specify what
happens if this requirement is not satisfied.  The new I-O status value of 44
allows the user to test for this condition.

n. I-O STATUS 46.  A sequential READ statement is attempted on  a file opened
in the input or I-O mode and no valid next record has been established
because either: (1) the preceding START statement was unsuccessful, (2) the
preceding READ statement was unsuccessful but did not cause an at end
condition, or (3) the preceding READ statement caused an at end condition.

Second Standard COBOL specifies that in these circumstances execution of a
READ statement was illegal or its execution was unsuccessful, but did not
specify a status code to indicate the situation.  I-O status 46 can occur only if
no corrective action is taken following the previous READ or START
statement.

o. I-O status 47.  The execution of a READ or START statement  is attempted on
a file not opened in the input or I-O mode.

Second Standard COBOL requires that the file must be opened in the input or
I-O mode at the time a READ or START statement is executed, but does not
specify what happens if the requirement is not met.  The new I-O status value
of 47 allows the user to test for this condition.

p. I-O status 48.  The execution of a WRITE statement is  attempted on either:
(1) a sequential file not opened in the output or extend mode, or (2) a relative
or indexed file not opened in the I-O, output, or extend mode.

Second Standard COBOL requires that the file be opened in one of the modes
specified, but does not specify what happens if the requirement is not met.
The new I-O status value of 48 allows the user to test for this condition.



GCOS 7 COBOL 85 Reference Manual

E-20 47 A2 05UL Rev04

q. I-O status 49.  The execution of a DELETE or REWRITE  statement is
attempted on a file not opened in the I-O mode.

Second Standard COBOL requires that the file be opened in the I-O mode, but
does not specify what happens if the requirement is not met.  The new I-O
status value of 49 allows the user to test for this condition.

41. Communication status key.  New communication status key values have been
added.

Second Standard COBOL leaves the results of some communication situations
undefined.  Third Standard COBOL defines new communication status key values
for these situations so that the user can check for these error conditions in a
standard way and thus take corrective action if appropriate.

These new communication status key values only affect existing programs which
rely on some other action taking place when the newly defined exception condition
occur.
The individual communication status key values added are described below.

a. Communication status key 15.  Symbolic source, or one or more queues or
destinations already disabled/enabled.

If, at the time a DISABLE or ENABLE statement is executed, the source or a
queue or a destination referenced is already disabled or enabled respectively,
the second Standard COBOL specifications imply that a communication status
key value of 00 should be expected.  The new communication status key value
of 15 provides this information to the user.

b. Communication status key 21.  Symbolic source is unknown.

In second Standard COBOL, the user has to compare the symbolic source
data item with spaces to determine whether the symbolic name of the source
terminal is known to the message control system (MCS) on a RECEIVE
statement.  Second Standard COBOL does not specify what happens if the
symbolic source in an input CD referenced in an ENABLE or DISABLE
statement is unknown.  The new communication status key value of 21
provides this information.

c. Communication status key 65.  Output queue capacity exceeded.

Second Standard COBOL does not specify what happens if the capacity of the
output queue is exceeded on a SEND statement.  This situation is now defined
to give the new communication status key value of 65.

d. Communication status key 70.  One or more destinations do not have portions
associated with them.

This communication status key value is only returned by the new PURGE
statement.  Thus it cannot occur in programs written according to second
Standard COBOL.



COBOL 85 Substantive Changes

47 A2 05UL Rev04 E-21

e. Communication status key 80.  A combination of at least two status key
conditions 10, 15, and 20 has occurred.

If the multiple destination facility is used and one of the destinations is
disabled while a second destination is unknown, second Standard COBOL
does not specify whether communication status key value 10 or 20 should be
returned by a SEND statement.  The new communication status key value of
80 is now defined to be returned in this situation.  The new communication
status key value of 80 is also returned in the case of an ENABLE or DISABLE
statement where new communication status key condition 15 and
communication status key 20 both apply.

42. Communication error key.  New communication error key values have been added.
These new communication error key values are described below.

a. Communication error key 2.  Symbolic destination disabled.

A SEND statement was executed and the destination to which this error key
applies is disabled.  In second Standard COBOL, this condition was not
distinguishable by the user.

b. Communication error key 5.  Symbolic destination already enabled/disabled.

An ENABLE or DISABLE statement was executed and the destination to which
this communication error key value applies was already enabled/disabled.  In
second Standard COBOL, this condition was not distinguishable by the user.

c. Communication error key value 6.  Output queue capacity exceeded.

A SEND statement was executed and the MCS was not able to enqueue the
message, message segment, or portion of the message or message segment
because the output queue for the destination to which this communication error
key value applies was full.  In second Standard COBOL, this condition was not
distinguishable by the user.



GCOS 7 COBOL 85 Reference Manual

E-22 47 A2 05UL Rev04



47 A2 05UL Rev04 F-1

F. Composite Language Skeleton

F.1 GENERAL DESCRIPTION

This appendix contains the composite language skeleton of the DPS 7000 COBOL.  It is
intended to display complete and syntactically correct formats.

GENERAL FORMAT FOR CONTROL-DIVISION

|---------------------------------------------|
|  CONTROL DIVISION .                          |
| [SUBSTITUTION SECTION . [replace-entry]]     |
| [DEFAULT SECTION . [[default-entry]... . ]]  |
|---------------------------------------------|

GENERAL FORMAT FOR IDENTIFICATION-DIVISION

   IDENTIFICATION DIVISION .
                                {COMMON [INITIAL ]}
   PROGRAM-ID. program-name [IS {                } PROGRAM].
                                {INITIAL [COMMON ]}
  [AUTHOR. [comment-entry]... ]
  [INSTALLATION. [comment-entry]... ]
  [DATE-WRITTEN. [comment-entry]... ]
  [DATE-COMPILED. [comment-entry]... ]
  [SECURITY. [comment-entry]... ]

GENERAL FORMAT FOR ENVIRONMENT-DIVISION

   ENVIRONMENT DIVISION .

  [CONFIGURATION SECTION .
  [SOURCE-COMPUTER. [source-computer-entry]]
  [OBJECT-COMPUTER. [object-computer-entry]]
  [SPECIAL-NAMES. [[special-names-entry]... . ]]]

  [INPUT-OUTPUT SECTION .
   FILE-CONTROL. {file-control-entry}...
  [I-O-CONTROL. [[input-output-control-entry]... . ]]]



GCOS 7 COBOL 85 Reference Manual

F-2 47 A2 05UL Rev04

GENERAL FORMAT FOR DATA-DIVISION

   DATA DIVISION .

  [FILE SECTION .
       [file-description-entry           ]
       [    {record-description-entry}...]
       [sort-merge-file-description-entry]... ]
       [    {record-description-entry}...]
       [report-file-description-entry    ]

  [WORKING-STORAGE SECTION.

       [77-level-description-entry]
       [                          ]... ]
       [record-description-entry  ]

|----------------------------------------|
| [CONSTANT SECTION .                     |
|      [77-level-description-entry]      |
|      [                          ]... ] |
|      [record-description-entry  ]      |
|----------------------------------------|

  [LINKAGE SECTION .
       [77-level-description-entry]
       [                          ]... ]
       [record-description-entry  ]

  [COMMUNICATION SECTION .
       [communication-description-entry
            [record-description-entry]... ]... ]

  [REPORT SECTION .
       [report-description-entry
            {report-group-description-entry}... ]... ]

GENERAL FORMAT FOR PROCEDURE-DIVISION

   PROCEDURE DIVISION  [USING  {data-name}... ].

{ [DECLARATIVES.                                  }
{      {section-name SECTION [segment-number].    }
{       USE-statement.                            }
{      [paragraph-name.                           }
{      [sentence]... ]... }...                    }
{       END DECLARATIVES . ]                       }
{                                                 }
{      {section-name SECTION [segment-number].    }
{      [paragraph-name.                           }
{      [sentence]... ]... }...                    }
{                                                 }
{ {paragraph-name.                                }
{ [sentence]... }... ]                            }

GENERAL FORMAT FOR END-PROGRAM-HEADER

  END PROGRAM program-name.



Composite Language Skeleton

47 A2 05UL Rev04 F-3

GENERAL FORMAT FOR REPLACE-ENTRY

|------------------------------------------------------|
| REPLACE                                              |
|     {== pseudo-text ==}    {== pseudo-text ==}       |
|     {identifier       }    {identifier       }       |
|    {{                 } BY {                 }}      |
|    {{literal          }    {literal          }}      |
|    {{word             }    {word             }}... . |
|    {                                          }      |
|    {{LEADING }            {literal}           }      |
|    {{        } literal BY {SPACE   }           }      |
|     {TRAILING}            {SPACES  }                  |
|------------------------------------------------------|

GENERAL FORMAT FOR DEFAULT-ENTRIES

|---------------------------------------------------|
|                    {OMITTED     }                 |
| [SYMBOLIC QUEUE  IS {            }]                |
|                    {MESSAGE UNIT }                 |
|                                                   |
|                  {LEADING }                       |
| [DISPLAY SIGN  IS {        } [SEPARATE  CHARACTER]] |
|                  {TRAILING}                       |
|                                                   |
|                    {BINARY         }              |
|                    {DISPLAY        }              |
|                    {COMPUTATIONAL-1}              |
|                    {COMP-1         }              |
|                    {COMPUTATIONAL-2}              |
| {COMPUTATIONAL}    {COMP-2          }              |
|[{             } IS {COMPUTATIONAL-3}]             |
| {COMP         }    {COMP-3          }              |
|                    {COMPUTATIONAL-5}              |
|                    {COMP-5         }              |
|                    {COMPUTATIONAL-8}              |
|                    {COMP-8         }              |
|                    {PACKED-DECIMAL }              |
|                                                   |
|                    {NOT STANDARD }                 |
|          {integer [{            }]}               |
|          {         {BINARY      } }               |
| [TEMP IS {                        }]              |
|          {NOT STANDARD             }               |
|          {BINARY                  }               |
|                                                   |
|            { SYSIN             }                  |
|            {[ALTERNATE] CONSOLE }                  |
| [ACCEPT IS {                   }]                 |
|            { ALTERNATE-CONSOLE }                  |
|            { TERMINAL          }                  |
|                                                   |
|             { SYSOUT            }                 |
|             {[ALTERNATE] CONSOLE }                 |
| [DISPLAY IS {                   }]                |
|             { ALTERNATE-CONSOLE }                 |
|             { TERMINAL          }                 |
|---------------------------------------------------|



GCOS 7 COBOL 85 Reference Manual

F-4 47 A2 05UL Rev04

|-------------------------------------------------------|
| [SYSIN IS SYSIN-p ]                                    |
|                                                       |
|         {ALTERNATE-CONSOLE}    {ALTERNATE-CONSOLE-p }  |
| [ACCEPT {                 } IS {                   }] |
|         {ALTERNATE CONSOLE }    {ALTERNATE  CONSOLE-p}  |
|                                                       |
| [ACCEPT CONSOLE  IS CONSOLE-p ]                         |
|                                                       |
| [ACCEPT TERMINAL  IS TERMINAL-p ]                       |
|                                                       |
| [SYSOUT IS SYSOUT-p ]                                  |
|                                                       |
|          {ALTERNATE-CONSOLE}    {ALTERNATE-CONSOLE-p } |
| [DISPLAY {                 } IS {                   }]|
|          {ALTERNATE CONSOLE }    {ALTERNATE  CONSOLE-p} |
|                                                       |
| [DISPLAY CONSOLE  IS CONSOLE-p ]                        |
|                                                       |
| [DISPLAY TERMINAL  IS TERMINAL-p ]                      |
|                                                       |
|                 {FILE [COMMUNICATION ]}                |
| [COBOL 1974  FOR {                    }]               |
|                 {COMMUNICATION [FILE ]}                |
|-------------------------------------------------------|

GENERAL FORMAT FOR SOURCE-COMPUTER-ENTRY

 {    DPS7                       }
 { |-----------------|           }
 { |                 | {GCOS    }}
 { | [HIS-SERIES-60] | {        }}
 { |                 | {LEVEL-64}}
 { |-----------------|           }
 {                               }
 {    computer-name              }

   |-----------------------------------------------------|
   |                       {WORDS     }                  |
   |                       {CHARACTERS}                  |
   |              {integer {          }               }  |
   |              {        {MODULES   }               }  |
   |              {        {BYTES     }               }  |
   | [MEMORY SIZE {                                   }] |
   |              {ADDRESS                            }  |
   |              {             {THROUGH}             }  |
   |              {    {literal {       } literal}... }  |
   |                            {THRU   }                |
   |-----------------------------------------------------|

     [WITH DEBUGGING MODE ].



Composite Language Skeleton

47 A2 05UL Rev04 F-5

GENERAL FORMAT FOR OBJECT-COMPUTER-ENTRY

 {    DPS7                       }
 { |-----------------|           }
 { |                 | {GCOS    }}
 { | [HIS-SERIES-60] | {        }}
 { |                 | {LEVEL-64}}
 { |-----------------|           }
 {    computer-name              }

                              {   WORDS     }
                              {   CHARACTERS}
                  {   integer {   MODULES   }              }
                  {           { |-------|   }              }
                  {           { | BYTES |   }              }
     [MEMORY SIZE {             |-------|                  }]
                  { |------------------------------------| }
                  { | ADDRESS                            | }
                  { |              {THROUGH}             | }
                  { |     {literal {       } literal}... | }
                    |              {THRU   }             |
                    |------------------------------------|

                                    {   alphabet-name}
                                    { |------------| }
                                    { | NATIVE     | }
                                    { | STANDARD-1 | }
     [PROGRAM COLLATING SEQUENCE IS { | STANDARD-2  | }]
                                    { | ASCII      | }
                                    { | EBCDIC     | }
                                    { | GBCD       | }
                                    { | JIS        | }
                                      |------------|

   |-----------------------------------------------|
   | [SEGMENT-LIMIT IS segment-number]             |
   |                                               |
   | [MAXIMUM DATA SEGMENT  SIZE IS integer]        |
   |                                               |
   | [MAXIMUM PROCEDURE SEGMENT  SIZE IS integer]   |
   |                                               |
   | [MAXIMUM INITIAL DATA  SEGMENT SIZE IS integer |
   |       [PLUS integer TIMES  integer]]           | .
   |-----------------------------------------------|



GCOS 7 COBOL 85 Reference Manual

F-6 47 A2 05UL Rev04

GENERAL FORMAT FOR SPECIAL-NAMES-ENTRIES

      [SWITCH-n IS mnemonic-name            ]
      [    [ON STATUS IS condition-name     ]
      [    [OFF STATUS IS condition-name]]  ]
      [                                     ]
      [SWITCH-n IS mnemonic-name            ]
      [    [OFF STATUS IS condition-name    ]
      [    [ON STATUS IS condition-name]]   ]...
      [                                     ]
      [SWITCH-n ON  STATUS IS condition-name ]
      [    [OFF STATUS IS condition-name]   ]
      [                                     ]
      [SWITCH-n OFF  STATUS IS condition-name]
      [    [ON STATUS IS condition-name]    ]
      {LNm }
     [{    } IS mnemonic-name]...
      {LN-m}

      [CHANNEL-p IS mnemonic-name]...

      {SYSIN  }
     [{       } IS mnemonic-name]...
      {SYSIN-q}

      {SYSOUT  }
     [{        } IS mnemonic-name]...
      {SYSOUT-q}

      {CONSOLE  }
     [{         } IS mnemonic-name]...
      {CONSOLE-q}

   {  {ALTERNATE-CONSOLE  }   }
   {  {ALTERNATE-CONSOLE-q}   }
  [{|-----------------------| } IS mnemonic-name]...
   {| {ALTERNATE CONSOLE   } | }
   {| {ALTERNATE CONSOLE-q } | }
    |-----------------------|

      {TERMINAL  }
     [{          } IS mnemonic-name]...
      {TERMINAL-q}

   |---|          |---|
 [ | [ | ALPHABET | ] | alphabet-name IS
   |---|          |---|

          { NATIVE                           }
          { STANDARD-1                       }
          { STANDARD-2                       }
          { ASCII                            }
          { EBCDIC                           }]...
          { GBCD                             }
          { JIS                              }
          {          {THROUGH}               }
          {         [{       } literal ]     }
          {{literal [{THRU   }         ]}... }
                    [                  ]
                    [{ALSO literal}... ]



Composite Language Skeleton

47 A2 05UL Rev04 F-7

      [SYMBOLIC CHARACTERS {{symbolic-character}...

                                      {   alphabet-name}
                                      { |------------| }
                                      { | NATIVE     | }
         {IS }                        { | STANDARD-1 | }
         {   } {integer}... } ... [IN { | STANDARD-2  | }]]...
         {ARE}                        { | ASCII      | }
                                      { | EBCDIC     | }
                                      { | GBCD       | }
                                      { | JIS        | }
                                        |------------|

                                     {THROUGH}
      [CLASS class-name IS {literal [{       } literal]}... ]...
                                     {THRU   }

                                |--------------------------|
      [CURRENCY SIGN IS literal | [OBJECT  SIGN IS literal] | ]
                                |--------------------------|

                        {   COMMA           }
      [DECIMAL-POINT IS { |---------------| }
                        { | DECIMAL-POINT | }
                          |---------------|
         |-----------------------------|
         |            {COMMA        }  |
         | [OBJECT IS {             }] | ]
         |            {DECIMAL-POINT}  |
         |-----------------------------|



GCOS 7 COBOL 85 Reference Manual

F-8 47 A2 05UL Rev04

GENERAL FORMAT FOR FILE-CONTROL-ENTRY (SEQUENTIAL FILES)

       |------------|
SELECT | [EXTERNAL ] | [OPTIONAL ] file-name
       |------------|
                  {internal-file-name            }
                  {internal-file-name-PRINTER    }
                  {internal-file-name-CARD-READER}
                  {internal-file-name-CARD-PUNCH }
                 {{internal-file-name-MSD        } [literal]}
                 {{internal-file-name-TAPE       }          }
       ASSIGN TO {{internal-file-name-SYSIN       }          }
                 {{internal-file-name-SYSOUT     }          }
                 { literal                                  }

                       [AREA ]
      [RESERVE integer [     ]]
       -------         [AREAS]

                        |----------|
                        | [UFF   ] |
     [[ORGANIZATION IS] | [ANSI   ] | SEQUENTIAL ]
                        | [QUEUED] |
                        |----------|

                            {data-name}
   [   PADDING CHARACTER IS {         }]
   [                        {literal  }]
   [ |----------------------|          ]
   [ | NO PADDING  CHARACTER |          ]
     |----------------------|

                           {STANDARD-1}
      [RECORD DELIMITER  IS {          }]
                           {IMPLIED   }

      [ACCESS MODE IS SEQUENTIAL ]

      [FILE STATUS IS data-name]
    |-------------------|
    |       {ASA }      |
    | [WITH {SSF }]     |
    |       {SARF}      |
    |                   |
    |       {FLR}       |
    | [WITH {   }]      |
    |       {VLR}       |
    |                   |
    | [WITH [NO] BSN ]   |
    |                   |
    | [WITH OVERRIDING] | .
    |-------------------|



Composite Language Skeleton

47 A2 05UL Rev04 F-9

GENERAL FORMAT FOR FILE-CONTROL-ENTRY (RELATIVE FILES)

             |------------|
      SELECT | [EXTERNAL ] | [OPTIONAL ] file-name
             |------------|

                        {internal-file-name    }
                       {{                      } [literal]}
             ASSIGN TO {{internal-file-name-MSD }          }
                       { literal                          }

                             [AREA ]
            [RESERVE integer [     ]]
                             [AREAS]

                              |-------|
            [ORGANIZATION IS] | [UFF ] | RELATIVE
                              |-------|

            [ACCESS MODE IS
                             [   RELATIVE KEY IS data-name ]
                { SEQUENTIAL [ |-------------------------| ]}
                {            [ | ACTUAL KEY IS data-name | ]}
                {              |-------------------------|  }]
                {                                           }
                {          {   RELATIVE KEY IS data-name }  }
                {{RANDOM } {                             }  }
                {{       } { |-------------------------| }  }
                 {DYNAMIC} { | ACTUAL  KEY IS data-name | }
                             |-------------------------|

            [FILE STATUS IS data-name]

          |-------------------|
          |       {FLR}       |
          | [WITH {   }]      |
          |       {VLR}       |
          |                   |
          | [WITH OVERRIDING] | .
          |-------------------|



GCOS 7 COBOL 85 Reference Manual

F-10 47 A2 05UL Rev04

GENERAL FORMAT FOR FILE-CONTROL-ENTRY (INDEXED FILES)

       |------------|
SELECT | [EXTERNAL ] | [OPTIONAL ] file-name
       |------------|

                  {internal-file-name    }
                 {{                      } [literal]}
       ASSIGN TO {{internal-file-name-MSD }          }
                 { literal                          }

                       [AREA ]
      [RESERVE integer [     ]]
                       [AREAS]

                        |-------|
      [ORGANIZATION IS] | [UFF ] | INDEXED
                        |-------|

                      {SEQUENTIAL}
      [ACCESS MODE IS {RANDOM     }]
                      {DYNAMIC   }

       RECORD KEY IS data-name

      [ALTERNATE RECORD  KEY IS data-name [WITH DUPLICATES ]]...

      [FILE STATUS IS data-name]

    |-------------------|
    |       {FLR}       |
    | [WITH {   }]      |
    |       {VLR}       |
    |                   |
    | [WITH OVERRIDING] | .
    |-------------------|



Composite Language Skeleton

47 A2 05UL Rev04 F-11

GENERAL FORMAT FOR FILE-CONTROL-ENTRY (SORT-MERGE FILES)

SELECT file-name

                 {H-SORT                }
       ASSIGN TO {internal-file-name    }
                 {internal-file-name-MSD}
                 {literal               }

    |--------------|
    |       {FLR}  |
    | [WITH {   }] | .
    |       {VLR}  |
    |--------------|

GENERAL FORMAT FOR INPUT-OUTPUT-CONTROL-ENTRIES

    |-----------------------------------------------|
    | [APPLY {NO-SORTED-INDEX  ON {file-name}..}. ]. |
    |        {OPTIMIZE ON {file-name}         }     |
    |-----------------------------------------------|

      [RERUN ON  CHECKPOINT-FILE
                  { integer RECORDS}
            EVERY {                } OF file-name]...
                  {         {REEL} }
                  {[END OF] {    } }
                            {UNIT}

            [RECORD    ]
      [SAME [SORT       ] AREA FOR file-name {file-name}... ]...
            [SORT-MERGE]

      [MULTIPLE FILE  TAPE CONTAINS
           {file-name [POSITION integer]}... ]...



GCOS 7 COBOL 85 Reference Manual

F-12 47 A2 05UL Rev04

GENERAL FORMAT FOR SEQUENTIAL-FILE-DESCRIPTION-ENTRY

FD file-name

     [IS EXTERNAL]

     [IS GLOBAL]
                                          {RECORDS   }
     [BLOCK CONTAINS [integer TO ] integer {          }]
                                          {CHARACTERS}

             {CONTAINS integer CHARACTERS                       }
             {                                                  }
             {         |---|            |---|                   }
             {CONTAINS | [ | integer TO | ] | integer CHARACTERS}
             {         |---|            |---|                   }
     [RECORD {            |--------------------------|          }]
             {            | [DEPENDING ON data-name] |          }
             {            |--------------------------|          }
             {                                                  }
             {IS VARYING IN SIZE [[FROM integer] [TO  integer]   }
             {     CHARACTERS] [DEPENDING ON data-name]         }

            {RECORD IS  } {STANDARD }
     [LABEL {           } {        }]
            {RECORDS ARE} {OMITTED  }

                        {data-name}
     [VALUE OF  {name IS {         }}... ]
                        {literal  }

           {RECORD IS  }
     [DATA {           } {data-name}... ]
           {RECORDS ARE}

                {data-name}                        {data-name}
     [LINAGE IS {         } LINES [WITH FOOTING  AT {         }]
                {integer  }                        {integer  }

                      {data-name}                   {data-name}
        [LINES AT TOP {         }] [LINES AT BOTTOM  {         }]]
                      {integer  }                   {integer  }

                  {   alphabet-name}
                  { |------------| }
                  { | NATIVE     | }
                  { | STANDARD-1 | }
     [CODE-SET IS { | STANDARD-2  | }].
                  { | ASCII      | }
                  { | EBCDIC     | }
                  { | GBCD       | }
                  { | JIS        | }
                    |------------|



Composite Language Skeleton

47 A2 05UL Rev04 F-13

GENERAL FORMAT FOR REPORT-FILE-DESCRIPTION-ENTRY

FD file-name

      [IS EXTERNAL]

      [IS GLOBAL]
                                           {RECORDS   }
      [BLOCK CONTAINS [integer TO ] integer {          }]
                                           {CHARACTERS}

              {CONTAINS integer CHARACTERS           }
      [RECORD {                                      }]
              {CONTAINS integer TO integer CHARACTERS}

             {RECORD IS  } {STANDARD }
      [LABEL {           } {        }]
             {RECORDS ARE} {OMITTED  }

                         {data-name}
      [VALUE OF  {name IS {         }}... ]
                         {literal  }

                   {   alphabet-name}
                   { |------------| }
                   { | NATIVE     | }
                   { | STANDARD-1 | }
      [CODE-SET IS { | STANDARD-2  | }]
                   { | ASCII      | }
                   { | EBCDIC     | }
                   { | GBCD       | }
                   { | JIS        | }
                     |------------|
      {REPORT IS  }
      {           } {report-name}... .
      {REPORTS ARE}



GCOS 7 COBOL 85 Reference Manual

F-14 47 A2 05UL Rev04

GENERAL FORMAT FOR RELATIVE-FILE-DESCRIPTION-ENTRY

FD file-name

     [IS EXTERNAL]

     [IS GLOBAL]

                                          {RECORDS   }
     [BLOCK CONTAINS [integer TO ] integer {          }]
                                          {CHARACTERS}

             {CONTAINS integer CHARACTERS                       }
             {                                                  }
             {         |---|            |---|                   }
             {CONTAINS | [ | integer TO | ] | integer CHARACTERS}
             {         |---|            |---|                   }
     [RECORD {            |--------------------------|          }]
             {            | [DEPENDING ON data-name] |          }
             {            |--------------------------|          }
             {                                                  }
             {IS VARYING IN SIZE [[FROM integer] [TO  integer]   }
             {     CHARACTERS] [DEPENDING ON data-name]         }

            {RECORD IS  } {STANDARD }
     [LABEL {           } {        }]
            {RECORDS ARE} {OMITTED  }

                        {data-name}
     [VALUE OF  {name IS {         }}... ]
                        {literal  }

           {RECORD IS  }
     [DATA {           } {data-name}... ]
           {RECORDS ARE}

                  {   alphabet-name}
                  { |------------| }
                  { | NATIVE     | }
                  { | STANDARD-1 | }
     [CODE-SET IS { | STANDARD-2  | }] .
                  { | ASCII      | }
                  { | EBCDIC     | }
                  { | GBCD       | }
                  { | JIS        | }
                    |------------|



Composite Language Skeleton

47 A2 05UL Rev04 F-15

GENERAL FORMAT FOR INDEXED-FILE-DESCRIPTION-ENTRY

FD file-name

     [IS EXTERNAL]

     [IS GLOBAL]

                                          {RECORDS   }
     [BLOCK CONTAINS [integer TO ] integer {          }]
                                          {CHARACTERS}

             {CONTAINS integer CHARACTERS                       }
             {                                                  }
             {         |---|            |---|                   }
             {CONTAINS | [ | integer TO | ] | integer CHARACTERS}
             {         |---|            |---|                   }
     [RECORD {            |--------------------------|          }]
             {            | [DEPENDING ON data-name] |          }
             {            |--------------------------|          }
             {                                                  }
             {IS VARYING IN SIZE [[FROM integer] [TO  integer]   }
             {     CHARACTERS] [DEPENDING ON data-name]         }

            {RECORD IS  } {STANDARD }
     [LABEL {           } {        }]
            {RECORDS ARE} {OMITTED  }

                        {data-name}
     [VALUE OF  {name IS {         }}... ]
                        {literal  }

           {RECORD IS  }
     [DATA {           } {data-name}... ]
           {RECORDS ARE}

                        {   alphabet-name}
                        { |------------| }
                        { | NATIVE     | }
                        { | STANDARD-1 | }
           [CODE-SET IS { | STANDARD-2  | }] .
                        { | ASCII      | }
                        { | EBCDIC     | }
                        { | GBCD       | }
                        { | JIS        | }
                          |------------|



GCOS 7 COBOL 85 Reference Manual

F-16 47 A2 05UL Rev04

GENERAL FORMAT FOR SORT-MERGE-FILE-DESCRIPTION-ENTRY

             |-------------|
SD file-name | [IS GLOBAL ] |
             |-------------|

             {CONTAINS integer CHARACTERS                       }
             {                                                  }
             {         |---|            |---|                   }
             {CONTAINS | [ | integer TO | ] | integer CHARACTERS}
             {         |---|            |---|                   }
     [RECORD {            |--------------------------|          }]
             {            | [DEPENDING ON data-name] |          }
             {            |--------------------------|          }
             {                                                  }
             {IS VARYING IN SIZE [[FROM integer] [TO  integer]   }
             {     CHARACTERS] [DEPENDING ON data-name]         }

           {RECORD IS  }
     [DATA {           } {data-name}... ].
           {RECORDS ARE}

GENERAL FORMATS FOR COMMUNICATION-DESCRIPTION-ENTRY

Format 1

CD cd-name FOR [INITIAL ] INPUT

    |-------------|
    | [IS GLOBAL] |
    |-------------|

    [[[SYMBOLIC QUEUE IS data-name]           ]
    [                                         ]
    [      [SYMBOLIC SUB-QUEUE-1 IS data-name]]
    [                                         ]
    [      [SYMBOLIC SUB-QUEUE-2 IS data-name]]
    [                                         ]
    [      [SYMBOLIC SUB-QUEUE-3 IS data-name]]
    [                                         ]
    [      [MESSAGE DATE  IS data-name]        ]
    [                                         ]
    [      [MESSAGE TIME  IS data-name]        ]
    [                                         ]
    [      [SYMBOLIC SOURCE IS data-name]     ]
    [                                         ]
    [      [TEXT LENGTH  IS data-name]         ].
    [                                         ]
    [      [END KEY  IS data-name]             ]
    [                                         ]
    [      [STATUS KEY  IS data-name]          ]
    [                                         ]
    [      [MESSAGE COUNT IS data-name]]      ]
    [                                         ]
    [ [data-name data-name data-name          ]
    [       data-name data-name data-name     ]
    [       data-name data-name data-name     ]
    [       data-name data-name]              ]



Composite Language Skeleton

47 A2 05UL Rev04 F-17

Format 2

CD cd-name FOR OUTPUT

    |-------------|
    | [IS GLOBAL] |
    |-------------|

      [DESTINATION COUNT  IS data-name]

      [TEXT LENGTH  IS data-name]

      [STATUS KEY  IS data-name]

      [DESTINATION TABLE  OCCURS integer TIMES
           [INDEXED BY {index-name}... ]]

      [ERROR KEY  IS data-name]

      [SYMBOLIC DESTINATION IS data-name].

Format 3

CD cd-name FOR [INITIAL ] I-O

    |-------------|
    | [IS GLOBAL] |
    |-------------|

    [[[MESSAGE DATE  IS data-name]          ]
    [                                      ]
    [      [MESSAGE TIME  IS data-name]     ]
    [                                      ]
    [      [SYMBOLIC TERMINAL IS data-name]]
    [                                      ]
    [      [TEXT LENGTH  IS data-name]      ] .
    [                                      ]
    [      [END KEY  IS data-name]          ]
    [                                      ]
    [      [STATUS KEY  IS data-name]]      ]
    [                                      ]
    [ [data-name data-name data-name       ]
    [       data-name data-name data-name] ]



GCOS 7 COBOL 85 Reference Manual

F-18 47 A2 05UL Rev04

GENERAL FORMAT FOR REPORT-DESCRIPTION-ENTRY

RD report-name [IS GLOBAL ]

      [CODE literal]

      {CONTROL IS  } {{data-name}...        }
     [{            } {                      }]
      {CONTROLS ARE} { FINAL  [data-name]... }

            [LIMIT IS  ]         [LINE ]
      [PAGE [          ] integer [     ] [HEADING  integer]
            [LIMITS ARE]         [LINES]

           [FIRST DETAIL  integer] [LAST  DETAIL  integer]

           [FOOTING integer]].



Composite Language Skeleton

47 A2 05UL Rev04 F-19

GENERAL FORMATS FOR DATA-DESCRIPTION-ENTRY

Format 1

             [data-name]
level-number [         ]
             [FILLER   ]

    [REDEFINES data-name]

    [IS EXTERNAL]

    [IS GLOBAL]

    {PICTURE}                     |--------------------------|
   [{       } IS character-string | [DEPENDING ON data-name] |]
    {PIC    }                     |--------------------------|

               {   BINARY             }
               { |-----|              }
               { | BIT |              }
               { |-----|              }
               {   COMPUTATIONAL      }
               {   COMP               }
               { |------------------| }
               { | COMPUTATIONAL-1  | }
               { | COMP-1           | }
               { | COMPUTATIONAL-2  | }
               { | COMP-2           | }
               { | COMPUTATIONAL-3  | }
               { | COMP-3           | }
   [[USAGE IS] { | COMPUTATIONAL-5   | }]
               { | COMP-5           | }
               { | COMPUTATIONAL-8  | }
               { | COMP-8           | }
               { | COMPUTATIONAL-9  | }
               { | COMP-9           | }
               { | COMPUTATIONAL-10 | }
               { | COMP-10          | }
               { | COMPUTATIONAL-15 | }
               { | COMP-15          | }
               { | POINTER          | }
               { |------------------| }
               {   DISPLAY            }
               {   INDEX              }
               {   PACKED-DECIMAL     }

              {LEADING }
   [[SIGN IS] {        } [SEPARATE  CHARACTER]]
              {TRAILING}



GCOS 7 COBOL 85 Reference Manual

F-20 47 A2 05UL Rev04

    [OCCURS integer TIMES                                  ]
    [                                                      ]
    [    {ASCENDING }                                      ]
    [   [{          } KEY IS {data-name}... ]...           ]
    [    {DESCENDING}                                      ]
    [                                                      ]
    [    [INDEXED BY {index-name}... ]                     ]
    [                                                      ]
    [OCCURS integer TO  integer TIMES DEPENDING  ON data-name]
    [                                                      ]
    [    {ASCENDING }                                      ]
    [   [{          } KEY IS {data-name}... ]...           ]
    [    {DESCENDING}                                      ]
    [                                                      ]
    [    [INDEXED BY {index-name}... ]                     ]

    {SYNCHRONIZED} [LEFT  ]
   [{            } [     ]]
    {SYNC        } [RIGHT ]

    {JUSTIFIED}
   [{         } RIGHT]
    {JUST     }

    [BLANK WHEN ZERO ]

              {   literal}
    [VALUE IS { |------| }] .
              { | NULL | }
                |------|

Format 2

66 data-name
                        {THROUGH}
     RENAMES data-name [{       } data-name].
                        {THRU   }

Format 3

88 condition-name
                   |------|
                 { | NULL |                               }
    {VALUE IS  } { |------|                               }
    {          } {            {THROUGH}           |-----| }
    {VALUES ARE} {  {literal [{-------} literal]} | ... | }
                 {            {THRU   }           |-----| }

      |--------------------------------|
      | [WHEN SET TO FALSE IS literal] | .
      |--------------------------------|



Composite Language Skeleton

47 A2 05UL Rev04 F-21

GENERAL FORMATS FOR REPORT-GROUP-DESCRIPTION-ENTRY

Format 1

01 [data-name]
                    {integer [ON NEXT PAGE ]}
    [LINE NUMBER IS {                      }]
                    {PLUS integer          }

                   {integer     }
    [NEXT GROUP  IS {PLUS  integer}]
                   {NEXT PAGE    }

             {{REPORT HEADING }             }
             {{RH            }             }
             {                             }
             {{PAGE HEADING }               }
             {{PH          }               }
             {                             }
             {{CONTROL HEADING} {data-name}}
             {{CH             } {FINAL     }}
             {                             }
     TYPE IS {{DETAIL }                     }
             {{DE    }                     }
             {                             }
             {{CONTROL FOOTING} {data-name}}
             {{CF             } {FINAL     }}
             {                             }
             {{PAGE FOOTING}               }
             {{PF          }               }
             {                             }
             {{REPORT FOOTING }             }
             {{RF            }             }

   [[USAGE IS] DISPLAY ].

Format 2

level-number [data-name]

                    {integer [ON NEXT PAGE]}
    [LINE NUMBER IS {                      }]
                    {PLUS integer          }

   [[USAGE IS] DISPLAY ].



GCOS 7 COBOL 85 Reference Manual

F-22 47 A2 05UL Rev04

Format 3

level-number [data-name]

    {PICTURE}
    {       } IS character-string
    {PIC    }

   [[USAGE IS] DISPLAY ]

              {LEADING }
   [[SIGN IS] {        } SEPARATE  CHARACTER]
              {TRAILING}

    {JUSTIFIED}
   [{         } RIGHT]
    {JUST     }

    [BLANK WHEN ZERO ]

                    {integer [ON NEXT PAGE ]}
    [LINE NUMBER IS {                      }]
                    {PLUS integer          }

    [COLUMN NUMBER IS integer]

   { SOURCE IS identifier                          }
   {                                               }
   { VALUE IS literal                              }
   {                                               }
   {{SUM {identifier}... [UPON  {data-name}... ]}...}
   {                                               }
   {               {data-name}                     }
   {     [RESET ON {         }]                    }
                   {FINAL    }

    [GROUP INDICATE].



Composite Language Skeleton

47 A2 05UL Rev04 F-23

GENERAL FORMAT FOR VERBS

                          {    mnemonic-name        }
                          { |---------------------| }
                          { |  SYSIN              | }
  ACCEPT identifier [FROM  { | [ALTERNATE ] CONSOLE | }
                          { |  ALTERNATE-CONSOLE  | }
                          { |  TERMINAL           | }
                            |---------------------|

                         {DATE       }
                         {DAY        }
  ACCEPT identifier FROM  {           }
                         {DAY-OF-WEEK}
                         {TIME       }
  ACCEPT cd-name MESSAGE COUNT

|---------------------------------------|
| ACCEPT identifier FROM  FILE file-name |
|---------------------------------------|

      {identifier}
  ADD {          }... TO  {identifier [ROUNDED ]}...
      {literal   }

      [ON SIZE ERROR  imperative-statement]

      [NOT ON SIZE  ERROR imperative-statement]

      [END-ADD]

     {identifier}     {identifier}
  ADD{          }...TO{          } GIVING  {identifier[ROUNDED ]}...
     {literal   }     {literal   }

      [ON SIZE ERROR  imperative-statement]

      [NOT ON SIZE  ERROR imperative-statement]

      [END-ADD]

      {CORRESPONDING}
  ADD {             } identifier TO  identifier [ROUNDED ]
      {CORR         }

      [ON SIZE ERROR  imperative-statement]

      [NOT ON SIZE  ERROR imperative-statement]

      [END-ADD]

  ALTER {procedure-name TO  [PROCEED TO] procedure-name}...



GCOS 7 COBOL 85 Reference Manual

F-24 47 A2 05UL Rev04

|----------------------------------------------------------|
| ASSIGN file-name                                         |
|                                                          |
|                 {[NOT] GREATER  THAN       }              |
|                 {[NOT] LESS  THAN          }              |
|                 {[NOT] EQUAL  TO           }              |
|                 { GREATER THAN OR  EQUAL TO} {identifier} |
|       TO MEMBER  { LESS  THAN OR EQUAL TO   } {literal   } |
|                 {[NOT] >                  } {ACTUAL     } |
|                 {[NOT] <                  }              |
|                 {[NOT] =                  }              |
|                 { >=                      }              |
|                 { <=                      }              |
|                                                          |
|                          {identifier}                    |
| ASSIGN file-name TO  FILE  {literal   }                    |
|                          {file-name }                    |
|----------------------------------------------------------|

       {identifier}
  CALL {          } [USING
       {literal   }
                        |------------|
     {[BY REFERENCE] {[ | ADDRESS  OF | ] identifier}...}
     {                  |------------|                 }
     {                                                 }
     {            {   identifier              }        }... ]
     {            { |-----------------------| }        }
     { BY CONTENT { | literal               | }...     }
                  { | arithmetic-expression | }
                  { | boolean-expression    | }
                    |-----------------------|

    |---------------------|
    | [GIVING identifier] |
    |---------------------|

          {EXCEPTION}
      [ON {         } imperative-statement]
          {OVERFLOW }

              {   EXCEPTION  }
      [NOT ON { |----------| } imperative-statement]
              { | OVERFLOW | }
                |----------|

      [END-CALL]

         {literal   }
  CANCEL {          }...
         {identifier}



Composite Language Skeleton

47 A2 05UL Rev04 F-25

                             |----------------|
                    {REEL} [ | WITH NO  REWIND | ]
                   [{    } [ |----------------| ]]
                   [{UNIT} [   FOR REMOVAL       ]]
  CLOSE {file-name [                             ]}...
                   [      {NO REWIND }            ]
                   [ WITH {         }            ]
                          {LOCK     }
  COMPUTE {identifier [ROUNDED ]}...

                  {   =        }
                  { |--------| }
                  { | FROM   | } arithmetic-expression
                  { | EQUALS | }
                    |--------|

      [ON SIZE ERROR  imperative-statement]

      [NOT ON SIZE  ERROR imperative-statement]

      [END-COMPUTE]

|-----------------------------------------------------|
|                         {FROM  }                    |
| COMPUTE {identifier}... { =     } boolean-expression |
|                         {EQUALS}                    |
|-----------------------------------------------------|

  CONTINUE

  DELETE file-name RECORD

      [INVALID KEY imperative-statement]

      [NOT INVALID  KEY imperative-statement]

      [END-DELETE]

          {INPUT [TERMINAL ]}                   {identifier}
  DISABLE {I-O  TERMINAL    } cd-name [WITH KEY  {          }]
          {OUTPUT          }                   {literal   }

          |-------------------| {identifier}
  DISPLAY | [WITH CONVERSION ] | {          }...
          |-------------------| {literal   }

            {    mnemonic-name        }
            { |---------------------| }
            { |  SYSOUT             | }
      [UPON { | [ALTERNATE ] CONSOLE | }] [WITH NO  ADVANCING]
            { |  ALTERNATE-CONSOLE  | }
            { |  TERMINAL           | }
              |---------------------|



GCOS 7 COBOL 85 Reference Manual

F-26 47 A2 05UL Rev04

         {identifier}
  DIVIDE {          } INTO  {identifier [ROUNDED ]}...
         {literal   }

      [ON SIZE ERROR  imperative-statement]

      [NOT ON SIZE  ERROR imperative-statement]

      [END-DIVIDE]

         {identifier}      {identifier}
  DIVIDE {          } INTO  {          }
         {literal   }      {literal   }

       GIVING {identifier [ROUNDED ]}...

      [ON SIZE ERROR  imperative-statement]

      [NOT ON SIZE  ERROR imperative-statement]

      [END-DIVIDE]

         {identifier}    {identifier}
  DIVIDE {          } BY  {          }
         {literal   }    {literal   }

                        GIVING {identifier [ROUNDED ]}...

      [ON SIZE ERROR  imperative-statement]

      [NOT ON SIZE  ERROR imperative-statement]

      [END-DIVIDE]

         {identifier}      {identifier}
  DIVIDE {          } INTO  {          }
         {literal   }      {literal   }

       GIVING identifier [ROUNDED ] REMAINDER identifier

      [ON SIZE ERROR  imperative-statement]

      [NOT ON SIZE  ERROR imperative-statement]

      [END-DIVIDE]

         {identifier}    {identifier}
  DIVIDE {          } BY  {          }
         {literal   }    {literal   }

       GIVING identifier [ROUNDED ] REMAINDER identifier

      [ON SIZE ERROR  imperative-statement]

      [NOT ON SIZE  ERROR imperative-statement]

      [END-DIVIDE]



Composite Language Skeleton

47 A2 05UL Rev04 F-27

         {INPUT [TERMINAL ]}                   {identifier}
  ENABLE {I-O  TERMINAL    } cd-name [WITH KEY  {          }]
         {OUTPUT          }                   {literal   }
           {identifier}       {identifier}
           {literal   }       {literal   }
  EVALUATE {expression} [ALSO  {expression}]...
           {TRUE      }       {TRUE       }
           {FALSE     }       {FALSE      }

            {    ANY                                     }
            {    condition                               }
            { |--------------------------|               }
            { | [NOT] boolean-expression |               }
            { |--------------------------|               }
            {    TRUE                                    }
     {{WHEN {    FALSE                                    }
            {                                            }
            {          {identifier           }           }
            {   [NOT] {{literal              }           }
            {          {arithmetic-expression}           }
            {                                            }
            {         {THROUGH} {identifier           }  }
            {        [{       } {literal              }]}}
                      {THRU   } {arithmetic-expression}

            {    ANY                                     }
            {    condition                               }
            { |--------------------------|               }
            { | [NOT] boolean-expression |               }
            { |--------------------------|               }
            {    TRUE                                    }
      [ALSO {    FALSE                                    }]...}...
            {                                            }
            {          {identifier           }           }
            {   [NOT] {{literal              }           }
            {          {arithmetic-expression}           }
            {                                            }
            {         {THROUGH} {identifier           }  }
            {        [{       } {literal              }]}}
                      {THRU   } {arithmetic-expression}

       imperative-statement}...

      [WHEN OTHER  imperative-statement]



GCOS 7 COBOL 85 Reference Manual

F-28 47 A2 05UL Rev04

      [END-EVALUATE]
|--------------------------------------------------------------|
|                                                              |
| EXAMINE identifier                                           |
|                                                              |
|               {ALL        } {literal   }                     |
|     {TALLYING {LEADING     } {          }                   } |
|     {         {UNTIL FIRST } {identifier}                   } |
|     {                                                      } |
|     {                  {literal   }                        } |
|     {    [REPLACING BY  {          }]                       } |
|     {                  {identifier}                        } |
|     {                                                      } |
|     {          { ALL         } {literal   }    {literal   }} |
|     {REPLACING { LEADING      } {          } BY  {          }} |
|     {          {[UNTIL] FIRST } {identifier}    {identifier}} |
|                                                              |
|--------------------------------------------------------------|
  EXIT [PROGRAM  [GIVING  identifier]].

           {data-name  }
  GENERATE {           }
           {report-name}

  GO TO [procedure-name]

  GO TO {procedure-name}... DEPENDING  ON identifier

                    {{statement}...} {ELSE {statement}...[END-IF ]}
  IF condition THEN {              } {ELSE  NEXT SENTENCE         }
                    { NEXT SENTENCE } {END-IF                      }

  INITIALIZE {identifier}...

               {   ALPHABETIC         }
               { |---------|          }
               { | BOOLEAN |          }         {identifier}
    [REPLACING { |---------|          } DATA BY  {          }... ]
               {   ALPHANUMERIC       }         {literal   }
               {   NUMERIC            }
               {   ALPHANUMERIC-EDITED}
               {   NUMERIC-EDITED     }

  INITIATE {report-name}...

  INSPECT identifier TALLYING  {identifier FOR



Composite Language Skeleton

47 A2 05UL Rev04 F-29

                   {BEFORE}         {identifier}
     { CHARACTERS [{      } INITIAL {          }]...}
     {             {AFTER }         {literal   }    }
     {                                              }
     {{ALL    }  {identifier}                       }... }...
     {{       } {{          }                       }
     {{LEADING}  {literal   }                       }
     {                                              }
     {     {BEFORE}         {identifier}            }
     {    [{      } INITIAL {          }]... }...   }
           {AFTER }         {literal   }

  INSPECT identifier REPLACING

                     {identifier}
     { CHARACTERS BY  {          }                 }
     {               {literal   }                 }
     {                                            }
     {     {BEFORE}         {identifier}          }
     {    [{      } INITIAL {          }]...      }
     {     {AFTER }         {literal   }          }
     {                                            }...
     {{ALL    }  {identifier}    {identifier}     }
     {{LEADING} {{          } BY  {          }     }
     {{FIRST  }  {literal   }    {literal   }     }
     {                                            }
     {     {BEFORE}         {identifier}          }
     {    [{      } INITIAL {          }]... }... }
           {AFTER }         {literal   }

  INSPECT identifier TALLYING  {identifier

                        {BEFORE}         {identifier}
          { CHARACTERS [{      } INITIAL {          }]...}
          {             {AFTER }         {literal   }    }
          {                                              }
     FOR  {{ALL     }  {identifier}                       }... }...
          {{       } {{          }                       }
          {{LEADING}  {literal   }                       }
          {                                              }
          {     {BEFORE}         {identifier}            }
          {    [{      } INITIAL {          }]... }...   }
                {AFTER }         {literal   }

                               {identifier}
               { CHARACTERS BY  {          }                 }
               {               {literal   }                 }
               {                                            }
               {     {BEFORE}         {identifier}          }
               {    [{      } INITIAL {          }]...      }
               {     {AFTER }         {literal   }          }
     REPLACING {                                            }...
               {{ALL    }  {identifier}    {identifier}     }
               {{LEADING} {{          } BY  {          }     }
               {{FIRST  }  {literal   }    {literal   }     }
               {                                            }
               {     {BEFORE}         {identifier}          }
               {    [{      } INITIAL {          }]... }... }
                     {AFTER }         {literal   }



GCOS 7 COBOL 85 Reference Manual

F-30 47 A2 05UL Rev04

                                {identifier}    {identifier}
  INSPECT identifier CONVERTING  {          } TO  {          }
                                {literal   }    {literal   }

           {BEFORE}         {identifier}
          [{      } INITIAL {          }]...
           {AFTER }         {literal   }

                      {ASCENDING }
  MERGE file-name {ON {          } KEY {data-name [FOR DATE ]} }...
                      {DESCENDING}

                           {   alphabet-name}
                           { |------------| }
                           { | NATIVE     | }
                           { | STANDARD-1 | }
                           { | STANDARD-2 | }]
    [COLLATING SEQUENCE IS { | ASCII       | }]
                           { | EBCDIC     | }
                           { | GBCD       | }
                           { | JIS        | }
                             |------------|

     USING file-name {file-name}...

    {                                   {THROUGH}                }
    {OUTPUT PROCEDURE  IS procedure-name[{       } procedure-name]}
    {                                   {THRU   }                }
    {                                                            }
    {GIVING {file-name}...                                       }

       {identifier}
  MOVE {          } TO  {identifier}...
       {literal   }

       {CORRESPONDING}
  MOVE {             } identifier TO  {identifier} ...
       {CORR         }

           {identifier}
  MULTIPLY {          } BY  {identifier [ROUNDED ]}...
           {literal   }

      [ON SIZE ERROR  imperative-statement]

      [NOT ON SIZE  ERROR imperative-statement]

      [END-MULTIPLY]



Composite Language Skeleton

47 A2 05UL Rev04 F-31

           {identifier}    {identifier}
  MULTIPLY {          } BY  {          }
           {literal   }    {literal   }

       GIVING {identifier [ROUNDED ]}...

      [ON SIZE ERROR  imperative-statement]

      [NOT ON SIZE  ERROR imperative-statement]

      [END-MULTIPLY]

       {INPUT {file-name [WITH NO  REWIND]}... }
  OPEN {OUTPUT  {file-name [WITH NO  REWIND]}...} ...
       {I-O {file-name}...                    }
       {EXTEND {file-name}...                 }

                           {THROUGH}
  PERFORM [procedure-name [{       } procedure-name]]
                           {THRU   }

      [imperative-statement END-PERFORM]

                           {THROUGH}
  PERFORM [procedure-name [{       } procedure-name]]
                           {THRU   }

      {identifier}
      {          } TIMES
      {integer   }

      [imperative-statement END-PERFORM]

                           {THROUGH}
  PERFORM [procedure-name [{       } procedure-name]]
                           {THRU   }

                 {BEFORE}
      [WITH TEST {      }] UNTIL  condition
                 {AFTER }

      [imperative-statement END-PERFORM]

                           {THROUGH}
  PERFORM [procedure-name [{       } procedure-name]]
                           {THRU   }

                 {BEFORE}
      [WITH TEST {      }]
                 {AFTER }

               {identifier}      {identifier}
       VARYING {          } FROM  {index-name}
               {index-name}      {literal   }



GCOS 7 COBOL 85 Reference Manual

F-32 47 A2 05UL Rev04

                   {identifier}
                BY {          } UNTIL  condition
                   {literal   }

             {identifier}      {identifier}
      [AFTER {          } FROM  {index-name}
             {index-name}      {literal   }

                   {identifier}
                BY {          } UNTIL  condition]...
                   {literal   }

      [imperative-statement END-PERFORM]
  PURGE cd-name

                      |----------|
                   [{ | PREVIOUS | }]
                      |----------|
READ file-name-1   [{              }] RECORD [INTO  identifier-1]
                   [{  NEXT        }]

      [AT END imperative-statement]

      [NOT AT END  imperative-statement]

      [END-READ]

  READ file-name RECORD [INTO  identifier] [KEY  IS data-name]

      [INVALID KEY imperative-statement]

      [NOT INVALID  KEY imperative-statement]

      [END-READ]

                  {MESSAGE}
  RECEIVE cd-name {       } INTO  identifier
                  {SEGMENT}

      [NO DATA  imperative-statement]

      [WITH DATA imperative-statement]

      [END-RECEIVE]

  RELEASE record-name [FROM  identifier]

  RETURN file-name RECORD [INTO  identifier]

       AT END imperative-statement

      [NOT AT END  imperative-statement]

      [END-RETURN]



Composite Language Skeleton

47 A2 05UL Rev04 F-33

  REWRITE record-name [FROM  identifier]

      [INVALID KEY imperative-statement]

      [NOT INVALID  KEY imperative-statement]

      [END-REWRITE]

                             {identifier}
  SEARCH identifier [VARYING  {          }]
                             {index-name}

      [AT END imperative-statement]

                      {imperative-statement}
      {WHEN CONDITION {                    }}... [END-SEARCH ]
                      {NEXT SENTENCE        }

  SEARCH ALL  identifier

      [AT END imperative-statement]

            {          {IS EQUAL TO } {identifier           }}
            {          { |--------| } {                     }}
            {data-name { | EQUALS | } {literal              }}
            {          { |--------| } {                     }}
       WHEN {          {IS =        } {arithmetic-expression}}
            {                                                }
            {condition-name                                  }

            {          {IS EQUAL TO } {identifier           }}
            {          { |--------| } {                     }}
            {data-name { | EQUALS | } {literal              }}
            {          { |--------| } {                     }}
      [AND  {          {IS =        } {arithmetic-expression}}]...
            {                                                }
            {condition-name                                  }

      {imperative-statement}
      {                    } [END-SEARCH]
      {NEXT SENTENCE        }

  SEND cd-name FROM  identifier

                                 {WITH identifier}
  SEND cd-name [FROM  identifier] {WITH ESI        }
                                 {WITH EGI       }
                                 {WITH EMI       }

                         {{identifier} [LINE ]}
      {BEFORE}           {{integer   } [LINES]}
     [{      } ADVANCING {                    }]
      {AFTER }           { mnemonic-name      }
                         { PAGE               }

     [REPLACING LINE ]



GCOS 7 COBOL 85 Reference Manual

F-34 47 A2 05UL Rev04

                          {identifier}
      {identifier}        {          }
  SET {          } ... TO {index-name}
      {index-name}        {          }
                          {integer   }

                      {UP BY   } {identifier}
  SET {index-name}... {       } {          }
                      {DOWN BY } {integer   }

       {SWITCH-n     }       {ON  }
  SET {{             }... TO  {   }}...
       {mnemonic-name}       {OFF}

                             {   TRUE    }
  SET {condition-name}... TO  { |-------| }
                             { | FALSE | }
                               |-------|

|-----------------------------------------------------------|
|     {identifier           }       {identifier           } |
| SET {                     }... TO  {ADDRESS OF identifier} |
|     {ADDRESS OF  identifier}       {NULL                  } |
|-----------------------------------------------------------|

                     {ASCENDING }
  SORT file-name {ON {          } KEY {data-name [FOR DATE ]} }...
                     {DESCENDING}

                       {   ORDER      }
   [WITH DUPLICATES IN { |----------| }]
                       { | SEQUENCE | }
                         |----------|

                          {   alphabet-name}
                          { |------------| }
                          { | NATIVE     | }
                          { | STANDARD-1 | }
   [COLLATING SEQUENCE IS { | STANDARD-2  | } ]
                          { | ASCII      | }
                          { | EBCDIC     | }
                          { | GBCD       | }
                          { | JIS        | }
                            |------------|

   {                                   {THROUGH}                }
   {INPUT PROCEDURE  IS procedure-name [{       } procedure-name]}
   {                                   {THRU   }                }
   {                                                            }
   {USING {file-name}...                                        }

   {                                    {THROUGH}                }
   {OUTPUT PROCEDURE IS procedure-name [{       } procedure-name]}
   {                                    {THRU   }                }
   {GIVING {file-name}...                                        }



Composite Language Skeleton

47 A2 05UL Rev04 F-35

|-------------------------------------------------------------|
|                      {ASCENDING }                           |
| SORT data-name-2 [ON {          } KEY [data-name-1]... ]... |
|                      {DESCENDING}                           |
|                                                             |
|                         { ORDER    }                        |
|     [WITH DUPLICATES IN {          }]                       |
|                         { SEQUENCE }                        |
|                                                             |
|                            { alphabet-name-1}               |
|                            { NATIVE         }               |
|                            { STANDARD-1     }               |
|     [COLLATING SEQUENCE IS { STANDARD-2      } ]             |
|                            { ASCII          }               |
|                            { EBCDIC         }               |
|                            { GBCD           }               |
|                            { JIS            }               |
|-------------------------------------------------------------|

  START file-name

           {   IS EQUAL TO                }
           {   IS =                       }
           { |---------|                  }
           { | EQUALS  |                  }
           { | EXCEEDS |                  }
           { |---------|                  }
      [KEY {   IS GREATER  THAN            } data-name]
           {   IS >                       }
           {   IS NOT LESS  THAN           }
           {   IS NOT <                   }
           {   IS GREATER THAN OR  EQUAL TO}
           {   IS >=                      }

      [INVALID KEY imperative-statement]

      [NOT INVALID KEY imperative-statement]

      [END-START]
|--------------------------------------------------------|
|  START file-name                                       |
|                                                        |
|           {                              }             |
|           {   IS LESS THAN               }             |
|           {   IS <                       }             |
|       KEY {   IS NOT  GREATER THAN        } data-name   |
|           {   IS NOT >                   }             |
|           {   IS LESS THAN OR  EQUAL TO   }             |
|           {   IS <=                      }             |
|                                                        |
|      [INVALID KEY imperative-statement]                |
|                                                        |
|      [NOT INVALID  KEY imperative-statement]            |
|                                                        |
|      [END-START]                                       |
|--------------------------------------------------------|



GCOS 7 COBOL 85 Reference Manual

F-36 47 A2 05UL Rev04

       {   RUN     }
       {   literal }
  STOP { |-------| }
       { | ERROR | }
         |-------|

          {identifier}                 {identifier}
  STRING {{          }... DELIMITED BY {literal   }}...
          {literal   }                 {SIZE      }

       INTO identifier

      [WITH POINTER identifier]

      [ON OVERFLOW imperative-statement]

      [NOT ON OVERFLOW  imperative-statement]

      [END-STRING]
           {identifier}
  SUBTRACT {          }... FROM {identifier [ROUNDED]}...
           {literal   }

      [ON SIZE ERROR  imperative-statement]

      [NOT ON SIZE ERROR imperative-statement]

      [END-SUBTRACT]

           {identifier}         {identifier}
  SUBTRACT {          }... FROM  {          }
           {literal   }         {literal   }

       GIVING {identifier [ROUNDED ]}...

      [ON SIZE ERROR  imperative-statement]

      [NOT ON SIZE  ERROR imperative-statement]

      [END-SUBTRACT]

           {CORRESPONDING}
  SUBTRACT {             } identifier FROM identifier [ROUNDED]
           {CORR         }

      [ON SIZE ERROR imperative-statement]

      [NOT ON SIZE  ERROR imperative-statement]

      [END-SUBTRACT]

  SUPPRESS PRINTING

  TERMINATE {report-name}...



Composite Language Skeleton

47 A2 05UL Rev04 F-37

|----------------------------------------------------------|
|                                                          |
| TRANSFORM identifier CHARACTERS                          |
|                                                          |
|           {figurative-constant}    {figurative-constant} |
|      FROM {literal            } TO {literal            } |
|           {identifier         }    {identifier         } |
|                                                          |
|----------------------------------------------------------|

  UNSTRING identifier

                         {identifier}           {identifier}
     [DELIMITED BY [ALL ] {          } [OR  [ALL ] {          }]... ]
                         {literal   }           {literal   }

       INTO {identifier
                [DELIMITER IN identifier]
                [COUNT IN identifier]}...

      [WITH POINTER identifier]

      [TALLYING IN identifier]

      [ON OVERFLOW imperative-statement]

      [NOT ON OVERFLOW imperative-statement]

      [END-UNSTRING]

                              {EXCEPTION}
  USE [GLOBAL ] AFTER  STANDARD {         } PROCEDURE
                              {ERROR    }

          {{file-name}...}
          { INPUT        }
       ON { OUTPUT       }
          { I-O          }
          { EXTEND       }

  USE [GLOBAL ] BEFORE REPORTING identifier

  USE FOR DEBUGGING

          { cd-name                      }
          {[ALL REFERENCES OF] identifier}
          {        |-------------------| }
       ON {        | [WITH CONVERSION] | }...
          {        |-------------------| }
          { procedure-name               }
          { file-name                    }
          { ALL PROCEDURES                }



GCOS 7 COBOL 85 Reference Manual

F-38 47 A2 05UL Rev04

  WRITE record-name [FROM identifier]

                          {identifier} [LINE ]
                         {{          } [     ]}
      {BEFORE}           {{integer   } [LINES]}
     [{      } ADVANCING {                    }]
      {AFTER }           {{mnemonic-name}     }
                         {{             }     }
                          {PAGE         }

          {END-OF-PAGE}
      [AT {           } imperative-statement]
          {EOP        }

              {END-OF-PAGE}
      [NOT AT {           } imperative-statement]
              {EOP        }

      [END-WRITE]

  WRITE record-name [FROM  identifier]

      [INVALID KEY imperative-statement]

      [NOT INVALID  KEY imperative-statement]

      [END-WRITE]



Composite Language Skeleton

47 A2 05UL Rev04 F-39

GENERAL FORMAT FOR CONDITIONS

Relation Condition

{identifier           }
{literal              }
{arithmetic-expression}
{index-name           }

        {   IS [NOT] GREATER THAN       }
        {   IS [NOT] LESS THAN         }
        {   IS [NOT] EQUAL TO          }
        {   IS GREATER THAN OR  EQUAL TO}
        {   IS LESS THAN OR  EQUAL TO   }
        {   IS [NOT] >                 } {identifier           }
        {   IS [NOT] <                 } {literal              }
        {   IS [NOT] =                 } {arithmetic-expression}
        {   IS >=                      } {index-name           }
        {   IS <=                      }
        { |---------------|            }
        { | IS UNEQUAL TO |            }
        { | EQUALS        |            }
        { | EXCEEDS       |            }
          |---------------|

|-----------------------------------------------------------|
|                    {IS [NOT] EQUAL  TO}                    |
|                    {IS [NOT] =       }                    |
| boolean-expression {                 } boolean-expression |
|                    {IS UNEQUAL TO    }                    |
|                    {EQUALS           }                    |
|-----------------------------------------------------------|

|-------------------------------------------------------|
| {ADDRESS OF  identifier}                               |
| {identifier           }                               |
| {NULL                 }                               |
|           {IS [NOT] EQUAL  TO}                         |
|           {IS [NOT] =       } {ADDRESS  OF identifier} |
|           {                 } {identifier           } |
|           {IS UNEQUAL TO    } {NULL                  } |
|           {EQUALS           }                         |
|-------------------------------------------------------|



GCOS 7 COBOL 85 Reference Manual

F-40 47 A2 05UL Rev04

Class Condition

                    {   NUMERIC         }
                    {   ALPHABETIC      }
                    {   ALPHABETIC-LOWER}
identifier IS [NOT] {   ALPHABETIC-UPPER }
                    { |---------|       }
                    { | BOOLEAN |       }
                    { |---------|       }
                    {   class-name      }

Condition-name Condition

condition-name

Switch-status Condition

condition-name

Sign Condition

                               {POSITIVE}
arithmetic-expression IS [NOT] {NEGATIVE }
                               {ZERO    }

Negated Condition

NOT condition

Combined Condition

           {AND}
condition {{   } condition}...
           {OR }

Abbreviated Combined Relation Condition

                    {AND}
relation-condition {{   } [NOT] [relational-operator] object}...
                    {OR }



Composite Language Skeleton

47 A2 05UL Rev04 F-41

F.2 MISCELLANEOUS FORMATS

Qualification

Format 1

                   {IN}                {IN } {file-name}
                 { {  } data-name}... [{  } {         }]}
                 { {OF}                {OF } {cd-name  } }
{data-name     } {                                      }
{condition-name} {                                      }
                 { {IN} {file-name}                     }
                 { {  } {         }                     }
                   {OF} {cd-name  }

Format 2

               {IN}
paragraph-name {  } section-name
               {OF}

Format 3

          {IN}
text-name {  } library-name
          {OF}

Format 4

               {IN}
LINAGE-COUNTER {  } file-name
               {OF}

Format 5

{PAGE-COUNTER} {IN }
{            } {  } report-name
{LINE-COUNTER} {OF }

Format 6

           {IN}            {IN }
          {{  } data-name [{  } report-name]}
          {{OF}            {OF }             }
data-name {                                 }
          {{IN}                             }
          {{  } report-name                 }
           {OF}



GCOS 7 COBOL 85 Reference Manual

F-42 47 A2 05UL Rev04

Subscripting

                   {integer                 }
                   {                        }
{data-name     }   {           {+}          }
{              } ( {data-name [{ } integer] }... )
{condition-name}   {           {-}          }
                   {                        }
                   {            {+}         }
                   {index-name [{ } integer]}
                                {-}

Reference Modification

data-name (leftmost-character-position : [length] )

Identifier

{                                    {file-name  }   }
{           {IN}                {IN } {           }   }
{data-name [{  } data-name]... [{  } {cd-name    }]  }
{           {OF}                {OF } {           }   }
{                                    {report-name}   }
{                                                    }
{         [( {subscript}... )]                       }
{                                                    }
{         [(leftmost-character-position : [length] )]}
{                                                    }
{function-identifier                                 }

Function-identifier

FUNCTION function-name [({argument}...)]
           [(leftmost-character-position:[length])]



Composite Language Skeleton

47 A2 05UL Rev04 F-43

F.3 GENERAL FORMAT FOR COPY AND REPLACE STATEMENTS

COPY

                {IN}
COPY text-name [{  } library-name]
                {OF}

    [REPLACING

         {== pseudo-text ==}    {== pseudo-text ==}
         {                 }    {                 }
         {identifier       }    {identifier       }
     {   {                 } BY {                 }}
     {   {literal          }    {literal          }}
     {   {                 }    {                 }}
     {   {word             }    {word             }}
     {                                             }
     {                                             }... ]
     { |---------------------------------|         }
     { |                       {literal} |         }
     { | {LEADING }            {       } |         }
     { | {        } literal BY {SPACE   } |         }
       | {TRAILING}            {       } |
       |                       {SPACES } |
       |---------------------------------|

REPLACE

REPLACE

         {== pseudo-text ==}    {== pseudo-text ==}
         {                 }    {                 }
         {identifier       }    {identifier       }
     {   {                 } BY {                 }}
     {   {literal          }    {literal          }}
     {   {                 }    {                 }}
     {   {word             }    {word             }}
     {                                             }...
     { |---------------------------------|         }
     { |                       {literal} |         }
     { | {LEADING }            {       } |         }
     { | {        } literal BY {SPACE   } |         }
       | {TRAILING}            {       } |
       |                       {SPACES } |
       |---------------------------------|

REPLACE OFF



GCOS 7 COBOL 85 Reference Manual

F-44 47 A2 05UL Rev04

F.4 GENERAL FORMAT FOR SEPARATELY COMPILED PROGRAM

[control-division]

identification-division

[environment-division]

[data-division]

[procedure-division]

[[contained-program]...

end-program-header]

|--------------------------------------------------------------|
| A contained-program is allowed anywhere a COBOL statement is |
| permitted.                                                   |
|--------------------------------------------------------------|



Composite Language Skeleton

47 A2 05UL Rev04 F-45

F.5 GENERAL FORMAT FOR CONTAINED-PROGRAM

identification-division

[environment-division]

[data-division]

[procedure-division]

[contained-program]...

end-program-header



GCOS 7 COBOL 85 Reference Manual

F-46 47 A2 05UL Rev04

F.6 GENERAL FORMAT FOR A SEQUENCE OF SEPARATELY COMPILED
PROGRAMS

{[control-division]

identification-division

[environment-division]

[data-division]

[procedure-division]

[contained-program]...

end-program-header}...

[control-division]

identification-division

[environment-division]

[data-division]

[procedure-division]

[[contained-program]...

end-program-header]



47 A2 05UL Rev04 g-1

Glossary

The terms in this glossary are defined in accordance with their meaning in COBOL, and
may not have the same meaning for other programming languages.

abbreviated combined relation condition

The combined condition that results from the explicit omission of a common subject or a
common subject and common relational operator in a consecutive sequence of relation
conditions.

access mode

The manner in which records are to be operated upon within a file.

actual decimal point

The physical representation, using the decimal point character period (.) or comma (,), of
the decimal point position in a data item.

|actual key

A key whose contents identify by its address on a disk a logical record in a relative file.|

alphabet-name

A user-defined word, in the SPECIAL-NAMES paragraph of the Environment Division,
that assigns a name to a specific character set and/or collating sequence.

alphabetic character

A character that belongs to the following set of letters:  A, B, C, D, E, F, G, H,
I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, | a, b, c,
d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y,
z, | and the space.



GCOS 7 COBOL 85 Reference Manual

g-2 47 A2 05UL Rev04

alphanumeric character

Any character in the computer's character set.

alphanumeric function

A function whose value is composed of a string of one or more characters from the
computer's character set.

alternate record key

A key, other than the Prime Record Key, whose contents identify a record within an
indexed file.

argument

An identifier, a literal or an arithmetic expression that specifies a value to be used in the
evaluation of a function.

arithmetic expression

An identifier of a numeric elementary item, a numeric literal, such identifiers and literals
separated by arithmetic operators, two arithmetic expressions separated by an arithmetic
operator, or an arithmetic expression enclosed in parentheses.

arithmetic operation

The process caused by the execution of an arithmetic statement, or the evaluation of an
arithmetic expression, that results in a mathematically correct solution to the arguments
presented.

arithmetic operator

A single character, or a fixed two-character combination of the character(s) that belongs
to the following set:

Character Meaning

+ Addition
- Subtraction
* Multiplication
/ Division
** Exponentiation



Glossary

47 A2 05UL Rev04 g-3

arithmetic statement

A statement that causes an arithmetic operation to be executed.  The arithmetic
statements are the ADD, COMPUTE, DIVIDE, MULTIPLY , and SUBTRACT statements.

ascending key

A key upon the values of which data is ordered starting with the lowest value of key up to
the highest value of key in accordance with the rules for comparing data items.

assumed decimal point

A decimal point position which does not involve the existence of an actual character in a
data item.  The assumed decimal point has logical meaning but no physical
representation.

AT END condition

A condition caused:

1. During the execution of a READ statement for a sequentially accessed file when no
next logical record exists for the file or when an optional file is not present.

2. During the execution of a RETURN statement, when no next logical record exists
for the associated sort or merge file.

3. During the execution of a SEARCH statement, when the search operation
terminates without satisfying the condition specified in any of the associated WHEN
phrases.

block

A physical unit of data that is normally composed of one or more logical records.  The
size of a block has no direct relationship to the size of the file within which the block is
contained or to the size of the logical record(s) that are either contained within the block
or that overlap the block.  The term is synonymous with Physical Record.

body group

Generic name for a report group of TYPE DETAIL, CONTROL HEADING or CONTROL
FOOTING.

bottom margin

An empty area which follows the page body.



GCOS 7 COBOL 85 Reference Manual

g-4 47 A2 05UL Rev04

called program

A program which is the object of a CALL statement combined at object time with the
calling program to produce a run unit.

calling program

A program which executes a CALL to another program.

cd-name

A user-defined word that names a Message Control System (MCS) interface area
described in a communication description entry within the Communication Section of the
Data Division.

character

The basic indivisible unit of the language.

character position

A character position is the amount of physical storage required to store a single Standard
Data Format character whose usage is DISPLAY, i.e.one byte (8 bits).

character-string

A sequence of contiguous characters which form a COBOL word, a literal, a PICTURE
character-string, or a comment-entry.

class condition

The proposition, for which a truth value can be determined, that the contents of an item
are wholly alphabetic or wholly numeric.

class-name

A user-defined word defined in the SPECIAL-NAMES paragraph of the Environment
Division that assigns a name to the proposition for which a truth value can be defined,
that the content of a data item consists exclusively of those characters listed in the
definition of the class-name.

clause

A clause is an ordered set of consecutive COBOL character-strings whose purpose is to
specify an attribute of an entry.



Glossary

47 A2 05UL Rev04 g-5

COBOL character set

The complete COBOL character set, exclusive of the contents of non-numeric literals,
comment-entries, and comment lines, consists of the characters listed below:

Character Meaning

0, 1, 2, 3, 4, 5, 6, 7, 8, 9 digit
A, B, C, D, E, F, G, H, I, J, K, letter (uppercase)
L, M, N, O, P, Q, R, S, T, U, V,
W, X, Y, Z
a, b, c, d, e, f, g, h, i, j, k, letter (lower-case)
l, m, n, o, p, q, r, s, t, u v, w,
x, y, z,

space
+ plus sign
- minus sign (hyphen)
* asterisk
/ stroke (virgule, slash)
= equal sign
$ (currency symbol) currency sign
, comma (decimal point)
; semi-colon
. period (decimal point, full stop)
" quotation mark
|' apostrophe|
( left parenthesis
) right parenthesis
> greater than symbol
< less than symbol
: colon
| 'Horizontal Tabulation'|
|_ underscore|

COBOL word

(see word)

collating sequence

The sequence in which the characters that are acceptable to a computer are ordered for
purposes of sorting, merging and comparing.

column

A character position within a print line.  The columns are numbered from 1, by 1, starting
at the leftmost character position of the print line and extending to the rightmost position
of the print line.



GCOS 7 COBOL 85 Reference Manual

g-6 47 A2 05UL Rev04

combined condition

A condition that is the result of connecting two or more conditions with the AND or the
OR logical operator.

comment line

A source program line represented by an asterisk in the Indicator Area of the line and
any characters from the computer's character set in Area A and Area B of that line.  The
comment line serves only for documentation in a program.  A special form of comment
line represented by a stroke (/) in the Indicator Area of the line and any characters from
the computer's character set in Area A and Area B of that line causes page ejection prior
to printing the comment.

comment-entry

An entry in the Identification division that may be any combination of characters from the
computer character set.  Comment-entries are used to document the program.

common program

A program which, despite being directly contained within another program, may be called
from any other program directly or indirectly contained in that other program.

communication description entry

An entry in the Communication Section of the Data Division that is composed of the level
indicator CD, followed by a cd-name, and then followed by a set of clauses as required.
It describes the interface between the Message Control System (MCS) and the COBOL
program.

communication device

A mechanism (hardware or hardware/software) capable of sending data to a queue
and/or receiving data from a queue.  This mechanism may be a computer or a peripheral
device.  One or more programs containing Communication Description entries and
residing within the same computer define one or more of these mechanisms.

Communication Section

The section of the Data Division that describes the interface areas between the MCS and
the program, composed of one or more CD description areas.

compile time

The time at which a COBOL source program is translated, by a COBOL compiler, into a
COBOL object program.



Glossary

47 A2 05UL Rev04 g-7

compiler directing statement

A statement, beginning with a compiler directing verb, that causes the compiler to take a
specific action during compilation.

complex condition

A condition in which one or more logical operators act upon one or more conditions.
(See negated simple condition, combined condition, negated combined condition).

computer-name

A system-name that identifies the computer upon which the program is to be compiled or
run.

condition

A status of a program at execution time for which a truth value can be determined.
Where the term 'condition' (condition-1, condition-2, ...) appears in these language
specifications in or in reference to 'condition' (condition-1, condition-2, ...) of a general
format, it is a conditional expression consisting or either a simple condition optionally
parenthesized, or a combined condition consisting of a syntactically correct combination
of simple conditions, logical operators, and parentheses, for which a truth value can be
determined.

condition-name

A user-defined word that assigns a name to a subset of values, that a conditional
variable may assume; or a user-defined word assigned to a status of a switch.  When
'condition-name' is used in the Formats, it represents a unique data item reference
consisting of a syntactically correct combination of a condition-name and qualifiers,
subscripts, and indices, as required for uniqueness of reference.

condition-name condition

The proposition, for which a truth value can be determined that the value of a conditional
variable is a member of the set of values attributed to a condition-name associated with
the conditional variable.

conditional expression

A simple condition or a complex condition specified in an IF, PERFORM or SEARCH
statement.  (See simple condition and complex condition.)



GCOS 7 COBOL 85 Reference Manual

g-8 47 A2 05UL Rev04

conditional phrase

A conditional phrase specifies the action to be taken upon determination of the truth
value of a condition resulting from the execution of a conditional statement.

conditional statement

A condition statement specifies that the truth value of a condition is to be determined and
that the subsequent action of the program is dependent on this truth value.

conditional variable

A data item one or more values of which has a condition-name assigned to it.

Configuration Section

A section of the Environment Division that describes overall specifications of source and
object computers.

connective

A reserved word that is used to:

1. Associate a data-name, paragraph-name, text-name, or condition-name with its
qualifier.

2. Link two or more operands written in a series.

3. Form conditions (logical connectives).  (See logical operator).

constant

A unit of data whose value is specified and is not subject to change.

|Constant Section

The section of the Data Division that defines the data items whose values do not change
during the execution of the program.|

contained program

A contained program is a program with is contained within another COBOL program.

contiguous items

Items that are described by consecutive entries in the Data Division, and that bear a
definite hierarchic relationship to each other.



Glossary

47 A2 05UL Rev04 g-9

control break

A change in the value of a data item that is referenced in the CONTROLS clause.  More
generally, a change in the value of a data item that is used to control the hierarchical
structure of a report.

control break level

The relative position within a control hierarchy at which the most major control break
occurred.

control data item

A data item, a change in whose contents may produce a control break.

control data-name

A data-name that appears in a CONTROL clause and refers to a control data item.

control footing

A report group that is presented at the end of the control group of which it is a member.

control group

A set of body groups that is presented for a given value of a control data item or of
FINAL.  Each control group may begin with a CONTROL HEADING, end with a
CONTROL FOOTING, and contain DETAIL report groups.

control heading

A report group that is presented at the beginning of the control group of which it is a
member.

control hierarchy

A designated sequence of report subdivisions defined by the positional order of FINAL
and the data-names within a CONTROL clause.

counter

A data item used for storing numbers or number representations in a manner that
permits these numbers to be increased or decreased by the value of another number, or
to be changed or reset to zero or to an arbitrary positive or negative value.



GCOS 7 COBOL 85 Reference Manual

g-10 47 A2 05UL Rev04

currency sign

The character "$" of the COBOL character set |, or more precisely, the character whose
internal representation is the same as that of character "$" (see Appendix B).|

currency symbol

The character defined by the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph.  If no CURRENCY SIGN clause is present in a COBOL source program, the
currency symbol is identical to the currency sign.

current record

The record that is available in the record area associated with the file.

current volume pointer

A conceptual entity that points to the current volume of a sequential file.

data clause

A clause that appears in a Data Description entry in the Data Division and provides
information describing a particular attribute of a data item.

data description entry

An entry in the Data Division that is composed of a level-number followed by a data-
name, if required, and then followed by a set of data clauses, as required.

data item

A character or a set of contiguous characters (excluding literals in either case) defined as
a unit of data by the COBOL program or by the rules for function evaluation.

data-name

A user-defined word of up to 30 characters that names a data item described in a data
description entry in the Data Division.  When used in the general formats, 'data-name'
represents a word that cannot be subscripted, indexed, or qualified unless specifically
permitted by the rules for that format.

debugging line

Any line with a 'D'|or a 'd'| in the Indicator Area of the line.

debugging section

A debugging section is a section that contains a USE FOR DEBUGGING statement.



Glossary

47 A2 05UL Rev04 g-11

declarative-sentence

A compiler-directing sentence consisting of a single USE statement terminated by the
separator period.

declaratives

A set of one or more special-purpose sections, written at the beginning of the Procedure
Division, the first of which is preceded by the keyword DECLARATIVES and the last of
which is followed by the keywords END DECLARATIVES.  A declarative is composed of
a section header, followed by declarative sentence and optionally, one or more
paragraphs.

delimited scope statement

Any statement which includes its explicit scope terminator.  (See implicit and explicit
scope terminators).

delimiter

A character or a sequence of contiguous characters that identify the end of a string of
characters and separates that string of characters from the following string of characters.
A delimiter is not part of the string of characters that it delimits.

descending key

A key upon the values of which data is ordered starting with the highest value of key
down to the lowest value of key, in accordance with the rules for comparing data items.

destination

The symbolic identification of the receiver of a transmission from a queue.

de-edit

The logical removal of all editing characters from a numeric edited data item in order to
determine that item's unedited numeric value.

digit position

A digit position is the amount of physical storage required to store a single digit.  This
amount may vary depending on the usage specified in the Data Description entry that
defines the data item.

If the Data Description entry specifies that usage is DISPLAY, then a digit position is
synonymous with a character position.

division

A collection of zero, one or more sections or paragraphs, called the division body, that
are formed and combined in accordance with a specific set of rules.  Each division
consists of the division header and the related division body.  There are four (4) divisions
|, possibly five (5),| in a COBOL program: |Control,| Identification, Environment, Data,
and Procedure.



GCOS 7 COBOL 85 Reference Manual

g-12 47 A2 05UL Rev04

division header

A combination of words followed by a separator period, that indicates the beginning of a
division.  The division headers in a COBOL program are:

CONTROL DIVISION.
IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION [USING {data-name}... ].

dynamic access

An access mode in which specific logical records can be obtained from or placed into a
mass storage file in a non-sequential manner and obtained from a file in a sequential
manner during the scope of the same OPEN statement (see "Random Access",
"Sequential Access", and "File Description" in Chapter 8).

editing character

A single character or a fixed-two-character combination, belonging to the following set:

Character Meaning

B space
0 zero
+ plus
- minus
CR credit
DB debit
Z zero suppress
* check protect
$ (currency symbol) currency sign
, comma (decimal point)
. period (decimal point)
/ stroke (virgule, slash)



Glossary

47 A2 05UL Rev04 g-13

elementary item

A data item that is described as not being further logically subdivided.

end of Procedure Division

The physical position in a COBOL source program after which no further procedures
appear.

end program header

A combination of words, followed by a separator period, that indicates the end of a
COBOL program.  The end program header is:

END PROGRAM program-name.

entry

Any descriptive set of consecutive clauses terminated by a separator period and written
in the Identification Division, Environment Division, or Data Division of a COBOL source
program.

environment clause

A clause that appears as part of an Environment Division entry.

execution time

See "object time".

explicit scope terminator

A reserved word which terminates the scope of a particular Procedure Division
statement.

expression

An arithmetic or conditional expression.

extend mode

The state of a file after execution of an OPEN statement, with the EXTEND phrase
specified, for that file and before the execution of a CLOSE statement without the REEL
or UNIT phrase for that file.



GCOS 7 COBOL 85 Reference Manual

g-14 47 A2 05UL Rev04

external data

The data described in a program as external data items and external file connectors.

external data item

A data item which is described as part of an external record in one or more programs of
a run unit and which itself may be referenced from any program in which it is described.

external data record

A logical record which is described in one or more programs of a run unit and whose
constituent data items may be referenced from any program in which they are described.

external file connector

A file connector which is accessible to one or more programs in the run unit.

external switch

A hardware or software device used to indicate that one of two alternate states exist.

figurative constant

A compiler-generated value referenced through the use of certain reserved words.

file

A collection of records.

file attribute conflict condition

An unsuccessful attempt has been made to execute an input-output operation on a file
and the file attributes, as specified for that file in the program, do not match the fixed
attributes for that file.

file clause

A clause that appears as part of any of the following Data Division entries:

File description (FD)
Sort-Merge file description (SD)



Glossary

47 A2 05UL Rev04 g-15

file connector

A storage area which contains information about a file and is used as the linkage
between a file-name and a physical file and between a file-name and its associated
record area.

FILE-CONTROL

The name of an Environment Division paragraph in which the data files for a given
source program are declared.

file control entry

A SELECT clause and all its subordinate clauses which declare the relevant physical
attributes of a file.

file description entry

An entry in the File Section of the Data Division that is composed of the level indicator
FD, followed by a file-name, and then followed by a set of file clauses as required.

file organization

The permanent logical file structure established at the time that a file is created.

file position indicator

A conceptual entity that contains the value of the current key within the key of reference
for an indexed file, or the record number of the current record for a sequential file, or the
relative record number of the current record for a relative file, or indicates that no next
logical record exists, or that the number of significant digits in the relative record number
is larger than the size of the relative key data item, or that an optional input file is not
present, or that the at end condition already exists, or that no valid record has been
established.

File Section

The section of the Data Division that contains File Description entries and Sort-Merge
File Description entries together with their associated Record Descriptions.

file-name

A user-defined word that names a file described in a File Description entry or a Sort-
Merge File Description entry within the File Section of the Data Division.



GCOS 7 COBOL 85 Reference Manual

g-16 47 A2 05UL Rev04

fixed file attributes

Information about a file which is established when a file is created and cannot
subsequently be changed during the existence of the file.
These attributes include the organization of the file (sequential, relative, or indexed), the
prime record key, the alternate record keys, the code set, the minimum and maximum
record size, the record type (fixed or variable), the collating sequence of the keys for
indexed files, the blocking factor, the padding character, and the record delimiter.

fixed length record

A record associated with a file whose file description or sort-merge description entry
requires that all records contain the same number of character positions.

footing area

The position of the page body adjacent to the bottom margin.

format

A specific arrangement of a set of data.

function

A temporary data item whose value is determined by invoking a mechanism provided by
the compiler at the time the function is referenced during the execution of a statement.

function-identifier

A syntactically correct combination of character-strings and separators that references a
function.  The data item represented by a function is uniquely identified by a function-
name with its arguments, if any.  A function-identifier may include a reference-modifier.
A function identifier that references an alphanumeric function may be specified anywhere
in the general formats that an identifier may be specified, subject to certain restrictions.
A function-identifier that references an integer or numeric function may be referenced
anywhere in the general formats that an arithmetic expression may be specified.

function-name

A word that names a mechanism provided by the compiler to determine the value of a
function.



Glossary

47 A2 05UL Rev04 g-17

global name

A name which is declared in only one program but which may be referenced from that
program and from any program contained within that program.  Condition-names, data-
names, file-names, record-names, report-names, and some special registers may be
global names.  (See Chapter 3).

group item

A data item that is composed of subordinate data items.

high-order end

The leftmost character of a string of characters.

I-O mode

The state of a file after execution of an OPEN statement, with the I-O phrase specified,
for that file and before the execution of a CLOSE statement without the REEL or UNIT
phrase for that file.

I-O status

A conceptual entity which contains the two-character value indicating the resulting status
of an input-output operation.  This value is made available to the program through the
use of the FILE STATUS clause in the file control entry for the file.

I-O-CONTROL

The name of an Environment Division paragraph in which object program requirements
for |specific input-output techniques,| rerun points, sharing of same areas by several data
files and multiple file storage on a single input-output device, are specified.

I-O-CONTROL entry

An entry in the I-O-CONTROL paragraph of the Environment Division which contains
clauses which provide information required for the transmission and handling of data on
named files during the execution of a program.



GCOS 7 COBOL 85 Reference Manual

g-18 47 A2 05UL Rev04

identifier

A syntactically correct combination of character-strings and separators that names a data
item.  When referencing a data item which is not a function, an identifier consists of a
data-name, together with its qualifiers, subscripts, and reference-modifier, as required for
uniqueness of reference.  When referencing a data item which is a function, a function-
identifier is used.  The rules for 'identifier' associated with general Formats may,
however, specifically prohibit reference to functions, qualification, subscripting or
reference modification.

imperative statement

A statement that begins with an imperative verb and specifies an unconditional action to
be taken.  An imperative statement can consist of a sequence of imperative statements.

implicit scope terminator

A separator period which terminates the scope of any preceding unterminated statement,
or a phrase of a statement which by its occurrence indicates the end of the scope of any
statement contained within the preceding phrase.

index

A computer storage area or register, the contents of which represent the identification of
a particular element in a table.

index data item

A data item in which the values associated with an index-name can be stored in a form
specified by the system.

index-name

A user-defined word that names an index associated with a specific table.

indexed data-name

An identifier that is composed of a data-name, followed by one or more index-names
enclosed in parentheses.

indexed file

A file with indexed organization.



Glossary

47 A2 05UL Rev04 g-19

indexed organization

The permanent logical file structure in which each record is identified by the value of one
or more keys within that record.

initial program

A program that is placed into an initial state every time the program is called in a run
unit.

initial state

The state of a program when it is first called in a run unit.

input file

A file that is opened in the input mode.

input mode

The state of a file after execution of an OPEN statement, with the INPUT phrase
specified, for that file and before the execution of a CLOSE statement without the REEL
or UNIT phrase for that file.

input procedure

A set of statements that is executed each time a record is released to the sort file.

input-output file

A file that is opened in the I-O mode.

Input-Output Section

The section of the Environment Division that names the files and the external media
required by an object program and which provides information required for transmission
and handling of data during execution the object program.

input-output statement

A statement that causes files to be processed by performing operations upon individual
records or upon the file as a unit.  The input-output statements are: ACCEPT (with the
identifier phrase), CLOSE, DELETE, DISABLE, DISPLAY, ENABLE, OPEN, PURGE,
READ, RECEIVE, REWRITE, SEND, SET (with the TO ON or TO OFF phrase), START,
and WRITE.



GCOS 7 COBOL 85 Reference Manual

g-20 47 A2 05UL Rev04

integer

(1) A numeric literal that does not include any digit positions to the right of the decimal
point.

(2) A numeric data item defined in the Data Division that does not include any digit
positions to the right of the decimal point.

(3) A numeric function whose definition provides that all digits to the right of the decimal
point are zero in the returned value for any possible evaluation of the function.

Where the term 'integer' appears in the general formats, integer must be a numeric literal
which is an integer, and it must be neither signed nor zero unless explicitly allowed by
the rules for that format.

Integer Function

A function whose category is numeric and whose definition provides that all digits to the
right of the decimal point are zero in the returned value for any possible evaluation of the
function.

internal data

The data described in a program excluding all external data items and external file
connectors.  Items described in the Linkage Section of a program are treated as internal
data.

internal data item

A data item which is described in one program in a run unit.  An internal data item may
have a global name.

internal file connector

A file connector which is accessible to only one object program in the run unit.

intra-record data structure

The entire collection of groups and elementary data items from a logical record which is
defined by a contiguous subset of the data description entries which describe that record.
These data description entries include all entries whose level-number is greater than the
level-number of the first data description entry describing the intra-record data structure.

invalid key condition

A condition, at object time, caused when a specific value of the key associated with an
indexed or relative file is determined to be invalid.



Glossary

47 A2 05UL Rev04 g-21

key

A data item which identifies the location of a record, or a set of data items which serve to
identify the ordering of data.

key of reference

The key, either prime or alternate, currently being used to access records within an
indexed file.

keyword

A reserved word or a function-name whose presence is required when the format in
which the word appears is used in a source program.

language-name

A system-name that specifies a particular programming language.

letter

A character belonging to one of the following two sets:

(1) uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P,
Q, R, S, T, U, V, W, X, Y, Z;

(2) lower-case letters: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p,
q, r, s, t, u, v, w, x, y, z .

level indicator

Two alphabetic characters that identify a specific type of file or a position in a hierarchy.

level-number

A user-defined word, expressed as a one or two-digit number, which indicates the
hierarchical position of a data item or the special properties of a Data Description entry.
Level-numbers in the range 1 through 49 indicate the position of a data item in the
hierarchical structure of a logical record.  Level-numbers in the range 1 through 9 may be
written either as a single digit or as a zero followed by a significant digit.  Level-numbers
66, 77, and 88 identify special properties of a Data Description entry.

library text

A sequence of character-strings and/or separators in a COBOL library.



GCOS 7 COBOL 85 Reference Manual

g-22 47 A2 05UL Rev04

library-name

A user-defined word that names a COBOL library that is to be used by the compiler for a
given source program compilation.

LINAGE-COUNTER

A special register whose value points to the current position within the page body.

line

(See Report Line)

line number

An integer that denotes the vertical position of a report line on a page.

Linkage Section

The section in the Data Division of the called program that describes data items
available from the calling program.  These data items may be referred to by both the
calling and the called programs.

literal

A character-string whose value is implied by the ordered set of characters comprising the
string.

logical operator

One of the reserved words AND, OR, or NOT.  In the formation of a condition, either
AND or OR, or both, can be used as logical connectives.  NOT can be used for logical
negation.

logical page

A conceptual entity consisting of the top margin, the page body, and the bottom margin.

logical record

The most inclusive data item.  The level-number for a record is 01.  A record may be
either an elementary item or a group item.



Glossary

47 A2 05UL Rev04 g-23

low-order end

The rightmost character of a string of characters.

mass storage

A storage medium in which data can be organized and maintained in both a sequential
and non-sequential manner.

Mass Storage Control System (MSCS)

An input-output control system that directs, or controls, the processing of mass storage
files.

mass storage file

A collection of records that is assigned to a mass storage medium.

MCS

See Message Control System.

merge file

A collection of records to be merged by a MERGE statement.  The merge file is created
and can be used only by the merge function.

message

Data associated with an End of Message Indicator or an End of Group Indicator.  (See
Message Indicators)

Message Control System (MCS)

A DPS 7 supplied subsystem that supports the processing of messages.

Message Count

The count of the number of complete messages that exist in the designated queue of
messages.



GCOS 7 COBOL 85 Reference Manual

g-24 47 A2 05UL Rev04

message indicators

EGI (End of Group Indicator), EMI (End of Message Indicator), and ESI (End of Segment
Indicator) are conceptual indications that serve to notify the MCS that a specific condition
exists (end of group, end of message, end of segment).  Within the hierarchy of EGI,
EMI, and ESI, an EGI is conceptually equivalent to an ESI, EMI, and EGI.

An EMI is conceptually equivalent to an ESI and EMI.  Thus, a segment may be
terminated by a ESI, EMI, or EGI.  A message may be terminated by an EMI or EGI.

message segment

Data that forms a logical subdivision of a message, normally associated with an end of
segment indicator.  (See Message Indicators)

mnemonic-name

A user-defined word that is associated in the Environment Division with a specific
implementor-name.

native character set

The character set associated with the DPS 7 computer i.e.  the EBCDIC character set.

native collating sequence

The EBCDIC collating sequence.

negated combined condition

The 'NOT' logical operator immediately followed by a parenthesized combined condition.

negated simple condition

The 0'NOT' logical operator immediately followed by a simple condition.

next executable sentence

The next sentence to which control is to be transferred after execution of the current
statement is complete.

next executable statement

The next statement to which control will be transferred after execution of the current
statement is complete.



Glossary

47 A2 05UL Rev04 g-25

next record

The record that logically follows the current record of a file.

next record pointer

A conceptual entity that points to the next logical record, indicates the at end condition,
or is set to indicate that no valid next record has been established.

non-contiguous items

Elementary data items, in the Working-Storage, |Constant| and Linkage Sections, that
bear no hierarchic relationship to other data items.

non-numeric item

A data item whose description permits its contents to be composed of any combination of
characters taken from the computer's character set.  Certain categories of non-numeric
items may be formed from more restricted character sets.

non-numeric literal

A literal bounded by quotation marks |or apostrophes.| The string of characters can
include any character in the computer's character set, |some or all of which may be
represented by a symbolic-character string.|

numeric-character

A character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

numeric function

A function whose class and category are numeric but which for some possible evaluation
does not satisfy the requirements of an integer function.

numeric item

A data item whose description restricts its contents to a value represented by characters
chosen from the digits '0' through '9'; if signed, the item may also contain a '+', '-', or
other representation of an operational sign.

numeric literal

A literal composed of one or more numeric characters that may contain either a decimal
point, or an algebraic sign, or both.  The decimal point must not be the rightmost
character.  The algebraic sign, if present, must be the leftmost character.



GCOS 7 COBOL 85 Reference Manual

g-26 47 A2 05UL Rev04

object computer entry

An entry in the OBJECT-COMPUTER paragraph of the Environment Division which
contains clauses which describe the computer environment in which the object program
is to be executed.

object of entry

A set of operands and reserved words, within a Data Division entry, that immediately
follows the subject of the entry.

object program

An object program is the machine language result of the operation of a COBOL compiler
on a source program.

object time

The time at which an object program is executed.

OBJECT-COMPUTER

The name of an Environment Division paragraph that describes the computer
environment within which the object program is executed.

obsolete element

A COBOL language element in Standard COBOL that is to be deleted from the next
revision of Standard COBOL.

open mode

The state of a file after execution of an OPEN statement for that file and before the
execution of a CLOSE statement without the REEL or UNIT phrase for that file.  The
particular open mode specified in the OPEN statement must be one of the following:
INPUT, OUTPUT, I-O or EXTEND.

operand

Whereas the general definition of operand is 'that component which is operated upon',
for the purposes of this manual, any lower-case word (or words) that appears in a
statement or entry format may be considered to be an operand and, as such, is an
implied reference to the data indicated by the operand.



Glossary

47 A2 05UL Rev04 g-27

operational sign

An algebraic sign, associated with a numeric data item or a numeric literal, to indicate
whether its value is positive or negative.

optional file

A file which is declared as being not necessarily present each time the object program is
executed.  The object program causes an interrogation for the presence or absence of
the file.

optional word

A reserved word that is included in a specific format only to improve the readability of the
language, and whose presence is optional to the user when the format in which the word
appears is used in a source program.

output file

A file that is opened in either the output mode or extend mode.

output mode

The state of a file after execution of an OPEN statement, with the OUTPUT or EXTEND
phrase specified, for that file and before the execution of a CLOSE statement without the
REEL or UNIT phrase for that file.

output procedure

A set of statements to which control is given during the execution of a SORT statement
after the sort function is completed, or during execution of a MERGE statement after the
merge function has selected the next record in merge order.

padding character

An alphanumeric character used to fill the unused character positions in a physical
record.

page

A vertical division of a report representing a physical separation of report data, the
separation being based on internal reporting requirements and/or external characteristics
of the reporting medium.

page body

That part of the logical page in which lines can be written and/or spaced.



GCOS 7 COBOL 85 Reference Manual

g-28 47 A2 05UL Rev04

page footing

A report group that is presented at the end of a report page as determined by the Report
Writer Control System.

page heading

A report group that is presented at the beginning of a report page as determined by the
Report Writer Control System.

paragraph

In the Procedure Division, a paragraph-name followed by a separator period and by zero,
one or more sentences.  In the Identification and Environment Divisions, a paragraph
header followed by zero, one or more entries.

paragraph header

A reserved word, followed by the separator period, that indicates the beginning of a
paragraph in the Identification and Environment Divisions.  The permissible paragraph
headers are:

In the Identification Division:

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

In the Environment Division:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
I-O-CONTROL.

paragraph-name

A user-defined word that identifies and begins a paragraph in the Procedure Division.

phrase

A phrase is an ordered set of one or more consecutive COBOL character-strings that
form a portion of a COBOL procedural statement or of a COBOL clause.



Glossary

47 A2 05UL Rev04 g-29

physical page

A device dependent concept.

physical record

(See block)

previous record

The record that logically precedes the current record of a file.

prime record key

A key whose contents uniquely identify a record within an indexed file.

printable group

A report group that contains at least one print line.

printable item

A data item, the extent and contents of which are specified by an elementary report
entry.  This elementary report entry contains a COLUMN NUMBER clause, a PICTURE
clause, and a SOURCE, SUM or VALUE clause.

procedure

A paragraph or group of logically successive paragraphs, or a section or group of
logically successive sections, within the Procedure Division.

procedure branching statement

A statement that causes the explicit transfer of control to a statement other than the next
executable statement in the sequence in which the statements are written in the source
program.  The procedure branching statements are: ALTER, CALL, EXIT, EXIT
PROGRAM, GO TO, MERGE (with the OUTPUT PROCEDURE phrase), PERFORM
and SORT (with the INPUT PROCEDURE or OUTPUT PROCEDURE phrase).

procedure-name

A user-defined word that is used to name a paragraph or section in the Procedure
Division.  It consists of a paragraph-name (which can be qualified), or a section-name.



GCOS 7 COBOL 85 Reference Manual

g-30 47 A2 05UL Rev04

program identification entry

An entry in the PROGRAM-ID paragraph of the Identification Division which contains
clauses that specify the program-name and assign selected program attributes to the
program.

program-name

A user-defined word that identifies a COBOL source program.

pseudo-text

A sequence of character-strings and/or separators bounded by, but not including,
pseudo-text delimiters.

pseudo-text delimiter

Two contiguous equal sign (=) characters used to delimit pseudo-text.

punctuation character

A character that belongs to the following set:

Character Meaning

, comma
; semi-colon
. period (full stop)
" quotation mark
|' apostrophe|
( left parenthesis
) right parenthesis

space
|'Horizontal Tabulation'|

= equal sign

qualified data-name

An identifier that is composed of a data-name followed by one or more sets of either of
the connectives OF or IN followed by a data-name qualifier.



Glossary

47 A2 05UL Rev04 g-31

qualifier

1. A data-name that is used in a reference together with another data-name at a lower
level in the same hierarchy.

2. A section-name that is used in a reference together with a paragraph-name
specified in that section.

3. A library-name that is used in a reference together with a text-name that is part of
that library.

queue

A logical collection of messages awaiting transmission or processing.

queue name

A symbolic name that indicates to the (MCS) the logical path by which a message may
be accessible in a queue.

random access

An access mode in which the program-specified value of a key data item identifies the
logical record that is obtained from, deleted from or placed into a relative or indexed file.

record

(See logical record)

record area

A storage area allocated for the purpose of processing the record described in a Record
Description entry in the File Section of the Data Division.

record description

(See record description entry)

record description entry

The total set of Data Description entries associated with a particular record.



GCOS 7 COBOL 85 Reference Manual

g-32 47 A2 05UL Rev04

record key

A key whose contents identify a record within an indexed file.

Within an indexed file, a record key is either the Prime Record Key or an Alternate
Record Key.

record-name

A user-defined word that names a record described in a Record Description entry in the
Data Division of a COBOL program.

record number

The ordinal number of a record in the file whose organization is sequential.

reel

A discrete portion of a storage medium that contains part of a file, all of a file, or any
number of files.  The term is synonymous with unit and volume.

reference format

A format that provides a standard method for describing COBOL source programs.

reference modifier

A syntactically correct combination of character-strings and separators the defines a
unique data item.  It includes a delimiting left parenthesis separator, the leftmost
character position, a colon separator, optionally a length, and a delimiting right
parenthesis separator.

relation

(See relational operator)

relation character

A character that belongs to the following set:

Character Meaning

> greater than
< less than
= equal to



Glossary

47 A2 05UL Rev04 g-33

relation condition

The proposition, for which a truth value can be determined, that the value of an
arithmetic expression or data item has a specific relationship to the value of another
arithmetic expression or data item.  (See relational operator).

relational operator

A reserved word, a relation character, a group of consecutive reserved words, or a group
of consecutive reserved words and relation characters used in the construction of a
relation condition.  The permissible operators and their meanings are:

Relational Operator Meaning

IS [NOT] GREATER THAN
IS [NOT] >

Greater than or not greater than

|EXCEEDS|
IS [NOT] LESS THAN
IS [NOT] <

Less than or not less than

IS [NOT] EQUAL TO
IS [NOT] =
|IS UNEQUAL TO
EQUALS|

Equal to or not equal to

relative file

A file with relative organization.

relative key

A key whose contents identify a logical record in a relative file.

relative organization

The permanent logical file structure in which each record is uniquely identified by an
integer value greater than zero, which specifies the record's logical ordinal position in the
file.

relative record number

The ordinal number of a record in a file whose organization is relative.  This number is
treated as a numeric literal which is an integer.

report clause

A clause, in the Report Section of the Data Division, that appears in a Report Description
entry or a Report Group Description entry.



GCOS 7 COBOL 85 Reference Manual

g-34 47 A2 05UL Rev04

report description entry

An entry in the Report Section of the Data Division that is composed of the level
indicator RD, followed by a report name, followed by a set of report clauses as required.

report file

An output file whose File Description entry contains a REPORT clause.  The contents of
a report file consist of records that are written under control of the Report Writer Control
System.

report footing

A report group that is presented only at the end of a report.

report group

In the Report Section of the Data Division, an 01 level-number entry and its subordinate
entries.

report group description entry

An entry in the Report Section of the Data Division that is composed of the level-number
01, the optional data-name, a TYPE clause, and an optional set of report clauses.

report heading

A report group that is presented only at the beginning of a report.

report line

A division of a page representing one row of horizontal character positions.  Each
character position of a report line is aligned vertically beneath the corresponding
character position of the report line above it.  Report lines are numbered from 1, by 1,
starting at the top of the page.

Report Section

The section of the Data Division that contains one or more Report Description entries
and their associated Report Group Description entries.

report writer control system (RWCS)

An object time control system, that accomplishes the construction of reports.



Glossary

47 A2 05UL Rev04 g-35

report writer logical record

A record that consists of the Report Writer print line and associated control information
necessary for its selection and vertical positioning.

report-name

A user-defined word that names a report described in a Report Description entry within
the Report Section of the Data Division.

reserved word

A COBOL word specified in the list of words that may be used in a COBOL source
program, but which must not appear in the programs as user-defined words or system-
names.

resource

A facility or service, controlled by the operating system, that can be used by an
executing program.

resultant identifier

A user-defined data item that is to contain the result of an arithmetic operation.

routine-name

A user-defined word that identifies a procedure written in a language other than COBOL.

run unit

An object program during execution.

RWCS

(See report writer control system)

section

A set of zero, one, or more paragraphs or entries, called a section body, the first of which
is preceded by a section header.  Each section consists of the section header and the
related section body.



GCOS 7 COBOL 85 Reference Manual

g-36 47 A2 05UL Rev04

section header

A combination of words followed by a separator period that indicates the beginning of a
Section in |the Control,| Environment, Data, and Procedure Divisions.

In the |Control,| Environment and Data Division, a section header is composed of
reserved words followed by a separator period.  The permissible section headers are:

In the Control Division

SUBSTITUTION SECTION.
DEFAULT SECTION.

In the Environment Division

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division

FILE SECTION.
WORKING-STORAGE SECTION.
CONSTANT SECTION.
LINKAGE SECTION.
COMMUNICATION SECTION.
REPORT SECTION.

In the Procedure Division, a section header is composed of a section-name, followed by
the reserved word SECTION, followed by a segment-number (optional), followed by a
separator period.

section-name

A user-defined word that names a section in the Procedure Division.

segment-number

A user-defined word that classifies sections in the Procedure Division for purposes of
segmentation.  Segment-numbers may contain only the characters 0, 1, 2, 3, 4, 5, 6, 7,
8, 9.  A segment-number may be expressed as either a one or two-digit number.

sentence

A sequence of one or more statements, the last of which is terminated by a separator
period.

separately compiled program

A program which, together with its contained programs, is compiled separately from all
other programs.



Glossary

47 A2 05UL Rev04 g-37

separator

A character or two contiguous characters used to delimit character-strings.

sequential access

An access mode in which logical records are obtained from or placed into a file in a
consecutive predecessor-to-successor logical record sequence determined by the order
of records in the file.

sequential file

A file with sequential organization.

sequential organization

The permanent logical file structure in which a record is identified by a predecessor-
successor relationship established when the record is placed into the file.

sign condition

The proposition, for which a truth value can be determined, that the algebraic value of a
data item or an arithmetic expression is either less than, greater than, or equal to zero.

simple condition

Any single condition chosen from the set:

relation condition
class condition
condition-name condition
switch-status condition
sign condition

sort file

A collection of records to be sorted by a SORT statement.  The sort file is created and
can be used by the sort function only.

sort-merge file description entry

An entry in the File Section of the Data Division that is composed of the level indicator
SD, followed by a file-name, and then followed by a set of file clauses as required.

source

The symbolic identification of the originator of a transmission to a queue.



GCOS 7 COBOL 85 Reference Manual

g-38 47 A2 05UL Rev04

source computer entry

An entry in the SOURCE-COMPUTER paragraph of the Environment Division which
contains clauses which describe the computer environment in which the source program
is to be compiled.

source item

An identifier designated by a SOURCE clause that provides the value of a printable item.

source program

Although it is recognized that a source program may be represented by other forms and
symbols, in this manual it always refers to a syntactically correct set of COBOL
statements.  A COBOL source program commences with |a Control Division or| an
Identification Division and terminates with the end of the Procedure Division.  In contexts
where there is no possibility of ambiguity, the word 'program' alone may replace the
phrase 'source program'.

SOURCE-COMPUTER

The name of an Environment Division paragraph in which the computer environment,
within which the source program is compiled, is described.

special character

A character that belongs to the following set:

Character Meaning

+ plus sign
- minus sign
* asterisk
/ stroke (virgule, slash)
= equal sign
$ (currency symbol) currency sign
, comma (decimal point)
; semi-colon
. period (decimal point)
" quotation mark
|' apostrophe|
( left parenthesis
) right parenthesis
> greater than symbol
< less than symbol
: colon
| 'Horizontal Tabulation'|
|_ underscore|



Glossary

47 A2 05UL Rev04 g-39

special names entry

An entry in the SPECIAL-NAMES paragraph of the Environment Division which provides
means for specifying the current sign; choosing the decimal point; specifying symbolic
characters; relating implementor-names to user-specified mnemonic-names; relating
alphabet-names to character sets or collating sequences; and relating class-names to
sets of characters.

special registers

Compiler generated storage areas whose primary use is to store information produced in
conjunction with the use of specific COBOL features.

special-character word

A reserved word that is an arithmetic operator or a relation character.

SPECIAL-NAMES

The name of an Environment Division paragraph in which implementor-names are
related to user-specified mnemonic-names.

standard data format

The concept used in describing data in a COBOL Data Division under which the
characteristics or properties of the data are expressed in a form oriented to the
appearance of the data on a printed page of infinite length and breadth, rather than a
form oriented to the manner in which the data is stored internally in the computer, or on a
particular external medium.

statement

A syntactically valid combination of words and symbols written in the Procedure Division,
beginning with a verb.

sub-queue

A logical hierarchical division of a queue.

subject of entry

An operand or reserved word that appears immediately following the level indicator or
the level-number in a Data Division entry.



GCOS 7 COBOL 85 Reference Manual

g-40 47 A2 05UL Rev04

subprogram

(See Called Program).

subscript

An occurrence number represented by either an integer, a data-name optionally followed
by an integer with the operator + or -,  an index-name optionally followed by an integer
with the operator + or -, |or an arithmetic expression enclosed with parenthesis| that
identifies a particular element in a table.  A subscript may be the word ALL when the
subscripted identifier is used as a function argument.

subscripted data-name

An identifier that is composed of a data-name followed by one or more subscripts
enclosed in parentheses.

sum counter

A signed numeric data item established by a SUM clause in the Report Section of the
Data Division.  The sum counter is used by the Report Writer Control System to contain
the result of designated summing operations that take place during production of a
report.

switch-status condition

The proposition, for which a truth value can be determined, that a JCL switch, capable of
being set to an 'on' or 'off' status, has been set to a specific status.

symbolic-character

A group of from one (1) to thirty (30) characters combined from the set of 'O', '1', ..., '9'.
A symbolic-character is used in a non-numeric literal to represent a specific character in
a particular character set.

symbolic-character-string

|A symbolic-character or a group of symbolic-characters that appear within a non-
numeric literal enclosed in quotation marks (or apostrophes depending on the non-
numeric literal delimiter) and separated from each other by either the separator comma
or space.  Each symbolic-character represents a character within a given character set.|

system-name

A COBOL word which is used to communicate with the operating environment.



Glossary

47 A2 05UL Rev04 g-41

table

A set of logically consecutive items of data that are defined in the Data Division of a
COBOL program by means of the OCCURS clause.

table element

A data item that belongs to the set of repeated items comprising a table.

terminal

The originator of a transmission to a queue, or the receiver of a transmission from a
queue.

text-name

A user-defined word that identifies library text.

text-word

A character or a sequence of contiguous characters between margin A and margin R in a
COBOL library, source program, or in pseudo-text which is:

1. A separator, except for: space; a pseudo-text delimiter; and the opening and closing
delimiters for non-numeric literals.  The right parenthesis and left parenthesis
characters, regardless of context within the library, source program, or pseudo-text,
are always considered text-words.

2. A literal including, in the case of non-numeric literals, the opening quotation mark
which bound the literal.

3. Any other sequence of contiguous COBOL characters except comment lines and
the word 'COPY', bounded by separators, which is neither a separator nor a literal.

top margin

An empty area which precedes the page body.

truth value

The representation of the result of the evaluation of a condition in terms of one of two
values: true or false.



GCOS 7 COBOL 85 Reference Manual

g-42 47 A2 05UL Rev04

unary operator

A plus (+) or a minus (-) sign, which precedes a variable or a left parenthesis in an
arithmetic expression and which has the effect of multiplying the expression by + 1 or - 1
respectively.

unit

The definition of a unit depends on the number of files (units) assigned to the COBOL
file:

1. If only one file has been assigned to the COBOL file, the unit is the physical unit
(tape reel, disk unit etc.)

2. If more than one file has been assigned to the COBOL file each file constitutes a
logical unit.

unsuccessful execution

The attempted execution of a statement that does not result in the execution of all the
operations specified by that statement.  The unsuccessful execution of a statement does
not affect any data referenced by that statement, but may affect status indicators.

user-defined word

A COBOL word that must be supplied by the user to satisfy the format of a clause or
statement.

variable

A data item whose value can be changed by execution of the object program.  A variable
used in an arithmetic expression must be a numeric elementary item.

variable length record

A record associated with a file whose file description or sort-merge description entry
permits records to contain a varying number of character positions.

variable occurrence data item

A variable occurrence data item is a table element which is repeated a variable number
of times.  Such an item must contain an OCCURS DEPENDING ON clause in its data
description entry, or be subordinate to such an item.



Glossary

47 A2 05UL Rev04 g-43

variable-length data item

|A variable-length data item is a data item which, although physically fixed in size,
contains a logically variable number of characters.  Such an item must contain the
PICTURE symbol 'L' in its Data Description entry.|

verb

A word that expresses an action to be taken by a COBOL compiler or object program.

volume

A discrete portion of a storage medium that contains part of a file, all of a file, or any
number of files.

word

A character-string of not more than 30 characters which forms a user-defined word, a
system-name, a reserved word or a function-name.

Working-Storage Section

The section of the Data Division that describes Working-Storage data items and
constants, composed of non-contiguous items or of Working-Storage records, or of both.

77-level-description-entry

A data description entry that describes a non-contiguous data item with the
level-number 77.



GCOS 7 COBOL 85 Reference Manual

g-44 47 A2 05UL Rev04



47 A2 05UL Rev04 i-1

Index

66 3-18, 8-35
77 3-18, 8-36
77-level-description-entry g-43
88 3-18, 8-35

A

ABBREVIATED
Abbreviated Combined
Relation Condition 10-22, F-40, g-1

ACCEPT 11-2
ACCEPT keyword5-6, 5-8, 11-2, F-3, F-23

ACCESS
ACCESS keyword 7-15, 7-16, 7-17, F-8,

F-9, F-10
access mode g-1
dynamic access g-12
Dynamic Access Mode 1-5
Permissible Access Modes For
Different File Organizations 12-32
random access g-31
Random Access Mode 1-5
sequential access 12-46, g-37
Sequential Access Mode 1-4
Table 12-3. Permissible Access Modes
for Different File Organizations 12-32

ACCESSING
Accessing Data and Files 1-21

ACOS 18-9
ACOS keyword 18-9

ACTUAL
actual decimal point g-1
actual key g-1
ACTUAL keyword 7-16, 11-9, F-9

ADD 11-6
ADD keyword 11-6, F-23

ADDRESS
ADDRESS keyword 7-3, 7-5, 10-15,

11-12, 13-12, F-4, F-5, F-24, F-34
ADVANCING

ADVANCING keyword 11-30, 13-49,
F-33, F-38

AFFECTING
CHANGES NOT AFFECTING

EXISTING PROGRAMS E-1
CHANGES WHICH MAY AFFECT
EXISTING PROGRAMS E-9

AFTER
AFTER keyword 12-7, 12-8, 12-34,

13-45, 13-49, F-29,
F-31, F-33, F-37, F-38

Figure 12-3 PERFORM TEST AFTER
VARYING with One Condition 12-40
Figure 12-4 PERFORM TEST AFTER
VARYING with Two Conditions 12-42

After
After Keyword 13-7

ALGEBRAIC
Algebraic Signs 3-22

ALIGNMENT
Standard Rules For Data Alignment 3-22

ALL
All Files 12-58, 13-51
ALL keyword 11-41, 12-7, 12-8, 13-2,

13-40, 13-45, F-27, F-29, F-33, F-37
Subscripting Using the Word ALL 18-4

ALLOCATION 3-25
Data Allocation 3-24

ALPHABET 7-12
Alphabet Correspondence B-1

ALPHABET-NAME 7-5, g-1
ALPHABETIC

alphabetic character g-1
ALPHABETIC keyword 10-18, 12-4,

F-28, F-40
ALPHABETIC LOWER

ALPHABETIC-LOWER keyword F-40
ALPHABETIC UPPER

ALPHABETIC-UPPER keyword F-40
ALPHANUMERIC

alphanumeric character g-2
Alphanumeric Functions 18-5
ALPHANUMERIC keyword 12-4, F-28

ALPHANUMERIC-EDITED
ALPHANUMERIC-EDITED keyword F-28



GCOS 7 COBOL 85 Reference Manual

i-2 47 A2 05UL Rev03

ALSO
ALSO keyword 7-9, 11-37, F-6, F-27

ALTER 11-8
ALTER keyword 11-8, F-23
The ALTER Statement 14-6

ALTERNATE
ALTERNATE keyword 7-17, F-10
alternate record key g-2

ALTERNATE-CONSOLE
ALTERNATE-CONSOLE keyword 5-7,

7-8, 11-2, 11-30,
F-3, F-6, F-23, F-25

AND
AND keyword 10-20, 10-21, 10-22,

13-2, F-33, F-40
ANNUITY 18-10

ANNUITY keyword 18-10
ANSI

ANSI keyword 7-15, F-8
THE ANSI FLAGGER C-1

ANY
ANY keyword 11-37, F-27

APPLY
APPLY keyword 7-37, F-11

ARE
ARE keyword 8-11, 8-12, 8-13, 8-32,

8-35, 9-8, 9-11, 9-16, 9-27,
9-53, 9-73, F-14, F-15, F-16, F-20

AREA
AREA keyword 7-15, 7-16, 7-17, 7-37,

F-8, F-9, F-10
footing area g-16
record area g-31
SHARED MEMORY AREA 1-19

AREAS
AREAS keyword 7-15, 7-16, 7-17, F-8,

F-9, F-10
ARGUMENT 18-3

Argument Types 18-3
Permissible Values of Arguments 18-4

ARITHMETIC
ARITHMETIC EXPRESSIONS 10-9, g-2
arithmetic operation g-2
Arithmetic Operators 10-9, g-2
arithmetic statement g-3
Multiple Results in
Arithmetic Statements 10-32
SUBSCRIPTING USING INTEGERS,
DATA-NAMES OR ARITHMETIC
EXPRESSION 1-16
The Arithmetic Statements 10-31

ARITHMETIC EXPRESSION
Table 10-1. Combination of Symbols
in Arithmetic Expressions 10-10

ARITHMETIC EXPRESSIONS
Definition of Arithmetic Expression 10-9

ASA
ASA keyword 7-15, F-8

ASCENDING
ascending key g-3
ASCENDING keyword 8-35, 9-24,

12-17, 13-17, 13-18,
F-20, F-30, F-34, F-35

ASCII B-1
ASCII keyword 7-5, 7-9, 8-11, 8-12,

8-13, 8-14, 9-5, 12-17, 13-17,
13-18, F-5, F-7, F-15, F-30, F-34, F-35

STANDARD-1 and ASCII
graphic collating sequences B-7

ASIN 18-11
ASIN keyword 18-11

ASPECT
PHYSICAL ASPECTS OF A FILE 3-16

ASSIGN 11-9
ASSIGN keyword 7-15, 7-16, 7-17,

11-9, F-8, F-9, F-10
ASSUMED

assumed decimal point g-3
AT

AT END Condition g-3
AT keyword 8-11, 9-18, 12-46, 12-56,

13-2, 13-49, F-12, F-32, F-33, F-38
The AT END Condition 10-34

ATAN 18-12
ATAN keyword 18-12

ATTRIBUTE
Explicit and Implicit Attributes 3-47
File Attribute Conflict Condition g-14
File Attributes 1-1
fixed file attributes g-16
Object Attributes 1-23

AUTHOR
AUTHOR keyword 6-2, F-1

AVAILABLE
Table 12-2 Opening Available and
Unavailable Files 12-29

B

BASED
BASED DATA ITEMS 8-6

BEFORE
BEFORE keyword 12-7, 12-8, 12-34,

13-45, 13-49, F-29, F-31, F-33, F-38
Figure 12-1 PERFORM TEST BEFORE
VARYING with One Condition 12-38
Figure 12-2 PERFORM TEST BEFORE
VARYING with Two Conditions 12-39

Before
Before Keyword 13-7



Index

47 A2 05UL Rev03 i-3

BINARY
BINARY keyword 3-21, 5-6, 9-68, F-19
Fixed Binary Data 3-20
Floating Binary Data 3-20
Usage BINARY Fixed-Point Data 3-20

BIT
BIT keyword 3-21, 8-34, 9-50, 9-68, F-19
Usage BIT Data Item 3-20

BLANK
BLANK keyword 8-35, 8-38,

9-2, F-20, F-22
Blank Lines 17-4
BLANK WHEN ZERO 9-2

BLOCK g-3
BLOCK CONTAINS 9-3
BLOCK keyword 8-11, 8-12, 9-3,

F-12, F-13, F-14
BODY

body group g-3
BODY GROUP PRESENTATION
RULES 8-49
page body g-27
Procedure Division Body 10-4

BOOLEAN
BOOLEAN EXPRESSIONS 10-12
Boolean Formation and
Evaluation Rules 10-12
BOOLEAN keyword 3-18, 10-18,

F-28, F-40
Boolean Literals 3-10
Boolean Operators 10-12
Comparison of Boolean Operands 10-17
Definition of a Boolean Expression 10-12
Table 10-2. Combination of
Symbols in Boolean Expressions 10-13

BOTTOM
BOTTOM keyword 8-11, 9-18, F-12
bottom margin g-3

BOUNDARY
SYNCHRONIZATION OF
BOUNDARIES 3-28
Table 3-4. Boundary Requirements for
Synchronized Data 3-28

BRACE
Brackets and Braces 2-3

BRACKET
Brackets and Braces 2-3

BRANCHING
Procedure Branching Statement g-29

BREAK
Control Break g-9
control break level g-9

BSN
BSN keyword 7-15, F-8

BY
BY keyboard F-34
BY keyword 5-3, 8-18, 8-35, 9-24,

11-32, 11-33, 11-41, 12-4,
12-7, 12-8, 12-26, 12-34, 13-12,

13-30, 13-40, 15-6, F-3, F-17, F-26,
F-27, F-28, F-29, F-31, F-36, F-43

BYTES
BYTES keyword 7-3, 7-5, F-4, F-5

C

CALL 11-12
CALL keyword 11-12, F-24
Scope of CALL Statement 1-26

CALLED
called program g-4

CALLING
calling program g-4

CANCEL 11-17
CANCEL keyword 11-17, F-24

CARD-PUNCH
CARD-PUNCH keyword 7-15, F-8

CARD-READER
CARD-READER keyword 7-15, F-8

CASE
LOWER-CASE FUNCTION 18-27
UPPER-CASE FUNCTION 18-49

CATEGORY
categories of data items 3-18
CATEGORIES OF STATEMENTS 10-25
Table 11-1. Relationship of
File Categories and Formats of
the CLOSE Statement 11-20
Table 3-2. Data Item
Class and Category 3-19
Table 9-2. Categories of Data
and Editing 9-39

CD
CD keyword 8-17, 8-18, F-16, F-17

CD-NAME g-4
Conventions for Conditions-Names,
Data-names, File-names,
Record-names, and Report-Names 3-52

CF
CF keyword 8-37, 9-63, F-21

CH
CH keyword 8-37, 9-63, F-21

CHANGE
CHANGES NOT AFFECTING
EXISTING PROGRAMS E-1
CHANGES WHICH MAY AFFECT
EXISTING PROGRAMS E-9
COBOL 85 SUBSTANTIVE CHANGESE-1



GCOS 7 COBOL 85 Reference Manual

i-4 47 A2 05UL Rev03

CHANNEL-p
CHANNEL-p keyword 7-8, F-6

CHAR 18-13
CHAR keyword 18-13

CHARACTER
`symbolic-character' B-1
alphabetic character g-1
alphanumeric character g-2
character g-4
CHARACTER keyword 5-6, 8-35, 9-54,

F-3, F-19
character position g-4
COBOL Character 3-2
COBOL CHARACTER SET 3-1, g-5
Editing Characters 3-3, g-12
Native Character Set g-24
Numeric Character g-25
Padding Character g-27
Picture Character Precedence Chart 9-44
Picture Character String 9-32
Punctuation Characters 3-2, g-30
Relation Characters 3-3, g-32
Selection of Character
Representation and Radix 3-19
special character g-38
Special Character Words 3-8
special-character word g-39
symbolic-character 3-11, g-40
Table 3-1. COBOL Characters 3-2
Table 9-4. Picture Character
Precedence Chart 9-44
USE OF SPECIAL CHARACTER
WORDS IN FORMATS 2-4

CHARACTER-STRING 3-5, g-4
PICTURE CHARACTER-STRINGS 3-15
symbolic-character-string g-40

CHARACTERISTIC
CONCEPTUAL CHARACTERISTICS
OF A FILE 3-16

CHARACTERS
CHARACTERS keyword 7-3, 7-5, 7-9,

8-11, 8-12, 8-13, 8-14, 8-16,
9-3, 9-45, 12-7, 12-8, 13-37,

F-4, F-5, F-12, F-13, F-14, F-15, F-16
CHART

Picture Character Precedence Chart 9-44
Table 9-4. Picture Character
Precedence Chart 9-44

CHECKPOINT-FILE
CHECKPOINT keyword F-11
CHECKPOINT-FILE keyword 7-37

CLASS
CLASS CONDITION 10-18, g-4
CLASS keyword 7-9
Concept of Classes of Data 3-18
Program Classes 1-24
Table 3-2. Data Item Class
and Category 3-19

CLASS-NAME g-4
CLASSIFICATION

Segment Classification 14-3
CLAUSE g-4

data clause g-10
Environment Clause g-13
File Clause g-14
LINE NUMBER Clause Notation 8-42
LINE NUMBER Clause Sequence
Substitutions 8-43
Report Clause g-33
SEGMENT-LIMIT Clause 14-5
SIGN Clause 3-22
SIGN clause 9-54
Table 8-3. Permissible Clause
Combinations in Format 3 Entries 8-40

CLOSE 11-19
CLOSE keyword 11-19, F-25
Table 11-1. Relationship of
File Categories and Formats of
the CLOSE Statement 11-20

COBOL
COBOL 85 SUBSTANTIVE CHANGESE-1
COBOL CHARACTER SET 3-1, g-5
COBOL LANGUAGE CONCEPTS 3-1
COBOL RESERVED WORDS A-1
COBOL words 3-6, g-5
Figure 1-1 COBOL Communication
Environment 1-33
Invocation of the COBOL Object
Program by the MCS 1-34
INVOKING THE COBOL OBJECT
PROGRAM 1-33
Relationship to MCS and
Communication Devices 1-32
Scheduled Initiation of
the COBOL Program 1-34
STRUCTURE OF
A COBOL PROGRAM 4-2
Table 3-1. COBOL Characters 3-2
THE COBOL 85 OBSOLETE
FEATURES D-1
The COBOL Object Program 1-32
THE COBOL PROGRAM A SUMMARY4-1
THE COBOL SOURCE TEXT
MANIPULATION FACILITIES 15-1



Index

47 A2 05UL Rev03 i-5

CODE 9-4
CODE keyword F-18

CODE-SET 9-5
CODE-SET keyword 8-11, 8-12, 8-13,

8-14, 9-5, F-12, F-13, F-14, F-15
COLLATING

COLLATING keyword 7-5, 12-17, 13-17,
13-18, F-5, F-30, F-35

Collating Sequence g-5
GBCD graphic collating sequence B-7
JIS collating sequence B-7
NATIVE and EBCDIC graphic collating
sequences B-7
Native Collating Sequence g-24
PROGRAM COLLATING SEQUENCE 7-6
STANDARD-1 and ASCII graphic
collating sequences B-7

COLUMN g-5
COLUMN keyword 8-38, 9-7, F-22
COLUMN NUMBER 9-7

COMBINATION
Table 10-1. Combination of Symbols
in Arithmetic Expressions 10-10
Table 10-2. Combination of Symbols in
Boolean Expressions 10-13
Table 10-3. Combinations of Conditions,
Operators, Parentheses 10-22
Table 8-3. Permissible Clause
Combinations in Format 3 8-40
Valid Combinations of
Status Keys 1 and 2 7-34

COMBINED
Abbreviated Combined Relation
Condition 10-22, F-40, g-1
COMBINED CONDITION g-6
Combined Condition F-40
Combined Conditions 10-21
Negated Combined Condition g-24

COMMA
COMMA keyword 7-9, F-7
DECIMAL-POINT IS COMMA 7-14

COMMENT
Comment Lines 17-4, g-6
COMMENT-ENTRY 3-15, g-6

COMMON
COMMON keyword 6-2, 6-3, F-1
COMMON OPTIONS AND RULES
FOR STATEMENT FORMATS 10-28
COMMON PROGRAMS 1-24, 6-3, g-6

COMMUNICATION
COMMUNICATION DESCRIPTION 8-17
Communication Description Entry g-6
Communication Device g-6
COMMUNICATION FACILITY 1-31
COMMUNICATION keyword 8-2, F-2
COMMUNICATION SECTION4-4, 8-8, g-6
Figure 1-1. COBOL Communication
Environment 1-33
Inter-Program Communication 1-25
Intra-Program Communication 1-29
PROGRAM AND RUN UNIT
ORGANIZATION AND
COMMUNICATION 1-20
Relationship to MCS and
Communication Devices 1-32
Table 8-1. Communication Status
Key Condition 8-29
The Concept of Transaction
Communication 1-38

COMP
COMP keyword 3-21, 5-6, 8-34,

9-68, F-3, F-19
COMP-1

COMP-1 keyword 3-21, 8-34, 9-68,
F-3, F-19

COMP-10
COMP-10 keyword 3-21, 8-34, 9-68, F-19

COMP-11 9-70
COMP-12 9-70
COMP-13 9-70
COMP-14 9-70
COMP-15 F-19

COMP-15 keyword 8-34, 9-68
COMP-2

COMP-2 keyword 3-21, 5-6, 8-34,
9-68, F-3, F-19

COMP-3
COMP-3 keyword 3-21, 5-6, 8-34,

9-68, F-3, F-19
COMP-5

COMP-5 keyword 3-21, 5-6, 8-34,
9-68, F-3, F-19

COMP-6 9-70
COMP-7 9-70
COMP-8

COMP-8 keyword 3-21, 5-6, 8-34,
9-68, F-3, F-19

COMP-9
COMP-9 keyword 3-21, 5-6, 8-34,

9-68, F-19



GCOS 7 COBOL 85 Reference Manual

i-6 47 A2 05UL Rev03

COMPARISON
Comparison of Boolean Operands 10-17
Comparison of Non-numeric
Operands 10-16
Comparison of Numeric Operands 10-16
Comparison of Pointer Operands 10-17
Comparisons Involving Index-Names10-17

COMPILE
compile time g-6

COMPILE-TIME
A COMPILE-TIME SWITCH 16-2

COMPILED
DATE-COMPILED 6-4
General Format For a Sequence of
Separately Compiled Programs F-46
General Format For Separately
Compiled Program F-44
Separately Compiled Program g-36
WHEN-COMPILED FUNCTION 18-51

COMPILER
compiler directing statement g-7
Compiler Directing Statements and
Compiler Directing Sentences 10-6
DEFINITION OF COMPILER
DIRECTING SENTENCE 10-6
DEFINITION OF COMPILER
DIRECTING STATEMENT 10-6

COMPLEX
Complex Conditions 10-20, g-7

COMPOSITE
COMPOSITE LANGUAGE SKELETONF-1

COMPUTATIONAL
COMPUTATIONAL keyword 3-21, 5-6,

8-34, 9-68, F-3, F-19
COMPUTATIONAL-1

COMPUTATIONAL-1 keyword 3-21, 5-6,
8-34, 9-68, F-3, F-19

COMPUTATIONAL-10
COMPUTATIONAL-10 keyword3-21, 8-34,

9-68, F-19
COMPUTATIONAL-15

COMPUTATIONAL-15 keyword3-21, 8-34,
9-68, F-19

COMPUTATIONAL-2
COMPUTATIONAL-2 keyword 3-21, 5-6,

8-34, 9-68, F-3, F-19
COMPUTATIONAL-3

COMPUTATIONAL-3 keyword 3-21, 5-6,
8-34, 9-68, F-3, F-19

COMPUTATIONAL-5
COMPUTATIONAL-5 keyword 3-21, 5-6,

8-34, 9-68, F-3, F-19
COMPUTATIONAL-8

COMPUTATIONAL-8 keyword 3-21, 5-6,
8-34, 9-68, F-3, F-19

COMPUTATIONAL-9
COMPUTATIONAL-9 keyword 3-21, 8-34,

9-68, F-19
COMPUTE 11-23

COMPUTE keyword 11-23
COMPUTER

Object Computer Entry g-26
OBJECT-COMPUTER 7-5, g-26
Source Computer Entry g-38
SOURCE-COMPUTER 7-3, g-38

COMPUTER-INDEPENDENT
CONCEPT OF COMPUTER-
INDEPENDENT DATA 3-16

COMPUTER-NAME g-7
CONCEPT

COBOL LANGUAGE CONCEPTS 3-1
Concept of Classes of Data 3-18
CONCEPT OF COMPUTER-
INDEPENDENT DATA 3-16
Concepts of Levels 3-17
Language Concepts 18-1
Linage Concepts 1-6
Logical Record Concept 3-16
Record Concepts 3-17
The Concept of Messages and
Message Segments 1-35
The Concept of Queues 1-35
The Concept of Transaction
Communication 1-38

CONCEPTS 1-1
CONCEPTUAL

CONCEPTUAL CHARACTERISTICS
OF A FILE 3-16

CONDITION g-7
Abbreviated Combined Relation
Condition 10-22, F-40, g-1
AT END Condition g-3
CLASS CONDITION 10-18, g-4
COMBINED CONDITION g-6
Combined Condition F-40
Combined Conditions 10-21
Complex Conditions 10-20, g-7
condition-name condition F-40, g-7
CONDITION-NAME CONDITION
(CONDITIONAL VARIABLE) 10-19
Figure 12-1 PERFORM TEST BEFORE
VARYING with One Condition 12-38
Figure 12-2 PERFORM TEST BEFORE
VARYING with Two Conditions 12-39
Figure 12-3 PERFORM TEST AFTER
VARYING with One Condition 12-40
Figure 12-4 PERFORM TEST AFTER
VARYING with Two Conditions 12-42
File Attribute Conflict Condition g-14
invalid key condition g-20
Negated Combined Condition g-24
Negated Condition F-40
NEGATED CONDITIONS 10-21
negated simple condition g-24



Index

47 A2 05UL Rev03 i-7

Order of Evaluation of Conditions 10-24
RELATION CONDITION 10-14, g-33
SIGN CONDITION 10-20, g-37
sign condition F-40
Simple Conditions 10-14, g-37
switch-name condition F-40
SWITCH-STATUS CONDITION10-19, g-40
Table 10-3. Combinations of
Conditions, Operators, Parentheses 10-22
Table 8-1. Communication Status
Key Condition 8-29
The AT END Condition 10-34
The INVALID KEY Condition 10-33

CONDITION-NAME 3-7, 3-18, g-7
condition-name condition F-40, g-7
CONDITION-NAME CONDITION
(CONDITIONAL VARIABLE) 10-19
Conventions for Conditions-Names,
Data-names, File-names,
Record-names, and Report-Names 3-52

Condition-Name 3-44
CONDITIONAL

CONDITION-NAME CONDITION
(CONDITIONAL VARIABLE) 10-19
CONDITIONAL EXPRESSION g-7
CONDITIONAL EXPRESSIONS 10-14
conditional phrase g-8
conditional statement g-8
Conditional Statements and
Sentences 10-5
conditional variable g-8
DEFINITION OF CONDITIONAL
PHRASE 10-6
DEFINITION OF CONDITIONAL
SENTENCE 10-6
DEFINITION OF CONDITIONAL
STATEMENT 10-5

CONFIGURATION
CONFIGURATION keyword 7-2, F-1
CONFIGURATION SECTION 4-3, 7-2
Configuration Section g-8

CONFLICT
File Attribute Conflict Condition g-14

CONNECTIVE g-8
CONNECTOR

External File Connector g-14
File Connector g-15
internal file connector g-20

CONSOLE
CONSOLE keyword 5-7, 7-8, 11-2,

11-30, F-6, F-25
CONSOLE-q

CONSOLE-q keyword 7-8, 7-10, F-6

CONSTANT g-8
CONSTANT keyword 8-2, F-2
CONSTANT SECTION 4-4, 8-5, g-8
Figurative Constant g-14
Figurative Constant Values 3-13
Figurative Constants 3-8, 3-10

CONTAINED
General Format For Contained
Program F-45

CONTAINS
BLOCK CONTAINS 9-3
CONTAINS keyword 7-37, 8-11, 8-12,

8-14, 9-3, F-14, F-16
CONTENT

CONTENT keyword 11-12, F-24
CONTIGUOUS

contiguous items g-8
CONTINUATION

Continuation of Lines 17-3
CONTINUE 11-25

CONTINUE keyword 11-25, F-25
CONTROL 9-8

Control Break g-9
control break level g-9
control data item g-9
control data-name g-9
CONTROL DIVISION 4-3, 5-1, 5-2
control footing g-9
control group g-9
control heading g-9
control hierarchy g-9
CONTROL keyword 5-2, 8-32, 8-37,

9-8, 9-63, F-1, F-18, F-21
Explicit and Implicit Transfers of
Control 3-46
File Control Entry g-15
FILE-CONTROL g-15
FILE-CONTROL-ENTRY 7-15
I-O CONTROL g-17
I-O-CONTROL 7-37
I-O-CONTROL entry g-17
Mass Storage Control System
(MSCS) g-23
Message Control System 1-31
Message Control System (MCS) g-23
Relationship of the COBOL Program
to the Message Control System 1-32
Report Writer Control System
(RWCS) g-34
Results of Sign Control Symbols
in Editing 9-40
Segmentation Control 14-3
Table 9-3. Results of Sign Control
Symbols in Editing 9-40
The Message Control System 1-31
TRANSFER OF CONTROL 1-25, 1-29



GCOS 7 COBOL 85 Reference Manual

i-8 47 A2 05UL Rev03

CONTROLS
CONTROLS keyword 8-32, 9-8, F-18

CONVENTION
Convention for INDEX-NAMES 3-52
Convention for PROGRAM-NAMES 3-51
Conventions for Conditions-Names,
Data-names, File-names,
Record-names, and Report-Names 3-52

CONVERSION
CONVERSION keyword 11-30, 13-45,

F-25, F-37
Date Conversion Function 18-3

CONVERTING
CONVERTING keyword 12-8

COPY 15-2
COPY keyword F-43
GENERAL FORMAT FOR COPY AND
REPLACE STATEMENTS F-43

CORR
CORR keyword 11-6, 12-22, 13-33,

F-23, F-30, F-36
CORRESPONDENCE

Alphabet Correspondence B-1
CORRESPONDING

CORRESPONDING keyword 11-6,
12-22, 13-33, F-23, F-30, F-36

The CORRESPONDING Phrase 10-30
COS 18-14

COS keyword 18-14
COUNT

COUNT keyword 8-17, 8-18, 11-2,
13-40, F-16, F-23, F-37

Message Count g-23
COUNTER g-9

LINAGE-COUNTER 3-9, g-22
LINE-COUNTER. 3-9
PAGE-COUNTER 3-9
Sum Counter g-40

CURRENCY
CURRENCY keyword 7-9, F-7
currency sign g-10
CURRENCY SIGN IS 7-14
Currency Symbol 3-3
Currency symbol g-10

CURRENT
current record g-10
Current Volume Pointer 1-6, g-10

CURRENT-DATE
CURRENT-DATE FUNCTION 18-15
CURRENT-DATE keyword 18-15

D

DATA
Accessing Data and Files 1-21
BASED DATA ITEMS 8-6
categories of data items 3-18
Concept of Classes of Data 3-18
CONCEPT OF COMPUTER-
INDEPENDENT DATA 3-16
control data item g-9
Data Allocation 3-24
data clause g-10
DATA DESCRIPTION 8-34
Data Description Entry g-10
data description entry 3-17
DATA DIVISION 4-4, 8-1
DATA DIVISION ENTRIES 17-6
Data Item g-10
DATA keyword 7-5, 8-2, 8-11,

8-16, 9-11, 12-4, 12-52,
F-2, F-5, F-12, F-32

DATA MANIPULATION 1-10
DATA RECORDS 9-11
DATA TYPES 3-19
DISPLAY Data Item 3-20
external data g-14
external data item g-14
external data record g-14
External Data Records and Items 3-49
Fixed Binary Data 3-20
Floating Binary Data 3-20
Incompatible Data 10-32
Index Data Item 3-21, g-18
intermediate data item 10-28
internal data g-20
internal data item g-20
intra-record data structure g-20
LENGTH OF Data-Name 3-10
Local Data Items 3-49
MAXIMUM DATA SEGMENT SIZE 7-7
MAXIMUM INITIAL DATA
SEGMENT SIZE 7-7
Noncontiguous Working-Storage
and Linkage Data 3-18
Pointer Data Item 3-21
SHARED DATA 1-29
SHARING DATA 1-28
standard data format g-39
Standard Rules For Data Alignment 3-22
Table 3-2. Data Item Class and
Category 3-19
Table 3-3. Data Representation in
the DPS 7 System 3-21



Index

47 A2 05UL Rev03 i-9

Table 3-4. Boundary Requirements
for Synchronized Data 3-28
Table 3-5. Legible Equivalents of
Elementary Numeric Data Items 3-35
Table 9-2. Categories of Data
and Editing 9-39
Usage BINARY Fixed-Point Data 3-20
Usage BIT Data Item 3-20
Variable Occurrence Data Item g-42
Variable-Length Data Item g-43

DATA-NAME g-10
control data-name g-9
Conventions for Conditions-Names,
Data-names, File-names,
Record-names, and Report-Names 3-52
DATA-NAME/FILLER 9-10
indexed data-name g-18
qualified data-name g-30
subscripted data-name g-40
SUBSCRIPTING USING INTEGERS,
DATA-NAMES OR
ARITHMETIC EXPRESSION 1-16

DATE
CURRENT-DATE FUNCTION 18-15
Date Conversion Function 18-3
DATE keyword 8-17, 11-2, F-16, F-23
DATE-OF INTEGER FUNCTION 18-17
INTEGER-OF-DATE FUNCTION 18-21

DATE-COMPILED 6-4
DATE-COMPILED keyword 6-2, F-1

DATE-OF-INTEGER
DATE-OF INTEGER FUNCTION 18-17
DATE-OF INTEGER keyword 18-17

DATE-WRITTEN
DATE-WRITTEN keyword 6-2, F-1

DAY
DAY keyword 11-2, F-23
DAY-OF INTEGER FUNCTION 18-18
INTEGER-OF-DAY FUNCTION 18-22

DAY-OF-INTEGER
DAY-OF INTEGER FUNCTION 18-18
DAY-OF INTEGER keyword 18-18

DAY-OF-WEEK
DAY-OF-WEEK keyword 11-2, F-23

DE
DE keyword 8-37, 9-63, F-21
DE-EDIT g-11
DEBUG-CONTENTS 16-6, 16-7
DEBUG-ITEM 16-6
DEBUG-LINE 16-6, 16-7
DEBUG-NAME 16-6, 16-7
DEBUG-SUB-1 16-6
DEBUG-SUB-2 16-6
DEBUG-SUB-3 16-6

DEBUG
Debug Item 3-10

DEBUGGING
DEBUGGING keyword 7-3, 13-45,

F-4, F-37
DEBUGGING LINE g-10
DEBUGGING LINES 16-9
debugging section g-11
THE DEBUGGING FACILITY 16-1
THE USE FOR DEBUGGING
STATEMENT 16-3
WITH DEBUGGING MODE 7-4

DECIMAL
actual decimal point g-1
assumed decimal point g-3
Packed Decimal Number 3-20

DECIMAL-POINT
DECIMAL-POINT IS COMMA 7-14
DECIMAL-POINT keyword 7-9, F-7

DECLARATIVE
Declarative Procedures 4-5
DECLARATIVE-SENTENCE g-11

DECLARATIVES
DECLARATIVES 17-6, g-11
DECLARATIVES keyword 10-4, F-2
Exception Declaratives 1-8
The Procedure Division Declaratives 10-1

DEFAULT
DEFAULT keyword 5-2, 5-6, F-1
DEFAULT SECTION 4-3, 5-6

DEFINED
User-Defined Words 3-6, g-42

DEFINITION
Definition of a Boolean Expression 10-12
DEFINITION OF A GENERAL FORMAT2-1
Definition of a Legible Equivalent 3-32
Definition of Arithmetic Expression 10-9
DEFINITION OF COMPILER
DIRECTING SENTENCE 10-6
DEFINITION OF COMPILER
DIRECTING STATEMENT 10-6
DEFINITION OF CONDITIONAL
PHRASE 10-6
DEFINITION OF CONDITIONAL
SENTENCE 10-6
DEFINITION OF CONDITIONAL
STATEMENT 10-5
Definition of Functions 18-6
DEFINITION OF IMPERATIVE
SENTENCE 10-8
DEFINITION OF IMPERATIVE
STATEMENT 10-7
Function Definition and
Returned Value 18-3
LEGIBLE INPUT EQUIVALENT 3-33
LEGIBLE OUTPUT EQUIVALENT 3-34
Table Definition 1-13

DELETE
DELETE keyword 11-26, F-25

DELETE: 11-26
DELIMINATOR



GCOS 7 COBOL 85 Reference Manual

i-10 47 A2 05UL Rev03

DELIMINATOR keyword F-8
DELIMITED

DELIMITED keyword 13-30, 13-40,
F-36, F-37

Delimited Scope Statements 10-8, g-11
DELIMITER g-11

DELIMITER keyword 13-40
Pseudo-Text Delimiter g-30

DEPENDING
DEPENDING keyword 8-11, 8-13, 8-14,

8-16, 8-34, 8-35, 9-24, 9-31,
9-45, 11-47, F-12, F-16, F-20

DEQUEUEING
ENQUEUEING AND DEQUEUEING
METHODS 1-36
INDEPENDENT ENQUEUEING
AND DEQUEUEING 1-36

DESCENDING
descending key g-11
DESCENDING keyword 8-35, 9-24,

12-17, 13-17, 13-18, F-20, F-30
DESCENDING keyword: F-34

DESCRIPTION
COMMUNICATION DESCRIPTION 8-17
Communication Description Entry g-6
CONCEPT OF COMPUTER-
INDEPENDENT DATA 3-16
DATA DESCRIPTION 8-34
Data Description Entry g-10
File Description Entry g-15
GENERAL DESCRIPTION 5-1, 6-1, 7-1,

10-1, 14-1, 17-1, F-1
Record Description g-31
Record Description Entry g-31
RECORD DESCRIPTION
STRUCTURE 8-10
REPORT DESCRIPTION 8-32
REPORT DESCRIPTION ENTRY 8-9
Report Description Entry g-34
REPORT GROUP DESCRIPTION 8-37
REPORT GROUP DESCRIPTION
ENTRY 8-9, g-34
Saved Next Group Integer Description8-43
SORT-MERGE FILE DESCRIPTION 8-16
Sort-Merge File Description Entry g-37

Description
File Description 8-11

DESTINATION g-11
DESTINATION keyword 8-18, F-17

DETAIL
DETAIL keyword 8-32, 8-37, 9-27,

9-63, F-18
DETERMINING

Determining the Method of Scheduling1-34

DEVIATION
STANDARD-DEVIATION FUNCTION18-46

DEVICE
Communication Device g-6
Relationship to MCS and
Communication Devices 1-32

DIFFERENT
Permissible Access Modes For
Different File Organizations 12-32
Table 12-3. Permissible Access Modes
for Different File Organizations 12-32

DIGIT
digit position g-11

DIRECTING
compiler directing statement g-7
Compiler Directing Statements and
Compiler Directing Sentences 10-6
DEFINITION OF COMPILER
DIRECTING SENTENCE 10-6

DIRECTNG
DEFINITION OF COMPILER
DIRECTING STATEMENT 10-6

DISABLE 11-28
DISABLE keyword 11-28, F-25

DISABLING
Enabling and Disabling Queues 1-36

DISPLAY 11-30
DISPLAY Data Item 3-20
DISPLAY keyword 3-21, 5-6, 5-7,

8-34, 8-37, 8-38, 9-68,
11-30, F-3, F-19, F-21, F-22

DIVIDE 11-32
DIVIDE keyword 11-32, 11-33, F-25, F-26

DIVISION g-12
CONTROL DIVISION 4-3, 5-1, 5-2
DATA DIVISION 4-4, 8-1
DATA DIVISION ENTRIES 17-6
Division Header 17-5, g-12
DIVISION keyword 5-2, 6-2, 7-2, 8-2,

10-2, F-1, F-2
DIVISION, SECTION AND
PARAGRAPH FORMATS 17-5
End of Procedure Division g-13
ENVIRONMENT DIVISION 4-3, 7-1, 7-2
Explicit and Implicit Procedure
Division References 3-45
IDENTIFICATION DIVISION 4-3, 6-1, 6-2
PROCEDURE DIVISION 4-5, 10-1
Procedure Division Body 10-4
PROCEDURE DIVISION HEADER 10-2
Procedure Division Report Writer
Statements 1-12
PROCEDURE DIVISION STRUCTURE10-
2
The Procedure Division Declaratives 10-1

DOWN
DOWN keyword 13-12
DOWN keyword: F-34

DPS



Index

47 A2 05UL Rev03 i-11

DPS 7000 Specific File Status Keys 7-36
Table-Data Representation in the
DPS 7 System 3-21

DPS 7 SYSTEM
Table 3-3. Data Representation in the
DPS 7 System 3-21

DPS 7000
Table 7-2. DPS 7000 Specific File
Status Keys 7-36

DPS7
DPS7 keyword 7-3, 7-5, F-4, F-5

DUPLICATES
DUPLICATES keyword 7-17, 13-17,

13-18, F-10
DUPLICATES keyword: F-34

DYNAMIC
Dynamic Access g-12
Dynamic Access Mode 1-5
DYNAMIC keyword 7-16, 7-17, F-9, F-10

E

EBCDIC B-1
EBCDIC keyword 7-5, 7-9, 8-12, 8-13,

8-14, 9-5, 12-17, 13-17, 13-18,
F-5, F-6, F-7, F-12, F-13, F-14,

F-15, F-30, F-34, F-35
NATIVE and EBCDIC graphic collating
sequences B-7

EDIT
DE-Edit g-11

EDITED
alphanumeric edited 3-18
numeric edited 3-18

EDITING
Editing Characters 3-3, g-12
Editing Rules 9-39
Results of Sign Control Symbols
in Editing 9-40
Table 9-2. Categories of Data and
Editing 9-39
Table 9-3. Results of Sign Control
Symbols in Editing 9-40

EGI
EGI keyword F-33

Egi
Egi Keyword 13-7

ELEMENT
FORMAT ELEMENTS 2-2
Obsolete Element g-26
Table Element g-41

ELEMENTARY
Elementary Item g-13
elementary items 3-17
SIZE OF ELEMENTARY ITEMS 3-27
Table 3-5. Legible Equivalents of
Elementary Numeric Data Items 3-35

ELLIPSIS 2-3
ELSE

ELSE keyword 12-2, F-28
EMI

EMI keyword F-33
Emi

Emi Keyword 13-7
ENABLE

ENABLE keyword 11-35, F-27
ENABLE: 11-35
ENABLING

Enabling and Disabling Queues 1-36
END

AT END Condition g-3
END keyword 7-37, 8-17, 10-4, 12-46,

12-56, 13-2, F-2, F-11,
F-16, F-17, F-32, F-33

End of Procedure Division g-13
END PROGRAM HEADER 4-6, 17-6
End Program Header g-13
high-order end g-17
low-order end g-23
The AT END Condition 10-34

END-ADD
END-ADD keyword 11-6, F-23

END-CALL
END-CALL keyword 11-12, F-24

END-COMPUTE
END-COMPUTE keyword 11-23, F-25

END-DELETE
END-DELETE keyword 11-26, F-25

END-DIVIDE
END-DIVIDE keyword 11-32, 11-33, F-26

END-EVALUATE
END-EVALUATE keyword 11-37, F-27

END-IF
END-IF keyword 12-2, F-28

END-MULTIPLY
END-MULTIPLY F-30
END-MULTIPLY keyword 12-26

END-OF-PAGE
END-OF-PAGE keyword 13-49, F-38

END-PERFORM
END-PERFORM keyword 12-33, 12-34,

F-31
END-READ

END-READ keyword 12-46, F-32



GCOS 7 COBOL 85 Reference Manual

i-12 47 A2 05UL Rev03

END-RECEIVE
END-RECEIVE keyword 12-52, F-32

END-RETURN
END-RETURN keyword 12-56, F-32

END-REWRITE
END-REWRITE keyword 12-58, F-32

END-SEARCH
END-SEARCH keyword 13-2, F-33

END-START
END-START keyword 13-25, F-35

END-STRING
END-STRING keyword 13-30, F-36

END-SUBTRACT
END-SUBTRACT keyword 13-33, F-36

END-UNSTRING
END-UNSTRING keyword 13-40, F-37

END-WRITE
END-WRITE keyword 13-49, F-38

ENQUEUEING
ENQUEUEING AND DEQUEUEING
METHODS 1-36
INDEPENDENT ENQUEUEING AND
DEQUEUEING 1-36

ENTRY g-13
77-level-description-entry g-43
Comment-Entry g-6
comment-entry 3-15
Communication Description Entry g-6
Data Description Entry g-10
data description entry 3-17
DATA DIVISION ENTRIES 17-6
File Control Entry g-15
File Description Entry g-15
FILE-CONTROL-ENTRY 7-15
I-O-CONTROL entry g-17
Object Computer Entry g-26
Object of Entry g-26
program identification entry g-30
Record Description Entry g-31
REPORT DESCRIPTION ENTRY8-9, g-34
REPORT GROUP DESCRIPTION
ENTRY 8-9, g-34
Sort-Merge File Description Entry g-37
Source Computer Entry g-38
special names entry g-39
Subject of Entry g-39
Table 8-3. Permissible Clause
Combinations in Format 3 Entries 8-40

ENVIRONMENT
Environment Clause g-13
ENVIRONMENT DIVISION 4-3, 7-1, 7-2
ENVIRONMENT keyword 7-2, F-1
Figure 1-1 COBOL Communication
Environment 1-33

EOP
EOP keyword 13-49, F-38

EQUAL
EQUAL keyword 10-14, 10-15, 11-9,

13-2, 13-25, F-33, F-35, F-39
EQUALS

EQUALS keyword 10-14, 10-15, 11-23,
13-2, 13-25, F-25, F-33, F-35, F-39

EQUIVALENT
Definition of a Legible Equivalent 3-32
LEGIBLE INPUT EQUIVALENT 3-33
LEGIBLE OUTPUT EQUIVALENT 3-34
Table 3-5. Legible Equivalents of
Elementary Numeric Data Items 3-35

ERROR
ERROR keyword8-18, 11-6, 11-23, 11-32,
 11-33, 12-26, 13-29, 13-33, 13-45, F-17,
 F-23, F-25, F-26, F-30, F-35, F-36, F-37

Table 8-2. Error Key Values 8-31
The SIZE ERROR Phrase 10-29

ESI
ESI keyword F-33

Esi
Esi Keyword 13-7

EVALUATE 11-37
EVALUATE keyword 11-37, F-27

EVALUATION
Boolean Formation and
Evaluation Rules 10-12
Formation and Evaluation Rules 10-10
Order of Evaluation of Conditions 10-24

EVERY
EVERY keyword 7-37, F-11

EXAMINE 11-41
EXAMINE keyword 11-41, F-27

EXCEEDS
EXCEEDS keyword 10-14, 13-25,

F-35, F-39
EXCEPTION

Exception Declaratives 1-8
EXCEPTION HANDLING 1-7
EXCEPTION keyword 11-12, 13-45, F-37

EXECUTABLE
next executable sentence g-24
next executable statement g-24

EXECUTION 10-2
Execution Time g-13
Unsuccessful Execution g-42

EXISTING
CHANGES NOT AFFECTING
EXISTING PROGRAMS E-1
CHANGES WHICH MAY AFFECT
EXISTING PROGRAMS E-9

EXIT 11-43
EXIT keyword 11-43, F-27



Index

47 A2 05UL Rev03 i-13

EXPLICIT
Explicit and Implicit Attributes 3-47
Explicit and Implicit Procedure
Division References 3-45
Explicit and Implicit
Scope Terminators 3-48
EXPLICIT AND IMPLICIT
SPECIFICATIONS 3-45
Explicit and Implicit Transfers of
Control 3-46
Explicit Scope Terminator g-13

EXPRESSION g-13
ARITHMETIC EXPRESSIONS 10-9, g-2
BOOLEAN EXPRESSIONS 10-12
CONDITIONAL EXPRESSION g-7
CONDITIONAL EXPRESSIONS 10-14
Definition of a Boolean Expression 10-12
Definition of Arithmetic Expression 10-9
SUBSCRIPTING USING INTEGERS,
DATA-NAMES OR ARITHMETIC
EXPRESSION 1-16

EXPRESSIONS
Table 10-1. Combination of Symbols
in Arithmetic Expressions 10-10
Table 10-2. Combination of Symbols
in Boolean Expressions 10-13

EXTEND
EXTEND keyword12-28, 13-45, F-31, F-37
Extend Mode g-13

EXTERNAL 9-12
external data g-14
external data item g-14
external data record g-14
External Data Records and Items 3-49
External File Connector g-14
EXTERNAL keyword 7-15, 7-16, 7-17,

8-11, 8-12, 8-34, 9-12,
F-8, F-9, F-10, F-12, F-13, F-19

EXTERNAL SWITCH 3-49, g-14

F

FACILITY
COMMUNICATION FACILITY 1-31
INTRINSIC FUNCTION FACILITY 1-39
THE COBOL SOURCE TEXT
MANIPULATION FACILITIES 15-1
THE DEBUGGING FACILITY 16-1

FACTORIAL
FACTORIAL FUNCTION 18-19
FACTORIAL keyword 18-19

FALSE
FALSE keyword 8-35, 9-73, 11-37, 13-12,

F-20, F-27, F-34

FD
FD keyword 8-11, 8-12, 8-13, 8-14, F-12,

F-13, F-14, F-15
FEATURE

THE COBOL 85 OBSOLETE
FEATURES D-1

FIGURATIVE
Figurative Constant g-14
Figurative Constant Values 3-13
Figurative Constants 3-8, 3-10

FIGURE
Figure 1-1 COBOL Communication
Environment 1-33
Figure 1-2 Hierarchy of Queues 1-37
Figure 12-2 PERFORM TEST BEFORE
VARYING with Two Conditions 12-39
Figure 12-3 PERFORM TEST AFTER
VARYING with One Condition 12-40
Figure 12-4 PERFORM TEST AFTER
VARYING with Two Conditions 12-42

FILE g-14
Accessing Data and Files 1-21
All Files 13-51
CONCEPTUAL CHARACTERISTICS
OF A FILE 3-16
DPS 7000 Specific File Status Keys 7-36
External File Connector g-14
File Attribute Conflict Condition g-14
File Attributes 1-1
File Clause g-14
File Connector g-15
File Control Entry g-15
File Description Entry g-15
FILE keyword 7-15, 7-16, 7-17, 7-37,

8-2, 11-2, 11-9, F-2, F-8, F-9,
F-10, F-11, F-12

FILE OPERATIONS 1-6
file organization g-15
File Position Indicator 1-6, g-15
File Processing 1-4
FILE SECTION 4-4, 8-3, g-15
FILE STATUS 7-27
File Status Keys 7-34
FILE-CONTROL g-15
FILE-CONTROL keyword 7-2, F-1, F-10
FILE-CONTROL-ENTRY 7-15
FILES 1-1
Fixed File Attributes g-16
Indexed File 11-26, 12-48
Indexed Files 7-17, 7-20, 7-26, 12-60,

13-28, 13-56, g-18
input file g-19
input-output file g-19
internal file connector g-20
Mass Storage File g-23
merge file g-23
optional file g-27
Output File g-27
Permissible Access Modes



GCOS 7 COBOL 85 Reference Manual

i-14 47 A2 05UL Rev03

For Different File Organizations 12-32
PHYSICAL ASPECTS OF A FILE 3-16
Relative Files 7-16, 7-20, 7-26, 11-26,

12-48, 12-60, 13-27, 13-55, g-33
Report File g-34
Sequential Files 7-15, 7-19, 7-24, 12-59,

13-52, g-37
SHARING FILES 1-28
Sort File g-37
SORT-MERGE FILE DESCRIPTION 8-16
Sort-Merge File Description Entry g-37
SORT-MERGE Files 7-17, 7-21
Table 11-1. Relationship of
File Categories and Formats of
the CLOSE Statement 11-20
Table 12-2 Opening Available and
Unavailable Files 12-29
Table 12-3. Permissible Access Modes
for Different File Organizations 12-32
Table 7-1. File Status Keys 7-34
Table 7-2. DPS 7000 Specific File
Status Keys 7-36

File
File Description 8-11

FILE-NAME 3-51, g-15
Conventions for Conditions-Names,
Data-names, File-names, Record-names,
and Report-Names 3-52

FILES
All Files 12-58

FILLER
DATA-NAME/FILLER 9-10
FILLER keyword 8-34, 9-10, 9-47,

9-49, 9-61, F-19
FINAL

FINAL keyword 9-8, 9-57, 9-63,
F-18, F-21, F-22

FIRST
FIRST keyword 9-27, 9-28, 9-29,

11-41, 12-7, 12-8, F-27, F-30
FIXED

fixed file attributes g-16
Fixed Length Records 1-3, g-16
fixed overlayable segments 14-2
fixed permanent segments 14-2
fixed portion 14-2
FIXED-POINT 3-12
Usage BINARY Fixed-Point Data 3-20

FLAGGER
THE ANSI FLAGGER C-1

FLOATING
Floating-Binary Data 3-20
FLOATING-POINT 3-12

FLOW
RESTRICTIONS ON PROGRAM
FLOW 14-6

FLR
FLR keyword 7-15, 7-16, 7-17,

F-8, F-9, F-10, F-11
FOOTING

control footing g-9
footing area g-16
FOOTING keyword 8-11, 8-32, 8-37,

8-54, 8-56, F-12, F-18, F-21
page footing g-28
PAGE FOOTING Presentation Rules 8-54
report footing g-34
REPORT FOOTING
Presentation Rules 8-56
Table 8-7. PAGE FOOTING
Presentation Rules 8-54
Table 8-8. REPORT FOOTING
Presentation Rules 8-56

FOR
FOR keyword 5-7, 7-37, 8-17, 8-18,

12-7, 13-45, F-4, F-11, F-16,
F-17, F-25, F-29, F-37

Rules For Specific Formats 10-27
FORMAT 17-6, g-16

COMMON OPTIONS AND RULES
FOR STATEMENT FORMATS 10-28
DEFINITION OF A GENERAL
FORMAT 2-1
DIVISION, SECTION AND
PARAGRAPH FORMATS 17-5
FORMAT ELEMENTS 2-2
Format Notation 2-2
FORMAT PUNCTUATION 2-4
General Format 4-2
General Format For a Sequence of
Separately Compiled Programs F-46
General Format For Contained
Program F-45
GENERAL FORMAT FOR COPY
AND REPLACE STATEMENTS F-43
General Format For Separately
Compiled Program F-44
MISCELLANEOUS FORMATS F-41
NOTATION USED IN FORMATS
AND RULES 2-1
REFERENCE FORMAT 17-1, g-32
REFERENCE FORMAT
REPRESENTATION 17-2
Rules For Specific Formats 10-27
Specific Statement Formats 10-27
standard data format g-39
Table 11-1. Relationship of



Index

47 A2 05UL Rev03 i-15

File Categories and Formats of
the CLOSE Statement 11-20
Table 8-3. Permissible Clause
Combinations in Format 3 Entries 8-40
USE OF SPECIAL CHARACTER
WORDS IN FORMATS 2-4

FORMATION
Formation and Evaluation Rules 10-10

FROM
FROM keyword 8-11, 8-14, 9-45, 10-34,

11-2, 11-23, 12-55, 13-37, 13-49,
F-12, F-15, F-16, F-23, F-25,
F-31, F-32, F-33, F-36, F-38

The FROM Option 10-34
FUNCTION

INTRINSIC FUNCTIONS 18-1

G

GBCD B-1
GBCD graphic collating sequence B-7
GBCD keyword 7-5, 7-9, 7-12, 8-11, 8-12,

8-13, 8-14, 9-5, 9-6, 13-17, 13-18,
F-5, F-6, F-7, F-13, F-15, F-30, F-34

GCOS
GCOS keyword 7-3, F-4, F-5

GENERAL
DEFINITION OF A GENERAL FORMAT2-1
GENERAL DESCRIPTION 5-1, 6-1, 7-1,

10-1, 14-1, 17-1, F-1
General Format 4-2
General Format For a Sequence of
Separately Compiled Programs F-46
General Format For Contained
Program F-45
GENERAL FORMAT FOR COPY AND
REPLACE STATEMENTS F-43
General Format For Separately
Compiled Program F-44
General Rules 2-1, 4-2, 4-6

GENERATE 9-9, 11-45
GENERATE keyword 9-9, 11-45, F-28

GIVING
GIVING keyword 10-32, 11-6, 11-12,

11-32, 11-33, 11-43, 12-26, 13-17,
13-18, F-23, F-24, F-30, F-34, F-36

GLOBAL
GLOBAL keyword 8-11, 8-12, 8-13, 8-14,

8-16, 8-17, 8-18, 8-32, 8-34, 8-36,
10-4, 11-43, F-12, F-13, F-16, F-17,

F-18, F-19, F-37
global name g-17

Global
Global Keyword 8-15

GLOSSARY g-1
GO TO 11-47

GO TO keyword 11-47, F-28

GRAPHIC
GBCD graphic collating sequence B-7
Graphic symbols B-1
JIS collating sequence B-7
NATIVE and EBCDIC
graphic collating sequences B-7
STANDARD-1 and ASCII graphic
collating sequences B-7

GREATER
GREATER keyword 10-14, 10-23, 11-9,

13-25, F-24, F-35, F-39
GROUP

body group g-3
BODY GROUP PRESENTATION
RULES 8-49
control group g-9
GROUP INDICATE 9-14
group items 3-17, g-17
GROUP keyword 8-37, 8-38, 9-23, 9-27,

F-21, F-22
NEXT GROUP 8-37
Next Group 9-23
PAGE HEADING Group Presentation
Rules 8-47
printable group g-29
report group g-34
REPORT GROUP DESCRIPTION 8-37
REPORT GROUP DESCRIPTION
ENTRY 8-9, g-34
REPORT HEADING
Group Presentation Rules 8-44
Saved Next Group Integer Description8-43
Table 8-4. REPORT HEADING
Group Presentation Rules 8-44
Table 8-5. PAGE HEADING
Group Presentation Rules 8-47

H

H-SORT
H-SORT keyword 7-17, F-11

HANDLING
EXCEPTION HANDLING 1-7
table handling 1-13

HEADER
Division Header 17-5, g-12
END PROGRAM HEADER 4-1, 4-6, 17-6
End Program Header g-13
paragraph header g-28
Paragraph Header, Paragraph-name
and Paragraph 17-5
PROCEDURE DIVISION HEADER 10-2
Section Header 17-5, g-36

HEADING
control heading g-9
HEADING keyword 8-32, 8-37, 9-27,

9-63, F-18, F-21



GCOS 7 COBOL 85 Reference Manual

i-16 47 A2 05UL Rev03

page heading g-28
PAGE HEADING
Group Presentation Rules 8-47
report heading g-34
REPORT HEADING
Group Presentation Rules 8-44
Table 8-4. REPORT HEADING
Group Presentation Rules 8-44
Table 8-5. PAGE HEADING
Group Presentation Rules 8-47

HIERARCHY
control hierarchy g-9
Figure 1-2 Hierarchy of Queues 1-37
QUEUE HIERARCHY 1-36

HIGH VALUE B-1
HIGH-ORDER

high-order end g-17
HIGH-VALUE 3-14
HIS-SERIES-60

HIS-SERIES-60 keyword7-3, 7-5, F-4, F-5
HORIZONTAL

HORIZONTAL SPACING 1-10

I

I-O
I-O CONTROL g-17
I-O keyword 8-18, 8-20, 11-28, 11-35,

12-28, F-17, F-25, F-27, F-31, F-37
I-O mode g-17
I-O STATUS 1-7, 7-27, g-17
I-O-CONTROL 7-37
I-O-CONTROL entry g-17
I-O-CONTROL keyword F-1

I-O-CONTROL
I-O-CONTROL 7-37
I-O-CONTROL keyword 7-37, F-1

ID
PROGRAM-ID 6-3

IDENTIFICATION
IDENTIFICATION DIVISION 4-3, 6-1, 6-2
IDENTIFICATION keyword 6-2, F-1
program identification entry g-30

IDENTIFIER F-42, g-18
'identifier' 10-2
Function Identifier 18-2
IDENTIFIER F-39
imperative statement g-18
resultant identifier g-35

IDENTIFYING
Identifying Parameters 1-27

IF 12-2
IF keyword 12-2, F-28

IMPERATIVE
DEFINITION OF IMPERATIVE
SENTENCE 10-8

DEFINITION OF IMPERATIVE
STATEMENT 10-7
Imperative Statements and
Imperative Sentences 10-7

IMPLICIT
Explicit and Implicit Attributes 3-47
Explicit and Implicit Procedure
Division References 3-45
Explicit and Implicit Scope
Terminators 3-48
EXPLICIT AND IMPLICIT
SPECIFICATIONS 3-45
Explicit and Implicit
Transfers of Control 3-46
Implicit Record Types 1-3
implicit scope terminator g-18

IMPLIED
IMPLIED keyword 7-15, F-8

IN
IN keyword 3-37, 3-38, 3-44, 7-9, 8-11,

8-14, 8-16, 9-45, F-7, F-12, F-14,
F-15, F-16, F-34, F-35, F-37, F-41,

F-42, F-43
INCOMPATIBLE

Incompatible Data 10-32
INDEPENDENT

CONCEPT OF COMPUTER-
INDEPENDENT DATA 3-16
INDEPENDENT ENQUEUEING AND
DEQUEUEING 1-36
INDEPENDENT SEGMENTS 14-2

INDEX g-18
Conventions for Index-Names 3-46
Index Data Item 3-18, 3-21, g-18
INDEX keyword 3-21, 8-34, 9-62, 9-68,

F-11, F-19
indexed data-name g-18

INDEX-NAME g-18
Comparisons Involving Index-Names10-17
Convention for INDEX-NAMES 3-52
SUBSCRIPTING USING
INDEX-NAMES 1-17

INDEXED
Indexed File 11-26, 12-48
Indexed Files 7-17, 7-20, 7-26, 9-5,

9-46, 12-60, 13-28, 13-56, g-18
INDEXED keyword 7-17, 8-18, 8-35,

9-24, F-10, F-17, F-20
INDEXED ORGANIZATION 1-2, g-19

INDICATE
GROUP INDICATE 9-14
INDICATE keyword 8-38, 9-14, F-22

INDICATOR
File Position Indicator 1-6, g-15
level indicator 17-6, g-21
message indicators g-24

INITIAL
INITIAL keyword 6-2, 6-3, 7-5, 8-17,

8-18, 12-7, 12-8,



Index

47 A2 05UL Rev03 i-17

F-1, F-5, F-16, F-17, F-29
INITIAL PROGRAMS 1-25, 6-3, g-19
initial state g-19
INITIAL VALUES 8-4, 8-7
Initial Values of Tables 1-15
MAXIMUM INITIAL DATA
SEGMENT SIZE 7-7

INITIALIZE 12-4
INITIALIZE keyword 12-4, F-28

INITIATE 12-6
INITIATE keyword 12-6, F-29

INITIATION
Scheduled Initiation of
the COBOL Program 1-34

INPUT
input file g-19
INPUT keyword 8-17, 11-28, 11-35,

12-28, 13-17, 13-18, 13-45,
F-16, F-25, F-27, F-31, F-34, F-37

input mode g-19
input procedure g-19
LEGIBLE INPUT EQUIVALENT3-33, 3-34

INPUT-OUTPUT
input-output file g-19
INPUT-OUTPUT keyword 7-2, F-1, F-10
INPUT-OUTPUT SECTION 4-3, 7-2, g-19
input-output statement g-19

INSPECT 12-7
INSPECT keyword10-25, 12-7, 12-8, F-29

INSTALLATION
INSTALLATION keyword 6-2, F-1

INTEGER g-20
DATE-OF INTEGER FUNCTION 18-17
DAY-OF INTEGER FUNCTION 18-18
INTEGER FUNCTION 18-20
Integer Function 18-5
INTEGER keyword 18-20
INTEGER-OF-DATE FUNCTION 18-21
INTEGER-OF-DAY FUNCTION 18-22
INTEGER-PART FUNCTION 18-23
Saved Next Group Integer Description8-43
SUBSCRIPTING USING INTEGERS,
DATA-NAMES OR ARITHMETIC
EXPRESSION 1-16

INTEGER-0F-DATE
INTEGER-OF-DATE FUNCTION 18-21
INTEGER-OF-DATE keyword 18-21

INTEGER-0F-DAY
INTEGER-OF-DAY FUNCTION 18-22
INTEGER-OF-DAY keyword 18-22

INTEGER-PART
INTEGER-PART FUNCTION 18-23
INTEGER-PART keyword 18-23

INTER-PROGRAM
Inter-Program Communication 1-25

INTERMEDIATE
intermediate data item 10-28

INTERNAL
internal data g-20

internal data item g-20
internal file connector g-20

INTO
INTO keyword 10-35, 11-32, 11-33,

12-46, 12-52, 12-56, 13-30, 13-40,
F-25, F-26, F-32

The INTO Option 10-35
INTRA-PROGRAM

Intra-Program Communication 1-29
INTRA-RECORD

intra-record data structure g-20
INTRINSIC

INTRINSIC FUNCTION FACILITY 1-39
INTRINSIC FUNCTIONS 18-1
Purpose of Intrinsic Function Mode 18-1

INTRODUCTION
INTRODUCTION 1-1, 15-1, 16-1, 18-1

INVALID
invalid key condition g-20
INVALID keyword 11-26, 12-46, 12-58,

13-25, 13-49, F-25, F-32
The INVALID KEY Condition 10-33

INVOCATION
Invocation of the COBOL Object
Program by the MCS 1-34

INVOKING
INVOKING THE COBOL OBJECT
PROGRAM 1-33

IS
CURRENCY SIGN IS 7-14
DECIMAL-POINT IS COMMA 7-14
IS keyword 7-5, 7-8, 7-9, 7-15, 7-16, 7-17,

8-11, 8-12, 8-13, 8-14, 8-16, 8-17,
8-18, 8-32, 8-34, 8-35, 8-37, 8-38, 9-5,
9-7, 9-8, 9-11, 9-12, 9-13, 9-16, 9-18,

9-21, 9-23, 9-24, 9-27, 9-45, 9-53, 9-54,
9-56, 9-63, 9-68, 9-73, 9-77, 10-14, 10-15,

10-20, 12-17, 12-46, 13-2, 13-17, 13-18,
13-25, F-1, F-3, F-5, F-6, F-7, F-8, F-9,

F-10, F-12, F-13, F-14, F-15, F-16, F-17,
F-18, F-19, F-20, F-21, F-22, F-30, F-32,

F-33, F-34, F-35, F-37
ITEM

BASED DATA ITEMS 8-6
categories of data items 3-18
contiguous items g-8
control data item g-9
Data Item g-10
Debug Item 3-10
DEBUG-ITEM 16-6
DISPLAY Data Item 3-20
Elementary Item g-13
elementary items 3-17
external data item g-14
External Data Records and Items 3-49
group items 3-17, g-17
Index Data Item 3-18, 3-21, g-18
intermediate data item 10-28
internal data item g-20



GCOS 7 COBOL 85 Reference Manual

i-18 47 A2 05UL Rev03

Local Data Items 3-49
noncontiguous items g-25
nonnumeric item g-25
numeric item g-25
Pointer Data Item 3-21
printable item g-29
References to Table Items 1-15
SIZE OF ELEMENTARY ITEMS 3-27
source item g-38
Table 3-2. Data Item Class and
Category 3-19
Table 3-5. Legible Equivalents of
Elementary Numeric Data Items 3-35
Usage BIT Data Item 3-20
Variable Occurrence Data Item g-42
Variable-Length Data Item g-43

J

JIS B-1
JIS collating sequence B-7
JIS keyword 7-5, 7-9, 8-11, 8-12, 8-13,

8-14, 9-5, 9-6, 12-17, 13-17, 13-18, F-5,
F-6, F-7, F-12, F-13, F-14, F-15, F-30

JUST
JUST keyword8-35, 8-38, 9-15, F-20, F-22

JUSTIFIED 9-15
JUSTIFIED keyword 8-35, 8-38, 9-15,

F-20, F-22

K

KEY g-21
actual key g-1
alternate record key g-2
ascending key g-3
descending key g-11
invalid key condition g-20
KEY keyword 7-16, 7-17, 8-17, 8-18,

8-35, 9-24, 10-33, 11-26, 11-28, 11-35,
12-17, 12-46, 12-58, 13-17, 13-18,

13-49, F-9, F-10, F-16, F-17, F-20, F-25,
F-27, F-30, F-32, F-34

key of reference g-21
Key Words 3-8
prime record key g-29
record key g-32
relative key g-33
STATUS KEY 1 7-27
STATUS KEY 2 7-28
Table 7-1. File Status Keys 7-34
Table 7-2. DPS 7000 Specific File
Status Keys 7-36
Table 8-1. Communication Status
Key Condition 8-29
Table 8-2. Error Key Values 8-31

The INVALID KEY Condition 10-33
Valid Combinations of Status
Keys 1 and 2 7-34

KEYWORD g-21

L

LABEL
LABEL keyword 8-11, 8-12, 8-13, 8-14,

9-16, F-12, F-13, F-14, F-15
LABEL RECORDS 9-16

LANGUAGE
COBOL LANGUAGE CONCEPTS 3-1
COMPOSITE LANGUAGE SKELETONF-1
Language Concepts 18-1
LANGUAGE STRUCTURE 3-4

LANGUAGE-NAME g-21
LAST

LAST keyword 8-32, 9-27, F-18
LEADING

LEADING keyword 5-3, 5-6, 8-35, 8-38,
9-54, 11-41, 12-7, 12-8, 15-6, F-3,

F-19, F-22, F-27, F-29, F-43
LEFT

LEFT keyword 8-35, 9-60, F-20
LEGALITY

Table 12-1. Legality of Types of
MOVE Statements 12-25

LEGIBLE
legible equivalent 5-8
LEGIBLE INPUT EQUIVALENT3-33, 3-34
Table 3-5. Legible Equivalents of
Elementary Numeric Data Items 3-35

LENGTH
Fixed Length Records 1-3, g-16
LENGTH FUNCTION 18-24
LENGTH keyword 8-17, 8-18, 18-24,

F-16, F-17
LENGTH OF Data-Name 3-10
Variable Length Records 1-3, g-42
Variable-Length Data Item g-43



Index

47 A2 05UL Rev03 i-19

LESS
LESS keyword 10-14, 11-9, 13-25, F-24,

F-35, F-39
LETTER g-21
LEVEL

77-level-description-entry g-43
Concepts of Levels 3-17
control break level g-9
level indicator 17-6, g-21
LEVEL NUMBERS 3-18
LEVEL-NUMBER 2-2, 9-17, 17-6, g-21

LEVEL-64
LEVEL-64 keyword 7-3, 7-5, F-5

LIBRARY
library g-21

LIBRARY-NAME g-22
LIMIT

LIMIT keyword 8-32, 9-27, F-18
SEGMENT-LIMIT Clause 14-5

LIMITS
LIMITS keyword 8-32, 9-27, F-18

LINAGE 9-18
Linage Concepts 1-6
LINAGE keyword 8-11, 9-18, F-12
LINAGE-COUNTER g-22

LINAGE-COUNTER 3-9
LINAGE-COUNTER keyword 3-38, F-41

LINE g-22
Blank Lines 17-4
Comment Lines 17-4, g-6
Continuation of Lines 17-3
DEBUG-LINE 16-6, 16-7
DEBUGGING LINE g-10
DEBUGGING LINES 16-9
LINE g-22
LINE keyword 8-32, 8-37, 8-38, 9-21,

9-27, 13-49, F-18, F-21, F-33, F-38
LINE NUMBER 9-21
LINE NUMBER Clause Notation 8-42
LINE NUMBER Clause Sequence
Substitutions 8-43
report line g-34

Line
Line Keyword 13-7

LINE-COUNTER
LINE-COUNTER keyword 3-38, F-41

LINE-COUNTER. 3-9
LINES

LINES keyword 8-11, 9-18, 13-49, F-12,
F-18, F-33, F-38

LINES NUMBER 9-27
Lines

Lines Keyword 13-7

LINKAGE
LINKAGE keyword 8-2, F-2
LINKAGE RECORDS 8-7
LINKAGE SECTION 4-4, 8-6, g-22
NON-CONTIGUOUS LINKAGE
STORAGE 8-7
Noncontiguous Working-Storage and
Linkage Data 3-18

LITERAL 3-10, 3-14, g-22
Boolean Literals 3-10
Nonnumeric Literals 3-11, g-25
Numeric Literals 3-12, g-25

LN-m
LN-m keyword 7-8, F-6

LNm
LNm keyword 7-8, F-6

LOCAL
Local Data Items 3-49

LOCK
LOCK keyword 11-19, F-25

LOG
LOG FUNCTION 18-25
LOG keyword 18-25

LOG10
LOG10 FUNCTION 18-26
LOG10 keyword 18-26

LOGICAL
logical operator g-22
logical page g-22
logical record 3-16, g-22
Logical Record Concept 3-16
Logical Records 1-3
Logical Subdivision of a Report 1-11
Precedence of Logical Operators and
Use of Parentheses 10-21
report writer logical record g-35

LOW-ORDER
low-order end g-23

LOW-VALUE 3-14, B-1
LOWER

LOWER-CASE FUNCTION 18-27
LOWER-CASE

LOWER-CASE FUNCTION 18-27
LOWER-CASE keyword 18-27

LOWERCASE
Uppercase and Lowercase Words 2-2

M

MANIPULATION
DATA MANIPULATION 1-10
THE COBOL SOURCE TEXT
MANIPULATION FACILITIES 15-1



GCOS 7 COBOL 85 Reference Manual

i-20 47 A2 05UL Rev03

MARGIN
bottom margin g-3
top margin g-41

MASS
mass storage g-23
Mass Storage Control System
(MSCS) g-23
Mass Storage File g-23

MAX
MAX FUNCTION 18-28
MAX keyword 18-28
ORD-MAX FUNCTION 18-37

MAXIMUM
MAXIMUM DATA SEGMENT SIZE 7-7
MAXIMUM INITIAL DATA
SEGMENT SIZE 7-7
MAXIMUM keyword 7-5, F-5
MAXIMUM PROCEDURE
SEGMENT SIZE 7-7

MCS g-23
Invocation of the COBOL Object
Program by the MCS 1-34
Message Control System (MCS) g-23

MEAN
MEAN FUNCTION 18-29
MEAN keyword 18-29

MEDIAN
MEDIAN FUNCTION 18-30
MEDIAN keyword 18-30

MEMBER
MEMBER keyword 11-9, F-24

MEMORY
MEMORY keyword 7-3, 7-5, F-4, F-5
MEMORY SIZE 7-4, 7-6
SHARED MEMORY AREA 1-19

MERGE 12-17
merge file g-23
MERGE keyword 12-17, F-30
SORT-MERGE FILE DESCRIPTION 8-16
SORT-MERGE FILE DESCRIPTION
ENTRY g-37
SORT-MERGE Files 7-17, 7-21
The MERGE Statement 14-7

MERGING
Sorting and Merging 1-6

MESSAGE g-23
Message Control System 1-31
Message Control System (MCS) g-23
Message Count g-23
message indicators g-24
MESSAGE keyword 5-6, 8-17, 11-2,

12-52, F-3, F-16, F-17, F-32
message segment g-24
Relationship of the COBOL Program
to the Message Control System 1-32
The Concept of Messages and
Message Segments 1-35

METHOD
Determining the Method of Scheduling1-34

ENQUEUEING AND DEQUEUEING
METHODS 1-36

MIDRANGE
MIDRANGE FUNCTION 18-31
MIDRANGE keyword 18-31

MIN
MIN FUNCTION 18-32
MIN keyword 18-32
ORD-MIN FUNCTION 18-38

MISCELLANEOUS
MISCELLANEOUS FORMATS F-41

MNEMONIC-NAME 3-7, g-24
MOD

MOD FUNCTION 18-33
MOD keyword 18-33

MODE
access mode g-1
Dynamic Access Mode 1-5
Extend Mode g-13
I-O mode g-17
input mode g-19
MODE keyword 7-3, 7-15, 7-16, 7-17,

F-4, F-8, F-9, F-10
Open Mode 1-5, g-26
output mode g-27
Permissible Access Modes For
Different File Organizations 12-32
Purpose of Intrinsic Function Mode 18-1
Random Access Mode 1-5
Sequential Access Mode 1-4
Table 12-3. Permissible Access Modes
for Different File Organizations 12-32
WITH DEBUGGING MODE 7-4

MODIFICATION
REFERENCE MODIFICATION 3-42, F-42

MODIFIER
reference modifier g-32

MODULES
MODULES keyword 7-3, 7-5, F-4

MOVE 12-22
MOVE keyword 12-22, F-30
Table 12-1. Legality of Types of
MOVE Statements 12-25

MSC
Relationship to MCS and
Communication Devices 1-32

MSCS
Mass Storage Control System
(MSCS) g-23

MSD
MSD keyword 7-15, F-8, F-9

MULTIPLE
MULTIPLE keyword F-11
Multiple Results in Arithmetic
Statements 10-32

MULTIPLY 12-26
END-MULTIPLY F-30
MULTILPLY keyword F-30
MULTIPLY keyword 12-26, F-31



Index

47 A2 05UL Rev03 i-21

N

NAME
alphabet-name 7-5, g-1
cd-name g-4
class-name g-4
Comparisons 10-17
computer-name g-7
CONDITION-NAME 3-7, 3-18, g-7
condition-name condition F-40, g-7
CONDITION-NAME CONDITION
(CONDITIONAL VARIABLE) 10-19
control data-name g-9
Convention for INDEX-NAMES 3-52
Convention for PROGRAM-NAMES 3-51
Conventions for Conditions-Names,
Data-names, File-names,
Record-names, and Report-Names 3-52
data-name g-10
DATA-NAME/FILLER 9-10
DEBUG-NAME 16-6, 16-7
FILE-NAME 3-51
file-name g-15
global name g-17
index-name g-18
indexed data-name g-18
language-name g-21
LENGTH OF Data-Name 3-10
library-name g-22
MNEMONIC-NAME 3-7, g-24
NAME keyword 8-35
Name Resolution 1-24
Names of Programs 1-26
Paragraph Header, Paragraph-name
and Paragraph 17-5
PARAGRAPH-NAME 3-7, g-28
procedure-name g-29
program-name g-30
qualified data-name g-30
queue name g-31
record-name g-32
report-name g-35
routine-name g-35
Scope of Names 3-50
Scope of Names of Programs 1-26
SECTION-NAME 3-7, g-36
special names entry g-39
SPECIAL-NAMES 7-8, g-39
subscripted data-name g-40

SUBSCRIPTING USING
INDEX-NAMES 1-17
SUBSCRIPTING USING INTEGERS,
DATA-NAMES OR ARITHMETIC
EXPRESSION 1-16
switch-name condition F-40
SYSTEM-NAME 3-8, g-40
text-name g-41

NATIVE B-1
NATIVE and EBCDIC
graphic collating sequences B-7
Native Character Set g-24
Native Collating Sequence g-24
NATIVE keyword 7-5, 7-9, 8-12, 8-13,

8-14, 9-5, 13-17, 13-18, F-30
NEGATED

Negated Combined Condition g-24
Negated Condition F-40
NEGATED CONDITIONS 10-21
negated simple condition g-24

NEGATIVE
NEGATIVE keyword 10-20, F-40

NESTED
Nested Source Program E-2

NEXT
next executable sentence g-24
next executable statement g-24
Next Group 9-23
NEXT keyword 8-37, 9-21, 9-23, 12-2,

12-46, 13-2, F-21, F-28, F-32, F-33
next record g-25
next record pointer g-25
Saved Next Group Integer Description8-43

NO
NO keyword 7-15, 11-19, 11-30, 12-28,

12-52, F-8, F-25, F-31, F-32
NO-SORTED-INDEX

NO-SORTED-INDEX keyword 7-37, F-11
NON-CONTIGUOUS

NON-CONTIGUOUS LINKAGE
STORAGE 8-7
NON-CONTIGUOUS WORKING-
STORAGE 8-4

NON-DECLARATIVE
Non-Declarative Procedures 4-5

NONCONTIGUOUS
noncontiguous items g-25
Noncontiguous Working-Storage
and Linkage Data 3-18

NONNUMERIC
Comparison of Non-numeric
Operands 10-16
nonnumeric item g-25
Nonnumeric Literals 3-11, g-25



GCOS 7 COBOL 85 Reference Manual

i-22 47 A2 05UL Rev03

NOT
CHANGES NOT AFFECTING
EXISTING PROGRAMS E-1
NOT keyword 5-6, 10-14, 10-15, 10-18,

10-20, 10-22, 10-33, 10-34, 11-6, 11-9,
11-12, 11-26, 11-32, 11-33, 11-37,
12-26, 12-46, 12-56, 12-58, 13-25,

13-30, 13-33, 13-40, 13-49, F-3, F-23,
F-24, F-25, F-26, F-27, F-31, F-32, F-35,

F-36, F-37, F-38, F-39, F-40
NOTATION

Format Notation 2-2
LINE NUMBER Clause Notation 8-42
NOTATION USED IN FORMATS
AND RULES 2-1

NULL
NULL keyword 8-35, 10-15, 13-12, F-20,

F-34, F-39
NUMBER

COLUMN NUMBER 9-7
LEVEL NUMBERS 3-18
LEVEL-NUMBER 2-2, 9-17, 17-6, g-21
LINE g-22
LINE NUMBER 9-21
LINE NUMBER Clause Notation 8-42
LINE NUMBER Clause Sequence
Substitutions 8-43
NUMBER keyword 8-37, 8-38, 9-7, 9-21,

F-21
Packed Decimal Number 3-20
record number g-32
relative record number g-33
Segment Number 14-4
segment-number g-36
Sequence Numbers 17-3

NUMERIC
Comparison of Numeric Operands 10-16
Numeric Character g-25
numeric edited 3-18
Numeric Function 18-5
numeric item g-25
NUMERIC keyword10-18, 12-4, F-28, F-40
Numeric Literals 3-12, g-25
Table 3-5. Legible Equivalents of
Elementary Numeric Data Items 3-35

NUMERIC-EDITED
NUMERIC-EDITED keyword 12-4, F-28

NUMVAL
NUMVAL FUNCTION 18-34
NUMVAL keyword 18-34

NUMVAL-C
NUMVAL-C FUNCTION 18-35
NUMVAL-C keyword 18-35

O

O-CONTROL

I-O CONTROL g-17
I-O-CONTROL 7-37
I-O-CONTROL entry g-17

OBJECT 1-22
Invocation of the COBOL Object
Program by the MCS 1-34
INVOKING THE COBOL OBJECT
PROGRAM 1-33
Object Attributes 1-23
Object Computer Entry g-26
OBJECT keyword F-7
Object of Entry g-26
object program g-26
object time g-26
Object Types 1-22
OBJECT-COMPUTER 7-5
The COBOL Object Program 1-32

OBJECT-COMPUTER
OBJECT-COMPUTER g-26
OBJECT-COMPUTER keyword 7-2, 7-5,

F-1, F-5
OBJECT-TIME

AN OBJECT-TIME SWITCH 16-2
OBSOLETE

Obsolete Element g-26
THE COBOL 85 OBSOLETE
FEATURES D-1

OCCURRENCE
Variable Occurrence Data Item g-42

OCCURS
OCCURS keyword 8-18, 8-35, 9-24,

F-17, F-20
OF

OF keyword 3-37, 3-38, 7-37, 8-11, 8-12,
8-13, 8-14, 9-77, 10-15, 11-2, 13-12,
13-45, F-11, F-12, F-13, F-14, F-15,
F-23, F-24, F-34, F-37, F-39, F-41,

F-42, F-43
OFF

OFF keyword 7-8, 13-12, 15-6, F-6,
F-34, F-43

replace off 15-6
OMITTED

OMITTED keyword 5-6, 8-11, 8-12, 8-13,
8-14, 9-16, F-3, F-12, F-13, F-14, F-15



Index

47 A2 05UL Rev03 i-23

ON
ON keyword 7-8, 7-37, 8-11, 8-16, 8-34,

8-35, 8-37, 9-21, 9-24, 9-31, 9-45, 9-57,
11-6, 11-12, 11-23, 11-32, 11-33, 11-47,

12-17, 12-26, 13-12, 13-17, 13-18, 13-33,
 13-40, 13-45, F-6, F-11, F-12, F-14, F-15,
 F-16, F-19, F-20, F-21, F-22, F-23, F-24,
F-25, F-26, F-27, F-28, F-30, F-31, F-34,

F-35, F-36, F-37
ONE

Figure 12-1 PERFORM TEST BEFORE
VARYING with One Condition 12-38
Figure 12-2 PERFORM TEST BEFORE
VARYING with Two Conditions 12-39
Figure 12-3 PERFORM TEST AFTER
VARYING with One Condition 12-40

OPEN 12-28
OPEN keyword 12-28, F-31
Open Mode 1-5, g-26

OPENING
Table 12-2 Opening Available and
Unavailable Files 12-29

OPERAND g-26
Comparison of Boolean Operands 10-17
Comparison of Non-numeric
Operands 10-16
Comparison of Numeric Operands 10-16
Comparison of Pointer Operands 10-17
Overlapping Operands 10-31
Table 13.1 Permissible SET
Statement Operands 13-15

OPERATION
arithmetic operation g-2
FILE OPERATIONS 1-6
Record Operations 1-4

OPERATIONAL
operational sign g-27

OPERATIONS
FILE OPERATIONS 1-6
Record Operations 1-4

OPERATOR
Arithmetic Operators 10-9, g-2
Boolean Operators 10-12
logical operator g-22
Precedence of Logical Operators and
Use of Parentheses 10-21
relational operator g-33
Table 10-3. Combinations of Conditions,
Operators, Parentheses 10-22
unary operator g-42

OPTION
COMMON OPTIONS AND RULES FOR
STATEMENT FORMATS 10-28
The FROM Option 10-34
The INTO Option 10-35

OPTIONAL
optional file g-27
OPTIONAL keyword 7-15, 7-16, 7-17,

F-8, F-9, F-10
Optional Phrases 1-8
OPTIONAL WORDS 3-8, g-27

OR
OR keyword 10-14, 10-20, 10-21, 10-22,

11-9, 13-25, 13-40, F-24, F-35,
F-37, F-39, F-40

ORD
ORD FUNCTION 18-36
ORD keyword 18-36

ORD-MAX
ORD-MAX FUNCTION 18-37
ORD-MAX keyword 18-37

ORD-MIN
ORD-MIN FUNCTION 18-38
ORD-MIN keyword 18-38

ORDER
high-order end g-17
low-order end g-23
ORDER keyword 13-17, 13-18, F-34, F-35
Order of Evaluation of Conditions 10-24

ORGANIZATION 7-1, 7-17, 8-41, 14-1
file organization g-15
INDEXED ORGANIZATION 1-2, g-19
ORGANIZATION keyword 7-15, 7-16,

F-8, F-9, F-10
Permissible Access Modes
For Different File Organizations 12-32
PROGRAM AND RUN UNIT
ORGANIZATION AND
COMMUNICATION 1-20
RELATIVE ORGANIZATION 1-2, g-33
SEQUENTIAL ORGANIZATION 1-2, g-37
Table 12-3. Permissible Access Modes
for Different File Organizations 12-32

OTHER
OTHER keyword 11-37, F-27

OUTPUT
Output File g-27
OUTPUT keyword 8-18, 11-28, 11-35,

12-17, 12-28, 13-17, 13-18, F-17,
F-25, F-27, F-30, F-31, F-34, F-37

output mode g-27
output procedure g-27

OVERFLOW
OVERFLOW keyword 11-12, 13-30,

13-40, F-24, F-36, F-37
OVERLAPPING

Overlapping Operands 10-31
OVERLAYABLE

fixed overlayable segments 14-2
OVERRIDING

OVERRIDING keyword7-15, F-8, F-9, F-10



GCOS 7 COBOL 85 Reference Manual

i-24 47 A2 05UL Rev03

P

PACKED
PACKED DECIMAL 3-21
Packed Decimal Number 3-20

PACKED-DECIMAL
PACKED-DECIMAL keyword 5-6, 8-34,

9-68, F-3, F-19
PADDING

Padding Character g-27
PADDING keyword 7-15, F-8

PAGE 9-27, g-27
logical page g-22
page body g-27
page footing g-28
PAGE FOOTING Presentation Rules 8-54
page heading g-28
PAGE HEADING Group
Presentation Rules 8-47
PAGE keyword 8-32, 8-37, 8-38, 9-21,

9-23, 9-27, 9-63, 13-49, F-18,
F-21, F-22, F-33, F-38

Page Regions 9-30
physical page g-29
Table 8-5. PAGE HEADING Group
Presentation Rules 8-47
Table 8-7. PAGE FOOTING
Presentation Rules 8-54
Table 9-1. Page Regions 9-30

Page
Page Keyword 13-7

PAGE-COUNTER 3-9
PAGE-COUNTER keyword 3-38, F-41

PARAGRAPH 4-5, 10-1, g-28
DIVISION, SECTION AND
PARAGRAPH FORMATS 17-5
paragraph header g-28
Paragraph Header, Paragraph-name
and Paragraph 17-5

PARAGRAPH-NAME 3-7, g-28
Conventions for Conditions-Names,
Data-names, File-names,
Record-names, and Report-Names 3-52
Paragraph Header, Paragraph-name
and Paragraph 17-5

PARAMETER 8-6
Identifying Parameters 1-27
Passing Parameters to Programs 1-27
Values of Parameters 1-28

PARENTHESES
Precedence of Logical Operators
and Use of Parentheses 10-21
Table 10-3. Combinations of Conditions,
Operators, Parentheses 10-22

PART
INTEGER-PART FUNCTION 18-23

PASSING
Passing Parameters to Programs 1-27

PERFORM 12-33
Figure 12-1 PERFORM TEST BEFORE
VARYING with One Condition 12-38
Figure 12-2 PERFORM TEST BEFORE
VARYING with Two Conditions 12-39
Figure 12-3 PERFORM TEST AFTER
VARYING with One Condition 12-40
Figure 12-4 PERFORM TEST AFTER
VARYING with Two Conditions 12-42
PERFORM keyword 12-33, 12-34, F-31
The PERFORM Statement 14-6

PERMANENT
fixed permanent segments 14-2

PERMISSIBLE
Permissible Access Modes For
Different File Organizations 12-32
Permissible Values of Arguments 18-4
Table 12-3. Permissible Access Modes
for Different File Organizations 12-32
Table 13.1 Permissible SET
Statement Operands 13-15
Table 8-3. Permissible Clause
Combinations in Format 3 Entries 8-40

PF
PF keyword 8-37, 9-63, F-21

PH
PH keyword 8-37, 9-63, F-21

PHRASE g-28
conditional phrase g-8
DEFINITION OF
CONDITIONAL PHRASE 10-6
Optional Phrases 1-8
The CORRESPONDING Phrase 10-30
The ROUNDED PHRASE 10-28
The SIZE ERROR Phrase 10-29

PHYSICAL
PHYSICAL ASPECTS OF A FILE 3-16
physical page g-29
physical record 3-16, g-29
Physical Subdivision of a Report 1-11

PIC
PIC keyword 8-34, 8-38, 9-31, F-19, F-22

PICTURE 9-31
Picture Character Precedence Chart 9-44
PICTURE CHARACTER-STRINGS 3-15
PICTURE keyword 8-34, 8-38, 9-31,

F-19, F-22
Table 9-4. Picture Character
Precedence Chart 9-44

PLUS
PLUS keyword 7-5, 8-37, 9-21, 9-23,

F-5, F-21



Index

47 A2 05UL Rev03 i-25

POINT
actual decimal point g-1
assumed decimal point g-3
DECIMAL-POINT IS COMMA 7-14
FIXED-POINT 3-12
FLOATING-POINT 3-12
Usage BINARY Fixed-Point Data 3-20

POINTER
Comparison of Pointer Operands 10-17
Current g-10
Current Volume Pointer 1-6
next record pointer g-25
Pointer Data Item 3-21
POINTER keyword 3-21, 8-34, 9-62,

9-68, 13-40, F-19, F-36
PORTION

fixed portion 14-2
POSITION

character position g-4
digit position g-11
File Position Indicator 1-6, g-15
POSITION keyword 7-37, F-11

POSITIVE
POSITIVE keyword 10-20, F-40

PRECEDENCE
Precedence of Logical Operators and
Use of Parentheses 10-21
Precedence Rules 9-43
Table 9-4. Picture Character
Precedence Chart 9-44

PRESENT-VALUE
PRESENT-VALUE FUNCTION 18-39
PRESENT-VALUE keyword 18-39

PRESENTATION
BODY GROUP PRESENTATION
RULES 8-49
PAGE FOOTING Presentation Rules 8-54
PAGE HEADING Group Presentation
Rules 8-47
PRESENTATION RULES TABLES 8-41
REPORT FOOTING
Presentation Rules 8-56
REPORT HEADING
Group Presentation Rules 8-44
Table 8-4. REPORT HEADING
Group Presentation Rules 8-44
Table 8-5. PAGE HEADING
Group Presentation Rules 8-47
Table 8-7. PAGE FOOTING
Presentation Rules 8-54
Table 8-8 REPORT FOOTING
Presentation Rules 8-56

PREVIOUS
previous record g-29

PRIME
prime record key g-29

PRINTABLE
printable group g-29
printable item g-29

PRINTER
PRINTER keyword 7-15

PRINTING
PRINTING keyword 13-35, F-36

PROCEDURE 4-5, 10-1, g-29
Declarative Procedures 4-5
End of Procedure Division g-13
Explicit and Implicit Procedure
Division References 3-45
input procedure g-19
MAXIMUM PROCEDURE
SEGMENT SIZE 7-7
Non-Declarative Procedures 4-5
output procedure g-27
Procedure Branching Statement g-29
PROCEDURE DIVISION 4-5, 10-1
Procedure Division Body 10-4
PROCEDURE DIVISION HEADER 10-2
Procedure Division Report Writer
Statements 1-12
PROCEDURE DIVISION
STRUCTURE 10-2
PROCEDURE keyword 7-5, 10-2, 12-17,

13-17, 13-18, 13-45, F-2, F-5,
F-30, F-34, F-37

The Procedure Division Declaratives 10-1
PROCEDURE-NAME g-29
PROCEDURES

Declarative Procedures 4-5
Non-Declarative Procedures 4-5
PROCEDURES keyword 13-45, F-37

PROCEED
PROCEED keyword 11-8, F-23

PROCESSING
File Processing 1-4

PROGRAM
called program g-4
calling program g-4
CHANGES NOT AFFECTING
EXISTING PROGRAMS E-1
CHANGES WHICH MAY AFFECT
EXISTING PROGRAMS E-9
COMMON PROGRAMS 1-24, 6-3, g-6
END PROGRAM HEADER 17-6
General Format For a Sequence of
Separately Compiled Programs F-46
General Format For
Contained Program F-45
General Format For
Separately Compiled Program F-44
INITIAL PROGRAMS 1-25, 6-3, g-19
Inter-Program Communication 1-25
Intra-Program Communication 1-29
Invocation of the COBOL Object
Program by the MCS 1-34



GCOS 7 COBOL 85 Reference Manual

i-26 47 A2 05UL Rev03

INVOKING THE COBOL OBJECT
PROGRAM 1-33
Names of Programs 1-26
Nested Source Program E-2
object program g-26
Passing Parameters to Programs 1-27
PROGRAM AND RUN UNIT
ORGANIZATION AND
COMMUNICATION 1-20
Program Classes 1-24
PROGRAM COLLATING SEQUENCE 7-6
PROGRAM HEADER 4-6
program identification entry g-30
PROGRAM keyword 11-43, F-27
PROGRAM SEGMENT 14-1
Relationship of the COBOL Program
to the Message Control System 1-32
RESTRICTIONS ON
PROGRAM FLOW 14-6
Scheduled Initiation of
the COBOL Program 1-34
Scope of Names of Programs 1-26
Separately Compiled Program g-36
source program g-38
STRUCTURE OF
A COBOL PROGRAM 4-2
STRUCTURE OF
PROGRAM SEGMENTS 14-4
The COBOL Object Program 1-32
THE COBOL PROGRAM
A SUMMARY 4-1

PROGRAM End Program Header g-13
PROGRAM-ID 6-3

PROGRAM-ID keyword 6-2, 6-3, F-1
PROGRAM-NAME g-30

Convention for PROGRAM-NAMES 3-51
PSEUDO-TEXT 17-4, g-30

Pseudo-Text Delimiter g-30
PUNCTUATION

FORMAT PUNCTUATION 2-4
Punctuation Characters 3-2, g-30

PURGE
PURGE keyword 12-45, F-31, F-32

PURPOSE
Purpose of Intrinsic Function Mode 18-1
Special Purpose Word 3-8

Q

QUALIFICATION 3-36, F-41
QUALIFIED

qualified data-name g-30
QUALIFIER g-31

QUEUE g-31
Enabling and Disabling Queues 1-36
Figure 1-2 Hierarchy of Queues 1-37
QUEUE HIERARCHY 1-36
QUEUE keyword 5-6, 8-17, F-3, F-16
queue name g-31
sub-queue g-39
The Concept of Queues 1-35

QUEUED
QUEUED keyword 7-15, F-8

QUOTE 3-14

R

RADIX
Selection of Character
Representation and Radix 3-19

RANDOM
random access g-31
Random Access Mode 1-5
RANDOM FUNCTION 18-40
RANDOM keyword 7-16, 18-40, F-9

RANGE
RANGE FUNCTION 18-41
RANGE keyword 18-41

RD
RD keyword 8-32, F-18

READ 12-46
READ keyword 12-46, F-32

RECEIVE 12-52
RECEIVE keyword 12-52, F-32

RECORD 9-45, g-31
alternate record key g-2
current record g-10
DATA RECORDS 9-11
external data record g-14
External Data Records and Items 3-49
Fixed Length Records 1-3, g-16
Implicit Record Types 1-3
intra-record data structure g-20
LABEL RECORDS 9-16
LINKAGE RECORDS 8-7
logical record 3-16, g-22
Logical Record Concept 3-16
Logical Records 1-3
next record g-25
next record pointer g-25
physical record 3-16, g-29
previous record g-29
prime record key g-29
record area g-31
Record Concepts 3-17
Record Description g-31
Record Description Entry g-31



Index

47 A2 05UL Rev03 i-27

RECORD DESCRIPTION
STRUCTURE 8-10
record key g-32
RECORD keyword 7-15, 7-17, 7-37, 8-11,

8-12, 8-13, 8-14, 9-11, 9-16, 9-45, F-8,
F-10, F-11, F-12, F-13, F-15, F-16,

F-25, F-32
record number g-32
Record Operations 1-4
relative record number g-33
report writer logical record g-35
Variable Length Records 1-3, g-42
WORKING-STORAGE RECORDS 8-4

RECORD-NAME g-32
Conventions for Conditions-Names,
Data-names, File-names,
Record-names, and Report-Names 3-52

RECORDS
DATA RECORDS 9-11
Fixed Length Records 1-3
LABEL RECORDS 9-16
Logical Records 1-3
RECORDS keyword 7-37, 8-11, 8-12,

8-13, 8-14, 9-3, 9-11, 9-16, F-11,
F-12, F-13, F-15, F-16

Variable Length Records 1-3
REDEFINES 9-49

REDEFINES keyword 8-34, 9-49, F-19
REEL g-32

REEL keyword 7-37, 11-19, F-11, F-25
REFERENCE

Explicit and Implicit Procedure
Division References 3-45
key of reference g-21
REFERENCE FORMAT 17-1, g-32
REFERENCE FORMAT
REPRESENTATION 17-2
REFERENCE keyword 11-12, F-24
REFERENCE MODIFICATION 3-42, F-42
reference modifier g-32
References to Table Items 1-15
Uniqueness of Reference 3-36

REFERENCES
REFERENCES keyword 13-45, F-37
References to Table Items 1-15

REGION
Page Regions 9-30
Table 9-1. Page Regions 9-30

REGISTER
Special Registers 3-8, g-39

RELATION g-32
Abbreviated Combined
Relation Condition 10-22, F-40, g-1
Relation Characters 3-3, g-32
RELATION CONDITION 10-14, g-33

RELATIONAL
relational operator g-33

RELATIONSHIP
Relationship of the COBOL Program

to the Message Control System 1-32
Relationship to MCS and
Communication Devices 1-32
Table 11-1. Relationship of
File Categories and Formats of
the CLOSE Statement 11-20

RELATIVE
Relative Files 7-16, 7-20, 7-26, 11-26,

12-48, 12-60, 13-27, 13-55, g-33
relative key g-33
RELATIVE keyword 7-16, F-9
RELATIVE ORGANIZATION 1-2, g-33
relative record number g-33

RELEASE 12-55
RELEASE keyword 12-55, F-32

REM
REM FUNCTION 18-42
REM keyword 18-42

REMAINDER
REMAINDER keyword 11-33, F-26

REMOVAL
REMOVAL keyword 11-19, F-25

RENAMES 3-18, 9-51
RENAMES keyword 8-35, 9-51, F-20

REPLACE 15-6
GENERAL FORMAT FOR COPY AND
REPLACE STATEMENTS F-43
REPLACE keyword 5-3, 15-6, F-3
replace off 15-6

REPLACING
REPLACING keyword 11-41, 12-4, 12-7,

F-27, F-28, F-29, F-33, F-43
Replacing

Replacing Keyword 13-7
REPORT 9-53

Logical Subdivision of a Report 1-11
Physical Subdivision of a Report 1-11
Procedure Division Report
Writer Statements 1-12
Report Clause g-33
REPORT DESCRIPTION 8-32
REPORT DESCRIPTION ENTRY8-9, g-34
Report File g-34
report footing g-34
REPORT FOOTING
Presentation Rules 8-56
report group g-34
REPORT GROUP DESCRIPTION 8-37
REPORT GROUP DESCRIPTION
ENTRY 8-9, g-34
report heading g-34
REPORT HEADING
Group Presentation Rules 8-44
REPORT keyword 8-2, 8-12, 8-37, 9-53,

9-63, F-2, F-13, F-21
report line g-34
REPORT SECTION 1-9, 4-4, 8-9, g-34
Report Structure 1-10
Report Subdivisions 1-11



GCOS 7 COBOL 85 Reference Manual

i-28 47 A2 05UL Rev03

REPORT WRITER 1-9
Report Writer Control System (RWCS)g-34
report writer logical record g-35
Table 8-4. REPORT HEADING
Group Presentation Rules 8-44
Table 8-8. REPORT FOOTING
Presentation Rules 8-56

REPORT-NAME g-35
Conventions for Conditions-Names,
Data-names, File-names,
Record-names, and Report-Names 3-52

REPORTING
REPORTING keyword 13-45, F-37

REPORTS
REPORTS keyword 8-12, 9-53, F-13

REPRESENTATION
REFERENCE FORMAT
REPRESENTATION 17-2
Selection of Character
Representation and Radix 3-19
Table 3-3. Data Representation in
the DPS 7 System 3-21

REQUIRED
REQUIRED WORDS 3-8

REQUIREMENTS
Table 3-4. Boundary Requirements
for Synchronized Data 3-28

RERUN
RERUN keyword 7-37, F-11

RESERVE
RESERVE keyword 7-15, 7-16, 7-17, F-8,

F-9, F-10
RESERVED

COBOL RESERVED WORDS A-1
Reserved Word 3-8, g-35

RESET
RESET keyword 8-38, 9-57, F-22

RESOLUTION
Name Resolution 1-24

RESOURCE g-35
RESTRICTION

RESTRICTIONS ON PROGRAM
FLOW 14-6

RESULT
Multiple Results in
Arithmetic Statements 10-32
Results of Sign Control
Symbols in Editing 9-40
Table 9-3. Results of Sign Control
Symbols in Editing 9-40

RESULTANT
resultant identifier g-35

RETURN 12-56
RETURN keyword 12-56, F-32

RETURNED
Function Definition and
Returned Value 18-3
Value Returned by a Function 18-2

REVERSE
REVERSE FUNCTION 18-43
REVERSE keyword 18-43

REWIND
REWIND keyword11-19, 12-28, F-25, F-31

REWRITE 12-58
REWRITE keyword 12-58, F-32

RF
RF keyword 8-37, 9-63, F-21

RH
RH keyword 8-37, 9-63, F-21

RIGHT
RIGHT keyword 8-35, 8-38, 9-15,

9-60, F-20
ROUNDED

ROUNDED keyword 11-6, 11-23, 11-32,
11-33, 12-26, 13-33, F-23, F-25,

F-26, F-30, F-36
The ROUNDED PHRASE 10-28

ROUTINE-NAME g-35
RULE

BODY GROUP Presentation Rules 8-49
Boolean Formation and
Evaluation Rules 10-12
COMMON OPTIONS AND RULES
FOR STATEMENT FORMATS 10-28
Editing Rules 9-39
Formation and Evaluation Rules 10-10
General Rules 2-1, 4-2, 4-6
NOTATION USED IN FORMATS
AND RULES 2-1
PAGE FOOTING Presentation Rules 8-54
PAGE HEADING
Group Presentation Rules 8-47
Precedence Rules 9-43
PRESENTATION RULES TABLES 8-41
REPORT FOOTING
Presentation Rules 8-56
REPORT HEADING
Group Presentation Rules 8-44
Rules For Specific Formats 10-27
Standard Rules For Data Alignment 3-22
Syntax Rules 4-2, 4-6
Table 8-4. REPORT HEADING
Group Presentation Rules 8-44
Table 8-5. PAGE HEADING
Group Presentation Rules 8-47
Table 8-7. PAGE FOOTING
Presentation Rules 8-54
Table 8-8. REPORT FOOTING
Presentation Rules 8-56

RUN



Index

47 A2 05UL Rev03 i-29

PROGRAM AND RUN UNIT
ORGANIZATION AND
COMMUNICATION 1-20
RUN keyword 13-29, F-35
run unit g-35

RWCS g-35
Report Writer Control System
(RWCS) g-34

S

SAME
SAME keyword 7-37, F-11

SARF
SARF keyword F-8

SAVED
Saved Next Group Integer Description8-43

SCHEDULED
Scheduled Initiation of
the COBOL Program 1-34

SCHEDULING
Determining the Method of Scheduling1-34

SCOPE 14-1
Delimited Scope Statements 10-8, g-11
Explicit and Implicit Scope
Terminators 3-48
Explicit Scope Terminator g-13
implicit scope terminator g-18
Scope of CALL Statement 1-26
Scope of Names 3-50
Scope of Names of Programs 1-26
Scope of Statements 10-8

SD
SD keyword 8-16, F-16

SEARCH 13-2
SEARCH keyword 13-2, F-9, F-32, F-33

SECTION 4-3, 4-5, 10-1, g-35
COMMUNICATION SECTION4-4, 8-8, g-6
CONFIGURATION SECTION4-3, 7-2, g-8
CONSTANT SECTION 4-4, 8-5, g-8
debugging section g-11
DEFAULT SECTION 4-3, 5-6
DIVISION, SECTION AND
PARAGRAPH FORMATS 17-5
FILE SECTION 4-4, 8-3, g-15
INPUT-OUTPUT SECTION 4-3, 7-2, g-19
LINKAGE SECTION 4-4, 8-6, g-22
REPORT SECTION 1-9, 4-4, 8-9, g-34
Section Header 17-5, g-36
SECTION keyword 5-2, 5-3, 5-6, 7-2,

8-2, 10-4, F-1, F-2
SUBSTITUTION SECTION 4-3, 5-3
WORKING-STORAGE
SECTION 4-4, 8-4, g-43

SECTION-NAME 3-7, g-36
Conventions for Conditions-Names,
Data-names, File-names,

Record-names, and Report-Names 3-52
SECURITY

SECURITY keyword 6-2, F-1
SEGMENT

fixed overlayable segments 14-2
fixed permanent segments 14-2
INDEPENDENT SEGMENTS 14-2
MAXIMUM DATA SEGMENT SIZE 7-7
MAXIMUM INITIAL DATA
SEGMENT SIZE 7-7
MAXIMUM PROCEDURE
SEGMENT SIZE 7-7
message segment g-24
PROGRAM SEGMENTS 14-1
Segment Classification 14-3
SEGMENT keyword 7-5, 12-52, F-5, F-32
Segment Number 14-4
SEGMENT-LIMIT Clause 14-5
STRUCTURE OF
PROGRAM SEGMENTS 14-4
The Concept of Messages and
Message Segments 1-35

SEGMENT-LIMIT
SEGMENT-LIMIT Clause 14-5
SEGMENT-LIMIT keyword 7-5, F-5

SEGMENT-NUMBER g-36
SEGMENTATION 1-30, 14-1

Segmentation Control 14-3
SELECT

SELECT keyword 7-15, 7-16, 7-17, F-8,
F-9, F-10, F-11

SELECTION
Selection of Character
Representation and Radix 3-19

SEND
SEND keyword F-33

Send 13-7
Send Keyword 13-7

SENTENCE 4-5, 10-1, g-36
Compiler Directing Statements and
Compiler Directing Sentences 10-6
Conditional Statements and
Sentences 10-5
DECLARATIVE-SENTENCE g-11
DEFINITION OF COMPILER
DIRECTING SENTENCE 10-6
DEFINITION OF CONDITIONAL
SENTENCE 10-6
DEFINITION OF IMPERATIVE
SENTENCE 10-8
Imperative Statements and
Imperative Sentences 10-7
next executable sentence g-24



GCOS 7 COBOL 85 Reference Manual

i-30 47 A2 05UL Rev03

SENTENCE keyword12-2, 13-2, F-28, F-33
STATEMENTS AND SENTENCES 10-5

SEPARATE
SEPARATE keyword 5-6, 8-35, 8-38,

9-54, F-3, F-19, F-22
SEPARATELY

General Format For a Sequence of
Separately Compiled Programs F-46
General Format For Separately
Compiled Program F-44
Separately Compiled Program g-36

SEPARATOR 3-4, g-37
SEQUENCE

Collating Sequence g-5
GBCD graphic collating sequence B-7
General Format For a Sequence of
Separately Compiled Programs F-46
JIS collating sequence B-7
LINE NUMBER
Clause Sequence Substitutions 8-43
NATIVE and EBCDIC
graphic collating sequences B-7
Native Collating Sequence g-24
PROGRAM COLLATING SEQUENCE 7-6
SEQUENCE keyword 7-5, 12-17, 13-17,

13-18, F-5, F-30, F-34
Sequence Numbers 17-3
STANDARD-1 and ASCII
graphic collating sequences B-7

SEQUENTIAL
sequential access 12-46, g-37
Sequential Access Mode 1-4
Sequential Files 7-15, 7-19, 7-24, 12-59,

13-52, g-37
SEQUENTIAL keyword 7-15, 7-16, F-8
SEQUENTIAL ORGANIZATION 1-2, g-37

SET 13-12
COBOL CHARACTER SET 3-1, g-5
CODE-SET 9-5
Native Character Set g-24
SET keyword 8-35, 9-73, 13-12,

F-20, F-33, F-34
Table 13.1 Permissible
SET Statement Operands 13-15

SHARED
SHARED DATA 1-29
SHARED MEMORY AREA 1-19

SHARING
SHARING DATA 1-28
SHARING FILES 1-28

SIGN 9-54
Algebraic Signs 3-22
currency sign g-10
operational sign g-27
Results of Sign Control
Symbols in Editing 9-40
SIGN Clause 3-22
SIGN clause 9-54
SIGN CONDITION 10-20, g-37

sign condition F-40
SIGN keyword 5-6, 8-35, 8-38, 9-54,

F-3, F-7, F-19, F-22
Table 9-3. Results of
Sign Control Symbols in Editing 9-40

SIMPLE
negated simple condition g-24
Simple Conditions 10-14, g-37

SIN
SIN FUNCTION 18-44
SIN keyword 18-44

SIZE
MAXIMUM DATA SEGMENT SIZE 7-7
MAXIMUM INITIAL DATA
SEGMENT SIZE 7-7
MAXIMUM PROCEDURE
SEGMENT SIZE 7-7
MEMORY SIZE 7-4, 7-6
SIZE keyword 7-3, 7-5, 8-11, 8-13, 8-14,

9-45, 11-6, 11-23, 11-32, 11-33, 12-26,
13-30, 13-33, F-4, F-5, F-12, F-14, F-15

, F-16, F-23, F-25, F-26, F-30, F-36
SIZE OF ELEMENTARY ITEMS 3-27
The SIZE ERROR Phrase 10-29

SKELETON
COMPOSITE LANGUAGE
SKELETON F-1

SORT 13-17
Sort File g-37
SORT keyword 7-37, 13-17, 13-18,

F-11, F-34
sort-merge file description entry g-37
SORT-MERGE Files 7-17, 7-21
The SORT Statement 14-7

SORT-MERGE
SORT-MERGE FILE DESCRIPTION 8-16
SORT-MERGE Files 7-17, 7-21
SORT-MERGE keyword 7-37, F-11

SORTING
Sorting and Merging 1-7

SOURCE 9-56, g-37
Nested Source Program E-2
Source Computer Entry g-38
source item g-38
SOURCE keyword 8-17, 8-38, 9-56,

F-16, F-22
source program g-38
SOURCE-COMPUTER 7-3
THE COBOL SOURCE TEXT
MANIPULATION FACILITIES 15-1

SOURCE-COMPUTER g-38
SOURCE-COMPUTER 7-3
SOURCE-COMPUTER keyword 7-2, 7-3,

F-1, F-4



Index

47 A2 05UL Rev03 i-31

SPACE 3-13
SPACE keyword 5-3, 15-6, F-3, F-43
UNUSED SPACE 3-25

SPACES
SPACES keyword 5-3, 15-6, F-3, F-43

SPACING
HORIZONTAL SPACING 1-10
VERTICAL SPACING 1-10

SPECIAL
special character g-38
Special Character Words 3-8
special names entry g-39
Special Purpose Word 3-8
Special Registers 3-8, g-39
USE OF SPECIAL CHARACTER
WORDS IN FORMATS 2-4

SPECIAL-CHARACTER
special-character word g-39

SPECIAL-NAMES 7-8, g-39
SPECIAL-NAMES keyword 7-2, 7-8,

F-1, F-6
SPECIFIC

Rules For Specific Formats 10-27
Specific Statement Formats 10-27
Table 7-2. DPS 7000 Specific
File Status Keys 7-36

SPECIFICATION
EXPLICIT AND IMPLICIT
SPECIFICATIONS 3-45

SQRT
SQRT FUNCTION 18-45
SQRT keyword 18-45

SSF
SSF keyword 7-15, F-8

STANDARD
standard data format g-39
STANDARD keyword 5-6, 8-11, 8-12,

8-13, 8-14, 9-16, 13-45, F-3, F-12,
F-13, F-14, F-15, F-37

Standard Rules For Data Alignment 3-22
STANDARD-1 B-1

STANDARD-1 and ASCII
graphic collating sequences B-7
STANDARD-1 keyword 7-5, 7-9, 7-15,

8-11, 8-12, 8-13, 8-14, 9-5, 12-17,
13-17, 13-18, F-5, F-6, F-7, F-8,

F-12, F-13, F-14, F-15, F-30, F-34, F-35
STANDARD-2

STANDARD-2 keyword 7-5, 7-9, 7-15,
8-11, 8-12, 8-13, 8-14, 9-5, 12-17,
13-17, 13-18, F-5, F-6, F-7, F-12,

F-13, F-14, F-15, F-30, F-34, F-35
STANDARD-DEVIATION

STANDARD-DEVIATION FUNCTION18-46
STANDARD-DEVIATION keyword 18-46

START 13-25
START keyword 13-25, F-35

STATE
initial state g-19

STATEMENT 4-5, 10-2, g-39
arithmetic statement g-3
CATEGORIES OF STATEMENTS 10-25
COMMON OPTIONS AND RULES
FOR STATEMENT FORMATS 10-28
compiler directing statement g-7
Compiler Directing Statements and
Compiler Directing Sentences 10-6
conditional statement g-8
Conditional Statements and
Sentences 10-5
DEFINITION OF COMPILER
DIRECTING STATEMENT 10-6
DEFINITION OF CONDITIONAL
STATEMENT 10-5
DEFINITION OF IMPERATIVE
STATEMENT 10-7
Delimited Scope Statements 10-8, g-11
imperative statement g-18
Imperative Statements and
Imperative Sentences 10-7
input-output statement g-19
Multiple Results in
Arithmetic Statements 10-32
next executable statement g-24
Procedure Branching Statement g-29
Procedure Division
Report Writer Statements 1-12
Scope of CALL Statement 1-26
Scope of Statements 10-8
Specific Statement Formats 10-27
STATEMENTS AND SENTENCES 10-5
Table 11-1. Relationship of File
Categories and Formats of
the CLOSE Statement 11-20
Table 12-1. Legality of Types of
MOVE Statements 12-25
Table 13.1 Permissible SET
Statement Operands 13-15
The ALTER Statement 14-6
The Arithmetic Statements 10-31
The MERGE Statement 14-7
The PERFORM Statement 14-6
The SORT Statement 14-7

STATEMENTS
GENERAL FORMAT FOR COPY AND
REPLACE STATEMENTS F-43

STATMENT
THE USE FOR DEBUGGING
STATEMENT 16-3

STATUS
FILE STATUS 7-27
I-O STATUS 1-7, 7-27, g-17
STATUS KEY 1 7-27
STATUS KEY 2 7-28
STATUS keyword 7-8, 7-15, 7-16, 7-17,
8-17, 8-18, F-6, F-8, F-9, F-10, F-16, F-17
SWITCH-STATUS CONDITION10-19, g-40
Table 7-1. File Status Keys 7-34



GCOS 7 COBOL 85 Reference Manual

i-32 47 A2 05UL Rev03

Table 7-2. DPS 7000 Specific
File Status Keys 7-36
Table 8-1. Communication Status
Key Condition 8-29
Valid Combinations of Status
Keys 1 and 2 7-34

STOP 13-29
STOP keyword 13-29, F-35

STORAGE
mass storage g-23
Mass Storage Control System
(MSCS) g-23
Mass Storage File g-23
NON-CONTIGUOUS LINKAGE
STORAGE 8-7
NON-CONTIGUOUS
WORKING-STORAGE 8-4
Noncontiguous Working-Storage and
Linkage Data 3-18
WORKING-STORAGE RECORDS 8-4
WORKING-STORAGE
SECTION 4-4, 8-4, g-43

STRING 13-30
Character Strings 3-5
Character-strings g-4
PICTURE CHARACTER-STRINGS 3-15
STRING keyword 13-30, F-36
symbolic-character-string g-40

STRUCTURE
intra-record data structure g-20
LANGUAGE STRUCTURE 3-4
PROCEDURE DIVISION
STRUCTURE 10-2
RECORD DESCRIPTION
STRUCTURE 8-10
Report Structure 1-10
STRUCTURE OF A COBOL
PROGRAM 4-2
STRUCTURE OF PROGRAM
SEGMENTS 14-4

SUB-QUEUE g-39
SUBDIVISION

Logical Subdivision of a Report 1-11
Physical Subdivision of a Report 1-11
Report Subdivisions 1-11

SUBJECT
Subject of Entry g-39

SUBPROGRAM g-40
SUBSCRIPT g-40
SUBSCRIPTED

subscripted data-name g-40

SUBSCRIPTING 1-16, 3-39, F-42
SUBSCRIPTING EXAMPLES 1-18
SUBSCRIPTING USING
INDEX-NAMES 1-17
SUBSCRIPTING USING
INTEGERS, DATA-NAMES OR
ARITHMETIC EXPRESSION 1-16

SUBSCRIPTION
Subscripting Using the Word ALL 18-4

SUBSTANTIVE
COBOL 85 SUBSTANTIVE CHANGESE-1

SUBSTITUTION
LINE NUMBER
Clause Sequence Substitutions 8-43
SUBSTITUTION keyword 5-2, 5-3, F-1
SUBSTITUTION SECTION 4-3, 5-3

SUBTRACT 13-33
SUBTRACT keyword 13-33, F-36

SUM 9-57
Sum Counter g-40
SUM FUNCTION 18-47
SUM keyword 8-38, 9-57, 18-47, F-22

SUMMARY
THE COBOL PROGRAM
A SUMMARY 4-1

SUPPRESS
SUPPRESS keyword 13-35, F-36

SUPRESS 13-35
SWITCH

A COMPILE-TIME SWITCH 16-2
AN OBJECT-TIME SWITCH 16-2
EXTERNAL SWITCH 3-49, g-14

SWITCH-n
SWITCH-n keyword 7-8, 13-12, F-6, F-34

SWITCH-NAME
switch-name condition F-40

SWITCH-STATUS
SWITCH-STATUS CONDITION10-19, g-40

SYMBOL
Currency symbol 3-2, g-10
Graphic symbols B-1
Results of Sign Control
Symbols in Editing 9-40
Table 10-1. Combination of
Symbols in Arithmetic Expressions 10-10
Table 10-2. Combination of
Symbols in Boolean Expressions 10-13
Table 9-3. Results of Sign Control
Symbols in Editing 9-40

SYMBOLIC
SYMBOLIC keyword 5-6, 7-9, 8-17, F-3,

F-7, F-16
SYMBOLIC-CHARACTER

`symbolic-character' B-1
symbolic-character 3-11, g-40



Index

47 A2 05UL Rev03 i-33

SYMBOLIC-CHARACTER-STRING g-40
SYNC

SYNC keyword 8-35, 9-60, F-20
SYNCHRONIZATION

SYNCHRONIZATION OF
BOUNDARIES 3-28

SYNCHRONIZED 9-60
SYNCHRONIZED keyword8-35, 9-60, F-20
Table 3-4. Boundary Requirements
for Synchronized Data 3-28

SYNTAX
Syntax Rules 4-2, 4-6

SYSIN
SYSIN keyword 5-6, 7-8, 7-15, 8-38,

11-2, F-3, F-8, F-23
SYSIN-q

SYSIN-q keyword 7-8, F-6
SYSOUT

SYSOUT keyword 5-6, 7-8, 7-15, 8-38,
11-30, F-3, F-6, F-8, F-25

SYSOUT-q
SYSOUT-q keyword F-6

SYSTEM
Mass Storage Control System
(MSCS) g-23
Message Control System 1-31
Message Control System (MCS) g-23
Relationship of the COBOL Program
to the Message Control System 1-32
Report Writer Control System
(RWCS) g-34

SYSTEM-NAME 3-8, g-40

T

TABLE g-41
Initial Values of Tables 1-15
PRESENTATION RULES TABLES 8-41
References to Table Items 1-15
Table 10-1. Combination of
Symbols in Arithmetic Expressions 10-10
Table 10-2. Combination of
Symbols in Boolean Expressions 10-13
Table 10-3. Combinations of
Conditions, Operators, Parentheses 10-22
Table 11-1. Relationship of
File Categories and Formats of
the CLOSE Statement 11-20
Table 12-1. Legality of Types of
MOVE Statements 12-25
Table 12-2 Opening Available and
Unavailable Files 12-29
Table 12-3. Permissible Access Modes
for Different File Organizations 12-32

Table 18-1 Table of Functions 18-6
Table 3-1. COBOL Characters 3-2
Table 3-2. Data Item Class and
Category 3-19
Table 3-3. Data Representation in
the DPS 7 System 3-21
Table 3-4. Boundary Requirements for
Synchronized Data 3-28
Table 3-5. Legible Equivalents of
Elementary Numeric Data Items 3-35
Table 7-1. File Status Keys 7-34
Table 7-2. DPS 7000 Specific File
Status Keys 7-36
Table 8-1. Communication Status
Key Condition 8-29
Table 8-2. Error Key Values 8-31
Table 8-3. Permissible Clause
Combinations in Format 3 Entries 8-40
Table 8-4. REPORT HEADING
Group Presentation Rules 8-44
Table 8-5. PAGE HEADING
Group Presentation Rules 8-47
Table 8-7. PAGE FOOTING
Presentation Rules 8-54
Table 8-8. REPORT FOOTING
Presentation Rules 8-56
Table 9-1. Page Regions 9-30
Table 9-2. Categories of Data and
Editing 9-39
Table 9-3. Results of Sign Control
Symbols in Editing 9-40
Table 9-4. Picture Character
Precedence Chart 9-44
Table Definition 1-13
Table Element g-41
table handling 1-13
TABLE keyword 8-18, F-17

TALLY 3-9
TALLYING

TALLYING keyword 11-41, 12-7, 12-8,
13-40, F-27, F-28, F-29, F-37

TAN
TAN FUNCTION 18-48
TAN keyword 18-48

TAPE
TAPE keyword 7-15, F-8

TEMP
TEMP keyword 5-6, F-3

TERMINAL g-41
TERMINAL keyword 5-6, 7-8, 8-18,

11-2, 11-28, 11-30, 11-35, F-3, F-4, F-6,
F-17, F-23, F-25, F-27

TERMINAL-q
TERMINAL-q keyword 7-8, F-6

TERMINATE 13-36
TERMINATE keyword 13-36, F-36



GCOS 7 COBOL 85 Reference Manual

i-34 47 A2 05UL Rev03

TERMINATOR
Explicit and Implicit Scope
Terminators 3-48
Explicit Scope Terminator g-13
implicit scope terminator g-18

TEST
Figure 12-1 PERFORM TEST BEFORE
VARYING with One Condition 12-38
Figure 12-2 PERFORM TEST BEFORE
VARYING with Two Conditions 12-39
Figure 12-3 PERFORM TEST AFTER
VARYING with One Condition 12-40
Figure 12-4 PERFORM TEST AFTER
VARYING with Two Conditions 12-42
TEST keyword 12-33, 12-34, F-31

TEXT
library g-21
PSEUDO-TEXT 17-4, g-30
Pseudo-Text Delimiter g-30
TEXT keyword 8-18, F-17
THE COBOL SOURCE TEXT
MANIPULATION FACILITIES 15-1

TEXT-NAME g-41
TEXT-WORD g-41
THAN

THAN keyword 10-14, 11-9, 13-25, F-24,
F-35, F-39

THEN
THEN keyword 12-2, F-28

THROUGH
THROUGH keyword 7-3, 7-5, 8-35, 9-51,

9-73, 11-37, 12-17, 12-33, 12-34, 13-17,
13-18, F-4, F-5, F-6, F-7, F-20, F-27,

F-30, F-31, F-34
THRU

THRU keyword 7-3, 7-5, 8-35, 9-51,
9-73, 11-37, 12-17, 12-33, 12-34, 13-17,

13-18, F-4, F-5, F-6, F-7, F-20, F-27,
F-30, F-31, F-34

TIME
A COMPILE-TIME SWITCH 16-2
AN OBJECT-TIME SWITCH 16-2
compile time g-6
Execution Time g-13
object time g-26
TIME keyword 8-17, 8-18, 11-2, F-16,

F-17, F-23
TIMES

TIMES keyword 7-5, 8-18, 8-35, 9-24,
12-33, F-5, F-17, F-20, F-31

TO
TO keyword 7-15, 7-16, 7-17, 8-11, 8-12,

8-13, 8-14, 8-16, 8-35, 9-3, 9-24, 9-45,
9-73, 10-14, 10-15, 10-32, 10-34, 11-6,
11-8, 11-9, 11-47, 12-8, 12-16, 12-22,
13-2, 13-12, 13-25, 13-37, F-8, F-10,

 F-11, F-12, F-13, F-14, F-15,
 F-20, F-23, F-24, F-29, F-30,
 F-33, F-34, F-35, F-36, F-39

TOP
TOP keyword 8-11, 9-18, F-12
top margin g-41

TRAILING
TRAILING keyword 5-3, 8-35, 8-38,

9-54, 15-6, F-3, F-22, F-43
TRANSACTION

The Concept of Transaction
Communication 1-38

TRANSFER
Explicit and Implicit Transfers of
Control 3-46
TRANSFER OF CONTROL 1-25, 1-29

TRANSFORM 13-37
TRANSFORM keyword 13-37, F-36

TRUE
TRUE keyword 11-37, 13-12, F-27, F-34

TRUTH
truth value g-41

TWO
Figure 12-4 PERFORM TEST AFTER
VARYING with Two Conditions 12-42

TYPE 9-63
Argument Types 18-3
DATA TYPES 3-19
Implicit Record Types 1-3
Object Types 1-22
Table 12-1. Legality of Types of
MOVE Statements 12-25
TYPE keyword 8-37, 9-63, F-21
Types of Functions 18-5

U

UFF
UFF keyword 7-15, 7-16, 7-17, F-8,

F-9, F-10
UNARY

unary operator g-42
UNAVAILABLE

Table 12-2 Opening Available and
Unavailable Files 12-29



Index

47 A2 05UL Rev03 i-35

UNEQUAL
UNEQUAL keyword 10-14, 10-15, F-39

UNIQUENESS
Uniqueness of Reference 3-36

UNIT g-42
PROGRAM AND RUN UNIT
ORGANIZATION AND
COMMUNICATION 1-20
run unit g-35
UNIT keyword 5-6, 7-37, 11-19, F-3,

F-11, F-25
UNSTRING 13-40

UNSTRING keyword 13-40, F-37
UNSUCCESSFUL

Unsuccessful Execution g-42
UNTIL

UNTIL keyword 11-41, 12-33, 12-34,
F-27, F-31

UNUSED
UNUSED SPACE 3-25

UP
UP keyword 13-12, F-34

UPON
UPON keyword 8-38, 9-57, 11-30,

F-22, F-25
UPPER-CASE

UPPER-CASE FUNCTION 18-49
UPPER-CASE keyword 18-49

UPPERCASE
Uppercase and Lowercase Words 2-2

USAGE
Usage BINARY Fixed-Point Data 3-20
Usage BIT Data Item 3-20
USAGE keyword8-34, 8-37, 8-38, 9-68, F-
19, F-21, F-22

Usage 9-68
USE 13-45

Precedence of Logical Operators and
Use of Parentheses 10-21
THE USE FOR DEBUGGING
STATEMENT 16-3
USE keyword 10-4, 13-45, F-37
USE OF SPECIAL CHARACTER
WORDS IN FORMATS 2-4

USED
NOTATION USED IN FORMATS
AND RULES 2-1

USER-DEFINED
User-Defined Words 3-6, g-42

USING
SUBSCRIPTING USING INTEGERS,
DATA-NAMES OR
ARITHMETIC EXPRESSION 1-16
Subscripting Using the Word ALL 18-4
USING keyword 10-2, 11-12, 12-17,

13-17, 13-18, F-2, F-24, F-30, F-34

V

VALID
Valid Combinations of
Status Keys 1 and 2 7-34

VALUE 9-73
Figurative Constant Values 3-13
Function Definition and
Returned Value 18-3
HIGH VALUE B-1
HIGH-VALUE 3-14
INITIAL VALUES 8-4, 8-7
Initial Values of Tables 1-15
LOW-VALUE 3-14, B-1
Permissible Values of Arguments 18-4
PRESENT-VALUE FUNCTION 18-39
Table 8-2. Error Key Values 8-31
truth value g-41
VALUE keyword 8-11, 8-12, 8-13, 8-14,

8-35, 8-38, 9-73, 9-77, F-12, F-13,
F-14, F-15, F-20, F-22

Value Returned by a Function 18-2
Values of Parameters 1-28

VALUE OF 9-77
VALUES

VALUES keyword 8-35, 9-73, F-20
VARIABLE g-42

CONDITION-NAME CONDITION
(CONDITIONAL VARIABLE) 10-19
conditional variable g-8
Variable Length Records 1-3, g-42
Variable Occurrence Data Item g-42

VARIANCE
VARIANCE FUNCTION 18-50
VARIANCE keyword 18-50

VARYING
Figure 12-1 PERFORM TEST BEFORE
VARYING with One Condition 12-38
Figure 12-2 PERFORM TEST BEFORE
VARYING with Two Conditions 12-39
Figure 12-3 PERFORM TEST AFTER
VARYING with One Condition 12-40
Figure 12-4 PERFORM TEST AFTER
VARYING with Two Conditions 12-42
VARYING keyword 8-11, 8-13, 8-14,

8-16, 9-45, 12-34, 13-2, F-12, F-14,
F-15, F-16, F-31, F-32, F-33

VERB g-43
VERTICAL

VERTICAL SPACING 1-10
VLR

VLR keyword 7-15, 7-16, 7-17, F-8, F-9,
F-10, F-11

VOLUME g-43
Current Volume Pointer 1-6, g-10



GCOS 7 COBOL 85 Reference Manual

i-36 47 A2 05UL Rev03

W

WHEN
BLANK WHEN ZERO 9-2
WHEN keyword 8-35, 8-38, 9-2, 9-73,

11-37, 13-2, F-20, F-22, F-27, F-33
WHEN-COMPILED FUNCTION 18-51

WHEN-COMPILE
WHEN-COMPILE keyword 18-51

WHEN-COMPILED
WHEN-COMPILED FUNCTION 18-51

WITH
WITH DEBUGGING MODE 7-4
WITH keyword 7-3, 7-15, 7-16, 7-17,

8-11, 9-18, 11-19, 11-28, 11-30, 11-35,
12-28, 12-33, 12-34, 12-52, 13-17,

13-18, 13-30, 13-40, 13-45, F-4, F-8,
F-9, F-10, F-11, F-12, F-25, F-27, F-31,

F-32, F-33, F-34, F-35, F-36, F-37
With

With Keyword 13-7
WORD g-43

COBOL RESERVED WORDS A-1
COBOL words 3-6, g-5
Key Words 3-8
OPTIONAL WORDS 3-8, g-27
REQUIRED WORDS 3-8
Reserved Word 3-8, g-35
Special Character Words 3-8
Special Purpose Word 3-8
special-character word g-39
Subscripting Using the Word ALL 18-4
text-word g-41
Uppercase and Lowercase Words 2-2
USE OF SPECIAL CHARACTER
WORDS IN FORMATS 2-4
User-Defined Words 3-6, g-42

WORDS
WORDS keyword 7-3, 7-5, F-4, F-5

WORKING-STORAGE
NON-CONTIGUOUS
WORKING-STORAGE 8-4
Noncontiguous Working-Storage
and Linkage Data 3-18
WORKING-STORAGE keyword 8-2, F-2
WORKING-STORAGE RECORDS 8-4
WORKING-STORAGE
SECTION 4-4, 8-4, g-43

WRITE 13-49
WRITE keyword 13-49, F-37, F-38

WRITER
Procedure Division Report
Writer Statements 1-12
REPORT WRITER 1-9
Report Writer Control System
(RWCS) g-34
report writer logical record g-35

Z

ZERO 3-13
BLANK WHEN ZERO 9-2
ZERO keyword 8-35, 8-38, 9-2, 10-20,

F-20, F-22, F-40



Technical publication remarks form

Title :   DPS7000/XTA NOVASCALE 7000 COBOL85 Reference Manual Languages:
COBOL

Reference Nº : 47 A2 05UL 04 Date:               November 1997

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please include your complete mailing address below.

NAME :  Date : 

COMPANY : 

ADDRESS : 

Please give this technical publication remarks form to your BULL representative or mail to:

Bull - Documentation Dept.

1 Rue de Provence
BP 208
38432 ECHIROLLES CEDEX
FRANCE
info@frec.bull.fr



Technical publications ordering form

To order additional publications, please fill in a copy of this form and send it via mail to:

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Phone: +33 (0) 2 41 73 72 66
FAX: +33 (0) 2 41 73 70 66
E-Mail: srv.Duplicopy@bull.net

CEDOC Reference # Designation Qty

_ _   _ _   _ _ _ _   _  [ _ _ ]

_ _   _ _   _ _ _ _   _  [ _ _ ]

_ _   _ _   _ _ _ _   _  [ _ _ ]

_ _   _ _   _ _ _ _   _  [ _ _ ]

_ _   _ _   _ _ _ _   _  [ _ _ ]

_ _   _ _   _ _ _ _   _  [ _ _ ]

_ _   _ _   _ _ _ _   _  [ _ _ ]

_ _   _ _   _ _ _ _   _  [ _ _ ]

_ _   _ _   _ _ _ _   _  [ _ _ ]

_ _   _ _   _ _ _ _   _  [ _ _ ]

_ _   _ _   _ _ _ _   _  [ _ _ ]

_ _   _ _   _ _ _ _   _  [ _ _ ]

[ _ _ ] : The latest revision will be provided if no revision number is given.

NAME:  Date:

COMPANY:

ADDRESS: 

PHONE:    FAX: 

E-MAIL: 

For Bull Subsidiaries:

Identification: 

For Bull Affiliated Customers:

Customer Code: 

For Bull Internal Customers:

Budgetary Section: 

For Others: Please ask your Bull representative.





BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

47 A2 05UL 04
REFERENCE


	COBOL85 Reference Manual - 47 A2 05UL Rev04
	Preface
	Table of Contents
	1. Concepts
	1.1 INTRODUCTION
	1.2 FILES
	1.2.1File Attributes
	1.2.1.1 Sequential Organization
	1.2.1.2 Relative Organization
	1.2.1.3 Indexed Organization
	1.2.1.4 Logical Records

	1.2.2 File Processing
	1.2.2.1 Record Operations
	1.2.2.2 File Operations
	1.2.2.3 Exception Handling


	1.3 REPORT WRITER
	1.3.1 Report Section
	1.3.2 Report Structure
	1.3.2.1 Vertical Spacing
	1.3.2.2 Horizontal Spacing
	1.3.2.3 Data Manipulation
	1.3.2.4 Report Subdivisions

	1.3.3 Procedure Division Report Writer Statements

	1.4 TABLE HANDLING
	1.4.1 Table Definition
	1.4.2 Initial Values of Tables
	1.4.3 References to Table Items
	1.4.4Subscripting

	1.5 SHARED MEMORY AREA
	1.6 PROGRAM AND RUN UNIT ORGANIZATION AND COMMUNICATION
	1.6.1 Program and Run Unit Organization
	1.6.2 Accessing Data and Files
	1.6.2.1 Names
	1.6.2.2 Objects
	1.6.2.3 Name Resolution

	1.6.3 Program Classes
	1.6.3.1 Common Programs
	1.6.3.2 Initial Programs

	1.6.4Inter-Program Communication
	1.6.4.1 Transfer of Control
	1.6.4.2 Passing Parameters to Programs
	1.6.4.3 Sharing Data
	1.6.4.4 Sharing Files

	1.6.5Intra-Program Communication
	1.6.5.1 Transfer of Control
	1.6.5.2 Shared Data

	1.6.6 Segmentation

	1.7 COMMUNICATION FACILITY
	1.7.1MCS (Message Control System)
	1.7.2 The COBOL Object Program
	1.7.3Relationship to MCS and Communication Devices
	1.7.4 The Concept of Messages and Message Segments
	1.7.5 The Concept of Queues
	1.7.6 The Concept of Transaction Communication

	1.8 INTRINSIC FUNCTION FACILITY

	2. Notation Used in Formats and Rules
	2.1 DEFINITION OF A GENERAL FORMAT
	2.2 FORMATS ELEMENTS
	2.2.1 Upper-case and Lower-case Words
	2.2.2Level-Numbers
	2.2.3 Brackets and Braces
	2.2.4Ellipsis

	2.3 FORMAT PUNCTUATION
	2.4 USE OF SPECIAL CHARACTER WORDS IN FORMATS

	3. COBOL Language Concepts
	3.1 COBOL CHARACTER SET
	3.2 LANGUAGE STRUCTURE
	3.2.1 Separators
	3.2.2 Character-Strings
	3.2.2.1 COBOL Words
	3.2.2.2 Literals
	3.2.2.3 Picture Character-Strings
	3.2.2.4 Comment-Entries


	3.3 CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION
	3.3.1 Logical Record Concept
	3.3.1.1 Physical Aspects of a File
	3.3.1.2 Conceptual Characteristics of a File
	3.3.1.3 Record Concepts

	3.3.2 Concepts of Levels
	3.3.3 Concept of Classes of Data
	3.3.4 Selection of Character Representation and Radix
	3.3.4.1 Size of an Elementary Item
	3.3.4.2 Data Types

	3.3.5Algebraic Signs
	3.3.6 Standard Rules for Data Alignment
	3.3.7Data Allocation
	3.3.7.1 Alignment
	3.3.7.2 Unused Space
	3.3.7.3 Allocation
	3.3.7.4 Size of Elementary Items
	3.3.7.5 Synchronization of Boundaries

	3.3.8 Definition of a Legible Equivalent
	3.3.8.1 Legible Input Equivalent
	3.3.8.2 Legible Output Equivalent

	3.3.9 Uniqueness of Reference
	3.3.9.1 Qualification
	3.3.9.2 Subscripting
	3.3.9.3 Function-Identifier
	3.3.9.4 Reference Modifier
	3.3.9.5 Identifier
	3.3.9.6 Condition-Name


	3.4 EXPLICIT AND IMPLICIT SPECIFICATIONS
	3.4.1 Explicit and Implicit Procedure Division References
	3.4.2 Explicit and Implicit Transfers of Control
	3.4.3Explicit and Implicit Attributes
	3.4.4 Explicit and Implicit Scope Terminators

	3.5 ACCESSING DATA ITEMS
	3.5.1 External Data Records and Items
	3.5.2 Local Data Items

	3.6 EXTERNAL SWITCH
	3.7 SCOPE OF NAMES
	3.7.1 Conventions for Program-names
	3.7.2 Conventions for Index-names
	3.7.3 Conventions for Other Names


	4. The COBOL Program: a Summary
	4.1 STRUCTURE OF A COBOL PROGRAM
	4.1.1 General Format
	4.1.2 Syntax Rule
	4.1.3 General Rules

	4.2 CONTROL DIVISION
	4.3 IDENTIFICATION DIVISION
	4.4 ENVIRONMENT DIVISION
	4.5 DATA DIVISION
	4.6 PROCEDURE DIVISION
	4.7 END PROGRAM HEADER
	4.7.1 Format
	4.7.2 Syntax Rules
	4.7.3 General Rules


	5. Control Division
	5.1 GENERAL DESCRIPTION
	5.2 CONTROL DIVISION
	5.3 SUBSTITUTION SECTION
	5.4 DEFAULT SECTION

	6. Identification Division
	6.1 GENERAL DESCRIPTION
	6.2 IDENTIFICATION DIVISION
	6.3 PROGRAM-ID
	6.4 DATE-COMPILED

	7. Environment Division
	7.1 GENERAL DESCRIPTION
	7.2 ORGANIZATION
	7.3 ENVIRONMENT DIVISION
	7.4 SOURCE-COMPUTER
	7.5 OBJECT-COMPUTER
	7.6 SPECIAL-NAMES
	7.7 FILE-CONTROL-ENTRY
	7.8 I-O-CONTROL

	8. Data Division - Overview
	8.1 FILE SECTION
	8.2 WORKING-STORAGE SECTION
	8.2.1 Non-Contiguous Working-Storage
	8.2.2 Working-Storage Records
	8.2.3 Working-Storage

	8.3 CONSTANT SECTION
	8.4 LINKAGE SECTION
	8.4.1 Parameters
	8.4.2 Based Data Items
	8.4.3 Non-Contiguous Linkage Storage
	8.4.4 Linkage Records
	8.4.5Initial Values

	8.5 COMMUNICATION SECTION
	8.6 REPORT SECTION
	8.6.1 Report Description Entry
	8.6.2 Report Group Description Entry

	8.7 RECORD DESCRIPTION STRUCTURE
	8.8 FILE DESCRIPTION
	8.9 SORT-MERGE FILE DESCRIPTION- COMPLETE ENTRY SKELETON
	8.10 COMMUNICATION DESCRIPTION - COMPLETE ENTRY SKELETON
	8.11 REPORT DESCRIPTION - COMPLETE ENTRY SKELETON
	8.12 DATA DESCRIPTION - COMPLETE ENTRY SKELETON
	8.13 REPORT GROUP DESCRIPTION - COMPLETE ENTRY SKELETON
	8.13.1 Presentation Rules Tables
	8.13.2REPORT HEADING Group Presentation Rules
	8.13.3PAGE HEADING Group Presentation Rules
	8.13.4 Body Group Presentation Rules
	8.13.5 PAGE FOOTING Presentation Rules
	8.13.6 REPORT FOOTING Presentation Rules


	9. Data Division - Clauses
	9.1 BLANK WHEN ZERO
	9.2 BLOCK CONTAINS
	9.3 CODE
	9.4 CODE-SET
	9.5 COLUMN NUMBER
	9.6 CONTROL
	9.7 DATA-NAME/FILLER
	9.8 DATA RECORDS
	9.9 EXTERNAL
	9.10 GLOBAL
	9.11 GROUP INDICATE
	9.12 JUSTIFIED
	9.13 LABEL RECORDS
	9.14 LEVEL-NUMBER
	9.15 LINAGE
	9.16 LINE NUMBER
	9.17 NEXT GROUP
	9.18 OCCURS
	9.19PAGE
	9.20 PICTURE
	9.20.1Editing Rules
	9.20.2 Precedence Rules

	9.21 RECORD
	9.22 REDEFINES
	9.23RENAMES
	9.24 REPORT
	9.25 SIGN
	9.26 SOURCE
	9.27 SUM
	9.28 SYNCHRONIZED
	9.29 TYPE
	9.30USAGE
	9.31 VALUE
	9.32 VALUE OF

	10. Procedure Division - Overview
	10.1 GENERAL DESCRIPTION
	10.1.1 The Procedure Division Declaratives
	10.1.2 Procedures
	10.1.3 Execution
	10.1.4 Procedure Division Structure
	10.1.4.1 Procedure Division Header
	10.1.4.2 Procedure Division Body


	10.2 STATEMENTS AND SENTENCES
	10.2.1 Conditional Statements and Sentences
	10.2.1.1 Definition of Conditional Statement
	10.2.1.2 Definition of Conditional Phrase
	10.2.1.3 Definition of Conditional Sentence

	10.2.2 Compiler Directing Statements and Compiler Directing Sentences
	10.2.2.1 Definition of Compiler Directing Statement
	10.2.2.2 Definition of Compiler Directing Sentence

	10.2.3 Imperative Statements and Imperative Sentences
	10.2.3.1 Definition of Imperative Statement
	10.2.3.2 Definition of Imperative Sentence

	10.2.4 Delimited Scope Statements

	10.3 ARITHMETIC EXPRESSIONS
	10.3.1Definition of Arithmetic Expression
	10.3.2Arithmetic Operators
	10.3.3Formation and Evaluation Rules

	10.4 BOOLEAN EXPRESSIONS
	10.4.1 Definition of a Boolean Expression
	10.4.2 Boolean Operators
	10.4.3 Boolean Formation and Evaluation Rules

	10.5 CONDITIONAL EXPRESSIONS
	10.5.1Simple Conditions
	10.5.1.1 Relation Condition
	10.5.1.2 Class Condition
	10.5.1.3 Condition-name Condition (Conditional Variable)
	10.5.1.4 Switch-status Condition
	10.5.1.5 Sign Condition

	10.5.2Complex Conditions
	10.5.2.1 Negated Conditions
	10.5.2.2 Combined Conditions
	10.5.2.3 Precedence of Logical Operators and Use of Parentheses

	10.5.3Abbreviated Combined Relation Condition
	10.5.4Order of Evaluation of Conditions

	10.6 CATEGORIES OF STATEMENTS
	10.6.1 Specific Statement Formats

	10.7 COMMON OPTIONS AND RULES FOR STATEMENT FORMATS
	10.7.1 Intermediate Data Item
	10.7.2 The ROUNDED Phrase
	10.7.3 The SIZE ERROR Phrase
	10.7.4 The CORRESPONDING Phrase
	10.7.5The Arithmetic Statements
	10.7.6 Overlapping Operands
	10.7.7Multiple Results in Arithmetic Statements
	10.7.8Incompatible Data
	10.7.9The INVALID KEY Condition
	10.7.10The AT END Condition
	10.7.11 The FROM Option
	10.7.12 The INTO Option


	11. Procedure Division - Statements (ACCEPT to GO TO)
	11.1 ACCEPT
	11.2 ADD
	11.3 ALTER
	11.4ASSIGN
	11.5 CALL
	11.6 CANCEL
	11.7 CLOSE
	11.8 COMPUTE
	11.9 CONTINUE
	11.10 DELETE
	11.11DISABLE
	11.12DISPLAY
	11.13DIVIDE
	11.14 ENABLE
	11.15 EVALUATE
	11.16EXAMINE
	11.17 EXIT
	11.18 GENERATE
	11.19 GO TO

	12. Procedure Division - Statements (IF to REWRITE)
	12.1 IF
	12.2 INITIALIZE
	12.3 INITIATE
	12.4 INSPECT
	12.5 MERGE
	12.6 MOVE
	12.7 MULTIPLY
	12.8 OPEN
	12.9 PERFORM
	12.10 PURGE
	12.11READ
	12.12RECEIVE
	12.13 RELEASE
	12.14 RETURN
	12.15 REWRITE

	13. Procedure Division - Statements (SEARCH to WRITE)
	13.1SEARCH
	13.2 SEND
	13.3 SET
	13.4 SORT
	13.5 START
	13.6 STOP
	13.7 STRING
	13.8 SUBTRACT
	13.9 SUPPRESS
	13.10 TERMINATE
	13.11 TRANSFORM
	13.12 UNSTRING
	13.13 USE
	13.14 WRITE

	14. Segmentation
	14.1 GENERAL DESCRIPTION
	14.1.1 Scope
	14.1.2 Organization
	14.1.2.1 Program Segments
	14.1.2.2 Fixed Portion
	14.1.2.3 Independent Segments

	14.1.3Segment Classification
	14.1.4Segmentation Control

	14.2 STRUCTURE OF PROGRAM SEGMENTS
	14.2.1Segment Numbers
	14.2.2SEGMENT-LIMIT Clause

	14.3 RESTRICTIONS ON PROGRAM FLOW
	14.3.1 The ALTER Statement
	14.3.2 The PERFORM Statement
	14.3.3 The MERGE Statement
	14.3.4 The SORT Statement


	15. COBOL Source Text Manipulation Facilities
	15.1 INTRODUCTION
	15.2 COPY
	15.3 REPLACE

	16. Debugging Facility
	16.1 INTRODUCTION
	16.2 CONCEPTS
	16.3 A COMPILE-TIME SWITCH
	16.4 AN OBJECT-TIME SWITCH
	16.5 THE USE FOR DEBUGGING STATEMENT
	16.6 DEBUGGING LINES

	17. Reference Format
	17.1 GENERAL DESCRIPTION
	17.2 REFERENCE FORMAT REPRESENTATION
	17.2.1 Sequence Numbers
	17.2.2Continuation of Lines
	17.2.3 Blank Lines
	17.2.4Comment Lines
	17.2.5 Pseudo-Texts

	17.3 DIVISION, SECTION AND PARAGRAPH FORMATS
	17.3.1Division Header
	17.3.2 Section Header
	17.3.3 Paragraph Header, Paragraph-name and Paragraph

	17.4 DATA DIVISION ENTRIES
	17.5 DECLARATIVES
	17.6 END PROGRAM HEADER

	18. Intrinsic Functions
	18.1 INTRODUCTION
	18.1.1 Purpose of Intrinsic Function Module
	18.1.2 Language Concepts
	18.1.2.1 Function-Name
	18.1.2.2 Value Returned by a Function
	18.1.2.3 Function-Identifier


	18.2 GENERAL DESCRIPTION
	18.2.1 Function Definition and Returned Value
	18.2.2Arguments

	18.3 TYPES OF FUNCTIONS
	18.4 DEFINITION OF FUNCTIONS
	18.5 ACOS FUNCTION
	18.6 ANNUITY FUNCTION
	18.7 ASIN FUNCTION
	18.8 ATAN FUNCTION
	18.9 CHAR FUNCTION
	18.10 COS FUNCTION
	18.11 CURRENT-DATE FUNCTION
	18.12 DATE-OF-INTEGER FUNCTION
	18.13 DAY-OF-INTEGER FUNCTION
	18.14 FACTORIAL FUNCTION
	18.15 INTEGER FUNCTION
	18.16 INTEGER-OF-DATE FUNCTION
	18.17 INTEGER-OF-DAY FUNCTION
	18.18 INTEGER-PART FUNCTION
	18.19 LENGTH FUNCTION
	18.20 LOG FUNCTION
	18.21 LOG10 FUNCTION
	18.22 LOWER-CASE FUNCTION
	18.23 MAX FUNCTION
	18.24 MEAN FUNCTION
	18.25 MEDIAN FUNCTION
	18.26 MIDRANGE FUNCTION
	18.27 MIN FUNCTION
	18.28 MOD FUNCTION
	18.29 NUMVAL FUNCTION
	18.30 NUMVAL-C FUNCTION
	18.31 ORD FUNCTION
	18.32 ORD-MAX FUNCTION
	18.33 ORD-MIN FUNCTION
	18.34 PRESENT-VALUE FUNCTION
	18.35 RANDOM FUNCTION
	18.36RANGE FUNCTION
	18.37 REM FUNCTION
	18.38 REVERSE FUNCTION
	18.39 SIN FUNCTION
	18.40 SQRT FUNCTION
	18.41 STANDARD-DEVIATION FUNCTION
	18.42 SUM FUNCTION
	18.43 TAN FUNCTION
	18.44 UPPER-CASE FUNCTION
	18.45 VARIANCE FUNCTION
	18.46 WHEN-COMPILED FUNCTION

	A. COBOL Reserved Words
	B. Collating Sequences
	C. The ANSI Flagger
	D. The COBOL Obsolete Features
	E. COBOL 85 Substantive Changes
	E.1 CHANGES NOT AFFECTING EXISTING PROGRAMS
	E.2 CHANGES WHICH MAY AFFECT EXISTING PROGRAMS

	F. Composite Language Skeleton
	F.1 GENERAL DESCRIPTION
	F.2 MISCELLANEOUS FORMATS
	F.3 GENERAL FORMAT FOR COPY AND REPLACE STATEMENTS
	F.4 GENERAL FORMAT FOR SEPARATELY COMPILED PROGRAM
	F.5 GENERAL FORMAT FOR CONTAINED-PROGRAM
	F.6 GENERAL FORMAT FOR A SEQUENCE OF SEPARATELY COMPILED PROGRAMS

	Glossary
	Index




