
C Language

User's Guide

 D
PS

7
0
0
0
/
X
TA

N
O

VA
S
C

A
LE

 7
0
0
0

Languages: C

REFERENCE
47 A2 60UL 06

DPS7000/XTA
NOVASCALE 7000

C Language
User's Guide

Languages: C

February 2005

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

REFERENCE
47 A2 60UL 06

The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not
limited to, copying, distributing, modifying, and making derivative works.

Copyright Bull SAS 1992, 2005

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of this
book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

Intel® and Itanium® are registered trademarks of Intel Corporation.

Windows® and Microsoft® software are registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Linux® is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Bull will not be liable for errors contained
herein, or for incidental or consequential damages in connection with the use of this material.

47 A2 60UL iii

Preface

This manual provides information about the C language under the GCOS 7
operating system.

It describes how to compile, link, execute, debug and maintain C programs with a
maximum of efficiency, and how to use the special macros available to C
programmers under GCOS 7 (the Run-Time Package).

This document is primarily intended for C programmers who wish to use the C
language under GCOS 7, though it should also be suitable for inexperienced C
programmers if they have available the necessary additional documentation
mentioned below.

The manual is divided into two parts. The first part is through section 9. It
describes how to use the relevant GCOS 7 tools to produce your program, and may
be read completely by those unfamiliar with this operating system. The second part
is from section 9 through section 25. It deals with the Run-Time Package, and is
meant primarily for reference.

Section 1 gives an overview of the GCOS environment of C
programs.

Section 2 gives an example of how to produce, compile, link,
execute and check a simple C program in interactive
mode.

Section 3 describes the compilation of C programs.

Section 4 describes the linking of C programs.

Section 5 describes execution and debugging.

Section 6 describes various programming techniques for
reducing the size and increasing the execution speed of
C programs.

Section 7 describes certain particularities in the behavior of C
under GCOS 7.

Section 8 describes the C language building packages.

Scope and
Objectives

Intended
Readers

Structure

C Language User's Guide

iv 47 A2 60UL

Section 9 describes the optimizing C programs.

Section 10 deals with the run-time environment.

Section 11 deals with general I/O considerations.

Section 12 deals with file processing.

Section 13 deals with formatting I/O.

Section 14 deals with memory allocation, conversions,
environment functions and the random number
generator.

Section 15 deals with character handling.

Section 16 deals with string handling, buffer management and
memory management.

Section 17 deals with non-local jump.

Section 18 deals with the mathematical package.

Section 19 deals with time functions.

Section 20 deals with STDARG functions.

Section 21 deals with Diagnostics.

Section 22 describes the signal function.

Section 23 describes error condition reports.

Section 24 describes the localization package.

Section 25 describes the standard definition file.

Appendix A gives the file and volume syntax.

Preface

47 A2 60UL v

The following manuals are referred to in conjunction with the present manual:

• For GCOS 7 JCL functions

JCL Reference Manual ...47 A2 11UJ
JCL User's Guide..47 A2 12UJ

• For GCOS 7 interactive (GCL) functions

IOF Terminal User's Reference Manual:
Part I Introduction to IOF ..47 A2 38UJ
Part II GCL Commands (VBO) ..47 A2 39UJ
Part III Directives and General Processor commands.............................47 A2 40UJ

IOF Programmer's Manual ..47 A2 05UJ

System Overview... 47 A2 04UG

• For creating/modifying C source code

Text Editor User's Guide ...47 A2 05UP
Full Screen Editor User's Guide..47 A2 06UP

• For file access

UFAS-Extended User's.Guide..47 A2 04UF

• For manipulations during compilation and linking

Library Maintenance Reference manual ...47 A2 01UP
Library Maintenance User's Guide ...47 A2 02UP
Linker User's Guide...47 A2 10UP

• For debugging C Programs

PCF User's Guide..47 A2 15UP

• For C language definition and C Language Primitives definition:

C Language Reference Manual .. 47 A2 23TJ
C Language System Primitives .. 47 A2 64UL
TDS C Language Programmer's Guide... 47 A2 07UT

Associated
Documents

C Language User's Guide

vi 47 A2 60UL

The JCL/GCL commands described in this document use the following syntax:

ITEM An item in upper case is a name or keyword and is entered
literally as shown. The upper case is merely a convention;
in practice you can specify the item in upper or lower case.

item An item in lower case indicates that a user-supplied value is
expected.

In most cases it gives the type and maximum length of the
value:

char105 : a string of up to 105 alphanumeric characters
name31 : a name of up to 31 characters
lib78 : a library name of up to 78 characters
file78 : a file name of up to 78 characters

In some cases, it gives the format of the value:

a : means a single alphabetic character
nnn : means a 3-digit number
hh.mm : means a time in hours and minutes

In other cases, it is simply descriptive of the value:

device-class
condition
any-characters

{item}
{item}
{item}

A list of items enclosed in braces indicates a choice of
values. Only one can be selected. Sometimes the list is
presented horizontally, with each item separated by a
vertical bar, i.e.:

{item| item| item}

[item] An item enclosed in square brackets is optional.

ITEM An underlined item is a default value. It is the value
assumed if none is specified.

= , $ * / \ . Enter these special non-alphabetic characters as shown.

Syntax
Notation

Preface

47 A2 60UL vii

EXAMPLES:

(1) []
[WHEN={IMMED }]
[{[dd.mm.yy.]hh.mm }]
[{+nnnn{W|D|H|M}item }]
[]

This means you can specify:

− Nothing at all, in which case WHEN=IMMED
applies.

− WHEN=IMMED (the same as nothing at all).
− WHEN=22.30 to specify a time (and today's date).
− WHEN=10.11.87.22.30 to specify a date and time.
− WHEN=+0002W to specify 2 weeks from now.
− WHEN=+0021D to specify 21 days from now.
− WHEN=+005H to specify 5 hours from now.
− WHEN=+0123M to specify 123 minutes from now.

(2) PAGES={dec4|(dec4[-dec4][,dec4]...)}

Indicates that PAGES must be specified. Valid entries
are a single value or a list of values, enclosed in
parentheses. The list can consist of single values
seperated by a comma, a range of values separated by
a hyphen, or a combination of both. For example:

PAGES=(2,4,10-25,33-36,78,83)
❑

C Language User's Guide

viii 47 A2 60UL

47 A2 60UL ix

Table of Contents

1. Introduction

1.1 The C Language .. 1-1

1.2 The DPS7 Environment .. 1-1

1.2.1 Batch JCL .. 1-1

1.2.2 Interactive GCL.. 1-1

2. Getting Started

2.1 A C Compiler Session... 2-1

2.1.1 Enter LIBMAINT... 2-2

2.1.2 Enter the Text Editor.. 2-2

2.1.3 Write the Source Text.. 2-2

2.1.4 Store the Work Buffer .. 2-3

2.1.5 Return to System Level ... 2-3

2.1.6 Compile .. 2-3

2.1.7 Examine the Listing ... 2-4

2.1.8 Scan the Error Messages .. 2-5
2.1.8.1 Using the Scanner... 2-5
2.1.8.2 Using Edit .. 2-5
2.1.8.3 Using FSE ... 2-5

2.1.9 Link .. 2-5

2.1.10 Execute with Output to User Terminal... 2-6

2.1.11 Re-execute with Output to a Subfile .. 2-6

2.1.12 Check Results.. 2-6

C Language User's Guide

x 47 A2 60UL

3. Compilation

3.1 Batch Compilation .. 3-1

3.1.1 Syntax of C Statement in JCL ... 3-1

3.1.2 Description of Parameters ... 3-2
3.1.2.1 The SOURCE, INFILE, INLIB and INLIBn Parameters 3-4
3.1.2.2 The INLIBZ Parameter .. 3-6
3.1.2.3 The CULIB Parameter... 3-7
3.1.2.4 The LIST, NLIST, EXPLIST, and NEXPLIST Parameters 3-7
3.1.2.5 The MAP and NMAP Parameters ... 3-8
3.1.2.6 The XREF and NXREF Parameters ... 3-8
3.1.2.7 The NWARN and NOBSERV.. 3-9
3.1.2.8 The ROUND and NROUND Parameters .. 3-9
3.1.2.9 The CODE Parameter... 3-9
3.1.2.10 The LEVEL and LFATAL and LOBSERV Parameters.................... 3-10
3.1.2.11 The OBJ and NOBJ Parameters... 3-10
3.1.2.12 The ILN and XLN Parameters... 3-11
3.1.2.13 The CHECK and NCHECK Parameters ... 3-11
3.1.2.14 The DEBUG Parameter .. 3-11
3.1.2.15 The PRTFILE and PRTLIB Parameters.. 3-11
3.1.2.16 The OPTIMIZE Parameter .. 3-12
3.1.2.17 The PACKAGE Parameter.. 3-12
3.1.2.18 The PSEGMAX Parameter ... 3-13
3.1.2.19 The K11 Keyword.. 3-13
3.1.2.20 The EXPLIB Parameter... 3-13
3.1.2.21 The EXPONLY Parameter .. 3-14
3.1.2.22 The INLINE Parameter.. 3-14
3.1.2.23 The MODSTRNG Parameter .. 3-14

3.2 Interactive Compilation ... 3-15

3.2.1 Syntax of "CLANG" Command in GCL.. 3-15

3.2.2 Description of Keywords.. 3-20
3.2.2.1 SOURCE... 3-20
3.2.2.2 INLIB ... 3-20
3.2.2.3 CULIB.. 3-20
3.2.2.4 INCLUDE... 3-21
3.2.2.5 OPTIMIZE ... 3-21
3.2.2.6 PACKAGE... 3-21
3.2.2.7 LIST... 3-21
3.2.2.8 MAP... 3-21
3.2.2.9 DEBUG.. 3-21
3.2.2.10 XREF... 3-22
3.2.2.11 WARN ... 3-22
3.2.2.12 OBSERV ... 3-22
3.2.2.13 ROUND ... 3-22
3.2.2.14 EXPLIST.. 3-22
3.2.2.15 LEVEL ... 3-22
3.2.2.16 SILENT.. 3-22
3.2.2.17 PRTLIB.. 3-23

47 A2 60UL xi

3.2.2.18 BUILTIN... 3-23
3.2.2.19 PSEGMAX... 3-23
3.2.2.20 EXPLIB.. 3-23
3.2.2.21 EXPONLY ... 3-24
3.2.2.22 MODSTRNG ... 3-24
3.2.2.23 INLINE... 3-24
3.2.2.24 INFILE ... 3-24
3.2.2.25 PRTFILE.. 3-24
3.2.2.26 OBJ ... 3-24
3.2.2.27 CODE.. 3-24
3.2.2.28 LNUMBER... 3-25
3.2.2.29 LFATAL ... 3-25
3.2.2.30 CHECK.. 3-25
3.2.2.31 BATCH .. 3-25

3.2.3 Constraints... 3-26

3.2.4 Examples .. 3-26

3.2.5 Interactive Compilation by Menu ... 3-27

3.3 Searching for Include Files ... 3-28

3.4 Compiler Messages in the JOR .. 3-29

3.5 Compiler Limitations and Restrictions .. 3-43

3.5.1 Some Compiler Restrictions .. 3-43

3.6 Compiler Listing .. 3-44

3.6.1 Source and Error Listing.. 3-44

3.6.2 Data Maps ... 3-47

3.6.3 Segment Map .. 3-48

3.6.4 Line Location Map ... 3-48

3.6.5 Cross Reference Listings .. 3-49

3.6.6 Summary Page.. 3-52

4. Linking

4.1 General .. 4-1

4.1.1 Segment Numbers... 4-1

4.2 LINKER JCL Statement .. 4-2

4.2.1 Load-Module-Name Parameter ... 4-3

4.2.2 INLIB Parameter .. 4-4

4.2.3 OUTLIB Parameter .. 4-5

4.2.4 COMMAND and COMFILE Parameters .. 4-6

4.2.5 ENTRY Parameter... 4-6

4.2.6 PRTFILE Parameter .. 4-7

4.2.7 PRTLIB Parameter .. 4-7

4.2.8 Linker Commands.. 4-8

C Language User's Guide

xii 47 A2 60UL

4.2.8.1 ENTRY Command .. 4-8
4.2.8.2 STACK3 Command... 4-8
4.2.8.3 SEGTABi Command ... 4-9
4.2.8.4 FILE Command ... 4-9

4.2.9 Linker Output ... 4-10
4.2.9.1 Segment List ... 4-11
4.2.9.2 Linkage Report .. 4-12
4.2.9.3 Error Messages... 4-12
4.2.9.4 An Example ... 4-13

4.3 Interactive Operation in GCL Mode .. 4-15

4.4 Separate Compilation ... 4-16

4.4.1 General Information... 4-16

4.4.2 Implementation .. 4-16

4.4.3 Inter-Language Calling .. 4-18
4.4.3.1 Correspondence Between Data Types ... 4-18
4.4.3.2 Passing Parameters Between Languages...................................... 4-20
4.4.3.3 Examples of Passing Parameters ... 4-22
4.4.3.4 Restrictions on Use ... 4-28

4.5 Multitasking .. 4-29

4.5.1 What is Multitasking?... 4-29

4.5.2 Building a Multitask Application ... 4-29
4.5.2.1 Splitting Tasks... 4-29
4.5.2.2 Passing and Sharing Data .. 4-30
4.5.2.3 Synchronization with Semaphores.. 4-31

4.5.3 Differences between GCOS 7 and Unix.. 4-32
4.5.3.1 Static and Dynamic Hierarchies .. 4-32
4.5.3.2 Sharing Data ... 4-32

4.5.4 Run time Functions and Primitives .. 4-32
4.5.4.1 begin_task_h header... 4-32
4.5.4.2 Functions... 4-34
4.5.4.3 Primitives... 4-35

4.5.5 LINKER Commands .. 4-36

4.5.6 Restrictions .. 4-36

4.5.7 Example of a Multitask Program.. 4-37

5. Execution and Debugging

5.1 Step Execution .. 5-1

5.2 Execution in Batch Mode .. 5-2

5.3 Interactive Execution in GCL Mode .. 5-3

5.4 External Interface .. 5-4

5.5 Batch or Interactive Debugging... 5-4

5.6 Errors at Execution Time .. 5-6

47 A2 60UL xiii

5.6.1 Errors Inside a Program .. 5-6

5.6.2 Errors in Load Module at Execution Time ... 5-8

5.7 Run-Time Errors .. 5-9

5.8 An Example of Execution and Debugging .. 5-11

6. Programming Considerations

6.1 Portability .. 6-1

6.1.1 Lexical and Syntactical Features... 6-1

6.1.2 Data Representation.. 6-2

6.1.3 Data Allocation... 6-3

6.1.4 Statements and Expressions... 6-4

6.1.5 Pointer Handling .. 6-4

6.1.6 Library .. 6-5

6.2 The GCOS 7 Preprocessor... 6-5

6.2.1 #<newline> .. 6-5

6.2.2 defined <identifier> .. 6-5

6.2.3 #elif <constant-expression><new line> ... 6-6

6.2.4 #error .. 6-6

6.2.5 Predefined Macros .. 6-7

6.2.6 #line .. 6-7

6.2.7 Macro Definition and Expansion.. 6-8

6.2.8 Stringing and Merging Tokens (# and ## Operators) .. 6-8

6.2.9 Preprocessor Output ... 6-9

6.3 Pre ANSI and ANSI Compilers ... 6-10

6.3.1 Expanding Macro Parameters in Strings... 6-10

6.3.2 Trigraph Sequences .. 6-10

6.3.3 Octal Digits .. 6-10

6.3.4 Long Float Type... 6-10

6.3.5 Constant Strings .. 6-11

6.3.6 Separating Assignment Operators .. 6-11

6.3.7 Empty Declarations ... 6-11

6.3.8 Linkage .. 6-11

6.3.9 Conversions... 6-12

6.3.10 Sizeof .. 6-12

6.3.11 Bit-Fields .. 6-12

6.3.12 Pointers to Functions... 6-12

6.3.13 Constant Expressions.. 6-13

6.3.14 Preprocessor Features .. 6-13

6.4 Performance Considerations .. 6-14

C Language User's Guide

xiv 47 A2 60UL

7. GCOS 7 Specific Considerations

7.1 Size and Limits .. 7-1

7.2 Implementation-defined Features ... 7-2

7.2.1 Translation ... 7-2

7.2.2 Environment... 7-2

7.2.3 Identifiers .. 7-3

7.2.4 Characters ... 7-3

7.2.5 Integers .. 7-3

7.2.6 Floating Point:Internal Representation .. 7-4
7.2.6.1 Float Type Data... 7-4
7.2.6.2 Double Type Data ... 7-6

7.2.7 Arrays and Pointers ... 7-7

7.2.8 Registers .. 7-7

7.2.9 Structures, Unions, Enumerations, and Bit-Fields... 7-8

7.2.10 Qualifiers .. 7-8

7.2.11 Declarators and Statements .. 7-8

7.2.12 Preprocessing Directives... 7-8

7.2.13 Library Functions ... 7-9

7.3 Size of Data Basic Types.. 7-10

7.4 Pointer Specific Behavior.. 7-10

7.5 Allocation and Segmentation .. 7-11

7.6 Implementation-defined Behavior ... 7-11

7.6.1 Identifier Spelling ... 7-11

7.6.2 Characters ... 7-11

7.6.3 Arrays and Pointers ... 7-12

7.6.4 Registers .. 7-12

7.6.5 Structures, Unions and Bit Fields .. 7-12

7.6.6 Line Command .. 7-12

7.6.7 #include Command.. 7-12

7.7 Calling from another Language... 7-13

47 A2 60UL xv

8. Building Packages

8.1 What is a C/GCOS 7 Package?.. 8-1

8.2 Why Package an Application? .. 8-1

8.2.1 Encapsulation .. 8-1

8.2.2 Performance .. 8-2

8.3 Pragmas .. 8-3

8.3.1 GCOS 7 Pragmas.. 8-3

8.3.2 PACKAGE and Related Pragma ... 8-3

8.3.3 ALIGN Pragma .. 8-3

8.3.4 BYREF Pragma ... 8-4

8.3.5 INLINE and OUTLINE Pragma.. 8-4

8.4 What Comprises a Package ... 8-5

8.4.1 The Aim of the #pragma PACKAGE.. 8-5

8.4.2 The EXPORT Directive.. 8-6

8.4.3 The IMPORT Directive .. 8-7

8.4.4 Building the Package... 8-8
8.4.4.1 Packaging at Design Time .. 8-8
8.4.4.2 Packaging an Existing Application .. 8-8

8.4.5 The AUTOPACKAGE Directive ... 8-10

8.5 One-file Packages .. 8-11

8.6 Summary .. 8-12

8.6.1 Pragma Syntax .. 8-12

8.6.2 Object Visibility .. 8-12

8.6.3 Application Packaging Steps ... 8-13

9. Optimizing with C

9.1 Introduction .. 9-1

9.1.1 The Goals of the Optimizer.. 9-1

9.1.2 The Local Optimizer .. 9-2

9.1.3 The Global Optimizer... 9-2

9.1.4 Optimization Levels ... 9-4

9.2 Global Optimizer Functions... 9-5

9.2.1 Constant Folding and Copy Propagation .. 9-5

9.2.2 Deleting Globally Redundant Expressions .. 9-6

9.2.3 Deleting Code.. 9-6

9.2.4 Anticipation and Temporization ... 9-8

9.2.5 Deleting Partially Redundant Expressions .. 9-9

9.2.6 Removing Loop Invariants... 9-10

C Language User's Guide

xvi 47 A2 60UL

9.2.7 Strength Reduction and Processing Loop Control Variables 9-12
9.2.7.1 Strength Reduction ... 9-12
9.2.7.2 Processing of Loop Control Variables... 9-13

9.2.8 Loop Unrolling.. 9-14

9.2.9 Procedure Merging .. 9-15

9.3 Using the Global Optimizer ... 9-16

10. Run-Time Environment

10.1 RUN-TIME Header Subfiles.. 10-1

10.2 Accessing Run-time Functions ... 10-2

10.3 Run Time Initialization... 10-3

10.4 Portability Levels of the Run-time Functions .. 10-4

10.4.1 The ANSI Level Functions... 10-4

10.4.2 XOPEN Level Functions.. 10-8

10.4.3 GCOS 7 Level Functions... 10-9

11. General I/O Considerations

11.1 C Files and GCOS 7 Files... 11-1

11.1.1 C Files .. 11-1

11.1.2 GCOS 7 Files... 11-2

11.2 Stream Types, Data Formats, and Modes.. 11-3

11.2.1 Text and Binary Streams ... 11-3

11.2.2 SSF and SARF Formats.. 11-4

11.2.3 Line-Record and Stream-Mode Files... 11-6

11.2.4 Buffering .. 11-7

11.2.5 Default Positioning on GCOS 7 ... 11-8

11.3 Standard Files .. 11-10

11.4 Non-standard Files.. 11-11

11.5 Terminal I/O .. 11-13

11.6 Static Assignment of C Files ... 11-14

11.7 Direct Access .. 11-16

11.8 GCOS 7 Specific Features.. 11-17

11.8.1 Extensions of the Open Mode ... 11-17
11.8.1.1 File Type (SSF/SARF) .. 11-17
11.8.1.2 Examples... 11-18
11.8.1.3 Giving the IFN ... 11-19
11.8.1.4 Examples... 11-20

11.8.2 Access and Share Extensions... 11-20

47 A2 60UL xvii

12. File Processing

12.1 stdio_h Interface .. 12-1

12.2 Stream Status Macros .. 12-2

12.3 Standard File Processing (High-Level Primitives) .. 12-5

12.3.1 fopen .. 12-5

12.3.2 freopen .. 12-8

12.3.3 h_reopen .. 12-9

12.3.4 fclose .. 12-10

12.3.5 fflush .. 12-11

12.3.6 gets, fgets .. 12-12

12.3.7 getc, getchar, fgetc, getw .. 12-13

12.3.8 ungetc .. 12-15

12.3.9 puts, fputs .. 12-16

12.3.10 putc, putchar, fputc, putw .. 12-17

12.3.11 fread, fwrite ... 12-19

12.3.12 fseek ... 12-20

12.3.13 ftell ... 12-21

12.3.14 rewind ... 12-22

12.3.15 fgetpos ... 12-22

12.3.16 fsetpos ... 12-23

12.3.17 setprompt ... 12-23

12.4 getc and putc Macros.. 12-24

12.5 Non Standard File Processing (Low-level Primitives)... 12-25

12.5.1 open .. 12-25

12.5.2 creat .. 12-26

12.5.3 close .. 12-26

12.5.4 read .. 12-27

12.5.5 write .. 12-27

12.5.6 lseek .. 12-28

12.6 Buffering .. 12-29

12.6.1 setvbuf .. 12-29

12.6.2 setbuf .. 12-30

12.7 Global File Operations .. 12-31

12.7.1 remove .. 12-31

12.7.2 rename .. 12-32

12.7.3 tmpfile .. 12-32

12.7.4 tmpnam .. 12-33

C Language User's Guide

xviii 47 A2 60UL

13. Formatting I/O

13.1 fprintf .. 13-1

13.2 printf .. 13-5

13.3 sprintf .. 13-5

13.4 fscanf .. 13-6

13.5 scanf .. 13-9

13.6 sscanf .. 13-10

13.7 vfprintf, vprintf, AND vscanf .. 13-11

14. The Use of STDLIB_H

14.1 The <STDLIB_H> Header Subfile .. 14-1

14.2 Memory Allocation .. 14-1

14.3 Conversions .. 14-3

14.3.1 ecvt, fcvt, gcvt .. 14-3

14.3.2 etof, etoi, etol ... 14-4

14.3.3 strtod, strtol, strtoul .. 14-5

14.4 The Environment Functions .. 14-6

14.4.1 exit, sexit .. 14-6

14.4.2 atexit .. 14-7

14.4.3 abort .. 14-7

14.4.4 getenv, system... 14-7

14.5 Random Number Generator ... 14-9

14.5.1 rand .. 14-9

14.5.2 srand .. 14-9

14.6 bsearch, qsort .. 14-10

14.7 abs, div, labs .. 14-11

15. Character Handling

15.1 The <CTYPE_H> Header Subfile ... 15-1

15.2 EBCDIC Character Subsets.. 15-1

15.3 Converting to Lower and Upper Case .. 15-4

47 A2 60UL xix

16. The Use of STRING_H

16.1 The <STRING_H> Header Subfile ... 16-1

16.2 String Handling .. 16-1

16.3 Buffer Management .. 16-7

16.4 Memory Management ... 16-9

16.4.1 The memcpy Function ... 16-9

16.4.2 The memset Function.. 16-9

16.4.3 The memcmp Function.. 16-10

16.4.4 The memchr Function.. 16-10

16.4.5 The memmove Function.. 16-11

17. Non-Local Jump

17.1 The <SETJMP_H> Header Subfile... 17-1

17.2 setjmp, longjmp .. 17-1

18. Mathematical Package

18.1 The <MATH_H> Header Subfile ... 18-1

18.2 abs .. 18-2

18.3 fabs .. 18-3

18.4 floor .. 18-4

18.5 ceil .. 18-5

18.6 fmod .. 18-6

18.7 modf .. 18-7

18.8 sin .. 18-8

18.9 asin .. 18-9

18.10 sinh .. 18-10

18.11 cos .. 18-11

18.12 acos .. 18-12

18.13 cosh .. 18-13

18.14 tan .. 18-14

18.15 atan .. 18-15

18.16 atan2 .. 18-16

18.17 tanh .. 18-17

18.18 exp .. 18-18

C Language User's Guide

xx 47 A2 60UL

18.19 log .. 18-19

18.20 log2, frexp .. 18-20

18.21 log10 .. 18-21

18.22 pow .. 18-22

18.23 ldexp .. 18-23

18.24 sqrt .. 18-24

19. Time and Date

19.1 The <TIME_H> Header Subfile... 19-1

19.2 Time Retrieval .. 19-1

19.3 Time Handling .. 19-3

19.4 Time Edition .. 19-5

20. STDARG Functions

20.1 The <STDARG_H> Header Subfile .. 20-1

20.2 va_start Macro .. 20-2

20.3 va_arg Macro .. 20-3

20.4 va_end Macro .. 20-4

21. Diagnostics

21.1 The <ASSERT_H> Header Subfile... 21-1

22. Signal

22.1 What is a Signal? 22-1

22.2 Description of a Signal .. 22-2

22.3 Writing a Signal Handler ... 22-3

22.4 The Signal Handler Mechanism.. 22-3

22.5 Limitations of the Signal Handler .. 22-4

22.6 Example .. 22-4

23. Reporting Error Conditions

23.1 The <ERRNO_H> Header Subfile .. 23-1

23.2 Description .. 23-1

47 A2 60UL xxi

24. Localization

24.1 What is Localization? .. 24-1

24.2 Run Time Package Functions and Localization.. 24-2

24.3 Localization Functions .. 24-3

24.3.1 setlocale .. 24-3

24.3.2 localeconv .. 24-4

24.4 Multibyte Functions ... 24-7

24.5 Default Localization... 24-9

24.6 Introducing New Localization.. 24-10

25. Standard Definition Header File

25.1 The <STDDEF_H> Header Subfile... 25-1

25.2 The Previously-defined C Types... 25-1

25.3 The NULL Macro .. 25-1

25.4 The OFFSETOF Macro... 25-2

A. File and Volume Syntax

A.1 Syntax of a File Literal ..A-1

A.2 Syntax of a Volume Literal ..A-2

C Language User's Guide

xxii 47 A2 60UL

47 A2 60UL xxiii

Table of Graphics

Figure 4-1. LINKER JCL Statement Format ... 4-2

Figure

C Language User's Guide

xxiv 47 A2 60UL

47 A2 60UL 1-1

 1. Introduction

1.1 The C Language

The C language is a programming language that is versatile and suitable for a very
wide range of applications. C is a structured language in which flow-control is
ensured by a system of nested loops. It provides a wide variety of data structures
and a powerful set of operators.

1.2 The DPS7 Environment

This manual is about the C language in the DPS7 000 environment. It explains how
to compile, link, and run your programs in this environment, and any special
restrictions that may apply. You can use the C language in batch or interactive
mode.

1.2.1 Batch JCL

In batch mode you submit your work as a "job" which is run "off-line". The job is
controlled by a language called JCL (Job Control Language). If you wish to work
in batch mode, consult the JCL Reference Manual and the JCL User's Guide.

1.2.2 Interactive GCL

In interactive mode you submit your work from an "on-line" terminal, from which
you can communicate with the system using a language called GCL (GCOS 7
Command Language). Those readers wishing to work in interactive mode should
consult the IOF Terminal User's Reference Manual.

C Language User's Guide

1-2 47 A2 60UL

❑

47 A2 60UL 2-1

 2. Getting Started

2.1 A C Compiler Session

This section gives you an example of how to build a C program during an
interactive session under IOF in GCL mode. The steps in this example are as
follows:

1. Enter the user library through LIBMAINT.

2. Enter the editor using the command ED.

3. Write the source.

4. Store the editor work buffer and specify the type of language used: w (cl)
essai_c.

5. Leave LIBMAINT (return to S level).

6. Compile the source via the GCL procedure: C. In this case, the compile unit
(cu) is produced in TEMP.CULIB$TEMPRY. The listing output option: list is
activated.

7. Examine the output listing (in TEMP.SLLIB$TEMPRY).

8. Call the linker using the GCL procedure lk. Here the Load Module (LM) is
produced in the temporary library TEMP.LMLIB$TEMPRY.

9. Execute using exec_pg with the STDOUT assigned by default to the user
terminal.

10. Re-execute, this time with STDOUT assigned to a sub-file of the user library.

11. Check results in the assigned subfile.

C Language User's Guide

2-2 47 A2 60UL

2.1.1 Enter LIBMAINT

Note that the library into which to put the C source code is called lsfy.cc.use.sllib.

S: lmn sl lsfy.cc.use.sllib
>>>13:43 LMN 40.02 110 -5
C:

2.1.2 Enter the Text Editor

In the editor, type the 'a' (append) command to enter input mode.

C: ed
R: a
I:

2.1.3 Write the Source Text

At the end, type '/' to get out of input mode.

I: /*example of C program */
I: #
I: #
I: #include <stdio_h>
I: #
I: #
I: main()
I:{
I: printf ("Hello! Welcome to the C/GCOS compiler session ! \n");
I:}
I: /
R:

Getting Started

47 A2 60UL 2-3

2.1.4 Store the Work Buffer

Store the source text in a member called essai_c. Note that the type of data
specified is 'cl'.

R: w (cl) essai_c
R: /
C:

2.1.5 Return to System Level

Type '/' to leave LIBMAINT.

C: /
<<<13:48
S:

2.1.6 Compile

Use the C (compile C) command, followed by the name of the member, the name
of the library and the 'list' option.

S: c essai_c lsfy.cc.use.sllib list
>>>14:24 C 0.00
 14:24:36 JUN 03, 1986 X5163.11 compilation of LSFY.CC.USE.SLLIB: ESSAI_C
 CL.10(0.00) summary for ESSAI_C: no error,cu produced.
<<<14:25

C Language User's Guide

2-4 47 A2 60UL

2.1.7 Examine the Listing

Use the editor command 'r' to read the member containing the listing, then the
command 'p' (print) to display the listing.

S: ed

>>>14:26 ED 10.02 110 -5

R:

R: ressai_c_1

R: ,$p

**

**

**** GCOS7 ****

**** ****

**** C ****

**** ****

**** VERSION: 0.00 DATED: FEB 15, 1985 ****

**** ****

**

*******************************ESSAI_C_L**

**

active options are :

OBJ, WARN, OBSERV, NCHECK, NMAP, NXREF, LIST, NEXPLIST,

ILN, LEVEL=STD, LFATAL,

14:24:36

JUN 03, 1986

X5163.11

compilation of LSFY.CC.USE.SLLIB: ESSAI_C

CD=06/03/86 CT=14:00 MF=06/03/86 MT=14:15 SL=CL MN=1

 1

 2 /*example of C program */

 3 #

 4 #

 5 #include <stdio_h>

157 #

158 #

159 main()

160{

161 printf ("Hello! Welcome to the C/GCOS compiler session ! \n") ;

162}

 + + + NO ERROR MESSAGES + + +

 OBJECT CODE PRODUCED

*******************************ESSAI_C_L**

*******************************C*L**

+++

R: /

<<<14:27

Getting Started

47 A2 60UL 2-5

2.1.8 Scan the Error Messages

The compiler identifies erroneous lines and corresponding error message with a
dollar character ($). In this way, you can easily locate them with the scanner or the
text editor.

2.1.8.1 Using the Scanner

At the R: level, the /$/$ request prints all erroneous lines and messages.

2.1.8.2 Using Edit

If your listing is on a library, first enter the R request to read the listing. Then, to
see the erroneous lines, enter the GL/[C$/ request.

2.1.8.3 Using FSE

If your listing is on a library, first enter the RA request to read the listing. Then, for
the erroneous lines, enter the UC*=/[C$/ request.

2.1.9 Link

To link, give the name of the compile unit. When you do not specify an input
library, the linker searches for the compiler unit in TEMP.CULIB$TEMPRY. The
load module is placed in TEMP.LMLIB$TEMPRY.

S: lk essai_c

>>>14:28 LK 82.00 11 -1
WORKING ON: ESSAI_C
LKOO.(82.00) SUMMARY FOR ESSAI_C NO ERROR DETECTED . OUTPUT MODULE PRODUCED

<<<14:28

C Language User's Guide

2-6 47 A2 60UL

2.1.10 Execute with Output to User Terminal

Use the command exec_pg (execute program), giving the name of the load module
to be executed.

S: exec_pg essai_c

 Hello! Welcome to the C/GCOS compiler session !

2.1.11 Re-execute with Output to a Subfile

This is another way of testing the program. Here, specify that the output of the C
program is to be sent to the member essai_out in the library lsfy.cc.use.sllib.

S: exec_pg essai_c file1=stdout asg1=lsfy.cc.use.sllib..essai_out

S: lmn sl lsfy.cc.use.sllib

>>>14:33 LMN 40.02 110 -5

2.1.12 Check Results

Use the editor command 'r' (read) to bring the member essai_out into the editor's
workspace. Then use the 'p' print command to examine the contents of this
member.

C: ed

R: ressai_out

R:^,$p

 Hello Welcome to the C/GCOS compiler session !
R: /
C: /
<<<14:34
S:

Your test is completed and you are now back at system level.

47 A2 60UL 3-1

 3. Compilation

3.1 Batch Compilation

3.1.1 Syntax of C Statement in JCL

C { INFILE = (sequential-input-file-description) }
 { { *input-enclosure-name }}
 { {{ member-name }}}
 { {{ { INLIB= (input -library } }}}
 {{ { -description) } }}}
 { {{ { INLIB1 } }}}
 {SOURCE = {{ (member-name[member-name]...) { INLIB2 } }}}
 { {{ { INLIB3 } }}}
 { {{ { } }}}
 { {{ (star-name[star-name]...)

 [{ TEMP }]
 [CULIB = { }]
 [{ (output-library-description) }]

 [{ SYS.C.INCLUDE }]
 [INLIBZ = { }]
 [{ (input-library-description) }]

 [{ }] [{ }] [{ }] [{ }] [{ }]
 [{ NLIST }] [{ NEXPLIST }] [{ NMAP }] [{ NXREF }] [{ WARN }]
 [{ LIST }] [{ EXPLIST }] [{ MAP }] [{ REF }] [{ NWARN }]

 [{ OBSERV }] [{ NROUND }] CODE = { OBJA }] [{ LFATAL }]
 [{ NOBSERV }] [{ ROUND }] { OBJD }] [{ LOBSERV }]
 [{ }] [{ }] { OBJCD }] [{ }]

 [{ ANSI }] [{ }] [{ }] [{ }] [{ }]
 [LEVEL = { STANDARD }] [{ }] [{ }] [{ }] [{ }]
 [{ GCOS 7 }] [{ OBJ }] [{ ILN }] [{ NCHECK }] [{ NDEBUG }]
 [{ GANSI }] [{ NOBJ }] [{ XLN }] [{ CHECK }] [{ DEBUG }]

 [{ }] [] [] [{ }]
 [OPTIMIZE = { 0, 1, 2, 3, 4 }] [PACKAGE] [PSEGMAX] [K11={ Y/N }]
 [{ }] [] [] [{ }]

C Language User's Guide

3-2 47 A2 60UL

[{ { SYS.OUT }]
[{ PRTFILE= { (print-library-description) }]
[{ { }]
[{ PRILIB = { (print-library-description) }]

 [EXPLIB = source-library-description]

 [EXPONLY] [INLINE] [MODSTRNG] ;

3.1.2 Description of Parameters

The following subsections describe the parameters that can be used in the C
statement. Note that the following symbolic names refer to standard parameter
groups and are described fully in the JCL Reference Manual.

sequential-input-file-description
input-library-description
output-library-description
print-file-description
print-library-description

The sequential-input-file-description defines a sequential file (on a magnetic tape
or disk) which has been created by the LIBMAINT utility using the OUTFILE
parameter.

The input-library-description defines a library of type SL which has been created
by:

BLIB TYPE=SL, LIB=input-library-description
 SIZE=n,COMPACT,MEMBERS=m;

and whose members have been updated by:

MNLIB TYPE=SL, LIB=input-library-description ...;

or:

EDIT, LIB=input-library-description;

Members containing C language source code may be in SARF or SSF. In the latter
case they must be of type 'CL'(for C language).

Compilation

47 A2 60UL 3-3

The output-library-description defines a library of type CU which has been created
by:

BLIB TYPE=CU, LIB=output-library-description SIZE=n,
MEMBERS=m;

For each source code member compiled without error a compile unit (CU) is
created, containing the object code. Each CU has the same name as the
corresponding source member.

The print-file-description defines a sequential file (on a magnetic tape or disk) into
which the compilation listing is put.

The print-library-description defines a library of type SL which has been created
by:

BLIB TYPE=SL, LIB=input-library-description
 SIZE=n,COMPACT,MEMBERS=m;

For each C source compiled, the compiler creates a subfile containing the listing.
This member has the same name as the source member, suffixed by '_L'.

To summarize, if we compile a C source member called PP, we create:

• If there is no compilation errors, a CU called PP.
• If PRTLIB is specified, an SL member called PP_L.

C Language User's Guide

3-4 47 A2 60UL

3.1.2.1 The SOURCE, INFILE, INLIB and INLIBn Parameters

These parameters are used to specify the name and location of the program or
programs to be compiled. A series of programs may be compiled during a single
execution of the compiler.

One of either the SOURCE or INFILE parameters must be specified in a C
statement. All of the other parameters are optional. SOURCE and INFILE may not
appear in the same statement.

In using these parameters, the simplest case is when the source program is held in
an input enclosure. In this instance the following statement will suffice:

C SOURCE = *input-enclosure-name;

where the input-enclosure-name is the name of an input enclosure contained in the
same job.

EXAMPLE:

C SOURCE = *IN;
$INPUT IN, TYPE =DATASSF;
main ()
.
.
.
$ENDINPUT IN;

❑

If the source program is held in a library, the name of the library and the member
are both specified in the statement as follows:

C SOURCE = member-name
 INLIB = (input-library-description);

Compilation

47 A2 60UL 3-5

EXAMPLE:

C SOURCE=mb INLIB=product.sllib;

This means that the program to be compiled is in the member 'mb' of the
catalogued library 'product.sllib'.

However, one or more libraries can also be specified in a single JCL statement as
follows:
LIB SL INLIB1 = (input-library-description)
 [INLIB2 = (input-library-description)
 [INLIB3 = (input-library-description]];
 C SOURCE = member-name;

The LIB JCL statement defines a "search path" for the compiler. The compiler will
search for the source program specified by member-name, first in the INLIB1
library, then in the INLIB2 library and finally in the INLIB3 library. The first
member found will be compiled and any others of the same name will be ignored.

Note that the LIB JCL statements shown in this section do not contain all possible
parameters. See the Library Maintenance Reference Manual for further details.

If source programs of the same name occur in the search path, the program to be
compiled may be chosen by specifying its library with the INLIBn parameter of the
JCL statement in the C language. In this case, the normal search path is overridden
by the INLIBn parameter. The statement format is as follows:
LIB SL INLIB1 = (input-library-description)
 [INLIB2 = (input-library-description)
 [INLIB3 = (input-library-description)]];

 {INLIB1 }
 C SOURCE = member-name {INLIB2 }
 {INLIB3 }

The three methods of specifying a member name and library, described above, may
also be used when a series of source programs is to be compiled in a single
execution of the compiler (Serial Compilation). In this case the SOURCE
parameter must specify a series of member names. For example:
C SOURCE = (member-name[,member-name]...)
 INLIB = (input-library-description);

Source programs may also be read from a sequential file on disk or magnetic tape
(this may be, for example, a tape file written by the LIBMAINT utility using the
OUTFILE option). The INFILE parameter is used for this purpose, as follows:
C INFILE = (sequential-input-file-description);

The file specified in the INFILE parameter can contain one or several source
programs.

❑

C Language User's Guide

3-6 47 A2 60UL

The Star Convention

As an alternative to specifying a list of member names in the SOURCE parameter,
a range of member names can be specified using the "star-convention" (same as the
star convention used by the LIBMAINT utility). The following statement is used:

LIB SL INLIB1 = (input-library-description)
 [INLIB2 = (input-library-description)
 [INLIB3 = (input-library-description)]];

 C SOURCE = (star-name [star name] ...)

 { INLIB = (input-library-description) }
 { INLIB1 }
 { INLIB2 }
 { INLIB3 }

Note that if the library to be used is specified in the C statement (i.e. no library
search is carried out), the INLIB1 is assumed to be specified.

Using the star convention, all the library member names in the specified library
having certain common characteristics can be selected for compilation. Conversely,
all names having certain characteristics can be excluded from compilation, the rest
being compiled. For a description of the star convention, see the Library
Maintenance Reference Manual.

The parentheses in the SOURCE parameter are mandatory only when there is more
than one star-name or when the star-name begins with an asterisk.

When the FROM = and the TO = specifiers are used, the star-name including these
specifiers must be enclosed between apostrophes.

3.1.2.2 The INLIBZ Parameter

The INLIBZ parameter specifies the library in which the system include files are
kept (such as STDIO_H). The default is the standard system library
(SYS.C.INCLUDE). The INLIBZ parameter is equivalent to the INCLUDE
parameter in GCL.

To change the name of this library, specify another name in
input_library_description. parameter, The library contains all the include files that
compile the C programs. For further information on include search rules, see
paragraph 3.3.

Compilation

47 A2 60UL 3-7

3.1.2.3 The CULIB Parameter

The CULIB parameter specifies the library in which the resulting compile unit is to
be stored. An output-library-description or the word TEMP may be used in the
CULIB parameter.

If a library is specified, it must have been previously allocated by, for example, the
BLIB command, unless the output-library-description specified in the CULIB
parameter contains the SIZE parameter (see the Library Maintenance Reference
Manual).

If TEMP is specified, the compile unit will be written as a temporary member of a
system library. If the CULIB parameter is omitted, this is equivalent to
CULIB = TEMP. The member name given to the compile unit will be the same as
the name of the member containing the source code.

When linking compile units produced with no CULIB parameter, or with
CULIB = TEMP, the compile unit library TEMP should be present in the library
search path that precedes the LINKER statement.

FOR EXAMPLE:

LIB CU INLIB1 = TEMP
 INLIB2 = ...;

❑

However, if TEMP is the only input compile unit library, no JCL statement LIB CU
is required to define the search path.

3.1.2.4 The LIST, NLIST, EXPLIST, and NEXPLIST Parameters

These parameters determine the form of the source listing. NLIST specifies that the
source program listing is not to be produced. However, lines associated with the
production of error messages will be produced. LIST specifies that the complete
program listing is to be produced and is the default option.

NEXPLIST is used to suppress the listing of lines of source program which were
inserted by the INCLUDE command. Note that lines inserted by LIBMAINT or
EDIT and not renumbered will not be listed either in this case.

The combination of NLIST and EXPLIST is meaningless. In fact, there are only
three valid combinations:
NLIST [NEXPLIST]
LIST NEXPLIST
EXPLIST [LIST]

C Language User's Guide

3-8 47 A2 60UL

In all these cases, the lines containing errors are printed.

NLIST Only the lines with errors are printed, in their non-
expanded form. If an error is found in source code
which is part of a macro expansion, a marker will
indicate the macro as the error location.

LIST NEXPLIST All the lines of the source code are printed as they
would have been by another processor such as
LIBMAINT. Those lines not in the source code
(INCLUDE level=0) but which contain errors are
printed as above.

LIST EXPLIST All lines processed by the compiler are printed just as
they have been received from the preprocessor. The
preprocessor commands (for example, define, include,
and ifdef) are not printed, nor the source code
contained in non-active branches of the preprocessor
commands (if, ifdef, ifndef). On the other hand, the
macros are expanded, and all lines of the 'included'
files are also printed, whatever the INCLUDE level
may be.

3.1.2.5 The MAP and NMAP Parameters

The MAP parameter produces a data map and line location map. The MAP
parameter produces a line location map only if the OBJ parameter is specified
(explicitly or by default), and if there are no errors of severity greater than 2 in the
program unit. A data map will also be produced in this case, provided that the
XREF parameter is specified. The data address information of the data map is
inserted in the cross reference listing.

The NMAP parameter specifies that no such listings are required and is the default
option.

3.1.2.6 The XREF and NXREF Parameters

The XREF parameter produces a cross-reference listing of data and then included
library members in alphabetic order. The format of these listings is described in the
CROSS REFERENCE LISTINGS below. NXREF means that no such cross-
reference listings are required (default parameter).

Compilation

47 A2 60UL 3-9

3.1.2.7 The NWARN and NOBSERV

These parameters inhibit the sending of warnings (errors of severity 2) and
observations (errors of severity 1).

3.1.2.8 The ROUND and NROUND Parameters

The parameter ROUND indicates that operations performed on real numbers
should be executed with rounding. The result is increased convergence of scientific
calculations at the cost of a reduction in speed, since instructions with rounding use
more time.

3.1.2.9 The CODE Parameter

The CODE parameter specifies the class of the target computer for which code will
be generated. The different classes are:

• Class A: DPS7/X5,X07 and 64/DPS
• Class C: DPS7/X0,X17,X27,DPS7000
• Class D: DPS7/1XX7.

If CODE=OBJA is used, the program can be run on a class C computer.

If CODE=OBJCD is used, the program can be run on a class C or D computer.
CODE=OBJCD is the default.

A program compiled with CODE=OBJA and executed on a class D computer lead
to a loss of precision on floating point results.

A program compiled with CODE=OBJCD and executed on a class A computer
may stop with the exception: "ILLEGAL FIELD INSTRUCTION".

The LIST command of the LIBMAINT CU processor may be used to get
information on the compatibility class of a compiled unit.

It must be interpreted as follows:

CU Class

0 or none
1
2
3
4

A-C Compatible

yes
yes
no
no
unknown

C-D Compatible

yes
no
yes
no
unknown

C Language User's Guide

3-10 47 A2 60UL

NOTE:
For your reference, when the C compiler runs under GCOS 7-V3A, the default
is OBJA. When the C compiler runs under CGOS 7-V3B, GCOS 7-V5, or
GCOS 7-V6, the default value is OBJCD. V6 does not support Class A.

3.1.2.10 The LEVEL and LFATAL and LOBSERV Parameters

These parameters verify that a program complies to the desired level of language.
There are two main language levels: the STANDARD level and the ANSI level.

The STANDARD level is fully compatible with the previous release, and it
supports programs written in pre-ANSI C. This level complies with the definition
in the C Language Reference Manual. This is the default level, for reasons of
compatibility.

The ANSI level verifies that the program complies to the X3J11 ANSI standard.

Both language levels allow some specific extensions. Mostly, this is the & feature
for "by reference" parameter passing. The extensions they allow are as follows:

• GCOS 7 is an extension of STANDARD level.
• GANSI is an extension of ANSI level.

A fatal diagnostic is issued if a feature does not belong to the requested level. This
diagnostic is fatal by default (this is confirmed by the LFATAL keyword), and it
produces no object code. If the LOBSERV keyword is specified, it produces only
an observation (sev 1).

3.1.2.11 The OBJ and NOBJ Parameters

If OBJ is specified the compiler generates a compile unit in the library specified in
the CULIB parameter or, by default, in the temporary library. If there has been an
error of severity greater than 2 (more severe than observations and warnings), as
indicated in the JOR (Job Occurrence Report), the compiler does not generate a
compile unit.

If NOBJ is specified the compiler does not generate a compile unit and so
compilation time is greatly shortened. For a program with errors of severity greater
than 2, no compile unit is produced and the OBJ and NOBJ parameters have no
effect.

The NOBJ parameter is especially useful when you want a listing of a compilation
of your program but you do not want an execution. If NOBJ is specified the MAP
parameter has no effect (NMAP is assumed).

Compilation

47 A2 60UL 3-11

3.1.2.12 The ILN and XLN Parameters

By default the compiler numbers the program source lines, starting from 1 and
increasing by 1. This constitutes the Internal Line Number (ILN) which is then
used in the table of cross-references and in the sending of error diagnostics at
compile time.

The parameter XLN indicates that the table of cross-references and the code/line
correspondence table quote the external line number. That is the one that used with
the LIBMAINT or EDIT utilities.

3.1.2.13 The CHECK and NCHECK Parameters

The CHECK parameter enables you to generate extra the code. This code verifies
any attempt to access array objects outside the bounds of the array.

3.1.2.14 The DEBUG Parameter

This parameter enables you to debug the C program using PCF in symbolic address
mode.

3.1.2.15 The PRTFILE and PRTLIB Parameters

These two parameters are optional. The default depends on the execution mode of
the compiler:

• In batch mode, the default is PRTFILE = SYS.OUT (and the listing is printed
out at the end of the compilation job).

• In interactive mode, the default is PRTLIB = TEMP.

− Print_file designates a sequential file on disk or tape into which the compiler
writes the output listing

− Print_library designates an SL type library created by the BLIB command.

For each program compiled, the compiler creates a unit containing the output
listing. The name of the unit created is that of the source file suffixed by _L.

Thus, compilation of the program whose source member name is PP generates:

• If no error, a CU named PP

• If PRTLIB is specified, a unit named PP_L.

C Language User's Guide

3-12 47 A2 60UL

3.1.2.16 The OPTIMIZE Parameter

The compiler requests the optimization level that is specified in the OPTIMIZE
parameter. There are five levels of optimization. They are as follows:

OPTIMIZE=0 No optimization. This level produces very inefficient code.

OPTIMIZE=1 The optimization is limited to the source statement. When
DEBUG is on, this is the default value because there is no
program transformation.

OPTIMIZE=2 Local optimization. The optimization is limited to a basic
block, which is a portion of program between two label
definitions or branch instructions. This is the default level.

OPTIMIZE=3 Global optimization. The optimization induces some
program transformation, which produces efficiently
generated code. For more information, see the optimization
description in section 9.1.3.

OPTIMIZE=4 Global optimization. To reduce execution time, some
procedures or functions can be inserted into the code. For
more information, see the optimization description in section
9.2.9.

NOTES:
1. Levels 3 and 4 increase the amount of compilation time. It is best to use

them only when a program is fully debugged.

2. Level 4 is useful only in packaging mode, either automatic or manual.
Automatic packaging mode is the PACKAGE option, and manual mode is
the #pragma PACKAGE. For more information, see section 8.

3. Level 4 can increase the amount of generated code.

3.1.2.17 The PACKAGE Parameter

This parameter specifies that the source file requires automatic packaging. The
default is no automatic packaging.

For more information on automatic packaging, see section 8.4.

Compilation

47 A2 60UL 3-13

3.1.2.18 The PSEGMAX Parameter

This parameter specifies the size used to "segcode" this file automatically. If the
size of the current code segment is equal to this size, the compiler uses another
segment in which to place the object code for the function. Refer to chapter
3.2.2.25 PSEGMAX Parameter.

Because there are at most only 12 segment entries, this allows several short
segments instead of one large one. This option is especially useful in packaging
mode.

The default is no segcoding, in which case the object code for a source file (or a
package) is put in a single segment.

3.1.2.19 The K11 Keyword

The parameter K11=Y specifies that every function of the C library is considered
as built in. You cannot redefine them to have your own implementation. This
allows the compiler to insert some functions in the user code. The K11 keyword is
equivalent to the BUILTIN keyword in CLANG command.

3.1.2.20 The EXPLIB Parameter

The EXPLIB parameter specifies an output SL library that stores the result of the
preprocessing phase. The C program that results can be then compiled.

The name of the member that is the combination of that of the source member and
the suffix "_I".

For example, given the following source member:

C SOURCE=MYCFILE INLIB=MYLIB EXPLIB=MYLIB;

After execution, this gives the following member:

MYCFILE_I in MYLIB.

C Language User's Guide

3-14 47 A2 60UL

3.1.2.21 The EXPONLY Parameter

The EXPONLY parameter specifies that only the preprocessing phase of the
compiler is executed. Any syntactical or semantical errors are not detected. The
EXPLIST or EXPLIB option uses this.

3.1.2.22 The INLINE Parameter

The INLINE parameter activates an optimizing function that automatically merges
procedures. For more information, see the subsection on procedure merging.

3.1.2.23 The MODSTRNG Parameter

The MODSTRNG parameter specifies if character strings can be modified. If this
parameter is not present, the specified level determines the default value. The
STANDARD level has modifiable strings as the default, but ANSI does not. In this
way, this parameter increases portability of files between levels.

Compilation

47 A2 60UL 3-15

3.2 Interactive Compilation

3.2.1 Syntax of "CLANG" Command in GCL

{ CLANG }
{ CL }
{ C }
 [SOURCE = (star31 [star31] ...)]

 [INLIB = { INLIB1 | INLIB2 | INLIB3 | lib78 }]

 [CULIB = lib78]

 [INCLUDE = { lib78 |SYS.C.INCLUDE }]

 [OPTIMIZE = { 0 | 1 | 2 | 3 | 4 }]

 [PACKAGE = { bool | 0 }]

 [LIST = { bool | 1 }]

 [MAP = { bool | 0 }]

 [DEBUG = { bool | 0 }]

 [XREF = { bool | 0 }]

 [WARN = { bool | 1 }]

 [OBSERV = { bool | 1 }]

 [ROUND = { bool | 0 }]

 [EXPLIST = { bool | 0 }]

 [LEVEL = { GCOS7 | STANDARD | GANSI | ANSI }]

 [SILENT = { bool | 0 }]

 [PRTLIB = lib78]

 [BUILTIN = { bool | 0 }]

 [PSEGMAX = { bool | 0 }]

 [EXPLIB = lib78]

 [EXPONLY = { bool | 0 }]

 [MODSTRNG = { bool | 0 }]

 [INLINE = { bool | 0 }]

 [INFILE = file78]

 [PRTFILE = file78]

 [OBJ = { bool | 1 }]

 [CODE = name8]

 [LNUMBER = { I | X }]

 [LFATAL = { bool | 1 }]

 [CHECK = { bool | 0 }]

 [BATCH = { 0 | 1 | 2 }]

C Language User's Guide

3-16 47 A2 60UL

Parameters:

SOURCE up to 31 star-names denoting the names of the source
programs to be compiled.

INLIB the library containing the source programs to be
compiled. This may be expressed as INLIB1, INLIB2,
INLIB3 referring to the source library search path as
defined by the MWINLIB SL command, or as a library
name. When omitted, the default source output library
#SLIB, as defined by the MWLIB SL command, is
first assumed; if #SLIB is undefined, a temporary
library is first assumed. If the source program is not
found there, INLIB1, 2, and 3 are searched next.

CULIB the library in which the resulting Compile Unit(s) are
to be stored. When omitted, the default output CU
library #CLIB, as defined by the MWLIB CU
command, is assumed. If #CLIB is undefined, a
temporary library is assumed.

INCLUDE the system library in which the included files are
stored. The default value is the standard system library
SYS.C.INCLUDE.

OPTIMIZE the optimization level of the generated code. There are
5 levels of optimization:

OPTIMIZE=0 No optimization.
OPTIMIZE=1 Local optimization, at source

statement level. (When DEBUG is
specified, this becomes the default
value.)

OPTIMIZE=2 Local optimization, limited to an
extended linear sequence, such as a
portion of a program between two
label definitions or branch
instructions. This is the normal
default value.

OPTIMIZE=3 Global optimization, without code
expansion.

OPTIMIZE=4 Global optimization, with code
expansion (for example, loop
unrolling).

Compilation

47 A2 60UL 3-17

PACKAGE if 1, the source file requires automatic packaging.
Packaging produces one compile unit for the entire
file. Programs are enhanced by encapsulating data and
shortening the time needed to call functions.
Performance is improved. The default value is no
automatic packaging.

LIST if 1 (default), a listing of the source program is
produced; if 0, no source listing is produced.

MAP if 1, an allocation map for the data is produced; if 0
(default), no such map is produced.

DEBUG if 1, the resulting Compile Units are eligible for being
debugged by the Program Checkout Facility in
symbolic mode; if 0 (default), only "effective address"
mode debugging will be available.

XREF if 1, a cross-reference table of the data is produced; if 0
(default), no such table is produced.

WARN if 1(default), warning (severity 2) diagnostics are
issued; if 0, warnings are not issued.

OBSERV if 1 (default), observation (severity 1) diagnostics are
issued; if 0, observations are not issued.

ROUND if 1, floating point results are rounded, if 0 (default),
floating point results are truncated.

EXPLIST if 1, included program lines are listed; if 0 (default),
included lines are not listed.

LEVEL the level of the standard which is to be applied
checking the language syntax. STANDARD (default)
means standard C; GCOS 7 means standard C plus
GCOS 7 extensions. ANSI checks that the program
complies with the X3J11 ANSI standard, while GANSI
is an extension of the ANSI level. Errors are reported
together with the erroneous lines at the user's terminal.

SILENT if 1, errors are not reported at the user's terminal; if 0
(default), errors are reported together with the
erroneous lines at the user's terminal.

C Language User's Guide

3-18 47 A2 60UL

PRTLIB the library in which the listing is to be produced. The
name of the listing in the library is built up from the
program name with suffix _L (for example, MYPG_L
for source program MYPG). When omitted, the default
printout library #PRTLIB, as defined by the MPRTLIB
command, is assumed. If #PRTLIB is undefined, a
temporary library is assumed.

BUILTIN if 1, on-line insertion of C primitives is enabled.

PSEGMAX if 1, segmentation of the generated code is automatic.

EXPLIB an output SL library into which the result of the
preprocessing phase is written. This result is a C
program that can then be compiled. The name of the
member created is the name of the source member
suffixed by "_I".

EXPONLY if 1, only the compiler preprocessing phase is
executed; syntactical and semantic errors are not
detected. The default value is 0.

MODSTRNG if 1, literal character strings are declared modifiable,
thus reducing the differences between the
STANDARD and ANSI modes, and increasing
portability. The default value is 0.

INLINE if 1, an optimizing function that performs automatic
procedure merging is activated. The default value is 0.

INFILE an alternative to SOURCE and INLIB designating a
sequential file containing the programs to be compiled.

PRTFILE an alternative to PRTLIB designating a sequential file
where the listing is to be stored.

OBJ if 1 (default), object Compile Units are generated for
valid source programs; if 0, no Compile Units are
generated, even if the source programs are valid.

CODE the identification of the machine for which the code is
to be generated. Refer to the compiler documentation
for the acceptable values.

LNUMBER if I (default), line numbers appearing in cross-reference
table are internal (that is, compiler-generated) line
numbers; if X, line numbers are the external (that is,
source program) numbers.

Compilation

47 A2 60UL 3-19

LFATAL if 1 (default), constructs that do not fall into the
designated level (LEVEL parameter) are reported as
fatal errors; if 0, these are reported as observations.

CHECK if 1, the CHECK parameter enables you to generate the
code corresponding to the verification of the tables
during their reference; if 0 (default), no code is
generated.

BATCH if 0 (default), the compilation is executed in interactive
mode; if 1, the compilation is executed in batch mode
as an absentee job with default batch execution
parameters NHOLDOUT, JOR=ABORT, and SEV=3;
if 2, the compilation is executed in batch mode, and
the user may supply the following job parameters
through entry on a separate screen:

CLASS = [A - ZZ]

PRIORITY = [0 - 7]

HOLDOUT = [0 | 1]

DEST = [name8][.name8]

HOLD = [0 | 1]

BANNER = [0 | 1]

BANINF = [char12 [char12 [char12 [char12]]]]

JOR = [NORMAL | ABORT | NO]

JOBNAME = [name8]

SEV = [1 | 2 | 3 | 4 | 5]

For more information concerning these absentee job
execution parameters, refer to the description of the
ENTER_JOB_REQ (EJR) directive in Section 2,
Part 3.

If BATCH=1, the compilation will be executed as an
absentee job with jobid CLANG. If BATCH=2, the
absentee jobid will be the value specified by the user;
the default value is CLANG.

In batch mode, the BATCH parameter is ignored.

C Language User's Guide

3-20 47 A2 60UL

Constraints:

• Either SOURCE or INFILE must be specified.

• INLIB may only be used in conjunction with SOURCE.

• PRTLIB and PRTFILE are mutually exclusive.

• If BATCH>0, no more than three source names can be specified.

• When compilation is requested as an absentee job using the EJR directive with
the PROC parameter, the value passed for BATCH must be 0; the following
syntax is therefore incorrect:
EJR PROC=CLANG VL=(SRC1 BATCH=1)

• References to statically attached catalogs are not supported in absentee mode
(that is, when BATCH>0).

3.2.2 Description of Keywords

3.2.2.1 SOURCE

Up to 31 star-names denoting the names of the source programs to be compiled.

3.2.2.2 INLIB

The library containing the source programs to be compiled. This may be expressed
as INLIB1, INLIB2, INLIB3 referring to the source library search path as defined
by the MWINLIB SL command, or as a library name. When omitted, the default
source output library #SLIB, as defined by the MWLIB SL command is first
assumed; if #SLIB is undefined, a temporary library is first assumed. If the source
program is not found there, INLIB1, 2, and 3 are searched next.

3.2.2.3 CULIB

The library in which the resulting compile unit(s) are to be stored. When omitted,
the default output CU library #CLIB, as defined by the MWLIB CU command is
assumed. If #CLIB is undefined, a temporary library is assumed.

Compilation

47 A2 60UL 3-21

3.2.2.4 INCLUDE

The library in which the system include files are kept. When omitted, the standard
system library (SYS.C.INCLUDE) is used.

3.2.2.5 OPTIMIZE

The compiler requests the optimization level that is specified in the OPTIMIZE
parameter. There are five levels of optimization, 0 through 4, and level 2 is the
default.

3.2.2.6 PACKAGE

This parameter specifies that the source file requires automatic packaging. The
default is no automatic packaging.

For more information on automatic packaging, see section 8.4.

3.2.2.7 LIST

If 1 (default), a listing of the source program is produced; if 0, no source listing is
produced.

3.2.2.8 MAP

If 1, an allocation map for the data is produced; if 0 (default), no such map is
produced.

3.2.2.9 DEBUG

If 1, the resulting Compile Units are eligible for being debugged by the Program
Checkout Facility in symbolic mode; if 0 (default), only "effective address" mode
debugging will be available.

C Language User's Guide

3-22 47 A2 60UL

3.2.2.10 XREF

If 1, cross-reference tables of the data and then, included library members are
produced; if 0 (default), no such tables are produced.

3.2.2.11 WARN

If 1 (default), warning (severity 2) diagnostics are issued; if 0, warnings are not
issued.

3.2.2.12 OBSERV

If 1 (default), observation (severity 1) diagnostics are issued; if 0, observations are
not issued.

3.2.2.13 ROUND

If 1, floating point results are rounded; if 0 (default), floating point results are
truncated.

3.2.2.14 EXPLIST

If 1, included program lines are listed; if 0 (default), included lines are not listed.

3.2.2.15 LEVEL

The level of the standard which is to be applied when checking the language
syntax.

3.2.2.16 SILENT

If 1, errors are not reported at the user's terminal, if 0 (default), errors are reported
together with the erroneous lines at the user's terminal.

Compilation

47 A2 60UL 3-23

3.2.2.17 PRTLIB

The library in which the listing is to be produced. The name of the listing in the
library is built up from the program name with suffix _L (e.g. MYPG_L for source
program MYPG). When omitted, the default printout library #PRTLIB, as defined
by the MPRTLIB command, is assumed. If #PRTLIB is undefined, a temporary
library is assumed.

3.2.2.18 BUILTIN

The BUILTIN parameter specifies that every function of the C library is considered
as built in. You cannot redefine them to have your own implementation. This
allows the compiler insert some functions in the user code.

3.2.2.19 PSEGMAX

This parameter set to 1 specifies that this file requires automatic segcoding. The
size of the current code segment is the implementation-defined value, the compiler
uses another segment in which to place the object code for the function. The
current implementation-defined value is 56 Kbytes.

Because there are at most only 12 segment entries, this allows several short
segments instead of one large one. This option is especially useful in packaging
mode.

The default is no segcoding, in which case the object code for a source file (or a
package) is put in a single segment.

3.2.2.20 EXPLIB

The EXPLIB parameter specifies an output SL library that stores the result of the
preprocessing phase. The C program that results can be then compiled.

The name of the member that is the combination of that of the source member and
the suffix "_I".

For example, given the following source member:

C SOURCE=MYCFILE INLIB=MYLIB EXPLIB=MYLIB;

After execution, this gives the following member:

MYCFILE_I in MYLIB.

C Language User's Guide

3-24 47 A2 60UL

3.2.2.21 EXPONLY

The EXPONLY parameter specifies that only preprocessing phase of the compiler
is executed. The eventual syntactical or semantical errors are not detected. The
EXPLIST or EXPLIB option uses this.

3.2.2.22 MODSTRNG

The MODSTRNG parameter specifies if characters can be modified. If this
parameter is not present, the specified level determines the default value. The
STANDARD level has modifiable strings as the default, but ANSI does not. In this
way, this parameter increases portability of files between levels.

3.2.2.23 INLINE

The INLIN parameter activates an optimizing function that automatically merges
procedures.

3.2.2.24 INFILE

An alternative to SOURCE and INLIB designating a sequential file containing the
programs to be compiled.

3.2.2.25 PRTFILE

An alternative to PRTLIB designating a sequential file where the listing is to be
stored.

3.2.2.26 OBJ

If 1 (default), object compile units are generated for valid source programs; if 0, no
Compile Units are generated, even if the source programs are valid.

3.2.2.27 CODE

The identification of the machine for which the code is to be generated. Refer to
the compiler documentation for the acceptable values. (See 3.1.2.9.)

Compilation

47 A2 60UL 3-25

3.2.2.28 LNUMBER

If I (default), line numbers appearing in cross-reference table are internal (i.e.
compiler-generated) line numbers; if X, line numbers are the external (i.e. source
program) numbers.

3.2.2.29 LFATAL

If 1 (default), constructs that do not fall into the designated level (LEVEL
parameter) are reported as fatal errors; if 0, these are reported as observations.

3.2.2.30 CHECK

The CHECK parameter enables you to generate the code corresponding to the
verification of the tables during their reference.

3.2.2.31 BATCH

If 0 (default), the compilation is executed in interactive mode; if 1, the compilation
is executed in batch mode as an absentee job with default batch execution
parameters NHOLDOUT, JOR=ABORT, and SEV=3; if 2, the compilation is
executed in batch mode, and the user may supply the following job parameters
through entry on a separate screen:

CLASS = [A - ZZ]
PRIORITY = [0 - 7]
HOLDOUT = [0 | 1]
DEST = [name8][.name8]
HOLD = [0 | 1]
BANNER = [0 | 1]
BANINF = [char12 [char12 [char12 [char12]]]]
JOR = [NORMAL | ABORT | NO]
JOBNAME = [name8]
SEV = [1 | 2 | 3 | 4 | 5]

For more information concerning these absentee job execution parameters, refer to
the description of the ENTER_JOB_REQ (EJR) directive in Section 2, Part 3.

• If BATCH=1, the compilation will be executed as an absentee job with jobid
CLANG. If BATCH=2, the absentee jobid will be the value specified by the
user; the default value is CLANG.

• In batch mode, the BATCH parameter is ignored.

C Language User's Guide

3-26 47 A2 60UL

3.2.3 Constraints

The following constraints apply to the parameters:

• Either SOURCE or INFILE must be specified.
• INLIB can be used only in conjunction with SOURCE.
• PRTLIB and PRTFILE are mutually exclusive.
• TURM version for BATCH related contraints.

3.2.4 Examples

CL APG (compile program APG from the default SL
library into the default library)

CL B
MYPROJ.MYLIB
CULIB=MYPROJ.MYCULIB

(compile program B from the specified SL
library into the specified library)

CL (A* B*) (compile programs with names starting with A or
B from the default SL lib. into the default library)

CL X* XREF MAP
PRTLIB=MYPROJ.LSTG

(compile a set of programs with the specified
options and printout library)

Compilation

47 A2 60UL 3-27

3.2.5 Interactive Compilation by Menu

The menu below corresponds to the GCL command CLANG.

These parameters are explained in section 3.2.2.

**
* Emulator xdku *
* *
* CLANG -->:*
* *
* compile C program(s) *
* *
* SOURCE source program names *
* *
* INLIB input library (default is #SLIB) *
* *
* CULIB resulting CU library (default is #CLIB)*
* *
* INCLUDE system library to include *
* SYS.C.INCLUDE *
* OPTIMIZE optimization level (0-4) 2 *
* PACKAGE compile in packaged mode ? 0 *
* LIST produce a listing ? 1 *
* MAP produce a data map ? 0 *
* DEBUG produce a PCF data base ? 0 *
* XREF produce a cross reference table ? 0 *
* WARN report warnings ? 1 *
* OBSERV report observations ? 1 *
* ROUND rounded arithmetic ? 0 *
* *
* EXPLIST list expanded source program ? 0 *
* LEVEL GCOS 7,STANDARD,ANSI,GANSI STANDARD *
* SILENT silent mode ? 0 *
* PRTLIB listing library (default is #PRTLIB) *
* *
* BUILTIN 0 *
* PSEGMAX automatic segmentation ? 0 *
* EXPLIB output library for expanded source *
* *
* EXPONLY preprocessing only ? 0 *
* MODSTRNG constant strings not writtable ? 0 *
* INLINE try to inline functions ? 0 *
* *
* *
* *
* *
* *
* -- *
* *
* *
* EXPL LIGNE L05:C79 *
* *
**

C Language User's Guide

3-28 47 A2 60UL

3.3 Searching for Include Files

There are two forms of syntax for the #include preprocessor command. They are as
follows:

#include "member_name" The standard search path applies to this syntax
because the file is assumed to be the user's
include file. If INLIB exists, the compiler
searches first in the INLIB library, and then it
searches in INLIB1, INLIB2, and INLIB3. The
compiler searches last in INLIBZ (or INCLUDE)
library. For more information about INLIBi, see
section 3.1.2.1.

#include <member_name> This syntax applies for a system include file. The
compiler searches in the INLIBZ (or INCLUDE)
only.

NOTES:
1. A member_name is the name of the subfile contained in the specified

library.

2. For compatibility reasons, a period is converted to an underscore in the
member name variable. A slash (/) is converted to a dash (-) and lower
case to upper case. For example, dir/name.h becomes DIR-NAME_H.

Compilation

47 A2 60UL 3-29

3.4 Compiler Messages in the JOR

Here is a description of the messages displayed in the JOR by the C compiler.

CCG00 COMMON CODE GENERATOR VERSION vv.nn <update-id>

Meaning: This is an information message giving the version of
the code generator used by the compiler. The field
<update-id> gives the modification level of the
compiler.

CCG UNKNOWN GENERATOR CODE:<name>

Meaning: The generation code <name> in option CODE is not
accessible.

Result: The compiler aborts.

Action: Correct the CODE parameter (see code option).

CL01 ERROR WHEN OPENING THE PRTLIB.
RC = edited-return-code

Meaning: The C compiler failed to open the permanent report
file; the reason is indicated by the return code. The
most common return code is RC=EFNUNKN, which
indicates that the report file specified has not been
found on the specified volume.

Result: The compiler proceeds but the listing is produced in
the standard SYSOUT and will be deleted after being
printed.

Action: Correct the JCL if it is wrong, otherwise contact your
Service Center.

C Language User's Guide

3-30 47 A2 60UL

CL02 ERROR WHEN OPENING THE PRTFILE.
RC = edited-return-code

Same as for CL01.

CL03 ERROR WHEN OPENING THE INLIB.
RC = edited-return-code

Meaning: The compiler failed to open the file containing the
source program(s) to be compiled. The file can be
either a library or an input enclosure. The most
common return code is RC=EFNUNKN, which
indicates that the library specified in the INLIB
parameter of the CL statement has not been found on
the volume specified.

Result: No compilation is performed.

Action: Correct the JCL if it is wrong, otherwise contact your
Service Center.

CL04 ERROR WHEN OPENING CULIB, OBJECT CODE WILL NOT BE PRODUCED.
RC = edited-return-code

Meaning: The C compiler failed to open the library where the
compile unit was to be stored; the reason is indicated
by the return code. This message is very unusual when
a temporary CU library is being used. When a
permanent CU library is being used, the most common
return code is RC=EFNUNKN; this indicates that the
library specified in the CULIB parameter of the CL
JCL statement has not been found on the volume
specified.

Result: The compiler continues its processing but does not
generate a CU.

Action: Correct the JCL if it is wrong, otherwise contact your
Service Center.

Compilation

47 A2 60UL 3-31

CL05 ERROR WHEN PROCESSING SOURCE LIST (BUILD).
RC = edited-return-code

Meaning: A problem occurred when the compiler attempted to
retrieve source members from the input library. The
reason is indicated by the return code.

Result: No compilation is performed.

Action: Report the problem to your Service Center.

CL06 ERROR WHEN OPENING INLIB SUBFILE member-name (OPENS)
RC = return-code

Meaning: An incident occurred when the compiler attempted to
access a source member from the input library. The
reason is indicated by the return code. The incident
may be due to a system error, but the most common
cause is that the subfile does not exit. (return code:
SFNUNKN).

Result: Compilation is aborted.

Action: Report the problem to your Service Center.

CL07 ERROR WHEN OPENING PRTLIB SUBFILE file-name_L. (OPENS).
RC = edited-return-code

Meaning: An incident occurred when the compiler attempted to
create the member to receive the listing created by the
compiler. Note that the name of the member is derived
from the file name by adding the "_L" suffix. The
reason is indicated by the return code. The incident
may have been caused by a system error.

Result: The listing will be stored in the standard SYSOUT; it
will, therefore be deleted after being printed.

Action: Report the problem to your Service Center.

C Language User's Guide

3-32 47 A2 60UL

CL7 (H_RDN_ELINE): THE SPECIFIED SUBFILE DOES NOT EXIST
 IN THE LIBRARY.

Meaning: The member specified does not exist in the source
library specified.

Result: If several compilations were requested, the compiler
advances to the next member.

Action: Correct the JCL.

CL08 ERROR WHEN CLOSING INLIB SUBFILE member-name (CLOSES).
RC = edited-return-code

Meaning: An incident occurred at the end of reading the source
program; the reason is indicated by the return code.
Such an incident is unusual and may be caused by a
system error.

Result: Compilation continues.

Action: Check that the compilation was correctly performed
and report the problem to your Service Center.

CL8 (H_RDN_ELINE): MEMBER NOT IN CL LANGUAGE
 (ILLEGAL SSF DATA TYPE).

Meaning: The source member input to the compiler has not
TYPE=CL.

Results: The compiler aborts.

Action: Possibly change the type of the source member using
the LIBMAINT utility. (Detailed explanations of
source member types can be found in the Library
Maintenance Reference Manual.) Be sure that the
member contains CL source code.

Compilation

47 A2 60UL 3-33

CL09 ERROR WHEN CLOSING PRTLIB SUBFILE file-name_L. (CLOSES).
RC = edited-return-code

Meaning: An incident occurred at the end of creation of the
listing in the print library; the reason is indicated by
the return code. Such an incident is unusual and may
be due to a system error. Note that the name of the
member is derived from the file name by adding the
"_L" suffix.

Result: The listing may be accessible from the print library. At
the time of the incident the CU had already been
produced (assuming that no serious errors were
detected in the source program).

Action: Report the problem to your Service Center.

CL11 ERROR WHEN CLOSING CULIB
RC= edited-return-code

Meaning: An incident occurred when the compiler attempted to
close the CU library; the reason is indicated by the
return code. The incident may be due to a system
problem.

Result: The CUs had already been produced and may be
accessible from the CU library.

Action: If the incident was an I/O error, check the disk drive
and disk pack. Contact Field Engineering if necessary.

CL12 ERROR WHEN CLOSING INLIB
RC= edited-return-code

Meaning: An incident occurred when the compiler attempted to
close the library containing the source programs; the
reason is indicated by the return code. The incident
may be due to a system problem.

Result: Compilation continues.

Action: If the incident was an I/O error, check the disk drive
and disk pack. Contact Field Engineering if necessary.

C Language User's Guide

3-34 47 A2 60UL

CL13 ERROR WHEN CLOSING SYSOUT.
RC = edited-return-code

Meaning: An incident occurred when the compiler attempted to
close the standard SYSOUT containing the listing; the
reason is indicated by the return code. The incident
may be due to a system problem.

Result: The incident occurred at the end of compilation; so the
CUs had already been produced. The listing produced
may be accessible and may be successfully printed.

Action: If the incident was an I/O error, check the disk drive
and the disk pack supporting the file. Contact Field
Engineering if necessary.

CL13 ERROR WHEN CLOSING PRTLIB.
RC = edited-return-code

Meaning: An incident occurred when the compiler attempted to
close the report file; the report file may be either a
library specified in the PRTLIB parameter or a
sequential file specified in the PRTFILE parameter.
The return code gives the reason for the incident; it
may be due to a system problem.

Result: Same as previous message

Action: Same as previous message

CL15 ERROR WHEN WRITING ON SYSOUT (PUT)
RC = edited-return-code

Meaning: The compiler was unable to write a record in the
standard SYSOUT containing the report; the reason is
indicated by the return code. Such an incident is
unusual and may indicate a system problem.

Result: The compiler aborts. CL00 messages in the JOR
indicate which CUs (if any) have already been
produced. A partial listing of the program being
processed at the time of the incident may be accessible.

Action: If the incident was an I/O error, check the disk pack
and the disk drive supporting the file. Contact Field
Engineering if necessary.

Compilation

47 A2 60UL 3-35

CL15 ERROR WHEN WRITING ON PRTLIB (PUT)
RC = edited-return-code

Meaning: The compiler was unable to write a record in the report
file; the report file may be either a library specified in
the PRTLIB parameter or a sequential file specified in
the PRTFILE parameter. The return code indicates the
reason for the incident. The return code DATALIM
means that the file or library is full and cannot be
further extended. Note that:
− The PRTFILE is processed in append mode.
− In the PRTLIB, the listing of the procedure

"procname" is stored in the member "procname_L"
and replaces those created by a previous
compilation of "procname".

Result: Same as previous message

Action: Same as previous message

CL16 ERROR WHEN READING member_name from INLIB (GET)
RC = edited-return-code

Meaning: The compiler was unable to read a source record either
from a user library or from the standard SYSIN library.
The reason for the incident is given by the return code.
Such an incident is unusual and may indicate a system
problem.

Result: The member is not compiled; control passes to the next
member.

Action: Same as for CL15

CL17 OPENS CULIB WORK MEMBER: member-name
RC = edited-return-code

Meaning: The compiler was unable to create the member in the
CU library to receive the CU being generated. The
reason for the incident is indicated by the return code.

Result: The compiler aborts. The old version of the program
being compiled is still available in the CU library
because the compiler creates the new version of the
CU in temporary member and replaces the old version
by the new one only when the CU generation phase
has been completed.

Action: Same as for CL15.

C Language User's Guide

3-36 47 A2 60UL

CL18 OPENS CULIB OLD_MEMBER: member-name
RC = edited-return-code

Meaning: The compiler was unable to access the member that
contains the old version of the program being
compiled; it cannot replace the old version with the
new one.

The return code indicates the reason for the incident - it is probably due to a system
problem.

Result: The compiler aborts.

Action: If the incident was an I/O error, check the disk drive
and the disk pack supporting the file. If, necessary,
contact Field Engineering.

CL19 procname IS ALREADY AN ALIAS IN CULIB. DUPLICATE NAME

Meaning: An attempt was made to create a CU while there
already exists in the library another CU with a
secondary entry point (or data with the SYMDEF
attribute) whose name is the same as that of the
procedure being compiled.

Result: The new CU cannot be created in the library.

Action: Use the LIST command of LIBMAINT CU to get the
name of the procedure that contains the secondary
entry point, then rename the new procedure or use a
new CU library.

CL20 GET CULIB OLD MEMBER: member-name
RC = edited-return-code

Meaning: In order to replace the old version of the CU with the
new version, the compiler first reads the old CU. An
incident has occurred while reading a record.
The return code indicates the reason for the incident; it
is probably due to a system problem.

Result: The compiler aborts

Action: Same as for CL18.

Compilation

47 A2 60UL 3-37

CL21 PUT CULIB WORK MEMBER: member-name

Meaning: The compiler was unable to write a CU record in the
CU library. The reason for the incident is given by the
return code. Return code DATALIM indicates that the
CU library is full.
Remember that the compiler generates the CU in a
work member before replacing the old version of the
CU by the new one. Enough room must, therefore, be
provided in the CU library to create the work member
even when an old version of the CU already exists in
the CU library.

Result: The compiler aborts. The old version of the CU (if one
exists) is still available from the CU library.

Action: Possibly compile the program again using another CU
library.
If the incident was an I/O error, check the disk drive
and the disk pack supporting the library, or delete the
old CU using LIBMAINT CU.

CL22 STOW (ADD) CULIB ALIAS alias-name TO member-name
RC = edited-return-code

Meaning: The compiler is compiling the program named
"member-name". This program contains a secondary
entry point, or data with the SYMDEF attribute,
named "alias-name". The compiler is trying to store, in
the directory of the CU library, the name of the
secondary entry point (or data with the SYMDEF
attribute) as an alias of the main entry point. That is,
both names lead to the same CU member.
An incident has occurred during the operation; the
reason is given by the return code. The most common
return code is "DUPNAME", which means that the
name of the secondary entry point (or data with the
SYMDEF attribute) already exists in the directory of
the library either as a main entry point or as a
secondary entry point of another procedure.

Result: The new CU is created in the library but the implied
name is not catalogued in the directory as an alias of
this CU.

Action: Possibly use the LIST command of LIBMAINT CU to
check the contents of the CU library.

C Language User's Guide

3-38 47 A2 60UL

CL23 CLOSES (DELETE) CULIB MEMBER: member-name
RC = edited-return-code

Meaning: The compiler was unable to delete the old version of
the CU in the CU library; the reason is indicated by the
return code. Such an incident is unusual and may
indicate a system problem.

Result: Compilation continues. Use the LIST command of
LIBMAINT CU to check the contents of the library.

Action: If the incident was an I/O error, check the disk drive
and the disk pack supporting the file. Contact your
Service Center if necessary.

CL24 CLOSES CULIB WORK MEMBER = member-name
RC = edited-return-code

Meaning: The compiler was unable to close the CU work
member; the reason is indicated by the return code.
Such an incident is unusual and may indicate a system
problem.

Result: The compiler aborts. The old version of the CU is
normally available in the CU library.

CL25 STOW (DELETE) CULIB ALIAS: alias-name OF member-name
RC = edited-return-code

Meaning: An old version of the CU being produced already
exists in the library. The old version of the program
had some secondary entry points (or data SYMDEFs)
whose names were catalogued in the CU library as
alias names of the main entry point. The compiler is
deleting these aliases. An incident occurred when the
compiler was deleting one of the aliases; the alias
name is given in the message. The reason for the
incident is indicated by the return code.

Result: Compilation continues. The alias concerned is not
deleted from the directory of the library. Further
consequences can be:
− Error CL22 in the same compilation when the

compiler tries to add this name as an alias of the
new CU.

− Return code ADDROUT at linkage time when this
name is referenced.

Action: Same as for CL23.

Compilation

47 A2 60UL 3-39

CL26 THE SOURCE MEMBER member-name IS EMPTY

Meaning: The specified input member is empty; it does not
contain any records.

Result: If several compilations were requested, the compiler
advances to the next compilation.

CL28 CHNAME CULIB FROM WORK member-name-1 TO member-name-2
RC = edited-return-code

Meaning: An old version of the CU being created already existed
in the library. The compiler has created the new
version of the CU in a member with work name
"member-name-1". After deleting the old member, the
compiler renames the work member using its original
name - "member-name-2". An incident has occurred
during this operation; the reason is indicated by the
return code.

Result: The compiler aborts.

Action: If the incident was an I/O error, check the disk drive
and the disk pack supporting the file. Contact your
Service Center if necessary.

CL30 VMMACC WORK. RC = edited-return-code

Meaning: A problem has arisen in the management of backing
store used by the compiler; the return code gives the
reason for the incident. This message indicates a
system problem.

Result: The compiler aborts.

Action: Contact your Service Center.

CL31 VMFOP WORK. RC = edited-return-code

Same as for CL30

CL32 VMFCL WORK. RC = edited-return-code

Same as for CL30

C Language User's Guide

3-40 47 A2 60UL

CL33 ERROR WHEN OPENING THE SYSOUT.
RC = edited-return-code

Meaning: The compiler was unable to open the standard
SYSOUT in order to create the compiler report; the
return code gives the reason for the incident. This error
is unusual and may indicate a system problem.

Result: The compiler aborts. The CU has already been
produced in the CU Library.

Action: If the incident was an I/O error, check the disk drive
and the disk drive supporting the file. Contact your
Service Center if necessary.

CL35 SEGSIZE FCB_POOL. RC = edited-return-code

Same as for CL30

CL37 ERROR WHEN READING THE CR101 FOR member-name.
RC = edited-return-code

Meaning: The compiler was unable to read the control record
101 either from a user library or from the standard
library SYSIN. This incident should be very unusual
and may indicate a system problem.

Result: The control record is ignored.

Action: Same as for CL33.

CL38 THE SOURCE MEMBER member-name is NOT IN SSF FORMAT

Meaning: The source program input to the compiler is not in SSF
format; the compiler cannot process it. This error may
occur when an input enclosure was used and no
"TYPE" parameter was specified in the $INPUT JCL
statement, in which case the compiler would assume
TYPE = DATA.

Result: The compiler aborts.

Action: If the source program is in an input enclosure, specify
TYPE=DATASSF OR TYPE=CL in the JCL statement
$INPUT. If the source program is in a permanent
library, use LIBMAINT to create a member in SSF
format (for example, the MOVE command). See the
Library Maintenance Reference Manual for more
details on data format and data type.

Compilation

47 A2 60UL 3-41

CL39 THE SOURCE MEMBER member-name IS NOT IN CL LANGUAGE

Meaning: The source member input to the compiler has neither
TYPE=DATASSF nor TYPE=CL.

Results: The compiler proceeds. This may produce strange
results if the member does not contain CL source code
(for example, if it contains JCL commands or a
COBOL source program).

Action: Possibly change the type of the source member using
the LIBMAINT utility. (Detailed explanations of
source member types can be found in the Library
Maintenance Reference Manual.)

CL42 THE TYPE OF THE INLIB LIBRARY SHOULD BE SL

Meaning: The library input to the compiler is not a source
language library.

Result: The compiler aborts.

Action: Check the JCL, correct it if it is wrong.

CL43 THE TYPE OF THE CULIB LIBRARY SHOULD BE CU

Meaning: The library specified in the CULIB parameter is not a
compile unit library.

Result: The compiler aborts.

Action: Check the JCL, correct it if it is wrong.

CL44 THE TYPE OF THE PRTLIB LIBRARY SHOULD BE SL

Meaning: The library specified in the PRTLIB parameter is not a
source language library.

Result: The compiler aborts.

Action: Check the JCL, correct it if it is wrong.

C Language User's Guide

3-42 47 A2 60UL

CL45 THE COMPILER GIVES UP IN phase-name PHASE WHEN COMPILING
 member_name

Meaning: Information message displayed when the compiler has
given up (aborted). It indicates:

− the name of the program being processed: proc-
name

− the phase of compilation processing: phase-name

Action: Report the problem to your Service Center.

CL46 THE COMPILER ABORTS IN phase-name PHASE WHEN COMPILING
 member_name

Meaning: This message is displayed when the compiler has
aborted due to an internal error. It indicates:

− the name of the program being processed: proc-
name

− the phase of compilation the compiler aborted:
phase-name

Action: Report the problem to your Service Center.

CL47 VMM TABLE OVERFLOW

Meaning: An internal problem has arisen in the management of
backing store working files used by the compiler.

Result: The compiler aborts.

Action: Report the problem to your Service Center.

CL48 UPDATE: ERRONEOUS LENGTH

Same as for CL47

Compilation

47 A2 60UL 3-43

3.5 Compiler Limitations and Restrictions

The maximum number of parameters allowed when calling a function is 128. The
maximum number of significant characters in an identifier is 31. For an expression
involving nested parentheses, the maximum number of nestings depends on:

• The stack used for syntactic analysis.

• The complexity of the expression.

However, for a simplified expression of the following type, the maximum number
of nestings is 75:

<list of open parentheses><expressions without parentheses>
<list of closed parentheses>

The maximum number of nestings allowed for other structures is as follows:

block 20
structure 20
iterate 20
switch 25
conditional expression 10
conditional compilation 20
constructor type 19
functions call 30
include command 15

3.5.1 Some Compiler Restrictions

The following restrictions apply when compiling.

• The first line of the file to compile must be a blank line in the following
situations:

a. To pass a command string at compilation time.
b. To define a macro outside a file for a specific purpose.
c. To include a local file, if necessary.

• The following values cannot initialize an automatic object in the main function:

a. The value returned by any file-handling functions of the C library.
b. The argc or argv values.

• In a ternary expression such as E1?E2:E3, E2 must be enclosed in brackets if it
is a common expression.

C Language User's Guide

3-44 47 A2 60UL

3.6 Compiler Listing

The compiler generates several different listing sections. The options given to the
compiler determine which listing is generated. The available listings sections are
as follows:

• A source listing with error messages

• Any data segment and line location maps (related to data and code allocation)

• A cross reference listing

• An error summary report

3.6.1 Source and Error Listing

The compiler produces a listing that consists of the following:

• A banner page containing the compiler version. In this example, the compiler
version is 40.01.

• A list of the active options. These are either the default values or the values that
the user requests.

• The location of the compiled object.

The listing is as follows:

**
**
**** GCOS7 ****
**** C ****
**** VERSION: 40.01 DATED: JAN 08,1991 ****
*****C_SAMPLE_L***
**

ADDITIONAL INFO: 9

 active options are :
OBJ, WARN, OBSERV, NCHECK, NMAP, NXREF, LIST, NEXPLIST, NDEBUG, NROUND, ILN,
LEVEL=STD, OBJCD, LFATAL, OPTIMIZE=3
17:08:24 SEP 10, 1991 X1377.5 compilation of ;001377.TEMP.SLLIB: C_SAMPLE

This listing also contains the source listing with internal line numbers (ILN),
beginning with 1, allocated to the compiler. It can contain any error messages. The
dollar ($) character prefixes any erroneous lines.

Compilation

47 A2 60UL 3-45

The following is an example of an error message.
** $ 1 B2 Illegal character, ignored.

The form of the error message is as follows:
aaaa order-no code message-text

Where:
aaaa Either one, two, three, or four asterisks. They indicate the

message severity as follows:
* observation
** warning
*** serious error
**** fatal error

An observation message indicates the action taken by the
compiler when this is not clear from the source code. The
NOBSERV or NWARN parameters, when specified in the JCL
statement C or the C GPL procedure, suppress the observation
messages.

A warning message indicates a possible error. The statement is
compiled, but the results can be unexpected. The NWARN
parameters, when specified in the JCL statement C or the C
GPL procedure, suppress the warning messages.

A serious error message indicates a major error in the program.
The compiler continues to check the source code, but does not
produce a compile unit. The message "NO CU PRODUCED" is
printed in the summary page and in the JOR.

A fatal error message indicates that an error has occurred that
prevents the compiler from continuing analysis or generating
object code. These errors include system, compiler, compiler
limit exceeded, user, and use of a feature not included in the
level of compilation being used. No compile unit is produced
and a message stating this is printed in the summary page and
in the JOR. Some of the errors that generate fatal messages
include the following:

code An identifier of the error that occurred. This identifier consists
of a letter and a number. The letter indicates the compiler phase
that detected the error. Each letter is described below.

order-no When there is more than one error in a line, this number
indicates the order in which the errors occurred.

message-text A short explanation of the error.

C Language User's Guide

3-46 47 A2 60UL

The following table lists each code letter, along with its associated phase and
action.

Letter Phase Action

A Option analysis Correct the option in JCL or GCL
command

B Preprocessor and lexical Correct the program

C Syntax analysis Correct the program to comply with
the C syntax

D semantic analysis of declarations Correct the program to comply with
the C semantic

F semantic analysis of statements Correct the program to comply with
the C semantic

H code generation Internal error: contact your Service
Center

I final allocation Limit exceeded: restrict your
program

N adapter (allocation) Generally, limit exceeded: restrict
your program

O local optimizer Information messages on
optimization processing

Q global optimizer Information messages on
optimization processing

S optimization services Limit exceeded: restrict your
program or decrease optimization
level

Y debugging Limit exceeded: restrict your
program or do not use symbolic
debugging (DEBUG option)

Compilation

47 A2 60UL 3-47

3.6.2 Data Maps

Data maps are produced only if the MAP parameter is specified; NMAP is the
default. Three maps are produced:

• SYMDEF map
• SYMREF map
• line location map

A SYMDEF (symbolic definition) is an entry point or data entity within the
compile unit, which can be referred to from another compiler unit. A SYMREF
(symbolic reference) is a reference to another compile unit. SYMDEFs and
SYMREFs are generated at compilation time and matched at linkage time. See the
LINKER User's Guide for more information.

The following shows the SYMDEFS and SYMREFS generated in a compile time
example.

ACKER_HG / 0 10/ PROCEDURE
1 SYMDEFS GENERATED: 0 REFERENCE DATA. 1 REFERENCE PROCEDURES.
THE ADDRESSES ABOVE REFER TO INTERNAL SEGMENT NUMBERS (ISN'S)
WHICH ARE MAPPED INTO SEGMENT TABLE NUMBERS (STN'S) AND SEGMENT
TABLE ENTRIES (STE'S) BY THE STATIC LINKER.

 / 0 0C/= / 0 18/ SEGMENT NUMBER
 / 0 18/= / 0 08/ SEGMENT NUMBER
 / 0 14/= / 0 18/ SEGMENT NUMBER
ACKER_HG / 0 1C/ PROCEDURE
H_CLR_EPILOG / 0 20/ PROCEDURE
H_CLR_EPROLOG / 0 24/ PROCEDURE
H_CLR_EPRINTF / 0 28/ PROCEDURE
 / 0 2C/= / 1 00/ SEGMENT NUMBER
 / 0 08/= E/ 0 30/ SEGMENT NUMBER
 / 0 10/= E/ 0 CA/ SEGMENT NUMBER
10 SYMREFS GENERATED: 0 REFERENCE DATA. 4 REFERENCE PROCEDURES.
6 SEGMENT NUMBERS.
THE ADDRESSES ABOVE REFER TO INTERNAL SEGMENT NUMBERS (ISN'S) THAT
ARE MAPPED INTO SEGMENT TABLE NUMBERS (STN'S) AND SEGMENT TABLE
ENTRIES (STE'S) BY THE STATIC LINKER.

C Language User's Guide

3-48 47 A2 60UL

3.6.3 Segment Map

The segment map specifies how many segments are generated. The information is
given in the following form:

usage /isn displacement/ size name

Where:

usage can be LINKAGE_SECTION, CODE SEGMENT,
DATA SEGMENT, or P.C.F. DATA BASE.

isn is the internal segment number given by the GPL
compiler. displacement is the offset from the beginning
of the segment.

size is the size of the segment in bytes. It is specified in
decimal and hexadecimal in parentheses.

name is the name of the segment, if it has one.

The first value for isn 0 is the deplacement value of register BR7 at the beginning
of the procedure, which is the offset of the linkage section.

LINKAGE SECTION / 0 18/ 18 (24)
CODE SEGMENT / 0 30/ 15E (350)
DATA SEGMENT / 1 00/ 33 (51)

3.6.4 Line Location Map

The line location map specifies the segment and location of the instructions
generated from each line of source code. This information is useful when an
exception message that contains an address has been output. You can trace the line
of source code where the exception occurred on the line location map.

Note that the address given is the byte at which the instructions begin. Also, the
instructions generated from one line of source code can occupy a large number of
bytes. One line of source code can have more than one entry in the line location
map.

The following is an example listing.

ISN: 0
132:30 133:38 133:40 135:4A 135:56 137:7E 143:DE 144:10A
145:136 146:180

Compilation

47 A2 60UL 3-49

3.6.5 Cross Reference Listings

The data cross reference listing can be used for each object used in the program. It
indicates the following about the object:

• Name

• Allocation - for variables

• Class - for other objects

• Data type, storage class, and size for variables and functions

• Line of definition, optionally followed by the line of declaration (enclosed with
brackets)

• List of the lines where the object is referenced. The plus (+) symbol denotes
multiple referenced, the star (*) symbol denotes a point where the object is
modified.

The includes cross reference listing can be used for each valid member included in
the program. It indicates the following about the included member:

• Name, translated if necessary to GCOS format (refer to # include command in
chapter 7), but with the " " or <> format.

• Location

• Last modification date and time

• List of the lines where the member is included. The plus (+) symbol denotes
multiple included, a list of include member names denotes indirect include of
the library member where " " denotes an intermediate path.

C Language User's Guide

3-50 47 A2 60UL

The following is an example of a data cross reference listing.

 _adrec structure tag 65 NO REF

 _dcom structure tag 89

 REF: 132

 _iob structure tag 71

 REF: 90 306 311 312

 _its_list structure tag 129

 REF: 148

 _pcs structure tag 145 NO REF

 div_t typedef struct div_t_ typedef 398

 REF: 490

 div_t_ structure tag 394 NO REF

1 error ?BR1.8 unsigned auto 4 686

 REF: 689* 692* 696

 fpos_t typedef struct typedef 70

 REF: 82 337 339

1 j ?BR1.C unsigned auto 4 686

 REF: 690*+ 691+ 693

 ldiv_t typedef struct ldiv_t_ typedef 404

 REF: 492

 ldiv_t_ structure tag 400 NO REF

1 p ?BR7.44->0 char *[100] static 400 683

 REF: 683 691*

 size_t typedef long unsigned typedef 27

 REF: 310 314 335+ 336+ 465+ 469 471 484+ 487+

 REF: 498 499 501+ 502+ 617 618 620 622 623

 REF: 625 626 629 632 634 635 636 640+

 va_list typedef char * typedef 48

 REF: 321 322 323

 wchar_t typedef int typedef 386

 REF: 499 500 501 502

 H_CLR_EMALLOC ?BR7.3C void *() extern 0 (469)

 REF: 691

 H_CLR_EPRINTF ?BR7.40 int () extern 0 (317)

 REF: 693 697 699

 TEST_ALLOC1 ?BR7.0 int () extern 685

 REF: 685

Compilation

47 A2 60UL 3-51

The following is an example of an includes cross reference listing:

DG_C

 INCLUDES CROSS-REFERENCES

 NAME DATE_TIME ORIGIN

"CMALIB_CRTLX_H" 06/18/93 14:52 FROM FORT.Z2.SLLIB

 5"GCOSCONF_H""SYSCONF_H""CMA_H"+ 5"GCOSCONF_H""SYSCONF_H"

"CTYPE_H" 04/04/91 15:10 FROM SYS.C.INCLUDE

 5"GCOSCONF_H""SYSCONF_H"

"DG_H" 06/18/93 14:52 FROM FORT.Z2.SLLIB

 37

"DGCCALLT_H" 06/18/93 14:52 FROM FORT.Z2.SLLIB

 42"DGCCALLT_H" 43

"DGGLOB_H" 06/18/93 14:52 FROM FORT.Z2.SLLIB

 37"DG_H"

"DGGSOC_H" 06/18/93 14:52 FROM FORT.Z2.SLLIB

 37"DG_H"

"DGUTIL_H" 06/18/93 14:52 FROM FORT.Z2.SLLIB

 37"DG_H"

"EXC_HANDLING_H" 07/27/93 15:29 FROM FORT.Z2.SLLIB

 5"GCOSCONF_H""SYSCONF_H""CMA_H" 37"DG_H""COMMONP_H" "RPCEXC_H"

<LOCALE_H> 04/04/91 15:12 FROM SYS.C.INCLUDE

 5"GCOSCONF_H""SYSCONF_H""CTYPE_H"

The user include CMALIB_CRTLX_H is included several times in CMA_H,
which is included in SYSCONF_H, which is included in GCOSCONF_H, which is
included on line 5 in DG_C program (XLN). CMALIB_CRTLX_H is also
included once in SYSCONF_H and GCOSCONF_H only on the same line.

The system include CTYPE_H is included with the " " format in SYSCONF_H
while the system include LOCALE_H is included with the < > format in the
CTYPE_H (the system include CTYPE_H is included despite its " " format).

C Language User's Guide

3-52 47 A2 60UL

DG_H is included directly on the line 37 of the DG_C program and includes
DGGLOB_H, DGSOC_H, and DGUTIL_H.

DGCCALLT_H is included in DGCCALL_H which is included on line 42 of
DG_C program and, directly on line 43 of DG_C program.

EXC_HANDLING_H is included via CMA_H, SYSCONF_H, and
GCOSCONF_H. EXC_HANDLING_H is included on line 5 of DG_C program
and on line 37 of the DG_C program via RPCEXC_H. RPCEXC_H is included by
intermediate members whose "parent-" is included via COMMONP_H and DG_H.

3.6.6 Summary Page

The final page of the compilation listing is the summary page. This states whether
the compilation produces object code, if any error messages are generated, and
gives a summary of the message with line numbers.

When a compilation is successful, generates object code, and produces no error
messages, it has a summary page that says only the following:

+ + + NO ERROR MESSAGES + + +
 OBJECT CODE PRODUCED

In the example below, one warning message was produced at line 131, and object
code was produced.

 +++NUMBER OF ERROR MESSAGES+++
 + +
 + +
 + * 0 +
 + +
 + * * 1 +
 + +
 + * * * 0 +
 + +
 + * * * * 0 +
 + +
 + +
 ++++++++++++++++++++++++++++++
 ERRONEOUS LINES
 131 **
 OBJECT CODE PRODUCED

47 A2 60UL 4-1

 4. Linking

4.1 General

The LINKER is a utility which builds an executable load module from a set of
compile units. These compile units may result from the compilation of programs
written in different source languages. The LINKER resolves all references between
compile units and sets up links to run-time package procedures and system
procedures which are resolved at run-time. This description of LINKER covers the
following topics:

• LINKER JCL;
• Serial linkage;
• Interactive use of LINKER;
• LINKER commands of interest to the C programmer;
• Listings of interest to the C programmer.

For a more detailed description of the LINKER listings and commands see the
LINKER User's Guide.

4.1.1 Segment Numbers

The system recognizes two forms of segment number during compilation, linking,
program loading, and execution: the Internal Segment Number and the LINKER
Segment Number.

The Internal Segment Number is generated by the compiler to identify the
segments within a compiler unit. It appears to the left of the colon in the data map,
cross-reference and procedure map produced by the compiler. Internal segment
numbers are also included in the segment lists produced by the compiler and the
LINKER.

The LINKER Segment Number is generated by LINKER to uniquely identify each
segment in the load module. It is formed from a concatenation of segment table
number and segment table entry (stn.ste). LINKER segment numbers are included
in the segment list produced by LINKER and in the memory dump listing.

C Language User's Guide

4-2 47 A2 60UL

4.2 LINKER JCL Statement

The LINKER utility is called by the extended JCL statement LINKER. Figure 4-1
shows the format of the LINKER statement.

LINKER load-module-name

 [INLIB= (input-library-description)]

 [{ (output-library-description) }]
 [OUTLIB= { TEMP }]
 [{ }]

 [{ COMFILE = (sequential-input-file-description) }]
 [{ COMMAND='command [command]...' }]
 [{ ENTRY=entry-name [COMFAC] }]

 [PRTFILE= (print-file-description)]
 [PRTLIB= (print-library-description)] ;

Figure 4-1. LINKER JCL Statement Format

As the LINKER statement is extended JCL, it must not appear inside a step
enclosure. The following example illustrates the use of this statement:

$JOB...
 LIB CU INLIB1=CU.LIB;
 LINKER PROG_LM
 ENTRY=PROG
 OUTLIB=LM.LIB;
$ENDJOB;

The JCL statement LIB CU is used to set up a "search path" for LINKER to enable
it to find the referenced compile units. LINKER will look in CU.LIB for a compile
unit with a member-name PROG (specified in ENTRY=PROG). This is used as the
starting point for building the load module. The resulting load module will be
stored in library LM.LIB with the name PROG_LM. Note that, if either the LIB
CU statement or the INLIB parameter is used, TEMP will not be included in the
search path unless it is specified in one of these statements.

Linking

47 A2 60UL 4-3

The LINKER utility produces a load module and a listing. The load module may,
optionally, be stored in a temporary or a permanent library (OUTLIB parameter).
The listing may, optionally, be stored in the standard SYSOUT file or in a
permanent library or file (PRTLIB and PRTFILE parameters).

The following paragraphs describe the parameters which may be used in the
LINKER statement. Note that the following symbolic names used in Figure 4-1
refer to standard parameter groups which are described in the JCL Reference
Manual:

input-library-description

output-library-description

sequential-input-file-description

print-file-description

print-library-description

These parameter groups are not described below. See the JCL Reference Manual.

4.2.1 Load-Module-Name Parameter

This parameter is used to specify the name of the load module to be produced by
LINKER. The load-module-name must be alphanumeric and must start with a
letter. It can be up to 31 characters long.

If there is no ENTRY parameter or command in the LINKER statement, the main
compile unit (at which linking starts) is assumed to have the same name as the load
module. During the development of a program it is advisable to use the same name
for the source program, the compile unit and the load module. It should therefore
be normal practice to omit the ENTRY parameter and command from the LINKER
statement.

C Language User's Guide

4-4 47 A2 60UL

4.2.2 INLIB Parameter

This parameter is used to modify the search path used by LINKER. The input
library specified in this parameter will be used as the first library in the search path.
Note that, if either INLIB or the LIB CU JCL statement is used, TEMP is not
included in the search path unless it is specified in the LIB CU statement.

If no LIB CU JCL statement precedes the LINKER statement and no INLIB
parameter is used the search path will be:

1. TEMP compile unit library.

2. SYS.HCULIB system compile unit library.

If the INLIB parameter is used but no LIB CU statement is used, the search path
will be:

1. Library specified in INLIB parameter.

2. SYS.HCULIB.

If a LIB CU statement is used but no INLIB parameter is used, the search path will
be:

1. Libraries specified in LIB CU statement.

2. SYS.HCULIB.

If a LIB CU statement and the INLIB parameter are both used, the search path will
be:

1. Library specified in INLIB parameter.

2. Library specified in LIB CU statement.

3. SYS.HCULIB.

If both LIB CU and INLIB are used, only three libraries can be specified in the LIB
CU statement. This is because the search path can contain only four user specified
libraries in addition to the SYS.HCULIB, which is included at the end of every
search path automatically. If a fourth library (INLIB4) is specified in the LIB CU
statement, it will be ignored if the INLIB parameter is also used.

Linking

47 A2 60UL 4-5

4.2.3 OUTLIB Parameter

The OUTLIB parameter specifies the library in which the load module is to be
stored. An output-library-description or the keyword TEMP may be used in the
OUTLIB parameter.

If a library is specified, it must have been allocated previously by the LIBALLOC
LM utility (see the Library Maintenance Reference Manual) unless the SIZE
parameter is used in the output-library-description of OUTLIB. If TEMP is
specified, the load module will be written as a member of a temporary system
library.

If the OUTLIB parameter is omitted, this is equivalent to OUTLIB=TEMP.

The load module is stored in a library according to the following rules:

• If a load module of the same name is not already present in the library, and there
is no fatal LINKER error, the load module is stored in the library with the load-
module-name given in the LINKER statement.

• If a load module with the same name (normally a former version of the load
module) is in the library and there is no fatal linking error, the old load module is
deleted and the new one replaces it. If there is a fatal error during the linkage no
load module is stored; the old load module is still usable.

When an old version exists in the load module library, it is good practice to use a
new load-module-name for storing the new load module to assure retaining the old
and new versions together until the new one is proven executable. Once the new
load module is debugged, the old version can be deleted and the new one renamed
with the old name. Deletion and renaming are done using the LIBMAINT LM
utility.

Alternatively, the user can maintain a "stable" and "development" library. The
stable library should contain a working version of each program. The development
library should contain the latest version of each program currently being developed
and tested. Once successfully tested, programs can be moved from the
development library to the stable library.

C Language User's Guide

4-6 47 A2 60UL

4.2.4 COMMAND and COMFILE Parameters

The COMMAND and COMFILE parameters allow the user to specify a set of
commands to be obeyed by LINKER during the linkage process. The commands
can be stored in a command file (COMFILE parameter) or can be specified directly
(COMMAND parameter). The maximum length of a command string specified in
the COMMAND parameter is 2500 characters.

The available commands are ENTRY, LIST, and VACSEG. The commands
ENTRY, STACK3, SEGTAB1, and FILE are described briefly below as they are of
special interest to the C programmer. For a full description of all commands, see
the LINKER User's Guide. Commands must be separated by one or more spaces or
by a comma and zero or more spaces. The final command may be followed by a
semi-colon (;).

The COMMAND and COMFILE parameters can also be used to specify a series of
load modules to be linked during a single execution of LINKER.

4.2.5 ENTRY Parameter

This parameter specifies the entry-name to be used as the start point for program
execution. The compile unit containing this entry-name will be the first one used
by LINKER in building the load module. It can be omitted if the entry-name is the
same as the load-module-name.

As it is specified in the reference manual, all C programs must start with the
function "main". If a source member contains this function "main", the entry point
"main" is transformed into the entry point <source-member-name>. If the function
main is in an input_enclosure, the entry point main is transformed into the entry
point <input_enclosure_name>.

In the case of a source member, the entry parameter is:

ENTRY = <source-member-name>.

Linking

47 A2 60UL 4-7

4.2.6 PRTFILE Parameter

This parameter requests that the LINKER listing be appended to a permanent
SYSOUT file for printing or processing at a later stage by, for example, WRITER
or any text handling program or utility. Otherwise, the listing is printed at the end
of the job and no permanent copy is kept.

If the PRTFILE parameter is used, LINKER adds the listing to the SYSOUT file in
append mode. The PRTLIB parameter, on the other hand, replaces any previous
listing of the same name (see below). In either case, the LINKER listing will not be
printed automatically. Printing can be requested later by using a WRITER JCL
statement. Only the Job Occurrence Report will be printed at the end of job
execution.

When serial linkage is requested and the PRTFILE parameter is used, all listings
are stored in a single file.

4.2.7 PRTLIB Parameter

This parameter is similar to PRTFILE except that the listing will be stored in a
member of the library specified in the PRTLIB parameter. If several programs are
linked in series when the PRTLIB parameter is used, the listing for each program
will be stored in a separate library member. Each library member will be given a
name comprising the load-module-name suffixed by "_K". It replaces any member
of the same name.

C Language User's Guide

4-8 47 A2 60UL

4.2.8 Linker Commands

4.2.8.1 ENTRY Command

The format of the ENTRY command is:

ENTRY = member-name

The entry command specifies the entry-name to be used as the start point for
program execution. This command is used in the same way as the ENTRY
parameter. When the COMMAND or COMFILE parameter is used in the LINKER
statement, the ENTRY parameter cannot be used. The ENTRY command should be
used instead.

4.2.8.2 STACK3 Command

The format of the STACK3 command, as used for an executable C program, is as
follows:

STACK3= (INITSIZE=m[K]
 [MAXSIZE=n[K]]

 { YES }
 PAGING= { })
 { NO }

INITSIZE specifies the size of the initial page of the stack. The units are taken as
bytes unless the suffix K is present, in which case the units will be in Kilobytes.

MAXSIZE specifies the maximum size of the stack for an executable program. An
insufficient value of MAXSIZE leads to an R3STACKOV error message and an
abort of the executable program.

PAGING specifies if the stack may be composed of several segments (YES) or
must be restricted to only one segment (NO).

The default values are:

INITSIZE=2K,
MAXSIZE=16K,
PAGING=NO.

Linking

47 A2 60UL 4-9

4.2.8.3 SEGTABi Command

The format or the SEGTAB command, as used for an executable C program, is as
follows:

SEGTABi = (VSEG=n)

Where i can be 1, 2, or 3, indicating the segment table number, and n can be 0, 1, 2,
or 3, indicating the number of table entries.

This command is required only when an executable program uses dynamic
allocation that exceeds 64 Kbytes. This occurs if you receive an abnormal return
code from the malloc function.

4.2.8.4 FILE Command

The format of the FILE command, as used for an executable C program, is as
follows:

 { SEQ } [{ 1 }]
FILE = (FILEORG= { } [NBBUF = { - }]
 { DIRECT } [{ 2 }]

[{ 1 }]
[NUMBER = { }])
[{ nn }]

This command is used to reserve resources for one or several files when the
number of files used simultaneously by the executable program exceeds 10. The
value of nn is limited to 50, but you can have more than one FILE command.

C Language User's Guide

4-10 47 A2 60UL

4.2.9 Linker Output

The following paragraphs briefly describe the printer output produced by LINKER.
For a more detailed description of the printer output see the LINKER User's Guide.

The LINKER listing is composed of the following sections.

• Banner page and LINKER commands listing. All commands included in the
COMMAND parameter or command file of the JCL statement LINKER are
listed in the LINKER commands listing.

• Included compile units (if any). Details are printed for each compile unit
included in the load module as a result of using the INCLUDE command.

• Group information. This listing contains general information about the entire
process group. The listing is in two parts: global segment list and segment list.
The segment list is the most useful part of the LINKER listing for the
programmer and is described in more detail below.

• Cross-reference listing (if any). The cross-reference listing is only produced if
the LIST=XREF LINKER command is used. In this listing, for each external
name, the location of each reference to the name is shown.

• Linkage report and end page. The linkage report gives a summary of the error
messages generated by LINKER. This report is described below. The end page
simply contains the percentage of the total library space used by all load
modules currently in the library.

Linking

47 A2 60UL 4-11

4.2.9.1 Segment List

The segment list, contains an entry for each segment in the load module (including
global segments but excluding segments with H_ prefixed names). The segment
list is the most useful part of the LINKER listing for the following reasons:

• The LINKER segment number and internal segment number are shown for each
segment generated directly from user source code. The relationship between
these segment numbers has to be known when tracing the origin of abnormal
step terminations and in analyzing memory dump listings.

• The size of each segment in bytes is shown. This may be useful when estimating
working set requirements for program execution.

The headings and information in the segment list which are of use to the C
programmer are as follows.

SEG.# LINKER segment number in the form stn.ste.

IN CU: The name of the segment as it appears in the segment
list of the C line location map.

TYPE This indicates that the segment contains code (C..),
data (.D.) or linkage information (..L). Combinations
of these types are also possible (that is, /C.L/).

SIZE This indicates the size of the segment, in bytes.

MAXSIZE This indicates, in the case of a variable length segment,
the maximum size of the segment, in bytes. Note that
SIZE and MAXSIZE values are needed for working
set calculations.

C Language User's Guide

4-12 47 A2 60UL

4.2.9.2 Linkage Report

The first line of the linkage report contains either "ERRORS DETECTED" or "NO
ERRORS DETECTED". If no errors have been detected, the linkage report ends
immediately after printing the line "OUTPUT MODULE PRODUCED ON
LIBRARY library-name". However, if errors have been detected, a summary of
errors is now printed.

The summary of errors comprises one or more of the following lines:

• WARNINGS (SEV.1) : n

• ERRORS SEVERITY 2: n

• ERRORS SEVERITY 3: n

• ERRORS SEVERITY 4: n

where "n" is the number of errors in each category. If there are any errors of
severity 4 (fatal), an output load module will not be produced and the linkage
report will end with the line "NO OUTPUT MODULE PRODUCED". If there are
no errors of severity 4 the linkage report will end with the line "OUTPUT
MODULE PRODUCED ON LIBRARY library-name".

The end page simply contains the percentage of the total library space used by all
load modules currently present in the library.

4.2.9.3 Error Messages

Each error detected at linkage time saves at least one test execution of the user
program. In order to detect as many errors and inconsistencies as possible,
LINKER carries out checks on the interface between linked procedures. For
example, the arguments of a calling and called procedure must be compatible in
number and attributes; external data declared in different procedures must have
consistent attributes.

When an error is detected, LINKER outputs a message at the point in the listing at
which the error occurred. Error messages have one of the following formats:

**** WARNING nnnn message-text

**** ERROR nnnn SEVERITY s message-text

where "nnnn" is the message number, "s" is the severity and "message-text" is an
explanation of the situation. Severity "s" may have a value of 2, 3, or 4. (Severity 1
corresponds to a WARNING). Severity 4 is fatal and no load module will be
output. The total number of error messages of each severity is given in the linkage
report.

Linking

47 A2 60UL 4-13

4.2.9.4 An Example

**

**

**** GCOS7 ****

**** ****

**** L K ****

**** ****

**** VERSION: 90.00 DATED: JUN 30,1986 ****

**** ****

**

**********************************17-2**

**

ADDITIONAL INFO: 4 5

1 CODE (DEFAULT): OBJC OBJD

******************************LINKER CONTROL STATEMENTS***************************

2 LIST=S,

3 STACK3=(INITSIZE=128K,MAXSIZE=256K) ,

TASK=MAIN*****************************

4 PROCESS OCCURRENCES : PO OBJC OBJD

5 FATHER PROCESSES : NONE

6 BASE 1ST PAGE NB.PAGES SH INITSIZE MAXSIZ

7 STACK RING 0 8.12 NONE 0 3 0 4096

8 STACK RING 1 8.13 8.14 5 3 2048 16384

9 STACK RING 2 8.1A NONE 0 3 2048 16384

10 STACK RING 3 1. 0 NONE 0 3 131072 262144

11 ENTRY POINT = ACKER_HG LOCATION: 8.10.000010 IN CU: ACKER_HG

12 ==================================GROUP INFORMATION============================

13 MINIMUM CONTROL MEMORY REQUIRED : 8176 MINIMUM USER MEMORY REQED : 135632

14 FIXED SIZE SEGTS. CUMULATED SIZE: 9264 VAR SIZE SEGS CUM INIT SIZE : 135264

15 VAR SIZE SEGS CUMUL MAXIMAL SIZE: 524288 LOAD MODULE SIZE : 20913

16 CONTROL SEGMENTS

17 SEG NUM SEG NUM

18 PGCR 9. 0 PCS 8. 0

19 NPCS 8. 1 ITS LIST 9. 2

20 TASK.DIR. 9. 3 DEBUGGING 9. 5

21 PG P0 3 1 0 W 208

22 PGFECB 9. 8 DECB 9. 9

23 SEMPH. POOL 9. C SYMBMAP 9. B

24 TERMINATION 9. 4 ASL2 9. 1

25 ASL3 8. 3

26 GLOBAL SEGMENTS

27 SEGNAME SEG NUM CONTAINS

28 __REFTAB 9. A LOCATION LOCATION

29 H_CLR_EPILOG 000004 H_CLR_EPROLOG 000011

30 H_CLR_EPRINTF 00001F

31 SEGMENT LIST

C Language User's Guide

4-14 47 A2 60UL

32 SEG. IN CU.ISN TYPE SH RF RD WR EX WP EP G S SIZE MAXSIZE CONT.P.

33

34 8. 0 PCS .D. 3 3 3 0 0 W 352 *

35 8. 1 NPCS .D. 3 3 3 1 0 W 32 *

36 8. 3 ASL3 .D. 3 3 1 0 0 W 16 32768 *

37 8.10 ACKER_HG.0 C.L 3 3 3 3 3 E 400 0

38 8.11 ACKER_HG.1 .D. 3 3 3 3 0 W 64 0

39

40 9. 0 PGCR CD. 2 3 3 0 3 W E 4640

41 9. 1 ASL2 .D. 2 3 1 0 0 W 80 32768

42 9. 2 ITS LIST .D. 2 0 3 1 0 W

43 9. 3 TASK.DIR. .D. 2 3 3 0 0 W 48

44 9. 4 TERMINATION .D. 2 3 3 0 0 W S 96

45 9. 5 DEBUGGING .D. 2 3 3 1 0 W 0 32768

46 9. 6 PG PCP S .D. 2 0 1 0 0 W E 0 32768

47 9. 7 OPTION .D. 2 2 3 3 0 W 0 32768

48 9. 8 PGFECB .D. 2 3 1 0 0 W 0 32768

49 9. 9 DECB .D. 2 3 3 1 0 W 0 32768

50 9. A __REFTAB .D. 2 3 3 0 0 W 48

51 9. B SYMBMAP .D. 2 3 3 1 0 48

52 9. C SEMPH. POOL .D. 2 3 3 1 1 W S 3328

53

=======================================LIST OF CU (S)=============================

 ACKER_HG INLIB CREATED 18:20:24 DEC 19, 1989

 BY: C-LANG 30..22 CU OPTION:SCIENT EOD

LINKAGE REPORT**************************

NO ERRORS DETECTED

. OUTPUT MODULE PRODUCED ON LIBRARY ;000325.TEMP.LMLIB

MODULE IS OF CLASS (CODE): 0

NUMBER OF ITEMS PROCESSED

 - COMPILE UNITS 1

 - SYMDEFS 1 (PROC 1, DATA 0)

 - SYMREFS 4 (PROC 1, DATA 3)

 - CALLED SYSDEFS 0

 - NB OF CALL ''' 0

 - EXT. DATA NAMES 3

 - SEG.ENTRIES USED 514 (TYPE 2 255,TYPE 3 259)

 TYPE 2 VACANT 242

 TYPE 3 VACANT 228 IN MAIN

 LARGE 3 STN 1

L*I*N*K*E*R*************************

END OF SESSION************************

***********************************LAST PERCENTAGE OF SPACE USED 9

Linking

47 A2 60UL 4-15

4.3 Interactive Operation in GCL Mode

LINKER is activated with the LINK_PG command. All parameters are the same as
those of the LINKER command in BATCH mode. For more information, see the
IOF Terminal User's Reference Manual and the IOF Programmers Manual.

EXAMPLE:

S: LINK_PG?

 1/2 LINK_PG -->:

 link an executable module

LM name of the executable module prog

SM is executable module a TPR? 0

INLIB input library (default is #CLIB)
c.culib

Commands may be read from a file (COMFILE)
or directly supplied (COMMAND), or read from the terminal
(default).
COMFILE command file

COMMAND immediate commands
list=e

❑

C Language User's Guide

4-16 47 A2 60UL

4.4 Separate Compilation

4.4.1 General Information

Separate compiling enables splitting a logical program into several compile units
and putting these different compile units together to make up a unique executable
program.

Declaratives and definitions of functions and data items enable linking these units
with what are known as SYMREFS (symbolic references) and SYMDEFS
(symbolic definitions) which are generated at compile time.

The links are resolved by the static LINKER which attempts to match the object
definition (SYMDEF) with the object reference(s) (SYMREF).

4.4.2 Implementation

EXAMPLE:

Let P1 be a file containing.

1 #include <STDIO_H>

2 int a=3;

3 main ()

4 { extern int SQUARE ();

5 printf ("%d\n", SQUARE (a));

6 }

and P2 be a second file containing

1 extern int a;

2 int SQUARE (x) int x;

3 { a = x + 1;

4 return (a * a);

5 }

❑

Linking

47 A2 60UL 4-17

Compiling P1 produces a compile unit named P1, which contains 2 SYMDEFS: P1
and a. P1 (substituting main): is a procedure type, which is a PROC SYMDEF.
The other one, a, is a data type, which is a DATA SYMDEF.

Compiling also produces two SYMREFs:

• SQUARE: it is a procedure type
• printf: it is the same type.

Compiling P2 produces another compile unit with the name P2 containing:

a PROC SYMDEF : SQUARE

a DATA SYMREF : a

These SYMDEFs can be observed with the command "list<cu_name>, alias;" from
the LIBMAINT CU. Moreover, the SYMDEFs and SYMREFs previously
mentioned in the DATA MAP part of the compile listing can be found again in that
listing if the MAP option is active.

If the compile units from different programs are stored in several libraries, it may
be necessary to use the JCL command LIB CU. Search rules are the following:

INLIB library
INLIB1 library
INLIB2 library
INLIB3 library

EXAMPLE:

C SOURCE=P1 CULIB=myculib1, INLIB=temp;

C SOURCE=P2 CULIB=myculib2, INLIB=temp;

LIB CU INLIB1=myculib2;

LINKER P1 INLIB=myculib1;

❑

Starting from the compile unit containing the entry point main automatically
converted into P1, the LINKER resolves the references to external objects. If one
of the still unresolved objects is of the procedure type and belongs to a different
compile unit, the LINKER searches for the definition of this object in the compile
unit libraries according to the order previously indicated. The LINKER analyzes
the new compile unit as it did the previous one, and the process loops until all
references are resolved.

C Language User's Guide

4-18 47 A2 60UL

Three types of errors can be detected during this kind of processing. The messages
are supplied for information.

• CONFLICT BETWEEN REF/DEF ATTRIBUTES

The definition of the object and that of the reference are not the same. For
procedures or functions, the conflict bears on the type of the return value. No
checks are performed on the number and/or the type of arguments.

Note that this also applies to inter-language calls if the different language types
are in conflict.

• UNRESOLVED REFERENCE or NO MATCHING DEF.

No definition matching this reference can be found in the library path supplied
(for example, INLIB and INLIB1). Manipulating this object causes an exception
at execution time (FAULT DATA DESCRIPTOR or FAULT BASE REGISTER).

• THIS CATALOGED ENTRY ALREADY EXISTS.

The same object is defined in several compile units.

All these errors are indicated in the linkage report. The LINKER then usually ends
with a non null severity. A load module is still produced although errors can occur
at execution if used in this condition.

4.4.3 Inter-Language Calling

4.4.3.1 Correspondence Between Data Types

It is possible to call sub-routines and to reference data items coded in all languages
other than C supported by GCOS 7. The "correspondence table" below shows the
correspondence between the base types for C and those of other languages.

Note the following comments:

• External data cannot be manipulated from other languages.

• Aggregates (arrays, structures and unions) are implemented in the same way as
the corresponding objects of the external language, if they exist.

• Arrays are allocated in lines and then in columns. (This is the opposite of
FORTRAN.)

• Any correspondence not included in the table indicates constructs that are either
difficult or impossible to describe.

• Passing parameters by value is done in the same way as in PASCAL and GPL.

Linking

47 A2 60UL 4-19

Correspondence Table:

The following is a table showing the correspondences between the C language and
other GCOS 7 languages.

C GPL PASCAL FORTRAN COBOL
short int FIXED BIN(15) INTEGER*2 COMP-1
long int FIXED BIN(31) INTEGER INTEGER*4 COMP-2
int FIXED BIN(31) INTEGER INTEGER*4 COMP-2
char LOGBIN(8) BYTE CHAR CHARACTER*1
float FLOAT BIN(21) REAL COMP-9
double FLOAT BIN(53) REAL DOUBLE COMP-10
 PRECISION
short unsigned LOGBIN(16) BYTE
unsigned LOGBIN(32) BYTE
long unsigned LOGBIN(32) BYTE
pointer POINTER
function ENTRY RETURNS FUNCTION FUNCTION

Aggregates can correspond with each other. The following rules help do this:

• Elements in a structure are allocated in the same order.

• Arrays are allocated first by lines, then by column. This is true in several
languages, but not Fortran.

In STANDARD (or GCOS 7) mode, the type promotion is very important when
passing parameters. For example, float data is promoted to double; integer, short,
long, and character data is promoted to long.

However, in ANSI (or GANSI) mode, the argument is assigned the type of
corresponding formal parameter (if any) only in the function prototype. Otherwise,
the process is the same as in STANDARD.

The following are examples of aggregate correspondence in C and COBOL.

In C: struct s {int a; double t(2);} s;

In COBOL: 01 S
02 A COMP-1
02 T COMP-10 OCCURS 2

C Language User's Guide

4-20 47 A2 60UL

4.4.3.2 Passing Parameters Between Languages

Passing by Reference

By default, the passing of parameters is done by value in C, not by address.

For example, the program below does not pass the object i to p. It passes only a
copy of the object i, which contains the value 3.

i = 3;
p(i);

Any modification to the parameter in p has no influence on the argument i. When
returning from p into the caller, the value of i is still 3, no matter what the code of
p.

However, there are some procedures that need to modify a parameter. To do this, C
passes a pointer to the object, rather than passing the object itself, as in the
following example:

p (&i)

In this example, p is declared:

void p (*int)

This changes the interface slightly, because this passes a pointer to int, not the int
itself.

Most languages other than C pass parameters by reference, which means that a
modification to the called parameter affects the argument that the caller passes.
(Some exceptions to this are non VAR parameters in PASCAL and arguments
explicitly passed by value in GPL.)

The C language has an extension that can communicate with other languages. With
this extension, the C language can declare or define a function that accepts a
parameter passed by reference. This function is declared as follows:

extern a (&);

Only LEVEL=GCOS 7 and GANSI support this extension. This extension is very
convenient when the called procedure is written in a language other than C, for
example, COBOL, GPL, and FORTRAN.

Linking

47 A2 60UL 4-21

NOTE:
The pragma BYREF is equivalent to this extension. It has the same semantics
and is available on any level.

Another solution is to write a relay procedure, as follows:

CALLER () /* Calling in C */

{
char *point; char zone [13];
extern void CALLED ();

 (void) CALLED (&zone[0]);
}

CALLED: proc (point); /* Called in GPL */
DCL point PTR;
DCL obj CHAR(14) BASED (point) NOMAP;

 obj = "EFFET DE BORD" !!"00"H;

END CALLED;

Special syntax:

The function for which all arguments are passed by reference is declared with the
character "&" following the first parenthesis of the declarative.

C Language User's Guide

4-22 47 A2 60UL

4.4.3.3 Examples of Passing Parameters

This subsection contains several example programs showing parameter passing.
These programs are in C, COBOL, and GPL. The following conditions apply to
these examples:

• USAGE POINTER and SET ADDRESS are restricted to COBOL-85 LEVEL.

• The & feature is restricted to LEVEL GCOS 7 or GANSI, but the pragma
BYREF can be used at any level.

• There are no functions in COBOL, so the C functions that are called or those
that call COBOL programs are declared void.

• The minus (-) character is not allowed in C names. Uppercase and lowercase
letters in names can lead to error.

EXAMPLE 1: C AND COBOL

In this example, a COBOL program calls a C procedure. The C procedure copies
its first parameter into its second one. Both are displayed by the calling program.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CBLMAIN.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 PPW PIC X(10).
 LINKAGE SECTION.
 01 AA PIC X(10).
 PROCEDURE DIVISION USING AA.
 PAR.
 MOVE "ABCDEFGHIJ" TO AA.
 CALL "CPROG" USING AA, PPW.
 DISPLAY AA, PPW UPON TERMINAL.
 STOP RUN.

 void CPROG (& a,b) char a; char b; {
 int i;
 char *p1 = &a;
 char *p2 = &b;

 for (i=0; i<10; i++)
 *p2++=*p1++;
 }

❑

Linking

47 A2 60UL 4-23

EXAMPLE 2: C AND COBOL

In this example, a C program calls a COBOL procedure (CLP4). This procedure in
turn calls a C function (clp5). This is done in two programs. In this example, the
programs first use the byref (&) feature of the GCOS 7 compiler, where the
parameters are then passed by reference. This is followed by a corresponding
COBOL program. The first program is as follows:

#include <stdio.h>

main ()
{
extern void clp4 (&);
struct s1 {
int c1, c2, c3;
} ss;
int dd[2];
short tt;
float ff;
double bb;
char kk;
ss.c1 = 2;
ss.c2 = 3;
ss.c3 = 7;
dd[0] = 8;
dd[1] = 9;
tt = 11;
ff = 12;
bb = 13;
kk = 'K';
clp4 (ss, tt, ff, bb, kk, dd);
printf ("CLP: RES=%d\n", dd[1]);
}

void clp5 (& ss, tt, ff, bb, kk, dd)
struct s3 {
int c1, c2, c3;
} ss;
short tt;
float ff;
double bb;
char kk;
int dd[2];
{
dd[0] = ss.c3;
ff = tt;
bb = 13;
kk = 'K';
return;
}

C Language User's Guide

4-24 47 A2 60UL

The corresponding COBOL program writes as follows:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CLP4.
 DATA DIVISION.
*
 WORKING-STORAGE SECTION.
*
 LINKAGE SECTION.
 01 SS.
 02 C1 COMP-2.
 02 C2 COMP-2.
 02 C3 COMP-2.
 01 TDD.
 02 DD OCCURS 2 COMP-2.
 01 TT COMP-1.
 01 FF COMP-9.
 01 BB COMP-10.
 01 KK PIC X.
*
 PROCEDURE DIVISION USING SS, TT, FF, BB, KK, TDD.
 PAR.
 MOVE 21 TO TT MOVE 22 TO FF MOVE 23 TO BB
 MOVE "H" TO KK.
 ADD C1 TO C2 GIVING C3.
 CALL "clp5" USING SS, TT, FF, BB, KK, TDD
 MOVE FF TO DD (2).
 EXIT PROGRAM.

❑

Linking

47 A2 60UL 4-25

EXAMPLE 3: C AND COBOL (ADVANCED)

This example is like example 2 in that it is also of a C program that calls a COBOL
procedure (clp2), which in turn calls a C function (CLP3). In this example,
however, it is more difficult to use the C parameter passing conventions and to
adapt the COBOL program to deal with it.

#include <stdio.h>
main ()
{
externe void clp2 (&);
struct s1 {
int c1, c2, c3;
} ss;
int dd[2];
short tt;
float ff;
double bb;
char kk;
int * aa;
ss.c1 = 2;
ss.c2 = 3;
ss.c3 = 7;
dd[0] = 8;
dd[1] = 9;
tt = 11;
ff = 12;
bb = 13;
kk = 'K';
aa = &dd[1];
clp2 (ss, tt, ff, bb, kk, dd, aa);
printf ("CLP: RES=%d\n", dd[1]);
}
void clp3 (ss, tt, ff, bb, kk, dd)
struct s2 {
int c1, c2, c3;
} ss;
short tt;
float ff;
double bb;
char kk;
int dd[2];
{
dd[0] = ss.c3;
ff = tt;
bb = 13;
kk = 'K';
return;
}

C Language User's Guide

4-26 47 A2 60UL

The corresponding COBOL program is as follows.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CLP2.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 PPW USAGE IS POINTER.
 01 TT COMP-1.
 01 FF COMP-9.
 01 TDD.
 02 OCCURS 2 COMP-2.
*
 LINKAGE SECTION.
 01 SS.
 02 C1 COMP-2.
 02 C2 COMP-2.
 02 C3 COMP-2.
 01 TTX COMP-2.
* Promotion of short to long
 01 FFX COMP-10.
* Promotion of float to double
 01 BB COMP-10.
 01 KKX.
 02 FILLER PIC XXX.
 02 KK PIC X.
 01 PP USAGE POINTER.
* PP represents the array which is passed as a pointer.
 01 AA USAGE IS POINTER.
*
 PROCEDURE DIVISION USING SS, TTX, FFX, BB, KKX, PP, AA.
 PAR.
 MOVE TTX TO TT.
 MOVE FFX TO FF.
 SET ADDRESS OF TDD TO PP.
 ADD C1 TO C2 GIVING C3.
 MOVE DD(1) TO TT.
 SET PPW TO ADDRESS OF TDD.
 MOVE TT TO TTX.
 MOVE FF TO FFX.
 CALL "clp3" USING BY CONTENT SS, TTX, FFX, BB, PPW.
 MOVE FF TO DD (2).
 EXIT PROGRAM.
❑

Linking

47 A2 60UL 4-27

EXAMPLE 4: C AND GPL:

In these examples, C is the caller.

• Passing parameter by value. The value of i remains 1 after the execution of Q.
 extern Q();
 main () { int i; with: Q:PROC(B);
 DCL B FIXED BIN(31);
 i=1;
 Q(i);} B=100;
 END Q;

• Passing parameter by reference. The value of i is 100 after the execution of Q.
 extern Q(&); /* special syntactic feature available only
 at LEVEL=GCOS 7*/

 main () { int i; Q:PROC (B);
 i=1; with: DCL B FIXED BIN(31);
 Q(i);} B=100;
 END Q;

• Passing address by value. The value of i is 100 after the execution of Q.
 extern Q();
 main () { int i; with: Q:PROC(P);
 DCL P PTR;
 DCL B FIXED BIN(31) BASED;
 i=1
 Q(&i);/*address of i*/
 P -> B =100;
 } END Q;

❑

C Language User's Guide

4-28 47 A2 60UL

EXAMPLE 5: C AND GPL

In this example, C is called. The value of i is 100 after the execution of F.

Q:PROC; F(&b) int b;
DCL I FIXED BIN(31); with:
DCL F ENTRY (FIXED BIN(31)); {b=100;}
 I=1;
 CALL F(I);
 END Q;

❑

4.4.3.4 Restrictions on Use

If the starting entry point of a multi-language application is not the C main
function, the C Run Time Package must be initialized before any use of C Run
Time primitives. Refer to Chapter 10.3.

Linking

47 A2 60UL 4-29

4.5 Multitasking

4.5.1 What is Multitasking?

Multitasking is the process that performs several tasks at the same time. A task is a
sequence of instructions that can be executed asynchroneously with respect to
another task. Generally, a user program executes a single task, and this is a
monotask job.

There are facilities to build a multitask job written in C language. There is a set of
primitives that start or stop a task or synchronize tasks. The user concepts of task
and job are directly mapped in the hardware by process and job respectively.

For more information, see the System Overview.

4.5.2 Building a Multitask Application

When building a multitask program, there are three main points to consider:

• Splitting the tasks
• Sharing the memory and file data
• Synchronizing the tasks

4.5.2.1 Splitting Tasks

The GCOS 7 features require that the task splitting is static. This means that when
splitting tasks, each task must have a defined entry point specifying the procedure
that is called at task initiation. The static LINKER then builds the different tasks.
Each task is made of compile units that the corresponding entry point calls, unless
specific liner commands are used.

The static hierarchy of tasks is limited to one level. This is a defined main task and
a set of secondary tasks. Because only the main task can start secondary tasks, the
dynamic hierarchy is the same as the static hierarchy. A secondary task cannot start
another secondary task.

A secondary task can be started more than once and can have several running
occurrences at a same time. The maximum number of occurrences possible at any
one time is defined at link time.

The main task can share only statically-defined tasks. Each task must contain a
main function or initialize properly the C Run Time package if any C Run Time
primitive is used.

C Language User's Guide

4-30 47 A2 60UL

4.5.2.2 Passing and Sharing Data

There must be a means of communication between the tasks of a multitask
application. This can be established in the following ways:

• Passing information
• Sharing files
• Sharing data

Passing Information

The C language can pass information in two ways. One way is to pass parameters
between tasks. The begin_c_task function passes information from the main task
to the new starting task at initiation. This function is recommended over the
corresponding C primitive h_begtsk.

The other way to pass information is to send messages attached to a semaphore.
This is discussed later in this subsection.

Sharing Files

There are two ways that tasks can share a file. However, for either way, there are
no implicit file descriptors that are inherent from the main task to a starting
secondary task, except for standard files such as: stdin, stdout, and stderr. The
ways to share a file are as follows.

• The tasks share the same file description. The tasks pass the file description as a
parameter of the new starting task or share it as part of the data. The file
description is the returned pointer to a FILE structure, as described in the fopen
function. For more information, see the description of sharing data, below.

• Each task opens the file independently. The SHARE and ACCESS parameters
open the file in the tasks that require it. SHARE and ACCESS are described in
the fopen function.

Sharing Data

The most efficient means of communication between tasks is sharing memory. For
sharing data, there are two kinds of memory: type 2 and type 3. All the processes
of the same process group share type 2 memory, but other process groups or jobs
cannot. Type 3 memory is private for one process.

Depending on its storage class, the compiler, the LINKER, or the run-time package
allocates a block of memory into a segment. For type 2 segments, which are
process-group shared, the same segment name in several processes leads to the
same memory block. For type 3 segments, the same segment name in different
processes leads to different memory areas.

Linking

47 A2 60UL 4-31

Storage classes include, for example, static, automatic, and dynamic. Each storage
class has a default sharing level, which the user can change. Automatic data goes
into the stack segment, which has a default level of 3. Static data goes into a static
segment, which also has a default level of 3. The static LINKER allocates the
static segment. The code goes into a non-writable static segment, which also has a
default level of 3.

Dynamic data (that malloc creates) goes into a segment that the run-time package
dynamically allocates. Its default sharing is 2, unless no type 2 entry is available,
in which case type 3 segments are allocated.

The LINKER commands can change the default sharing level for non-dynamic
data. Non-dynamic data includes STACK3, MSEGAT and DSEGAT commands.
For dynamic data, allocation primitives can control the sharing level if the default
sharing strategy is not correct. For more information, see the C Language
Primitives Reference Manual.

NOTES:
1. Objects larger than 64Kbytes are allocated in large segments. The

SEGTABi command declares these segments at link time with a specific
sharing level.

2. When the malloc function allocates memory, it cannot be reallocated or
freed in another task.

3. Using a pointer in a process when it is already allocated elsewhere in
shared memory and assigned the address of a private area to a process can
lead to undefined behavior.

4.5.2.3 Synchronization with Semaphores

A semaphore is a system object with two operations, and it can synchronize tasks
under GCOS 7. A semaphore can be with or without a message.

For example, a task can perform a V-operation that resumes the execution of
another task, which in turn executes a P-operation.

C Language User's Guide

4-32 47 A2 60UL

4.5.3 Differences between GCOS 7 and Unix

This subsection describes some of the differences between GCOS 7 and Unix.

4.5.3.1 Static and Dynamic Hierarchies

Under GCOS 7, the description of the hierarchy is more restrictive. It is a one-
level hierarchy, that is a main task starting one or several secondary tasks, and it
shall be statically defined. Also, the static and dynamic hierarchies of tasks must
be the same.

Under Unix, creating a task is easier with the fork exec mechanism.

4.5.3.2 Sharing Data

Unix has a mechanism of implicit inheritance of data, whereas GCOS 7 provides a
data sharing mechanism.

4.5.4 Run time Functions and Primitives

4.5.4.1 begin_task_h header

The begin_c_task function includes this file. It contains the definition of the
task_param_t structure type, which the begin_c_task function also uses.

Synopsis

#include <begin_task_h>

int begin_c_task(char *task_name, short int occur, task_param_t *param);

Linking

47 A2 60UL 4-33

Description

The begin_c_task function activates a secondary task in a multiprocess application.
The pointer task_name points to the name of the starting task. If there are several
task occurrences in the application, the occur parameter gives the occurrence
number, beginning with 0. The pointer param points to a parameter structure that
has the following description and meaning:

typdef struct {int size_param;
 char list_param[MAX_TASK_PARAM];
 } task_param_t;

In this structure, size_param gives the size of the parameter area that is passed to
the launched task. Also, list_param is the parameter area itself. list_param is
limited to 10280 bytes.

The C language can describe the starting entry point of the secondary task as
follows:

main (argc, argv)

In this case, the standard semantics apply to the parameters argc and argv. That is,
the value assigned to the size_param must correspond to argc, and the value
assigned to list_param must correspond to the value of argv. Because argv is a
pointer, list_param must be declared as an array of four characters.

Diagnostics

When successful, the begin_c_task function returns 0. Otherwise, it returns 1. An
incorrect task name or occurrence number are common causes of failure.

C Language User's Guide

4-34 47 A2 60UL

4.5.4.2 Functions

This is a list of Run time functions that deal with multitasking.

begin_c_task This function begins the execution of a secondary task.
For more information, see the subsection directly
above.

abort, exit This function terminates execution of a task. The
execution of the return statement of the main function
also terminates the task.

argc,argv Main arguments are interpreted as argc and argv when
there are two defined arguments.

atexit This gives a set of functions that are executed before
task termination.

malloc/realloc
/calloc/free These allocate or deallocate memory.

clock This function gives the time of the task.

Linking

47 A2 60UL 4-35

4.5.4.3 Primitives

The C language primitives can be useful in multitasking. The following is a list of
some of these primitives with a short explanation of each. For more information,
see the C Language Primitives Reference Manual, especially the section describing
task management.

h_begtsk Starts the execution of a secondary task.
h_abtsk Stops the execution of a task.
h_testsk Tests the execution of a secondary task.
h_waitsk Waits for the termination of a secondary task.

h_crsempool Creates a semaphore pool
h_dlsempool Deletes a semaphore pool
h_getsem Gets a semaphore
h_freesem Releases a semaphore

h_sep Executes a P-op on a semaphore
h_sepm Executes a P-op on a semaphore with message
h_sept Executes a P-test on a semaphore
h_septm Executes a P-test on a semaphore with a message

h_sev Executes a V-op on a semaphore
h_sevf Executes a V-op on a semaphore with message

enqueued FIFO
h_sevl Executes a V-op on a semaphore with message

enqueued LIFO
h_sevtf Executes a V-test on a semaphore with a message

enqueued FIFO
h_sevtl Executes a V-test on a semaphore with a message

enqueued LIFO

C Language User's Guide

4-36 47 A2 60UL

4.5.5 LINKER Commands

This subsection describes some of the LINKER commands that deal with
multitasking. They are as follows:

ENTRY
TASK
DSEGAT
MSEGAT
SEGTABi
SEMPOOL
STACK3

For more information, see the Linker User's Guide.

ENTRY=entry_point_name

• This command defines the entry point of the main task.
 TASK=(task_name [, OCNB=p] , START=entry_name)

• This command defines the secondary tasks. task_name is the starting task's
name, which the begin_c_task function gives. p is the maximum number of
occurrences of the task that can be started at the same time, and the default is 1.
entry_name is the entry point for the task.

 DSEGAT=({CODESEG|INSTATIC|SEMSEG} [SHRLEVEL=t])

• The command changes the default sharing level for statically allocated segments.
 MSEGAT=({cu_name|seg_id|GLOBLSEG|segname} [SHRLEVEL=t])

• This commands modifies the sharing level of a specific segment.
 SEGTABi=(SHRLEVEL=t,VSEG=n)

• This command allocates large objects with a specific sharing level.
 SEMPOOL

• This command changes default size of the semaphore pool.
 STACK3=(TASK={MAIN|task_name} [SHRLEVEL=t])

• This command changes the default sharing level for a task. The default is 3.

4.5.6 Restrictions

A file can be connected to a terminal only in the main task, if not, the multitasking
process issues an abnormal return code. Also, the memory allocated in any given
task can be then reallocated or released only in that same task.

Linking

47 A2 60UL 4-37

4.5.7 Example of a Multitask Program

The following example is the C language adaptation of a multitask program. This
program is also described in the C Language System Primitives Reference Manual.

The job consists of a main task MAIN_TASK_C, and three secondary tasks
FIRST_TASK_C, SECOND_TASK_C, and THIRD_TASK_C. The sem semaphore
synchronizes the tasks. The semaphore is without message. The value of sem is
initially set to 0, and its maximum value is 2. Because the values of sem are shared
data, sem is declared in a dedicated compile unit (DATA_C) which LINKER
allocates in a type 2 segment.

MAIN_TASK_C
 10 #include <retcode.h>
 20 #include <jobm.h>
 30 #include <timer.h>
 40 #include <taskm.h>
 50 extern char *sem; /* pointer to semaphore, */
 60 /* shared by all tasks */
 70 main ()
 80 {
 90 char *message; /* message into JOR */
 100 char *sempool; /* pointer to semaphore pool */
 110 int wait_time=30000; /* waiting time used by */
 120 /* h_setelt_milsec function */
 130
 140 /* create a type 2 private semaphore pool, */
 150 /* it contains one semaphore without message */
 160 h_crsempool(sempool,0,1,128);
 170 if (!h_testrc(DONE))
 180 { message="Unable to create semaphore pool";
 190 { h_putjor(message,strlen(message)); }
 200 abort(); /* abort program */
 210 }
 220
 230 /* get a semaphore without message from pool, */
 240 /* initial count=0, maximum count=2 */
 250 { h_getsem(sem,sempool,0,2,SN); }
 260 if (!h_testrc(DONE))
 270 { message="Unable to get semaphore";
 280 { h_putjor(message,strlen(message)); }
 290 abort(); /* abort program */
 300 }
 310
 320 /* start "FIRST_TASK_C" to issue a P-operation */
 330 /* upon semaphore "sem". "FIRST_TASK_C" waits upon */
 340 /* "sem" whose count is -1 */
 350 { h_begtsk("FIRST_TASK_C",0,NULL_PTR); }
 360 if (!h_testrc(DONE))

C Language User's Guide

4-38 47 A2 60UL

 370 { message="Unable to start FIRST_TASK_C";
 380 { h_putjor(message,strlen(message)); }
 390 abort(); /* abort program */
 400 }
 410
 420 /* start "SECOND_TASK_C" to issue a P-operation */
 430 /* upon semaphore "sem". "SECOND_TASK_C" waits upon */
 440 /* "sem" whose count is -2 */
 450 { h_begtsk("SECOND_TASK_C",0,NULL_PTR); }
 460 if (!h_testrc(DONE))
 470 { message="Unable to start SECOND_TASK_C";
 480 { h_putjor(message,strlen(message)); }
 490 abort(); /* abort program */
 500 }
 510
 520 /* wait "wait_time" micro-seconds elapse time : */
 530 /* "SECOND_TASK_C" is started after this delay */
 540 h_setelt_milsec(wait_time);
 550
 560 /* test status of "FIRST_TASK_C" and "SECOND_TASK_C", */
 570 /* should be not yet terminated */
 580 { h_testsk("FIRST_TASK_C",0); }
 590 if (h_testrc(NOTYET))
 600 { message="FIRST_TASK_C not yet terminated";
 610 { h_putjor(message,strlen(message)); }
 620 }
 630 else
 640 { message="FIRST_TASK_C termination error";
 650 { h_putjor(message,strlen(message)); }
 660 abort(); /* abort program */
 670 }
 680
 690 { h_testsk("SECOND_TASK_C",0); }
 700 if (h_testrc(NOTYET))
 710 { message="SECOND_TASK_C not yet terminated";
 720 { h_putjor(message,strlen(message)); }
 730 }
 740 else
 750 { message="SECOND_TASK_C termination error";
 760 { h_putjor(message,strlen(message)); }
 770 abort(); /* abort program */
 780 }
 790
 800 /* start "THIRD_TASK_C" to issue two successive */
 810 /* V-operations upon "sem". "FIRST_TASK_C" and */
 820 /* "SECOND_TASK_C" resume their execution */
 830 /* Count of "sem" is 0. "THIRD_TASK_C" issues then a */
 840 /* P-operation upon "sem": so this task waits upon */
 850 /* "sem" whose count is -1 */
 860 { h_begtsk("THIRD_TASK_C",0,NULL_PTR); }
 870 if (!h_testrc(DONE))

Linking

47 A2 60UL 4-39

 880 { message="Unable to start THIRD_TASK_C";
 890 { h_putjor(message,strlen(message)); }
 900 abort(); /* abort program */
 910 }
 920
 930 h_setelt_milsec(wait_time);
 940
 950 /* test status of "FIRST_TASK_C" and "SECOND_TASK_C", */
 960 /* should be terminated */
 970 { h_testsk("FIRST_TASK_C",0); }
 980 if (h_testrc(DONE))
 990 { message="FIRST_TASK_C terminated";
1000 { h_putjor(message,strlen(message)); }
1010 }
1020 else
1030 { message="FIRST_TASK_C termination error";
1040 { h_putjor(message,strlen(message)); }
1050 abort(); /* abort program */
1060 }
1070
1080 { h_testsk("SECOND_TASK_C",0); }
1090 if (h_testrc(DONE))
1100 { message="SECOND_TASK_C terminated";
1110 { h_putjor(message,strlen(message)); }
1120 }
1130 else
1140 { message="SECOND_TASK_C termination error";
1150 { h_putjor(message,strlen(message)); }
1160 abort(); /* abort program */
1170 }
1180
1190 /* test status of "THIRD_TASK_C": */
1200 /* should be not yet terminated */
1210 { h_testsk("THIRD_TASK_C",0); }
1220 if (h_testrc(NOTYET))
1230 { message="THIRD_TASK_C active";
1240 { h_putjor(message,strlen(message)); }
1250 }
1260 else
1270 { message="THIRD_TASK_C termination error";
1280 { h_putjor(message,strlen(message)); }
1290 abort(); /* abort program */
1300 }
1310
1320 /* issue a V-operation on "sem": "THIRD_TASK_C" resumes */
1330 /* execution. Count of "sem" is now 0. */
1340 /* Wait until "THIRD_TASK_C" completion. */
1350 h_sev(sem);
1360 { h_waitsk("THIRD_TASK_C",0); }
1370 if (h_testrc(DONE))
1380 { message="THIRD_TASK_C terminated";

C Language User's Guide

4-40 47 A2 60UL

1390 { h_putjor(message,strlen(message)); }
1400 }
1410 else
1420 { message="THIRD_TASK_C termination error";
1430 { h_putjor(message,strlen(message)); }
1440 abort(); /* abort program */
1450 }
1460 }

FIRST_TASK_C
 10 #include <jobm.h>
 20 #include <taskm.h>
 30 extern char *sem;
 40 main ()
 50 {
 60 { h_putjor ("FIRST ==> BEGIN",15); }
 70 h_sep(sem);
 80 { h_putjor ("FIRST ==> END",13); }
 90 }

SECOND_TASK_C
 10 #include <jobm.h>
 20 #include <taskm.h>
 30 extern char *sem;
 40 main ()
 50 {
 60 { h_putjor ("SECOND ==> BEGIN",16); }
 70 h_sep(sem);
 80 { h_putjor ("SECOND ==> END",14); }
 90 }
THIRD_TASK_C
 10 #include <jobm.h>
 20 #include <taskm.h>
 30 extern char *sem;
 40 main ()
 50 {
 60 { h_putjor ("THIRD ==> BEGIN",15); }
 70 { h_putjor ("THIRD ==> issues a V-op",23); }
 80 h_sev(sem);
 90 { h_putjor ("THIRD ==> issues a V-op",23); }
 100 h_sev(sem);
 110 { h_putjor ("THIRD ==> issues a P-op",23); }
 120 h_sep(sem);
 130 { h_putjor ("THIRD ==> END",13); }
 140 }

DATA_C
 10 char *sem;

Linking

47 A2 60UL 4-41

The following GCL statements are for compilation and linkage of the program:

CLANG MAIN_TASK_C INLIB=.SLLIB CULIB=.CULIB EXPLIST

 PRTLIB=.LISLIB LEVEL=GCOS7 XREF;

CLANG FIRST_TASK_C INLIB=.SLLIB CULIB=.CULIB EXPLIST

 PRTLIB=.LISLIB LEVEL=GCOS7 XREF;

CLANG SECOND_TASK_C INLIB=.SLLIB CULIB=.CULIB EXPLIST

 PRTLIB=.LISLIB LEVEL=GCOS7 XREF;

CLANG THIRD_TASK_C INLIB=.SLLIB CULIB=.CULIB EXPLIST

 PRTLIB=.LISLIB LEVEL=GCOS7 XREF;

CLANG DATA_C INLIB=.SLLIB CULIB=.CULIB EXPLIST

 PRTLIB=.LISLIB LEVEL=GCOS7 XREF MAP;

LINK_PG LM=MULTITASK_C INLIB=.CULIB LIB=.LMLIB PRTLIB=.LISLIB

 COMMAND=#CAT('ENTRY=MAIN_TASK_C,'

 'TASK=(FIRST_TASK_C START=FIRST_TASK_C),'

 'TASK=(SECOND_TASK_C START=SECOND_TASK_C),'

 'TASK=(THIRD_TASK_C START=THIRD_TASK_C),'

 'MSEGAT=(DATA_C,1,SHRLEVEL=2);');

The following messages are written in the JOR during the program execution.

 LOAD MODULE = MULTITASK_C (16:57 SEP 14, 1988)

 LIBRARY = FUEL.LMLIB

17:14:47 STEP STARTED XPRTY=8

 CLR00: C Run Time version 20.00 17 -1

 FIRST ==> BEGIN

 SECOND ==> BEGIN

 FIRST_TASK_C not yet terminated

 SECOND_TASK_C not yet terminated

 THIRD ==> BEGIN

 THIRD ==> issues a V-op

 THIRD ==> issues a V-op

 THIRD ==> issues a P-op

 FIRST ==> END

 SECOND ==> END

 TASK FIRST_TASK_C J=0E P=01 COMPLETED

 TASK SECOND_TASK_C J=0E P=02 COMPLETED

 FIRST_TASK_C terminated

 SECOND_TASK_C terminated

 THIRD_TASK_C active

 THIRD ==> END

 TASK THIRD_TASK_C J=0E P=03 COMPLETED

 THIRD_TASK_C terminated

 TASK MAIN J=0E P=00 COMPLETED

C Language User's Guide

4-42 47 A2 60UL

❑

47 A2 60UL 5-1

 5. Execution and Debugging

This section describes how executable programs can be executed in batch and
interactive mode. The debugging facilities of DPS 7 C are also described.

5.1 Step Execution

An executable program in the load module format is built by the linker. The
execution of the load module is accomplished by execution of the associated STEP
JCL statement, a full description of which is given in the JCL Reference Manual.
The following is an example of the use of the STEP statement:

STEP MYPROG, MY.LIBRARY
 ,CPTIME = 10000
 ,LINES = 20000
 ,DEBUG = (A.LIBRARY, SUBFILE=DEBPROG)
 ,OPTIONS = 'CASE1'
 ,REPEAT;

The only mandatory parameters are MYPROG and its library description. The
other parameters appearing in the example are explained as follows:

MYPROG Is the load module name, contained in the library
member MYPROG.

CPTIME Limits the use of the CPU time in units of one-
thousandth of a minute. Here 10 minutes.

LINES Limits the number of records written on the SYSOUT
file, that is printed lines. Here 20000 lines.

DEBUG Specifies that step execution is under control of the
Program Checkout Facility, and that its commands are
on the library member DEBPROG.

OPTIONS Specifies a character string CASE1, accessible from
the executable program by the use of ARGC ARGV.
ARGC yields 2 and ARGV[1] points to "CASE 1".

REPEAT Specifies that the step is to be restarted after a system
crash.

C Language User's Guide

5-2 47 A2 60UL

5.2 Execution in Batch Mode

Execution in batch mode is illustrated in the following example, where a job is set
up (compiled and linked) in interactive mode and then submitted for batch
execution.

The program P is assumed to be the one created in the preceding section.

EXAMPLE:

S: LMN SL,LIB=(C.SLLIB,DVC=MS/D500,MD=K104);

C: EDIT;

R: A

I: $JOB JCLP,REPEAT;

I: C SOURCE=P,INLIB=(C.SLLIB,DVC=MS/D500,MD=K104);

I: LINKER P;

I: STEP P,TEMP,CPTIME=5000,LINES=1000;

I: ENDSTEP;

I: $ENDJOB;

I: /

R: Z(JCL) JCLP

R: /

C: /

S: EJR JCLP LIB=Z2.SLLIB:K104:MS/D500;

❑

Note that for batch execution, it is good programming practice to put a limit on the
CPU time and the number of printed lines. This will force termination of the
program if it gets caught up in an endless loop.

Execution and Debugging

47 A2 60UL 5-3

5.3 Interactive Execution in GCL Mode

Execution of a C program is done with the EXEC_PG command. For more
information, see the IOF Terminal User's Reference Manual.

EXAMPLE:

S: EXEC_PG?;

1/9 EXEC_PG -->:

execute a user program

PG + name of program to be executed

LIB program library (none is #LLIB or TEMP)

c.lmlib

LINES maximum number of printout lines 1000

CPTIME maximum CPU usage time 500

ELAPTIME maximum permitted clock-time 2000

DEBUG PCF input file (TN is terminal)

REPEAT allow checkpoints ?

DUMP NO, DATA, ALL

SIZE program working set

OPTIONS program option string

a b c

+++

2/9 EXEC_PG -->:

execute a user program

FILE1 internal file name my_file1

ASG1 file assign parameters

c.buglib

ALC1 file allocation parameters

DEF1 define file parameters

OUT1 output parameters

❑

C Language User's Guide

5-4 47 A2 60UL

5.4 External Interface

An external interface is established through the option string which is transmitted
to 'main' in the C program by the two parameters ARGC and ARGV. ARGC gives
the number of literal sequences separated by blanks in the option string
incremented by 1. ARGV is an array containing a pointer to a value for the
character strings (ARGV [0] contains the name of the program).

EXEC_PG TT OPTIONS=' X Y2T U ';
yields: ARGC=4 ARGV[0]="TT", ARGV[1]="X", ARGV[2]="Y2T",
ARGV[3]="U".

NOTE:
Each option is a C string ending with 0.

5.5 Batch or Interactive Debugging

The Program Checkout Facility is a system resident facility for debugging
executable programs. It is especially useful in interactive mode , as you can start
execution, stop at any line modify variables and so on without compiling the
program again.

The principal PCF commands are:

• CHANGE to assign a new value to a variable or array element.

• DUMP to print the values of variables or array elements.

• GOTO to start (or restart) execution at some source line.

• PAUSE to stop interactive execution at a specified source line, if a certain
condition is verified.

• TRACE to print the labels (or subroutine names) of lines which have been
executed.

The operands of all these commands can be designated by the name of subroutines
and their source lines. You can designate symbols by their source names as
opposed to their physical addresses.

Restrictions: References to identifiers written in lower-case must be
between simple quotes. Character strings are printed as
binary bytes.

Execution and Debugging

47 A2 60UL 5-5

EXAMPLE:

1 main (){
2 int a,b,c;
3 a = 3;
4 b = a * 4;
5 l: c = a + b;
6}

S: EXEC_PG P C.LMLIB DEBUG=TN;

 (((PCF AT ESSC LINE 1 ILN 1 IN P
 ...PCF AT BEGINNING OF MAIN PROCEDURE.
 ...100 D: p at line 3;
 ...110 D: go;
)))
 (((PCF AT * LINE 3 ILN 3 IN P
 ...100 PAUSE
 ...110 D: d a,b,c;
 ... a 135528472
 ... b 135266312
 ... c 135528680
 ...110 D: c a=10;
 ... a 10 (135528472)
 ...110 D: p at 1
 ...120 D: go;
)))
 (((PCF AT 1 LINE 5 ILN 5 IN P
 ...110 PAUSE
 ...120 D: d a,b,c;
 ... a 3
 ... b 12
 ... c 135528680
 ...120 D: go;
)))
S:

❑

C Language User's Guide

5-6 47 A2 60UL

5.6 Errors at Execution Time

At execution, errors are detected either inside the program or in the load module.

Errors detected in the load module are written in plain language in the JOR or at
the console if executed interactively. The first correspond to an exception.

5.6.1 Errors Inside a Program

Errors inside a program have the following form:

FATAL EX01. EXCEPTION xx.yy: <exception type> IN TASK
 MAIN AT ADDRESS <address>
WARNING

Where:

<address>

corresponds to the segmented address where the error was detected under the form:
stn.ste.sra.

The pair stn.ste enables finding the corresponding segment from the listing
produced by linker. The move in the segment is supplied by the sra value. The
corresponding source line can be found using the compile listing in the
Correspondence Table DATA MAP, LOC:LINE (if the MAP option was requested
at compile time).

Execution and Debugging

47 A2 60UL 5-7

The main values that can be found for xx.yy. are the following:

06.00 ACCESS OUT OF incorrect pointer, incorrect array
 SEGMENT BOUNDS subscript without check

0B.00 R3 STACK OVERFLOW insufficient stack size, see Section IV

0E.01 FAULT DATA pointer at NIL external object
 DESCRIPTOR

0E.02 FAULT BASE not found at linkage
 REGISTER

10.00 FLOATING POINT errors in floating point arithmetic
 OVERFLOW (real numbers)

10.01 FLOATING POINT
 UNDERFLOW

10.02 FLOATING POINT
 DIVIDE

11.00 FIXED POINT errors in fixed point arithmetic
 OVERFLOW (integers)

11.01 FIXED POINT
 DIVIDE

11.02 SUBSCRIPT OUT OF subscript outside authorized range
 ARRAY RANGE of adjustable array

Arithmetic exceptions are warnings. The other errors are fatal, meaning that the
corresponding step is aborted.

C Language User's Guide

5-8 47 A2 60UL

5.6.2 Errors in Load Module at Execution Time

Errors in the RTP (Run Time Package).

All messages returned by the RTP have the following form:

CLR<internal number>:<message> [<return code>] opt

The complete list of messages is supplied in the following paragraph. The internal
error number is insignificant for the user.

Since using C means that it is the user who manages proper or improper
functioning of the run-time primitive called by transmitting his own error message,
the printing of standard messages can be invalidated through the two macros
defined in STDIO_H: set_silent_mode () and cancel_silent_mode (). Otherwise,
standard messages are printed by default.

However, any error occurring when the standard files stdin, stdout and stderr are
opened produces a message from the RTP since in this particular case the current
task is aborted.

The return code is an error code returned by the system.

A message can also be printed with a return code of the 'DONE' type which means
that the error indicated does not necessarily cause an erroneous return of the run-
time function that was called.

NOTES:
1. A run-time exception may be due to a user error in the employment of

some function or other (faulty passed pointer, loss of information
necessary to the RTP for memory management, etc). For performance
reasons, the RTP does not always check the validity or the number of
passed arguments, so it goes without saying that such exceptions may
occur.

2. When the C main function is executed, the C Run-Time package checks
that no more than 16K stack memory (i.e. auto variables) are requested.
This restriction is due to the on-condition mechanism, triggered when an
exception occurs. If this limit is reached, an error MAIN FUNCTION'S
STACK IS TOO BIG is emmitted. In such a case, the user must rename his
main function, for example into:
 main2 ()
and write a new main function that does nothing but call main2:
 main() { main2(); }

Execution and Debugging

47 A2 60UL 5-9

5.7 Run-Time Errors

The following messages are intended to be self-explanatory. If you cannot
determine what action to follow, please contact your Service Center.

ABNORMAL CONNECTION (CRFD).

ABNORMAL FFLUSH (CLOSE).

ASSIGNATION TO SYSOUT FAILED.

BUFFER VARIABLE ALLOCATION FAILED.

CANNOT ALLOCATE A LARGE OBJECT, USE LK CMD:SEGTAB1=(SHRLEVEL=2,VSEG=N).

CANNOT BE CONNECTED: INCORRECT FILE LITERAL.

CANNOT READ FILE DEFINITION OF H_PR.

CLOSE FAILED (CLOSE).

DOUBLE HAS BEEN TRUNCATED (ETOF).

DYNAMIC ALLOCATION UNSUCCESSFUL (CANNOT CREATE SEGMENT).

DYNAMIC VARIABLE SIZE TOO LARGE: IT CANNOT BE ALLOCATED IN A SEGMENT.

EFN NOT AVAILABLE VOLUME IS NOT ALREADY MOUNTED.

FAPPEND MAY NOT BE USED ON A BFAS DIRECT FILE.

FILE IS ALREADY CONNECTED, PREVIOUS CONNECTION PRESERVED.

FILE LITERAL ERROR: REMOTE FILE NAME > 255 OR = 0 AT INDEX <XX>.

FILE LITERAL ERROR: INPUT ENCLOSURE NAME LONGER THAN 16 AT INDEX <XX>.

FILE LITERAL ERROR: UNKNOWN OPTION AT INDEX <XX>.

FILE LITERAL ERROR: WORKING DIRECTORY MAY BE USED WITH CAT FILES ONLY

 AT INDEX <XX>

FILE LITERAL ERROR: EMPTY WORKING DIRECTORY AT INDEX <XX>

FILE LITERAL ERROR: CONFLICTING ATTRIBUTES AT INDEX <XX>.

FILE LITERAL ERROR: REMOTE FILES NOT IMPLEMENTED.

FILE LITERAL ERROR: EMPTY STRING OR INVALID AT INDEX <XX>.

FILE LITERAL ERROR: ILLEGAL CHARACTER AT INDEX <XX>.

FILE LITERAL ERROR: SITE LENGTH > 8 AT INDEX <XX>.

FILE LITERAL ERROR: EFN LENGTH > 44 AT INDEX <XX>.

FILE LITERAL ERROR: SUBFILE LENGTH > 31 AT INDEX <XX>.

FILE LITERAL ERROR: MEDIA LIST LONGER THAN 10 AT INDEX <XX>.

FILE LITERAL ERROR: MEDIA NAME > 6 AT INDEX <XX>.

FILE LITERAL ERROR: ILLEGAL DEVICE CLASS AT INDEX <XX>.

FILE LITERAL ERROR: LOGICAL VOLUME NAME > 33 AT INDEX <XX>.

FILE LITERAL ERROR: UNKNOWN ATTRIBUTE AT INDEX <XX>.

FILE LITERAL ERROR: ATTRIBUTE NOT ALLOWED AT INDEX <XX>.

FILE LITERAL ERROR: WRONG VALUE FOR THIS ARGUMENT AT INDEX <XX>.

FILE NOT CONNECTED.

FILE NOT OPEN.

FLOAT CONVERSION ERROR;UNEXPECTED RESULT.

FUPDATE UNSUCCESSFUL.

IMPLICIT DEASSIGNATION FAILED.

INTERNAL ERROR, CONSISTENCY CHECK FAILS.

INVALID CONNECTION.

C Language User's Guide

5-10 47 A2 60UL

OPEN FAILED, USE LINK CMD: 'FILE=(FILEORG=XX,NBBUF=2,NUMBER=N)'.

OPEN IN APPEND MODE UNSUCCESSFUL.

OPEN IN INPUT MODE UNSUCCESSFUL.

OPEN IN OUTPUT MODE UNSUCCESSFUL.

OPEN UNSUCCESSFUL (DFLDEF).

OPEN UNSUCCESSFUL (RFLDEF).

OVERFLOW (MAX REAL VALUE ASSUMED) (ETOF).

POINTER HAS A NIL VALUE OR IS UNDEFINED.

PRECISION LOST ON MATH FUNCTION CALL.

PRECISION OF DOUBLE GREATER THAN 18 (18 ASSUMED).

PROCESSING MODE FORBIDDEN FOR TERMINAL (TAM).

REQUIRED OR TOO LONG OPTION STRING.

SEEK FAILED (CLOSE).

SEEK FAILED (GET).

SEEK FAILED (OPEN).

SIZE OF THE REQUIRED MEMORY SPACE IS NEGATIVE.

STANDARD TERMINAL ACCESS METHOD NOT IMPLEMENTED.

TRY TO CONNECT A FILE TO AN UNKNOWN EFN.

UNDERFLOW (MIN REAL VALUE ASSUMED) (ETOF).

UNKNOWN FILESTAT IN A FILE LITERAL.

WRITE FAILED (CLOSE_EWRECORD).

WRITE FAILED (OPEN_EWRECORD).

WRITE FAILED (PUT_EWRECORD).

WRITE FAILED (PUTX_EWRECORD).

WRITE OR READ FAILED (GET_EWRECORD).

WRONG INPUT PARAMETER IN THE STRING-DOUBLE CONVERSION.

WRONG PROCESSING MODE.

Execution and Debugging

47 A2 60UL 5-11

5.8 An Example of Execution and Debugging

This section contains an example of interactive compilation, link, and execution
with debugging. It also includes two erroneous messages, marked with a dollar
sign, and their accompanying warning message (two asterisks).

 1 /* acker.c */
 2 #include <stdio_h>
130 static acker(m,n)
131 int m,n;
132 {
133 if (m == 0) return(n+1);
134 else
135 if(n==0) return(acker(m-1,1));
136 else
137 return(acker(m-1,acker(m,n-1)));
138 }
139 main()
140 {
141 int r;
142
143 r = acker(3,6);
144 printf ("acker (3,6) is %i\n", r);
145 printf ("acker (3,5) is %i", acker (3,5));
146 }

S: c acker_hg lsfy.test.cc.sllib

>>>18:20 C 45.01 13 -1
 18:20:24 AUG 19, 1998 X325 .9
 compilation of LSFY.TEST.CC.SLLIB: ACKER_HG
 Error Syntax *** at ILN
 378: Unrecognizable statement.
 1 ERROR
 $ 378 . int m,n;
 $ 1
 *** $ 1 C23 Unrecognizable statement.
 CL.10(30.22) summary for ACKER_HG: ***1 ,cu produced.
<<<18:20

After error correction:

S: lk acker_hg command='LIST=S,STACK3=(INITSIZE=128K,MAXSIZE=256K)'

>>>18:21 LK 90.00 17 -2
 WORKING ON: ACKER_HG
 LK00.(90.00)
 SUMMARY FOR ACKER_HG
 NO ERROR DETECTED .
 OUTPUT MODULE PRODUCED
<<<18:21

S: exec_pg acker_hg
 acker (3,6) is 509
 acker (3,5) is 253

C Language User's Guide

5-12 47 A2 60UL

❑

47 A2 60UL 6-1

 6. Programming Considerations

6.1 Portability

The following sections describe some situations to avoid or to be aware of when
writing portable C programs.

6.1.1 Lexical and Syntactical Features

Identifiers, internal data, and external data are restricted as follows:

• Identifiers cannot be longer than 31 characters.

• Identifiers do not allow special characters, with the exception of the dollar sign
($) when LEVEL=GANSI or GCOS 7.

• Identifier spelling is different for lower case than upper case.

Do not use highly-nested patterns, in particular the following:

• INCLUDE files (>15)

• Conditional expressions (>10)

• Function calls (>30)

• Block, structures, iterators, switch, conditional compilation, types (>20)

• Array dimensions greater than 6

Do not use hexaliteral values, such as 0xnnnn, that contain 4 hexadecimal digits
and the left-most bit set to 1. If you assign the hexaliteral value to int or long, the
result depends on the size of int and long.

C Language User's Guide

6-2 47 A2 60UL

6.1.2 Data Representation

• Do not use the signed char and do not assume that a plain char is signed.

• Do not assume that the char coding value is equal to either ASCII or EBCDIC.
The result of the char expression is different depending on which is used. The
following expression shows this:

 'Z'-'A'

• Use the sizeof operator to determine the size of an object.

• Do not assume that a pointer equal to 0 is valid because a DPS 7000 pointer
contains a segmented address. Such a pointer does not necessarily point to
memory that contains 0.

• Avoid the use of bit fields. This is because their allocation and maximum length
depend on their implementations.

• Be aware that the precision and range of the float and double values varies,
depending in the hardware. Directly testing a floating point value is dangerous,
because the two values can never be equal, for example when exiting a loop. It is
better to use the range as follows:

 while (abs (x - x0) > eps)

Programming Considerations

47 A2 60UL 6-3

6.1.3 Data Allocation

• Do not assume that the relative allocations of data of the same storage class in
the same block are always equivalent. For example, do not assume that the value
of &a+sizeof(a) and the value of &b are equivalent in the following example:

 int a;
 int b;

• The relative allocation of data with the same storage class in different files or
with a different storage class is not always into the same segments. On
DPS 7000 they fall under different segments, as an example for static versus
dynamic or automatic versus dynamic

• Use function names or use the functions from vararg_h (if the number of
parameters is variable) for the relative allocation of parameters. The following is
an example of this:

 f(a,b) &a+4 is not equivalent to &b

• The relative allocation of dynamic objects is not always into the same segment.
The following is an example of this:

 p1 = malloc (4); p2 = malloc (n);
 p1+4 is not equivalent to p2

• Do not assume the allocation boundary of objects. For example, do not assume
that an object is word aligned. The following is an example of this:

 p1 = malloc (4); /* p1 assumed to point on a word
 boundary */

C Language User's Guide

6-4 47 A2 60UL

6.1.4 Statements and Expressions

• Do not use the symbols ++, --, -=, or += when the operand occurs more than
once, as this can cause "side effects". Three examples of this are shown below:

 (1) f((a=b),a)
 (2) a=(i+b)+i++
 (3) (b[i]=a[i++])

Side effects occur when a calculation modifies something else in addition to
what is intended in the environment. For example, in line (3), above, the
expression i++ sends i+1 but also modifies the contents of i.

• Do not assume the evaluation order of expressions. In lines 1 and 2 below, the
first expression is not always equivalent to the second. Do not rely on possible
short cuts in the evaluation of expressions. For example, in the first line (1) of
the following evaluation, do not assume that j/i will not be evaluated if the first
part (i != 0) is yielded "false".

 (1) if ((i != 0) & (k = j/i))
 (2) if ((i != 0) && (k = j/i))

• Shift operations can be arithmetic or logical. They are logical on DPS 7000.

• Be careful when using % with negative values, especially on the sign of the
result (the sign of the first operand on GCOS 7).

6.1.5 Pointer Handling

• Do not use if (p) or while (p--) instead of if (p!=NULL), because the NULL
value is not necessarily 0.

• Do not use an address before or after data, because the address can point outside
of the segment. For example:

 int t[10]; for (p = t; p < t+10; p++)
or
 int t[10]; for (p = t+9; p >= t; p--)

• Do not use indexing outside of the bounds of an array,because an exception will
occur when crossing the segment boundary.

 int t[10]; i = p - t; t[i] = 2;

• Be careful when using pointer arithmetic, because on DPS 7000, pointers
contain a segmented address.

Programming Considerations

47 A2 60UL 6-5

6.1.6 Library

• To use low and high-level file access on the same file, close the file between
accesses.

• Do not make assumptions about character coding on the files. (ASCII versus
EBCDIC)

• Do not use the functions signal, getenv, system, fork, wait, because, when
implemented, they are highly system dependent. The functions wait and fork do
not exist on GCOS 7.

• Avoid redefining any function from the library.

• Include the header file corresponding to the library functions you use (for
example stdio_h for printf).

6.2 The GCOS 7 Preprocessor

The C preprocessor is integrated in the GCOS 7 C compiler. The LEVEL keyword
indicates how to process the source text. This subsection discusses some
preprocessor commands not yet implemented in all C compilers. The next
subsection discusses the differences between the STANDARD and ANSI levels.

6.2.1 #<newline>

If there is nothing between the # character and the end of the line, this preprocessor
directive has no effect. In general, it is used to "space" different macro definitions.

6.2.2 defined <identifier>

The two boolean expressions 'defined <identifier>' and 'defined (<identifier>)' are
identical. They are preprocessor expressions which may occur in the commands #if
or #elif. They return a value of 1 if <identifier> is a defined macro name at
evaluation time. Otherwise they return a value of 0.

C Language User's Guide

6-6 47 A2 60UL

6.2.3 #elif <constant-expression><new line>

This directive is equivalent to:

#else <new line>
#if <constant-expression><new line>

The #elif directive is used inside a conditional loop of the preprocessor, between
#if and #endif. It may be followed by an #else command corresponding to the
<else> clause of the conditional loop containing the directive. You can have several
#elif commands in sequence. Each <constant-expression> is evaluated (beginning
with that of the initial #if clause) until one of them returns a "true" value (non-
zero). Only the lines depending on the "true" clause are taken into account. If none
are "true" then the (optional) #else clause is taken into account.

#if const_E1
<line_group_1>
#elif const_E2
<line_group_2>
#elif const_E3
<line_group_3>
.
.
.
#elif const_En
<line_group_n>
#else
<last_group>
#endif

6.2.4 #error

The #error command is one that is introduced. It produces a compile-time error
message (SEV 3). This message includes the string constant that is an argument to
the #error. It can detect programmer inconsistencies and violations of constraints
during preprocessing, as follows:
#if defined(A_THING) && defined(NOT_A_THING)
#error "Inconsistent thing!"
#endif

#if SIZE % 256 !=0
#error "SIZE must be a multiple of 256!"
#endif

The error message is as follows :
*** $ 1 B200 #error : Inconsistent thing!
*** $ 1 B200 #error : SIZE must be a multiple of 256!

Programming Considerations

47 A2 60UL 6-7

6.2.5 Predefined Macros

The GCOS 7 C compiler provides built-in macros for the programmer. These
macros cannot be redefined or undefined, and they do not need a header file to
define them. The value of each macro is as follows.

LINE A decimal integer constant that represents the current
line number in the source file. That is the line that
uses the macro _LINE_.

FILE A string constant that represents the name of the source
file being compiled.

DATE A string constant that represents the date of the
translation of the source file. For example, "Dec 20
1990".

TIME A string constant that represents the time at which the
translation occurred. For example, "14:22:00".

STDC A decimal constant 1 to indicate implementation
conforming to ANSI C. _STDC_ = 1 for LEVEL =
ANSI or GANSI.

GCOS 7 A decimal constant 1 to indicate implementation
conforming to GCOS 7. _GCOS 7_ = 1 for LEVEL =
GCOS 7 or GANSI.

VERSION A decimal integer constant that represents the current
version of the GCOS 7 C compiler. The current value
is 40.

6.2.6 #line

The #line command is one that is developed. It can have one of the following
forms:

#line integer-constant "filename"
#line integer-constant
#line pp-tokens

The third form is a preprocessing directive of the form. The preprocessing tokens
after line on the directive are processed just as in normal text. The directive that
results after the replacements matches one of the two previous forms and is then
processed accordingly.

C Language User's Guide

6-8 47 A2 60UL

6.2.7 Macro Definition and Expansion

This subsection discusses how the ANSI level processes the macros.

• A macro appearing in its own expansion must not be expanded again. In this
way, a programmer can redefine a function in terms of its old definition, as
follows:

 #define sqrt(x) ((x)<0 ? sqrt(-x) : sqrt(x))

• An argument replaces its corresponding parameter in the replacement list, unless
the parameter is either preceded by a # or ## preprocessing token or followed by
a ## preprocessing token. This replacement occurs after all the macros
contained in the corresponding argument have been expanded.

• A macro can be redefined if the new definition is identical to the existing
definition. This is a "benign" modification. There is no error message.

6.2.8 Stringing and Merging Tokens (# and ## Operators)

The ANSI level limits the amount of control that the programmer has over merging
tokens and converting macro parameters into strings.

Within a macro definition, the # character is recognized as an unary string operator
that must be followed by the name of a macro formal parameter. During macro
expansion, the corresponding argument actually enclosed in string quotations
replaces the # and the formal name.

The following statements are an example of this.

#define TEST(a,b) printf(#a "<" #b "=%d\n",(a)<(b))
TEST(0,0xFFFFFFFF);

After preprocessing and string concatenation, in this example the source text is as
follows:

printf("0<0xFFFFFFFF=%d\n", (0)<(0xFFFFFFFF));

A merging operator controls the merging of tokens to form new tokens. The two
tokens surrounding any ## operator are combined into a single token before the
replacement list is reexamined for more macro names to replace. If the
combination is not a legal token, the result is undefined. The resulting token is
available for further macro replacement.

Programming Considerations

47 A2 60UL 6-9

The following statements are an example of this.

#define glue(a,b) a ## b
#define xglue(a,b) glue(a,b)
#define HIGHLOW "hello"
#define LOW LOW ", world"
glue(HIGH,LOW);
xglue(HIGH,LOW);

After preprocessing and string concatenation, the source text is as follows:

"hello";
"hello, world";

6.2.9 Preprocessor Output

When the EXPLIB keyword invokes the compiler, an SL library member can be
created that is not part of the compilation listing. This member contains the output
of the preprocessor, and its name is derived from the source file name, suffixed by
"_I". It contains the results of the preprocessing phase, which are as follows:

• Include files are inserted

• #define directives are deleted

• Macros are substituted

This member (file) can be the input for another compilation step, the results of
which are the same as those of the compilation of the initial program.

With macro substitution, a line can be longer than 255 characters, a length that an
SL-library subfile cannot normally record. The macro substitution truncates the
line at 254 characters and terminates the line with an ending back-slash (\). The
macro substitution writes the remaining portion of the expanded line on the next
record and repeats this splitting process if needed.

C Language User's Guide

6-10 47 A2 60UL

6.3 Pre ANSI and ANSI Compilers

This subsection describes the differences between pre-ANSI compilers and ANSI
compilers. Pre-ANSI compilers include some of those on UNIX, and the GCOS 7
compiler with a level of STANDARD or GCOS 7.

Because this section describes only the differences, it does not list the compiler
extensions, such as new keywords.

6.3.1 Expanding Macro Parameters in Strings

The GCOS 7 C compiler (with STANDARD level) can expand a macro parameter
that is in a string. The compiler substitutes the macro parameter with the actual
argument.

This is a feature of the GCOS 7 C compiler (with STANDARD level). In this case,
macro parameters occurring in a string are substituted by the actual argument.

For example, in the following statement, a(u) yields "u" in a GCOS 7 C
compiler with STANDARD or GCOS 7 level. In all other cases, a(u) yields "x":

#define a(x) "x"

6.3.2 Trigraph Sequences

The ANSI compiler processes a trigraph sequence as a single character. For
example, the following trigraph sequence becomes a "/" (slash) character:

'??/'

6.3.3 Octal Digits

A compiler at the ANSI or GANSI level issues a syntax error if either a digit 8 or 9
occurs in an octal coded literal.

6.3.4 Long Float Type

A compiler at the ANSI or GANSI level issues a syntax error if this declaration
occurs in the source text. In pre-ANSI compilers, this is a synonym of double.

Programming Considerations

47 A2 60UL 6-11

6.3.5 Constant Strings

ANSI level compilers do not modify constant strings. The MODSTRNG user
option makes this modification, and the user can control this feature.

At the pre-ANSI level, a program statement can prevent the compiler from
allocating literal strings in a non-writeable segment and then creating space in data
segments to contain them. For example, the following statements do this:

char *p = "qwerty";
 ...
*p = 'a';

6.3.6 Separating Assignment Operators

At the ANSI level, a blank space cannot separate assignment operators. However,
this is possible at the GCOS 7 C compiler level. Assignment operators include the
following:

+= -= *= /+ <<= >>= %

6.3.7 Empty Declarations

The ANSI level compiler does not accept empty declarations. They lead to a
syntax error. Empty declarations include the int and extern declarations.

6.3.8 Linkage

For identifiers with external linkage, the GCOS 7 C compiler uses a lexical scope.
It uses internal definition only for the lines that follow this definition.

The ANSI standard is the opposite, in that it uses a file scope. In this way, a non-
local definition is valid for the entire file in which it is contained. Most of the
UNIX compilers also use the file scope.

The compiler level determines how the function named f will be called in main. In
the example program shown below, this is as follows:

• At STANDARD or GCOS 7 level, an externally defined function with name f
will be called in main

• At ANSI or GANSI level, the internally defined function with name f will be
called in main.

C Language User's Guide

6-12 47 A2 60UL

EXAMPLE PROGRAM:

main () {
 f();}
static f () {
 }

❑

6.3.9 Conversions

The ANSI level compiler uses sign extension to convert from int to unsigned
with increasing length. The STANDARD level compiler does not use sign
extension.

6.3.10 Sizeof

The ANSI level compiler does not allow sizeof on functions or bit-fields. The
sizeof parameter in a boolean expression returns 4 at the ANSI level and returns
1 at the STANDARD level.

6.3.11 Bit-Fields

The ANSI level compiler does not initialize unnamed bit fields, while the
STANDARD level does. At the ANSI level, bit-fields are not an argument of the
sizeof or address operator.

6.3.12 Pointers to Functions

The ANSI level compiler does not allow pre-increment, post-increment, pre-
decrement, and post-decrement on pointers to functions.

Programming Considerations

47 A2 60UL 6-13

6.3.13 Constant Expressions

The ANSI level compiler does not allow comma expressions in constant
expressions. These expressions include array bounds, case selectors, and static
initializers.

6.3.14 Preprocessor Features

The ANSI level compiler does not allow recursive macros. However, it does allow
lexical rescanning.

In the example shown below, the STANDARD level compiler scans the "a.1" as
a single token that yields the real value 1.1. The ANSI or GANSI level compiler
scans it as two separate tokens, 1 and .1. The example is as follows:

#define a 1
a.1;

In this case, a binary "merging" operator can change this scanning on the ANSI
compiler level.

With LEVEL = GCOS 7 or STANDARD, the integer-constant after the
preprocessor command #line is the new number of the current source line. With
LEVEL = ANSI or GANSI, the integer-constant is the new number of the
following source line.

C Language User's Guide

6-14 47 A2 60UL

6.4 Performance Considerations

The following notes help improve performance. For more information, see the
section describing optimization.

• Avoid extensive use of bitfields.

• Avoid using signed char and signed bitfields.

• Declare strings as "not modifiable" (MODSTRNG=0 or ANSI/GANSI
parameters)

• Avoid using complex conditional expressions, such as the following:
 x=f().(a?b:c).

In this case the following is preferable:
 if (a) x=f().b; else x=f().c;

• Include the header files, if they exist. These retrieve builtin functions.

• Avoid extensive use of setjmp/longjmp.

• Use memxxx functions rather than xxxbuf. Use memxxx functions rather than
string functions. For example, use memcpy rather than strcpy or cpybuf.

• Use the buffering mechanism.

• Use the read and write functions if high performance is needed on some I/Os.
However, note that these functions do not belong to the ANSI standard.

• Use direct access on UFAS files with fixed size records.

• Avoid using SSF format if it is not necessary to edit the file.

47 A2 60UL 7-1

 7. GCOS 7 Specific Considerations

7.1 Size and Limits

GCOS 7 places restrictions on programs for maximum allowed values and
minimum requirements. The following is a list of the maximum values that
GCOS 7 allows in a program. The term "at the most" indicates it is a fixed
limitation for the current implementation. A program in GCOS 7 can have:

• At most, 30 nesting levels of compound statement, iteration control structures
and selection control structures.

• At most, 50 nesting levels of conditional inclusion.

• At most, 32 significant initial characters in an internal or external identifier or a
macro name.

• At most, 128 parameters in one function definition.

• At most, 128 arguments in one function call.

• At most, 128 parameters in one macro definition.

• At most, 128 arguments in one macro invocation.

• At most, 512 characters in a character string literal.

• At most, 15 nesting levels for #included files.

• At most, 20 levels of nested structure or union definitions.

The following is a list of minimum conditions that GCOS 7 requires of programs.
The term "at least" indicates conformity with the ANSI standard, and means that
there is no maximum limit imposed. It is context dependent. A program in
GCOS 7 must have:

• At least 12 pointer, array, and function declarators (in any combination) that
modify an arithmetic, a structure, a union, or an incomplete type in a declaration.
However, only 6 dimensions for an array and 19 indirections for a pointer
expression.

C Language User's Guide

7-2 47 A2 60UL

• At least 31 nesting levels of parenthesized declarators within a full declarator.

• At least 32 nesting levels of parenthesized expressions within a full expression.

• At least 511 external identifiers in one translation unit.

• At least 127 identifiers with block scope declared in one block.

• At least 1024 macro identifiers simultaneously defined in one translation unit.

• At least 509 characters in a logical source line.

• At least 32767 bytes in an object.

• At least 257 case labels for a swith statement.

• At least 127 members in a single structure or union.

• At least 127 enumeration constants in a single enumeration.

7.2 Implementation-defined Features

7.2.1 Translation

The compiler produces diagnostics that can be characterized by:

Location A line number, internal line number, and column
position

Severity A warning, observation, or error

Message A brief description of the error and a reference to a
specific paragraph about error messages.

7.2.2 Environment

The arguments of the main function can be referenced by names different from
argc and argv. Main arguments are interpreted as argc and argv when there are two
defined arguments for this function, no matter what their types. If the type does
not correspond to the expected type for either argc or argv, the behavior is
undefined.

For the interactive device, only files with the device specifier TN are an interactive
device. The standard files stdin,stdout and stderr are interactive devices when
executing a program under IOF.

GCOS 7 Specific Considerations

47 A2 60UL 7-3

7.2.3 Identifiers

An identifier has up to 31 significant characters, either with or without external
linkage. Upper or lower cases are significant for all identifiers, even with external
linkage.

7.2.4 Characters

The source and execution character sets are EBCDIC. Adding multibyte characters
through the localization facilities can extend the execution character set.

Wide characters are represented as integers (32 bits), and each constant character
can not have more than one wide character. More than one character in a constant
character is detected as an error at compile-time.

A plain character has the same range of values as unsigned char. The unsigned
char type describes the plain character.

For more information, refer to the localization chapter.

7.2.5 Integers

The representation of an integer is a two's-complement representation. The integer
type values are as follows:

short int [-32768,+32767]

int,long int [-2147483648,+2147483647]

unsigned int, [0,4294967295]
unsigned long int

Shifts left are logical shifts. The sign of the remainder with signed operandi is the
sign of the first operand (-3%-2 --> -1, 3%-2 --> 1).

C Language User's Guide

7-4 47 A2 60UL

7.2.6 Floating Point:Internal Representation

This subsection describes the internal representation of floating point data for float
types, and double types. This includes the value, format, sign S, characteristic C,
and mantissa M.

7.2.6.1 Float Type Data

The float type corresponds to a simple precision floating point datum.

Value:

The following formula defines the value of a real datum.

 V = (-1)S*16E*.M

The following values apply to this formula:

E is C-64
S is the sign
E is the exponent
C is the characteristic
M is the mantissa of the real datum

A real datum with the mantissa equal to zero represents the value zero. The value
of true zero is represented either by a real datum with all 32 bits equal to zero, or
by a real datum with the left hand bit set to one and the 31 right hand bits equal to
zero.

Format:

A real datum occupies four consecutive bytes. The format is as follows:

+---+----------------+--+
S	C	M					
		M1					M6
+---+----------------+------+------+------+------+------+-------+
0 1 7 8 31

GCOS 7 Specific Considerations

47 A2 60UL 7-5

Sign S:

The sign S of a real datum is contained in bit 0. The value of S is as follows:

0 Positive sign
1 Negative sign

Characteristic C, Exponent E:

The bits 1 through 7 contain the characteristic C of a real datum. Its range is as
follows:

0 <= C <= 127.

The exponent E is the power to which 16 is raised when calculating the value of the
real datum. The value of the exponent E is as follows:

E = C-64.

Mantissa M

The mantissa M is the hexadecimal number that bits 8 through 31 contain. It is
6 hexadecimal digits. The radix point is at the left of the high order digit position,
so that the following is true:

6

i = 1

M x 16i
-i

C Language User's Guide

7-6 47 A2 60UL

7.2.6.2 Double Type Data

The double type corresponds to a double precision floating point datum.

Value:

The following formula defines the value of a double precision datum:

V = (-1)Sx16Ex.M

The following values apply to this formula:

E is C-64
S is the sign
E is the exponent
C is the characteristic
M is the mantissa equal to zero. A value of true zero is

represented by a double precision datum with 63 right
bits equal to zero.

Format:

A double precision datum occupies eight consecutive bytes. The format is as
follows:

+---+----------------+--+
| S | C | MANTISSA |
| | | M1 | | | | | |
+---+----------------+------+------+------+------+------+-------+
0 1 7 8 1

+---+
| MANTISSA |
| | | | | | | | 14 |
+-------+-------+-------+-------+-------+-------+-------+-------+
32 63

Sign S:

The sign S of a real datum is contained in bit 0. The value of S is as follows:

0 Positive sign
1 Negative sign

GCOS 7 Specific Considerations

47 A2 60UL 7-7

Characteristic C, Exponent E:

The bits 1 through 7 contain the characteristic C of a real datum. Its range is as
follows:

0 <= C <= 127.

The exponent E is the power to which 16 is raised when calculating the value of the
floating point number. The value of the exponent E is as follows:

E = C-64.

Mantissa M:

The mantissa M is the hexadecimal number that bits 8 through 63 contain. It is 14
hexadecimal digits.

14

i = 1

M x 16i
-i

NOTE:
The options of truncation and rounding are under reserve.

7.2.7 Arrays and Pointers

The integer type to hold the maximum size of an array is an unsigned long int.

Assignments can be made between an integer and a pointer. However, because this
is not always done, the value of an integer expression assigned to a pointer does not
always lead to a valid pointer representation, which can then be used to reference a
memory location. The value of an integer expression remains unchanged after the
assignment operation.

For more information about the unsigned long int and ptrdiff_t type definition, see
the section describing the stddef.h standard file.

7.2.8 Registers

The register attribute for an object allows the user to access an object more rapidly.
To do this, only the optimizer and objects allocator strategy are required.

C Language User's Guide

7-8 47 A2 60UL

7.2.9 Structures, Unions, Enumerations, and Bit-Fields

When a member of a union object is accessed by a member with a different type,
the resulting behavior can be undefined or can even contain exceptions.

If necessary, successive non-zero width bit-fields of structures or unions can
overlap adjacent units. The order allocation of bit fields in the same unit is high-
order to low-order.

Sometimes padding is necessary to represent successive bit-field and non-bit-field
members.

A plain int bit-field is treated as an unsigned int bit-field.

The values of an enumeration type have the same representation as the int type.

7.2.10 Qualifiers

By definition, a volatile-qualified type object is a non-optimizable object that is
evaluated at each access.

7.2.11 Declarators and Statements

For the maximum number of declarators that may modify an arithmetic, structure
or union type and the maximum number of case values in a switch statement, see
the subsection describing the size and limits of the implementation, earlier in this
section.

7.2.12 Preprocessing Directives

The value of a single character constant in a constant expression that controls the
conditional inclusion matches the value of a member of EBCDIC character set.
This value is always positive.

For more information about locating and naming an include file, see the subsection
describing the searching rules for include files, in the section about compilation.

For more information about recognized pragmas, see the section describing
preprocessor pragmas.

GCOS 7 Specific Considerations

47 A2 60UL 7-9

7.2.13 Library Functions

The following notes pertain to the library functions.
• The NULL macro expands in the same way as the 0 integer constant.
• The functions beginning with "is" (for example, isprint) use the standard

EBCDIC character set. However, they also support any character sets specified
in the current available localization.

• The last line of a text stream requires a newline.
When space characters for a text stream are written out immediately before a
newline, they appear as variable size records when read in a GCOS 7 file. If not,
they do not appear at all.
• The maximum number of null characters that can be appended to data written to

a binary stream is as follows:
 1 - (the maximum size of a record of the file)

• The file position indicator of an append mode stream is initially positioned at the
end of the file.

• When writing a text stream, truncation occurs only at open time in the following
processing modes:

 w/w+/wb/w+b

• The library functions support only line and full buffering. Refer to the section
describing General I/O Considerations for more precise details.

• A zero-length file can exist. In this case, the ssf format file contains only its
control record.

• The appendix describing file and volume syntax contains the file names syntax.
• A file can be successfully opened several times, depending on its processing

mode, its type of access and its ability to be shared. for more information, see
the chapter titled General I/O Considerations.

• An open file cannot be removed.
• A file name cannot duplicate an existing one.
• The printf and scanf function describe the output and input of the %p specifier.

For more information, see the section describing general I/O considerations.
• There is no distinction for the '-' character in the scanlist of the %[conversion in

the fscanf function. This is true even when it is not the first nor the last
character of the scanlist.

• It is possible to request zero-size memory when using allocation functions. This
request allocates 4 bytes.

• If the tmpfile function opens any files, the abort function does not remove nor
flush remaining open files. In this case, the system closes the open files.

C Language User's Guide

7-10 47 A2 60UL

7.3 Size of Data Basic Types

TYPE SIZE MIN.VALUE MAX.VALUE
char 1 0 255
unsigned char 1 0 255
int 4 -2147483648 +2147483647
long int 4 -2147483648 +2147483647
short int 2 -32768 +32767
unsigned int 4 0 4294967295
unsigned long int 4 0 4294967295
unsigned short int 2 0 65535

float 4 10-78 10+76

double 8 10-78 10+76

pointer 4

• The above sizes are given in bytes (1 byte = 8 bits).

• Le number of significant digits is 5 for a "float" and 14 for a "double".

• All types are byte aligned.

7.4 Pointer Specific Behavior

The NULL pointer is represented in GCOS 7 by the integer value zero. (That is, all
32 bits are set to 0).

All other languages under GCOS use the value -1 to represent a NULL pointer.
Consequently, you must take account of this incompatibility for every interface
between the C language and another language.

Also, the manipulation of pointers in the C language (notably for address
calculations) does not take ring evaluation into account. Any program, written in
another language, which returns a pointer to a program written in C, must reset to
zero the bits of that pointer which describe the ring. Otherwise, you may obtain
incoherent results.

GCOS 7 Specific Considerations

47 A2 60UL 7-11

7.5 Allocation and Segmentation

The static variables of a C program are allocated in one or more DPS 7000 data
segments. The order of allocations is unknown in advance.

For example, if an array is allocated at the beginning of the segment and we
execute the following program:

static int TAB [4];
 main ()
 int p,
 for (p=&TAB[3]; p>=&TAB[0];p--)...

At this point, an exception 06.00 ACCESS OUT OF SEGMENT BOUNDS occurs
on the last pass of the "for" loop at the evaluation of the output conditions. This
error is irremediable.

7.6 Implementation-defined Behavior

7.6.1 Identifier Spelling

The following rules apply to identifiers:

• The number of significant characters of an identifier with an external link is 31.

• Both upper and lower case characters are significant in an external identifier.

• The GCOS 7 and GANSI levels use a dollar sign ($) to extend identifier
spelling. For example, the following are valid identifiers:
Abc$1_
32

7.6.2 Characters

The character code used by the compiler is EBCDIC.

The type "char" is treated as the type "unsigned char".

C Language User's Guide

7-12 47 A2 60UL

7.6.3 Arrays and Pointers

The maximum size of an array is 4 Megabytes. The SIZEOF operator is of type
"unsigned". The type "int" can be assigned to a pointer, but this latitude is
considered as NON-PORTABLE.

7.6.4 Registers

The "register" attribute is accepted by the syntax, but has no semantic value. All the
"register" variables are allocated in the local data zone.

7.6.5 Structures, Unions and Bit Fields

The members of a structure are allocated in ascending order of address.

The alignment of each member of a structure is that of its type.

The alignment of a structure containing only bit fields is that of an "int".

The bit fields are not signed and behave as "unsigned". They are allocated
contiguously in memory in ascending order of address.

7.6.6 Line Command

The #line preprocessor command changes the current and following line numbers
of the reported listing at the end of compilation. This command does not have the
same effect on the error messages given by the C compiler as it has in standard
UNIX.

7.6.7 #include Command

The preprocessor can change the file name in an #include preprocessor command.
This makes it easier to import a file from UNIX. The following conditions apply to
the name change:

• Underscores replace any periods in the file name.

• Minus signs replace slashes.

For example, for a file name #include <stdio.h>, the preprocessor changes the
name to STDIO_H for the search in the include libraries.

GCOS 7 Specific Considerations

47 A2 60UL 7-13

7.7 Calling from another Language

The main function can be called outside a C program from another language with
the name of its SYMDEF generated at compilation time (the name of its source
member). However, this call can be done only once, if you manipulate the standard
files. Remember that all files are closed at the end of execution of the main
function.

C Language User's Guide

7-14 47 A2 60UL

❑

47 A2 60UL 8-1

 8. Building Packages

8.1 What is a C/GCOS 7 Package?

A C application consists of one or more source files needing compilation and their
include files. Each source file can contain one or more C functions. A package is
the regrouping of several source files, and one or more packages form an
application. A package is located between the application and the source file and is
the compilation unit.

The package is characterized by its interface. The interface determines the objects
that are visible from the exterior and the externally-defined objects that it needs.

Packaging enhances programs in the following ways:

• Encapsulating data that limits the visibility of certain objects.

• Shortening the amount of time needed to call functions.

8.2 Why Package an Application?

8.2.1 Encapsulation

The C language uses the following two types of function visibility:

• Static, which is local to the source file.

• External, which is visible to all other functions.

In the case of large applications, the C language can verify and define the objects
that are common to some functions but inaccessible to others. The packaging
facility restricts the visibility of the C objects that are manipulated from outside the
package as well as those that are manipulated from the inside.

C Language User's Guide

8-2 47 A2 60UL

Any object defined in the package and not exported out of the package can be
manipulated only within the package. Similarly, any object defined on the exterior
of the package and not imported into the package cannot be manipulated from
within the package. The package construction restricts object visibility to avoid
confusion (for example, name conflicts). However, the package must clearly and
exhaustively define all the objects so that it can best function as an interface
between the package interior and exterior.

8.2.2 Performance

The packaging of an application improves program performance. External function
calls are relatively costly, and transforming external calls into internal calls brings
about a significant gain in performance. Because the compiler has greater visibility
of the source, the compilation becomes even more efficient. This is because the
compiler can include a whole group of files in the compilation. This is particularly
evident in the case of the inliner, which functions only under this condition. In
addition to the performance gain, the segmentation is more efficient because only
one compile unit (CU) is generated for a file group.

The first step in building a package is to identify the files that it comprises. To
ensure a performance gain for calls within the package (intra-package calls),
include the functions that frequently call one another together in one package.
There is a small penalty for calling a function from an exterior package when the
function is not recursive and a large penalty when the function is recursive.

For a function containing three non-recursive parameters, an estimated 20 intra-
package calls are equivalent to one call from the exterior. For a function containing
recursive parameters, there is no performance gain and no cost increase for an
intra-package call, but the estimated cost is double for a call from the exterior.

If an application is not very large, it is advisable to compile it as a single package
that has neither exported nor imported objects.

It can benefit performance to duplicate some functions in other packages. If an
application is divided into several packages and two or more of these packages
have a critical need of one function, there is a significant performance gain if the
function exists in both packages without being exported. On the condition that it is
not recursive, this function can be defined in both packages and still optimize well.

Building Packages

47 A2 60UL 8-3

8.3 Pragmas

A pragma is an ANSI feature that introduces target dependencies in a standard
program. It has the following form:

#pragma <pragma command>

8.3.1 GCOS 7 Pragmas

The GCOS 7 C compiler recognizes the set of pragma listed below. If the compiler
does not recognize a pragma command, it ignores it and issues a warning message.

For the GCOS 7 C compiler, a pragma has the following form:

#pragma PRAGMANAME <parameters>

8.3.2 PACKAGE and Related Pragma

The following pragma set deals with program packaging:

#pragma PACKAGE membername[,membername]...
#pragma AUTOPACKAGE membername[,membername]...
#pragma IMPORT objectname[,objectname]...
#pragma EXPORT objectname[,objectname]...

8.3.3 ALIGN Pragma

The ALIGN pragma controls the alignment of data in memory. This affects only
main variables, not aggregate elements. The alignment constraint applies to the
variables of a given list, to the names variables, to the (main) variables in a given
storage class, or to all variables. This is shown as follows:

#pragma ALIGN <alignment> = <variable list>
#pragma ALIGN <alignment> = <storage class>
#pragma ALIGN <alignment>

In this pragma, the alignment can be halfword, word, doubleword, or
quadrupleword. Storage class can be auto or static.

C Language User's Guide

8-4 47 A2 60UL

In the following example, b, s, and t are allocated a 4-bytes boundary, and no
alignment is specified for a. The 0-length bit fields can manage alignment within a
structure.

#pragma ALIGN word = b, s, t
static char b, a, t;
static struct St {int x:1; :0; int y:1} s;

8.3.4 BYREF Pragma

The BYREF pragma has the same semantics as the syntactical features that are &
specific in the function declaration. This pragma indicates a set of functions for
which parameters must be passed by reference rather than by value. It is used to
communicate between languages. The form of the BYREF pragma is as follows:

#pragma BYREF functionname[,functionname]...

8.3.5 INLINE and OUTLINE Pragma

The INLINE and OUTLINE pragma is a set of pragma related to the optimizing
function of procedure merging.

The INLINE pragma indicates a set of functions that must be in-line inserted. This
is required when the INLINER option is off, and the OPTIMIZE level is less than
4. The OUTLINE pragma indicates a set of functions that must not be in-line
inserted. This is required when the INLINER option is on or if the OPTIMIZE
level is equal to 4.

These pragma are as follows:

#pragma INLINE functionname[,functionname]...
#pragma OUTLINE functionname[,functionname]...

Building Packages

47 A2 60UL 8-5

8.4 What Comprises a Package

8.4.1 The Aim of the #pragma PACKAGE

A package regroups functions to provide the best performance. These functions are
often contained in several sources. The #pragma PACKAGE is a directive that
indicates which sources must be regrouped. For example, a package can be built of
all the functions needed to execute a specific processing or of all the functions
handling a specific data structure.

Syntax of the Directive

If the functions are taken from the file members 1 through n, with all members in
the same library, the directive is as follows:

#pragma PACKAGE member1, member2, ... member n, or with several directives:
#pragma PACKAGE member1
#pragma PACKAGE member2
#pragma PACKAGE membern

A #pragma package directive can be located anywhere in a file. The file
compilation that contains a PACKAGE directive also compiles all the other sources
named in that directive. This compilation generates only one CU. The name of the
CU is the same as the compiled file.

Some Restrictions

The following restrictions apply to packages:

• All the source files that make up a package must be in the same library. If any
file is not found, the following error message (SEV 3) is displayed:

 INCLUDE TEXT NOT FOUND IN SPECIFIED LIBRARY, IGNORED

• If one file appears several times in the package order, the following warning
message (SEV 2) is displayed and the package order is ignored:

 FILE NAME ALREADY USED IN PACKAGE PRAGMA ORDER

• The PACKAGE directives can appear in only one file, the name of which is sent
to the compiler. If they appear more than once, the following warning message
(SEV 2) is displayed:

 PACKAGE PRAGMA ORDER CANNOT BE INVOKED IN PACKAGE'S
 SUBFILES

• A function with a variable number of arguments can not be part of a package.
For more information, see the section describing the STDARG Functions.

C Language User's Guide

8-6 47 A2 60UL

8.4.2 The EXPORT Directive

To call or reference any C object (function or variable) from the exterior of a
package, the object must be specified in an export directive. This applies only to
objects that are visible externally. This directive has no effect on static or automatic
objects.

An object that is externally visible, but is not exported cannot be referenced from
outside the package. However, this object does remain visible to all files making up
the package. It works as if the externally visible, but non-exported object is
transformed into a static object of the package. The object retains its external
visibility to the member in which it is defined, but not to the other members that
make up the package.

The syntax of an EXPORT directive is as follows:

#pragma EXPORT name1, name2, ..., namex

The following points apply to the EXPORT directive.

• The EXPORT directive can appear anywhere in one of the files in the package,
not necessarily in the first. This is unlike the PACKAGE directive.

• There is no limit to the number of EXPORT directives allowed. There can be
one for each exported object or one that references all the objects to export. The
list of objects to export can continue over several lines as long as the last
character of each line is the backslash character (\), as used in #define.

• As in standard mode, the compiler renames a C function that is called main with
the file name given to the compiler at start time. The compiler automatically
exports this name.

• Without an error resulting, an object can appear several times in an EXPORT
directive or in several directives. However, in order to ease code readability and
maintenance, it is better not to export the same object several times.

• Any object appearing in an EXPORT directive and called in at least one other
file must be defined in one of the package files. If not, the following error
message (SEV 3) is displayed:

 AMBIGUOUS LINKAGE OF THIS IDENTIFIER, <name>: EXPORTED
 ALTHOUGH NOT DEFINED

IMPORTANT:
An object must be exported if its address is assigned to a pointer that is passed
(directly or indirectly) outside of the package.

1 33

Building Packages

47 A2 60UL 8-7

8.4.3 The IMPORT Directive

To call or reference any C object (function or variable) from the interior of a
package, the object must be specified in an import directive. This applies only to
the external objects that are not defined in one of the package members. The syntax
of an import directive is as follows:

#pragma IMPORT name1, name2, ..., namex

The following points apply to the IMPORT directive.

• The IMPORT directive can appear anywhere in one of the files in the package,
not necessarily in the first. This is unlike the PACKAGE directive,

• There is no limit to the number of IMPORT directives allowed. There can be one
for each imported object or one that references all the objects to import. The list
of objects to import can continue over several lines on the condition that the last
character of each line is the backslash character (\), as used in #define.

• Without an error resulting, an object can appear several times in an IMPORT
directive or in several directives. However, in order to ease code readability and
maintenance, do not import the same object several times.

• If any object defined in the package appears in an IMPORT directive, an error
occurs. Because the compiler automatically imports the standard functions of C
run time, a function having the same name as a standard run time function
cannot be defined in the package. In both of these cases, the following error
message (SEV 3) is displayed:

 AMBIGUOUS LINKAGE OF THIS IDENTIFIER, <name>: IMPORTED
 ALTHOUGH NOT DEFINED

C Language User's Guide

8-8 47 A2 60UL

8.4.4 Building the Package

8.4.4.1 Packaging at Design Time

Packaging large applications is best done in a modular fashion, using any method.
The definition of the modules and the module interfaces directly constitute the
packages forming the application.

8.4.4.2 Packaging an Existing Application

There are two ways to package an existing application.

The first way to package an existing application is to use the AUTOPACKAGE
directive and then build a set of packages that make the application. The advantage
is that it builds packages quickly because the semantics of C is fully preserved.
The disadvantage is that the level of encapsulation is as low as that of the original
C application.

The second way to package an existing application is to use the PACKAGE and
IMPORT/EXPORT directives. The advantage is that the level of encapsulation is
higher than that of the original C application. The disadvantage to this is that it
requires more effort when building packages.

To begin packaging an existing application, the following must be identified:

• The files that make up the application packages. This is also discussed above in
the subsection on performance.

• The objects to be imported and exported. This can be difficult and a method for
identification is described below.

To identify the IMPORT statements, compile the package without import or export
directives. To compose the list of imports, scan the compilation listing. For each
object that requires an IMPORT order, the compiler sends the following message
(where xxxx is the name of the object to import):

AMBIGUOUS LINKAGE OF THIS IDENTIFIER <xxxx>. REFERENCED
ALTHOUGH NOT IMPORTED

To identify the EXPORT statements, compile all the application sources. Delete all
the compilation units from the CULIB that correspond to the package sources, and
do a LINK. All the EXPORT objects are together in the LINKER listing, marked as
NOLINK objects. The objects to export are the intersection of NOLINK and the
objects defined in the package.

Building Packages

47 A2 60UL 8-9

Because these identification methods can be involved, it is best to place all the
package orders in an independent file and compile it. In this way, the application
sources are not modified. When the package is established and tested, the file
containing the packaging directives can be integrated into one of the package
sources.

It is necessary to ensure the coherence of object type when they appear in several
files, notably those functions called without being defined (the definition implicit
as a function returning an integer). The linker does not detect this type of error
during separate compilation. However, in the case of package, the compiler sends a
SEV 3 error.

EXAMPLE:

If the file F1 contains a call to the function func but does not declare it, the code is
as follows:

F1:
 main (){
 int i;
 func(i);
 }

If the function func is defined in F2, the code is as follows:

F2:
 double func(i)
 int i;
 {
 return ((double) i);
 }

When compiling the file PACK_ORDER as follows:

PACK_ORDER:
#pragma PACKAGE F2, F1

The compiler sends the following error message (SEV 3):

THE TYPE SPECIFIER IN DECLARATION IS NOT THE SAME AS IN
THE PREVIOUS ONE. UNDEFINED BEHAVIOR

If F1 and F2 are compiled separately, there is no problem in the link between these
two files. This type of error depends on the order that the files are given and the
PACKAGE order.

C Language User's Guide

8-10 47 A2 60UL

To avoid this type of error, add the definition of func in an extern expression as
much as possible in PACK_ORDER. The following is an example of this:

PACK_ORDER
#pragma PACKAGE F2, F1
extern double func ();

The function func then returns a double for all the package files. In F1 there is no
longer an implicit definition, but the precedent definition (the one from
PACK_ORDER) remains. Also, there is no longer any type incoherence.

❑

8.4.5 The AUTOPACKAGE Directive

The AUTOPACKAGE directive is very similar to the PACKAGE directive.
However, all the external definitions are automatically exported and all the external
references are automatically imported.

The syntax of the directive and the restrictions on the directive are the same as for
the #pragma package.

Building Packages

47 A2 60UL 8-11

8.5 One-file Packages

When an application has only one file, it is always most efficient to make a
package. The C compiler has an option that avoids having to add in the source the
preprocessor order concerning the package. The following shows how to call this
package with the compiler keyword:

C MYFILE MYSLLIB PACKAGE;

This option is equivalent to the following:

• A #pragma PACKAGE order on the file to be compiled.

• A #pragma EXPORT order for all objects defined in the file.

• A #pragma IMPORT for all the objects that are called but not defined.

This provides an improvement in performance without modifying the source or the
object visibility (internal or external). By contrast, when the application does not
define any single function and calls the functions only from the main (a self-
containing application except for the C Run Time Package), it is more rigorous to
insert the following order into the source:

#pragma PACKAGE X

This restricts the visibility of the internal objects and adds to security.

The size of the produced object code is always greater in an automatic package
than when constructed in a #pragma package.

C Language User's Guide

8-12 47 A2 60UL

8.6 Summary

8.6.1 Pragma Syntax

The syntax of the pragma is as follows:

• #pragma PACKAGE membername[,membername]...
• #pragma EXPORT membername[,membername]...
• #pragma IMPORT membername[,membername]...

8.6.2 Object Visibility

The following table shows the visibility from the package of an object C, with
external visibility in the package member. In this table, the term declared means
that the object is declared but not defined.

OBJECT EXPORT IMPORT NOTHING
Internal External Internal External Internal External

Declared Error Error Visible Visible Error Error
Defined Visible Visible Error Error Visible Visible

The visibility of a static object (package or not) is limited to the member in which
the object is defined.

For example, when compiling PACK_ORDERS:

#pragma PACKAGE F1, F2
#pragma IMPORT f
#pragma EXPORT g

With F1:

extern int f(), g(), h();
int g() {...}
int h() {...}
int l() {
 int m;

}
static int n() {...}

With F2:

extern int f(), g(), h();
...

Building Packages

47 A2 60UL 8-13

This results in the following visibility:

- f is defined in another package and used in the package.

- g is defined in F1 and is visible inside and outside the
package.

- h is defined in F1 and visible only at the interior of the
package.

- l is defined in F1 and visible only at the interior of the
package.

- m is local to the function l.

- n is a function defined in f1 and visible only in the file.

8.6.3 Application Packaging Steps

The steps for defining a package are as follows:

1. Identify the files to be regrouped in the package.

2. Compose the list of imports and exports.

3. Verify the coherence of the object types.

4. Analyze recursivity problems and function calls to avoid a penalty in program
inefficiency.

C Language User's Guide

8-14 47 A2 60UL

❑

47 A2 60UL 9-1

 9. Optimizing with C

9.1 Introduction

9.1.1 The Goals of the Optimizer

The C language, like other high-level programming languages (for example Fortran
77, PASCAL, and GPL), allows programmers to compose algorithms using
concepts that are more abstract than those of the assembly code, thus improving
productivity and maintenance. Because of this, the program code generated by a
high-level language can be less effective than code written in assembly code. In
effect, a high level language does not allow the programmer to improve object code
by composing algorithms that are at the level of the machine.

The example below shows how an indexed table address, compiled at the
assembler level, develops some expressions that a programmer cannot.

int a [100], b [100]
int i, j;

for (i=0; i <= 100; i++)
 for (j=i; j< = 100; j++)
a [i+j] = b [j-i];

The compiler evaluates addresses that translate the assignment statement of the
innermost loop. Those addresses are as follows:

address (a [i+j]) = address (a) + 4 * j + 4 * i
address (b [j-i]) = address (b) + 4 * j - 4 * i

The programmer can not avoid the redundant expressions that the compiler creates,
and these redundancies can be extremely taxing on the efficiency of the loop.

The main goal of the optimizer is not to compensate for the eventual weakness of a
program. Rather, it is to reduce the inefficiencies of the generated code that are
inherent in high-level programming languages.

C Language User's Guide

9-2 47 A2 60UL

9.1.2 The Local Optimizer

In its first few version, the C compiler had two optimization levels, the instruction
source optimization level and the extended linear sequence optimization level.
These levels are still available, however, the global optimizer introduces new
levels. The first level is automatically activated when the DEBUG option is on.

In the first level, the scope of the optimization is limited to the algorithm
expressions within a source instruction. In the second, the scope of the optimization
is extended to a set of instructions, called a linear sequence or a basic block, that
are situated between two label definitions: a label being explicit in the source text,
or a label being implicit and generated by the compiler (for example, a conditional
instruction or a loop).

The two optimization levels perform the following principal functions:

• Constant folding.
• Copy propagation (or assign folding).
• Deletion of local redundant expressions.
• Deletion of useless code.

9.1.3 The Global Optimizer

The global optimizer extends the optimization reach for a whole procedure. The
global optimizer improves local optimization in the following areas:

1. Constant folding and copy propagation.
2. Deletion of redundant global expressions.
3. Deletion of useless or inaccessible code.

A good understanding of the program graph and the data flow that it handles allows
the compiler to operate an elaborate optimization through the manipulations that
the optimization functions perform on an internal representation of the source code.
These manipulations include code deletion, insertion, and motion. These global
optimization functions are as follows:

4. Anticipation and temporization.
5. Deleting partially redundant expressions.
6. Removing invariant expressions from loops.
7. Strength reduction and processing loop control variables.

Optimizing with C

47 A2 60UL 9-3

In addition, the global optimizer has two other functions characterized by an
expansion effect on the generated code. These are as follows:

8. Loop unrolling.
9. Procedure merging (or in-line insertion).

NOTE:
The optimization functions apply to the procedure level. There are no
inter-procedural optimizations.

There are two types of optimization improvements:

1. Increased speed in program execution.

2. Decreased volume of code generation, except in optimization cases of loop
unrolling (8) and procedure merging (9).

Restrictions in Optimizing

The optimizer follows these rules:

Efficiency Rule The optimizing functions work only if the application
shows an improvement in storage or time efficiency in
all possible execution cases of the program.

Coherence Rule An optimization function must never affect the
semantics of a program. If a program executes
correctly and conforms to the definition of the
language without optimization, then optimization must
not cause the program to abort.

Compromised Time and Storage Rule
The optimizer gives greater importance to the
optimization functions that contribute a gain in
execution time than to those that contribute to the
reduction of generated volume of source code.

C Language User's Guide

9-4 47 A2 60UL

9.1.4 Optimization Levels

The C compiler has five optimization levels. Each level is guided by one of the
OPTIMIZE parameters levels, as follows:

OPTIMIZE=0 No optimization

OPTIMIZE=1 Local optimization, limited to the source statement
(the instruction source).

OPTIMIZE=2 Local optimization, limited to an extended linear
sequence. This is the default level.

OPTIMIZE=3 Global optimization avoiding code expansion (loop
unrolling, procedure merging).

OPTIMIZE=4 Global optimization with possible code expansion.

Only the OPTIMIZE=1 level is compatible with the debugging option, in which
case it is the default.

Optimizing with C

47 A2 60UL 9-5

9.2 Global Optimizer Functions

This section describes the different functions of the global optimizer and gives an
example of each in the C source language. The functions are presented independent
of each other. In the examples, you can concentrate on one optimization function at
a time, without considering the possible effects from other functions. When you
actually use the global and local optimizer, the functions are linked together and
have a cumulative effect.

The global optimizer works on the internal image of the source code that is closest
to the machine code. Therefore, it is possible for the optimizer to have a greater
effect than shown here in the following examples. For example, the address
expression is not developed when indexing an array.

9.2.1 Constant Folding and Copy Propagation

When the optimizer has the operand values of a sub-expression, it can calculate
directly the resulting values. By repeating this process, the propagation reaches all
the program expressions, as long as those expressions are valid.

a = 1;

if (valid)
 x = a + 3;
else
 x = a + 1;

This gives the following, after optimization:

a = 1;

if (valid)
 x = 4;
else
 x = 2;

The optimizer uses the basic elementary operations (arithmetic, logical, and
comparative) for constant folding and copy propagation. However, the compiler
does not evaluate a constant expression during compilation if the expression causes
an exception. An overflow or an illegal operation are examples of exceptions.

C Language User's Guide

9-6 47 A2 60UL

9.2.2 Deleting Globally Redundant Expressions

An expression, at a particular point in a program, is globally redundant if it was
previously evaluated with the same values, regardless of how the program is
running.

In the example below, the expression "a + b" is globally redundant:

x = a + b + c;
if (a>b)
 x = 10;
else
 x = 20;
y = a + b + b;

This optimization function deletes all the redundant expressions in the program. It
does this by grouping together all common sub-expressions. After optimization, the
above example gives the following:

t = a + b;
x = t + c;
if (a > b);
 x = 10;
else
 x = 20;
y = t + d

The intermediate variable, t, must be interpreted here as the value of the already-
memorized "a + b" sub-expression. The compiler can keep it in a machine register.

9.2.3 Deleting Code

When using the optimization functions, some program code can become useless or
inaccessible. This often occurs after managing and developing constant
expressions. This is shown in the following example.

{
 int a, b;

 a = 1;
 b = a - 1;
 if (a < b)
 c = b;
 else
 c = a;
 c = c * 2;
}

Optimizing with C

47 A2 60UL 9-7

After constant folding and copy propagation, this gives the following:

{
 int a, b;

 a = 1;
 b = 0;
 if (1 < 0)
 c = 0;
 else
 c = 1;
 c = c * 2;
}

Deleting Useless Code

When the optimization functions evaluates the above example, it creates some
useless code, a and b. Because a and b are local to the block, their assignment is not
necessary. Deleting the useless code results in the following:

{
 int a, b;

 if (1 < 0)
 c = 0;
 else
 c = 1;
 c = c * 2;
}

Deleting Inaccessible Code

Managing and developing constant expressions can also reveal some inaccessible
code. The previous example, which shows this, is reduced to the following:

{
 int a, b;

 c = 1;
 c = c * 2;
}

C Language User's Guide

9-8 47 A2 60UL

9.2.4 Anticipation and Temporization

Two of the optimization functions reduce the object code, but do not shorten
program execution time. These functions either bring forward or set back
expressions that use the IF-THEN-ELSE instruction in the program. They move the
expressions that are within the THEN and ELSE outside, towards the top or the
bottom. In this way, the expressions are evaluated only once. The optimization
function that brings an expression forward is called anticipation. The function that
sets an expression back is called temporization.

The following is an example of anticipation:
if (u > v)
 {
 x = a + b;
 a = u;
 }
else
 {
 x = a + b;
 b = v;
 }

This yields the following after optimization:
x = a + b

if (u > v)
 a = u;
else
 b = v;

The following is an example of temporization:
if (u > v)
 {
 a = u;
 x = a + b;
 }
else
 {
 b = v;
 x = a + b;
 }

This yields the following after optimization:
if (u > v)
 a = v;
else
 b = v;
x = a + b

Optimizing with C

47 A2 60UL 9-9

9.2.5 Deleting Partially Redundant Expressions

An expression, at a particular point in a program, is partially redundant if the
expression has been already evaluated with the same value in another point in the
program. Partial redundancy is weaker than global redundancy.

This optimization function eliminates partial redundancies in the program, without
interfering with the coherence rule. Partial redundancy is shown in the example
below:

if (x == 1)
 x = a + b;
else
 a = 1;
x = a + b;

In the example above, the assignment x = a + b is partially redundant. This is
because there is one path that executes it twice, uselessly. In contrast, this
assignment is not globally redundant because there is one path where there is no
redundancy.

It is possible to eliminate the partial redundancy "x = a + b" by moving it from the
IF instruction into the ELSE instruction, as follows:

if (x == 1)
 x = a + b;
else
 {
 a = 1;
 x = a + b;
 }

C Language User's Guide

9-10 47 A2 60UL

9.2.6 Removing Loop Invariants

An expression located in the body of a loop is invariant when its evaluation
remains constant throughout the execution of the loop. In the following examples,
the expressions "a + b", and "sqrt (y)" are loop invariants.

EXAMPLE 1:

for (i = 1; i <= 10; i++)
 x [i] = a + b;

❑

EXAMPLE 2:

for (i = 1; i <= j; i++)
 x [i] = a + b;

❑

EXAMPLE 3:

for (i = 1; i <= 10; i++)
 if (y > 0)
 x [i] = sqrt (y);

The optimization function evaluates all the invariant expressions outside of the
loop. This transformation is successful only when the evaluation takes place in the
same path where it was performed before. When the loop invariants are removed
from the examples above, the results are as follows.

Example 1, from above, after optimization:

t = a + b;
for (i = 1; i <= 10; i++)
 x [i] = t;

Moving the loop invariant , "a + b", to the top, as in example 1, is successful
because there is at least one whole iteration in this loop (in this case, the number of
iterations is 10).

Optimizing with C

47 A2 60UL 9-11

In the second example, the lower bound, 1, is known, but the higher bound, j, is not
known. The optimization function can rearrange the code without changing the
semantics in order to allow the optimization function to remove the loop invariant.

Example 2, from above, after rearrangement:

if (j > 1)
 for (i = 1; i <=j; i++)
 x [i] = a + b;

Example 2, after optimization:

if (j > 1)
 {
 t = a + b;
 for (i = 1; i <= j; i++)
 x [i] = t;
}

❑

It is not possible to remove the loop invariant, "sqrt(y)", from the third example.
This is because no rearrangement can be made that does not interfere with the
coherence rule.

C Language User's Guide

9-12 47 A2 60UL

9.2.7 Strength Reduction and Processing Loop Control Variables

9.2.7.1 Strength Reduction

The strength reduction optimization function replaces, in loops, an expensive
operation with one that is equivalent, but more economic. The result of the
operation remains the same, but requires less power to accomplish. This
optimization function operates on arithmetic multiplication, and has the following
two steps:

Step 1:

The detection of all the variables in the loop, progressing step by step through each
iteration. Let x be a variable and k be a loop invariant, progressing as follows:

x = x + k

Step 2:

The replacement of multiplications of the following type:

x * c

Where c is a loop invariant by an intermediary variable, t. Variable t is correctly
initialized and modified at the end of the loop by the following assignment:

t = t + k * c

The product of k * c is evaluated at compile time.

An example of this optimization function is:

for (i = 1; i <= 10; i += 2)
 x = x + 4 * i;

After optimization:

t = -4;
for (i = 1; i <= 10; i += 2)
 {
 t = t + 8;
 x = x + t;
}

Optimizing with C

47 A2 60UL 9-13

9.2.7.2 Processing of Loop Control Variables

If the compiler can know the number of iterations of a loop, the loop control test is
substituted by an equivalent one and is expressed using one of the intermediary
variables that the strength reduction function created.

The example from above (after the strength reduction) can be reformulated by hand
to make the loop exit test more specific. This is as follows:

 t = -4;
 i = 1;
lab:
 t = t + 8;
 x = x + t;
 i = i + 2;
 if (i <= 10)
 go to lab;

In this way, the substitute control test, which is possible in this example, leads to
the following:

 t = -4;
 i = 1;
lab:
 t = t + 8;
 x = x + t;
 i = i + 2;
 if (t != 36)
 go to lab;

This manipulation deletes the induction variable, i (when it is no longer working in
the loop), only by adding the assignment of the last value of i at the end of the loop.
The example above shows this optimization function as follows:

 t = -4
 i = 11
lab:
 t = t + 8;
 x = x + t;
 if (t != 36)
 go to lab;

C Language User's Guide

9-14 47 A2 60UL

9.2.8 Loop Unrolling

Loop unrolling consists of artificially reducing the number of iterations in a loop
and duplicating the body of the loop a certain number of times. The number of
duplications depends on the size of the loop and the number of its iterations. This
optimization applies only if the number of iterations is known at compile time.

For small size loops, the unrolling is total. A small loop is one in which the number
of iterations does not exceed 20. In other loops, the unrolling is partial, provided
that the ratio of expansion is not great. The loop expansion optimization function
limits itself to only the lowest level loops, as shown in the following example.

for (i = 1; i <= 25; i++)
 {
 k = 25 * (i - 1);
 for (j = 1; j <= 25; j++)
 x [k + j] = j;
}

As the number of iterations of this loop is greater than 20, this is not a small loop.
After partial expansion, this gives the following:

for (i = 1; i <= 25; i++)
 {
 k = 25 * (i - 1)
 for (j = 1; j <= 25;)
 {
 x [k + j] = j;
 j = j + 1;
 x [k + j] = j;
 j = j + 1;
 x [k + j] = j;
 j = j + 1;
 x [k + j] = j;
 j = j + 1;
 x [k + j] = j;
 j = j + 1;
 }
}

This program can then be optimized using the algorithms described above.

Optimizing with C

47 A2 60UL 9-15

9.2.9 Procedure Merging

The optimization function of in-line insertion substitutes the calls to procedures or
functions with their corresponding code after arguments replace formal parameters.
This speeds the program execution time, by both deleting the call sequence and
augmenting the window on which to perform the optimization.

Generally speaking, when a call to a procedure is inserted depends on the user
options and the optimizer criteria. The users options are on the OPTIMIZE level,
the INLINER parameter, and pragmas.

It is possible to merge some calls to a procedure while others not. The decision of
when to merge procedure is based upon the following criteria.

• A recursive call is not inserted if a procedure is directly or indirectly recursive.
There is only one level of insertion, shown in the example below.

• The procedure size will remain reasonable after the procedure merging.

AN EXAMPLE OF MERGING:

In this example, a file contains the following functions:

 f() { a=1; g(); b=2;}
 g() { c=3; f(); d=4;}
main () { f();}

After procedure merging, these functions are equivalent to the following:

 f() { a=1; g(); b=2;}
 g() { c=3; f(); d=4;}
main () { a=1; c=3; f(); d=4; b=2;}

In this example, the second call to f is not inserted. This second call comes from
the g that is inserted.

❑

C Language User's Guide

9-16 47 A2 60UL

9.3 Using the Global Optimizer

The quality of the code generated with the global optimization functions permits
the compiled programs to execute more rapidly. However, because the global
optimizer slows the program compilation, it is best to use it only in the final phase
of program development.

For the initial testing, it is recommended to use the default optimization level
(OPTIMIZE=2). This works well for local optimization running on a linear
extended sequence. If the debugging option is running, then only the first
optimization level (OPTIMIZE=1) can be used, and it is automatically switched on.
This level is that running on a source statement.

The global optimizer functions work independently with only one procedure at a
time. There are no inter-procedural optimization functions. The procedure calls that
are not merged limit the effects.

The use of a non-local goto has an equally limiting effect on the optimizations. It is
not advisable to write procedures that are too large.

47 A2 60UL 10-1

 10. Run-Time Environment

10.1 RUN-TIME Header Subfiles

Run-time functions may need to use some special header subfiles contained in the
system library SYS.C.INCLUDE. The SYS.C.INCLUDE subfiles used for run-
time functions are:

<STDIO_H> See section 12, 13, 14, 16, 18, 22, and 24

<SETJMP_H> See section 17

<ASSERT_H> See section 21

<CTYPE_H> See section 15

<STDLIB_H> See section 14, 22, and 24

<STRING_H> See section 16

<MATH_H> See section 18

<TIME_H> See section 19 and 24

<STDARG_H> See section 13 and 20

<ERRNO_H> See section 23

<LOCALE_H> See section 24

<SIGNAL_H> See section 22

<STDDEF_H> See section 25

C Language User's Guide

10-2 47 A2 60UL

10.2 Accessing Run-time Functions

The standard header subfiles listed above contain a list of #define statements.
These #define statements get the actual entry point of the run time package from
the usual name of the function. If the corresponding header is not included, the
name is not replaced. The entry point of the run-time package is then called
through a compile relay that is linked automatically to the user's program. In order
to prevent renaming, add the following statement:

#undef <function name>

If the header file is included and you want to have your own implementation of one
of the standard library functions, adding this statement prevents renaming.

NOTES:
1. Because direct access to the run-time package is more efficient, it is best to

include the header file.

2. If the header file is included, the compiler can automatically insert the
code of some library functions in your own code, which improves
efficiency.

3. If you use the BUILTIN option of the C compiler, you cannot redefine the
library function, even by using #undef. For more information, see section
3.1.2.19 and 3.2.2.26.

The current release does not support the _RTP_NO_CU_RELAIS macro.

Run-Time Environment

47 A2 60UL 10-3

10.3 Run Time Initialization

A C program consists of a set of functions, one of which is known as the main
function and called first. The main function automatically calls the C Run Time
package before the first executable statement in order to initialize its own working
area. In the same way, the main function calls the C Run Time package after its
last executable statement, in order to flush buffers and close files (except when an
explicit return statement is executed).

Nevertheless, it is possible to initialize the C Run Time package without going
through the main function, by invoking explicitly the H_CLR_EPROLOG
function. The H_CLR_EPILOG function must be used to clear the Run Time
working area at the end of the program. The respective prototypes are:

• * EXTERN VOID H_CLR_EPROLOG ():
• * EXTERN VOID H_CLR_EPILOG ():

The respective prototypes are:

* extern void H_CLR_EPROLOG (int)
* extern void H_CLR_EPILOG ():

and H_CLR_EPROLOG must be called with a parameter value of 0 (zero).

Subroutines written in other languages supported by GCOS 7 can call these
functions For instance, in GPL:

DCL H_CLR_EPROLOG ENTRY (FIXED BIN(31));
...
CALL H_CLR_EPROLOG(0)

C Language User's Guide

10-4 47 A2 60UL

10.4 Portability Levels of the Run-time Functions

Each of the Run Time macros or functions has an associated portability level. The
synopsis reflects this level. The three portability levels and their definition levels
are as follows:

ANSI Part of the X3J11 ANSI standard
XOPEN Part of the XPG3 XOPEN standard
GCOS 7 Specific to the GCOS 7 library

The ANSI level functions are the most portable because they can be used at the
ANSI level, the XOPEN level, and the GCOS 7 level. Whereas the XOPEN
functions can be used on the XOPEN level and the GCOS 7 level, and the GCOS 7
level functions can be used only on the GCOS 7 level. For example, abs is a
function that is part of ANSI, XOPEN and the GCOS 7 library. Then, its attached
level is ANSI.

The GCOS 7 compiler can conform to the ANSI standard.

10.4.1 The ANSI Level Functions

The following is a list of the ANSI level functions. These functions are the most
portable and can be used at the ASNI level, the XOPEN level, and the GCOS 7
level.

abort ANSI
abs ANSI
acos ANSI
asctime ANSI
asin ANSI
assert ANSI
atan ANSI
atan2 ANSI
atexit ANSI
atoi ANSI
atol ANSI
bsearch ANSI
calloc ANSI
ceil ANSI
clearerr ANSI
clock ANSI
close ANSI
cos ANSI
cosh ANSI
difftime ANSI
div ANSI

Run-Time Environment

47 A2 60UL 10-5

exit ANSI
exp ANSI
fabs ANSI
fclose ANSI
feof ANSI
ferror ANSI
fflush ANSI
fgetc ANSI
fgetpos ANSI
fgets ANSI
floor ANSI
fmod ANSI
fopen ANSI
fprintf ANSI
fputc ANSI
fputs ANSI
fread ANSI
free ANSI
freopen ANSI
frexp ANSI
fscanf ANSI
fseek ANSI
fsetpos ANSI
ftell ANSI
fwrite ANSI
getc ANSI
getchar ANSI
getenv ANSI
gets ANSI
getw ANSI
gmtime ANSI
isalnum ANSI
isalpha ANSI
iscntrl ANSI
isdigit ANSI
isgraph ANSI
islower ANSI
isprint ANSI
ispunct ANSI
isspace ANSI
isupper ANSI
isxdigit ANSI
labs ANSI
ldexp ANSI
ldiv ANSI
localeconv ANSI
localtime ANSI
log ANSI
log10 ANSI
longjmp ANSI
malloc ANSI

C Language User's Guide

10-6 47 A2 60UL

mblen ANSI
mbstowcs ANSI
mbtowc ANSI
memchr ANSI
memcmp ANSI
memcpy ANSI
memmove ANSI
memset ANSI
mktime ANSI
modf ANSI
perror ANSI
pow ANSI
printf ANSI
putc ANSI
putchar ANSI
puts ANSI
putw ANSI
qsort ANSI
raise ANSI
rand ANSI
realloc ANSI
remove ANSI
rename ANSI
rewind ANSI
scanf ANSI
setbuf ANSI
setjmp ANSI
setlocale ANSI
setvbuf ANSI
signal ANSI
sin ANSI
sinh ANSI
sprintf ANSI
sqrt ANSI
srand ANSI
sscanf ANSI
strcat ANSI
strchr ANSI
strcmp ANSI
strcoll ANSI
strcpy ANSI
strcspn ANSI
strerror ANSI
strftime ANSI
strlen ANSI
strncat ANSI
strncmp ANSI
strncpy ANSI
strpbrk ANSI
strrchr ANSI
strspn ANSI

Run-Time Environment

47 A2 60UL 10-7

strstr ANSI
strtod ANSI
strtok ANSI
strtol ANSI
strtoul ANSI
strxfrm ANSI
subbuf ANSI
system ANSI
tan ANSI
tanh ANSI
time ANSI
tmpfile ANSI
tmpnam ANSI
tolower ANSI
toupper ANSI
ungetc ANSI
va_arg ANSI
va_end ANSI
va_start ANSI
vfprintf ANSI
vprintf ANSI
vsprintf ANSI
wcstombs ANSI
wctomb ANSI

C Language User's Guide

10-8 47 A2 60UL

10.4.2 XOPEN Level Functions

This is a list of the XOPEN level functions. These functions can be used at both
the XOPEN and GCOS 7 levels.

_tolower XOPEN
_toupper XOPEN
close XOPEN
cmpstr XOPEN
cpystr XOPEN
creat XOPEN
fcvt XOPEN
gcvt XOPEN
index XOPEN
log2 XOPEN
lseek XOPEN
notstr XOPEN
open XOPEN
prefix XOPEN
read XOPEN
scnstr XOPEN
substr XOPEN
write XOPEN

Run-Time Environment

47 A2 60UL 10-9

10.4.3 GCOS 7 Level Functions

The following is a list of the GCOS 7 level functions. These functions are the least
portable and can be used at only the GCOS 7 level.

begin_c_task GCOS 7
cancel_multibyte_mode GCOS 7
cancel_record_mode GCOS 7
cancel_silent_mode GCOS 7
cancel_ssf_fmt GCOS 7
cmpbuf GCOS 7
cpybuf GCOS 7
ecvt GCOS 7
etof GCOS 7
etoi GCOS 7
etol GCOS 7
fill GCOS 7
h_reopen GCOS 7
lenstr GCOS 7
lock GCOS 7
notbuf GCOS 7
scnbuf GCOS 7
set_multibyte_mode GCOS 7
set_record_mode GCOS 7
set_silent_mode GCOS 7
set_ssf_fmt GCOS 7
setprompt GCOS 7
settsp GCOS 7
sexit GCOS 7
test_multibyte_mode GCOS 7
test_silent_mode GCOS 7
unlock GCOS 7

C Language User's Guide

10-10 47 A2 60UL

❑

47 A2 60UL 11-1

 11. General I/O Considerations

11.1 C Files and GCOS 7 Files

This subsection describes the C files and the GCOS 7 files that work with the I/O
functions.

11.1.1 C Files

A C file is a simple logical entity called a stream. It is associated at open time with
an external file name, which in turn represents the physical entity of a file. The
physical entities include disk and terminal files. When a pointer points to a
structure of FILE type, the programmer can "see" this stream. Most of the I/O
functions reference this pointer as an argument.

The standard inclusion file STDIO_H defines the FILE type. It holds information
to control I/O operations. The ANSI standard requires at least the following
information:

• A file position indicator

• A pointer to the associated buffer

• An error indicator

• An end-of-file indicator.

The structure of a C file can be either one of the following:

• A set of lines, with each one composed of printable characters and ending with a
newline character.

• A sequence of characters that are in the execution character set.

The smallest unit of a C file is the character.

C Language User's Guide

11-2 47 A2 60UL

11.1.2 GCOS 7 Files

A GCOS 7 file is a system object that its external file name (EFN) accesses. This
name is used as constant character string for the first argument of the fopen
function. The syntax of this name is described in the appendix about file and
volume syntax.

I/O operations that work on a GCOS 7 file associate this EFN with an internal file
name (IFN). JCL or GCL commands use the IFN to assign a file outside a source
program. In C/GCOS 7 library implementation, the IFN is a character string. The
IFN values of the standard stdin, stdout and stderr files are respectively
STDIN,STDOUT and STDERR. Otherwise, the character string represents
numerical values from 3 to 255.

C/GCOS 7 libraries accept only files that the following methods can manage:

• UFAS sequential or relative access method.

• BFAS sequential, DMU access method.

• The terminal standard access method.

The structure of a GCOS 7 file is a set of records with fixed or variable size. These
can be accessed sequentially, directly, or with keys, depending on the organization
of the file. The smallest unit of a GCOS 7 file is the record. Note that the V6
release does not support keys on BFAS files.

The character set for GCOS 7 is EBCDIC.

General I/O Considerations

47 A2 60UL 11-3

11.2 Stream Types, Data Formats, and Modes

11.2.1 Text and Binary Streams

The C ANSI standard uses text streams and binary streams to separate user data.
Some processors, for example, editors, can then treat user data as text, and other
data as binary. This process allows any system to support a C file in the same way.

What is a Text Stream?

A text stream is a logical mapping of a GCOS 7 file to a set of lines. Each line
contains zero or more characters and terminates on a newline character. Under
C/GCOS 7, the last line of a text stream associated with a file always has a newline
character at the end, except for an SSF file in which no explicit newline has been
written on that line.

In C/GCOS 7, data read from a text stream is equivalent to data written earlier to
that text stream if the data meets the following conditions that ANSI imposes:

• The data consist of only printable characters, the horizontal tab and newline
control characters.

• No newline character is immediately preceded by space characters.

These conditions assume that the applications handling text streams are portable.

Depending on the GCOS 7 file with which the stream is associated, the following
exceptions apply to the above ANSI conditions:

• For variable-size record files, the newline character can be preceded by space
characters. However, for fixed-size record files, padding space characters
preceding a newline character can be written temporarily or permanently in a
record. It is not possible to distinguish these space characters preceding a new
line from those to be written out.

• Characters that are not printable can be written out and read in from a text
stream. Text streams can be associated with GCOS 7 files whose contents are
actually binary data.

C Language User's Guide

11-4 47 A2 60UL

What is a Binary Stream?

A binary stream is a logical mapping of a GCOS 7 file to an ordered sequence of
any characters.

In C/GCOS 7, binary streams must conform to the following condition that ANSI
applies:

Data read in from a binary stream is equivalent to the data written out earlier to that
stream.

Fixed-size record GCOS 7 files can have, at most, RECSIZE null characters
appended. (Where RECSIZE is the size of a record.)

IMPORTANT:
If binary streams end with null characters, due to the null character padding, the
behavior of fseek or fread functions is undefined when using Fixed-size record
GCOS 7 files.

A binary stream may be associated with a GCOS 7 file whose contents are in fact
text data.

EXAMPLE OF BINARY STREAM USAGE

When a GCOS 7 file contains binary data, it can be useful to interpret EBCDIC
value 15H as the corresponding opcode in the instruction set instead of as the
newline character.
❑

11.2.2 SSF and SARF Formats

The SSF and SARF formats are GCOS 7 standard formats. The SSF format
records user data mixed with information for specific processors, for example,
editors. The SARF format records only user data.

The SSF format is not a specific property of a file seen as a system object. It is a
convention between GCOS 7 processors that handles user data contained in a file.

The following C/GCOS 7 macros set the SSF and SARF formats:

set_ssf_fmt
cancel_ssf_fmt

SSF or SARF formats are associated with the GCOS 7 files. They are independent
of the text or binary stream associated with this file. It is possible to associate a

1 33

General I/O Considerations

47 A2 60UL 11-5

text stream with a file in SARF format, even if, conceptually, a binary stream is the
natural mapping for such a file.

IMPORTANT:
Writing operations on a file with SSF format use internal SSF information. The
coherence of a file can be destroyed if it is as input to other GCOS 7 processors.
This is especially true for specific commands of editors, if the file can be edited.

1 33

C Language User's Guide

11-6 47 A2 60UL

11.2.3 Line-Record and Stream-Mode Files

The line record and stream modes separate GCOS 7 files into two categories: text
files and other files. These modes were created before the ANSI standard, and are
now part of C/GCOS 7 file processing in order to be compatible with previous
releases.

The line-record mode is used mainly to allow GCOS 7 editors to read a C file
created in this mode. It assumes that each file record is a C line. The end of the
record is considered to represent the ending newline character of the line. By
extension, this mode can be set (and have the same semantics) for files that the
editors cannot handle. Files that are not in line-record mode are in stream mode.

The line record and stream modes characterize the manner in which a GCOS 7 file
is seen by the application and by the other processors in the GCOS 7 environment.
Because they take into account that newlines, which separate text lines, are not
visible by a GCOS 7 standard editor, they try to map a line on a record. The record
is the smallest GCOS 7 file unit.

UNIX prefers to map a file in the STREAM mode. It physically writes all
characters in a file through C primitives. This includes newline characters.

The following C/GCOS 7 macros set these modes:

set_record_mode
cancel_record_mode.

LINE_RECORD mode implies that the stream associated with a file is a text
stream, even if a binary stream was requested at open file time.

IMPORTANT:
If a written line is larger than the current size record, the behavior after
LINE_RECORD is undefined when the file is read in with the same mode.

1 33

General I/O Considerations

47 A2 60UL 11-7

11.2.4 Buffering

A buffer is a resource that is attached to the stream associated with a GCOS 7 file.
The buffer manages the I/O operations. This buffer is a kind of window through
which data is exchanged between the stream and the file. The buffering
characteristics of a stream control the data flow transmitted to or from the file.

The definitions for stream buffering are as follows:

• A no-buffering or unbuffered stream is ready to receive characters directly from
the source or to send characters directly to the destination as soon as possible.

• A fully-buffered stream accumulate and transmits characters to or from the file
as a block when the buffer is filled.

• A line-buffered stream accumulates and transmits characters to or from the file
as a block when a newline character is encountered.

C/GCOS 7 does not support unbuffered streams. This is because the smallest I/O
exchange unit for a file is the record. C and GCOS 7 do support line or full
buffering, even when having to bypass buffering characteristics. This bypassing
allows the I/O control flow to adapt between a GCOS 7 file and its associated
stream. For more information, see the overriding rules, described below.

The following figure summarizes the different notions seen above. Vertical lines
show which properties are associated with which objects (above the vertical line).
Horizontal lines show how objects are linked both physically and in terms of data
exchange during I/O operations.

 GCOS 7 file <--- I/O exchange buffer -----> C file
 | | |
 |<----------------->| |
 | |<---------------------->|
 |<------------------|----------------------->|
 | | |
SSF/SARF formats line/full text/binary
LINE_RECORD buffering streams
or STREAM mode

C Language User's Guide

11-8 47 A2 60UL

11.2.5 Default Positioning on GCOS 7

This subsection describes how the SSF/SARF format and
LINE_RECORD/STREAM types are set, and the buffering attribute of a file.

At open time, only the SARF/SSF format can be explicitly specified. If it is not
specified, it takes the default setting. The LINE_RECORD/STREAM type and
buffering attribute take the default settings.

In a second step, the user can override these settings between open time and the
first invocation of an I/O library function. This can be done as follows:

• The following two non-ANSI macros can set or reset the SARF/SSF format:
 set_ssf_fmt
 cancel_ssf_fmt

• The following two non-ANSI macros can explicitly set or reset the LINE-
RECORD or STREAM modes:

 set_record_mode
 cancel_record_mode

• The following two ANSI primitives can modify line-buffering or full buffering,
as follows:

 setbuf
 setvbuf

Finally, the implemented strategy of C/GCOS 7 library functions overrides these
settings, as follows:

Terminal files:

• Are always associated with a text stream
• Have SARF format
• Have LINE_RECORD mode.

SYSOUT/SYSIN files:

• Are always associated with a text stream
• Have SSF format
• Have LINE_RECORD mode.

Disk files:

• Have the SARF format set if the file is not UFAS sequential, or BFAS
sequential.

• Are always associated with a text stream if the LINE_RECORD is set.

General I/O Considerations

47 A2 60UL 11-9

All supporting files are associated with a fully buffered stream when both the
LINE-RECORD mode and SSF format are not set, and the file does not have
variable-size records.

The open and create functions establish the following default settings:

• A stream associated with a GCOS 7 terminal file uses the SARF format,
LINE_RECORD mode, and line buffering.

• A stream associated with a SYSOUT/SYSIN file uses the SSF format, LINE-
RECORD mode, and line buffering stream.

• Other files with fixed size records use the SARF format, STREAM mode, and
full buffering stream.

• Subfiles with variable size records use the SSF format, LINE-RECORD mode,
and line buffering stream.

• Other files with variable size records use the SARF format, STREAM mode, and
full buffering stream.

The low-level functions (open and create) open a file as if it were associated with a
binary stream and the default settings.

C Language User's Guide

11-10 47 A2 60UL

11.3 Standard Files

During execution of a C program (the entry point of which is a 'main' function), the
run-time package (RTP) opens three files called standard files. These files can be
used as such until the user 'main' function is completely executed unless they have
been closed by the close or fclose functions.

Description:

• Names of pointers on FILE structure: stdin, stdout, stderr

• Names of IFNs (for external assignment): STDIN, STDOUT, STDERR

• Numbers of file descriptors for accessing them with low-level primitives: 0,1,2
for stdin, stdout, stderr respectively. Low-level primitives are equivalent to
system functions under UNIX.

According to usage mode:

• IOF:

− Not statically assigned: the standard file is a terminal file handled by the
Terminal Access Method (TAM). For more information, see the paragraph on
files handled by TAM.

− Statically assigned: this is the assigned GCOS 7 file.

• Batch:

− Not statically assigned: for stdout and stderr, it is the SYSOUT. The stdin file
is a dummy file. The 'dummy' is not the DUMMY type associated with certain
files under GCOS, although it does simulate their functions.

− Statically assigned: this is the assigned GCOS 7 file.

IMPORTANT:
These files can be opened only when the 'main' function is called.

1 33

General I/O Considerations

47 A2 60UL 11-11

11.4 Non-standard Files

The following functions can open or create a file:

fopen
freopen
tmpfile
open
create

The following rules apply when a file does not already exist and when the used
function allows the creation of the file.

• For a library subfile, a subfile has the same physical attributes as the library file.

• For a temporary file, the file has the standard characteristics unless the tmpfile
function creates it. If the tmpfile creates a temporary file, it has the standard
characteristics and the $TEMPRY attribute of a temporary GCOS 7 file. The
standard characteristics are described below.

• A terminal file has the attributes described in the terminal I/O paragraph, later in
this section.

A standard C file has the following characteristics:

organization type: UFAS

data format: SARF

record size: 256

cisize: 2048

record type: FIXED BLOCKED

allocated space: 1 cylinder

increment: 1

The creation of a file by the RTP implies that space be allocated for the GCOS 7
object. The user is responsible for the file that is thus created and must be capable
of retrieving it to destroy it if necessary. It is recommended that you use the
attribute $CAT for cataloging such a file or the attribute $TEMPRY for creating a
temporary one. By default, it is created RESIDENT with a warning message sent to
the JOR.

C Language User's Guide

11-12 47 A2 60UL

The FILE structure that can be accessed by the user for opening a file with fopen is
initialized on the first invocation of one of the I/O functions, so that:

• The size of the buffer associated with the file, its write index and number of
characters remaining to be read (depending on the opening mode) can be
consulted.

• The macros described in STDIO_H can consult or manipulate the position of
different flags with respect to the state of the file.

• The buffer address.

• Specific functions can set or manage a position indicator, but its use is prohibited
elsewhere. The specific functions include fseek and ftell. The position indicator
gives:

− The current byte position for a binary stream
− The current line and column in the line for a text file

Files assigned or pre-allocated by JCL or GCL are subject to the restrictions of the
type of organization selected by the user.

When a file is created it is advisable that you specify the private catalog under
which the file is to be associated. This is to avoid any problems with access rights;
and also to enable you to find again the name of the MEDIA and the DEVICE.

Trying to create a sub-file in a non-existent library is forbidden. Creating
OBJ1.OBJ2. OBJN..FILE1, if one of the OBJ does not exist, actually creates a
system object OBJ1.OBJ2. OBJN, or no object at all if any problems with access
rights occur.

General I/O Considerations

47 A2 60UL 11-13

11.5 Terminal I/O

The RTP processes only the part in text mode supplied by the communications
interfaces that can be used with synchronous and asynchronous terminals during a
session under IOF.

A typical feature of this mode is that a data item is considered as a continuous
stream of information. This mode processes only the simplest communications
interface, i.e. the one accessible to a user with no previous experience with the type
of manipulation performed on his file. This is the SARF data format.

IMPORTANT:
A terminal I/O is always line buffered. For example, this means that a putc
(c); statement displays that character c at the terminal only when a newline
character \n is output.

Only the following characteristics for terminal handling are supported:

• A file can be statically assigned to a terminal using the parameter DVC=TN of
the JCL command: ASSIGN (or the file literal::TN for GCL).

• A program can connect several IFNs to the same terminal.

• Three standard files are available to the user in IOF. The prefix I:b indicates data
on the STDIN file (where b denotes a blank character) and 0:bbb indicates data
on the files STDOUT and STDERR (where bbb denotes three blank characters).
For non standard files, the file descriptor number returned by the RTP is the
prefix.

• The transparent mode of the standard terminal access method is not supported.
For more information about how to use the transparent mode on terminals, refer
to the setprompt and setrsp functions.

• The JCL command DEFINE is the responsibility of the user.

• In read mode, the end of file is marked by EOS <CR> at the beginning of the
line (<CR>= carriage return).

• Opening of a terminal file is valid only in write or read modes.

1 33

C Language User's Guide

11-14 47 A2 60UL

11.6 Static Assignment of C Files

Static assignment of a C file under GCOS 7 requires an EFN and an IFN linked to
the file.

The IFN is created by the RTP when the file is opened. Except for the three pre-
defined files, it is best to use the IFN extension in the mode parameter of the fopen
functions. The IFN is stdin, stdout, and stderr (upper case) for the three pre-defined
files. For the other files, IFN is a character string that represents a numerical value
in the range of 3 to 255.

Static assignment is not a standard feature of input/output operations of C. It is
merely a facility added by the RTP to simulate re-direction of the file as under
UNIX. Consequently, the use of this facility is your own responsibility.

EXAMPLE IN JCL:

 .
 .
step TOTO TEMP;
ASG 3 LSFY.CC.USER SUBFILE = FIC0;
ASG 4 LSFY.CC.USER SUBFILE = FIC1;
 .
 .
 .
END STEP;
 .

❑

EXAMPLE IN THE C PROGRAM:

#include <stdio_h>
 main()
 FILE * p0, * p1;
 .
 .
 .
 p0 = fopen ("BIDON$TEMPRY", "w;IFN=3"); /* first opening */
 p1 = fopen ("TEMPO$TEMPRY", "w;IFN=4"); /* second opening */
 .
 .
 .

❑

The IFN of BIDON$TEMPRY is 3 and the IFN of TEMPO$TEMPRY is 4.

General I/O Considerations

47 A2 60UL 11-15

NOTE:
In the case of static assignment, the efn given in the fopen function has no effect
on the first call.

IMPORTANT:
It is possible that after closing the file to which P1 points, the statement p1 =
fopen ("TEMPO$TEMPRY","w") does not re-open the redirected file (FIC1),
but re-opens the file designated by the GCOS 7 file name supplied by the
primitive fopen, i.e., TEMPO$TEMPRY (temporary file). The C program
execution opens the subfile FIC0 for the file to which PO points and the subfile
FIC1 for the file to which P1 points. If the JCL does not contain ASG 3... and
ASG 4..., the opened files are BIDON$TEMPRY and TEMPO$TEMPRY,
respectively. If another file is already using an IFN, the opening request is
rejected.

Closing a file automatically deassigns it. Any failure in opening a file can make
the IFN of another statically assigned file unpredictable.

For standard files, the following are examples in GCL:

exec-pg toto file1 = STDIN asg1 = mylib..input
 file2 = STDOUT asg2 = mylib..output
 file3 = STDERR asg3 = mylib..error;

In the above case, the three standard files are re-directed onto three library subfiles.

1 33

C Language User's Guide

11-16 47 A2 60UL

11.7 Direct Access

Accessing a file at a given position or finding the current position of a file are
called seek actions. The fseek, lseek, rewind and fsetpos functions access a file
directly. The ftell and fgetpos functions give the current position in a file.
However, the SYSOUT files, SYSIN files, and terminals do not support these seek
actions.

In files that do support seek actions, the stream contains an available file position
indicator. The stdio_h header file defines the fpos_t type that describes this
indicator.

Text streams support seek actions with the following conditions:

• The file position indicator holds a record identification and the displacement in
this record.

• Direct access on a stream is possible only from the beginning of the file and at a
position that the ftell or fgetpos functions have already returned. The first
position in the file is zero and can be accessed by the following call, in which p
is the pointer on the stream associated with the file:

 fseek (p,0,0);

Binary streams support seek actions with the following conditions:

• The file position indicator holds a byte offset position relative to the beginning
of the associated file.

• For direct access on a stream, the value of a byte offset can be added to the
beginning of the file, the current position of the file, or the end of the file that is
associated with that stream.

When the append mode opens a text or binary stream, the position indicator is at
the end of file. Therefore, the stream supports seek actions, but data is still written.
Therefore, any actions are not very useful.

For empty files, a file position is possible at the beginning of file.

When the update mode opens a stream, the action is either reading or writing
following repositioning.

The fgetpos and fsetpos functions directly access very large files. The ftell and
fseek functions do not always successfully access files.

General I/O Considerations

47 A2 60UL 11-17

11.8 GCOS 7 Specific Features

11.8.1 Extensions of the Open Mode

As an argument of the fopen function, the open processing mode extends itself to
accept two types of information about the file to be opened. The first is the file type
(SSF/SARF), and the second is the IFN.

11.8.1.1 File Type (SSF/SARF)

The user indicates the SARF or SSF type of records in the fopen command. In the
following example, SARF is in an expression specifying that there are no special
records or headers added to the data that are recorded in the my_file file.

FILE *p;
 p = fopen ("my_file", "w;SARF");

In the following example, SSF is in an expression specifying that the re-written
text_file contains some special information that the GCOS 7 editors need.

FILE *p;
 p = fopen ("my_sl_lib...text_file", "r;SARF");

The example below shows that the user wants to read a text file that includes
special information, such as special records and header records. A GCOS 7 editor
can modify the text file.

Keywords like SSF, SARF, and IFN must be in capital letters.

C Language User's Guide

11-18 47 A2 60UL

11.8.1.2 Examples

In all the following examples, the function that copies files record by record is
called my_func_copy. The fgets and fputs functions implement this function.

Copying an SSF File to an SSF File Text Member of a Library

p = fopen (file1,"r;SSF");

or:

p = fopen (file1,"r");
set_ssf_fmt (file1);
set_record_mode (file1); /* can be omitted if file1 has
 variable-sized records */

p = fopen (file2,"w;SSF");

or:

p = fopen (file2,"w"); set_ssf_fmt (file2);
set_record_mode (file2); /*same remark as above */
my_func_copy (FROM_FILE1,TO_FILE2);

All lines of file2 have the value zero for their line number. GCOS 7 editors can edit
this file.

Copying an SSF File to an SARF File Text Member of a Library

p = fopen (file1,"r;SSF");

or:

p = fopen (file1,"r"); set_ssf_fmt (file1);
set_record_mode (file1); /* same remark as above */
p = fopen (file2,"w;SARF");

or:

p = fopen (file2,"w");cancel_ssf_fmt (file2);
set_record_mode (file2); /* same remark as above */

File2 cannot be edited by GCOS 7 editors.

General I/O Considerations

47 A2 60UL 11-19

Copying an SSF File (Seen as an SARF File) to an SARF File Text Member of
a Library

p = fopen (file1,"r;SARF);
p = fopen (file2,"w;SARF);

or:

p = fopen (file2,"w"); cancel_ssf_fmt (file2);
set_record_mode (file1); /* same remark as above */
set_record_mode (file2); /* same remark as above */
my_func_copy (FROM_FILE1, TO_FILE2);

GCOS 7 editors can edit file2. After this function, file2 is a real SSF file. The line
numbers in file2 respect the numbering of those in file1.

Copying an SARF File to an SSF File Text Member of a Library

p = fopen (file1,"r;SARF);
p = fopen (file2,"w;SARF);

or:

p = fopen (file2,"w"); set_ssf_fmt (file2);
set_record_mode (file1); /* same remark as above */
set_record_mode (file2); /* same remark as above */
my_func_copy (FROM_FILE1, TO_FILE2);

GCOS 7 editors can edit file2. All lines of file2 have the value zero for their line
number.

11.8.1.3 Giving the IFN

You can specify the internal file name (IFN) to attach to the file. This is useful with
static assignment of a file, either in the JCL or GCL procedures that start the user
application.

As under Unix, the IFN is an integer in the range of 3..255. The first three values
are reserved for stdin, stdout and, stderr.

C Language User's Guide

11-20 47 A2 60UL

11.8.1.4 Examples

FILE *p;
p = fopen ("my_file","w;SARF;IFN=15");

In this example, the user can reference my_file with the IFN of 15 to assign it to a
file with another external file name that is in the JCL or GCL procedure. Note that
fileno(p) returns the value 15 for this file. This is the only way to use a file that has
been statically assigned, that is through GCL or JCL.

FILE *p;
p = fopen ("dummy", "r;IFN=7");

The program invocation is as follows (in GCL):

EXEC_PG MYPROG FILE1=7 ASG1=MY_FILE;

The efn given in the first fopen call has no effect and the static file assignment is
used. Note that if the file is closed, the previous (static) assignment is lost. The file
is closed using either fclose or freopen.

11.8.2 Access and Share Extensions

The user can specify the types of access and sharing that is assigned to a given
GCOS 7 disk file at open time. The user does this upon the invocation of the fopen
function, as follows:

 p = fopen ("myfile","r;ACCESS=WRITE;SHARE=ONEWRITE");

The file named myfile is opened for reading, but its assignation allows one writer
and n readers, simultaneously.

For more information about access and sharing, refer to the specific documentation
of UFAS disk files.

NOTE:
Update modes and positioning requests are not supported for terminal,
SYSOUT, SYSIN, and tape files. For example, fseek is a positioning request.

47 A2 60UL 12-1

 12. File Processing

12.1 stdio_h Interface

The use of a standard input/output function and of any RTP function under
GCOS 7 (except for functions requiring the header files <setjmp_h>, <assert_h>,
<ctype_h>, <stdlib_h>, <string_h>, <math_h> or <time_h>) automatically requires
"including" the header file <stdio_h> (see Section 8).

NAME STDIO_H (in upper or lower case)

Synopsis

#include <stdio_h> (or: #include <stdio.h>)

Description

• The high-level functions sue getc or putc. These functions include gets, fgets,
scanf, fscanf, fread, puts, fputs, printf, fprintf, and fwrite.

• A file and its associated buffer is called a stream and is declared as a pointer to a
FILE TYPE.

• Fopen creates descriptive data for a stream and returns a pointer to designate the
stream in further input/output operations. There are normally three streams open
when a C 'main' function is activated. Their associated pointers have standard
names:

 stdin standard input file
 stdout standard output file
 stderr standard error file

For more information see the section on standard files.

• An EOF integer (=-1) is returned at end of file or upon an error by functions that
handle streams. It is defined as a macro in the file STDIO_H.

C Language User's Guide

12-2 47 A2 60UL

The following functions are implemented as macros:

feof fileno
ferror set_record_mode
clearerr cancel_record_mode
getchar set_ssf_fmt
putchar, cancel_ssf_fmt

Redefining these functions can be dangerous as the results are unpredictable.

The file <stdio_h> also defines a certain number of specific macros for the
GCOS 7 system. Some reserved external variables are also declared for RTP use
only.

12.2 Stream Status Macros

Name
feof, ferror, fileno, clearerr, set_record_mode,
cancel_record_mode, set_ssf_fmt, cancel_ssf_fmt

Synopsis

#include <stdio_h>

 feof (p)
 FILE *p;

 ferror (p)
 FILE *p;

 fileno (p)
 FILE *p;

 clearerr (p)
 FILE *p;

 set_record_mode (p)
 FILE *p;

 cancel_record_mode (p)
 FILE *p;

 set_ssf_fmt (p)
 FILE *p;

 cancel_ssf_fmt(p)
 FILE *p;

 set_silent_mode()

 cancel_silent_mode()

File Processing

47 A2 60UL 12-3

Description

feof Returns a non-zero value when the end of file is
reached on the file designated by p: otherwise returns
zero.

ferror Returns a non-zero value when read or write error
occurs on the file designated by p or in the case of
incorrect use of LINE-RECORD type: otherwise
returns zero.

clearerr Resets the read/write error flag of the file designated
by p.

fileno Returns the descriptor of the file designated by p.

set_record_mode Informs the RTP that input/output on the file
designated by p are performed in LINE_RECORD
type.

This mode has the characteristic that - a line C (i.e., a
character string ending with a newline) is considered
as a file record. You must therefore know the record
size of your file, which you can find by consulting the
field bufsize of the FILE structure associated to the
file. If it is greater than the written line C, spaces are
added at the end of line.

Conversely, if the record size is less than the line C
that is to be written, the line is split over two records of
the file. When the file is re-read, two lines are read
instead of one.

This macro must be used immediately before the first
input/output operation is performed on the file.

cancel_record_mode Indicates to the RTP that input/output operations on the
file designated by p are performed in the STREAM
type.

This mode has the characteristic that a C file is
considered as any sequence of bytes. A C line is
written on the file as is, including the newline
character.

Interpreting the newline is the responsibility of the
user. This macro must be used immediately before the
first input/output operation is performed on the file.

C Language User's Guide

12-4 47 A2 60UL

set_ssf_fmt Informs the RTP that input/output operations are
performed in an SSF data format on the file designated
by p. This macro must be used before the first
input/output operations are performed on the file.

cancel_ssf_fmt This indicates that the operations on the stream to
which p points are done in SARF format. This macro
must precede the first input/output operation on the
associated file.

set_silent_mode This macro suppresses the printing of standard
messages.

cancel_silent_mode This macro enables the printing of RTP error
messages.

Diagnostics

The validity of the pointer included in the parameters when these macros are called
is not checked.

File Processing

47 A2 60UL 12-5

12.3 Standard File Processing (High-Level Primitives)

The C language does not provide pre-defined functions for file processing. These
form a package and as such make up a sub-set of the RTP. This section discusses
implementing these functions on the GCOS 7 system. The two main primitives in
the package are getc and putc. They are both used by most of the other primitives.

12.3.1 fopen

Synopsis

include <STDIO_H>

FILE *fopen(const char *, const char *);
FILE * fopen (filename, type)

 char * filename, * type;

Description

The fopen function opens a file. The filename pointer points to the name string of
the file and associates a stream with it. The argument type points to a string
described formally as follows:

type ::= <mode> [';' <exts>]
mode ::= r | r+ | rb | r+b | rb+
 | w | w+ | wb | w+b | wb+
 | a | a+ | ab | a+b | ab+
exts ::= { <data_fmt> | <ifn> | <access_or_share> } ';' <exts>
data_fmt :: = SARF | SSF
ifn ::= IFN=<xxx>
xxx ::= numerical value from 3 to 255
<access_or_share>::= ACCESS=<access_val> | SHARE=<share_val>
<access_val> ::= ALLREAD | SPREAD | SPWRITE | WRITE | READ |
 RECOVERY
<share_val> ::= MONITOR | FREE | ONEWRITE | DIR | NORMAL

Each mode, data format, ifn, access and share value appears only once in the string.

The following is an example of the fopen string:

 p = fopen ("my_file","ab+;IFN=12;SARF");

C Language User's Guide

12-6 47 A2 60UL

The semantics of the mode values are:

r Open text file for reading.
w Truncate to zero length or create text file for writing.
a Append, open, or create text file for writing at end of

file.
rb Open binary file for reading.
wb Truncate to zero length or create binary file for

writing.
ab Append, open, or create binary file for writing at end

of file.
r+ Open text file for update (reading and writing).
w+ Truncate to zero length or create text file for update.
a+ Append; open or create text file for update, writing at

end of file.
r+b or rb+ Open binary file for update (reading and writing).
w+b or wb+ Truncate to zero length or create binary file for update.
a+b or ab+ Append; open or create binary file for update, writing

at end of file.

The following table specifies the capabilities and actions associated with the
various opening modes (Y=yes,-=NO). It is also available for modes concerning
binary streams.

 r w a r+ w+ a+
File must exist before open : Y - - Y - -
old file contents discarded on open : - Y - - Y -
stream can be read : Y - - Y Y Y
stream can be written : - Y Y Y Y Y
stream can be written only at end : - - Y - - Y

NOTES:
1. Opening a file with append modes forces all subsequent writes to the file

to be made at the current end of file. This is not affected by intervening
calls to the fseek function.

2. Opening a file with append modes may initially set the file position
indicator for the stream beyond the data last written. This is because of
null character padding. This applies only to fixed-size record GCOS 7
files.

File Processing

47 A2 60UL 12-7

3. Opening a file with update modes allows reading and writing actions on
the associated stream. However, input cannot directly follow output
without an intervening call to the fflush, fseek, fsetpos, or rewind
functions.

4. Output cannot directly follow input without an intervening call to
fseek, fsetpos, or rewind functions, unless the input operation
encounters the end of file.

5. When opening a file, the error and end of file indicators for the stream are
cleared.

6. For more information about full/line buffering, data format, mode or real
stream associated with the opened file, refer to the section that describes
default positioning on GCOS 7.

7. The append "a" mode does not support either the tape device or the
SYSOUT files.

Diagnostics

The fopen function returns a pointer to the object controlling the stream. If the
open operation fails, a null pointer is returned.

C Language User's Guide

12-8 47 A2 60UL

12.3.2 freopen

Synopsis

#include <stdio_h>

FILE *freopen(const char *, const char *, FILE *);
FILE * freopen (filename, mode, stream)

char *filename, *mode;

FILE *stream;

Description

The freopen function opens the file identified by filename. freopen then associates
with that file the stream to which the stream parameter value points. The mode
argument specifies the opening processing mode. This is the same as in the fopen
function, except that a specified IFN is not taken in account.

First, the associated buffer is flushed, then freed. Then the file associated with
stream is closed. Failure to close this file successfully is ignored. If the user cannot
re-open the file, the error is signaled immediately. The error and end-of-file flags
for the stream are both cleared.

Diagnostics

A null pointer is returned if the open operation fails. Otherwise, the value of the
stream is returned.

File Processing

47 A2 60UL 12-9

12.3.3 h_reopen

Synopsis

#include <stdio_h>

FILE * h_reopen (stream , mode)

FILE *stream;

char * mode;

Description

The h_reopen function quickly re-opens a file that is in another processing mode.
The h_reopen function uses the opening processing mode specified in the mode
argument to re-open the file associated with stream.

The file is first closed without deassigning it. It is then opened with the new
processing mode, the value of which is restricted to "r", "w" or "a". The SARF,
SSF, IFN, access, and shared indications are not taken into account.

NOTE:
h_reopen does not apply to stdin, stdout, or stderr streams.

Diagnostics

A null pointer is returned if the re-open operation fails or if the stream is
stdin,stdout or stderr. Otherwise, the value of stream is returned.

C Language User's Guide

12-10 47 A2 60UL

12.3.4 fclose

Synopsis

#include <STDIO_H>

int fclose(FILE *);
 fclose (stream)

 FILE * stream;

Description

The fclose function causes the stream pointed to by stream to be fflushed and the
associated file to close. The stream is disassociated from the file. If the associated
buffer is allocated automatically, it is freed. If the tmpfile function creates the file,
it is removed automatically.

Diagnostics

Returns EOF (= -1 defined in <STDIO_H>) when there is an error.

NOTE:
The file is deassigned when closed so that any static assignment using JCL is no
longer valid if it is re-opened.

File Processing

47 A2 60UL 12-11

12.3.5 fflush

Synopsis

#include <STDIO_H>

int fflush(FILE *);
 fflush (stream)

 FILE * stream;

Description

Empties the buffer associated with the file identified by stream. If the stream is a
null pointer, the fflush function works on all output or update streams.

Diagnostics

Returns EOF when there is an error. Flushing a read-only stream is considered to
be an error.

NOTE:
Stream pointer validity is not checked.

C Language User's Guide

12-12 47 A2 60UL

12.3.6 gets, fgets

Synopsis

#include <STDIO_H>

char *gets(char *);
 char * gets (s)

 char * s;

char *fgets(char *, int, FILE *);
 char * fgets (s,n,stream)

 char * s;

 FILE * stream;

Description

The gets function reads characters from the input stream pointed to by stdin. It
reads them into the array pointed to by s, until the end of file is encountered or a
newline character is read.

The gets function discards any newline character, and it writes a null character after
the last character read into the array.

The fgets function reads at most n-1 characters from the stream pointed to by
stream. It reads them into the array pointed to by s. No character is read after a
newline character (which is transmitted to s) or after the end of file are
encountered.

A null character is written after the last character read into the array.

Diagnostics

Both these functions return s, if successful. If end of file is encountered and no
characters have been read into the array, its contents remains unchanged and a null
pointer is returned.

If a read error occurs during the operation the array contents are indeterminate and
a null pointer is returned. An example of this is if "we" operates on a write-only
stream.

NOTE:
Unlike fgets, gets does not retain the newline character "\n".

File Processing

47 A2 60UL 12-13

12.3.7 getc, getchar, fgetc, getw

Synopsis

#include <STDIO_H>

int getc(FILE *);
 int getc (stream)

 FILE * stream;

int getchar(void);
int getchar ()

int fgetc(FILE *);
int fgetc (stream)

 FILE * stream;

int getw (stream)

 FILE * stream;

Description

The getc function is equivalent to fgetc function when a function call invokes it. If
the getc function is invoked as a macro, its argument (stream) should never be an
expression with side-effects, or else the behavior is undefined. When the getc
function is invoked as a macro, either the stdio_h file has been included and getc
has not been undefined or redefined, or parentheses do not surround the getc call.

The getchar function is identical to getc with stream=stdin.

The fgetc function obtains the next character, if it exists, as an unsigned char. The
input stream pointed to by stream converts the unsigned char to an integer (which
has no sign extension), and sets the file position indicator for the stream, when it is
defined.

Fgetc invocation is always a call to a function. It is never a macro call
replacement.

The getw function obtains the four next characters (in the same way as fgetc) from
the stream pointed to by stream. This is in order to compose an integer-type object,
which is obtained by concatenation of read characters.

C Language User's Guide

12-14 47 A2 60UL

Diagnostics

The following are results when this function is successful:

• The functions getc,getchar and fgetc return the value of read character as
described in fgetc function.

• The function getw returns the value of the obtained object.

The following are the results when this function is not successful:

• If the end of file is encountered, the end of file indicator for the stream is set and
the EOF value is returned

• if a read error occurs, the error indicator for the stream is set and the EOF value
is returned.

IMPORTANT:
The pointer stream that identifies the file is not tested.

1 33

File Processing

47 A2 60UL 12-15

12.3.8 ungetc

Synopsis

#include <SDTIO_H>

int ungetc(int, FILE *);
 ungetc (c, stream)

 char c;

 FILE * stream

Description

The ungetc function pushes the character specified by c back onto the input stream
pointed to by stream. The character specified by c is converted to an unsigned
character. Subsequent reads on that stream return the pushed-back characters in the
reverse order of their pushing.

Only one character of pushback is guaranteed. Too many calls to ungetc function
on the same stream can fail if they are without an intervening read or file
positioning operation.

A successful intervening call to fseek, fsetpos, or rewind functions on that stream,
discards any pushed-back characters for that stream.

Pushed-back characters never change the contents of the external storage
corresponding to the file associated with the stream.

If the value of c argument equals that of the macro EOF, the operation fails and the
input stream is unchanged.

If the ungetc function is successful, it clears the end of file indicator for the stream.

The value of the file indicator for the stream after reading or discarding all pushed-
back characters is the same as before the characters were pushed back. However,
for a text stream, this indicator is unspecified until all pushed-back characters are
read or discarded. For a binary stream, it is decremented by each successful call to
the ungetc function. If its value was zero, it is undefined after the call.

Diagnostics

The ungetc function returns the converted argument c. If the operation fails, it
returns EOF. For example, either c is EOF or else it does not read the stream.

The validity of argument stream is not checked.

C Language User's Guide

12-16 47 A2 60UL

12.3.9 puts, fputs

Synopsis

#include <STDIO_H>

int puts(const char *);
 char * s;

 puts (s)

int fputs(const char *, FILE *);
fputs (s, stream)

 char * s;

 FILE * stream;

Description

The puts function writes the string pointed to by s onto the standard stdout stream.
It also appends a newline character ('\n').

The function fputs writes the string pointed to by s to the stream pointed to by
stream.

For both functions,the null terminating character is not written.

Diagnostics

Both functions return EOF if a write error occurs. If not, a non-negative value is
returned.

NOTE:
Puts appends the character newline; fputs does not. Stream is not checked.

File Processing

47 A2 60UL 12-17

12.3.10 putc, putchar, fputc, putw

Synopsis

#include <STDIO_H>

int putc(int, FILE *);
 int putc (c,stream)

 char c;

 FILE * stream;

int putchar(int);
 putchar (c)

int fputc(int, FILE *);
 FILE * stream;
 fputc (c,stream)

 FILE * stream;
 putw (w,stream)

Description

The putc function is equivalent to fputc function when a function call invokes it. If
the putc function is invoked as a macro, its argument (stream) should never be an
expression with side-effects, or else the behavior is undefined. When the putc
function is invoked as a macro, either the stdio_h file has been included and putc
has not been undefined or redefined, or parentheses do not surround the putc call.

The putchar function is identical to putc with stream=stdout.

The fputc function obtains the next character, if it exists, as an unsigned char. The
input stream pointed to by stream converts the unsigned char to an integer (which
has no sign extension), and sets the file position indicator for the stream, when it is
defined.

The character is appended to the output stream if either the file cannot support
positioning requests (as in terminal files) or if the stream was opened with one of
the append modes.

fputc invocation is always a call to a function, never a macro call replacement.

The putw function writes the first argument w to the stream pointed to by stream
arguments. It does this as if it was seen as the concatenation of four characters.
The write operation does not support special alignment in the file.

C Language User's Guide

12-18 47 A2 60UL

Diagnostics

The following results are when this function is successful:

• The functions putc,putchar and fputc return the character written.
• The function putw returns the w value.

The following results are when this function is not successful:

If a write error occurs, the error indicator for the stream is set and the EOF value is
returned.

File Processing

47 A2 60UL 12-19

12.3.11 fread, fwrite

Synopsis

#include <stdio.h>
size_t fread (ptr,size,nitems,stream)
char *ptr;
size_t size;
size_t nitems;
FILE *stream;

size_t fwrite (ptr,size,nitems,stream)
char *ptr;
size_t size;
size_t nitems;
FILE *stream;

Description

The fread function reads nitems elements from the stream pointed to by stream. It
reads these elements into an array pointed to by ptr, whose size is specified by size.

The fwrite writes up to nitems elements from the array pointed to by ptr to the
stream pointed to by stream. The size of the elements is specified by size.

For both functions:

• The file position indicator for the stream (if defined) is advanced by the number
of characters successfully read or written.

• The file position indicator for the stream is indeterminate, if a read or write error
occurs.

Diagnostics

Both functions return the number of elements successfully read or written. This
can be less than nitems if a read or write error occurs, or, for fread only, when it
encounters the end of file.

Furthermore, the fread function returns zero if size or nitems is zero. The contents
of the array and the state of the stream remain unchanged.

C Language User's Guide

12-20 47 A2 60UL

12.3.12 fseek

Synopsis

#include <STDIO_H>

FILE * stream;

long offset;

int fseek(FILE *, long int, int);
fseek (stream,offset,ptrname)

Description

The fseek function sets the file position indicator for the stream pointed to by
stream.

For a binary stream, the new position is the value of the offset added to the position
that whence specifies. This is measured in characters from the beginning of the
file.

The specified position can have one of three values. It is the beginning of the file if
whence is SEEK_SET. It is the current value of the file position indicator if
whence is SEEK_CUR. It is the end of file if SEEK_END. The SEEK_xxx are
macros defined in stdio_h.

For a text stream, the offset is either zero, or a value returned by an earlier call to
the ftell function on the same stream. Whence is SEEK_SET. If not, the operation
fails.

A successful call to the fseek function clears the end of file indicator for the stream
and undoes any effects of the ungetc function on that stream.

Diagnostics

The fseek function returns nonzero only when the operation fails. For more
information, see the restrictions on direct access in the general considerations on
files.

NOTE:
fseek does not work on a stream connected to a terminal, SYSOUT, SYSIN, or
tape file.

File Processing

47 A2 60UL 12-21

12.3.13 ftell

Synopsis

#include <stdio.h>

 long int ftell (stream)
 FILE *stream;

Description

The ftell function obtains the current value of the file position indicator for the
stream pointed to by stream.

For a binary stream, the value is the number of characters from the beginning of
file.

For a text stream, it is an unspecified value that only the fseek function uses. It sets
the file position indicator to its position at the time of the ftell call. The difference
between two such return values is not the measure of the number of characters
written or read.

Diagnostics

The current value of the file position indicator is returned, if the function is
successful.

If it is not successful, the ftell function returns -1L and stores the value ENOSR or
ENOFAULTPTR in errno. This is if the current position cannot be delivered or if
the stream pointer is invalid.

An error can cause the file associated with the stream not to support a position
request. Or an error can cause the file to be at a position that cannot be represented
as a long integer.

C Language User's Guide

12-22 47 A2 60UL

12.3.14 rewind

Synopsis
#include <stdio.h>

 void rewind (stream);
 FILE * stream;

Description

The rewind function sets the file position indicator for the stream pointed to by
stream at the beginning of the file. It also clears the error indicator for the stream.
This function is equivalent to the following:

(void) fseek(stream, 0L, SEEK_SET)

clearerr (stream).

Diagnostics

No value is returned.

12.3.15 fgetpos

Synopsis
#include <stdio.h>
 int fgetpos (stream, pos)
 FILE *stream;
 fpos_t *pos;

Description

The fgetpos function stores the current value of the file position indicator for the
stream pointed to by stream in the object pointed to by pos.

The value stored contains information that only the fsetpos function uses. It uses it
to reposition the stream to its position at the time of the call to the fgetpos function.

Diagnostics

If it is successful, the fgetpos function returns zero. Otherwise, it returns a nonzero
value. Either ENOSR or ENOFAULTPTR is stored in errno, according to the
current position, or the pos pointer is invalid.

File Processing

47 A2 60UL 12-23

12.3.16 fsetpos

Synopsis

#include <stdio.h>
 int fsetpos (stream, pos)
 FILE *stream;
 fpos_t *pos;

Description

The fsetpos function sets the file position indicator according to the value of the
object pointed to by pos. An earlier call to the fgetpos function on that stream
gives this value. When this function is successful, the end of file indicator of
stream is cleared and any effects of ungetc function are undone.

Diagnostics

When this function is successful, the fsetpos function returns zero. Otherwise, it
returns a nonzero value. Either ENOFSETPOS or ENOFAULTPTR is stored in
errno according the reposition or the pos pointer is invalid.

12.3.17 setprompt

Synopsis

#include <stdio.h>
 int setprompt (stream, prompt, size)
 FILE *stream;
 char *prompt;
 int size:

Description

The setprompt function modifies the standard prompt for a file assigned to a
terminal. Calling setprompt with size = 0 causes suppression of the prompt.

Diagnostics

If successful, the setprompt function returns zero. Otherwise, it returns -1 (this
happens in particular if the file pointed by stream is not assigned to a terminal).

C Language User's Guide

12-24 47 A2 60UL

12.4 getc and putc Macros

The getc and putc functions help to improve the efficiency of a program that
includes the stdio.h header file. The getc and putc functions are implemented as
macros in the header file However, they are also used as functions.

The only restriction for these two macros is that side effects are not allowed on
their arguments.

To use getc and putc as functions, not macros, or to have your own
implementation, do one of the following:

• specify #undef with either getc or putc

• use fgetc/fputc (which are always functions)

File Processing

47 A2 60UL 12-25

12.5 Non Standard File Processing (Low-level Primitives)

The primitives described in the following pages constitute a set of functions that
must assure a minimum modifying capability for programs from the UNIX system
run under GCOS 7. These primitives do not perform identical functions in all
respects to those of UNIX. Some general features are not taken into account when
implemented under GCOS 7, such as non-buffering of input/output, modification
or status references of a file considered as a system object (creat).

12.5.1 open

Synopsis

#include <stdio_h>

open (name,mode)

char * name;

Description

The open function opens the name file in read when in mode 0 or in write if in
mode 1 or in both if in mode 2. Name is the address of the EBCDIC character
string representing the name of the file to be opened. It ends with the character ' 0'.
The file is positioned at the beginning (byte 0). The file descriptor number returned
is the one that must be used for all input/output operations on the file.

As long as no stream is associated with a file opened by the open function, the I/O
operations behave as though a pseudo binary stream with default setting for data
format and mode were associated with them. This means the file can be either text
or binary.

Diagnostics

The value -1 is returned if the name of the file to be opened is not valid or if the file
does not exist and is opened in read mode, or more generally, if the file opening
process fails.

C Language User's Guide

12-26 47 A2 60UL

12.5.2 creat

Synopsis

#include <stdio_h>

 creat (name, mode)

 char *name;

Description

This function allocates space for a non-existing file before opening it. This
function also opens the file if it already exists. When this function is successful,
the file is open for writing and the old file contents are discarded. The mode
argument has no meaning under C/GCOS 7.

Diagnostics

The value -1 is returned if the attempt to open or allocate the file fails.

12.5.3 close

Synopsis

#include <stdio_h>

close (fildes)

Description

With a file descriptor number like that returned by open or creat, calling the close
function closes the associated file. All files are automatically closed on exit
although it is recommended that you close the files yourself. All files are closed at
the end of a process.

Diagnostics

The value -1 is returned if an unknown fildes file descriptor number is supplied or
if an abnormality occurs when the file is effectively closed by the system.

File Processing

47 A2 60UL 12-27

12.5.4 read

Synopsis

#include <stdio_h>

read (fildes,buffer,nbytes)

char*buffer;

Description

Buffer is the address in which the contiguous nbytes are placed after reading.
The number of characters read is returned.
The value zero is returned when the end-of-file is reached.

Diagnostics

If the reading fails, the returned value is -1.

An error may be caused by any of the following:

• A physical input/output error
• An erroneous buffer address
• A file descriptor number not corresponding with an input file.

12.5.5 write

Synopsis

#include <stdio_h>

write (fildes,buffer,nbytes)

char*buffer;

Description

Buffer is the address of contiguous nbytes written on the output file. The number of
characters actually written is returned. If the number is not identical to nbytes, this
is considered as an error.

Diagnostics

The value -1 is returned in case of error: erroneous descriptor number, incorrect
buffer address or physical write error.

C Language User's Guide

12-28 47 A2 60UL

12.5.6 lseek

Synopsis
#include <stdio_h>

long lseek (fildes, offset, whence)

long offset;

Description

The file descriptor number (fildes) is for an open file for reading, writing , or both.
The offset value is the number of bytes. The current position in the file is modified
according to the following whence values:

0 The new position is set to offset bytes with respect to
the beginning of the file.

1 The new position is set to the current position plus
offset.

2 The new position is set to the end of file location plus
offset (if offset is greater than zero, the operation fails).

The new calculated position includes the default setting of SSF data format and
LINE_RECORD mode for the current file. For more information, see the section
describing general I/O considerations. The lseek function provides the following:

• The new position is never set at a location of specific SSF information data.

• If the default sets the LINE_RECORD mode, the new calculated position does
not take into account the newline character corresponding to the end of records.

The following is an example of the contents of a variable-size record:
Record 1 ----> This is a test
Record 2 ----> of lseek function.

The LINE_RECORD mode interprets these as:
This is a test\n of lseek function\n

The lseek function (fildes,14,0) call places the new position to the first character of
the second record and not on the newline character of the first record. The call
attempts to access the 15th character from the beginning of file whose descriptor is
fildes. The first character is a space character, and the newline character is not
physically written.

Diagnostics

The value -1 is returned for an undefined file descriptor or for a search located
before the beginning of a file (whence = 0 and offset < 0) or for any access beyond
the file.

File Processing

47 A2 60UL 12-29

12.6 Buffering

The setvbuf and setbuf functions are used for buffering files.

NOTE:
When files are fully buffered, do not use a return statement to exit the main
procedure unless you have flushed the buffers and closed the files.

12.6.1 setvbuf

Synopsis

#include <stdio_h>

int setvbuf(FILE *, char *, int , size_t);
int setvbuf (stream, buf, mode, size)

 FILE *stream;

 char *buf;

 int mode;

 int size;

Description

• The setvbuf function is used only in the following two ways:

− After the stream to which stream points is associated with an open file.
− Before any I/O operations on this file. These operations include specific

GCOS 7 macros, for example set_ssf_fmt.

• If the buf argument is not a null pointer, the array to which it points is the buffer
associated with the stream. The mode argument specifies the mode for the
associated buffer. For more information, see the section describing general I/O
considerations for files handling.

• The mode argument accepts only the value for _IOLBF or for _IOFBF that is
defined in stdio_h header file. The _IOLBF value is line buffered and the
_IOFBF value is fully buffered.

• The size of buf is given by the size argument.

• If buf has automatic storage duration, the length of its lifetime must be equal to
or greater than that of the opened stream.

C Language User's Guide

12-30 47 A2 60UL

• The contents of this array at any time are indeterminate.

• If buf is a null pointer, a buffer with the specified size and mode is dynamically
allocated to the stream.

Diagnostic

The setvbuf function returns zero on success. It returns a non-zero value if an
invalid mode is given or if the request cannot be honored as described below:

• A dynamic buffer cannot be allocated.

• A line-buffered value (_IOLBF) is specified in a mode argument for a file that
has fixed size records.

• The size value is too small.

12.6.2 setbuf

Synopsis

#include <stdio_h>

void setbuf(FILE *, char *);
void setbuf (stream, buf)

FILE *stream;

 char *buf;

Description

• The setbuf function is equivalent to the setvbuf function specifying the value
_IOFBF (fully buffered mode) for mode and BUFSIZ for size.

• If the buf argument is a null pointer, the request is not honored because non-
buffered streams are not supported.

• If BUFSIZ does not respect the specific rules of the size argument of setvbuf, the
request is not honored.

Diagnostics

The setbuf function does not return a value.

File Processing

47 A2 60UL 12-31

12.7 Global File Operations

12.7.1 remove

Synopsis

#include <stdio.h>
 int remove (char * filename)

Description

This function performs the following operations:

• It removes a file. If the file is cataloged, then the catalog is updated after the
removal.

• It removes both file and file-linked files. If the specified file has associated files
links, as associated with the file link notion in a GCOS 7 environment, then both
file and file-linked files are removed.

• It deletes subfiles. If the specified filename refers to a subfile of a library, then
the subfile is deleted.

• It performs no action if the file is open and -1 is returned.

Diagnostics

This function returns 0 if removal is normally completed or -1 if an error occurs.

C Language User's Guide

12-32 47 A2 60UL

12.7.2 rename

Synopsis

#include <stdio.h>
 int rename (char * oldfilename, char * newfilename)

Description

This function renames a file. If the file is cataloged, the relevant catalog is
updated. This function does nothing if a file named newfilename exists prior to the
call to rename function, or if the file oldfilename is open.
In case of library subfiles, the library name specified in both names should be
equal.

Diagnostics

This function returns 0 if renaming is normally completed or -1 if an error occurs.

12.7.3 tmpfile

Synopsis

#include <stdio.h>
 FILE * tmpfile (void)

Description

This function creates a file that is removed automatically when it is closed or at
program termination, whether or not the program terminates normally.
This function returns a pointer to the stream of the file or a null pointer if the file
cannot be created.

Diagnostics

The following are some of the error messages sent if the file cannot be created:

• "INTERNAL FILE NAME GENERATION ERROR"
• "ERROR IN OPENING TEMPORARY FILE"
• "ERROR IN TEMPORARY FILE DESCRIPTOR"

File Processing

47 A2 60UL 12-33

12.7.4 tmpnam

Synopsis

#include <stdio.h>
 char * tmpnam (char * filename)

Description

This function generates a string that is a new file name. A different file name is
generated each time tmpnam is called. The generated file name is unique.

The tmpnam function generates a file name as input to the fopen function, and this
file must be explicitly removed after use.

If the argument is a null pointer, the tmpnam function leaves its result in the
variable tmpnam_ptr defined in the STDIO standard header. In this case, the
function returns a pointer to that object, and a subsequent call to the tmpnam
function when the argument is a null pointer modifies the same object.

If the argument is not a null pointer, it is assumed to point to an array of at least
L_tmpnam chars; the tmpnam function writes its result in that array and returns the
argument as its value.

Diagnostics

The tmpnam function does not modify the variable errno. The error message is
send if the function is called more than TMP_MAX times.

C Language User's Guide

12-34 47 A2 60UL

❑

47 A2 60UL 13-1

 13. Formatting I/O

13.1 fprintf

Synopsis

#include <stdio_h>

int fprintf(FILE *, const char *, ...);
int fprintf(FILE * stream, char * format, ...);

Description

The fprintf function writes output to the stream pointed to by stream, under control
of the string pointed to by format that specifies how subsequent arguments are
converted for output.

A format string contains two types of object: plain characters, which are copied
unchanged to the output stream, and conversion specifications, each of which
results in fetching zero or more subsequent arguments. The results are undefined if
there are insufficient arguments for the format. If the format is exhausted while
arguments remain, the excess arguments are evaluated but otherwise ignored. The
fprintf function returns when the end of the format string is encountered.

Each conversion specification is introduced by the character %.

After the %, the following appear in sequence.

1. Zero or more flags that modify the meaning of the conversion specification.

2. An optional decimal integer specifying a minimum field width. If the
converted value has fewer characters than the field width, it will be padded on
the left (or right, if the left adjustment flag, described later, has been given) to
the field width. The padding is with spaces unless the field width integer starts
with a zero, in which case the padding is with zeros.

C Language User's Guide

13-2 47 A2 60UL

3. An optional precision that gives the minimum number of digits to appear for
the d, i, o, u, x and % conversions, the number of digits to appear after the
decimal point for e, E and f conversions, the maximum number of significant
digits for the G conversions, or the maximum number of characters to be
printed from a string in a conversion. The precision takes the form of a period
(.) followed by an optional decimal integer, if the integer is omitted, it is
treated as zero. The amount of padding specified by the precision overrides
that specified by the field width.

4. An optional h specifying that a following d, i, o, u, x, or X conversion
specifier applies to a short int or unsigned short int argument (the argument
will have been promoted according to the integral promotions, and its value
must be cast to short or unsigned short before printing); an optional l
specifying that a following d, i, o, u, x, or X conversion specifier applies to a
long int or unsigned long int argument; or an optional L specifying that a
following e, E, f, g, or G conversion specifier applies to a long double
argument. If an h, l, or L appears with any other conversion specifier, it is
ignored.

5. A character that specifies the type of conversion to be applied.

6. A field width, field precision, or both may be indicated by an asterisk *
instead of a digit string. In this case, an int argument supplies the field width
or precision. The arguments specifying field width or precision must appear
before the argument (if any) to be converted. A negative field width argument
is taken as a - flag followed by a positive field width. A negative precision
argument is taken as if it were missing.

The flag characters and their meanings are as follows:

- The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a plus or
minus sign.

space If the first character of a signed conversion is not a sign, a space will
be provided for the result. If both the space and + flags appear, the
space flag is ignored.

The result is to be converted to an "alternate form". For c, d, i, s, and u
conversions, the flag has no effect. For o conversion, it increases the
precision to force the first digit of the result to be a zero. For x (or X)
conversion, a non-zero result will have 0x (or 0X) added to the end of
it. For e, E, f, g, and G conversions, the result will always contain a
decimal point, even if no digits follow the point (normally, a decimal
point appears in the result of these conversions only if a digit follows
it). For g and G conversions, trailing zeros will not be removed from
the result, as they normally are.

Formatting I/O

47 A2 60UL 13-3

The conversion specifiers and their meanings are:

d,i,o,u,x,X The int argument is converted to signed decimal (d or i), unsigned
octal (o), unsigned decimal (u), or unsigned hexadecimal notation (x
or X); the letters abcdef are used for x conversion and the letters
ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting a zero value with a
precision of zero is no characters.

f The double argument is converted to decimal notation in the style
[-]ddd.ddd, where the number of digits after the decimal point is equal
to the precision specification. If the precision is missing, it is taken as
6; if the precision is explicitly zero, no decimal point appears. If a
decimal point appears, at least one digit appears before it. The value is
rounded to the appropriate number of digits.

e, E The double argument is converted in the style [-]d.dde+dd, where
there is one digit before the decimal point and the number of digits
after it is equal to the precision; when the precision is missing, six
digits are produced; if the precision is zero, no decimal point appears.
The value is rounded to the appropriate number of digits. The E
format code will produce a number with E instead of e introducing the
exponent. The exponent always contains at least two digits. However,
if the magnitude to be printed is greater than or equal to 1E+100,
additional exponent digits will be printed as necessary.

g, G The double argument is printed in style f or e (or in style E in the case
of a G format code), with the precision specifying the number of
significant digits. The style used depends on the value converted; style
e will be used only if the exponent resulting from the conversion is
less than -4 or greater than the precision (the default value is 6).
Trailing zeros are removed from the result; a decimal point appears
only if it is followed by a digit.

c The least significant byte of the int argument is converted to a
character and printed.

s The argument is taken to be a (char *) pointer to a string. Characters
from the string are written up to, but not including, the terminating
NULL, or until the number of characters indicated by the precision are
written. If the precision is missing it is taken to be arbitrarily large, so
all characters before the first NULL are printed.

p Although the expected argument is one that points to void (void*),
any typed pointer is converted.

C Language User's Guide

13-4 47 A2 60UL

With one exception, if an argument is a union, aggregate, or points to an object of
aggregate type, the behavior is not defined. The exception is for an array of
character type when using %s conversion or a pointer when using %p conversion.

The conversion specifier 'p' provides the following output for a GCOS 7 pointer:

<TAG>"/"<RING>"/"<STN>"."<STE>"."<SRA>

where:

<TAG> :: = "DT" |"FT" |"IT" |"RS"
<RING>:: = "R0" |"R1" |"R3"

and <STN>, <STE>, and <SRA> are numbers in hexadecimal notation.

n The argument is taken to be an (int *) pointer to an
integer into which is written the number of characters
written to the output stream so far by this call to
fprintf. No argument is converted.

% A % is printed. No argument is converted.

If the conversion specifier is a lower-case letter that is not described above, the
behavior is undefined. If the conversion specifier is any other character that is not
described above, the behavior is implementation-defined.

If any argument is or points to an aggregate (except for an array of characters using
%s conversion or any pointer using %p conversion), the behavior is undefined.

In no case does a nonexistent of small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is expanded to contain
the conversion result.

Diagnostics

The fprintf function returns the number of characters transmitted, or a negative
value if an output error was encountered.

The following example shows how to print a date and time in the form "Sunday,
July 3, 10:02", where weekday and month are pointers to strings:

#include <stdio_h>

fprintf (stdout, "%s, %s %d, %.2d:%.2d\n",
 weekday, month, day, hjour, min);

Formatting I/O

47 A2 60UL 13-5

13.2 printf

Synopsis

#include <stdio_h>

int printf (char *format, ...);
int printf(const char *, ...);

Description

The printf function is equivalent to fprintf with the argument stdout interposed
before the arguments to printf.

Returns

The printf function returns the number of characters transmitted, or a negative
value if an output error was encountered.

13.3 sprintf

Synopsis

#include <stdio_h>

int sprintf(char *, const char *, ...);
int sprintf (char *s, char *format, ...);

Description

The sprintf function is equivalent to fprintf, except that the argument s specifies an
array into which the generated output is to be written, rather than to a stream. A
NULL character is written at the end of the characters written; it is not counted as
part of the returned sum.

Diagnostics

The sprintf function returns the number of characters written in the array, not
counting the terminating NULL character.

C Language User's Guide

13-6 47 A2 60UL

13.4 fscanf

Synopsis

#include <stdio_h>

int fscanf(FILE *, const char *, ...);
int fscanf(FILE *stream, char *format, ...);

Description

The fscanf function reads input from the stream pointed to by stream, under control
of a format string that specifies how input text is converted for assignment, using
subsequent arguments as pointers to the objects to receive the converted input. If
there are insufficient argument pointers for the format, the behavior is undefined. If
the format is exhausted while arguments remain, the excess arguments are
evaluated but otherwise ignored.

The format can contain any number of spaces, horizontal tabs, or new-line
characters, which cause input to be read up to the next non-whitespace character.

The format can contain an ordinary character (not %), which must match the next
character of the input stream.

The format can contain conversion specifications, consisting in sequence of the
character %, an optional assignment suppressing character *, an optional decimal
integer that specifies the maximum field width, an optional h, l, or L indicating the
size of the receiving object, and a conversion specifier.

A conversion specification requires the following steps:

1. The process ignores (skips) input white-space characters, unless the
specification includes a], c or n specifier. The isspace function defines white-
space characters.

2. The process reads an input item from the stream, unless the specification
includes an n specifier. It does not read the first character after the input item.
If the length of the input item is zero, the execution of the directive fails.

3. The process converts the input item to a type appropriate to the conversion
specifier. If it is not a matching sequence, the execution of the directive fails.
The process places the conversion result in an object pointed to by the first
available argument after the format argument. If this object does not have the
appropriate type, or if the result of the conversion cannot be represented the
provided space, the behavior is not defined.

Formatting I/O

47 A2 60UL 13-7

The following conversion specifiers are valid:

d A decimal integer is expected; the subsequent argument must be a
pointer to integer. The expected matching sequence is the same as
that of the strtol function with the value 10 for the base argument.

i An integer is expected; the subsequent argument must be a pointer to
integer. The input is interpreted as an integer constant, with an
optional sign prefix and an optional integer suffix. If the input field
begins with the characters 0x or 0X, the field is taken as a
hexadecimal integer. Otherwise, if the input field begins with the
character 0, the field is taken as an octal integer. Otherwise, the input
field is taken as a decimal integer. The expected matching sequence is
the same as that of the strtol function with the value 0 for the base
argument.

o An octal integer is expected; the subsequent argument must be a
pointer to integer. The expected matching sequence is the same as
that of the strtoul function with the value 8 for the base argument.

u An unsigned decimal integer is expected; the subsequent argument
must be a pointer to integer. The expected matching sequence is the
same as that of the strtoul function with the value 10 for the base
argument.

x A hexadecimal integer is expected; the subsequent argument must be a
pointer to integer. The expected matching sequence is the same as
that of the strtoul function with the value 16 for the base argument.

s A character string is expected; the subsequent argument must be a
pointer to char which points to an array large enough to accept the
string and a terminating NULL, which will be added automatically.
The input filed is terminated by a space, a horizontal tab, or a new-
line, which is not part of the field.

c A character is expected; the subsequent argument must be a pointer to
char. The normal skip over white-space characters is suppressed in
this case; to read the next non-space character, use %1s. If a field
width is given, the corresponding argument must refer to a character
array, and the indicated number of characters is read.

e, f, g A floating point number is expected; the subsequent argument must be
a pointer to floating. The input format for floating point numbers is an
optionally signed sequence of digits, possibly containing a decimal
point, followed by an optional exponent field consisting of an E or an
e, followed by an optionally signed integer. The expected matching
sequence is the same as that of the strtod function.

C Language User's Guide

13-8 47 A2 60UL

n No input is consumed; the subsequent argument must be a pointer to
integer into which is written the number of characters read from the
input stream so far by this call to fscanf. This is not counted as a
match input item.

[A string that is not to be delimited by spaces is expected; the normal
skip over white-space characters is suppressed in this case. The
subsequent argument must be a pointer to char just as for %s. The left
bracket is followed by a set of characters and a right bracket; the
characters between the brackets define a set of characters making up
the string. If the first character is not a circumflex (^), the input field
consist of all characters up to the first character that is not in the set
between the brackets; if the first character after the left bracket is a
circumflex, the input field consists of all characters up to the first
character that is in the set of the remaining characters between the
brackets. A NULL character will be appended to the input.

If the conversion specifier begins with [] or [^], the right bracket
character is in the scanlist and the next right bracket character is the
matching right bracket that ends the specification. There is no
restriction for a - character in the scanlist.

% A single % is expected in the input at this point; no assignment occurs.

p Use this format to match an input sequence that is the same as the
output sequence produced by the printf function with the %p
conversion specifier.

If the conversion specifier is a lower-case letter that is not described above, the
behavior is undefined. If the conversion specifier is any other character that is not
described above, the behavior is implementation-defined.

The conversion specifiers d, i, o, u, and x may be preceded by l to indicate that the
subsequent argument is a pointer to long int rather than a pointer to int, or h to
indicate that it is a pointer to short int instead. Either the h or the I precedes the
conversion specifiers o, u, and x. The h precedes it if the corresponding argument
points to unsigned short int, and the I precedes it if it is a pointer to unsigned long
int. Similarly, the conversion specifiers e and f may be preceded by l to indicate
that the subsequent argument is a pointer to double rather than a pointer to float, or
by L to indicate a pointer to long double.

The conversion specifiers x, e and g may be capitalized. However, the use of
upper-case has non effect on the conversion process and both upper-case and
lower-case input is acceptable.

Formatting I/O

47 A2 60UL 13-9

If end-of-file is encountered during a conversion, the conversion terminates. If
conversion terminates on a conflicting input character, the offending character is
left unread in the input stream. Trailing white space (including a new-line) is left
unread unless matched in the control string. The success of literal matches and
suppressed assignments is not directly determinable other than via the %n
conversion.

Diagnostics

The fscanf function returns the number of assigned input items, which can be fewer
than provided for, or even zero, in the event of an early conflict between an input
character and the format, or EOF if end-of-file is encountered before the first
conflict or conversion. Otherwise, fscanf returns when the end of the format string
is encountered.

13.5 scanf

Synopsis

#include <stdio_h>

int scanf(const char *, ...);
int scanf (char *format, ...);

Description

The scanf function is equivalent to fscanf with the argument stdin interposed before
the arguments to scanf.

Diagnostics

The scanf function returns the number of assigned input items, which can be zero
in the event of an early conflict between an input character and the format, or EOF
if end-of-file is encountered before the first conflict or conversion. Otherwise,
scanf returns when the end of the format string is encountered.

C Language User's Guide

13-10 47 A2 60UL

13.6 sscanf

Synopsis

#include <stdio_h>

int sscanf(const char *, const char *, ...);
int sscanf (char *s, char *format, ...);

Description

The sscanf function is equivalent to fscanf, except that the argument s specifies a
string from which the input is to be obtained, rather than from a stream. Reaching
the end of the string is equivalent to encountering end-of-file for the fscanf
function.

Diagnostics

The sscanf function returns the number of assigned input items, which can be zero
in the event of an early conflict between an input character and the format.
Otherwise, sscanf returns when the end of the format string is encountered.

Formatting I/O

47 A2 60UL 13-11

13.7 vfprintf, vprintf, AND vscanf

Synopsis

#include <stdarg.h>
#include <stdio.h>
 int vfprintf (FILE *stream,const char *format,va_list arg);
 int vprintf (const char *format,va_list arg);
 int vsprintf (char *s,const char *format,va_list arg);

Description

The vfprintf function is equivalent to the fprintf with the variable argument list
replaced by arg parameter. The va_start macro, and some subsequent va_arg calls
initialize the arg parameter. The value of arg after vfprintf call is indeterminate.

The vfprintf function is comprised of vprintf and vsprintf, and the fprintf function
is comprised of printf and sprintf.

The vfprintf function returns the number of written characters or a negative value if
an output error occurs. The vsprintf function returns the number of characters
written in the array s, not including the terminating null character. If copied objects
overlap, the results are not defined.

EXAMPLE:

#include <stdarg.h>
#include <stdio.h>
 main() { f("%s %s","string1","string2"); }
 f(char *format,...)
 { va_list p;
 va_start (p,format);
 vprintf (format,p); /* print 'string1 string2' on stdout */
 }

❑

Diagnostics

The diagnostics are the same as those of FPRINTF, PRINTF, and SCANF
respectively.

C Language User's Guide

13-12 47 A2 60UL

❑

47 A2 60UL 14-1

 14. The Use of STDLIB_H

14.1 The <STDLIB_H> Header Subfile

This is the standard header subfile to be "included" for the conversion function
(etof, etoi, etc.), the memory allocation functions (malloc, etc.), the environment
functions (abort and system) and the random number generator functions (rand and
srand).

14.2 Memory Allocation

The memory allocation functions are malloc, calloc, realloc, and free.

Synopsis

#include <stdlib_h>

void *malloc(size_t);
char *malloc (size)

unsigned size;

#include <stdlib_h>

void *calloc(size_t, size_t);
char *calloc (nelem, elsize)

unsigned nelem, elsize;

#include <stdlib_h>

void *realloc(void *, size_t);
char *realloc (ptr, size)

char *ptr;

unsigned size;

#include <stdlib_h>

free (ptr)
char *ptr;

C Language User's Guide

14-2 47 A2 60UL

Description

Malloc and free are the two primitives used for dynamically allocating or
deallocating memory space. Malloc returns a pointer to a block whose size is at
least equal to the value specified in the size parameter.

The argument for free is a pointer to a block allocated by malloc. The freed space
can be used again but its contents remain unchanged.

Malloc searches for the free space that is most suitable to the required size in bytes.
Allocation is optimized to avoid too much garbage. Contiguous free spaces are
concatenated when a block is freed.

Realloc Changes the size of a block pointed to by ptr to a block
of size bytes and returns a pointer to the block with the
modified size. The block can be moved in the list of
allocated blocks (ptr is changed) but its contents
remain unchanged.

Calloc Allocates space for an array of nelem elements whose
size is equal to elsize. The space is initialized to zero.

Diagnostics

• Malloc, realloc, calloc return a null pointer if no more space can be allocated or
if an error occurs when searching for a block to allocate. (You have probably
tried to write outside the bounds of the allocated block.)

• The pointer of a block to be freed by free is tested. If the value is incoherent, -1
is returned.

• Allocating blocks of a size greater than 65511 bytes require the use of a
LINKER option (see the section on linking)

• Allocating objects of null size is valid and a non-null pointer is therefore
returned. This feature is not portable.

• The difference between GCOS 7 and UNIX lies in their memory management
algorithms.

The Use of STDLIB_H

47 A2 60UL 14-3

14.3 Conversions

The conversion functions are as follows:

ecvt, fcvt, gcvt
etof, etoi, etol

14.3.1 ecvt, fcvt, gcvt

Synopsis

#include <stdlib_h>

 char *ecvt (value, ndigit, decpt, sign)

 double value;

 int ndigit, *decpt, *sign;

#include <stdlib_h>

 char *fcvt (value, ndigit, decpt, sign)

 double value;

 int ndigit, *decpt, *sign;

#include <stdlib_h>

 char *gcvt (value, ndigit, buf)

 double value;

 char *buf;

Description

ecvt Converts value into an EBCDIC character string
terminating with ' \0' and returns a pointer to this
string. The position of the decimal point with respect
to the beginning of the string is returned via decpt. A
negative value means that the point is located to the
left. If the resulting sign is negative, the integer
pointed to by sign is other than zero. Otherwise, it is
equal to zero. The last digit is rounded off.

fcvt Is identical to ecvt except that the rounded off digit is
computed according to ndigits and that the output
corresponds to the FORTRAN format F.

gcvt Converts value to an EBCDIC character string
terminating with ' \0' in buf and returns a pointer to
buf. It attempts to supply significant ndigits in
FORTRAN format F and otherwise outputs in format
E. End zeroes can be deleted.

C Language User's Guide

14-4 47 A2 60UL

14.3.2 etof, etoi, etol

Synopsis

#include <stdlib_h>

 double etof (nprt)

 char *nptr;

#include <stdlib_h>

 etoi (nptr)

 char *nptr;

#include <stdlib_h>

 long etol (nptr)

 char *nptr;

Description

These functions convert a string pointed to by nptr to a floating point number, an
integer and a long integer, respectively. The first unrecognizable character ends the
string.

Etof recognizes an optional string of tabulations and spaces, then an optional sign,
then a string of digits possibly containing a decimal point, then an optional 'e' or 'E'
followed by an optionally-signed integer.

Etoi and etol recognize an optional string of tabulations and spaces, then an
optional sign, then a string of digits.

The Use of STDLIB_H

47 A2 60UL 14-5

14.3.3 strtod, strtol, strtoul

Synopsis

#include <stdlib_h>

 double strtod (const char *nptr, char **endptr);

#include <stdlib_h>

 long int strtol (const char *nptr, char **endptr, int base);

#include <stdlib_h>

 unsigned long int strtoul (const char *nptr, char **endptr, int base);

Description

The strtod function converts the initial portion of the string to which nptr points
into double representation. The form of the input string is a real constant. It is
sometimes preceded by space characters that the isspace function specifies, and it
is followed by unrecognized characters. The function returns the converted value.
If no conversion is possible, zero is returned.

The strtol function performs the conversion to long int representation. If base is 0,
the form of the input string is an integer constant. This can be preceded by spaces,
and followed by unrecognized characters. If base is not 0, its value must be
between 2 and 36, and the letters from A (or a) to Z (or z) are ascribed the values
10 to 35.

The strtoul function is the same as strtol, but with an unsigned long int result.

For these three functions, a pointer to the first unrecognized character is stored in
the object pointed to by endptr, provided that endptr is not a null pointer.

C Language User's Guide

14-6 47 A2 60UL

14.4 The Environment Functions

The environment functions are as follows:

exit
sexit
abort

14.4.1 exit, sexit

Synopsis

#include <stdlib_h>

void exit(int);
 exit (status)

 sexit (status);

void abort(void);
 abort ();

 system (s)

 char *s;

Description

Exit terminates program execution with a status return code. Implicitly, all
programs terminating normally use exit (0). More generally, status supplies the
status of the end of a STEP. The status is linked to severity:

Status Severity

0.99 0
100.999 1
1000.9999 2
10000.19999 3
20000.32767 4
other 5

All files are closed before output after deferred input/output operations are
terminated.

The command sexit terminates a program in the same way as exit except for the
closing of files.

The use of this function (sexit) is not recommended because GCOS closes all files,
whether or not their status is unstable.

The Use of STDLIB_H

47 A2 60UL 14-7

14.4.2 atexit

Synopsis

#include <stdlib_h>
 int atexit (void (*func)(void));

Description

The atexit function registers the function to which func points, to be called without
arguments at normal program termination. This is either the execution of the last
executable statement in main if not a return, or the execution of exit(0). Successive
calls to the atexit function register an ordered list of functions to be called in the
order of registration upon termination. Up to 33 functions can be registered in this
way. The returned value is zero if the registration succeeds, and 1 if it fails.

14.4.3 abort

Abort terminates a step in the process called 'abort task'.

14.4.4 getenv, system

Synopsis

#include <stdlib_h>
 char *getenv (const char *name);
#include <stdlib_h>
 int system (const char *string);

Description

The getenv function returns a pointer to the given GCL variable name. This GCL
variable is either a user global variable or a system variable. If the variable
contains a list, a space separator links the list elements. The returned pointer is null
if the name is unavailable. This function works both in IOF and batch modes.

C Language User's Guide

14-8 47 A2 60UL

EXAMPLE:

 #include <stdio.h>
 #include <stdlib.h>
 char *p;
 main () {
 p = (char *)malloc (256);
 printf (" %s\n", getenv ("#YES"));
 printf (" %s\n", getenv ("MYGLOB"));
 printf (" %s\n", getenv ("Unknown"));
 }

S: GLOBAL MYGLOB TYPE=CHAR;
S: LET MYGLOB 'contents of MYGLOB';
S: EXEC_PG TGETENV;
 (YES Y 1)
 contents of MYGLOB
 *CLR251 : NO SUCH GCL VARIABLE. .RC=98081870->GCL 8,NAMEERR
 (null)

❑

The system function executes a GCL directive given in a string. The string
contains a valid GCL directive that is a GCL command in the H_NOCTX domain.
If the command is syntactically correct, the returned value is 0. Otherwise it
returns -1. The execution of the directive returns no result, apart from this status,
to the calling C program.

If the pointer is NULL, the function returns 1, as a command processor is available.
This function works in IOF and batch modes. Example:
system ("DS EX");

For more information about the H_NOCTX domain, refer to the IOF Terminal
User's Reference Manual.

The Use of STDLIB_H

47 A2 60UL 14-9

14.5 Random Number Generator

14.5.1 rand

Synopsis
#include <stdlib_h>

int rand(void);
 int rand();

Description

Successive calls to rand return integer values in the range 0 to 32767 that are the
successive results of a pseudo-random number generator.

Diagnostics

If called with arguments rand returns the code -1.

14.5.2 srand

Synopsis
#include <stdlib_h>

void srand(unsigned int);
void srand (seed)

unsigned int seed;

Description

The srand function uses the argument as a seed for a sequence of pseudo-random
numbers to be returned by subsequent calls to rand. If rand is then called with the
same seed value, the sequence of pseudo-random numbers will be repeated.

If rand is called before any calls to srand have been made, the same sequence is
generated as when srand is called with a seed value of 1.

Diagnostics

If srand is called with an incorrect number of arguments the seed value remains
unchanged.

C Language User's Guide

14-10 47 A2 60UL

14.6 bsearch, qsort

Synopsis

#include <stdlib_h>

void *bsearch (const void *key, const void *base, size_t nmemb,

 size_t size, int (*compar)(const void *, const void *));

#include <stdlib_h>

void qsort (void *base, size_t nmemb, size_t size,

 int (*compar)(const void *, const void *));

Description

The bsearch function searches an array of nmemb objects for an element that
matches the object pointed to by key. The initial element of the array is pointed to
by base. The size of each element of the array is specified by size. Compar points
to the comparison function that is called with two arguments pointing to the key
object and to an array element, in that order. The comparison function returns an
integer less than, equal to, or greater than 0 if the key object is considered,
respectively, to be less than, to match, or to be greater than the array element. It is
assumed that the array is sorted in ascending order. The bsearch function returns a
pointer to a matching element of the array, or a null pointer if no match is found.

Compar can be a null pointer, especially for GCOS 7. In this case, the comparison
is done according to the EBCDIC collating sequence.

The qsort function sorts an array of nmemb objects, and base points to the initial
element. The size of each object is specified by size. The sort is in ascending
order.

Compar can be a null pointer, especially for GCOS 7. In this case the sort is done
according to the EBCDIC collating sequence.

The Use of STDLIB_H

47 A2 60UL 14-11

14.7 abs, div, labs

Synopsis

#include <stdlib_h>
 int abs (int j);
#include <stdlib_h>
 div_t div (int numer, int denom);
#include <stdlib_h>
 long int labs (long int j);

Description

abs returns the absolute value of its integer operand.

Limitation

The absolute value of i must be less than or equal to 2147483647 (which is 231 -1).

Diagnostic

If the argument is equal to the most negative integer abs returns the value 0 and
errno is set to EDOM.

The div function performs the euclidian division of numbering by denomination
and returns a structure of type div_t, comprising both the quotient and the
remainder. Denom cannot be zero.

The labs and ldiv functions are similar to abs and div, with arguments and returned
values of type long int.

C Language User's Guide

14-12 47 A2 60UL

❑

47 A2 60UL 15-1

 15. Character Handling

15.1 The <CTYPE_H> Header Subfile

This header file contains the different macros describing the functions used for
character handling. When this file is included, it brings a 256-character static table
back to the source.

15.2 EBCDIC Character Subsets

The following macros define the subsets of the EBCDIC set of characters:

isalnum isxdigit
isalpha isprint
isdigit isspace
islower ispunct
isupper iscntrl

isgraph

Synopsis

#include <ctype_h>

 isalpha (c)
 .
 .
 .
 iscntrl

int isalpha(int)
 .
 .
 .
int iscntrl(int)

C Language User's Guide

15-2 47 A2 60UL

Description

These macros define the sub-sets of the EBCDIC set of characters. Each macro is a
predicate belonging to the sub-set that it defines. They return a non-zero value if
the c character is a member of the sub-set. If not, they return zero.

isalnum (c) Returns a non-zero value if the c character is a member
of the following set of alphanumeric characters.
Otherwise, it returns 0.

0 1 2 3 4 5 6 7 8 9
A B C D E F G H I J K L M N O P Q R S T
U V W X Y
a b c d e f g h i j k l m n o p q r s t
u v w x y z

isalpha (c): Returns a non-zero value if c is a character of the
following alphabet set. Otherwise, returns 0.

A B C D E F G H I J K L M N O P Q R S T
U V W X Y Z
a b c d e f g h i j k l m n o p q r s t
u v w x y z

isdigit (c): Returns a non-zero value if c is one of the following
digits. Otherwise, returns 0.

0 1 2 3 4 5 6 7 8 9

islower (c): Returns a non-zero value if c is a lower-case letter.
Otherwise, returns 0.

isupper (c): Returns a non-zero value if c is an upper-case letter.
Otherwise, returns 0.

isxdigit (c): Returns a non-zero value if c is a member of the
following set of hexadecimal digits. Otherwise, returns
0

0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

Character Handling

47 A2 60UL 15-3

isprint (c): Returns a non-zero value if c belongs to the following
set of printing characters. Otherwise, returns 0.

SP (space) ! " # $ % & ' () * + , - . /
0 1 2 3 4 5 6 7 8 9/; < = > ?
@ A B Z [] _ a b c . . . z |

isspace (c): Returns a non-zero value if c is a character of the
following set. Otherwise, returns 0.

space formfeed horizontal tab
newline carriage return vertical tab.

ispunct (c): Returns a non-zero value if c is a printing character
(see isprint) except for spaces and alphanumeric
characters (see isalnum). Otherwise, returns 0.

iscntrl (c): Returns a non-zero value if c is a control character,
which is any non-printing character (see isprint).

isgraph (c): Returns a non-zero value if c belongs to the set of
printing characters shown in isprint, except for the
space character. Otherwise, it returns 0.

C Language User's Guide

15-4 47 A2 60UL

15.3 Converting to Lower and Upper Case

The following macros convert characters to lower and upper case.

tolower _tolower
toupper _toupper

Synopsis

#include <ctype_h>

tolower (c)
int tolower(int)

char c;

toupper (c)
int toupper(int)

char c;

_tolower (c)

char c;

_toupper (c)

char c;

Description

tolower: Converts c to lower-case if c is an upper-case letter.
Otherwise, c remains unchanged.

toupper: Converts c to upper-case if c is a lower-case letter.
Otherwise, c remains unchanged.

_tolower: Is identical to tolower except that result is undefined if
c is not an upper-case letter.

_toupper: Is identical to toupper except that result is undefined if
c is not a lower-case letter.

NOTE:
_tolower and _toupper are faster than tolower and toupper; therefore, it is
preferable to use them when you are sure that c is an upper or lower-case letter.

47 A2 60UL 16-1

 16. The Use of STRING_H

16.1 The <STRING_H> Header Subfile

This is the standard header subfile to be "included" for the functions used for
manipulating character strings, for buffer management and memory management.

16.2 String Handling

The string handling functions are:

strcpy cmpstr strchr notstr prefix
strncpy cpystr strcat strspn scnstr
strcmp lenstr strcspn substr
strncmp strlen index strpbrk
strncat strcoll strxfrm strrchr
strchr strtok strerror

Synopsis

#include <stdio_h>

char *strcpy(char *, const char *);
 char *strcpy (s1,s2)
 char *s1, *s2;

char *strncpy(char *, const char *, size_t);
 char *strncpy (s1,s2,n)
 char *s1, *s2;
 int n;

int strcmp(const char *, const char *);
 strcmp (s1,s2)
 char *s1, *s2;

C Language User's Guide

16-2 47 A2 60UL

int strncmp(const char *, const char *, size_t);
 strncmp (s1,s2,n)
 char *s1, *s2;
 int n;

 cmpstr (s1,s2)
 char *s1, *s2;

 cpystr (ds, arg1, arg2, ..., null)
 char *ds, *arg1, *arg2, ...;

 lenstr (s)
 char *s;

size_t strlen(const char *);
 strlen (s)
 char *s;

char *strchr(const char *, int);
 char *strchr (s,c)
 char *s, c;

char *strcat(char *, const char *);
 char *strcat (s1,s2)
 char *s1, *s2;

char *strncat(char *, const char *, size_t);
 char *strncat (s1,s2,n)
 char *s1, *s2;
 int n;

 char *index (s,c)
 char *s, c;

 notstr (p,s)
 char *p, *s;

size_t strspn(const char *, const char *);
 strspn (p,s)
 char *p, *s;

size_t strcspn(const char *, const char *);
 strcspn (p,s)
 char *p, *s;

char *strpbrk(const char *, const char *);
 strpbrk (p,s)
 char *p, *s;

 prefix (s1,s2)
 char *s1, *s2;

The Use of STRING_H

47 A2 60UL 16-3

 scnstr (s,c)
 char *s, c;

 substr (s,p)
 char *s, *p;

#include <string_h>
 char *strncat (char *s1, const char *s2, size_t n);
#include <string_h>
 int strcoll (const char *s1, const char *s2);
#include <string_h>
 size_t strxfrm (char *s1, const char *s2, size_t n);
#include <string_h>
 char *strrchr (const char *s, int c);
#include <string_h>
 char *strstr (const char *s1, const char *s2);
#include <string_h>
 char *strtok (char *s1, const char *s2);
#include <string_h>
 char *strerror (int errnum);

Description

These functions operate on null-terminated strings. They do not check for overflow
of any receiving string.

strcpy Copies string s2 to s1, stopping after the null character has been
moved. strncpy copies exactly n characters (where n is the
number of characters), truncating or null-padding s2; the target
may not be null-terminated if the length of s2 is n or more.
Both return s1.

strcmp Compares its arguments and returns an integer greater than,
equal to, or less than 0. This is according to whether s1 is
lexicographically greater than, equal to, or less than s2.

strncmp Makes the same comparison but for, at most, n characters,
where n is the number of characters.

cmpstr Compares two strings, character by character, for equality. The
first string starts at s1 and is terminated by a null ' 0'; the second
is likewise described by s2. The strings must match through
and including their terminating null characters. The value
returned is 1 if the strings are equal, otherwise 0.

C Language User's Guide

16-4 47 A2 60UL

cpystr Concatenates a series of strings into the destination string ds.
Each string begins at argx and is terminated by a null '\0'. The
first character of arg2 is placed just after the last character
(before the null) copied from arg1, etc. The series of string
arguments is terminated by a null pointer argument. A null is
appended to the final destination string to terminate it properly.

The value returned is a pointer to the terminating null in the
destination string.

strlen (lenstr) Returns the number of non-null characters in s.

strchr Locates the first occurrence of a specific character c in the
string pointed to by s. The terminating null is considered to be
part of the string. strchr returns a pointer to the located
character, or a null pointer if the character does not occur in the
string.

strcat Appends a copy of string s2 to the end of string s1.

strncat Copies, at most, n characters, where n is the number of
characters.

Both strcat and strncat return a pointer to the null-terminated
result. The results are unpredictable if the two string arguments
overlap in memory.

index Returns a pointer to the first occurrence of a specific character c
in string s, or the null pointer if c does not occur in the string.

notstr Scans the null terminated string starting at p for the first
occurrence of a character not in the null terminated set starting
at s. notstr returns the offset of the first character in p not
contained in the set s, or the index of the terminating null if all
are in s.

strspn Is the same function as notstr.

strcspn Is the same function as notstr, except that it starts at p and scans
the null terminated string for the first occurrence of a character
in the null terminated set that starts at s.

strpbrk Is the same function as strcspn, except that it returns a pointer
to the first character in p that is contained in the set s. It returns
a null pointer if there are no characters in s.

The Use of STRING_H

47 A2 60UL 16-5

prefix Compares two strings, character by character, for equality. The
first string starts at s1 and is terminated by a null '\0'; the second
is likewise described by s2.

The strings must match up to but not include the null that
terminates the second string. That is, s2 must be a prefix of s1.
The value returned is 1 if s2 is a prefix of s1, else 0.

scnstr Looks for the first occurrence of a specific character c in a null
terminated target string s.

scnstr also returns the offset of the first character that matches
c, or the offset of the terminating null if none matches.

substr Scans the string starting at s, and looks for the first occurrence
of the substring at p. The value returned is the index in s of the
leftmost character in the sub-string if substr is successful;
otherwise, the index of the terminating null is returned.

These functions do not check for the validity of any parameter
strings.

The strncat function appends not more than n characters to the end of the string
pointed to by s1. The characters are from the array to which s2 points. Null
characters and subsequent characters are not appended. The initial character of s2
overwrites the null character at the end of s1. A terminating null character is
always appended to the result. If overlapping objects are copied, the behavior is
undefined. The strncat function returns the value of s1.

The strcoll function compares the strings to which s1 and s2 point. It compares
according to the collating sequence that the current LC_COLLATE category
defines. The returned integer is greater than, equal to, or less than zero, depending
on whether the string to which s1 points is greater than, equal to, or less than the
string to which s2 points.

The strxfrm function transforms the string to which s2 points into a string to which
s1 points and then returns the length of the transformed string. The transformation
is done according to the LC_COLLATE category of the current locale category,
which is also described in the chapter on localization. It copies no more than n
characters. The function returns the length of the transformed string, which can be
greater than n. strxfrm(null,0) returns the size needed to hold the transformed
string.

The strrchr function returns a pointer to the last occurrence of c in the string to
which s points, or a null pointer if c is not found.

C Language User's Guide

16-6 47 A2 60UL

The strstr function returns a pointer to the first occurrence of the string to which s2
points in the string to which s1 points. It returns a null pointer if the string is not
found.

The strtok function is called in a sequence. This is in order to break the string to
which s1 points into a sequence of tokens delimited by a character contained in the
string to which s2 points. The first call searches the s1 string for the first character
that is not contained in the s2 string. If this character does not exist, a null pointer
is returned, otherwise the function returns a pointer to the first token. The function
then searches for a character that is contained in the current separator string. If this
character does exist, a null character (\0) overwrites it. Each subsequent call that
has a null pointer as the first argument (and possibly a different separator string
pointed to by s2) searches for a character that is contained in *s2 and continues as
described above.

This example contains the following program fragment:

static char str[]= "?a???b,,,#c";
char *t;
 ...
t=strtok (str, "?");
t=strtok(null, ",");
t=strtok(null, "#,");
t=strtok(null, "?");

After successive calls to strtok, this leads to the following results:

#call str value t value
1st ?a\0??b,,,#c\0 a
2nd ?a\0??b\0,,#c\0 ??b
3rd ?a\0??b\0,,#c\0 c
4th ?a\0??b\0,,#c\0 null

The strerror function returns a pointer to an error message string. That string
corresponds to the error number errnum that is an errno value.

The Use of STRING_H

47 A2 60UL 16-7

16.3 Buffer Management

The buffer management functions are:

fill cmpbuf
subbuf scnbuf
cpybuf notbuf

Synopsis

#include <stdio_h>

 fill (s,n,c)
 char *s, c;
 int n;

 subbuf (s,ns,p,np)
 char *s, *p;
 int n;

 cpybuf (s1,s2,n)
 char *s1, *s2;
 int n;

 cmpbuf (s1,s2,n)
 char *s1, *s2;
 int n;

 scnbuf (s,n,c)
 char *s, c;
 int n;

 notbuf (p,n,s)
 char *p, *s;
 int n;

NOTE:
The buffer management functions do not check for the validity of parameter
strings.

C Language User's Guide

16-8 47 A2 60UL

Description

fill Floods the n-character buffer (where n is the number
of characters) starting at s with fill character c. fill
returns n.

subbuf Scans the buffer starting at s of size ns, and looks for
the first occurrence of the substring at p of size np.

The value returned is the offset in s of the leftmost
character in the sub-string if subbuf is successful;
otherwise, ns is returned.

cpybuf Copies the first n characters (where n is the number of
characters) starting at location s2 into the buffer
beginning at s1.

The value returned is n, the number of characters
copied.

cmpbuf Compares two text buffers, character by character, for
equality. The first buffer starts at s1, the second at s2.
Both are n characters long, where n is the number of
characters. s1 and s2 are said to be equal if the n
characters in s1 and s2 are identical.

The value returned is 1 if the buffers are equal,
otherwise 0.

scnbuf Looks for the first occurrence of a specific character c
in an n character buffer starting at s. scnbuf returns the
offset of the first character that matches c, or n if none.

notbuf Scans the n-character buffer starting at p for the first
instance of a character not in the null terminated set
starting at s. If the null character is to be part of the
set, it must be the first character in the set.

notbuf returns the offset of the first character in p not
contained in the set s, or the value n if all buffer
characters are in the set.

The Use of STRING_H

47 A2 60UL 16-9

16.4 Memory Management

16.4.1 The memcpy Function

Synopsis

#include <string_h>

void *memcpy(void *, const void *, size_t);
char *memcpy (s1,s2,n)
 char *s1,*s2;
 int n;

Description

The memcpy function copies n characters from the array pointed to by s2 to the
array pointed to by s1.

The memcpy function returns the value of s1.

16.4.2 The memset Function

Synopsis

#include <string_h>

void *memset(void *, int, size_t);
char *memset (s,c,n)
 char *s,c;
 int n;

Description

The memset function copies the value of c (cast to unsigned char) into each of the
first n bytes of the array pointed to by s.

The memset function returns the value of s.

C Language User's Guide

16-10 47 A2 60UL

16.4.3 The memcmp Function

Synopsis

#include <string_h>

int memcmp(const void *, const void *, size_t);
 int memcmp (s1,s2,n)
 char *s1,s2;
 int n;

Description

The memcmp function compares the first n bytes of the array pointed to by s2 to
the array pointed to by s1. The memcmp function returns an integer greater than,
equal to, or less than zero, according as the array pointed to by s1 is
lexicographically greater than, equal to, or less than the array pointed to by s2.

16.4.4 The memchr Function

Synopsis

#include <string_h>

void *memchr(const void *, int, size_t);
 char *memchr (s,c,n)
 char *s,c;
 int n;

Description

The memchr function locates the first occurrence of c in the initial n characters of
the array pointed to by s. The memchr function returns a pointer to the located
character, or a null pointer if the character does not occur in the array.

The Use of STRING_H

47 A2 60UL 16-11

16.4.5 The memmove Function

Synopsis

#include <string_h>
 void *memmove (void *s1, const void *s2, size_t n);

Description

The memmove function copies n characters from the object pointed to by s2 into
the object pointed to by s1. Unlike memcopy, memmove supports overlapping
between the sending and receiving areas. Its performance is less efficient than
memcpy, although it can perform a single copy on GCOS 7.

C Language User's Guide

16-12 47 A2 60UL

❑

47 A2 60UL 17-1

 17. Non-Local Jump

17.1 The <SETJMP_H> Header Subfile

This subfile declares two functions and one object type used for calling one of the
functions. Calling the longjmp or setjmp function requires inclusion of the subfile.

17.2 setjmp, longjmp

Synopsis

 #include <setjmp_h>

int setjmp(jmp_buf);
 int setjmp (env)
 jmp_buf env;

 #include <setjmp_h>

void longjmp(jmp_buf, int);
 longjmp (env, val)
 jmp_buf env;
 int val;

Description

setjmp saves its stack environment in env (whose type, jmp_buf, is defined in the
<setjmp_h> header file) for later use by longjmp. It returns the value zero (0).

C Language User's Guide

17-2 47 A2 60UL

longjmp restores the environment saved by the last call of setjmp with the
corresponding env argument. After longjmp is completed, program execution
continues as if the corresponding call of setjmp (the caller of which must not itself
have returned in the interim) had just returned the value val. longjmp cannot cause
setjmp to return the value 0. If longjmp is invoked with a second argument of 0,
setjmp will return 1. All accessible data have values as of the time longjmp was
called.

Application Usage

If longjmp is called even though env was never primed by a call to setjmp, or if the
last such call was in a function which has since returned, the result is unpredictable
and can possibly cause damage. If the call to longjmp is in a different function
from the corresponding call to setjmp, local variables may have unpredictable
values.

IMPORTANT:
These two functions are not guaranteed in a shared module (TPR) context.

1 33

47 A2 60UL 18-1

 18. Mathematical Package

18.1 The <MATH_H> Header Subfile

This standard subfile must be "included" for all mathematical functions. In
particular, it defines two macros EDOM and ERANGE which should be used to
test the values returned by these functions. If an error occurs in a domain or co-
domain the variable errno (described by a macro in this subfile) is set to the value
EDOM or ERANGE respectively. All mathematical functions called with an
incorrect number of arguments return the value 0 and set the errno variable to the
EDOM value.

NOTE:
no error message is issued in this case.

C Language User's Guide

18-2 47 A2 60UL

18.2 abs

Name abs

Synopsis

 #include <math_h>

int abs(int);
 int abs (i)

int i;

Description

abs returns the absolute value of its integer operand.

Limitation

The absolute value of i must be less than or equal to 2147483647 (which is 231 -1).

Diagnostic

If the argument is equal to the most negative integer abs returns the value 0 and
errno is set to EDOM.

Mathematical Package

47 A2 60UL 18-3

18.3 fabs

Name fabs

Synopsis

#include <math_h>

double fabs(double);
double fabs (x)

double x;

Description

fabs returns the absolute value of x.

Diagnostic

If the argument type is incorrect fabs returns the value 0 and errno is set to EDOM.

C Language User's Guide

18-4 47 A2 60UL

18.4 floor

Name floor

Synopsis

#include <math_h>

double floor(double);
double floor (x)

double x;

Description

floor returns the largest integer not greater than x.

Limitation

The absolute value of x must be less than or equal to 2147483647
(which is 231 -1).

Diagnostic

If the absolute value of x is greater than 2147483647, floor returns x and sets errno
to EDOM. If the argument type is incorrect, floor returns the value 0 and errno is
set to EDOM.

Mathematical Package

47 A2 60UL 18-5

18.5 ceil

Name ceil

Synopsis

#include <math_h>

double ceil(double);
double ceil (x)

double x;

Description

ceil returns the smallest integer not less than x.

Limitation

The absolute value of x must be less than or equal to 2147483647
(which is 231 -1).

Diagnostic

If the absolute value of x is greater than 2147483647, ceil returns x and sets errno
to EDOM. If the argument type is incorrect, floor returns the value 0 and errno is
set to EDOM.

C Language User's Guide

18-6 47 A2 60UL

18.6 fmod

Name fmod

Synopsis

#include <math_h>

double fmod(double, double);
double fmod (x,y)

double x,y;

Description

fmod returns the remainder of x divided by y.

Limitation

y must not be equal to zero.

Diagnostic

If y is equal to zero, fmod returns the value 0 and errno is set to EDOM. If the
argument type is incorrect (for either x or y), fmod returns the value 0 and errno is
set to EDOM.

Mathematical Package

47 A2 60UL 18-7

18.7 modf

Name modf

Synopsis

#include <math_h>

double modf(double, double *);
double modf (value,iptr)

double value, *iptr;

Description

modf returns the fractional part of value and stores the integral part indirectly
through iptr.

Limitation

The absolute value of value must be less than or equal to 2,147,483,647 (which is
one less than 2 to the power of 31).

Diagnostic

If the absolute value of value is greater than 2,147,483,647, modf returns value 0
and sets errno to EDOM. If the argument type is incorrect or the pointer iptr is
invalid, modf returns the value 0 and errno is set to EDOM.

C Language User's Guide

18-8 47 A2 60UL

18.8 sin

Name sin

Synopsis

#include <math_h>

double sin(double);
double sin (x)

double x;

Description

sin returns the sine of x (measured in radians).

Limitation

To avoid loss of precision, the absolute value of x must be less than 1015.

Diagnostic

If the argument type is incorrect sin returns the value 0 and errno is set to EDOM.

Mathematical Package

47 A2 60UL 18-9

18.9 asin

Name asin

Synopsis

#include <math_h>

double asin(double);
double asin (x)

double x;

Description

asin returns the arc sine of x in the following range

-Pi/2 to +Pi/2

Limitation

The absolute value of x must be less than or equal to 1.

Diagnostic

If the argument is greater than 1, or if the argument type is incorrect, asin returns
the value 0 and errno is set to EDOM.

C Language User's Guide

18-10 47 A2 60UL

18.10 sinh

Name sinh

Synopsis

#include <math_h>

double sinh(double);
double sinh (x)

double x;

Description

sinh returns the hyperbolic sine of x.

Diagnostic

When the correct value overflows, sinh returns a huge value with the appropriate
sign and errno is set to ERANGE.

If the argument type is incorrect, sinh returns the value 0 and errno is set to EDOM.

Mathematical Package

47 A2 60UL 18-11

18.11 cos

Name cos

Synopsis

#include <math_h>

double cos(double);
double cos (x)

double x;

Description

cos returns the cosine of x (measured in radians).

Limitation

To avoid loss of precision, the absolute value of x must be less than 1015.

Diagnostic

If the argument type is incorrect cos returns the value 0 and errno is set to EDOM.

C Language User's Guide

18-12 47 A2 60UL

18.12 acos

Name acos

Synopsis

#include <math_h>

double acos(double);
double acos (x)

double x;

Description

acos returns the arc cosine of x in the range 0 to PI.

Limitation

The absolute value of x must be less than or equal to 1.

Diagnostic

If the argument is greater than 1, or if the argument type is incorrect, acos returns
the value 0 and errno is set to EDOM.

Mathematical Package

47 A2 60UL 18-13

18.13 cosh

Name cosh

Synopsis

#include <math_h>

double cosh(double);
double cosh (x)

double x;

Description

cosh returns the hyperbolic cosine of x.

Diagnostic

If the correct value overflows, cosh returns a huge value with the appropriate sign
and errno is set to ERANGE.

If the argument type is incorrect, cosh returns the value 0 and errno is set to
EDOM.

C Language User's Guide

18-14 47 A2 60UL

18.14 tan

Name tan

Synopsis

#include <math_h>

double tan(double);
double tan (x)

double x;

Description

tan returns the tangent of x (measured in radians).

Limitation

To avoid loss of precision, the absolute value of x must be less than 1015.

Diagnostic

The value of tan at its singular points is a huge number, and errno is set to
ERANGE. If the argument type is incorrect, tan returns the value 0 and errno is set
to EDOM.

Mathematical Package

47 A2 60UL 18-15

18.15 atan

Name atan

Synopsis

#include <math_h>

double atan(double);
double atan (x)

double x;

Description

atan returns the arc tangent of x in the range -PI/2 to +PI/2.

Diagnostic

If the argument type is incorrect atan returns the value 0 and errno is et to EDOM.

C Language User's Guide

18-16 47 A2 60UL

18.16 atan2

Name atan2

Synopsis

#include <math_h>

double atan2(double, double);
double atan2 (y,x)

double x,y;

Description

atan2 returns the arc tangent of y/x in the range -PI/2 to +PI/2.

Limitation

x and y must not both be zero.

Diagnostic

If x and y are both equal to zero atan2 returns the value 0 and sets errno to EDOM.
If the argument type is incorrect (for either x or y) atan2 returns the value 0 and
errno is set to EDOM.

Mathematical Package

47 A2 60UL 18-17

18.17 tanh

Name tanh

Synopsis

#include <math_h>

double tanh(double);
double tanh (x)

double x;

Description

tanh returns the hyperbolic tangent of x.

Diagnostic

If the argument type is incorrect tanh returns the value 0 and errno is set to EDOM.

C Language User's Guide

18-18 47 A2 60UL

18.18 exp

Name exp

Synopsis

#include <math_h>

double exp(double);
double exp (x)

double x;

Description

exp returns the exponential value of x.

Limitation

The absolute value of x must be greater than -200 and less than 174.67.

Diagnostic

If the correct value overflows, exp returns a huge value; if the correct value
underflows, exp returns a null value. In both cases, errno is set to ERANGE.
If the argument type is incorrect, exp returns the value 0 and errno is set to EDOM.

Mathematical Package

47 A2 60UL 18-19

18.19 log

Name log

Synopsis

#include <math_h>

double log(double);
double log (x)

double x;

Description

log returns the natural logarithm of x.

Diagnostic

When x is zero or negative, log returns a huge negative value and errno is set to
EDOM.

If the argument type is incorrect, log returns the value 0 and errno is set to EDOM.

C Language User's Guide

18-20 47 A2 60UL

18.20 log2, frexp

Name log2, frexp

Synopsis

#include <math_h>
 double log2 (double x);
#include <math_h>
 double frexp (double value, int *exp);

Description

The log2 function computes the base-two logarithm of x. It is not part of ANSI
The frexp function returns a double x of the interval [0.5 ; 1 [, and it returns an int
*exp, such that the value equals x times 2 raised to the power *exp. If value is
zero, both parts of the result are zero.

EXAMPLE:

The following example uses the frexp function.

#include <math.h>
#include <stdio.h>
int i1,i2;
double x1, x2;
main () {
x1 = frexp (1.0, &i1);
x2 = frexp (-0.12, &i2);
printf("%f=frexp(1.0,%d); %f=frexp(-0.12,%d)\n",x1,i1,x2,i2);
}

❑

The following program prints on stdout:

0.500000=frexp(1.0,1); -0.960000=frexp(-0.12,-3)

Mathematical Package

47 A2 60UL 18-21

18.21 log10

Name log10

Synopsis

#include <math_h>

double log10(double);
double log10 (x)

double x;

Description

log10 returns the base ten logarithm of x.

Diagnostic

When x is zero or negative, log10 returns a huge negative value and errno is set to
EDOM.

If the argument type is incorrect log10 returns the value 0 and errno is set to
EDOM.

C Language User's Guide

18-22 47 A2 60UL

18.22 pow

Name pow

Synopsis

#include <math_h>

double pow(double, double);
double pow (x,y)

double x,y;

Description

pow returns x to the power of y. (xy).

Diagnostic

If the correct value overflows, pow returns a huge value; if the correct value
underflows pow returns a null value. In both cases, errno is set to ERANGE.

If the argument type is incorrect pow returns the value 0 and errno is set to EDOM.

Mathematical Package

47 A2 60UL 18-23

18.23 ldexp

Name ldexp

Synopsis

#include <math_h>

double ldexp(double, int);
double ldexp (x,exp)

int exp;

double x;

Description

ldexp returns x.2 exp (2 to the power of exp multiplied by x).

Limitation

The absolute value of exp must be greater than or equal to -260, and less than 251.

Diagnostic

If the correct value overflows, ldexp returns a huge value with the appropriate sign;
if the correct value underflows, ldexp returns a null value. In both cases, errno is
set to ERANGE.

C Language User's Guide

18-24 47 A2 60UL

18.24 sqrt

Name sqrt

Synopsis

#include <math_h>

double sqrt(double);
double sqrt (x)

double x;

Description

sqrt returns the positive square root of x.

Diagnostic

When x is negative, sqrt returns zero and errno is set to EDOM. If the argument
type is incorrect, sqrt returns the value 0 and errno is set to EDOM.

47 A2 60UL 19-1

 19. Time and Date

19.1 The <TIME_H> Header Subfile

This standard subfile is used for the time and date functions.

19.2 Time Retrieval

Name clock

Synopsis

#include <time_h>

clock_t clock(void);
clock_t clock ()

time_t time (time_t *timer);

Description

The clock function returns the elapsed processor time since the beginning of
program execution. This value is the best approximation of the implementation.
The value returned must be divided by the value of the macro CLOCKS_PER_SEC
to obtain the time in seconds.

C Language User's Guide

19-2 47 A2 60UL

Diagnostic: The Clock Function

The returned value is set to -1 if the time is not available or if clock is called with
arguments.

Diagnostic: The Time Function

The time function returns the elapsed time in seconds, with the beginning date of
January 1, 1970 at 00:00. If the timer is a valid pointer, the returned value is also
assigned to the value to which it points. The timer parameter is mandatory. If it is
not required, enter a null value to be passed to the function.

The returned value is set to -1 if time and date are not available.

IMPORTANT:
The main entry must be activated first if the clock and time functions are used.
If not, the clock or time return -1.

1 33

Time and Date

47 A2 60UL 19-3

19.3 Time Handling

Name time handling

The struct tm type holds the component of a calendar time, which is called the
broken-down time. This structure contains the following members:

int tm_sec Seconds after the minute Range 0-61
int tm_min Minutes after the hour Range 0-23
int tm_hour hours since midnight Range 0-59
int tm_mday day of the month Range 1-31
int tm_mon months since January Range 0-11
int tm_year years since 1900
int tm_wday days since Sunday Range 0-6
int tm_yday days since January 1 Range 0-365
int tm_isdst Daylight Saving Time flag

Synopsis

#include <TIME_H>

double difftime(time_t, time_t);
double difftime (time_t time1, time_t time2);

time_t mktime (struct tm *timeptr);

char *ctime (const time_t *timer);

struct tm *gmtime (const time_t *timer);

struct tm *localtime (const time_t *timer);

Description

For all these functions, the timer pointer (tmrptr) points to the calendar.

The difftime function computes the difference between the two calendar times
time1 and time2. It returns this difference expressed in seconds as a double.

The mktime function converts the broken-down time into a calendar time value
with the same encoding as that of the values returned by the time function. The
values of tm_wday and tm_yday are ignored, and the other values are not restricted
to the ranges indicated above. Upon successful completion, the value of tm_wday
and tm_yday are set appropriately, and the other values are forced to the ranges
indicated above to represent the specified calendar time. If the calendar time
cannot be represented, the function returns the value -1.

C Language User's Guide

19-4 47 A2 60UL

The ctime function converts the calendar time to local time in the form of a string.
It is equivalent to asctime, which is localtime(timer).

The gmtime function converts the calendar time into a broken-down time
expressed as Coordinated Universal Time. The timer pointer points to the calendar
time. It returns a null pointer if UTC is not available.

The localtime function converts the calendar time into a broken-down time,
expressed as local time.

Diagnostic

The returned value is set to -1 if the time and date are not available. If the number
of arguments is incorrect time returns -1

Time and Date

47 A2 60UL 19-5

19.4 Time Edition

Name asctime

Synopsis

#include <TIME_H>

char *asctime (const struct tm *timeptr);

size_t strftime(char *, size_t, char *,
 const struct tm *);
size_t strftime (char *s, size_t maxsize,
 const char *format, const struct tm *timeptr);

Description

The asctime function converts the broken-down time into a string in the following
form:

Tue Jan 8 14:24:47 1991\n\0

The timeptr points to the asctime function.

The strftime function places characters into the array to which s points. Format
points to the string that controls this. The format string contains ordinary
characters and conversion specifiers that consist of a % character followed by a
character that determines the behavior of the conversion specification. All ordinary
characters are copied unchanged into the array. No more than maxsize characters
are placed into the array.

The characters in the following list replace each conversion specifier. The
LC_TIME of the current locale determines the characters and also the structure to
which the timeptr points determines them.

C Language User's Guide

19-6 47 A2 60UL

The replacement characters are as follows:

%a Abbreviated weekday name of the locale
%A Full weekday name of the locale
%b Abbreviated month name of the locale
%B Full month name of the locale
%c Appropriate date and time representation of the locale
%d Day of the month as a decimal number 01-31
%H Hour (24-hour clock) as a decimal number 00-23
%I Hour (12-hour clock) as a decimal number 01-12
%j Day of the year as a decimal number 001-366
%m Month as a decimal number 01-12
%M Minute as a decimal number 00-59
%p Locale equivalent of the AM/PM designation associated

with a 12-hour clock
%s Second as a decimal number 00-61
%U Week number of the year as a decimal number.

The first Sunday as the first day of week 1
00-53

%w Weekday as a decimal number 0 (Sunday)-6
%W Week number of the year as a decimal number.

The first Monday as the first day of week 1
00-53

%x Appropriate date representation of the locale
%X Appropriate time representation of the locale
%y Year without century as a decimal number 00-99
%Y Year with century as a decimal number
%Z No character
%%%

The strftime function returns the number of characters placed into the array to
which s points. However, this does not include the terminating null character if that
total number (including the terminating null character) is not more than maxsize.
Otherwise, 0 is returned and the contents of the array are indeterminate.

47 A2 60UL 20-1

 20. STDARG Functions

20.1 The <STDARG_H> Header Subfile

The starg.h file is a header file. It declares a type va_list that holds information for
the macros va_start, va_arg, and va_end. The starg.h file uses several arguments to
call functions.

The three macros described in this section access in a portable way all the varying
arguments that are unnamed in the called function. However, the called function is
declared with at least one fixed parameter. To access variable arguments, the called
function declares an object of va_list type. In the following description, the object
of the va_list is referred to as ap and the right-most fixed parameter of the called
function is referred to as parmN.

If one of these macros is suppressed (by #undef), the execution of the called
function leads to an exception or unpredictable behavior.

C Language User's Guide

20-2 47 A2 60UL

20.2 va_start Macro

Synopsis

 #include <stdarg.h>

 va_start (ap,parmN)

 va_list ap;

Description

The va_start macro is invoked before any access to the unnamed argument. This
macro initializes ap for subsequent use by the va_arg or va_end macros.

If the parameter parmN is declared with the register storage-class, a function type,
an array type, or a type not compatible with the promote type usually done in the C
language, an exception or an undefined behavior can occur at execution time. For
example, float parameters are promoted to double type, and char or short
parameters are promoted to int type.
The va_start macro returns no value.

STDARG Functions

47 A2 60UL 20-3

20.3 va_arg Macro

Synopsis

#include <stdarg.h>

#include <stdarg.h>

 type va_arg(ap, type)

 va_list ap;

Description

• The va_arg macro expands to an expression that has the type and the value of the
next argument in the call.

• The ap parameter is the same as the one initialized by the va_start macro.

• Successive invocation of the va_arg macro modifies ap so that the values of
successive arguments are returned in turn.

• The type parameter is a type name that must be compatible with the type of the
desired argument. If it is not, the returned value is undefined, which also occurs
if there is no more following argument.

• The first invocation of va_arg macro returns (only after va_start invocation) the
value of the argument after that specified by parmN. Successive invocations
return the values of the next parameters in their respective order.

C Language User's Guide

20-4 47 A2 60UL

20.4 va_end Macro

Synopsis

 #include <stdarg.h>

 void va_end(ap)

 va_list ap;

Description

The va_end macro modifies the ap parameter, which is initialized by the va_start
macro so that it is no longer usable. Using this macro after invocation creates an
exception at execution time.

The va_end macro returns no value.

47 A2 60UL 21-1

 21. Diagnostics

21.1 The <ASSERT_H> Header Subfile

The header file <assert_h> declares one function (assert) and refers to one macro
(NDEBUG) which must be defined in the user source for the assert function to
have any effect.

Synopsis

#include <assert_h>

assert (integer_expression)

Description

Assert is used for diagnostics in C programs. The argument is an integer
expression to be tested. If, at execution, the expression is false, (which means it
returns zero), an error message is sent in the following form:

Assertion failed: integer expression, file xyz, line nnn

This message is sent to the standard error file stderr and the exit (0) function is
called.

If the expression is true, assert returns no value.

C Language User's Guide

21-2 47 A2 60UL

❑

47 A2 60UL 22-1

 22. Signal

22.1 What is a Signal?

A signal is a classification of exceptions that occur during program execution.
These exceptions require specific treatment, and a signal is a class of all the
exceptions that require the same treatment. Each signal has its own treatment
definition.

The C ANSI STANDARD defines six signals. They are as follows:

SIGABRT Abnormal termination, as initiated by the abort
function.

SIGFPE An erroneous arithmetic operation, such as dividing by
zero or an operation resulting in overflow.

SIGILL Detection of an invalid function image, such as an
illegal instruction.

SIGINT Receipt of an interactive attention signal (break).

SIGSEGV An invalid access to storage.

SIGTERM A termination request sent to the program.

C Language User's Guide

22-2 47 A2 60UL

22.2 Description of a Signal

#include <signal_h>

void (*signal (int sig, void (*func) (int))) (int);

The signal function determines how to handle the signal number. The signal
number is called sig. The definition of this function is as follows:

sig This is the signal number. It has one of the definitions
described below.

func The standard header file SIGNAL_H can define one of
the two following values for this:
SIG_DFL:

This is the default value used in GCOS 7 system
exception handling.

SIG_IGN:

Ignore the signal.

If the standard header file does not define these values, the func parameter points to
the function to call when the sig occurs. Then, when sig is raised, the default
handling is reset for sig and the user function is called. This executes the
equivalent of signal (sig, SIG_DFL), followed by the execution of the equivalent of
(*func)(sig).

The program startup executes the equivalent of signal (sig, SIG_DFL) for all sig
values.

The signal function returns the value of func for the previous call to signal for the
specified signal sig, or a value of SIG_ERR if sig is not a known signal. In that
case errno is set to ENOSUCHSIG. There is only one function at a time linked to a
signal, because the previous one is lost and returned by the signal function. The
returned function cannot be called if the value is SIG_DFL, SIG_IGN or SIG_ERR

#include <signal_h>

int raise (int sig);

The raise function sends the signal sig to the executing program. It returns zero if
successful, or a nonzero value otherwise. The two signals SIGABRT and
SIGTERM can be raised only by this function, as ANSI STANDARD does not
require the system to raise all the signals.

Signal

47 A2 60UL 22-3

22.3 Writing a Signal Handler

A signal handler is the user function to be called when a signal occurs.

Signal handlers are normal C functions that take an argument that is the raised
signal. They do not return a value. This function performs the required action and
then either returns or calls the abort, exit, or longjmp function. If it does return, the
program resumes at the point it was interrupted. Because this function can be
called on asynchronous events, the following rules must be respected:

• This function can store a value into an object with static storage duration only if
it is of type volatile sig_atomic_t. Using an object with volatile storage implies
that the program must be compiled at a level of ANSI or GANSI.

• This function does not call any function in the standard library other than the
function signal itself, which allows the function to reset the signal. If a new
signal handler is set while still in the current signal handler, it is available only at
the end of the current signal handler.

The function may terminate by executing a return statement or by calling the abort,
exit or longjmp function. If the function terminates by a return statement, the
program resumes at the instruction after the point it was interrupted.

22.4 The Signal Handler Mechanism

The exception mechanism in GCOS 7 calls a signal handler. The function main
must be called to initialize this mechanism.

The exceptions in GCOS 7 are divided into classes and types. The GCOS 7
exceptions and the exceptions that the Run-Time package recognizes are mapped
as follows:

SIGILL : Class 9 - all types.
 Class 12 - types 3 to 6.

SIGSEGV : class 6 - types 0 and 2.
 class 10 - type 0.
 class 12 - types 0 to 2.
 class 17 - type 2.

SIGFPE : class 16 - types 0 to 2.
 class 17 - types 0 and 1.

SIGINT : Break signal in IOF environment.

Only the raise function can emit the two other signals SIGABRT and SIGTERM.

C Language User's Guide

22-4 47 A2 60UL

22.5 Limitations of the Signal Handler
GCOS 7 places the following limitations on the exception mechanism:

• The stack-frame can not be multi-segmented or greater than 64K.
• A signal is raised only for the duration of its process.

22.6 Example
The following is an example of signal definition and handling in the C language.

#include <STDIO_H>
#include <STDLIB_H>
#include <SIGNAL_H>

static volatile sig_atomic_t res_fpe;

void handler_sigfpe (int sig) {
 if (sig != SIGFPE) abort ();
 res_fpe = 1;
 if (signal (sig, handler_sigfpe) != SIG_DFL)
 abort();
}

main () {
int a;

if (signal (SIGFPE, handler_sigfpe) != SIG_DFL)
 abort ();
res_fpe = 0;
a = a / 0;
if (res_fpe) printf ("Zero divide.\n");
else printf ("SIGFPE not raised on zero divide!\n");
res_fpe = 0;
if (raise (SIGFPE)) abort ();
if (res_fpe) printf ("SIGFPE raised.\n");
else printf ("SIGFPE not raised by the raise "
 "function!\n");

if (signal (SIGFPE, SIG_IGN) != handler_sigfpe)
 abort ();
res_fpe = 0;
a = a / 0;
if (~res_fpe) printf ("Zero divide ignored.\n");
else printf ("SIGFPE not ignored on zero divide!\n");
}

The execution that results from this example is as follows:
Zero divide.
SIGFPE raised.
Zero divide ignored.

47 A2 60UL 23-1

 23. Reporting Error Conditions

23.1 The <ERRNO_H> Header Subfile

The standard header file ERRNO_H defines the variable errno and several macros
relating to the reporting of error conditions. The errno variable is set to 0 at
program startup, which is at the main function. The value of errno can be set to
nonzero by a library function, but no library function can set it to 0.

23.2 Description

The list below gives the correspondence between the error codes defined in
ERRNO_H and their meaning. Note that some of these codes may actually be not
returned by any library functions; they are in ERRNO_H only for reasons of
compatibility, for future use, or both.

EACCESS : Access denied
EBADBASE : Wrong numeric base
EBADDATE : Wrong date value
EBADF : Bad file number
EDOM : Domain error
EFAULT : Reserved
EFAULTPTR : Invalid pointer
EFILESIZE : Wrong file size
EINVAL : Invalid argument
EMFILE : Too many open files
ENOBASE : Wrong pointer
ENODEV : No such device
ENOENT : No such file
ENOEXEC : Exec format error
ENOFSETPOS : File positionning failure
ENOMEM : Not enough core

C Language User's Guide

23-2 47 A2 60UL

ENOMEMB : Element number not provided
ENOSIZE : Size not provided
ENOSR : Invalid file position
ENOSUCHSIG : Wrong signal
ERANGE : Result out of range
EXDEN : Cross-device link
E2BIG : Reserved

47 A2 60UL 24-1

 24. Localization

24.1 What is Localization?

Localization provides a set of facilities that interpret orthographical differences
between the languages of the world. These orthographical differences include
those of alphabet, collation, formatting numbers and currency, date format, and
time format.

The C language uses localization to deal with these differences. Localization
operates only at run-time execution, and the source program in the C language
remains in English. A called function determines which specific locale for the
localization to interpret. The function allows the localization to recognize language
differences.

The orthographic differences that localization interprets are as follows:

• Alphabet. The English language uses the 26 letters derived from the Latin
alphabet. Some European languages add other characters to this alphabet, while
other languages use non-Latin alphabets. Also, different languages do not
always use the same upper-case and lower-case for all characters.

• Collation. A machine sort can be successful in both ASCII and EBCDIC for
ordering strings. However, some European languages use punctuation codes for
alphabetic characters, and their ordering is not alphabetic. For example, in
Spanish, "ll" sorts as a single letter following "l".

• Number and Currency Format. Some countries use a period as the decimal point,
and a comma to separate units of thousands (groups of three digits). Other
countries use just the opposite. In the United States the period is used for the
decimal point; some European countries use a comma. Units of thousands are
separated by a comma in the United States, while a period is common elsewhere.
In printing currency amounts, the currency symbol can precede, follow, or be
embedded in the digits.

• Date and Time Format. There are several formats for presenting the date and the
time, even within the same country.

C Language User's Guide

24-2 47 A2 60UL

24.2 Run Time Package Functions and Localization

This subsection describes the effect that localization has on the Run Time Package
(RTP) functions.

Strings

The following functions provide a locale for sorting strings:

strxfrm
strcoll

Character Classification

The following functions provide a classification for characters:

isalnum isgraph ispunct tolower
isalpha islower isspace toupper
iscntrl isprint isupper

Multibyte Characters

The following functions provide basic transformations on multibyte characters:

mblen mbstowcs
mbtowc wcstombs
wctomb

Decimal Point and isspace Function

The following functions are formatted input and output functions that are affected
by the value of the decimal point and the isspace function:

scanf
printf

Time and Date

The following function provides a formatted output of the time and the date:

Strftime

Localization

47 A2 60UL 24-3

24.3 Localization Functions

24.3.1 setlocale

Synopsis
#include <LOCALE_H>

char *setlocale (int category, const char *locale);

Description

This function selects the portion of the program's locale that the category and
locale arguments specify. This function returns a pointer to a string that contains
the newly-installed localization, or a NULL pointer if the selection is not possible.

If locale is a NULL pointer, this function returns a pointer to the string that
contains the current localization associated with the specified category.

A subsequent call restores that part of the program's locale.

Valid values for category are as follows:

LC_COLLATE Affects the strcoll and strxfrm functions.

LC_CTYPE Affects all the character handling and multibyte
functions, except for the following:

isdigit, isxdigit, toupper, tolower, mblen, mbtowc,
wctomb, wcstombs, mbstowcs.

LC_MONETARY Affects the monetary formatting information that the
localeconv function returns.

LC_NUMERIC Affects the decimal-point character for the formatted
input/output functions, the string conversion functions,
and the non-monetary formatting information that the
localeconv function returns.

LC_CTIME Affects the strftime function.

LC_ALL Affects entire locale of the program.

Locale is the name of the localization to be installed. It is a character string of up
to 12 characters.

Diagnostics

This function returns a NULL pointer if the selection cannot be honored. The
locale of the program is not changed.

C Language User's Guide

24-4 47 A2 60UL

24.3.2 localeconv

Synopsis

include <LOCALE_H>

struct lconv *localeconv(void);

Description

The localeconv function returns an object that describes how to interpret numeric
formats (including monetary) of the current locale. A subsequent call can
overwrite the structure to which the returned value points.

Members that are of type char * are pointers to strings, any of which (except
decimal_point) can point to "" (a blank) to indicate that the value is either not
available in the current locale or is of length zero.

Members that are of type char with a non-negative value indicate that the value is
not available in the current locale. Any of these members can be CHAR_MAX.

The members are as follows:

char *decimal_point The decimal-point character that formats numeric
quantities that are non-monetary.

char *thousands_sep The character that separates groups of digits before the
decimal_point character in formatted numeric
quantities that are non-monetary.

char *grouping A string whose elements indicate the size of each
group of digits in formatted numeric quantities that are
non-monetary.

char *int_curr_symbol The international currency symbol that applies to the
current locale. The first three characters contain the
alphabetic international currency symbol in accordance
with those specified in ISO 4217 Codes for the
Representation of Currency and Funds. The fourth
character separates the international currency symbol
from the amount of the money.

Localization

47 A2 60UL 24-5

char *currency_symbol The local currency symbol for the current locale.

char *mon_decimal_point The decimal point that formats monetary quantities.

char *mon_thousands_sep The separator for groups of digits before the decimal-
point in formatted monetary quantities.

char *mon_grouping A string whose elements indicate the size of each
group of digits in formatted monetary quantities.

char *positive_sign The string that indicates a formatted monetary quantity
whose value is non-negative.

char *negative_sign The string that indicates a formatted monetary quantity
whose value is negative.

char int_frac_digits The number of decimal places to display after the
decimal point in an internationally-formatted monetary
quantity.

char frac_digits The number of decimal points to display after the
decimal-point in a formatted monetary quantity.

char p_cs_precedes Set to 1 when the currency_symbol precedes the
values for a formatted monetary quantity that is
nonnegative. Otherwise, set to 0.

char p_sep_by_space Set to 1 when the currency_symbol is separated by a
space from the values for a formatted monetary
quantity that is nonnegative. Otherwise, set to 0.

char n_cs_precedes Set to 1 when the currency_symbol precedes the
values for a formatted monetary quantity that is
negative.

char n_sep_by_space Set to 1 when the currency_symbol is separated by a
space from the values for a formatted monetary
quantity that is negative. Otherwise, set to 0.

char p_sign_posn Indicates the position of the positive_sign for a
formatted monetary quantity that is nonnegative.

char n_sign_posn Indicates the position of the negative_sign for a
formatted monetary quantity that is negative.

C Language User's Guide

24-6 47 A2 60UL

The elements of grouping and mon_grouping are as follows:

CHAR_MAX No further grouping is performed.

0 The remainder of the digits use the previous element.

other The number of digits that comprise the current group.
The next element determines the size of the group of
digits before the current group.

The values of p_sign_posn and n_sign_posn are as follows:

0- Parentheses surround the quantity and
currency_symbol.

1- The sign string precedes the quantity and
currency_symbol.

2- The sign string follows the quantity and
currency_symbol.

3- The sign string immediately precedes the
currency_symbol.

4- The sign string immediately follows the
currency_symbol.

Localization

47 A2 60UL 24-7

24.4 Multibyte Functions

The C language provides some basic functions to process multibyte characters.
These functions are not available by default; they require the following:

• A localization that includes multibyte characters.

• The command SEGTABi = (SHRLEVEL=2, VSEG=n). Linking requires this
command because localization uses a large segment when it loads.

• A call to the setlocale function using the user localization and the category
LC_CTYPE or LC_ALL. This call installs the multibyte environment, provided
that the multibyte mode is on.

• Three macros, defined in the standard include STDIO_H. These macros allow
the multibyte-mode to be modified. The macros are as follows:

 set_multibyte_mode();
 cancel_multibyte_mode();
 test_multibyte_mode();

Synopsis

#include <STDLIB_H>
int mblen (const char *s, size_t n);
int mbtowc (wchar_t *pwc, const char *s, size_t n);
int wctomb (char *s, wchar_t wchar);
size_t mbstowcs (wchar_t *pwcs, const char *s, size_t n);
size_t wcstombs (char *s, const wchar_t *pwcs, size_t n);

Description

mblen This function returns the number of bytes comprising
the multibyte character to which s points, or it returns -
1 if n or fewer number of bytes do not form a valid
multibyte character.

mbtowc This function converts the multibyte character to
which s point into a value of type wchar_t and stores it
in the object pointed to by pwc. No more than n
number of bytes of the array to which s points are
examined. This function returns the number of bytes
comprising the multibyte character to which s points,
or it returns -1 if the n or fewer number of bytes do not
form a valid multibyte character.

C Language User's Guide

24-8 47 A2 60UL

wctomb This function converts the code whose value is wchar
into a multibyte character and store it in the object to
which s points. The most number of characters stored
is the value of MB_CUR_MAX. It returns the number
of bytes that comprise the multibyte character
corresponding to the value of wchar, or it returns -1 if
the value does not correspond to a valid multibyte
character.

mbstowcs This function converts a sequence of multibyte
characters from the array to which s points into a
sequence of corresponding codes. It stores not more
than n number of codes into the array to which pwcs
points, and does not examine multibyte characters that
follow a null character (which is converted into a code
with value zero). This function returns the number of
codes stored into the array to which pwcs points. This
does not include any existing terminating zero code or
(size_t)-1 if an invalid multibyte character is
encountered.

wcstombs This function converts a sequence of codes from the
array to which pwcs points into a sequence of
multibyte characters. It then stores these multibyte
characters into the array to which s points, stopping if
a multibyte character exceeds the limit of n total bytes
or if a null character is stored. It returns the number of
bytes stored into the array to which s points. This does
not include any existing terminating null character or
(size_t)-1 if a code that does not correspond to a valid
multibyte character is encountered.

Localization

47 A2 60UL 24-9

24.5 Default Localization

Valid values for the locale parameter of the setlocale function are as follows:

"C" The minimal environment

"" The native environment

At program startup, the C locale is default. It is the minimal C environment, as
follows:

Collating sequence EBCDIC collating sequence.

Character conversion type See the section describing general I/O considerations.

Monetary and Numeric Format
The '.' symbol is the decimal_point value. No other
format information is available.

Date and Time Format The date and time format is:

Sun Sep 16, 1973
14:46:03

The 12-hour clock format is:

AM and PM

The native environment provides a national localization, which must be specified.
The next paragraph describes how to add this localization.

C Language User's Guide

24-10 47 A2 60UL

24.6 Introducing New Localization

Many localizations can be introduced. This section describes the format for
LC_MONETARY, LC_NUMERIC or LC_TIME category. There is not yet any
standard description of a localization, so other localization for the LC_COLLATE
and LC_CTYPE categories has yet to be added.

For LC_MONETARY and LC_NUMERIC, the locale must be named with no more
than 12 characters. Files must be added in the SYS.C.INCLUDE system file with
these names:

TABLE_locale_NUMERIC for LC_NUMERIC
TABLE_locale_MONETARY for LC_MONETARY
TABLE_locale_TIME for LC_CTIME

For native localization (the "" locale), the tables are named as if the locale were
"_". Each category uses a different format for the information in these files.

The format for the information in the LC_MONETARY category is as follows:

<int_curr_symbol>
<currency_symbol>
<mon_decimal_point>
<mon_thousand_sep>
<mon_grouping>
<positive_sign>
<negative_sign>
<frac_digits>
<p_cs_precedes>
<p_sep_by_space>
<n_cs_precedes>
<n_sep_by_space>
<p_sign_posn>
<n_sign_posn>

The format for the information in the LC_NUMERIC category is as follows:

<decimal_point>
<thousands_sep>
<grouping>

Localization

47 A2 60UL 24-11

The format for the LC_CTIME category is as follows:

<abbreviated weekday names>
<full weekday names>
<abbreviated month names>
<full month names>
<appropriate date representation>
<appropriate time representation>
PM=<equivalent of pm(post-meridiem) or blank character>
AM=<equivalent of am(ante-meridian) or blank character>

A colon separates each weekday and month, and a period follows the last entry.

The date and time representation have the same format as for the strftime
argument, except that formats %c, %x and %X are not allowed.
Each piece of information is contained in one and only one record.

LOCALIZATION EXAMPLE 1:

This example shows localization for France. The format is for numbers, money,
date, and time. The number amount, money amount, time, and date are as follows:

12.456,3456
F 12.456,50
18 Août 1987
16:54:03

• For the number format, the resulting file is:
 TABLE_FRANCE_NUMERIC :
 ,
 .
 \3

C Language User's Guide

24-12 47 A2 60UL

• For the currency format, the file is:
 TABLE_FRANCE_MONETARY :
 FFR
 F
 ,
 .
 \3

 -
 2
 2
 0
 1
 0
 1
 1
 1

• For the date and time format, the resulting file is:
 TABLE_FRANCE_TIME :
 Dim:Lun:Mar:Mer:Jeu:Ven:Sam.
 Dimanche:Lundi:Mardi:Mercredi:Jeudi:Vendredi:Samedi.
 Jan:Fev:Mars:Avr:Mai:Juin:Juil:Août:Sep:Oct:Nov:Dec.
 Janvier:Fevrier:Mars:Avril:Mai:Juin:Juillet:Août:Septembre:
 Octobre:Novembre:Decembre.
 %d %B %Y
 %H:%M:%S
 PM=PM
 AM=AM

❑

Localization

47 A2 60UL 24-13

LOCALIZATION EXAMPLE 2:

This example describes how to use the new localization made in the previous
example. This is after it is stored in the SYS.C.INCLUDE library.

#include <stdio_h>
#include <locale_h>
#include <time_h>
#define LG_RES 100
main () {
time_t *today;
struct tm *loc_time;
char fmt_time[LG_RES];

 if (time(today) == -1) {
 printf("Calendar time not available.\n");
 exit (10000);
 }
 loc_time = localtime (today);

 if (strftime(fmt_time, LG_RES,
 "Localization C\n"
 " Date : %x\n"
 " Time : %X\n",
 loc_time))
 printf ("%s",fmt_time);
 if (setlocale (LC_TIME,"FRANCE") == NULL) {
 printf("Localization FRANCE doesn't exist"
 " for category LC_TIME\n");
 exit (10000);
 }
 if (strftime(fmt_time, LG_RES,
 "Localization FRANCE\n"
 " Date : %x\n"
 " Time : %X\n",
 loc_time))
 printf ("%s",fmt_time);
}
❑

C Language User's Guide

24-14 47 A2 60UL

❑

47 A2 60UL 25-1

 25. Standard Definition Header File

25.1 The <STDDEF_H> Header Subfile

The STDDEF_H standard header file works with the definitions of three
previously-defined C types, the NULL macro, and the offsetof macro.

25.2 The Previously-defined C Types

The C types that the STDDEF_H header file works with are:

ptrdiff_t The signed integral type of the result of subtracting
two pointers.

size_t The unsigned integral type of the result of the sizeof
operator.

wchar_t An integral type whose range of values can represent
distinct codes for all members of the largest extended
character set specified among the supported locales.
For more information, see the chapter that describes
localization.

25.3 The NULL Macro

The NULL macro expands to the value 0. It uses the offsetof macro.

C Language User's Guide

25-2 47 A2 60UL

25.4 The OFFSETOF Macro

The offsetof macro is as follows:

offsetof (type, member-designator)

This offset value then expands to an integral constant expression that has type
size_t, whose value represents the offset measured in bytes. This measurement is
from the beginning of its structure to the structure member. The member-
designator designates the beginning of the structure, and the type designates the
structure member.

The member-designator is as follows:

static type t;

From this, the following expression evaluates an address constant.

&(t.member-designator)

If member-designator is a bit-field, the behavior is undefined.

47 A2 60UL A-1

 A. File and Volume Syntax

A.1 Syntax of a File Literal

 file-literal ::= local-file
 file-literal ::= remote-file

 local-file ::= cataloged-file
 local-file ::= temporary-file
 local-file ::= uncataloged-file

 cataloged_file ::= path-name[/g-suffix][..subfile]
 [$CAT[i]]

 {:md[/md]. ..:dvc }
 temporary-file ::= path-name[..subfile] [{$RES }] $TEMPRY
 {$VOLSET : [name6] }

 uncataloged-file ::= path-name[..subfile]
 [:md[/md]...:dvc][suffix1]
 uncataloged-file ::= DUMMY
 uncataloged-file ::= SYS.OUT
 uncataloged-file ::= *:md[/md]...:dvc[suffix2]
 uncataloged-file ::= [path-name]:[md]:TN[$UNCAT]

 suffix1 ::= $RES
 suffix1 ::= suffix2
 suffix1 ::= suffix3

 suffix2 ::= $MFT
 suffix2 ::= $MFTi
 suffix2 ::= $MFT+
 suffix2 ::= $UNCAT

 suffix3 ::= $NONE
 suffix3 ::= $NSTD

The V7 release does not support the remote-file syntax ($site-name:local-file).

C Language User's Guide

A-2 47 A2 60UL

A.2 Syntax of a Volume Literal

volume-literal ::= { md[/md]...:dvc[suffix3] | $VOLSET [:name6] }

For more detail about file or volume literal, refer to the IOF Terminal User's
Reference Manual.

47 A2 60UL i-1

Index

#
#<newline 6-5
#define 10-2
#elif 6-5
#if 6-5
#include command 7-12
#line command 7-12
#pragma 8-5
#undef 10-2

_
_tolower 15-4
_tolower macro 15-4
_toupper 15-4
_toupper macro 15-4

A
abort function 14-7
abs function 14-11, 18-2
acos function 18-12
ARGC parameter 5-4
ARGV parameter 5-4
arrays 7-11

size 7-12
ASCII 6-2
asin function 18-9
ASSERT_H file 21-1
astime function 19-5
atan function 18-15
atan2 function 18-16

B
batch

debugging 5-4
execution 5-2
JCL 1-1
LINKER JCL statement 4-2

behavior
implementation defined 7-11
pointer specific 7-10

bit fields 6-2, 7-12
buffer management functions 12-29, 16-7
BUILTIN parameter 3-23

C
calloc function 14-1
cancel_record_mode function 12-3
cancel_silent_mode function 12-4
cancel_ssf_fmt function 12-4
ceil function 18-5
characters

coded 6-2, 7-11
EBCDIC 15-1
handling 13-1
identifiers 7-11
line_record 11-6
signed 6-2, 7-11
stream 11-6

CHECK parameter 3-11, 3-25
CLANG GCL command syntax 3-15
clearerr macro function 12-3
clock function 19-1
close function 12-26

C Language User's Guide

i-2 47 A2 60UL

cmpbuf function 16-7
cmpstr function 16-1
COBOL 4-19
CODE parameter 3-9, 3-24
COMFILE parameter 4-6
COMMAND parameter 4-6
commands

CLANG 3-15
ED 2-1
ENTRY 4-8
FILE 4-9
LINKER 4-8
preprocessor 6-5
SEGTABi 4-9
STACK3 4-8

compiling
example listing 5-11
example session 2-1
examples 3-26
interactive 3-27
messages 3-29
restrictions 3-43
separately 4-16
separately, error message 4-18

Compiling
TEMP.CULIB$TEMPRY 2-1

conversion functions 13-1, 14-3
cos function 18-11
cosh function 18-13
cpybuf function 16-7
cpystr function 16-1
creat function 12-26
cross reference listing 3-49
CTYPE_H file 15-1
CU (Compile Unit) 2-1
CULIB parameter 3-7, 3-20

D
data

allocation 6-3, 7-11
ASCII 6-2
basic size types 7-10
correspondence 4-18
EBCDIC 6-2
external 6-1

format 11-4
hexaliteral values 6-1
identifiers 6-1
operandi with 6-4
segmentation 7-11
signed characters 6-2
type int 6-1, 7-12
types 6-1

data maps 3-47
DEBUG parameter 3-11, 3-21
debugging

batch 5-2
GCL interactive 5-3

diagnostics 21-1
direct access files 11-16
directives

packaging, export 8-6
packaging, import 8-7

DPS7 environment 1-1

E
EBCDIC 6-2, 7-11, 15-1, 15-2
ecvt function 14-3
ED command 2-1
ENTRY

command 4-8
parameter 4-6

environment functions 14-6
error

execution time 5-6
load module 5-8
message, separate compiling 4-18
messages, compiler 3-29
messages, linker 4-12
messages, run-time 5-9

etof function 14-4
etoi function 14-4
etol function 14-4
evaluation order side effects 6-4
example

include cross reference listing 3-51
examples

compilation listing 5-11
cross reference listing 3-50
debugging 5-11

Index

47 A2 60UL i-3

execution 5-11
interactive LINKER 4-15
line location map 3-48
LINKER listing 4-13
object code 3-52
packaging 8-9
segment map 3-48
separated compiling 4-16
summary page 3-52
SYMDEF 3-47
SYMREF 3-47
warning message 3-52

execution
batch 5-2
GCL interactive 5-3

exit function 14-6
exp function 18-18
EXPLIB parameter 3-13, 3-23
EXPLIST parameter 3-7, 3-22
EXPONLY parameter 3-14, 3-24
external

data 6-1
interface 5-4

F
fabs function 18-3
fclose function 12-10
fcvt function 14-3
feof macro function 12-3
ferror macro function 12-3
fflush function 12-11
fgetc function 12-13
fgetpos function 12-22
fgets function 12-12
FILE command 4-9
file processing 12-1
file syntax A-1
fileno macro function 12-3
files

direct access 11-16
GCOS 7 and C 11-4
header, manipulation 6-5
include, ASSERT_H file 21-1
include, CTYPE_H file 15-1
include, MATH_H file 18-1

include, SETJMP_H file 17-1
include, STARG_H file 20-1
include, STDIO_H file 12-1
include, STRING_H file 16-1
include, TIME_H file 19-1
non standard 11-11
SSF and SARF format 11-4
standard 11-11
static assignment of C 11-14
subfiles for run-time functions 10-1

fill function 16-7
floor function 18-4
fmod function 18-6
fopen function 12-5
formatting functions 13-1
formatting I/O 13-1
FORTRAN 4-19
fprintf function 13-1
fputc function 12-17
fputs function 12-16
fread function 12-19
free function 14-1
freopen function 12-8
fscanf function 13-6
FSE (Full Screen Editor) 2-5
fseek function 12-20
fsetpos function 12-23
fsetprompt function 12-23
ftell function 12-21
functions

abs 14-11, 18-2
acos 18-12
asctime 19-5
asin 18-9
atan 18-15
atan2 18-16
buffer management 16-7
ceil 18-5
close 12-26
conversion 13-1, 14-3
cos 18-11
cosh 18-13
creat 12-26
environment 14-6
exp 18-18
fabs 18-3

C Language User's Guide

i-4 47 A2 60UL

fclose 12-10
fflush 12-11
fgetc 12-13
fgetpos 12-22
fgets 12-12
floor 18-4
fmod 18-6
fopen 12-5
fputc 12-17
fputs 12-16
fread 12-19
freopen 12-8
fseek 12-20
fsetpos 12-23
fsetrompt 12-23
ftell 12-21
fwrite 12-19
getc 12-13
getchar 12-13
gets 12-12
getw 12-13
h_reopen 12-9
ldexp 18-23
log 18-19
log10 18-21
lseek 12-28
macro 12-2, 12-24
mathematical 18-1
memory allocation 14-1
modf 18-7
open 12-25
pow 18-22
putc 12-17
putchar 12-17
puts 12-16
putw 12-17
random number generator 14-9
read 12-27
rewind 12-22
run-time 10-1
setbuf 12-30
setvbuf 12-29
sin 18-8
sinh 18-10
sqrt 18-24
string handling 16-1

tan 18-14
tanh 18-17
time handling 19-3
ungetc 12-15

functions, fprint 13-5
functions, fprintf 13-1
functions, fscanf 13-6
functions, scanf 13-9
functions, sprintf 13-5
functions, sscanf 13-10
fwrite function 12-19

G
GCL (GCOS 7 command language) 1-1
GCL mode 4-15
gcvt function 14-3
getc function 12-13
getchar function 12-13
gets function 12-12
getw function 12-13
GPL (GCOS Programming Language) 4-19

H
h_reopen function 12-9

I
identifiers 7-11
ILN parameter 3-11
INCLUDE parameter 3-21
index function 16-1
INFILE parameter 3-4, 3-24
INLIB parameter 3-4, 3-20, 4-4
INLIBn parameter 3-4
INLIBZ parameter 3-6
INLINE parameter 3-14
INLINER parameter 3-24
interactive

building a C program 2-1
compilation 3-15, 3-27
debugging 5-4
GCL 1-1
GCL execution 5-3

Index

47 A2 60UL i-5

LINKER GCL statement 4-15
inter-language calling 4-18, 7-13
internal data 6-1
internal segment number 4-1
isalnum 15-2
isalnum macro 15-2
isalpha 15-2
iscntrl 15-3
iscntrl macro 15-3
isgraph 15-3
isgraph macro 15-3
islower 15-2
isprint 15-2
ispunc 15-3
ispunct macro 15-3
isspace 15-2
isupper 15-2
isupper macro 15-2
isxdigit 15-2
isxdigit macro 15-2

J
JCL (job control language) 1-1

K
K11 parameter 3-13
keywords

description 3-20
K11 3-13
package 8-11
TEMP 4-5

L
ldexp function 18-23
lenstr function 16-1
LEVEL parameter 3-10, 3-22
LFATAL parameter 3-10, 3-25
LIBMAINT 2-1
line location map 3-48
LINKER segment number 4-1
linking

error messages 4-12

inter-language calling 4-18
linkage report 4-12
LINKER commands 4-8
LINKER JCL statement 4-2, 4-15
LINKER utility 4-1
output 4-10
sample compilation session 2-5
segment list output 4-11

LIST parameter 3-7, 3-21
LNUMBER parameter 3-25
load-module-name parameter 4-3
LOBSERV parameter 3-10
log function 18-19
log10 function 18-21
lseek function 12-28

M
macro

EBCDIC 15-2
functions 12-2
stream status 12-2

malloc function 14-1
MAP parameter 3-8, 3-21, 3-47
MATH_H file 18-1
mathematical package 18-1
memory allocation functions 14-1
memory management 16-9
messages

compiler error 3-29
run-time error 5-9
warning 3-52

modf function 18-7
MODSTRNG parameter 3-14, 3-24

N
NCHECK parameter 3-11
NEXPLIST parameter 3-7
NLIST parameter 3-7
NMAP parameter 3-8, 3-47
NOBJ parameter 3-10
NOBSERV parameter 3-9
non standard files 11-11, 12-25
notbuf function 16-7

C Language User's Guide

i-6 47 A2 60UL

notstr function 16-1
NROUND parameter 3-9
NWARN parameter 3-9
NXREF parameter 3-8

O
OBJ parameter 3-10, 3-24
object code 3-52
OBSERV parameter 3-22
open function 12-25
operandi 6-4
optimization

anticipation 9-2
coherence rule 9-3
compromised time and storage rule 9-3
constant folding, copy propagation 9-5
deleting code 9-7
deleting global redundancy 9-6
deleting partial redundancy 9-9
efficiency rule 9-3
global 9-2
local 9-2
parameter 3-12

optimization levels
0 through 4 9-4
extended linear sequence 9-2
instruction source optimization 9-2

OPTIMIZE parameter 3-12, 3-21, 9-4
OUTLIB parameter 4-5

P
PACKAGE parameter 3-12, 3-21
packaging

#pragma 8-5
object visibility 8-12
parameter 3-12
restrictions 8-5

parameters
COMFILE 4-6
COMMAND 4-6
constraints 3-26
ENTRY 4-6
INLIB 4-4

load-module-name 4-3
OUTLIB 4-5
passing between languages 4-20
PRTFILE 4-7
PRTLIB 4-7

PASCAL 4-19
pointers

handling 6-4
specific behavior 7-10

pow function 18-22
prefix function 16-1
preprocessor commands 6-5
printf function 13-5
programming portability and considerations

6-1
PRTFILE parameter 3-11, 3-24, 4-7
PRTLIB parameter 3-11, 3-23, 4-7
PSEGMAX parameter 3-13, 3-23
putc function 12-17
putchar function 12-17
puts function 12-16
putw function 12-17

R
rand function 14-9
random number generator functions 14-9
read function 12-27
realloc function 14-1
registers 7-12
rewind function 12-22
ROUND parameter 3-9, 3-22
RTP (Run Time Package) 5-8
run-time functions 10-1

S
scanf function 13-9
scnbuf function 16-7
scnstr function 16-1
segment list 4-11
segment map 3-48
segment number

internal 4-1
LINKER 4-1

Index

47 A2 60UL i-7

SEGTABi command 4-9
set_record_mode function 12-3
set_silent_mode function 12-4
set_ssf_format function 12-4
setbuf function 12-30
SETJMP_H file 17-1
setvbuf function 12-29
sexit function 14-6
side effects, evaluation order 6-4
SILENT parameter 3-22
sin function 18-8
sinh function 18-10
SOURCE parameter 3-4, 3-20

see also star convention 3-4
sprintf function 13-5
sqrt function 18-24
srand function 14-9
sscanf function 13-10
STACK3 command 4-8
standard files 11-11, 12-5
star convention 3-6
STARG_H file 20-1
static assignment of C files 11-14
STDIO_H file 12-1
step execution 5-1
strchr function 16-1
strcmp function 16-1
strcoll function 16-1
strcpy function 16-1
stream 12-1
strerror function 16-1
string handling functions 16-1
STRING_H file 16-1
strlen function 16-1
strncat function 16-1
strncmp function 16-1
strncpy function 16-1
strrchr function 16-1
strtcat function 16-1
strtok function 16-1
structures 7-12
strxfrm function 16-1
subbuf function 16-7
substr function 16-1
summary page 3-52
SYMDEF (Symbolic Definition) 3-47, 4-16

SYMREF (Symbolic Reference) 3-47, 4-16
syntax

file literal A-1
SYS.C.INCLUDE system library 10-1
system commands, example session 2-1
system primitives

high level 12-5
low-level 12-25

T
tan function 18-14
tanh function 18-17
TEMP.CULIB$TEMPRY 2-1
terminal I/O

line buffered 11-13
primitives 11-20

text editor 2-2
time handling function 19-3
TIME_H file 19-1
time-retrieval function 19-1
tolower 15-4
tolower macro 15-4
toupper 15-4
toupper macro 15-4

U
ungetc function 12-15
unions 7-12
utilities

LINKER 4-1

W
WARN parameter 3-22

X
XLN parameter 3-11
XREF parameter 3-8, 3-22

C Language User's Guide

i-8 47 A2 60UL

Technical publication remarks form

Title : DPS7000/XTA NOVASCALE 7000 C Language User's Guide Languages: C

Reference Nº : 47 A2 60UL 06 Date: February 2005

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please include your complete mailing address below.

NAME : Date :

COMPANY :

ADDRESS :

Please give this technical publication remarks form to your BULL representative or mail to:

Bull - Documentation Dept.

1 Rue de Provence
BP 208
38432 ECHIROLLES CEDEX
FRANCE
info@frec.bull.fr

Technical publications ordering form

To order additional publications, please fill in a copy of this form and send it via mail to:

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Phone: +33 (0) 2 41 73 72 66
FAX: +33 (0) 2 41 73 70 66
E-Mail: srv.Duplicopy@bull.net

CEDOC Reference # Designation Qty

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

[_ _] : The latest revision will be provided if no revision number is given.

NAME: Date:

COMPANY:

ADDRESS:

PHONE: FAX:

E-MAIL:

For Bull Subsidiaries:

Identification:

For Bull Affiliated Customers:

Customer Code:

For Bull Internal Customers:

Budgetary Section:

For Others: Please ask your Bull representative.

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

47 A2 60UL 06
REFERENCE

	Bull DPS 7000 C Language User's Guide - 47 A2 60UL REV06
	Preface
	Table of Contents
	Table of Graphics
	1. Introduction
	1.1 The C Language
	1.2 The DPS7 Environment
	1.2.1 Batch JCL
	1.2.2 Interactive GCL

	2. Getting Started
	2.1 A C Compiler Session
	2.1.1 Enter LIBMAINT
	2.1.2 Enter the Text Editor
	2.1.3 Write the Source Text
	2.1.4 Store the Work Buffer
	2.1.5 Return to System Level
	2.1.6 Compile
	2.1.7 Examine the Listing
	2.1.8 Scan the Error Messages
	2.1.9 Link
	2.1.10 Execute with Output to User Terminal
	2.1.11 Re-execute with Output to a Subfile
	2.1.12 Check Results

	3. Compilation
	3.1 Batch Compilation
	3.1.1 Syntax of C Statement in JCL
	3.1.2 Description of Parameters

	3.2 Interactive Compilation
	3.2.1 Syntax of "CLANG" Command in GCL
	3.2.2 Description of Keywords
	3.2.3 Constraints
	3.2.4 Examples
	3.2.5 Interactive Compilation by Menu

	3.3 Searching for Include Files
	3.4 Compiler Messages in the JOR
	3.5 Compiler Limitations and Restrictions
	3.5.1 Some Compiler Restrictions

	3.6 Compiler Listing
	3.6.1 Source and Error Listing
	3.6.2 Data Maps
	3.6.3 Segment Map
	3.6.4 Line Location Map
	3.6.5 Cross Reference Listings
	3.6.6 Summary Page

	4. Linking
	4.1 General
	4.1.1 Segment Numbers

	4.2 LINKER JCL Statement
	4.2.1 Load-Module-Name Parameter
	4.2.2 INLIB Parameter
	4.2.3 OUTLIB Parameter
	4.2.4 COMMAND and COMFILE Parameters
	4.2.5 ENTRY Parameter
	4.2.6 PRTFILE Parameter
	4.2.7 PRTLIB Parameter
	4.2.8 Linker Commands
	4.2.9 Linker Output

	4.3 Interactive Operation in GCL Mode
	4.4 Separate Compilation
	4.4.1 General Information
	4.4.2 Implementation
	4.4.3 Inter-Language Calling

	4.5 Multitasking
	4.5.1 What is Multitasking?
	4.5.2 Building a Multitask Application
	4.5.3 Differences between GCOS 7 and Unix
	4.5.4 Run time Functions and Primitives
	4.5.5 LINKER Commands
	4.5.6 Restrictions
	4.5.7 Example of a Multitask Program

	5. Execution and Debugging
	5.1 Step Execution
	5.2 Execution in Batch Mode
	5.3 Interactive Execution in GCL Mode
	5.4 External Interface
	5.5 Batch or Interactive Debugging
	5.6 Errors at Execution Time
	5.6.1 Errors Inside a Program
	5.6.2 Errors in Load Module at Execution Time

	5.7 Run-Time Errors
	5.8 An Example of Execution and Debugging

	6. Programming Considerations
	6.1 Portability
	6.1.1 Lexical and Syntactical Features
	6.1.2 Data Representation
	6.1.3 Data Allocation
	6.1.4 Statements and Expressions
	6.1.5 Pointer Handling
	6.1.6 Library

	6.2 The GCOS 7 Preprocessor
	6.2.1 #<newline>
	6.2.2 defined <identifier>
	6.2.3 #elif <constant-expression><new line>
	6.2.4 #error
	6.2.5 Predefined Macros
	6.2.6 #line
	6.2.7 Macro Definition and Expansion
	6.2.8 Stringing and Merging Tokens (# and ## Operators)
	6.2.9 Preprocessor Output

	6.3 Pre ANSI and ANSI Compilers
	6.3.1 Expanding Macro Parameters in Strings
	6.3.2 Trigraph Sequences
	6.3.3 Octal Digits
	6.3.4 Long Float Type
	6.3.5 Constant Strings
	6.3.6 Separating Assignment Operators
	6.3.7 Empty Declarations
	6.3.8 Linkage
	6.3.9 Conversions
	6.3.10 Sizeof
	6.3.11 Bit-Fields
	6.3.12 Pointers to Functions
	6.3.13 Constant Expressions
	6.3.14 Preprocessor Features

	6.4 Performance Considerations

	7. GCOS 7 Specific Considerations
	7.1 Size and Limits
	7.2 Implementation-defined Features
	7.2.1 Translation
	7.2.2 Environment
	7.2.3 Identifiers
	7.2.4 Characters
	7.2.5 Integers
	7.2.6 Floating Point:Internal Representation
	7.2.7 Arrays and Pointers
	7.2.8 Registers
	7.2.9 Structures, Unions, Enumerations, and Bit-Fields
	7.2.10 Qualifiers
	7.2.11 Declarators and Statements
	7.2.12 Preprocessing Directives
	7.2.13 Library Functions

	7.3 Size of Data Basic Types
	7.4 Pointer Specific Behavior
	7.5 Allocation and Segmentation
	7.6 Implementation-defined Behavior
	7.6.1 Identifier Spelling
	7.6.2 Characters
	7.6.3 Arrays and Pointers
	7.6.4 Registers
	7.6.5 Structures, Unions and Bit Fields
	7.6.6 Line Command
	7.6.7 #include Command

	7.7 Calling from another Language

	8. Building Packages
	8.1 What is a C/GCOS 7 Package?
	8.2 Why Package an Application?
	8.2.1 Encapsulation
	8.2.2 Performance

	8.3 Pragmas
	8.3.1 GCOS 7 Pragmas
	8.3.2 PACKAGE and Related Pragma
	8.3.3 ALIGN Pragma
	8.3.4 BYREF Pragma
	8.3.5 INLINE and OUTLINE Pragma

	8.4 What Comprises a Package
	8.4.1 The Aim of the #pragma PACKAGE
	8.4.2 The EXPORT Directive
	8.4.3 The IMPORT Directive
	8.4.4 Building the Package
	8.4.5 The AUTOPACKAGE Directive

	8.5 One-file Packages
	8.6 Summary
	8.6.1 Pragma Syntax
	8.6.2 Object Visibility
	8.6.3 Application Packaging Steps

	9. Optimizing with C
	9.1 Introduction
	9.1.1 The Goals of the Optimizer
	9.1.2 The Local Optimizer
	9.1.3 The Global Optimizer
	9.1.4 Optimization Levels

	9.2 Global Optimizer Functions
	9.2.1 Constant Folding and Copy Propagation
	9.2.2 Deleting Globally Redundant Expressions
	9.2.3 Deleting Code
	9.2.4 Anticipation and Temporization
	9.2.5 Deleting Partially Redundant Expressions
	9.2.6 Removing Loop Invariants
	9.2.7 Strength Reduction and Processing Loop Control Variables
	9.2.8 Loop Unrolling
	9.2.9 Procedure Merging

	9.3 Using the Global Optimizer

	10. Run-Time Environment
	10.1 RUN-TIME Header Subfiles
	10.2 Accessing Run-time Functions
	10.3 Run Time Initialization
	10.4 Portability Levels of the Run-time Functions
	10.4.1 The ANSI Level Functions
	10.4.2 XOPEN Level Functions
	10.4.3 GCOS 7 Level Functions

	11. General I/O Considerations
	11.1 C Files and GCOS 7 Files
	11.1.1 C Files
	11.1.2 GCOS 7 Files

	11.2 Stream Types, Data Formats, and Modes
	11.2.1 Text and Binary Streams
	11.2.2 SSF and SARF Formats
	11.2.3 Line-Record and Stream-Mode Files
	11.2.4 Buffering
	11.2.5 Default Positioning on GCOS 7

	11.3 Standard Files
	11.4 Non-standard Files
	11.5 Terminal I/O
	11.6 Static Assignment of C Files
	11.7 Direct Access
	11.8 GCOS 7 Specific Features
	11.8.1 Extensions of the Open Mode
	11.8.2 Access and Share Extensions

	12. File Processing
	12.1 stdio_h Interface
	12.2 Stream Status Macros
	12.3 Standard File Processing (High-Level Primitives)
	12.3.1 fopen
	12.3.2 freopen
	12.3.3 h_reopen
	12.3.4 fclose
	12.3.5 fflush
	12.3.6 gets, fgets
	12.3.7 getc, getchar, fgetc, getw
	12.3.8 ungetc
	12.3.9 puts, fputs
	12.3.10 putc, putchar, fputc, putw
	12.3.11 fread, fwrite
	12.3.12 fseek
	12.3.13 ftell
	12.3.14 rewind
	12.3.15 fgetpos
	12.3.16 fsetpos
	12.3.17 setprompt

	12.4 getc and putc Macros
	12.5 Non Standard File Processing (Low-level Primitives)
	12.5.1 open
	12.5.2 creat
	12.5.3 close
	12.5.4 read
	12.5.5 write
	12.5.6 lseek

	12.6 Buffering
	12.6.1 setvbuf
	12.6.2 setbuf

	12.7 Global File Operations
	12.7.1 remove
	12.7.2 rename
	12.7.3 tmpfile
	12.7.4 tmpnam

	13. Formatting I/O
	13.1 fprintf
	13.2 printf
	13.3 sprintf
	13.4 fscanf
	13.5 scanf
	13.6 sscanf
	13.7 vfprintf, vprintf, AND vscanf

	14. The Use of STDLIB_H
	14.1 The <STDLIB_H> Header Subfile
	14.2 Memory Allocation
	14.3 Conversions
	14.3.1 ecvt, fcvt, gcvt
	14.3.2 etof, etoi, etol
	14.3.3 strtod, strtol, strtoul

	14.4 The Environment Functions
	14.4.1 exit, sexit
	14.4.2 atexit
	14.4.3 abort
	14.4.4 getenv, system

	14.5 Random Number Generator
	14.5.1 rand
	14.5.2 srand

	14.6 bsearch, qsort
	14.7 abs, div, labs

	15. Character Handling
	15.1 The <CTYPE_H> Header Subfile
	15.2 EBCDIC Character Subsets
	15.3 Converting to Lower and Upper Case

	16. The Use of STRING_H
	16.1 The <STRING_H> Header Subfile
	16.2 String Handling
	16.3 Buffer Management
	16.4 Memory Management
	16.4.1 The memcpy Function
	16.4.2 The memset Function
	16.4.3 The memcmp Function
	16.4.4 The memchr Function
	16.4.5 The memmove Function

	17. Non-Local Jump
	17.1 The <SETJMP_H> Header Subfile
	17.2 setjmp, longjmp

	18. Mathematical Package
	18.1 The <MATH_H> Header Subfile
	18.2 abs
	18.3 fabs
	18.4 floor
	18.5 ceil
	18.6 fmod
	18.7 modf
	18.8 sin
	18.9 asin
	18.10 sinh
	18.11 cos
	18.12 acos
	18.13 cosh
	18.14 tan
	18.15 atan
	18.16 atan2
	18.17 tanh
	18.18 exp
	18.19 log
	18.20 log2, frexp
	18.21 log10
	18.22 pow
	18.23 ldexp
	18.24 sqrt

	19. Time and Date
	19.1 The <TIME_H> Header Subfile
	19.2 Time Retrieval
	19.3 Time Handling
	19.4 Time Edition

	20. STDARG Functions
	20.1 The <STDARG_H> Header Subfile
	20.2 va_start Macro
	20.3 va_arg Macro
	20.4 va_end Macro

	21. Diagnostics
	21.1 The <ASSERT_H> Header Subfile

	22. Signal
	22.1 What is a Signal?
	22.2 Description of a Signal
	22.3 Writing a Signal Handler
	22.4 The Signal Handler Mechanism
	22.5 Limitations of the Signal Handler
	22.6 Example

	23. Reporting Error Conditions
	23.1 The <ERRNO_H> Header Subfile
	23.2 Description

	24. Localization
	24.1 What is Localization?
	24.2 Run Time Package Functions and Localization
	24.3 Localization Functions
	24.3.1 setlocale
	24.3.2 localeconv

	24.4 Multibyte Functions
	24.5 Default Localization
	24.6 Introducing New Localization

	25. Standard Definition Header File
	25.1 The <STDDEF_H> Header Subfile
	25.2 The Previously-defined C Types
	25.3 The NULL Macro
	25.4 The OFFSETOF Macro

	A. File and Volume Syntax
	A.1 Syntax of a File Literal
	A.2 Syntax of a Volume Literal

	Index

