

HPC BAS4

User's Guide

H
PC

REFERENCE
86 A2 29ER 07

HPC

HPC BAS4
User's Guide

Hardware and Software
July 2007

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

REFERENCE
86 A2 29ER 07

The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not limited
to, copying, distributing, modifying, and making derivative works.

Copyright Bull SAS 2006, 2007

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of this
book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

Intel® and Itanium® are registered trademarks of Intel Corporation.

Windows® and Microsoft® software are registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark in the United States of America and other countries licensed exclusively through the
Open Group.

Linux® is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

 Preface i

Preface

Scope and Objectives

The purpose of this guide is to describe the tools and libraries available as part of the Bull
Advanced Server (BAS) delivery which allow the development and testing of application
programs on the Bull High Performance Computing (HPC) clusters. In addition various
open source and proprietary tools are described.

Intended Readers

This guide is for users and developers of HPC applications.

Prerequisites

The installation of all hardware and software components of the HPC must have been
completed. The HPC administrator must have performed basic administration tasks
(creation of users, definition of the file systems, network configuration, etc).

See the Bull HPC BAS4 Administrator’s Guide (86 A2 30ER) for more details.

Structure

This guide is organized as follows:

Chapter 1. Introduction to the HPC Environment.
Provides a general introduction to Bull’s HPC software and hardware
environments.

Two types of programming libraries are used when developing programs for the HPC
environment: Parallel libraries and Mathematical libraries. These are described in the
chapters 2 and 3:

Chapter 2. Parallel Libraries.
Describes the Message Passing Interface (MPI) libraries to be used
when parallel programming.

Chapter 3. Scientific Libraries.
Describes the scientific libraries and scientific functions delivered with
the Bull HPC BAS delivery and how these should be invoked. Some of
Intel’s proprietary libraries are also described.

Chapter 4. Compilers.
Describes the compilers available and how to use them.

Chapter 5. The User’s Environment.
Describes the user's environment on Bull HPC clusters, how the clusters
are accessed and the use of the file systems. A description of Modules
follows. These can be used to change and compare environments.

ii HPC BAS4 - User's Guide

Chapter 6. Launching an Application.
Different ways of launching cluster resources for an application(s) are
explained. The TORQUE batch manager used for batch jobs is
described.

Chapter 7. Debugging Tools.
Describes Debugging Tools.

For details on system monitoring and application performance optimizations refer to the
Bull HPC BAS4 Application Tuning Guide (86 A2 19ER).

Appendix A A Troubleshooting guide which enables you to diagnose some common
problems.

Glossary and Acronyms
Provides a Glossary and lists the Acronyms used in the manual.

Bibliography

• Bull HPC BAS4 Installation and Configuration Guide (86 A2 28ER)

• Bull HPC BAS4 Administrator’s Guide (86 A2 30ER)

• Bull HPC BAS4 Application Tuning Guide (86 A2 19ER)

• Bull HPC BAS4 Maintenance Guide (86 A2 46ER)

• The Bull HPC BAS4 Software Release Bulletin (SRB) provides release-specific
information and details of restrictions resulting from known problems.

• Bull Voltaire Switches Documentation CD (86 A2 79ET 00)

• NovaScale 40xx Series and NovaScale 5xxx & 6xxx Series documentation

• NovaScale Master documentation

• Intel® Itanium® 2 Processor Reference Manual for Software Development and
Optimization

Web Links

http://www.bull.com/novascale/hpc.html

http://www.quadrics.com

http://www.intel.com/design/itanium2/documentation.htm

http://www.linuxhpc.org/

Highlighting

• Commands entered by the user are in a frame in "Courier" font. Example:

mkdir /var/lib/newdir

• Commands, files, directories and other items whose names are predefined by the
system are in "Bold". Example:
The /etc/sysconfig/dump file.

http://www.bull.com/novascale/hpc.html
http://www.quadrics.com/
http://www.intel.com/design/itanium2/documentation.htm
http://www.linuxhpc.org/

 Preface iii

• Text and messages displayed by the system to illustrate explanations are in "Courier
New" font. Example:
BIOS Intel

• Text for values to be entered in by the user is in "Courier New". Example:
COM1

• Italics Identifies referenced publications, chapters, sections, figures, and tables.

• < > identifies parameters to be supplied by the user. Example:
<node_name>

Warning

A Warning notice indicates an action that could cause damage to a program, device,
system, or data.

iv HPC BAS4 - User's Guide

 Table of Contents v

Table of Contents

Chapter 1. Introduction to the HPC Environment ... 1-1
1.1 Hardware Configuration .. 1-1
1.2 Software Configuration.. 1-4

1.2.1 Operating System and Installation.. 1-4
1.2.2 Cluster Management Tools .. 1-4
1.2.3 Application Development .. 1-5
1.2.4 Job Operation ... 1-6
1.2.5 Data and Files ... 1-6
1.2.6 Exploiting the System.. 1-6

Chapter 2. Parallel Libraries .. 2-1
2.1 Overview of Parallel Libraries ... 2-1

2.1.1 MPI Versions.. 2-1
2.1.2 The MPI Data Mover module (MDM) .. 2-2

2.2 MPI_Bull 1.6.x .. 2-5
2.2.1 MPI_Bull environments .. 2-6
2.2.2 MPI_Bull and the Quadrics Interconnect cluster environment.. 2-7
2.2.3 Bull Mono libraries for the Single Node Environment.. 2-7

2.3 MPIBull2_x ... 2-9
2.3.1 Quick Start for MPIBull2_x .. 2-9
2.3.2 MPIBull2 Compilers .. 2-9
2.3.3 Running MPIBull2... 2-10
2.3.4 MPIBull2_1.0.x features.. 2-11
2.3.5 Using MPIBull2 .. 2-12
2.3.6 MPIBull2 Tools ... 2-15
2.3.7 MPIBull2 – Example of use .. 2-17

2.4 Third party MPI libraries... 2-19
2.4.1 MPICH_Ethernet... 2-19
2.4.2 LAM MPI... 2-19
2.4.3 Parallel Virtual Machine.. 2-19

2.5 Profiling with mpianalyser .. 2-20

Chapter 3. Scientific Libraries .. 3-1
3.1 Overview ... 3-1
3.2 Intel Math Kernel Library .. 3-2
3.3 Intel Cluster Math Kernel Library ... 3-2
3.4 BLAS.. 3-2
3.5 BLACS ... 3-2

3.5.1 Using BLACS... 3-3
3.5.2 Installing and Compiling BLACS .. 3-3

3.6 PBLAS .. 3-5
3.7 LAPACK ... 3-5
3.8 SCALAPACK... 3-5

vi HPC BAS4 - User's Guide

3.8.1 Using SCALAPACK... 3-6
3.8.2 Installing and Compiling SCALAPACK.. 3-6

3.9 Blocksolve95 .. 3-9
3.9.1 Installing and Compiling Blocksolve95.. 3-9

3.10 SuperLU ... 3-9
3.10.1 SuperLU Serial ... 3-10
3.10.2 SuperLU_SMP .. 3-11
3.10.3 SuperLU_DIST .. 3-12

3.11 FFTW... 3-13
3.11.1 Installing and Compiling FFTW.. 3-13

3.12 PETSc... 3-14
3.12.1 Installing and Compiling PETSc .. 3-14

3.13 NETCDF ... 3-16

Chapter 4. Compilers ... 4-1
4.1 Overview ... 4-1
4.2 Intel Fortran Compiler .. 4-1
4.3 Intel C/C++ Compiler.. 4-2
4.4 Intel Compiler Licenses ... 4-4
4.5 Intel Math Kernel Library Licenses .. 4-4
4.6 GNU Compilers .. 4-4

Chapter 5. The User's Environment ... 5-1
5.1 Cluster Access and Security .. 5-1

5.1.1 Connecting to HPC... 5-1
5.1.2 Using ssh (Secure Shell) .. 5-1

5.2 Global File Systems: NFS / Lustre.. 5-2
5.3 Environment Modules... 5-2

5.3.1 An example of Modules Use.. 5-3
5.3.2 Setting Up the Shell RC Files .. 5-5

5.4 Module Files ... 5-7
5.4.1 Package Location Suggestions ... 5-8
5.4.2 Upgrading via the Modules Command ... 5-8

5.5 The Module Command... 5-10
5.5.1 modulefiles .. 5-10
5.5.2 Modules Package Initialization .. 5-11
5.5.3 Examples of Initialization .. 5-11
5.5.4 Modulecmd Startup .. 5-12
5.5.5 Module Command Line Switches.. 5-12
5.5.6 Module Sub-Commands .. 5-13
5.5.7 Modules Environment Variables ... 5-15

Chapter 6. Launching an Application.. 6-1
6.1 Launching the Application without a Batch Manager ... 6-1

6.1.1 NUMACTL... 6-3

 Table of Contents vii

6.1.2 The PTOOLS and CPUSET Package.. 6-5
6.2 Quadrics Resource Management System.. 6-7

6.2.1 Using Quadrics RMS.. 6-7
6.2.2 Prun ... 6-8
6.2.3 Rmsexec ... 6-8
6.2.4 rinfo ... 6-9
6.2.5 More RMS Information.. 6-9

6.3 SLURM Resource Management Utilities .. 6-10
6.3.1 SRUN... 6-10
6.3.2 SBCAST.. 6-33
6.3.3 SQUEUE (List Jobs)... 6-34
6.3.4 SINFO (Report Partition and Node Information)... 6-40
6.3.5 SCANCEL (Signal/Cancel Jobs) .. 6-47
6.3.6 SACCT (Accounting Data)... 6-49
6.3.7 Global Accounting API ... 6-60

6.4 Launching the Application using TORQUE Batch Manager... 6-64
6.4.1 Configuring Passwordless Access for TORQUE.. 6-64
6.4.2 TORQUE Commands.. 6-65

Chapter 7. Application Debugging Tools ... 7-1
7.1 Overview ... 7-1
7.2 GDB .. 7-1
7.3 IDB .. 7-1
7.4 TOTALVIEW ... 7-2
7.5 MALLOC_CHECK_ - Debugging Memory Problems in C programs.. 7-3
7.6 Dmalloc Library... 7-5
7.7 Electric Fence.. 7-6
7.8 System Monitoring and Performance Tools ... 7-6

Appendix A. Application Troubleshooting .. A-1

 Glossary and Acronyms ..G-1

 Index ...I-1

viii HPC BAS4 - User's Guide

List of Figures

Figure 1-1. Typical architecture for HPC systems ... 1-2
Figure 2-1. MPI Data Mover module – short protocol... 2-2
Figure 2-2. MPI Data Mover module – one copy ... 2-2
Figure 2-3. MPIBull2 Linking Strategies .. 2-12
Figure 2-4. MPD ring ... 2-14
Figure 3-1. Interdependence of the different mathematical libraries ... 3-6
Figure 6-1. Numactl QBB application .. 6-3
Figure 6-2. CPUSET allocation .. 6-5
Figure 6-3. RMS Partitions .. 6-7
Figure 6-4. MPI Process Management With and Without Resource Manager 6-29
Figure 7-1 Totalview graphical interface – image taken from www.etnus.fr 7-2

 Table of Contents ix

List of Tables

Table 5-1. Examples of different module configurations .. 5-4
Table 6-1. Launching tools for different platforms ... 6-2
Table 6-2. SRUN Modes ... 6-11
Table 6-3. TORQUE commands ... 6-65

x HPC BAS4 - User's Guide

 Introduction to the HPC Environment 1-1

Chapter 1. Introduction to the HPC Environment
The term HPC (High Performance Computing) describes the development of large scientific
applications and programs, which require a powerful computation facility that can process
enormous amounts of data to give highly precise results.

Bull Advanced Server (BAS) is a software suite that is used to operate and manage a Bull
HPC cluster. Bull HPC clusters are based on Bull NovaScale platforms connected either by
a high-speed interconnect QsNetII network from Quadrics or using InfiniBand stacks with
Voltaire switches or with a Gigabit Ethernet network. BAS includes both Bull proprietary
and Open Source software, which provides the infrastructure for optimal interconnect
performance.

The Bull HPC cluster includes an administrative network based on a 10/100 Mbit or a
Gigabit Ethernet network, and a separate console management network.

Its key features are:

• Excellent reliability, resulting from the experience Bull has in designing large systems
and their associated features.

• Lower-cost machines, due to the use of Intel® CPUs and industry-standard components.

• Modular systems, with strong scalability through the use of Bull’s FAME scalability
switch.

• The Itanium® 2 processor featuring the Explicitly Parallel Instruction Computing (EPIC)
architecture so that parallelism of instructions is achieved through the compiler, rather
than in the hardware of the CPU. Itanium systems offer particularly strong floating-point
performance as a result.

The Bull HPC delivery also provides a full environment for development, including
optimized scientific libraries, FORTRAN and C/C++ compilers, MPI libraries, as well as
debugging and performance optimization tools.

This manual describes these software components, and explains how to work within the
BAS environment.

See the Bull HPC BAS4 Application Tuning Guide (86 A2 19ER) for more information on
performance optimization tools.

1.1 Hardware Configuration

The cluster architecture and system node localisation may differ from one configuration to
another.

A typical cluster infrastructure consists of Compute Nodes for intensive calculation and
Service Nodes for management, storage and software development services.

Compute Nodes are optimized for code execution; limited daemons run on them. Usually,
these nodes are not used to write to disk, but instead transfer data to Service Nodes.

1-2 HPC BAS4 - User's Guide

Service Node(s) include the following node types:

• Input/Output Node(s) that are optimised to read data from/write data to disk sub-
systems efficiently.

• A Management Node to administrate, manage and exploit the cluster.

• Login Node(s) to access the cluster, and to submit jobs. If not already dedicated to
this purpose, a Service Node can be configured to manage the login activity.

• Other node(s) may support services, or act as a server for both parallel and
distributed file-systems.

Different networks, dedicated to particular functions, are used:

• High speed interconnect switches and boards to transfer data between Compute
Nodes and I/O nodes.

• Administration Network including Ethernet and serial networks, which are used for
cluster management and maintenance. The Administrative Network is based on an
Ethernet 10/100 Mbit or a Gigabit Ethernet switch.

• A Backbone to link the HPC system and the external world.

Figure 1-1. Typical architecture for HPC systems

Console Network

For NovaScale 3045 Series platforms the Console Network uses the Digiboard
PortServer TS8/16 as a console concentrator, or Serial Over LAN technology. Using a
serial network the administrator can run and log console commands, such as starting,
stopping, and booting nodes from the Management Node via the ConMan console
management facility, or through the use of IPMI_tools. Conman uses the telnet protocol
over Ethernet and serial lines, and IPMI_tools uses the SOL to access NovaScale 3045’s
BMC.

 Introduction to the HPC Environment 1-3

Some of the key requirements of Linux large-scale production clusters are the need to
provide a high level of reliability using the High Availability mechanism, the need to
continue to operate when part of the system fails, and the need to be able to make repairs
to the system whilst it is in productive use. With its partners Bull has implemented
redundancy and recovery mechanism at different levels - node, interconnect, Service Node,
disk sub-system, and file system - to provide customers with cluster high availability, and
easy serviceability.

Interconnection

Bull HPC cluster provides high-speed connectivity for parallel applications. Supported
switches are Gigabit Ethernet, Quadrics QsNetII or Voltaire switches. All nodes of the
cluster are directly attached to the interconnect using at least one adapter per node. For
Quadrics based systems, the adapter is a Quadrics Elan4 Network Adapter. For Gigabit
Ethernet-based systems, network connections use separate adapters that are available as
options to the servers.

InfiniBand interconnects combine open standards with high bandwidth, low latency
performance. For InfiniBand networks the interconnection generally uses Voltaire® devices
including:

• HCA 400 Ex-D Double Date Rate (DDR) Host Channel Adapters which provide up to
20 Gbs per second bandwidth exploiting the PCI-Express 8x slot.

• Voltaire® ISR 9024 Grid Switches to route up to 24 InfiniBand DDR ports per switch.

• Voltaire® ISR 9096 and 9288 Grid Directors are used to scale up clusters that
include 400 Ex-D HCAs and ISR 9024 switches. The ISR 9096 and ISR 9288 Grid
Directors house 96 and 288 InfiniBand DDR ports, respectively, and can be used to
build extremely large clusters featuring thousands of nodes.

Storage Systems

Each node must have an internal disk drive. Optionally, some nodes may be attached to
external storage systems which provide more capacity and RAID protection. External
storage is mandatory for nodes which operate with the High Availability mechanism. High
Availability ensures mutual takeover in the event of a problem. Typical storage systems are
Bull StoreWay FDA, or DataDirect Networks S2A appliances, a storage system designed
for HPC systems. Both local and external storage systems are monitored using NovaScale
Master – HPC Edition.

For NovaScale 5xxx and 4xxx series platforms the supported fibre HBAs are PCI-X,
LP11000 (1 port) and LP11002 (2 ports). For NovaScale 3045 series platform the
supported fibre HBAs are PCI-e, LPe1150 (1 port) and LPe11002 (2 ports).

1-4 HPC BAS4 - User's Guide

1.2 Software Configuration

1.2.1 Operating System and Installation

BAS is based on a standard Linux distribution, combined with a number of Open Source
applications that exploit the best from the Open Systems community. This combined with
technology from Bull and its partners, results in a powerful, complete solution for the
development, execution, and management of parallel and serial applications
simultaneously.

Its key features are:

• Strong manageability, through Bull’s systems management suite that is linked to state-
of-the-art workload management software.

• High-bandwidth, low-latency interconnect networks.

• Scalable high performance file systems, both distributed and parallel.

All cluster nodes use the same Linux distribution. Parallel commands are provided to supply
users and system administrators with single-system attributes, these make it easier to
manage and to use cluster resources.

Software installation is carried out by first creating an image on a node, loading this image
onto the Management Node, and then distributing it to the other nodes using the Image
Building and Deployment (KSIS) utility. This distribution is performed via the administration
network.

1.2.2 Cluster Management Tools

System administrators perform most of their administrative tasks from a node designated as
the Management Node, which is also used to start booting clusters. The Management
Node also hosts daemons for system management. On the Management Node all the
system configuration data is stored in a SQL based database, entitled ClusterDB.

To simplify the use and management of Bull Itanium server clusters, Bull has created the Bull
extension for Cluster Management, which allows the entire HPC cluster to be managed,
and used, as easily as a single server. Cluster Management includes ClusterDB and the
following tools:

• Hardware management tools PAM and NScommands which provide immediate
insight into the status and configuration of the system. These can be used to operate,
monitor, and configure the server. PAM commands are available only on NovaScale
5xxx & 6xxx platforms. NScommands are available on all platforms including
NovaScale 3045.

• Monitoring technologies for data-collection including the Platform Administration
Processor (PAP) for NovaScale 5xxx and NovaScale 6xxx platforms or Baseboard
Management Controller (BMC) for the NS40xx and NS3045 platforms. NS Master -
HPC edition is used to manage alerts and provides monitoring utilities which are
checked via a web browser.

 Introduction to the HPC Environment 1-5

• Software installation is done by first creating an image on a node, loading this image
onto a Service Node and then distributing it to the other nodes using the KSIS utility.
This distribution is performed over the Administration Network.

• The administrator uses NovaScale Master- HPC Edition to collect statistics which are
based on data regarding usage and health information (hardware parameters). The
data is collected from individual nodes by scalable software which may then be used
to report and display performance figures at a cluster level.

• The administrator uses Ganglia to report and display performance figures at the
cluster level.

• NSDoctor is a node tester used to analyze any software dysfunctions following a
node’s exclusion by RMS.

• Postbootchecker informs the service node that a node is booting and obtains boot
time information concerning the CPUs and memory of the node. If this is different from
the information already in the database, postbootchecker will inform the
administrator.

• The BAS Software also provides a scalable event-logging utility,
syslog-ng. This utility aggregates cluster events of interest to a single location. In
addition to monitoring and logging global information, an administrator may
occasionally have to perform actions on all nodes, or on a subset of nodes, of the
system. This capability is provided by the global parallel shell utility, pdsh.

• mkCDrec or mkDVDrec give the ability to save and restore service nodes on CD or
DVD media.

• Storage devices management (monitoring, configuration, deployment, GUI, etc.)

1.2.3 Application Development

When a user logs onto the Bull Advanced Server system, the login session is directed to
one of several nodes. Upon logging onto the system, the users may then develop and
execute their applications. Applications can be executed on other cluster nodes apart from
the user login system. For development, the environment consists of:

• Standard Linux tools such as GCC (a collection of free compilers that can compile
C/C++ and FORTRAN), GDB Gnu Debugger, and other third-party tools including
the Intel FORTRAN Compiler, the Intel C Compiler and Intel Debugger IDB.

• Optimized parallel libraries that are part of the BAS software suite. These libraries
include the MPI_Bull2 message-passing library. Bull_MPI2 is fully integrated with the
SLURM resource manager. Bull_MPI2 complies with the MPI1 and 2 standards and is
a high performance, high quality native implementation. Bull_MPI2 exploits shared
memory for intra-node communication and MDM (MPI Data Mover) technology for
inter-node communication. It includes a trace and profiling tool, enabling data to be
tracked.

• Modules software provides a means for predefining and changing environments. Each
one includes a compiler, a debugger and library releases which are compatible with
each other. So it is easy to invoke one given environment in order to perform tests and
then compare the results with other environments.

1-6 HPC BAS4 - User's Guide

1.2.4 Job Operation

For job execution and workload management BAS Software provides an integrated
resource management, scheduling and job launch mechanism based on the Resource
Management System (RMS) from Quadrics OR using SLURM, an Open Source resource
manager.

The resource manager is responsible for the allocation of resources to jobs. The resources
are provided by nodes that are designated as compute resources. Processes of the job are
assigned to and executed on these allocated resources.

RMS and SLURM provide the means to rearrange the cluster into distinct partitions. Serial
or parallel jobs may be scheduled for execution within a given partition, provided that the
partition has sufficient resources (for example, memory, or number of CPUs) to execute the
jobs. The entire system can be designated as a single partition, allowing parallel jobs to
run across all of the CPUs of the cluster. Alternatively, the system administrator can divide
the system into smaller partitions. See Chapter 6 for more information.

SLURM provides three key functions. Firstly, it allocates exclusive and/or non-exclusive
access to resources (computer nodes) to users for certain period of time so that they can do
their work. Secondly, it provides a framework for starting, executing, and monitoring work
(typically a parallel job) on a set of allocated nodes. Finally, it arbitrates when there are
conflicting requests for resources by managing a queue of pending work.

1.2.5 Data and Files

Application file I/O operations may be performed using locally mounted storage devices,
or alternatively, on remote storage devices using NFS or Lustre (CFS) file systems for high
performance and high availability. By using a separate interconnect for administration and
I/O operations, the Bull cluster system administrator is able to isolate user application
traffic from administrative operations and monitoring. With this separation, application I/O
performance and process communication can be made more predictable while still
enabling administrative operations to proceed.

1.2.6 Exploiting the System

It is essential that users spend time familiarizing themselves with the architecture. The use of
resource management tools such as CPUSET means that cluster operations can be
configured to run in parallel or on separate partitions according to the exigencies of the
job. Similarly, wherever possible, you need to optimize your code so that the parallel
processing possibilities of the EPIC architecture are fully utilized.

See the Bull HPC BAS4 Application Tuning Guide (86 A2 19ER) for more information on
these subjects.

 Parallel Libraries 2-1

Chapter 2. Parallel Libraries
This chapter describes the following topics:

• 2.1 Overview of Parallel Libraries

• 2.2 MPI_Bull 1.6.x

• 2.3 MPIBull2_x

• 2.4 Third party MPI libraries

• 2.5 Profiling with

2.1 Overview of Parallel Libraries

A common approach to parallel programming is to use a message passing library, where
a process uses library calls to exchange messages (information) with another process. This
message passing allows processes running on multiple processors to cooperate.

Simply stated, a MPI (Message Passing Interface) provides a standard for writing message-
passing programs. A MPI application is a set of autonomous processes, each one running
its own code, and communicating with each other through calls to subroutines of the MPI
library.

2.1.1 MPI Versions

Bull provides different MPI libraries for use in the HPC environment.

• The recommended one is MPI_Bull. This is the Bull MPI library optimized for the
NovaScale architecture. This component is able to run applications in a Quadrics
interconnected cluster environment or on a single node. MPI_Bull is split into two
parts: a global static or dynamic library with which the application is compiled and a
dynamic Elan (Quadrics environment) or mono (single node) library which is called
when the program is running.

• The second generation MPI library is MPIBull2. This library enables dynamic
communication with different device libraries; including Quadrics interconnects,
InfiniBand (IB) interconnects, socket Ethernet/IB/EIB devices or single machine
devices. See the MPIBull2 documentation for more information

• Third party MPI libraries are also available. MPICH_Ethernet is provided to allow
applications to run in an Ethernet environment instead of the Quadrics interconnect
environment. Bull also enables the use of LAM MPI and of Parallel Virtual Machine
(PVM) – see sections 2.4.2 and 2.4.3.

Programming with MPI

It is not in the scope of the present guide to describe how to program with MPI. Please,
refer to the Web, where you will find complete information. For example, you can refer to
the following site: http://www.idris.fr for information in French.

http://www.idris.fr/

2-2 HPC BAS4 - User's Guide

2.1.2 The MPI Data Mover module (MDM)

With a standard MPI library in intra-machine communication, the sender copies data into a
shared memory buffer which the receiver then copies into their own memory space.
Therefore, two copies are required, as illustrated below. This system of transfer is used by
the protocol short for messages which are under 32Kbs in size.

Figure 2-1. MPI Data Mover module – short protocol

With MPI_Bull and MPIBull2, the MDM module enables the use of only one copy, by
directly copying the source buffer into the destination one, as illustrated below:

Figure 2-2. MPI Data Mover module – one copy

For messages which are bigger than a determined threshold in size the MDM module is
used automatically by MPI_Bull and MPIBull2.

 SENDER RECEIVER

Sender
Buffer

Table of
Exchange Descriptors

Simple Copy

Exchange
Descriptor

Receiver
Buffer

@/size/
src/ dst

 SENDER RECEIVER

Sender
Buffer

Shared Memory Buffer

1st Copy 2nd Copy

Receiver
Buffer

 Parallel Libraries 2-3

The MDM module was created from the zcopy module and allows the transmission of long-
lasting communications (Memory window allocation) which are used in one-sided
communications (MPI-2 reference).

The MDM module works in the same way for both MPI_Bull version 1.6.x and MPIBull2
version 2.1.0-x.

2.1.2.1 Using the MDM Module

The MDM module being an integral part of MPI_Bull and MPIBull2 has no specific
options. However it includes a trace and profiling tool, enabling data to be tracked.

Information related to profiling is in /proc/mdm/profiler.

To display the profile, run:

$ cat /proc/mdm/profiler

mdm profiling data ======================

The trace tool is useful when an application behaves abnormally. To view the events that
occurred on different processors, just consult /proc/mdm/trace/<n>, where n is the CPU
number. For example:

$ cat /proc/mdm/trace/CPU0

ITC UID DESCRIPTION

==

You may also watch, in real time, the events occurring for the process whose rank is r and
for the application whose MPI jobkey is p, use /proc/mdm/<p>/trace/rank_<r>.

$ cat /proc/mdm/145231/trace/rank_0

ITC UID DESCRIPTION

======================================

The status of an application may be known by reading the file /proc/mdm/<p>/status,
where p is the MPI jobkey.

$ cat /proc/mdm/145231/status

Also, one-sided communications window descriptors are available under the directory
/proc/mdm/<p>/onesided/, where p is the MPI jobkey. In this directory, you may
consult the file rank_<r>, where r is the process rank.

$ cat /proc/mdm/145231/onesided/rank_0

ID WIN BADDR SIZE

==

To display the MDM module release number, run:

$ cat /proc/mdm/version

2-4 HPC BAS4 - User's Guide

MDM module release mdm (mdm:aravis) 1.0.0-0 [version kunlock dynamic

32cpus pt2pt profiler] {mpi_bull >= 1.0.0}

 Parallel Libraries 2-5

2.2 MPI_Bull 1.6.x

 Important
MPI_Bull is not supported on InfiniBand software stacks.

Bull has perfected a MPI library, called MPI_Bull, enabling the exchange of messages
between processes in a distributed environment. This model of communication is used by
parallel applications.

The MPI_Bull library conforms to the MPI -1 standard (refer to MPI: A Message-Passing
Interface Standard, dated May 5, 1994). http://www-unix.mcs.anl.gov/mpi

The MPI_Bull library is optimized for NovaScale hardware architectures. Quadrics Elan3
or Elan4 ensure hardware interconnection.

The BAS4 MPI_Bull libraries have been compiled with compilers which correspond to the
compilers referred to in chapter 4. This ensures compiler compatibility for any application
which uses the BAS4 MPI_Bull libraries and these Intel compilers.

MPI_Bull has been developed from the MPICH 1.2.6 Open Source library to which several
improvements have been made:

• Mapping of processes on processors, in order to inhibit scheduler actions (the ideal
operation is one process per processor).

• Introduction of the Futex mechanism (Fast User mode muTEX), for locks management
in the interface.

• Improvement of MPI_Barrier algorithm (processes synchronization).

• Optimization of collective operations (broadcast, for example).

• Allocation of a memory area to benefit from the advantages of the NUMA
architecture of NovaScale 5160.

• Optimization of data copies between processes located on the same machine,
thanks to the MDM module (MPI Data Mover module) for Linux kernel 2.6 and higher.

• Cpuset use to locate processes

• Thread Safety: MPI_Bull is thread safe (MPI-2 functionality).

• Introduction of One-Sided communications which is also a MPI-2 type of
functionality.

• Introduction of a MPI_Bull profiler called Profilecomm to allow the profiling of
applications using MPI_Bull.

• Integration of Quadrics Elan library.

• Integration of mono library to allow the running of applications on a single node.

2-6 HPC BAS4 - User's Guide

 Note:
The following restriction applies to the MPI I/O library delivered with MPI_BULL.

All nonblocking MPI I/O functions use an MPIO_Request object instead of the usual
MPI_Request object. Accordingly, two functions, MPIO_Test and MPIO_Wait, are
provided to test and wait on these MPIO_Request objects. These have the same
semantics as MPI_Test and MPI_Wait, as shown below:

int MPIO_Test(MPIO_Request *request, int *flag, MPI_Status*status)
int MPIO_Wait(MPIO_Request *request, MPI_Status *status)

The usual functions, for example, MPI_Test, MPI_Wait, MPI_Testany, and so forth, will
not work for nonblocking I/O.

This restriction does not exist for the MPIBULL2 library.

 Note:

For more information about MPICH 1.2.6 Open Source library, please refer to:
http://www-unix.mcs.anl.gov/mpi/mpich/

2.2.1 MPI_Bull environments

MPI_Bull can work in two different environments: Quadrics interconnect or single node. For
both environments the compilation mode is the same. No specific configuration is required.
You simply have to compile your application (appli.exe for example) using the script mpicc
(C), mpiCC (C++), mpif77 or mpif90.

Example: the following command compiles the appli.c code using the MPI library:

$ mpicc –o /appli.exe /appli.c

To produce a dynamically link object, you must set the environment variable
LD_LIBRARY_PATH as follows:

$ export LD_LIBRARY_PATH=/usr/lib/mpishared:$LD_LIBRARY_PATH

Then compile the appli.c code using the –shlib option:

$ mpicc –o shlib /appli.exe /appli.c

What follows explains how to launch the application either using Quadrics interconnects
or in a single node environment.

http://www-unix.mcs.anl.gov/mpi/mpich/

 Parallel Libraries 2-7

2.2.2 MPI_Bull and the Quadrics Interconnect cluster environment

A parallel application which uses MPI_Bull Message Passing Interface is launched with the
RMS prun supplied by Quadrics.

Example: the following command launches the appli.exe application on 3 processes (-n
flag), on the 2 first nodes (-N flag) of the ‘partition’ RMS partition (-p flag):

$ prun -n 3 -N 2 -p partition ./appli.exe

For more details about the RMS prun command and the options available, run:

 $ prun -h.

For more information about RMS use and configuration, please refer to the Quadrics
documentation. For more information about launching an application refer to chapter 6 in
this manual.

2.2.3 Bull Mono libraries for the Single Node Environment

In the single node environment, used for testing a program for example, a parallel
application may be launched with the mprun command which is included as part of the
Bull Mono Libraries. These libraries are included in the Bull delivery which is provided for
Symmetric Multi Processing on a single node.

mprun provides the following options:

 -tv Enable Totalview TM Debugger support

 -O Allows resources to be over-committed. Set this flag to run more than one
process per CPU.

-I Allocate CPUs immediately or fail. By default, mprun holds until resources
become available.

-C Use cyclic cpusets.

-n <nprocs> Specifies the number <nprocs> of MPI processes to start.

For example, the following command launches the appli.exe application on 4 processes (-
n flag).

$ mprun -n 4 ./appli.exe

2-8 HPC BAS4 - User's Guide

-c <cpus> Specifies the number of CPUs required per process (default 1).

-M <rank> Bind the process of rank <rank> to a master cpuset rather than to a given
CPU. Mainly used in master/slave programs.

-Y <type> Specify the MPI busy wait strategy: Allowed values are s for sched_yield(), l
for select() and n for none.

-i <mode> Specifies how standard input is redirected. See mprun man page for more
details.

-o <mode> Specifies how standard output is redirected. See mprun man page for more
details.

-e <mode> Specifies how standard error is redirected. See mprun man page for more
details.

By default, when running a parallel program, mprun forwards standard input to process 0.

 Parallel Libraries 2-9

2.3 MPIBull2_x

MPIBull2_1.0-x is a new MPI library which conforms to the MPI-2 standard.

2.3.1 Quick Start for MPIBull2_x

MPIBULL2 is installed in the /opt/mpi/mpibull2-x directory. The environmental
variables MPI_HOME, PATH, LD_LIBRARY_PATH, MAN_PATH, PYTHON_PATH will
need to be set or updated. These variables should not be set by the user. Use the
setenv_mpibull2 environment setting file, which may be sourced from the
/install_path/share directory by a user or added to the profile for all users by the
administrator.

2.3.2 MPIBull2 Compilers

The MPIBull2 library has been compiled with the latest Intel compilers, which, according to
Bull’s test farms, are the fastest ones available for the IA64 architecture. Bull uses Intel Icc
and Ifort compilers to compile the MPI libraries. It is possible for the user to use their own
compilers to compile their applications for example gcc, however see the note below.

Important:

It will be necessary to use Intel’s runtime libraries when executing the application in order
to exploit the EPIC architecture of the Itanium ®

 2 processors. It may be necessary to consult
the administrator in the event of any compatibility or compiling problems.

In order to check the configuration and the compilers used to compile the MPI libraries the
following command may be used.

 install_path/share/doc/compilers_version

MPI applications should be compiled using the MPIBull2 MPI wrapper to compilers:
C programs: mpicc your-code.c
C++ programs: mpiCC your-code.cc
 or
 mpic++ your-code.cc (for case-insensitive file systems)
F77 programs: mpif77 your-code.f
F90 programs: mpif90 your-code.f90

Wrappers to compilers simply add various command line flags and invoke a back-end
compiler; they are not compilers in themselves.

The command below is used to override the compiler type used by the wrapper. –cc, -fc -,
and cxx and used for C, Fortran and C++ wrappers.

mpi_user >>> mpicc -cc=gcc prog.c -o prog

2-10 HPC BAS4 - User's Guide

When using MPIBull2 compilation tools for the first time, the MPIBull2 system is not aware
of the user's preferences. MPIBull2 compilation tools will use the default preferences:
linking with a dynamic device, using the osock device (a socket with ethernet, etc.). Check
that everything is OK for the program by using mpibull2-device -c. If necessary the user
can give indications to the compiler by using the -sd options, or by using the
MPIBULL2_COMM_DRIVER and MPIBULL2_LINK_STRATEGY environment variables.
However, the communication device can be changed whenever needed by using the
mpibull2-device tool.

2.3.3 Running MPIBull2

The MPI application requires a launching system in order to spawn the processes onto the
cluster. Depending on the communication protocol used, different Resource Managers may
be used.

1. If using Quadrics devices, users will need to submit their jobs with RMS, using the
prun command. This supposes that RMS is installed and is fully functional. The optimal
device to use in a Quadrics environment is elanbull2. For users with multiple clusters,
and with process management heterogeneity, a launching abstraction tool is provided,
mpibull2-launch.

2. As an option Bull provides the Bull provides the SLURM sub-system processes using the
InfiniBand communication protocols. For more information see section 6.3.1 in this
manual which describes the SRUN command.

3. When running a single machine the device to use is oshm. First launch mpd and then
run your application with mpiexec.

 Note:
When launching jobs within only one node, the oshm device has a better performance
than osock.

4. On an Ethernet cluster which uses the osock device, the MPD system can be used. Use
mpdboot to create a launching ring on the cluster, or use the mpd command in the
background on a single machine, as shown below.

Create the hosts list
mpi_user >>> export cluster_machines="host1 host2 host3 host4"

Create the file used to store host information
mpi_user >>> for i in $cluster_machines; do echo "$i" >> machinefiles; done

Boot the MPD system on all the hosts
mpi_user >>> mpdboot -n $(cat machinefiles | wc -l) -f machinefiles

Check if everything is OK
mpi_user >>> mpdtrace

 Parallel Libraries 2-11

Run the application or try hostname
mpi_user >>> mpiexec -n 4 ./your_application

Please refer to the Process Management section to obtain more details.

2.3.4 MPIBull2_1.0.x features

MPIBull2_1.0.x includes the following features:

• It only has to be compiled once, supports the NovaScale architecture and is
compatible with the more powerful interconnects.

• It is designed so that both development and testing times are reduced and it delivers
high performance on IA64 NovaScale architectures

• Fully compatible with MPICH2 MPI libraries. Just set the library path to get all the
MPIBull2 features

• Supports both MPI 1.2 and MPI 2 standard functionalities including

− Dynamic processes (osock only)

− One-sided communications

− Extended collectives

− Thread safety (see the Thread-Safety Section below)

− ROMIO including the latest patches developed by Bull

• Multi-device functionality: delivers high performance with an accelerated multi-device
support layer for fast interconnects. The library supports:

− Sockets-based messaging (for Ethernet, SDP, SCI and EIP)

− Hybrid shared memory-based messaging for shared memory

− Quadrics network drivers (qxelan, elanbull2)

− InfiniBand architecture multirails driver Gen2

• Easy Runtime Selection: makes it easy and cost-effective to support multiple platforms.
With MPIBull2 Library, both users and developers can select drivers at runtime easily,
without modifying the application code. The application is built once and works for all
interconnects supported by Bull.

• Ensures that the applications achieve a high performance with a high degree of
interoperability with standard tools and architectures.

• Common features for all devices:

− Mapping of processes on processors, in order to inhibit scheduler actions, and the
use of CPUSET to place processes.

− FUTEX (Fast User mode muTEX) mechanism in user mode

− Optimization of data copy between processes located on the same machine using
KDM functionalities.

2-12 HPC BAS4 - User's Guide

2.3.5 Using MPIBull2

2.3.5.1 MPIBull2 Linking Strategies

Designed to reduce development and testing time, MPIBull2 presents two linking strategies
to the users.

Firstly, the user can chose to build his application and link dynamically, leaving the choice
of the MPI driver until later, according to which resources are available. For instance, if a
small Ethernet cluster is the only resource available, the User compiles and links
dynamically, using an osock driver, whilst waiting for access to a bigger cluster via a
different Quadrics interconnect and which uses the elanbull2 driver at runtime.

Secondly, the User might want to use an out-of-the-box application, designed for a specified
MPI device. Bull provides the combination of MPI Core and all its supported devices which
enable the static libraries to be linked by the User’s application.

Figure 2-3. MPIBull2 Linking Strategies

2.3.5.2 Thread-safety

If the application needs an MPI Library which provides MPI_THREAD_MULTIPLE thread-
safety level, then choose a device which supports TSafety and select a *_ts device. Use
the mpibull2-device commands.

 Note:

Thread-safety within the MPI Library requires data locking. Linking with such a library may
impact performance. A loss of around 10 to 30% has been observed on microbenchmarks

Not all MPI Drivers are delivered with a thread-safe version. Devices known to support
MPI_THREAD_MULTIPLE include osock, oshm and elanbull2.

 Parallel Libraries 2-13

2.3.5.3 MPIBull2 libraries

Bull provides the user with different MPI libraries. The user then selects which are to be
used according to which stage of the development process they are at. Each user keeps
their preferences in their $HOME/.mpibull2 directory. The device library path is stored
there; the device choice is kept in the environment, with the MPIBULL2_COMM_DRIVER
and the LD_LIBRARY_PATH pointing to the right library. This preference is used when
linking dynamically, which means all users are independent of each other. The preferences
can be modified using CLI tools. A GUI can be built on top of BULL's MPI tools.

The MPI_HOME does not need to be set by the user. To use MPIBull2 easily, the user may
source the setenv_mpibull2 file (in the ./install_path/share/ directory), or add the
MPIBull2.modules module file to the cluster (module file placed in the
./install_path/share/modules/ directory). It is advisable to consul the administrator for
more information on using modules. The administrator should give all users the option of
loading MPIBull2. If for some reason it is not possible, or takes too long you may then
decide to manage your personal modules in a directory of your own, adding your
directory with the module use -a command. See the example below:

mpi_user >>> module use -a /install_path/share/modules/

mpi_user >>> module av

---------------------------- /opt/modules/modulefiles--------

autoconf/2.53 configuration/22
intel_cc/8.1.024 intel_cc/9.1.017
intel_fc/9.0.025 intel_mkl/7.2.1

....

---------------------------- /install_path/share/modules/------

MPIBull2.modules

mpi_user >>> module load MPIBull2.modules

2.3.5.4 Process management

Depending on which options have been shipped, the MPIBull2 suite comes with additional
software that may be used to manage processes from beginning to end. All packages
include the MPD system.

For Quadrics users, RMS daemons are available for use with various associated program
launching tools, including prun, on the nodes.

For Infiniband users, SLURM can be used as well as the MPD process launcher. SLURM
has to be linked with SLURM PMI compatible software. For instance, according to where
the SLURM software is installed, a line similar to the following should be added
somewhere, for example, in the file /etc/profile.d/mpibull2*.

export MPIBULL2_PRELIBS="-lpmi"

Using an osock socket MPI device is easy with RMS, but this can also be used with the
MPICH2 MPD ring system. The MPD system is a component which deploys a daemon ring
on a user-by-user basis. This ring waits for the application when it is started. Refer to the
ANL documentation and website for up to date information. In order to keep some
interoperability between all process managers, the MPIBull2-launch command should be

2-14 HPC BAS4 - User's Guide

used. This tool allows users to retain their commands regardless of the process manager
launcher that is being used (chose from those which are supported).

2.3.5.5 MPD ring

MPI Process Daemons (MPD) run on all nodes in a ring like structure and may be used in
order to manage the launch of the different processes. Alternatively, if available, Quadrics
RMS or SLURM may be used. MPIBull2 library is PMI compliant which means it can
interact with any other PMI PM, specifically, MPD and RMS. This software has been
developed by ANL. In order to set up the system the MPD ring must firstly be knitted, by
following the procedure below:

• At the $HOME prompt edit the .mpd.conf file by adding something like
MPD_SECRETWORD=your_password and chmod 600 to the file.

• Create a boot sequence file. Any type of file may be used. The MPD system will by
default use the mpd.hosts file in your $HOME directory if a specific file is not
specified in the boot sequence. This contains a list of hosts, separated by carriage
returns. Semi-colons can be added to the host to specify the number of CPUS for the
host, for example.

host1:4

host2:8

Figure 2-4. MPD ring

• Boot the ring by using the mpdboot command, and specify the number of hosts to be
included in the ring.

mpdboot -n 2 -f myhosts_file

Check that the ring is functioning correctly by using the mpdtrace or mpdringtest
commands. If everything is okay, then jobs may be run on the cluster.

 Parallel Libraries 2-15

2.3.6 MPIBull2 Tools

2.3.6.1 MPIBull2-devices

This is tool which may be used to change the user's preferences. It can also be used to
disable a library. For example, if the program has already been compiled and the intention
is to use dynamic MPI Devices which have already been linked with the MPI Core, then it is
now possible to specify a particular runtime device with this tool. The following options are
available with MPIBULL2-devices

-dl Provides list of drivers. This is also supported by MPI wrappers.

-dlv Provides list of drivers with versions of the drivers.

mpi_user >>> mpibull2-devices -dl

MPIBULL2 Communication Devices :

+ Original Devices :

*oshm : Shared Memory device, to be used on a single machine
[static][dynamic]

*osock : Socket protocol (can be used over IPoIB, SDP, SCI...)
[static][dynamic]

*qxelan : Quadrics Elan3/4 device driver [static][dynamic]

-c Obtains details of the user's configuration.

mpi_user >>> mpibull2-devices -c

MPIBULL2 home : /install_path

User prefs :

 __ Directory : /home_nfs/mpi_user/.MPIBull2/

 __ Custom devices : /home_nfs/mpi_user/.MPIBull2//site_libs

 __ MPI Core flavor : Standard / Error detection on

 __ MPI Communication Driver : oshm (Shared Memory device, to be used on a
single machine) [static][dynamic]

-d=xxx Sets the specified communication device driver, for example qxelan for
Quadrics interconnects.

mpi_user >>> mpibull2-devices -d=qxelan

2.3.6.2 mpibull2-launch

This is a meta-launcher which connects to whatever process manager is specified by the
user. It is used to ensure compatibility between different process manager launchers, and
also to allow users to specify their custom key bindings.

2-16 HPC BAS4 - User's Guide

The purpose of mpibull2-launch is to help users to retain their launching commands even
when changing the process manager, for instance when moving from Quadrics RMS to
SLURM. Mpibull2-launch also interprets user’s special keybindings, in order to allow the
user to retain their preferences, regardless of the cluster and the MPI library. This means
that the user’s scripts will not need changing, except for those environment variables which
are required.

The mpibull2-launch tool provides default keybindings. The user can check them using the
--metahelp option. If the user wishes to check some of the CPM (Cluster Process Manager)
special commands, they should use --options with the CPM launch name command (e.g.
--options srun)

Some tool commands and ‘device’ functionalities rely on the implementation of the MPI
components. This simple tool maps keybindings to the underlying CPM. Therefore, a
unique command can be used to launch a job on a different CPM, using the same syntax.
mpibull2-launch system takes in account the fact that a user might want to choose their
own keybindings. A template file, named keylayout.tmp1, may be found in the tools rpm
which may be used to construct individual keybinding preferences.

Launching a job on a cluster using mpibull2-launch

By default for Quadrics devices, there is nothing to do. Otherwise, export
MPIBULL2_LAUNCHER=prun or specify it in the command line with –prun.

For a SLURM CPM use a command similar to the one below and set
MPIBULL2_LAUNCHER=srun to make this command compatible with the SLURM CPM.

mpibull2-launch -n 16 -N 2 -ptest ./job

 Example for a user who wants to use the Y key for the partition

PM Partition to use+Y:+partition:

The user should edit a file using the format found in the example template, and then add
custom bindings using the –custom_keybindings option. The + sign is used to separate the
fields. The first field is the name of the command, the second the short option, with a colon
if an argument is needed, and the third field is the long option.

2.3.6.3 mpiexec

This is a launcher which connects to the MPD ring.

2.3.6.4 mpirun

This is a launcher which connects to the MPD ring.

 Parallel Libraries 2-17

2.3.6.5 mpicc, mpiCC, mpicxx, mpif77 and mpif90

These are all compiler wrappers and are available, for C, C++, Fortran 77 and Fortran 90
languages. These allow the user to concentrate on developing the application without
having to think about the internal mechanics of MPI. The man page files provide more
details about wrappers.

When using compiling tools, they need to know which communication device and a linking
strategy they should use. The compiling tools parse as long as some of the following
conditions have been met:

• The device and linking strategy has been specified in the command line using the -sd
options.

• The environment variables DEF_MPIDEV, DEF_MPIDEV_LINK (required to ensure
compatibility), MPIBULL2_COMM_DRIVER, and MPIBULL2_LINK_STRATEGY have
been set.

• The preferences have already been set up; the tools will use the device they find in the
environment using the MPIBULL2-devices tool.

• The tools takes the system default, using dynamic socket device.

 Note:
One can obtain better performance using the –fast/-static options to link statically with one
of the dependent libraries using the commands below.

mpicc –static prog.c

mpicc –fast prog.c

2.3.7 MPIBull2 – Example of use

2.3.7.1 Setting up the devices

When compiling an application the user may wish to keep those makefiles and build files
which have already been generated. BULL has taken this into account. The code and build
files can be kept as they are. All the user needs to do is to set up a few variables or use the
MPIBULL2-devices tool.

During the installation process, the /etc/profile.d/mpibull2.sh file will have been
modified by the System Administrator according to the user’s needs. This file determines the
default settings (by default the rpm sets the osock socket/TCP/IP driver). It is possible to
override these settings by using environment variables – this is practical as it avoids
modifying makefiles - or by using the tools options. For example, the user can statically link
their application against a static driver as shown below. The default linking is dynamic,
and this enables drive modification during runtime. Linking statically, as shown below,
overrides the user's preferences but does not change them.

mpi_user >>> mpicc -sd=qxelan prog.c -o prog

mpicc : Linking statically MPI library with device (qxelan)

The following environment variables may also be used

2-18 HPC BAS4 - User's Guide

MPIBULL2_COMM_DRIVER Specifies the default device to be linked against

MPIBULL2_LINK_STRATEGY Specifies the link strategy (the default is dynamic)
 (required to ensure compatibility)

MPIBULL2_MPITOOLS_VERBOSE Provides information when building (the default is
verbose off)

mpi_user >>> export DEF_MPIDEV=qxelan

mpi_user >>> export MPIBULL2_MPITOOLS_VERBOSE=1

mpi_user >>> mpicc prog.c -o prog

mpicc : Using environment MPI variable specifications

mpicc : Linking dynamically MPI library with device (qxelan)

2.3.7.2 Submitting a job

If a user wants to submit a job, then according to the process management system, they
can use MPIEXEC, MPIRUN, PRUN, MPRUN, SRUN or MPIBULL2-LAUNCH to launch the
processes on the cluster (the online man pages gives details of all the options for these
launchers)

2.3.7.3 Debugging

Parallel gdb

With the mpiexec launching tool it is possible to add the Gnu DeBugger in the global
options by using -gdb. All the gdb outputs are then aggregated, indicating when there are
differences between processes. The -gdb option is very useful as it helps to pinpoint faulty
code very quickly without the need of intervention by external software.

Refer to the gdb man page for more details about the options which are available.

Totalview

Totalview is a proprietary software application and is not included in the BAS distribution.
See chapter 7 for more details.

It is possible to submit jobs using Quadrics RMS software using a command in a format
similar to the one below or via MPD.

totalview prun -a <args> ./prog <progs_args>

Alternatively, it is possible to use MPI process daemons (MPD) and to synchronize
Totalview with the processes running on the MPD ring.

mpiexec -tv <args> ./prog <progs_args>

 Parallel Libraries 2-19

2.4 Third party MPI libraries

2.4.1 MPICH_Ethernet

Bull supplies MPICH_Ethernet (version 1.2.6), this is to be used with Ethernet interconnects.

Modify the file /opt/mpi/mpich_ethernet-1.2.6/share/machines.LINUX in order to set
the host name of the corresponding interface (Administration Network or Dedicated
Network) and the number of processors for each machine. For example:

ns0:4
ns1:4
ns2:4
ns3:4

The program which uses MPICH_Ethernet must be compiled using the appropriate
wrapping tool, for example mpicc, mpif77, etc. Launch the program with the following
command where np is the number of processes, and appli.exe is the name of the
application using MPI:

$mpirun –np 4 ./appli.exe

For more details, see the Installation and User’s Guide to MPICH, a portable
implementation of MPI for the device ch_p4 which is available from
 http://www-unix.mcs.anl.gov/mpi/mpich/

2.4.2 LAM MPI

Bull delivers LAM version -7.0.6-5 on the Bull Linux AS4 V5.1 DVD. However, this is not
installed automatically.

For more information on LAM/MPI and to download the latest source files, please refer to
www.lam-mpi.org .

2.4.3 Parallel Virtual Machine

Bull delivers PVM version -3.4.4-21 on the Bull Linux AS4 V5.1 DVD. This is installed on
Compute and Login Nodes.

For more information on PVM and to download the latest source files, please refer to
www.csm.ornl.gov/pvm/pvm_home.html

http://www.lam-mpi.org/
http://www.csm.ornl.gov/pvm/pvm_home.html

2-20 HPC BAS4 - User's Guide

2.5 Profiling with mpianalyser

mpianalyser is a profiling tool, developed by Bull for its own MPI_Bull implementation.
mpianalyser includes profilecom, a non-intrusive tool that allows the display of data which
has been logged from counters when the application runs.

For more information on profilecomm and how it should be used refer to the Bull HPC
BAS4 Application Tuning Guide (86 A2 19ER)

 Scientific Libraries 3-1

Chapter 3. Scientific Libraries
This chapter describes the following topics:

• 3.1 Overview

• 3.2 Intel Math Kernel Library

• 3.3 Intel Cluster Math Kernel Library

• 3.4 BLAS

• 3.5 BLACS

• 3.6 PBLAS

• 3.7 LAPACK

• 3.8 SCALAPACK

• 3.9 Blocksolve95

• 3.10 SuperLU

• 3.11 FFTW

• 3.12 PETSc

• 3.13 NETCDF

3.1 Overview

Scientific Libraries are sets of tested, validated and optimized functions which spare users
the need to develop such subprograms themselves.

The advantages of these scientific libraries are:

• Portability

• Support for different types of data (real, complex, double precision, etc.)

• Support for different kinds of storage (banded matrix, symmetrical, etc.)

Delivery

The scientific libraries BLACS, SCALAPACK, FFTW, Blocksolve95, SuperLU, PETSC use
MPI (Message Passing Interface). They are delivered in different environmental versions
according to the implementation to be used. There are currently two implementations:

• MPIBull for single nodes or clusters using the Quadrics interconnect

• MPICH_Ethernet for clusters using Gigabit Ethernet interconnect

3-2 HPC BAS4 - User's Guide

3.2 Intel Math Kernel Library

This library, which has been optimized by Intel for its processors, contains among other
things, the following libraries: BLAS, LAPACK and FFT.

The Intel Cluster MKL is a fully thread-safe library.

An installation notice is provided by Bull with the library delivery.

The library is located in the /opt/intel/mkl<release_nb>/ directory.

To use it, the environment has to be set by updating the LD_LIBRARY_PATH variable:

export LD_LIBRARY_PATH=/opt/intel/mkl<release_nb>/lib/64:$LD_LIBRARY_PATH

Example for MKL 7.2:

export LD_LIBRARY_PATH=/opt/intel/mkl72/lib/64:$LD_LIBRARY_PATH

3.3 Intel Cluster Math Kernel Library

The Intel Cluster Math Kernel Library contains all the highly optimized math functions of
Math Kernel Library plus ScaLAPACK for Linux Clusters.

The Intel Cluster MKL is a fully thread-safe library and provides C and Fortran interfaces.

An installation notice is provided by Bull with the library delivery.

The Cluster MKL library is located in the /opt/intel/mkl<release_nb>cluster/ directory.

3.4 BLAS

BLAS stands for Basic Linear Algebra Subprograms.

This library contains linear algebraic operations that include matrixes and vectors. Its
functions are separated into three parts:

• Level 1 routines to represent vectors and vector/vector operations.

• Level 2 routines to represent matrixes and matrix/vector operations.

• Level 3 routines mainly for matrix/matrix operations.

This library is included in the Intel MKL package.

3.5 BLACS

BLACS stands for Basic Linear Algebra Communication Subprograms.

BLACS is a specialized communications library (using message passing). After defining a
process chart, it exchanges vectors, matrices and blocks and so on. It can be compiled on
top of MPI or PVM systems.

 Scientific Libraries 3-3

BLACS uses MPI and thus it is delivered in two releases, corresponding to the two
available MPIs.

3.5.1 Using BLACS

This paragraph describes the installation and the use of the BLACS library, using
MPICH_Ethernet, or the MPIBull implementations of MPI.

The library is located in the directory /usr/lib/blacs:

$ ls /usr/lib/blacs/blacs*
libblacsCinit_MPI-LINUX-0.a
libblacsF77init_MPI-LINUX-0.a
libblacs_MPI-LINUX-0.a

$

3.5.2 Installing and Compiling BLACS

Install the rpm File

The BLACS rpm file is available on the HPC CD.

It is installed using the following commands:

• To use it with MPIBull

$rpm –ivh –-relocate /opt/blacs/ blacs-mpi_bull<release_nb>.rpm

• To use it with MPICH_Ethernet.

$rpm –ivh –-relocate /opt/blacs/ blacs-mpich_ethernet<release_nb>.rpm

Files to be created

Create the Bmake.inc file:

3-4 HPC BAS4 - User's Guide

$cat Bmake.inc
BTOPdir = /opt/mpi/blacs
SHELL = /bin/sh
COMMLIB = MPI
PLAT = LINUX
BLACSdir = $(BTOPdir)/LIB
BLACSDBGLVL = 0
BLACSFINIT = $(BLACSdir)/blacsF77init_$(COMMLIB)-$(PLAT)-$(BLACSDBGLVL).a
BLACSCINIT = $(BLACSdir)/blacsCinit_$(COMMLIB)-$(PLAT)-$(BLACSDBGLVL).a
BLACSLIB = $(BLACSdir)/blacs_$(COMMLIB)-$(PLAT)-$(BLACSDBGLVL).a
MPIdir = /opt/envhpc/mpich_shmem
MPILIBdir = $(MPIdir)/lib
MPIINCdir = $(MPIdir)/include
MPILIB =
BTLIBS = $(BLACSFINIT) $(BLACSLIB) $(BLACSFINIT) $(MPILIB)
INSTdir = $(BTOPdir)/INSTALL/EXE
TESTdir = $(BTOPdir)/TESTING/EXE
FTESTexe = $(TESTdir)/xFbtest_$(COMMLIB)-$(PLAT)-$(BLACSDBGLVL)
CTESTexe = $(TESTdir)/xCbtest_$(COMMLIB)-$(PLAT)-$(BLACSDBGLVL)
SYSINC = -I$(MPIINCdir)
INTFACE = -DAdd_
SENDIS =
BUFF =
SYSERRORS =
TRANSCOMM = -DCSameF77
WHATMPI =
DEBUGLVL = -DBlacsDebugLvl=$(BLACSDBGLVL)
DEFS1 = -DSYSINC $(SYSINC) $(INTFACE) $(DEFBSTOP) $(DEFCOMBTOP)
$(DEBUGLVL)
BLACSDEFS = $(DEFS1) $(SENDIS) $(BUFF) $(TRANSCOMM) $(WHATMPI) $(SYSERRORS)
F77 = mpif90
F77FLAGS = $(F77NO_OPTFLAGS) -O
F77LOADER = $(F77)
F77LOADFLAGS =
CC = mpicc
CCFLAGS =
CCLOADER = $(CC)
CCLOADFLAGS =
ARCH = ar
ARCHFLAGS = r
RANLIB = ranlib
$

Update the Environment and compile the Library

Set the compilers environment sourcing iccvars.sh and ifortvars.sh, these are available
after the compilers have been installed.

make mpi what=clean

make mpi

Compile the Tester

cd TESTING/
make clean
make

Tests

The tester is launched by the following commands:

• With MPIBull

cd EXE
prun -n 4 –p partition_name xCbtest_MPI-LINUX-0
prun -n 4 –p partition_name xFbtest_MPI-LINUX-0

• With MPICH_Ethernet.
Set the MPICH_Ethernet environment:

 Scientific Libraries 3-5

export MPI_HOME=/opt/mpi/mpich_ethernet/
export PATH=$MPI_HOME/bin:$PATH
export LD_LIRARY_PATH=$MPI_HOME/lib:$LD_LIRARY_PATH
cd EXE
mpirun -np 4 xCbtest_MPI-LINUX-0
mpirun -np 4 xFbtest_MPI-LINUX-0

 Note:
The tester must be launched with at least 4 processes.

3.6 PBLAS

PBLAS stands for Parallel Basic Linear Algebra Subprograms.

PBLAS is the parallelized version of BLAS for distributed memory machines. It requires
cyclic distribution by matrix block that the BLACS library offers.

This library is included in the Intel MKL package.

3.7 LAPACK

LAPACK stands for Linear Algebra PACKage.

This is a set of Fortran 77 routines used to resolve linear algebra problems such as the
resolution of linear systems, eigenvalue computations, matrix computations, etc. However, it
is not written for a parallel architecture.

This library is included in the Intel MKL package.

3.8 SCALAPACK

SCALAPACK stands for: SCAlable Linear Algebra PACKage.

This library is the scalable version of LAPACK. Both libraries use block partitioning to
reduce data exchanges between the different memory levels to a minimum. SCALAPACK is
above all used for eigenvalue problems and factorizations (LU, Cholesky and QR).
Matrices are distributed using BLACS.

3-6 HPC BAS4 - User's Guide

Figure 3-1. Interdependence of the different mathematical libraries

3.8.1 Using SCALAPACK

Local component routines are called by a single process with arguments residing in local
memory.

Global component routines are synchronous and parallel. They are called with arguments
that are matrices or vectors distributed over all the processes.

SCALAPACK uses MPI and thus it is delivered in two releases, corresponding to the two
available MPIs.

The libscalapack.a file is located in the /usr/lib/scalapack directory.

3.8.2 Installing and Compiling SCALAPACK

This paragraph describes the installation of the SCALAPACK library using
MPICH_Ethernet 1.2.6, or the MPIBull implementations of MPI.

SCALAPACK uses the BLACS library. Thus BLACS must be installed before installing
SCALAPACK.

Install the rpm File

SCALAPACK is available on the HPC CD.

To install SCALAPACK, please use the following commands:

Used for complex
computations (system
resolution, eigenvalue
computations, etc.)

Message passing primitive

Sequential
equivalent of
SCALAPACK

Global

Local

 Scientific Libraries 3-7

• To use it with MPIBull

$rpm –ivh –-relocate /opt/scalapack/ scalapack-mpi_bull<release_nb>.rpm

• To use it with MPICH_Ethernet

$rpm –ivh –-relocate /opt/scalapack/ scalapack-mpich_ethernet<release_nb>.rpm

Update the Environment and Compile

The environment variables have to be updated for the usage of the correct MPI
implementation (one of the ENV_ files has to be sourced).

Set the compilers and MPI environment sourcing iccvars.sh and ifortvars.sh, these are
available when the compilers have been installed.

With MPIBull, nothing else has to be done.

With MPICH_Ethernet, set the MPICH_Ethernet environment:

$ export MPI_HOME=/opt/mpi/mpich_ethernet-1.2.6/
$ export PATH=$MPI_HOME/bin:$PATH
$ export LD_LIRARY_PATH=$MPI_HOME/lib:$LD_LIRARY_PATH

The library and the tests are compiled by the following command:

make clean all exe

Tests

There are 102 tests. These tests can be grouped as follows:

• PBLAS test suite: 12 programs.

• PBLAS timing suite: 12 programs.

• REDIST test suite: 10 programs.

• SCALAPACK test suite: 18 programs, which can be compiled with different precision
levels resulting in a total of 70 different test programs.

The variable TOTMEM type PARAMETER can be modified according to the memory
available for the system test(s).

The following shell scripts execute all the tests:

3-8 HPC BAS4 - User's Guide

For MPIBull

#! /bin/csh
setenv OUT runall.out
rm -f $OUT
foreach exe (xcbrd xcinv xcpblas2tst xctrmr xdinv xdpblas2tst xdtrd
xsgemr xspblas1tim xsqr xzevc xzlu xcdblu xcllt xcpblas3tim xdbrd
xdllt xdpblas3tim xdtrmr xspblas1tst xssep xzgblu xznep xzptllt xcdtlu xcls
xcpblas3tst xddblu xdls xdpblas3tst xigemr xshrd xspblas2tim xssvd
xzgemr xzpblas1tim xzqr xcevc xclu xcpbllt xddtlu xdlu
xdpbllt xitrmr xsinv xspblas2tst xstrd xzgsep xzpblas1tst xcgblu
xcnep xcptllt xdgblu xdnep xdptllt xsbrd xspblas3tim xstrmr xzhrd
xzpblas2tim xztrd xcgemr xcpblas1tim xcqr xdgemr xdpblas1tim xdqr xsdblu
xsls xspblas3tst xzbrd xzinv xzpblas2tst xztrmr xcgsep xcpblas1tst xcsep
xdpblas1tst xdsep xsdtlu xslu xspbllt xzdblu xzllt xzpblas3tim xchrd
xcpblas2tim xctrd xdhrd xdpblas2tim xdsvd xsgblu xsnep xsptllt
xzdtlu xzls xzpblas3tst xsgsep xsllt xdgsep xzpbllt xzsep)
 echo "" |& tee -a $OUT
 echo "--------------------------------> testing $exe " |& tee -a $OUT
 echo "" |& tee -a $OUT

prun -n 4 -p parallel ./$exe |& tee -a $OUT

 echo "" |& tee -a $OUT
end

For MPICH_Ethernet

 [SCALAPACK]$ cd TESTING
[TESTING]$ more runall.csh
#! /bin/csh
setenv OUT runall.out
rm -f $OUT
foreach exe (xcbrd xcinv xcpblas2tst xctrmr xdinv xdpblas2tst xdtrd
xsgemr xspblas1tim xsqr xzevc xzlu xzpbllt xcdblu xcllt xcpblas3tim
xdbrd xdllt xdpblas3tim xdtrmr xspblas1tst xssep xzgblu xznep xzptllt
xcdtlu xcls xcpblas3tst xddblu xdls xdpblas3tst xigemr xshrd
xspblas2tim xssvd xzgemr xzpblas1tim xzqr xcevc xclu xcpbllt
xddtlu xdlu xdpbllt xitrmr xsinv xspblas2tst xstrd xzgsep
xzpblas1tst xzsep xcgblu xcnep xcptllt xdgblu xdnep xdptllt xsbrd xspblas3tim
xstrmr xzhrd xzpblas2tim xztrd xcgemr xcpblas1tim xcqr xdgemr xdpblas1tim
xdqr xsdblu xsls xspblas3tst xzbrd xzinv xzpblas2tst xztrmr xcgsep
xcpblas1tst xcsep xdpblas1tst xdsep xsdtlu xslu xspbllt xzdblu xzllt
xzpblas3tim xchrd xcpblas2tim xctrd xdhrd xdpblas2tim xdsvd xsgblu
xsnep xsptllt xzdtlu xzls xzpblas3tst xsgsep xsllt xdgsep)
 echo "" |& tee -a $OUT
 echo "--------------------------------> testing $exe " |& tee -a $OUT
 echo "" |& tee -a $OUT
 mpirun -np 4 ./$exe |& tee -a $OUT
 echo "" |& tee -a $OUT
end
[TESTING]$

Tests Results

The tests xcinv, xdinv, xsinv, xzgsep, xzinv, xcgsep, xsgsep and xdgsep will end with an
address error, when the library is compiled with the -O3, -O2 or -O1 options. When the
library is compiled entirely with -O0, all the tests except xzsep will run.

 Scientific Libraries 3-9

3.9 Blocksolve95

BlockSolve95 is a scalable parallel software library primarily intended for the solution of
sparse linear systems that arise from physical models, especially problems involving
multiple degrees of freedom at each node.

Blocksolve95 uses MPI and thus it is delivered in two releases, corresponding to the two
available MPIs.

The library is located in the directory /usr/lib/BlockSolve95.

3.9.1 Installing and Compiling Blocksolve95

Blocksolve95 is available on the HPC CD.

Use the following commands to install BlockSolve:

To use it with MPIBull.

$rpm –ivh –-relocate /opt/blocksolve95/ BlockSolve95-mpi_bull<release_nb>.rpm

To use it with MPICH_Ethernet.

$rpm –ivh –-relocate /opt/blocksolve95/ BlockSolve95-
mpich_ethernet_bull<release_nb>.rpm

3.10 SuperLU

SuperLU is a general purpose library for the direct solution of large, sparse, non symmetric
systems of linear equations on high performance machines. The library is written in C and
can be called from either C or Fortran.

SuperLU is available in three independent versions:

• SuperLU for sequential systems (Version 3.0, October 15, 2003).

 Note:
The interfaces for some functions have been modified between versions 2.0 and 3.0 and
are incompatible!

• SuperLU_SMP for shared memory systems (Version 1.0, September 1999), which use
POSIX threads.

• SuperLU_DIST for distributed memory systems using MPI (Version 2.0, March 2003,
the latest update dates back to October 15, 2003).

3-10 HPC BAS4 - User's Guide

3.10.1 SuperLU Serial

Using SuperLU Serial

Versions 2.0 and 3.0 of the sequential SuperLU Serial are both provided.

These libraries (both named superlu_ia64.a) are located in the directories
/usr/include/SuperLU and /usr/lib/SuperLU.

Installing and Compiling SuperLU Serial

SUPERLU is available on the HPC CD.

To install SUPERLU-SEQ, use the following command:

$rpm –ivh –-relocate /opt/SuperLU-SEQ/ SuperLU-SEQ<release_nb>.rpm

File modifications

Modify the make.inc file as follows:

PLAT = _ia64
BLASDEF = -DUSE_VENDOR_BLAS
BLASLIB = -L/opt/envhpc/intel/mkl/lib/64 -lmkl_ipf -lmkl_lapack -lguide
TMGLIB = tmglib$(PLAT).a
SUPERLULIB = superlu$(PLAT).a
ARCH = ar
ARCHFLAGS = cr
RANLIB = ranlib
CC = ecc
CFLAGS = -O3 -mp -w -ftz
FORTRAN = efc
FFLAGS = -O3 -mp -w -cm -ftz
LOADER = ecc
CDEFS = -DAdd_

Update the environment

Make sure that $PATH contains the current folder, as well as the INTEL compilers:

echo $PATH
export PATH=$PATH:.

Set the compilers environment sourcing iccvars.sh and ifortvars.sh which are available
when the Intel compilers are installed.

Examples

The folder EXAMPLE contains 21 programs.

Modify the dlinsolx2.c file (not necessary with version 2.0).

 188 dgssvx(&options, &A1, perm_c, perm_r, etree, equed, R, C,
 189 &L, &U, work, lwork, &B1, &X, &rpg, &rcond, ferr, berr,
 190 &mem_usage, &stat, &info);

The codification consists in replacing “&A”, by “&A1,” at line 188.

 Scientific Libraries 3-11

Then the same modification has to be done in the clinsolx2, slinsolx2 and zlinsolx2 files.

Compile the examples:

make clean ; make

The test is launched using the command line:

./EXECUTABLE_NAME <g10

This is not the case for superlu which does not require a file to be redirected in its standard
input.

A shell script which executes all the tests is shown below:

$ cat run.sh
 #! /bin/bash
 export exe=superlu
 ./$exe

for suffix in "" "1" "x" "x1" "x2" ;
do
 for exe in `ls *linsol${suffix}` ;
 do
 ./$exe < g10
 done
done
$

3.10.2 SuperLU_SMP

Using SuperLU_SMP

The library (named superLU_MT_PTHREAD.a) is located in the directories
/usr/include/SuperLU and /usr/lib/SuperLU.

Installing and Compiling SuperLU_SMP

SUPERLU_SMP is available on the HPC CD.

To install SUPERLU_SMP use the following command:

$rpm –ivh –-relocate /opt/SuperLU-SMP/ SuperLU-SMP<release_nb>.rpm

Examples

The folder named EXAMPLE contains 5 programs.

A shell script is shown which starts all the programs:

#! /bin/bash
 export procs=4

 for mat in g10 g20 big ;
 do
 for exe in ./f77exm ./pdlinsol ./pdlinsolx ./pdrepeat ./pdspmd ;
 do
 $exe -p $procs < $mat
 done
 done

3-12 HPC BAS4 - User's Guide

3.10.3 SuperLU_DIST

SuperLU_DIST uses MPI and thus it is delivered in two releases, corresponding to the two
available MPIs.

The library (named superlu_lnx_ia64.a) is located in the directories
/usr/include/SuperLU and /usr/lib/SuperLU.

Installing and Compiling SuperLU_DIST.

This paragraph describes the installation of the SuperLU-DIST library, using the
MPICH_Ethernet or MPIBull implementation of the MPI.

SuperLU-DIST is available on the HPC CD.

To install SuperLU_DIST use the following commands:

• To use it with MPIBull:

$rpm –ivh –-relocate /opt/SuperLU_DIST/ SuperLU_DIST-mpi_bull<release_nb>.rpm

• To use it with MPICH_Ethernet:

$rpm –ivh –-relocate /opt/SuperLU_DIST/ SuperLU_DIST-
mpich_ethernet<release_nb>.rpm

Update the Environment

Set the compilers environment sourcing iccvars.sh and ifortvars.sh which are available
when the compilers are installed:

• With MPIBull, nothing else has to be done.

• With MPICH_Ethernet, set the MPICH_Ethernet environment:

$ export MPI_HOME=/opt/mpi/mpich_ethernet-1.2.6/
$ export PATH=$MPI_HOME/bin:$PATH
$ export LD_LIRARY_PATH=$MPI_HOME/lib:$LD_LIRARY_PATH

Examples

A shell script that executes all the examples in the folder EXAMPLE is shown on the next
page:

#! /bin/bash

for exe in pddrive pddrive1 pddrive1_ABglobal pddrive2 pddrive2_ABglobal pddrive3
pddrive3_ABglobal pddrive_ABglobal ;
do mpirun -np 4 ./$exe -r 2 -c 2 g20.rua ; done

for exe in pddrive4_ABglobal pddrive4 ;
do mpirun -np 10 ./$exe g20.rua ; done

for exe in pddrive pddrive1 pddrive1_ABglobal pddrive2 pddrive2_ABglobal pddrive3
pddrive3_ABglobal pddrive_ABglobal ;
do mpirun -np 4 ./$exe -r 2 -c 2 big.rua ; done

for exe in pddrive4_ABglobal pddrive4 ;
do mpirun -np 10 ./$exe big.rua ; done

 Scientific Libraries 3-13

for exe in pzdrive pzdrive1 pzdrive1_ABglobal pzdrive2 pzdrive2_ABglobal pzdrive3
pzdrive3_ABglobal pzdrive_ABglobal ;
do mpirun -np 4 ./$exe -r 2 -c 2 g20.rua ; done

for exe in pzdrive4_ABglobal pzdrive4 ;
do mpirun -np 10 ./$exe g20.rua ; done

A script that launches the tests with MPIBull is shown below:

cat run.sh
#! /bin/bash

for exe in pddrive pddrive1 pddrive1_ABglobal pddrive2 pddrive2_ABglobal pddrive3
pddrive3_ABglobal pddrive_ABglobal ;
do prun -p parallel -N 2 -n 4 ./$exe -r 2 -c 2 g20.rua ; done

for exe in pddrive4_ABglobal pddrive4 ;
do prun -p parallel -N 2 -n 10 ./$exe g20.rua ; done

for exe in pddrive pddrive1 pddrive1_ABglobal pddrive2 pddrive2_ABglobal pddrive3
pddrive3_ABglobal pddrive_ABglobal ;
do prun -p parallel -N 2 -n 4 ./$exe -r 2 -c 2 big.rua ; done

for exe in pddrive4_ABglobal pddrive4 ;
do prun -p parallel -N 2 -n 10 ./$exe big.rua ; done

for exe in pzdrive pzdrive1 pzdrive1_ABglobal pzdrive2 pzdrive2_ABglobal pzdrive3
pzdrive3_ABglobal pzdrive_ABglobal ;
do prun -p parallel -N 2 -n 4 ./$exe -r 2 -c 2 g20.rua ; done

for exe in pzdrive4_ABglobal pzdrive4 ;

do prun -p parallel -N 2 -n 10 ./$exe g20.rua ; done

3.11 FFTW

FFTW stands for Fastest Fourier Transform in the West. FFTW is a C subroutine library for
computing a discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input
size, and with both real and complex data.

FFTW uses MPI and thus it is delivered in two releases, corresponding to the two available
MPI. The library is located in the directories /usr/lib/fftw, /usr/include and /usr/doc/.

3.11.1 Installing and Compiling FFTW

Download

The archive file can be downloaded from http://www.fftw.org/download.html

FFTW is available on the HPC CD.

Version

Please note the following comment regarding version 3.0.1 (July, 6th, 2003):
« We haven't yet added MPI parallel transforms to 3.0.1, so you need to use 2.1.5 for
these. Version 3.0.1 does include shared-memory/threads parallel transforms, however.»

3-14 HPC BAS4 - User's Guide

This paragraph describes the installation of the FFTW library, using MPICH_Ethernet, or the
MPIBull implementations of MPI.

To install FFTW use the following commands:

• To use it with MPIBull

$rpm –ivh –-relocate /opt/fftw/ FFTW-mpi_bull<release_nb>.rpm

• To use it with MPICH_Ethernet

$rpm –ivh –-relocate /opt/fftw/ FFTW-mpich_ethernet<release_nb>.rpm

Update the Environment

Set the compilers environment sourcing iccvars.sh and ifortvars.sh which are available
when these compilers are installed:

• With MPIBull, nothing else has to be done:

• With MPICH_Ethernet, set the MPICH_Ethernet environment:

$ export MPI_HOME=/opt/mpi/mpich_ethernet-1.2.6/
$ export PATH=$MPI_HOME/bin:$PATH
$ export LD_LIRARY_PATH=$MPI_HOME/lib:$LD_LIRARY_PATH

3.12 PETSc

PETSc stands for Portable, Extensible Toolkit for Scientific Computation. PETSc is a suite of
data structures and routines for the scalable (parallel) solution of scientific applications
modeled by partial differential equations. It employs the MPI standard for all message-
passing communication (see http://www.mcs.anl.gov/mpi for more details).

PETSc uses MPI and thus it is delivered in two releases, corresponding to the two available
MPIs. The library is located in the directory /usr/lib.

3.12.1 Installing and Compiling PETSc

This paragraph describes the installation of the PETSc library, using MPICH_Ethernet, or
the MPIBull implementations of MPI.

PETSc is available on the HPC CD.

To install PETSc use the following commands:

• To use it with MPIBull:

$rpm –ivh –-relocate opt/PETSc/ PETSc-mpi_bull<release_nb>.rpm

• To use it with MPICH_Ethernet

$rpm –ivh –-relocate /opt/PETSc/ PETSc-mpich_ethernet<release_nb>.rpm

http://www.mcs.anl.gov/mpi

 Scientific Libraries 3-15

Update the Environment

Set the compilers environment sourcing iccvars.sh and ifortvars.sh available which are
available when these compilers are installed:

• With MPIBull, nothing else has to be done:

• With MPICH_Ethernet, set the MPICH_Ethernet environment:

$ export MPI_HOME=/opt/mpi/mpich_ethernet-1.2.6/
$ export PATH=$MPI_HOME/bin:$PATH
$ export LD_LIRARY_PATH=$MPI_HOME/lib:$LD_LIRARY_PATH

Tests

The tests are executed by the following commands:

make BOPT=O test
make BOPT=O testexamples

The X11 display is also tested.

To use MPIBull, the usage of MPIRUN must be modified:

for file in `grep -lr 'MPIRUN} \{1,\}-np' * ` ; do cp $file $file.orig ; sed
's/MPIRUN} \{1,\}-np/MPIRUN} -n /' $fil.orige > $file ; done

Results of the Tests:

Some tests fail:

make[5]: Entering directory
`/home/gutfreud/CANDIDATS_PROCHAINE_LIVRAISON/PETSc/petsc-
2.1.6/src/sys/examples/tests'
2d1
< rank = 0
Error in PetscSetCommWorld.

The expected result contains only one line with « rank = 0 » whereas the test is
executed on two processes.

As explained in the tests commentary, some test encounter round up imprecision:

testexamples_1 in: petsc-2.1.6/src/snes/examples/tests
2,4c2,4
< 1 SNES Function norm 0.00955879
< 2 SNES Function norm 7.57667e-05
< 3 SNES Function norm 5.48316e-09

> 1 SNES Function norm 0.00955878
> 2 SNES Function norm 7.57662e-05
> 3 SNES Function norm 5.48023e-09
Possible problem with ex1_3, diffs above

Quoting the test commentary:

==
BEGINNING TO COMPILE AND RUN TEST EXAMPLES
Due to different numerical round-off on certain
machines some of the numbers may not match exactly.
===

3-16 HPC BAS4 - User's Guide

Where to find the Library

The library is located in the lib/libO/linux64_intel folder.

3.13 NETCDF

NetCDF (network Common Data Form) allows the management of data input/output.

NetCDF is an interface for array-oriented data access and is a library that provides an
implementation of the interface. The netCDF library also defines a machine-independent
format for representing scientific data. Together, the interface, library, and format support
the creation, access, and sharing of scientific data.

The library is located in the /usr/bin, /usr/include, /usr/lib and /usr/man directories.

 Compilers 4-1

Chapter 4. Compilers
This chapter describes the following topics:

• 4.1 Overview

• 4.2 Intel Fortran Compiler

• 4.3 Intel C/C++ Compiler

• 4.4 Intel Compiler Licenses

• 4.5 Intel Math Kernel Library Licenses

• 4.6 GNU Compilers

4.1 Overview

Compilers play an essential role in exploiting the full potential of Itanium® 2 processors.
These processors use EPIC (Explicit Parallel Instruction set Computing) which enables
instructions to be executed in parallel. The parallelism has to be detected and exploited at
compiler level. Bull therefore recommends the use of Intel® C/C++ and Intel® Fortran
compilers.

GNU compilers are also available. However, these compilers are unable to exploit the
EPIC instruction set and also any program which uses MPI_Bull cannot be compiled\linked
with GNU products. For MPI_Bull programs it is essential that Intel compilers are used.

4.2 Intel Fortran Compiler

The current version of the Intel® Fortran 95 compiler is version 9.

The main features of this compiler are:

• Optimization of throughput of floating point instructions

• Optimization of inter-process calls

• Data preloading

• Conditional instruction prediction

• Speculative loading

• Optimization of the software pipeline.

This compiler complies with the Fortran 95 ISO standard. It is also compatible with GNU
products. Emacs and gbd tools can also be used with this compiler. It also supports big
endian encoded files. Finally, this compiler allows the execution of applications which
combine programs written in C and Fortran.

The compiler supports multithreading functionality:

• OpenMP 2.0 for Fortran is supported. The compiler accepts OpenMP pragmas and
generates a multithreaded application.

4-2 HPC BAS4 - User's Guide

• Automatic parallelization: a compiler option detects parallelism (in particular in the
computation loops) and generates a multithreaded application.

To use the compilers you have to update your environment as described below.

Different versions of the compiler may be installed to ensure compatibility with the compiler
version used to compile the libraries and applications on your system.

 Note:
It may be necessary to contact the System Administrator to ascertain the location of the
compilers on your system. The paths shown in the examples below may vary.

To specify a particular environment use the command below.

source /opt/intel/fc/<package_id>/bin/ifortvars.sh

For example:

• To use version 9.0.031 of the Fortran compiler:

source /opt/intel/fc/9.0.031/bin/ifortvars.sh

• To display the version of the active compiler, enter:

 ifort --version

• To obtain the documentation of the compiler:

/opt/intel/fc/9.0.031/doc

Remember that if you are using MPI_Bull then a compiler version has to be used which is
compatible with the compiler originally used to compile the MPI library.

4.3 Intel C/C++ Compiler

The current version of the Intel C/C++ compiler is version 9.

The main features of this compiler are:

• Optimization of throughput of floating point instructions

• Optimization of inter-process calls

• Data preloading

• Conditional instruction prediction

• Speculative loading

• Optimization of the software pipeline.

 Compilers 4-3

This compiler complies with ISO standard Ansi C/C++ and ISO standard C/C++. It is also
compatible with GNU products. A GNU C object or source code can therefore be
compiled with an Intel C/C++ compilers. Emacs and gbd tools can also be used with this
compiler.

The compiler supports multithreading functionality:

• OpenMP 2.0 for C/C++ is supported. The compiler accepts OpenMP pragmas and
generates a multithreaded application.

• Automatic parallelization: a compiler option detects parallelism (in particular in the
computation loops) and generates a multithreaded application.

For more details, visit the Intel web site www.intel.com.

Different versions of the compiler may be installed to ensure compatibility with the compiler
version used to compile the libraries and applications on your system.

 Note:
It may be necessary to contact the System Administrator to ascertain the location of the
compilers on your system. The paths shown in the examples below may vary.

To specify a particular environment use the command below:

source /opt/intel/cc/<package_id>/bin/iccvars.sh

For example:

• To use version 9.0.037 of the C/C++ compiler:

source /opt/intel/cc/9.0.037/bin/iccvars.sh

• To display the version of the active compiler, enter:

 icc --version

• To obtain the documentation of the compiler:

/opt/intel/cc/9.0.037/doc

Remember that if you are using MPI_Bull then a compiler version has to be used which is
compatible with the compiler originally used to compile the MPI library.

http://www.intel.com/

4-4 HPC BAS4 - User's Guide

4.4 Intel Compiler Licenses

Three types of Intel ® compiler licenses are available:

• Single User: allows one user to operate the product on multiple computers as long as
only one copy is in use at any given time.

• Node-Locked: locked to a node, allows any user who has access to this node to
operate the product concurrently with other users, limited to the number of licenses
purchased.

• Floating: locked to a network, allows any user who has access to the network server
to operate the product concurrently with other users, limited to the number of licenses
purchased.

The node-locked and floating licenses are managed by FlexLM from Macrovision.

License installation, and FlexLM configuration, may differ according to your compiler, the
license type, the number of licenses purchased, and the period of support for your product.
Please check the Bull Product Designation document delivered with your compiler and
follow the instructions contained therein.

4.5 Intel Math Kernel Library Licenses

Intel Math Kernel Library licenses are required for each compile node on which you
compile with MKL. However, the runtime libraries which are used on the compute nodes do
not require a license fee.

4.6 GNU Compilers

GCC, a collection of free compilers that can compile both C/C++ and Fortran, is part of
the installed Linux distribution.

 The User's Environment 5-1

Chapter 5. The User's Environment
This chapter describes how to access the HPC environment, how to use file systems, and
how to use the modules package to switch and compare environments:

• 5.1 Cluster Access and Security

• 5.2 Global File Systems

• 5.3 Environment Modules

• 5.4 Module Files

• 5.5 The Module Command

5.1 Cluster Access and Security

5.1.1 Connecting to HPC

Typical connection and use of HPC for a user are as follows:

• The user logs on to the HPC platform either through Service Nodes or through the
Login Node when the configuration includes these special Login Node(s). Once
logged on to a node the user can launch their jobs.

• Compilation is possible on all the nodes which have compilers installed. The best
approach is that compilers reside on Login Nodes, so that they do not interfere with
performance on the compute nodes.

5.1.2 Using ssh (Secure Shell)

The ssh command is used to access a cluster node.

Syntax:

ssh [-l login_name] hostname | user@hostname [command]

ssh [-afgknqstvxACNTX1246] [-b bind_address] [-c cipher_spec]
 [-e escape_char] [-i identity_file] [-l login_name] [-m mac_spec]
 [-o option] [-p port] [-F configfile] [-L port:host:hostport]
 [-R port:host:hostport] [-D port] hostname | user@hostname [command]

ssh (ssh client) can also be used as a command to log onto a remote machine and to
execute commands on it. It replaces rlogin and rsh, and provides secure encrypted
communications between two untrusted hosts over an insecure network. X11 connections
and arbitrary TCP/IP ports can also be forwarded over the secure channel. ssh connects
and logs onto the specified hostname. The user must verify his/her identity, using the
appropriate protocol, before being granted access to the remote machine.

5-2 HPC BAS4 - User's Guide

5.2 Global File Systems: NFS / Lustre

Two major kinds of file systems are generally used in a HPC environment:
NFS (distributed file system) and LUSTRE (parallel file system).

Lustre is an Open Source product under a GPL License. Lustre is specially designed for the
needs of high performance systems with a large data bandwidth. This design means that
Lustre is able to take full advantage of QSNETII high flow, weak latency interconnect
networks so that metadata and data is transferred efficiently.

Using Lustre

Data and metadata is stored under ldiskfs local files. ldiskfs is an ext3 file system with
special patches for Lustre.

QSNETII networks allow a flow of 900 MB/s for one rail (link). This flow may be restricted
by the flow of the disk bay and depends upon the Input/Output typology.

Lustre is usually used as follows:

• Each user has a private directory under /home_nfs.

• Each user has a private directory under the Lustre file system. Generally data under a
Lustre file system is not saved, and can be deleted by the cluster's administrator
whenever he needs to. If you want to save your data, you have to copy it using NFS.

• The Lustre File System is mounted following the user's request on the specified
computation nodes.

• Two possible ways of running an application on a HPC system are:

− The code is within the Lustre system (it must have been copied from NFS before
launch) and the results are generated under Lustre.

− The code is within NFS and the results are generated within Lustre (output files
must be defined for the application in /mnt/lustre/user's directory).

For example:

To copy a NFS file into a Lustre file system using prun, enter:

prun -p my_partition -N1 -n1 cp –r
~/home_nfs/‘whoami‘/pathname /mnt/lustre/‘whoami‘/pathname

For details about Lustre’s administration and operation refer to the Bull HPC BAS4
Administrator’s Guide (86 A2 30ER).

For information about optimizing the file system refer to the Bull HPC BAS4 Application
Tuning Guide (86 A2 19ER).

5.3 Environment Modules

Environment modules provide a great way to customize your shell environment easily,
particularly on the fly.

 The User's Environment 5-3

For instance an environment can consist of one set of compatible products including a
defined release of a FORTRAN compiler, a C compiler, a debugger and mathematical
libraries. In this way you can easily reproduce trial conditions, or use only proven
environments.

The Modules environment is a program that can read and list module files returning
commands, suitable for the shell to interpret, and most importantly for the eval command.
Modulefiles is a kind of flat database which uses files.

In UNIX a child process cannot modify its parent environment.
So how does Modules do this? Modules parses the given modules file and produces the
appropriate shell commands to set/unset/append/un-append onto an environment
variable. These commands are eval'd by the shell. Each shell provides some mechanism
where commands can be executed and the resulting output can, in turn, be executed as
shell commands. In the C-shell & Bourne shell and derivatives this is the eval command.

This is the only way that a child process can modify the parent's (login shell) environment.
Hence the module command itself is a shell alias or function that performs these operations.
To the user, it looks just like any other command.

The module command is only used in the development environment and not in other
environments such as that for administration node.

More details are available at http://modules.sourceforge.net/

5.3.1 An example of Modules Use

The following command gives the list of available modules on this cluster.

module avail

------------------------ /opt/modules/version ------------------------
3.1.6

------------------- /opt/modules/3.1.6/modulefiles -------------------
dot module-info null
module-cvs modules use.own

---------------------- /opt/modules/modulefiles ----------------------
oscar-modules/1.0.3 (default)

Modules available for the user are listed under the line /opt/modules/modulefiles.

To load a module the command is:

module load module_name

To verify the loaded modules list the command is:

module list

Using the avail command it is possible that some modules will be marked (default):

module avail

5-4 HPC BAS4 - User's Guide

These modules are those which have been loaded without the user specifying a module
version number. For example the following commands are the same:

module load configuration

module load configuration/2

Three configurations have been created. These configurations are modules which load
other modules automatically.

For example the number 2 configuration includes:

• Intel Fortran compiler version 8.0.049

• Intel C compiler version 8.0.071

• Intel debugger version 8.1.3

• MKL version 7.0.017

Configuration/1 intel_fc –version 8.0.046
intel_cc –version 8.0.066
intel_db –version 8.1.3
intel_mkl –version 7.0.017

Configuration/2 intel_fc –version 8.0.049
intel_cc –version 8.0.071
intel_db –version 8.1.3
intel_mkl –version 7.0.017

Configuration/3 intel_fc –version 8.0.061
intel_cc –version 8.0.071
intel_db –version 8.1.3
intel_mkl –version 7.0.017

Configuration/4 intel_fc –version 8.0.019
intel_cc –version 8.0.022
intel_db –version 8.1.3
intel_mkl –version 7.0.017

Table 5-1. Examples of different module configurations

The use of the load command in the module configuration context changes the user
"prompt" adding the configuration name.

The module unload command unloads one module.

The module purge command clears all the modules from the environment.

module purge

By design two "configuration" modules can not be loaded simultaneously. The loading of a
"configuration" module unloads the previous one.

 The User's Environment 5-5

It is not possible to load the two modules intel_cc or intel_fc at the same time because it
causes conflicts.

5.3.2 Setting Up the Shell RC Files

Here's a quick tutorial on Shell rc (run-command) files. When a user logs in and if they
have /bin/csh(/bin/sh) as their shell, the first rc fire to be parsed by the shell is
/etc/csh.login & /etc/csh.cshrc (/etc/profile) (the order is implementation dependent),
and then the user's $HOME/.cshrc ($HOME/.kshenv) and finally $HOME/.login
($HOME/.profile).

All the other login shells are based on /bin/csh and /bin/sh with additional features and
rc files. Certain environment variables and aliases (functions) need to be set for Modules to
work correctly. This is handled by the Module init files in
/usr/local/Modules/default/init, which contains separate init files for each of the various
supported shells, where the default is a symbolic link to a module command version.

Global Shell RC Files

As modules sets & appends to several environment variables it's a good idea to set them
up with the default system values, otherwise the compilers, loaders, man pages, etc. may
not find the default system paths if they are not listed in the appropriate environment
variables.

Look in ./etc/global for some sample rc files (csh.login, profile). These will define most of
the variables you are likely to need. (These files will not be tailored to all platforms. The
existing ones will be targeted at GNU/Linux systems.) None of the environment variables
are directly needed for a correct Modules environment.
The Modules specific commands are located in ./etc/global and are named
"csh.modules'' and "profile.modules''. These files should be copied to /etc (or wherever
you specified with the --with-etc-path=<path> option to the configure script). These files will
be sourced from the users' .login and .profile .

Edit these files if you want certain modules to be automatically loaded by all users.
As shown, it only loads "null'' which does absolutely nothing.

Skeleton Shell RC ("Dot'') Files

The skeleton files provide a "default'' environment for new users when they are added to
your system, this can be used if you do not have the time to set them up individually. The
files are usually placed in /etc/skel (or wherever you specified with the --with-skel-
path=<path> option to the configuration script), and contains a minimal set of "dot'' files
and directories that every new user should start with.

The skeleton files are copied to the new user's $HOME directory with the "-m'' option
added to the "useradd'' command. A set of sample "dot'' files are located in ./etc/skel.
Copy everything but the .*.in and CVS files and directories to the skeleton directory. Edit
and tailor for your system.

If you have a pre-existing set of skeleton files, then make sure the following minimum set
exists: .cshrc, .login, .kshenv, .profile. These can be automatically updated with the
command:

5-6 HPC BAS4 - User's Guide

env HOME=/etc/skel/usr/local/Modules/default/bin/add.modules.

Inspect the new "dot'' files and if they are OK, then remove all the .*.old (original) files. An
alternative way of setting-up the users' dot files can be found in ./ext.
This model can be used with the --with-dot-ext configure option.

User Shell RC ("Dot'') Files

The final step for a functioning modules environment is to modify the user "dot'' files to
source the right files. One way to do this is to put a message in the /etc/motd telling each
user to run the command:

/usr/local/Modules/default/bin/add.modules

This is a script that parses their existing "dot'' files prepending the appropriate commands
to initialize the Modules environment.

The user can re-run this script and it will find and remember what modules they initially
loaded and then strip out the previous module initialization and restore it with an upgraded
one.

If the user lacks a necessary "dot'' file, the script will copy one over from the skeleton
directory. The user will have to logout and login for it to come into effect.
Another way is for the system administrator to "su - username" to each user and run it
interactively. The process can be semi-automated with a single line command that obviates
the need for direct interaction:

su - username -c "yes | /usr/local/Modules/default/bin/add.modules"

Power users can create a script to directly parse the /etc/passwd file to perform this
command. Otherwise, just copy the passwd file and edit it to execute this command for
each valid user.

 The User's Environment 5-7

5.4 Module Files

Once the above steps have been performed, then it is important to have module files in
each of the modulefiles directories. For example, the following module files will be
installed:

--------- /usr/local/Modules/3.0.9-rko/modulefiles ----------
dot module-info modules null use.own

If you don't have your own module files in /usr/local/Modules/modulefiles then copy
"null'' to that directory. On some systems an empty modulefiles directory will cause a core
dump, whilst on other systems there will be no problem. Use
/usr/local/Modules/default/modulefiles/modules as a template for creating your own
module files.

For more information run:

 module load modules

You will then have ready access to the module(1) modulefile(4) man pages, as well as the
versions directory. Study the man pages carefully.
The version directory may look something like this:

---------------- /usr/local/Modules/versions ----------------
3.0.5-rko 3.0.6-rko 3.0.7-rko 3.0.8-rko 3.0.9-rko

The model you should use for modulefiles is "name/version''. For example,
/usr/local/Modules/modulefiles directory may have a directory named "netscape''
which contains the following module files: 301, 405c, 451c, etc.
When it's displayed with "module avail'' it looks something like this:

netscape/301
netscape/405c
netscape/451c(default)
netscape/45c
netscape/46

The default is established with .version file in the netscape directory and it looks something
like this:

#%Module1.0###

version file for Netscape

set ModulesVersion "451c"

If the user does "module load netscape'', then the default netscape/451c will be used. The
default can be instantly changed by editing the .version file to point to a different module
file in that directory. If no .version file exists then Modules will just use the last module in
the alphabetical ordered directory listing as the default.

5-8 HPC BAS4 - User's Guide

5.4.1 Package Location Suggestions

 To make Modules a useful tool in your environment, it's a good idea to use some
discipline and this may require some work in placing binaries and man pages into the best
locations. Using NFS is a convenient way to distribute modules, databases and other tools
on all cluster nodes. This is one way to stop using /usr/local/bin as a catch-all dump for
every miscellaneous binary, especially the ones that do not get used too often.

There are some scripts to help this along. For this discussion we will use the mythical
"foobar'' package. The source files are down-loaded in a form of a gzipped tar file -
foobar-1.2.3.tar.gz . Most source files can be placed anywhere, and in most cases will
configure and build without any problems. For this example we will do everything from
/tmp.

We unload the sources with tar -xzf foobar-1.2.3.tar.gz which creates a directory in the
current working directory (/tmp) named ./foobar-1.2.3.
Use the cd command to this directory and run the configure script.

./configure --prefix=/usr/local/pkg/foobar/1.2.3

This should configure the source files to place all necessary files in that location. Continue
the build, for example use:

make
make check
make install

The binaries, libraries, man pages, and info pages are now placed in
/usr/local/pkg/foobar/1.2.3.

 In order to create the "root'', load the modules module with the command

module load modules

Use the "mkroot -m'' script to create a collection of ./bin, ./etc, ./lib, ./man/
directories. Install the items as needed, then use "mkroot -c'' to clean out the empty
directories.

Finally, after installing the binaries, etc. create a module file using another module file as a
template and place it somewhere in the modulefile hierarchy. Be sure to keep your original
sources somewhere.

5.4.2 Upgrading via the Modules Command

The theory is that Modules should use a similar package/version locality as the package
environments it helps to define. Switching between versions of the module command should
be as easy as switching between different packages via the module command. Suppose
there is a change from 3.0.5-rko to version 3.0.6-rko. The goal is to semi-automate the
changes to the user "dot'' files so that the user is oblivious to the change.

 The User's Environment 5-9

The first step is to install the new module command & files to /usr/local/Modules/3.0.6-
rko/. Test it out by loading with "module load modules 3.0.6-rko". You may get an error
like: 3.0.6-rko (25):ERROR:152: Module 'modules' is currently not loaded. This is OK and
should not appear with future versions.

Make sure you have the new version with "module --version". If it seems stable enough,
then advertise it to your more adventurous users. Once you are satisfied that it appears to
work adequately well, then go into /usr/local/Modules remove the old "default" symbolic
link to the new versions.

For example:

cd /usr/local/Modules
rm default; ln -s 3.0.6-rko default

This new version is now the default and will be referenced by all the users that log in and
by those that have not loaded a specific module command version.

5-10 HPC BAS4 - User's Guide

5.5 The Module Command

Synopsis

module [switches] [sub-command] [sub-command-args]

The Module command provides a user interface to the Modules package. The Modules
package provides for the dynamic modification of the user's environment via modulefiles.

Each modulefile contains the information needed to configure the shell for an application.
Once the Modules package is initialized, the environment can be modified on a per-
module basis using the module command which interprets modulefiles. Typically
modulefiles instruct the module command to alter or to set shell environment variables such
as PATH, MANPATH, etc. modulefiles may be shared by many users on a system and users
may have their own collection to supplement or replace the shared modulefiles.

The modulefiles are added to and removed from the current environment by the user. The
environment changes contained in a modulefile can be summarized through the module
command as well. If no arguments are given, a summary of the module usage and sub-
commands are shown.

The action for the module command to take is described by the sub-command and its
associated arguments.

5.5.1 modulefiles

modulefiles are the files containing TCL code for the Modules package.

modulefiles are written in the Tool Command Language, TCL(3) and are interpreted by the
modulecmd program via the module(1) user interface. modulefiles can be loaded,
unloaded, or switched on-the-fly while the user is working.

A modulefile begins with the magic cookie, '#%Module'. A version number may be placed
after this string. The version number is useful as the format of modulefiles may change. If a
version number doesn't exist, then modulecmd will assume the modulefile is compatible
with the latest version. The current version for modulefiles will be 1.0. Files without the
magic cookie will not be interpreted by modulecmd.

Each modulefile contains the changes to a user's environment needed to access an
application. TCL is a simple programming language which permits modulefiles to be
arbitrarily complex, depending on the needs of the application and the modulefile writer. If
support for extended tcl (tclX) has been configured for your installation of modules, you
may use all the extended commands provided by tclX, too. modulefiles can be used to
implement site policies regarding the access and use of applications.

 The User's Environment 5-11

A typical modulefiles file is a simple bit of code that sets or adds entries to the PATH,
MANPATH, or other environment variables. TCL has conditional statements that are
evaluated when the modulefile is loaded. This is very effective for managing path or
environment changes due to different OS releases or architectures. The user environment
information is encapsulated into a single modulefile kept in a central location. The same
modulefile is used by all users independent of the machine. So, from the user's perspective,
starting an application is exactly the same regardless of the machine or platform they are
on.

modulefiles also hide the notion of different types of shells. From the user's perspective,
changing the environment for one shell looks exactly the same as changing the environment
for another shell. This is useful for new or novice users and eliminates the need for
statements such as "if you're using the C Shell do this ..., otherwise if you're using the
Bourne shell do this ..." Announcing and accessing new software is uniform and
independent of the user's shell. From the modulefile writer's perspective, this means one set
of information will take care of all types of shells.

5.5.2 Modules Package Initialization

The Modules package and the module command are initialized when a shell-specific
initialization script is sourced into the shell. The script creates the module command as
either an alias or function, creates Modules environment variables, and saves a snapshot of
the environment in ${HOME }/.modulesbeginenv. The module alias or function executes
the modulecmd program located in ${MODULESHOME }/bin and has the shell evaluate
the command's output. The first argument to modulecmd specifies the type of shell.

The initialization scripts are kept in ${MODULESHOME }/init/shellname where shellname
is the name of the sourcing shell. For example, a C Shell user sources the
${MODULESHOME }/init/csh script. The sh, csh, tcsh, bash, ksh, and zsh shells are all
supported by modulecmd. In addition, python and perl "shells" are supported which writes
the environment changes to stdout as python or perl code.

5.5.3 Examples of Initialization

In the following examples, replace ${MODULESHOME } with the actual directory name.

C Shell initialization (and derivatives)

 source ${MODULESHOME }/init/csh module load modulefile modulefile

Bourne Shell (sh) (and derivatives)

 ${MODULESHOME }/init/sh module load modulefile modulefile

Perl

require "${MODULESHOME }/init/perl"; &module("load modulefile modulefile ");

5-12 HPC BAS4 - User's Guide

5.5.4 Modulecmd Startup

Upon invocation modulecmd sources rc files which contain global, user and modulefile
specific setups. These files are interpreted as modulefiles.

Upon invocation of modulecmd module RC files are sourced in the following order:

1. Global RC file as specified by ${MODULERCFILE } or
 ${MODULESHOME }/etc/rc

2. User specific module RC file ${HOME }/.modulerc

3. All .module rc and .version files found during modulefile searches.

5.5.5 Module Command Line Switches

The module command accepts command line switches as its first parameter. These may be
used to control output format of all information displayed and the module behavior in the
case of locating and interpreting module files.

All switches may be entered either in short or long notation. The following switches are
accepted:

--force, -f

Force active dependency resolution. This will result in modules found on a prereq command
inside a module file being loaded automatically. Unloading module files using this switch
will result in all required modules which have been loaded automatically using the -f switch
being unloaded. This switch is experimental at the moment.

--terse, -t

Display avail and list output in short format.

--long, -l

Display avail and list output in long format.

--human, -h

Display short output of the avail and list commands in human readable format.

--verbose, -v

Enable verbose messages during module command execution.

--silent, -s

Disable verbose messages. Redirect stderr to /dev/null if stderr is found not to be a tty.
This is a useful option for module commands being written into .cshrc , .login or .profile
files, because some remote shells (e.g. rsh (1)) and remote execution commands (e.g.
rdist) get confused if there is output on stderr.

 The User's Environment 5-13

--create, -c

Create caches for module avail and module apropos . You must be granted write access
to the ${MODULEHOME }/modulefiles/ directory if you try to invoke module with the -c
option.

--icase, -i

This is a case insensitive module parameter evaluation. Currently only implemented for the
module apropos command.

--userlvl <lvl>, -u <lvl>

Set the user level to the specified value. The argument of this option may be one of:
novice, nov Novice
expert, exp Experienced module user
advanced, adv Advanced module user

5.5.6 Module Sub-Commands

Print the use of each sub-command. If an argument is given, print the Module specific help
information for the modulefile.

help [modulefile...]

Load modulefile into the shell environment.

load modulefile [modulefile...]
add modulefile [modulefile...]

Remove modulefile from the shell environment.

unload modulefile [modulefile...]
rm modulefile [modulefile...]

Switch loaded modulefile1 with modulefile2.

switch modulefile1 modulefile2
swap modulefile1 modulefile2

Display information about a modulefile. The display sub-command will list the full path of
the modulefile and all (or most) of the environment changes the modulefile will make when
loaded. (It will not display any environment changes found within conditional statements).

display modulefile [modulefile...]

List loaded modules.

show modulefile [modulefile...]
list
avail [path...]

5-14 HPC BAS4 - User's Guide

List all available modulefiles in the current MODULEPATH. All directories in the
MODULEPATH are recursively searched for files containing the modulefile magic cookie. If
an argument is given, then each directory in the MODULEPATH is searched for modulefiles
whose pathname match the argument. Multiple versions of an application can be
supported by creating a subdirectory for the application containing modulefiles for each
version.

use directory [directory...]

Prepend directory to the MODULEPATH environment variable. The --append flag will
append the directory to MODULEPATH.

use [-a|--append] directory [directory...]

Remove directory from the MODULEPATH environment variable.

unuse directory [directory...]

Attempt to reload all loaded modulefiles. The environment will be reconfigured to match the
saved ${HOME }/.modulesbeginenv and the modulefiles will be reloaded. The update
command will only change the environment variables that the modulefiles set.

update

Force the Modules Package to believe that no modules are currently loaded.

clear

Unload all loaded modulefiles.

purge

Display the modulefile information set up by the module-whatis commands inside the
specified modulefiles. If no modulefiles are specified, all the whatis information lines will be
shown.

whatis [modulefile [modulefile...]]

Searches through the whatis information of all modulefiles for the specified string. All
module whatis information matching the search string will be displayed.

apropos string
keyword string

Add modulefile to the shell's initialization file in the user's home directory. The startup files
checked are .cshrc, .login, and .csh_variables for the C Shell; .profile for the Bourne and
Korn Shells; .bashrc, .bash_env, and .bash_profile for the GNU Bourne Again Shell;
.zshrc, .zshenv, and .zlogin for zsh. The .modules file is checked for all shells. If a
'module load' line is found in any of these files, the modulefile(s) is(are) appended to any
existing list of modulefiles. The 'module load' line must be located in at least one of the files
listed above for any of the 'init' sub-commands to work properly. If the 'module load' line is
found in multiple shell initialization files, all of the lines are changed.

 The User's Environment 5-15

initadd modulefile [modulefile...]

Does the same as initadd but prepends the given modules to the beginning of the list. initrm
modulefile [modulefile...] Remove modulefile from the shell's initialization files.

initprepend modulefile [modulefile...]

Switch modulefile1 with modulefile2 in the shell's initialization files.

initswitch modulefile1 modulefile2

List all of the modulefiles loaded from the shell's initialization file.

initlist

Clear all of the modulefiles from the shell's initialization files.

initclear

5.5.7 Modules Environment Variables

Environment variables are unset when unloading a modulefile. Thus, it is possible to load a
modulefile and then unload it without having the environment variables return to their prior
state.

MODULESHOME:

This is the location of the master Modules package file directory containing module
command initialization scripts, the executable program modulecmd, and a directory
containing a collection of master modulefiles.

MODULEPATH:

This is the path that the module command searches when looking for modulefiles. Typically,
it is set to the master modulefiles directory, ${MODULESHOME }/modulefiles, by the
initialization script. MODULEPATH can be set using 'module use' or by the module
initialization script to search group or personal modulefile directories before or after the
master modulefile directory.

LOADEDMODULES

A colon separated list of all loaded modulefiles.

_LOADED_MODULEFILES_

A colon separated list of the full pathname for all loaded modulefiles.

MODULESBEGINENV

The filename of the file containing the initialization environment snapshot.

Files

/opt

5-16 HPC BAS4 - User's Guide

The MODULESHOME directory.

${MODULESHOME}/etc/rc

The system-wide modules rc file. The location of this file can be changed using the
MODULERCFILE environment variable as described above.

${HOME}/.modulerc

The user specific modules rc file.

${MODULESHOME}/modulefiles

The directory for system-wide modulefiles. The location of the directory can be changed
using the MODULEPATH environment variable as described above.

${MODULESHOME}/bin/modulecmd

The modulefile interpreter that gets executed upon each invocation of a module.

${MODULESHOME}/init/shellname

The Modules package initialization file sourced into the user's environment.

${MODULESHOME}/init/.modulespath

The initial search path setup for module files. This file is read by all shell init files.

${MODULEPATH}/.moduleavailcache

File containing the cached list of all modulefiles for each directory in the MODULEPATH
(only when the avail cache is enabled).

${MODULEPATH}/.moduleavailcachedir

File containing the names and modification times for all sub-directories with an avail cache.

${HOME}/.modulesbeginenv

A snapshot of the user's environment taken at Module initialization. This information is used
by the module update sub-command.

 Launching an Application 6-1

Chapter 6. Launching an Application
This chapter describes the following topics:

• 6.1 Launching the Application without a Batch Manager

• 6.2 Quadrics Resource Management System

• 6.3 SLURM Resource Management Utilities

• 6.4 Launching the Application using TORQUE Batch Manager

6.1 Launching the Application without a Batch Manager

There are different ways of launching the application on Bull HPC platforms, without using
a batch manager. These vary according to platform and application type. Refer to the table
on the next page for information on the different possibilities that are available.

A second step is to ensure that once launched the execution is fully optimized. The tools
and commands to be used to do this are also indicated. It is possible that the system
administrator may have to intervene in order to allocate the resources for the application.

For more information on where to find these tools and how to use them, refer to the rest of
this chapter and the Bull HPC BAS4 Application Tuning Guide (86 A2 19ER). For more
information on the commands for the pdsh shell utility, refer to the Bull HPC BAS4
Administrator’s Guide (86 A2 30ER).

 Note:
For more information on mprun, used in a single node parallel environment, and mpibull2-
launch, a meta-launcher which helps users retain their launching commands when
changing MPI environments and process managers, refer to chapter 2 of this manual.

6-2 HPC BAS4 - User's Guide

Platform Application Launching
tool Execution optimization

Serial Bull Linux
kernel

pexec [prog_name]

Parallel/OpenMP

pplace [prog_name]
numactl [prog_name]
numactl [pplace]
[prog_name]

SMP/NUMA
only

Parallel/MPI mprun
mpiexec

N/A

Non-MPI pdsh

pplace [prog_name]
numactl [prog_name]
pdsh numactl [pplace]
[prog_name]

Clusters with
Ethernet
interconnects

MPI mpiexec N/A

Serial rmsexec rmsexec [numactl]
[prog_name]

OpenMP on
one node

allocate then
numactl on
the node

prun [pplace] [prog_name]

MPI prun N/A

Clusters with
Quadrics
QSNet\RMS
interconnects Parallel

Hybrid (MPI +
OpenMP)

prun prun [pplace] [prog_name]

Serial N/A

OpenMP on
one node

srun –A
then numactl
on the node

MPI srun

Clusters with
IB/SLURM
Voltaire
interconnects Parallel

Hybrid (MPI +
OpenMP)

srun

srun options
[--cpu_bind]
[--mem_bind]

Table 6-1. Launching tools for different platforms

 Launching an Application 6-3

 Note:
There are memory access differences for the different hardware architectures covered by
this manual. NovaScale 5xxx/6xx0 Series platforms use the Quad Brick Board (QBB)
hardware architecture with Non Uniform Memory Access (NUMA). Symmetric
Multiprocessing (SMP) is used for NovaScale 4xx0 Series. NovaScale 3005 Series
platforms have a very low NUMA factor which is disabled by default.

In SMP platforms the memory access time is stable for all processors, and the Quad Brick
Board hardware model is not used. The term QBB for these platforms refers to the set of
sockets which are attached to the Scalable Node Controller (SNC) on the system board for
NovaScale 4xx0 platforms, and to the Node Controller (NC) on the system board for
NovaScale 3005 platforms. This means that 1 QBB, which may include 1-4 single
processors, is possible for the NovaScale 4xx0 platforms, whilst for the NovaScale 3005
Series 2 QBBs are possible, each of which may house 1-2 dual core sockets.

6.1.1 NUMACTL

Numactl is dedicated to single-NUMA systems. The granularity is restricted to the QBB
level for each node. The following example shows a node with 16 CPUs.

NODENODE

QBB1QBB1 QBB2QBB2 QBB3QBB3 QBB4QBB4

NUMACTL ALLOCATION

CPUCPU

Figure 6-1. Numactl QBB application

Numactl is able to define an execution area for an application, in this example QBB2 and
QBB3 (2 * 4 CPUs) are allocated.

6.1.1.1 Using Libnuma and Numactl

Important:

The scope of the numactl command is a mono numa configuration, with 1 to 8 QBBs that
is to say, one node for a HPC cluster.

In the following paragraph concerning the numactl command, "node" means a QBB in the
numa configuration.

6-4 HPC BAS4 - User's Guide

Libnuma is a library that offers a simple programming interface to the Symmetric Multi
Processing NUMA policy supported by the Linux kernel. In a NUMA architecture, memory
areas have different latencies or bandwidths according to which CPUs they are accessed
from.

Available policies are page interleaving, preferred node allocation, local allocation,
allocation only on specific nodes. The binding of threads to specific nodes is also possible.
All policies exist per thread and are inherited by children.

For setting global policy per process it is easiest to run Libnuma using the numactl utility.
This library can be used for a more fine grained policy inside an application. Outside the
application the policy applies to all the memory of the process, whereas inside you can use
it for each memory zone.

The granularity level of allocation for numactl is the node i.e. a QBB.

All numa memory allocation policies only take effect when pages are actually faulted into
the address space of a process by accessing them. The numa_alloc_* functions take care
of this automatically.

Before any other calls in this library can be used numa_available must be called. When it
returns a negative value all other functions in this library are undefined.

numactl runs processes with a specific NUMA scheduling or memory placement policy.
The policy is set for a command and inherited by all of its children. In addition numactl
can set a persistent policy for shared memory segments or files.

The most common policy settings are:

--interleave=nodes, -i nodes

Sets an memory interleave policy. Memory will be allocated using a round robin algorithm
on nodes. When memory cannot be allocated on the current interleave, the target falls
back to other nodes.

--membind=nodes, -m nodes

Only allocates memory from the specified nodes. Allocation will fail when there is not
enough memory available on these nodes.

--cpubind=nodes, -c nodes

Only executes process on the CPUs of the nodes specified.

 Note:

It is possible that this command may conflict with the usage of CPUSETS. As an alternative
it is suggested that you use numactl to set your mempolicy set rather than CPUSETS
and/or taskset or sched_affinity for CPU bindings.

 Launching an Application 6-5

--localalloc, -l

Always allocates locally on the current node.

Example

To run a program which allocates memory using a round robin allocation on 4 nodes of a
16 CPU NovaScale server, enter:

numactl –i0,1,2,3 program_name

For more information refer to the numa man pages.

Libnuma comes under the GNU Lesser General Public License, v2.1.

6.1.2 The PTOOLS and CPUSET Package

The Ptools package includes the pexec and the pcreate commands which can be used to
create and to execute cpusets, and also to allocate resources inside an HPC node. The
minimum granularity level is the CPU within a QBB. In the following example we have:

CPUSET 1 with 2 CPUs on QBB1, 2 CPUs on QBB2 and 2 CPUs on QBB3,

CPUSET 2 with 2 CPUs on QBB2 and 2 CPUs on QBB3,

CPUSET 3 with 4 CPUs on QBB4.

QBB1QBB1

CPUSET ALLOCATION

CPUSET N°2

CPUSET N°1

QBB2QBB2 QBB3QBB3 QBB4QBB4

CPUSET N°3

NODENODE

Figure 6-2. CPUSET allocation

6.1.2.1 Using Ptools and CPUSET

CPUSET is a feature of the Bull Linux kernel, which lets you define execution areas inside a
multiprocessor system. The execution of each program will be limited to these predefined
areas. These execution areas are called cpusets.

6-6 HPC BAS4 - User's Guide

Cpusets can form a nested hierarchy meaning that cpusets can be created inside a
cpuset.

Cpusets are used:

• To offer some kind of partitioning for multiprocessor systems.

• To ensure the highest performance for the execution of an application, especially on
systems with a complex topology such as NUMA systems.

Cpusets also changes the way you map processes on specific processors. When a task
uses the sched_setaffinity system call, the list of processors specified for this system call is
interpreted to be used inside the cpuset in which the application is running. For example, if
an application running inside a cpuset with processors 4, 5, 6 and 7 wants to bind one of
its processes to the processor 0, the process will actually be bound to processor 4. This
feature allows you to run several applications at the same time, and to finely control which
processors their tasks are running on.

Bull provides the ptools suite to create and run cpusets.

ptools consists of the following:

pcreate To create cpusets.

pexec To create a cpuset and run an application inside it. The cpuset is
destroyed when the application is completed.

passign To move a task inside a cpuset.

pdestroy To destroy a cpuset.

pls To list existing cpusets.

pplace To finely tune the binding of threads and processes for an
application. See the Bull HPC BAS4 Application Tuning Guide
(86 A2 19ER) for more details.

When a cpuset is created, a list of processors must be chosen. Several flags can also be
set for each cpuset:

strict Also called cpu_exclusive. This cpuset will not share its processors
with other cpusets that have the same parent cpuset.

autoclean To automatically remove a cpuset from a system and to free its
resources when it becomes unused. That is to say when all the
applications running inside the cpuset are finished.

Example
pexec –np <nb_cpus> --strict <my_app>

[root@nsadmin root]# pexec -np 2 --strict ./myapp

Created /dev/cpuset/cpuset0

Myapp running..

For more information refer to the installed man pages of pexec, pcreate and passign.

 Launching an Application 6-7

6.2 Quadrics Resource Management System

The Quadrics Resource Management System (RMS) includes the prun command to define
partitions and to run jobs in a HPC cluster. One partition can lie across several nodes, as is
the case for the "PARALLEL partition N°1" in the following figure:

Figure 6-3. RMS Partitions

6.2.1 Using Quadrics RMS

The key to achieving high-levels of performance for a large-scale parallel application is to
dedicate specific resources (CPUs, memory, network bandwidth and local I/O capability)
to its execution. Quadrics RMS enables a system administrator to efficiently manage these
resources to achieve maximum performance. Nodes can be configured into mutually
exclusive sets known as partitions; these may each provide a specific system service. For
example, your system could have an interactive partition for conventional UNIX processes
and program development, a sequential batch partition, and a parallel partition running
the RMS gang scheduler. Free cycles on the interactive partition could be used by
sequential batch jobs running from a low priority queue. Plus the system may be configured
to allow certain users to run high-priority interactive jobs during working hours.

Parallel programs under Quadrics RMS are managed by a controlling process prun and
have application processes distributed over the nodes of a partition. Each process is
executed by dedicated CPUs. You choose how many are required for each process, and
how they are distributed over multi-CPU nodes.

The administrator of an RMS system controls how the nodes are configured into partitions,
how they change, and who can access each partition and the level of resources that they
use.

RMS also provides accounting facilities.

The user commands required to launch an application with RMS are as follows:

6-8 HPC BAS4 - User's Guide

prun

The prun program loads and runs parallel programs. It can also run multiple copies of a
sequential program.

rmsexec

The rmsexec program runs a sequential program on a lightly loaded node.

6.2.2 Prun

The main options for prun are as follows:

-n <procs> Specifies the number of processes required

-p <partitions> Specifies the partition on which to run the program

-Rrails=<nbrails> Gives the number of rails to use

-N<nodes> Specifies the number of nodes required

-B<base> Specifies the first node to use

-s Prints statistics as the job exits

-t Prefix output with the process number

-o<output_file.txt> Redirects output to output_file.txt

-e<err_file.txt> Redirects errors to err_file.txt

6.2.3 Rmsexec

The rmsexec program provides a mechanism for running sequential programs on lightly
loaded nodes with free memory or low CPU usage. It locates a suitable node and then runs
the program on it. The user can select a node from a specific partition (of type login or
general) with the -p option. Without the -p option rmsexec uses the default load-balancing
partition (specified with the lbal-partition attribute in the attributes table). In addition, the
hostname of the node can be specified explicitly. The request will fail if this node is not
available according to the access rights of the user. System administrators may select any
node.

 Note:

This load balancing service may not be available on all types of partitions.

The main options for rmsexec are the following ones:

rmsexec [-hv] [-p partition] [-s stat] [hostname] program [args ...]

Use the -h option to get a list of the available options and valid arguments.

 Launching an Application 6-9

Selecting a Node

rmsexec restricts its search for a lightly loaded node to the partitions you are entitled to use
(as defined by the system administrator). You can restrict the search still further by naming
a particular partition with the -p option, as shown in the following example:

$ rmsexec -p parallel myseqprog

You can also request a processor on a specific node. The following example requests the
node atlas2:

$ rmsexec atlas2 myseqprog

6.2.4 rinfo

rinfo is a RMS command used on HPC platforms with Quadrics Interconnects and which
provides you with a global overview of the partitions defined by RMS on a cluster
including the number of CPUs and machines within it. rinfo will also indicate the number of
CPUs used when an application is executed within a partition and the state of affairs for
the active applications.
This command can also be used to obtain further information on the topology of the cluster.

Example:

$ rinfo

MACHINE CONFIGURATION
nsad day

PARTITION CPUS STATUS TIME TIMELIMIT NODES
root 28 ns[13-15]
nsad
part1 0/8 running 1:00:07:02 ns[13-14]
part2 ??/0 down --:--

In the example above the cluster consists of 28 processors and 3 nodes: ns 13, ns 14 and
ns 15. The first RMS partition is shown as ‘part1’ and consists of 2 nodes (ns13 and
ns14) and 8 CPUs and its status is ‘running’ which means that it can be used.

The second partition is ‘part2’ and its status is ‘down’, with no nodes allocated, which
means that it cannot be used.

6.2.5 More RMS Information

For more information, see Bull HPC BAS4 Administrator’s Guide (86 A2 30ER) or refer to
the RMS User’s Guide and the Quadrics web site at http://www.quadrics.com

See the "RMS Reference Manual" at http://www.quadrics.com for details about other RMS
commands.

http://www.quadrics.com/
http://www.quadrics.com/

6-10 HPC BAS4 - User's Guide

6.3 SLURM Resource Management Utilities

As a cluster resource manager, SLURM has three key functions. First, it allocates exclusive
and/or non-exclusive access to resources (compute nodes) to users for some duration of
time so they can perform work. Second, it provides a framework for starting, executing,
and monitoring work (normally a parallel job) on the set of allocated nodes. Finally, it
arbitrates conflicting requests for resources by managing a queue of pending work.

Users interact with SLURM through various command line utilities:

• SRUN for submitting a job for execution and optionally controlling it interactively.

• SBCAST to transmit a file to all nodes running a job.

• SCANCEL for terminating a pending or running job.

• SQUEUE for monitoring job queues.

• SINFO for monitoring partition and overall system state.

• SACCT displays data for all jobs and job steps in the SLURM accounting log.

• Global Accounting API for merging the data from the LSF accounting file and the
SLURM accounting file into a single record.

 Note:
See the HPC BAS4 Application Tuning Guide for information on the Consumable Resource
Scheduling Policy using the CPU Consumable Resource node allocation plug-in.

6.3.1 SRUN

SRUN submits jobs to run under SLURM management. SRUN can:

• Submit a batch job and then terminate

• Submit an interactive job and then persist to shepherd the job as it runs

• Allocate resources to a shell and then spawn that shell for use in running subordinate
jobs.

SLURM associates every set of parallel tasks ("job steps") with the SRUN instance that
initiated that set, and SRUN provides comprehensive control over node choice and I/O
redirection for the parallel job.

6.3.1.1 SRUN Roles and Modes

SRUN executes tasks ("jobs") in parallel on multiple compute nodes at the same time (on
machines where SLURM manages the resources). SRUN options allow the User to both:

• Specify the parallel environment for job(s), such as the number of nodes used, node
partition, distribution of processes among nodes, and total time.

• Control the behavior of a parallel job as it runs, such as by redirecting or labeling its
output, sending it signals, or specifying its reporting verbosity.

Because it performs several different roles, SRUN can be used in four distinct ways or
"modes". These modes are described in the following table.

 Launching an Application 6-11

Mode Description

INTERACTIVE The simplest way to use SRUN is to distribute execution of a serial
program (such as a UNIX utility) across a specified number or range of
compute nodes. For example,
srun -N 8 cp ~/data1 /var/tmp/data1

copies (CP) file data1 from a common home directory to local disk
space on each of eight compute nodes. SRUN allows relevant
environment variables to be set on its own execute line. In interactive
mode, SRUN submits job to the local SLURM job controller, then initiates
all processes on the specified nodes and blocks until the requested
resources become available. Many control options are available to
change the details of this general pattern.

BATCH SRUN can also directly submit complex scripts to the job queue(s)
managed by SLURM for later execution, when needed resources become
available and when no higher priority jobs are pending. For example,
srun -N 16 -b myscript.sh

uses the -b option of SRUN to place myscript.sh into the queue to later
run on 16 nodes. Scripts in turn normally contain either MPI programs or
other simple invocations of SRUN itself (as shown above). Thus, the -b
option of SRUN supports basic, local-batch service.

ALLOCATE The SRUN "allocate" mode can be used to combine the job complexity
of scripts with the immediacy of interactive execution. For example,
srun -A -N 4 myscript.sh

uses the SRUN (uppercase) -A option to allocate specified resources (in
this case, four nodes), spawn a subshell with access to those resources,
and then run multiple subsequent jobs using simple SRUN commands
within the specified script (here, myscript.sh) that the subshell
immediately starts to execute.

ATTACH To monitor or intervene in an already running SRUN job, either batch
(started with -b) or interactive ("allocated", started with -A), execute
SRUN again and "attach"(-a, lowercase) to that job. For example,
srun -a 6543 -j

forwards the standard output and error messages from the running job
with SLURM ID 6543 to the attaching SRUN to reveal the job's current
status, and (with -j, lowercase) also "joins" the job so that you can send
it signals as if this SRUN had initiated the job. Omit -j for read-only
attachments. Because you are attaching to a running job whose
resources have already been allocated, SRUN's resource-allocation
options (such as -N) are incompatible with -a.

Table 6-2. SRUN Modes

6.3.1.2 SRUN SIGNAL HANDLING

Signals sent to SRUN are automatically forwarded to the tasks that SRUN controls, with a
few special cases. SRUN handles the sequence CTRL-C in different ways, depending on
how many it receives in one second:

6-12 HPC BAS4 - User's Guide

CTRL-Cs within one second

First reports the state of all tasks

associated with SRUN.
Second sends SIGINT signal to all

associated SRUN tasks.
Third terminates the job at once,

without waiting for remote
tasks to exit.

6.3.1.3 SRUN Run-Mode Options

This section explains the mutually exclusive SRUN options that enable its different run
modes. Each option has a one-character (UNIX) and a longer (Linux) alternative syntax.

NAME

SRUN - run parallel jobs

SYNOPSIS

srun [OPTIONS...] executable [args...]
srun --batch [OPTIONS...] job_script
srun --allocate [OPTIONS...] [job_script]
srun --attach=jobid

DESCRIPTION
Allocate resources and optionally initiate parallel jobs on clusters managed by SLURM.

6.3.1.4 Parallel Run Options

-n, --ntasks=ntasks
Specify the number of processes to run. Request that SRUN allocate ntasks
processes. The default is one process per node, but note that the -c parameter will
change this default.

-c, --cpus-per-task=ncpus

Request that ncpus be allocated per process. This may be useful if the job is
multithreaded and requires more than one CPU per task for optimal performance.
The default is one CPU per process. If -c is specified without -n as many tasks will
be allocated per node as possible while satisfying the -c restriction.

-N, --nodes=minnodes[-maxnodes]

 Launching an Application 6-13

Request that a minimum of minnodes nodes be allocated to this job. The scheduler
may decide to launch the job on more than minnodes nodes. A limit on the
maximum node count may be specified with maxnodes (e.g. "--nodes=2-4"). The
minimum and maximum node count may be the same to specify a specific number
of nodes (e.g. "--nodes=2-2" will ask for two and ONLY two nodes). The
partition’s node limits supersede those of the job. If a job’s node limits are
completely outside of the range permitted for its associated partition, the job will
be left in a PENDING state. Note that the environment variable SLURM_NNODES
will be set to the count of nodes actually allocated to the job. See the
ENVIRONMENT VARIABLES section for more information. If -N is not specified,
the default behavior is to allocate enough nodes to satisfy the requirements of the
-n and -c options.

-r, --relative=n
Run a job step relative to node n of the current allocation. This option may be
used to spread several job steps out among the nodes of the current job. If -r is
used, the current job step will begin at node n of the allocated nodelist, where the
first node is considered node 0. The -r option is not permitted along with -w or -x,
and will be silently ignored when not running within a prior allocation (i.e. when
SLURM_JOBID is not set). The default for n is 0. If the value of --nodes exceeds
the number of nodes identified with the --relative option, a warning message will
be printed and the --relative option will take precedence.

-p, --partition=partition

Request resources from partition "partition." The SLURM administrator creates the
partitions, and also identifies one of those partitions as the default.

-P, --dependency=jobid

Defer initiation of this job until the specified jobid has completed execution. Many
jobs can share the same dependency and these jobs may belong to different
users. The value may be changed after job submission using the SCONTROL
command.

--nice[=adjustment]
Run the job with an adjusted scheduling priority. With no adjustment value, the
scheduling priority is decreased by 100. The adjustment range is from -10000
(highest priority) to 10000 (lowest priority). Only privileged users can specify a
negative adjustment. Note that this option is presently ignored if
SchedulerType=sched/maui.

--multi-prog

Run a job with different programs and different arguments for each task. In this
case, the executable program specified is actually a configuration file specifying
the executable and the arguments for each task. See MULTIPLE PROGRAM
CONFIGURATION below for details about the configuration file contents.

6-14 HPC BAS4 - User's Guide

--begin=time
Defer initiation of this job until the specified time. It accepts times of the form
HH:MM:SS to run a job at a specific time of day (seconds are optional). (If that
time is already past, the next day is assumed.) It is also possible to specify
midnight, noon, or teatime (4pm) and have a time-of-day appended with AM or
PM, for running in the morning or the evening. Additionally, it is possible to
specify the day on which the job will be run, by giving a date in the form
month-name day with an optional year, or giving a date of the form MMDDYY,
MM/DD/YY, or DD.MM.YY. Another option is to give times like now + count
time-units, where the time-units can be minutes, hours, days, or weeks and SLURM
can be told to run the job today with the keyword today, or to run the job
tomorrow with the keyword tomorrow. The value may be changed after job
submission using the SCONTROL command.

-U, --account=account

Change resource use by this job to specified account. The account is an arbitrary
string. The account may be changed after job submission using the SCONTROL
command.

-t, --time=minutes

Establish a time limit to terminate the job after the specified number of minutes. If
the job’s time limit exceeds the partition’s time limit, the job will be left in a
PENDING state. The default value is the partition’s time limit. When the time limit
is reached, the job’s processes are sent SIGTERM followed by SIGKILL. The
interval between signals is specified by the SLURM configuration parameter
KillWait. Time limit of 0 minutes indicates that an infinite timelimit should be used.

-D, --chdir=path

Have the remote processes do a chdir to path before beginning execution. The
default is to chdir to the current working directory of the SRUN process.

-I, --immediate

Exit if resources are not immediately available. By default, --immediate is off, and
SRUN will block until resources become available.

-k, --no-kill
Do not automatically terminate a job if one of the nodes it has been allocated
fails. This option is only recognized on a job allocation, not for the submission of
individual job steps. The job will assume all responsibilities for fault-tolerance. The
active job step (MPI job) will almost certainly suffer a fatal error, but subsequent
job steps may be run if this option is specified. The default action is to terminate
the job upon node failure. Note that -batch jobs will be re-queued if a node failure
occurs in the process of initiating it.

-K, --kill-on-bad-exit

Terminate a job if any task exits with a non-zero exit code.

-s, --share
The job can share nodes with other running jobs. This may result in faster job
initiation and higher system utilization, but lower application performance.

 Launching an Application 6-15

-O, --overcommit
Overcommit resources. Normally, SRUN will not allocate more than one process
per CPU. Specifying --overcommit explicitly allows more than one process per
CPU. However, no more than MAX_TASKS_PER_NODE tasks are permitted to
execute per node.

-T, --threads=nthreads

Request that SRUN use nthreads to initiate and control the parallel job. The default
value is the smallest of 10 or the number of nodes allocated.

-l, --label

Prefix task number to lines of stdout/err. Normally, stdout and stderr from remote
tasks are line-buffered directly to the stdout and stderr of SRUN. The --label option
will prefix lines of output with the remote task id.

-u, --unbuffered

Do not line buffer stdout from remote tasks. This option cannot be used with -label.

-m, --distribution=(block|cyclic|hostfile)
Specify an alternate distribution method for remote processes.

block

The block method of distribution will allocate processes in-order to the CPUs
on a node. If the number of processes exceeds the number of CPUs on all of
the nodes in the allocation then all nodes will be utilized. For example,
consider an allocation of three nodes each with two CPUs. A four-process
block distribution request will distribute those processes to the nodes with
processes one and two on the first node, process three on the second node,
and process four on the third node. Block distribution is the default behavior
if the number of tasks exceeds the number of nodes requested.

cyclic

The cyclic method distributes processes in a round-robin fashion across the
allocated nodes. That is, process one will be allocated to the first node,
process two to the second, and so on. This is the default behavior if the
number of tasks is not larger than the number of nodes requested.

hostfile

The hostfile method of distribution will allocate processes in the order in
which they are listed in the file designated by the environment variable
SLURM_HOSTFILE. If this variable is listed, it will override any other method
specified. If not set, the method will default to block.

-J, --job-name=jobname

Specify a name for the job. The specified name will appear along with the job id
number when querying running jobs on the system. The default is the supplied
executable program’s name.

--mpi=mpi_type

Identify the type of MPI to be used. This may result in unique initiation procedures.

list

Lists available MPI types from which to choose.

6-16 HPC BAS4 - User's Guide

lam

Initiates one lamb process per node and establishes necessary environment
variables for LAM/MPI.

mpich-gm
For use with Myrinet.

mvapich

For use with Infiniband.

none

No special MPI processing. This is the default and works with many other
versions of MPI.

--ctrl-comm-ifhn=addr
Specify the address or hostname to be used for PMI communications only (task
communication and synchronization primitives for MPCIH2). The default is
hostname (response from getnodename function). Use of this is required if a DNS
lookup cannot be performed on the hostname or if that address is blocked from
the compute nodes.

--jobid=id

Initiate a job step under an already allocated job with job id id. Using this option
will cause SRUN to behave exactly as if the SLURM_JOBID environment variable
were set.

-o, --output=mode

Specify the mode for stdout redirection. By default, in interactive mode, SRUN
collects stdout from all tasks, and line buffers this output to the attached terminal.
With --output stdout may be redirected to a file, to one file per task, or to
/dev/null. If the specified file already exists, it will be overwritten. If --error is not
also specified on the command line, both stdout and stderr will be directed to the
file specified by --output.

-i, --input=mode
Specify how stdin is to be redirected. By default, SRUN redirects stdin from the
terminal to all tasks.

-e, --error=mode

Specify how stderr is to be redirected. By default in interactive mode, SRUN
redirects stderr to the same file as stdout, if one is specified. The --error option is
provided to allow stdout and stderr to be redirected to different locations. If the
specified file already exists, it will be overwritten.

-b, --batch

Submit in "batch mode." SRUN will make a copy of the executable file (a script)
and submit the request for execution when resources are available. SRUN will
terminate after the request has been submitted. The executable file will run on the
first node allocated to the job and must contain SRUN commands to initiate
parallel tasks. stdin will be redirected from /dev/null, stdout and stderr will be
redirected to a file (the default is jobname.out or jobid.out in the current working
directory - see -o for other IO options).

 Launching an Application 6-17

Note that if the SLURM daemons are cold-started, jobid values will be reused.
Plan accordingly to avoid over-writing output and error files. The executable must
be specified using either a fully-qualified pathname, or its pathname will be
treated as relative to the current working directory. The search path will not be
used to locate the file. The executable will be interpreted by the users default shell
unless the file begins with "#!" followed by the fully-qualified pathname of a valid
shell. Note that batch jobs will be re-queued if a node fails while it is being
initiated.

SRUN command-line options can also be inserted into the script by prefacing the
option with #SLURM. Multiple options can be on one line or multiple lines. i.e.

#SLURM -N 2 -n 2
#SLURM --mpi=lam

This is running the script on 2 nodes, with 2 procs with mpi type lam. All
command-line options are able to be set inside the script with the exception of the
mode (which has already been set to run a batch script since the running mode is
batch). Options on the command line take precedence over options in the batch
script, which in turn take precedence over existing environment variables.

-v, --verbose

Verbose operation. Using the -v multiple times will further increase the verbosity of
SRUN. By default, only errors will be displayed.

-d, --slurmd-debug=level

Specify a debug level for SLURMD. “level” may be an integer value between 0
[quiet, only errors are displayed] and 4 [verbose operation]. The SLURMD debug
information is copied to the stderr of the job. By default, only errors are
displayed.

-W, --wait=seconds
Specify how long to wait after the first task terminates before terminating all
remaining tasks. A value of 0 indicates an unlimited wait (a warning will be
issued after 60 seconds). The default value is set by the WaitTime parameter in
the SLURM configuration file (see slurm.conf). This option can be useful to insure
that a job is terminated in a timely fashion in the event that one or more tasks
terminate prematurely.

-q, --quit-on-interrupt

Quit immediately on single SIGINT (Ctrl-C). Use of this option disables the status
feature normally available when SRUN receives a single Ctrl-C and causes SRUN
to instead immediately terminate the running job.

-X, --disable-status

Disable the display of task status when SRUN receives a single SIGINT (Ctrl-C).
Instead, immediately forward the SIGINT to the running job. A second Ctrl-C in
one second will forcibly terminate the job and SRUN will immediately exit. May
also be set via the environment variable SLURM_DISABLE_STATUS.

-Q, --quiet

Quiet operation. Suppress informational messages. Errors will still be displayed.

6-18 HPC BAS4 - User's Guide

--mail-type=type
Notify user by email when certain event types occur. Valid type values are
BEGIN, END, FAIL, ALL (any state change). The user to be notified is indicated
with --mail-user.

--mail-user=user

User to receive email notification of state changes as defined by --mail-type. The
default value is the submitting user.

--uid=user

Attempt to submit and/or run a job as user instead of the invoking user id. The
invoking user’s credentials will be used to check access permissions for the target
partition. User root may use this option to run jobs as a normal user in a RootOnly
partition for example. If run as root, SRUN will drop its permissions to the uid
specified after node allocation is successful. “user” may be the user name or
numerical user ID.

--gid=group

If SRUN is run as root, and the --gid option is used, submit the job with group’s
group access permissions. group may be the group name or the numerical group
ID.

--core=type

Adjust corefile format for parallel job. If possible, SRUN will set up the
environment for the job such that a corefile format other than full core dumps is
enabled. If run with type = "list", SRUN will print a list of supported corefile
format types to stdout and exit.

--propagate[=rlimits]
Allows users to specify which of the modifiable (soft) resource limits to propagate
to the compute nodes and apply to their jobs. If rlimits is not specified, then all
resource limits will be propagated.

--prolog=executable

SRUN will run executable just before launching the job step. The command line
arguments for executable will be the command and arguments of the job step. If
executable is "none", then no prolog will be run. This parameter overrides the
SrunProlog parameter in slurm.conf.

--epilog=executable

SRUN will run executable just after the job step completes. The command line
arguments for executable will be the command and arguments of the job step. If
executable is "none", then no epilog will be run. This parameter overrides the
SrunEpilog parameter in slurm.conf.

--task-prolog=executable

The SLURMD daemon will run executable just before launching each task. This will
be executed after any TaskProlog parameter in slurm.conf is executed. Besides the
normal environment variables, this has SLURM_TASK_PID available to identify the
process ID of the task being started. Standard output from this program of the
form "export NAME=value" will be used to set environment variables for the task
being spawned.

 Launching an Application 6-19

--task-epilog=executable
The SLURMD daemon will run executable just after each task terminates. This will
be before any TaskEpilog parameter in slurm.conf is executed. This is meant to be
a very short-lived program. If it fails to terminate within a few seconds, it will be
killed along with any descendant processes.

6.3.1.5 Allocate Options

-A, --allocate
Allocate resources and spawn a shell. When --allocate is specified to SRUN, no
remote tasks are started. Instead a subshell is started that has access to the
allocated resources. Multiple jobs can then be run on the same CPUs from within
this subshell. See Allocate Mode below.

--no-shell

Immediately exit after allocating resources instead of spawning a shell when used
with the -A, --allocate option.

6.3.1.6 Attaching To Running Job

-a, --attach=id
This option will attach SRUN to a running job with job id = id. Provided that the
calling user has access to that running job, stdout and stderr will be redirected to
the current session (assuming that the tasks’ stdout and stderr are not connected
directly to files). stdin is not connected to the remote tasks, and signals are not
forwarded unless the --join parameter is also specified.

-j, --join

Used in conjunction with --attach to specify that stdin should also be connected to
the remote tasks (assuming that the remote tasks’ stdin are not directly connected
to files), and signals sent to SRUN will be forwarded to the remote tasks.

6.3.1.7 Constraint Options

The following options all put constraints on the nodes that may be considered for the job:

--mincpus=n
Specify minimum number of CPUs per node.

--mem=MB

Specify a minimum amount of real memory.

--tmp=MB
Specify a minimum amount of temporary disk space.

-C, --constraint=list

6-20 HPC BAS4 - User's Guide

Specify a list of constraints. The constraints are features that have been assigned
to the nodes by the SLURM administrator. The list of constraints may include
multiple features separated by commas, in which case all nodes must have all
listed features (i.e. the features are ANDed together). Alternately, the features may
be separated by a vertical bar (|), in which case all nodes must have at least one
of the listed features (i.e. the features are ORed together). If no nodes have the
requested features, then the SLURM job manager will reject the job.

--contiguous

Demand a contiguous range of nodes. The default is “yes”. Specify --
contiguous=no if a contiguous range of nodes is not a constraint.

-w, --nodelist=host1,host2,... or filename
Request a specific list of hosts. The job will contain at least these hosts. The list
may be specified as a comma-separated list of hosts, a range of hosts
(host[1-5,7,...] for example), or a filename. The host list will be assumed to be a
filename if it contains a "/" character.

-x, --exclude=host1,host2,... or filename

Request that a specific list of hosts not be included in the resources allocated to
this job. The host list will be assumed to be a filename if it contains a
"/"character.

6.3.1.8 Affinity/Multi-core Options with task/affinity or task/numa plug-in

These options are used when the task/affinity or task/numa plug-in is enabled.

--cpu_bind=[{quiet,verbose},]type
Bind tasks to CPUs
q[uiet],

quietly bind before task runs (default)
v[erbose],

verbosely report binding before task runs
no[ne]

do not bind tasks to CPUs (default)
rank

bind by task rank
map_cpu:<list>

bind by mapping CPU IDs to tasks as specified where <list> is
<cpuid1>,<cpuid2>,...<cpuidN>. CPU IDs are interpreted as decimal values
unless they are preceded with “x” in which case they are interpreted as
hexadecimal values.

mask_cpu:<list>
bind by setting CPU masks on tasks as specified where <list> is
<mask1>,<mask2>,...<maskN>. CPU masks are always interpreted as
hexadecimal values but can be preceded with an optional “x”.

To have SLURM always report on the selected CPU binding for all SRUN commands
executed in a shell, enable verbose mode separately from the command line with:

setenv SLURM_CPU_BIND verbose

 Launching an Application 6-21

SLURM_CPU_BIND will not propagate into the tasks environment (binding by default only
affects the first SRUN). To propagate --cpu_bind to successive SRUN commands, first do
the following in each task:

 setenv SLURM_CPU_BIND \
 ${SLURM_CPU_BIND_VERBOSE},${SLURM_CPU_BIND_TYPE}${SLURM_CPU_BIND_LIST}

6.3.1.9 Affinity/Multi-core Options with task/affinity and NUMA memory
functions

These options are used when the task/affinity plug-in is enabled and the NUMA memory
functions are available

--mem_bind=[{quiet,verbose},]type
Bind tasks to memory. Note that the resolution of CPU and memory binding may
differ on some platforms. For example, CPU binding may be performed at the
level of the cores within a processor while memory binding will be performed at
the level of nodes, where the definition of "nodes" may differ from system to
system. The use of a type other than "none" or "local" is not recommended. For
greater control, try running a simple test code with the options
"--cpu_bind=verbose,none --mem_bind=verbose,none" to determine the specific
configuration.

q[uiet],

quietly bind before task runs (default)

v[erbose],

verbosely report binding before task runs

no[ne]

do not bind tasks to memory (default)

rank

bind by task rank (not recommended)

local

Use memory local to the processor in use

map_mem:<list>
bind by mapping a node’s memory to tasks as specified where <list> is
<cpuid1>,<cpuid2>,...<cpuidN>. CPU IDs are interpreted as decimal values
unless they are preceded with “x”, in which case they are interpreted as
hexadecimal values (not recommended).

mask_mem:<list>

bind by setting memory masks on tasks as specified where <list> is
<mask1>,<mask2>,...<maskN>. Memory masks are always interpreted as
hexadecimal values but can be preceded with an optional “x” (not
recommended).

To have SLURM always report on the selected memory binding for all SRUN commands
executed in a shell, enable verbose mode separately from the command line with:

6-22 HPC BAS4 - User's Guide

setenv SLURM_MEM_BIND verbose

SLURM_MEM_BIND will not propagate into the tasks environment (binding by default
only affects the first SRUN). To propagate --mem_bind to successive SRUN commands,
first do the following in each task:

 setenv SLURM_MEM_BIND \

${SLURM_MEM_BIND_VERBOSE},${SLURM_MEM_BIND_TYPE}${SLURM_MEM_BIND_LIST}

See the ENVIRONMENT VARIABLES section for a more detailed description of the
individual SLURM_CPU_BIND* and SLURM_MEM_BIND* variables.

--network=type

Specify the communication protocol to be used. The interpretation of type is
system dependent.

6.3.1.10 Affinity/Multi-Core Options with UseCPUSETS parameter

The UseCPUSETS option modifies the Affinity/Multi-core operations to use the CPUsets
facility in Linux instead of the scheduler affinity calls in the task/affinity plug-in. Job step
initialization checks the cpu_bind and mem_bind parameters from SRUN, constructs a set
of CPUs and memory, and creates a CPUset with these parameters. The name of the
CPUset is slurm suffixed by jobid and local task id, e.g., slurm47_1. Each task on a
given compute node is assigned to its own CPUset, which constrains the job to execute
only on the CPUs and Memory nodes contained within the CPUset.

The following rules apply to the parameters in this mode:

1. If neither cpu_bind nor mem_bind are specified, no CPUset is created and the job
runs with no restrictions.

2. Mem_bind is ignored if cpu_bind is not specified, as any CPU may be used by the
task.

--cpu_bind options

None no cpuset created, any processor may be used

Rank CPUs assigned based on job localid + cpus/task

Map_cpu:<list> CPUs are taken from the specified list according to localid of
the task multiplied by the number of CPUs per task

Mask_cpu:<list> CPU masks are taken from the list according to the localid
order for the task. This allows specific CPU assignment under
the control of the job requester.

 Launching an Application 6-23

--mem_bind options

None Cpuset includes all parent’s memory nodes

Rank Not supported, same as None

Local Memory nodes assigned based on CPUs allocated to cpuset

Map_mem:<list> Not supported, same as Local

Mask_mem:<list> Selects mask from the list in localid order for the task. This
allows specific memory node assignment under the control of
the job requester.

6.3.1.11 Help options

--help

Show this help message

--usage

Display brief usage message

6.3.1.12 Other options

-V, --version

output version information and exit

Unless the -a (--attach) or -A (--allocate) options are specified (see Allocate mode and
Attaching to jobs below), SRUN will submit the job request to the SLURM job controller,
then initiate all processes on the remote nodes. If the request cannot be met immediately,
SRUN will block until the resources are free to run the job. If the -I (--immediate) option is
specified, SRUN will terminate if resources are not immediately available.

When initiating remote processes, SRUN will propagate the current working directory,
unless --chdir=path is specified, in which case path will become the working directory for
the remote processes.

The -n, -c, and -N options control how CPUs and nodes will be allocated to the job. When
specifying only the number of processes to run with -n, a default of one CPU per process is
allocated. By specifying the number of CPUs required per task (-c), more than one CPU
may be allocated per process. If the number of nodes is specified with -N, SRUN will
attempt to allocate at least the number of nodes specified.

Combinations of the above three options may be used to change how processes are
distributed across nodes and CPUs. For instance, by specifying both the number of
processes and number of nodes on which to run, the number of processes per node is
implied. However, if the number of CPUs per process is more important then number of
processes (-n) and the number of CPUs per process (-c) should be specified.

SRUN will refuse to allocate more than one process per CPU unless --overcommit (-O) is
also specified.

6-24 HPC BAS4 - User's Guide

SRUN will attempt to meet the above specifications "at a minimum." That is, if 16 nodes
are requested for 32 processes, and some nodes do not have 2 CPUs, the allocation of
nodes will be increased in order to meet the demand for CPUs. In other words, a minimum
of 16 nodes is being requested. However, if 16 nodes are requested for 15 processes,
SRUN will consider this an error, as 15 processes cannot run across 16 nodes.

6.3.1.13 I/O Redirection

By default stdout and stderr will be redirected from all tasks to the stdout and stderr of
SRUN, and stdin will be redirected from the standard input of SRUN to all remote tasks.
This behavior may be changed with the --output, --error, and --input (-o, -e, -i) options.
Valid format specifications for these options are:

all

stdout and stderr are redirected from all tasks to SRUN. stdin is broadcast to all
remote tasks. (This is the default behavior.)

none

stdout and stderr are not received from any task. stdin is not sent to any task (stdin
is closed).

taskid

stdout and/or stderr are redirected from only the task with relative id equal to
taskid, where 0 <= taskid <= ntasks -1, where ntasks is the total number of tasks
in the current job step. stdin is redirected from the stdin of SRUN to this same task.

filename

SRUN will redirect stdout and/or stderr to the named file from all tasks. stdin will
be redirected from the named file and broadcast to all tasks in the job. If the job
is submitted in batch mode using the -b or --batch option, filename refers to a path
on each of the nodes on which the job runs. Otherwise filename refers to a path
on the host that runs SRUN. Depending on the cluster’s file system layout, this may
result in the output appearing in different places depending on whether the job is
run in batch mode.

format string

SRUN allows for a format string to be used to generate the named IO file
described above. The following list of format specifiers may be used in the format
string to generate a filename that will be unique to a given jobid, stepid, node, or
task. In each case, the appropriate number of files are opened and associated
with the corresponding tasks.

%J jobid.stepid of the running job (e.g. "128.0").

%j jobid of the running job.

%s stepid of the running job.

%N short hostname. This will create a separate IO file per node.

%n Node identifier relative to current job (e.g. "0" is the first node of the

running job). This will create a separate IO file per node.

 Launching an Application 6-25

%t task identifier (rank) relative to current job. This will create a separate IO file
per task.

A number placed between the percent character and format specifier may be
used to zero-pad the result in the IO filename. This number is ignored if the format
specifier corresponds to non-numeric data (%N for example).

Some examples of how the format string may be used for a four-task job step with
a Job ID of 128 and step id of 0 are included below:

job%J.out job128.0.out

job%4j.out job0128.out

job%j-%2t.out job128-00.out, job128-01.out, ...

6.3.1.14 Allocate Mode

When the allocate option is specified (-A, --allocate) SRUN will not initiate any remote
processes after acquiring resources. Instead, SRUN will spawn a subshell that has access to
the acquired resources. Subsequent instances of SRUN from within this subshell will then
run on these resources.

If the name of a script is specified on the command line with --allocate, the spawned shell
will run the specified script. Resources allocated in this way will only be freed when the
subshell terminates.

6.3.1.15 Attaching To a Running Job

Use of the -a jobid (or --attach) option allows SRUN to reattach to a running job, receive
stdout and stderr from the job and forward signals to the job, just as if the current session
of SRUN had started the job. (stdin, however, cannot be forwarded to the job.)

There are two ways to reattach to a running job. The default method is to attach to the
current job in read-only. In this case, stdout and stderr are duplicated to the attaching
SRUN, but signals are not forwarded to the remote processes (a single Ctrl-C will detach
this read-only SRUN from the job). If the -j (--join) option is also specified, SRUN "joins" the
running job, and is able to forward signals, connect stdin, and act, for the most part, much
like the SRUN process that initiated the job.

Node and CPU selection options are not applicable when specifying --attach, and it is an
error to use -n, -c, or -N in attach mode.

6.3.1.16 Environment Variables

Some SRUN options may be set via environment variables. These environment variables,
along with their corresponding options, are listed below. (Note: command-line options will
always override these settings.)

SLURM_CONF The location of the SLURM configuration file.

6-26 HPC BAS4 - User's Guide

SLURM_ACCOUNT -U, --account=account

SLURM_CPU_BIND --cpu_bind=type

SLURM_CPUS_PER_TASK -c, --ncpus-per-task=n

SLURM_CORE_FORMAT --core=format

SLURM_DEBUG -v, --verbose

SLURMD_DEBUG -d, --slurmd-debug

SLURM_DISTRIBUTION -m, --distribution=(block|cyclic|hostfile)

SLURM_GEOMETRY -g, --geometry=X,Y,Z

SLURM_LABELIO -l, --label

SLURM_MEM_BIND --mem_bind=type

SLURM_NETWORK --network=type

SLURM_NNODES -N, --nodes=(n|min-max)

SLURM_NO_ROTATE --no-rotate

SLURM_NPROCS -n, --ntasks=n

SLURM_OVERCOMMIT -o, --overcommit

SLURM_PARTITION -p, --partition=partition

SLURM_REMOTE_CWD -D, --chdir==dir

SLURM_SRUN_COMM_IFHN --ctrl-comm-ifhn=addr

SLURM_STDERRMODE -e, --error=mode

SLURM_STDINMODE -i, --input=mode

SLURM_STDOUTMODE -o, --output=mode

SLURM_TASK_EPILOG --task-epilog=executable

SLURM_TASK_PROLOG --task-prolog=executable

SLURM_TIMELIMIT -t, --time=minutes

SLURM_WAIT -W, --wait=seconds

SLURM_DISABLE_STATUS -X, -disable-status

 Launching an Application 6-27

Additionally, SRUN will set some environment variables in the environment of the
executing tasks on the remote compute nodes. These environment variables are:

SLURM_CPU_BIND_VERBOSE

--cpu_bind verbosity (quiet, verbose).

SLURM_CPU_BIND_TYPE

--cpu_bind type (none, rank, map_cpu:, mask_cpu:)

SLURM_CPU_BIND_LIST

--cpu_bind map or mask list (<list of IDs or masks for this
node>)

SLURM_CPUS_ON_NODE

Count of processors available to the job on this node

SLURM_JOBID

Job id of the executing job

SLURM_LAUNCH_NODE_IPADDR

IP addresses of the node from which the task launch was initiated (from which the
SRUN command was run)

SLURM_LOCALID

Node local task ID for the process within a job

SLURM_MEM_BIND_VERBOSE

--mem_bind verbosity (quiet, verbose).

SLURM_MEM_BIND_TYPE

--mem_bind type (none, rank, map_mem:, mask_mem:)

SLURM_MEM_BIND_LIST

--mem_bind map or mask list (<list of IDs or masks for this
node>)

SLURM_NNODES

Total number of nodes in the job’s resource allocation

SLURM_NODEID

The relative node ID of the current node

SLURM_NODELIST

List of nodes allocated to the job

SLURM_NPROCS

Total number of processes in the current job

SLURM_PROCID

The MPI rank (or relative process ID) of the current process

6-28 HPC BAS4 - User's Guide

SLURM_TASKS_PER_NODE
Number of tasks to be initiated on each node. Values are comma separated and
in the same order as SLURM_NODELIST. If two or more consecutive nodes are to
have the same task count, that count is followed by "(x#)", where "#" is the
repetition count. For example, "SLURM_TASKS_PER_NODE=2(x3),1" indicates
that the first three nodes will each execute two tasks, and the fourth node will
execute one task.

6.3.1.17 Signals and Escape Sequences

Signals sent to the SRUN command are automatically forwarded to the tasks it is
controlling, with a few exceptions. The escape sequence <control-c> will report the state of
all tasks associated with the SRUN command. If <control-c> is entered twice within one
second, then the associated SIGINT signal will be sent to all tasks. If a third <control-c> is
received, the job will be forcefully terminated without waiting for remote tasks to exit.

The escape sequence <control-z> is presently ignored. When implemented it will put the
SRUN command into a mode in which various special actions may be invoked.

6.3.1.18 MPI Support

The PMI (Process Management Interface) is provided by MPIBull2 to launch processes on a
cluster and provide services to the MPI interface. For example, a call to pmi_get_appnum
returns the job id. This interface uses sockets to exchange messages.

In MPIBull2, this mechanism uses the mpd daemons running on each compute node.
Daemons can exchange information and answer the PMI calls.

RMS and SLURM replace the Process Management Interface with their own implementation
and their own daemons. No mpd is needed and when a PMI request is sent (for example
pmi_get_appnum), a SLURM extension must answer this request.

The following scheme shows the difference between the use of PMI with and without a
resource manager that allows process management.

 Launching an Application 6-29

Figure 6-4. MPI Process Management With and Without Resource Manager

MPIBull2 jobs can be launched directly by the srun command. SLURM's none MPI plug-in
must be used to establish communications between the launched tasks. This can be
accomplished either using the SLURM configuration parameter MpiDefault=none in
slurm.conf or srun's --mpi=none option. The program must also be linked with SLURM's
implementation of the PMI library so that tasks can communicate host and port information
at startup. (The system administrator can add this option to the mpicc and mpif77
commands directly, so the user will not need to bother). Do not use SLURM's MVAPICH
plug-in for MPIBull2.

$ mpicc -L<path_to_slurm_lib> -lpmi ...
$ srun -n20 --mpi=none a.out

6-30 HPC BAS4 - User's Guide

Notes:

• Some MPIBull2 functions are not currently supported by the PMI library integrated
with SLURM.

• Set the environment variable PMI_DEBUG to a numeric value of 1 or higher for the
PMI library to print debugging information.

6.3.1.19 Multiple Program Configuration

Comments in the configuration file must have a "#" in column one. The configuration file
contains the following fields separated by space:

Task rank
One or more task ranks to use this configuration. Multiple values may be comma
separated. Ranges may be indicated with two numbers separated with a “-“. To
indicate all tasks, specify a rank of “*“ (in which case, this option is not
recommended).

Executable

The name of the program to execute. May be fully-qualified pathname if desired.

Arguments
Program arguments. The expression "%t" will be replaced with the task’s number.
The expression "%o" will be replaced with the task’s offset within this range (e.g.
a configured task rank value of "1-5" would have offset values of "0-4").
Single quotes may be used to avoid having the enclosed values interpreted. This
field is optional.

Example:

srun multiple program configuration file

srun -n8 -l --multi-prog silly.conf

4-6 hostname
1,7 echo task:%t
0,2-3 echo offset:%o

$ srun -n8 -l --multi-prog silly.conf
0: offset:0
1: task:1
2: offset:1
3: offset:2
4: linux15.llnl.gov
5: linux16.llnl.gov
6: linux17.llnl.gov
7: task:7

 Launching an Application 6-31

6.3.1.20 EXAMPLES

The following simple example demonstrates the execution of the command hostname over
eight tasks. At least eight processors will be allocated to the job (the same as the task
count). The output of each task will be preceded with its task number. (The machine "dev"
in the example below has a total of two CPUs per node)

> srun -n8 -l hostname
0: dev0
1: dev0
2: dev1
3: dev1
4: dev2
5: dev2
6: dev3
7: dev3

The following example demonstrates how one might submit a script for later execution
(batch mode). The script will be initiated when resources are available and no higher
priority job is pending for the same partition. The script will execute on four nodes with one
task per node implicitly.

> cat test.sh
#!/bin/sh
date
srun -l hostname

> srun -N4 -b test.sh
srun: jobid 42 submitted

The output of test.sh would be found in the default output file "slurm-42.out."

The SRUN -r option is used within a job script to run two job steps on disjoint nodes in the
following example. The script is run using allocate mode, instead of batch mode in this
case.

> cat test.sh
#!/bin/sh
echo $SLURM_NODELIST
srun -lN2 -r2 hostname
srun -lN2 hostname

> srun -A -N4 test.sh
dev[7-10]
0: dev9
1: dev10
0: dev7
1: dev8

6-32 HPC BAS4 - User's Guide

The following script runs two job steps in parallel within an allocated set of nodes.

> cat test.sh
#!/bin/bash
srun -lN2 -n4 -r 2 sleep 60 &
srun -lN2 -r 0 sleep 60 &
sleep 1
squeue
squeue -s
wait

> srun -A -N4 test.sh
 JOBID PARTITION NAME USER ST TIME NODES NODELIST
 65641 batch test.sh grondo R 0:01 4 dev[7-10]

STEPID PARTITION USER TIME NODELIST
65641.0 batch grondo 0:01 dev[7-8]
65641.1 batch grondo 0:01 dev[9-10]

This example demonstrates how one executes a simple MPICH job. SRUN is used to build
a list of machines (nodes) to be used by mpirun in its required format. A sample command
line and the script to be executed follow.

> cat test.sh
#!/bin/sh
MACHINEFILE="nodes.$SLURM_JOBID"

Generate Machinefile for mpich such that hosts are in the same
order as if run via srun

srun -l /bin/hostname | sort -n | awk ‘print $2}’ > $MACHINEFILE

Run using generated Machine file:
mpirun -np $SLURM_NPROCS -machinefile $MACHINEFILE mpi-app

rm $MACHINEFILE

> srun -AN2 -n4 test.sh

This simple example demonstrates the execution of different jobs on different nodes in the
same SRUN. This can be done for any number of nodes or any number of jobs. The
executables are placed on the nodes sited by the SLURM_NODEID environment variable,
starting at 0 and going up to the number specified on the SRUN command line.

> cat test.sh
case $SLURM_NODEID in
 0) echo "I am running on "
 hostname ;;
 1) hostname
 echo "is where I am running" ;;
esac

> srun -N2 test.sh
dev0
is where I am running
I am running on
dev1

 Launching an Application 6-33

6.3.2 SBCAST

sbcast is used to copy a file to local disk on all nodes allocated to a job. This should be
executed after a resource allocation has taken place and can be faster than using a single
file system mounted on multiple nodes.

NAME

sbcast - transmit a file to the nodes allocated to a SLURM job.

SYNOPSIS

sbcast [-CfpsvV] SOURCE DEST

DESCRIPTION

sbcast is used to transmit a file to all nodes allocated to the SLURM job which is currently
active. This command should only be executed within a SLURM batch job or within the
shell spawned after the resources have been allocated to a SLURM. SOURCE is the name
of the file on the current node. DEST should be the fully qualified pathname for the file
copy to be created on each node. DEST should be on the local file system for these nodes.

 Note:
Parallel file systems may provide better performance than sbcast can provide.

6.3.2.1 OPTIONS

-C, --compress
Compress the file being transmitted.

-f, --force
If the destination file already exists, replace it.

-F number, --fanout=number
Specify the fanout of messages used for file transfer. Maximum value is currently eight.

-p, --preserve
Preserves modification times, access times, and modes from the original file.

-s size, --size=size
Specify the block size used for file broadcast. The size can have a suffix of k or m for
kilobytes or megabytes respectively (defaults to bytes). This size is subject to rounding and
range limits in order to maintain good performance. This value may need to be set on
systems with very limited memory.

-v, --verbose
Provide detailed event logging whilst the program is executing.

-V, --version
Print version information and exit.

6-34 HPC BAS4 - User's Guide

6.3.2.2 ENVIRONMENT VARIABLES

Some sbcast options may be set via environment variables. These environment variables,
along with their corresponding options, are listed below.

 Note:
Command line options will always override these settings

SBCAST_COMPRESS -C, --compress

SBCAST_FANOUT -F number, fB--fanout=number

SBCAST_FORCE -f, --force

SBCAST_PRESERVE -p, --preserve

SBCAST_SIZE -s size, --size=size

6.3.2.3 EXAMPLE

Using a batch script, transmit local file my.prog to /tmp/my.proc on the local nodes and
then execute it.

> cat my.job
#!/bin/bash
sbcast my.prog /tmp/my.prog
srun /tmp/my.prog

> srun --nodes=8 --batch my.job
srun: jobid 12345 submitted

6.3.3 SQUEUE (List Jobs)

SQUEUE displays (by default) the queue of running and waiting jobs (or "job steps"),
including the JobId (used for SCANCEL), and the nodes assigned to each running job.
However, SQUEUE reports can be customized to cover any of 24 different job properties,
sorted by the most important properties. It also displays the job ID and job name for every
job currently managed by the SLURM control daemon (SLURMCTLD). The status and
resource information for each job (such as time used so far, or a list of committed nodes)
are presented in a table whose content and format details can be controlled with the
SQUEUE options.

NAME

SQUEUE - view information about jobs located in the SLURM scheduling queue.

SYNOPSIS

squeue [OPTIONS...]

 Launching an Application 6-35

DESCRIPTION

SQUEUE is used to view job and job step information for jobs managed by SLURM.

6.3.3.1 OPTIONS

-a, --all

Display information about jobs and job steps in all partitions. This causes information
to be displayed about partitions that are configured as hidden and partitions that are
unavailable to user’s group.

--help

Print a help message describing all SQUEUE options.

--hide

Do not display information about jobs and job steps in all partitions. By default,
information about partitions that are configured as hidden or are not available to the
user’s group will not be displayed (i.e. this is the default behavior).

--usage

Print a brief help message listing the SQUEUE options.

-h, --noheader

Do not print a header on the output.

-i <seconds>, --iterate=<seconds>

Repeatedly gather and report the requested information at the interval specified (in
seconds). By default, prints a time stamp with the header.

-j, --jobs

Specify the jobs to view. This flag indicates that a comma-separated list of jobs to
view follows without an equal sign (see examples). Defaults to all jobs.

-l, --long

Report more of the available information for the selected jobs or job steps, subject to
any constraints specified.

-n <node_name>, --node=<node_name>

Report only on jobs allocated to the specified node. This may either be the
NodeName or NodeHostname, as defined in slurm.conf in the event that they differ.
A node_name of localhost is mapped to the current host name.

-o <output_format>, --format=<output_format>

Specify the information to be displayed.
The default format for jobs is:
Default "%.7i %.9P %.8j %.8u %.2t %.9M %.6D %R"
If –l or --long is specified, the default job format is:
-l, --long "%.7i %.9P %.8j %.8u %.8T %.9M %.9l %.6D %R"
Format strings used internally by SQUEUE when running with various options are:
-s, --steps "%10i %.8j %.9P %.8u %.9M %N"
The field specifications available include:

6-36 HPC BAS4 - User's Guide

%a Account associated with the job

%b Time at which the job began execution

%c Minimum number of CPUs (processors) per node requested by the

job. This reports the value of the SRUN --mincpus option with a
default value of zero.

%C Number of CPUs (processors) requested to the job or job step. This

reports the value of the SRUN --ntasks option with a default value of
zero.

%d Minimum size of temporary disk space (in MB) requested by the job

%D Number of nodes allocated to the job or the minimum number of

nodes required by a pending job. The actual number of nodes
allocated to a pending job may exceed this number if the job
specified a node range count or the cluster contains nodes with
varying processor counts.

%e Time at which the job ended or is expected to end (based upon its

time limit)

%E Job dependency. This job will not begin execution until the

dependent job completes. A value of zero implies this job has no
dependencies.

%f Features required by the job

%g Group name

%G Group ID

%h The nodes allocated to the job can be shared with other jobs

%i Job or job step id

%j Job or job step name

%l Time limit of the job in days-hours:minutes:seconds. The value may

be "NOT_SET" if not yet established or "UNLIMITED" for no limit.

%m Minimum size of memory (in MB) requested by the job

%M Time used by the job or job step in days-hours:minutes:seconds. The

days and hours are printed only as needed. For job steps, this field
shows the elapsed time since execution began and thus will be
inaccurate for job steps that have been suspended.

%n List of node names explicitly requested by the job

%N List of nodes allocated to the job or job step. In the case of a

COMPLETING job, the list of nodes will comprise only those nodes
that have not yet been returned to service. This may result in the
node count being greater than the number of listed nodes.

 Launching an Application 6-37

%o Minimum number of nodes requested by the job

%O Are contiguous nodes requested by the job

%p Priority of the job (converted to a floating point number between 0.0

and 1.0).

%P Partition of the job or job step

%r The reason why a job is waiting for execution. See the JOB

REASON CODES section below for more information.

%R For running or completed jobs: the list of allocated nodes. For

pending jobs: the reason why a job is waiting for execution is
printed within parenthesis. See the JOB REASON CODES section
below for more information.

%s Node selection plug-in specific data. Possible data includes:

Geometry requirement of resource allocation (X,Y,Z dimensions),
Connection type, Permit rotation of geometry (yes or no), etc.

%S Start time of the job or job step

%t Job state, compact form: PD (pending), R (running), CA (cancelled),

CG (completing), CD (completed), F (failed), TO (timeout), and NF
(node failure). See the JOB STATE CODES section below for more
information.

%T Job state, extended form: PENDING, RUNNING, SUSPENDED,

CANCELLED, COMPLETING, COMPLETED, FAILED, TIMEOUT, and
NODE_FAIL. See the JOB STATE CODES section below for more
information.

%u User name

%U User ID

%x List of node names explicitly excluded by the job

%.<*> right justification of the field

%<Number><*> size of field

-v

Display all job information.

-p <part_list>, --partition=<part_list>

Specify the partitions of the jobs or steps to view. Accepts a comma-separated list of
partition names.

-s, --steps

Specify the job steps to view. This flag indicates that a comma-separated list of job
steps to view follows without an equal sign (see examples). The job step format is
"job_id.step_id". The default is all job steps.

6-38 HPC BAS4 - User's Guide

-S <sort_list>, --sort=<sort_list>

Specification of the order in which records should be reported. This uses the same
field specification as the <output_format>. Multiple sorts may be performed by listing
multiple sort fields separated by commas. The field specifications may be preceded by
"+" or "-" for ascending (default) and descending order respectively. For example, a
sort value of "P,U" will sort the records by partition name then by user id. The
default value of sort for jobs is "P,t,-p" (increasing partition name then within a
given partition by increasing node state and then decreasing priority). The default
value of sort for job steps is "P,i" (increasing partition name, then within a given
partition by increasing step id).

-t <state_list>, --states=<state_list>

Specify the states of jobs to view. Accepts a comma-separated list of state names or
"all". If "all" is specified then jobs of all states will be reported. If no state is specified
then pending, running, and completing jobs are reported. Valid states (in both
extended and compact form) include: PENDING (PD), RUNNING (R), SUSPENDED
(S), COMPLETING (CG), COMPLETED (CD), CANCELLED (CA), FAILED (F), TIMEOUT
(TO), and NODE_FAIL (NF). Note that the <state_list> supplied is case insensitive
("pd" and "PD" work the same). See the JOB STATE CODES section below for more
information.

-u <user_list>, --user=<user_list>

Specifies a comma separated list of users whose jobs or job steps are to be reported.
The list can consist of user names or user id numbers.

-v, --verbose

Report details of SQUEUE’S actions.

-V , --version

Print version information and exit.

6.3.3.2 JOB REASON CODES

The following codes identify the reason why a job is waiting for execution. A job may be
waiting for more than one reason, in which case only one of those reasons is displayed.

Dependency This job is waiting for a dependent job to complete.

None No reason is set for this job.

PartitionDown The partition required by this job is in a DOWN state.

PartitionNodeLimit The number of nodes required by this job is outside of its

partitions current limits.

PartitionTimeLimit The job's time limit exceeds its partition's current time limit.

Priority One or more higher priority jobs exist for this partition.

Resources The job is waiting for resources to become available.

 Launching an Application 6-39

6.3.3.3 JOB STATE CODES

Jobs typically pass through several states in the course of their execution. The typical states
are PENDING, RUNNING, SUSPENDED, COMPLETING, and COMPLETED. An
explanation of each state follows.

CA CANCELLED Job was explicitly cancelled by the user or system

administrator. The job may or may not have been initiated.

CD COMPLETED Job has terminated all processes on all nodes.

CG COMPLETING Job is in the process of completing. Some processes on some

nodes may still be active.

F FAILED Job terminated with non-zero exit code or other failure

condition.

NF NODE_FAIL Job terminated due to failure of one or more allocated nodes.

PD PENDING Job is awaiting resource allocation.

R RUNNING Job currently has an allocation.

S SUSPENDED Job has an allocation, but execution has been suspended.

TO TIMEOUT Job terminated upon reaching its time limit.

6.3.3.4 ENVIRONMENT VARIABLES

Some SQUEUE options may be set via environment variables. These environment
variables, along with their corresponding options, are listed below. (Note: Command-line
options will always override these settings.)

SLURM_CONF The location of the SLURM configuration file.

SQUEUE_ALL -a, --all

SQUEUE_FORMAT -o <output_format>, --format=<output_format>

SQUEUE_PARTITION -p <part_list>, --partition=<part_list>

SQUEUE_SORT -S <sort_list>, --sort=<sort_list>

SQUEUE_STATES -t <state_list>, --states=<state_list>

SQUEUE_USERS -u <user_list>, --users=<user_list>

6.3.3.5 Examples

Print the jobs scheduled in the debug partition and in the COMPLETED state in the format
with six right justified digits for the job id followed by the priority with an arbitrary fields
size:

6-40 HPC BAS4 - User's Guide

squeue -p debug -t COMPLETED -o "%.6i %p"
 JOBID PRIORITY
 65543 99993
 65544 99992
 65545 99991

Print the job steps in the debug partition sorted by user:

squeue -s -p debug -S u
 STEPID NAME PARTITION USER TIME_USED NODELIST(REASON)
 65552.1 test1 debug alice 0:23 dev[1-4]
 65562.2 big_run debug bob 0:18 dev22
 65550.1 param1 debug candice 1:43:21 dev[6-12]

Print information only about jobs 12345, 12346, and 12348:

squeue --jobs 12345,12346,12348
 JOBID PARTITION NAME USER ST TIME_USED NODES NODELIST(REASON)
 12345 debug job1 dave R 0:21 4 dev[9-12]
 12346 debug job2 dave PD 0:00 8 (Resources)
 12348 debug job3 ed PD 0:00 4 (Priority)

Print information only about job step 65552.1:

squeue --steps 65552.1
 STEPID NAME PARTITION USER TIME_USED NODELIST(REASON)
 65552.1 test2 debug alice 12:49 dev[1-4]

6.3.4 SINFO (Report Partition and Node Information)

SINFO displays a summary of status information on SLURM-managed partitions and nodes
(not jobs). Customizable SINFO reports can cover the node count, state, and name list for
a whole partition, or the CPUs, memory, disk space, or current status for individual nodes
as specified. These reports can assist in planning job submittals and avoiding hardware
problems. The SINFO output is a table whose content and format can be controlled using
the SINFO options.

NAME

SINFO - view information about SLURM nodes and partitions.

SYNOPSIS

sinfo [OPTIONS...]

DESCRIPTION

SINFO is used to view partition and node information for a system running SLURM.

6.3.4.1 OPTIONS

-a, --all

 Launching an Application 6-41

Display information about all partitions. This causes information to be displayed
about partitions that are configured as hidden and partitions that are unavailable
to user's group.

--help

Print a message describing all SINFO options.

--hide

Do not display information about hidden partitions. By default, partitions that are
configured as hidden or are not available to the user's group will not be
displayed (i.e. this is the default behavior).

--usage

Print a brief message listing the SINFO options.

-d, --dead

If set, only report state information for non-responding (dead) nodes.

-e, --exact

If set, do not group node information on multiple nodes unless their configurations
to be reported are identical. Otherwise CPU count, memory size, and disk space
for nodes will be listed with the minimum value followed by a "+" for nodes with
the same partition and state (e.g., "250+").

-h, --noheader

Do not print a header on the output.

-i <seconds>, --iterate=<seconds>
Print the state on a periodic basis. Sleep for the indicated number of seconds
between reports. By default, prints a time stamp with the header.

-l, --long

Print more detailed information. This is ignored if the --format option is specified.

-n <nodes>, --nodes=<nodes>

Print information only about the specified node(s). Multiple nodes may be comma
separated or expressed using a node range expression. For example,
"linux[00-07]" would indicate eight nodes, "linux00" through "linux07."

-N, --Node

Print information in a node-oriented format. The default is to print information in a
partition-oriented format. This is ignored if the -format option is specified.

-o <output_format>, --format=<output_format>

Specify the information to be displayed using an SINFO format string. Format
strings transparently used by SINFO when running with various options are:

Default "%9P %5a %.10l %.5D %6t %N"

--summarize "%9P %5a %.10l %15F %N"

--long "%9P %5a %.10l %.8s %4r %5h %10g %.5D %11T
%N"

--Node "%#N %.5D %9P %6t"

6-42 HPC BAS4 - User's Guide

--long –Node "%#N %.5D %9P %11T %.4c %.6m %.8d %.6w %8f
%R"

--list-reasons "%35R %N"

--long --list-reasons "%50R %6t %N"

In the above format strings the use of "#" represents the maximum length of a
node list to be printed.

The field specifications available include:

%a State/availability of a partition

%A Number of nodes by state in the format "allocated/idle". Do not use this

with a node state option ("%t" or "%T") or the different node states will
be placed on separate lines.

%c Number of CPUs per node

%C Number of CPUs per partition in the format "allocated/idle/total"

%d Size of temporary disk space per node in megabytes

%D Number of nodes

%f Features associated with the nodes

%F Number of nodes by state in the format "allocated/idle/other/total". Do

not use this with a node state option ("%t" or "%T") or the different node
states will be placed on separate lines.

%g Groups which may use the nodes

%h Jobs may share nodes, "yes", "no", or "force"

%l Maximum time for any job in the format "days-hours:minutes:seconds"

%m Size of memory per node in megabytes

%N List of node names

%P Partition name

%r Only user root may initiate jobs, "yes" or "no"

%R The reason why a node is unavailable (down, drained, or draining

states)

%s Maximum job size in nodes

%t State of nodes, compact form

%T State of nodes, extended form

%w Scheduling weight of the nodes

 Launching an Application 6-43

%.<*> right justification of the field

%<Number><*> size of field

-r, --responding
If set, only report state information for responding nodes.

-R, --list-reasons

List reasons nodes are down or drained. When nodes are in these states SLURM
supports the optional inclusion of a "reason" string by an administrator. This
option will display the first 35 characters of the reason field and list of nodes with
that reason that are, by default, down, drained, or draining. This option may be
used with other node-filtering options (e.g. -r, -d, -t, -n), however,
combinations of these options that result in a list of nodes that are not down or
drained will not produce any output. When used with -l the output additionally
includes the current node state.

-s, --summarize

List only a partition state summary with no node state details. This is ignored if the
--format option is specified.

-S <sort_list>, --sort=<sort_list>
Specification of the order in which records should be reported. This uses the
same field specification as the <output_format>. Multiple sorts may be performed
by listing multiple sort fields separated by commas. The field specifications may
be preceded by "+" or "-" for ascending (default) and descending order
respectively. The partition field specification, "P", may be preceded by a "#" to
report partitions in the same order that they appear in the SLURM configuration
file, slurm.conf. For example, a sort value of "+P,-m" requests that records be
printed in order of increasing partition name and within a partition by decreasing
memory size. The default value of sort is "#P,-t" (partitions ordered as
configured then decreasing node state). If the --Node option is selected, the
default sort value is "N" (increasing node name).

-t <states> , --states=<states>

List nodes which have the given state(s). Multiple states may be comma separated
and the comparison is case insensitive. Possible values include (case insensitive):
ALLOC, ALLOCATED, COMP, COMPLETING, DOWN, DRAIN, DRAINED,
DRNG, DRAINING, IDLE, UNK, and UNKNOWN. By default nodes in the
specified state are reported whether they are responding or not. The --dead and
--responding options may be used to filter nodes by the responding flag.

-p <partition>, --partition=<partition>

Print information only about the specified partition.

-v, --verbose

Provide detailed event logging through program execution.

-V, --version

Print version information and exit.

6-44 HPC BAS4 - User's Guide

6.3.4.2 Output Field Descriptions

AVAIL

Partition state: up or down.

CPUS

Count of CPUs (processors) on these nodes.

CPUS (A/I)

Count of allocated CPUs and idle CPUs per nodes.

GROUPS

Resource allocations in this partition are restricted to the named groups. “all”
indicates that all groups may use this partition.

JOB_SIZE

Minimum and maximum node count that can be allocated to any user job. A
single number indicates the minimum and maximum node count are the same.
infinite is used to identify partitions without a maximum node count.

TIMELIMIT

Maximum time limit for any user job in days-hours:minutes:seconds. “infinite” is
used to identify partitions without a job time limit.

MEMORY

Size of actual memory in megabytes on these nodes.

NODELIST

Names of nodes associated with this configuration/partition.

NODES

Count of nodes with this particular configuration.

NODES(A/I)

Count of nodes with this particular configuration by node state in the form
"available/idle".

NODES(A/I/O/T)

Count of nodes with this particular configuration by node state in the form
"available/idle/other/total".

PARTITION

Name of a partition. Note that the suffix "*" identifies the default partition.

ROOT

Is the ability to allocate resources in this partition restricted to user root, yes or no.

SHARE

Defines whether jobs can share allocated resources. “no” indicates resources are
never shared. “force” indicates resources are always available to be shared.
“yes” indicates resources may be shared or not per job’s resource allocation.

STATE

 Launching an Application 6-45

State of the nodes. Possible states include: down, unknown, idle, allocated,
drained, draining, completing and their abbreviated forms: down, unk, idle,
alloc, drain, drng, and comp respectively. Note that the suffix "*" identifies
nodes that are presently not responding.

TMP_DISK

Size of temporary disk space in megabytes on these nodes.

6.3.4.3 Node State Codes

Node state codes are shortened as required for the field size. If the node state code is
followed by "*", this indicates the node is presently not responding and will not be
allocated any new work. If the node remains non-responsive, it will be placed in the
DOWN state (except in the case of DRAINED, DRAINING, or COMPLETING nodes).

ALLOCATED

The node has been allocated to one or more jobs.

ALLOCATED+

The node is allocated to one or more active jobs plus one or more jobs are in the
process of COMPLETING.

COMPLETING

All jobs associated with this node are in the process of COMPLETING. This node
state will be removed when all of the job’s processes have terminated and the
SLURM epilog program (if any) has terminated. See the Epilog parameter
description in the slurm.conf man page for more information.

DOWN

The node is unavailable for use. SLURM can automatically place nodes in this
state if some failure occurs. System administrators may also explicitly place nodes
in this state. If a node resumes normal operation, SLURM can automatically return
it to service. See the ReturnToService and SlurmdTimeout parameter
descriptions in the slurm.conf man page for more information.

DRAINED

The node is unavailable for use per system administrator request. See the update
node command in the scontrol man page or the slurm.conf man page for more
information.

DRAINING

The node is currently executing a job, but it will not be allocated to additional
jobs. The node state will be changed to state DRAINED when the last job on it
completes. Nodes enter this state per system administrator request. See the
update node command in the scontrol man page or the slurm.conf man page for
more information.

IDLE

The node is not allocated to any jobs and is available for use.

UNKNOWN

6-46 HPC BAS4 - User's Guide

The SLURM controller has just started and the node’s state has not yet been
determined.

6.3.4.4 Environment Variables

Some SINFO options may be set via environment variables. These environment
variables, along with their corresponding options, are listed below. (Note: Command-
line options will always override these settings.)

SLURM_CONF The location of the SLURM configuration file.

SINFO_ALL -a, --all

SINFO_FORMAT -o <output_format>, --format=<output_format>

SINFO_PARTITION -p <partition>, --partition=<partition>

SINFO_SORT -S <sort>, --sort=<sort>

6.3.4.5 Examples

Report basic node and partition configurations:

> sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
batch up infinite 2 alloc adev[8-9]
batch up infinite 6 idle adev[10-15]
debug* up 30:00 8 idle adev[0-7]

Report partition summary information:

> sinfo -s
PARTITION AVAIL TIMELIMIT NODES(A/I/O/T) NODELIST
batch up infinite 2/6/0/8 adev[8-15]
debug* up 30:00 0/8/0/8 adev[0-7]

Report more complete information about the partition debug:

> sinfo --long --partition=debug
PARTITION AVAIL TIMELIMIT JOB_SIZE ROOT SHARE GROUPS NODES STATE NODELIST
debug* up 30:00 8 no no all 8 idle dev[0-7]

Report only those nodes that are in state DRAINED:

> sinfo --states=drained
PARTITION AVAIL NODES TIMELIMIT STATE NODELIST
debug* up 2 30:00 drain adev[6-7]

Report node-oriented information with details and exact matches:

 > sinfo -Nel
 NODELIST NODES PARTITION STATE CPUS MEMORY TMP_DISK WEIGHT FEATURES REASON
 adev[0-1] 2 debug* idle 2 3448 38536 16 (null) (null)
 adev[2,4-7] 5 debug* idle 2 3384 38536 16 (null) (null)
 adev3 1 debug* idle 2 3394 38536 16 (null) (null)
 adev[8-9] 2 batch allocated 2 246 82306 16 (null) (null)

 Launching an Application 6-47

 adev[10-15] 6 batch idle 2 246 82306 16 (null) (null)

Report only down, drained and draining nodes and their reason field:

> sinfo -R
REASON NODELIST
Memory errors dev[0,5]
Not Responding dev8

Report partition information that includes the number of allocated and idle CPUs.

> sinfo -o "%9P %5a %.5D %.10A %.12C %N"
PARTITION AVAIL NODES NODES(A/I) CPUS(A/I/T) NODELIST
global* up 28 1/26 8/208/224 linux[10-37]
bench up 11 1/10 8/80/88 linux[10-20]
batch up 10 0/10 0/80/80 linux[21-30]

6.3.5 SCANCEL (Signal/Cancel Jobs)

SCANCEL cancels a running or waiting job, or sends a specified signal to all processes on
all nodes associated with a job (only job owners or their administrators can cancel jobs).
SCANCEL may also be used to cancel a single job step instead of the whole job.

NAME

SCANCEL - Used to signal jobs or job steps that are under the control of SLURM.

SYNOPSIS

scancel [OPTIONS...] [job_id[.step_id]] [job_id[.step_id]...]

DESCRIPTION

SCANCEL is used to signal or cancel jobs or job steps. An arbitrary number of jobs or job
steps may be signaled using job specification filters or a space-separated list of specific job
and/or job step IDs. A job or job step can only be signaled by the owner of that job or
user root. If an attempt is made by an unauthorized user to signal a job or job step, an
error message will be printed and the job will not be signaled.

6.3.5.1 Options

--help
Print a help message describing all SCANCEL options.

--usage

Print a brief help message listing the SCANCEL options.

-b, --batch
Signal only the batch job shell.

6-48 HPC BAS4 - User's Guide

-i, --interactive
Interactive mode. Confirm each job_id.step_id before performing the cancel
operation.

-n, --name=job_name

The name of the jobs to be signaled.

-p, --partition=partition_name
The name of the partition from which jobs are to be signaled.

-q, --quiet

Do not report an error if the specified job is already completed. This option is
incompatible with the --verbose option.

-s, --signal=signal_name

The name or number of the signal to be sent. Default value is "KILL".

-t, --state=job_state_name
The state of the jobs to be signaled. job_state_name may have a value of either
"PENDING", "RUNNING" or "SUSPENDED".

-u, --user=user_name

The name of the user whose jobs are to be signaled.

 -v, --verbose
Print additional logging. Using -v multiple times increases logging detail. This
option is incompatible with the --quiet option.

-V, --Version

Print the version number of the command.

6.3.5.2 Arguments

job_id
The SLURM job ID of the job to have one or more of its steps signaled.

step_id

The step ID of the job step to be signaled. If none is provided and the --batch
option is not used, then all jobs steps associated with the provided job_id will be
signaled.

6.3.5.3 Environment Variables

Some SCANCEL options may be set via environment variables. These environment
variables, along with their corresponding options, are listed below. Note: Command-line
options will always override these settings.

SLURM_CONF The location of the SLURM configuration file.

SCANCEL_BATCH -b, --batch

SCANCEL_INTERACTIVE -i, --interactive

 Launching an Application 6-49

SCANCEL_NAME -n, --name=job_name

SCANCEL_PARTITION -p, --partition=partition_name

SCANCEL_STATE -t, --state=job_state_name

SCANCEL_USER -u, --user=user_name

SCANCEL_VERBOSE -v, --verbose

 Notes:

• If multiple filters are supplied (e.g. --partition and --name) only the jobs satisfying all of
the filtering options will be signaled.

• If a signal value of "KILL" (the default value) is to be sent to an entire job, this will result
in the job’s termination and its resource allocation being released.

• Canceling a job step will not result in a job being terminated. The job must be
cancelled to release a resource allocation.

6.3.5.4 Examples

Send SIGTERM to steps 1 and 3 of job 1234:

scancel --signal=TERM 1234.1 1234.3

Cancel job 1234 along with all of its steps:

scancel 1234

Cancel all pending jobs belonging to user "bob" in partition "debug":

scancel --state=PENDING --user=bob --partition=debug

6.3.6 SACCT (Accounting Data)

NAME

SACCT - displays accounting data for all jobs and job steps in the SLURM job accounting
log.

SYNOPSIS

sacct options

DESCRIPTION

Accounting information for jobs invoked with SLURM is logged in the job accounting log
file.

6-50 HPC BAS4 - User's Guide

The SACCT command displays job accounting data stored in the job accounting log file in
a variety of forms for your analysis. The SACCT command displays information about jobs,
job steps, status, and exit codes by default. The output can be tailored with the use of the --
fields= option to specify the fields to be shown.

For the root user, the SACCT command displays job accounting data for all users, although
there are options to filter the output to report only the jobs from a specified user or group.

For the non-root user, the SACCT command limits the display of job accounting data to
jobs that were launched with their own user identifier (UID) by default. Data for other users
can be displayed with the --all, --user, or --uid options.

Note:
Much of the data reported by SACCT has been generated by the wait3() and getrusage()
system calls. Some systems gather and report incomplete information for these calls;
SACCT reports values of 0 for this missing data. See the getrusage man page for your
system to obtain information about which data are actually available on your system.

6.3.6.1 Options
-a , --all

Displays the job accounting data for all jobs in the job accounting log file.
This is the default behavior when the SACCT command is executed by the root
user.

-b , --brief

Displays a brief listing, which includes the following data:

• jobid
• status
• exitcode

This option has no effect when the ---dump option is also specified.

-d , --dump

Displays (dumps) the raw data records.
This option overrides the --brief and --fields= options.
The section titled "INTERPRETING THE --dump OPTION OUTPUT" describes the
data output when this option is used.

-S , --stat

Queries the status of a job as the job is running displaying the following data:

• jobid
• vsize
• rss
• pages
• cputime
• ntasks
• status

The --jobs=job(.step) option must also be included. If no (.step) is given, the job.0
step will be received.

 Launching an Application 6-51

-e time_spec , --expire=time_spec

Removes job data from SLURM’s current accounting log file (or the file specified
with --file) for jobs that completed more than time_spec ago and appends them to
the expired log file.
If time_spec is an integer value only, it is interpreted as minutes. If time_spec is an
integer followed by "h", it is interpreted as a number of hours. If time_spec is an
integer followed by "d", it is interpreted as number of days. For example, "--
expire=14d" purges the job accounting log of all jobs that completed more than
14 days ago.
The expired log file is a file with the same name as the accounting log file, with
".expired" appended to the file name. For example, if the accounting log file is
/var/log/slurmacct.log, the expired log file will be
/var/log/slurmacct.log.expired.

-F field_list , --fields=field_list

Displays the job accounting data specified by the field_list operand, which is a
comma-separated list of fields. Space characters are not allowed in the field_list.
See the --help-fields option for a list of the available fields. See the section titled
"Job Accounting Fields" for a description of each field.
The job accounting data is displayed in the order specified by the field_list
operand. Thus, the following two commands display the same data but in
different order:

sacct --fields=jobid,status
Jobid Status
3 COMPLETED
3.0 COMPLETED

sacct --fields=status,jobid
Status Jobid
COMPLETED 3
COMPLETED 3.0

The default value for the field_list operand is
"jobid,partition,process,ncpus,status,exitcode".
This option has no effect when the --dump option is also specified.

-f file, --file=file

Causes the SACCT command to read job accounting data from the named file
instead of the current SLURM job accounting log file.

-O , --formatted_dump

Dumps accounting records in an easy-to-read format.
This option is provided for debugging.

-g gid, --gid=gid

Displays the statistics only for the jobs started with GID gid.

-g group, --group=group

Displays the statistics only for the jobs started by users in the group group.

6-52 HPC BAS4 - User's Guide

-h , --help

Displays a general help message.

--help-fields

Displays a list of fields that can be specified with the --fields option.
The available fields are the following:
account blockid cpu cputime elapsed end
exitcode gid group idrss inblock isrss
ixrss job jobid jobname majflt minflt
msgrcv msgsnd ncpus nivcsw nodes nprocs
nsignals nswap ntasks nvcsw outblocks pages
partition rss start status submit systemcpu
uid user usercpu vsize
These fields are described in the section titled "Job Accounting Fields:"

-j job(.step) , --jobs=job(.step)

Displays information about the specified job(.step) or list of job(.step)s.
The job(.step) parameter is a comma-separated list of jobs.
Space characters are not permitted in this list.
The default is to display information on all jobs.

-l, --long

Displays a long listing, which includes the following data:

• jobid
• jobname
• partition
• vsize
• rss
• pages
• cputime
• ntasks
• ncpus
• elapsed
• status
• exitcode

--noheader

Prevents the display of the heading over the output. The default action is to display
a header.
This option has no effect when used with the --dump option.

-p partition_list , --partition=partition_list

Displays information about jobs and job steps specified by the partition_list
operand, which is a comma-separated list of partitions. Space characters are not
allowed in the partition_list.
The default is to display information on jobs and job steps on all partitions.

-s state_list , --state=state_list

 Launching an Application 6-53

Selects jobs based on their current state, which can be designated with the
following state designators:
• r running
• s suspended
• ca cancelled
• cd completed
• pd pending
• f failed
• to timed out
• nf node_fail
The state_list operand is a comma-separated list of these state designators. Space
characters are not allowed in the state_list.

-t , --total

Displays only the cumulative statistics for each job.
Intermediate steps are displayed by default.

-u uid, --uid=uid

Displays the statistics only for the jobs started by the user whose UID is uid.

-u user, --user=user
Displays the statistics only for the jobs started by user user.

--usage

Displays a help message.

-v , --verbose
Reports the state of certain variables during processing.
This option is primarily used for debugging.

6.3.6.2 Job Accounting Fields

The following describes each job accounting field:

• account user-supplied account number of the job

• cpu sum of the system time (systemcpu) and user time (usercpu) in seconds

• cputime minimum CPU time of any process followed by its task id along with the
average of all processes running in the step

• elapsed job’s elapsed time (format : [DD-[hh:]]mm:ss) as defined by the
following:
DD days
hh hours
mm minutes
ss seconds

• end termination time of the job (format : MM/DD-hh:mm:ss) as defined by
the following:
MM month
DD days
hh hours
mm minutes
ss seconds

6-54 HPC BAS4 - User's Guide

• exitcode The first non-zero error code returned by any job step.

• gid The group identifier of the user who ran the job.

• group The group name of the user who ran the job.

• idrss Maximum unshared data size (in KB) of any process.

• inblocks Total block input operations for all processes.

• isrss Maximum unshared stack space size (in KB) of any process.

• ixrss Maximum shared memory (in KB) of any process.

• job The SLURM job identifier of the job.

• jobid The number of the job or job step. It is in the form: job.jobstep.

• jobname The name of the job or job step.

• majflt Maximum number of major page faults for any process.

• minflt Maximum number of minor page faults (page reclaims) for any process.

• msgrcv Total number of messages received for all processes.

• msgsnd Total number of messages sent for all processes.

• ncpus Total number of CPUs allocated to the job.

• nivcsw Total number of involuntary context switches for all processes.

• nodes List of nodes allocated to the job.

• nprocs Total number of tasks in job. Identical to ntasks.

• nsignals Total number of signals received for all processes.

• nswap Maximum number of swap operations of any process.

• ntasks Total number of tasks in job.

• nvcsw Total number of voluntary context switches for all processes.

• outblocks Total block output operations for all processes.

• pages Maximum page faults of any process followed by its task id along with
the average of all processes running in the step.

• partition Identifies the partition on which the job ran.

• rss Maximum resident set size of any process followed by its task id along
with the average of all processes running in the step.

• start Initiation time of the job in the same format as end.

• status Displays the job status, or state. Output can be RUNNING,
SUSPENDED, COMPLETED, CANCELLED, FAILED, TIMEOUT, or
NODE_FAIL.
If the job has been CANCELLED, the status will include the user ID of the
user who cancelled the job.

• submit The time and date stamp (in Universal Time Coordinated, UTC) the job
was submitted. The format of the output is identical to that of the end
field.

• systemcpu The amount of system CPU time. The format of the output is identical to
that of the elapsed field.

 Launching an Application 6-55

• uid The user identifier of the user who ran the job.

• uid.gid The user and group identifiers of the user who ran the job. (This field is
used in record headers, and simply concatenates the uid and gid fields.)

• user The user name of the user who ran the job.

• usercpu The amount of user CPU time. The format of the output is identical to that
of the elapsed field.

• vsize Maximum Virtual Memory size of any process followed by its task id
along with the average of all processes running in the step.

6.3.6.3 Interpreting the Dump Option

The --dump option of the SACCT command displays data in a horizontal list of fields
depending on the record type; there are three record types: JOB_START, JOB_STEP, and
JOB_TERMINATED. There is a subsection that describes the output for each record type.

When the data output is a job accounting field, as described in the section titled "Job
Accounting Fields", only the name of the job accounting field is listed. Otherwise,
additional information is provided.

Note:
The output for the JOB_STEP and JOB_TERMINATED record types presents a pair of fields
for the following data: Total CPU time, Total User CPU time, and Total System CPU time.
The first field of each pair is the time in seconds expressed as an integer. The second field
of each pair is the fractional number of seconds multiplied by one million. Thus, a pair of
fields output as "1 024315" means that the time is 1.024315 seconds. The least
significant digits in the second field are truncated in formatted displays.

Output for the JOB_START Record Type

The following describes the horizontal fields output by the SACCT --dump option for the
JOB_START record type.

Field# Field
1 job
2 partition
3 The job’s start time; this value is the number of non-leap seconds since the

Epoch (00:00:00 UTC, January 1, 1970)
4 submitted
5 blockid
6 (Reserved)
7 JOB_START (literal string)
8 Job Record Version (1)
9 The number of fields in the record (17)
10 uid
11 gid
12 The job name

6-56 HPC BAS4 - User's Guide

13 Batch Flag (0=no batch)
14 Relative SLURM priority
15 ncpus
16 nodes
17 account

Output for the JOB_STEP Record Type

The following describes the horizontal fields output by the SACCT --dump option for the
JOB_STEP record type.

Field# Field
1 job
2 partition
3 The job’s start time; this value is the number of non-leap seconds since the

Epoch (00:00:00 UTC, January 1, 1970)
4 submitted
5 blockid
6 (Reserved)
7 JOB_STEP (literal string)
8 Job Record Version (1)
9 The number of fields in the record (55)
10 jobid
11 end
12 Completion Status; the mnemonics, which may appear in uppercase or

lowercase, are:
CA Cancelled
CD Completed successfully
F Failed
NF Job terminated from node failure
R Running
S Suspended
TO Timed out

13 exitcode
14 ntasks
15 ncpus
16 Elapsed time in seconds expressed as an integer.
17 Integer portion of the Total CPU time in seconds for all processes.
18 Fractional portion of the Total CPU time for all processes expressed in

microseconds.
19 Integer portion of the Total User CPU time in seconds for all processes.
20 Fractional portion of the Total User CPU time for all processes expressed in

microseconds.
21 Integer portion of the Total System CPU time in seconds for all processes.
22 Fractional portion of the Total System CPU time for all processes expressed in

microsecs.
23 rss
24 ixrss

 Launching an Application 6-57

25 idrss
26 isrss
27 minflt
28 majflt
29 nswap
30 inblocks
31 outblocks
32 msgsnd
33 msgrcv
34 nsignals
35 nvcsw
36 nivcsw
37 max_vsize
38 max_rss
39 max_vsize_node
40 max_vsize_task
41 ave_vsize
42 max_rss_node
43 max_rss_task
44 ave_rss
45 max_pages
46 max_pages_node
47 max_pages_task
48 ave_pages
49 min_cpu
50 min_cpu_node
51 min_cpu_task
52 ave_cpu
53 stepname
54 nodes
55 account

Output for the JOB_TERMINATED Record Type

The following describes the horizontal fields output by the SACCT --dump option for the
JOB_TERMINATED (literal string) record type.

Field# Field
1 job
2 partition
3 the jobs start time; this value is the number of non-leap seconds since the

Epoch (00:00:00 UTC, January 1, 1970)
4 submitted
5 blockid
6 (Reserved)
7 JOB_TERMINATED (literal string)

6-58 HPC BAS4 - User's Guide

8 Job Record Version (1).
9 The number of fields in the record (56).

Although thirty-eight fields are displayed by the SACCT command for the
JOB_TERMINATED record, only fields 1 through 12 are recorded in the
actual data file; the SACCT command aggregates the remainder.

10 the total elapsed time in seconds for the job.
11 end
12 completion Status; the mnemonics, which may appear in uppercase or

lowercase, are:
CA Cancelled
CD Completed successfully
F Failed
NF Job terminated from node failure
R Running
TO Timed out

13 exitcode
14 ntasks
15 ncpus
16 Elapsed time in seconds expressed as an integer.
17 Integer portion of the Total CPU time in seconds for all processes.
18 Fractional portion of the Total CPU time for all processes expressed in

microseconds.
19 Integer portion of the Total User CPU time in seconds for all processes.
20 Fractional portion of the Total User CPU time for all processes expressed in

microseconds.
21 Integer portion of the Total System CPU time in seconds for all processes.
22 Fractional portion of the Total System CPU time for all processes expressed in

microseconds.
23 rss
24 ixrss
25 idrss
26 isrss
27 minflt
28 majflt
29 nswap
30 inblocks
31 outblocks
32 msgsnd
33 msgrcv
34 nsignals
35 nvcsw
36 nivcsw
37 max_vsize
38 max_rss
39 max_vsize_node
40 max_vsize_task
41 ave_vsize

 Launching an Application 6-59

42 max_rss_node
43 max_rss_task
44 ave_rss
45 max_pages
46 max_pages_node
47 max_pages_task
48 ave_pages
49 min_cpu
50 min_cpu_node
51 min_cpu_task
52 ave_cpu
53 --
54 nodes
55 account
56 requid

6.3.6.4 Examples

The following example illustrates the default invocation of the SACCT command:

sacct
Jobid Jobname Partition Ncpus Status Exitcode
2 script01 srun 1 RUNNING 0
3 script02 srun 1 RUNNING 0
4 endscript srun 1 RUNNING 0
4.0 srun 1 COMPLETED 0

The following example shows the same job accounting information with the brief option.

sacct --brief
Jobid Status Exitcode
2 RUNNING 0
3 RUNNING 0
4 RUNNING 0
4.0 COMPLETED 0

sacct --total
Jobid Jobname Partition Ncpus Status Exitcode
3 sja_init andy 1 COMPLETED 0
4 sjaload andy 2 COMPLETED 0
5 sja_scr1 andy 1 COMPLETED 0
6 sja_scr2 andy 18 COMPLETED 2
7 sja_scr3 andy 18 COMPLETED 0
8 sja_scr5 andy 2 COMPLETED 0
9 sja_scr7 andy 90 COMPLETED 1
10 endscript andy 186 COMPLETED 0

The following example demonstrates the ability to customize the output of the SACCT
command. The fields are displayed in the order designated on the command line.

sacct --fields=jobid,ncpus,ntasks,nsignals,status
Jobid Ncpus Ntasks Nsignals Status
3 2 1 0 COMPLETED
3.0 2 1 0 COMPLETED

6-60 HPC BAS4 - User's Guide

4 2 2 0 COMPLETED
4.0 2 2 0 COMPLETED
5 2 1 0 COMPLETED
5.0 2 1 0 COMPLETED

6.3.7 Global Accounting API

 Note:
The Global Accounting API only applies to clusters which use SLURM and the Load Sharing
Facility (LSF) batch manager from Platform Computing together.

Both the LSF and SLURM products can produce an accounting file. The Global Accounting
API offers the capability of merging the data from these two accounting files and presenting
it as a single record to the program using this API.

Perform the following steps to call the Global Accounting API:

After SLURM has been installed (assumes /usr folder), build the Global Accounting API
library by going to the /usr/lib/slurm/bullacct folder and executing the following
command:

make –f makefile-lib

This will build the library libcombine_acct.a. This makefile-lib assumes that the SLURM
product is installed in the /usr folder, and LSF is installed in /app/slurm/lsf/6.2. If this is
not the case, the SLURM_BASE and LSF_BASE variables in the makefile-lib file must be
modified to point to the correct location.

After the library is built, add the library /usr/lib/slurm/bullacct/libcombine_acct.a to
the link option when building an application that will use this API.

In the user application program, add the following:

 // for new accounting record
 // assumes Slurm is installed under the opt/slurm folder

 #include "/usr/lib/slurm/bullacct/combine_acct.h"

 // define file pointer for LSF and Slurm log file
 FILE *lsb_acct_fg = NULL; // file pointer for LSF accounting log file
 FILE *slurm_acct_fg = NULL; // file pointer for Slurm log file
 int status, jobId;
 struct CombineAcct newAcct; // define variable for the new records

 // call cacct_init routine to open lsf and slurm log file,
 // and initialize the newAcct structure
 status = cacct_init(&lsb_acct_fg, &slurm_acct_fg, &newAcct);

 // if the status returns 0 imply no error,
 // all log files are opened successfully.
 // then call get_combine_acct_info rountine to get the
 // combine accounting record.

 // the calling sequence is
 // int get_combine_acct_info(File *lsb_acct_fg,
 // File *slurm_acct_fg,
 // int jobId,

 Launching an Application 6-61

 // CombineAcct *newAcct);
 // where:
 // lsb_acct_fg is the pointer to the LSF accounting log file
 // slurm_acct_fg is the pointer to the Slurm accounting log file
 // jobid is the job Id from the LSF accounting log file
 // newAcct is the address of the variable to hold the new record
 // information.

 // This routine will use the input LSF job ID to locate the LSF accounting
 // information in the LSF log file, then get the SLURM_JOBID and locate the
 // SLURM accounting information in the SLURM log file.
 // This routine will return a zero to indicate that both records are found
 // and processed successfully, otherwise one or both records are in error
 // and the content in the newAcct variable is undefined.
 // For example:

 // to get the combine acct information for a specified jobid(2010)

 jobId = 2010;
 status = get_combine_acct_info(lsb_acct_fg,
 slurm_acct_fg,
 jobId,
 &newAcct);

 // to display the record call display_combine_acct_record routine.

 display_combine_acct_record(&newAcct);

 // when finished accessing the record, the user must close the log files and
 // the free memory used in the newAcct variable by calling cacct_wrapup
 // routine.
 // For example:
 //
 if (lsb_acct_fg != NULL) // if open successfully before
 cacct_wrapup(&lsb_acct_fg, &slurm_acct_fg, &newAcct);

 // if an extra combine account variable is needed , the user can define
 // the new variable and call init_cacct_rec to initialize the record
 // and call free_cacct_ptrs to free the memory used in the new variable.
 // For example:

 // to define variable for the new record
 struct CombineAcct otherAcct;

 // before using the variable otherAcct do:
 init_cacct_rec(&otherAcct);

 // when done do the following to free the memory used by the otherAcct
 // variable.
 free_cacct_ptrs(&otherAcct);

The new record contains the combined accounting information as follows:

/* combine LSF and SLURM acct log information */
struct CombineAcct {

 /* part one is the LSF information */

 char evenType[50];
 char versionNumber[50];
 time_t eventTime;
 int jobId;
 int userId;
 long options;
 int numProcessors;
 time_t submitTime;
 time_t beginTime;

6-62 HPC BAS4 - User's Guide

 time_t termTime;
 time_t startTime;
 char userName[MAX_LSB_NAME_LEN];
 char queue[MAX_LSB_NAME_LEN];
 char *resReq;
 char *dependCond;
 char *preExecCmd; /* the command string to be pre_executed */
 char fromHost[MAXHOSTNAMELEN];
 char cwd[MAXFILENAMELEN];
 char inFile[MAXFILENAMELEN];
 char outFile[MAXFILENAMELEN];
 char errFile[MAXFILENAMELEN];
 char jobFile[MAXFILENAMELEN];
 int numAskedHosts;
 char **askedHosts;
 int numExecHosts;
 char **execHosts;
 int jStatus; /* job status */
 double hostFactor;
 char jobName[MAXLINELEN];
 char command[MAXLINELEN];
 struct lsfRusage LSFrusage;
 char *mailUser; /* user option mail string */
 char *projectName; /* the project name for this job, used
 for accounting purposes */
 int exitStatus; /* job status */
 int maxNumProcessors;
 char *loginShell; /* login shell specified by user */
 char *timeEvent;
 int idx; /* array idx, must be 0 in JOB_NEW */
 int maxRMem;
 int maxRswap;
 char inFileSpool[MAXFILENAMELEN]; /* spool input file */
 char commandSpool[MAXFILENAMELEN]; /* spool command file */
 char *rsvId;
 char *sla; /* The service class under which the job runs. */
 int exceptMask;
 char *additionalInfo;
 int exitInfo;
 char *warningAction; /* warning action, SIGNAL | CHKPNT |
 command, NULL if unspecified */
 int warningTimePeriod; /* warning time period in seconds,
 -1 if unspecified */
 char *chargedSAAP;
 char *licenseProject; /* License Project */
 int slurmJobId; /* job id from slurm */

 /* part two is the SLURM info minus the duplicated infomation from LSF */

 long priority; /* priority */
 char partition[64]; /* partition node */
 int gid; /* group ID */
 int blockId; /* Block ID */
 int numTasks; /* nproc */
 double aveVsize; /* ave vsize */
 int maxRss; /* max rss */
 int maxRssTaskId; /* max rss task */
 double aveRss; /* ave rss */
 int maxPages; /* max pages */
 int maxpagestaskId; /* max pages task */
 double avePages; /* ave pages */
 int minCpu; /* min cpu */
 int minCpuTaskId; /* min cpu task */
 char stepName[NAME_SIZE]; /* step process name */
 char stepNodes[STEP_NODE_BUF_SIZE]; /* step node list */
 int maxVsizeNode; /* max vsize node */
 int maxRssNodeId; /* max rss node */

 Launching an Application 6-63

 int maxPagesNodeId; /* max pages node */
 int minCpuTimeNodeId; /* min cpu node */
 char *account; /* account number */

};

6-64 HPC BAS4 - User's Guide

6.4 Launching the Application using TORQUE Batch Manager

TORQUE is a resource manager providing control over batch jobs and distributed compute
nodes. TORQUE uses a queue mechanism for job execution, which works according to
preconfigured priority criteria.

6.4.1 Configuring Passwordless Access for TORQUE

ssh keys have to be configured to create public\private keys for an ordinary user of a
cluster so that passwordless access is enabled for the whole of the cluster\partition on
which the application and TORQUE is running. Otherwise TORQUE will not work
correctly.

This is done by using the ssh-keygen command.

ssh-keygen –trsa

Append this key to the list of authorized keys.

 Note:
See chapters 2 and 10 in the HPC BAS4 Administrator’s Guide for more information on
configuring ssh

The user command interface for TORQUE can be used to:

• Submit a job

• Display the state and characteristics of a job

• Cancel a job

• Change the characteristics of a job, which is either running or waiting. Note that for a
running job, only the limits and the output files can be changed

• Stop or resume a job

• Manage more than 5000 active or waiting jobs.

For more information refer to the following Web site:
http://www.clusterresources.com/products/torque/ .

The main features of TORQUE are:

Job Priority

Users can specify the priority of their jobs.

Job-Interdependency

TORQUE enables the user to define a wide range of interdependencies between batch
jobs. Such dependencies include - execution order, synchronization, and execution
dependent on the success or failure of another specified job.

http://www.clusterresources.com/products/torque/

 Launching an Application 6-65

Automatic File Staging

TORQUE provides users with the ability to specify files that need to be copied onto the
execution host before the job runs, and those that need to be copied off after the job
completes. The job will be scheduled to run only after the required files have been
successfully transferred.

Single or Multiple Queue Support

TORQUE can be configured with as many queues as necessary. However, TORQUE is not
limited to queue-based scheduling, which means it is possible to run TORQUE with a single
queue.

Multiple Scheduling Algorithms

With TORQUE it is possible to specify the standard first-in, first-out scheduling routine or
more sophisticated algorithms.

6.4.2 TORQUE Commands

Below is a list of the most common TORQUE commands.

Command Description

momctl Manage/diagnose MOM (node execution) daemon

pbsdsh Launch tasks within a parallel job

pbsnodes View/modify batch status of compute nodes

qdel Delete/cancel batch jobs

qhold Hold batch jobs

qmgr Manage policies and other batch configurations

qrls Release batch job holds

qrun Start a batch job

qsub Submit jobs

qterm Shutdown pbs server daemon

Table 6-3. TORQUE commands

qsub Command

Following is a short description of the qsub command. See the qsub man page for more
details:

qsub - submit pbs job

SYNOPSIS

qsub [-a date_time] [-A account_string] [-c interval] [-C directive_prefix] [-e path] [-h] [-I] [-j
join] [-k keep] [-l resource_list] [-m mail_options] [-M user_list]
[-N name] [-o path] [-p priority] [-q destination] [-r c] [-S path_list] [-u user_list] [-v
variable_list] [-V] [-W additional_attributes] [-z] [script]

6-66 HPC BAS4 - User's Guide

DESCRIPTION

To create a job is to submit an executable script to a batch server. The batch server will be
the default server unless the -q option is specified. See discussion of PBS_DEFAULT under
Environment Variables below. Typically, the script is a shell script which will be executed
by a command shell such as sh or csh.

Options for the qsub command allow the specification of attributes which affect the
behavior of the job.

The qsub command will pass on certain environment variables in the Variable_List attribute
of the job. These variables will be available to the job. The value for the following
variables will be taken from the environment of the qsub command: HOME, LANG,
LOGNAME, PATH, MAIL, SHELL, and TZ. These values will be assigned to a new name
which is the current name prefixed with the string "PBS_O_". For example, the job will
have access to an environment variable named PBS_O_HOME which have the value of the
variable HOME in the qsub command environment.

In addition to the above, the following environment variables will be available to the batch
job.

PBS_O_HOST

The name of the host on which the qsub command is running.

PBS_O_QUEUE

The name of the original queue to which the job was submitted.

PBS_O_WORKDIR

The absolute path of the current working directory of the qsub command.

PBS_ENVIRONMENT

Set to PBS_BATCH to indicate the job is a batch job, or to PBS_INTERACTIVE to indicate
the job is a PBS interactive job, see -I option.

PBS_JOBID

The job identifier assigned to the job by the batch system.

PBS_JOBNAME

The job name supplied by the user.

PBS_NODEFILE

The name of the file containing the list of nodes assigned to the job (for parallel and cluster
systems).

PBS_QUEUE

The name of the queue from which the job is executed.

 Application Debugging Tools 7-1

Chapter 7. Application Debugging Tools

7.1 Overview

There are two types of debuggers; symbolic ones and non-symbolic ones.

A symbolic debugger gives access to a program's source code. This means that:

• The lines of the source file can be accessed.

• The program variables can be accessed by name.

Whereas a non-symbolic debugger enables access only to the lines of the machine code
program and top physical addresses.

The following tools are described in this chapter:

• 7.2 GDB

• 7.3 IDB

• 7.4 TOTALVIEW

• 7.5 MALLOC_CHECK_ - Debugging Memory Problems in C programs

• 7.6 Dmalloc Library

• 7.7 Electric Fence

• 7.8 System Monitoring and Performance Tools

7.2 GDB

GDB stands for Gnu DeBugger. It is a powerful Open-source debugger, which can be used
either through a command line interface, or a graphical interface such as XXGDB or DDD
(Data Display Debugger). It is also possible to use an emacs/xemacs interface.

GDB supports parallel applications and threads.

GDB is published under the GNU license.

7.3 IDB

IDB is a debugger delivered with Intel compilers. It can be used with C/C++ and F90
programs.

7-2 HPC BAS4 - User's Guide

7.4 TOTALVIEW

Figure 7-1 Totalview graphical interface – image taken from www.etnus.fr

TotalViewTM is a proprietary software application from Etnus and is not included with the
BAS distribution. TotalviewTM is used in the same way as standard symbolic debuggers for
C, C++ and Fortran (77, 90 and HPF) programs. It can also debug PVM or MPI
applications. TotalViewTM has the advantage of being a debugger which supports multi-
processes and multi-threading. It can take control of the various processes or threads of the
program and make it possible for the user to visualize the evolution of the execution in the
same window or in different windows. The processes may be local or remote.

http://www.etnus.fr/

 Application Debugging Tools 7-3

It works just as well with mono-processor, SMP, clustered, distributed and MPP systems.

TotalViewTM accepts new processes and threads exactly as generated by the application
and regardless of the processor used for the execution. A process started up outside
TotalViewTM can also be connected to. Data tables can be filtered, displayed, and viewed
in order to monitor the behavior of the program. Finally, you can descend ("call the
components and details of…") into the objects and structures of the program.

The program which needs debugging must be compiled with the option ‘- g’, and then
breakpoints should be added to the program to control its execution.

TotalViewTM is an Xwindows application. Context-sensitive help provides you with basic
information. You may download TotalViewTM in the directory /opt/totalview.

Before running TotalViewTM, update your environment using the following command:

source /opt/totalview/totalview-vars.sh

Then enter:

totalview&

For additional information, and for copies of the documentation for TotalviewTM, please
refer to http://www.etnus.com/.

7.5 MALLOC_CHECK_ - Debugging Memory Problems in C
programs

When developing an application, the developer should ensure that all the buffers allocated
during the run-time of the application are freed afterwards. However, even if he is vigilant,
it is not unusual for memory leaks to be introduced into the code.

A simple way to detect these memory leaks is to use the environment variable
MALLOC_CHECK __. This variable ensures that allocation routines check that each
allocated buffer is freed correctly. The routines then become more ‘tolerant’ and allow byte
overflows on both sides of blocks or for the block to be released again.

According to the value of MALLOC_CHECK __, when a release or allocation error appears
the application behaves as follows:

• If MALLOC_CHECK __ is set to 1, an error message is written when exiting normally.

• If MALLOC_CHECK __ is set to 2, an error message is written when exiting normally
and the process aborts. A core file is created. You should check that it is possible to
create a core file by using the command ulimit –c. If not, enter the command ulimit -c
unlimited.

• For any other value of MALLOC_CHECK __, the error is ignored and no message
appears.

http://www.etnus.com/

7-4 HPC BAS4 - User's Guide

Example.c program:

#include <stdio.h>
#include <stdlib.h>
#define SIZE 256

int main(void){

 char *buffer;

 buffer = (char *)calloc(256*sizeof(char));
 if(!buffer){
 perror(``malloc failed'');
 exit(-1);
 }

 strcpy(buffer, ``fills the buffer'');
 free(buffer);
 fprintf(stdout, ``Buffer freed for the first time'');
 free(buffer);
 fprintf(stdout,``Buffer freed for the second time'');
 return(0);

}

A program which is executed with the environmental variable MALLOC_CHECK __ set to
1 gives the following result:

$ export MALLOC_CHECK__=1

$./example

Buffer freed for the first time

Segmentation fault

$ ulimit –c 0

The limit for the core file size must be changed to allow files
bigger than 0 bytes to be generated

$ ulimit –c unlimited

Allows an unlimited core file to be generated

A program which is executed with the environmental variable MALLOC_CHECK __ set to
2 gives the following result:

$ export MALLOC_CHECK__=2

$./example

Buffer freed for the first time

Segmentation fault (core dumped)

 Application Debugging Tools 7-5

Example Program Analysis using the GDB Debugger

The core file should be analyzed to identify where the problem is (the program should be
compiled with the option - G):

$ gdb example -c core
GNU gdb 6.3-debian
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it
under certain conditions.
Type "show copying" to see the conditions. There is absolutely no
warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-linux"...Using host libthread_db
library "/lib/libthread_db.so.1".

Core was generated by `./example’.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /lib/libc.so.6...done.
Loaded symbols for /lib/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0x40097354 in mallopt () from /lib/libc.so.6
(gdb) bt
#0 0x40097354 in mallopt () from /lib/libc.so.6
#1 0x4009615f in free () from /lib/libc.so.6
#2 0x0804852f in main () at exemple.c:18
(gdb)

The bt command is used to display the current memory stack. In this example the last line
indicates the problem came from line 18 in the main function of the example.c file.
Looking at the example.c program on page 7.4 we can see that line 18 corresponds to
the second call to the free function which created the memory overflow.

7.6 Dmalloc Library

Dmalloc is an open source library and is included in the BAS distribution to help with
application development and to ensure that memory leaks are detected quickly. This tool is
complementary to the use of MALLOC_CHECK __ and is used to find memory leaks in C
programs.

The debug memory allocation or dmalloc library is a memory management routine which
provides powerful debugging facilities which are configurable at runtime. These facilities
include such things as memory-leak tracking, fence-post write detection, file/line number
reporting, and general logging of statistics. Thus it makes it possible to obtain precise
information about a memory allocation problem. Small changes must be made to the code
to run it. It also provides support for the debugging of threaded programs.

This dmalloc library substitutes the primitive calls malloc, calloc, realloc and free with the
primitives which are available in the dmalloc library.

The dmalloc User’s Guide and further information is available from the site
http://www.dmalloc.com

7-6 HPC BAS4 - User's Guide

7.7 Electric Fence

Electric Fence is an open source malloc debugger for Linux and Unix. It stops your
program on the exact instruction that overruns or under-runs a malloc() buffer.

Electric Fence is installed only on the management node.

Electric Fence helps you detect two common programming bugs:

• Software that overruns the boundaries of a malloc() memory allocation.

• Software that touches a memory allocation that has been released by free().

You can use the following example, replacing icc --version by the command line of
your program.

[test@host]$LD_PRELOAD=/usr/local/tools/ElectricFence-2.2.2/lib/libefence.so.0.0
icc --version

Electric Fence 2.2.0 Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>

……..

For more details about Electric Fence please refer to http://perens.com/FreeSoftware/ .

7.8 System Monitoring and Performance Tools

In the world of HPC architectures, monitoring and improving performance is an important
concern in order to fully optimize calculation speeds and memory usage for these powerful
machines.

For information on monitoring tools and on improving overall performance of the
application program on the HPC platform refer to the Bull HPC Application Tuning Guide
(86 A2 19ER). This manual describes system monitoring tools provided by NovaScale
Master – HPC Edition including time, top, and perfmon and application profiling tools
including gprof, profilecomm, the PAPI library and Intel® Trace Tools.

For information related to the performance of the cluster itself, please refer to the Bull HPC
BAS4 Administrator’s Guide (86 A2 30ER).

http://perens.com/FreeSoftware/

 Application Troubleshooting A-1

Appendix A. Application Troubleshooting
A list of frequently asked questions (FAQs) with solutions and advice follows:

Problems when compiling and executing

• I get the message: "error while loading shared libraries" when a
program executes.

• My parallel program cannot find the program on the other machines.

• How do I optimize compilation with the Intel Fortran compiler?

• How do I optimize compilation with the Intel C / C++ compiler?

• Can I run applications compiled under previous OS releases?

• I get lots of "unaligned access" error messages.

Problems when compiling and executing with MPICH

• I have a problem with memory allocations when I use MPICH.

• Problems when compiling and executing with QSNET MPI.

• At runtime my program hangs when I use QSNET MPI (libelan).

OpenMP

• To run a program parallelized with OpenMP, how do I define the number of threads
(processors) used?

I get the message: "error while loading shared libraries" when a program
executes.

Add the path for this library to the LD_LIBRARY_PATH environment variable.

My parallel program cannot find the program on the other machines.

You must have the binaries on all machines running the benchmarks and respect the tree
structure of the machine from which the benchmark is started, or use NFS.

How do I optimize compilation and debugging with the Intel Fortran compiler?

For optimization, add the following compilation options:

-implicitnone Forces the declaration of variables: If a variable is used without
being declared, this triggers errors on compilation.

-mp Respects IEEE standard double precision.
-unroll2 To unroll a loop: This favors vectorization and the instructions

pipeline.
-ip, -ipo Optimizes calls to a subprogram (parameter management).
-auto Allocates the variables dynamically to the stack rather than in

static storage in the memory.

A-2 HPC BAS4 - User's Guide

-zero Implicitly initializes variables to 0.
-ftz flush-to-zero.
-i-dynamic Avoids loading static libraries and therefore reduces the size of

the executable.
-parallel Parallelizes certain sequences (supplied by the par_report option).
-par_report3 Provides information about how successful the compilation has

been (e.g. parallelized loops).
-openmp Takes into account OpenMP directives.

For debugging, add the following compilation options:

-g debugging
-fpp pre-processing

How do I optimize compilation and debugging with the Intel C / C++ compiler?

Add the following compilation options:
-O3 Highest code optimization possible.
-mp Respects IEEE standard double precision.
-ip, -ipo Optimizes calls to a subprogram (parameter management).
-unroll (to unroll a loop): This favors vectorization and the instructions

pipeline.

Can I run applications compiled under previous OS releases?

Some applications that have been compiled under previous OS releases (typically ISV
products produced under BAS3 or RH EL AS 3) will not execute under BAS4. At runtime,
the following kind of message appears:

symbol _dl_loaded, version GLIBC_2.2 not defined in file ld-linux-
ia64.so.2 with link time reference

In this case, two different and independent workarounds can be tried:

1. Set the LD_ASSUME_KERNEL variable to a value like 2.4, 2.4.18, or 2.4.20, and
then re-start the application.

2. If the previous workaround does not solve the issue, you can create a "dummy" library
that declares only the missing symbols (which is often not used):

echo "char* _dl_loaded=0; " > dl_loaded.c

gcc -o libdlloaded.so -shared dl_loaded.c

export LD_PRELOAD=`pwd`/libdlloaded.so

I get lots of “unaligned access” error messages.

These are not errors, but warnings. The application made an unaligned access and the
processor had to get help from the kernel to access the data. This message can be ignored
but be aware that too many unaligned accesses can be a source of performance loss. To
hide these messages, run:

 Application Troubleshooting A-3

prctl --unaligned=silent

To help debugging the program, run:

prctl --unaligned=signal

I have a problem with memory allocations when I use Ethernet MPICH.

Error message displayed during execution:

p3_1858: (18446744073792.328125) xx_shmalloc: returning NULL; requested 65584
bytes

p3_1858: (18446744073792.328125) p4_shmalloc returning NULL; request = 65584 bytes

You can increase the amount of memory by setting the environment variable

P4_GLOBMEMSIZE (in bytes)

The memory that the communication requires cannot be allocated correctly. To do this, run
the following command:

export P4_GLOBMEMSIZE=100000000

At runtime my program hangs when I use QSNET MPI (libelan)

If the following error message appears:

ELAN_EXCEPTION @ 1: 5 (Memory exhausted)

elan_createSubGroup(): Failed to allocate global Vaddr for subgroup

Then try again to run your program after setting the MPI_USE_LIBELAN_SUB environment
variable to zero using the following command:

export MPI_USE_LIBELAN_SUB=0

To run a program parallelized with OpenMP, how do I define the number of threads
(processors) used?

Run the commands:

export OMP_NUM_THREADS=2 to run the program on 2 processors

export OMP_NUM_THREADS=4 to run the program on 4 processors

A-4 HPC BAS4 - User's Guide

 Glossary and Acronyms G-1

Glossary and Acronyms

A

ANL
Argonne National Laboratory (MPICH2)

API
Application Programmer Interface

B

BAS
Bull Advanced Server

BIOS
Basic Input Output System

BMC
Baseboard Management Controller

B-SPS
Bull Scalable Port Switch

C

CLI
Command Line Interface

CMOS
Complementary Metal Oxide Semiconductor

D

DDN
DataDirect Networks S2A (storage system)

E

EFI
Extensible Firmware Interface (Intel)

EIP
IP over QSnet using Elan Kernel communications

EMP
Emergency Management Port

EPIC
Explicit Parallel Instruction set Computing

F

FAME
Flexible Architecture for Multiple Environments

FSS
FAME Scalability Switch. Each CSS Module is
equipped with 2 Scalability Port Switches providing
high speed bi–directional links between server
components

FUTEX
Fast User mode muTEX

G

GCC
GNU C Compiler

GDB
Gnu Debugger

GNU
GNU's Not Unix

GPL
General Public License

GUI
Graphical User Interface

GUID
Globally Unique Identifier

G-2 HPC BAS4 - User's Guide

H

HDD
Hard Disk Drive

HBA
Host Bus Adapter

HPC
High Performance Computing

HSC
Hot Swap Controller

I

ICC
Intel C Compiler

IDE
Integrated Device Electronics

IFORT
Intel Fortran Compiler

IPMI
Intelligent Platform Management Interface

K

KDM
Kernel Data Mover

KSIS
Utility for Image Building and Deployment

KVM
Keyboard Video Mouse (allows the connection of
the keyboard, video and mouse either to the PAP or
to the node)

L

LSF
Load Sharing Facility

LUN
Logical Unit Number

M

MDM
MPI Data Mover module

MPD
MPI Process Daemons

MPI
Message Passing Interface

N

NFS
Network File System

NPTL
Native POSIX Thread Library

NTFS
New Technology File System (Microsoft)

NUMA
Non Uniform Memory Access. A method of
configuring a cluster of microprocessors in a
multiprocessing system so that they can share
memory locally, improving performance and the
ability of the system to be expanded.

NVRAM
Non Volatile Random Access Memory

O

OEM
Original Equipment Manufacturer

OPK
OEM Preinstall Kit (Microsoft)

 Glossary and Acronyms G-3

P

PAM
Platform Administration and Maintenance software

PAP
Platform Administration Processor

PAPI
Performance Application Programming Interface

PCI
Peripheral Component Interconnect (Intel)

PDU
Power Distribution Unit

PM
Process Manager

PMB
Platform Management Board

PMI
Process Management Interface

PMU
Performance Monitoring Unit

PRUN
Parallel Run (Quadrics)

PVFS
Parallel Virtual File System

PVM
Parallel Virtual Machine

Q

QBB
Quad Brick Board. The QBB is the heart of the Bull
NovaScale 5xxx/6xxx Series platforms, housing 4
Itanium _ 2 processors.

R

RMS
Resource Management Service (Quadrics)

RPM
RPM Package Manager

S

SCI
Scalable Coherent Interconnect

SDR
Sensor Data Record

SDP
Sockets Direct Protocol

SEL
System Event Log

SCSI
Small Computer System Interface

SM
System Management

SMP
Symmetric Multi Processing. The processing of
programs by multiple processors that share a
common operating system and memory.

SNMP
The protocol governing network management and
the monitoring of network devices and their
functions.

SOL
Serial Over LAN

SSH
Secure Shell

G-4 HPC BAS4 - User's Guide

U

UA
User’s Application

V

VGA
Video Graphic Adapter

 Index I-1

Index

A
Administration Network, 1-2

B
Backbone, 1-2

BAS definition, 1-1

Baseboard Management Controller (BMC), 1-4

C
ClusterDB

definition, 1-4

Compiler
C, 1-5
C/C++ optimization options, A-2
Fortran, 1-5, 4-1
Fortran optimization options, A-1
GCC, 1-5, 4-4
GNU compilers, 4-1
Intel C C++, 4-2

Compiler licenses, 4-4
FlexLM, 4-4

ConMan, 1-2

Console Network, 1-2

CPUSET, 1-6

D
DataDirect Networks S2A (DDN), 1-3

DDN storage system, 1-3

Debugger
Dmalloc, 7-5
Electric Fence, 7-6
GDB, 1-5, 7-1
Intel Debugger, 1-5, 7-1
Non-symbolic debugger, 7-1
Symbolic debugger, 7-1
TotalView, 7-2

Debugging
GDB, 7-5
MALLOC_CHECK, 7-3

E
EPIC, 4-1

eval command, 5-3

F
FDA storage system, 1-3

File System
Lustre, 1-6, 5-2
NFS, 1-6, 5-2

G
Ganglia, 1-5

Gigabit Ethernet, 1-3

H
High speed interconnect, 1-2

I
IDB, 7-1

Infiniband, 1-3

Interconnection, 1-3

IPMI_tools, 1-2

J
job management, 1-6

K
KSIS, 1-4

L
Libnuma, 6-4

LSF, 6-60

Lustre
ldiskfs, 5-2

M
mkCDrec, 1-5

I-2 HPC BAS4 - User's Guide

mkDVDrec, 1-5

Modules, 1-5, 5-2
command line switches, 5-12
Commands, 5-3, 5-10
Environment variables, 5-15
modulecmd, 5-12
Modulefiles, 5-10
modulefiles directories, 5-7
Shell RC files, 5-5
Sub-Commands, 5-13
TCL, 5-10

Mono Libraries, 2-7

MPI libraries
LAM MPI, 2-1
MDM, 2-2, 2-3, 2-5
MPIBull, 1-5, 2-1, 3-1
MPIBull2, 2-1
mpiCC, 2-6
MPICH_Ethernet, 2-1, 2-19, 3-1
mpif77, 2-6
mpif90, 2-6
script mpicc, 2-6

MPI-2 standard, 2-9

MPIBull2, 2-9
Features, 2-11
Libraries, 2-13
Thread-safety, 2-12

MPIBull2-devices, 2-15

MPIBull2-launch, 2-15

MPICH, 2-5

MPICH_Ethernet, 2-19

N
Networks types, 1-2

Nodes
Compilation nodes, 5-1
login node, 5-1
Service node, 5-1
typical types, 1-1

NScommands, 1-4

NSDoctor, 1-5

NUMA, 6-4

Numactl, 6-3, 6-4

O
OpenMP, 4-1, 4-3

P
Parallel Libraries, 2-1

Performance and Profiling Tools
Profilecomm, 2-5, 2-20

Performance Tools, 7-6

Platform Administration Processor (PAP), 1-4

PortServer, 1-2

Postbootchecker, 1-5

profilecomm, 2-20

Program launchers, 6-1

ptools
cpuset, 2-5, 6-5
passign, 6-6
pcreate, 6-5, 6-6
pdestroy, 6-6
pexec, 6-5, 6-6
pls, 6-6

Q
qsub command, 6-65

Quadrics, 1-3

R
Resource Management System (RMS), 1-6

rlogin, 5-1

RMS
definition, 1-6
partitions, 6-7
prun, 5-2, 6-7, 6-8
prun command, 2-7
rinfo, 6-9
rmsexec, 6-8

rsh, 5-1

S
sched_setaffinity, 6-6

Scientific Libraries, 3-1
BLACS, 3-2
BLAS, 3-2

 Index I-3

BlockSolve95, 3-9
Cluster MKL (Intel Cluster Math Kernel Library),

3-2
FFTW, 3-13
LAPACK, 3-5
MKL (Intel Math Kernel Library), 3-2
NetCDF, 3-16
PBLAS, 3-5
PETSc, 3-14
SCALAPACK, 3-5
SuperLU, 3-9
SuperLU Serial, 3-10
SuperLU_DIST, 3-9, 3-12
SuperLU_SMP, 3-9, 3-11

Secure Shell
ssh command, 5-1

Serial Over LAN, 1-2

shlib option, 2-6

SLURM
Affinity/Multi-Core Options, 6-22
definition, 1-6
Global Accounting API, 6-10, 6-60
sacct

dump option, 6-55
examples of use, 6-59
job accounting fields, 6-53
options, 6-50

sacct command, 6-10, 6-49
sbcast command, 6-33

environment variables, 6-34
options, 6-33

scancel
arguments, 6-48
environment variables, 6-48
examples of use, 6-49
options, 6-47

scancel command, 6-10, 6-47
sinfo

environment variables, 6-46

examples of use, 6-46
Node State Codes, 6-45
options, 6-40
output field descriptions, 6-44

sinfo command, 6-10, 6-40
squeue

environment variables, 6-39
options, 6-35

squeue command, 6-10, 6-34
srun

allocate options, 6-19
attach options, 6-19
constraint options, 6-19
environment variables, 6-25
modes, 6-10
options, 6-12
parallel run options, 6-12

srun command, 6-10

SLURM Command Line Utilities, 6-10

StoreWay FDA, 1-3

syslog-ng, 1-5

T
TCL, 5-10

TORQUE, 6-64
Commands, 6-65
qsub, 6-65

Troubleshooting, A-1

V
Voltaire switches, 1-3

Z
zcopy, 2-3

I-4 HPC BAS4 - User's Guide

Technical publication remarks form

Title: HPC BAS4 User's Guide

Reference: 86 A2 29ER 07 Date: July 2007

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please include your complete mailing address below.

NAME: __ DATE: ______________
COMPANY: ___
ADDRESS: ___

Please give this technical publication remarks form to your BULL representative or mail to:

Bull - Documentation Dept.
1 Rue de Provence
BP 208
38432 ECHIROLLES CEDEX
FRANCE
info@frec.bull.fr

Technical publications ordering form

To order additional publications, please fill in a copy of this form and send it via mail to:

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Phone: +33 (0) 2 41 73 72 66
FAX: +33 (0) 2 41 73 70 66
E-Mail: srv.Duplicopy@bull.net

Reference Designation Qty

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

[_ _] : The latest revision will be provided if no revision number is given.

NAME: __ DATE: ______________

COMPANY: ___

ADDRESS: ___

PHONE: ___ FAX: _____________________________

E-MAIL: __

For Bull Subsidiaries:
Identification: __

For Bull Affiliated Customers:
Customer Code: ___

For Bull Internal Customers:
Budgetary Section: ___

For Others: Please ask your Bull representative.

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

REFERENCE
86 A2 29ER 07

	HPC BAS4 User's Guide
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1. Introduction to the HPC Environment
	Hardware Configuration
	Software Configuration
	Operating System and Installation
	Cluster Management Tools
	Application Development
	Job Operation
	Data and Files
	Exploiting the System

	Chapter 2. Parallel Libraries
	Overview of Parallel Libraries
	MPI Versions
	The MPI Data Mover module (MDM)

	MPI_ Bull 1.6. x
	MPI_ Bull environments
	MPI_ Bull and the Quadrics Interconnect cluster environment
	Bull Mono libraries for the Single Node Environment

	MPIBull2_ x
	Quick Start for MPIBull2_ x
	MPIBull2 Compilers
	Running MPIBull2
	MPIBull2_ 1.0. x features
	Using MPIBull2
	MPIBull2 Tools
	MPIBull2 – Example of use

	Third party MPI libraries
	MPICH_ Ethernet
	LAM MPI
	Parallel Virtual Machine

	Profiling with mpianalyser

	Chapter 3. Scientific Libraries
	Overview
	Intel Math Kernel Library
	Intel Cluster Math Kernel Library
	BLAS
	BLACS
	Using BLACS
	Installing and Compiling BLACS

	PBLAS
	LAPACK
	SCALAPACK
	Using SCALAPACK
	Installing and Compiling SCALAPACK

	Blocksolve95
	Installing and Compiling Blocksolve95

	SuperLU
	SuperLU Serial
	SuperLU_ SMP
	SuperLU_ DIST

	FFTW
	Installing and Compiling FFTW

	PETSc
	Installing and Compiling PETSc

	NETCDF

	Chapter 4. Compilers
	Overview
	Intel Fortran Compiler
	Intel C/ C++ Compiler
	Intel Compiler Licenses
	Intel Math Kernel Library Licenses
	GNU Compilers

	Chapter 5. The User's Environment
	Cluster Access and Security
	Connecting to HPC
	Using ssh (Secure Shell)

	Global File Systems: NFS / Lustre
	Environment Modules
	An example of Modules Use
	Setting Up the Shell RC Files

	Module Files
	Package Location Suggestions
	Upgrading via the Modules Command

	The Module Command
	modulefiles
	Modules Package Initialization
	Examples of Initialization
	Modulecmd Startup
	Module Command Line Switches
	Module Sub- Commands
	Modules Environment Variables

	Chapter 6. Launching an Application
	Launching the Application without a Batch Manager
	NUMACTL
	The PTOOLS and CPUSET Package

	Quadrics Resource Management System
	Using Quadrics RMS
	Prun
	Rmsexec
	rinfo
	More RMS Information

	SLURM Resource Management Utilities
	SRUN
	SBCAST
	SQUEUE (List Jobs)
	SINFO (Report Partition and Node Information)
	SCANCEL (Signal/ Cancel Jobs)
	SACCT (Accounting Data)
	Global Accounting API

	Launching the Application using TORQUE Batch Manager
	Configuring Passwordless Access for TORQUE
	TORQUE Commands

	Chapter 7. Application Debugging Tools
	Overview
	GDB
	IDB
	TOTALVIEW
	MALLOC_ CHECK_ - Debugging Memory Problems in C programs
	Dmalloc Library
	Electric Fence
	System Monitoring and Performance Tools

	Appendix A. Application Troubleshooting
	Glossary and Acronyms
	Index

