

HPC BAS4

User's Guide

H
PC

REFERENCE
86 A2 29ER 09

HPC

HPC BAS4
User's Guide

Hardware and Software
April 2008

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

REFERENCE
86 A2 29ER 09

The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not limited
to, copying, distributing, modifying, and making derivative works.

Copyright Bull SAS 2005, 2008

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of this
book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the rights of the proprietors of the trademarks mentioned in this manual.

All brand names and software and hardware product names are subject to trademark and/or patent protection.

Quoting of brand and product names is for information purposes only and does not represent trademark misuse.

The information in this document is subject to change without notice. Bull will not be liable for errors contained herein, or
for incidental or consequential damages in connection with the use of this material.

 Preface i

Preface

Scope and Objectives

The purpose of this guide is to describe the tools and libraries available as part of the Bull
Advanced Server (BAS) delivery which allow the development and testing of application
programs on the Bull High Performance Computing (HPC) clusters. In addition various open
source and proprietary tools are described.

Intended Readers

This guide is for users and developers of HPC applications.

Prerequisites

The installation of all hardware and software components of the HPC must have been
completed. The HPC administrator must have performed basic administration tasks
(creation of users, definition of the file systems, network configuration, etc).

See the Bull HPC BAS4 Administrator’s Guide (86 A2 30ER) for more details.

Structure

This guide is organized as follows:

Chapter 1. Introduction to the HPC Environment.
Provides a general introduction to Bull’s HPC software and hardware
environments.

Two types of programming libraries are used when developing programs for the HPC
environment: Parallel libraries and Mathematical libraries. These are described in the
chapters 2 and 3:

Chapter 2. Parallel Libraries.
Describes the Message Passing Interface (MPI) libraries to be used
when parallel programming.

Chapter 3. Scientific Libraries.
Describes the scientific libraries and scientific functions delivered with
the Bull HPC BAS delivery and how these should be invoked. Some of
Intel’s proprietary libraries are also described.

Chapter 4. Compilers.
Describes the compilers available and how to use them.

Chapter 5. The User’s Environment.
Describes the user's environment on Bull HPC clusters, how the clusters
are accessed and the use of the file systems. A description of Modules
follows. These can be used to change and compare environments.

ii HPC BAS4 - User's Guide

Chapter 6. Launching an Application.
Different ways of launching cluster resources for an application(s) are
explained. The TORQUE batch manager used for batch jobs is
described.

Chapter 7. Debugging Tools.
Describes Debugging Tools.

For details on system monitoring and application performance optimizations refer to the
Bull HPC BAS4 Application Tuning Guide (86 A2 19ER).

Appendix A A Troubleshooting guide which enables you to diagnose some common
problems.

Glossary and Acronyms
Provides a Glossary and lists the Acronyms used in the manual.

Bibliography

• Bull HPC BAS4 Installation and Configuration Guide (86 A2 28ER)

• Bull HPC BAS4 Administrator’s Guide (86 A2 30ER)

• Bull HPC BAS4 Application Tuning Guide (86 A2 19ER)

• Bull HPC BAS4 Maintenance Guide (86 A2 46ER)

• The Bull HPC BAS4 Software Release Bulletin (SRB) provides release-specific information
and details of restrictions resulting from known problems.

• Bull Voltaire Switches Documentation CD (86 A2 79ET 01)

• NovaScale 40xx Series and NovaScale 5xxx & 6xxx Series documentation

• NovaScale Master documentation

• Intel® Itanium® 2 Processor Reference Manual for Software Development and Optimization

Web Links

http://www.bull.com/novascale/hpc.html

http://www.quadrics.com

http://www.intel.com/design/itanium2/documentation.htm

http://www.linuxhpc.org/

Highlighting

• Commands entered by the user are in a frame in "Courier" font. Example:

mkdir /var/lib/newdir

• Commands, files, directories and other items whose names are predefined by the
system are in "Bold". Example:

 Preface iii

The /etc/sysconfig/dump file.

• Text and messages displayed by the system to illustrate explanations are in "Courier
New" font. Example:
BIOS Intel

• Text for values to be entered in by the user is in "Courier New". Example:
COM1

• Italics Identifies referenced publications, chapters, sections, figures, and tables.

• < > identifies parameters to be supplied by the user. Example:
<node_name>

Warning

A Warning notice indicates an action that could cause damage to a program, device,
system, or data.

iv HPC BAS4 - User's Guide

 Table of Contents v

Table of Contents

Chapter 1. Introduction to the HPC Environment ... 1-1

1.1 Software Configuration.. 1-1
1.2 Program Execution Environment .. 1-2
1.3 Resource Management .. 1-2
1.4 Data and Files .. 1-3
1.5 Exploiting the System... 1-3

Chapter 2. Parallel Libraries.. 2-1

2.1 Overview of Parallel Libraries .. 2-1
2.1.1 MPI Versions .. 2-1
2.1.2 The MPI Data Mover module (MDM) ... 2-2

2.2 MPI_Bull 1.6.x ... 2-4
2.2.1 MPI_Bull environments ... 2-5
2.2.2 MPI_Bull and the Quadrics Interconnect cluster environment .. 2-6
2.2.3 Bull Mono libraries for the Single Node Environment... 2-6

2.3 MPIBull2... 2-8
2.3.1 Quick Start for MPIBull2 .. 2-8
2.3.2 MPIBull2 Compilers ... 2-8
2.3.3 Configuring MPIBull2 .. 2-8
2.3.4 Running MPIBull2 ... 2-9
2.3.5 MPIBull2_1.2.x features... 2-9
2.3.6 Advanced features ... 2-10
2.3.7 MPIBull2 Tools .. 2-12
2.3.8 MPIBull2 – Example of use ... 2-15
2.3.9 Debugging.. 2-16
2.3.10 Mpibull2-params .. 2-17

2.4 Third party MPI libraries ... 2-21
2.4.1 MPICH_Ethernet... 2-21
2.4.2 LAM MPI... 2-21
2.4.3 Parallel Virtual Machine (PVM) ... 2-21

2.5 Managing your MPI environment .. 2-22
2.6 Profiling with mpianalyser ... 2-23

Chapter 3. Scientific Libraries... 3-1

3.1 Overview ... 3-1
3.2 Intel Math Kernel Library .. 3-2
3.3 Intel Cluster Math Kernel Library ... 3-2
3.4 BLAS.. 3-3
3.5 BLACS ... 3-3

3.5.1 Using BLACS... 3-3

vi HPC BAS4 - User's Guide

3.5.2 Testing Library Installation ... 3-4
3.6 PBLAS .. 3-4
3.7 LAPACK ... 3-4
3.8 SCALAPACK... 3-5
3.9 Blocksolve95 .. 3-6
3.10 SuperLU ... 3-6

3.10.1 SuperLU Libraries ... 3-7
3.11 FFTW... 3-7
3.12 PETSc... 3-7
3.13 NETCDF... 3-8
3.14 METIS and PARMETIS .. 3-8
3.15 SciPort ... 3-8

Chapter 4. Compilers...4-1

4.1 Overview ... 4-1
4.2 Intel Fortran Compiler .. 4-1
4.3 Intel C/C++ Compiler.. 4-2
4.4 Intel Compiler Licenses ... 4-4
4.5 Intel Math Kernel Library Licenses .. 4-4
4.6 GNU Compilers .. 4-4

Chapter 5. The User's Environment ..5-1

5.1 Cluster Access and Security .. 5-1
5.1.1 Using ssh (Secure Shell) .. 5-1

5.2 Global File Systems: NFS / Lustre.. 5-2
5.3 Environment Modules... 5-3

5.3.1 Using Modules... 5-3
5.3.2 Setting Up the Shell RC Files.. 5-5

5.4 Module Files ... 5-7
5.4.1 Upgrading via the Modules Command ... 5-8

5.5 The Module Command... 5-9
5.5.1 modulefiles .. 5-9
5.5.2 Modules Package Initialization .. 5-10
5.5.3 Examples of Initialization .. 5-10
5.5.4 Modulecmd Startup .. 5-11
5.5.5 Module Command Line Switches.. 5-11
5.5.6 Module Sub-Commands .. 5-12
5.5.7 Modules Environment Variables ... 5-14

Chapter 6. Launching an Application..6-1

6.1 Launching the Application without a Batch Manager ... 6-1

 Table of Contents vii

6.1.1 NUMACTL .. 6-3
6.1.2 The PTOOLS and CPUSET Package.. 6-4

6.2 Quadrics Resource Management System.. 6-7
6.2.1 Using Quadrics RMS.. 6-7
6.2.2 Prun ... 6-8
6.2.3 Rmsexec ... 6-8
6.2.4 rinfo ... 6-9
6.2.5 More RMS Information.. 6-9

6.3 SLURM Resource Management Utilities .. 6-10
6.3.1 SRUN... 6-10
6.3.2 SBCAST.. 6-14
6.3.3 SQUEUE (List Jobs)... 6-15
6.3.4 SINFO (Report Partition and Node Information)... 6-15
6.3.5 SCANCEL (Signal/Cancel Jobs) .. 6-16
6.3.6 SACCT (Accounting Data)... 6-17
6.3.7 Global Accounting API ... 6-18

6.4 Launching the Application using TORQUE Batch Manager... 6-21
6.4.1 Configuring Passwordless Access for TORQUE.. 6-21
6.4.2 TORQUE Commands.. 6-22

Chapter 7. Application Debugging Tools ... 7-1

7.1 Overview ... 7-1
7.2 GDB .. 7-1
7.3 IDB .. 7-1
7.4 TOTALVIEW ... 7-2
7.5 MALLOC_CHECK_ - Debugging Memory Problems in C programs.. 7-3
7.6 Dmalloc Library... 7-5
7.7 Electric Fence.. 7-6
7.8 System Monitoring and Performance Tools ... 7-6

Appendix A. Application Troubleshooting ...A-1

 Glossary and Acronyms...G-1

viii HPC BAS4 - User's Guide

List of Figures

Figure 2-1. MPI Data Mover module – short protocol ... 2-2
Figure 2-2. MPI Data Mover module – one copy... 2-2
Figure 2-3. MPIBull2 Linking Strategies ... 2-10
Figure 2-4. MPD ring.. 2-12
Figure 3-1. Interdependence of the different mathematical libraries ... 3-5
Figure 6-1. Numactl QBB application .. 6-3
Figure 6-2. CPUSET allocation .. 6-5
Figure 6-3. RMS Partitions .. 6-7
Figure 6-4. MPI Process Management With and Without Resource Manager 6-13
Figure 7-1 Totalview graphical interface – image taken from

http://www.totalviewtech.com/productsTV.htm ... 7-2

 Table of Contents ix

List of Tables

Table 5-1. Examples of different module configurations .. 5-4
Table 6-1. Launching tools for different clusters.. 6-2
Table 6-2. SRUN Modes ... 6-11
Table 6-3. TORQUE commands ... 6-22

x HPC BAS4 - User's Guide

 Introduction to the HPC Environment 1-1

Chapter 1. Introduction to the HPC Environment
The term HPC (High Performance Computing) describes the development of large scientific
applications and programs, which require a powerful computation facility that can process
enormous amounts of data to give highly precise results.

Bull Advanced Server (BAS) is a software suite that is used to operate and manage a Bull
HPC cluster. Bull HPC clusters are based on Bull NovaScale platforms connected either by
a high-speed interconnect QsNetII network from Quadrics or using InfiniBand stacks with
Voltaire switches or with a Gigabit Ethernet network. BAS includes both Bull proprietary
and Open Source software, which provides the infrastructure for optimal interconnect
performance.

The Bull HPC cluster includes an administrative network based on a 10/100 Mbit or a
Gigabit Ethernet network, and a separate console management network.

The Bull HPC delivery also provides a full environment for development, including
optimized scientific libraries, FORTRAN and C/C++ compilers, MPI libraries, as well as
debugging and performance optimization tools.

This manual describes these software components, and explains how to work within the
BAS environment.

See the Bull HPC BAS4 Application Tuning Guide (86 A2 19ER) for more information on
performance optimization tools.

1.1 Software Configuration

BAS is based on a standard Linux distribution, combined with a number of Open Source
applications that exploit the best from the Open Systems community. This combined with
technology from Bull and its partners, results in a powerful, complete solution for the
development, execution, and management of parallel and serial applications
simultaneously.

Its key features are:

• Strong manageability, through Bull’s systems management suite that is linked to state-
of-the-art workload management software.

• High-bandwidth, low-latency interconnect networks.

• Scalable high performance file systems, both distributed and parallel.

All cluster nodes use the same Linux distribution. Parallel commands are provided to supply
users and system administrators with single-system attributes, these make it easier to
manage and to use cluster resources.

Software installation is carried out by first creating an image on a node, loading this image
onto the Management Node, and then distributing it to the other nodes using the Image
Building and Deployment (KSIS) utility. This distribution is performed via the administration
network.

1-2 HPC BAS4 - User's Guide

1.2 Program Execution Environment

When a user logs onto the Bull Advanced Server system, the login session is directed to
one of several nodes. Upon logging onto the system, the users may then develop and
execute their applications. Applications can be executed on other cluster nodes apart from
the user login system. For development, the environment consists of:

• Standard Linux tools such as GCC (a collection of free compilers that can compile
C/C++ and FORTRAN), GDB Gnu Debugger, and other third-party tools including the
Intel FORTRAN Compiler, the Intel C Compiler and Intel Debugger IDB.

• Optimized parallel libraries that are part of the BAS software suite. These libraries
include the Bull MPI2 message-passing library. Bull MPI2 is fully integrated with the
SLURM resource manager. Bull MPI2 complies with the MPI1 and 2 standards and is a
high performance, high quality native implementation. Bull MPI2 exploits shared
memory for intra-node communication and MDM (MPI Data Mover) technology for
inter-node communication. It includes a trace and profiling tool, enabling data to be
tracked.

• Modules software provides a means for predefining and changing environments. Each
one includes a compiler, a debugger and library releases which are compatible with
each other. So it is easy to invoke one given environment in order to perform tests and
then compare the results with other environments.

1.3 Resource Management

For job execution and workload management BAS Software provides an integrated
resource management, scheduling and job launch mechanism based on the Resource
Management System (RMS) from Quadrics OR using SLURM, an Open Source resource
manager.

The resource manager is responsible for the allocation of resources to jobs. The resources
are provided by nodes that are designated as compute resources. Processes of the job are
assigned to and executed on these allocated resources.

RMS and SLURM provide the means to rearrange the cluster into distinct partitions. Serial
or parallel jobs may be scheduled for execution within a given partition, provided that the
partition has sufficient resources (for example, memory, or number of CPUs) to execute the
jobs. The entire system can be designated as a single partition, allowing parallel jobs to
run across all of the CPUs of the cluster. Alternatively, the system administrator can divide
the system into smaller partitions. See Chapter 6 for more information.

SLURM provides three key functions. Firstly, it allocates exclusive and/or non-exclusive
access to resources (computer nodes) to users for certain period of time so that they can do
their work. Secondly, it provides a framework for starting, executing, and monitoring work
(typically a parallel job) on a set of allocated nodes. Finally, it arbitrates when there are
conflicting requests for resources by managing a queue of pending work.

 Introduction to the HPC Environment 1-3

1.4 Data and Files

Application file I/O operations may be performed using locally mounted storage devices,
or alternatively, on remote storage devices using NFS or Lustre (CFS) file systems for high
performance and high availability. By using a separate interconnect for administration and
I/O operations, the Bull cluster system administrator is able to isolate user application
traffic from administrative operations and monitoring. With this separation, application I/O
performance and process communication can be made more predictable while still
enabling administrative operations to proceed.

1.5 Exploiting the System

It is essential that users spend time familiarizing themselves with the architecture. The use of
resource management tools such as CPUSET means that cluster operations can be
configured to run in parallel or on separate partitions according to the exigencies of the
job. Similarly, wherever possible, you need to optimize your code so that the parallel
processing possibilities of the EPIC architecture are fully utilized.

See the Bull HPC BAS4 Application Tuning Guide (86 A2 19ER) for more information on
these subjects.

1-4 HPC BAS4 - User's Guide

 Parallel Libraries 2-1

Chapter 2. Parallel Libraries
This chapter describes the following topics:

• 2.1 Overview of Parallel Libraries

• 2.2 MPI_Bull 1.6.x

• 2.3 MPIBull2

• 2.4 Third party MPI libraries

• 2.5 Managing your MPI environment

• 2.6 Profiling with mpianalyser

2.1 Overview of Parallel Libraries

A common approach to parallel programming is to use a message passing library, where
a process uses library calls to exchange messages (information) with another process. This
message passing allows processes running on multiple processors to cooperate.

Simply stated, a MPI (Message Passing Interface) provides a standard for writing message-
passing programs. A MPI application is a set of autonomous processes, each one running
its own code, and communicating with each other through calls to subroutines of the MPI
library.

2.1.1 MPI Versions

Bull provides different MPI libraries for use in the HPC environment.

• The recommended one is MPI_Bull. This is the Bull MPI library optimized for the
NovaScale architecture. This component is able to run applications in a Quadrics
interconnected cluster environment or on a single node. MPI_Bull is split into two parts: a
global static or dynamic library with which the application is compiled and a dynamic
Elan (Quadrics environment) or mono (single node) library which is called when the
program is running.

• The second generation MPI library is MPIBull2. This library enables dynamic
communication with different device libraries; including Quadrics interconnects,
InfiniBand (IB) interconnects, socket Ethernet/IB/EIB devices or single machine devices.

• Third party MPI libraries are also available. MPICH_Ethernet is provided to allow
applications to run in an Ethernet environment instead of the Quadrics interconnect
environment. Bull also enables the use of LAM MPI and of Parallel Virtual Machine (PVM)
– see sections 2.4.2 and 2.4.3.

Programming with MPI

It is not in the scope of the present guide to describe how to program with MPI. Please,
refer to the Web, where you will find complete information. For example, you can refer to
the following site: http://www.idris.fr for information in French.

2-2 HPC BAS4 - User's Guide

2.1.2 The MPI Data Mover module (MDM)

With a standard MPI library in intra-machine communication, the sender copies data into a
shared memory buffer which the receiver then copies into their own memory space.
Therefore, two copies are required, as illustrated below. This system of transfer is used by
the protocol short for messages which are under 32Kbs in size.

Figure 2-1. MPI Data Mover module – short protocol

With MPI_Bull and MPIBull2, the MDM module enables the use of only one copy, by
directly copying the source buffer into the destination one, as illustrated below:

Figure 2-2. MPI Data Mover module – one copy

For messages which are bigger than a determined threshold in size the MDM module is
used automatically by MPI_Bull and MPIBull2.

The MDM module was created from the zcopy module and allows the transmission of long-
lasting communications (Memory window allocation) which are used in one-sided
communications (MPI-2 reference).

 SENDER RECEIVER

Sender
Buffer

Table of
Exchange Descriptors

Simple Copy

Exchange
Descriptor

Receiver
Buffer

@/size/
src/ dst

 SENDER RECEIVER

Sender
Buffer

Shared Memory Buffer

1st Copy 2nd Copy

Receiver
Buffer

 Parallel Libraries 2-3

The MDM module works in the same way for both MPI_Bull version 1.6.x and MPIBull2
version 2.1.0-x.

2.1.2.1 Using the MDM Module

The MDM module being an integral part of MPI_Bull and MPIBull2 has no specific options.
However it includes a trace and profiling tool, enabling data to be tracked.

Information related to profiling is in /proc/mdm/profiler.

To display the profile, run:

$ cat /proc/mdm/profiler

mdm profiling data ======================

The trace tool is useful when an application behaves abnormally. To view the events that
occurred on different processors, just consult /proc/mdm/trace/<n>, where n is the CPU
number. For example:

$ cat /proc/mdm/trace/CPU0

ITC UID DESCRIPTION

==

You may also watch, in real time, the events occurring for the process whose rank is r and for
the application whose MPI jobkey is p, use /proc/mdm/<p>/trace/rank_<r>.

$ cat /proc/mdm/145231/trace/rank_0

ITC UID DESCRIPTION

======================================

The status of an application may be known by reading the file /proc/mdm/<p>/status,
where p is the MPI jobkey.

$ cat /proc/mdm/145231/status

Also, one-sided communications window descriptors are available under the directory
/proc/mdm/<p>/onesided/, where p is the MPI jobkey. In this directory, you may consult
the file rank_<r>, where r is the process rank.

$ cat /proc/mdm/145231/onesided/rank_0

ID WIN BADDR SIZE

==

To display the MDM module release number, run:

$ cat /proc/mdm/version

MDM module release mdm (mdm:aravis) 1.0.0-0 [version kunlock dynamic

32cpus pt2pt profiler] {mpi_bull >= 1.0.0}

2-4 HPC BAS4 - User's Guide

2.2 MPI_Bull 1.6.x

 Important
MPI_Bull is not supported on InfiniBand software stacks.

Bull has perfected a MPI library, called MPI_Bull, enabling the exchange of messages
between processes in a distributed environment. This model of communication is used by
parallel applications.

The MPI_Bull library conforms to the MPI -1 standard (refer to MPI: A Message-Passing
Interface Standard, dated May 5, 1994). http://www-unix.mcs.anl.gov/mpi

The MPI_Bull library is optimized for NovaScale hardware architectures. Quadrics Elan3 or
Elan4 ensure hardware interconnection.

The BAS4 MPI_Bull libraries have been compiled with compilers which correspond to the
compilers referred to in chapter 4. This ensures compiler compatibility for any application
which uses the BAS4 MPI_Bull libraries and these Intel compilers.

MPI_Bull has been developed from the MPICH 1.2.6 Open Source library to which several
improvements have been made:

• Mapping of processes on processors, in order to inhibit scheduler actions (the ideal
operation is one process per processor).

• Introduction of the Futex mechanism (Fast User mode muTEX), for locks management in
the interface.

• Improvement of MPI_Barrier algorithm (processes synchronization).

• Optimization of collective operations (broadcast, for example).

• Allocation of a memory area to benefit from the advantages of the NUMA architecture
of NovaScale 5160.

• Optimization of data copies between processes located on the same machine, thanks to
the MDM module (MPI Data Mover module) for Linux kernel 2.6 and higher.

• Cpuset use to locate processes

• Thread Safety: MPI_Bull is thread safe (MPI-2 functionality).

• Introduction of One-Sided communications which is also a MPI-2 type of functionality.

• Introduction of a MPI_Bull profiler called Profilecomm to allow the profiling of applications
using MPI_Bull.

• Integration of Quadrics Elan library.

• Integration of mono library to allow the running of applications on a single node.

 Parallel Libraries 2-5

 Note:
The following restriction applies to the MPI I/O library delivered with MPI_BULL.

All nonblocking MPI I/O functions use an MPIO_Request object instead of the usual
MPI_Request object. Accordingly, two functions, MPIO_Test and MPIO_Wait, are
provided to test and wait on these MPIO_Request objects. These have the same
semantics as MPI_Test and MPI_Wait, as shown below:

int MPIO_Test(MPIO_Request *request, int *flag, MPI_Status*status)
int MPIO_Wait(MPIO_Request *request, MPI_Status *status)

The usual functions, for example, MPI_Test, MPI_Wait, MPI_Testany, and so forth, will
not work for nonblocking I/O.

This restriction does not exist for the MPIBULL2 library.

 Note:

For more information about MPICH 1.2.6 Open Source library, please refer to: http://www-
unix.mcs.anl.gov/mpi/mpich/

2.2.1 MPI_Bull environments

MPI_Bull can work in two different environments: Quadrics interconnect or single node. For
both environments the compilation mode is the same. No specific configuration is required.
You simply have to compile your application (appli.exe for example) using the script mpicc
(C), mpiCC (C++), mpif77 or mpif90.

Example: the following command compiles the appli.c code using the MPI library:

$ mpicc –o /appli.exe /appli.c

To produce a dynamically link object, you must set the environment variable
LD_LIBRARY_PATH as follows:

$ export LD_LIBRARY_PATH=/usr/lib/mpishared:$LD_LIBRARY_PATH

Then compile the appli.c code using the –shlib option:

$ mpicc –o shlib /appli.exe /appli.c

What follows explains how to launch the application either using Quadrics interconnects or
in a single node environment.

2-6 HPC BAS4 - User's Guide

2.2.2 MPI_Bull and the Quadrics Interconnect cluster environment

A parallel application which uses MPI_Bull Message Passing Interface is launched with the
RMS prun supplied by Quadrics.

Example: the following command launches the appli.exe application on 3 processes (-n flag),
on the 2 first nodes (-N flag) of the ‘partition’ RMS partition (-p flag):

$ prun -n 3 -N 2 -p partition ./appli.exe

For more details about the RMS prun command and the options available, run:

 $ prun -h.

For more information about RMS use and configuration, please refer to the Quadrics
documentation. For more information about launching an application refer to chapter 6 in
this manual.

2.2.3 Bull Mono libraries for the Single Node Environment

In the single node environment, used for testing a program for example, a parallel
application may be launched with the mprun command which is included as part of the
Bull Mono Libraries. These libraries are included in the Bull delivery which is provided for
Symmetric Multi Processing on a single node.

mprun provides the following options:

 -tv Enable Totalview TM Debugger support

 -O Allow resources to be over-committed. Set this flag to run more than one process
per CPU.

-I Allocate CPUs immediately or fail. By default, mprun holds until resources
become available.

-C Use cyclic cpusets.

-n <nprocs> Specifies the number <nprocs> of MPI processes to start.

For example, the following command launches the appli.exe application on 4 processes (-n
flag).

$ mprun -n 4 ./appli.exe

-c <cpus> Specify the number of CPUs required per process (default 1).

-M <rank> Bind the process of rank <rank> to a master cpuset rather than to a given
CPU. Mainly used in master/slave programs.

 Parallel Libraries 2-7

-Y <type> Specify the MPI busy wait strategy: Allowed values are s for sched_yield(), l for
select() and n for none.

-i <mode> Specify how standard input is redirected. See mprun man page for more
details.

-o <mode> Specify how standard output is redirected. See mprun man page for more
details.

-e <mode> Specify how standard error is redirected. See mprun man page for more
details.

By default, when running a parallel program, mprun forwards standard input to process 0.

2-8 HPC BAS4 - User's Guide

2.3 MPIBull2

MPIBull2 conforms to the MPI-2 standard.

2.3.1 Quick Start for MPIBull2

MPIBULL2 is usually installed in the /opt/mpi/mpibull2-<version> directory. The
environmental variables MPI_HOME, PATH, LD_LIBRARY_PATH, MAN_PATH,
PYTHON_PATH will need to be set or updated. These variables should not be set by the
user. Use the setenv_mpibull2.{sh,csh} environment setting file, which may be sourced from
the ${mpibull2_install_path}/share directory by a user or added to the profile for all users
by the administrator.

2.3.2 MPIBull2 Compilers

The MPIBull2 library has been compiled with the latest Intel compilers, which, according to
Bull’s test farms, are the fastest ones available for the IA64 architecture. Bull uses Intel Icc
and Ifort compilers to compile the MPI libraries. It is possible for the user to use their own
compilers to compile their applications for example gcc, however see below.

In order to check the configuration and the compilers used to compile the MPI libraries look at
the ${mpibull2_install_path}/share/doc/compilers_version text file.

MPI applications should be compiled using the MPIBull2 MPI wrapper to compilers:
C programs: mpicc your-code.c
C++ programs: mpiCC your-code.cc
 or
 mpic++ your-code.cc (for case-insensitive file systems)
F77 programs: mpif77 your-code.f
F90 programs: mpif90 your-code.f90

Wrappers to compilers simply add various command line flags and invoke a back-end
compiler; they are not compilers in themselves.

The command below is used to override the compiler type used by the wrapper. –cc, -fc -,
and cxx and used for C, Fortran and C++ wrappers.

mpi_user >>> mpicc -cc=gcc prog.c -o prog

2.3.3 Configuring MPIBull2

MPIBull2 may be used for different architectures including standalone SMPs, Ethernet,
Infiniband or Quadrics Clusters.

You have to select the device that will use MPIBull2 before launching an application with
MPIBull2.

 Parallel Libraries 2-9

The list of possible devices available is as follows:

− osock is the default device. This uses sockets to communicate and is the device of
choice for Ethernet clusters.

− oshm should be used on a standalone machines, communication is through
shared memory.

− ibmr_gen2, otherwise known as InfiniBand multi-rail gen2. This works over
InfiniBand’s verbs interface.

− elanbull2 works with the Quadrics’ libelan interface.

The device is selected by using the mpibull2-devices command with the –d switch, for
example, enter the command below to use the shared memory device:

mpi_user >>> mpibull2-devices –d=oshm

For more information on the mpibull2-devices command, see section 2.3.7.

2.3.4 Running MPIBull2

The MPI application requires a launching system in order to spawn the processes onto the
cluster. Bull provides the SLURM Resource Manager as well as the MPD subsystem.

For MPIBull2 to communicate with SLURM and MPD, the PMI interface has to be defined. By
default, MPIBull2 is linked with MPD’s PMI interface.

If you are using SLURM, you must ensure that MPIBULL2_PRELIBS includes -lpmi so that your
MPI application can be linked with SLURM’s PMI library.

For more information on SLURM, see chapter 6.

For more information on MPD, see section 2.3.6.3

2.3.5 MPIBull2_1.2.x features

MPIBull2_1.2.x includes the following features:

• It only has to be compiled once, supports the NovaScale architecture and is compatible
with the more powerful interconnects.

• It is designed so that both development and testing times are reduced and it delivers
high performance on NovaScale architectures

• Fully compatible with MPICH2 MPI libraries. Just set the library path to get all the
MPIBull2 features

• Supports both MPI 1.2 and MPI 2 standard functionalities including

− Dynamic processes (osock only)
− One-sided communications
− Extended collectives
− Thread safety (see the Thread-Safety Section below)
− ROMIO including the latest patches developed by Bull

2-10 HPC BAS4 - User's Guide

• Multi-device functionality: delivers high performance with an accelerated multi-device
support layer for fast interconnects. The library supports:

− Sockets-based messaging (for Ethernet, SDP, SCI and EIP)
− Hybrid shared memory-based messaging for shared memory
− InfiniBand architecture multirails driver Gen2

• Easy Runtime Selection: makes it easy and cost-effective to support multiple platforms.
With MPIBull2 Library, both users and developers can select drivers at runtime easily,
without modifying the application code. The application is built once and works for all
interconnects supported by Bull.

• Ensures that the applications achieve a high performance with a high degree of
interoperability with standard tools and architectures.

• Common feature for all devices:

− FUTEX (Fast User mode muTEX) mechanism in user mode

2.3.6 Advanced features

2.3.6.1 MPIBull2 Linking Strategies

Designed to reduce development and testing time, MPIBull2 includes two linking strategies
for users.

Firstly, the user can choose to build his application and link dynamically, leaving the
choice of the MPI driver until later, according to which resources are available. For
instance, if a small Ethernet cluster is the only resource available, the user compiles and
links dynamically, using an osock driver, whilst waiting for access to a bigger cluster via a
different InfiniBand interconnect and which uses the ibmr_gen2 driver at runtime. For
Quadrics clusters the elanbull2 driver is used.

Secondly, the User might want to use an out-of-the-box application, designed for a specified
MPI device. Bull provides the combination of a MPI Core and all its supported devices, which
enables the static libraries to be linked by the User’s application.

Figure 2-3. MPIBull2 Linking Strategies

 Parallel Libraries 2-11

2.3.6.2 Thread-safety

If the application needs an MPI Library which provides MPI_THREAD_MULTIPLE thread-
safety level, then choose a device which supports thread safety and select a *_ts device.
Use the mpibull2-device commands.

 Note:

Thread-safety within the MPI Library requires data locking. Linking with such a library may
impact performance. A loss of around 10 to 30% has been observed on microbenchmarks

Not all MPI Drivers are delivered with a thread-safe version. Devices known to support
MPI_THREAD_MULTIPLE include osock, oshm and elanbull2.

2.3.6.3 Using MPD

MPD is a simple launching system from MPICH-2.

To use it, you need to launch the MPD daemons on Compute hosts.

If you have a single machine, just launch mpd & and your MPD setup is complete.

If you need to spawn MPI processes across several machines, you must use mpdboot to
create a launching ring on the cluster. This is as follows:

Create the hosts list:
mpi_user >>> export cluster_machines="host1 host2 host3 host4"

• Create the file used to store host information:
mpi_user >>> for i in $cluster_machines; do echo "$i" >> machinefiles; done

• Boot the MPD system on all the hosts:
mpi_user >>> mpdboot -n $(cat $clustermachines | wc -l) -f machinefiles

• Check if everything is OK:
mpi_user >>> mpdtrace

• Run the application or try hostname:
mpi_user >>> mpiexec -n 4 ./your_application

MPI Process Daemons (MPD) run on all nodes in a ring like structure and may be used in
order to manage the launch of the different processes. MPIBull2 library is PMI compliant
which means it can interact with any other PMI PM. This software has been developed by
ANL. In order to set up the system the MPD ring must firstly be knitted, by following the
procedure below:

• At the $HOME prompt edit the .mpd.conf file by adding something like
MPD_SECRETWORD=your_password and chmod 600 to the file.

2-12 HPC BAS4 - User's Guide

• Create a boot sequence file. Any type of file may be used. The MPD system will by
default use the mpd.hosts file in your $HOME directory if a specific file is not specified in
the boot sequence. This contains a list of hosts, separated by carriage returns. Semi-
colons can be added to the host to specify the number of CPUS for the host, for example.

host1:4

host2:8

Figure 2-4. MPD ring

• Boot the ring by using the mpdboot command, and specify the number of hosts to be
included in the ring.

mpdboot -n 2 -f myhosts_file

Check that the ring is functioning correctly by using the mpdtrace or mpdringtest
commands. If everything is okay, then jobs may be run on the cluster.

2.3.7 MPIBull2 Tools

2.3.7.1 MPIBull2-devices

This tool may be used to change the user's preferences. It can also be used to disable a
library. For example, if the program has already been compiled and the intention is to use
dynamic MPI Devices which have already been linked with the MPI Core, then it is now
possible to specify a particular runtime device with this tool. The following options are
available with MPIBULL2-devices:

-dl Provides list of drivers. This is also supported by MPI wrappers.

-dlv Provides list of drivers with versions of the drivers.

 Parallel Libraries 2-13

mpi_user >>> mpibull2-devices -dl

MPIBULL2 Communication Devices :

+ Original Devices :

*oshm : Shared Memory device, to be used on a single machine
[static][dynamic]

*osock : Socket protocol (can be used over IPoIB, SDP, SCI...)
[static][dynamic]

-c Obtains details of the user's configuration.

mpi_user >>> mpibull2-devices -c

MPIBULL2 home : /install_path

User prefs :

 __ Directory : /home_nfs/mpi_user/.MPIBull2/

 __ Custom devices : /home_nfs/mpi_user/.MPIBull2//site_libs

 __ MPI Core flavor : Standard / Error detection on

 __ MPI Communication Driver : oshm (Shared Memory device, to be used on a
single machine) [static][dynamic]

-d=xxx Sets the specified communication device driver.

mpi_user >>> mpibull2-devices -d=ibmr_gen2

2.3.7.2 mpibull2-launch

This is a meta-launcher which connects to whatever process manager is specified by the
user. It is used to ensure compatibility between different process manager launchers, and also
to allow users to specify their custom key bindings.

The purpose of mpibull2-launch is to help users to retain their launching commands Mpibull2-
launch also interprets user’s special keybindings, in order to allow the user to retain their
preferences, regardless of the cluster and the MPI library. This means that the user’s scripts
will not need changing, except for those environment variables which are required.

The mpibull2-launch tool provides default keybindings. The user can check them using the
--metahelp option. If the user wishes to check some of the CPM (Cluster Process Manager)
special commands, they should use --options with the CPM launch name command (e.g.
--options srun).

Some tool commands and ‘device’ functionalities rely on the implementation of the MPI
components. This simple tool maps keybindings to the underlying CPM. Therefore, a unique
command can be used to launch a job on a different CPM, using the same syntax. mpibull2-
launch system takes in account the fact that a user might want to choose their own
keybindings. A template file, named keylayout.tmp1, may be found in the tools rpm which
may be used to construct individual keybinding preferences.

2-14 HPC BAS4 - User's Guide

Launching a job on a cluster using mpibull2-launch

For a SLURM CPM use a command similar to the one below and set
MPIBULL2_LAUNCHER=srun to make this command compatible with the SLURM CPM.

mpibull2-launch -n 16 -N 2 -ptest ./job

 Example for a user who wants to use the Y key for the partition

PM Partition to use+Y:+partition:

The user should edit a file using the format found in the example template, and then add
custom bindings using the –custom_keybindings option. The + sign is used to separate the
fields. The first field is the name of the command, the second the short option, with a colon if
an argument is needed, and the third field is the long option.

2.3.7.3 mpiexec

This is a launcher which connects to the MPD ring.

2.3.7.4 mpirun

This is a launcher which connects to the MPD ring.

2.3.7.5 mpicc, mpiCC, mpicxx, mpif77 and mpif90

These are all compiler wrappers and are available, for C, C++, Fortran 77 and Fortran 90
languages. These allow the user to concentrate on developing the application without
having to think about the internal mechanics of MPI. The man page files provide more
details about wrappers.
When using compiling tools, they need to know which communication device and a linking
strategy they should use. The compiling tools parse as long as some of the following conditions
have been met:

• The device and linking strategy has been specified in the command line using the -sd
options.

• The environment variables DEF_MPIDEV, DEF_MPIDEV_LINK (required to ensure
compatibility), MPIBULL2_COMM_DRIVER, and MPIBULL2_LINK_STRATEGY have been
set.

• The preferences have already been set up; the tools will use the device they find in the
environment using the MPIBULL2-devices tool.

• The tools take the system default, using dynamic socket device.

 Parallel Libraries 2-15

Note:
One can obtain better performance using the –fast/-static options to link statically with one
of the dependent libraries using the commands below:
mpicc –static prog.c
mpicc –fast prog.c

2.3.8 MPIBull2 – Example of use

2.3.8.1 Setting up the devices

When compiling an application the user may wish to keep those makefiles and build files
which have already been generated. Bull has taken this into account. The code and build files
can be kept as they are. All the user needs to do is to set up a few variables or use the
MPIBULL2-devices tool.

During the installation process, the /etc/profile.d/mpibull2.sh file will have been modified
by the System Administrator according to the user’s needs. This file determines the default
settings (by default the rpm sets the osock socket/TCP/IP driver). It is possible to override
these settings by using environment variables – this is practical as it avoids modifying
makefiles - or by using the tools options. For example, the user can statically link their
application against a static driver as shown below. The default linking is dynamic, and this
enables drive modification during runtime. Linking statically, as shown below, overrides the
user's preferences but does not change them.

mpi_user >>> mpicc -sd=ibmr_gen2 prog.c -o prog

mpicc : Linking statically MPI library with device (ibmr_gen2)

The following environment variables may also be used

MPIBULL2_COMM_DRIVER Specifies the default device to be linked against

MPIBULL2_LINK_STRATEGY Specifies the link strategy (the default is dynamic)
 (required to ensure compatibility)

MPIBULL2_MPITOOLS_VERBOSE Provides information when building (the default is
verbose off)

mpi_user >>> export DEF_MPIDEV=ibmr_gen2
mpi_user >>> export MPIBULL2_MPITOOLS_VERBOSE=1
mpi_user >>> mpicc prog.c -o prog
mpicc : Using environment MPI variable specifications
mpicc : Linking dynamically MPI library with device (ibmr_gen2)

2.3.8.2 Submitting a job

If a user wants to submit a job, then according to the process management system, they can
use MPIEXEC, MPIRUN, SRUN or MPIBULL2-LAUNCH to launch the processes on the cluster
(the online man pages gives details of all the options for these launchers)

2-16 HPC BAS4 - User's Guide

2.3.9 Debugging

2.3.9.1 Parallel GDB

With the mpiexec launching tool it is possible to add the Gnu DeBugger in the global
options by using -gdb. All the gdb outputs are then aggregated, indicating when there are
differences between processes. The -gdb option is very useful as it helps to pinpoint faulty
code very quickly without the need of intervention by external software.

Refer to the gdb man page for more details about the options which are available.

2.3.9.2 Totalview

Totalview is a proprietary software application and is not included in the BAS4 distribution.
See chapter 7 for more details.

It is possible to submit jobs using the SLURM resource manage with a command similar to
the format below or via MPD.

totalview srun –a <args> ./prog <progs_args>

Alternatively, it is possible to use MPI process daemons (MPD) and to synchronize Totalview
with the processes running on the MPD ring.

mpiexec -tv <args> ./prog <progs_args>

2.3.9.3 MARMOT MPI Debugger

MARMOT is an MPI debugging library. MARMOT surveys and automatically checks the
correct usage of the MPI calls and their arguments made during runtime. It does not replace
classical debuggers, but is used in addition to them.

The usage of the MARMOT library will be specified when linking and building an
application. This library will be linked to the application and to the MPIBULL2 library.

It is possible to specify the usage of this library manually by using the
MPIBULL2_USE_MPI_MARMOT environment variable, as shown in the example below;

export MPIBULL2_USE_MPI_MARMOT=1
mpicc bench.c -o bench

 or by using the -marmot option with the MPI compiler wrapper, as shown below:

mpicc -marmot bench.c -o bench

See the documentation in the share section of the marmot package, or go to
http://www.hlrs.de/organization/amt/projects/marmot/ for more details on Marmot.

 Parallel Libraries 2-17

2.3.10 Mpibull2-params

mpibull2-params is a tool that is used to list/modify/save/restore the environment variables
that are used by the mpibull2 library and/or by the communication device libraries
(InfiniBand, Quadrics, etc.). The behaviour of the mpibull2 MPI library may be modified
using environment variable parameters to meet the specific needs of an application. The
purpose of the mpibull2-params tool is to help mpibull2 users to manage different sets of
parameters. For example, different parameter combinations can be tested separately on a
given application, in order to find the combination that is best suited to its needs. This is
facilitated by the fact that mpibull2-params allow parameters to be set/unset dynamically.

Once a specific combination of parameters has been tested and found to be good for a
particular context, they can be saved into a file by a mpibull2 user. Using the mpibull2-
params tool, this file can then be used to restore the set of parameters, combined in exactly
the same way, at a later date.

 Notes:

• The effectiveness of a set of parameters will vary according to the application. For
instance, a particular set of parameters may ensure low latency for an application, but
reduce the bandwidth. By carefully defining the parameters for an application the
optimum, in terms of both latency and bandwidth, may be obtained.

• Some parameters are located in the /proc file system and only super users can modify
them.

The entry point of the mpibull2-params tool is an internal function of the environment. This
function calls an executable to manage the MPI parameter settings and to create two
temporary files. According to which shell is being used, one of these two files will be used
to set the environment and the two temporary files will then be removed. To update your
environment automatically with this function, please source either the
$MPI_HOME/bin/setenv_mpibull2.sh file or the $MPI_HOME/bin/setenv_mpibull2.csh
file, according to which shell is used.

2.3.10.1 The mpibull2-params command

SYNOPSIS

mpibull2-params <operation_type> [options]

Actions

The following actions are possible for mpibull2-params command:

-l List the MPI parameters and their values

-f List families of parameters

-m Modify a MPI parameter

-d Display all modified parameters

-s Save the current configuration into a file

2-18 HPC BAS4 - User's Guide

-r Restore a configuration from a file

-h Show help message and exit

Options

The following options and arguments are possible for the mpibull2-params command.

 Note:
The options shown can be combined, for example, -li or can be listed separately, for
example –l –i. The different option combinations for each argument are shown below.

-l [iv] [PNAME]
List current default values of all MPI parameters. Use the PNAME argument (this could be a
list) to specify a precise MPI parameter name or just a part of a name. Use the -v (verbose)
option to also display all possible values, including the default. Use the -i option to list all
information.

Examples

• This will list all the parameters with the string ‘all’ or ‘shm’ in their name:

mpibull2-params -l all shm

• This will display all information - possible values, family, purpose, etc. for each
parameter name which includes the string ‘all’. This command will also indicate when
the current value has been returned by getenv() i.e. the parameter has been modified
in the current environment:

mpibull2-params -li all

mpibull2-params -l | grep -e all -e shm will return the same result.

• This will display current and possible values for each parameter name which includes
the string ‘rom’. It is practical to run this command before a parameter is modified:

mpibull2-params -lv rom

-f [l[iv]] [FNAME]
This will list all the default family names. Use the FNAME argument (this could be a list) to
specify a precise family name or just a part of a name. Use the -l option to list all
parameters for the family specified. –l, -v and -i options are as described above.

Examples

• List all family names with the string ‘band’ in their names:

mpibull2-params -f band

 Parallel Libraries 2-19

• For each family name with the string ‘band’ inside, list all the parameters and current
values.

mpibull2-params -fl band

-m [v] [PARAMETER VALUE]
Modify a MPI PARAMETER with VALUE. The exact name of the parameter should be used
to modify a parameter. The parameter is set in the environment, independently of the shell
syntax (ksh/csh) being used. The keyword ‘default’ should be used to restore the parameter
to its original value. If necessary, the parameter can then be unset in its environment. The
-m operator lists all the modified MPI parameters by comparing all the MPI parameters with
their default values. If none of the MPI parameters have been modified then nothing is
displayed. The –m operator is like the -d option. Use the -v option for a verbose mode.

Examples

• This will set the ROMIO_LUSTRE parameter in the current environment.

mpibull2-params -m mpibull2_romio_lustre true

• This will unset the ROMIO_LUSTRE parameter in the environment in which it is running
and returns it to its default value.

mpibull2-params -m mpibull2_romio_lustre default

-d [v]
This will display the difference between the current and the default configurations. Displays
all modified MPI parameters by comparing all MPI parameters with their default values.

-s [v] [FILE]
This will save all modified MPI parameters into FILE. It is not possible to overwrite an
existing file, an error will be returned if one exists. Without any specific arguments, this file
will create a file named with the date and time of the day in the current directory. This
command works silently by default. Use the -v option to list all modified MPI parameters in
a standard output.

Example

• This command will, for example, try to save all the MPI parameters into the file named
Thu_May_10_15_50_28_2007.

mpibull2-params -sv

Output Example

save the current setting :
mpibull2_mpid_xxx=1
1 parameter(s) saved.

2-20 HPC BAS4 - User's Guide

-r [v] [FILE]
Restore all the MPI parameters found in FILE and set the environment. Without any
arguments, this will restore all modified MPI parameters to their default value. This
command works silently, in the background, by default. Use the -v option to list all restored
parameters in a standard output.

Example

• Restore all modified parameters to default:

mpibull2-params -r

-h
Displays the help page

2.3.10.2 Family names

The command mpibull2-params –f will list the parameter family names which are possible
for a particular cluster environment.

Some of the parameter family names which are possible for Bull BAS4 are listed below.

LK_Ethernet_Core_driver
LK_IPv4_route
LK_IPv4_driver
OpenFabrics_IB_driver
Marmot_Debugging_Library
MPI_Collective_Algorithms
MPI_Errors
CH3_drivers
CH3_drivers_Shared_Memory
Execution_Environment
Infiniband_RDMA_IMBR_mpibull2_driver
Infiniband_Gen2_mpibull2_driver
UDAPL_mpibull2_driver
IBA-VAPI_mpibull2_driver
MPIBull2_Postal_Service
MPIBull2_Romio

Run the command mpibull2-params <fl> <family> to see the list of individual parameters
that are included in the parameter families used within your cluster environment.

 Parallel Libraries 2-21

2.4 Third party MPI libraries

2.4.1 MPICH_Ethernet

Bull supplies MPICH_Ethernet (version 1.2.6), this is to be used with Ethernet interconnects.

Modify the file /opt/mpi/mpich_ethernet-1.2.6/share/machines.LINUX in order to set the
host name of the corresponding interface (Administration Network or Dedicated Network)
and the number of processors for each machine. For example:

ns0:4
ns1:4
ns2:4
ns3:4

The program which uses MPICH_Ethernet must be compiled using the appropriate wrapping
tool, for example mpicc, mpif77, etc. Launch the program with the following command where
np is the number of processes, and appli.exe is the name of the application using MPI:

$mpirun –np 4 ./appli.exe

For more details, see the Installation and User’s Guide to MPICH, a portable implementation of
MPI for the device ch_p4 which is available from
 http://www-unix.mcs.anl.gov/mpi/mpich/

2.4.2 LAM MPI

Bull delivers LAM version -7.0.6-5 on the Bull Linux AS4 V5.1 DVD. However, this is not
installed automatically.

For more information on LAM/MPI and to download the latest source files, please refer to
www.lam-mpi.org .

2.4.3 Parallel Virtual Machine (PVM)

Bull delivers PVM version -3.4.4-21 on the Bull Linux AS4 V5.1 DVD. This is installed on
Compute and Login Nodes.

For more information on PVM and to download the latest source files, please refer to
www.csm.ornl.gov/pvm/pvm_home.html

2-22 HPC BAS4 - User's Guide

2.5 Managing your MPI environment

Bull provides different MPI libraries for the different requirements of users. In order to help
users manage different environment configurations, Bull also ships modules and these can
be used to switch from one MPI library environment to another. This relies on the module
software – see chapter 5.

The directory used to store the module files is /opt/mpi/modulefiles/, into which the
different module files that include the mpich_ethernet, vltmpi libraries for Voltaire
InfiniBand, and MPIBull2 environments are placed.

 Important
It is recommended that a file is created, for example 99-mpimodules.sh and 99-
mpimodules.sh .csh, and this is added to the /etc/profile.d/ directory. The line below
should be pasted into this file. This will make the configuration environment available to all
users.

module use -a /opt/mpi/modulefiles

1. To check the modules which are available run the following command:

module av

This will give output similar to that below:

------------------- /opt/mpi/modulefiles ------------------
mpibull2/1.2.8-1.t mpich/1.2.7-p1 vltmpi/24-1

2. To see which modules are loaded run the command:

module li

This will give output similar to that below:

Currently Loaded Modulefiles:
 1) oscar-modules/1.0.3

3. To change MPI environments run the following commands according to your needs:

 module load mpich
 module li

Currently Loaded Modulefiles:
 1) oscar-modules/1.0.3 2) mpich/1.2.7-p1

 Parallel Libraries 2-23

4. To check which MPI environment is loaded run the command below:

which mpicc

This will give output similar to that below:

/opt/mpi/mpich-1.2.7-p1/bin/mpicc

5. To remove a module (e.g. mpich) run the command below:

module rm mpich

6. Then load the new MPI environment by running the load command, as below:

module load mpibull2

2.6 Profiling with mpianalyser

mpianalyser is a profiling tool, developed by Bull for its own MPI_Bull implementation.
mpianalyser includes profilecom, a non-intrusive tool that allows the display of data which
has been logged from counters when the application runs.

For more information on profilecomm and how it should be used refer to the Bull HPC
BAS4 Application Tuning Guide (86 A2 19ER)

2-24 HPC BAS4 - User's Guide

 Scientific Libraries 3-1

Chapter 3. Scientific Libraries
This chapter describes the following topics:

• 3.1 Overview

• 3.2 Intel Math Kernel Library

• 3.3 Intel Cluster Math Kernel Library

• 3.4 BLAS

• 3.5 BLACS

• 3.6 PBLAS

• 3.7 LAPACK

• 3.8 SCALAPACK

• 3.9 Blocksolve95

• 3.10 SuperLU

• 3.11 FFTW

• 3.12 PETSc

• 3.13 NETCDF

• 3.14 METIS and PARMETIS

• 3.15 SciPort

 Important: See the BAS4 System Release Bulletin for details of the Scientific Libraries
included with your delivery.

3.1 Overview

Scientific Libraries are sets of tested, validated and optimized functions which spare users the
need to develop such subprograms themselves.

The advantages of these scientific libraries are:
• Portability
• Support for different types of data (real, complex, double precision, etc.)
• Support for different kinds of storage (banded matrix, symmetrical, etc.)

Delivery

The scientific libraries BLACS, SCALAPACK, FFTW, Blocksolve95, SuperLU, PETSC use MPI
(Message Passing Interface). They are delivered in different environmental versions according
to the implementation to be used. BAS4 uses the following implementation:

• MPICH_Ethernet for clusters using Gigabit Ethernet interconnect

3-2 HPC BAS4 - User's Guide

 Note:
These require a machinefile. The default is
/usr/mpi/mpich_ethernet<version>/machines.LINUX

This file contains the system names and the number of processors. For example,

• Bass:4

• Molson:8

Additionally, all of the systems that will be running must have the same library revisions.

3.2 Intel Math Kernel Library

This library, which has been optimized by Intel for its processors contains, among other things,
the following libraries: BLAS, LAPACK and FFT.

The Intel Cluster MKL is a fully thread-safe library.

An installation notice is provided by Bull with the library delivery.

The library is located in the /opt/intel/mkl<release_nb>/ directory.

To use it, the environment has to be set by updating the LD_LIBRARY_PATH variable:

export LD_LIBRARY_PATH=/opt/intel/mkl<release_nb>/lib/64:$LD_LIBRARY_PATH

Example for MKL 7.2:

export LD_LIBRARY_PATH=/opt/intel/mkl72/lib/64:$LD_LIBRARY_PATH

3.3 Intel Cluster Math Kernel Library

The Intel Cluster Math Kernel Library contains all the highly optimized math functions of the
Math Kernel Library plus ScaLAPACK for Linux Clusters.

The Intel Cluster MKL is a fully thread-safe library and provides C and Fortran interfaces.

An installation notice is provided by Bull with the library delivery.

The Cluster MKL library is located in the /opt/intel/mkl<release_nb>cluster/ directory.

 Scientific Libraries 3-3

3.4 BLAS

BLAS stands for Basic Linear Algebra Subprograms.

This library contains linear algebraic operations that include matrixes and vectors. Its functions
are separated into three parts:

• Level 1 routines to represent vectors and vector/vector operations.

• Level 2 routines to represent matrixes and matrix/vector operations.

• Level 3 routines mainly for matrix/matrix operations.

This library is included in the Intel MKL package.

For more information see www.netlib.org/blas.

3.5 BLACS

BLACS stands for Basic Linear Algebra Communication Subprograms.

BLACS is a specialized communications library (using message passing). After defining a
process chart, it exchanges vectors, matrices and blocks and so on. It can be compiled on top
of MPI or PVM systems.

BLACS uses MPI and thus it is delivered in two releases, corresponding to the two available
MPIs.

More information is available at the following location:
 www.netlib.org/blacs/index.html

3.5.1 Using BLACS

There are multiple versions of BLACS. One uses MPICH and one uses MPIBULL2. These
libraries are located in the following directories:

/opt/scilibs/blacs/blacs_mpich_ethernet-<versions>/
/opt/scilibs/blacs/blacs_mpibull2-<version>

The libraries include the following:
libblacsCinit_MPI-LINUX-0.a
libblacsF77init_MPI-LINUX-0.a
libblacs_MPI-LINUX-0.a

3-4 HPC BAS4 - User's Guide

3.5.2 Testing Library Installation

The installation of the library can be tested using the tests found under the following directory:

 /opt/scilibs/BLACS/blacs-1.1-p3/tests

First, the MPI_HOME and LD_LIBRARY_PATH variables must be set up to point to the MPI
libraries that are to be tested. The following example uses the MPICH library.

:export MPI_HOME=/opt/mpi/mpich_ethernet/
export PATH=$MPI_HOME/bin:$PATH
export LD_LIRARY_PATH=$MPI_HOME/lib:$LD_LIRARY_PATH

Running the Tests

Then, run the tests as follows:
mpirun -np 4 xCbtest_MPI-LINUX-0
mpirun -np 4 xFbtest_MPI-LINUX-0

3.6 PBLAS

PBLAS stands for Parallel Basic Linear Algebra Subprograms.

PBLAS is the parallelized version of BLAS for distributed memory machines. It requires cyclic
distribution by matrix block that the BLACS library offers.

This library is included in the Intel MKL package.

3.7 LAPACK

LAPACK stands for Linear Algebra PACKage.

This is a set of Fortran 77 routines used to resolve linear algebra problems such as the
resolution of linear systems, eigenvalue computations, matrix computations, etc. However, it is
not written for a parallel architecture.

This library is included in the Intel MKL package.

 Scientific Libraries 3-5

3.8 SCALAPACK

SCALAPACK stands for: SCAlable Linear Algebra PACKage.

This library is the scalable version of LAPACK. Both libraries use block partitioning to reduce
data exchanges between the different memory levels to a minimum. SCALAPACK is above all
used for eigenvalue problems and factorizations (LU, Cholesky and QR). Matrices are
distributed using BLACS.

More information can be found at the following location:
 www.netlib.org/scalapack/index.html

Figure 3-1. Interdependence of the different mathematical libraries

Local component routines are called by a single process with arguments residing in local
memory.
Global component routines are synchronous and parallel. They are called with arguments that
are matrices or vectors distributed over all the processes.
SCALAPACK uses MPI and thus it is delivered in two releases, corresponding to the two
available MPIs.

The default installation for these two libraries is as follows:

 /opt/scilibs/scalapack/scalapack_<version>/<mpilib>

Used for complex
computations (system
resolution, eigenvalue
computations, etc.)

Message passing primitive

Sequential
equivalent of
SCALAPACK

Global

Local

3-6 HPC BAS4 - User's Guide

The following library is provided:
 Libscalapack.a

Several tests are provided in the following directory:
 /opt/scilibs/scalapack/scalapack_<version>/tests

3.9 Blocksolve95

BlockSolve95 is a scalable parallel software library primarily intended for the solution of
sparse linear systems that arise from physical models, especially problems involving multiple
degrees of freedom at each node.

BlockSolve95 uses MPI and thus it is delivered in two releases, corresponding to the two
available MPIs.

The default installation for these libraries is as follows:

/opt/scilibs/BlockSolve95_<version>/<mpilibrary>/lib/lib0/linux

The following library is provided:
libBS95.a

Some examples are also provided in the following directory.
/opt/scilibs/BlockSolve95_<version>/<mpilibrary>/examples

For more information see. http://www.mcs.anl.gov/sumaa3d/BlockSolve/index.html.

3.10 SuperLU

This library is for the direct solution of large, sparse, nonsymmetrical systems of linear
equations on high performance machines. The routines will perform an LU decomposition with
partial pivoting and triangular systems solves through forward and back substitution. The
factorization routines can handle non-square matrices, but the triangular solves are performed
only for square matrices. The matrix commands may be pre-ordered, either though library or
user supplied routines. This pre-ordering for sparsely is completely separate from the
factorization. Working precision iterative refinement subroutines are provided for improved
backward stability. Routines are also provided to equilibrate the system, estimate the condition
number, calculate the relative backward error and estimate error bounds for the refined
solutions. SuperLU_Dist is for distributed memory.

More information can be found at the following location:
http://crd.lbl.gov/~xiaoye/SuperLU/#superlu_dist

 Scientific Libraries 3-7

3.10.1 SuperLU Libraries

The following SuperLU Libraries are provided:
/opt/scilibs/SuperLU_DIST/SuperLU_DIST_<version>/<mpilib>/lib/superlu_lnx_ia64.a
/opt/scilibs/SuperLU_SEQ<x>/SuperLU_ SEQ<x>-2.0/lib/superlu_lnx_ia64.a
/opt/scilibs/SuperLU_SMP/SuperLU_ SMP-1.0/lib/superlu_lnx_ia64.a

Test are provided for each library under the following directory:
/opt/scilibs/SuperLU/<versions>/test directory

3.11 FFTW

FFTW stands for Fastest Fourier Transform in the West. FFTW is a C subroutine library for
computing a discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size,
and with both real and complex data.

There are three versions of FFTW in this distribution. They are located in the following
directories:

/opt/scilibs/FFTW/FFTW3-3.1.2/lib
/opt/scilibs/FFTW/FFTW_mpibull2-<version>/lib
/opt/scilibs/FFTW/FFTW_mpich_ethernet-<version>/lib

Tests are also available in the following directory:
/usr/lib/<version>/test

For more information see www.fftw.org/.

3.12 PETSc

PETSc stands for Portable, Extensible Toolkit for Scientific Computation. PETSc is a suite of data
structures and routines for the scalable (parallel) solution of scientific applications modeled by
partial differential equations. It employs the MPI standard for all message-passing
communication (see http://www.mcs.anl.gov/mpi for more details).

The Pets library is available under the following directories for both MPIs:
/opt/scilibs/PETSC/PETSc-2.3.3-p0/mpich_ethernet/lib/linux-intel-opt/
/opt/scilibs/PETSC/PETSc-2.3.3-p0/mpibull2/lib/linux-intel-opt/

For more information see http://www-unix.mcs.anl.gov/petsc/petsc-2/.

3-8 HPC BAS4 - User's Guide

3.13 NETCDF

NetCDF (network Common Data Form) allows the management of data input/output. NetCDF
is an interface for array-oriented data access and is a library that provides an implementation
of the interface. The netCDF library also defines a machine-independent format for representing
scientific data. Together, the interface, library, and format support the creation, access, and
sharing of scientific data.

The library is located in the following directories:
/opt/scilibs/NETCDF/netCDF_<version>/bin
/opt/scilibs/NETCDF/netCDF_<version>/lib
/opt/scilibs/NETCDF/netCDF_<version>/man

For more information see: http://www.unidata.ucar.edu/software/netcdf/
 http://trac.mcs.anl.gov/projects/parallel-netcdf

3.14 METIS and PARMETIS

METIS is a set of serial programs for partitioning graphs, partitioning finite element meshes,
and producing fill reducing orderings for sparse matrices. The algorithms implemented in
METIS are based on the multilevel recursive-bisection, multilevel k-way, and multi-constraint
partitioning schemes developed in our lab.

ParMETIS is an MPI-based parallel library that implements a variety of algorithms for
partitioning unstructured graphs, meshes, and for computing fill-reducing orderings of sparse
matrices. ParMETIS extends the functionality provided by METIS and includes routines that are
especially suited for parallel Adaptive Mesh Refinement computations and large scale
numerical simulations.

The libraries for ParmMETIS are located in the following directory:
/opt/scilibs/PARAMETIS/Parmetis_<version>/lib

For more information see http://www-users.cs.umn.edu/~karypis/metis/.

3.15 SciPort

SCIPORT is a portable implementation of CRAY SCILIB that provides both single and double
precision object libraries. SCIPORTS provides single precision and SCIPORTD provides double
precision.

The libraries for SCIPORT can be found under the following directory:
/opt/scilibs/sciport/sciport-1.0/lib/

For more information see http://www.netlib.org/scilib/sciport.

 Compilers 4-1

Chapter 4. Compilers
This chapter describes the following topics:

• 4.1 Overview

• 4.2 Intel Fortran Compiler

• 4.3 Intel C/C++ Compiler

• 4.4 Intel Compiler Licenses

• 4.5 Intel Math Kernel Library Licenses

• 4.6 GNU Compilers

4.1 Overview

Compilers play an essential role in exploiting the full potential of Itanium® 2 processors.
These processors use EPIC (Explicit Parallel Instruction set Computing) which enables
instructions to be executed in parallel. The parallelism has to be detected and exploited at
compiler level. Bull therefore recommends the use of Intel® C/C++ and Intel® Fortran
compilers.

GNU compilers are also available. However, these compilers are unable to exploit the
EPIC instruction set and also any program which uses MPI_Bull cannot be compiled\linked
with GNU products. For MPI_Bull programs it is essential that Intel compilers are used.

4.2 Intel Fortran Compiler

The current version of the Intel® Fortran 95 compiler is version 9.

The main features of this compiler are:

• Optimization of throughput of floating point instructions

• Optimization of inter-process calls

• Data preloading

• Conditional instruction prediction

• Speculative loading

• Optimization of the software pipeline.

This compiler complies with the Fortran 95 ISO standard. It is also compatible with GNU
products. Emacs and gbd tools can also be used with this compiler. It also supports big
endian encoded files. Finally, this compiler allows the execution of applications which
combine programs written in C and Fortran.

The compiler supports multithreading functionality:

• OpenMP 2.0 for Fortran is supported. The compiler accepts OpenMP pragmas and
generates a multithreaded application.

4-2 HPC BAS4 - User's Guide

• Automatic parallelization: a compiler option detects parallelism (in particular in the
computation loops) and generates a multithreaded application.

To use the compilers you have to update your environment as described below.

Different versions of the compiler may be installed to ensure compatibility with the compiler
version used to compile the libraries and applications on your system.

 Note:
It may be necessary to contact the System Administrator to ascertain the location of the
compilers on your system. The paths shown in the examples below may vary.

To specify a particular environment use the command below.

source /opt/intel/fc/<package_id>/bin/ifortvars.sh

For example:

• To use version 9.0.031 of the Fortran compiler:

source /opt/intel/fc/9.0.031/bin/ifortvars.sh

• To display the version of the active compiler, enter:

 ifort --version

• To obtain the documentation of the compiler:

/opt/intel/fc/9.0.031/doc

Remember that if you are using MPI_Bull then a compiler version has to be used which is
compatible with the compiler originally used to compile the MPI library.

4.3 Intel C/C++ Compiler

The current version of the Intel C/C++ compiler is version 9.

The main features of this compiler are:

• Optimization of throughput of floating point instructions

• Optimization of inter-process calls

• Data preloading

• Conditional instruction prediction

• Speculative loading

• Optimization of the software pipeline.

 Compilers 4-3

This compiler complies with ISO standard Ansi C/C++ and ISO standard C/C++. It is also
compatible with GNU products. A GNU C object or source code can therefore be
compiled with an Intel C/C++ compilers. Emacs and gbd tools can also be used with this
compiler.

The compiler supports multithreading functionality:

• OpenMP 2.0 for C/C++ is supported. The compiler accepts OpenMP pragmas and
generates a multithreaded application.

• Automatic parallelization: a compiler option detects parallelism (in particular in the
computation loops) and generates a multithreaded application.

For more details, visit the Intel web site www.intel.com.

Different versions of the compiler may be installed to ensure compatibility with the compiler
version used to compile the libraries and applications on your system.

 Note:
It may be necessary to contact the System Administrator to ascertain the location of the
compilers on your system. The paths shown in the examples below may vary.

To specify a particular environment use the command below:

source /opt/intel/cc/<package_id>/bin/iccvars.sh

For example:

• To use version 9.0.037 of the C/C++ compiler:

source /opt/intel/cc/9.0.037/bin/iccvars.sh

• To display the version of the active compiler, enter:

 icc --version

• To obtain the documentation of the compiler:

/opt/intel/cc/9.0.037/doc

Remember that if you are using MPI_Bull then a compiler version has to be used which is
compatible with the compiler originally used to compile the MPI library.

4-4 HPC BAS4 - User's Guide

4.4 Intel Compiler Licenses

Three types of Intel ® compiler licenses are available:

• Single User: allows one user to operate the product on multiple computers as long as
only one copy is in use at any given time.

• Node-Locked: locked to a node, allows any user who has access to this node to
operate the product concurrently with other users, limited to the number of licenses
purchased.

• Floating: locked to a network, allows any user who has access to the network server to
operate the product concurrently with other users, limited to the number of licenses
purchased.

The node-locked and floating licenses are managed by FlexLM from Macrovision.

License installation, and FlexLM configuration, may differ according to your compiler, the
license type, the number of licenses purchased, and the period of support for your product.
Please check the Bull Product Designation document delivered with your compiler and
follow the instructions contained therein.

4.5 Intel Math Kernel Library Licenses

Intel Math Kernel Library licenses are required for each compile node on which you
compile with MKL. However, the runtime libraries which are used on the compute nodes do
not require a license fee.

4.6 GNU Compilers

GCC, a collection of free compilers that can compile both C/C++ and Fortran, is part of
the installed Linux distribution.

 The User's Environment 5-1

Chapter 5. The User's Environment
This chapter describes how to access the HPC environment, how to use file systems, and
how to use the modules package to switch and compare environments:

• 5.1 Cluster Access and Security

• 5.2 Global File Systems

• 5.3 Environment Modules

• 5.4 Module Files

• 5.5 The Module Command

5.1 Cluster Access and Security

Typically, users connect to and use a HPC cluster as described below:

• Users log on to the HPC platform either through Service Nodes or through the Login
Node when the configuration includes these special Login Node(s). Once logged on to
a node, users can then launch their jobs.

• Compilation is possible on all nodes which have compilers installed on them. The best
approach is that compilers reside on Login Nodes, so that they do not interfere with
performance on the Compute Nodes.

5.1.1 Using ssh (Secure Shell)

The ssh command is used to access a cluster node.

Syntax:

ssh [-l login_name] hostname | user@hostname [command]

ssh [-afgknqstvxACNTX1246] [-b bind_address] [-c cipher_spec]
 [-e escape_char] [-i identity_file] [-l login_name] [-m mac_spec]
 [-o option] [-p port] [-F configfile] [-L port:host:hostport]
 [-R port:host:hostport] [-D port] hostname | user@hostname [command]

ssh (ssh client) can also be used as a command to log onto a remote machine and to
execute commands on it. It replaces rlogin and rsh, and provides secure encrypted
communications between two untrusted hosts over an insecure network. X11 connections
and arbitrary TCP/IP ports can also be forwarded over the secure channel. ssh connects
and logs onto the specified hostname. The user must verify his/her identity, using the
appropriate protocol, before being granted access to the remote machine.

5-2 HPC BAS4 - User's Guide

5.2 Global File Systems: NFS / Lustre

Two major kinds of file systems are generally used in a HPC environment:
NFS (distributed file system) and LUSTRE (parallel file system).

Lustre is an Open Source product under a GPL License. Lustre is specially designed for the
needs of high performance systems with a large data bandwidth. This design means that
Lustre is able to take full advantage of QSNETII high flow, weak latency interconnect
networks so that metadata and data is transferred efficiently.

Using Lustre

Data and metadata is stored under ldiskfs local files. ldiskfs is an ext3 file system with
special patches for Lustre.

QSNETII networks allow a flow of 900 MB/s for one rail (link). This flow may be restricted
by the flow of the disk bay and depends upon the Input/Output typology.

Lustre is usually used as follows:

• Each user has a private directory under /home_nfs.

• Each user has a private directory under the Lustre file system. Generally data under a
Lustre file system is not saved, and can be deleted by the cluster's administrator
whenever he needs to. If you want to save your data, you have to copy it using NFS.

• The Lustre File System is mounted following the user's request on the specified
computation nodes.

• Two possible ways of running an application on a HPC system are:

− The code is within the Lustre system (it must have been copied from NFS before
launch) and the results are generated under Lustre.

− The code is within NFS and the results are generated within Lustre (output files
must be defined for the application in /mnt/lustre/user's directory).

For example:

To copy a NFS file into a Lustre file system using prun, enter:

prun -p my_partition -N1 -n1 cp –r
~/home_nfs/‘whoami‘/pathname /mnt/lustre/‘whoami‘/pathname

For details about Lustre’s administration and operation refer to the Bull HPC BAS4
Administrator’s Guide (86 A2 30ER).

For information about optimizing the file system refer to the Bull HPC BAS4 Application
Tuning Guide (86 A2 19ER).

 The User's Environment 5-3

5.3 Environment Modules

Environment modules provide a great way to customize your shell environment easily,
particularly on the fly.

For instance an environment can consist of one set of compatible products including a
defined release of a FORTRAN compiler, a C compiler, a debugger and mathematical
libraries. In this way you can easily reproduce trial conditions, or use only proven
environments.

The Modules environment is a program that can read and list module files returning
commands, suitable for the shell to interpret, and most importantly for the eval command.
Modulefiles is a kind of flat database which uses files.

In UNIX a child process cannot modify its parent environment.
So how does Modules do this? Modules parses the given modules file and produces the
appropriate shell commands to set/unset/append/un-append onto an environment
variable. These commands are eval'd by the shell. Each shell provides some mechanism
where commands can be executed and the resulting output can, in turn, be executed as
shell commands. In the C-shell & Bourne shell and derivatives this is the eval command.

This is the only way that a child process can modify the parent's (login shell) environment.
Hence the module command itself is a shell alias or function that performs these operations.
To the user, it looks just like any other command.

The module command is only used in the development environment and not in other
environments such as that for administration node.

More details are available at http://modules.sourceforge.net/

5.3.1 Using Modules

The following command gives the list of available modules on this cluster.

module avail

------------------------ /opt/modules/version ------------------------
3.1.6

------------------- /opt/modules/3.1.6/modulefiles -------------------
dot module-info null
module-cvs modules use.own

---------------------- /opt/modules/modulefiles ----------------------
oscar-modules/1.0.3 (default)

Modules available for the user are listed under the line /opt/modules/modulefiles.

To load a module the command is:

module load module_name

To verify the loaded modules list the command is:

module list

5-4 HPC BAS4 - User's Guide

Using the avail command it is possible that some modules will be marked (default):

module avail

These modules are those which have been loaded without the user specifying a module
version number. For example the following commands are the same:

module load configuration

module load configuration/2

Three configurations have been created. These configurations are modules which load
other modules automatically.

For example the number 2 configuration includes:

• Intel Fortran compiler version 8.0.049

• Intel C compiler version 8.0.071

• Intel debugger version 8.1.3

• MKL version 7.0.017

Configuration/1 intel_fc –version 8.0.046

intel_cc –version 8.0.066

intel_db –version 8.1.3

intel_mkl –version 7.0.017

Configuration/2 intel_fc –version 8.0.049

intel_cc –version 8.0.071

intel_db –version 8.1.3

intel_mkl –version 7.0.017

Configuration/3 intel_fc –version 8.0.061

intel_cc –version 8.0.071

intel_db –version 8.1.3

intel_mkl –version 7.0.017

Configuration/4 intel_fc –version 8.0.019

intel_cc –version 8.0.022

intel_db –version 8.1.3

intel_mkl –version 7.0.017

Table 5-1. Examples of different module configurations

The use of the load command in the module configuration context changes the user
"prompt" adding the configuration name.

The module unload command unloads one module.

The module purge command clears all the modules from the environment.

module purge

 The User's Environment 5-5

By design two "configuration" modules can not be loaded simultaneously. The loading of a
"configuration" module unloads the previous one.

It is not possible to load the two modules intel_cc or intel_fc at the same time because it
causes conflicts.

5.3.2 Setting Up the Shell RC Files

Here's a quick tutorial on Shell rc (run-command) files. When a user logs in and if they
have /bin/csh(/bin/sh) as their shell, the first rc fire to be parsed by the shell is
/etc/csh.login & /etc/csh.cshrc (/etc/profile) (the order is implementation dependent),
and then the user's $HOME/.cshrc ($HOME/.kshenv) and finally $HOME/.login
($HOME/.profile).

All the other login shells are based on /bin/csh and /bin/sh with additional features and
rc files. Certain environment variables and aliases (functions) need to be set for Modules to
work correctly. This is handled by the Module init files in /opt/modules /default/init,
which contains separate init files for each of the various supported shells, where the default
is a symbolic link to a module command version.

Skeleton Shell RC ("Dot'') Files

The skeleton files provide a "default'' environment for new users when they are added to
your system, this can be used if you do not have the time to set them up individually. The
files are usually placed in /etc/skel (or wherever you specified with the --with-skel-
path=<path> option to the configuration script), and contains a minimal set of "dot'' files
and directories that every new user should start with.

The skeleton files are copied to the new user's $HOME directory with the "-m'' option
added to the "useradd'' command. A set of sample "dot'' files are located in ./etc/skel.
Copy everything but the .*.in and CVS files and directories to the skeleton directory. Edit
and tailor for your system.

If you have a pre-existing set of skeleton files, then make sure the following minimum set
exists: .cshrc, .login, .kshenv, .profile. These can be automatically updated with the
command:

env HOME=/etc/skel/opt/modules/default/bin/add.modules

Inspect the new "dot'' files and if they are OK, then remove all the .*.old (original) files. An
alternative way of setting-up the users' dot files can be found in ./ext.
This model can be used with the --with-dot-ext configure option.

User Shell RC ("Dot'') Files

The final step for a functioning modules environment is to modify the user "dot'' files to
source the right files. One way to do this is to put a message in the /etc/motd telling each
user to run the command:

/opt/modules/default/bin/add.modules

5-6 HPC BAS4 - User's Guide

This is a script that parses their existing "dot'' files prepending the appropriate commands
to initialize the Modules environment.

The user can re-run this script and it will find and remember what modules they initially
loaded and then strip out the previous module initialization and restore it with an upgraded
one.

If the user lacks a necessary "dot'' file, the script will copy one over from the skeleton
directory. The user will have to logout and login for it to come into effect.
Another way is for the system administrator to "su - username" to each user and run it
interactively. The process can be semi-automated with a single line command that obviates
the need for direct interaction:

su - username -c "yes | /usr/local/Modules/default/bin/add.modules"

Power users can create a script to directly parse the /etc/passwd file to perform this
command. Otherwise, just copy the passwd file and edit it to execute this command for
each valid user.

 The User's Environment 5-7

5.4 Module Files

Once the above steps have been performed, then it is important to have module files in
each of the modulefiles directories. For example, the following module files will be
installed:

--------- /opt/modules/3.0.9-rko/modulefiles ----------
dot module-info modules null use.own

If you do not have your own module files in /opt/modules/modulefiles then copy "null'' to
that directory. On some systems an empty modulefiles directory will cause a core dump,
whilst on other systems there will be no problem. Use
/opt/modules/default/modulefiles/modules as a template for creating your own module files.

For more information run:

 module load modules

You will then have ready access to the module(1) modulefile(4) man pages, as well as the
versions directory. Study the man pages carefully.
The version directory may look something like this:

---------------- /opt/modules/versions ----------------
3.0.5-rko 3.0.6-rko 3.0.7-rko 3.0.8-rko 3.0.9-rko

The model you should use for modulefiles is "name/version''. For example,
/opt/modules/modulefiles directory may have a directory named "firefox'' which contains
the following module files: 301, 405c, 451c, etc.
When it's displayed with "module avail'' it looks something like this:

firefox/301
firefox/405c
firefox/451c(default)
firefox/45c
firefox/46

The default is established with .version file in the firefox directory and it looks something
like this:

#%Module1.0###

version file for Firefox

set ModulesVersion "451c"

If the user does "module load firefox'', then the default firefox/451c will be used. The
default can be instantly changed by editing the .version file to point to a different module
file in that directory. If no .version file exists then Modules will just use the last module in
the alphabetical ordered directory listing as the default.

5-8 HPC BAS4 - User's Guide

5.4.1 Upgrading via the Modules Command

The theory is that Modules should use a similar package/version locality as the package
environments it helps to define. Switching between versions of the module command should
be as easy as switching between different packages via the module command. Suppose
there is a change from 3.0.5-rko to version 3.0.6-rko. The goal is to semi-automate the
changes to the user "dot'' files so that the user is oblivious to the change.

The first step is to install the new module command & files to /opt/modules/3.0.6-rko/.
Test it out by loading with "module load modules 3.0.6-rko". You may get an error like:
3.0.6-rko (25):ERROR:152: Module 'modules' is currently not loaded. This is OK and
should not appear with future versions.

Make sure you have the new version with "module --version". If it seems stable enough,
then advertise it to your more adventurous users. Once you are satisfied that it appears to
work adequately well, then go into /opt/moduless remove the old "default" symbolic link
to the new versions.

For example:

cd /opt/modules
rm default; ln -s 3.0.6-rko default

This new version is now the default and will be referenced by all the users that log in and
by those that have not loaded a specific module command version.

 The User's Environment 5-9

5.5 The Module Command

Synopsis

module [switches] [sub-command] [sub-command-args]

The Module command provides a user interface to the Modules package. The Modules
package provides for the dynamic modification of the user's environment via modulefiles.

Each modulefile contains the information needed to configure the shell for an application.
Once the Modules package is initialized, the environment can be modified on a per-
module basis using the module command which interprets modulefiles. Typically modulefiles
instruct the module command to alter or to set shell environment variables such as PATH,
MANPATH, etc. modulefiles may be shared by many users on a system and users may have
their own collection to supplement or replace the shared modulefiles.

The modulefiles are added to and removed from the current environment by the user. The
environment changes contained in a modulefile can be summarized through the module
command as well. If no arguments are given, a summary of the module usage and sub-
commands are shown.

The action for the module command to take is described by the sub-command and its
associated arguments.

5.5.1 modulefiles

modulefiles are the files containing TCL code for the Modules package.

modulefiles are written in the Tool Command Language, TCL(3) and are interpreted by the
modulecmd program via the module(1) user interface. modulefiles can be loaded,
unloaded, or switched on-the-fly while the user is working.

A modulefile begins with the magic cookie, '#%Module'. A version number may be placed
after this string. The version number is useful as the format of modulefiles may change. If a
version number doesn't exist, then modulecmd will assume the modulefile is compatible
with the latest version. The current version for modulefiles will be 1.0. Files without the
magic cookie will not be interpreted by modulecmd.

Each modulefile contains the changes to a user's environment needed to access an
application. TCL is a simple programming language which permits modulefiles to be
arbitrarily complex, depending on the needs of the application and the modulefile writer. If
support for extended tcl (tclX) has been configured for your installation of modules, you
may use all the extended commands provided by tclX, too. modulefiles can be used to
implement site policies regarding the access and use of applications.

5-10 HPC BAS4 - User's Guide

A typical modulefiles file is a simple bit of code that sets or adds entries to the PATH,
MANPATH, or other environment variables. TCL has conditional statements that are
evaluated when the modulefile is loaded. This is very effective for managing path or
environment changes due to different OS releases or architectures. The user environment
information is encapsulated into a single modulefile kept in a central location. The same
modulefile is used by all users independent of the machine. So, from the user's perspective,
starting an application is exactly the same regardless of the machine or platform they are
on.

modulefiles also hide the notion of different types of shells. From the user's perspective,
changing the environment for one shell looks exactly the same as changing the environment
for another shell. This is useful for new or novice users and eliminates the need for
statements such as "if you're using the C Shell do this ..., otherwise if you're using the
Bourne shell do this ..." Announcing and accessing new software is uniform and
independent of the user's shell. From the modulefile writer's perspective, this means one set
of information will take care of all types of shells.

5.5.2 Modules Package Initialization

The Modules package and the module command are initialized when a shell-specific
initialization script is sourced into the shell. The script creates the module command as
either an alias or function, creates Modules environment variables, and saves a snapshot of
the environment in ${HOME }/.modulesbeginenv. The module alias or function executes
the modulecmd program located in ${MODULESHOME }/bin and has the shell evaluate
the command's output. The first argument to modulecmd specifies the type of shell.

The initialization scripts are kept in ${MODULESHOME }/init/shellname where shellname
is the name of the sourcing shell. For example, a C Shell user sources the
${MODULESHOME }/init/csh script. The sh, csh, tcsh, bash, ksh, and zsh shells are all
supported by modulecmd. In addition, python and perl "shells" are supported which writes
the environment changes to stdout as python or perl code.

5.5.3 Examples of Initialization

In the following examples, replace ${MODULESHOME } with the actual directory name.

C Shell initialization (and derivatives)

 source ${MODULESHOME }/init/csh module load modulefile modulefile

Bourne Shell (sh) (and derivatives)

 ${MODULESHOME }/init/sh module load modulefile modulefile

Perl

require "${MODULESHOME }/init/perl"; &module("load modulefile modulefile ");

 The User's Environment 5-11

5.5.4 Modulecmd Startup

Upon invocation modulecmd sources rc files which contain global, user and modulefile
specific setups. These files are interpreted as modulefiles.

Upon invocation of modulecmd module RC files are sourced in the following order:

1. Global RC file as specified by ${MODULERCFILE } or
 ${MODULESHOME }/etc/rc

2. User specific module RC file ${HOME }/.modulerc

3. All .module rc and .version files found during modulefile searches.

5.5.5 Module Command Line Switches

The module command accepts command line switches as its first parameter. These may be
used to control output format of all information displayed and the module behavior in the
case of locating and interpreting module files.

All switches may be entered either in short or long notation. The following switches are
accepted:

--force, -f

Force active dependency resolution. This will result in modules found on a prereq command
inside a module file being loaded automatically. Unloading module files using this switch
will result in all required modules which have been loaded automatically using the -f switch
being unloaded. This switch is experimental at the moment.

--terse, -t

Display avail and list output in short format.

--long, -l

Display avail and list output in long format.

--human, -h

Display short output of the avail and list commands in human readable format.

--verbose, -v

Enable verbose messages during module command execution.

--silent, -s

Disable verbose messages. Redirect stderr to /dev/null if stderr is found not to be a tty.
This is a useful option for module commands being written into .cshrc , .login or .profile
files, because some remote shells (e.g. rsh (1)) and remote execution commands (e.g. rdist)
get confused if there is output on stderr.

5-12 HPC BAS4 - User's Guide

--create, -c

Create caches for module avail and module apropos . You must be granted write access to
the ${MODULEHOME }/modulefiles/ directory if you try to invoke module with the -c
option.

--icase, -i

This is a case insensitive module parameter evaluation. Currently only implemented for the
module apropos command.

--userlvl <lvl>, -u <lvl>

Set the user level to the specified value. The argument of this option may be one of:
novice, nov Novice
expert, exp Experienced module user
advanced, adv Advanced module user

5.5.6 Module Sub-Commands

Print the use of each sub-command. If an argument is given, print the Module specific help
information for the modulefile.

help [modulefile...]

Load modulefile into the shell environment.

load modulefile [modulefile...]
add modulefile [modulefile...]

Remove modulefile from the shell environment.

unload modulefile [modulefile...]
rm modulefile [modulefile...]

Switch loaded modulefile1 with modulefile2.

switch modulefile1 modulefile2
swap modulefile1 modulefile2

Display information about a modulefile. The display sub-command will list the full path of the
modulefile and all (or most) of the environment changes the modulefile will make when
loaded. (It will not display any environment changes found within conditional statements).

display modulefile [modulefile...]

List loaded modules.

show modulefile [modulefile...]
list
avail [path...]

 The User's Environment 5-13

List all available modulefiles in the current MODULEPATH. All directories in the
MODULEPATH are recursively searched for files containing the modulefile magic cookie. If
an argument is given, then each directory in the MODULEPATH is searched for modulefiles
whose pathname match the argument. Multiple versions of an application can be
supported by creating a subdirectory for the application containing modulefiles for each
version.

use directory [directory...]

Prepend directory to the MODULEPATH environment variable. The --append flag will
append the directory to MODULEPATH.

use [-a|--append] directory [directory...]

Remove directory from the MODULEPATH environment variable.

unuse directory [directory...]

Attempt to reload all loaded modulefiles. The environment will be reconfigured to match the
saved ${HOME }/.modulesbeginenv and the modulefiles will be reloaded. The update
command will only change the environment variables that the modulefiles set.

update

Force the Modules Package to believe that no modules are currently loaded.

clear

Unload all loaded modulefiles.

purge

Display the modulefile information set up by the module-whatis commands inside the
specified modulefiles. If no modulefiles are specified, all the whatis information lines will be
shown.

whatis [modulefile [modulefile...]]

Searches through the whatis information of all modulefiles for the specified string. All
module whatis information matching the search string will be displayed.

apropos string
keyword string

5-14 HPC BAS4 - User's Guide

Add modulefile to the shell's initialization file in the user's home directory. The startup files
checked are .cshrc, .login, and .csh_variables for the C Shell; .profile for the Bourne and
Korn Shells; .bashrc, .bash_env, and .bash_profile for the GNU Bourne Again Shell;
.zshrc, .zshenv, and .zlogin for zsh. The .modules file is checked for all shells. If a 'module
load' line is found in any of these files, the modulefile(s) is(are) appended to any existing list
of modulefiles. The 'module load' line must be located in at least one of the files listed above
for any of the 'init' sub-commands to work properly. If the 'module load' line is found in
multiple shell initialization files, all of the lines are changed.

initadd modulefile [modulefile...]

Does the same as initadd but prepends the given modules to the beginning of the list. initrm
modulefile [modulefile...] Remove modulefile from the shell's initialization files.

initprepend modulefile [modulefile...]

Switch modulefile1 with modulefile2 in the shell's initialization files.

initswitch modulefile1 modulefile2

List all of the modulefiles loaded from the shell's initialization file.

initlist

Clear all of the modulefiles from the shell's initialization files.

initclear

5.5.7 Modules Environment Variables

Environment variables are unset when unloading a modulefile. Thus, it is possible to load a
modulefile and then unload it without having the environment variables return to their prior
state.

MODULESHOME:

This is the location of the master Modules package file directory containing module
command initialization scripts, the executable program modulecmd, and a directory
containing a collection of master modulefiles.

MODULEPATH:

This is the path that the module command searches when looking for modulefiles. Typically,
it is set to the master modulefiles directory, ${MODULESHOME }/modulefiles, by the
initialization script. MODULEPATH can be set using 'module use' or by the module
initialization script to search group or personal modulefile directories before or after the
master modulefile directory.

 The User's Environment 5-15

LOADEDMODULES

A colon separated list of all loaded modulefiles.

_LOADED_MODULEFILES_

A colon separated list of the full pathname for all loaded modulefiles.

MODULESBEGINENV

The filename of the file containing the initialization environment snapshot.

Files

/opt

The MODULESHOME directory.

${MODULESHOME}/etc/rc

The system-wide modules rc file. The location of this file can be changed using the
MODULERCFILE environment variable as described above.

${HOME}/.modulerc

The user specific modules rc file.

${MODULESHOME}/modulefiles

The directory for system-wide modulefiles. The location of the directory can be changed
using the MODULEPATH environment variable as described above.

${MODULESHOME}/bin/modulecmd

The modulefile interpreter that gets executed upon each invocation of a module.

${MODULESHOME}/init/shellname

The Modules package initialization file sourced into the user's environment.

${MODULESHOME}/init/.modulespath

The initial search path setup for module files. This file is read by all shell init files.

${MODULEPATH}/.moduleavailcache

File containing the cached list of all modulefiles for each directory in the MODULEPATH
(only when the avail cache is enabled).

${MODULEPATH}/.moduleavailcachedir

File containing the names and modification times for all sub-directories with an avail cache.

${HOME}/.modulesbeginenv

A snapshot of the user's environment taken when Modules are initialized. This information
is used by the module update sub-command.

5-16 HPC BAS4 - User's Guide

 Launching an Application 6-1

Chapter 6. Launching an Application
This chapter describes the following topics:

• 6.1 Launching the Application without a Batch Manager

• 6.2 Quadrics Resource Management System

• 6.3 SLURM Resource Management Utilities

• 6.4 Launching the Application using TORQUE Batch Manager

6.1 Launching the Application without a Batch Manager

There are different ways of launching the application on Bull HPC platforms, without using
a batch manager. These vary according to platform and application type. Refer to the table
on the next page for information on the different possibilities that are available.

A second step is to ensure that once launched the execution is fully optimized. The tools
and commands to be used to do this are also indicated. It is possible that the system
administrator may have to intervene in order to allocate the resources for the application.

For more information on where to find these tools and how to use them, refer to the rest of
this chapter and the Bull HPC BAS4 Application Tuning Guide (86 A2 19ER). For more
information on the commands for the pdsh shell utility, refer to the Bull HPC BAS4
Administrator’s Guide (86 A2 30ER).

 Note:

For more information on mprun, used in a single node parallel environment, and mpibull2-
launch, a meta-launcher which helps users retain their launching commands when changing
MPI environments and process managers, refer to chapter 2 of this manual.

6-2 HPC BAS4 - User's Guide

Platform Application Launching tool

Serial none

OpenMP none

MPI Bull1 mprun

Clusters with
no Resource

Manager Parallel

MPIBull2 mpiexec/mpirun (MPD)

Serial rmsexec

OpenMP on one node
allocate
prun –c <no. of CPUs>

MPI prun

Clusters with
Quadrics

RMS Parallel

Hybrid (MPI +
OpenMP)

prun –c <no. of CPUs per MPI task>

Serial srun

OpenMP on one node
srun –A
srun –c <no. of CPUs >

MPI srun

Clusters with
SLURM

 Parallel

Hybrid (MPI +
OpenMP)

srun –c <no. of CPUs per MPI task>

Table 6-1. Launching tools for different clusters

 Note:
There are memory access differences for the different hardware architectures covered by
this manual. NovaScale 5xxx/6xx0 Series platforms use the Quad Brick Board (QBB)
hardware architecture with Non Uniform Memory Access (NUMA). Symmetric
Multiprocessing (SMP) is used for NovaScale 4xx0 Series. NovaScale 3005 Series
platforms have a very low NUMA factor which is disabled by default.

In SMP platforms the memory access time is stable for all processors, and the Quad Brick
Board hardware model is not used. The term QBB for these platforms refers to the set of
sockets which are attached to the Scalable Node Controller (SNC) on the system board for
NovaScale 4xx0 platforms, and to the Node Controller (NC) on the system board for
NovaScale 3005 platforms. This means that 1 QBB, which may include 1-4 single
processors, is possible for the NovaScale 4xx0 platforms, whilst for the NovaScale 3005
Series 2 QBBs are possible, each of which may house 1-2 dual core sockets.

 Launching an Application 6-3

6.1.1 NUMACTL

Numactl is dedicated to single-NUMA systems. The granularity is restricted to the QBB level
for each node. The following example shows a node with 16 CPUs.

NODENODE

QBB1QBB1 QBB2QBB2 QBB3QBB3 QBB4QBB4

NUMACTL ALLOCATION

CPUCPU

Figure 6-1. Numactl QBB application

Numactl is able to define an execution area for an application, in this example QBB2 and
QBB3 (2 * 4 CPUs) are allocated.

6.1.1.1 Using Libnuma and Numactl

Important:

The scope of the numactl command is a mono numa configuration, with 1 to 8 QBBs that is
to say, one node for a HPC cluster.

In the following paragraph concerning the numactl command, "node" means a QBB in the
numa configuration.

Libnuma is a library that offers a simple programming interface to the Symmetric Multi
Processing NUMA policy supported by the Linux kernel. In a NUMA architecture, memory
areas have different latencies or bandwidths according to which CPUs they are accessed
from.

Available policies are page interleaving, preferred node allocation, local allocation,
allocation only on specific nodes. The binding of threads to specific nodes is also possible.
All policies exist per thread and are inherited by children.

For setting global policy per process it is easiest to run Libnuma using the numactl utility.
This library can be used for a more fine grained policy inside an application. Outside the
application the policy applies to all the memory of the process, whereas inside you can use
it for each memory zone.

The granularity level of allocation for numactl is the node i.e. a QBB.

All numa memory allocation policies only take effect when pages are actually faulted into
the address space of a process by accessing them. The numa_alloc_* functions take care
of this automatically.

6-4 HPC BAS4 - User's Guide

Before any other calls in this library can be used numa_available must be called. When it
returns a negative value all other functions in this library are undefined.

numactl runs processes with a specific NUMA scheduling or memory placement policy. The
policy is set for a command and inherited by all of its children. In addition numactl can set
a persistent policy for shared memory segments or files.

The most common policy settings are:

--interleave=nodes, -i nodes

Sets an memory interleave policy. Memory will be allocated using a round robin algorithm
on nodes. When memory cannot be allocated on the current interleave, the target falls
back to other nodes.

--membind=nodes, -m nodes

Only allocates memory from the specified nodes. Allocation will fail when there is not
enough memory available on these nodes.

--cpubind=nodes, -c nodes

Only executes process on the CPUs of the nodes specified.

 Note:

It is possible that this command may conflict with the usage of CPUSETS. As an alternative
it is suggested that you use numactl to set your mempolicy set rather than CPUSETS and/or
taskset or sched_affinity for CPU bindings.

--localalloc, -l

Always allocates locally on the current node.

Example

To run a program which allocates memory using a round robin allocation on 4 nodes of a
16 CPU NovaScale server, enter:

numactl –i0,1,2,3 program_name

For more information refer to the numa man pages.

Libnuma comes under the GNU Lesser General Public License, v2.1.

6.1.2 The PTOOLS and CPUSET Package

The Ptools package includes the pexec and the pcreate commands which can be used to
create and to execute cpusets, and also to allocate resources inside an HPC node. The
minimum granularity level is the CPU within a QBB. In the following example we have:

• CPUSET 1 with 2 CPUs on QBB1, 2 CPUs on QBB2 and 2 CPUs on QBB3,

 Launching an Application 6-5

• CPUSET 2 with 2 CPUs on QBB2 and 2 CPUs on QBB3,

• CPUSET 3 with 4 CPUs on QBB4.

QBB1QBB1

CPUSET ALLOCATION

CPUSET N°2

CPUSET N°1

QBB2QBB2 QBB3QBB3 QBB4QBB4

CPUSET N°3

NODENODE

Figure 6-2. CPUSET allocation

6.1.2.1 Using Ptools and CPUSET

CPUSET is a feature of the Bull Linux kernel, which lets you define execution areas inside a
multiprocessor system. The execution of each program will be limited to these predefined
areas. These execution areas are called cpusets.

Cpusets can form a nested hierarchy meaning that cpusets can be created inside a cpuset.

Cpusets are used:

• To offer some kind of partitioning for multiprocessor systems.

• To ensure the highest performance for the execution of an application, especially on
systems with a complex topology such as NUMA systems.

Cpusets also changes the way you map processes on specific processors. When a task
uses the sched_setaffinity system call, the list of processors specified for this system call is
interpreted to be used inside the cpuset in which the application is running. For example, if
an application running inside a cpuset with processors 4, 5, 6 and 7 wants to bind one of
its processes to the processor 0, the process will actually be bound to processor 4. This
feature allows you to run several applications at the same time, and to finely control which
processors their tasks are running on.

Bull provides the ptools suite to create and run cpusets.

ptools consists of the following:

pcreate To create cpusets.

pexec To create a cpuset and run an application inside it. The cpuset is destroyed
when the application is completed.

passign To move a task inside a cpuset.

6-6 HPC BAS4 - User's Guide

pdestroy To destroy a cpuset.

pls To list existing cpusets.

pplace To finely tune the binding of threads and processes for an application. See
the Bull HPC BAS4 Application Tuning Guide (86 A2 19ER) for more details.

When a cpuset is created, a list of processors must be chosen. Several flags can also be
set for each cpuset:

strict Also called cpu_exclusive. This cpuset will not share its processors with
other cpusets that have the same parent cpuset.

autoclean To automatically remove a cpuset from a system and to free its resources
when it becomes unused. That is to say when all the applications running
inside the cpuset are finished.

Example
pexec –np <nb_cpus> --strict <my_app>

[root@nsadmin root]# pexec -np 2 --strict ./myapp

Created /dev/cpuset/cpuset0

Myapp running..

For more information refer to the installed man pages of pexec, pcreate and passign.

 Launching an Application 6-7

6.2 Quadrics Resource Management System

The Quadrics Resource Management System (RMS) includes the prun command to define
partitions and to run jobs in a HPC cluster. One partition can lie across several nodes, as is
the case for the "PARALLEL partition N°1" in the following figure:

Figure 6-3. RMS Partitions

6.2.1 Using Quadrics RMS

The key to achieving high-levels of performance for a large-scale parallel application is to
dedicate specific resources (CPUs, memory, network bandwidth and local I/O capability)
to its execution. Quadrics RMS enables a system administrator to efficiently manage these
resources to achieve maximum performance. Nodes can be configured into mutually
exclusive sets known as partitions; these may each provide a specific system service. For
example, your system could have an interactive partition for conventional UNIX processes
and program development, a sequential batch partition, and a parallel partition running
the RMS gang scheduler. Free cycles on the interactive partition could be used by
sequential batch jobs running from a low priority queue. Plus the system may be configured
to allow certain users to run high-priority interactive jobs during working hours.

Parallel programs under Quadrics RMS are managed by a controlling process prun and
have application processes distributed over the nodes of a partition. Each process is
executed by dedicated CPUs. You choose how many are required for each process, and
how they are distributed over multi-CPU nodes.

The administrator of an RMS system controls how the nodes are configured into partitions,
how they change, and who can access each partition and the level of resources that they
use.

RMS also provides accounting facilities.

The user commands required to launch an application with RMS are as follows:

6-8 HPC BAS4 - User's Guide

prun
The prun program loads and runs parallel programs. It can also run multiple copies of a
sequential program.

rmsexec
The rmsexec program runs a sequential program on a lightly loaded node.

6.2.2 Prun

The main options for prun are as follows:

-n <procs> Specifies the number of processes required

-p <partitions> Specifies the partition on which to run the program

-Rrails=<nbrails> Gives the number of rails to use

-N<nodes> Specifies the number of nodes required

-B<base> Specifies the first node to use

-s Prints statistics as the job exits

-t Prefix output with the process number

-o<output_file.txt> Redirects output to output_file.txt

-e<err_file.txt> Redirects errors to err_file.txt

6.2.3 Rmsexec

The rmsexec program provides a mechanism for running sequential programs on lightly
loaded nodes with free memory or low CPU usage. It locates a suitable node and then runs
the program on it. The user can select a node from a specific partition (of type login or
general) with the -p option. Without the -p option rmsexec uses the default load-balancing
partition (specified with the lbal-partition attribute in the attributes table). In addition, the
hostname of the node can be specified explicitly. The request will fail if this node is not
available according to the access rights of the user. System administrators may select any
node.

 Note:

This load balancing service may not be available on all types of partitions.

The main options for rmsexec are the following ones:

rmsexec [-hv] [-p partition] [-s stat] [hostname] program [args ...]

Use the -h option to get a list of the available options and valid arguments.

Selecting a Node

rmsexec restricts its search for a lightly loaded node to the partitions you are entitled to use
(as defined by the system administrator). You can restrict the search still further by naming
a particular partition with the -p option, as shown in the following example:

 Launching an Application 6-9

$ rmsexec -p parallel myseqprog

You can also request a processor on a specific node. The following example requests the
node atlas2:

$ rmsexec atlas2 myseqprog

6.2.4 rinfo

rinfo is a RMS command used on HPC platforms with Quadrics Interconnects and which
provides you with a global overview of the partitions defined by RMS on a cluster including
the number of CPUs and machines within it. rinfo will also indicate the number of CPUs
used when an application is executed within a partition and the state of affairs for the
active applications.
This command can also be used to obtain further information on the topology of the cluster.

Example:

$ rinfo

MACHINE CONFIGURATION

nsad day

PARTITION CPUS STATUS TIME TIMELIMIT NODES

root 28 ns[13-15]

nsad

part1 0/8 running 1:00:07:02 ns[13-14]

part2 ??/0 down --:--

In the example above the cluster consists of 28 processors and 3 nodes: ns 13, ns 14 and
ns 15. The first RMS partition is shown as ‘part1’ and consists of 2 nodes (ns13 and
ns14) and 8 CPUs and its status is ‘running’ which means that it can be used.

The second partition is ‘part2’ and its status is ‘down’, with no nodes allocated, which
means that it cannot be used.

6.2.5 More RMS Information

For more information, see Bull HPC BAS4 Administrator’s Guide (86 A2 30ER) or refer to the
RMS User’s Guide and the Quadrics web site at http://www.quadrics.com

See the "RMS Reference Manual" at http://www.quadrics.com for details about other RMS
commands.

6-10 HPC BAS4 - User's Guide

6.3 SLURM Resource Management Utilities

As a cluster resource manager, SLURM has three key functions. First, it allocates exclusive
and/or non-exclusive access to resources (compute nodes) to users for some duration of
time so they can perform work. Second, it provides a framework for starting, executing,
and monitoring work (normally a parallel job) on the set of allocated nodes. Finally, it
arbitrates conflicting requests for resources by managing a queue of pending work.

Users interact with SLURM through various command line utilities:

• SRUN for submitting a job for execution and optionally controlling it interactively.

• SBCAST to transmit a file to all nodes running a job.

• SCANCEL for terminating a pending or running job.

• SQUEUE for monitoring job queues.

• SINFO for monitoring partition and overall system state.

• SACCT displays data for all jobs and job steps in the SLURM accounting log.

• Global Accounting API for merging the data from the LSF accounting file and the
SLURM accounting file into a single record.

 Note:

There is a general explanation of each available commanding the following sections. For
complete and detailed information please refer to the man pages. For example, man srun

 Note:
See the HPC BAS4 Application Tuning Guide for information on the Consumable Resource
Scheduling Policy using the CPU Consumable Resource node allocation plug-in.

6.3.1 SRUN

SRUN submits jobs to run under SLURM management. SRUN can:

• Submit a batch job and then terminate

• Submit an interactive job and then persist to shepherd the job as it runs

• Allocate resources to a shell and then spawn that shell for use in running subordinate
jobs.

SLURM associates every set of parallel tasks ("job steps") with the SRUN instance that
initiated that set, and SRUN provides comprehensive control over node choice and I/O
redirection for the parallel job.

6.3.1.1 SRUN Roles and Modes

SRUN executes tasks ("jobs") in parallel on multiple compute nodes at the same time (on
machines where SLURM manages the resources). SRUN options allow the User to both:

 Launching an Application 6-11

• Specify the parallel environment for job(s), such as the number of nodes used, node
partition, distribution of processes among nodes, and total time.

• Control the behavior of a parallel job as it runs, such as by redirecting or labeling its
output, sending it signals, or specifying its reporting verbosity.

Because it performs several different roles, SRUN can be used in four distinct ways or
"modes". These modes are described in the following table.

Mode Description

INTERACTIVE The simplest way to use SRUN is to distribute execution of a serial program (such
as a UNIX utility) across a specified number or range of compute nodes. For
example,
srun -N 8 cp ~/data1 /var/tmp/data1

copies (CP) file data1 from a common home directory to local disk space on each
of eight compute nodes. SRUN allows relevant environment variables to be set on
its own execute line. In interactive mode, SRUN submits job to the local SLURM job
controller, then initiates all processes on the specified nodes and blocks until the
requested resources become available. Many control options are available to
change the details of this general pattern.

BATCH SRUN can also directly submit complex scripts to the job queue(s) managed by
SLURM for later execution, when needed resources become available and when no
higher priority jobs are pending. For example,
srun -N 16 -b myscript.sh

uses the -b option of SRUN to place myscript.sh into the queue to run later on 16
nodes. Scripts in turn normally contain either MPI programs or other simple
invocations of SRUN itself (as shown above). Thus, the -b option of SRUN supports
basic, local-batch service.

ALLOCATE The SRUN "allocate" mode can be used to combine the job complexity of scripts
with the immediacy of interactive execution. For example,
srun -A -N 4 myscript.sh

uses the SRUN (uppercase) -A option to allocate specified resources (in this case,
four nodes), spawn a subshell with access to those resources, and then run multiple
subsequent jobs using simple SRUN commands within the specified script (here,
myscript.sh) that the subshell immediately starts to execute.

ATTACH To monitor or intervene in an already running SRUN job, either batch (started with -
b) or interactive ("allocated", started with -A), execute SRUN again and "attach"(-
a, lowercase) to that job. For example,
srun -a 6543 -j

forwards the standard output and error messages from the running job with SLURM
ID 6543 to the attaching SRUN to reveal the job's current status, and (with -j,
lowercase) also "joins" the job so that you can send it signals as if this SRUN had
initiated the job. Omit -j for read-only attachments. Because you are attaching to a
running job whose resources have already been allocated, SRUN's resource-
allocation options (such as -N) are incompatible with -a.

Table 6-2. SRUN Modes

6-12 HPC BAS4 - User's Guide

6.3.1.2 Options

 For options, examples and details please refer to the man page.

Example:

$ man srun

6.3.1.3 MPI Support

The PMI (Process Management Interface) is provided by MPIBull2 to launch processes on a
cluster and provide services to the MPI interface. For example, a call to pmi_get_appnum
returns the job id. This interface uses sockets to exchange messages.

In MPIBull2, this mechanism uses the mpd daemons running on each compute node.
Daemons can exchange information and answer the PMI calls.

RMS and SLURM replace the Process Management Interface with their own implementation
and their own daemons. No mpd is needed and when a PMI request is sent (for example
pmi_get_appnum), a SLURM extension must answer this request.

The following diagrams show the difference between the use of PMI with and without a
resource manager that allows process management.

 Launching an Application 6-13

Figure 6-4. MPI Process Management With and Without Resource Manager

MPIBull2 jobs can be launched directly by the srun command. SLURM's none MPI plug-in
must be used to establish communications between the launched tasks. This can be
accomplished either using the SLURM configuration parameter MpiDefault=none in
slurm.conf or srun's --mpi=none option. The program must also be linked with SLURM's
implementation of the PMI library so that tasks can communicate host and port information
at startup. (The system administrator can add this option to the mpicc and mpif77
commands directly, so the user will not need to bother). Do not use SLURM's MVAPICH
plug-in for MPIBull2.

$ mpicc -L<path_to_slurm_lib> -lpmi ...
$ srun -n20 --mpi=none a.out

6-14 HPC BAS4 - User's Guide

 Notes:

• Some MPIBull2 functions are not currently supported by the PMI library integrated
with SLURM.

• Set the environment variable PMI_DEBUG to a numeric value of 1 or higher for the
PMI library to print debugging information.

6.3.2 SBCAST

sbcast is used to copy a file to local disk on all nodes allocated to a job. This should be
executed after a resource allocation has taken place and can be faster than using a single
file system mounted on multiple nodes.

NAME

sbcast - transmit a file to the nodes allocated to a SLURM job.

SYNOPSIS

sbcast [-CfpsvV] SOURCE DEST

DESCRIPTION

sbcast is used to transmit a file to all nodes allocated to the SLURM job which is currently
active. This command should only be executed within a SLURM batch job or within the shell
spawned after the resources have been allocated to a SLURM. SOURCE is the name of the
file on the current node. DEST should be the fully qualified pathname for the file copy to be
created on each node. DEST should be on the local file system for these nodes.

 Note:
Parallel file systems may provide better performance than sbcast can provide.

6.3.2.1 OPTIONS

For options, examples and details please refer to the man page.

Example:

$ man sbcast

 Launching an Application 6-15

6.3.3 SQUEUE (List Jobs)

SQUEUE displays (by default) the queue of running and waiting jobs (or "job steps"),
including the JobId (used for SCANCEL), and the nodes assigned to each running job.
However, SQUEUE reports can be customized to cover any of 24 different job properties,
sorted by the most important properties. It also displays the job ID and job name for every
job currently managed by the SLURM control daemon (SLURMCTLD). The status and
resource information for each job (such as time used so far, or a list of committed nodes)
are presented in a table whose content and format details can be controlled with the
SQUEUE options.

NAME

SQUEUE - view information about jobs located in the SLURM scheduling queue.

SYNOPSIS

squeue [OPTIONS...]

DESCRIPTION

SQUEUE is used to view job and job step information for jobs managed by SLURM.

6.3.3.1 OPTIONS

For options, examples and details please refer to the man page.

Example:

$ man squeue

6.3.4 SINFO (Report Partition and Node Information)

SINFO displays a summary of status information on SLURM-managed partitions and nodes
(not jobs). Customizable SINFO reports can cover the node count, state, and name list for
a whole partition, or the CPUs, memory, disk space, or current status for individual nodes
as specified. These reports can assist in planning job submittals and avoiding hardware
problems. The SINFO output is a table whose content and format can be controlled using
the SINFO options.

NAME

SINFO - view information about SLURM nodes and partitions.

SYNOPSIS

sinfo [OPTIONS...]

6-16 HPC BAS4 - User's Guide

DESCRIPTION

SINFO is used to view partition and node information for a system running SLURM.

6.3.4.1 OPTIONS

For options, examples and details please refer to the man page.

Example:

$ man sinfo

6.3.5 SCANCEL (Signal/Cancel Jobs)

SCANCEL cancels a running or waiting job, or sends a specified signal to all processes on
all nodes associated with a job (only job owners or their administrators can cancel jobs).
SCANCEL may also be used to cancel a single job step instead of the whole job.

NAME

SCANCEL - Used to signal jobs or job steps that are under the control of SLURM.

SYNOPSIS

scancel [OPTIONS...] [job_id[.step_id]] [job_id[.step_id]...]

DESCRIPTION

SCANCEL is used to signal or cancel jobs or job steps. An arbitrary number of jobs or job
steps may be signaled using job specification filters or a space-separated list of specific job
and/or job step IDs. A job or job step can only be signaled by the owner of that job or
user root. If an attempt is made by an unauthorized user to signal a job or job step, an
error message will be printed and the job will not be signaled.

6.3.5.1 Options

For options, examples and details please refer to the man page.

Example:

$ man scancel

 Launching an Application 6-17

6.3.6 SACCT (Accounting Data)

NAME

SACCT - displays accounting data for all jobs and job steps in the SLURM job accounting
log.

SYNOPSIS

sacct options

DESCRIPTION

Accounting information for jobs invoked with SLURM is logged in the job accounting log
file.

The SACCT command displays job accounting data stored in the job accounting log file in
a variety of forms for your analysis. The SACCT command displays information about jobs,
job steps, status, and exit codes by default. The output can be tailored with the use of the -
-fields= option to specify the fields to be shown.

For the root user, the SACCT command displays job accounting data for all users, although
there are options to filter the output to report only the jobs from a specified user or group.

For the non-root user, the SACCT command limits the display of job accounting data to
jobs that were launched with their own user identifier (UID) by default. Data for other users
can be displayed with the --all, --user, or --uid options.

Note:

Much of the data reported by SACCT has been generated by the wait3() and getrusage()
system calls. Some systems gather and report incomplete information for these calls;
SACCT reports values of 0 for this missing data. See the getrusage man page for your
system to obtain information about which data are actually available on your system.

6.3.6.1 Options

For options, examples and details please refer to the man page.

Example:

$ man sacct

6-18 HPC BAS4 - User's Guide

6.3.7 Global Accounting API

 Note:
The Global Accounting API only applies to clusters which use SLURM and the Load Sharing
Facility (LSF) batch manager from Platform Computing together.

Both the LSF and SLURM products can produce an accounting file. The Global Accounting
API offers the capability of merging the data from these two accounting files and presenting
it as a single record to the program using this API.

Perform the following steps to call the Global Accounting API:

After SLURM has been installed (assumes /usr folder), build the Global Accounting API
library by going to the /usr/lib/slurm/bullacct folder and executing the following
command:

make –f makefile-lib

This will build the library libcombine_acct.a. This makefile-lib assumes that the SLURM
product is installed in the /usr folder, and LSF is installed in /app/slurm/lsf/6.2. If this is
not the case, the SLURM_BASE and LSF_BASE variables in the makefile-lib file must be
modified to point to the correct location.

After the library is built, add the library /usr/lib/slurm/bullacct/libcombine_acct.a to the
link option when building an application that will use this API.

In the user application program, add the following:

 // for new accounting record
 // assumes Slurm is installed under the opt/slurm folder

 #include "/usr/lib/slurm/bullacct/combine_acct.h"

 // define file pointer for LSF and Slurm log file
 FILE *lsb_acct_fg = NULL; // file pointer for LSF accounting log file
 FILE *slurm_acct_fg = NULL; // file pointer for Slurm log file
 int status, jobId;
 struct CombineAcct newAcct; // define variable for the new records

 // call cacct_init routine to open lsf and slurm log file,
 // and initialize the newAcct structure
 status = cacct_init(&lsb_acct_fg, &slurm_acct_fg, &newAcct);

 // if the status returns 0 imply no error,
 // all log files are opened successfully.
 // then call get_combine_acct_info rountine to get the
 // combine accounting record.

 // the calling sequence is
 // int get_combine_acct_info(File *lsb_acct_fg,
 // File *slurm_acct_fg,
 // int jobId,
 // CombineAcct *newAcct);
 // where:
 // lsb_acct_fg is the pointer to the LSF accounting log file
 // slurm_acct_fg is the pointer to the Slurm accounting log file
 // jobid is the job Id from the LSF accounting log file

 Launching an Application 6-19

 // newAcct is the address of the variable to hold the new record
 // information.

 // This routine will use the input LSF job ID to locate the LSF accounting
 // information in the LSF log file, then get the SLURM_JOBID and locate the
 // SLURM accounting information in the SLURM log file.
 // This routine will return a zero to indicate that both records are found
 // and processed successfully, otherwise one or both records are in error
 // and the content in the newAcct variable is undefined.
 // For example:

 // to get the combine acct information for a specified jobid(2010)

 jobId = 2010;
 status = get_combine_acct_info(lsb_acct_fg,
 slurm_acct_fg,
 jobId,
 &newAcct);

 // to display the record call display_combine_acct_record routine.

 display_combine_acct_record(&newAcct);

 // when finished accessing the record, the user must close the log files and
 // the free memory used in the newAcct variable by calling cacct_wrapup
 // routine.
 // For example:
 //
 if (lsb_acct_fg != NULL) // if open successfully before
 cacct_wrapup(&lsb_acct_fg, &slurm_acct_fg, &newAcct);

 // if an extra combine account variable is needed , the user can define
 // the new variable and call init_cacct_rec to initialize the record
 // and call free_cacct_ptrs to free the memory used in the new variable.
 // For example:

 // to define variable for the new record
 struct CombineAcct otherAcct;

 // before using the variable otherAcct do:
 init_cacct_rec(&otherAcct);

 // when done do the following to free the memory used by the otherAcct
 // variable.
 free_cacct_ptrs(&otherAcct);

The new record contains the combined accounting information as follows:

/* combine LSF and SLURM acct log information */
struct CombineAcct {

 /* part one is the LSF information */

 char evenType[50];
 char versionNumber[50];
 time_t eventTime;
 int jobId;
 int userId;
 long options;
 int numProcessors;
 time_t submitTime;
 time_t beginTime;
 time_t termTime;
 time_t startTime;
 char userName[MAX_LSB_NAME_LEN];
 char queue[MAX_LSB_NAME_LEN];
 char *resReq;

6-20 HPC BAS4 - User's Guide

 char *dependCond;
 char *preExecCmd; /* the command string to be pre_executed */
 char fromHost[MAXHOSTNAMELEN];
 char cwd[MAXFILENAMELEN];
 char inFile[MAXFILENAMELEN];
 char outFile[MAXFILENAMELEN];
 char errFile[MAXFILENAMELEN];
 char jobFile[MAXFILENAMELEN];
 int numAskedHosts;
 char **askedHosts;
 int numExecHosts;
 char **execHosts;
 int jStatus; /* job status */
 double hostFactor;
 char jobName[MAXLINELEN];
 char command[MAXLINELEN];
 struct lsfRusage LSFrusage;
 char *mailUser; /* user option mail string */
 char *projectName; /* the project name for this job, used
 for accounting purposes */
 int exitStatus; /* job status */
 int maxNumProcessors;
 char *loginShell; /* login shell specified by user */
 char *timeEvent;
 int idx; /* array idx, must be 0 in JOB_NEW */
 int maxRMem;
 int maxRswap;
 char inFileSpool[MAXFILENAMELEN]; /* spool input file */
 char commandSpool[MAXFILENAMELEN]; /* spool command file */
 char *rsvId;
 char *sla; /* The service class under which the job runs. */
 int exceptMask;
 char *additionalInfo;
 int exitInfo;
 char *warningAction; /* warning action, SIGNAL | CHKPNT |
 command, NULL if unspecified */
 int warningTimePeriod; /* warning time period in seconds,
 -1 if unspecified */
 char *chargedSAAP;
 char *licenseProject; /* License Project */
 int slurmJobId; /* job id from slurm */

 /* part two is the SLURM info minus the duplicated infomation from LSF */

 long priority; /* priority */
 char partition[64]; /* partition node */
 int gid; /* group ID */
 int blockId; /* Block ID */
 int numTasks; /* nproc */
 double aveVsize; /* ave vsize */
 int maxRss; /* max rss */
 int maxRssTaskId; /* max rss task */
 double aveRss; /* ave rss */
 int maxPages; /* max pages */
 int maxpagestaskId; /* max pages task */
 double avePages; /* ave pages */
 int minCpu; /* min cpu */
 int minCpuTaskId; /* min cpu task */
 char stepName[NAME_SIZE]; /* step process name */
 char stepNodes[STEP_NODE_BUF_SIZE]; /* step node list */
 int maxVsizeNode; /* max vsize node */
 int maxRssNodeId; /* max rss node */
 int maxPagesNodeId; /* max pages node */
 int minCpuTimeNodeId; /* min cpu node */
 char *account; /* account number */

};

 Launching an Application 6-21

6.4 Launching the Application using TORQUE Batch Manager

TORQUE is a resource manager providing control over batch jobs and distributed compute
nodes. TORQUE uses a queue mechanism for job execution, which works according to
preconfigured priority criteria.

6.4.1 Configuring Passwordless Access for TORQUE

ssh keys have to be configured to create public\private keys for an ordinary user of a
cluster so that passwordless access is enabled for the whole of the cluster\partition on
which the application and TORQUE is running. Otherwise TORQUE will not work correctly.

This is done by using the ssh-keygen command.

ssh-keygen –trsa

Append this key to the list of authorized keys.

 Note:
See chapters 2 and 10 in the HPC BAS4 Administrator’s Guide for more information on
configuring ssh

The user command interface for TORQUE can be used to:

• Submit a job

• Display the state and characteristics of a job

• Cancel a job

• Change the characteristics of a job, which is either running or waiting. Note that for a
running job, only the limits and the output files can be changed

• Stop or resume a job

• Manage more than 5000 active or waiting jobs.

For more information refer to the following Web site:
http://www.clusterresources.com/products/torque/ .

The main features of TORQUE are:

Job Priority

Users can specify the priority of their jobs.

Job-Interdependency

TORQUE enables the user to define a wide range of interdependencies between batch
jobs. Such dependencies include - execution order, synchronization, and execution
dependent on the success or failure of another specified job.

6-22 HPC BAS4 - User's Guide

Automatic File Staging

TORQUE provides users with the ability to specify files that need to be copied onto the
execution host before the job runs, and those that need to be copied off after the job
completes. The job will be scheduled to run only after the required files have been
successfully transferred.

Single or Multiple Queue Support

TORQUE can be configured with as many queues as necessary. However, TORQUE is not
limited to queue-based scheduling, which means it is possible to run TORQUE with a single
queue.

Multiple Scheduling Algorithms

With TORQUE it is possible to specify the standard first-in, first-out scheduling routine or
more sophisticated algorithms.

6.4.2 TORQUE Commands

Below is a list of the most common TORQUE commands.

Command Description

momctl Manage/diagnose MOM (node execution) daemon

pbsdsh Launch tasks within a parallel job

pbsnodes View/modify batch status of compute nodes

qdel Delete/cancel batch jobs

qhold Hold batch jobs

qmgr Manage policies and other batch configurations

qrls Release batch job holds

qrun Start a batch job

qsub Submit jobs

qterm Shutdown pbs server daemon

Table 6-3. TORQUE commands

qsub Command

Following is a short description of the qsub command. See the qsub man page for more
details:

qsub - submit pbs job

SYNOPSIS

qsub [-a date_time] [-A account_string] [-c interval] [-C directive_prefix] [-e path] [-h] [-I] [-j
join] [-k keep] [-l resource_list] [-m mail_options] [-M user_list]
[-N name] [-o path] [-p priority] [-q destination] [-r c] [-S path_list] [-u user_list] [-v
variable_list] [-V] [-W additional_attributes] [-z] [script]

 Launching an Application 6-23

DESCRIPTION

To create a job is to submit an executable script to a batch server. The batch server will be
the default server unless the -q option is specified. See discussion of PBS_DEFAULT under
Environment Variables below. Typically, the script is a shell script which will be executed
by a command shell such as sh or csh.

Options for the qsub command allow the specification of attributes which affect the
behavior of the job.

The qsub command will pass on certain environment variables in the Variable_List attribute
of the job. These variables will be available to the job. The value for the following
variables will be taken from the environment of the qsub command: HOME, LANG,
LOGNAME, PATH, MAIL, SHELL, and TZ. These values will be assigned to a new name
which is the current name prefixed with the string "PBS_O_". For example, the job will
have access to an environment variable named PBS_O_HOME which have the value of the
variable HOME in the qsub command environment.

In addition to the above, the following environment variables will be available to the batch
job.

PBS_O_HOST

The name of the host on which the qsub command is running.

PBS_O_QUEUE

The name of the original queue to which the job was submitted.

PBS_O_WORKDIR

The absolute path of the current working directory of the qsub command.

PBS_ENVIRONMENT

Set to PBS_BATCH to indicate the job is a batch job, or to PBS_INTERACTIVE to indicate
the job is a PBS interactive job, see -I option.

PBS_JOBID

The job identifier assigned to the job by the batch system.

PBS_JOBNAME

The job name supplied by the user.

PBS_NODEFILE

The name of the file containing the list of nodes assigned to the job (for parallel and cluster
systems).

PBS_QUEUE

The name of the queue from which the job is executed.

6-24 HPC BAS4 - User's Guide

 Application Debugging Tools 7-1

Chapter 7. Application Debugging Tools

7.1 Overview

There are two types of debuggers; symbolic ones and non-symbolic ones.

• A symbolic debugger gives access to a program's source code. This means that:

− The lines of the source file can be accessed.

− The program variables can be accessed by name.

• Whereas a non-symbolic debugger enables access only to the lines of the machine
code program and top physical addresses.

The following tools are described in this chapter:

• 7.2 GDB

• 7.3 IDB

• 7.4 TOTALVIEW

• 7.5 MALLOC_CHECK_ - Debugging Memory Problems in C programs

• 7.6 Dmalloc Library

• 7.7 Electric Fence

• 7.8 System Monitoring and Performance Tools

7.2 GDB

GDB stands for Gnu DeBugger. It is a powerful Open-source debugger, which can be used
either through a command line interface, or a graphical interface such as XXGDB or DDD
(Data Display Debugger). It is also possible to use an emacs/xemacs interface.

GDB supports parallel applications and threads.

GDB is published under the GNU license.

7.3 IDB

IDB is a debugger delivered with Intel compilers. It can be used with C/C++ and F90
programs.

7-2 HPC BAS4 - User's Guide

7.4 TOTALVIEW

Figure 7-1 Totalview graphical interface – image taken from
http://www.totalviewtech.com/productsTV.htm

TotalViewTM is a proprietary software application from Etnus and is not included with the
BAS distribution. TotalviewTM is used in the same way as standard symbolic debuggers for
C, C++ and Fortran (77, 90 and HPF) programs. It can also debug PVM or MPI
applications. TotalViewTM has the advantage of being a debugger which supports multi-
processes and multi-threading. It can take control of the various processes or threads of the
program and make it possible for the user to visualize the evolution of the execution in the
same window or in different windows. The processes may be local or remote.

 Application Debugging Tools 7-3

It works just as well with mono-processor, SMP, clustered, distributed and MPP systems.

TotalViewTM accepts new processes and threads exactly as generated by the application
and regardless of the processor used for the execution. A process started up outside
TotalViewTM can also be connected to. Data tables can be filtered, displayed, and viewed
in order to monitor the behavior of the program. Finally, you can descend ("call the
components and details of…") into the objects and structures of the program.

The program which needs debugging must be compiled with the option ‘- g’, and then
breakpoints should be added to the program to control its execution.

TotalViewTM is an Xwindows application. Context-sensitive help provides you with basic
information. You may download TotalViewTM in the directory /opt/totalview.

Before running TotalViewTM, update your environment using the following command:

source /opt/totalview/totalview-vars.sh

Then enter:

totalview&

For additional information, and for copies of the documentation for TotalviewTM, please
refer to http://www.totalviewtech.com/productsTV.htm.

7.5 MALLOC_CHECK_ - Debugging Memory Problems in C
programs

When developing an application, the developer should ensure that all the buffers allocated
during the run-time of the application are freed afterwards. However, even if he is vigilant,
it is not unusual for memory leaks to be introduced into the code.

A simple way to detect these memory leaks is to use the environment variable
MALLOC_CHECK __. This variable ensures that allocation routines check that each
allocated buffer is freed correctly. The routines then become more ‘tolerant’ and allow byte
overflows on both sides of blocks or for the block to be released again.

According to the value of MALLOC_CHECK __, when a release or allocation error appears
the application behaves as follows:

• If MALLOC_CHECK __ is set to 1, an error message is written when exiting normally.

• If MALLOC_CHECK __ is set to 2, an error message is written when exiting normally
and the process aborts. A core file is created. You should check that it is possible to
create a core file by using the command ulimit –c. If not, enter the command ulimit -c
unlimited.

• For any other value of MALLOC_CHECK __, the error is ignored and no message
appears.

7-4 HPC BAS4 - User's Guide

Example.c program:

#include <stdio.h>
#include <stdlib.h>
#define SIZE 256

int main(void){

 char *buffer;

 buffer = (char *)calloc(256*sizeof(char));
 if(!buffer){
 perror(``malloc failed'');
 exit(-1);
 }

 strcpy(buffer, ``fills the buffer'');
 free(buffer);
 fprintf(stdout, ``Buffer freed for the first time'');
 free(buffer);
 fprintf(stdout,``Buffer freed for the second time'');
 return(0);

}

A program which is executed with the environmental variable MALLOC_CHECK __ set to 1
gives the following result:

$ export MALLOC_CHECK__=1

$./example

Buffer freed for the first time

Segmentation fault

$ ulimit –c 0

The limit for the core file size must be changed to allow files
bigger than 0 bytes to be generated

$ ulimit –c unlimited

Allows an unlimited core file to be generated

A program which is executed with the environmental variable MALLOC_CHECK __ set to 2
gives the following result:

$ export MALLOC_CHECK__=2

$./example

Buffer freed for the first time

Segmentation fault (core dumped)

 Application Debugging Tools 7-5

Example Program Analysis using the GDB Debugger

The core file should be analyzed to identify where the problem is (the program should be
compiled with the option - G):

$ gdb example -c core
GNU gdb 6.3-debian
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it
under certain conditions.
Type "show copying" to see the conditions. There is absolutely no
warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-linux"...Using host libthread_db
library "/lib/libthread_db.so.1".

Core was generated by `./example’.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /lib/libc.so.6...done.
Loaded symbols for /lib/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0x40097354 in mallopt () from /lib/libc.so.6
(gdb) bt
#0 0x40097354 in mallopt () from /lib/libc.so.6
#1 0x4009615f in free () from /lib/libc.so.6
#2 0x0804852f in main () at exemple.c:18
(gdb)

The bt command is used to display the current memory stack. In this example the last line
indicates the problem came from line 18 in the main function of the example.c file. Looking
at the example.c program on page 7.4 we can see that line 18 corresponds to the second
call to the free function which created the memory overflow.

7.6 Dmalloc Library

Dmalloc is an open source library and is included in the BAS distribution to help with
application development and to ensure that memory leaks are detected quickly. This tool is
complementary to the use of MALLOC_CHECK __ and is used to find memory leaks in C
programs.

The debug memory allocation or dmalloc library is a memory management routine which
provides powerful debugging facilities which are configurable at runtime. These facilities
include such things as memory-leak tracking, fence-post write detection, file/line number
reporting, and general logging of statistics. Thus it makes it possible to obtain precise
information about a memory allocation problem. Small changes must be made to the code
to run it. It also provides support for the debugging of threaded programs.

This dmalloc library substitutes the primitive calls malloc, calloc, realloc and free with the
primitives which are available in the dmalloc library.

The dmalloc User’s Guide and further information is available from the site
http://www.dmalloc.com

7-6 HPC BAS4 - User's Guide

7.7 Electric Fence

Electric Fence is an open source malloc debugger for Linux and Unix. It stops your program
on the exact instruction that overruns or under-runs a malloc() buffer.

Electric Fence is installed only on the management node.

Electric Fence helps you detect two common programming bugs:

• Software that overruns the boundaries of a malloc() memory allocation.

• Software that touches a memory allocation that has been released by free().

You can use the following example, replacing icc --version by the command line of
your program.

[test@host]$LD_PRELOAD=/usr/local/tools/ElectricFence-2.2.2/lib/libefence.so.0.0
icc --version

Electric Fence 2.2.0 Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>

……..

For more details about Electric Fence please refer to http://perens.com/FreeSoftware/ .

7.8 System Monitoring and Performance Tools

In the world of HPC architectures, monitoring and improving performance is an important
concern in order to fully optimize calculation speeds and memory usage for these powerful
machines.

For information on monitoring tools and on improving overall performance of the
application program on the HPC platform refer to the Bull HPC Application Tuning Guide (86
A2 19ER). This manual describes system monitoring tools provided by NovaScale Master –
HPC Edition including time, top, and perfmon and application profiling tools including
gprof, profilecomm, the PAPI library and Intel® Trace Tools.

For information related to the performance of the cluster itself, please refer to the Bull HPC
BAS4 Administrator’s Guide (86 A2 30ER).

 Application Troubleshooting A-1

Appendix A. Application Troubleshooting
A list of frequently asked questions (FAQs) with solutions and advice follows:

Problems when compiling and executing

• I get the message: "error while loading shared libraries" when a
program executes.

• My parallel program cannot find the program on the other machines.

• How do I optimize compilation with the Intel Fortran compiler?

• How do I optimize compilation with the Intel C / C++ compiler?

• Can I run applications compiled under previous OS releases?

• I get lots of "unaligned access" error messages.

Problems when compiling and executing with MPICH

• I have a problem with memory allocations when I use MPICH.

• Problems when compiling and executing with QSNET MPI.

• At runtime my program hangs when I use QSNET MPI (libelan).

OpenMP

• To run a program parallelized with OpenMP, how do I define the number of threads
(processors) used?

I get the message: "error while loading shared libraries" when a program
executes.

Add the path for this library to the LD_LIBRARY_PATH environment variable.

My parallel program cannot find the program on the other machines.

You must have the binaries on all machines running the benchmarks and respect the tree
structure of the machine from which the benchmark is started, or use NFS.

How do I optimize compilation and debugging with the Intel Fortran compiler?

For optimization, add the following compilation options:

-implicitnone Forces the declaration of variables: If a variable is used without
being declared, this triggers errors on compilation.

-mp Respects IEEE standard double precision.

-unroll2 To unroll a loop: This favors vectorization and the instructions
pipeline.

-ip, -ipo Optimizes calls to a subprogram (parameter management).

A-2 HPC BAS4 - User's Guide

-auto Allocates the variables dynamically to the stack rather than in
static storage in the memory.

-zero Implicitly initializes variables to 0.

-ftz flush-to-zero.

-i-dynamic Avoids loading static libraries and therefore reduces the size of
the executable.

-parallel Parallelizes certain sequences (supplied by the par_report option).

-par_report3 Provides information about how successful the compilation has
been (e.g. parallelized loops).

-openmp Takes into account OpenMP directives.

For debugging, add the following compilation options:

-g debugging

-fpp pre-processing

How do I optimize compilation and debugging with the Intel C / C++ compiler?

Add the following compilation options:

-O3 Highest code optimization possible.

-mp Respects IEEE standard double precision.

-ip, -ipo Optimizes calls to a subprogram (parameter management).

-unroll (to unroll a loop): This favors vectorization and the instructions
pipeline.

Can I run applications compiled under previous OS releases?

Some applications that have been compiled under previous OS releases (typically ISV
products produced under BAS3 or RH EL AS 3) will not execute under BAS4. At runtime,
the following kind of message appears:

symbol _dl_loaded, version GLIBC_2.2 not defined in file ld-linux-
ia64.so.2 with link time reference

In this case, two different and independent workarounds can be tried:

1. Set the LD_ASSUME_KERNEL variable to a value like 2.4, 2.4.18, or 2.4.20, and
then re-start the application.

2. If the previous workaround does not solve the issue, you can create a "dummy" library
that declares only the missing symbols (which is often not used):

echo "char* _dl_loaded=0; " > dl_loaded.c

gcc -o libdlloaded.so -shared dl_loaded.c

export LD_PRELOAD=`pwd`/libdlloaded.so

 Application Troubleshooting A-3

I get lots of “unaligned access” error messages.

These are not errors, but warnings. The application made an unaligned access and the
processor had to get help from the kernel to access the data. This message can be ignored
but be aware that too many unaligned accesses can be a source of performance loss. To
hide these messages, run:

prctl --unaligned=silent

To help debugging the program, run:

prctl --unaligned=signal

I have a problem with memory allocations when I use Ethernet MPICH.

Error message displayed during execution:

p3_1858: (18446744073792.328125) xx_shmalloc: returning NULL; requested 65584
bytes

p3_1858: (18446744073792.328125) p4_shmalloc returning NULL; request = 65584 bytes

You can increase the amount of memory by setting the environment variable

P4_GLOBMEMSIZE (in bytes)

The memory that the communication requires cannot be allocated correctly. To do this, run
the following command:

export P4_GLOBMEMSIZE=100000000

At runtime my program hangs when I use QSNET MPI (libelan)

If the following error message appears:

ELAN_EXCEPTION @ 1: 5 (Memory exhausted)

elan_createSubGroup(): Failed to allocate global Vaddr for subgroup

Then try again to run your program after setting the MPI_USE_LIBELAN_SUB environment
variable to zero using the following command:

export MPI_USE_LIBELAN_SUB=0

To run a program parallelized with OpenMP, how do I define the number of threads
(processors) used?

Run the commands:

export OMP_NUM_THREADS=2 to run the program on 2 processors

export OMP_NUM_THREADS=4 to run the program on 4 processors

A-4 HPC BAS4 - User's Guide

 Glossary and Acronyms G-1

Glossary and Acronyms

A

ANL

Argonne National Laboratory (MPICH2)

API

Application Programmer Interface

B

BAS

Bull Advanced Server

BIOS

Basic Input Output System

BMC

Baseboard Management Controller

B-SPS

Bull Scalable Port Switch

C

CLI

Command Line Interface

CMOS

Complementary Metal Oxide Semiconductor

D

DDN

DataDirect Networks S2A (storage system)

E

EFI

Extensible Firmware Interface (Intel)

EIP

IP over QSnet using Elan Kernel communications

EMP

Emergency Management Port

EPIC

Explicit Parallel Instruction set Computing

F

FAME

Flexible Architecture for Multiple Environments

FSS
FAME Scalability Switch. Each CSS Module is
equipped with 2 Scalability Port Switches providing
high speed bi–directional links between server
components

FUTEX

Fast User mode muTEX

G

GCC

GNU C Compiler

GDB

Gnu Debugger

GNU

GNU's Not Unix

GPL

General Public License

GUI

Graphical User Interface

GUID

Globally Unique Identifier

G-2 HPC BAS4 - User's Guide

H

HDD

Hard Disk Drive

HBA

Host Bus Adapter

HPC

High Performance Computing

HSC

Hot Swap Controller

I

ICC

Intel C Compiler

IDE

Integrated Device Electronics

IFORT

Intel Fortran Compiler

IPMI

Intelligent Platform Management Interface

K

KDM

Kernel Data Mover

KSIS

Utility for Image Building and Deployment

KVM

Keyboard Video Mouse (allows the connection of
the keyboard, video and mouse either to the PAP or
to the node)

L

LSF

Load Sharing Facility

LUN

Logical Unit Number

M

MDM

MPI Data Mover module

MPD

MPI Process Daemons

MPI

Message Passing Interface

N

NFS

Network File System

NPTL

Native POSIX Thread Library

NTFS

New Technology File System (Microsoft)

NUMA
Non Uniform Memory Access. A method of
configuring a cluster of microprocessors in a
multiprocessing system so that they can share
memory locally, improving performance and the
ability of the system to be expanded.

NVRAM

Non Volatile Random Access Memory

O

OEM

Original Equipment Manufacturer

OPK

OEM Preinstall Kit (Microsoft)

 Glossary and Acronyms G-3

P

PAM

Platform Administration and Maintenance software

PAP

Platform Administration Processor

PAPI

Performance Application Programming Interface

PCI

Peripheral Component Interconnect (Intel)

PDU

Power Distribution Unit

PM

Process Manager

PMB

Platform Management Board

PMI

Process Management Interface

PMU

Performance Monitoring Unit

PRUN

Parallel Run (Quadrics)

PVFS

Parallel Virtual File System

PVM

Parallel Virtual Machine

Q

QBB
Quad Brick Board. The QBB is the heart of the Bull
NovaScale 5xxx/6xxx Series platforms, housing 4
Itanium _ 2 processors.

R

RMS

Resource Management Service (Quadrics)

RPM

RPM Package Manager

S

SCI

Scalable Coherent Interconnect

SDR

Sensor Data Record

SDP

Sockets Direct Protocol

SEL

System Event Log

SCSI

Small Computer System Interface

SLURM

Simple Linux Utility for Resource Management

SM

System Management

SMP
Symmetric Multi Processing. The processing of
programs by multiple processors that share a
common operating system and memory.

SNMP
The protocol governing network management and
the monitoring of network devices and their
functions.

SOL

Serial Over LAN

SSH

Secure Shell

G-4 HPC BAS4 - User's Guide

U

UA

User’s Application

V

VGA

Video Graphic Adapter

 Index I-1

Index

B
BAS definition, 1-1

C
Compiler

C, 1-2
C/C++ optimization options, A-2
Fortran, 1-2, 4-1
Fortran optimization options, A-1
GCC, 1-2, 4-4
GNU compilers, 4-1
Intel C C++, 4-2

Compiler licenses, 4-4
FlexLM, 4-4

CPUSET, 1-3

D
Debugger

Dmalloc, 7-5
Electric Fence, 7-6
GDB, 1-2, 7-1
Intel Debugger, 1-2, 7-1
Non-symbolic debugger, 7-1
Symbolic debugger, 7-1
TotalView, 7-2

Debugging
GDB, 7-5
MALLOC_CHECK, 7-3

E
EPIC, 4-1

eval command, 5-3

F
File System

Lustre, 1-3, 5-2
NFS, 1-3, 5-2

I
IDB, 7-1

J
job management, 1-2

K
KSIS, 1-1

L
LAM MPI, 2-21

Libnuma, 6-3

LSF, 6-18

Lustre
ldiskfs, 5-2

M
MARMOT MPI Debugger, 2-16

Modules, 1-2, 5-3
command line switches, 5-11
Commands, 5-3, 5-9
Environment variables, 5-14
modulecmd, 5-11
Modulefiles, 5-9
modulefiles directories, 5-7
Shell RC files, 5-5
Sub-Commands, 5-12
TCL, 5-9

Mono Libraries, 2-6

MPI libraries
Bull MPI2, 1-2
LAM MPI, 2-1, 2-21
MDM, 2-3, 2-4
MDM (MPI Data Mover, 2-2
MPI_Bull, 2-1
MPIBull2, 2-1
mpiCC, 2-5
MPICH_Ethernet, 2-1, 2-21, 3-1
mpif77, 2-5
mpif90, 2-5
script mpicc, 2-5

I-2 HPC BAS4 - User's Guide

MPI-2 standard, 2-8

mpianalyser, 2-23

MPIBull2, 2-8
Debugging, 2-16
Features, 2-9
MARMOT MPI Debugger, 2-16
Thread-safety, 2-11

MPIBull2-devices, 2-12

MPIBull2-launch, 2-13

MPICH, 2-4

MPICH_Ethernet, 2-21

mprun command, 2-6

N
Nodes

Compilation nodes, 5-1
login node, 5-1
Service node, 5-1

NUMA, 6-3

Numactl, 6-3, 6-4

O
OpenMP, 4-1, 4-3

P
Parallel Libraries, 2-1

Parallel Virtual Machine (PVM), 2-21

Performance and Profiling Tools
Profilecomm, 2-4, 2-23

Performance Tools, 7-6

profilecomm, 2-23

Program launchers, 6-1

prun command, 2-6

ptools
cpuset, 2-4, 6-5
passign, 6-5
pcreate, 6-4, 6-5
pdestroy, 6-6
pexec, 6-4, 6-5
pls, 6-6

Q
qsub command, 6-22

R
Resource Management

RMS, 1-2
SLURM, 1-2

rlogin, 5-1

RMS
overview, 1-2
partitions, 6-7
prun, 5-2, 6-7, 6-8
prun command, 2-6
rinfo, 6-9
rmsexec, 6-8

rsh, 5-1

S
sched_setaffinity, 6-5

Scientific Libraries, 3-1
BLACS, 3-3
BLAS, 3-3
BlockSolve95, 3-6
Cluster MKL (Intel Cluster Math Kernel Library),

3-2
FFTW, 3-7
LAPACK, 3-4
MKL (Intel Math Kernel Library), 3-2
NetCDF, 3-8
PBLAS, 3-4
PETSc, 3-7
SCALAPACK, 3-5

Secure Shell
ssh command, 5-1

shlib option, 2-5

SLURM
Global Accounting API, 6-10, 6-18
overview, 1-2
sacct command, 6-10, 6-17
sbcast command, 6-14
scancel command, 6-10, 6-16
sinfo command, 6-10, 6-15
squeue command, 6-10, 6-15
srun

modes, 6-10, 6-11

 Index I-3

srun command, 6-10

SLURM Command Line Utilities, 6-10

T
TCL, 5-9

TORQUE, 6-21
Commands, 6-22

qsub, 6-22

Troubleshooting, A-1

Z
zcopy, 2-2

I-4 HPC BAS4 - User's Guide

Technical publication remarks form

Title: HPC BAS4 User's Guide

Reference: 86 A2 29ER 09 Date: April 2008

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please include your complete mailing address below.

NAME: __ DATE: ______________
COMPANY: ___
ADDRESS: ___

Please give this technical publication remarks form to your BULL representative or mail to:

Bull - Documentation Dept.
1 Rue de Provence
BP 208
38432 ECHIROLLES CEDEX
FRANCE
info@frec.bull.fr

Technical publications ordering form

To order additional publications, please fill in a copy of this form and send it via mail to:

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Phone: +33 (0) 2 41 73 72 66
FAX: +33 (0) 2 41 73 70 66
E-Mail: srv.Duplicopy@bull.net

Reference Designation Qty

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

[_ _] : The latest revision will be provided if no revision number is given.

NAME: __ DATE: ______________

COMPANY: ___

ADDRESS: ___

PHONE: ___ FAX: _____________________________

E-MAIL: __

For Bull Subsidiaries:
Identification: __

For Bull Affiliated Customers:
Customer Code: ___

For Bull Internal Customers:
Budgetary Section: ___

For Others: Please ask your Bull representative.

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

REFERENCE
86 A2 29ER 09

	HPC BAS4 User's Guide
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1. Introduction to the HPC Environment
	Software Configuration
	Program Execution Environment
	Resource Management
	Data and Files
	Exploiting the System

	Chapter 2. Parallel Libraries
	Overview of Parallel Libraries
	MPI Versions
	The MPI Data Mover module (MDM)

	MPI_Bull 1.6.x
	MPI_Bull environments
	MPI_Bull and the Quadrics Interconnect cluster environment
	Bull Mono libraries for the Single Node Environment

	MPIBull2
	Quick Start for MPIBull2
	MPIBull2 Compilers
	Configuring MPIBull2
	Running MPIBull2
	MPIBull2_1.2.x features
	Advanced features
	MPIBull2 Tools
	MPIBull2 – Example of use
	Debugging
	Mpibull2-params

	Third party MPI libraries
	MPICH_Ethernet
	LAM MPI
	Parallel Virtual Machine (PVM)

	Managing your MPI environment
	Profiling with mpianalyser

	Chapter 3. Scientific Libraries
	Overview
	Intel Math Kernel Library
	Intel Cluster Math Kernel Library
	BLAS
	BLACS
	Using BLACS
	Testing Library Installation

	PBLAS
	LAPACK
	SCALAPACK
	Blocksolve95
	SuperLU
	SuperLU Libraries

	FFTW
	PETSc
	NETCDF
	METIS and PARMETIS
	SciPort

	Chapter 4. Compilers
	Overview
	Intel Fortran Compiler
	Intel C/C++ Compiler
	Intel Compiler Licenses
	Intel Math Kernel Library Licenses
	GNU Compilers

	Chapter 5. The User's Environment
	Cluster Access and Security
	Using ssh (Secure Shell)

	Global File Systems: NFS / Lustre
	Environment Modules
	Using Modules
	Setting Up the Shell RC Files

	Module Files
	Upgrading via the Modules Command

	The Module Command
	modulefiles
	Modules Package Initialization
	Examples of Initialization
	Modulecmd Startup
	Module Command Line Switches
	Module Sub-Commands
	Modules Environment Variables

	Chapter 6. Launching an Application
	Launching the Application without a Batch Manager
	NUMACTL
	The PTOOLS and CPUSET Package

	Quadrics Resource Management System
	Using Quadrics RMS
	Prun
	Rmsexec
	rinfo
	More RMS Information

	SLURM Resource Management Utilities
	SRUN
	SBCAST
	SQUEUE (List Jobs)
	SINFO (Report Partition and Node Information)
	SCANCEL (Signal/Cancel Jobs)
	SACCT (Accounting Data)
	Global Accounting API

	Launching the Application using TORQUE Batch Manager
	Configuring Passwordless Access for TORQUE
	TORQUE Commands

	Chapter 7. Application Debugging Tools
	Overview
	GDB
	IDB
	TOTALVIEW
	MALLOC_CHECK_ - Debugging Memory Problems in C programs
	Dmalloc Library
	Electric Fence
	System Monitoring and Performance Tools

	Appendix A. Application Troubleshooting
	Glossary and Acronyms
	Index

