

bullx cluster suite

Application Developer's Guide

Ex
tre

m
e

C
om

pu
tin

g

REFERENCE
86 A2 22FA 03

Extreme Computing

bullx cluster suite
Application Developer's Guide

Software
April 2010

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

REFERENCE
86 A2 22FA 03

The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not limited
to, copying, distributing, modifying, and making derivative works.

Copyright © Bull SAS 2010

Printed in France

Trademarks and Acknowledgements

We acknowledge the rights of the proprietors of the trademarks mentioned in this manual.

All brand names and software and hardware product names are subject to trademark and/or patent protection.

Quoting of brand and product names is for information purposes only and does not represent trademark misuse.

The information in this document is subject to change without notice. Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

 Table of Contents v

Table of Contents

Preface ..xiii

Chapter 1. Introduction to the Extreme Computing Environment 1-1

1.1 Software Configuration ... 1-1
1.1.1 Operating System and Installation.. 1-1

1.2 Program Execution Environment.. 1-2
1.2.1 Resource Management ... 1-2
1.2.2 Batch Management .. 1-2
1.2.3 Parallel processing and MPI libraries.. 1-3
1.2.4 Data and Files ... 1-4

Chapter 2. Parallel Libraries... 2-1

2.1 MPIBull2 ... 2-1
2.1.1 MPIBull2_1.3.x features.. 2-1
2.1.2 MPIBull2 Compilers and Wrappers .. 2-2
2.1.3 Configuring MPIBull2 ... 2-3
2.1.4 Running MPIBull2... 2-3
2.1.5 MPIBull2 Advanced features.. 2-4
2.1.6 MPIBull2 Tools ... 2-8
2.1.7 MPIBull2 – Example of use .. 2-10
2.1.8 MPIBull2 and NFS Clusters.. 2-10
2.1.9 MPIBull2 Debuggers... 2-11
2.1.10 MPIBull2 parameters .. 2-12
2.1.11 Usage... 2-13
2.1.12 Family names .. 2-15
2.1.13 Managing your MPI environment ... 2-16

2.2 bullx MPI... 2-18
2.2.1 Quick Start for bullx MPI... 2-18
2.2.2 Compiling with bullx MPI .. 2-18
2.2.3 Running with bullx MPI ... 2-18
2.2.4 Configuring and tuning bullx MPI... 2-19
2.2.5 Obtaining Details of the MPI Configuration... 2-19
2.2.6 Setting the MCA parameters ... 2-20

vi bullx cluster suite - Application Developer's Guide

Chapter 3. MPI Profiling with mpianalyser and profilecomm.................................... 3-1

3.1 Communication Matrices..3-1
3.1.1 Execution Time... 3-2
3.1.2 Call Table ... 3-2
3.1.3 Histograms .. 3-2

3.2 Topology of the Execution Environment...3-2

3.3 profilecomm Data Collection...3-2
3.3.1 Using profilecomm ... 3-2
3.3.2 profilecomm Options .. 3-3
3.3.3 Messages Size Partitions ... 3-4

3.4 profilecomm Data Analysis ...3-4
3.4.1 Point to Point Communications ... 3-5
3.4.2 Collective Section... 3-6
3.4.3 Call table section ... 3-7
3.4.4 Histograms Section... 3-7
3.4.5 Statistics Section... 3-7
3.4.6 Topology Section ... 3-8

3.5 Profilcomm Data Display Options ..3-9
3.5.1 Exporting a Matrix or an Histogram ... 3-10
3.5.2 pfcplot, histplot and gnuplot .. 3-14

Chapter 4. Scientific Libraries ... 4-1

4.1 Overview ..4-1

4.2 Bull Scientific Studio ..4-1
4.2.1 Scientific Libraries and Documentation.. 4-2
4.2.2 Scientific Library Versions.. 4-3
4.2.3 BLACS .. 4-3
4.2.4 SCALAPACK.. 4-4
4.2.5 Blocksolve95 ... 4-5
4.2.6 lapack .. 4-6
4.2.7 SuperLU .. 4-6
4.2.8 FFTW.. 4-7
4.2.9 PETSc ... 4-7
4.2.10 NETCDF/sNETCDF .. 4-7
4.2.11 pNETCDF.. 4-8
4.2.12 METIS and PARMETIS ... 4-8
4.2.13 SciPort .. 4-9
4.2.14 gmp_sci .. 4-9

 Table of Contents vii

4.2.15 MPFR.. 4-9
4.2.16 sHDF5/pHDF5 .. 4-10
4.2.17 ga/Global Array ... 4-10
4.2.18 gsl.. 4-11
4.2.19 pgapack ... 4-11
4.2.20 valgrind .. 4-12
4.2.21 Hypre... 4-12
4.2.22 ML ... 4-13
4.2.23 spooles ... 4-13
4.2.24 Open Trace Format (OTF) ... 4-14
4.2.25 scalasca ... 4-15

4.3 Intel Scientific Libraries .. 4-16
4.3.1 Intel Math Kernel Library... 4-16
4.3.2 BLAS .. 4-16
4.3.3 PBLAS... 4-16
4.3.4 LAPACK.. 4-16

4.4 NVIDIA CUDA Scientific Libraries ... 4-17
4.4.1 CUFFT .. 4-17
4.4.2 CUBLAS.. 4-17

Chapter 5. Compilers ... 5-1

5.1 Overview.. 5-1

5.2 Intel Tools.. 5-1
5.2.1 Intel® Fortran Compiler Professional Edition for Linux.. 5-1
5.2.2 Intel® C++ Compiler Professional Edition for Linux... 5-2
5.2.3 Intel Compiler Licenses ... 5-3
5.2.4 Intel Math Kernel Library Licenses .. 5-3

5.3 GNU Compilers ... 5-4

5.4 NVIDIA nvcc C Compiler... 5-4
5.4.1 Compiling with nvcc and MPI.. 5-5

5.5 Compiler Optimization Options.. 5-6
5.5.1 Starting Options .. 5-6
5.5.2 Intel C/C++ and Intel Fortran Optimization Options .. 5-6
5.5.3 Compiler Options which may Impact Performance... 5-7
5.5.4 Flags and Environment Variables ... 5-8
5.5.5 Compiler Directives for Loops .. 5-8
5.5.6 Options for Compiler Optimization Reports... 5-9
5.5.7 Compiling Tips .. 5-9

viii bullx cluster suite - Application Developer's Guide

Chapter 6. The User's Environment ... 6-1

6.1 Cluster Access and Security..6-1
6.1.1 ssh (Secure Shell) ... 6-1

6.2 Global File Systems...6-2

6.3 Environment Modules ..6-2
6.3.1 Using Modules... 6-2
6.3.2 Setting Up the Shell RC Files.. 6-4

6.4 Module Files ..6-5
6.4.1 Upgrading via the Modules Command ... 6-6

6.5 The Module Command ..6-7
6.5.1 modulefiles .. 6-7
6.5.2 Modules Package Initialization .. 6-8
6.5.3 Examples of Initialization .. 6-8
6.5.4 Modulecmd Startup .. 6-9
6.5.5 Module Command Line Switches.. 6-9
6.5.6 Module Sub-Commands .. 6-10
6.5.7 Modules Environment Variables ... 6-12

6.6 The NVIDIA CUDA Development Environment6-14
6.6.1 GPUSET library .. 6-14
6.6.2 bullx cluster suite and CUDA ... 6-16
6.6.3 NVIDA CUDATM Toolkit and Software Developer Kit... 6-16

Chapter 7. Launching an Application .. 7-1

7.1 CPUSET...7-2
7.1.1 Typical Usage of CPUSETS.. 7-2
7.1.2 BULL CPUSETS ... 7-2

7.2 pplace ..7-3

7.3 Application Code Optimization ..7-4
7.3.1 Alias Usage... 7-4
7.3.2 Improving Loops... 7-4
7.3.3 C++ Programming Hints ... 7-6
7.3.4 Memory Tips.. 7-6
7.3.5 Application code performance impedances... 7-7
7.3.6 Interprocedural Optimization (IPO)... 7-7

Chapter 8. Application Debugging Tools ... 8-1

 Table of Contents ix

8.1 Overview.. 8-1

8.2 GDB... 8-1

8.3 IDB... 8-1

8.4 TotalView .. 8-2

8.5 DDT ... 8-3

8.6 MALLOC_CHECK_ - Debugging Memory Problems in C programs......... 8-5

8.7 Electric Fence .. 8-7

Chapter 9. Application Profiling Tools ... 9-1

9.1 PAPI ... 9-1
9.1.1 High-level PAPI Interface ... 9-1
9.1.2 Low-level PAPI Interface .. 9-2

9.2 Profiling Programs with HPC Toolkit... 9-4
9.2.1 HPC Toolkit Workflow .. 9-4
9.2.2 HPC Toolkit Tools... 9-5

9.3 Intel® VTune™ Performance Analyzer for Linux.................................... 9-7
9.3.1 Sampling .. 9-7
9.3.2 Call Graphs .. 9-7
9.3.3 Identify Performance Improvements .. 9-8
9.3.4 Adapted to extreme computing clusters... 9-8

Chapter 10. Using HPC Toolkit.. 10-1

10.1 Step 1: Recovering the Program Structure with hpcstruct 10-1

10.2 Step 2: Measuring Program Execution with hpcrun 10-2
10.2.1 Alternative Step 2: Measuring the Execution with Flat Sampling using hpcrun-flat 10-4

10.3 Step 3: Correlating Call Path Profiling Metrics with hpcprof 10-5
10.3.1 Step 3 Alternative A: Correlating Flat Metrics with Program Structure using hpcprof-flat 10-7
10.3.2 Step 3 Alternative B: Correlating Flat Metrics with Program Structure using hpcproftt ... 10-9

10.4 Step 4: Checking the Results with hpcviewer.................................. 10-14
10.4.1 hpcviewer views .. 10-15
10.4.2 hpcviewer browser window .. 10-16

10.5 Improving the Performance of hpcviewer.. 10-18
10.5.1 Source Pane.. 10-18
10.5.2 Metric Pane... 10-18

x bullx cluster suite - Application Developer's Guide

10.5.3 hpcviewer Limitations.. 10-19

10.6 HPC Toolkit Metrics ...10-20
10.6.1 Derived Metrics.. 10-22
10.6.2 Metric Syntax in the Configuration File ... 10-24
10.6.3 Native or FILE Metrics... 10-25
10.6.4 Derived or COMPUTE Metrics ... 10-25

10.7 Using HPC Toolkit with Statically Linked Programs............................10-27
10.7.1 Introduction ... 10-27
10.7.2 Using hpclink... 10-27
10.7.3 Troubleshooting hpclink .. 10-28

10.8 Using HPC Toolkit with MPI Programs...10-29
10.8.1 Running and Analyzing MPI Programs.. 10-29
10.8.2 Building and Installing HPC Toolkit for MPI Support.. 10-30

10.9 More Information about HPC Toolkit ..10-30

Chapter 11. Analyzing Program Performance with HPC Toolkit 11-1

11.1 Creating a New Derived Metric ..11-1

11.2 Using Derived Metrics to Improve Performance..................................11-3

11.3 Pinpointing and Quantifying Scalability Bottlenecks............................11-7
11.3.1 Scalability Analysis Using Expectations... 11-7
11.3.2 Weak Scaling.. 11-8
11.3.3 Exploring Scaling Losses ... 11-10

 Glossary and Acronyms ...G-1

 Index .. I-1

 Table of Contents xi

List of Figures

Figure 2-1. MPIBull2 Linking Strategies .. 2-4
Figure 2-2. MPD ring... 2-6
Figure 3-1. An example of a communication matrix .. 3-10
Figure 3-2. An example of a histogram.. 3-11
Figure 4-1. Bull Scientific Studio structure ... 4-2
Figure 4-2. Interdependence of the different mathematical libraries (Scientific Studio and Intel) 4-5
Figure 6-1. Typical architecture for NVIDIA Tesla GPUs and Bullx B5xx blades 6-15
Figure 8-1 Totalview graphical interface – image taken from

http://www.totalviewtech.com/productsTV.htm ... 8-2
Figure 8-2. The Graphical User Interface for DDT.. 8-4
Figure 9-1. HPC Toolkit Workflow... 9-5
Figure 9-2. A Call Graph showing the critical path in red .. 9-8
Figure 10-1. hpcviewer screen.. 10-14
Figure 10-2. Hide\Show Columns Window ... 10-19
Figure 10-3. Source files .. 10-20
Figure 10-4. Calling Context view... 10-21
Figure 10-5. Caller view .. 10-21
Figure 10-6. Flat view.. 10-22
Figure 10-7. Derived metric dialog box ... 10-23
Figure 11-1. Computing a derived metric (cycles per instruction) in hpcviewer 11-2
Figure 11-2. Displaying the new cycles/instruction derived metric in hpcviewer 11-3
Figure 11-3. Computing a floating point waste metric in hpcviewer .. 11-4
Figure 11-4. Computing floating point efficiency in percent using hpcviewer...................................... 11-5
Figure 11-5. Floating-point efficiency metric ... 11-6
Figure 11-6. Scaling Loss Metric ... 11-9
Figure 11-7. Loop nests ranked by Scaling loss... 11-10

List of Tables

Table 5-1. Examples of different module configurations .. 6-3
Table 7-1. Launching an application without a Batch Manager for different clusters........................... 7-1

xii bullx cluster suite - Application Developer's Guide

 Preface xiii

Preface
Scope and Objectives

The purpose of this guide is to describe the tools and libraries included in the bullx cluster
suite delivery that allow the development, testing and optimal use of application programs
on Bull Extreme Computing clusters. In addition, various Open Source and proprietary tools
are described.

Intended Readers

This guide is for Application Developers and Users of Bull extreme computing clusters.

Prerequisites

The installation of all hardware and software components of the cluster must have been
completed. The cluster Administrator must have carried out basic administration tasks
(creation of users, definition of the file systems, network configuration, etc).

Bibliography

Refer to the manuals included on the documentation CD delivered with your system OR
download the latest manuals for your bullx cluster suite release, and for your cluster
hardware, from: http://support.bull.com/

The bullx cluster suite Documentation CD-ROM (86 A2 12FB) includes the following
manuals:

• bullx cluster suite Installation and Configuration Guide (86 A2 19FA)

• bullx cluster suite Administrator’s Guide (86 A2 20FA)

• bullx cluster suite Application Developer’s Guide (86 A2 22FA)

• bullx cluster suite Maintenance Guide (86 A2 24FA)

• bullx cluster suite High Availability Guide (86 A2 25FA)

• InfiniBand Guide (86 A2 42FD)

• Authentication Guide (86 A2 41FD)

• SLURM Guide (86 A2 45FD)

• Lustre Guide (86 A2 46FD)

The following document is delivered separately:

• The Software Release Bulletin (SRB) (86 A2 80EJ)

mportant The Software Release Bulletin contains the latest information for your delivery.
This should be read first. Contact your support representative for more
information.

For Bull System Manager, refer to the Bull System Manager documentation suite.

http://support.bull.com/

xiv bullx cluster suite - Application Developer's Guide

For clusters that use the PBS Professional Batch Manager, the following manuals are
available on the PBS Professional CD-ROM:

• Bull PBS Professional Guide (86 A2 16FE)

• PBS Professional Administrator’s Guide

• PBS Professional User’s Guide (on the PBS Professional CD-ROM)

For clusters that use LSF, the following manuals are available on the LSF CD-ROM:

• Bull LSF Installation and Configuration Guide (86 A2 39FB)

• Installing Platform LSF on UNIX and Linux

For clusters which include the Bull Cool Cabinet:

• Site Preparation Guide (86 A1 40FA)

• R@ck'nRoll & R@ck-to-Build Installation and Service Guide (86 A1 17FA)

• Cool Cabinet Installation Guide (86 A1 20EV)

• Cool Cabinet Console User's Guide (86 A1 41FA)

• Cool Cabinet Service Guide (86 A7 42FA)

Highlighting

• Commands entered by the user are in a frame in ‘Courier’ font, as shown below:

mkdir /var/lib/newdir

• System messages displayed on the screen are in ‘Courier New’ font between 2
dotted lines, as shown below.

Enter the number for the path :

• Values to be entered in by the user are in ‘Courier New’, for example:

COM1

• Commands, files, directories and other items whose names are predefined by the
system are in ‘Bold’, as shown below:

The /etc/sysconfig/dump file.

• The use of Italics identifies publications, chapters, sections, figures, and tables that are
referenced.

• < > identifies parameters to be supplied by the user, for example:

<node_name>

 WARNING
A Warning notice indicates an action that could cause damage to a program, device,
system, or data.

 Introduction to the Extreme Computing Environment 1-1

Chapter 1. Introduction to the Extreme Computing
Environment

The term extreme computing describes the development and execution of large scientific
applications and programs that require a powerful computation facility, which can process
enormous amounts of data to give highly precise results.

bullx cluster suite is a software suite that is used to operate and manage a Bull extreme
computing cluster of Xeon-based nodes. These clusters are based on Bull platforms using
InfiniBand stacks or with Gigabit Ethernet networks. bullx cluster suite includes both Bull
proprietary and Open Source software, which provides the infrastructure for optimal
interconnect performance.

A Bull extreme computing cluster includes an administrative network based on a 10/100
Mbit or a Gigabit Ethernet network, and a separate console management network.

The bullx cluster suite delivery also provides a full environment for development, including
optimized scientific libraries, MPI libraries, as well as debugging and performance
optimization tools.

This manual describes these software components, and explains how to work within the
bullx cluster suite environment.

1.1 Software Configuration

1.1.1 Operating System and Installation
bullx cluster suite is based on a standard Linux distribution, combined with a number of
Open Source applications that exploit the best from the Open Systems community. This
combined with technology from Bull and its partners, results in a powerful, complete
solution for the development, execution, and management of parallel and serial
applications simultaneously.

Its key features are:

• Strong manageability, through Bull’s systems management suite that is linked to state-
of-the-art workload management software.

• High-bandwidth, low-latency interconnect networks.

• Scalable high performance file systems, both distributed and parallel.

All cluster nodes use the same Linux distribution. Parallel commands are provided to supply
users and system administrators with single-system attributes, which make it easier to
manage and to use cluster resources.

Software installation is carried out by first creating an image on a node, loading this image
onto the Management Node, and then distributing it to the other nodes using the Image
Building and Deployment (KSIS) utility. This distribution is performed via the administration
network.

1-2 bullx cluster suite - Application Developer's Guide

1.2 Program Execution Environment
When a user logs onto the system, the login session is directed to one of several nodes
where the user may then develop and execute their applications. Applications can be
executed on other cluster nodes apart from the user login system. For development, the
environment consists of:

• Standard Linux tools such as GCC (a collection of free compilers that can compile
C/C++ and FORTRAN), GDB Gnu Debugger, and other third-party tools including the
Intel FORTRAN Compiler, the Intel C Compiler, Intel MKL libraries and Intel Debugger
IDB.

• Optimized parallel libraries that are part of the bullx cluster suite. These libraries
include the Bull MPI2 and bullx mpi message-passing library. Bull MPI2 complies with
the MPI1 and 2 standards and is a high performance, high quality native
implementation. Bull MPI2 exploits shared memory for intra-node communication. It
includes a trace and profiling tool, enabling data to be tracked.

• Modules software provides a means for predefining and changing environments. Each
one includes a compiler, a debugger and library releases which are compatible with
each other. So it is easy to invoke one given environment in order to perform tests and
then compare the results with other environments.

1.2.1 Resource Management
The resource manager is responsible for the allocation of resources to jobs. The resources
are provided by nodes that are designated as compute resources. Processes of the job are
assigned to and executed on these allocated resources.

Both Gigabit Ethernet and InfiniBand clusters use the SLURM (Simple Linux Utility for
Resource Management) open-source, highly scalable cluster management and job
scheduling system. SLURM has the following functions.

• It allocates compute resources, in terms of processing power and Computer Nodes to
jobs for specified periods of time. If required the resources may be allocated
exclusively with priorities set for jobs.

• It is also used to launch and monitor jobs on sets of allocated nodes, and will also
resolve any resource conflicts between pending jobs.

• It helps to exploit the parallel processing capability of a cluster.

See The SLURM Guide for more information.

1.2.2 Batch Management
Different possibilities exist for handling batch jobs for extreme computing clusters.

• PBS-Professional, a sophisticated, scalable, robust Batch Manager from Altair
Engineering is supported as a standard. PBS Pro can also be integrated with the MPI
libraries.

 Introduction to the Extreme Computing Environment 1-3

See The Bull PBS Professional Guide, PBS-Professional Administrator’s Guide and User’s Guide
available on the PBS-Pro CD-ROM delivered for the clusters, which use PBS-Pro, and the
PBS-Pro web site http://www.pbsgridworks.com.

mportant PBS Pro does not work with SLURM and should only be installed on clusters
which do not use SLURM.

• LSF, a batch manager from Platform™ Company for managing and accelerating batch
workload processing for compute-and data-intensive applications is optional on Bull
extreme computing.

See The LSF Installation and Configuration Guide available on the LSF CD-ROM for more
information.

1.2.3 Parallel processing and MPI libraries
A common approach to parallel programming is to use a message passing library, where
a process uses library calls to exchange messages (information) with another process. This
message passing allows processes running on multiple processors to cooperate.

Simply stated, a MPI (Message Passing Interface) provides a standard for writing message-
passing programs. A MPI application is a set of autonomous processes, each one running
its own code, and communicating with each other through calls to subroutines of the MPI
library.

Bull MPI2 and bullx MPI, Bull’s second-generation MPI library, are included in the bullx
cluster suite delivery. The Bull MPI2 library enables dynamic communication with different
device libraries, including InfiniBand (IB) interconnects, Ethernet/IB/EIB socket devices or
single machine devices. Bull MPI2 is fully integrated with the SLURM resource manager.

bullx MPI is based on the Open Source Open MPI project. Open MPI is a MPI-2
implementation that is developed and maintained by a consortium of academic, research,
and industry partners. Open MPI offers advantages for system and software vendors,
application developers and computer science researchers.

This library enables dynamic communication with different device libraries, including
InfiniBand (IB) interconnects, socket Ethernet/IB devices or single machine devices.

bullx MPI conforms to the MPI-2 standard.

See Chapter 2 for more information on MPI Libraries.

1-4 bullx cluster suite - Application Developer's Guide

1.2.4 Data and Files
Application file I/O operations may be performed using locally mounted storage devices,
or alternatively, on remote storage devices using either Lustre or the NFS file systems. By
using separate interconnects for administration and I/O operations, the Bull cluster system
administrator is able to isolate user application traffic from administrative operations and
monitoring. With this separation, application I/O performance and process communication
can be made more predictable while still enabling administrative operations to proceed.

See The Lustre Guide for more information on Lustre.

 Parallel Libraries 2-1

Chapter 2. Parallel Libraries
A common approach to parallel programming is to use a message passing library, where
a process uses library calls to exchange messages (information) with another process. This
message passing allows processes running on multiple processors to cooperate.

Simply stated, a MPI (Message Passing Interface) provides a standard for writing message-
passing programs. A MPI application is a set of autonomous processes, each one running
its own code, and communicating with each other through calls to subroutines of the MPI
library.

Programming with MPI

It is not in the scope of the present guide to describe how to program with MPI. Please,
refer to the Web, where you will find complete information.

2.1 MPIBull2
MPIBull2 is a second generation MPI library. This library enables dynamic communication
with different device libraries, including InfiniBand (IB) interconnects, socket
Ethernet/IB/EIB devices or single machine devices.

MPIBull2 conforms to the MPI-2 standard.

2.1.1 MPIBull2_1.3.x features
MPIBull2_1.3.x includes the following features:

• It only has to be compiled once, supports the NovaScale architecture, and is
compatible with the more powerful interconnects.

• It is designed so that both development and testing times are reduced and it delivers
high performance on NovaScale architectures.

• Fully compatible with MPICH2 MPI libraries. Just set the library path to get all the
MPIBull2 features.

• Supports both MPI 1.2 and MPI 2 standard functionalities including

− Dynamic processes (osock only)

− One-sided communications

− Extended collectives

− Thread safety (see the Thread-Safety Section below)

− ROMIO including the latest patches developed by Bull

• Multi-device functionality: delivers high performance with an accelerated multi-device
support layer for fast interconnects. The library supports:

− Sockets-based messaging (for Ethernet, SDP, SCI and EIP)

− Hybrid shared memory-based messaging for shared memory

− InfiniBand architecture multirails driver Gen2

2-2 bullx cluster suite - Application Developer's Guide

• Easy Runtime Selection: makes it easy and cost-effective to support multiple platforms.
With the MPIBull2 Library, both users and developers can select drivers at runtime
easily, without modifying the application code. The application is built once and works
for all interconnects supported by Bull.

• Ensures that applications achieve high performance, and maintain a high degree of
interoperability with standard tools and architectures.

• Common feature for all devices:

− FUTEX (Fast User mode muTEX) mechanism in user mode.

2.1.2 MPIBull2 Compilers and Wrappers
The MPIBull2 library has been compiled with the latest Intel compilers, which, according to
Bull’s test farms, are the fastest ones available for the Xeon architecture. Bull uses Intel Icc
and Ifort compilers to compile the MPI libraries. It is possible for the user to use their own
compilers to compile their applications for example gcc.

In order to check the configuration and the compilers used to compile the MPI libraries look
at the ${mpibull2_install_path}/share/doc/compilers_version text file.

MPI applications should be compiled using the MPIBull2 MPI compiler wrappers:
C programs: mpicc your-code.c
C++ programs: mpiCC your-code.cc
 or
 mpic++ your-code.cc (for case-insensitive file systems)
F77 programs: mpif77 your-code.f
F90 programs: mpif90 your-code.f90

Compiler wrappers allow the user to concentrate on developing the application without
having to think about the internal mechanics of MPI. They simply add various command
line flags and invoke a back-end compiler; they are not compilers in themselves.

See The wrapper man pages for more information.

The command below is used to override the compiler type used by the wrapper. Use either
the –cc, -fc -, and cxx option according to the wrapper type (C, Fortran and C++).

mpi_user >>> mpicc -cc=gcc prog.c -o prog

2.1.2.1 Linking wrappers

When using compiling tools, the wrappers need to know which communication device and
a linking strategy they should use. The compiling tools parse as long as some of the
following conditions have been met:

• The device and linking strategy has been specified in the command line using the -sd
options.

• The environment variables DEF_MPIDEV, DEF_MPIDEV_LINK (required to ensure
compatibility), MPIBULL2_COMM_DRIVER, and MPIBULL2_LINK_STRATEGY have
been set.

 Parallel Libraries 2-3

• The preferences have already been set up; the tools will use the device they find in the
environment using the MPIBULL2-devices tool.

• The tools take the system default, using the dynamic socket device.

Note It is possible to obtain better performance using the –fast/-static options to link statically
with one of the dependent libraries, as shown in the commands below.

mpicc –static prog.c
mpicc –fast prog.c

2.1.3 Configuring MPIBull2

mportant MPIBULL2 is usually installed in the /opt/mpi/mpibull2-<version> directory. The
environmental variables MPI_HOME, PATH, LD_LIBRARY_PATH, MAN_PATH,
PYTHON_PATH will need to be set or updated. These variables should not be set
by the user. Use the setenv_mpibull2.{sh,csh} environment setting file, which may
be sourced from the ${mpibull2_install_path}/share directory by a user or added
to the profile for all users by the administrator.

 MPIBull2 may be used for different architectures including standalone SMPs, Ethernet,
Infiniband or Quadrics Clusters.

You have to select the device that will use MPIBull2 before launching an application with
MPIBull2.
The list of possible devices available is as follows:

− osock is the default device. This uses sockets to communicate and is the device of
choice for Ethernet clusters.

− oshm should be used on a standalone machines, communication is through
shared memory.

− ibmr_gen2, otherwise known as InfiniBand multi-rail gen2. This works over
InfiniBand’s verbs interface.

The device is selected by using the mpibull2-devices command with the –d switch, for
example, enter the command below to use the shared memory device:

mpi_user >>> mpibull2-devices –d=oshm

For more information on the mpibull2-devices command, see the following sections.

2.1.4 Running MPIBull2
The MPI application requires a launching system in order to spawn the processes onto the
cluster. Bull provides the SLURM Resource Manager as well as the MPD subsystem.

For MPIBull2 to communicate with SLURM and MPD, the PMI interface has to be defined.
By default, MPIBull2 is linked with MPD’s PMI interface.

If you are using SLURM, you must ensure that MPIBULL2_PRELIBS includes -lpmi so that your
MPI application can be linked with SLURM’s PMI library.

2-4 bullx cluster suite - Application Developer's Guide

See The SLURM Guide and Sections 2.1.5.3 in this chapter for more information on MPD.

2.1.5 MPIBull2 Advanced features

2.1.5.1 MPIBull2 Linking Strategies

Designed to reduce development and testing time, MPIBull2 includes two linking strategies
for users.

Firstly, the user can choose to build his application and link dynamically, leaving the
choice of the MPI driver until later, according to which resources are available. For
instance, if a small Ethernet cluster is the only resource available, the user compiles and
links dynamically, using an osock driver, whilst waiting for access to a bigger cluster via a
different InfiniBand interconnect and which uses the ibmr_gen2 driver at runtime.

Secondly, the User might want to use an out-of-the-box application, designed for a specific
MPI device. Bull provides the combination of a MPI Core and all its supported devices,
which enables static libraries to be linked to by the User’s application.

Figure 2-1. MPIBull2 Linking Strategies

2.1.5.2 Thread-safety

If the application needs an MPI Library which provides MPI_THREAD_MULTIPLE thread-
safety level, then choose a device which supports thread safety and select a *_ts device.
Use the mpibull2-device commands.

Note Thread-safety within the MPI Library requires data locking. Linking with such a library may
impact performance. A loss of around 10 to 30% has been observed on micro-
benchmarks.

Not all MPI Drivers are delivered with a thread-safe version. Devices known to support
MPI_THREAD_MULTIPLE include osock and oshm.

 Parallel Libraries 2-5

2.1.5.3 Using MPD

MPD is a simple launching system from MPICH-2.

To use it, you need to launch the MPD daemons on Compute hosts.

If you have a single machine, just launch mpd & and your MPD setup is complete.

If you need to spawn MPI processes across several machines, you must use mpdboot to
create a launching ring on the cluster. This is done as follows:

1. Create the hosts list:

mpi_user >>> export cluster_machines="host1 host2 host3 host4"

2. Create the file used to store host information:

mpi_user >>> for i in $cluster_machines; do echo "$i" >> machinefiles; done

3. Boot the MPD system on all the hosts:

mpi_user >>> mpdboot -n $(cat $clustermachines | wc -l) -f machinefiles

4. Check if everything is OK:

mpi_user >>> mpdtrace

5. Run the application or try hostname:

mpi_user >>> mpiexec -n 4 ./your_application

MPI Process Daemons (MPD) run on all nodes in a ring like structure, and may be used in
order to manage the launching of the different processes. MPIBull2 library is PMI
compliant, which means it can interact with any other PMI PM. This software has been
developed by ANL. In order to set up the system the MPD ring must firstly be knitted using
the procedure below:

1. At the $HOME prompt edit the .mpd.conf file by adding something like
MPD_SECRETWORD=your_password and chmod 600 to the file.

2. Create a boot sequence file. Any type of file may be used. The MPD system will by
default use the mpd.hosts file in your $HOME directory if a particular file is not
specified in the boot sequence. This contains a list of hosts, separated by carriage
returns. Semi-colons can be added to the host to specify the number of CPUs for the
host, for example.

host1:4
host2:8

2-6 bullx cluster suite - Application Developer's Guide

Figure 2-2. MPD ring

3. Boot the ring by using the mpdboot command, and specify the number of hosts to be
included in the ring.

mpdboot -n 2 -f myhosts_file

Check that the ring is functioning correctly by using the mpdtrace or mpdringtest
commands. If everything is okay, then jobs may be run on the cluster.

2.1.5.4 Dynamic Process Services

The main goal of these services is to provide a means to develop software using multi-agent
or master/server paradigms. They provide a mechanism to establish communication
between newly created processes and an existing MPI application (MPI_COMM_SPAWN).
They also provide a mechanism to establish communication between two existing MPI
applications, even when one did not 'start' the other (MPI_PUBLISH_NAME).

MPI_PUBLISH_NAME structure

MPI_PUBLISH_NAME (service_name, info, port_name)

IN service_name a service name to associate with the port (string)
IN info implementation-specific information (handle)
IN port_name a port name (string)

Although these paradigms are useful for extreme computing clusters there may be a
performance impact. MPIBull2 includes these Dynamic Process Services, but with some
restrictions:

• Only the osock socket MPI driver can be used with these dynamic processes.

• A PMI server implementing spawn-answering routines must be used as follows.

− For all Bull clusters the MPD sub-system is used - see the sections above for more
details.

− For clusters that use SLURM, a MPD ring must be deployed once SLURM's
allocation has been guaranteed.

− PBS Professional clusters can use MPD without any restrictions.

 Parallel Libraries 2-7

• The quantity of processes which can be spawned depend on the reservation previously
allocated with the Batch Manager /Scheduler (if used).

See The chapter on Process Creation and Management in the MPI-2.1 Standard documentation
available from http://www.mpi-forum.org/docs/ for more information.

MPI Ports Publishing Example

 Sever Client

Command mpiexec -n 1 ./server mpiexec -n 4 ./toy

Process

(MPI_Open_port) + (MPI_Publish_name)

MPIBull2 1.3.9-s (Astlik)
MPI_THREAD_FUNNELED (device osock)

Server is waiting for connections

(MPI_Comm_accept)

Master available, Received from 0

Now time to merge the communication

(MPI_Comm_merge)

Establish communication with 1st slave

Accept communication to port

Slave 1 available

Slave 2 available

Disconnected from slave, Send message to
Master

MPIBull2 1.3.9-s (Astlik) MPI_THREAD_FUNNELED
(device osock)

(MPI_Get_attribute)

Got the universe size from server

(MPI_Lookup_name)

Lookup found service
attag#0$port#35453$description#10.11.0.11
$ifname#10.11.0.11$ port [x4]

(MPI_Comm_connect) + (MPI_Send / MPI_Recv)

Sent stuff to the commInter

Recv stuff to the commInter

Master Process at work, merge comm

Master: number of tasks to distribute: 10

Sent a message to the following MPI process

Sent stuff to the commInter

Recv stuff to the commInter

Slave Process at work, merge comm

Sent stuff to the commInter

Recv stuff to the commInter

Slave Process at work, merge comm

Sent stuff to the commInter

Recv stuff to the commInter

Slave Process at work, merge comm

Process 1 with 1 Threads runs at work

1: Got task from 900001 to 1000000

Merged and disconnected

(MPI_Comm_disconnect)

Assigned tasks: ----0 0---1 [x10]

http://www.mpi-forum.org/docs/

2-8 bullx cluster suite - Application Developer's Guide

Slave 3 available

Disconnected from slave, Send message to
Master

(MPI_Comm_Unpublish_name)
(MPI_Close_Port)

[compute]

I give up

3: Wallclock Time: 45.2732

1: Wallclock Time: 45.2732

Unpublishing my service toyMaster

2: Wallclock Time: 45.2732

Closing my port of connection (master)

master disconnected from 1

master disconnected from 2

master disconnected from 3

Master with 1 Threads joins computation (univ: 1)

disconnected from server

0: Wallclock Time: 45.2757

2.1.6 MPIBull2 Tools

2.1.6.1 MPIBull2-devices

This tool may be used to change the user's preferences. It can also be used to disable a
library. For example, if the program has already been compiled and the intention is to use
dynamic MPI Devices that have already been linked with the MPI Core, then it is now
possible to specify a particular runtime device with this tool. The following options are
available with MPIBULL2-devices

-dl Provides list of drivers. This is also supported by MPI wrappers.

-dlv Provides list of drivers with versions of the drivers.

mpi_user >>> mpibull2-devices -dl

MPIBULL2 Communication Devices :
+ Original Devices :
*oshm : Shared Memory device, to be used on a single machine [static][dynamic]
*osock : Socket protocol (can be used over IPoIB, SDP, SCI...) [static][dynamic]

-c Obtains details of the user's configuration.

mpi_user >>> mpibull2-devices -c

MPIBULL2 home : /install_path
User prefs :
 __ Directory : /home_nfs/mpi_user/.MPIBull2/
 __ Custom devices : /home_nfs/mpi_user/.MPIBull2//site_libs
 __ MPI Core flavor : Standard / Error detection on
 __ MPI Communication Driver : oshm (Shared Memory device, to be used on
a single machine) [static][dynamic]

-d=xxx Sets the communication device driver specified.

 Parallel Libraries 2-9

mpi_user >>> mpibull2-devices -d=ibmr_gen2

2.1.6.2 mpibull2-launch

This meta-launcher connects to the process manager specified by the user. It is used to
ensure compatibility between different process manager launchers, and also to allow users
to specify their custom key bindings.

The purpose of mpibull2-launch is to help users to retain their launching commands.
mpibull2-launch also interprets user’s special key bindings, in order to allow the user to
retain their preferences, regardless of the cluster and the MPI library. This means that the
user’s scripts will not need changing, except for the particular environment variables that
are required.

The mpibull2-launch tool provides default key bindings. The user can check them using the
--metahelp option. If the user wishes to check some of the CPM (Cluster Process Manager)
special commands, they should use --options with the CPM launch name command (e.g.
--options srun).

Some tool commands and ‘device’ functionalities rely on the implementation of the MPI
components. This simple tool maps key bindings to the underlying CPM. Therefore, a
unique command can be used to launch a job on a different CPM, using the same syntax.
mpibull2-launch system takes in account the fact that a user might want to choose their own
key bindings. A template file, named keylayout.tmp1, may be found in the tools RPM, and
can be used to construct individual key binding preferences.

Launching a job on a cluster using mpibull2-launch

For a SLURM CPM use a command similar to the one below and set
MPIBULL2_LAUNCHER=srun to make this command compatible with the SLURM CPM.

mpibull2-launch -n 16 -N 2 -ptest ./job

Example for a user who wants to use the Y key for the partition

PM Partition to use+Y:+partition:

The user should edit a file using the format found in the example template, and then add
custom bindings using the –custom_keybindings option. The + sign is used to separate the
fields. The first field is the name of the command, the second the short option, with a colon
if an argument is needed, and the third field is the long option.

2.1.6.3 mpiexec

This launcher connects to the MPD ring.

2.1.6.4 mpirun

This launcher connects to the MPD ring.

2-10 bullx cluster suite - Application Developer's Guide

2.1.7 MPIBull2 – Example of use

2.1.7.1 Setting up the devices

When compiling an application the user may wish to keep the makefiles and build files,
which have already been generated. Bull has taken this into account. The code and build
files can be kept as they are. All the user needs to do is to set up a few variables or use the
MPIBULL2-devices tool.

During the installation process, the /etc/profile.d/mpibull2.sh file will have been modified
by the System Administrator according to the user’s needs. This file determines the default
settings (by default the rpm sets the osock socket/TCP/IP driver). It is possible to override
these settings by using environment variables – this is practical as it avoids modifying
makefiles - or by using the tools options. For example, the user can statically link their
application against a static driver as shown below. The default linking is dynamic, and this
enables drive modification during runtime. Linking statically, as shown below, overrides the
user's preferences but does not change them.

mpi_user >>> mpicc -sd=ibmr_gen2 prog.c -o prog
mpicc : Linking statically MPI library with device (ibmr_gen2)

The following environment variables may also be used

MPIBULL2_COMM_DRIVER Specifies the default device to be linked against

MPIBULL2_LINK_STRATEGY Specifies the link strategy (the default is dynamic)
 (this is required to ensure compatibility)

MPIBULL2_MPITOOLS_VERBOSE Provides information when building (the default is
verbose off)

mpi_user >>> export DEF_MPIDEV=ibmr_gen2
mpi_user >>> export MPIBULL2_MPITOOLS_VERBOSE=1
mpi_user >>> mpicc prog.c -o prog
mpicc : Using environment MPI variable specifications
mpicc : Linking dynamically MPI library with device (ibmr_gen2)

2.1.7.2 Submitting a job

If a user wants to submit a job, then according to the process management system, they
can use MPIEXEC, MPIRUN, SRUN or MPIBULL2-LAUNCH to launch the processes on the
cluster (the online man pages gives details of all the options for these launchers)

2.1.8 MPIBull2 and NFS Clusters
To use MPI and NFS together, the shared NFS directory must be mounted with the no
attribute caching (noac) option added; otherwise the performance of the Input/Output
operations will be impacted. To do this, edit the /etc/fstab file for the NFS directories on
each client machine in a multi-host MPI environment.

Note All the commands below must be carried out as root.

 Parallel Libraries 2-11

Run the command below on the NFS client machines:

grep nfs_noac /etc/fstab

The fstab entry for /nfs_noac should appear as below:

/nfs_noac /nfs_noac nfs bg,intr,noac 0 0

If the noac option is not present, add it and then remount the NFS directory on each
machine using the commands below.

umount /nfs_noac
mount /nfs_noac

To improve performance, export the NFS directory from the NFS server with the async
option.

This is done by editing the /etc/exports file on the NFS server to include the async option,
as below.

Example

The following is an example of an export entry that includes the async option for
/nfs_noac:

grep nfs_noac /etc/exports

 /nfs_noac *(rw,async)

If the async option is not present, add it and export the new value:

exportfs -a

2.1.9 MPIBull2 Debuggers

2.1.9.1 Parallel gdb

With the mpiexec launching tool it is possible to add the Gnu DeBugger in the global
options by using -gdb. All the gdb outputs are then aggregated, indicating when there are
differences between processes. The -gdb option is very useful as it helps to pinpoint faulty
code very quickly without the need of intervention by external software.

Refer to the gdb man page for more details about the options, which are available.

2.1.9.2 Totalview

Totalview is a proprietary software application and is not included in the bullx cluster suite
distribution. See Chapter 8 for more details.

It is possible to submit jobs using the SLURM resource manage with a command similar to
the format below or via MPD.

totalview srun –a <args> ./prog <progs_args>

2-12 bullx cluster suite - Application Developer's Guide

Alternatively, it is possible to use MPI process daemons (MPD) and to synchronize Totalview
with the processes running on the MPD ring.

mpiexec -tv <args> ./prog <progs_args>

2.1.9.3 MARMOT MPI Debugger

MARMOT is an MPI debugging library. MARMOT surveys and automatically checks the
correct usage of the MPI calls and their arguments made during runtime. It does not replace
classical debuggers, but is used in addition to them.

The usage of the MARMOT library will be specified when linking and building an
application. This library will be linked to the application and to the MPIBULL2 library.
It is possible to specify the usage of this library manually by using the
MPIBULL2_USE_MPI_MARMOT environment variable, as shown in the example below;

export MPIBULL2_USE_MPI_MARMOT=1
mpicc bench.c -o bench

 or by using the -marmot option with the MPI compiler wrapper, as shown below:

mpicc -marmot bench.c -o bench

See The documentation in the share section of the marmot package, or go to
http://www.hlrs.de/organization/amt/projects/marmot/ for more details on Marmot.

2.1.10 MPIBull2 parameters
mpibull2-params is a tool that is used to list/modify/save/restore the environment variables
that are used by the mpibull2 library and/or by the communication device libraries
(InfiniBand, Quadrics etc.). The behaviour of the mpibull2 MPI library may be modified
using environment variable parameters to meet the specific needs of an application. The
purpose of the mpibull2-params tool is to help mpibull2 users to manage different sets of
parameters. For example, different parameter combinations can be tested separately on a
given application, in order to find the combination that is best suited to its needs. This is
facilitated by the fact that mpibull2-params allow parameters to be set/unset dynamically.

Once a specific combination of parameters has been tested and found to be good for a
particular context, they can be saved into a file by a mpibull2 user. Using the mpibull2-
params tool, this file can then be used later to restore the set of parameters, combined in
exactly the same way.

Notes • The effectiveness of a set of parameters will vary according to the application. For
instance, a particular set of parameters may ensure low latency for an application, but
reduce the bandwidth. By carefully defining the parameters for an application, the
optimum, in terms of both latency and bandwidth, may be obtained.

• Some parameters are located in the /proc file system and only super users can modify
them.

http://www.hlrs.de/organization/amt/projects/marmot/

 Parallel Libraries 2-13

The entry point of the mpibull2-params tool is an internal function of the environment. This
function calls an executable to manage the MPI parameter settings and to create two
temporary files. According to which shell is being used, one of these two files will be used
to set the environment and the two temporary files will then be removed. To update your
environment automatically with this function, please source either the
$MPI_HOME/bin/setenv_mpibull2.sh file or the $MPI_HOME/bin/setenv_mpibull2.csh
file, according to which shell is used.

2.1.11 Usage

SYNOPSIS

mpibull2-params <operation_type> [options]

Actions

The following actions are possible for the mpibull2-params command:

-l List the MPI parameters and their values

-f List families of parameters

-m Modify a MPI parameter

-d Display all modified parameters

-s Save the current configuration into a file

-r Restore a configuration from a file

-h Show help message and exit

Options

The following options and arguments are possible for the mpibull2-params command.

Note The options shown can be combined, for example, -li or can be listed separately, for
example –l –i. The different option combinations for each argument are shown below.

-l [iv] [PNAME]
List current default values of all MPI parameters. Use the PNAME argument (this could be a
list) to specify a precise MPI parameter name or just a part of a name. Use the -v (verbose)
option to display all possible values, including the default. Use the -i option to list all
information.

Examples

This command will list all the parameters with the string ‘all’ or ‘shm’ in their name.
mpibull2-params -l | grep -e all -e shm will return the same result.

mpibull2-params -l all shm

This command will display all information - possible values, family, purpose, etc. for each
parameter name, which includes the string ‘all’. This command will also indicate when the
current value has been returned by getenv() i.e. the parameter has been modified in the
current environment.

2-14 bullx cluster suite - Application Developer's Guide

mpibull2-params -li all

This command will display current and possible values for each parameter name that
includes the string rom. It is practical to run this command before a parameter is modified.

mpibull2-params -lv rom

-f [l[iv]] [FNAME]
List all the default family names. Use the FNAME argument (this could be a list) to specify a
precise family name or just a part of a name. Use the -l option to list all parameters for the
family specified. –l, -v and -i options are as described above.

Examples

This command will list all family names with the string band in their names.

mpibull2-params -f band

For each family name with the string band inside, this command will list all the parameters
and current values.

mpibull2-params -fl band

-m [v] [PARAMETER VALUE]
Modify a MPI PARAMETER with VALUE. The exact name of the parameter should be used to
modify a parameter. The parameter is set in the environment, independently of the shell
syntax (ksh/csh) being used. The keyword ‘default’ should be used to restore the parameter
to its original value. If necessary, the parameter can then be unset in its environment. The
-m operator lists all the modified MPI parameters by comparing all the MPI parameters with
their default values. If none of the MPI parameters have been modified then nothing is
displayed. The –m operator is like the -d option. Use the -v option for a verbose mode.

Examples

This command will set the ROMIO_LUSTRE parameter in the current environment.

mpibull2-params -m mpibull2_romio_lustre true

This command will unset the ROMIO_LUSTRE parameter in the environment in which it is
running and returns it to its default value.

mpibull2-params -m mpibull2_romio_lustre default

-d [v]
This will display the difference between the current and the default configurations. Displays
all modified MPI parameters by comparing all MPI parameters with their default values.

-s [v] [FILE]
This will save all modified MPI parameters into FILE. It is not possible to overwrite an
existing file, an error will be returned if one exists. Without any specific arguments, this file
will create a file named with the date and time of the day in the current directory. This
command works silently by default. Use the -v option to list all modified MPI parameters in
a standard output.

 Parallel Libraries 2-15

Example

This command will, for example, try to save all the MPI parameters into the file named
Thu_Feb_14_15_50_28_2008.

mpibull2-params -sv

Output Example:

save the current setting :
mpibull2_mpid_xxx=1
1 parameter(s) saved.

-r [v] [FILE]
Restore all the MPI parameters found in FILE and set the environment. Without any
arguments, this will restore all modified MPI parameters to their default value. This
command works silently, in the background, by default. Use the -v option to list all restored
parameters in a standard output.

Example

This command will restore all modified parameters to default.

mpibull2-params -r

-h
Displays the help page

2.1.12 Family names
The command mpibull2-params –f will list the parameter family names that are possible for
a particular cluster environment.

Some of the parameter family names that are possible for bullx cluster suite are listed
below.

LK_Ethernet_Core_driver
LK_IPv4_route
LK_IPv4_driver
OpenFabrics_IB_driver
Marmot_Debugging_Library
MPI_Collective_Algorithms
MPI_Errors
CH3_drivers
CH3_drivers_Shared_Memory
Execution_Environment
Infiniband_RDMA_IBMR_mpibull2_driver
Infiniband_Gen2_mpibull2_driver
UDAPL_mpibull2_driver
IBA-VAPI_mpibull2_driver
MPIBull2_Postal_Service
MPIBull2_Romio

2-16 bullx cluster suite - Application Developer's Guide

Run the command mpibull2-params <fl> <family> to see the list of individual parameters
included in the parameter families used within your cluster environment.

2.1.13 Managing your MPI environment
Bull provides different MPI libraries for different user requirements. In order to help users
manage different environment configurations, Bull also ships Modules that can be used to
switch from one MPI library environment to another. This relies on the module software –
see Chapter 6.

The directory used to store the module files is /opt/mpi/modulefiles/, into which the
different module files that include the mpich, vltmpi libraries for InfiniBand, and MPIBull2
environments are placed.

mportant It is recommended that when a file is created, for example in the 99-
mpimodules.sh and 99-mpimodules.sh .csh, it is added to the /etc/profile.d/
directory. The line below should be pasted into this file. This will make the
configuration environment available to all users.

module use -a /opt/mpi/modulefiles

1. Run the following command to check which modules are available:

module av

This will give output similar to that below:

------------------- /opt/mpi/modulefiles ------------------
mpibull2/1.2.8-1.t mpich/1.2.7-p1 vltmpi/24-1

2. Run the command to see which modules are loaded:

module li

This will give output similar to that below:

Currently Loaded Modulefiles:
 1) oscar-modules/1.0.3

3. Run the following commands to change the MPI environments, according to your
needs:

 module load mpich
 module li

Currently Loaded Modulefiles:
 1) oscar-modules/1.0.3 2) mpich/1.2.7-p1

4. Run the command to check which MPI environment is loaded:

which mpicc

This will give output similar to that below:

/opt/mpi/mpich-1.2.7-p1/bin/mpicc

 Parallel Libraries 2-17

5. Run the command below to remove a module (e.g. mpich):

 module rm mpich

6. Then load the new MPI environment by running the load command, as shown in the
example below:

module load mpibull2

2-18 bullx cluster suite - Application Developer's Guide

2.2 bullx MPI
bullx MPI is based on the Open Source Open MPI project. Open MPI is an MPI-2
implementation that is developed and maintained by a consortium of academic, research,
and industry partners. Open MPI offers advantages for system and software vendors,
application developers and computer science researchers.

This library enables dynamic communication with different device libraries, including
InfiniBand (IB) interconnects, socket Ethernet/IB devices or single machine devices.

bullx MPI conforms to the MPI-2 standard.

Note As bullx MPI is based on Open MPI, most of the documentation available for Open MPI
also applies to bullx MPI. You can therefore refer to http://open-mpi.org/faq/ for more
detailed information

2.2.1 Quick Start for bullx MPI

mportant bullx MPI is usually installed in the /opt/mpi/bullxmpi-<version> directory. To
use it, you can either:
* use the mpivars.{sh,csh} environment setting file, which may be sourced from
the ${bullxmpi_install_path}/bin directory by a user or added to the profile for all
users by the administrator.
* use module files bundled with bullx MPI (see Chapter 6 for more information
on modules)

2.2.2 Compiling with bullx MPI
MPI applications should be compiled using bullx MPI wrappers:

C programs: mpicc your-code.c
C++ programs: mpiCC your-code.cc
 or
 mpic++ your-code.cc (for case-insensitive file systems)
F77 programs: mpif77 your-code.f
F90 programs: mpif90 your-code.f90

Wrappers to compilers simply add various command line flags and invoke a back-end
compiler; they are not compilers in themselves.

2.2.3 Running with bullx MPI
bullx MPI comes with a launch command : mpirun.

mpirun is a unified processes launcher. It is highly integrated with various batch scheduling
systems, auto-detecting its environment and acting accordingly.

Running with no batch scheduler

mpirun can be used with no batch scheduler. You only need to specify the Compute Nodes
list:

http://open-mpi.org/faq/

 Parallel Libraries 2-19

$ cat hostlist
node1
node2
$ mpirun -hostfile hostlist -np 4 ./a.out

Running with SLURM

mpirun is to be run inside a SLURM allocation. It will auto-detect the number of cores and
the node list. Hence, mpirun needs no arguments.

salloc -n 2 mpirun ./a.out

Running with PBS Professional

To launch a job in a PBS environment, just use mpirun with your submission:

#!/bin/bash
#PBS -l select=2:ncpus=1
mpirun ./a.out

Running with LSF

In a LSF environment, mpirun will also automatically detect all the arguments and can
therefore be used simply, as below:

#!/bin/bash
#BSUB -n 8
mpirun ./a.out

2.2.4 Configuring and tuning bullx MPI
Parameters in bullx MPI are set using the MCA (Modular Component Architecture)
subsystem.

2.2.5 Obtaining Details of the MPI Configuration
The ompi_info command is used to obtain the details of your bullx MPI installation -
components detected, compilers used, and even the features enabled. The ompi_info -a
command can also be used, this adds the list of the MCA subsystem parameters at the end
of the output.

Output Example

MCA btl: parameter "btl" (current value: <none>, data source: default
value)
Default selection set of components for the btl framework (<none>
means use all components that can be found)

The parameter descriptions are defined using the following template:

MCA <section> : parameter “<param>” (current value: <val>, data
source: <source>)
 <Description>

2-20 bullx cluster suite - Application Developer's Guide

2.2.6 Setting the MCA parameters
MCA parameters can be set in 3 different ways, Command Line, Environment Variables
and Files.

Note The parameters are searched in the following order - Command Line, Environment
Variables and Files.

Command line

The Command line is the highest-precedence method for setting MCA parameters. For
example:

shell$ mpirun --mca btl self,sm,openib -np 4 a.out

This sets the MCA parameter btl to the value of self,sm,openib before running a.out using
four processes. In general, the format used for the command line is "--mca <param_name>
<value>".

Note When setting multi-word values, you need to use quotes to ensure that the shell and bullx
MPI understand that they are a single value. For example:

shell$ mpirun --mca param "value with multiple words" ...

Environment Variables

After the command line, environment variables are searched. Any environment variable
named OMPI_MCA_<param_name> will be used. For example, the following has the
same effect as the previous example (for sh-flavored shells):

shell$ OMPI_MCA_btl=self,sm,openib
shell$ export OMPI_MCA_btl
shell$ mpirun -np 4 a.out

Or, for csh-flavored shells:

shell% setenv OMPI_MCA_btl “self,sm,openib”
shell% mpirun -np 4 a.out

Note When setting environment variables to values with multiple words quotes should be used,
as below:

sh-flavored shells
shell$ OMPI_MCA_param="value with multiple words"
csh-flavored shells
shell% setenv OMPI_MCA_param "value with multiple words"

 Parallel Libraries 2-21

Files

Finally, simple text files can be used to set MCA parameter values. Parameters are set one
per line (comments are permitted). For example:

This is a comment
Set the same MCA parameter as in previous examples
mpi_show_handle_leaks = 1

Note Quotes are not necessary for setting multi-word values in MCA parameter files. Indeed, if
you use quotes in the MCA parameter file, they will be treated as part of the value itself.

Example

The following two values are different:
param1 = value with multiple words
param2 = "value with multiple words"

By default, two files are searched (in order):

1. $HOME/.openmpi/mca-params.conf: The user-supplied set of values takes the highest
precedence.

2. /opt/mpi/bullxmpi-x.x.x/etc/openmpi-mca-params.conf: The system-supplied set of
values has a lower precedence.

More specifically, the MCA parameter mca_param_files specifies a colon-delimited path of
files to search for MCA parameters. Files to the left have lower precedence; files to the
right are higher precedence.

Keep in mind that, just like components, these parameter files are only relevant where they
are "visible". Specifically, bullx MPI does not read all the values from these files during
start-up and then send them to all nodes for the job. The files are read on each node during
the start-up for each process in turn. This is intentional: it allows each node to be
customised separately, which is especially relevant in heterogeneous environments.

2-22 bullx cluster suite - Application Developer's Guide

 MPI Profiling with mpianalyser and profilecomm 3-1

Chapter 3. MPI Profiling with mpianalyser and profilecomm
mpianalyser is a profiling tool, developed by Bull for its own MPI implementation. This is a
non-intrusive tool, which allows the display of data from counters that has been logged
when the application runs.

mpianalyser is an integrated framework which uses the PMPI interface to analyze the
behaviour of MPI programs.

profilecomm is a part of mpianalyser and is dedicated to MPI application profiling. It has
been designed to be:

• Light: it uses few resources and so does not slow down the application.

• Easy to run: it is used to characterize the MPI communications in a program.
Communication matrices are constructed with it. Profilecomm is a “post-mortem” tool,
which does not allow on-line monitoring.

Data is collected as long as the program is running. At the end of the program, data is
written into a file for future analysis.

readpfc is a tool with a command line interface which handles the data that has been
collected. Its main uses are the following:

• To display the data collected.

• To export communication matrices in a format that can be used by other applications.

Data collected

The profilecomm module provides the following information:

• Communication matrices

• Execution time

• Table of calls of MPI functions

• Message size histograms

• Topology of the execution environment.

3.1 Communication Matrices
The profilecomm library collects separately the point-to-point communications and the
collective communications. It also collects the number of messages and the volume that the
sender and receiver have exchanged. Finally, the library builds 4 types of communication
matrices:

• Communication matrix of the number of point to point messages

• Communication matrix of the volume (in bytes) of point to point messages

• Communication matrix of the number of collective messages

• Communication matrix of the volume (in bytes) of collective messages

The volume only indicates the payload of the messages.

3-2 bullx cluster suite - Application Developer's Guide

In order to compute the standard deviation of messages size, two other matrices are
collected. They contain the sum of squared messages sizes for point-to-point and for
collective communications.

In order to obtain precise information about messages sizes, each numeric matrix can be
split into several matrices according to the size of the messages. The number of partitions
and the size limits can be defined through the PFC_PARTITIONS environment variable. In a
point-to-point communication, the sender and receiver of each message is clearly identified,
this results in a well defined position in the communication matrix.

In a collective communication, the initial sender(s) and final receiver(s) are identified, but
the path of the message is unknown. The profilecomm library disregards the real path of
the messages. A collective communication is shown as a set of messages sent directly by
the initial sender(s) to the final receiver(s).

3.1.1 Execution Time
The measured execution time is the maximum time interval between the calls to MPI_Init
and MPI_Finalize for all the processes. By default, the processes are synchronized during
the measurements. However, if necessary, the synchronization may be by-passed using an
option of the profilecomm library.

3.1.2 Call Table
The call table contains the number of calls for each profiled function of each process. For
collective communications, since a call generates an unknown number of messages, the
values indicated in the call table do not correspond to the number of messages.

3.1.3 Histograms
profilecomm collects two messages size histograms, one for point-to-point and one for
collective communications. Each histogram contains the number of messages for sizes 0, 1
to 9, 10 to 99, 100 to 999, ..., 108 to 109-1 and bigger than 109 bytes.

3.2 Topology of the Execution Environment
The profilecomm module registers the topology of the execution environment, so that the
machine and the CPU on which each process is running can be identified, and above all
the intra- and inter-machine communications made visible.

3.3 profilecomm Data Collection
When using profilecomm there are 2 separate operations – data collection, and then its
analysis.

3.3.1 Using profilecomm
To be profiled by profilecomm, an application must be linked with the MPI Analyser
library.

profilecomm is disabled by default, to enable it, set the following environment variable:

 MPI Profiling with mpianalyser and profilecomm 3-3

export MPIANALYSER_PROFILECOMM=1

When the application finishes, the results of the data collection are written to a file
(mpiprofile.pfc by default). By default this file is saved in a format specific to profilecomm,
but it is possible to save it in a text format. The readpfc command enables .pfc files to be
read and analysed.

3.3.2 profilecomm Options
Different options may be specified for profilecomm using the PFC_OPTIONS environment
variable.

For example:

export PFC_OPTIONS=”-f foo.pfc”

Some of the options that modify the behavior of profilecomm when saving the results in a
file are below:

-f file, -filename file
Saves the result in the file file instead of the default file (mpiprofile.txt for text format files
and mpiprofile.pfc for profilecomm binary format files).

-t, -text
Saves the result in a text format file, readable with any text editor or reader. This format is
useful for debugging purpose but it is not easy to use beyond 10 processes.

-b, -bin
Saves the results in a profilecomm binary format file. This is the default format. The readpfc
command is required to work with these files.

-s, -sync
Synchronizes the processes during the time measurements. This option is set by default.

-ns, -nosync
Doesn’t synchronize the processes during the time measurements.

-v32, -volumic32
Use 32 bit volumic matrices. This can save memory when profiling application with a large
number of processes. A process must not send more than 4GBs of data to another process.

-v64, -volumic64
Use 64 bits volumic matrices. This is the default behavior. It allows the profiling of
processes which exchanges more than 4GBs of data.

Examples

To profile the foo program and save the results of the data collection in the default file
mpiprofile.pfc:

$ MPIANALYSER_PROFILECOMM=1 srun –p my_partion –N 1 -n 4./foo

To save the results of the data collection in the foo.pfc file:

$ MPIANALYSER_PROFILECOMM=1 PFC_OPTIONS="-f foo.pfc" srun –p
my_partion –N 1 -n 4./foo

To save the result of the collect in text format in the foo.txt file:

3-4 bullx cluster suite - Application Developer's Guide

$ MPIANALYSER_PROFILECOMM=1 PFC_OPTIONS="-t -f foo.txt" srun –p
my_partion –N 1 -n 4./foo

3.3.3 Messages Size Partitions
profilecomm allows the numeric matrices to be split according to the size of the messages.
This feature is activated by setting the PFC_PARTITIONS environment variable. By default,
there is only one partition, i.e. the numeric matrices are not split.
The PFC_PARTITIONS environment variable must be of the form [partitions:] [limits] in
which partitions represents the number of partitions and limits is a comma separated list of
sorted numbers representing the size limits in bytes.
If limits is not set, profilecomm uses the built-in default limits for the requested partition
number.

Example 1
3 partitions using the default limits (1000, 1000000):

$ export PFC_PARTITIONS="3:"

Example 2
3 partitions using user defined limits (in this case, the partition number can be safely
omitted):

$ export PFC_PARTITIONS="3:500,1000"

Or :

$ export PFC_PARTITIONS="500,1000"

Note profilecomm supports a maximum of 10 partitions only.

3.4 profilecomm Data Analysis
To analyze data collected with profilecomm the readpfc command and other tools,
including spreadsheets, can be used. The main features of readpfc are the following:

• Displaying the data contained in profilecomm files.
• Exporting communication matrices in standard file formats.

readpfc syntax

readpfc [options] [file]

If file is not specified, readpfc reads the default file mpiprofile.pfc in the current
directory.

Readpfc output

The main feature of readpfc is to display the information contained in the seven different
sections of a profilecomm file. These are:
• Header
• Point to point
• Collective

 MPI Profiling with mpianalyser and profilecomm 3-5

• Call table
• Histograms
• Statistics
• Topology

Note The header, histograms, statistics and topology sections are not included in the output
when the -t, -text text format options are used.

Header Section

Displays information contained into the header of a profilecomm file. The more interesting
fields are:

• Elapsed Time – indicates the length of the data collection.

• World size - indicates the number of processes.

• Number of partitions – indicates the number of partitions.

• Partitions limits – indicates the list of size limits for the messages partitions (only used if
there are several partitions).

The other fields are less interesting for the final users but are used internally by readpfc.

Example:

Header:
 Version: 2
 Flags: little-endian
 Header size: 40 bytes
 Elapsed time: 9303 us
 World size: 4
 Number of partitions: 3
 Partitions limits: 1000 1000000
 num_intsz: 4 bytes (32 bits)
 num_volsz: 8 bytes (64 bits)

3.4.1 Point to Point Communications
• For point-to-point communication matrices, use the following. The number of

communication messages is displayed first, then the volume. If either the

• –-numeric-only or –-volumic-only options are used then only one matrix is displayed
accordingly.

Example:

Point to point:
 numeric (number of messages)
 0 1.1k 0 0 | 1.1k
 1.1k 0 0 0 | 1.1k
 0 0 0 1.1k | 1.1k
 0 0 1.1k 0 | 1.1k

 volumic (Bytes)
 0 818.8k 0 0 | 818.8k
 818.8k 0 0 0 | 818.8k
 0 0 0 818.8k | 818.8k
 0 0 818.8k 0 | 818.8k

3-6 bullx cluster suite - Application Developer's Guide

If the file contains several partitions and the -J/--split option is set then this command
displays as many numeric matrices as there are partitions. Example:

Point to point:
 numeric (number of messages)
 0 <= msg size < 1000
 0 800 0 0 | 800
 800 0 0 0 | 800
 0 0 0 800 | 800
 0 0 800 0 | 800

 1000 <= msg size < 1000000
 0 300 0 0 | 300
 300 0 0 0 | 300
 0 0 0 300 | 300
 0 0 300 0 | 300

 1000000 <= msg size
 0 0 0 0 | 0
 0 0 0 0 | 0
 0 0 0 0 | 0
 0 0 0 0 | 0

 volumic (Bytes)
 0 818.8k 0 0 | 818.8k
 818.8k 0 0 0 | 818.8k
 0 0 0 818.8k | 818.8k
 0 0 818.8k 0 | 818.8k

If the -r/--rate option is set then the messages rate and data rate matrices are shown
instead of communications matrices. These rates are the average rates for all execution
times not the instantaneous rates. Example:

Point to point:
 message rate (msg/s)
 0 118.2k 0 0 | 118.2k
 118.2k 0 0 0 | 118.2k
 0 0 0 118.2k | 118.2k
 0 0 118.2k 0 | 118.2k

 data rate (Bytes/s)
 0 88.01M 0 0 | 88.01M
 88.01M 0 0 0 | 88.01M
 0 0 0 88.01M | 88.01M
 0 0 88.01M 0 | 88.01M

3.4.2 Collective Section
The collective section is equivalent to the point-to-point section for collective communication
matrices. Example:

Collective:
 numeric (number of messages)
 0 102 202 102 | 406
 102 0 0 100 | 202
 202 0 0 0 | 202
 102 100 0 0 | 202

 volumic (Bytes)
 0 409.6k 421.6k 409.6k | 1.241M
 12.04k 0 0 12k | 24.04k
 421.6k 0 0 0 | 421.6k
 12.04k 409.6k 0 0 | 421.6k

 MPI Profiling with mpianalyser and profilecomm 3-7

3.4.3 Call table section
This section contains the call table. If the –-ct-total-only option is activated, only the
total column is displayed. Example:

Call table:
 0 1 2 3 4 5 6 7 Total
Allgather 0 0 0 0 0 0 0 0 0
Allgatherv 0 0 0 0 0 0 0 0 0
Allreduce 2 2 2 2 2 2 2 2 16
Alltoall 0 0 0 0 0 0 0 0 0
Alltoallv 0 0 0 0 0 0 0 0 0
Bcast 200 200 200 200 200 200 200 200 1.6k
Bsend 0 0 0 0 0 0 0 0 0
Gather 0 0 0 0 0 0 0 0 0
Gatherv 0 0 0 0 0 0 0 0 0
Ibsend 0 0 0 0 0 0 0 0 0
Irsend 0 0 0 0 0 0 0 0 0
Isend 0 0 0 0 0 0 0 0 0
Issend 0 0 0 0 0 0 0 0 0
Reduce 200 200 200 200 200 200 200 200 1.6k
Reduce_scatter 0 0 0 0 0 0 0 0 0
Rsend 0 0 0 0 0 0 0 0 0
Scan 0 0 0 0 0 0 0 0 0
Scatter 0 0 0 0 0 0 0 0 0
Scatterv 0 0 0 0 0 0 0 0 0
Send 1.1k 1.1k 1.1k 1.1k 1.1k 1.1k 1.1k 1.1k 8.8k
Sendrecv 0 0 0 0 0 0 0 0 0
Sendrecv_replace 0 0 0 0 0 0 0 0 0
Ssend 0 0 0 0 0 0 0 0 0
Start 0 0 0 0 0 0 0 0 0

3.4.4 Histograms Section
This section contains the message sizes histograms. It shows the number of messages
whose size is zero, between 1 and 9, between 10 and 99, ..., between 108 and 109-1
and greater than 109.

Example:

Histograms of msg sizes
size pt2pt coll total
 0 0 0 0
 1 800 6 806
 10 1.2k 6 1.206k
 100 1.2k 500 1.7k
1000 1.2k 500 1.7k
104 0 0 0
105 0 0 0
106 0 0 0
107 0 0 0
108 0 0 0
109 0 0 0

3.4.5 Statistics Section
This section displays statistics computed by readpfc. These statistics are based on the
information contained in the data collection file. This section is divided into two or three
sub-sections:

• The General statistics section contains statistics for the whole application.

3-8 bullx cluster suite - Application Developer's Guide

• The Per process average section contains average per process.

• The Messages sizes partitions section displays the distribution of messages among the
partitions. This section is only present if there are several partitions.

• For each statistic, we distinguish point-to-point communications from collective
communications.

Example:

General statistics:
Total time: 0.009303s (0:00:00.009303)
 pt2pt | coll | total
Messages count | 4400 | 1012 | 5412
Volume | 3.2752MB | 2.10822MB | 5.38342MB
Avg message size| 744B | 2.08322kB | 995B
Std deviation | 1216.4 | 1989.1 | 1488.4
Variation coef. | 1.6341 | 0.95481 | 1.4963
Frequency msg/s | 472.966k | 108.782k | 581.748k
Throughput B/s | 352.06MB/s | 226.62MB/s | 578.68MB/s

Per process average:
 pt2pt | coll | total
Messages count | 1100 | 253 | 1353
Volume | 818.8kB | 527.054kB | 1.34585MB
Frequency msg/s | 118.241k | 27.1955k | 145.437k
Throughput B/s | 88.015MB/s | 56.654MB/s | 144.67MB/s

Messages sizes partitions:
 | pt2pt count | coll count | total
count
 0 <= sz < 1000 | 3.2e+03 73% | 5.1e+02 51% | 3.7e+03 69%
 1000 <= sz < 1000000 | 1.2e+03 27% | 5e+02 49% | 1.7e+03 31%
 1000000 <= sz | 0 0% | 0 0% | 0 0%

The message sizes partitions should be examined first.

Where:

Total time Total execution time between MPI_Init and MPI_Finalize.

Messages count Number of sent messages.

Volume Volume of sent messages (bytes).

Avg message size Average size of messages (bytes).

Std deviation Standard deviation of messages size.

Variation coef. Variation coefficient of messages size.

Frequency msg/s Average frequency of messages (messages per second).

Throughput B/s Average throughput for sent messages (bytes per second).

3.4.6 Topology Section
This section shows the distribution of processes on nodes and processors. This distribution is
displayed in two different ways.

• First, for each process the node and the CPU in the node where it is running and
secondly, the list of running processes for each node.

 MPI Profiling with mpianalyser and profilecomm 3-9

Example- 8 processes running on 2 nodes.

Topology:
8 process on 2 hosts
process hostid cpuid
 0 0 0
 1 0 1
 2 0 2
 3 0 3
 4 1 0
 5 1 1
 6 1 2
 7 1 3

host processes
 0 0 1 2 3
 1 4 5 6 7

3.5 Profilcomm Data Display Options
The following options can be used to display the data:

-a, --all
Displays all the information. Equivalent to –ghimst.

-c, --collective
Displays collective communication matrices.

-g, --topology
Displays the topology of execution environment.

-h, --header
Displays header of the profilecomm file.

-i, --histograms
Displays messages size histograms.

-j, --joined
Displays entire numerics matrices (i.e. not split). This is the default.

-J, --splitted
Display numerics matrices split according to messages size.

-m, --matrix, --matrices
Displays communication matrix (matrices). Equivalent to –cp.

-n, --numeric-only
Does not display volume matrices. This option cannot be used simultaneously with the -v/-
-volumic-only option.

-p, --p2p, --pt2pt
Displays point-to-point communication matrices.

-r, --rate, --throughput
Displays messages rate and data rate matrices instead of communications matrices.

-s, --statistics
Computes and displays some statistics regarding MPI communications.

3-10 bullx cluster suite - Application Developer's Guide

-S, --scalable
Displays all scalable information; this means all information whose size is independent of
number of processes. Useful when there is a great number of processes. Equivalent to histT.

--square-matrices
Displays the matrices containing the sum of the squared sizes of messages. These matrices
are used for standard deviation computation and are useless for final users. This option is
mainly provided for debugging purposes.

-t, --calltable
Displays the call table.

-T, --ct-total-only
Displays only the Total column of the call table. By default readpfc displays also one
column for each process.

-v, --volumic-only
Does not display numeric matrices. This option cannot be used simultaneously with -n/--
numeric-only option.

3.5.1 Exporting a Matrix or an Histogram
The communication matrices and the histograms can be exported in different formats that
can be used by other software programs, for example spreadsheets. Three formats are
available: CSV (Comma Separated Values), MatrixMarket (not available for histogram
exports) and gnuplot.

It is also possible to have a graphical display of the matrix or the histogram, which is better
for matrices with a large number of elements. Obviously, it is also possible to include the
graphics in a report. Seven graphic formats are available: PostScript, Encapsulated
PostScript, SVG, xfig, EPSLaTeX, PSLaTeX and PSTeX. All these formats are vectorial, which
means the dimensions of the graphics can be modified if necessary.

Figure 3-1. An example of a communication matrix

 MPI Profiling with mpianalyser and profilecomm 3-11

Figure 3-2. An example of a histogram

The following options may be used when exporting matrices:

--csv-separator sep Modifies CSV delimiter. Default delimiter is comma

“,”. Some software programs prefer a semicolon “;”.

-f format, --format format Chooses export format. Default format is CSV
(Comma Separated Values).

help lists available export formats

csv export in CSV format

mm, market, MatrixMarket export in MatrixMarket format

gp, gnuplot export in a format used by pfcplot so that a
graphical display of the matrix can be produced

ps, postscript export in PostScript format

eps export in Encapsulated PostScript format

svg export in Scalable Vector Graphics format

fig, xfig export in xfig format

epslatex export in LaTex and Encapsulated PostScript format

pslatex export in LaTex format and PostScript inline

pstex export in Tex format and PostScript inline

The available values are the following:

mportant When using epslatex two files are written: xxx.tex and xx.eps. The filename
indicated in the –o option is the name of the Latex file.

--logscale[=base]

3-12 bullx cluster suite - Application Developer's Guide

Uses a logarithmic color scale. Default value for logarithm basis is 10; this basis can be
modified using the base argument. This option is only relevant when exporting in a
graphical format.

--nogrid
Does not display the grid on a graphical representation of the matrix.

-o file, --output file
Specifies the file name for an export file. The default filenames are out.csv, out.mm, out.dat,
out.ps, out.svg, out.fig or out.tex, according to export format. This option is only available
with the –x option.

--palette pal
Uses a personalized colored palette. This option is only relevant when exporting in a
graphical format. This palette must be compatible with the defined function of gnuplot,
for instance: --palette '0 "white", 1 "red", 2 "black"' or --palette '0
"#0000ff", 1 "#ffff00", 2 "ff0000"'

--title title
Uses a personalized title for a graphical display. The default title is Point-to-point/collective
numeric/volumic communication matrix, according to the exported matrix.

-x object, --export object
Exports a communication matrix or histogram specified by the object argument. Values
for object are the following:

help List of available matrices and histograms

pn[.part],

np[.part]

Point-to-point numeric communication matrix. The optional item part is the
partition number for split matrices. If part is not set, the entire matrix (i.e.the
sum of the split matrices) is exported.

pv, vp Point to point volumic communication matrix

cn[.part],

nc[.part]

Collective numeric communication matrix

cv, vc Collective volumic communication matrix

ph, hp Point-to-point messages size histogram

ch, hc Collective messages size histogram

th, ht Total messages size histogram (collective and point-to-point)

ah, ha Both point-to-point and collective messages size histograms (all histograms)

Other options

-H, --help, --usage
Displays help messages

-q, --quiet
Does not display help warning messages (error messages continue to be displayed).

-V, --version
Displays program version.

Examples

To display all information available in foo.pfc file, enter:

 MPI Profiling with mpianalyser and profilecomm 3-13

$ readpfc -a foo.pfc

This will give information similar to that below

Header:
 Version: 2
 Flags: little-endian
 Header size: 40 bytes
 Elapsed time: 9303 us
 World size: 4
 Number of partitions: 3
 Partitions limits: 1000 1000000
 num_intsz: 4 bytes (32 bits)
 num_volsz: 8 bytes (64 bits)
[...]
Topology:
4 process on 1 hosts
process hostid cpuid
 0 0 0
 1 0 1
 2 0 2
 3 0 3

host processes
 0 0 1 2 3

To display a point-to-point numerical communication matrix:

$ readpfc -pn foo.pfc

Point to point:
 numeric (number of messages)
 0 1.1k 0 0 | 1.1k
 1.1k 0 0 0 | 1.1k
 0 0 0 1.1k | 1.1k
 0 0 1.1k 0 | 1.1k

To export the collective volumic communication matrix in CSV format in the default file:

$ readpfc –x cv foo.pfc

Warning: No output file specified, write to default (out.csv).

$ ls out.csv

out.csv

To export the first part (small messages) of point-to-point numerical communication matrices
in PostScript format in the foo.ps file:

$ readpfc -x np.0 -f ps -o foo.ps foo.pfc
$ ls foo.ps

foo.ps

3-14 bullx cluster suite - Application Developer's Guide

3.5.2 pfcplot, histplot and gnuplot
The pfcplot script converts matrices into graphic using gnuplot . It is generally used by
readpfc , but can be used directly by the user who wants more flexibility. The matrix must
be exported with the –f gnuplot option to be read by pfcplot.

For more details enter:

man pfcplot

Users who have particular requirements can invoke gnuplot directly. To do this the matrix
must be exported with gnuplot format or with CSV format, choosing space as the
separator.

mportant Due to the limitations of gnuplot, one null line and one null column are added to
the exported matrix in gnuplot format.

Histplot is the equivalent of pfcplot for histograms. Like pfcplot, it can be used directly by
users but it is not user-friendly. More details are available from the man page:

man histplot

 Scientific Libraries 4-1

Chapter 4. Scientific Libraries
This chapter describes the following topics:

• 4.1 Overview

• 4.2 Bull Scientific Studio

• 4.3 Intel Scientific Libraries

• 4.4 NVIDIA CUDA Scientific Libraries

mportant See the Software Release Bulletin for details of the Scientific Libraries included
with your delivery.

4.1 Overview
Scientific Libraries include tested, optimized and validated functions that spare users the
need to develop such subprograms themselves.

The advantages of scientific libraries are:

• Portability
• Support for different types of data (real, complex, double precision, etc.)
• Support for different kinds of storage (banded matrix, symmetrical, etc.)

The following sets of scientific libraries are available for Bull Extreme Computing clusters.

Bull Scientific Studio is included in the bullx cluster suite delivery and includes a range of
Open Source libraries that can be used to facilitate the development and execution of a
wide range of applications.

Proprietary scientific libraries that have to be purchased separately are available from
Intel®, and from NVIDIA® for those clusters which include NVIDIA graphic card
accelerators.

4.2 Bull Scientific Studio
Bull Scientific Studio is based on the Open Source Management Framework (OSMF), and
provides an integrated set of up-to-date and tested mathematical scientific libraries that can
be used in multiple environments. They simplify modeling by fixing priorities, ensuring the
cluster is in full production for the maximum amount of time, and are ideally suited for large
multi-core systems.

4-2 bullx cluster suite - Application Developer's Guide

Figure 4-1. Bull Scientific Studio structure

4.2.1 Scientific Libraries and Documentation
The scientific libraries are delivered with the tools included in Bull Scientific Studio for
developing and running your application.

All the libraries included in Bull Scientific Studio are documented in a two RPM files called
SciStudio_shelf and OpenS_shelf as shown in Figure 4-1. These files are included in the
bullx cluster suite delivery and can be installed on any system. The install paths are:

/opt/scilibs/ SCISTUDIO_SHELF/SciStudio_shelf -<version>
/opt/opens/OPENS_SHELF/OpenS_shelf-<version>/

The SciStudio_shelf and the OpenS_shelf rpm are generated for each release and contain
the documentation for each library included in the release. The documentation for each
library is included in the directory for each library based on the type of library. All of the
Scientific Studio libraries are found in /opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-
<version> and the OpenS library documentation is found under
/opt/opens/OPENS_SHELF/OpenS_shelf-<versions>.
For example, the SciStudio libraries are found under /SCISTUDIO_SHELF/SciStudio_shelf-
<version>/<library name>, for example, the SCIPORT documentation is included in the
folder

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/SCIPORT/sciport-
<version>

If there are multiple versions of a library then there is a separate directory for each version
number.
A typical documentation directory structure for a shelf rpm files is shown below:

Packaging information

• Configuration information
• README, notice
• Changelogs
• Installation

 Scientific Libraries 4-3

Documentation

• HowTos, tips
• Manuals
• Examples/tutorials

Support

• Troubleshooting
• Bug reports
• FAQs

External documents

• Documents related to the subject
• Weblinks

The following scientific libraries are included in Bull Scientific Studio.

4.2.2 Scientific Library Versions

4.2.2.1 MPI versions

The libraries that use MPI have been built in two versions. One with the MPIBULL2 library,
and one with the bullx MPI library. For this release, the <mpi-version> referred to in this
chapter below are:

For MPIBULL2: mpibull2_1.3.9

For bullx MPI: bullxmpi_1.0.2

4.2.2.2 Build Version

The <buildversion> referred in this section is either 9010.Bull or Bull.9010.

The libraries listed below are the only libraries that use the 9010.Bull build version:

Blacs, BlockSolve95, ftw2, ParMETIS, sciport

4.2.3 BLACS
BLACS stands for Basic Linear Algebra Communication Subprograms.

BLACS is a specialized communications library that uses message passing. After defining a
process chart, it exchanges vectors, matrices and blocks and so on. It can be compiled on
top of MPI systems.

BLACS uses MPIBull2 or bullx MPI libraries. More information is available from
documentation included in the SciStudio_shelf rpm. When this is installed, the
documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/BLACS/blacs-<ver>

4.2.3.1 Using BLACS

BLACS is located in the following directory:

/opt/scilibs/BLACS/blacs-<version>/<mpi-version>_<buildversion>

4-4 bullx cluster suite - Application Developer's Guide

The libraries include the following:

libblacsCinit_MPI-LINUX-0.a
libblacsF77init_MPI-LINUX-0.a
libblacs_MPI-LINUX-0.a

4.2.3.2 Testing the Installation of the Library

The installation of the library can be tested using the tests found in the following directory:

/opt/scilibs/BLACS/blacs-<version>/<mpi-version>_<buildversion>/tests

Setting Up the Environment
First, the MPI_HOME and LD_LIBRARY_PATH variables must be set up to point to the MPI
libraries that are to be tested. For example when using mpibull2 libraries:

export MPI_HOME=/opt/mpi/mpibull2-<version>/
export PATH=$MPI_HOME/bin:$PATH
export LD_LIRARY_PATH=$MPI_HOME/lib:$LD_LIRARY_PATH

Running the Tests
Then, run the tests as follows:

mpirun -np 4 xCbtest_MPI-LINUX-0
mpirun -np 4 xFbtest_MPI-LINUX-0

4.2.4 SCALAPACK
SCALAPACK stands for: SCALable Linear Algebra PACKage.

This library is the scalable version of LAPACK. Both libraries use block partitioning to
reduce data exchanges between the different memory levels to a minimum. SCALAPACK is
used above all for eigenvalue problems and factorizations (LU, Cholesky and QR).
Matrices are distributed using BLACS.

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:
 /opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/SCALAPACK/ScaLAPACK-
<ver>

 Scientific Libraries 4-5

Figure 4-2. Interdependence of the different mathematical libraries (Scientific Studio and Intel)

4.2.4.1 Using SCALAPACK

Local component routines are called by a single process with arguments residing in local
memory.
Global component routines are synchronous and parallel. They are called with arguments
that are matrices or vectors distributed over all the processes.

SCALAPACK uses MPIBull2/bullx MPI.

The default installation of this library is as follows:

/opt/scilibs/SCALAPACK/ScaLAPACK-<version>/<mpi-version>_<buildversion>

The following library is provided:

Libscalapack.a

Several tests are provided in the following directory:

/opt/scilibs/SCALAPACK/ScaLAPACK-<version>/<mpi-version>_<buildversion>/tests

4.2.5 Blocksolve95
BlockSolve95 is a scalable parallel software library primarily intended for the solution of
sparse linear systems that arise from physical models, especially problems involving
multiple degrees of freedom at each node.

BlockSolve95 uses the MPIBull2/bullx MPI library.

The default installation of this library is as follows:

Used for complex
computations (system
resolution, eigenvalue
computations, etc.)

Message passing primitive

Sequential
equivalent of
SCALAPACK

Global

Local

4-6 bullx cluster suite - Application Developer's Guide

/opt/scilibs/BLOCKSOLVE95/BlockSolve95-<version>/<mpi-
version>_<buildversion>/lib/lib0/linux

The following library is provided:

libBS95.a

Some examples are also provided in the following directory.

/opt/scilibs/BLOCKSOLVE95/BlockSolve95-<version>/<mpi-
version>_<buildversion>/examples

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/BLOCKSOLVE95/BlockSolve95-<ver>

4.2.6 lapack
lapack_sci is a set of Fortran 77 routines used to resolve linear algebra problems such as
the resolution of linear systems, eigenvalue computations, matrix computations, etc.
However, it is not written for a parallel architecture.

The default installation of this library is as follows:
/opt/scilibs/LAPACK_SCI/lapack_sci-<version>

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf--<version>/ LAPACK_SCI -<version>

4.2.7 SuperLU
This library is used for the direct solution of large, sparse, nonsymmetrical systems of linear
equations on high performance machines. The routines will perform an LU decomposition
with partial pivoting and triangular systems solves through forward and back substitution.
The factorization routines can handle non-square matrices, but the triangular solves are
performed only for square matrices. The matrix commands may be pre-ordered, either
through library or user supplied routines. This pre-ordering for sparse equations is
completely separate from the factorization.

Working precision iterative refinement subroutines are provided for improved backward
stability. Routines are also provided to equilibrate the system, estimate the condition
number, calculate the relative backward error and estimate error bounds for the refined
solutions. SuperLU_Dist is used for distributed memory.

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/SUPERLU_DIST/SuperLU_DIST-<version>
/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/SUPERLU_MT/SuperLU_MT-<version>
/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/SUPERLU_SEQ/SuperLU_SEQ-<version>

SuperLU Libraires

The following SuperLU Libraries are provided:

/opt/scilibs/SUPERLU_DIST/SuperLU_DIST-<version>/<mpi-
version>_<buildversion>/lib/superlu_lnx_x86_64.a

 Scientific Libraries 4-7

/opt/scilibs/SUPERLU_MT/SuperLU-MT-<version>/lib/ superlu_mt_PTHREAD.a
/opt/scilibs/SUPERLU_SEQ/SuperLU-SEQ-3.0 /lib/superlu_x86_64.a

Tests are provided for each library under the following directory:
/opt/scilibs/SUPERLU_<type>/SuperLU_<type>-<version>/test directory

4.2.8 FFTW
FFTW stands for the Fastest Fourier Transform in the West. FFTW is a C subroutine library
for computing a discrete Fourier transform (DFT) in one or more dimensions, of arbitrary
input size, and using both real and complex data.

There are three versions of FFTW in this distribution. They are located in the following
directories:

/opt/scilibs/FFTW/FFTW3-<version>/lib
/opt/scilibs/FFTW/fftw-2<version>/<mpi-version>_<buildversion>/lib

Tests are also available in the following directory:
/opt/scilibs/FFTW/fftw-<version>/test

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/FFTW/fftw-<version>

4.2.9 PETSc
PETSc stands for Portable, Extensible Toolkit for Scientific Computation. PETSc is a suite of
data structures and routines for the scalable (parallel) solution of scientific applications
modeled by partial differential equations. It employs the MPI standard for all message-
passing communications (see http://www.mcs.anl.gov/mpi for more details).

The PETSc library is available in the following directory:

/opt/scilibs/PETSC/PETSc-<version>/<mpi-version>_<buildversion>/lib/linux-intel-
opt/

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/PETSC/PETSc -<version>

4.2.10 NETCDF/sNETCDF
NetCDF (Network Common Data Form) allows the management of input/output data.
NetCDF is an interface for array-oriented data access, and is a library that provides an
implementation of the interface. The NetCDF library also defines a machine-independent
format for representing scientific data. Together, the interface, library, and format support
the creation, access, and sharing of scientific data.

The library is located in the following directories:

/opt/scilibs/NETCDF/netCDF-<version>/<mpi-version>_<buildversion>/bin
/opt/scilibs/NETCDF /netCDF-<version>/<mpi-version>_<buildversion>/include
/opt/scilibs/NETCDF /netCDF-<version>/<mpi-version>_<buildversion>/lib
/opt/scilibs/NETCDF /netCDF-<version>/<mpi-version>_<buildversion>/man

http://www.mcs.anl.gov/mpi

4-8 bullx cluster suite - Application Developer's Guide

/opt/scilibs/SNETCDF/snetCDF-<version>/bin
/opt/scilibs/SNETCDF/snetCDF-<version>/include
/opt/scilibs/SNETCDF/snetCDF-<version>/lib
/opt/scilibs/SNETCDF/snetCDF-<version>/man

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/NETCDF/netCDF-<version>

4.2.11 pNETCDF
Parallel-NetCDF library provides high-performance I/O while still maintaining file-format
compatibility with Unidata's NetCDF. NetCDF (Network Common Data Form) is a set of
software libraries and machine-independent data formats that support the creation, access,
and sharing of array-oriented scientific data.

The library is located in the following directories:

/opt/scilibs/PNETCDF/pNetCDF-<version>/<mpi-version>_<buildversion>/bin
/opt/scilibs/PNETCDF /pNetCDF-<version>/<mpi-version>_<buildversion>/include
/opt/scilibs/PNETCDF /pNetCDF-<version>/<mpi-version>_<buildversion>/lib
/opt/scilibs/PNETCDF /pNetCDF-<version>/<mpi-version>_<buildversion>/man

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:
/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/PNETCDF/pNetCDF-<version>

4.2.12 METIS and PARMETIS
METIS is a set of serial programs for partitioning graphs, partitioning finite element meshes,
and producing fill reducing orderings for sparse matrices. The algorithms implemented in
METIS are based on the multilevel recursive-bisection, multilevel k-way, and multi-constraint
partitioning schemes developed in our lab.

ParMETIS is an MPI-based parallel library that implements a variety of algorithms for
partitioning unstructured graphs, meshes, and for computing fill-reducing orderings of
sparse matrices. ParMETIS extends the functionality provided by METIS and includes
routines that are especially suited for parallel Adaptive Mesh Refinement computations and
large scale numerical simulations.

The libraries for ParmMETIS are located in the following directory:

/opt/scilibs/PARMETIS/ParMETIS<version>/<mpi-version>_<buildversion>/lib

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/PARMETIS/ParMETIS-<version>

 Scientific Libraries 4-9

4.2.13 SciPort
SCIPORT is a portable implementation of CRAY SCILIB that provides both single and
double precision object libraries. SCIPORTS provides single precision and SCIPORTD
provides double precision.

The libraries for SCIPORT can be found in the following directory:
/opt/scilibs/SCIPORT/sciport-<versions>/lib

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:
/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/SCIPORT/sciport-<version>

4.2.14 gmp_sci
GMP is a free library for arbitrary precision arithmetic, operating on signed integers,
rational numbers, and floating point numbers. There is no practical limit to the precision
except the ones implied by the available memory in the machine GMP runs on. GMP has a
rich set of functions, and the functions have a regular interface.

The main target applications for GMP are cryptography applications and research, Internet
security applications, algebra systems, computational algebra research, etc.

GMP is carefully designed to be as fast as possible, both for small operands and for huge
operands. The speed is achieved by using full words as the basic arithmetic type, by using
fast algorithms, with highly optimized assembly code for the most common inner loops for
a lot of CPUs, and by a general emphasis on speed.

GMP is faster than any other big num library. The advantage for GMP increases with the
operand sizes for many operations, since GMP uses asymptotically faster algorithms.

The libraries for GMP_SCI can be found in the following directory:

/opt/scilibs/GMP_SCI/gmp_sci-<version>/lib
/opt/scilibs/GMP_SCI/gmp_sci-<version>/include
/opt/scilibs/GMP_SCI/gmp_sci-<version>/info

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/GMP/gmp -<version>

4.2.15 MPFR
The MPFR library is a C library for multiple-precision, floating-point computations with
correct rounding. MPFR has continuously been supported by the INRIA (Institut National de
Recherche en Informatique et en Automatique) and the current main authors come from the
CACAO and Arénaire project-teams at Loria (Nancy, France) and LIP (Lyon, France)
respectively. MPFR is based on the GMP multiple-precision library.
The main goal of MPFR is to provide a library for multiple-precision floating-point
computation which is both efficient and has a well-defined semantics.

The libraries for MPFR can be found in the following directory:

/opt/scilibs/MPFR/MPFR-<version>/lib
/opt/scilibs/MPFR/MPFR-<version>/include
/opt/scilibs/MPFR/MPFR-<version>/share

http://www.inria.fr/
http://www.loria.fr/equipes/cacao/
http://www.ens-lyon.fr/LIP/Arenaire/
http://www.loria.fr/
http://www.ens-lyon.fr/LIP/
http://gmplib.org/

4-10 bullx cluster suite - Application Developer's Guide

More information is available from the documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/MPFR/MPFR-<version>

4.2.16 sHDF5/pHDF5
The HDF5 technology suite includes :

• A versatile data model that can represent very complex data objects and a wide
variety of metadata.

• A completely portable file format with no limit on the number or size of data objects in
the collection.

• A software library that runs on a range of computational platforms, from laptops to
massively parallel systems, and implements a high-level API with C, C++, Fortran 90,
and Java interfaces.

• A rich set of integrated performance features that allow for access time and storage
space optimizations.

• Tools and applications for managing, manipulating, viewing, and analyzing the data
in the collection

The libraries for sHDF5/pHDF5 can be found in the following directory:

/opt/scilibs/PHDF5/pHDF5-<version>/<mpi-version>_<buildversion>/lib
/opt/scilibs/PHDF5/pHDF5-<version>/<mpi-version>_<buildversion>/bin
/opt/scilibs/PHDF5/pHDF5-<version>/<mpi-version>_<buildversion>/include
/opt/scilibs/PHDF5/pHDF5-<version>/<mpi-version>_<buildversion>/doc

/opt/scilibs/SHDF5/sHDF5-<version>/lib
/opt/scilibs/SHDF5/sHDF5-<version>/bin
/opt/scilibs/SHDF5/sHDF5-<version>/include
/opt/scilibs/SHDF5/sHDF5-<version>/doc

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/PHDF5/pHDF5-<version>
/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/SHDF5/sHDF5-<version>

4.2.17 ga/Global Array
The Global Arrays (GA) toolkit provides an efficient and portable ‘shared-memory’
programming interface for distributed-memory computers. Each process in a MIMD parallel
program can asynchronously access logical blocks of physically distributed dense multi-
dimensional arrays, without the need for explicit cooperation with other processes. Unlike
other shared-memory environments, the GA model exposes the non-uniform memory access
(NUMA) characteristics of the high performance computers to the programmer, and takes
into account the fact that access to a remote portion of the shared data is slower than to the
local portion. The location information for the shared data is available, and direct access to
the local portions of shared data is provided.

The libraries for ga are located in the following directory:

/opt/opens/GA/ga-<version>/<mpi-version>_<buildversion>/lib

 Scientific Libraries 4-11

More information is available from documentation included in the OpenS_shelf rpm. When
this is installed, the documentation files will be located under:

/opt/opens/OPENS_SHELF/OpenS_shelf-<version>/GlobalArray /ga-<version>

4.2.18 gsl
The GNU Scientific Library (GSL) is a numerical library for C and C++ programmers. It is
free software provided under the GNU General Public License. The library provides a wide
range of mathematical routines such as random number generators, special functions and
least-squares fitting. There are over 1000 functions in total with an extensive test suite. The
complete range of subject areas covered by the library includes:

Complex Numbers Roots of Polynomials
Special Functions Vectors and Matrices
Permutations Sorting
BLAS Support Linear Algebra
Eigensystems Fast Fourier Transforms
Quadrature Random Numbers
Quasi-Random Sequences Random Distributions
Statistics Histograms
N-Tuples Monte Carlo Integration
Simulated Annealing Differential Equations
Interpolation Numerical Differentiation
Chebyshev Approximation Series Acceleration
Discrete Hankel Transforms Root-Finding
Minimization Least-Squares Fitting
Physical Constants IEEE Floating-Point
Discrete Wavelet Transforms Basis splines

The gsl libraries can be found in the following directory:

/opt/scilibs/GSL/GSL-<version>/lib
/opt/scilibs/GSL/GSL-<version>/bin
/opt/scilibs/GSL/GSL-<version>/include
/opt/scilibs/GSL/GSL-<version>/doc

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/GSL/gsl-<version>

4.2.19 pgapack
PGAPack is a general-purpose, data-structure-neutral, parallel genetic algorithm package
developed by Argonne National Laboratory

The libraries for pga can be found in the following directory:

/opt/scilibs/ PGAPACK/pgapack-<version>/<mpi-version>_<buildversion>/lib
/opt/scilibs /PGAPACK/pgapack-<version>/<mpi-version>_<buildversion>/doc
/opt/scilibs /PGAPACK/pgapack-<version>/<mpi-version>_<buildversion>/include
/opt/scilibs /PGAPACK/pgapack-<version>/<mpi-version>_<buildversion>/man

4-12 bullx cluster suite - Application Developer's Guide

More information is available from the documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/PGAPACK/pgapack-<version>

4.2.20 valgrind
Valgrind is an award-winning instrumentation framework for building dynamic analysis
tools. There are Valgrind tools that can automatically detect many memory management
and threading bugs, and profile your programs in detail. You can also use Valgrind to
build new tools. The Valgrind distribution currently includes five production-quality tools: a
memory error detector, a thread error detector, a cache and branch-prediction profiler, a
call-graph generating cache profiler, and a heap profiler. It also includes two experimental
tools: a data race detector, and an instant memory leak detector.

The libraries for Valgrind are located in the following directories:
/opt/opens/VALGRIND_OPENS/valgrind_OpenS--<version>/share/doc/valgrind/
/opt/opens/VALGRIND_OPENS/valgrind_OpenS-<version>/bin
/opt/opens/VALGRIND_OPENS/valgrind_OpenS-<version>/valgrind/include
/opt/opens/VALGRIND_OPENS/valgrind_OpenS-<version>/valgrind/lib
/opt/opens/VALGRIND_OPENS/valgrind_OpenS-<version>/include/valgrind/vki/
/opt/opens/VALGRIND_OPENS/valgrind_OpenS-<version>/man
/opt/opens/VALGRIND_OPENS/valgrind_OpenS-<version>/lib/valgrind/amd64-linux
/opt/opens/VALGRIND_OPENS/valgrind_OpenS-<version>/lib/valgrind/ x86-linux

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/opens/OPENS_SHELF/OpenS_shelf-<version>/VALGRIND/valgrind-<version>

4.2.21 Hypre
Hypre is a library for solving large, sparse linear systems of equations on massively parallel
computers. The main features of this library are:

• Scalable preconditioners. Hypre contains several families of preconditioned
algorithms focused on the scalable solution of very large sparse linear systems.
These algorithms include structured multigrid and element-based algebraic
multigrid

• Implementation of a suit of common iterative methods. Hypre provides commonly used
Krylov-based iterative methods to be used with its scalable preconditioners. These
include Conjugate Gradient and GMRES for symmetrical and unsymmetrical
matrices, respectively.

• Intuitive grid-centric interfaces. Hypre provides data structures to represent and
manipulate sparse matrices through interfaces. Each interface provides access to
several solvers without the need to write new interface codes. These interfaces
include stencil-based structured/semi-structured interfaces, finite-element based
unstructured interface, and a linear algebra based interface.

• Configuration Options. Hypre can be installed in several computer platforms by
simply setting a set of installation parameters. These parameters or options
include compilers, optimization modes, and versions of MPI and BLAS routines
particular to the users' computational environment. In most cases, users only need
to type a configure command followed by a make command.

 Scientific Libraries 4-13

• Dynamic configuration of parameters. Hypre works for users with different levels of
expertise. More experience users can take further control of the solution process
through various tuning parameters.

• User defined interfaces for multiple languages. Hypre currently supports Fortran and C
languages.

The libraries for Hypre are located in the following directory:

/opt/scilibs/HYPRE/Hypre-<version>/lib
/opt/scilibs/HYPRE/Hypre-<version>/doc

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/Hypre/Hypre-<version>

4.2.22 ML
ML, Sandia's main multigrid preconditioning package. ML is designed to solve large
sparse linear systems of equations arising primarily from elliptic PDE discretizations. ML is
used to define and build multigrid solvers and preconditioners, and it contains black-box
classes to construct highly-scalable smoothed aggregation preconditioners. ML
preconditioners have been used on thousands of processors for a variety of problems,
including the incompressible Navier-Stokes equations with heat and mass transfer, linear
and nonlinear elasticity equations, the Maxwell equations, semiconductor equations, and
more.

The libraries for ML are located in the following directory:

/opt/scilibs/ML/ml-<version>/doc
/opt/scilibs/ML/ml-<version>/lib
/opt/scilibs/ML/ml-<version>/include

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/ML/ml-<version>

4.2.23 spooles
SPOOLES is a library for solving sparse real and complex linear systems of equations,
written in the C language using object oriented design. The following functionalities are
included:

1. Compute multiple minimum degree, generalized nested dissection and multi-section
orderings of matrices with symmetric structure.

2. Factor and solve square linear systems of equations with symmetric structure, with or
without pivoting for stability. The factorization can be symmetric LDLT, Hermitian LDLH,
or non-symmetric LDU. A direct factorization or a drop tolerance factorization can be
computed. The factors and solve can be done in serial mode, multithreaded with
Solaris or POSIX threads, or with MPI.

3. Factor and solve overdetermined full rank systems of equations using a multifrontal QR
factorization, in serial or using POSIX threads.

4-14 bullx cluster suite - Application Developer's Guide

4. Solve square linear systems using a variety of Krylov iterative methods. The
preconditioner is a drop tolerance factorization, constructed with, or without pivoting,
for stability.

The libraries for SPOOLES can be found in the following directory:

/opt/scilibs/SPOOLES/pgapack-<version>/<mpi-version>_<buildversion>/lib
/opt/scilibs/ SPOOLES/pgapack-<version>/<mpi-version>_<buildversion>/doc
/opt/scilibs/SPOOLES/pgapack-<version>/<mpi-version>_<buildversion>/include

More information is available from the documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/SPOOLES/spooles-<version>

4.2.24 Open Trace Format (OTF)
Detailed program analysis of massively parallel programs requires the recording of event
based performance data during run-time, and its visualisation with appropriate software
tools like the Vampir framework.

The specification of a powerful trace file format has to fulfill a large number of
requirements. It must allow an efficient collection of the event based performance data on a
parallel program environment. On the other hand it has to provide a fast and
comprehensive access to the large amount of performance data and the corresponding
event definitions by the analysis software tools.

To improve scalability for very large and massively parallel traces the Open Trace Format
(OTF) is developed at ZIH as a successor format to the Vampir Trace Format (VTF3).

The Open Trace Format makes use of a portable ASCII encoding. It distributes single traces
to multiple so called streams with one or more files each. Merging of records from multiple
files is done transparently by the OTF library. The number of possible streams is not limited
by the number of available file handles.

The read/write library should be used as a portable interface for third party software. The
library supports efficient parallel and distributed access to trace data and offers selective
reading access regarding arbitrary time intervals, process selection and record types.
Optional auxiliary information can assist this selective access.

The software package contains additional tools for trace data conversion or preparation.
More information can be found in the documentation provided.

The libraries for OTF are located in the following directory:

/opt/scilibs/OTF/OTF-<version>/share
/opt/scilibs/OTF/OTF-<version>/lib
/opt/scilibs/OTF/OTF-<version>/include
/opt/scilibs/OTF/OTF-<version>/bin

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/OTF/OTF-<version>

 Scientific Libraries 4-15

4.2.25 scalasca
SCALASCA is a performance analysis tool developed with the goal of making the
optimization of parallel applications on large-scale systems both more effective and more
efficient. It can automatically detect inefficient program behavior and highlight
opportunities for performance improvement. SCALASCA builds on the idea of searching
event traces of parallel applications for execution patterns indicating inefficient behavior.
During the search process, SCALASCA classifies the detected pattern instances by category
and quantifies their significance for every program phase and system resource involved.
The results are made available to the user in a flexible graphical user interface, which can
be investigated using varying levels of granularity. A distinctive feature of SCALASCA in
comparison to its predecessor KOJAK, is that it achieves a higher degree of scalability by
analyzing the trace data in parallel.

The libraries for SCALASCA are located in the following directory:

/opt/scilibs/SCALASCA/scalasca-<version>/doc
/opt/scilibs/SCALASCA/scalasca-<version>/lib
/opt/scilibs/SCALASCA/scalasca-<version>/include
/opt/scilibs/SCALASCA/scalasca-<version>/bin
/opt/scilibs/SCALASCA/scalasca-<version>/example

More information is available from documentation included in the SciStudio_shelf rpm.
When this is installed, the documentation files will be located under:

/opt/scilibs/SCISTUDIO_SHELF/SciStudio_shelf-<version>/SCALASCA/scalasca-
<version>

4-16 bullx cluster suite - Application Developer's Guide

4.3 Intel Scientific Libraries

Note The scientific libraries in this section are all Intel® proprietary libraries and must be bought
separately.

4.3.1 Intel Math Kernel Library
This library, which has been optimized by Intel for its processors, contains, among other
things, the following libraries: BLAS, LAPACK and FFT.

The Intel Cluster MKL is a fully thread-safe library.

The library is located in the /opt/intel/mkl<release_nb>/ directory.

To use it, the environment has to be set by updating the LD_LIBRARY_PATH variable:

export LD_LIBRARY_PATH=/opt/intel/Compiler/<maj_ver_nb>/<min_ver_nb>/mkl/em64t:$LD_LIBRARY_PATH

Example

export LD_LIBRARY_PATH=/opt/intel/Compiler/<11.1>/<069>/mkl/em64t:$LD_LIBRARY_PATH

4.3.2 BLAS
BLAS stands for Basic Linear Algebra Subprograms.

This library contains linear algebraic operations that include matrixes and vectors. Its
functions are separated into three parts:

• Level 1 routine to represent vectors and vector/vector operations.
• Level 2 routines to represent matrixes and matrix/vector operations.
• Level 3 routines mainly for matrix/matrix operations.

This library is included in the Intel MKL package.

For more information see www.netlib.org/blas.

4.3.3 PBLAS
PBLAS stands for Parallel Basic Linear Algebra Subprograms.

PBLAS is the parallelized version of BLAS for distributed memory machines. It requires the
cyclic distribution by matrix block that the BLACS library offers.

This library is included in the Intel MKL package.

4.3.4 LAPACK
LAPACK stands for Linear Algebra PACKage.

This is a set of Fortran 77 routines used to resolve linear algebra problems such as the
resolution of linear systems, eigenvalue computations, matrix computations, etc. However, it
is not written for a parallel architecture.

This library is included in the Intel MKL package.

http://www.netlib.org/blas

 Scientific Libraries 4-17

4.4 NVIDIA CUDA Scientific Libraries
 For clusters that include NVIDIA Tesla graphic accelerators, the NVIDIA Compute Unified
Device Architecture (CUDATM) Toolkit, including versions of the CUFFT and the CUBLAS
scientific libraries, is installed automatically on the LOGIN, COMPUTE and COMPUTEX
nodes.

mportant The CUFFT and CUBLAS libraries are not ABI compatible by symbol, by call, or
by libname with the libraries included in Bull Scientific Studio. The use of the
NVIDIA CUBLAS and CUFFT libraries needs to be made explicit and is exclusive
to systems that include the NVIDIA Tesla graphic accelerators.

4.4.1 CUFFT
CUFFT, the NVIDIA® CUDA™ Fast Fourier Transform (FFT) library is used for computing
discrete Fourier transforms of complex or real-valued data sets. The CUFFT library provides
a simple interface for computing parallel FFTs on a Compute Node connected to a Tesla
graphic accelerator, allowing the floating-point power and parallelism of the node to be
fully exploited.

FFT libraries vary in terms of supported transform sizes and data types. For example, some
libraries only implement Radix-2 FFTs, restricting the transform size to a power of two,
while other implementations support arbitrary transform sizes. The CUFFT library delivered
with bullx cluster suite supports the following features:

• 1D, 2D, and 3D transforms of complex and real-valued data.
• Batch execution of multiple 1D transforms in parallel.
• 2D and 3D transforms in the [2, 16384] range in any dimension.
• 1D transforms up to 8 million elements.
• In-place and out-of-place transforms for real and complex data.

The interface to the CUFFT library is the header file cufft.h. Applications using CUFFT need
to link against the cufft.so Linux DSO when building for the device, and against the
cufftemu.so Linux DSO when building for device emulation.

See The CUDA CUFFT Library document available from www.nvidia.com for more information
regarding types, API functions, code examples and the use of this library.

4.4.2 CUBLAS
CUBLAS is an implementation of BLAS (Basic Linear Algebra Subprograms) on top of the
NVIDIA® CUDA™ driver. The library is self-contained at the API level, that is, no direct
interaction with the CUDA driver is necessary.

The basic model by which applications use the CUBLAS library is to create matrix and
vector objects in the memory space of the Tesla graphics accelerator, fill them with data,
call a sequence of CUBLAS functions, and, finally, load the results back to the host. To
accomplish this, CUBLAS provides helper functions for creating and destroying objects in
the graphics accelerator memory space, and for writing data to and retrieving data from
these objects.

http://www.nvidia.com/

4-18 bullx cluster suite - Application Developer's Guide

Because the CUBLAS core functions (as opposed to the helper functions) do not return an
error status directly (for reasons of compatibility with existing BLAS libraries), CUBLAS
provides a separate function, that retrieves the last recorded error to help debugging.

The interface to the CUBLAS library is the header file cublas.h. Applications using CUBLAS
need to link against the cublas.so Linux DSO when building for the device, and against the
cublasemu.so Linux DSO when building for device emulation.

See The CUDA CUBLAS Library document available from www.nvidia.com for more information
regarding functions for this library.

http://www.nvidia.com/

 Compilers 5-1

Chapter 5. Compilers
This chapter describes the following topics:

• 5.1 Overview

• 5.2.1 Intel® Fortran Compiler Professional Edition for Linux

• 5.2.2 Intel® C++ Compiler Professional Edition for Linux

• 5.2.3 Intel Compiler Licenses

• 5.2.4 Intel Math Kernel Library Licenses

• 5.3 GNU Compilers

• 5.4 NVIDIA nvcc C Compiler

5.1 Overview
Compilers play an essential role in exploiting the full potential of Xeon® processors. Bull
therefore recommends the use of Intel® C/C++ and Intel® Fortran compilers.

GNU compilers are also available. However, these compilers are unable to compile/link
any program which uses MPI_Bull. For MPI_Bull programs it is essential that Intel compilers
are used.

Alternatively, clusters that use NVIDIA Tesla graphic accelerators connected to the Compute
Nodes will use the compilers supplied with the NVIDIA CUDATM Toolkit and Software
Development Kit.

5.2 Intel Tools

5.2.1 Intel® Fortran Compiler Professional Edition for Linux
The current version of the Intel® Fortran compiler is version 11. This supports the Fortran
95, Fortran 90, Fortran 77, Fortran IV standards whilst including many features from the
Fortran 2003 language standard.

The main features of this compiler are:
• Advanced optimization features including auto-vectorization, High-Performance

Parallel Optimizer (HPO), Interprocedural Optimization (IPO), Profile Guided
Optimization (PGO) and Optimized Code Debugging.

• Multi-threaded Application Support including OpenMP and Auto Parallelization to
convert serial applications into parallel applications to fully exploit the processing
power that is available

• Data preloading
• Loop unrolling

The Professional Edition includes the Intel® Math Kernel Library (Intel® MKL) with its
optimized functions for maths processing. It is also compatible with GNU products.
It also supports big endian encoded files. Finally, this compiler allows the execution of
applications, which combine programs written in C and Fortran.

http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm

5-2 bullx cluster suite - Application Developer's Guide

See www.intel.com for more details.

Different versions of the compiler may be installed to ensure compatibility with the compiler
versions used to compile the libraries and applications on your system.

Note It may be necessary to contact the System Administrator to ascertain the location of the
compilers on your system. The paths shown in the examples below may vary.

To specify a particular environment use the command below.

source /opt/intel/Compiler/<maj_ver_nb>/<min_ver_nb>/bin/ifortvars.sh intel64

For example:

• To use version 11.1.069 of the Fortran compiler:

source /opt/intel/Compiler/11.1/069/bin/ifortvars.sh intel64

• To display the version of the active compiler, enter:

ifort --version

• To obtain the compiler documentation go to:

/opt/intel/Compiler/11.1/069/Documentation

Remember that if you are using MPI_Bull then a compiler version has to be used which is
compatible with the compiler originally used to compile the MPI library.

5.2.2 Intel® C++ Compiler Professional Edition for Linux
The current version of the Intel C++ compiler is version 11.

The main features of this compiler are:

• Advanced optimization features including auto-vectorization, High-Performance
Parallel Optimizer (HPO), Interprocedural Optimization (IPO), Profile Guided
Optimization (PGO) and Optimized Code Debugging.

• Multi-threaded Application Support including OpenMP and Auto Parallelization to
convert serial applications into parallel applications to fully exploit the processing
power that is available

• Data preloading

• Loop unrolling

The Professional Edition includes Intel® Threading Building Blocks (Intel® TBB), Intel
Integrated Performance Primitives (Intel® IPP) and the Intel® Math Kernel Library (Intel® MKL)
with its optimized functions for maths processing. It is also compatible with GNU products.

See www.intel.com for more details.

Different versions of the compiler may be installed to ensure compatibility with the compiler
version used to compile the libraries and applications on your system.

http://www.intel.com/
http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm
http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm
http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm
http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm
http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm
http://www.intel.com/

 Compilers 5-3

Note It may be necessary to contact the System Administrator to ascertain the location of the
compilers on your system. The paths shown in the examples below may vary.

To specify a particular environment use the command below:

source /opt/intel/Compiler/<maj_ver_nb>/<min_ver_nb>/bin/iccvars.sh intel64

For example:

• To use version 11.1.069 of the C/C++ compiler:

source /opt/intel/Compiler/11.1/069/bin/iccvars.sh intel64

• To display the version of the active compiler, enter:

icc --version

• To obtain the compiler documentation go to:

/opt/intel/Compiler/11.1/069/Documentation

Remember that if you are using MPI_Bull then a compiler version has to be used which is
compatible with the compiler originally used to compile the MPI library.

5.2.3 Intel Compiler Licenses
Three types of Intel ® Compiler licenses are available:

• Single User: allows one user to operate the product on multiple computers as long as
only one copy is in use at any given time.

• Node-Locked: locked to a node, allows any user who has access to this node to
operate the product concurrently with other users, limited to the number of licenses
purchased.

• Floating: locked to a network, allows any user who has access to the network server to
operate the product concurrently with other users, limited to the number of licenses
purchased.

The node-locked and floating licenses are managed by FlexLM from Macrovision.
License installation, and FlexLM configuration, may differ according to your compiler, the
license type, the number of licenses purchased, and the period of support for your product.
Please check the Bull Product Designation document delivered with your compiler and
follow the instructions contained therein.

5.2.4 Intel Math Kernel Library Licenses
Intel Math Kernel Library licenses are required for each Node on which you compile with
MKL. However, the runtime libraries which are used on the compute nodes do not require a
license fee.

5-4 bullx cluster suite - Application Developer's Guide

5.3 GNU Compilers
GCC, a collection of free compilers that can compile both C/C++ and Fortran, is part of the
installed Linux distribution.

5.4 NVIDIA nvcc C Compiler
For clusters which include NVIDIA Tesla graphic accelerators the NVIDIA Compute Unified
Device Architecture (CUDATM) Toolkit is installed automatically on the LOGIN, COMPUTE
and COMPUTEX nodes. The NVIDIA CUDATM Toolkit provides a C development
environment that includes the nvcc compiler. This compiler provides command line options
to invoke the different tools required for each compilation stage.

nvcc’s basic workflow consists in separating device code from host code and compiling the
device code into a binary form or cubin object. The generated host code is outputted,
either as C code that can be compiled using another tool, or directly as object code that
invokes the host compiler during the last compilation stage.

Source files for CUDA applications consist of a mixture of conventional C++ ‘host’ code
and graphic accelerator device functions. The CUDA compilation trajectory separates the
device functions from the host code, compiles the device functions using proprietary
NVIDIA compilers/assemblers, compiles the host code using the general purpose C/C++
compiler that is available on the host platform, and afterwards embeds the compiled
graphic accelerator functions as load images in the host object file. In the linking stage,
specific CUDA runtime libraries are added to support remote SIMD procedure calls and to
provide explicit GPU manipulations, such as allocation of GPU memory buffers and host-
GPU data transfer.

mportant Whenever double precision calculations are made on CUDA devices, it is
imperative to use the –arch=sm_13 switch on the nvcc command line, as shown
below.

nvcc -arch=sm_13 code.cu -o executable

See the NVIDIA CUDA docmentation available from www.nvidia.com for more
information.

The compilation trajectory involves several splitting, compilation, preprocessing, and
merging steps for each CUDA source file. These steps are subtly different for different
modes of CUDA compilation (such as compilation for device emulation, or the generation
of ‘fat device code binaries’). It is the purpose of the CUDA nvcc compiler driver to keep
the intricate details of CUDA compilation hidden from developers. Additionally, instead of
being a specific CUDA compilation driver, nvcc mimics the behavior of general purpose
compiler drivers, e.g. GCC, in that it accepts a range of conventional compiler options, for
example to define macros and include/library paths, and to manage the compilation
process. All non-CUDA compilation steps are forwarded to the general C compiler that is
available on the platform.

http://www.nvidia.com/

 Compilers 5-5

5.4.1 Compiling with nvcc and MPI

Note Only C and C++ formats are accepted in the CUDA programming environment. Fortran
programs should call the functions from C or C++ libraries. The user can program in any
language (Python, etc.) as long as the C/C++ routines are called.

To use the CUDA programming environment with MPI:

1. Set the environment:

module load cuda

2. Compile the CUDA .cu files with the nvcc compiler to obtain .o object files.

nvcc -c kernel.cu

3. Link the object files with, for example, mpif90 adding the -lcudart option to generate
the executable.

mpif90 mpi_cuda.f90 kernel.o -lcudart -o executable

See The NVIDIA CUDA Compute Unified Device Architecture Programming Guide and The
CUDA Compiler Driver document available from www.nvidia.com for more information.

http://www.nvidia.com/

5-6 bullx cluster suite - Application Developer's Guide

5.5 Compiler Optimization Options
One of the most important ways of generating efficient executables is to examine closely
the compiler optimization options. A single set of optimization options does not exist. You
have to find the best set of options according to the characteristics of the source code. In
addition, each source file can be compiled using different options. Finally, compiler
directives can be inserted into the source code in order help the compiler to optimize the
program.

5.5.1 Starting Options
Before using advanced optimization options, it is advisable to generate a reference
executable using the default compilation optimization options. Advanced optimization
option time differences will be analyzed against this execution time.

The default optimization options for the Intel FORTRAN Compiler are the following:

-72 Sets the number of column in the source code to 72.

-O2 Level 2 optimizations (software pipelining, unrolling, inlining).

-align Memory aligning.

-nomodule Compilation with F90 modules located in the current directory.

-Zp8 8 bytes alignment.

The default optimization options for the Intel C/C++ Compiler are the following:

-O2 Optimizations of level 2 (software pipelining, unrolling, inlining).

-alias-args Assume arguments may be aliased.

-falias Assume aliasing in the program.

-ffnalias Assume aliasing within functions.

5.5.2 Intel C/C++ and Intel Fortran Optimization Options
Once the reference execution time is collected, more aggressive optimization options can
be activated.

The following optimization commands may be activated on both C/C++ and Fortran
compilers:

-O3 Level 3 optimizations (-O2 optimizations plus more aggressive
optimizations such as prefetching and loop transformations).

-ip Enables more interprocedural optimizations for single file compilations.

-ipo When this option is specified, the compiler performs inline function
expansion for calls to functions defined in separate files.

Fortran Compilers

-Qoption,f,-ip_ninl_min_stats=n
Modifies the number of inlining levels (by default this is 15)

-Qoption,f,-ip_ninl_max_total_stats=n
Modifies the number of lines added when inlining (by default n = 2000)

 Compilers 5-7

C/C++ Compilers

-Qoption,c,-ip_ninl_min_stats=n
Modifies the number of inlining levels (by default this is 15)

-Qoption,c,-ip_ninl_max_total_stats=n
Modifies the number of lines added when inlining (by default n = 2000)

Fortran and C/C++ Compilers

-static Causes the executable to link all the libraries statically.

-fno-alias Specifies that aliasing should not be assumed in the program.

-fno-fnalias Specifies that aliasing should not be assumed within functions, but
should be assumed across calls.

-ftz Enables denormal results to be flushed to zero.

Loop unrolling is an optimization option whereby instructions called in multiple iterations of
a loop are combined so that only a single iteration is necessary. This technique is
particularly useful for parallel processing. Performance is improved as result of the
reduction in the number of overhead instructions that have to be executed for a loop, which
in turn reduces branching and improves the cache hit rate. However, this option has to be
handled carefully.

Unrolling options are:

 -unroll0 Ending of unrolling

 -unroll Activation of unrolling

 -unrollM M is the maximum number of loops to be unrolled

5.5.3 Compiler Options which may Impact Performance
The following compiler options must be avoided if possible as they will lead to a loss in
performance:

-assume dummy_aliases
This forces the compiler to assume that dummy (formal) arguments to procedures share
memory locations with other dummy arguments or with variables shared through use
association, host association, or common block use. These program semantics slow
performance, so you should specify -assume dummy_aliases only for the subprograms
called that depend on such aliases. The use of dummy aliases violates the FORTRAN-77
and Fortran 95/90 standards but occurs in some older programs.

-c
If you use -c when compiling multiple source files, also specify -ooutputfile to compile many
source files together into one object file. Separate compilations prevent certain inter-
procedural optimizations, used with multiple compiler invocations or with -c without the -
ooutputfile option.

-check bounds
Generates extra code for array bounds checking at run time and creates extra lapse time.

5-8 bullx cluster suite - Application Developer's Guide

-check overflow
Generates extra code to check integer calculations for arithmetic overflow at run time.
Once the program is debugged, omit this option to reduce executable program size and
slightly improve run-time performance.

-fpe 0
Using this option slows program execution. It enables certain types of floating-point
exception handling, which can be expensive.

-g
Generate extra symbol table information in the object file. Specifying this option also
reduces the default level of optimization to -O0 (no optimization). The -g option only slows
your program down when no optimization level is specified, in which case -g turns on -O0,
which slows the compilation down. If -g, -O2 are specified, then the code runs at much the
same speed as if -g were not specified.

-save
Forces the local variables to retain their values from the last invocation terminated. This
may change the output of your program for floating-point values as it forces operations to
be carried out in memory rather than in registers, which in turn causes more frequent
rounding of your results.

-O0
Turns off optimizations. Can be used during the early stages of program development, or
when you use the debugger.

5.5.4 Flags and Environment Variables
-assume buffered_io with FORT_BUFFERRED=TRUE

-dryrun Gives non-specific information regarding what has happened at the ld level.

KMP_STACKSIZE Allows the stack size to be increased. This works with ulimit

For example with ulimit -s 1 024 000 or with ulimit -S -s unlimited the following command
is used:

export KMP_STACKSIZE=250 000

5.5.5 Compiler Directives for Loops
The following directives are to be specified before the loops concerned:

#pragma For C and C++ programs

[Cc*!]DIR$ For Fortran programs.

The following pragmas can be used:

LOOP COUNT(N) Specifies the number of loop iterations for the pragma.

DISTRIBUTE POINT May be placed inside or outside of a loop.

[NO]UNROLL, UNROLL(N) Controls loop unrolling.

IVDEP Ignores vectorial dependences.

Example for IVDEP: The results generated using the opt_report option:

 Compilers 5-9

 do i = 1, m
 if (a(i) .eq. 0) then Resource II = 1
 b(i) = a(i) + 1 Recurrence II = 1
else Minimum II = 1
 b(i) = a(i)/c(i) Last attempted II = 1
 endif Estimated GCS II = 1
enddo

Modulo scheduling was successful but there was no overlap across iterations therefore
the loop was not pipelined.

5.5.6 Options for Compiler Optimization Reports
The following options instruct the compiler to generate an optimization report:

-opt_report Instructs the compiler to generate an optimization report to
stderr.

-opt-report-file<file> Instructs the compiler to generate an optimization report
named <file>.

-opt-report-level{min|med|max} Specifies the level of detail for the optimization report.

-opt-report-phase<phase> Specifies the optimizer phase <phase> to generate reports
for. <phase> can be one of the following:

– hlo : high level optimizer
– ipo : interprocedural optimizer

-opt-report-help Displays the logical names of optimizer phases available for
report generation (using -opt-report-phase).

5.5.7 Compiling Tips

Consider both the -02 and -03 options

The best compiler options are very much dependent on the nature and structure of the
program. The length of the vectors involved can be crucially important. In some
circumstances the aggressive –O3 optimizations may be counter-productive and generate
inefficient code, which does not match the expected performance in terms of time and
resource use.

The less sophisticated option -O2 generates more conservative code but may have a lower
overhead.

Be careful when using loop unrolling options

The loop unrolling options can be counter productive in terms of performance. Register
usage will be increased due to the need to store more temporary variables and code size
will increase following unrolling, which is particularly undesirable for embedded
applications.

These costs will have to be weighed up against the benefits achieved in terms in the
reduction of the number of loop iterations for the program.

Try the option -O3 -unroll0

If a binary file compiled using the -O2 option performs better than a binary compiled with
the -O3 option, it is often worth considering the combination ' -O3 -unroll0'.

5-10 bullx cluster suite - Application Developer's Guide

The implementation of unrolling when switching from -O2 to -O3 may prove to be counter-
productive – see above. However, some, if not all, of other -O3 optimization routines could
be beneficial. This means that, generally speaking (depending on the program), the
combination -O3 -unroll0 may be the most effective.

Look at floating-point assist faults.

Floating-point assist faults (FPAF) are a mechanism, which makes it possible to treat
calculations implementing denormalized numbers (floating numbers with a zero mantissa).
If these cannot be handled directly by the processor, then the OS will intervene with
specific functions, leading to a potentially high time penalty. To see if the application
generates FPAFs, use the command dmesg which shows system messages. The messages
are of the type:

a.out(27243): floating-point assist fault At IP 4000000000032461, isr
0000020000000008

It should be noted that each line of this type may correspond to a variable number of
occurrences. FPAF problems may be avoided as follows:

• By using the -ftz option, which changes denormalized numbers to zero. This is
included as a default option with the -O3 option, but not with lower optimization
settings.

 The User's Environment 6-1

Chapter 6. The User's Environment
This chapter describes how to access the extreme computing environment, how to use file
systems, and how to use the modules package to switch and compare environments:

• 6.1 Cluster Access and Security

• 6.2 Global File Systems

• 6.3 Environment Modules

• 6.4 Module Files

• 6.5 The Module Command

• 6.6 The NVIDIA CUDA Development Environment

6.1 Cluster Access and Security
Typically, users connect to and use a cluster as described below:

• Users log on to the cluster platform either through Service Nodes or through the Login
Node when the configuration includes these special Login Node(s). Once logged on to
a node, users can then launch their jobs.

• Compilation is possible on all nodes which have compilers installed on them. The best
approach is that compilers reside on Login Nodes, so that they do not interfere with
performance on the Compute Nodes.

6.1.1 ssh (Secure Shell)
The ssh command is used to access a cluster node.

Syntax:

ssh [-l login_name] hostname | user@hostname [command]

ssh [-afgknqstvxACNTX1246] [-b bind_address] [-c cipher_spec]
 [-e escape_char] [-i identity_file] [-l login_name] [-m mac_spec]
 [-o option] [-p port] [-F configfile] [-L port:host:hostport]
 [-R port:host:hostport] [-D port] hostname | user@hostname [command]

ssh (ssh client) can also be used as a command to log onto a remote machine and to
execute commands on it. It replaces rlogin and rsh, and provides secure encrypted
communications between two untrusted hosts over an insecure network. X11 connections
and arbitrary TCP/IP ports can also be forwarded over the secure channel. ssh connects
and logs onto the specified hostname. The user must verify his/her identity, using the
appropriate protocol, before being granted access to the remote machine.

6-2 bullx cluster suite - Application Developer's Guide

6.2 Global File Systems
The bullx cluster suite uses the NFS distributed file system.

6.3 Environment Modules
Environment modules provide a great way to customize your shell environment easily,
particularly on the fly.

For instance an environment can consist of one set of compatible products including a
defined release of a FORTRAN compiler, a C compiler, a debugger and mathematical
libraries. In this way you can easily reproduce trial conditions, or use only proven
environments.

The Modules environment is a program that can read and list module files returning
commands; suitable for the shell to interpret, and most importantly for the eval command.
Modulefiles is a kind of flat database which uses files.

In UNIX a child process can not modify its parent environment.
So how does Modules do this? Modules parses the given modules file and produces the
appropriate shell commands to set/unset/append/un-append onto an environment
variable. These commands are eval'd by the shell. Each shell provides some mechanism
where commands can be executed and the resulting output can, in turn, be executed as
shell commands. In the C-shell & Bourne shell and derivatives this is the eval command.

This is the only way that a child process can modify the parent's (login shell) environment.
Hence the module command itself is a shell alias or function that performs these operations.
To the user, it looks just like any other command.

The module command is only used in the development environment and not in other
environments such as that for administration node.

See http://modules.sourceforge.net/ for more details.

6.3.1 Using Modules
The following command gives the list of available modules on a cluster.

module avail

------------------------ /opt/modules/version ------------------------
3.1.6

------------------- /opt/modules/3.1.6/modulefiles -------------------
dot module-info null
module-cvs modules use.own

---------------------- /opt/modules/modulefiles ----------------------
oscar-modules/1.0.3 (default)

Modules available for the user are listed under the line /opt/modules/modulefiles.

The command to load a module is:

module load module_name

 The User's Environment 6-3

The command to verify the loaded modules list is:

module list

Using the avail command it is possible that some modules will be marked (default):

module avail

These modules are those which have been loaded without the user specifying a module
version number. For example the following commands are the same:

module load configuration
module load configuration/2

The module unload command unloads a module.

The module purge command clears all the modules from the environment.

module purge

It is not possible to load modules which include different versions of intel_cc or intel_fc at
the same time because they cause conflicts.

Module Configuration Examples

Note The configurations shown below are examples only. The module configurations for bullx
cluster suite will differ.

Configuration/1 intel_fc –version 10.0.046
intel_cc –version 10.0.066
intel_db –version 9.1.3
intel_mkl –version 9.0.017

Configuration/2 intel_fc –version 10.0.049
intel_cc –version 10.0.071
intel_db –version 9.1.3
intel_mkl –version 9.0.017

Configuration/3 intel_fc –version 10.0.061
intel_cc –version 10.0.071
intel_db –version 9.1.3
intel_mkl –version 9.0.017

Configuration/4 intel_fc –version10.0.019
intel_cc –version 10.0.022
intel_db –version 9.1.3
intel_mkl –version 90.017

Table 6-1. Examples of different module configurations

6-4 bullx cluster suite - Application Developer's Guide

6.3.2 Setting Up the Shell RC Files
A quick tutorial on Shell rc (run-command) files follows. When a user logs in and if they
have /bin/csh(/bin/sh) as their shell, the first rc fire to be parsed by the shell is
/etc/csh.login & /etc/csh.cshrc (/etc/profile) (the order is implementation dependent),
and then the user's $HOME/.cshrc ($HOME/.kshenv) and finally $HOME/.login
($HOME/.profile).

All the other login shells are based on /bin/csh and /bin/sh with additional features and
rc files. Certain environment variables and aliases (functions) need to be set for Modules to
work correctly. This is handled by the Module init files in /opt/modules /default/init,
which contains separate init files for each of the various supported shells, where the default
is a symbolic link to a module command version.

Skeleton Shell RC (Dot) Files

The skeleton files provide a 'default' environment for new users when they are added to
your system, this can be used if you do not have the time to set them up individually. The
files are usually placed in /etc/skel (or wherever you specified with the
--with-skel-path=<path> option to the configuration script), and contains a minimal set of
dot' files and directories that every new user should start with.

The skeleton files are copied to the new user's $HOME directory with the -m option added
to the useradd command. A set of sample dot'' files are located in ./etc/skel. Copy
everything but the .*.in and CVS files and directories to the skeleton directory. Edit and
tailor for your system.

If you have a pre-existing set of skeleton files, then make sure the following minimum set
exists: .cshrc, .login, .kshenv, .profile. These can be automatically updated with the
command:

env HOME=/etc/skel/opt/modules/default/bin/add.modules

Inspect the new ‘dot’ files and if they are OK, then remove all the .*.old (original) files. An
alternative way of setting-up the users' dot files can be found in ./ext.
This model can be used with the --with-dot-ext configure option.

User Shell RC (Dot) Files

The final step for a functioning modules environment is to modify the user dot files to source
the right files. One way to do this is to put a message in the /etc/motd telling each user to
run the command:

/opt/modules/default/bin/add.modules

This is a script, which parses their existing dot files, prepending the appropriate commands
to initialize the Modules environment.

The user can re-run this script and it will find and remember what modules they initially
loaded and then strip out the previous module initialization and restore it with an upgraded
one.

 The User's Environment 6-5

If the user lacks a necessary 'dot' file, the script will copy one over from the skeleton
directory. The user will have to logout and login for it to come into effect.
Another way is for the system administrator to su - username to each user and run it
interactively. The process can be semi-automated with a single line command that obviates
the need for direct interaction:

su - username -c "yes | /opt/modules/modules/default/bin/add.modules"

Power users can create a script to directly parse the /etc/passwd file to perform this
command. Otherwise, just copy the passwd file and edit it to execute this command for
each valid user.

6.4 Module Files
Once the above steps have been performed, then it is important to have module files in
each of the modulefiles directories. For example, the following module files will be
installed:

--------- /opt/modules/3.0.9-rko/modulefiles ----------
dot module-info modules null use.own

If you do not have your own module files in /opt/modules/modulefiles then copy 'null' to
that directory. On some systems an empty modulefiles directory will cause a core dump,
whilst on other systems there will be no problem. Use
/opt/modules/default/modulefiles/modules as a template for creating your own module files.

For more information run:

 module load modules

You will then have ready access to the module(1) modulefile(4) man pages, as well as the
versions directory. Study the man pages carefully.

The version directory may look something like this:

---------------- /opt/modules/versions ----------------
3.0.5-rko 3.0.6-rko 3.0.7-rko 3.0.8-rko 3.0.9-rko

The model you should use for modulefiles is name/version. For example,
/opt/modules/modulefiles directory may have a directory named firefox which contains
the following module files: 301, 405c, 451c, etc.
When it is displayed with module avail it looks something like this:

firefox/301
firefox/405c
firefox/451c(default)
firefox/45c
firefox/46

The default is established with .version file in the FireFox directory and it looks something
like this:

6-6 bullx cluster suite - Application Developer's Guide

#%Module1.0###

version file for Firefox

set ModulesVersion "451c"

If the user does module load firefox, then the default firefox/451c will be used. The default
can be changed by editing the .version file to point to a different module file in that
directory. If no .version file exists then Modules will just use the last module in the
alphabetical ordered directory listed as the default.

6.4.1 Upgrading via the Modules Command
The theory is that Modules should use a similar package/version locality as the package
environments it helps to define. Switching between versions of the module command should
be as easy as switching between different packages via the module command. Suppose
there is a change from 3.0.5-rko to version 3.0.6-rko. The goal is to semi-automate the
changes to the user ‘dot' files so that the user is oblivious to the change.

The first step is to install the new module command & files to /opt/modules/3.0.6-rko/.
Test it out by loading with ‘module load modules 3.0.6-rko’. You may get an error like:
3.0.6-rko (25):ERROR:152: Module 'modules' is currently not loaded. This is OK and
should not appear with future versions.

Make sure you have the new version with module –version. If it seems stable enough, then
advertise it to your more adventurous users. Once you are satisfied that it appears to work
adequately well, then go into /opt/modules remove the old default symbolic link to the
new versions.

For example

cd /opt/modules
rm default; ln -s 3.0.6-rko default

This new version is now the default and will be referenced by all the users that log in and
by those that have not loaded a specific module command version.

 The User's Environment 6-7

6.5 The Module Command
Synopsis

module [switches] [sub-command] [sub-command-args]

The Module command provides a user interface to the Modules package. The Modules
package provides for the dynamic modification of the user's environment via modulefiles.

Each modulefile contains the information needed to configure the shell for an application.
Once the Modules package is initialized, the environment can be modified on a per-
module basis using the module command which interprets modulefiles. Typically,
modulefiles instruct the module command to alter or to set shell environment variables such
as PATH, MANPATH, etc. modulefiles may be shared by many users on a system and users
may have their own collection to supplement or replace the shared modulefiles.

The modulefiles are added to and removed from the current environment by the user. The
environment changes contained in a modulefile can be summarized through the module
command as well. If no arguments are given, a summary of the module usage and sub-
commands are shown.

The action for the module command to take is described by the sub-command and its
associated arguments.

6.5.1 modulefiles
modulefiles are the files containing TCL code for the Modules package.

modulefiles are written in the Tool Command Language, TCL(3) and are interpreted by the
modulecmd program via the module(1) user interface. modulefiles can be loaded,
unloaded, or switched on-the-fly while the user is working.

A modulefile begins with the magic cookie, '#%Module'. A version number may be placed
after this string. The version number is useful as the format of modulefiles may change. If a
version number does not exist, then modulecmd will assume the modulefile is compatible
with the latest version. The current version for modulefiles will be 1.0. Files without the
magic cookie will not be interpreted by modulecmd.

Each modulefile contains the changes to a user's environment needed to access an
application. TCL is a simple programming language which permits modulefiles to be
arbitrarily complex, depending on the needs of the application and the modulefile writer. If
support for extended tcl (tclX) has been configured for your installation of modules, you
may also use all the extended commands provided by tclX. modulefiles can be used to
implement site policies regarding the access and use of applications.

A typical modulefiles file is a simple bit of code that sets or adds entries to the PATH,
MANPATH, or other environment variables. TCL has conditional statements that are
evaluated when the modulefile is loaded. This is very effective for managing path or
environment changes due to different OS releases or architectures. The user environment
information is encapsulated into a single modulefile kept in a central location. The same
modulefile is used by all users independent of the machine. So, from the user's perspective,
starting an application is exactly the same regardless of the machine or platform they are
on.

6-8 bullx cluster suite - Application Developer's Guide

modulefiles also hide the notion of different types of shells. From the user's perspective,
changing the environment for one shell looks exactly the same as changing the environment
for another shell. This is useful for new or novice users and eliminates the need for
statements such as if you're using the C Shell do this ..., otherwise if you're using the
Bourne shell do this ... Announcing and accessing new software is uniform and
independent of the user's shell. From the modulefile writer's perspective, this means one set
of information will take care of all types of shells.

Example of a Module file

#%Module1.0###

C/C++

set INTEL intel_cc

module-whatis "loads the icc 10.1.011 (Intel C/C++) environment for
EM64T"

set iccroot /opt/intel/cce/10.1.011

prepend-path PATH $iccroot/bin
prepend-path LD_LIBRARY_PATH $iccroot/lib
setenv MANPATH :$iccroot/man
prepend-path INTEL_LICENSE_FILE
$iccroot/licenses:/opt/intel/licenses

6.5.2 Modules Package Initialization
The Modules package and the module command are initialized when a shell-specific
initialization script is sourced into the shell. The script creates the module command as
either an alias or function, creates Modules environment variables, and saves a snapshot of
the environment in ${HOME }/.modulesbeginenv. The module alias or function executes
the modulecmd program located in ${MODULESHOME }/bin and has the shell evaluate
the command's output. The first argument to modulecmd specifies the type of shell.

The initialization scripts are kept in ${MODULESHOME }/init/shellname where shellname
is the name of the sourcing shell. For example, a C Shell user sources the
${MODULESHOME }/init/csh script. The sh, csh, tcsh, bash, ksh, and zsh shells are all
supported by modulecmd. In addition, PYTHON and PERL shells are supported which
writes the environment changes to stdout as PYTHON or PERL code.

6.5.3 Examples of Initialization
In the following examples, replace ${MODULESHOME } with the actual directory name.

C Shell initialization (and derivatives)

 source ${MODULESHOME }/init/csh module load modulefile modulefile

Bourne Shell (sh) (and derivatives)

 ${MODULESHOME }/init/sh module load modulefile modulefile

 The User's Environment 6-9

Perl

require "${MODULESHOME }/init/perl"; &module("load modulefile modulefile ");

6.5.4 Modulecmd Startup
Upon invocation, modulecmd sources rc files which contain global, user and modulefile
specific setups. These files are interpreted as modulefiles.

Upon invocation of modulecmd module RC files are sourced in the following order:

1. Global RC file as specified by ${MODULERCFILE } or ${MODULESHOME }/etc/rc

2. User specific module RC file ${HOME }/.modulerc

3. All .module rc and .version files found during modulefile searches.

6.5.5 Module Command Line Switches
The module command accepts command line switches as its first parameter. These may be
used to control output format of all information displayed and the module behaviour in the
case of locating and interpreting module files.

All switches may be entered either in short or long notation. The following switches are
accepted:

--force, -f
Force active dependency resolution. This will result in modules found using a prereq
command inside a module file being loaded automatically. Unloading module files using
this switch will result in all required modules which have been loaded automatically using
the -f switch being unloaded. This switch is experimental at the moment.

--terse, -t
Display avail and list output in short format.

--long, -l
Display avail and list output in long format.

--human, -h
Display short output of the avail and list commands in human readable format.

--verbose, -v
Enable verbose messages during module command execution.

--silent, -s
Disable verbose messages. Redirect stderr to /dev/null if stderr is found not to be a tty.
This is a useful option for module commands being written into .cshrc , .login or .profile
files, because some remote shells (e.g. rsh (1)) and remote execution commands (e.g. rdist)
get confused if there is output on stderr.

--create, -c
Create caches for module avail and module apropos. You must be granted write access to
the ${MODULEHOME }/modulefiles/ directory if you try to invoke module with the -c
option.

--icase, -i
This is a case insensitive module parameter evaluation. Currently only implemented for the
module apropos command.

6-10 bullx cluster suite - Application Developer's Guide

--userlvl <lvl>, -u <lvl>
Set the user level to the specified value. The argument of this option may be one of:

novice nov Novice
expert exp Experienced module user
advanced adv Advanced module user

6.5.6 Module Sub-Commands
• Print the use of each sub-command. If an argument is given, print the Module specific

help information for the modulefile.

help [modulefile...]

• Load modulefile into the shell environment.

load modulefile [modulefile...]
add modulefile [modulefile...]

• Remove modulefile from the shell environment.

unload modulefile [modulefile...]
rm modulefile [modulefile...]

• Switch loaded modulefile1 with modulefile2.

switch modulefile1 modulefile2
swap modulefile1 modulefile2

• Display information about a modulefile. The display sub-command will list the full
path of the modulefile and all (or most) of the environment changes the modulefile will
make when loaded. (It will not display any environment changes found within
conditional statements).

display modulefile [modulefile...]

• List loaded modules.

show modulefile [modulefile...]
list
avail [path...]

• List all available modulefiles in the current MODULEPATH. All directories in the
MODULEPATH are recursively searched for files containing the modulefile magic
cookie. If an argument is given, then each directory in the MODULEPATH is searched
for modulefiles whose pathname match the argument. Multiple versions of an
application can be supported by creating a subdirectory for the application containing
modulefiles for each version.

use directory [directory...]

• Prepend directory to the MODULEPATH environment variable. The --append flag will
append the directory to MODULEPATH.

use [-a|--append] directory [directory...]

• Remove directory from the MODULEPATH environment variable.

 The User's Environment 6-11

unuse directory [directory...]

• Attempt to reload all loaded modulefiles. The environment will be reconfigured to
match the saved ${HOME }/.modulesbeginenv and the modulefiles will be reloaded.
The update command will only change the environment variables that the modulefiles
set.

update

• Force the Modules Package to believe that no modules are currently loaded.

clear

Unload all loaded modulefiles.

purge

• Display the modulefile information set up by the module-whatis commands inside
the specified modulefiles. If no modulefiles are specified, all the whatis information
lines will be shown.

whatis [modulefile [modulefile...]]

• Searches through the whatis information of all modulefiles for the specified string. All
module whatis information matching the search string will be displayed.

apropos string
keyword string

• Add modulefile to the shell's initialization file in the user's home directory. The startup
files checked are .cshrc, .login, and .csh_variables for the C Shell; .profile for the
Bourne and Korn Shells; .bashrc, .bash_env, and .bash_profile for the GNU Bourne
Again Shell; .zshrc, .zshenv, and .zlogin for zsh. The .modules file is checked for all
shells. If a module load line is found in any of these files, the modulefile(s) is(are)
appended to any existing list of modulefiles. The 'module load' line must be located in
at least one of the files listed above for any of the 'init' sub-commands to work
properly. If the module load line is found in multiple shell initialization files, all of the
lines are changed.

initadd modulefile [modulefile...]

• Does the same as initadd but prepends the given modules to the beginning of the list.
initrm modulefile [modulefile...] Remove modulefile from the shell's
initialization files.

initprepend modulefile [modulefile...]

• Switch modulefile1 with modulefile2 in the shell's initialization files.

initswitch modulefile1 modulefile2

• List all of the modulefiles loaded from the shell's initialization file.

initlist

• Clear all of the modulefiles from the shell's initialization files.

6-12 bullx cluster suite - Application Developer's Guide

initclear

6.5.7 Modules Environment Variables
Environment variables are unset when unloading a modulefile. Thus, it is possible to load a
modulefile and then unload it without having the environment variables return to their prior
state.

MODULESHOME
This is the location of the master Modules package file directory containing module
command initialization scripts, the executable program modulecmd, and a directory
containing a collection of master modulefiles.

MODULEPATH
This is the path that the module command searches when looking for modulefiles. Typically,
it is set to the master modulefiles directory, ${MODULESHOME }/modulefiles, by the
initialization script. MODULEPATH can be set using module use or by the module
initialization script to search group or personal modulefile directories before or after the
master modulefile directory.

LOADEDMODULES
A colon separated list of all loaded modulefiles.

_LOADED_MODULEFILES_
A colon separated list of the full pathname for all loaded modulefiles.

MODULESBEGINENV
The filename of the file containing the initialization environment snapshot.

Files

/opt
The MODULESHOME directory.

${MODULESHOME}/etc/rc
The system-wide modules rc file. The location of this file can be changed using the
MODULERCFILE environment variable as described above.

${HOME}/.modulerc
The user specific modules rc file.

${MODULESHOME}/modulefiles
The directory for system-wide modulefiles. The location of the directory can be changed
using the MODULEPATH environment variable as described above.

${MODULESHOME}/bin/modulecmd
The modulefile interpreter that is executed upon each invocation of a module.

${MODULESHOME}/init/shellname
The Modules package initialization file sourced into the user's environment.

${MODULESHOME}/init/.modulespath
The initial search path setup for module files. This file is read by all shell init files.

${MODULEPATH}/.moduleavailcache
File containing the cached list of all modulefiles for each directory in the MODULEPATH
(only when the avail cache is enabled).

 The User's Environment 6-13

${MODULEPATH}/.moduleavailcachedir
File containing the names and modification times for all sub-directories with an avail cache.

${HOME}/.modulesbeginenv
A snapshot of the user's environment taken when Modules are initialized. This information
is used by the module update sub-command.

6-14 bullx cluster suite - Application Developer's Guide

6.6 The NVIDIA CUDA Development Environment
For clusters which include NVIDIA Tesla graphic accelerators the NVIDIA Compute Unified
Device Architecture (CUDATM) Toolkit is installed automatically on the LOGIN, COMPUTE
and COMPUTEX nodes so that the NVIDIA nvcc C compiler is in place for the application.

Note The NVIDIA Tesla C1060 card is used on NovaScale R425 servers only, whereas the
NVIDIA Tesla S1070 accelerator is used by both NovaScale R422 E1 and R425 servers.

CUDA is a parallel programming environment designed to scale parallelism so that all the
processor cores available are exploited. As it builds on C extensions the CUDA
development environment is easily mastered by application developers.

At its core are three key abstractions – a hierarchy of thread groups, shared memories, and
barrier synchronizations.

These abstractions provide fine-grained data parallelism and thread parallelism, nested
within coarse-grained data parallelism and task parallelism. They guide the programmer to
partition the problem into coarse sub-problems that can be solved independently in
parallel, and then into finer pieces that can be solved cooperatively in parallel. Such
decomposition preserves language expressivity by allowing threads to cooperate when
solving each sub-problem, and at the same time enables transparent scalability since each
sub-problem can be scheduled to be solved on any of the available processor cores. A
compiled CUDA program can therefore execute on any number of processor cores, and
only the runtime system needs to know the physical processor count.

See The NVIDIA CUDA Compute Unified Device Architecture Programming Guide and the
other documents in the /opt/cuda/doc directory for more information.

6.6.1 GPUSET library
 For architectures that include several IOHs and multiple GPUs - see example below, the
GPU access is non- uniform, and depends on which processor is running the application.

 The User's Environment 6-15

Figure 6-1. Typical architecture for NVIDIA Tesla GPUs and Bullx B5xx blades

In the CUDA environment, the cudaSetDevice () function selects a GPU according to
different parameters: memory size, the GPU version, etc., but NOT the position of the GPU
in the machine. In an architecture with two IOHs, as shown in the example above, access
to a GPU is penalized if the application runs on a CPU that is not connected to the same
IOH as the GPU. Therefore, it is essential to ensure that the correct GPU is allocated to the
application. The GPUSet library is used to do this as follows.

1. Install the libgpuset RPM:

yum install libgpuset

2. Preload the library by using the LD_PRELOAD variable, or by using a script, BEFORE
launching the application that will use the GPU:

LD_PRELOAD=libgpuset;$LD_PRELOAD; <application name>

The library will override the call to cudaSetDevice and look for a GPU connected to
the same IOH as the processor being used. The CUDA library will call cudaSetDevice
using the GPU that is nearest, overriding the parameters set in the initial
cudaSetDevice call, and so the application execution will not be penalized by non-
uniform GPU access.

Note Even if a particular GPU has been specified by the original cudaSetDevice call, it will be
ignored by the library and the nearest GPU will be used. Do not preload the library if, for
the purposes of experimentation, etc., you would like to specify a particular GPU.

6-16 bullx cluster suite - Application Developer's Guide

6.6.2 bullx cluster suite and CUDA
The CUDA development environment is based on the NVIDIA (CUDATM) Toolkit, which
includes the nvcc compiler and runtime libraries. The NVIDIA Software Developer Kit
(SDK), including utilities and project examples, is also delivered.

The CUDA Toolkit is delivered as RPMs and installed in /opt/cuda/ and includes the bin,
lib and man sub directories. These files are sourced to load the CUDA environment
variables by, for example by using the command below:

source /opt/cuda/bin/cudavars.sh

Alternatively, the module can be loaded from the command line, for example:

module load cuda

NVIDIA recommends that the SDK is copied into the file system for each user. To do this a
makefile is used, this produces around 60 MBs of binaries and libraries for each user. The
SDK is installed in the /opt/cuda/sdk directory. A patch has been applied to some of the
files in order to suppress the relative paths that obliged the user to develop inside SDK.
These patches are mainly related to the CUDA environment and the MPI options provided
for the nvcc compiler and linker.

Programme examples are included in the /opt/cuda/sdk/projects directory. These
programmes and the use of SDK are not documented; however the source code can be
examined to obtain an idea of developing a program in the CUDA environment.

SDK will be delivered precompiled to save time for the user and includes macros to help
error tracking.

6.6.3 NVIDA CUDATM Toolkit and Software Developer Kit
The NVIDIA CUDATM Toolkit provides a complete C development environment including:

• The nvcc C compiler
• CUDA FFT and BLAS libraries
• A visual profiler
• A GDB debugger
• CUDA runtime driver
• CUDA programming manual

The NVIDIA CUDA Developer Software Developer Kit provides CUDA examples, with the
source code, to help get started with the CUDA environment. Examples include:

• Matrix multiplication
• Matrix transpose
• Performance profiling using timers
• Parallel prefix sum (scan) of large arrays
• Parallel Mersenne Twister (random number generation)

See The CUDA Zone at www.nvidia.com for more examples of applications developed within
the CUDA environment, and for additional development tools and help.

http://www.nvidia.com/

 Launching an Application 7-1

Chapter 7. Launching an Application

Platform Application Launching tool

Serial none

OpenMP none

bullx MPI mpirun

Clusters with
no Resource

Manager Parallel

MPIBull2 mpiexec/mpirun (MPD)

Serial srun

OpenMP on one
node

salloc
srun –c <no. of CPUs>

MPIBull2 srun

bullx MPI salloc mpirun

Clusters with
SLURM

 Parallel

Hybrid
(MPIBull2 +
OpenMP)

srun –c <no. of CPUs per MPI task>

Serial none

OpenMP on one
node

none

MPIBull2 mpiexec/mpirun (MPD)

bullx MPI mpirun

Clusters with
PBS PRO

 Parallel

Hybrid
(MPIBull2 +
OpenMP)

mpirun

Serial none

OpenMP on one
node

none

MPIBull2 mpirun.lsf

bullx MPI mpirun

Clusters with
LSF

 Parallel

Hybrid
(MPIBull2 +
OpenMP)

mpirun

Table 7-1. Launching an application without a Batch Manager for different clusters

7-2 bullx cluster suite - Application Developer's Guide

7.1 CPUSET
CPUSETs are lightweight objects in the Linux kernel that enable users to partition their
multiprocessor machine by creating execution areas. A virtualization layer has been added
so it becomes possible to split a machine in terms of CPUs.

The main motivation of this patch is to give the Linux kernel full administration capabilities
concerning CPUs. CPUSETs are rigidly defined, and a process running inside this
predefined area will not be able to run on other parts of the system.

This is useful for:

• Creating sets of CPUs on a system, and binding applications to them.

• Providing a way of creating sets of CPUs inside a set of CPUs so that a system
administrator can partition a system among users, and users can further partition their
partition among their applications.

7.1.1 Typical Usage of CPUSETS
• CPU-bound applications: Many applications (as it is often the case for cluster apps)

used to have a "one process on one processor" policy using sched_setaffinity() to
define this, but what if we have to run several such apps at the same time? One can
do this by creating a CPUSET for each app.

• Critical applications: processors inside strict areas may not be used by other areas.
Thus, a critical application may be run inside an area with the knowledge that other
processes will not use its CPUs. This means that other applications will not be able to
lower its reactivity. This can be done by creating a CPUSET for the critical application,
and another for all the other tasks.

7.1.2 BULL CPUSETS
CPUSETS are integrated in the standard Linux kernel. However, the Bull kernel includes the
following additional CPUSET features:

Migration
Change on the fly the execution area for a whole set of processes (for example, to give
more resources to a critical application). When you change the CPU list of a CPUSET all
the processes that belong to the CPUSET will be migrated to stay inside the CPU list, if and
as necessary.

Virtualization
Translate the masks of CPUs given to sched_setaffinity() so they stay inside the set of CPUs.
With this mechanism processors are virtualized for the use of sched_setaffinity() and /proc
information. Thus, any former application using this system call to bind processes to
processors will work with virtual CPUs without any change. A new file is added to each
CPUSET, in the CPUSET file system, to allow a CPUSET to be virtualized, or not.

 Launching an Application 7-3

7.2 pplace
pplace is a tool which offers finer control over the binding of threads and processes of an
application to individual CPUs than CPUSET.

It may be used when using OPENMP for Benchmarking. OpenMP is an industry-standard
parallel programming model, which implements a fork-join model of parallel execution.
With OPENMP the source thread or process is split into several parallel threads or
processes. These include threads used for calculating and a monitor thread that controls the
other threads. Care is required to bind the calculation threads to the CPUs using pplace
only and not the monitoring threads.

SYNOPSIS

pplace -np <nb_cpus> -p <policy> [--name <process_name>] <command>

pplace will create a CPUSET, enable the process placement policy inside this CPUSET, and
run the <command> inside this CPUSET.

OPTIONS

-np <nb_cpus>
Specify how many CPUs the application will use. A new CPUSET, with this number of CPUs
will be created.

-p <policy>
Specify the placement policy-this policy is actually a comma-separated list of per-task
policies. These policies can be:
 ignore this task (nothing)
 bind task on next cpu +
 bind task on specific cpu cpu number

The last policy becomes the default policy for all the tasks that follow. For instance:

-p 0,+ will place the first task on cpu0, the second task on cpu1, the third on cpu2, and
so on.

-p 0,,,+ will place the first task on cpu0, ignore the second and third tasks, place the fourth
task on cpu1, the fifth on cpu2, and so on.

-p 1, will place the first task on cpu1, and will ignore all other tasks.

--name <process_name> will only consider processes with name <process_name> for
the placement. Note: only the 15 first characters of the name
are taken into account.

-d debug. When the command terminates, pplace will print detailed information
about how the process placement occurred. This can help you to choose your
policy.

For the application developer individual calls to CPUs can be made in the source code
using the command Sched_setaffinity which operates in the same way as pplace. The
advantage which pplace offers is that this fixing of processes and threads can be made on
the binaries without modifying the source code.

When the compiler uses OPENMP pragmas to generate a multithreaded application it uses
runtime libraries from Intel and it is not possible to add individual calls in the manner of the
Sched_setaffinity command. In this instance, it may be advantageous to use pplace to
control the CPU allocation.

7-4 bullx cluster suite - Application Developer's Guide

7.3 Application Code Optimization
Application code optimization is hotly debated and an enormous amount of material has
been written on the subject. Some of the guidelines produced are common sense regarding
the use of good programming technique. The parallel processing capability means that
more than ever your code must be tidily organized and streamlined. Also, of course, the
structure and requirements of each application is different, bringing with it its own
constraints and limitations.

Sometimes the simplest change to your application can produce the biggest gains in
resource use. At all times a scientific approach must be taken with all optimizations
measured and verified against existing values.

This chapter contains some general programming guidelines and pointers to ensure that the
compilation is as efficient as is possible.

Throughout are tips and pieces of advice resulting from the experience of Bull’s High
Performance Computing Benchmarking and Software team.

7.3.1 Alias Usage
Aliasing is when a pointer points to the same memory zone across several iterations. Thus
it is possible to increase the optimization level for the compiler as long as the developer
can ensure that there are not two pointers using the same memory zone. In this case the
FORTRAN and C compiler option -fno-alias is used to restrict alias usage.

7.3.2 Improving Loops
Loops are very powerful programming devices, which in a few lines can result in a high
amount of data processing and optimization. Some, if not all, of the basic loop structures –
switching, partitioning, factoring, hoisting, fusion, distribution and unrolling – will be part
of most programmers’ repertoire. Obviously, these optimizations have to be used carefully,
with a good knowledge of the application, to ensure that all data dependencies are
respected.

Loops automatically allow for parallelism in terms of program scheduling and structure.
They also enable the programmer to identify code-parallelizing possibilities, which may not
have been obvious initially.

Array Loop Optimizations

Some optimizations for arranging arrays in memory are as follows:

• C Arrange as a series of lines

• Fortran Arrange as a series of columns

It is essential that data, which is placed within one memory location is streamed smoothly,
and the data flow for a particular object which is placed in the same memory location is
not broken. The following options can be used:

• C Internal loop for columns

• Fortran Internal loop for lines

1. Switching, if possible, within loops is useful to align the access to arrays with their
position in memory.

 Launching an Application 7-5

 do i = 1, N

 do j = 1, N

 A(i,j) = 1/B(i,j)

 end do

 end do

 do j = 1, N

 do i = 1, N

 A(i,j) = 1/B(i,j)

 end do

 end do

2. The partitioning of loops allows their granularity to be adapted to the memory
hierarchy. The computation is done by blocks, which are not necessarily aligned. This
works well when all the loops may be switched.

 do i = 1, N

 do j = 1, N

 A(i,j) = 1/B(i,j)

 end do

 end do

 do jj = 1, N, sj

 do ii = 1, N, si

 do j = jj, jj+sj-1

 do i = ii,ii+si-1

 A(i,j) = 1/B(i,j)

 end do

 end do

 end do

 end do

3. Fusion combines loops within in the same cycle, thus eliminating the need for
temporary arrays. Distribution makes it possible to build parallel loops.

 do i = 1, N

 A(i) = ...

 end do

 do i = 1, N

 B(i) = ... A(i) ...

 end do

 do i = 1, N

 A(i) = ...

 B(i) = ... A(i) ...

 end do

7-6 bullx cluster suite - Application Developer's Guide

4. Scalars can be increased to remove any dependences resulting from the memory re-
use.

 do i = 1, N

 T=f(i)

 A(i) = A(i)+T*T

 end do

 do i = 1, N

 T[i]=f(i)

 A(i) = A(i)+T[i]*T[i]

 end do

Loop Peeling

Loop peeling is a traditional optimization that is used for loops with a low number of
iterations. It acts to extract the first iterations from the loop in order to avoid having to have
them returned to the loop, which may result in a high overhead for a low number of
iterations.

7.3.3 C++ Programming Hints
The following hints originate from Intel’s programming tutorial:

• Use the const modifier as much as is possible.
• Use local variables rather than global or static variables, e.g.

int limit; int limit;

int function() int function()

{ {

for (i=0; i<limit...) int my_limit = limit;

} for (i=0; i<my_limit...)

 }

• Use static variables rather than global ones e.g.

int flag; static int flag;

/* flag used only in this file */ /* flag used only in this file */

• Use procedures like warning(), error(), exception(), assert() and err().

• Use inline functionality for functions that are used a lot or are small in size.

• Use for or while loops instead of do while loops.

• Use int data types for arrays instead of unsigned int data types.

7.3.4 Memory Tips
• Minimize the use of the pointers.

• Use addresses based on the arrays rather than pointers.

int *src = src_array;

 Launching an Application 7-7

int *dst = dest_array;

for (i=0; i<10; i++) for (i=0; i<10; i++)

{ {

*dst++ = *src++; dest_array[i] = src_array[i];

} }

• Use the restrict keyword for better control.

7.3.5 Application code performance impedances
The following points may be counter-productive in terms of application performance:

• Reusing the same code for unrelated computations.
• Unnecessary branching and procedure calls.
• Optimizing by hand, for example, loop unrolling and prefetching.
• Writing functions in assembly code.
• Dead code and empty function calls.
• Using the # pragma pack directive and the unaligned keyword. These can lead to

misalignment.

7.3.6 Interprocedural Optimization (IPO)
Application performance for programs which contain a lot of small and frequently used
functions can be improved considerably using IPO. IPO reduces the number of branches in
code, reduces overhead calls through inlining functions and performs interprocedural
memory analysis in order to keep critical data in registers across function boundaries.

Keep the following points in mind:

• Uses static variables and static functions, and avoid assigning function addresses or
variable addresses to global variables. Unless the compiler can detect the whole
program, it has no knowledge about the overall use of global variables, external
functions, or static variable and static functions whose addresses are taken and
assigned to a global variable or function pointer.

• If IPO does not inline automatically, uses the inline keyword in C++, and _inline
in C.

• Avoid passing pointers into a function as a parameter and then assigning them to a
global variable. The code below hinders IPO. x is a global variable and p is a
pointer.

 int *x;

 foo()

 {

 int y;

 bar(&y);

 }

 bar (p)

 {

 x = p

 }

7-8 bullx cluster suite - Application Developer's Guide

 Application Debugging Tools 8-1

Chapter 8. Application Debugging Tools

8.1 Overview
There are two types of debuggers; symbolic ones and non-symbolic ones.

• A symbolic debugger gives access to a program's source code. This means that:

− The lines of the source file can be accessed.

− The program variables can be accessed by name.

• Whereas a non-symbolic debugger enables access to the lines of the machine code
program only and to the top physical addresses.

The following debugging tools are described:

• 8.2 GDB

• 8.3 IDB

• 8.4 TotalView

• 8.5 DDT

• 8.6 MALLOC_CHECK_ - Debugging Memory Problems in C programs

• 8.7 Electric Fence

8.2 GDB
GDB stands for Gnu DeBugger. It is a powerful Open-source debugger, which can be used
either through a command line interface, or a graphical interface such as XXGDB or DDD
(Data Display Debugger). It is also possible to use an emacs/xemacs interface.

GDB supports parallel applications and threads.

GDB is published under the GNU license.

8.3 IDB
IDB is a debugger delivered with Intel compilers. It can be used with C/C++ and F90
programs.

8-2 bullx cluster suite - Application Developer's Guide

8.4 TotalView

Figure 8-1 Totalview graphical interface – image taken from
http://www.totalviewtech.com/productsTV.htm

TotalViewTM is a proprietary software application and is not included with the bullx cluster
suite delivery. TotalviewTM is used in the same way as standard symbolic debuggers for C,
C++ and Fortran (77, 90 and HPF) programs. It can also debug MPI or OpenMPI
applications. TotalViewTM has the advantage of being a debugger which supports multi-
processes and multi-threading. It can take control of the various processes or threads of the
program and make it possible for the user to visualize the evolution of the execution in the
same window or in different windows. The processes may be local or remote.
It works equally as well with mono-processor, SMP, clustered, distributed and MPP systems.

 Application Debugging Tools 8-3

TotalViewTM accepts new processes and threads exactly as generated by the application
and regardless of the processor used for the execution. It is also possible to connect to a
process started up outside TotalViewTM. Data tables can be filtered, displayed, and viewed
in order to monitor the behavior of the program. Finally, you can descend ("call the
components and details of…") into the objects and structures of the program.

The program which needs debugging must be compiled with the ‘- g’ option, and then
breakpoints should be added to the program to control its execution.

TotalViewTM is an XWindows application. Context-sensitive help provides you with basic
information. You may download TotalViewTM in the directory /opt/totalview.

Before running TotalViewTM, update your environment by using the following command:

source /opt/totalview/totalview-vars.sh

Then enter:

totalview&

See http://www.totalviewtech.com/productsTV.htm for additional information, and for copies
of the documentation for TotalviewTM.

8.5 DDT
DDTTM is a proprietary debugging tool from Allinea and is not included with the bullx
cluster suite delivery.

Its source code browser shows at a glance the state of the processes within a parallel job,
and simplifies the task of debugging large numbers of simultaneous processes. DDT has a
range of features designed to debug effectively - from deadlock and memory leak tools, to
data comparison and group wise process control, and it interoperates with all known
MPIBull2 implementations
For multi-threaded or OpenMP development DDT allows threads to be controlled
individually and collectively, with advanced capabilities to examine data across threads.
The Parallel Stack Viewer allows the program state of all processes and threads to be seen
at a glance making parallel programs easier to manage.

http://www.totalviewtech.com/productsTV.htm

8-4 bullx cluster suite - Application Developer's Guide

Figure 8-2. The Graphical User Interface for DDT

DDT can find memory leaks, and detect common memory usage errors before your
program crashes.

A programmable STL Wizard enables C++ Standard Template Library variables and the
abstract data they represent -including lists, maps, sets, multimaps, and strings – to be
viewed easily.

Developers of scientific code have full access to modules, allocated data, strings and
derived types for Fortran 77, 90, and 95.
MPI message queues can be examined in order to identify deadlocks in parallel code and
data may be viewed in 3D with the multi-dimensional array viewer.

It is possible to run DDT with the PBS-Professional Batch Manager.

See http://allinea.com/ for more information refer.

http://allinea.com/

 Application Debugging Tools 8-5

8.6 MALLOC_CHECK_ - Debugging Memory Problems in C
programs

When developing an application, the developer should ensure that all the buffers allocated
during the run-time of the application are freed afterwards. However, even if he is vigilant,
it is not unusual for memory leaks to be introduced into the code.

A simple way to detect these memory leaks is to use the environment variable
MALLOC_CHECK __. This variable ensures that allocation routines check that each
allocated buffer is freed correctly. The routines then become more ‘tolerant’ and allow byte
overflows on both sides of blocks or for the block to be released again.
According to the value of MALLOC_CHECK __, when a release or allocation error appears
the application behaves as follows:

• If MALLOC_CHECK __ is set to 1, an error message is written when exiting normally.

• If MALLOC_CHECK __ is set to 2, an error message is written when exiting normally
and the process aborts. A core file is created. You should check that it is possible to
create a core file by using the command ulimit –c. If not, enter the command ulimit -c
unlimited.

• For any other value of MALLOC_CHECK __, the error is ignored and no message
appears.

Example.c program

#include <stdio.h>
#include <stdlib.h>
#define SIZE 256

int main(void){

 char *buffer;

 buffer = (char *)calloc(256*sizeof(char));
 if(!buffer){
 perror(``malloc failed'');
 exit(-1);
 }

 strcpy(buffer, ``fills the buffer'');
 free(buffer);
 fprintf(stdout, ``Buffer freed for the first time'');
 free(buffer);
 fprintf(stdout,``Buffer freed for the second time'');
 return(0);

}

A program which is executed with the environmental variable MALLOC_CHECK __ set to 1
gives the following result:

$ export MALLOC_CHECK__=1

$./example

Buffer freed for the first time
Segmentation fault

$ ulimit –c 0

8-6 bullx cluster suite - Application Developer's Guide

The limit for the core file size must be changed to allow files bigger
than 0 bytes to be generated

$ ulimit –c unlimited # Allows an unlimited core file to be generated

A program which is executed with the environmental variable MALLOC_CHECK __ set to 2
gives the following result:

$ export MALLOC_CHECK__=2

$./example

Buffer freed for the first time
Segmentation fault (core dumped)

Example Program Analysis using the GDB Debugger

The core file should be analyzed to identify where the problem is (the program should be
compiled with the option - G):

$ gdb example -c core

GNU gdb 6.3-debian
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and
you are welcome to change it and/or distribute copies of it under
certain conditions.
Type "show copying" to see the conditions. There is absolutely no
warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-linux"...Using host libthread_db
library "/lib/libthread_db.so.1".

Core was generated by `./example’.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /lib/libc.so.6...done.
Loaded symbols for /lib/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0x40097354 in mallopt () from /lib/libc.so.6
(gdb) bt
#0 0x40097354 in mallopt () from /lib/libc.so.6
#1 0x4009615f in free () from /lib/libc.so.6
#2 0x0804852f in main () at exemple.c:18
(gdb)

The bt command is used to display the current memory stack. In this example the last line
indicates the problem came from line 18 in the main function of the example.c file. Looking
at the example.c program on the previous page we can see that line 18 corresponds to the
second call to the free function which created the memory overflow.

 Application Debugging Tools 8-7

8.7 Electric Fence
Electric Fence is an open source malloc debugger for Linux and Unix. It stops your program
on the exact instruction that overruns or under-runs a malloc() buffer.

Electric Fence is installed on the Management Node only.

Electric Fence helps you detect two common programming bugs:

• Software that overruns the boundaries of a malloc() memory allocation.

• Software that touches a memory allocation that has been released by free().

You can use the following example, replacing icc --version by the command line of
your program.

[test@host]$LD_PRELOAD=/usr/local/tools/ElectricFence-
2.2.2/lib/libefence.so.0.0 icc --version

See http://perens.com/FreeSoftware/ for more information about Electric Fence.

http://perens.com/FreeSoftware/

8-8 bullx cluster suite - Application Developer's Guide

 Application Profiling Tools 9-1

Chapter 9. Application Profiling Tools
Different tools are available to monitor the performance of your application, and to help
identify problems and to highlight where performance improvements can be made. These
include:

• PAPI, an open source tool

• HPC Toolkit, an open source tool based on PAPI, is included in the bullx cluster suite
delivery.

• Intel Vtune is used to perform post mortem analysis of the output after the application
has completed its execution, and cannot be used during run-time.

Note Intel® Trace Tools (Trace Analyzer and Trace Collector) and Intel® VtuneTM Peformance
Analyzer are proprietary software available from Intel.

9.1 PAPI
PAPI (Performance API) is used for the following reasons:
• To provide a solid foundation for cross-platform performance analysis tools,
• To present a set of standard definitions for performance metrics on all platforms,
• To provide a standard API among users, vendors and academics.

PAPI supplies two interfaces:
• A high-level interface, for simple measurements,
• A low-level interface, programmable, adaptable to specific machines and linking the

measurements.

PAPI should only be used by specialists interested in optimizing scientific programs. These
specialists can focus on code sequences using PAPI functions.
PAPI are all open source tools.

9.1.1 High-level PAPI Interface
The high-level API provides the ability to start, stop and read the counters for a specified list
of events. It is particularly well designed for programmers who need simple event
measurements, using PAPI preset events.

Compared with the low-level API the high-level is easier to use and requires less setup
(additional calls). However, this ease of use leads to a somewhat higher overhead and the
loss of flexibility.

Note Earlier versions of the high-level API are not thread safe. This restriction has been removed
with PAPI 3.

Below is a simple code example using the high-level API:

#include <papi.h>

#define NUM_FLOPS 10000
#define NUM_EVENTS 1

main()
{

9-2 bullx cluster suite - Application Developer's Guide

int Events[NUM_EVENTS] = {PAPI_TOT_INS};
long_long values[NUM_EVENTS];

/* Start counting events */
if (PAPI_start_counters(Events, NUM_EVENTS) != PAPI_OK)
 handle_error(1);

/* Defined in tests/do_loops.c in the PAPI source distribution */
do_flops(NUM_FLOPS);

/* Read the counters */
if (PAPI_read_counters(values, NUM_EVENTS) != PAPI_OK)
 handle_error(1);

printf("After reading the counters: %lld\n",values[0]);

do_flops(NUM_FLOPS);

/* Add the counters */
if (PAPI_accum_counters(values, NUM_EVENTS) != PAPI_OK)
 handle_error(1);
printf("After adding the counters: %lld\n", values[0]);

/* double a,b,c; c+= a* b; 10000 times */
do_flops(NUM_FLOPS);

/* Stop counting events */
if (PAPI_stop_counters(values, NUM_EVENTS) != PAPI_OK)
 handle_error(1);

printf("After stopping the counters: %lld\n", values[0]);
}

Possible Output:

After reading the counters: 441027
After adding the counters: 891959
After stopping the counters: 443994

Note that the second value (after adding the counters) is approximately twice as large as
the first value (after reading the counters). This is because PAPI_read_counters resets and
leaves the counters running, then PAPI_accum_counters adds the current counter value into
the values array.

9.1.2 Low-level PAPI Interface
The low-level API manages hardware events in user-defined groups called Event Sets. It is
particularly well designed for experienced application programmers and tool developers
who need fine-grained measurements and control of the PAPI interface. Unlike the high-
level interface, it allows both PAPI preset and native event measurements.

The low-level API features the possibility of getting information about the executable and the
hardware, and to set options for multiplexing and overflow handling. Compared with high-
level API, the low-level API increases efficiency and functionality.

An Event Set is a user-defined group of hardware events (preset or native) which, all
together, provide meaningful information. The users specify the events to be added to the
Event Set and attributes such as the counting domain (user or kernel), whether or not the
events are to be multiplexed, and whether the Event Set is to be used for overflow or
profiling. PAPI manages other Event Set settings such as the low-level hardware registers to
use, the most recently read counter values and the Event Set state (running / not running).

 Application Profiling Tools 9-3

Following is a simple code example using the low-level API. It applies the same technique
as the high-level example.

#include <papi.h>
#include <stdio.h>

#define NUM_FLOPS 10000

main()
{
int retval, EventSet=PAPI_NULL;
long_long values[1];

/* Initialize the PAPI library */
retval = PAPI_library_init(PAPI_VER_CURRENT);
if (retval != PAPI_VER_CURRENT) {
 fprintf(stderr, "PAPI library init error!\n");
 exit(1);
}

/* Create the Event Set */
if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Add Total Instructions Executed to our Event Set */
if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

/* Start counting events in the Event Set */
if (PAPI_start(EventSet) != PAPI_OK)
 handle_error(1);

/* Defined in tests/do_loops.c in the PAPI source distribution */
do_flops(NUM_FLOPS);

/* Read the counting events in the Event Set */
if (PAPI_read(EventSet, values) != PAPI_OK)
 handle_error(1);

printf("After reading the counters: %lld\n",values[0]);

/* Reset the counting events in the Event Set */
if (PAPI_reset(EventSet) != PAPI_OK)
 handle_error(1);

do_flops(NUM_FLOPS);

/* Add the counters in the Event Set */
if (PAPI_accum(EventSet, values) != PAPI_OK)
 handle_error(1);
printf("After adding the counters: %lld\n",values[0]);

do_flops(NUM_FLOPS);

/* Stop the counting of events in the Event Set */
if (PAPI_stop(EventSet, values) != PAPI_OK)
 handle_error(1);

printf("After stopping the counters: %lld\n",values[0]);
 }

Possible output:

After reading the counters: 440973
After adding the counters: 882256
After stopping the counters: 443913

9-4 bullx cluster suite - Application Developer's Guide

Note that PAPI_reset is called to reset the counters, because PAPI_read does not reset
the counters. This lets the second value (after adding the counters) to be approximately
twice as large as the first value (after reading the counters).

For more details, please refer to PAPI man and documentation, which are installed with the
product in /usr/share directory.

9.2 Profiling Programs with HPC Toolkit
HPC Toolkit provides a set of profiling tools to help improve the performance of the system.
These tools perform profiling operations on executables and display information in a user-
friendly way.

An important advantage of HPC Toolkit over other profiling tools is that it does not require
the use of compile-time profiling options or re-linking of the executable.

Note In this chapter, the term 'executable' refers to a Linux program file, in ELF (Executable and
Linking Format) format.

HPC Toolkit is designed to:

• Work at binary level to ensure language independence
This enables HPC Toolkit to support the measurement and analysis of multi-lingual
codes using external binary-only libraries.

• Profile instead of adding code instrumentation
Sample-based profiling is less intrusive than code instrumentation, and uses a modest
data volume.

• Collect and correlate multiple performance metrics
 Typically, performance problems cannot be diagnosed using only one type of event.

• Compute derived metrics to help analysis
Derived metrics, such as the bandwidth used for the memory, often provide insights
that will indicate where optimization benefits can be achieved.

• Attribute costs very precisely
 HPC Toolkit is unique in its ability to associate measurements in the context of
dynamic calls, loops, and inlined code.

9.2.1 HPC Toolkit Workflow
The HPC Toolkit design principles led to the development of a general methodology,
resulting in a workflow that is organized around four different capabilities:

• Measurement of performance metrics during the execution of an application

• Analysis of application binaries to reveal the program structure

• Correlation of dynamic performance metrics with the structure of the source code

• Presentation of performance metrics and associated source code

 Application Profiling Tools 9-5

Figure 9-1. HPC Toolkit Workflow

As shown in the workflow diagram above, firstly, one compiles and links the application
for a production run, using full optimization. Then, the application is launched with the
hpcrun measurement tool; this uses statistical sampling to produce a performance profile.
Thirdly, hpcstruct is invoked, this tool analyzes the application binaries to recover
information about files, functions, loops, and inlined code. Fourthly, hpcprof is used to
combine performance measurements with information about the program structure to
produce a performance database. Finally, it is possible to examine the performance
database with an interactive viewer, called hpcviewer.

9.2.2 HPC Toolkit Tools
The tools included in the HPC Toolkit are:

9.2.2.1 hpcrun

hpcrun uses event-based sampling to measure program performance. Sample events
correspond to periodic interrupts induced by an interval timer, or overflow of hardware
performance counters, measuring events such as cycles, instructions executed, cache
misses, and memory bus transactions. During an interrupt, hpcrun attributes samples to
calling contexts to form call path profiles. To accurately measure code from 'black box'
vendor compilers, hpcrun uses on-the-fly binary analysis to enable stack unwinding of fully
optimized code without compiler support, even code that lacks frame pointers and uses
optimizations such as tail calls. hpcrun stores sample counts and their associated calling
contexts in a calling context tree (CCT).

hpcrun-flat, the flat-view version of hpcrun, measures the execution of an executable by a
statistical sampling of the hardware performance counters to create flat profiles. A flat
profile is an IP histogram, where IP is the instruction pointer.

9-6 bullx cluster suite - Application Developer's Guide

9.2.2.2 hpcstruct

hpcstruct analyzes the application binary to determine its static program structure. Its goal
is to recover information about procedures, loop nests, and inlined code. For each
procedure in the binary, hpcstruct parses its machine code, identifies branch instructions,
builds a control flow graph, and then uses interval analysis to identify loop nests within the
control flow. It combines this information with compiler generated line map information in a
way that allows HPC Toolkit to correlate the samples associated with machine instructions
to the program’s procedures and loops. This correlation is possible even in the presence of
optimizations such as inlining and loop transformations such as fusion, and compiler-
generated loops from scalarization of Fortran 90 array operations or array copies induced
by Fortran 90's calling conventions.

9.2.2.3 hpcprof

hpcprof correlates the raw profiling measurements from hpcrun with the source code
abstractions produced by hpcstruct. hpcprof generates high level metrics in the form of a
performance database called the Experiment database, which uses the Experiment XML
format for use with hpcviewer.

hpcprof-flat is the flat-view version of hpcprof and correlates measurements from hpcrun-flat
with the program structure produced by hpcstruct.

hpcproftt correlates flat profile metrics with either source code structure or object code and
generates textual output suitable for a terminal. hpcproftt also generates textual dumps of
profile files.

9.2.2.4 hpcviewer

hpcviewer presents the Experiment database produced by hpcprof or hpcprof-flat so that
the user can quickly and easily view the performance databases generated.

9.2.2.5 Display Counters

The hpcrun tool uses the hardware counters as parameters. To know which counters are
available for your configuration, use the papi_avail command. The hpcrun and hpcrun-flat
tools will also give this information.

papi_avail

Available events and hardware information.
--
Vendor string and code : GenuineIntel (1)
Model string and code : 32 (1)
CPU Revision : 0.000000
CPU Megahertz: 1600.000122
CPU's in this Node : 6
Nodes in this System: 1
Total CPU's : 6
Number Hardware Counters : 12
Max Multiplex Counters : 32
--
The following correspond to fields in the PAPI_event_info_t structure.
Name Code Avail Deriv Description (Note)
PAPI_TOT_CYC 0x8000003b Yes No Total cycles
PAPI_L1_DCM0 x80000000 Yes No Level1 data cache misses
PAPI_L1_ICM0 x80000001 Yes No Level 1 instruction cache misses
PAPI_L2_DCM0 x80000002 Yes Yes Level 2 data cache misses

 Application Profiling Tools 9-7

...
PAPI_FSQ_INS 0x80000064 No No Floating point square root instructions
PAPI_FNV_INS 0x80000065 No No Floating point inverse instructions
PAPI_FP_OPS 0x80000066 Yes No Floating point operations
--
Of 103 possible events, 60 are available, of which 17 are derived.

The following counters are particularly interesting: PAPI_TOT_CYC (number of CPU cycles)
and PAPI_FP_OPS (number of floating point operations).

See • For more information on the display counters, use the papi_avail -d command.

• The following chapters for more information on using HPC Toolkit.

9.3 Intel® VTune™ Performance Analyzer for Linux
Intel® VTune™ Performance Analyzer provides both Sampling and Call Graph analysis to
identify where time and resources are being used by applications, libraries and drivers.
Sampling should be used first because of its low overhead and in order to identify
application modules which require more analysis using Call Graphs. Sampling is usually
best for code that predominantly uses loops, whilst Call Graphs are usually better for code
that branches.

Intel® Performance Analyzer is proprietary software and has to be bought directly from
Intel.

See http://www.intel.com/ for more details.

9.3.1 Sampling
Intel® VTune™ Performance Analyzer uses system-wide, event-based sampling to find
bottlenecks with a low overhead (typically less than 5 percent). Events and processes are
sampled over a time period and then may be analyzed at different levels - operating
system process, thread, module executable, function/method, individual line of source
code, or individual machine/assembly language instructions - to identify specific
bottlenecks. Problems such as cache misses and branch mis-predictions are easily
identified.

9.3.2 Call Graphs
Call Graphs determine calling sequences within algorithms and graphically display critical
paths. They also highlight the critical path, the preceding functions and calls which resulted
in the time or resource bottleneck.

http://www.intel.com/

9-8 bullx cluster suite - Application Developer's Guide

Figure 9-2. A Call Graph showing the critical path in red

Figure 9-2 shows both a table and graph view. When a table entry is selected the function
is highlighted in the graph, and vice versa. The critical path for the function is clearly
visible.

9.3.3 Identify Performance Improvements
Intel® VTune™ Performance Analyzer looks at an application at machine instruction level.
These are annotated and any latencies or stalls are identified. Possible changes to the
application are highlighted, and the performance of the new code is compared with the
original code to verify improvements in the performance.

9.3.4 Adapted to extreme computing clusters
Intel® VTune™ Performance Analyzer is adapted for extreme computing clusters:

• Users can share a large system for simultaneous Call Graph performance analyses.

• Sampling is supported on systems with 128 or more processors using local buffering
per CPU for minimum inter-node contention.

• Dedicated events are used to measure parallelism, core sharing of the bus and cache,
and modified data sharing by threads for tuning multi-core Intel® processors. These
identify opportunities to improve threading, tune multi-core sharing of the bus and
cache, and optimize cache-line usage.

• Remote profiling minimizes the performance impact on the target system by running
the user interface on a separate Windows® PC which is connected to the system.

 Using HPC Toolkit 10-1

Chapter 10. Using HPC Toolkit
Prerequisites

• The executable must contain debugging information (if not, there will be no
correspondence between the counters and code at source line level).

• The executable should be dynamically linked because HPC Toolkit overloads the
default initialization functions to call PAPI. (If the executable is statically linked, a
special linking script called hpclink must be run to link with the hpcrun components.)

• The executable must not use ANSI libstdc++. (If there is a static constructor in the
libstdc++, the use of HPC Toolkit will produce a SIGSEGV).

Note HPC Toolkit provides the most complete performance information when working with fully
optimized executables that include line map information within the object code. Most
compilers provide this, which means that a special build process is not required.

mportant

In order to produce complete results that allow you to view metrics and analyze performance,
it is mandarory to run HPC Toolkit in one of the sequences below:

• hpcstruct, hpcrun, hpcprof, hpcviewer

• hpcstruct, hpcrun-flat, hpcprof-flat, hpcviewer

• hpcstruct, hpcrun-flat, hpcproftt

Note Default values for the options and switches are shown in curly brackets

10.1 Step 1: Recovering the Program Structure with hpcstruct
hpcstruct analyzes an application binary or DSO <binary> and recovers the static program
structure from the object code. hpcstruct writes a XML file (type=HPC ToolkitStructure) that
maps the program’s static source-level structure to its object code. By default, hpcstruct
writes its results to the basename(<binary>).hpcstruct file. Normally, this file is then passed
to HPC Toolkit’s correlation tool hpcprof. It can also be used by the hpcprof-flat or
hpcproftt tools.

hpcstruct works best with highly optimized binaries produced by C, C++, and FORTRAN
programs.

Syntax

hpcstruct [options] <binary>

10-2 bullx cluster suite - Application Developer's Guide

General Options

-v, --verbose [<n>] Verbose mode; generate progress messages to stderr (standard error
output) at verbosity level <n>.

-V, --version Print version information

-h, --help Print help information

--debug [<n>] Use debug level <n> {1}

--debug-proc <glob> Debug structure recovery for procedures matching the procedure
glob <glob>

Structure Recovery Options

-I <path>, --include <path>

 Use <path> when resolving source file names. For a recursive search,
append a '*' after the last slash, e.g., /mypath/* (quote or escape
to protect from the shell.) May pass multiple times.

--loop-intvl <yes|no>

 Loop recovery heuristics assume an irreducible interval is a loop. {yes}

--loop-fwd-subst <yes|no>

Loop recovery heuristics assume forward substitution may occur. {yes}

-N <all|safe|none>, --normalize <all|safe|none>

Specify normalizations to apply to structure. {all}

all : apply all normalizations

safe : apply only safe normalizations

none : apply no normalizations

Example

hpcstruct LoopTest.exe

hpcstruct writes the structure tree for the LoopTest.exe program to the file
LoopTest.exe.hpcstruct.

10.2 Step 2: Measuring Program Execution with hpcrun
hpcrun profiles the execution of an arbitrary command <command> using statistical
sampling rather than instrumentation. It collects per-thread-call path profiles that represent
the full calling context of sample points. Sample points may be generated from multiple
simultaneous sampling sources. hpcrun profiles complex applications that use forks, execs,
threads, and dynamic linking/unlinking. It may be used in conjunction with parallel process
launchers such as SLURM's srun.

Example

A < command> executes and is monitored by hpcrun. After each instance of event e during
period p a sample, containing information about the functioning of the command, is
generated which is recorded by hpcrun.

 Using HPC Toolkit 10-3

When <command> terminates, hpcrun writes the profile measurement database to the HPC
Toolkit-<command>-measurements directory:

The user can abort the process by sending the Interrupt signal (INT or Ctrl-C). hpcrun will
write a partial profile. This technique is useful for programs that run for a long time or do
not function correctly.

Note Dynamically linked libraries can be run with the hpcrun command directly. However, for
statically linked programs the hpcrun code must be linked to the application at build time.
The hpclink tool performs this service by statically linking an application with the hpcrun
profiling code. See Section 10.7 for more information about hpclink.

Syntax

hpcrun [profiling-options] [--] <command> [command-arguments]
hpcrun [info-options]

Information Options

-l, -L --list-events List events that are available; some may not be profilable.

-V, --version Print version information.

-h, --help Print help.

Profiling Options

-e <event>[@<period>], --event <event>[@<period>]

 An event to profile and its corresponding sample period. <event>
may be either a PAPI, native processor event or WALLCLOCK
(microseconds). May run multiple times as implementations permit.

 {WALLCLOCK@5000}.

Note WALLCLOCK and hardware events cannot be mixed.

 -o <outpath>, --output <outpath>

 Specifies a directory for the output data. {HPC Toolkit-<command>-
measurements }

Notes • Without an output option, multiple profile databases of the same <command> will be
placed in the same directory.

• hpcrun uses preloaded shared libraries to initiate profiling. For this reason, hpcrun
cannot be used to profile setuid programs. hpcrun may not be able to profile
programs that themselves use preloading.

Examples

hpcrun -e PAPI_TOT_INS -e PAPI_TOT_CYC LoopTest.exe

The profiling database for the above command is written to the HPC Toolkit-LoopTest.exe-
measurements directory.

To retrieve the counters for 3000 events, enter:

10-4 bullx cluster suite - Application Developer's Guide

hpcrun -e PAPI_TOT_INS:3000 -e PAPI_TOT_CYC:3000 LoopTest.exe

10.2.1 Alternative Step 2: Measuring the Execution with Flat Sampling
using hpcrun-flat

hpcrun-flat profiles the execution of an arbitrary command <command> using statistical
sampling rather than instrumentation. It collects per-thread flat profiles, or IP (instruction
pointer) histograms. Sample points may be generated from multiple simultaneous sampling
sources. hpcrun-flat profiles complex applications that use forks, execs, and threads but not
dynamic linking/unlinking. It may be used in conjunction with parallel process launchers,
such as SLURM's srun.

A < command> executes and is monitored by hpcrun-flat. After each instance of event e
during period p a sample, a counter associated with the current IP is incremented.

When <command> terminates, hpcrun-flat writes the per-thread profile into a file with the
name <command>.hpcrun-flat.<hostname>.<pid>.<tid>. This file is known as a profile file
and contains a histogram of counts for each module loaded.

The user can abort the process by sending the Interrupt signal (INT or Ctrl-C). hpcrun-flat
will write the partial profile. This technique is useful for programs that run for a long time
or do not function correctly.

Syntax

hpcrun-flat [profiling-options] -- <command> [command-arguments]
hpcrun-flat [info-options]

Information Options

–l, --list-events-short List available events (some may not be profilable)

–L, --list-events-long Similar to events-short but with more information

--paths Print paths for external PAPI and MONITOR

-V, --version Print version information

-h, --help Print help

Profiling Options

–e <event>[:<period>] --event <event>[:<period>]

 An event to profile and its corresponding sample period. <event>
can be a PAPI or native processor event. This option can be passed
multiple times. It is recommended that a period always be specified.
{PAPI_TOT_CYC:999999}

-r [<yes|no>], --recursive [<yes|no>],

 Profile process spawned by executable_name. {no}

-t <each|all>, --threads <each|all>

 Select thread profiling mode. With each, separate profiles are
generated for each thread. With all, profiles of all threads are
combined. Only POSIX threads are supported. {each}

 Using HPC Toolkit 10-5

-o <outpath>, --output<outpath>

 Directory for output data {.}

--papi-flag <flag>

 Profile style flag {PAPI_POSIX_PROFIL}

 The special -- option stops the hpcrun-flat option processing; this is
useful when the program specified by executable takes arguments of
its own.

--debug [<n>] Run with debug level <n>. {1}

Notes • Because hpcrun-flat uses LD_PRELOAD to initiate profiling, it cannot be used to profile
setuid commands. For the same reason, it cannot profile statically linked applications.

• Some events are not compatible. To resolve this problem, specify a period of time for
each event using the :period parameter. When this option is specified hpcrun-flat
retrieves each event in sequence, thus avoiding conflicts.

• The WALLCLK event can be used to profile the "wall" clock. It may be used only once,
cannot be used with another event, and cannot have a period specified. The
WALLCLK event cannot be used in a multithreaded process.

Example

hpcrun-flat -e PAPI_TOT_INS -e PAPI_TOT_CYC -o flat.data
./LoopTest.exe

The LoopTest.exe.hpcrun-flat.systemj.16701.0x0 profile file is written to the current
directory.

10.3 Step 3: Correlating Call Path Profiling Metrics with hpcprof
hpcprof correlates the call path profiling metrics produced by hpcrun with the source code
structure created by hpcstruct. It produces an Experiment database for use with the
hpcviewer tool.

hpcprof produces the best results when the -I and -S options are used. The -I option provides
paths for source code directories, and the -S option provides the source code structure from
hpcstruct.

Syntax 1

hpcprof [options] <profile-dir-or-file> ...

By default, hpcprof generates an Experiment database file (Experiment XML format) to be
used with hpcviewer as well as a configuration file that can be used as input to a
subsequent invocation of hpcprof-flat.

General Options

-v, --verbose [<n>] Verbose mode; generate progress messages to stderr at verbosity
level <n>.

-V, --version Print version information

10-6 bullx cluster suite - Application Developer's Guide

-h, --help Print help information

--debug [<n>] Use debug level <n> {1}

Source Structure Correlation Options

--name <name>, --title <name>

Set the database’s name (title) to <name).

-I <path>, --include <path>

 Use <path> when searching for source files. Use a * after the last
slash indicates recursion, e.g. /mypath/*, with a quote or escape
to protect it from the shell. This option may be used multiple times.
Source code files are copied into the Experiment database.

-S <file>, --structure <file>

 Use the program structure file <file> generated by the hpcstruct tool.
This option may be used multiple times (e.g., for shared libraries).

Special Options

--force hpcprof currently allows a maximum of 32 profile files to prevent
unmanageably large Experiment databases. The --force option
removes that limit.

Output Options

-o <db-path>, --db <db-path>, --output <db-path>

Specify experiment database name <db-path> {./experiment-db}

Example

hpcprof -I . -S LoopTest.exe.hpcstruct HPC Toolkit-LoopTest.exe-
measurements

msg: STRUCTURE: /usr/hpc/looptests/LoopTest.exe
msg: Line map : /usr/lib/HPC Toolkit/ext-libs/libmonitor.so.0.0.0
msg: Copying source files reached by PATH option to
 /usr/hpc//looptests/HPC Toolkit-LoopTest.exe-database

The experiment.xml Experiment database file and the source files are written to the HPC
Toolkit-LoopTest.exe-database directory.

 Using HPC Toolkit 10-7

10.3.1 Step 3 Alternative A: Correlating Flat Metrics with Program
Structure using hpcprof-flat

hpcprof-flat correlates flat profiling metrics with a static source code structure and, by
default, generates an Experiment database for use with hpcviewer. hpcprof-flat is invoked
in one of two ways. Firstly, correlation options are specified on the command line along
with a list of flat profile files. Secondly, these options along with derived metrics are
specified in the <config-file> configuration file. The first method is generally sufficient
because derived metrics can be computed in hpcviewer. However, to facilitate batch
processing for the second method, when run with the first method, a sample configuration
file (config.xml) is generated within the Experiment database.

Syntax 1

hpcprof-flat [options] [output-options] [correlation-options]
<profile-file>

The inputs to the usage of hpcprof-flat are (1) the source structure file created by the
hpcstruct tool and (2) the profile files created by the hpcrun-flat tool. If the structure file is
not provided, hpcprof-flat will default to a correlation using the line map information.

By default, hpcprof-flat generates an Experiment database file (Experiment XML format) to
be used with hpcviewer as well as a configuration file that can be used as input to a
subsequent invocation of the second form of hpcprof-flat.

General Options

-v, --verbose [<n>] Verbose mode; generate progress messages to stderr (standard error
output) at verbosity level <n>.

-V, --version Print version information

-h, --help Print help information

--debug [<n>] Use debug level <n> {1}

Source Structure Correlation Options

--name <name>, --title <name>

 Set the database name (title) to <name).

-I <path>, --include <path>

 Use <path> when searching for source files. Use a * after the last
slash indicates recursion, e.g. /mypath/*, with a quote or escape to
protect it from the shell. This option may be used multiple times.

-S <file>, --structure <file>

 Use the program structure file <file> generated by the hpcstruct tool.
This option may be used multiple times, e.g. for shared libraries

Output Options

-o <db-path>, --db <db-path>, --output <db-path>

10-8 bullx cluster suite - Application Developer's Guide

Specify experiment database name <db-path> {./HPC Toolkit
database}

--src [yes|no], --source[yes|no]

Indicates if source code files should be copied into the Experiment
database. {yes}. By default, hpcprof-flat copies source files with
performance metrics, resulting in a self-contained dataset that does
not rely on an external source code repository. If copying is
suppressed, the database is no longer self-contained. Note that only
those source files reachable by PATH/REPLACE statements are
copied.

Output Format Options

Select different output formats and optionally specify the output filename file (located within
the Experiment database). The output is sparse in the sense that it ignores program areas
without profiling information (Set file to '-' to write to stdout).

-x [file], --experiment [file] Default Experiment XML format {experiment.xml}. NOTE:
To disable, set file to no.

--csv [file] Comma-separated-value format. It includes flat scope tree
and loops, and is useful for downstream external tools
{experiment.csv}. When --csv is specified, the --src option is
set to no.

Syntax 1 Examples

hpcprof-flat -I . -S LoopTest.exe.hpcstruct flat.data/*

msg: Copying source files reached by PATH/REPLACE options to HPC
Toolkit-database
msg: Writing final scope tree (in XML) to experiment.xml
msg: Writing configuration file to HPC Toolkit-database/config.xml

ls -l HPC Toolkit-database

total 16
-rw-r--r-- 1 hpctk users 452 2009-11-10 20:33 config.xml
-rw-r--r-- 1 hpctk users 7296 2009-11-10 20:33 experiment.xml
drwxr-xr-x 3 hpctk users 4096 2009-11-10 20:33 src

Syntax 2

hpcprof-flat [options] [output-options] --config <config-file>

The correlation options are contained in the configuration file and cannot be specified on
the command line for Syntax 1 above. <config-file> is a configuration file generated by
previous hpcprof-flat activity, and may be edited by the user. The configuration file syntax
is briefly described in the hpcviewer section below.

Example

For example, the config.xml file produced by the above hpcprof-flat command can be
modified to insert a computed metric that computes the cycles per instruction:

 Using HPC Toolkit 10-9

<METRIC name="CPI" displayName="CPI" percent="false">
 <COMPUTE>
 <math>
 <apply> <divide/>
 <ci>PAPI_TOT_CYC</ci>
 <ci>PAPI_TOT_INS</ci>
 </apply>
 </math>
 </COMPUTE>
</METRIC>

hpcprof-flat -S LoopTest.exe.hpcstruct --config HPC Toolkit-
database/config.new

hpcprof-flat -S smath.psxml --config experiment-db/config.new

msg: Computed METRIC CPI: CPI = (PAPI_TOT_CYC / PAPI_TOT_INS)
msg: Copying source files reached by PATH/REPLACE options to
experiment-db
msg: Writing final scope tree (in XML) to experiment.xml

When the experiment.xml file is viewed with hpcviewer, it will show three columns of
metrics: the native metrics for the PAPI_TOT_CYC and PAPI_TOT_INS events as well as a
computed metric for CPI.

10.3.2 Step 3 Alternative B: Correlating Flat Metrics with Program
Structure using hpcproftt

hpcproftt provides an alternative to hpcprof-flat and hpcviewer. hpcproftt correlates profile
metrics with either the source code structure (the first and default mode) or object code
(second mode) and generates text output for a terminal. In both modes, hpcproftt uses a list
of flat profile files as input.

hpcproftt also supports a third mode, in which it generates textual dumps of profile files. In
this mode, the profile list may contain either flat or call path profile files.

hpcproftt defaults to source structure correlation mode. When --source is not specified, the
default switches are {pgm,lm}; with --source, the default switch is {sum}.

Syntax 1: Source Structure Correlation

hpcproftt [--source] [options] <profile-file>...

In source mode, hpcproftt first creates raw metrics for every native event in the profile files
and creates the metrics specified by the --metric option. All metrics are normalized to use
the events unit instead of samples, because this enables meaningful comparisons and
derived metrics. Because percentages facilitate rapid comprehension, compared to values,
all raw metrics are displayed as percentages. Likewise, derived metrics default to
percentages whenever possible.

hpcproftt then correlates the metrics to the program structure based on the hpcstruct
program structure file specified by the --structure option. If a file is not specified, a simple
structure is computed from the load module's line map.

10-10 bullx cluster suite - Application Developer's Guide

 hpcproftt finally generates the metric summaries and annotated source files to stdout. Each
metric summary compares a source structure element, such as a procedure, with all other
elements of that type throughout the program. The desired elements are chosen by switches
specified with the --source option. Structure elements include Program, Load Module, File,
Procedure, Loop, and Statement. Note that loops are included only when the --structure
option is used. For example, the procedure summary shows exclusive metric values for
each procedure in the program. Structure elements are pruned if all corresponding metrics
are zero. Summaries are rank-ordered by the first metric.

Optionally, hpcproftt will annotates source files with Statement (line) level metrics. It can
only annotate those files found by combing debug information using the --include search
paths.

General Options

-v, --verbose [<n>] Verbose mode; generate progress messages to stderr (standard error
output) at verbosity level <n>.

-V, --version Print version information

-h, --help Print help information

--debug [<n>] Use debug level <n> {1}

Source Structure Correlation Switches

--source[=all,sum,pgm,lm,f,p,l,s,src]

--src[=all,sum,pgm,lm,f,p,l,s,src]

Correlate metrics to source code structure. Without --source, the
default is {pgm,lm}; with, it is {sum}

all All summaries plus annotated source files
sum All summaries
sgm Program summary
lm Load module summary
f File summary
p Procedure summary
l Loop summary
s Statement summary
src Annotate source files; equiv to --srcannot *

--srcannot <glob> Annotate source files with path names that match file <glob> glob.
Protect globs from the shell with 'single quotes'. May pass multiple
times to logical OR additional globs.

-M <metric>, --metric <metric>

 Show a supplemental or different metric set. <metric> is one of the
following:

sum Show also Mean, CoefVar, Min, Max, Sum
sum-only Show only Mean, CoefVar, Min, Max, Sum

-I <path>, --include <path>

 Using HPC Toolkit 10-11

 Use <path> when searching for source files. Use a * after the last
slash indicates recursion, e.g. /mypath/*. Use quote marks or escape
to protect it from the shell. This option may be used multiple times.

-S <file>, --structure <file>

Use the program structure file <file> generated by the hpcstruct tool.
This option may be used multiple times (e.g., for shared libraries).

Example of Source Structure Correlation

hpcproftt --source flat.data/*

==
Metric definitions. column: name (nice-name) [units] {details}:
 1: PAPI_TOT_INS [events] {Instructions completed:999999 ev/smpl}
 2: PAPI_TOT_CYC [events] {Total cycles:999999 ev/smpl}
Program summary (row 1: sample count for raw metrics):
--
36001 12030
3.60e+10 1.20e+10
==
Load module summary:
--
100.00% 100.00% /opt/hpctk/csg/looptests/LoopTest.exe
==
File summary:
--
 100.00% 100.00% [LoopTest.exe]DoLoops.cpp
==
Procedure summary:
--
 100.00% 100.00% [LoopTest.exe]<DoLoops.cpp>DoLoops(int, int)
==
Loop summary (dependent on structure information):
--

==
Statement summary:
--
 99.96% 99.98% [LoopTest.exe]<DoLoops.cpp>21
 0.03% 8.3e-03% [LoopTest.exe]<DoLoops.cpp>18
 0.01% 8.3e-03% [LoopTest.exe]<DoLoops.cpp>17

Syntax 2

hpcproftt --object [options] <profile-file>

In object mode, hpcproftt performs fine-grained correlation and generates annotated object
code. Unlike source structure correlation mode, true summaries are not computed; instead
hpcproftt generates annotated object code, i.e. procedures and instruction. Moreover, only
raw metrics corresponding to native events in one profile file may be correlated to the
object code affected by these metrics. Accordingly, hpcproftt creates raw metrics for each
native event in one profile file. Metrics use the samples unit instead of events and default to
percentages, alternatively absolute values can be displayed. Procedures are pruned from
the output if no associated metric totals apply to the threshold.

Notes • On ISAs with variable-sized instructions, histogram buckets of 4 byes in size may
contain information for more than one instruction. In this case, multiple instructions will

10-12 bullx cluster suite - Application Developer's Guide

report counts for the same bucket.

• On some architectures, delays between event triggers, interrupt generation, and
sampling of the IP mean that an event may be associated with an instruction different
from the one that caused the event. This gap may be as many as 50 to 70 instructions
in length.

Object Correlation Options

--object[=s]

--obj[=s] Correlate metrics with object code by annotating object code
procedures and instructions. {}

 s: intermingle source line info with object code

--objannot Annotate object procedures with unmangled names that match glob
<glob>. Protect glob characters from the shell with single quotes or
backslash. May pass multiple times to logical OR additional globs.

--obj-values Show raw metrics as values instead of percentages

--obj-threshold <n> Prune procedures with an event count < n {1}

Example of Object Code Correlation

hpcproftt --object=s flat.data/LoopTest.exe.hpcrun-
flat.chekov.9140.0x0

==
flat.data/LoopTest.exe.hpcrun-flat.systemj.9140.0x0
==
==
Load module: /lib64/ld-2.10.1.so
--
Metric definitions. column: name (nice-name) [units] {details}:
 1: PAPI_TOT_INS [samples] {Instructions completed:999999 ev/smpl}
 2: PAPI_TOT_CYC [samples] {Total cycles:999999 ev/smpl}

Metric summary for load module (totals):
 0 0
...
==
Load module: LoopTest.exe
--
Metric summary for load module (totals):
 36001 12030

Procedure: _Z7DoLoopsii (DoLoops(int, int))
--

Metric definitions. column: name (nice-name) [units] {details}:
 1: PAPI_TOT_INS [samples] {Instructions completed:999999 ev/smpl}
 2: PAPI_TOT_CYC [samples] {Total cycles:999999 ev/smpl}

Metric summary for procedure (percents relative to load module):
 36001 12030
 100.00% 100.00%

Metric details for procedure (percents relative to procedure):
DoLoops.cpp:6

 Using HPC Toolkit 10-13

0x4006d0: push %r15
0x4006d2: push %r14
0x4006d4: mov %edi,%r14d
0x4006d7: push %r13
0x4006d9: mov %esi,%r13d
0x4006dc: push %r12
DoLoops.cpp:17
0x4006de: xor %r12d,%r12d
DoLoops.cpp:6
0x4006e1: push %rbp
DoLoops.cpp:17
0x4006e2: xor %ebp,%ebp
DoLoops.cpp:6
0x4006e4: push %rbx
0x4006e5: sub $0x28,%rsp

...

Syntax 3

hpcproftt --dump <profile-file>

This form of the hpcproftt command will generate a textual representation of the raw profile
data.

Example

hpcproftt --dump flat.data/*

==
flat.data/LoopTest.exe.hpcrun-flat.systemj.9140.0x0
==
--- ProfileData Dump ---
{ ProfileData: flat.data/LoopTest.exe.hpcrun-flat.systemj.9140.0x0 }
 { LM: /lib64/ld-2.10.1.so, loadAddr: 0x3971200000 }
 { EventData: PAPI_TOT_INS, period: 999999, outofrange: 0,
overflow: 0 }
 { EventData: PAPI_TOT_CYC, period: 999999, outofrange: 0,
overflow: 0 }
...
 { LM: LoopTest.exe, loadAddr: 0x400000 }
 { EventData: PAPI_TOT_INS, period: 999999, outofrange: 0,
overflow: 0 }
 { 0x400730: 1 }
 { 0x400734: 5 }
 { 0x400744: 5 }
 { 0x400750: 2 }
 { 0x400760: 18199 }
 { 0x400768: 17784 }
 { 0x40079c: 5 }
 { EventData: PAPI_TOT_CYC, period: 999999, outofrange: 0,
overflow: 0 }
 { 0x400734: 1 }
 { 0x400760: 5597 }
 { 0x400768: 6431 }
 { 0x40079c: 1 }
...
--- End ProfileData Dump ---...

10-14 bullx cluster suite - Application Developer's Guide

10.4 Step 4: Checking the Results with hpcviewer
The hpcviewer tool allows the performance databases, produced by the previous steps, to
be examined interactively. hpcviewer uses the Experiment database, specifically the XML
file generated by hpcprof or hpcprof-flat.

Figure 10-1. hpcviewer screen

Syntax

hpcviewer [database-directory]

[database-directory] is the name of the Experiment database file produced by hpcprof or
hpcprof-flat. When [database-directory] is not specified, hpcviewer will prompt the user to
select the Experiment database from a directory window.

Menus

hpcviewer provides three main menus.

File Menu

This menu includes several menu items for checking basic viewer operations:

New window Open a new hpcviewer window that is independent of the existing one.
Open database Load a performance database into the current hpcviewer window.
Preferences Display the settings dialog box.
Exit Quit the hpcviewer application.

Help Menu

This menu displays information about hpcviewer:

 Using HPC Toolkit 10-15

About Displays basic information about the hpcviewer, including plug-ins used
and error log.

hpcviewer help Displays online help for using hpcviewer.

Debug Menu

This menu is used to display HPC Toolkit’s raw XML representation of the performance
data. This menu is intended for the use of tool developers

10.4.1 hpcviewer views
hpcviewer displays performance data for an application in three ways:

• Top-down call path (Calling context) view

• Bottom-up call path (Caller's) view

• Flat view

Select the view by clicking the corresponding view control tab.

Calling context view

This top-down view represents dynamic calling contexts (call paths) in which costs were
incurred. Using this view, one can explore the performance measurements for an
application in a top-down fashion and analyze the costs incurred by procedure calls in a
particular calling context. The term "cost" is used instead of "time", because hpcviewer can
present a multiplicity of measurements, such as cycles, or cache misses, or derived metrics,
such as cache miss rates or bandwidth consumed. These items are indicators of the true
execution cost. A calling context for a procedure f consists of the stack of procedure frames
active when the call was made to f. Using this view, one can readily see how much of the
application's cost was incurred by f, when called from a particular calling context. If finer
detail is of interest, one can explore how the costs incurred by a call to f in a particular
context are divided between f itself and the procedures it calls. HPC Toolkit's call path
profiler hpcprof and the hpcviewer user interface distinguish the calling context by the
individual call sites; this means that if a procedure g contains calls to procedure f in
different places, these represent separate calling contexts.

Callers view

This bottom-up view enables one to look upward along the call paths. This view is
particularly useful for understanding the performance of software components, or
procedures, used in more than one context. For instance, a message-passing program may
call MPI_Wait in many different calling contexts. The cost of any particular call will depend
upon the structure of the parallelization in which the call is made. Serialization or load
imbalance may cause long waits in some calling contexts while other parts of the program
may have short waits because computation is balanced and communication is overlapped
with computation.

10-16 bullx cluster suite - Application Developer's Guide

Flat view

This view organizes performance measurement data according to the static structure of an
application. All costs incurred in any calling context by a procedure are aggregated
together in the flat view. This complements the calling context view, in which the costs
incurred by a particular procedure are represented separately for each call to the
procedure from a different calling context.

10.4.2 hpcviewer browser window
The hpcviewer browser window is divided into three panes: the source pane, the
navigation pane, and the metrics pane.

Source pane

This displays the source code associated with the current entity selected in the navigation
pane. When hpcviewer opens a performance database, the source pane is initially blank
because no entity has been selected in the navigation pane. Selecting any entity in the
navigation pane will cause the source pane to first load the corresponding file, and then
scroll to and highlight the line corresponding to the selection. Selecting another entity in the
navigation pane causes the source pane to display that entity’s associated source file.

Navigation Window

This presents a hierarchical tree-based structure that is used to organize the presentation of
an application’s performance data. This tree can include load modules, source files,
procedures, procedure activations, inlined code, loops, and source lines. Selecting any of
these entities in the navigation pane causes its associated source code, if any, to be
displayed in the source pane. Children in this hierarchy can be revealed or concealed by
opening or closing any non-leaf entry in the view.

The type of entities in the navigation pane’s tree structure depends on the view being
displayed:

Calling context view
Entities in the navigation tree represent procedure activations, inlined code, loops, and
source lines. Most entities link to a single location in the source code; procedure
activations, however, link to two: the call site from which the procedure was called
and the procedure itself.
Callers view
Entities in the navigation tree are procedure activations. Whereas procedure
activations in the calling context view are paired with the called procedure, call sites
in this view are paired with the calling procedure to facilitate the attribution of costs for
a procedure that is called to different call sites and callers.
Flat view
Entities in the navigation pane correspond to source files, loops, source lines, and
procedure call sites, which are rendered in the same way as procedure activations.

Navigation bar buttons

 flatten unflatten

 Using HPC Toolkit 10-17

Flatten and unflatten the navigation hierarchy (flat view only). Clicking on the flatten button
will replace each top-level scope with its children. If a scope has no children, i.e., it is a
leaf, the node will remain in the view. This flattening operation is useful for changing the
strict hierarchical view so that peers at the same level in the tree can be viewed and ranked
together. For instance, this can be used to hide procedures in the flat view so that outer
loops can be ranked and compared to one another. The inverse of the flatten operation is
the unflatten operation, which makes an elided node in the tree visible again.

zoom-in zoom-out

The up arrow zooms in to show the information for the selected line and its descendants
only. The down arrow zooms out and reverses a zoom-in operation that has been carried
out.

 hot call path

This presents the cost of performance hot spots indicating the chain of responsibility for
these costs. The costs are calculated by comparing parent and child values and showing
the chain where the difference is greater than a threshold (default is 50%). The threshold
value can be changed by using the File -> Preferences menu.

 Derived metric

Creates a new metric from the mathematical formulas that are available. See the sections
that follow for more information on derived metrics.

 Hide / Show metrics

Hides or shows metric columns. A dialog box appears, and the user selects the columns to
be displayed or to hidden. See the sections that follow for more information.

Metric pane

This displays one or more performance metrics associated with the entities in the navigation
pane. Entities in the tree view of the navigation pane are sorted at each level by the metric
in the selected column. When hpcviewer is launched, the leftmost metric column is the
default selection, and the navigation pane is sorted according to the values of that metric in
descending order. Clicking on a column header changes the selected metric. The sort order
can be reversed by clicking on the arrow at the head of the selected column.

Determining the relationship between the two metrics is easier when the metrics of interest
are in adjacent columns of the metric pane. The order of columns can be changed by
selecting the column header for a metric and then dragging it left or right to its desired
position. The metric pane also includes scroll bars for horizontal scrolling (other metrics)
and vertical scrolling (other scopes). Vertical scrolling of the metric pane and the
navigation pane is synchronized.

10-18 bullx cluster suite - Application Developer's Guide

10.5 Improving the Performance of hpcviewer

10.5.1 Source Pane
The source pane is used to display a copy of the program's source code or HPC Toolkit's
performance data in XML format; it does not support editing of the pane's contents. Use a
dedicated editor (not the one stored in HPC Toolkit's performance database) to edit your
original copy of the source.

hpcviewer supports the following useful shortcuts and customizations.

Go to line Scrolls the current source pane to a specific line number. <ctrl>-l
opens a dialog box for the target line number to be entered.

Find Searches for a string in the current source pane. <ctrl>-f opens
dialog box for the target string to be entered.

Font Change the font used for the metric table by using the Preferences dialog
from the File menu. After opening the Preferences dialog, select
hpcviewer preferences (the item at the bottom of the list in the column on
the left side of the pane). The selected font will be used the next time
hpcviewer is launched.

Minimize/Maximize window: Icons in the upper right corner of the window. Minimize or
maximize the hpcviewer window.

10.5.2 Metric Pane
hpcviewer supports the following features:

Maximizing a view. Expands the Source or Metric pane to fill the window. Double-click on
the view tab to expand or to restore the view.

Sorting the metric pane contents by a column’s values. Select the column to be sorted. If no
triangle appears next to the metric, click again. A downward pointing triangle means that
the rows in the metric pane are sorted in descending order according to the values in the
column. Additional clicks on the header of the selected column will toggle back and forth
between ascending and descending.

Changing column width. Place the cursor over the border (right or left) of the column’s
header field. The cursor changes into a vertical bar between a left and right arrow. Hold
down the mouse button and drag the column border to the width desired.

Changing column order. Columns can be permuted as desired. Hold down the mouse
button over the header of the column to be moved, and drag the column to its new
position.

Hiding or showing metric columns. Use the button in the Navigation bar to bring up
the column selection window, as shown below:

 Using HPC Toolkit 10-19

Figure 10-2. Hide\Show Columns Window

The Column Selection box contains the list of the metric columns, sorted according to their
order in HPC Toolkit's performance database for the application. Each metric column is
prefixed by a check box that indicates if the metric should be displayed (checked) or
hidden (unchecked). Select the Check all button to display all the metric columns. A click on
Uncheck all hides all the metric columns. If Apply to all views is checked the configuration
will apply to all views; otherwise, the configuration applies to the current view only.

10.5.3 hpcviewer Limitations
Limited number of metrics. Although most HPC Toolkit components such as hpcrun and
hpcstruct support a large number of metrics, it is not recommended to work with more than
100 metrics, including both exclusive and inclusive variants, with hpcviewer. Having a
high number of metrics require a large amount of memory, and makes the viewer interface
sluggish. If the application profiled has more than 50 processes and each process has its
own metrics, then it is recommended to analyze a few representative processes only. To
pinpoint scalability bottlenecks, we recommend an approach based on the differential
analysis of a representative process using two executions at different scales.

See Coarfa, C., Mellor-Crummey, J., Froyd, N., and Dotsenko, Y. 2007. Scalability analysis of
SPMD codes using expectations in the Proceedings of the 21st Annual International
Conference on Supercomputing (Seattle, Washington, June 17 - 21, 2007) for more
information.

Copying or printing metrics. hpcviewer does not currently support the copying or printing
of metric values.

10-20 bullx cluster suite - Application Developer's Guide

10.6 HPC Toolkit Metrics
hpcviewer allows the interactive examination of the performance databases that have been
generated. hpcviewer uses the Experiment database, specifically the XML file generated
by hpcprof or hpcprof-flat.

Exclusive costs are those incurred by scope itself; inclusive costs include costs incurred by
any calls it makes. The data gathered by the profiler attributes the cost for each scope (a
file, procedure, loop, or inlined function) exclusively. hpcviewer presents inclusive values
for each cost metric associated with a program scope as well.

How are metrics computed?
Call path profile measurements collected by hpcrun correspond directly to the Calling
context view. hpcviewer derives all other views from exclusive metric costs in the Calling
context view. For the Caller view, hpcviewer collects the cost of all samples in each
function and attributes that to a top-level entry in the caller view. Under each top-level
function, hpcviewer can look up the call chain to identify all the contexts in which the
function is called. For each function, hpcviewer apportions its cost according to the calling
contexts that incur costs. hpcviewer computes the flat view by traversing the calling context
tree and attributing the scope costs to the various parts of its static source code structure.
The flat view presents a hierarchy of nested scopes from the load module, file, routine,
loops, inlined code and statements.

Examples

file1.c file2.c

f () {

 g ();

}

// m is the main routine

m () {

 f ();

 g ();

}

// g can be a recursive function

g () {

 if (. .) g ();

 if (. .) h ();

}

h () {

}

Figure 10-3. Source files

Figure 9-2 shows an example of a recursive program separated into two files: file1.c and
file2.c. In this figure, numerical subscripts distinguish between different instances of the
same procedure. In the other parts of this figure, alphabetic subscripts are used; there is no
natural one-to-one correspondence between the instances in the different views. Routine g
in Figure 9-2 can behave as a recursive function depending on the value of the condition
branch (lines 3-4).

 Using HPC Toolkit 10-21

Figure 10-4. Calling Context view

Figure 9-3 shows an example of the call chain execution of the program, annotated with
both inclusive and exclusive costs. The computation of the inclusive costs, from the exclusive
costs in the Calling Context view, involves simply adding up all of the costs in the sub-tree
below.

Note that on the right path of the routine m, routine g, instantiated in the diagram as g1,
performed a recursive call g2 before calling routine h. Although g1, g2 and g3 are all
instances from the same g routine, each instance accrues a different cost. This separation of
cost can be critical in identifying which instance of g has a performance problem.

Figure 10-5. Caller view

Figure 9-4 shows the corresponding scope structure for the caller view and its computed
costs for this recursive program. The procedure g shown as ga, a root node in the
diagram, has different cost from g as a call-site indicated by the gb, gc and gd instances.
For example, the inclusive cost of ga is 9 in the first tree of this figure, this is the sum of the
highest cost for each branch in the Calling Context tree in Figure 9-3: the inclusive cost of
g3 (3) and g1 (6). The cost of g2 does not accrue here because it is a descendant of g1,
in other words, the cost of g2 is included in g1.

10-22 bullx cluster suite - Application Developer's Guide

Figure 10-6. Flat view

Inclusive costs are computed similarly in the Flat view. The inclusive cost of a recursive
routine is the sum of the highest cost for each branch in the Calling Context tree. For
example, in Figure 9-5 the inclusive cost of gx, defined as the total cost of all instances of
g, is 9; this is consistent with the cost in the caller tree. The advantage of attributing
different costs for each instance of g is that it enables the identification of the g call
instances responsible for performance losses.

10.6.1 Derived Metrics
Often, the data only become useful when combined with other information such as the
number of instructions executed or the total number of cache accesses. While users do not
mind a bit of mental arithmetic and can compare values in different columns to see how
they relate for a scope, doing this for many scopes is exhausting. To address this problem,
hpcviewer provides a mechanism for defining metrics. A user-defined metric is called a
Derived metric. A derived metric is defined by using a spreadsheet-like mathematical
formula that refers to data in other metric table columns by using $n to refer to the value in
the nth column.

Formula
The formula supported by hpcviewer is spreadsheet-like and can consist of any form of
combined complex expressions. The syntax is very simple:

<expression> ::= <binary_op> | <function>
<binary_op> ::= <expression> <binary_operand> <expression>
<binary_operand> ::= + | - | * | /

Intrinsic Functions
Creating a new intrinsic function requires modifications to the source code. The source
code for the hpcviewer is available from https://outreach.scidac.gov, or you can contact
the HPC Toolkit team at hpc@rice.edu. The HPC Toolkit team can also provide a list of the
intrinsic functions that are supported.

Derived Metric Dialog Box

Consider a database containing information about five processes, each with two metrics.

1. Metrics 0, 2, 4, 6, 8 : Total number of cycles
2. Metrics 1, 3, 5, 7, 9 : Total number of floating point operations

 Using HPC Toolkit 10-23

To calculate the average number of cycles per floating point operation across all five
processes, define a formula as follows:

avg($0, $2, $4, $6, $8) / avg($1, $3, $5, $7, $9)

A derived metric can be created by clicking the Derived metric button in the Navigation
bar. A Derived metric window will appear as shown in Figure 9-6 below:

Figure 10-7. Derived metric dialog box

The window has two main parts:

1. Derived metric definition, consisting of:
Formula definition field: Field to define spreadsheet-like mathematical formulas.
Metric: Used to insert metric ID. For example, in Figure 9-6, the metric PAPI_TOT_CYC
has the ID of 44. Clicking the Insert metric button will insert the metric ID into the
formula definition field.
Function: Inserts functions in the Formula definition field. Some functions require only
one metric as the argument, but others can have two or more arguments. The avg()
function, which computes the average of some metrics, must have at least two
arguments.

2. Options, offering two customizations:
New name for the derived metric. Supply a string to be used as the column header
for the derived metric. If one is not supplied, the derived metric will have no name.
Display the metric percentage. When this option is selected, each scope’s derived
metric value will be augmented with a percentage value, which for scope s is
computed as:
100 * (Derived metric value of s) / (Derived metric value computed by applying the
metric formula to the aggregate values of the input metrics).
Such a computation can lead to nonsensical results for some derived metric formulae.
For example, if the derived metric is computed as a ratio of two other metrics,
comparing the scope’s ratio with the ratio for the entire program will not yield a
meaningful result. To avoid a confusing metric display, be careful when using this
button to display the metric percentage.

10-24 bullx cluster suite - Application Developer's Guide

10.6.2 Metric Syntax in the Configuration File
A configuration file is an XML document of the HPCVIEW type, and uses the following top-
level elements:

<HPCVIEW> Begin document

<TITLE name="my-title"/> my-title indicates the Experiment database.

<PATH name="path"/> A set of PATH directives specifying the path
names to be search for the source files. path
is a relative or absolute path containing the
source code which is correlated with the
performance data. In order to recursively
search a directory, append an escaped '*'
after the last slash, e.g., /mypath/*
(escaping is for the shell).

<REPLACE

in="old-path-prefix" out="new-path-prefix"
/>

A set of REPLACE directives can be used to
define one path prefix to match another
prefix occurring in profile data files or in a
program structure file, when in operation.
This is useful when trying to compare
performance metrics between machines with
different file structures, e.g., because the
executables or the source files are installed
in different places.

<STRUCTURE name="program.psxml"/> One or more STRUCTURE directives
providing program structure files created by
hpcstruct

<METRIC name="name"

displayName="name-in-display"

display="true|false"

percent="true|false">

</METRIC>

One or more metrics.

</HPCVIEW> End document

Metrics are introduced using the METRIC element and contain several attributes:

name: A unique name used when creating derived metrics that are expressions
of other metrics.

displayName: Name to be displayed. Not necessarily unique.

 Using HPC Toolkit 10-25

display: Controls metric visibility. A metric used only as input for another
computed metric need not be displayed.

percent: Indicates whether the viewer should display a column of percentages,
computed as the ratio of the metric for this scope to the metric for the
whole program. Percents are useful when metrics are computed by
summing contributions from descendants in the scope tree, but are
meaningless for computed metrics such as ratio of flops/memory access
in a scope.

The elements that appear inside the METRIC element determine its type. A metric may be
of two types: native (type=FILE) or derived (type=COMPUTE).

10.6.3 Native or FILE Metrics
This type of metric appears in profile information generated by the hpcrun-flat or by
hpcproftt tools:

<METRIC name="m1" ...>
 <FILE name="file1" select="short-name-in-file1" type="HPCRUN|PROFILE"/>
</METRIC>

Because a file may contain multiple metrics, the FILE element has an optional select
attribute to identify a particular metric within the file. Metrics are identified by their
shortName values, typically zero-based indices. The default select value is 0 and
corresponds to the first metric.

10.6.4 Derived or COMPUTE Metrics
Derived metrics are specified by a COMPUTE element containing a MathML equation in terms
of metrics defined earlier in the HPCVIEW XML document.

hpcprof-flat supports the following operands:

• constants: <cn>2</cn

• variables: <ci>m1</ci> (used to refer to other metrics)

and the following MathML operators (used within <apply>):

• negation: <minus/> (1-ary)

• subtraction: <minus/> (2-ary)

• addition: <plus/> (n-ary)

• multiplication: <times/> (n-ary)

• division: <divide/> (2-ary)

• exponentiation: <power/> (2-ary)

• minimum: <min/> (n-ary)

• maximum: <max/> (n-ary)

• mean (arithmetic): <mean/> (n-ary)

• standard deviation: <sdev/> (n-ary)

Consider the examples from the previous sections with two native metrics for PAPI_TOT_CYC
(cycles) and PAPI_TOT_INS (instructions).

10-26 bullx cluster suite - Application Developer's Guide

Example 1

The config.xml file produced by hpcprof-flat, contains the following elements, and includes
native metrics only:

<HPCVIEW>
<TITLE name=""/>
<STRUCTURE name="smath.psxml"/>
<METRIC name="PAPI_TOT_INS" displayName="PAPI_TOT_INS" sortBy="true">
 <FILE name="hpcrun.data/smath.exe.hpcrun-flat.sysj.29041.0x0"
 select="0" type="HPCRUN"/>
</METRIC>
<METRIC name="PAPI_TOT_CYC" displayName="PAPI_TOT_CYC">
 <FILE name="hpcrun.data/smath.exe.hpcrun-flat.sysj.29041.0x0"
 select="1" type="HPCRUN"/>
</METRIC>
</HPCVIEW>

The config.new file produced by hpcprof-flat and subsequently edited by the user, contains
the following elements, and includes both native and derived metrics:

<HPCVIEW>
<TITLE name=""/>
<STRUCTURE name="smath.psxml"/>
<METRIC name="PAPI_TOT_INS" displayName="PAPI_TOT_INS" sortBy="true">
 <FILE name="hpcrun.data/smath.exe.hpcrun-flat.sysj.29041.0x0"
 select="0" type="HPCRUN"/>
</METRIC>
<METRIC name="PAPI_TOT_CYC" displayName="PAPI_TOT_CYC">
 <FILE name="hpcrun.data/smath.exe.hpcrun-flat.sysj.29041.0x0"
 select="1" type="HPCRUN"/>
</METRIC>
<METRIC name="CPI" displayName="..." percent="false">
 <COMPUTE>
 <math>
 <apply> <divide/>
 <ci>PAPI_TOT_CYC</ci>
 <ci>PAPI_TOT_INS</ci>
 </apply>
 </math>
 </COMPUTE>
</METRIC>
</HPCVIEW>

 Using HPC Toolkit 10-27

10.7 Using HPC Toolkit with Statically Linked Programs

10.7.1 Introduction
Dynamically linked executables are the default on modern Linux systems. For these
executables HPC Toolkit’s hpcrun script uses library preloading to add HPC Toolkit’s
monitoring code into an application’s address space.

However, sometimes one might want to build a statically linked executable, as:

1. These are generally faster in situations where the executable spends a significant
amount of time calling library functions.

2. Currently, on scalable parallel systems, Compute Node kernels do not support the use
of dynamically linked executables, and so statically linked executables have to be
used.

For statically linked executables, preloading HPC Toolkit’s monitoring code into an
application’s address space at program launch is not an option. Instead, monitoring code
must be added at link time; HPC Toolkit’s hpclink script is used for this purpose.

Adding HPC Toolkit’s monitoring code into a statically linked application is simple. No
source code modifications are required; a change to the build procedure is required.
Object (.o) files are compiled exactly as before, but the final link step is modified so that
hpclink loads HPC Toolkit’s monitoring code into the executable.

10.7.2 Using hpclink
hpclink statically links an application to the hpcrun profiling code. Dynamically linked
binaries can be run directly with the hpcrun command, but this does not work with statically
linked programs. Instead, the hpcrun code must be linked to the application at build time.

This approach does not require source code to be modified. Object files are compiled as
before. In the application’s Makefile, locate the last step in the build, that is, the command
that produces the final, statically linked binary. Edit this line to place the hpclink command
before the command line.

The argument list passed to hpclink should be the same command line used to build the
application natively, except that the binary may be renamed with the -o option.

Syntax

hpclink [options] compiler arg

Options

--verbose Verbose output

-h, --help Print help

10-28 bullx cluster suite - Application Developer's Guide

-u, ---undefined <symbol> Pass <symbol> to the linker as an undefined symbol. This
option is rarely needed; however, if hpclink fails with an
undefined reference, the --undefined option may enable the
linker to link to the symbol correctly. For example, for a linker
failure with an undefined reference to __real_foo, use the
option -u foo. This may be used multiple times.

Example

hpclink gcc -o hello -g -O -static hello.c

This command compiles hello.c with gcc and links in the hpcrun code statically.

Example

hpclink gcc -o program1 -static main.o foo.o ... -lm

This command links an hpcrun enabled application with object files and the math library.

Note The command line passed to hpclink must produce a statically linked binary; otherwise,
hpclink will fail.

For dynamically linked executables, hpcrun sets environment variables to pass information
to the HPC Toolkit monitoring library. On standard Linux systems, statically linked
executables can still be launched with hpcrun.

10.7.3 Troubleshooting hpclink
Some compilers require that interprocedural optimizations to be disabled before hpclink is
used. To instrument your statically linked executable at link time, hpclink uses the ld option
 --wrap to interpose monitoring code between your application and various process,
thread, and signal control operations, e.g. fork, pthread create, and sigprocmask. For
some compilers, interprocedural optimizations interfere with the --wrap option and prevents
hpclink from working properly. If this is the case, hpclink will generate error messages and
fail. To use hpclink with these compilers, interprocedural optimizations must be disabled.

Note that interprocedural optimizations may be enabled implicitly when using a compiler
optimization option such as -fast. In cases such as this, you can often specify -fast along
with an option such as -no-ipa; this option combination will provide the benefit of all of
 optimizations for the -fast option but exclude interprocedural optimizations.

 Using HPC Toolkit 10-29

10.8 Using HPC Toolkit with MPI Programs

HPC Toolkit measurement tools collect data for each process and thread of a MPI program.
HPC Toolkit can be used with pure MPI programs as well as hybrid programs that use
OpenMP or pthreads for multi-threaded parallelism. HPC Toolkit supports C, C++ and
Fortran MPI programs. It has been successfully tested with MPICH, MVAPICH and OpenMPI
programs, and should work with almost all MPI implementations.

10.8.1 Running and Analyzing MPI Programs

Launching an MPI program with hpcrun

For dynamically linked binaries, use a command line similar to that below:

mpirun -np num hpcrun -e EVENT:count ... program arg ...

Note MPI launch commands (mpirun, mpiexec, etc.) appear first with their options, then hpcrun
and its options, and finally the application program and its command line arguments.

Compiling and running a statically linked MPI program

On systems that run statically linked binaries on the Compute Nodes, use hpclink to build a
statically linked version of your application with the HPC Toolkit library linked in. For
example, hpclink mpicc -o myprog file.o ... -l<lib> ... Then, set the HPCRUN EVENT LIST
environment variable in the launch script, before running the application.

export HPCRUN_EVENT_LIST="PAPI_TOT_CYC@4000000"
mpiexec -n 64 myprog arg ...

See Section 10.7 for more information on using HPC Toolkit with Statically linked programs.

hpcrun files produced for an MPI program

In the example below, s3d f90.x is the Fortran S3D program compiled with OpenMPI and
run with the command line “

mpiexec -n 4 hpcrun -e PAPI TOT CYC:2500000 ./s3d f90.x”.

For this example, 12 files were produced, as shown below:

krentel 1889240 Feb 18 s3d_f90.x-000000-000-72815673-21063.hpcrun
krentel 9848 Feb 18 s3d_f90.x-000000-001-72815673-21063.hpcrun
krentel 1914680 Feb 18 s3d_f90.x-000001-000-72815673-21064.hpcrun
krentel 9848 Feb 18 s3d_f90.x-000001-001-72815673-21064.hpcrun
krentel 1908030 Feb 18 s3d_f90.x-000002-000-72815673-21065.hpcrun
krentel 7974 Feb 18 s3d_f90.x-000002-001-72815673-21065.hpcrun
krentel 1912220 Feb 18 s3d_f90.x-000003-000-72815673-21066.hpcrun
krentel 9848 Feb 18 s3d_f90.x-000003-001-72815673-21066.hpcrun
krentel 147635 Feb 18 s3d_f90.x-72815673-21063.log
krentel 142777 Feb 18 s3d_f90.x-72815673-21064.log
krentel 161266 Feb 18 s3d_f90.x-72815673-21065.log
krentel 143335 Feb 18 s3d_f90.x-72815673-21066.log

10-30 bullx cluster suite - Application Developer's Guide

Here, there are four processes and two threads per process. Looking at the file names, s3d
f90.x is the name of the program binary, 000000-000 to 000003-001 are the MPI rank
and thread numbers, and 21063 to 21066 are the process Ids. We can see from the file
sizes that OpenMPI is spawning one helper thread per process. Technically, the smaller
.hpcrun files imply a smaller calling-context tree (CCT), not necessarily fewer samples. Also,
in this example, the helper threads are not doing much work.

Source code requirements

Only one change is required in the source program. Early in the program, preferably
directly after MPI Init(), the program must call MPI Comm rank() with the MPI COMM
WORLD communicator. Most MPI programs already do this. For example, a C program
might begin with:

int main(int argc, char **argv)
{
int size, rank;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
...
}

Note The first call to MPI Comm rank() should use MPI COMM WORLD. This sets the process’s
MPI rank for hpcrun. Other communicators are allowed, but the first call should use MPI
COMM WORLD. Also, the call to MPI Comm rank() must be unconditional, that is, all
processes must make this call. The call to MPI Comm size() is not necessary for hpcrun,
although most MPI programs normally call both MPI Comm size() and MPI Comm rank().

10.8.2 Building and Installing HPC Toolkit for MPI Support
HPC Toolkit is designed to work with multiple MPI implementations at the same time. That
is, multiple versions of HPC Toolkit are not required for multiple MPI implementations. Each
MPI implementation uses a different value for MPI COMM WORLD; however, hpcrun
(libmonitor) waits for the application to call MPI Comm rank() and uses the same
communicator value that the application uses. This requires that the application call MPI
Comm rank() with communicator MPI COMM WORLD, as previously noted.

10.9 More Information about HPC Toolkit

See www.hpctoolkit.org for more information regarding HPC Toolkit, including Troubleshooting
HPC Toolkit. Refer also to the man pages for use tool and the command line help.

 Analyzing Program Performance with HPC Toolkit 11-1

Chapter 11. Analyzing Program Performance with HPC
Toolkit

Modern computer systems provide access to a rich set of hardware performance counters
that can directly measure various aspects of a program's performance. Counters in the
processor core and memory hierarchy enable the collection of measures of work (e.g.
operations performed), resource consumption (e.g. cycles), and inefficiency (e.g. stall
cycles). System timers indicate time consumption for the different operations.

The values of individual metrics are of limited use by themselves. For instance, knowing the
number of cache misses for a loop or routine is of little value by itself; only when it is
combined with additional information, such as the number of instructions executed, or the
total number of cache accesses does the data become informative. While a developer
might not mind using mental arithmetic to evaluate the relationship between a pair of
metrics for a particular program scope (e.g. a loop or a procedure), doing this for a
number of program scopes is exhausting. To address this problem, hpcviewer supports the
creation of derived metrics and provides an interface that enables spreadsheet-like formula
to be used to calculate a derived metric for all program scopes.

11.1 Creating a New Derived Metric
Figure 11-1 shows how to use hpcviewer to create a cycles/instruction derived metric from
the PAPI TOT CYC and PAPI TOT INS measured metrics; these metrics correspond to cycles
and total instructions executed, measured with the PAPI hardware counter interface. Click
the button marked f(x) above the metric window to open the derived metric window. Next,
enter the formula for the metric of interest. When specifying a formula, existing metric data
columns are referred to using a positional name, e.g. $n to refer to the nth column, where
the first column is written as $0. The metric pane shows the formula $1/$3. Here, $1
refers to the data column representing the exclusive value for PAPI TOT CYC, and $3 refers
to the data column representing the exclusive value for PAPI TOT INS.

Note An exclusive metric displays the metric value for the scope alone; an inclusive metric
displays the scope metric value, including costs incurred for any functions it may call. In
hpcviewer, inclusive metric columns are marked with (I), and exclusive metric columns are
marked with (E).

Positional names for the metrics you use in your formula are defined by using the Metric
drop down menu in the window. The metrics selected are inserted into the formula by using
the insert metric button, or the positional name can be entered directly into the formula.

11-2 bullx cluster suite - Application Developer's Guide

Figure 11-1. Computing a derived metric (cycles per instruction) in hpcviewer

The name for the new metric is specified at the bottom of the derived metric window. The
metric percentage (the percentage of the total the scopes value represents) can also be
displayed by clicking the check box. For a metric that is a ratio, calculating the percentage
of the total is not meaningful, so the box should be left unchecked.

After clicking OK, the derived metric window will disappear and the new metric will
appear as the rightmost column in the metric window. If the metric pane is already filled
with other metric columns, you may need to scroll right in the window to see the new

metric. Alternatively, you can use the button on the navigation bar to hide some of
the existing metrics so that there will be enough room on the screen to display the new
metric. Figure 11-2 shows the resulting hpcviewer display after clicking OK to add the
derived metric.

 Analyzing Program Performance with HPC Toolkit 11-3

Figure 11-2. Displaying the new cycles/instruction derived metric in hpcviewer

The following sections describe several types of derived metrics that are of particular use to
gain insight into performance bottlenecks and opportunities for tuning.

11.2 Using Derived Metrics to Improve Performance
Knowing which program operations take most time or where most floating point operations
occur is useful, however this is may not be sufficient to identify where performance can be
improved. For program tuning, it is better to know where the resources are used
inefficiently, than knowing the quantity of resources (e.g., time, instructions) consumed for
program context.

To identify performance problems, it might appear useful to compute ratios to see how
many events per cycle occur in each program context. For instance, one might compute
ratios such as FLOPs/cycle, instructions/cycle, or the cache miss ratios. However, these
ratios may be misleading, as there may be program contexts, e.g. loops, where
computation is highly inefficient, e.g. with low operation counts per cycle. An additional
consideration, thought, is that the inefficient contexts may not account for a significant
amount of execution time, and just because a loop is inefficient does not mean that it is
important for tuning.

The best tuning possibilities occur where the aggregate performance losses are greatest.
For instance, consider a program with two loops. The first loop might account for 90% of
the execution time and run at 50% of peak performance. The second loop might account
for 10% of the execution time, but only achieve 12% of peak performance. In this case, the
total performance loss for the first loop accounts for 50% of its execution time, which
corresponds to 45% of the total program execution time. The 88% performance loss in the
second loop would account for only 8.8% of the program's execution time. Therefore,
tuning the first loop has a greater potential for improving the program performance, even
though the second loop is less efficient.

11-4 bullx cluster suite - Application Developer's Guide

A good way to focus on inefficiency directly is with a derived waste metric. These metrics
are easy to compute, although, there is not a single universal measure of waste for all
codes. Depending upon what one uses as the rate-limiting resource, e.g. floating- point
computation, memory bandwidth, etc., one can define an appropriate waste metric, e.g.,
FLOP opportunities missed; bandwidth not consumed and apply that.

For instance, for a floating-point intensive code, one might consider keeping the floating-
point pipeline full as a metric of success. One can pinpoint and quantify losses of this
nature by computing a floating point waste metric, which is calculated as the difference
between the potential number of calculations that could have been performed if the
computation was running at its peak rate minus the actual number that were performed. To
compute the number of calculations that could have been completed in each scope,
multiply the total number of cycles used in the scope by the peak rate of operations per
cycle. Using hpcviewer, one can specify a formula to compute such a derived metric and it
will compute the value of the derived metric for all scopes. Figure 11-3 shows the
specification of this floating-point waste metric for a code.

Figure 11-3. Computing a floating point waste metric in hpcviewer

Sorting by a waste metric will rank scopes according to the waste amounts. Those with the
greatest waste will also be those that provide the best opportunities for improving overall
program performance. A waste metric will typically highlight loops where:

• a lot of time is spent computing efficiently, but the aggregate inefficiencies accumulate,

• less time is spent computing, but the computation is rather inefficient, and

• scopes such as copy loops that contain no computation at all, which represent a
complete waste according to a metric such as floating point waste.

 Analyzing Program Performance with HPC Toolkit 11-5

In addition to a waste metric, one can compute a companion derived metric, relative
efficiency metric, to pinpoint the possibilities for improving performance. A scope running
efficiently will typically be much harder to tune than one running less efficiently. For our
floating point waste metric, we one can compute the floating point efficiency metric by
dividing FLOPs measured by potential peak FLOPS and multiplying the result by 100.

Figure 11-4. Computing floating point efficiency in percent using hpcviewer

Scopes with a high waste metric ranking and a low relative efficiency metric often make
the best targets for optimization. Figure 11-5 shows the specification of a floating-point
efficiency metric for a code. The top two routines in the hpcviewer Flat View window when
combined account for 32.2% of the floating-point waste in a reactive turbulent combustion
code. The second routine (ratt) is expanded to show the loops and statements within. While
the overall floating point efficiency for ratt is 6.6% of peak (shown in scientific notation in
the hpcviewer window below), the most costly loop in ratt that accounts for 7.3% of the
floating point waste is executing at only .114% FP Efficiency.

Identifying the sources of inefficiency is the first step towards improving program
performance via tuning.

11-6 bullx cluster suite - Application Developer's Guide

Figure 11-5. Floating-point efficiency metric

 Analyzing Program Performance with HPC Toolkit 11-7

11.3 Pinpointing and Quantifying Scalability Bottlenecks
On large-scale parallel systems, identifying impediments to scalability is of paramount
importance. Two kinds of scalability are of particular interest for multicore processor
systems:

− Scaling within nodes

− Scaling across the entire system

HPC Toolkit can be used to pinpoint and quantify bottlenecks for both types of scalability
using call path profiles collected by hpcrun.

Use differential profiling to pinpoint scalability bottlenecks in parallel programs.
Combinations of different execution profiles are compared.

See The Differential profiling paper written by P. E. McKenney and available from the IEEE
Computer Society for more information.

Differentiating flat profiles can help to identify where in a program different costs are
incurred for different executions.

Building upon McKenney's idea of differential profiling, call path profiles of parallel
executions at different scales can be compared to pinpoint scalability bottlenecks.
Differential analysis of call path profiles pinpoints not only differences between two
executions (in this case scalability losses), but the contexts in which those differences occur.

Associating changes in cost according to calling contexts is particularly important for
pinpointing context-dependent behavior for parallel programs. For instance, in message
passing programs, the time spent by a call to MPI Wait depends upon the context in which
it is called. Similarly, how the performance of a communication event scales as the number
of processors in a parallel execution increases, depends upon a variety of factors such as
whether the size of the data transferred increases or whether the communication is
collective or not.

11.3.1 Scalability Analysis Using Expectations
Application developers have expectations about how the performance of their code should
scale as the number of processors available for a parallel execution increases. Namely;

− When different numbers of processors are used to solve the same problem (strong
scaling), one expects an execution's speedup to increase linearly with the number
of processors employed;

− When different numbers of processors are used but the amount of computation
per processor is held constant (weak scaling), one expects the total execution time
with different numbers of processors to be the same.

In both these situations, a code developer can express their expectations for how
performance will scale, as a formula that can be used to predict execution performance for
different numbers of processors. One's expectations about how overall application
performance should scale can be applied to each program context to pinpoint and quantify
deviations from expected scaling. Specifically, one can scale and look at the performance
of an application on different numbers of processors to pinpoint the contexts that are not
scaling ideally.

11-8 bullx cluster suite - Application Developer's Guide

To pinpoint and quantify scalability bottlenecks for a parallel application, we first use
hpcrun to generate a call path profile for an application on two sets of processors.

Let Ep be an execution on p processors and Eq be an execution on q processors. Without
loss of generality, assume that q > p.

In our analysis, we consider both inclusive and exclusive costs for Calling Context Tree
(CCT) nodes. The inclusive cost at n represents the sum of all costs attributed to n and any
of its descendants in the CCT, and is denoted by I(n). The exclusive cost at n represents the
sum of all costs strictly attributed to n, and we denote it by E(n). If n is an interior node in a
CCT, it represents an invocation of a procedure. If n is a leaf in a CCT, it represents a
statement inside some procedure. For leaves, their inclusive and exclusive costs are equal.

It is useful to perform scalability analysis for both inclusive and exclusive costs; if the loss of
scalability attributed to the inclusive costs of a function's invocation is roughly equal to the
loss of scalability due to its exclusive costs, then we know that the computation for that
function's invocation does not scale. However, if the loss of scalability attributed to a
function's invocation inclusive costs outweighs the loss of scalability accounted for by its
exclusive costs, then we need to explore the scalability of the function's sub-functions and
calls.

Given CCTs for an ensemble of executions, the next step for the scalability performance
analysis is to define clearly our expectations. By looking at performance expectations for
weak scaling and intuitive metrics, it is possible to see how much performance can deviate
from our expectations.

See Coarfa, C., Mellor-Crummey, J., Froyd, N., and Dotsenko, Y. 2007. Scalability analysis of
SPMD codes using expectations in the Proceedings of the 21st Annual International
Conference on Supercomputing (Seattle, Washington, June 17 - 21, 2007) for more
information on scalability analysis technique.

11.3.2 Weak Scaling
Consider two weak scaling experiments executed on p and q processors, respectively, p <
q. Figure 11-6 shows how a derived metric can be used to compute and attribute
scalability losses. Here, we compute the difference in exclusive cycles used on one core of
an 8-core run and one core in a single core run in a weak scaling experiment. If the code
has perfect weak scaling, the time for the one core and the eight core executions would be
identical. We compute the amount of excess work, by computing the difference between
the eight-core run time minus the single core run time for each scope, and divide that by the
total time spent by the eight core run. This formula tells us how much extra time we spent
for the eight core run, and attributes differences to each scope. The fraction of excess work
is a quantitative measure of scalability loss.

 Analyzing Program Performance with HPC Toolkit 11-9

Figure 11-6. Scaling Loss Metric

By normalizing the total time spent for the eight-core run, we can attribute the fraction of
the total execution excess time for each scope, when scaling from one to eight cores.

In hpcviewer, this metric for each scope s is computed by subtracting the exclusive time
spent in s on one core ($1) from the time spent in s on eight cores ($5), and normalizing
this quantity by the total aggregate time spent on 8 cores (aggregate(&5)).

This calculation pinpoints and quantifies scaling losses within a multicore node. A similar
analysis can be applied to compute scaling losses between pairs of jobs scaled across an
entire parallel system, and not just within a node.

Figure 11-7 shows an example of loop nests ranked by the Scaling loss metric. The source
Window shows the loop nest responsible for the greatest scaling loss when scaling from
one to eight cores. Unsurprisingly, the loop with the worst scaling loss is very memory
intensive. Memory bandwidth is a precious commodity on multicore processors.

11-10 bullx cluster suite - Application Developer's Guide

Figure 11-7. Loop nests ranked by Scaling loss

It is also possible to compute scaling loss where there is strong scaling, however the work
on the larger number of processors has to have a corrective multiplier applied to account
for the smaller fraction of work it receives.

11.3.3 Exploring Scaling Losses
Scaling losses can be explored in hpcviewer using its three views:

Calling context view
This top-down view represents dynamic calling contexts (call paths) where the costs were
incurred.

Callers view
This bottom up view enables one to look upward along call paths. This view is particularly
useful for understanding the performance of software components or procedures that are
used in more than one context, such as communication library routines.

Flat view
This view organizes performance measurement data according to the static structure of an
application. All costs incurred in any calling context by a procedure are aggregated
together in one flat view.

Developers can use these views for CCTs, which are annotated with costs, to pinpoint
performance bottlenecks quickly.

 Analyzing Program Performance with HPC Toolkit 11-11

Typically, one begins analyzing an application's scalability and performance by using the
top-down Calling context view. Using this view, one can readily see how costs and
scalability losses are associated with different calling contexts. If costs or scalability losses
are associated with only a few calling contexts, then this view suffices for identifying the
bottlenecks. When scalability losses are spread among many calling contexts, e.g., among
different invocations of MPI Wait, often it is useful to switch to the bottom-up Callers view to
see which losses are due to the same underlying cause. In the bottom-up view, one can sort
routines by their exclusive scalability losses, and then look upward to see how these losses
accumulate from the different calling contexts, in which the routine was invoked.

Scaling loss based on excess work is intuitive; perfect scaling corresponds to a excess work
value of 0, sublinear scaling yields positive values, and superlinear scaling yields negative
values. Typically, CCTs for SPMD programs have similar structure. If CCTs for different
executions diverge, using hpcviewer to compute and report excess work will highlight these
program regions.

Inclusive excess work and exclusive excess work serve as useful measures of scalability
associated with nodes in a CCT. By computing both metrics, one can determine if the
application scales well or not for a CCT node and also pinpoint the cause if is scales
poorly. If a node for a function in the CCT has comparable positive values for both
inclusive excess work and exclusive excess work, then the loss of scaling is due to a
computation problem in the function itself. However, if the inclusive excess work for the
function outweighs that accounted for by its exclusive costs, then one should explore the
scalability for it sub-functions and routine calls. To isolate code that is an impediment to
scalable performance, one can use the hpcviewer hot call path button to trace a path down
through the CCT to see where costs are incurred.

11-12 bullx cluster suite - Application Developer's Guide

 Amdahl's Law A-1

Appendix A. Amdahl's Law
Amdahl’s Law states that the proportion of the program which can run in parallel – the
variable p – can never reach 100%:

)1()/(
1)(

pnp
nSpeedup

−+
=

p = parallel fraction of the program

n = number of CPUs

In addition, the benefits resulting from augmenting the processing power available for an
application will diminish proportionally as a result of hardware constraints and extra
message passing latency. The examples below are simple illustrations of this point.

Example 1

p = 0.5 n = 10 Speedup = 1.82

p = 0.5 n = 15 Speedup = 1.88%

% Increase in Speedup for an extra 5 CPUs = 3.3%

Example 2

p = 0.95 n = 10 Speedup= 6.9

p = 0.95 n = 15 Speedup = 8.8

% Increase in Speedup for an extra 5 CPUs = 27.5%

Therefore, the higher the value of p, the greater the return for any addition to processing
power. This applies equally to small increases in p, and where the numbers of CPUs
involved may be considerably higher.

A key part of any program development is to identify and remove as many dependence
constraints as is possible. Generally speaking, there is more to be gained from increasing
p, than there is to be gained from simply adding additional processing power as Amadhl’s
law demonstrates.

The benefits to be gained from optimizing and improving the program itself will generally
outweigh benefits gained from adding to the hardware’s performance.

A-2 bullx cluster suite - Application Developer's Guide

 Glossary and Acronyms G-1

Glossary and Acronyms

A

ABI

Application Binary Interface

ACL

Access Control List

ACT

Administration Configuration Tool

ANL

Argonne National Laboratory (MPICH2)

API

Application Programmer Interface

ARP

Address Resolution Protocol

ASIC

Application Specific Integrated Circuit

B

BAS

Bull Advanced Server

BIOS

Basic Input Output System

Blade

Thin server that is inserted in a blade chassis

BLACS

Basic Linear Algebra Communication Subprograms

BLAS

Basic Linear Algebra Subprograms

BMC

Baseboard Management Controller

BSBR

Bull System Backup Restore

BSM

Bull System Manager

C
CGI

Common Gateway Interface

CLI

Command Line Interface

ClusterDB

Cluster Database

CLM

Cluster Management

CMC

Chassis Management Controller

ConMan

A management tool, based on telnet, enabling
access to all the consoles of the cluster.

Cron

A UNIX command for scheduling jobs to be
executed sometime in the future. A cron is normally
used to schedule a job that is executed periodically
- for example, to send out a notice every morning. It
is also a daemon process, meaning that it runs
continuously, waiting for specific events to occur.

CUBLAS

CUDA™ BLAS

CUDA™

Compute Unified Device Architecture

CUFFT

CUDA™ Fast Fourier Transform

G-2 bullx cluster suite - Application Developer's Guide

CVS

Concurrent Versions System

Cygwin

A Linux-like environment for Windows. Bull cluster
management tools use Cygwin to provide SSH
support on a Windows system, enabling command
mode access.

D

DDN

Data Direct Networks

DDR

Double Data Rate

DHCP

Dynamic Host Configuration Protocol

DLID

Destination Local Identifier

DNS

Domain Name Server:

A server that retains the addresses and routing
information for TCP/IP LAN users.

DSO

Dynamic Shared Object

E

EBP

End Bad Packet Delimiter

ECT

Embedded Configuration Tool

EIP

Encapsulated IP

EPM

Errors per Million

EULA

End User License Agreement (Microsoft)

F

FDA

Fibre Disk Array

FFT

Fast Fourier Transform

FFTW

Fastest Fourier Transform in the West

FRU

Field Replaceable Unit

FTP

File Transfer Protocol

G

Ganglia

A distributed monitoring tool used to view
information associated with a node, such as CPU
load, memory consumption, and network load.

GCC

GNU C Compiler

GDB

Gnu Debugger

GFS

Global File System

GMP

GNU Multiprecision Library

GID

Group ID

GNU

GNU's Not Unix

 Glossary and Acronyms G-3

GPL

General Public License

GPT

GUID Partition Table

Gratuitous ARP

A gratuitous ARP request is an Address Resolution
Protocol request packet where the source and
destination IP are both set to the IP of the machine
issuing the packet and the destination MAC is the
broadcast address xx:xx:xx:xx:xx:xx.
Ordinarily, no reply packet will occur. Gratuitous
ARP reply is a reply to which no request has been
made.

GSL

GNU Scientific Library

GT/s

Giga transfers per second

GUI

Graphical User Interface

GUID

Globally Unique Identifier

H

HBA

Host Bus Adapter

HCA

Host Channel Adapter

HDD

Hard Disk Drive

HoQ

Head of Queue

HPC

High Performance Computing

Hyper-Threading

A technology that enables multi-threaded software
applications to process threads in parallel, within

each processor, resulting in increased utilization of
processor resources.

I

IB

InfiniBand

IBTA

InfiniBand Trade Association

ICC

Intel C Compiler

IDE

Integrated Device Electronics

IFORT
Intel® Fortran Compiler

IMB

Intel MPI Benchmarks

INCA

Integrated Cluster Architecture:
Bull Blade platform

IOC

Input/Output Board Compact with 6 PCI Slots

IPMI

Intelligent Platform Management Interface

IPO

Interprocedural Optimization

IPoIB

Internet Protocol over InfiniBand

IPR

IP Router

iSM

Storage Manager (FDA storage systems)

ISV

Independent Software Vendor

G-4 bullx cluster suite - Application Developer's Guide

K

KDC

Key Distribution Centre

KSIS

Utility for Image Building and Deployment

KVM

Keyboard Video Mouse (allows the keyboard, video
monitor and mouse to be connected to the node)

L

LAN

Local Area Network

LAPACK

Linear Algebra PACKage

LDAP

Lightweight Directory Access Protocol

LDIF

LDAP Data Interchange Format:

A plain text data interchange format to represent
LDAP directory contents and update requests. LDIF
conveys directory content as a set of records, one
record for each object (or entry). It represents
update requests, such as Add, Modify, Delete, and
Rename, as a set of records, one record for each
update request.

LKCD

Linux Kernel Crash Dump:
A tool used to capture and analyze crash dumps.

LOV

Logical Object Volume

LSF

Load Sharing Facility

LUN

Logical Unit Number

LVM

Logical Volume Manager

LVS

Linux Virtual Server

M

MAC

Media Access Control (a unique identifier address
attached to most forms of networking equipment).

MAD

Management Datagram

Managed Switch

A switch with no management interface and/or
configuration options.

MDS

MetaData Server

MDT

MetaData Target

MFT

Mellanox Firmware Tools

MIB

Management Information Base

MKL

Maths Kernel Library

MPD

MPI Process Daemons

MPFR

C library for multiple-precision, floating-point
computations

MPI

Message Passing Interface

MTBF

Mean Time Between Failures

 Glossary and Acronyms G-5

MTU

Maximum Transmission Unit

N

Nagios

A tool used to monitor the services and resources of
Bull HPC clusters.

NETCDF

Network Common Data Form

NFS

Network File System

NIC

Network Interface Card

NIS

Network Information Service

NS

NovaScale

NTP

Network Time Protocol

NUMA

Non Uniform Memory Access

NVRAM

Non Volatile Random Access Memory

O

OFA

Open Fabrics Alliance

OFED

Open Fabrics Enterprise Distribution

OPMA

Open Platform Management Architecture

OpenSM

Open Subnet Manager

OpenIB

Open InfiniBand

OpenSSH

Open Source implementation of the SSH protocol

OSC

Object Storage Client

OSS

Object Storage Server

OST

Object Storage Target

P

PAM

Platform Administration and Maintenance Software

PAPI

Performance Application Programming Interface

PBLAS

Parallel Basic Linear Algebra Subprograms

PBS

Portable Batch System

PCI

Peripheral Component Interconnect (Intel)

PDSH

Parallel Distributed Shell

PDU

Power Distribution Unit

PETSc

Portable, Extensible Toolkit for Scientific
Computation

PGAPACK

Parallel Genetic Algorithm Package

G-6 bullx cluster suite - Application Developer's Guide

PM

Performance Manager

Platform Management

PMI

Process Management Interface

PMU

Performance Monitoring Unit

pNETCDF

Parallel NetCDF (Network Common Data Form)

PVFS

Parallel Virtual File System

Q

QDR

Quad Data Rate

QoS

Quality of Service:
A set of rules which guarantee a defined level of
quality in terms of transmission rates, error rates,
and other characteristics for a network.

R

RAID

Redundant Array of Independent Disks

RDMA

Remote Direct Memory Access

ROM

Read Only Memory

RPC

Remote Procedure Call

RPM

RPM Package Manager

RSA

Rivest, Shamir and Adleman, the developers of the
RSA public key cryptosystem

S

SA

Subnet Agent

SAFTE

SCSI Accessible Fault Tolerant Enclosures

SAN

Storage Area Network

SCALAPACK

SCALable Linear Algebra PACKage

SCSI

Small Computer System Interface

SCIPORT

Portable implementation of CRAY SCILIB

SDP

Socket Direct Protocol

SDPOIB

Sockets Direct Protocol over Infiniband

SDR

Sensor Data Record

Single Data Rate

SFP

Small Form-factor Pluggable transceiver - extractable
optical or electrical transmitter/receiver module.

SEL

System Event Log

SIOH

Server Input/Output Hub

SIS

System Installation Suite

 Glossary and Acronyms G-7

SL

Service Level

SL2VL

Service Level to Virtual Lane

SLURM

Simple Linux Utility for Resource Management – an
open source, highly scalable cluster management
and job scheduling system.

SM

Subnet Manager

SMP

Symmetric Multi Processing:
The processing of programs by multiple processors
that share a common operating system and
memory.

SNMP

Simple Network Management Protocol

SOL

Serial Over LAN

SPOF

Single Point of Failure

SSH

Secure Shell

Syslog-ng

System Log New Generation

T

TCL

Tool Command Language

TCP

Transmission Control Protocol

TFTP

Trivial File Transfer Protocol

TGT

Ticket-Granting Ticket

U

UDP

User Datagram Protocol

UID

User ID

ULP

Upper Layer Protocol

USB

Universal Serial Bus

UTC

Coordinated Universal Time

V

VCRC

Variant Cyclic Redundancy Check

VDM

Voltaire Device Manager

VFM

Voltaire Fabric Manager

VGA

Video Graphic Adapter

VL

Virtual Lane

VLAN

Virtual Local Area Network

VNC

Virtual Network Computing:
Used to enable access to Windows systems and
Windows applications from the Bull NovaScale
cluster management system.

G-8 bullx cluster suite - Application Developer's Guide

W

WWPN

World–Wide Port Name

X

XFS

eXtended File System

XHPC

Xeon High Performance Computing

XIB

Xeon InfiniBand

XRC

Extended Reliable Connection:
Included in Mellanox ConnectX HCAs for memory
scalability

 Index I-1

Index

A
Aliasing, 7-4

Application code optimization, 7-4

Application loop structures, 7-4

Application profiling
profilecomm, 3-1
Profilecomm message size partitions, 3-4
readpfc, 3-1

B
BLACS, 4-3

BLAS, 4-16

BlockSolve95, 4-5

Bull Scientific Studio, 4-1

Bullx B5xx blades, 6-15

bullx cluster suite definition, 1-1

C
Compilation

Advanced options, 5-6
Directives, 5-8
-O2 option, 5-9
-O3 option, 5-9
Optimization options, 5-6, 5-7
Optimization report options, 5-9
Pragmas, 5-8
Starting options, 5-6

Compiler
C, 1-2
Fortran, 1-2, 5-1
GCC, 1-2, 5-4
GNU compilers, 5-1
Intel C C++, 5-2
NVIDIA nvcc, 5-4

Compiler licenses, 5-3
FlexLM, 5-3

CPUSET, 7-2
Usage, 7-2

CUDA Toolkit, 6-14

D
Debugger

DDT, 8-3
Electric Fence, 8-7
GDB, 1-2, 8-1, 8-6
Intel Debugger, 1-2, 8-1
MALLOC_CHECK, 8-5
Non-symbolic debugger, 8-1
Symbolic debugger, 8-1
TotalView, 8-2

E
Environmental variables, 5-8

eval command, 6-2

F
FFTW, 4-7

File System
NFS, 1-4, 6-2

Floating point assist faults, 5-10

G
ga/Global Array, 4-10

gmp_sci, 4-9

gnuplot, 3-14

GPUSET, 6-14

GPUSET Library, 6-14

GSL, 4-11

H
histplot, 3-14

Hypre, 4-12

I
IDB, 8-1

Intel C++ compiler, 5-2

Intel compiler licenses, 5-3

Intel Fortran compiler, 5-1

I-2 bullx cluster suite - Application Developer's Guide

Intel Vtune
Performance Analyzer, 9-7

Interprocedural Optimization (IPO), 7-7

K
KSIS, 1-1

L
lapack_sci, 4-6

Loops
Fusion, 7-5
Partitioning, 7-5
Peeling, 7-6
Switching, 7-4
Unrolling, 5-9

Loops
Unrolling, 5-7

loops programming devices
optimizing, 7-4

M
METIS, 4-8

ML, 4-13

Modules, 1-2, 6-2
command line switches, 6-9
Commands, 6-2, 6-7
Environment variables, 6-12
modulecmd, 6-9
Modulefiles, 6-7
modulefiles directories, 6-5
Shell RC files, 6-4
Sub-Commands, 6-10
TCL, 6-7

MPFR, 4-9

MPI libraries
Bull MPI2, 1-2
Bull MPI22, 1-3

MPI_Finalize, 3-2

MPI_Init, 3-2

MPI-2 standard, 2-1

MPIBull2, 2-2
Features, 2-1
MPI_COMM_SPAWN, 2-6

MPI_PUBLISH_NAME, 2-6
Thread-safety, 2-4

MPIBull2-devices, 2-8

MPIBull2-launch, 2-9

N
NETCDF, 4-7

Nodes
Compilation nodes, 6-1
login node, 6-1
Service node, 6-1

NVIDIA
CUDA

cubin object, 5-4
CUDA Toolkit, 5-4, 6-14, 6-16
Software Developer Kit, 6-16

NVIDIA Scientific Libraries
CUBLAS, 4-17
CUFTT, 4-17

NVIDIA Scientific Libraries, 4-17

O
Open Trace Format, 4-14

OPENMP, 7-3

OpenS_shelf rpm, 4-2

Optimization Tips
Application code, 7-7
Interprocedural funcions, 7-7
Memory, 7-6

Optimizing array loops, 7-4

P
PAPI, 9-1

PARAMETIS, 4-8

PBLAS, 4-16

Performance Analyzer
Intel Vtune, 9-7

Performance and Profiling Tools
Profilecomm, 3-1

PETSc, 4-7

pfcplot, 3-14

 Index I-3

pgapack, 4-11

pNETCDF, 4-8

pplace, 7-3

profilecomm, 3-1

Profilecomm
call table, 3-2
call table, 3-7
collective communication matrices, 3-6
data Analysis, 3-4
data collection, 3-2
Display options, 3-9
exporting matrices and histograms, 3-10
histograms, 3-7
Histograms, 3-2
Object values, 3-12
Options, 3-12
point to point communications, 3-5
readpfc statistics, 3-7
topology, 3-8

Programming
C++, 7-6

R
readpfc, 3-1, 3-14

rlogin, 6-1

rsh, 6-1

S
SCALAPACK, 4-4

scalasca, 4-15

Sched_setaffinity, 7-3

Scientific Libraries, 4-1
BLACS, 4-3
BLAS, 4-16
BlockSolve95, 4-5
FFTW, 4-7
ga/Global Array, 4-10
gmp_sci, 4-9
GSL, 4-11
Hypre, 4-12

LAPACK, 4-16
lapack_sci, 4-6
METIS, 4-8
MKL (Intel Math Kernel Library), 4-16
ML, 4-13
MPFR, 4-9
NetCDF, 4-7
OTF, 4-14
PARAMETIS, 4-8
PBLAS, 4-16
PETSc, 4-7
pgapack, 4-11
pNETCDF, 4-8
SCALAPACK, 4-4
scalasca, 4-15
SCIPORT, 4-9
sHDF5/pHDF5, 4-10
spooles, 4-13
SuperLU, 4-6
valgrind, 4-12

Scientific Studio, 4-1

SCIPORT, 4-9

SciStudio_shelf rpm, 4-2

Secure Shell
ssh command, 6-1

sHDF5/pHDF5, 4-10

spooles, 4-13

SuperLU, 4-6

System monitoring
PAPI, 9-1

T
TCL, 6-7

V
valgrind, 4-12

Vtune
Intel Performance Analyzer, 9-7

I-4 bullx cluster suite - Application Developer's Guide

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

REFERENCE
86 A2 22FA 03

	bullx cluster suite - Application Developer's Guide
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Chapter 1. Introduction to the Extreme Computing Environment
	Software Configuration
	Operating System and Installation

	Program Execution Environment
	Resource Management
	Batch Management
	Parallel processing and MPI libraries
	Data and Files

	Chapter 2. Parallel Libraries
	MPIBull2
	MPIBull2_1.3.x features
	MPIBull2 Compilers and Wrappers
	Configuring MPIBull2
	Running MPIBull2
	MPIBull2 Advanced features
	MPIBull2 Tools
	MPIBull2 – Example of use
	MPIBull2 and NFS Clusters
	MPIBull2 Debuggers
	MPIBull2 parameters
	Usage
	Family names
	Managing your MPI environment

	bullx MPI
	Quick Start for bullx MPI
	Compiling with bullx MPI
	Running with bullx MPI
	Configuring and tuning bullx MPI
	Obtaining Details of the MPI Configuration
	Setting the MCA parameters

	Chapter 3. MPI Profiling with mpianalyser and profilecomm
	Communication Matrices
	Execution Time
	Call Table
	Histograms

	Topology of the Execution Environment
	profilecomm Data Collection
	Using profilecomm
	profilecomm Options
	Messages Size Partitions

	profilecomm Data Analysis
	Point to Point Communications
	Collective Section
	Call table section
	Histograms Section
	Statistics Section
	Topology Section

	Profilcomm Data Display Options
	Exporting a Matrix or an Histogram
	pfcplot, histplot and gnuplot

	Chapter 4. Scientific Libraries
	Overview
	Bull Scientific Studio
	Scientific Libraries and Documentation
	Scientific Library Versions
	BLACS
	SCALAPACK
	Blocksolve95
	lapack
	SuperLU
	FFTW
	PETSc
	NETCDF/sNETCDF
	pNETCDF
	METIS and PARMETIS
	SciPort
	gmp_sci
	MPFR
	sHDF5/pHDF5
	ga/Global Array
	gsl
	pgapack
	valgrind
	Hypre
	ML
	spooles
	Open Trace Format (OTF)
	scalasca

	Intel Scientific Libraries
	Intel Math Kernel Library
	BLAS
	PBLAS
	LAPACK

	NVIDIA CUDA Scientific Libraries
	CUFFT
	CUBLAS

	Chapter 5. Compilers
	Overview
	Intel Tools
	Intel
	Fortran Compiler Professional Edition for Linux
	Intel
	C++ Compiler Professional Edition for Linux
	Intel Compiler Licenses
	Intel Math Kernel Library Licenses

	GNU Compilers
	NVIDIA nvcc C Compiler
	Compiling with nvcc and MPI

	Compiler Optimization Options
	Starting Options
	Intel C/C++ and Intel Fortran Optimization Options
	Compiler Options which may Impact Performance
	Flags and Environment Variables
	Compiler Directives for Loops
	Options for Compiler Optimization Reports
	Compiling Tips

	Chapter 6. The User's Environment
	Cluster Access and Security
	ssh (Secure Shell)

	Global File Systems
	Environment Modules
	Using Modules
	Setting Up the Shell RC Files

	Module Files
	Upgrading via the Modules Command

	The Module Command
	modulefiles
	Modules Package Initialization
	Examples of Initialization
	Modulecmd Startup
	Module Command Line Switches
	Module Sub-Commands
	Modules Environment Variables

	The NVIDIA CUDA Development Environment
	GPUSET library
	bullx cluster suite and CUDA
	NVIDA CUDATM Toolkit and Software Developer Kit

	Chapter 7. Launching an Application
	CPUSET
	Typical Usage of CPUSETS
	BULL CPUSETS

	pplace
	Application Code Optimization
	Alias Usage
	Improving Loops
	C++ Programming Hints
	Memory Tips
	Application code performance impedances
	Interprocedural Optimization (IPO)

	Chapter 8. Application Debugging Tools
	Overview
	GDB
	IDB
	TotalView
	DDT
	MALLOC_CHECK_ - Debugging Memory Problems in C programs
	Electric Fence

	Chapter 9. Application Profiling Tools
	PAPI
	High-level PAPI Interface
	Low-level PAPI Interface

	Profiling Programs with HPC Toolkit
	HPC Toolkit Workflow
	HPC Toolkit Tools

	Intel
	VTune™ Performance Analyzer for Linux
	Sampling
	Call Graphs
	Identify Performance Improvements
	Adapted to extreme computing clusters

	Chapter 10. Using HPC Toolkit
	Step 1: Recovering the Program Structure with hpcstruct
	Step 2: Measuring Program Execution with hpcrun
	Alternative Step 2: Measuring the Execution with Flat Sampling
	using hpcrun-flat

	Step 3: Correlating Call Path Profiling Metrics with hpcprof
	Step 3 Alternative A: Correlating Flat Metrics with Program
	Structure using hpcprof-flat
	Step 3 Alternative B: Correlating Flat Metrics with Program
	Structure using hpcproftt

	Step 4: Checking the Results with hpcviewer
	hpcviewer views
	hpcviewer browser window

	Improving the Performance of hpcviewer
	Source Pane
	Metric Pane
	hpcviewer Limitations

	HPC Toolkit Metrics
	Derived Metrics
	Metric Syntax in the Configuration File
	Native or FILE Metrics
	Derived or COMPUTE Metrics

	Using HPC Toolkit with Statically Linked Programs
	Introduction
	Using hpclink
	Troubleshooting hpclink

	Using HPC Toolkit with MPI Programs
	Running and Analyzing MPI Programs
	Building and Installing HPC Toolkit for MPI Support

	More Information about HPC Toolkit

	Chapter 11. Analyzing Program Performance with HPC Toolkit
	Creating a New Derived Metric
	Using Derived Metrics to Improve Performance
	Pinpointing and Quantifying Scalability Bottlenecks
	Scalability Analysis Using Expectations
	Weak Scaling
	Exploring Scaling Losses

	Appendix A. Amdahl's Law
	Glossary and Acronyms
	Index

