

BAS5 for Xeon

Application Tuning Guide

H
PC

REFERENCE
86 A2 23FA 00

HPC

BAS5 for Xeon
Application Tuning Guide

Software

March 2009

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

REFERENCE
86 A2 23FA 00

The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not limited
to, copying, distributing, modifying, and making derivative works.

Copyright © Bull SAS 2009

Printed in France

Trademarks and Acknowledgements

We acknowledge the rights of the proprietors of the trademarks mentioned in this manual.

All brand names and software and hardware product names are subject to trademark and/or patent protection.

Quoting of brand and product names is for information purposes only and does not represent trademark misuse.

The information in this document is subject to change without notice. Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

 Preface i

Preface
Scope and Objectives
The purpose of this guide is to describe the use of the tools which enable application
program optimization for Bull Advanced Server (BAS) for Xeon High Performance Clusters.

Intended Readers
This guide is for application programmers who wish to tune and optimize their code so that
it fully exploits all the processing power available.

Prerequisites
The installation of all the hardware and software components of the HPC system must have
been completed.

Structure
This guide is organized as follows:

Chapter 1. Looks at the Performance Monitoring and Application Profiling Tools used

to identify areas where application program performance could be
improved.

Chapter 2. Coding and Compiling Optimization. Looks at some coding tips and
compiling options to help improve the performance of your application on
the Bull HPC platform. Guidelines are given in order to ensure that the
application program runs as efficiently as is possible.

Chapter 3. Program Execution Optimization. Describes how to optimize and launch
your program.

Chapter 4. Message Passing Interface Optimization. Looks at some optimization tips
for the Message Passing Interface(MPI).

Chapter 5. Lustre File System Optimization. Describes how the Lustre (CFS) parallel
file system should be optimized.

Appendix A Describes Amdahl’s Law.

Bibliography

Refer to the manuals included on the documentation CD delivered with you system OR
download the latest manuals for your Bull Advanced Server (BAS) release, and for your
cluster hardware, from: http://support.bull.com/

The Bull BAS5 for Xeon Documentation CD-ROM (86 A2 12FB) includes the following
manuals:

• Bull HPC BAS5 for Xeon Installation and Configuration Guide (86 A2 19FA)

• Bull HPC BAS5 for Xeon Administrator’s Guide (86 A2 20FA)

• Bull HPC BAS5 for Xeon User's Guide (86 A2 22FA)

http://support.bull.com/

ii BAS5 for Xeon - Application Tuning Guide

• Bull HPC BAS5 for Xeon Maintenance Guide (86 A2 24FA)

• Bull HPC BAS5 for Xeon Application Tuning Guide (86 A2 23FA)

• Bull HPC BAS5 for Xeon High Availability Guide (86 A2 25FA)

The following document is delivered separately:

• The Software Release Bulletin (SRB) (86 A2 68EJ)

mportant
The Software Release Bulletin contains the latest information for your BAS delivery. This
should be read first. Contact your support representative for more information.

In addition, refer to the following:

• Bull Voltaire Switches Documentation CD (86 A2 79ET)

• Bull System Manager documentation

For clusters which use the PBS Professional Batch Manager:

• PBS Professional 10.0 Administrator’s Guide (on the PBS Professional CD-ROM)

• PBS Professional 10.0 User’s Guide (on the PBS Professional CD-ROM)

For clusters which use LSF:

• LSF Installation and Configuration Guide (86 A2 39FB) (on the LSF CD-ROM)

• Installing Platform LSF on UNIX and Linux (on the LSF CD-ROM)

For clusters which include the Bull Cool Cabinet:

• Site Preparation Guide (86 A1 40FA)

• R@ck'nRoll & R@ck-to-Build Installation and Service Guide (86 A1 17FA)

• Cool Cabinet Installation Guide (86 A1 20EV)

• Cool Cabinet Console User's Guide (86 A1 41FA)

• Cool Cabinet Service Guide (86 A7 42FA)

Web links

http://www.linuxhpc.org/

Highlighting

• Commands entered by the user are in a frame in ‘Courier’ font, as shown below:

mkdir /var/lib/newdir

• System messages displayed on the screen are in ‘Courier New’ font between 2
dotted lines, as shown below.

Enter the number for the path :

http://www.linuxhpc.org/

 Preface iii

• Values to be entered in by the user are in ‘Courier New’, for example:

COM1

• Commands, files, directories and other items whose names are predefined by the
system are in ‘Bold’, as shown below:

The /etc/sysconfig/dump file.

• The use of Italics identifies publications, chapters, sections, figures, and tables that are
referenced.

• < > identifies parameters to be supplied by the user, for example:
<node_name>

 WARNING
A Warning notice indicates an action that could cause damage to a program, device,
system, or data.

iv BAS5 for Xeon - Application Tuning Guide

 Table of Contents v

Table of Contents

Preface.. i

Chapter 1. Performance Monitoring and Application Tools 1-1

1.1 Tools for Optimizing HPC Performance.. 1-1
1.2 System Monitoring Tools .. 1-2

1.2.1 Time... 1-2
1.3 Ganglia Cluster Performance Monitoring ... 1-3

1.3.1 Group Performance Global View... 1-4
1.3.2 Detailed Cluster Performance View .. 1-5

1.4 IOstat .. 1-6
1.5 dstat .. 1-7

1.5.1 dstat Plugins .. 1-7
1.5.2 dstat performance impact.. 1-7

1.6 mpianalyser and profilecomm... 1-8
1.6.1 Communication Matrices .. 1-8
1.6.2 Profilecomm Data Collection ... 1-9
1.6.3 Profilecomm Options .. 1-10
1.6.4 Messages Size Partitions... 1-11
1.6.5 Profilecomm Data Analysis.. 1-11
1.6.6 Point to Point Communications... 1-12
1.6.7 Collective Section .. 1-13
1.6.8 Call table section ... 1-14
1.6.9 Histograms Section .. 1-14
1.6.10 Statistics Section .. 1-15
1.6.11 Topology Section ... 1-16
1.6.12 Display Options... 1-16
1.6.13 Exporting a Matrix or an Histogram... 1-17
1.6.14 pfcplot, histplot and gnuplot .. 1-21

1.7 PAPI .. 1-22
1.7.1 High-level PAPI Interface ... 1-22
1.7.2 Low-level PAPI Interface .. 1-23

1.8 Profiling Programs – HPC Toolkit ... 1-25
1.8.1 HPC Toolkit Tools... 1-25
1.8.2 Display Counters.. 1-26
1.8.3 Using HPC Toolkit .. 1-28
1.8.4 Configuration File Syntax.. 1-38
1.8.5 More Information ... 1-40

1.9 Intel® VTune™ Performance Analyzer for Linux ... 1-41

Chapter 2. Coding and Compiling Optimization .. 2-1

2.1 Application Code Optimization .. 2-1
2.1.1 Alias Usage .. 2-1
2.1.2 Improving Loops .. 2-1

vi BAS5 for Xeon - Application Tuning Guide

2.1.3 C++ Programming Hints ... 2-3
2.1.4 Memory Tips.. 2-4
2.1.5 Application code performance impedances... 2-4
2.1.6 Interprocedural Optimization (IPO)... 2-5

2.2 Compiler Optimization Options .. 2-6
2.2.1 Starting Options... 2-6
2.2.2 Intel C/C++ and Intel Fortran Optimization Options... 2-6
2.2.3 Compiler Options which may Impact Performance ... 2-7
2.2.4 Flags and Environment Variables ... 2-8
2.2.5 Compiler Directives for Loops .. 2-8
2.2.6 Options for Compiler Optimization Reports ... 2-9
2.2.7 Compiling Tips... 2-9

Chapter 3. Program Execution Optimization ...3-1

3.1 CPUSET.. 3-1
3.1.1 Typical Usage of CPUSETS.. 3-1
3.1.2 BULL CPUSETS ... 3-2
3.1.3 pplace .. 3-2

3.2 Tuning Performance for SLURM clusters .. 3-3
3.2.1 Configuring and Sharing Consumable Resources in SLURM .. 3-3
3.2.2 SLURM and Large Clusters... 3-4
3.2.3 SLURM Power Saving Mechanism .. 3-5

3.3 Avoiding Memory Access Stalls... 3-7

Chapter 4. Message Passing Interface Optimization ..4-1

4.1 Introduction... 4-1
4.1.1 MDM Optimization Tools .. 4-1

4.2 General Tips for MPI_Bull Usage ... 4-2
4.3 MPI-2 One-Sided Operations .. 4-4
4.4 mpibull2-params.. 4-4

4.4.1 The mpibull2-params command ... 4-5
4.4.2 Family names .. 4-7

Chapter 5. Lustre File System Optimization ...5-1

5.1 Parallel File Systems - Introduction ... 5-1
5.2 Monitoring Lustre Performance .. 5-2

5.2.1 Ganglia .. 5-2
5.2.2 Lustre Statistics System .. 5-3
5.2.3 Time ... 5-3
5.2.4 Iostat .. 5-3
5.2.5 Llstat ... 5-4
5.2.6 Vmstat .. 5-4
5.2.7 Top... 5-4
5.2.8 Strace ... 5-5
5.2.9 Application Code Monitoring .. 5-5

5.3 Lustre Optimization - Administrator .. 5-6

 Table of Contents vii

5.3.1 Stripe Tuning ... 5-7
5.4 Lustre Optimization – Application Developer .. 5-9

5.4.1 Striping Optimization for the Developer.. 5-9
5.4.2 POSIX File Writes .. 5-9
5.4.3 Fortran.. 5-11

5.5 Lustre File System Tunable Parameters.. 5-12
5.5.1 Tuning Parameter Values and their Effects ... 5-12

5.6 More Information .. 5-13

Appendix A. Amdahl's Law..A-1

 Glossary and Acronyms..G-1

 Index .. I-1

viii BAS5 for Xeon - Application Tuning Guide

List of Figures

Figure 1-1. Ganglia overview of a Cluster.. 1-3
Figure 1-2. Ganglia Group Performance Global view.. 1-4
Figure 1-3. Ganglia detailed performance view.. 1-5
Figure 1-4. An example of a communication matrix.. 1-18
Figure 1-5. An example of a histogram... 1-18
Figure 1-6. View of the counter values, using hpcviewer .. 1-37
Figure 1-7. A Call Graph showing the critical path in red .. 1-41
Figure 5-1 Ganglia Lustre monitoring statistics for a group of 4 machines with total accumulated values in

top graph .. 5-2

 Performance Monitoring and Application Tools 1-1

Chapter 1. Performance Monitoring and Application Tools
This chapter looks at the Performance Monitoring and Application Profiling Tools to be
used to identify areas where application program performance could be improved.

The following topics are described:

• 1.1 Tools for Optimizing HPC Performance

• 1.2 System Monitoring Tools

• 1.3 Ganglia Cluster Performance Monitoring

• 1.4 IOstat

• 1.5 dstat

• 1.5 mpianalyser and profilecomm

• 1.7 PAPI

• 1.8 Profiling Programs – HPC Toolkit

• 1.9 Intel® VTune™ Performance Analyzer for Linux

1.1 Tools for Optimizing HPC Performance

What will interest the user who wants to improve performance, is to optimize the use of all
the resources of the system and to track down any possible bottlenecks resulting from the
development, compilation and execution of individual parts, or from the whole application
program. Various tools are available to help the user in these tasks.

The first measurement step is to determine the run-time for a specific aspect of the program.
The time command is used to measure this.

Secondly, it is important to examine the factors which determined this time. Which
resources were used and for how long? Can saturated resources be identified or,
alternatively, those which are underutilized.

To do this different methods exist, according to the type of program that is being analyzed
and also according to the objectives of the user. For example, is the goal to optimize the
behavior of the machine for a given program (benchmark), or is it to improve the operation
of the program itself on a particular machine or network?

If there is no Input/Output problem, then the quality of algorithms should be analyzed
using a profiling approach which focuses on the parts of the program which consume most
system resources.

If a program uses a MPI (Message Passing Interface) code, each process can be analyzed
separately.

If the objective is to optimize a program, the level of detail provided by these tools is
generally enough. On the other hand, if more information about the machine is needed,
more hardware-oriented tools which provide good metrics will have to be used.

1-2 BAS5 for Xeon - Application Tuning Guide

Note Intel® Trace Tools (Trace Analyzer and Trace Collector) and Intel® VtuneTM Peformance
Analyzer are proprietary software available from Intel.

The tools referred to in this chapter should be used in the sequence indicated above to
determine where the performance of the application could be improved.

If the need is to focus on the performance of the parallel applications that use the MPI
(Message Passing Interface) then either profilecomm or proprietary software such as Intel
Trace Analyzer / Collector tools can be used. These tools display trace information
graphically.

Intel Vtune is used to perform post mortem analysis of the output after the application has
completed its execution and they cannot be used during run-time. HPC Toolkit, an open
source tool based on PAPI, is included in the BAS5 for Xeon delivery. This profiles the
application in a similar way as Intel Vtune.

1.2 System Monitoring Tools

1.2.1 Time

The first determinant to find is the run-time for a specific operation; this will be used as a
yardstick in the optimization process. Different benchmark operations, similar to those
defined in the call to tender, can be used.

The time command is used to measure the duration of execution for a particular operation.
The execution time is reported in terms of user CPU time, system CPU time, and real time.

The etime function is used to give the time of execution for a particular part of the
application program.

 Performance Monitoring and Application Tools 1-3

1.3 Ganglia Cluster Performance Monitoring

Ganglia is a scalable distributed monitoring system for high-performance computing
systems such as those used in Bull HPC systems. It is based on a hierarchical design
targeted at federations of clusters. It leverages widely used technologies including XML for
data representation, XDR for compact, portable data transport, and RRDtool (Round Robin
Database tool) for data storage and visualization. It uses carefully engineered data
structures and algorithms to achieve a very low per-node overhead and high concurrency.

Bull System Manager – HPC Edition uses a GUI to display the Ganglia data for the
hardware system. This can be used to monitor the performance of the systems and detect
any variations within it.

Figure 1-1. Ganglia overview of a Cluster

The parameters which enable the calculation of the performance of the cluster are collected
on all nodes by Ganglia. The results may be viewed within Bull System Manager - HPC
Edition by clicking on the Group Performance or Global Performance button.

Different categories of data are collected, including the following:

• Processors

• Memory

• Disks

• Network (admin)

• Interconnect

• Lustre (for systems which use the Lustre file system)

1-4 BAS5 for Xeon - Application Tuning Guide

1.3.1 Group Performance Global View

This view displays diagrams of difference performance metrics for a selected set of nodes.
Each diagram shows the evolution of the metric concerned over a user-defined period of
time.

Figure 1-2. Ganglia Group Performance Global view

Clicking on a diagram will display graphs with more detailed information.

 Performance Monitoring and Application Tools 1-5

1.3.2 Detailed Cluster Performance View

This view displays the global performance diagram for each type of metrics and the
diagrams for the ten first nodes which are sorted in ascending or descending order of the
metric value.

Figure 1-3. Ganglia detailed performance view

Using the monitoring data it is possible to identify areas where performance is being lost
and as a result to make changes to the system or the application, and then verify the
changes to see if the performance has improved.

1-6 BAS5 for Xeon - Application Tuning Guide

1.4 IOstat

The iostat Linux command is used for monitoring system input/output device loading by
observing the time the devices are active in relation to their average transfer rates. The
iostat command generates reports that can be used to change a system’s configuration to
better balance the input/output load between physical disks.

Performance problems may be the result of too many files being repeatedly opened, read
and written to, and then closed. This type of problem is indicated by increasing seek times
and may be identified using iostat.

The first report generated by the iostat command provides statistics for the time elapsed
since the system was first booted. Each subsequent report covers the period of time since
the previous report. The interval parameter stipulates the time period in seconds for each
report.

The count parameter may be used with the interval parameter. These determine the number
of reports generated and the time period for each report. If the interval parameter is used
without the count parameter, the iostat command generates reports continuously.

All I/O statistics are collected each time the iostat command runs. The report consists of a
CPU header row followed by a row of CPU statistics. On multiprocessor systems, CPU
statistics are calculated system-wide as averages among all processors. A device header
row is displayed followed by a line of statistics for each device that is configured.

The iostat command generates two types of reports, the CPU Utilization report and the
Device Utilization report.

• On multiprocessor systems the CPU Utilization Report provides the CPU values which
are global averages for all processors.

• The Device Utilization Report provides statistics either by physical device or by
partition.

Examples
The following command displays four reports of extended statistics at two second intervals.

iostat -x 2 4

The following command displays six reports of extended statistics at two second intervals
for devices hda and hdb.

iostat -x hda hdb 2 6

For more information on the formats of the reports and the commands which are available
refer to the man page for iostat, alternatively look at http://linuxcommand.org/

http://linuxcommand.org/

 Performance Monitoring and Application Tools 1-7

1.5 dstat

dstat overcomes some of the limitations of iostat. The dstat command can be used to
monitor systems during performance tuning tests, benchmarks, or troubleshooting. This
command allows you to view all of your system resources instantly. You can compare disk
usage in combination with interrupts from IDE controllers, or compare the network
bandwidth numbers directly with the disk throughput (in the same interval).

dstat allows you to aggregate block device throughput for a certain disk set or network set,
so that you can see the throughput for all the block devices that make up a single file
system or storage system.

By default dstat's output is viewed in real-time, the data being displayed in coloured
columns. However, it can also be saved in a file in a CSV format that can be imported into
Gnumeric or Excel so that the data can be viewed graphically. The counters can be
configured so that they appear in the order that makes the most sense for your cluster.

1.5.1 dstat Plugins

Dstat includes external plugins for dedicated counters. It is open source and written in
python allowing new specific counters to be developed for your cluster. The plugins include
the following:

dstat_app The most expensive process on the system

dstat_freespace See the disk usage per partition

dstat_nfs3 The NFS v3 client operations

dstat_nfsd3 The NFS v3 server operations

dstat_postfix Counters of the different queues (needs postfix)

dstat_thermal CPU temperature

1.5.2 dstat performance impact

Before running any tests check what impact dstat in terms of resource usage. Use the -t
option together with the --debug option to examine performance time variations, according
to whether or not a plugin is loaded. If the impact is higher than expected, then reduce the
number of stats or remove the expensive stats.

See http://dag.wieers.com/home-made/dstat/ for more information

http://dag.wieers.com/home-made/dstat/

1-8 BAS5 for Xeon - Application Tuning Guide

1.6 mpianalyser and profilecomm

mpianalyser is an integrated framework which uses the PMPI interface to analyze the
behaviour of MPI programs.

Profilecomm is a part of mpianalyser and is dedicated to MPI application profiling. It has
been designed to be:

• Light: it uses few resources and so does not slow down the application.

• Easy to run: it is used to characterize the MPI communications in a program.
Communication matrices are constructed with it. Profilecomm is a “post-mortem” tool,
which does not allow on-line monitoring.

Data is collected as long as the program is running. At the end of the program, data is
written into a file for future analysis.

readpfc is a tool with a command line interface which handles the data that has been
collected. Its main uses are the following:

• To display the data collected.

• To export communication matrices in a format that can be used by other applications.

Data collected
The profilecomm module provides the following information:

• Communication matrices

• Execution time

• Table of calls of MPI functions

• Message size histograms

• Topology of the execution environment.

1.6.1 Communication Matrices

The profilecomm library collects separately the point to point communications and the
collective communications. It also collects the number of messages and the volume that the
sender and receiver have exchanged. Finally, the library builds 4 types of communication
matrices:

• Communication matrix of the number of point to point messages

• Communication matrix of the volume (in bytes) of point to point messages

• Communication matrix of the number of collective messages

• Communication matrix of the volume (in bytes) of collective messages

The volume only indicates the payload of the messages.

In order to compute the standard deviation of messages size, two other matrices are
collected. They contain the sum of squared messages sizes for point-to-point and for
collective communications.

 Performance Monitoring and Application Tools 1-9

In order to get more precise information about messages sizes, each numeric matrix can be
split into several matrices according to the size of the messages. The number of partitions
and the size limits can be defined through the PFC_PARTITIONS environment variable. In a
point to point communication, the sender and receiver of each message is clearly
identified, this results in a well defined position in the communication matrix.

In a collective communication, the initial sender(s) and final receiver(s) are identified, but
the path of the message is unknown. The profilecomm library disregards the real path of
the messages. A collective communication is shown as a set of messages sent directly by
the initial sender(s) to the final receiver(s).

Execution Time
The measured execution time is the maximum time interval between the calls to MPI_Init
and MPI_Finalize for all the processes. By default the processes are synchronized during
the measurements. However, if necessary, the synchronization may be by-passed using an
option of the profilecomm library.

Call Table
The call table contains the number of calls for each profiled function of each process. For
collective communications, since a call generates an unknown number of messages, the
values indicated in the call table do not correspond to the number of messages.

Histograms
Profilecomm collects two messages size histograms, one for point-to-point and one for
collective communications. Each histogram contains the number of messages for sizes 0, 1
to 9, 10 to 99, 100 to 999, ..., 108 to 109-1 and bigger than 109 bytes.

Topology of the Execution Environment
The profilecomm module registers the topology of the execution environment, so that the
machine and the CPU on which each process is running can be identified, and above all
the intra- and inter-machine communications made visible.

1.6.2 Profilecomm Data Collection

When using profilecomm there are 2 separate operations – data collection, and then its
analysis.

Using Profilecomm

To be profiled by profilecomm, an application must be linked with the MPI Analyser
library.

profilecomm is disabled by default, to enable it, set the following environment variable:

export MPIANALYSER_PROFILECOMM=1

When the application finishes, the results of the data collection are written to a file
(mpiprofile.pfc by default). By default this file is saved in a format specific to profilecomm,
but it is possible to save it in a text format. The readpfc command enables .pfc files to be
read and analysed.

1-10 BAS5 for Xeon - Application Tuning Guide

1.6.3 Profilecomm Options
Different options may be specified for profilecomm using the MPIPROFILE_OPTIONS
environment variable.

For example:

export MPIPROFILE_OPTIONS=”-f foo.pfc”

Some of the options that modify the behavior of profilecomm when saving the results in a
file are below:

-f file, -filename file
Saves the result in the file file instead of the default file (mpiprofile.txt for text format files
and mpiprofile.pfc for profilecomm binary format files).

-t, -text
Saves the result in a text format file, readable with any text editor or reader. This format is
useful for debugging purpose but it is not easy to use beyond 10 processes.

-b, -bin
Saves the results in a profilecomm binary format file. This is the default format. The readpfc
command is required to work with these files.

-s, -sync
Synchronizes the processes during the time measurements. This option is set by default.

-ns, -nosync
Doesn’t synchronize the processes during the time measurements.

-v32, -volumic32
Use 32 bit volumic matrices. This can save memory when profiling application with a large
number of processes. A process must not send more than 4GBs of data to another process.

-v64, -volumic64
Use 64 bits volumic matrices. This is the default behavior. It allows the profiling of
processes which exchanges more than 4GBs of data.

Examples

To profile the foo program and save the results of the data collection in the default file
mpiprofile.pfc:

$ MPIPROFILE=profilecomm prun –p my_partion –N 1 -n 4./foo

To save the results of the data collection in the foo.pfc file:

$ MPIPROFILE=profilecomm MPIPROFILE_OPTIONS="-f foo.pfc" prun –p
my_partion –N 1 -n 4./foo

To save the result of the collect in text format in the foo.txt file:

$ MPIPROFILE=profilecomm MPIPROFILE_OPTIONS="-t -f foo.txt" prun –p
my_partion –N 1 -n 4./foo

 Performance Monitoring and Application Tools 1-11

1.6.4 Messages Size Partitions
Profilecomm allows the numeric matrices to be split according to the size of the messages.
This feature is activated by setting the PFC_PARTITIONS environment variable. By default,
there is only one partition, i.e. the numeric matrices are not split.

The PFC_PARTITIONS environment variable must be of the form [partitions:] [limits] in
which partitions represents the number of partitions and limits is a comma separated list of
sorted numbers representing the size limits in bytes.

If limits is not set, profilecomm uses the built-in default limits for the requested partition
number.

Example 1 - 3 partitions using the default limits (1000, 1000000):

$ export PFC_PARTITIONS="3:"

Example 2 - 3 partitions using user defined limits (in this case, the partition number can be
safely omitted):

$ export PFC_PARTITIONS="3:500,1000"

Or

$ export PFC_PARTITIONS="500,1000"

1.6.5 Profilecomm Data Analysis

To analyze data collected with profilecomm the readpfc command and other tools,
including spreadsheets, can be used. The main features of readpfc are the following:

• Displaying the data contained in profilecomm files.

• Exporting communication matrices in a standard file format.

readpfc syntax

readpfc [options] [file]

If file is not specified, readpfc reads the default file mpiprofile.pfc in the current
directory.

Readpfc output
The main feature of readpfc is to display the information contained in the seven different
sections of a profilecomm file. These are:

• Header
• Point to point
• Collective
• Call table
• Histograms
• Statistics
• Topology.

1-12 BAS5 for Xeon - Application Tuning Guide

Header Section:
Displays information contained into the header of a profilecomm file. The more interesting
fields are:

• Elapsed Time – indicates the length of the data collection.

• World size - indicates the number of processes.

• Number of partitions – indicates the number of partitions.

• Partitions limits – indicates the list of size limits for the messages partitions (only used if
there are several partitions).

The other fields are less interesting for the final users but are used internally by readpfc.

Example:

Header:
 Version: 2
 Flags: little-endian
 Header size: 40 bytes
 Elapsed time: 9303 us
 World size: 4
 Number of partitions: 3
 Partitions limits: 1000 1000000
 num_intsz: 4 bytes (32 bits)
 num_volsz: 8 bytes (64 bits)

1.6.6 Point to Point Communications
• For point to point communication matrices, use the following. The number of

communication messages is displayed first, then the volume. If either the

• –-numeric-only or –-volumic-only options are used then only one matrix is displayed
accordingly.

Example:

Point to point:
 numeric (number of messages)
 0 1.1k 0 0 | 1.1k
 1.1k 0 0 0 | 1.1k
 0 0 0 1.1k | 1.1k
 0 0 1.1k 0 | 1.1k

 volumic (Bytes)
 0 818.8k 0 0 | 818.8k
 818.8k 0 0 0 | 818.8k
 0 0 0 818.8k | 818.8k
 0 0 818.8k 0 | 818.8k

If the file contains several partitions and the -J/--split option is set then this command
displays as many numeric matrices as there are partitions. Example:

Point to point:
 numeric (number of messages)
 0 <= msg size < 1000
 0 800 0 0 | 800
 800 0 0 0 | 800

 Performance Monitoring and Application Tools 1-13

 0 0 0 800 | 800
 0 0 800 0 | 800

 1000 <= msg size < 1000000
 0 300 0 0 | 300
 300 0 0 0 | 300
 0 0 0 300 | 300
 0 0 300 0 | 300

 1000000 <= msg size
 0 0 0 0 | 0
 0 0 0 0 | 0
 0 0 0 0 | 0
 0 0 0 0 | 0

 volumic (Bytes)
 0 818.8k 0 0 | 818.8k
 818.8k 0 0 0 | 818.8k
 0 0 0 818.8k | 818.8k
 0 0 818.8k 0 | 818.8k

If the -r/--rate option is set then the messages rate and data rate matrices are shown
instead of communications matrices. These rates are the average rates for all execution
times not the instantaneous rates. Example:

Point to point:
 message rate (msg/s)
 0 118.2k 0 0 | 118.2k
 118.2k 0 0 0 | 118.2k
 0 0 0 118.2k | 118.2k
 0 0 118.2k 0 | 118.2k

 data rate (Bytes/s)
 0 88.01M 0 0 | 88.01M
 88.01M 0 0 0 | 88.01M
 0 0 0 88.01M | 88.01M
 0 0 88.01M 0 | 88.01M

1.6.7 Collective Section

The collective section is equivalent to the point to point section for collective communication
matrices. Example:

Collective:
 numeric (number of messages)
 0 102 202 102 | 406
 102 0 0 100 | 202
 202 0 0 0 | 202
 102 100 0 0 | 202

 volumic (Bytes)
 0 409.6k 421.6k 409.6k | 1.241M
 12.04k 0 0 12k | 24.04k
 421.6k 0 0 0 | 421.6k
 12.04k 409.6k 0 0 | 421.6k

1-14 BAS5 for Xeon - Application Tuning Guide

1.6.8 Call table section

This section contains the call table. If the –-ct-total-only option is activated, only the
total column is displayed. Example:

Call table:
 0 1 2 3 4 5 6 7 Total
Allgather 0 0 0 0 0 0 0 0 0
Allgatherv 0 0 0 0 0 0 0 0 0
Allreduce 2 2 2 2 2 2 2 2 16
Alltoall 0 0 0 0 0 0 0 0 0
Alltoallv 0 0 0 0 0 0 0 0 0
Bcast 200 200 200 200 200 200 200 200 1.6k
Bsend 0 0 0 0 0 0 0 0 0
Gather 0 0 0 0 0 0 0 0 0
Gatherv 0 0 0 0 0 0 0 0 0
Ibsend 0 0 0 0 0 0 0 0 0
Irsend 0 0 0 0 0 0 0 0 0
Isend 0 0 0 0 0 0 0 0 0
Issend 0 0 0 0 0 0 0 0 0
Reduce 200 200 200 200 200 200 200 200 1.6k
Reduce_scatter 0 0 0 0 0 0 0 0 0
Rsend 0 0 0 0 0 0 0 0 0
Scan 0 0 0 0 0 0 0 0 0
Scatter 0 0 0 0 0 0 0 0 0
Scatterv 0 0 0 0 0 0 0 0 0
Send 1.1k 1.1k 1.1k 1.1k 1.1k 1.1k 1.1k 1.1k 8.8k
Sendrecv 0 0 0 0 0 0 0 0 0
Sendrecv_replace 0 0 0 0 0 0 0 0 0
Ssend 0 0 0 0 0 0 0 0 0
Start 0 0 0 0 0 0 0 0 0

1.6.9 Histograms Section

This section contains the message sizes histograms. It shows the number of messages
whose size is zero, between 1 and 9, between 10 and 99, ..., between 108 and 109-1
and greater than 109.

Example:

Histograms of msg sizes
size pt2pt coll total
 0 0 0 0
 1 800 6 806
 10 1.2k 6 1.206k
 100 1.2k 500 1.7k
1000 1.2k 500 1.7k
104 0 0 0
105 0 0 0
106 0 0 0
107 0 0 0
108 0 0 0
109 0 0 0

 Performance Monitoring and Application Tools 1-15

1.6.10 Statistics Section

This section displays statistics computed by readpfc. These statistics are based on the
information contained in the data collection file. This section is divided into two or three
sub-sections:

• The General statistics section contains statistics for the whole application.

• The Per process average section contains average per process.

• The Messages sizes partitions section displays the distribution of messages among the
partitions. This section is only present if there are several partitions.

• For each statistic we distinguish point to point communications from collective
communications.

Example:

General statistics:
Total time: 0.009303s (0:00:00.009303)
 pt2pt | coll | total
Messages count | 4400 | 1012 | 5412
Volume | 3.2752MB | 2.10822MB | 5.38342MB
Avg message size| 744B | 2.08322kB | 995B
Std deviation | 1216.4 | 1989.1 | 1488.4
Variation coef. | 1.6341 | 0.95481 | 1.4963
Frequency msg/s | 472.966k | 108.782k | 581.748k
Throughput B/s | 352.06MB/s | 226.62MB/s | 578.68MB/s

Per process average:
 pt2pt | coll | total
Messages count | 1100 | 253 | 1353
Volume | 818.8kB | 527.054kB | 1.34585MB
Frequency msg/s | 118.241k | 27.1955k | 145.437k
Throughput B/s | 88.015MB/s | 56.654MB/s | 144.67MB/s

Messages sizes partitions:
 | pt2pt count | coll count | total
count
 0 <= sz < 1000 | 3.2e+03 73% | 5.1e+02 51% | 3.7e+03 69%
 1000 <= sz < 1000000 | 1.2e+03 27% | 5e+02 49% | 1.7e+03 31%
 1000000 <= sz | 0 0% | 0 0% | 0 0%

The message sizes partitions should be examined first.

Where:

Total time Total execution time between MPI_Init and MPI_Finalize.

Messages count Number of sent messages.

Volume Volume of sent messages (bytes).

Avg message size Average size of messages (bytes).

Std deviation Standard deviation of messages size.

Variation coef. Variation coefficient of messages size.

Frequency msg/s Average frequency of messages (messages per second).

Throughput B/s Average throughput for sent messages (bytes per second).

1-16 BAS5 for Xeon - Application Tuning Guide

1.6.11 Topology Section

This section shows the distribution of processes on nodes and processors. This distribution is
displayed in two different ways.

• First, for each process the node and the CPU in the node where it is running and
secondly, the list of running processes for each node.

Example- 8 processes running on 2 nodes.

Topology:
8 process on 2 hosts
process hostid cpuid
 0 0 0
 1 0 1
 2 0 2
 3 0 3
 4 1 0
 5 1 1
 6 1 2
 7 1 3

host processes
 0 0 1 2 3
 1 4 5 6 7

1.6.12 Display Options

The following options allow different information to be displayed:

-a, --all
Displays all the information. Equivalent to –ghimst.

-c, --collective
Displays collective communication matrices.

-g, --topology
Displays the topology of execution environment.

-h, --header
Displays header of the profilecomm file.

-i, --histograms
Displays messages size histograms.

-j, --joined
Displays entire numerics matrices (i.e. not split). This is the default.

-J, --splitted
Display numerics matrices split according to messages size.

-m, --matrix, --matrices
Displays communication matrix (matrices). Equivalent to –cp.

 Performance Monitoring and Application Tools 1-17

-n, --numeric-only
Does not display volume matrices. This option cannot be used simultaneously with the -v/-
-volumic-only option.

-p, --p2p, --pt2pt
Displays point to point communication matrices.

-r, --rate, --throughput
Displays messages rate and data rate matrices instead of communications matrices.

-s, --statistics
Computes and displays some statistics regarding MPI communications.

-S, --scalable
Displays all scalable information; this means all information whose size is independent of
number of processes. Useful when there is a great number of processes. Equivalent to histT.

--square-matrices
Displays the matrices containing the sum of the squared sizes of messages. These matrices
are used for standard deviation computation and are useless for final users. This option is
mainly provided for debugging purposes.

-t, --calltable
Displays the call table.

-T, --ct-total-only
Displays only the Total column of the call table. By default readpfc displays also one
column for each process.

-v, --volumic-only
Does not display numeric matrices. This option cannot be used simultaneously with -n/--
numeric-only option.

1.6.13 Exporting a Matrix or an Histogram

The communication matrices and the histograms can be exported in different formats which
can be understood by other software programs, for example spreadsheets. Three formats
are available: CSV (Comma Separated Values), MatrixMarket (not available for histogram
exports) and gnuplot.

It is also possible to have a graphical display of the matrix or the histogram, which is better
for matrices with a large number of elements. Obviously, it is also possible to include the
graphics in a report. Seven graphic formats are available: PostScript, Encapsulated
PostScript, SVG, xfig, EPSLaTeX, PSLaTeX and PSTeX. All these formats are vectorial, which
means the dimensions of the graphics can be modified if necessary.

1-18 BAS5 for Xeon - Application Tuning Guide

Figure 1-4. An example of a communication matrix

Figure 1-5. An example of a histogram

The following options may be used when exporting matrices:

--csv-separator sep
Modifies CSV delimiter. Default delimiter is comma
“,”. Some software programs prefer a semicolon “;”.

-f format, --format format Chooses export format. Default format is CSV
(Comma Separated Values).

help lists available export formats

csv export in CSV format

mm, market, MatrixMarket export in MatrixMarket format

 Performance Monitoring and Application Tools 1-19

gp, gnuplot
export in a format used by pfcplot so that a
graphical display of the matrix can be produced

ps, postscript export in PostScript format

eps export in Encapsulated PostScript format

svg export in Scalable Vector Graphics format

fig, xfig export in xfig format

epslatex export in LaTex and Encapsulated PostScript format

pslatex export in LaTex format and PostScript inline

pstex export in Tex format and PostScript inline

The available values are the following:

mportant

When using epslatex two files are written: xxx.tex and xx.eps. The filename indicated in
the –o option is the name of the Latex file.

--logscale[=base]
Uses a logarithmic color scale. Default value for logarithm basis is 10; this basis can be
modified using the base argument. This option is only relevant when exporting in a
graphical format.

--nogrid
Does not display the grid on a graphical representation of the matrix.

-o file, --output file
Specifies the file name for an export file. The default filenames are out.csv, out.mm, out.dat,
out.ps, out.svg, out.fig or out.tex, according to export format. This option is only available
with the –x option.

--palette pal
Uses a personalized colored palette. This option is only relevant when exporting in a
graphical format. This palette must be compatible with the defined function of gnuplot,
for instance: --palette '0 "white", 1 "red", 2 "black"' or --palette '0
"#0000ff", 1 "#ffff00", 2 "ff0000"'

--title title
Uses a personalized title for a graphical display. The default title is Point-to-point/collective
numeric/volumic communication matrix, according to the exported matrix.

-x object, --export object
Exports a communication matrix or histogram specified by the object argument. Values
for object are the following:

1-20 BAS5 for Xeon - Application Tuning Guide

help List of available matrices and histograms

pn[.part],

np[.part]

Point-to-point numeric communication matrix. The optional item part is the
partition number for split matrices. If part is not set, the entire matrix (i.e.the
sum of the split matrices) is exported

pv, vp Point to point volumic communication matrix

cn[.part],

 nc[.part]

Collective numeric communication matrix

cv, vc Collective volumic communication matrix

ph, hp Point-to-point messages size histogram

ch, hc Collective messages size histogram

th, ht Total messages size histogram (collective and point-to-point)

ah, ha Both point-to-point and collective messages size histograms (all histograms)

Other options

-H, --help, --usage
Displays help messages

-q, --quiet
Does not display help warning messages (error messages continue to be displayed).

-V, --version
Displays program version.

Examples

• To display all information available in foo.pfc file, enter:

$ readpfc -a foo.pfc

This will give information similar to that below

Header:
 Version: 2
 Flags: little-endian
 Header size: 40 bytes
 Elapsed time: 9303 us
 World size: 4
 Number of partitions: 3
 Partitions limits: 1000 1000000
 num_intsz: 4 bytes (32 bits)
 num_volsz: 8 bytes (64 bits)
[...]
Topology:
4 process on 1 hosts
process hostid cpuid
 0 0 0
 1 0 1
 2 0 2
 3 0 3

host processes
 0 0 1 2 3

 Performance Monitoring and Application Tools 1-21

• To display a point to point numerical communication matrix:

$ readpfc -pn foo.pfc

Point to point:
 numeric (number of messages)
 0 1.1k 0 0 | 1.1k
 1.1k 0 0 0 | 1.1k
 0 0 0 1.1k | 1.1k
 0 0 1.1k 0 | 1.1k

• To export the collective volumic communication matrix in CSV format in the default file:

$ readpfc –x cv foo.pfc

Warning: No output file specified, write to default (out.csv).

$ ls out.csv

out.csv

• To export the first part (small messages) of point to point numerical communication
matrices in PostScript format in the foo.ps file:

$ readpfc -x np.o -f ps -o foo.ps foo.pfc
$ ls foo.ps

foo.ps

1.6.14 pfcplot, histplot and gnuplot

The pfcplot script converts matrices into graphic using gnuplot . It is generally used by
readpfc , but can be used directly by the user who wants more flexibility. The matrix must
be exported with the –f gnuplot option to be read by pfcplot.

For more details enter:

man pfcplot

Users who have particular requirements can invoke gnuplot directly. To do this the matrix
must be exported with gnuplot format or with CSV format, choosing space as the
separator.

mportant

Due to the limitations of gnuplot, one null line and one null column are added to the
exported matrix in gnuplot format.

Histplot is the equivalent of pfcplot for histograms. Like pfcplot, it can be used directly by
users but it is not user-friendly. More details are available from the man page:

man histplot

1-22 BAS5 for Xeon - Application Tuning Guide

1.7 PAPI

PAPI (Performance API) is used for the following reasons:
• To provide a solid foundation for cross-platform performance analysis tools,
• To present a set of standard definitions for performance metrics on all platforms,
• To provide a standard API among users, vendors and academics.

PAPI supplies two interfaces:
• A high-level interface, for simple measurements,
• A low-level interface, programmable, adaptable to specific machines and linking the

measurements.

PAPI should only be used by specialists interested in optimizing scientific programs. These
specialists can focus on code sequences using PAPI functions.
Top and PAPI are all open source tools.

1.7.1 High-level PAPI Interface

The high-level API provides the ability to start, stop and read the counters for a specified list
of events. It is particularly well designed for programmers who need simple event
measurements, using PAPI preset events.

Compared with the low-level API the high-level is easier to use and requires less setup
(additional calls). However this ease of use leads to a somewhat higher overhead and the
loss of flexibility.

Note Earlier versions of the high-level API are not thread safe. This restriction has been removed
with PAPI 3.

Below is a simple code example using the high-level API:

#include <papi.h>

#define NUM_FLOPS 10000
#define NUM_EVENTS 1

main()
{
int Events[NUM_EVENTS] = {PAPI_TOT_INS};
long_long values[NUM_EVENTS];

/* Start counting events */
if (PAPI_start_counters(Events, NUM_EVENTS) != PAPI_OK)
 handle_error(1);

/* Defined in tests/do_loops.c in the PAPI source distribution */
do_flops(NUM_FLOPS);

/* Read the counters */
if (PAPI_read_counters(values, NUM_EVENTS) != PAPI_OK)
 handle_error(1);

printf("After reading the counters: %lld\n",values[0]);

do_flops(NUM_FLOPS);

 Performance Monitoring and Application Tools 1-23

/* Add the counters */
if (PAPI_accum_counters(values, NUM_EVENTS) != PAPI_OK)
 handle_error(1);
printf("After adding the counters: %lld\n", values[0]);

/* double a,b,c; c+= a* b; 10000 times */
do_flops(NUM_FLOPS);

/* Stop counting events */
if (PAPI_stop_counters(values, NUM_EVENTS) != PAPI_OK)
 handle_error(1);

printf("After stopping the counters: %lld\n", values[0]);
}

Possible Output:

After reading the counters: 441027
After adding the counters: 891959
After stopping the counters: 443994

Note that the second value (after adding the counters) is approximately twice as large as
the first value (after reading the counters). This is because PAPI_read_counters resets and
leaves the counters running, then PAPI_accum_counters adds the current counter value into
the values array.

1.7.2 Low-level PAPI Interface

The low-level API manages hardware events in user-defined groups called Event Sets. It is
particularly well designed for experienced application programmers and tool developers
who need fine-grained measurements and control of the PAPI interface. Unlike the high-
level interface, it allows both PAPI preset and native event measurements.

The low-level API features the possibility of getting information about the executable and the
hardware, and to set options for multiplexing and overflow handling. Compared with high-
level API, the low-level API increases efficiency and functionality.

An Event Set is a user-defined group of hardware events (preset or native) which, all
together, provide meaningful information. The users specify the events to be added to the
Event Set and attributes such as the counting domain (user or kernel), whether or not the
events are to be multiplexed, and whether the Event Set is to be used for overflow or
profiling. PAPI manages other Event Set settings such as the low-level hardware registers to
use, the most recently read counter values and the Event Set state (running / not running).

Following is a simple code example using the low-level API. It applies the same technique
as the high-level example.

#include <papi.h>
#include <stdio.h>

#define NUM_FLOPS 10000

main()
{
int retval, EventSet=PAPI_NULL;

1-24 BAS5 for Xeon - Application Tuning Guide

long_long values[1];

/* Initialize the PAPI library */
retval = PAPI_library_init(PAPI_VER_CURRENT);
if (retval != PAPI_VER_CURRENT) {
 fprintf(stderr, "PAPI library init error!\n");
 exit(1);
}

/* Create the Event Set */
if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Add Total Instructions Executed to our Event Set */
if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

/* Start counting events in the Event Set */
if (PAPI_start(EventSet) != PAPI_OK)
 handle_error(1);

/* Defined in tests/do_loops.c in the PAPI source distribution */
do_flops(NUM_FLOPS);

/* Read the counting events in the Event Set */
if (PAPI_read(EventSet, values) != PAPI_OK)
 handle_error(1);

printf("After reading the counters: %lld\n",values[0]);

/* Reset the counting events in the Event Set */
if (PAPI_reset(EventSet) != PAPI_OK)
 handle_error(1);

do_flops(NUM_FLOPS);

/* Add the counters in the Event Set */
if (PAPI_accum(EventSet, values) != PAPI_OK)
 handle_error(1);
printf("After adding the counters: %lld\n",values[0]);

do_flops(NUM_FLOPS);

/* Stop the counting of events in the Event Set */
if (PAPI_stop(EventSet, values) != PAPI_OK)
 handle_error(1);

printf("After stopping the counters: %lld\n",values[0]);
 }

Possible output:

After reading the counters: 440973
After adding the counters: 882256
After stopping the counters: 443913

Note that PAPI_reset is called to reset the counters, because PAPI_read does not reset
the counters. This lets the second value (after adding the counters) to be approximately
twice as large as the first value (after reading the counters).

For more details, please refer to PAPI man and documentation, which are installed with the
product in /usr/share directory.

 Performance Monitoring and Application Tools 1-25

1.8 Profiling Programs – HPC Toolkit

HPC Toolkit provides a set of profiling tools that help you to improve the performance of
the system. These tools perform profiling operations on the executables and display
information in a user-friendly way.

The main advantage of HPC Toolkit over other profiling tools is that you do not need to
include profiling options and to re-compile the executable.

Note In this section, the term “executable” refers to a Linux program file, in ELF (Executable and
Linking Format) format.

Prerequisites:

• hpcviewer requires the Java Runtime Environment from the RHEL5.3-Supplementary-for-
EM64T CDROM to be installed on the Management Node. See chapter 3 in the BAS5
for Xeon Installation and Configuration Guide for more details.

• The executable must contain debugging information (if not, there will be no
correspondence between counters and code at source line level)

• The executable must be dynamically linked because HPC Toolkit overloads the default
initialization functions to call PAPI.

• The executable must not use ANSI libstdc++. (The constructor being static with the
current libstdc++ at the present time, using HPC Toolkit with such an executable
produces a SIGSEGV).

1.8.1 HPC Toolkit Tools

HPC Toolkit provides four main capabilities:

• analysis of an executable to recover the program structure

• measurement of performance metrics as the executable runs

• correlation of the performance metrics with the program structure

• presentation of the performance metrics with the associated source code

Note HPC Toolkit provides the most complete performance information when working with fully-
optimized executables that include line map information within the object code. Since
compilers often provide line map information for fully-optimized code, this requirement
need not require a special build process.

HPC Toolkit includes the following tools:

hpcstruct analyzes an executable to determine its static program structure. The goal is to
search for execution loops and to identify the corresponding source code procedures, loop
nests, functions, and inlined code.

1-26 BAS5 for Xeon - Application Tuning Guide

hpcrun-flat measures the execution of an executable by statistical sampling of the hardware
performance counters to create flat profiles. A flat profile is an IP histogram, where IP is the
instruction pointer.

hpcprof-flat correlates the raw profiling data from hpcrun-flat with the program structure file
produced by hpcstruct. hpcprof-flat generates high level metrics in the form of a
performance database called the Experiment database. The Experiment database is in
Experiment XML format for use with hpcviewer.

hpcproftt correlates flat profile metrics with either source code structure or object code and
generates textual output suitable for a terminal. hpcproftt also generates textual dumps of
profile files.

hpcviewer presents the Experiment database produced by hpcprof-flat by allowing the user
to quickly and easily view the performance database generated by hpcprof-flat.

1.8.2 Display Counters

The hpcrun-flat tool uses the hardware counters as parameters. To know which counters are
available for your configuration, use the papi_avail command or the hpcrun-flat tool itself:

(1) papi_avail:

papi_avail

Available events and hardware information.
--
Vendor string and code : GenuineIntel (1)
Model string and code : 32 (1)
CPU Revision : 0.000000
CPU Megahertz: 1600.000122
CPU's in this Node : 6
Nodes in this System: 1
Total CPU's : 6
Number Hardware Counters : 12
Max Multiplex Counters : 32
--
The following correspond to fields in the PAPI_event_info_t structure.
Name Code Avail Deriv Description (Note)
PAPI_TOT_CYC 0x8000003b Yes No Total cycles
PAPI_L1_DCM0 x80000000 Yes No Level1 data cache misses
PAPI_L1_ICM0 x80000001 Yes No Level 1 instruction cache misses
PAPI_L2_DCM0 x80000002 Yes Yes Level 2 data cache misses
...
PAPI_FSQ_INS 0x80000064 No No Floating point square root
instructions
PAPI_FNV_INS 0x80000065 No No Floating point inverse instructions
PAPI_FP_OPS 0x80000066 Yes No Floating point operations

Of 103 possible events, 60 are available, of which 17 are derived.

The following counters are particularly interesting: PAPI_TOT_CYC (number of CPU
cycles) and PAPI_FP_OPS (number of floating point operations).

To display more details use the papi_avail -d command.

 Performance Monitoring and Application Tools 1-27

(2) hpcrun-flat:

hpcrun-flat [informational-options]

Informational Options:

–l, --events-short List available events (some may not be profilable)

–L, --events-long Similar to events-short but with more information

--paths Print paths for external PAPI and MONITOR

-V, --version Print version information

-h, --help Print help

Example:

hpcrun-flat -l

*** Hardware information ***

Vendor string and code : GenuineIntel (1)
Model string and code : 32 (0)
CPU Revision : 5
CPU Megahertz : 1599
CPU's in this Node : 16
Nodes in this System : 1
Total CPU's : 16
Number Hardware Counters: 12
Max Multiplex Counters : 32
===
*** Wall clock time ***
WALLCLK wall clock time (1 millisecond period)
===
*** Available PAPI preset events ***

Name Description

PAPI_L1_DCM Level 1 data cache misses
PAPI_L1_ICM Level 1 instruction cache misses
PAPI_L2_DCM Level 2 data cache misses
PAPI_L2_ICM Level 2 instruction cache misses
...
PAPI_L3_TCW Level 3 total cache writes
PAPI_FP_OPS Floating point operations
Total PAPI events reported: 60
===
*** Available native events ***

Name Description

ALAT_CAPACITY_MISS_ALL ALAT Entry Replaced -- both integer and
 floating point instructions
ALAT_CAPACITY_MISS_FP ALAT Entry Replaced -- only floating point
 instructions
ALAT_CAPACITY_MISS_INT ALAT Entry Replaced -- only integer
 instructions...
BRANCH_EVENT Execution Trace Buffer Event Captured.
 Alias to ETB_EVENT
Total native events reported: 637
==

1-28 BAS5 for Xeon - Application Tuning Guide

1.8.3 Using HPC Toolkit

mportant
It is necessary to run one of these sequences in order to produce complete results that allow
you to view metrics and analyze performance:

• hpcstruct, hpcrun-flat, hpcprof-flat, hpcviewer

• hpcstruct, hpcrun-flat, hpcproftt

1.8.3.1 Step 1: Analyzing the executable code (hpcstruct)

hpcstruct analyzes an executable to determine its static program structure. hpcstruct
recovers the program structure from the executable's object code and writes a Program
XML file (type=PGM) that describes that structure. This XML file is used by hpcprof-flat or
hpcproftt.

hpcstruct works best with highly optimized binaries produced by C, C++, and FORTRAN
programs.

Note Default values for options and switches are shown in curly brackets.

Syntax:

hpcstruct [options] executable > program_structure_XML_file

General Options:

-v, --verbose [<n>] Verbose mode; generate progress messages to stderr (standard
error output) at verbosity level <n>

-V, --version Print version information

-h, --help Print help information

--debug [<n>] Use debug level <n> {1}

--debug-proc <glob> Debug the structure recovery for procedures matching the procedure
glob <glob>

Recovery and Output Options:

-i, --irreducible-interval-as-loop-off Do not treat irreducible intervals as loops

-f, --forward-substitution-off Assume that forward substitution does not occur
(helpful for handling erroneous PGI debugging info)

-p <list>, --canonical-paths <list> Ensure that the program structure tree only contains the
files found in the colon-separated <list>. May be
passed multiple times.

-n, --normalize-off Turn off scope tree normalization

 Performance Monitoring and Application Tools 1-29

-u, --unsafe-normalize-off Turn off potentially unsafe normalization

-c, --compact Generate compact output

-s, --symbolic-only Include only those program structure tree nodes that
have DWARF line number information

-d, --skip-disconnected-nodes Skip those program structure tree nodes that are
disconnected from the enclosing procedure

Example:

hpcstruct -v 2 -s smath.exe >smath.psxml

> hpcstruct -v 2 -s smath.exe >smath.psxml
msg: Building scope tree for [MAIN__] ...
msg: Building scope tree for [ft250_] ...
msg: Building scope tree for [xyz1_] ...

hpcstruct writes the Program XML structure tree for the smath.exe program to the file
smath.psxml. All nodes without line number information are ignored because the -s option
was used.

1.8.3.2 Step 2: Measuring the execution (hpcrun-flat)

hpcrun-flat is a flat statistical sampling-based profiler. It supports multiple sample sources
during one execution and creates an Instruction Pointer (IP) histogram, or flat profile, for
each sampled source. It can profile complex applications and can be used in conjunction
with parallel process launchers.

The executable executes under control of hpcrun-flat. For an event e and a period p, after
every p instances of e, a counter associated with the current IP is incremented.

When the executable terminates, hpcrun-flat writes the histogram into a file with the name
executable.hpcrun-flat.hostname.pid.tid. This file is known as a profile file
and contains a histogram of counts for each load module.

The user can abort the process by sending the Interrupt signal (INT or Ctrl-C). hpcrun-flat
will write the partial profile. This technique is useful for programs that run a long time or
are not well-behaved.

Syntax 1:

hpcrun-flat [profiling-options] [--] executable [executable-arguments]

General Options:

-- The special option '--' stops the hpcrun-flat option processing; this is
useful when the program specified by executable takes arguments of
its own.

--debug [<n>] Run with debug level <n>. {1}

1-30 BAS5 for Xeon - Application Tuning Guide

Profiling Options:

–e <event>[:<period>] --event <event>[:<period>]
An event to profile and its corresponding sample period. <event> can
be a PAPI or native processor event. This option can be passed multiple
times. It is recommended that a period always be specified.
{PAPI_TOT_CYC:999999}

-r [<yes|no>], --recursive [<yes|no>],
Profile process spawned by executable_name. {no}

-t <each|all>, --threads <each|all>
Select thread profiling mode. With each, separate profiles are
generated for each thread. With all, profiles of all threads are
combined. Only POSIX threads are supported. {each}

-o <outpath>, --output<outpath>
Directory for output data {.}

--papi-flag <flag> Profile style flag {PAPI_POSIX_PROFIL}

Notes • Because hpcrun-flat uses LD_PRELOAD to initiate profiling, it cannot be used to profile
setuid commands. For the same reason, it cannot profile statically linked applications.

• Some events are not compatible. To resolve this problem, specify a period of time for
each event using the :period parameter. When this option is specified hpcrun-flat
retrieves each event in sequence, thus avoiding conflicts.

• The WALLCLK event can be used to profile the "wall" clock. It may be used only once,
cannot be used with another event, and cannot have a period specified. The
WALLCLK event cannot be used in a multithreaded process.

Examples:

hpcrun-flat -e PAPI_TOT_INS -e PAPI_TOT_CYC -o hpcrun.data -- smath.exe

>hpcrun-flat -e PAPI_TOT_INS -e PAPI_TOT_CYC -o hpcrun.data -- smath.exe
hpcrun-flat [pid 24024, tid 0x0]:
Using output file hpcrun.data/smath.exe.hpcrun-flat.sysj.24024.0x0
 The computed answer is: 500500

To retrieve the counters for 3000 events, enter:

hpcrun -e PAPI_TOT_INS:3000 -e PAPI_TOT_CYC:3000 ...

1.8.3.3 Step 3: Correlating flat metrics with program structure (hpcprof-flat)

hpcprof-flat generates high level metrics from raw profiling data produced by hpcrun-flat
and correlates it with logical source code abstractions produced by hpcstruct.

 Performance Monitoring and Application Tools 1-31

Syntax 1:

hpcprof-flat [options] [output-options] [correlation-options]
<profile-file>

The inputs to this usage of hpcprof-flat are (1) the Program XML file created by the hpcstruct
tool and (2) the profile files created by the hpcrun-flat tool. If the Program XML file is not
provided, hpcprof-flat will default to correlation using the line map information.

By default, hpcprof-flat generates an Experiment database file (Experiment XML format) to
be used with hpcviewer as well as a configuration file that can be used as input to a
subsequent invocation of hpcprof-flat.

General Options:

-v, --verbose [<n>] Verbose mode; generate progress messages to stderr (standard error
output) at verbosity level <n>

-V, --version Print version information

-h, --help Print help information

--debug [<n>] Use debug level <n> {1}

Source Structure Correlation Options:

-I <path>, --include <path> Use <path> when searching for source files. A '*' after the
last slash indicates recursion. This option may be used
multiple times.

-S <file>, --structure <file> Use the program structure file <file> generated by the
hpcstruct tool. This option may be used multiple times (e.g.,
for shared libraries).

Output Options:

-o <db-path>, --db <db-path>, --output <db-path>
Specify experiment database name <db-path> {./experiment-db}

--src [yes|no], --source[yes|no]
Indicates if source code files should be copied into experiment
database. {yes}

Output Format Options:

Select different output formats and optionally specify the output filename file (located within
the Experiment database). The output is sparse in the sense that it ignores program areas
without profiling information. (Set file to '-' to write to stdout.)

-x [file], --experiment [file]
 Default. Experiment XML format. {experiment.xml}. NOTE: To
disable, set file to no.

--csv [file] Comma-separated-value format. It includes flat scope tree and loops
and is useful for downstream external tools. {experiment.csv}

1-32 BAS5 for Xeon - Application Tuning Guide

Example:

hpcprof-flat -S smath.psxml hpcrun.data/*

> hpcprof-flat -S smath.psxml hpcrun.data/*
msg: Copying source files reached by PATH/REPLACE options to experiment-db
msg: Writing final scope tree (in XML) to experiment.xml

Syntax 2:

hpcprof-flat [options] [output-options] --config <config-file>

The general options and the output options are as listed above for hpcprof-flat, Syntax 1.
However, the correlation options are contained in the configuration file and cannot be
specified on the command line.

<config-file> is a configuration file generated by a previous hpcprof-flat activity and
optionally edited by the user. The configuration file syntax is briefly described in Section
Configuration File Syntax, on page1-38.

Example:

For example, the config.xml file produced by the above hpcprof-flat command can be
modified to insert a computed metric that computes the cycles per instruction:

<METRIC name="CPI" displayName="CPI" percent="false">
 <COMPUTE>
 <math>
 <apply> <divide/>
 <ci>PAPI_TOT_CYC</ci>
 <ci>PAPI_TOT_INS</ci>
 </apply>
 </math>
 </COMPUTE>
</METRIC>

hpcprof-flat -S smath.psxml --config experiment-db/config.new

> hpcprof-flat -S smath.psxml --config experiment-db/config.new
msg: Computed METRIC CPI: CPI = (PAPI_TOT_CYC / PAPI_TOT_INS)
msg: Copying source files reached by PATH/REPLACE options to experiment-db
msg: Writing final scope tree (in XML) to experiment.xml

When the experiment.xml file is viewed with hpcviewer, it will show three columns of
metrics, the native metrics for the PAPI_TOT_CYC and PAPI_TOT_INS events as well as a
computed metric for CPI.

 Performance Monitoring and Application Tools 1-33

1.8.3.4 Step 3a: Correlating flat metrics with program structure (hpcproftt)

hpcproftt provides an alternative to hpcprof-flat and hpcviewer. hpcproftt correlates profile
metrics with either source code structure (the first and default mode) or object code (second
mode) and generates textual output suitable for a terminal. hpcproftt also supports a third
mode in which it generates textual dumps of profile files. In all modes, hpcproftt expects a
list of profile files as input.

hpcproftt defaults to source structure correlation mode. When --source is not specified,
the default switches are {pgm,lm}; with --source, the default switch is {sum}.

Syntax 1: Source Structure Correlation

hpcproftt [--source] [options] <profile-file>...

In source mode, hpcproftt first creates raw metrics for every native event in the profile files
and creates any derived metrics specified by the --metric option. It then correlates the
metrics to the program structure based on the hpcstruct output file specified by the
--structure option. If this file is not specified, a simple structure is computed from the
load module's line map. hpcproftt finally generates the metric summaries and annotated
source files to stdout. Each summary compares a source structure element, such as a
procedure, with all other elements of that type throughout the program. Structure elements
include Program, Load Module, File, Procedure, Loop, and Statement. The desired elements
are chosen by switches specified with the --source option.

General Options:

-v, --verbose [<n>] Verbose mode; generate progress messages to stderr (standard error
output) at verbosity level <n>

-V, --version Print version information

-h, --help Print help information

--debug [<n>] Use debug level <n> {1}

Source Structure Correlation Switches:

--source[=all,sum,pgm,lm,f,p,l,s,src] or
--src[=all,sum,pgm,lm,f,p,l,s,src]

Correlate metrics to source code structure. Without --source, the default
is {pgm,lm}; with, it is {sum}

all all summaries plus annotated source files
sum all summaries
pgm program summary
lm load module summary
f file summary
p procedure summary
l loop summary
s statement summary
src annotate source files; equiv to --srcannot '*'

1-34 BAS5 for Xeon - Application Tuning Guide

Source Structure Correlation Options:

--srcannot <glob> Annotate source files with path names that match file glob <glob>.
Protect globs from the shell with 'single quotes'. May pass multiple
times.

-M <metric>, --metric <metric>
Show a supplemental or different metric set. <metric> is one of the
following:
sum Additionally show Mean, RStdDev, Min, Max
sum-only Show only Mean, RStdDev, Min, Max

-I <path>, --include <path>
Use <path> when searching for source files. A '*' after the last slash
indicates recursion. This option may be used multiple times.

-S <file>, --structure <file>
Use the program structure file <file> generated by the hpcstruct tool.
This option may be used multiple times (e.g., for shared libraries).

Example of Source Structure Correlation:

hpcproftt --source hpcrun.data/*

>hpcproftt --source hpcrun.data/*
===
Metric definitions. column: name (nice-name) [units] {details}:
 1: PAPI_TOT_INS [events] {Instructions completed:999999 ev/smpl}
 2: PAPI_TOT_CYC [events] {Total cycles:999999 ev/smpl}
===
Program summary (row 1: sample count for raw metrics):

 421 253
4.21e+08 2.53e+08
===
Load module summary:

 97.62% 98.42% smath.exe
 2.38% 1.58% /lib/tls/libm-2.3.4.so
===
File summary:

 97.62% 98.42% [smath.exe]smathz.f
 1.19% 0.79% [/lib/tls/libm-2.3.4.so]~~~<unknown-file>~~~
 1.19% 0.79% [/lib/tls/libm-2.3.4.so]<built-in>
===
Procedure summary:

 94.06% 94.07% [smath.exe]<smathz.f>ft250_
 2.38% 2.37% [smath.exe]<smathz.f>MAIN__
 1.19% 1.98% [smath.exe]<smathz.f>xyz1_
 0.48% 0.00% [/lib/tls/libm-2.3.4.so]<~~~<unknown-file>~~~>atan
 0.48% 0.79% [/lib/tls/libm-2.3.4.so]<<built-in>>POW_COMMON
 0.24% 0.00% [/lib/tls/libm-2.3.4.so]<<built-in>>COMMON_PATH
 0.24% 0.00% [/lib/tls/libm-2.3.4.so]<~~~<unknown-file>~~~>sinh
 0.24% 0.00% [/lib/tls/libm-2.3.4.so]<~~~<unknown-file>~~~>log10
 0.24% 0.40% [/lib/tls/libm-2.3.4.so]<~~~<unknown-file>~~~>sqrt
 0.24% 0.00% [/lib/tls/libm-2.3.4.so]<<built-in>>_SINCOS_COMMON2

...

 Performance Monitoring and Application Tools 1-35

Syntax 2:

hpcproftt --object[=s] [options] <profile-file>

In object mode, hpcproftt performs fine-grained correlation and generates annotated object
code. It will create raw metrics for every native event in only one profile file.

Object Correlation Switches:

--object[=s]
--obj[=s] Correlate metrics with object code by annotating object code

procedures and instructions. {}

s intermingle source line info with object code

Object Correlation Options:

--obj-values Show raw metrics as values instead of percents

--obj-threshold <n> Prune procedures with an event count < n {1}

Note On some architectures, delays between event triggers, interrupt generation, and sampling
of the IP mean that an event may be associated with a different instruction from the one that
caused the event. This gap may be as many as 50 to 70 instructions in length.

Example of Object Code Correlation:

hpcproftt --source hpcrun.data/smath.exe.hpcrun-flat.sysj.24024.0x0

>hpcproftt --object=s hpcrun.data/smath.exe.hpcrun-flat.sysj.24024.0x0
===
Load module: smath.exe

Metric definitions. column: name (nice-name) [units] {details}:
 1: PAPI_TOT_INS [samples] {Instructions completed:999999 ev/smpl}
 2: PAPI_TOT_CYC [samples] {Total cycles:999999 ev/smpl}

Metric summary for load module (totals):
 411 249

Procedure: MAIN__ (MAIN__)
--
Metric definitions. column: name (nice-name) [units] {details}:
 1: PAPI_TOT_INS [samples] {Instructions completed:999999 ev/smpl}
 2: PAPI_TOT_CYC [samples] {Total cycles:999999 ev/smpl}
Metric summary for procedure (percents relative to load module):
 10 6
 2.43% 2.41%
Metric details for procedure (percents relative to procedure):
smathz.f:1
0x4000000000001260: [MII]
0x4000000000001266: [MII]
0x400000000000126c: [MII]
0x4000000000001270: [MII]
0x4000000000001276: [MII]
0x400000000000127c: [MII]
0x4000000000001280: [MFB] nop.m 0x0
smathz.f:259
0x4000000000001286: [MFB] nop.m 0x0

1-36 BAS5 for Xeon - Application Tuning Guide

0x400000000000128c: [MFB] nop.m 0x0
0x4000000000001290: [MMI]
0x4000000000001296: [MMI]
...

Syntax 3:

hpcproftt --dump <profile-file>

This form of the hpcproftt command will generate textual representation of raw profile data.

Example:

hpcproftt --dump hpcrun.data/*

> hpcproftt --dump hpcrun.data/*
===
hpcrun.data/smath.exe.hpcrun-flat.sysm.29041.0x0
===
--- ProfileData Dump ---
{ ProfileData: hpcrun.data/smath.exe.hpcrun-flat.sysm.29041.0x0 }
 { LM: /lib/ld-2.3.4.so, loadAddr: 0x2000000000000000 computed=0 }
 { EventData: PAPI_TOT_INS, period: 999999, outofrange: 0, overflow: 0 }
 { EventData: PAPI_TOT_CYC, period: 999999, outofrange: 0, overflow: 0 }
 { LM: /lib/libdl-2.3.4.so, loadAddr: 0x2000000000470000 computed=0 }
 { EventData: PAPI_TOT_INS, period: 999999, outofrange: 0, overflow: 0 }
 { EventData: PAPI_TOT_CYC, period: 999999, outofrange: 0, overflow: 0 }
 { LM: /lib/libgcc_s-3.4.6-2.so.1, loadAddr: 0x20000000001c0000 computed=0 }
 { EventData: PAPI_TOT_INS, period: 999999, outofrange: 0, overflow: 0 }
 { EventData: PAPI_TOT_CYC, period: 999999, outofrange: 0, overflow: 0 }
 { LM: /lib/tls/libc-2.3.4.so, loadAddr: 0x2000000000200000 computed=0 }
 { EventData: PAPI_TOT_INS, period: 999999, outofrange: 0, overflow: 0 }
 { EventData: PAPI_TOT_CYC, period: 999999, outofrange: 0, overflow: 0 }
 { LM: /lib/tls/libm-2.3.4.so, loadAddr: 0x2000000000100000 computed=0 }
 { EventData: PAPI_TOT_INS, period: 999999, outofrange: 0, overflow: 0 }
 { 0x2000000000115b60: 1 }
 { 0x2000000000116200: 1 }
 { 0x2000000000116450: 1 }
 { 0x2000000000117200: 1 }
 { 0x2000000000117890: 1 }
...

1.8.3.5 Step 4: Presenting the results (hpcviewer)

The hpcviewer tool displays the counters values for each code line (Figure 1-6 below).

hpcviewer uses the Experiment XML file generated by hpcprof-flat.

Syntax:

hpcviewer [experiment-database-file]

[experiment-database-file] is the name of the Experiment database file produced by
hpcprof-flat or hpcproftt. When [experiment-database] is not specified, hpcviewer will
prompt the user to select the Experiment database file from a directory window.

 Performance Monitoring and Application Tools 1-37

The hpcviewer window is divided into three panes.

• The source pane, at the top of the screen, contains the source code associated with the
entity currently selected in the navigation pane.

• The navigation pane, at the lower left, presents a hierarchical tree-based structure that
identifies the display of the performance data. This pane can include load modules,
source files, procedures, loops, and source lines.
The buttons in the navigation pane control flatten and zoom. From left to right, the four
buttons are:

flatten replaces each top-level scope with its children. Useful to view and
rank peers together.

unflatten inverse of flatten. Makes previously hidden nodes visible again.

up arrow zooms to show only information for the selected line and its
descendants

down arrow zooms out by reversing a prior zoom operation

• The metric pane displays the performance metrics associated with the entities to the left
in the navigation pane. Entities in the tree view of the navigation pane are sorted at
each level by the metric selected in the metrics pane. Sort order can be reversed by
clicking on the arrow at the head of the selected column.

The following figure shows an example of the hpcviewer screen. There is a column for each
event specified in hpcrun-flat as well as a third column for the computed metric that was
added by hpcprof-flat.

Figure 1-6. View of the counter values, using hpcviewer

1-38 BAS5 for Xeon - Application Tuning Guide

1.8.4 Configuration File Syntax

A configuration file is an XML document of type HPCVIEW. The following top-level elements
are used in the configuration file:

* <HPCVIEW> Begin document.

 <TITLE name="my-title"/> my-title names the Experiment database.

 <PATH name="path"/> A set of PATH directives specifying path names
to search for source files. path is a relative or
absolute path containing source code to which
performance data is correlated. In order to
recursively search a directory, append an
escaped '*' after the last slash, e.g.,
/mypath/* (escaping is for the shell).

 <REPLACE
in="old-path-prefix"
out="new-path-prefix" />

A set of REPLACE directives can be used to
define one path prefix to operationally match
another prefix occuring in profile data files or
in a program structure file. This is useful when
trying to compare performance metrics
between machines with different file structures,
e.g., because the executables or the source
files are installed in different places.

 <STRUCTURE
name="program.psxml"/> One or more STRUCTURE directives providing

program structure files created by hpcstruct

* <METRIC name="name"
displayName="name-in-display"
display="true|false"
percent="true|false">
...
</METRIC>

One or more metrics.

* </HPCVIEW> End document.

* element is required

A metric may be of two types, native or derived. Metrics are introduced using the METRIC
element and contain several attributes:

name. A unique name used when creating derived metrics that are
expressions of other metrics.

displayName. Name to be displayed. Not necessarily unique.

display. Controls metric visibility. A metric used only as input to a computed
metric need not be displayed.

 Performance Monitoring and Application Tools 1-39

percent. Indicates whether the viewer should display a column of percentages
computed as the ratio of the metric for this scope to the metric for the
whole program. Percents are useful when metrics are computed by
summing contributions from descendants in the scope tree, but are
meaningless for computed metrics such as ratio of flops/memory access
in a scope.

The elements that appear inside the METRIC element determine its type. A metric may be of
two types: native (type=FILE) or derived (type=COMPUTE).

1.8.4.1 Native or FILE Metrics

This type of metric appears in profile information generated by hpcrun-flat or by hpcproftt:

<METRIC name="m1" ...>
 <FILE name="file1" select="short-name-in-file1" type="HPCRUN|PROFILE"/>
</METRIC>

Because a file may contain multiple metrics, the FILE element has an optional 'select'
attribute to identify a particular metric within the file. Metrics are identified by their
'shortName' values, typically zero-based indices. The default 'select' value is 0 and
corresponds to the first metric.

1.8.4.2 Derived or COMPUTE Metrics

Derived metrics are specified by a COMPUTE element containing a MathML equation in
terms of metrics defined earlier in the HPCVIEW document.

hpcprof-flat supports the following operands:

• constants: <cn>2</cn

• variables: <ci>m1</ci> (used to refer to other metrics)

and the following MathML operators (used within <apply>):

• negation: <minus/> (1-ary)

• subtraction: <minus/> (2-ary)

• addition: <plus/> (n-ary)

• multiplication: <times/> (n-ary)

• division: <divide/> (2-ary)

• exponentiation: <power/> (2-ary)

• minimum: <min/> (n-ary)

• maximum: <max/> (n-ary)

• mean (arithmetic): <mean/> (n-ary)

• standard deviation: <sdev/> (n-ary)

Consider the examples from the previous sections with two native metrics for
PAPI_TOT_CYC (cycles) and PAPI_TOT_INS (instructions).

1-40 BAS5 for Xeon - Application Tuning Guide

The file config.xml from example, produced by hpcprof-flat, contains the following
elements, including only native metrics:

<HPCVIEW>
<TITLE name=""/>
<STRUCTURE name="smath.psxml"/>
<METRIC name="PAPI_TOT_INS" displayName="PAPI_TOT_INS" sortBy="true">
 <FILE name="hpcrun.data/smath.exe.hpcrun-flat.sysj.29041.0x0"
 select="0" type="HPCRUN"/>
</METRIC>
<METRIC name="PAPI_TOT_CYC" displayName="PAPI_TOT_CYC">
 <FILE name="hpcrun.data/smath.exe.hpcrun-flat.sysj.29041.0x0"
 select="1" type="HPCRUN"/>
</METRIC>
</HPCVIEW>

The file config.new from example, produced by hpcprof-flat and subsequently edited by
the user, contains the following elements, including both native and derived metrics:

<HPCVIEW>
<TITLE name=""/>
<STRUCTURE name="smath.psxml"/>
<METRIC name="PAPI_TOT_INS" displayName="PAPI_TOT_INS" sortBy="true">
 <FILE name="hpcrun.data/smath.exe.hpcrun-flat.sysj.29041.0x0"
 select="0" type="HPCRUN"/>
</METRIC>
<METRIC name="PAPI_TOT_CYC" displayName="PAPI_TOT_CYC">
 <FILE name="hpcrun.data/smath.exe.hpcrun-flat.sysj.29041.0x0"
 select="1" type="HPCRUN"/>
</METRIC>
<METRIC name="CPI" displayName="..." percent="false">
 <COMPUTE>
 <math>
 <apply> <divide/>
 <ci>PAPI_TOT_CYC</ci>
 <ci>PAPI_TOT_INS</ci>
 </apply>
 </math>
 </COMPUTE>
</METRIC>
</HPCVIEW>

1.8.5 More Information

For more detailed information about HPC Toolkit go to:

http://hpctoolkit.org/man/hpctoolkit.html

http://hpctoolkit.org/man/hpctoolkit.html

 Performance Monitoring and Application Tools 1-41

1.9 Intel® VTune™ Performance Analyzer for Linux

Intel® VTune™ Performance Analyzer provides both Sampling and Call Graph analysis to
identify where time and resources are being used by applications, libraries and drivers.
Sampling should be used first because of its low overhead and in order to identify
application modules which require more analysis using Call Graphs. Sampling is usually
best for code that predominantly uses loops, whilst Call Graphs are usually better for code
that branches.

Sampling

Intel® VTune™ Performance Analyzer uses system-wide, event-based sampling to find
bottlenecks with a low overhead (typically less than 5 percent). Events and processes are
sampled over a time period and then may be analyzed at different levels - operating
system process, thread, module executable, function/method, individual line of source
code, or individual machine/assembly language instructions - to identify specific
bottlenecks. Problems such as cache misses and branch mis-predictions are easily
identified.

Call Graphs

Call Graphs determine calling sequences within algorithms and graphically display critical
paths. They also highlight the critical path, the preceding functions and calls which resulted
in the time or resource bottleneck.

Figure 1-7. A Call Graph showing the critical path in red

1-42 BAS5 for Xeon - Application Tuning Guide

Figure 1-7 shows both a table and graph view. When a table entry is selected the function
is highlighted in the graph, and vice versa. The critical path for the function is clearly
visible.

Identify Performance Improvements

Intel® VTune™ Performance Analyzer looks at an application at machine instruction level.
These are annotated and any latencies or stalls are identified. Possible changes to the
application are highlighted, and the performance of the new code is compared with the
original code to verify improvements in the performance.

Adapted to HPC clusters

Intel® VTune™ Performance Analyzer is adapted for HPC clusters:

• Users can share a large system for simultaneous Call Graph performance analyses.

• Sampling is supported on systems with 128 or more processors using local buffering
per CPU for minimum inter-node contention.

• Dedicated events are used to measure parallelism, core sharing of the bus and cache,
and modified data sharing by threads for tuning multi-core Intel® processors. These
identify opportunities to improve threading, tune multi-core sharing of the bus and
cache, and optimize cache-line usage.

• Remote profiling minimizes the performance impact on the target system by running
the user interface on a separate Windows® PC which is connected to the system.

Intel® Performance Analyzer is proprietary software and has to be bought directly from
Intel.

See http://www.intel.com/ for more details.

http://www.intel.com/

 Coding and Compiling Optimization 2-1

Chapter 2. Coding and Compiling Optimization
This chapter looks at some coding tips and compiling options to help improve the
performance of your application on the Bull HPC platform. Guidelines are given in order to
ensure that the application program runs as efficiently as is possible.

The following topics are described:

• 2.1 Application Code Optimization

• 2.2 Compiler Optimization Options

2.1 Application Code Optimization

Application code optimization is hotly debated and an enormous amount of material has
been written on the subject. Some of the guidelines produced are common sense regarding
the use of good programming technique. The parallel processing capability means that
more than ever your code must be tidily organized and streamlined. Also, of course, the
structure and requirements of each application is different, bringing with it its own
constraints and limitations.

Sometimes the simplest change to your application can produce the biggest gains in
resource use. At all times a scientific approach must be taken with all optimizations
measured and verified against existing values.

This chapter contains some general programming guidelines and pointers to ensure that the
compilation is as efficient as is possible.

Throughout are tips and pieces of advice resulting from the experience of Bull’s High
Performance Computing Benchmarking and Software team.

2.1.1 Alias Usage
Aliasing is when a pointer points to the same memory zone across several iterations. Thus
it is possible to increase the optimization level for the compiler as long as the developer
can ensure that there are not two pointers using the same memory zone. In this case the
FORTRAN and C compiler option -fno-alias is used to restrict alias usage.

2.1.2 Improving Loops
Loops are very powerful programming devices which in a few lines can result in a high
amount of date processing and optimization. Some, if not all, of the basic loop structures –
switching, partitioning, factoring, hoisting, fusion, distribution and unrolling – will be part
of most programmers’ repertoire. Obviously, these optimizations have to be used carefully,
with a good knowledge of the application, to ensure that all data dependencies are
respected.

Loops automatically allow for parallelism in terms of program scheduling and structure.
They also enable the programmer to identify code parallelizing possibilities which may not
have been obvious initially.

2-2 BAS5 for Xeon - Application Tuning Guide

Array Loop Optimizations

Some optimizations for arranging arrays in memory are as follows:

• C Arrange as a series of lines

• Fortran Arrange as a series of columns

It is essential that data which is placed within one memory location is streamed smoothly,
and the data flow for a particular object which is placed in the same memory location is
not broken. Again the following options can be used:

• C Internal loop for columns

• Fortran Internal loop for lines

1. Switching, if possible, within loops is useful to align the access to arrays with their
position in memory.

 do i = 1, N

 do j = 1, N

 A(i,j) = 1/B(i,j)

 end do

 end do

 do j = 1, N

 do i = 1, N

 A(i,j) = 1/B(i,j)

 end do

 end do

2. The partitioning of loops allows their granularity to be adapted to the memory
hierarchy. The computation is done by blocs which are not necessarily aligned. This
works well when all the loops may be switched.

 do i = 1, N

 do j = 1, N

 A(i,j) = 1/B(i,j)

 end do

 end do

 do jj = 1, N, sj

 do ii = 1, N, si

 do j = jj, jj+sj-1

 do i = ii,ii+si-1

 A(i,j) = 1/B(i,j)

 end do

 end do

 end do

 end do

 Coding and Compiling Optimization 2-3

3. Fusion combines loops within in the same cycle, thus eliminating the need for
temporary arrays. Distribution makes it possible to build parallel loops.

 do i = 1, N

 A(i) = ...

 end do

 do i = 1, N

 B(i) = ... A(i) ...

 end do

 do i = 1, N
 A(i) = ...
 B(i) = ... A(i) ...
 end do

4. Scalars can be increased to remove any dependences resulting from the memory re-
use.

 do i = 1, N

 T=f(i)

 A(i) = A(i)+T*T

 end do

 do i = 1, N

 T[i]=f(i)

 A(i) = A(i)+T[i]*T[i]

 end do

Loop Peeling

Loop peeling is a traditional optimization which is used for loops with a low number of
iterations. It acts to explicitly extract the first iterations from the loop in order to avoid
having to have them returned to the loop, which may result in a high overhead for a low
number of iterations. This approach is particularly appropriate for Intel® Itanium® 2
platforms which use the software pipeline intensively - up to 10 levels of operation.

2.1.3 C++ Programming Hints

The following hints originate from Intel’s programming tutorial:

• Use the const modifier as much as is possible.
• Use local variables rather than global or static variables e.g.

int limit; int limit;

int function() int function()

{ {

for (i=0; i<limit...) int my_limit = limit;

} for (i=0; i<my_limit...)

 }

2-4 BAS5 for Xeon - Application Tuning Guide

• Use static variables rather than global ones e.g.

int flag; static int flag;

/* flag used only in this file */ /* flag used only in this file */

• Use procedures like warning(), error(), exception(), assert() and err().

• Use inline functionality for functions which are used a lot or are small in size.

• Use for or while loops instead of do while loops.

• Use int data types for arrays instead of unsigned int data types.

• Let the compiler handle prefetching except in the case when there is a problem. In this
case the PREFETCH directive is used.

2.1.4 Memory Tips
• Minimize the use of the pointers.

• Use addresses based on the arrays rather than pointers.

int *src = src_array;

int *dst = dest_array;

for (i=0; i<10; i++) for (i=0; i<10; i++)

{ {

*dst++ = *src++; dest_array[i] = src_array[i];

} }

• Use the restrict keyword for better control.

2.1.5 Application code performance impedances
The following points may be counter-productive in terms of application performance:

• Reusing the same code for unrelated computations.

• Unnecessary branching and procedure calls.

• Optimizing by hand, for example, loop unrolling and prefetching.

• Writing functions in assembly code.

• Dead code and empty function calls.

• Using the # pragma pack directive and the unaligned keyword. These can lead to
misalignment.

2.1.6 Interprocedural Optimization (IPO)

Application performance for programs which contain a lot of small and frequently used
functions can be improved considerably using IPO. IPO reduces the number of branches in
code, reduces overhead calls through inlining functions and performs interprocedural
memory analysis in order to keep critical date in registers across function boundaries.

 Coding and Compiling Optimization 2-5

Keep the following points in mind:

• Uses static variables and static functions, and avoid assigning function addresses or
variable addresses to global variables.

Unless the compiler can detect the whole program, it has no knowledge about the
overall use of global variables, external functions, or static variable and static functions
whose addresses are taken and assigned to a global variable or function pointer.

• If IPO does not inline automatically, uses the inline keyword in C++, and _inline
in C.

• Avoid passing pointers into a function as a parameter and then assigning them to a
global variable. The code below hinders IPO. x is a global variable and p is a
pointer.

 int *x;

 foo()

 {

 int y;

 bar(&y);

 }

 bar (p)

 {

 x = p

 }

2-6 BAS5 for Xeon - Application Tuning Guide

2.2 Compiler Optimization Options

One of the most important ways of generating efficient executables is to closely examine
the compiler optimization options. A single set of optimization options doesn’t exist. You
have to find the best set of options according to the characteristics of the source code. In
addition, each source file can be compiled using different options. Finally, compiler
directives can be inserted into the source code in order help the compiler to optimize the
program.

2.2.1 Starting Options

Before using advanced optimization options, it is advisable to generate a reference
executable using the default compilation optimization options. Advanced optimization
option time differences will be analyzed against this execution time.

The default optimization options for the Intel FORTRAN Compiler are the following:

-72 Sets the number of column in the source code to 72.

-O2 Level 2 optimizations (software pipelining, unrolling, inlining).

-align Memory aligning.

-nomodule Compilation with F90 modules located in the current directory.

-Zp8 8 bytes alignment.

The default optimization options for the Intel C/C++ Compiler are the following:

-O2 Optimizations of level 2 (software pipelining, unrolling, inlining).

-Ob1 Enables inlining of functions declared with the __inline keyword.

-alias-args Assume arguments may be aliased.

-falias Assume aliasing in the program.

-ffnalias Assume aliasing within functions.

2.2.2 Intel C/C++ and Intel Fortran Optimization Options

Once the reference execution time is collected, more aggressive optimization options can
be activated.

The following optimization commands may be activated on both C/C++ and Fortran
compilers:

-O3 Level 3 optimizations (-O2 optimizations plus more aggressive
optimizations such as prefetching and loop transformations).

-ip Enables more interprocedural optimizations for single file compilations.

-ipo When this option is specified, the compiler performs inline function
expansion for calls to functions defined in separate files.

-Qoption,f,-ip_ninl_min_stats=n Modifies the number of inlining levels (by default this is
15)

 Coding and Compiling Optimization 2-7

-Qoption,f,-ip_ninl_max_total_stats=n Modifies the number of lines added when inlining
(by default n = 2000)

-static Causes the executable to link all the libraries statically.

-fno-alias Specifies that aliasing should not be assumed in the program.

-fno-fnalias Specifies that aliasing should not be assumed within functions, but
should be assumed across calls.

-ftz Enables denormal results to be flushed to zero.

Loop unrolling is an optimization option whereby instructions called in multiple iterations of
a loop are combined so that only a single iteration is necessary. This technique is
particularly useful for parallel processing. Performance is improved as result of the
reduction in the number of overhead instructions that have to be executed for a loop, which
in turn reduces branching and improves cache hit rate. However, this option has to be
handled carefully.

Unrolling options are:

 -unroll0 Ending of unrolling

 -unroll Activation of unrolling

 -unrollM M is the maximum number of loops to be unrolled

2.2.3 Compiler Options which may Impact Performance

The following compiler options must be avoided if possible as they will lead to a loss in
performance:

-assume dummy_aliases
This forces the compiler to assume that dummy (formal) arguments to procedures share
memory locations with other dummy arguments or with variables shared through use
association, host association, or common block use. These program semantics slow
performance, so you should specify -assume dummy_aliases only for the subprograms
called that depend on such aliases. The use of dummy aliases violates the FORTRAN-77
and Fortran 95/90 standards but occurs in some older programs.

-c
If you use -c when compiling multiple source files, also specify -ooutputfile to compile many
source files together into one object file. Separate compilations prevent certain inter-
procedural optimizations, used with multiple compiler invocations or with -c without the -
ooutputfile option.

-check bounds
Generates extra code for array bounds checking at run time.

-check overflow
Generates extra code to check integer calculations for arithmetic overflow at run time.
Once the program is debugged, omit this option to reduce executable program size and
slightly improve run-time performance.

2-8 BAS5 for Xeon - Application Tuning Guide

-fpe 0
Using this option slows program execution. It enables certain types of floating-point
exception handling, which can be expensive.

-g
Generate extra symbol table information in the object file. Specifying this option also
reduces the default level of optimization to -O0 (no optimization). The -g option only slows
your program down when no optimization level is specified, in which case -g turns on -O0,
which slows the compilation down. If -g, -O2 are specified, then the code runs at much the
same speed as if -g were not specified.

-save
Forces the local variables to retain their values from the last invocation terminated. This
may change the output of your program for floating-point values as it forces operations to
be carried out in memory rather than in registers, which in turn causes more frequent
rounding of your results.

-O0
Turns off optimizations. Can be used during the early stages of program development or
when you use the debugger.

-vms
Controls certain VMS-related run-time defaults, including alignment. If you specify the -vms
option, you may need to also specify the -align records option to obtain optimal run- time
performance.

2.2.4 Flags and Environment Variables

-assume buffered_io with FORT_BUFFERRED=TRUE

-dryrun Gives non specific information regarding what has happened at the ld level.

KMP_STACKSIZE Allows the stack size to be increased. This works with ulimit

For example with ulimit -s 1 024 000 or with ulimit -S -s unlimited the following command
is used:

export KMP_STACKSIZE=250 000

2.2.5 Compiler Directives for Loops

The following directives are to be specified before the loops concerned:

#pragma For C and C++ programs

[Cc*!]DIR$ For Fortran programs.

The following pragmas can be used:

LOOP COUNT(N) Specifies the number of loop iterations for the pragma.

DISTRIBUTE POINT May be placed inside or outside of a loop.

[NO]UNROLL, UNROLL(N) Controls loop unrolling.

 Coding and Compiling Optimization 2-9

IVDEP Ignores vectorial dependences.

Example for IVDEP: The results generated using the opt_report option – see section 2.2.7:

 do i = 1, m
 if (a(i) .eq. 0) then Resource II = 1
 b(i) = a(i) + 1 Recurrence II = 1
else Minimum II = 1
 b(i) = a(i)/c(i) Last attempted II = 1
 endif Estimated GCS II = 1
enddo

Modulo scheduling was successful but there was no overlap across iterations therefore
the loop was not pipelined.

2.2.6 Options for Compiler Optimization Reports

The following options instruct the compiler to generate an optimization report:

-opt_report Instructs the compiler to generate an optimization report to
stderr.

-opt-report-file<file> Instructs the compiler to generate an optimization report
named <file>.

-opt-report-level{min|med|max} Specifies the level of detail for the optimization report.

-opt-report-phase<phase> Specifies the optimizer phase <phase> to generate reports
for. <phase> can be one of the following:

– ecg_swp : Code generator / software pipelining
– hlo : high level optimizer
– ipo : interprocedural optimizer

-opt-report-help Displays the logical names of optimizer phases available for
report generation (using -opt-report-phase).

2.2.7 Compiling Tips

Consider both the -02 and -03 options

The best compiler options are very much dependent on the nature and structure of the
program. The length of the vectors involved can be crucially important. In some
circumstances the aggressive –O3 optimizations may be counter-productive and generate
inefficient code which does not match the expected performance in terms of time and
resource use.

The less sophisticated option -O2 generates more conservative code but may have a lower
overhead.

2-10 BAS5 for Xeon - Application Tuning Guide

Be careful when using loop unrolling options

The loop unrolling options – see section 2.2.2 can be counter productive in terms of
performance. Register usage will be increased due to the need to store more temporary
variables and code size will increase following unrolling, which is particularly undesirable
for embedded applications.

These costs will have to be weighed up against the benefits achieved in terms in the
reduction of the number of loop iterations for the program.

Try the option -O3 -unroll0

If a binary file compiled using the -O2 option performs better than a binary compiled with
the -O3 option, it is often worth considering the combination ' -O3 -unroll0'.

The implementation of unrolling when switching from -O2 to -O3 may prove to be counter-
productive – see above. However, some, if not all, of other -O3 optimization routines could
be beneficial. This means that, generally speaking (depending on the program), the
combination -O3 -unroll0 may be the most effective.

Look at floating-point assist faults.

Floating-point assist faults (FPAF) are a mechanism which makes it possible to treat
calculations implementing denormalized numbers (floating numbers with a zero mantissa).
If these cannot be handled directly by the processor, then the OS will intervene with
specific functions, leading to a potentially high time penalty. To see if the application
generates FPAFs, use the command dmesg which shows system messages. The messages
are of the type:

a.out(27243): floating-point assist fault At IP 4000000000032461, isr
0000020000000008

It should be noted that each line of this type may correspond to a variable number of
occurrences. FPAF problems may be avoided as follows:

• By using the -ftz option, which changes denormalized numbers to zero. This is
included as a default option with the -O3 option, but not with lower optimization
settings.

 Program Execution Optimization 3-1

Chapter 3. Program Execution Optimization
This chapter contains a description of various ways that the execution of the program on
the Bull HPC platforms can be made as smooth as possible exploiting all the computing
power that is available. For information on the different platforms, application types,
launching tools and specific execution optimization options refer to the Bull BAS5 for Xeon
User’s Guide.

The following topics are described:

• 3.1 CPUSET

• 3.2 Tuning Performance for SLURM clusters

• 3.3 Avoiding Memory Access Stalls

3.1 CPUSET

CPUSETs are lightweight objects in the Linux kernel that enable users to partition their
multiprocessor machine by creating execution areas. A virtualization layer has been added
so it becomes possible to split a machine in terms of CPUs.

The main motivation of this patch is to give the Linux kernel full administration capabilities
concerning CPUs. CPUSETs are rigidly defined, and a process running inside this
predefined area won't be able to run on other parts of the system.

This is useful for:

• Creating sets of CPUs on a system, and binding applications to them.

• Providing a way of creating sets of CPUs inside a set of CPUs so that a system
administrator can partition a system among users, and users can further partition their
partition among their applications.

3.1.1 Typical Usage of CPUSETS
• CPU-bound applications: Many applications (as it is often the case for HPC apps) used

to have a "one process on one processor" policy using sched_setaffinity() to define
this, but what if we have to run several such apps at the same time? One can do this
by creating a CPUSET for each app.

• Critical applications: processors inside strict areas may not be used by other areas.
Thus, a critical application may be run inside an area with the knowledge that other
processes will not use its CPUs. This means that other applications will not be able to
lower its reactivity. This can be done by creating a CPUSET for the critical application,
and another for all the other tasks.

3-2 BAS5 for Xeon - Application Tuning Guide

3.1.2 BULL CPUSETS

CPUSETS are integrated in the standard Linux kernel. However the Bull kernel includes the
following additional CPUSET features:

Migration
Change on the fly the execution area for a whole set of processes (for example, to give
more resources to a critical application). When you change the CPU list of a CPUSET all
the processes that belong to the CPUSET will be migrated to stay inside the CPU list, if and
as necessary.

Virtualization
Translate the masks of CPUs given to sched_setaffinity() so they stay inside the set of CPUs.
With this mechanism processors are virtualized for the use of sched_setaffinity() and /proc
information. Thus, any former application using this system call to bind processes to
processors will work with virtual CPUs without any change. A new file is added to each
CPUSET, in the CPUSET file system, to allow a CPUSET to be virtualized, or not.

3.1.3 pplace

pplace is a tool which offers finer control over the binding of threads and processes of an
application to individual CPUs than CPUSET.

It may be used when using OPENMP for Benchmarking. OpenMP is an industry-standard
parallel programming model which implements a fork-join model of parallel execution.
With OPENMP the source thread or process is split into several parallel threads or
processes. These include threads used for calculating and a monitor thread which controls
the other threads. Care is required to bind the calculation threads to the CPUs using pplace
only and not the monitoring threads.

SYNOPSIS

pplace -np <nb_cpus> -p <policy> [--name <process_name>] <command>

pplace will create a CPUSET, enable the process placement policy inside this CPUSET, and
run the <command> inside this CPUSET.

OPTIONS

-np <nb_cpus>
Specify how many CPUs the application will use. A new CPUSET, with this number of CPUs
will be created.

-p <policy>
Specify the placement policy-this policy is actually a comma-separated list of per-task
policies. These policies can be:
 ignore this task (nothing)
 bind task on next cpu +
 bind task on specific cpu cpu number

 Program Execution Optimization 3-3

The last policy becomes the default policy for all the tasks which follow. For instance:

-p 0,+ will place the first task on cpu0, the second task on cpu1, the third on cpu2, and
so on.

-p 0,,,+ will place the first task on cpu0, ignore the second and third tasks, place the fourth
task on cpu1, the fifth on cpu2, and so on.

-p 1, will place the first task on cpu1, and will ignore all other tasks.

--name <process_name> will only consider processes with name <process_name> for
the placement. Note: only the 15 first characters of the name
are taken into account.

-d debug. When the command terminates, pplace will print detailed information
about how the process placement occurred. This can help you to choose your
policy.

For the application developer individual calls to CPUs can be made in the source code
using the command Sched_setaffinity which operates in the same way as pplace. The
advantage which pplace offers is that this fixing of processes and threads can be made on
the binaries without modifying the source code.

When the compiler uses OPENMP pragmas to generate a multithreaded application it uses
runtime libraries from Intel and it is not possible to add individual calls in the manner of the
Sched_setaffinity command. In this instance it may be advantageous to use pplace to
control the CPU allocation.

3.2 Tuning Performance for SLURM clusters

3.2.1 Configuring and Sharing Consumable Resources in SLURM

SLURM, using the default node allocation plug-in, allocates nodes to jobs in exclusive
mode, which means that even when all the resources within a node are not utilized by a
given job, another job will not have access to these resources.

Nodes possess resources such as processors, memory, swap, local disk, etc. and jobs
consume these resources. The SLURM exclusive use default policy may result in inefficient
utilization of the cluster and of node resources.

SLURM provides a Consumable Resource plug-in which supports CPUs, Sockets, Cores,
and Memory being configured as consumable resources. For 1.3+ SLURM versions
consumable resources may be shared among jobs by the use of the per-partition shared
setting.

See https://computing.llnl.gov/linux/slurm/documentation.html for details regarding the
configuration and sharing of consumable resources for SLURM.

https://computing.llnl.gov/linux/slurm/documentation.html

3-4 BAS5 for Xeon - Application Tuning Guide

3.2.2 SLURM and Large Clusters

This section contains SLURM administrator information specifically for clusters containing
1,024 nodes or more. Virtually all SLURM components have been validated (through
emulation) for clusters containing up to 65,536 compute nodes. Obtaining good
performance at this scale requires some tuning and this section provides some basic
information with which to get started.

3.2.2.1 Node Selection Plug-in (SelectType)

While allocating individual processors within a node is great for smaller clusters, the
overhead of keeping track of the individual processors and memory within each node adds
a significant overhead. For best scalability, it is recommended that the consumable
resource plug-in select/cons_res is used and NOT select/linear.

3.2.2.2 Job Accounting Gather Plug-in (JobAcctGatherType)

Job accounting relies on the slurmstepd daemon to periodically sample data on each
Ccompute Node. The collection of this data will take compute cycles away from the
application, inducing what is known as system noise. For large parallel applications, this
system noise can impact application scalability.

For optimal application performance, it is best to disable job accounting,
jobacct_gather/none. Consider the use of the job completion records parameter,
JobCompType, for accounting purposes, as this entails far less overhead.

If job accounting is required, configure the sampling interval to a relatively large size (e.g.
JobAcctGatherFrequency=300). Some experimentation may also be required to deal with
collisions on data transmission.

3.2.2.3 Node Configuration

SLURM can track the amount of memory and disk space available for each Compute Node
and use it for scheduling purposes, however this will entail an extra overhead. Optimize
performance by specifying the expected configuration using the parameters that are
available (RealMemory, Procs, and TmpDisk). If the node is found to have fewer resources
than the configured amounts, it will be marked as DOWN and not be used. Also, the
FastSchedule parameter should be set.

While SLURM can easily handle a heterogeneous cluster, configuring the nodes using the
minimal number of lines in the slurm.conf file will make administration easier and result in
better performance.

3.2.2.4 Timers

The configuration parameter SlurmdTimeout determines the interval at which slurmctld
routinely communicates with slurmd. Communications occur at half the SlurmdTimeout
value. If a Compute Node fails, the time of failure is identified and jobs are no longer
allocated to it. Longer intervals decrease system noise on Compute Nodes (these requests

 Program Execution Optimization 3-5

are synchronized across the cluster, but there will be some impact on applications). For
large clusters, SlurmdTimeoutl values of 120 seconds or more are reasonable.

3.2.2.5 MPICH2

If MPICH-2 is used, the srun command will manage the key-pairs used to bootstrap the
application. Depending upon the processor speed and the architecture, the communication
of key-pair information may require extra time. This can be done by setting the PMI_TIME
environment variable before executing srun to launch the tasks. The default value of
PMI_TIME is 500 and this is the number of microseconds allotted to transmit each key-pair.

The individual slurmd daemons on the Compute Nodes will initiate messages to the
slurmctld daemon only when they start up or when epilog completes for a job. When a
job that has been allocated a large number of nodes completes, a large number of
messages may be sent by the slurmd daemons on these nodes to the slurmctld daemon, all
at the same time. The EpilogMsgTime parameter may be used to spread this message
traffic out over time and avoid message loss. Lost messages will be retransmitted, however
this results in a delay in reallocating resources to new jobs.

3.2.2.6 TreeWidth parameter

SLURM uses hierarchical communications between the slurmd daemons in order to
increase parallelism and improve performance. The TreeWidth configuration parameter
controls the fanout of messages. The default value is 50, meaning each slurmd daemon can
communicate with up to 50 other slurmd daemons and up to 2500 nodes can be contacted
with two message hops. The default value will work well for most clusters. Optimal system
performance can usually be achieved if TreeWidth is set to the square root of the number
of nodes in the cluster for systems having no more than 2500 nodes, or the cube root for
larger systems.

3.2.2.7 Hard Limits

The srun command automatically increases its open file limit to the hard limit in order to
process all the standard input and output connections to the launched tasks. It is
recommended that you set the open file hard limit to 8192 across the cluster.

3.2.3 SLURM Power Saving Mechanism

SLURM provides an integrated power saving mechanism from version 1.2.7 onwards.
Nodes that remain idle for a configurable period of time can be placed in a power saving
mode. The nodes will be restored to normal operation once work is assigned to them.
Power saving is accomplished using the cpufreq governor that can change CPU frequency
and voltage. Note that the cpufreq driver must be enabled in the Linux kernel configuration.
While the ondemand governor can be configured to automatically alter the CPU
performance based upon workload, SLURM provides somewhat greater flexibility for
power management on a cluster. SLURM can alter the governors across the cluster,
according to configurable rates, to prevent rapid changes in power demands. For
example, starting a 1000 node job on an idle cluster could result in a high power surge.

3-6 BAS5 for Xeon - Application Tuning Guide

This would be better supported using SLURM’s options of increasing power demands in a
gradual fashion.

3.2.3.1 Configuring Power Saving

A great deal of flexibility is offered in terms of when, and how, idle nodes are put into or
removed from power save mode. The following configuration parameters are available:

• SuspendTime: Nodes becomes eligible for power saving mode after being idle for the
number of seconds specified. A negative number disables power saving mode. The
default value is -1 (disabled).

• SuspendRate: Maximum number of nodes to be placed into power saving mode per
minute. A value of zero results in no limits being imposed. The default value is 60. Use
this to prevent rapid drops in power requirements.

• ResumeRate: Maximum number of nodes to be placed into power saving mode per
minute. A value of zero results in no limits being imposed. The default value is 60. Use
this to prevent rapid increases in power requirements.

• SuspendProgram: Program to be executed to place nodes into power saving mode.
The program executes as SlurmUser, as configured in slurm.conf. The argument to the
program will be the names of nodes to be placed into power saving mode, using
SLURM's hostlist expression format.

• ResumeProgram: Program to be executed to remove nodes from power saving mode.
The program executes as SlurmUser, as configured in slurm.conf. The argument to the
program will be the names of nodes to be removed from power saving mode, using
SLURM's hostlist expression format.

• SuspendExcNodes: List of nodes that are excluded from power saving mode. Use
SLURM's hostlist expression format. By default, no nodes are excluded.

• SuspendExcParts: List of partitions that are excluded from power saving mode. Multiple
partitions may be specified using a comma separator. By default, no nodes are
excluded.

While SuspendProgram and ResumeProgram execute as SlurmUser. The program can take
advantage of this to execute programs directly on the nodes as the root user as part of the
SLURM infrastructure.

Example scripts are shown below:

#!/bin/bash
Example SuspendProgram for cluster where every node has two CPUs
srun --uid=0 --no-allocate --nodelist=$1 echo powersave
>/sys/devices/system/cpu0/cpufreq
srun --uid=0 --no-allocate --nodelist=$1 echo powersave
>/sys/devices/system/cpu1/cpufreq

#!/bin/bash
Example ResumeProgram for cluster where every node has two CPUs
srun --uid=0 --no-allocate --nodelist=$1 echo performance
>/sys/devices/system/cpu0/cpufreq
srun --uid=0 --no-allocate --nodelist=$1 echo performance
>/sys/devices/system/cpu1/cpufreq

 Program Execution Optimization 3-7

The srun --no-allocate option allows SlurmUser and the root user only to spawn tasks directly
on the Compute Nodes without actually creating a SLURM job. No other users have this
permission (their requests will generate an invalid credential error message and the event
will be logged). The srun --uid option allows SlurmUser and the root user only to execute a
job as some other user. Then SlurmUser uses the srun --uid option, the srun command will
try to set its user ID to that value in order to fully operate as the specified user. This will fail
and srun will report an error to that effect. This does not prevent the spawned programs
from running as root user. No other users have this permission (their requests will generate
an invalid user id error message and the event will be logged).

The slurmctld daemon will periodically (every 10 minutes) log how many nodes are in
power save mode using messages of this sort:

[May 02 15:31:25] Power save mode 0 nodes
...
[May 02 15:41:26] Power save mode 10 nodes
...
[May 02 15:51:28] Power save mode 22 nodes

Using these logs you can easily see the effect of SLURM's power saving support. You can
also configure SLURM without SuspendProgram or ResumeProgram values to assess the
potential impact of power saving mode before enabling it.

3.3 Avoiding Memory Access Stalls

For an application to be truly optimized it must run as fast as is possible on the system and
at the same time avoid any possible memory access stalls whilst a data process is fetched
from memory.

Compilers will automatically generate code optimized to exploit the maximum parallel
processing capability possible with groups of instructions sequenced correctly. In many
cases the easiest thing to do is leave the compiler to handle all the parallel optimizations.

Memory access stalls are caused when the data to be accessed is not loaded beforehand
into the cache. This typically occurs when the memory access is random and not
sequential. Two data structures which often use random-like data access are linked lists and
hash table arrays.

Linked lists

Create the nodes in pre-allocated blocks of memory rather than taking them from the heap
each time. This increases data locality which means that there is a good chance that the
data node is already in memory as part of a data block which has already loaded.

Hash tables

In order to prevent data access collisions when re-hashing new slots are allocated at
random, with the result that the new slots are unlikely to be in the cache, which in turn
leads to a memory access stall.

These stalls can be prevented as follows:

3-8 BAS5 for Xeon - Application Tuning Guide

• Ensure data can be accessed sequentially. Fortran arrays should be accessed in
column-major order whilst C arrays should be accessed in row-major order.

• If the data is such that it cannot be accessed sequentially then preload it using the
–-builtin_prefetch command. However, care has to be taken to ensure that when the
data is preloaded it does not displace data which is in the process of being used.
Otherwise, the displaced data will have to be reloaded constantly and thus impact
performance.

 Message Passing Interface Optimization 4-1

Chapter 4. Message Passing Interface Optimization
This chapter looks at some optimization tips for the Message Passing Interface (MPI).

The following topics are described:

• 4.1 Introduction

• 4.2 General Tips for MPI_Bull Usage

• 4.3 MPI-2 One-Sided Operations

• 4.4 mpibull2-params

4.1 Introduction

Bull has developed a complete solution which helps to enable the full exploitation of
NovaScale HPC platforms. To fully utilize the power of a cluster it is necessary to ensure
that the application programs are executed in parallel and to take into account
environmental factors including the part played by distributed and shared memory.

Bull’s BAS (Bull Advanced Server) environment is dedicated to parallel programming and
includes:

• MPI (Message Passing Interface) libraries MPI_Bull2– for more details on these libraries
see the BAS5 for Xeon User’s Guide.

• Performance monitoring tools including HPC Toolkit.

• The MPI profiling tool profilecomm is supplied as part of the MPI_Bull library and is
used to identify hotspots or bottlenecks within the message passing for the application
– see chapter 1 for more information on the data which profilecomm provides.

• Debugging/compilation tools.

4.1.1 MDM Optimization Tools

The Bull MPI Data Mover Module (MDM) which is incorporated in MPI_Bull2 library
includes a trace tool, a profiling tool and a KDB module which may all be used for MPI
profiling and optimization purposes.

The trace tool logs the most recent events for each processor. This tool which has the
advantage of not influencing the behavior of the application helps to solve problems of
concurrent access to data and of synchronization of processes.

The KDB module allows access to traces made when a crash occurs and thus enables more
efficient error detection.

The profiling tool may be used to identify the critical parts of the application code. Its
implementation is similar to that of the trace tool and involves a low loss of performance.

4-2 BAS5 for Xeon - Application Tuning Guide

4.2 General Tips for MPI_Bull Usage

There follows some suggestions and points to be kept in mind when configuring the
Message Passing Interface using the MPI_Bull libraries:

Wait until the sent buffer exchange is finished before modifying it

It is worth looking at the use of the synchronous and asynchronous exchanges when using
MPI_Bull.

The developer may prefer to use asynchronous exchanges if he wishes to use the compute
nodes for another application at the same time that the data is being exchanged for the
first one.

Certain implementations of MPI, like MPICH use the device ch_shmem. This uses shared
memory as an exchange zone and will tolerate the modification of the sending buffer
before the call MPI_WAIT runs.

MPICH copies the buffer sent into a shared memory area when the send call is used and
then the receiving process will copy this buffer into its own receiver buffer. Therefore two
copies of the buffer are made and the buffer sent may be modified just after the send call
without there being any consequence for the exchange.

MPI_Bull has a zero-copy mechanism provided by the MDM module which uses only one
copy of the buffer to make the exchange. This module makes it possible for messages and
data greater than 32Kb in size to be copied directly into the memory of the distant process.

However, it is necessary to pay close attention to buffer use when doing this. If an
asynchronous exchange is initialized, it is absolutely prohibited to modify the buffer sent
before the exchange is finished, i.e. the buffer sent should only be modified once the call
MPI_WAIT is finished – this guarantees that the exchange is finished.

Look at the stack size for memory intensive applications

The definition of static buffers does not pose any problem for MPI_Bull. It is advisable,
however, to look at the size of the stack for applications using a lot of memory, as it may
not be large enough. A characteristic symptom of this type of problem is that the
application is blocked, without an error message appearing. In this case, it is possible to
modify the size of the stack by using the command:

$ ulimit – s unlimited

This command allows the stack size for the system to be modified. Care should be taken as
the unlimited size extends up to the limit of the size of the hardware stack, which cannot be
increased. This command can also be used to ascertain the stack size.

If possible avoid the MPI_Bsend function

The use of the MPI_Bsend function is possible with MPI_Bull, however it is not
recommended. Although it can seem attractive as it excludes blockages, it uses an
additional buffer (part of MPI_Buffer_Attach) into which the data to be sent is recopied. This
use of an additional copy of the buffer can have a big impact on performance.

It is better to re-examine an algorithm which falls into deadlock and to use either
synchronous or asynchronous send calls, rather than using a set-up with MPI_Bsend.

 Message Passing Interface Optimization 4-3

Use MPI_Sendrecv rather than MPI_Send and MPI_Recv

When implementing a parallel algorithm, it is important to keep in mind the possible
simplifications that the MPI_Bull offers. The use of successive sends and then recvs between
several processes may be an example of a complicated algorithm which could be
simplified, and may even lead to errors of implementation and execution. In this case, you
should verify that the send and receive calls are coordinated correctly. The use of
MPI_Sendrecv leaves MPI_Bull to manage the exchange of the send and recv calls.

As far as is possible, use the MPI_Sendrecv call instead of successive calls to MPI_Send
and then to MPI_Recv.

Use Collective operations whenever possible

It is worthwhile to bear in mind the collective operations which are possible with MPI_Bull
and to simplify the code as much as is possible to take these into account. Often, a
succession of point-to-point operations can be restructured and changed into a collective
operation.

Do not use ANY_SOURCE

In accordance with the MPI-1 standard, it is possible to not specify the source for point-to-
point operations, but to use the variable ANY_SOURCE which allows the "first source
arising in the exchange" to be used.

As far as possible, it is advised to use an explicit source and not the ANY_SOURCE
variable, which includes an additional overhead and consequently an impact on
performance.

Whenever possible use intra-QBB transfers

The MPI_Bull library helps to minimize the overhead of data exchanges.

For messages greater than 32Kbs the MPI_Bull library uses the MDM module and the zero-
copy mechanism to transfer the messages.

There is a light overhead for the zero-copy mechanism as this is done through the use of
system calls but this is more efficient in terms of performance than the use of shared buffer
zones.

For messages smaller than 32Kbs in size, the transfer of the data is carried out through the
shared memory buffer and not through the MDM module –see the Bull HPC BAS5 for Xeon
User’s Guide.

For messages smaller than 32Kbs in size a shared memory zone is created on each QBB
to optimize intra-QBB data transfer. It is advisable to prioritise the use of intra-QBB transfers
as these provide better performance than inter-QBB transfers.

4-4 BAS5 for Xeon - Application Tuning Guide

4.3 MPI-2 One-Sided Operations
Regarding the MPI-2 One-Sided functionality present in MPI_Bull, it is important to
understand the implementation choices which were made and to have an idea of how the
program works so that possible improvements in performance can easily be identified.

The MPI-2 standard stipulates that MPI_PUT, MPI_GET and MPI_ACCUMULATE operations
should be completed before the return call of corresponding synchronization function (e.g.
MPI_WIN_POST, MPI_WIN_START, MPI_WIN_FENCE, etc).

Accordingly, Bull chose to program the MPI library so that the data exchange is carried out
immediately the MPI_PUT, MPI_GET and MPI_ACCUMULATE functions are called.

4.4 mpibull2-params

mpibull2-params is a tool that is used to list/modify/save/restore the environment variables
that are used by the mpibull2 library and/or by the communication device libraries
(InfiniBand, ….). The behaviour of the mpibull2 MPI library may be modified using
environment variable parameters to meet the specific needs of an application. The purpose
of the mpibull2-params tool is to help mpibull2 users to manage different sets of
parameters. For example, different parameter combinations can be tested separately on a
given application, in order to find the combination that is best suited to its needs. This is
facilitated by the fact that mpibull2-params allow parameters to be set/unset dynamically.

Once a specific combination of parameters has been tested and found to be good for a
particular context, they can be saved into a file by a mpibull2 user. Using the mpibull2-
params tool, this file can then be used to restore the set of parameters, combined in exactly
the same way, at a later date.

Notes • The effectiveness of a set of parameters will vary according to the application. For
instance, a particular set of parameters may ensure low latency for an application, but
reduce the bandwidth. By carefully defining the parameters for an application the
optimum, in terms of both latency and bandwidth, may be obtained.

• Some parameters are located in the /proc file system and only super users can modify
them.

The entry point of the mpibull2-params tool is an internal function of the environment. This
function calls an executable to manage the MPI parameter settings and to create two
temporary files. According to which shell is being used, one of these two files will be used
to set the environment and the two temporary files will then be removed. To update your
environment automatically with this function, please source either the
$MPI_HOME/bin/setenv_mpibull2.sh file or the $MPI_HOME/bin/setenv_mpibull2.csh
file, according to which shell is used.

 Message Passing Interface Optimization 4-5

4.4.1 The mpibull2-params command

SYNOPSIS

mpibull2-params <operation_type> [options]

Actions

The following actions are possible for mpibull2-params command:

-l List the MPI parameters and their values

-f List families of parameters

-m Modify a MPI parameter

-d Display all modified parameters

-s Save the current configuration into a file

-r Restore a configuration from a file

-h Show help message and exit

Options

The following options and arguments are possible for the mpibull2-params command.

Note The options shown can be combined, for example, -li or can be listed separately, for
example –l –i. The different option combinations for each argument are shown below.

-l [iv] [PNAME]

List current default values of all MPI parameters. Use the PNAME argument (this could be a
list) to specify a precise MPI parameter name or just a part of a name. Use the -v (verbose)
option to also display all possible values, including the default. Use the -i option to list all
information.

Examples

mpibull2-params -l all shm

This will list all the parameters with the string ‘all’ or ‘shm’ in their name.
mpibull2-params -l | grep -e all -e shm will return the same result.

mpibull2-params -li all

This will display all information - possible values, family, purpose, etc. for each
parameter name which includes the string ‘all’. This command will also indicate when
the current value has been returned by getenv() i.e. the parameter has been modified
in the current environment.

4-6 BAS5 for Xeon - Application Tuning Guide

mpibull2-params -lv rom

This will display current and possible values for each parameter name which includes
the string ‘rom’. It is practical to run this command before a parameter is modified.

-f [l[iv]] [FNAME]

This will list all the default family names. Use the FNAME argument (this could be a list) to
specify a precise family name or just a part of a name. Use the -l option to list all
parameters for the family specified. –l, -v and -i options are as described above.

Examples

mpibull2-params -f band

List all family names with the string ‘band’ in their names.

mpibull2-params -fl band

For each family name with the string ‘band’ inside, list all the parameters and current
values.

-m [v] [PARAMETER VALUE]

Modify a MPI PARAMETER with VALUE. The exact name of the parameter should be used
to modify a parameter. The parameter is set in the environment, independently of the shell
syntax (ksh/csh) being used. The keyword ‘default’ should be used to restore the parameter
to its original value. If necessary, the parameter can then be unset in its environment. The
-m operator lists all the modified MPI parameters by comparing all the MPI parameters with
their default values. If none of the MPI parameters have been modified then nothing is
displayed. The –m operator is like the -d option. Use the -v option for a verbose mode.

Examples

mpibull2-params -m mpibull2_romio_lustre true

This will set the ROMIO_LUSTRE parameter in the current environment.

mpibull2-params -m mpibull2_romio_lustre default

This will unset the ROMIO_LUSTRE parameter in the environment in which it is running
and returns it to its default value.

-d [v]

This will display the difference between the current and the default configurations. Displays
all modified MPI parameters by comparing all MPI parameters with their default values.

 Message Passing Interface Optimization 4-7

-s [v] [FILE]

This will save all modified MPI parameters into FILE. It is not possible to overwrite an
existing file, an error will be returned if one exists. Without any specific arguments, this file
will create a file named with the date and time of the day in the current directory. This
command works silently by default. Use the -v option to list all modified MPI parameters in
a standard output.

Example

mpibull2-params -sv

This command will, for example, try to save all the MPI parameters into the file named
Thu_May_10_15_50_28_2007.

Output Example

save the current setting :
mpibull2_mpid_xxx=1
1 parameter(s) saved.

-r [v] [FILE]

Restore all the MPI parameters found in FILE and set the environment. Without any
arguments, this will restore all modified MPI parameters to their default value. This
command works silently, in the background, by default. Use the -v option to list all restored
parameters in a standard output.

Example

mpibull2-params -r

Restore all modified parameters to default.

-h

Displays the help page

4.4.2 Family names

The command mpibull2-params –f will list the parameter family names that are possible for
a particular cluster environment.

The parameter families which are possible for Bull HPC are listed below.

Quadrics_libElan_driver
LK_Ethernet_Core_driver
LK_IPv4_route
LK_IPv4_driver
OpenFabrics_IB_driver

4-8 BAS5 for Xeon - Application Tuning Guide

Marmot_Debugging_Library
MPI_Collective_Algorithms
MPI_Errors
CH3_drivers
CH3_drivers_Shared_Memory
Execution_Environment
Elan
Elan_Hooks
Infiniband_RDMA_IMBR_mpibull2_driver
Infiniband_Gen2_mpibull2_driver
UDAPL_mpibull2_driver
IBA-VAPI_mpibull2_driver
MPIBull2_Postal_Service
MPIBull2_Romio

Run the command mpibull2-params <fl> <family> to see the list of individual parameters
that are included in the parameter families used within your cluster environment.

 Lustre File System Optimization 5-1

Chapter 5. Lustre File System Optimization
This chapter describes how the Lustre parallel file system should be optimized.

The following topics are described:

• 5.1 Parallel File Systems - Introduction

• 5.2 Monitoring Lustre Performance

• 5.3 Lustre Optimization - Administrator

• 5.4 Lustre Optimization – Application Developer

• 5.5 Lustre File System Tunable Parameters

5.1 Parallel File Systems - Introduction

To be fully optimized large cluster needs all its storage devices, and file systems of the
input/output sub-system, to work in parallel with very high I/O rates and capable of
accessing many processors at once. A distributed file system such as NFS is not sufficient
for the requirements of the system.

A parallel file system provides network access to a file system distributed across different
disks or storage devices on multiple independent servers or I/O nodes. Real files are split
into several chunks of data or stripes, each stripe being written onto a different component
in a cyclic distribution manner (striping).

For a parallel file system based on a client/server model, the servers are responsible for file
system functionality and the clients provide access to the file system through a “mount”
procedure. This mechanism provides a consistent namespace across the cluster and is
accessible via the standard Linux I/O API.

I/O operations occur in parallel across multiple nodes in the cluster simultaneously. All files
are spread across multiple nodes including the I/O buses and disks, therefore I/O
bottlenecks are reduced and the overall I/O performance is increased.

For large cluster configurations HPC Bull integrates the Lustre parallel file system which is
an open-source, object-based, Linux-based, POSIX-compliant system that offers very high
performance.

There are separate sections in this chapter for the system administrator and the application
developer. However, these are not exclusive, as any optimization of the Lustre file system
will involve collaboration between these two. A lot of the optimizations need to be put in
place when the platform is configured initially, and many aspects of application tuning
cannot be done with user rights alone.

See The Administrator’s Guide for a description of the different parts of the Lustre file system
architecture and the command syntax.

5-2 BAS5 for Xeon - Application Tuning Guide

5.2 Monitoring Lustre Performance

The I/O performance of an application depends on:

1. The application itself, in particular how Input/Output data is sent to the File System

2. The performance of the system including the Linux kernel and drivers, and the Lustre file
system.

3. Hardware performance including networking cards, disk arrays and storage devices.

These three aspects are interrelated and the overall performance for an application on a
cluster depends on having a balance between all three. Different means exist for
monitoring the performance of the file system and for identifying potential improvements.

5.2.1 Ganglia

Ganglia is a scalable, distributed, open-source monitoring tool, and is included as part of
Bull System Manager – HPC Edition. This provides information about the cluster distribution
for the Lustre file system and can be used for monitoring its performance in real time. This is
important as the file system may be used by several different users at the same time, and if
there is a perceptible drop in performance then Ganglia will indicate where there is uneven
access to the files. Ganglia also collects Lustre statistics from /proc/fs/lustre in order to
measure different aspects of file system performance.

Figure 5-1 Ganglia Lustre monitoring statistics for a group of 4 machines with total
accumulated values in top graph

 Lustre File System Optimization 5-3

5.2.2 Lustre Statistics System

Lustre itself collects a range of statistics. These are available in files in the proc filesystem. A
list of these files can be retrieved by using the command:

find /proc/fs/lustre –name “*stats*”

5.2.3 Time

Time command – see Chapter 1 of this manual. Here are two examples with the dd
command which is used exclusively for I/O operations.

Example 1

time dd if=/dev/zero of=/tmp/testfile bs=1M count=100

100+0 records in
100+0 records out
104857600 bytes transferred in 0.738386 seconds (142009176 bytes/sec)

real 0m0.749s
user 0m0.001s
sys 0m0.476s

If the system time is high, as in example 1, then this is an indication that the resources
being used for the application I/O are high.

Example 2

time dd if=/dev/zero of=/home/testfile bs=1M count=1000

1000+0 records in
1000+0 records out
1048576000 bytes transferred in 44.987850 seconds (23307982 bytes/sec)

real 0m45.039s
user 0m0.012s
sys 0m5.262s

If the sum of the CPU user time and the system time is significantly lower than real time, as
in example 2, then this may be an indication that, again, the resources being used for the
application I/O operations are high.

5.2.4 Iostat

When the host kernel has been configured to provide detailed I/O stats per partition the
following information is available.

iostat can provide insight into the nature of I/O bottlenecks. It provides the nature and
concurrency of requests being made of the attached storage devices.

5-4 BAS5 for Xeon - Application Tuning Guide

iostat -x is invaluable for profiling the load on the storage devices which are part of a
server node. The raw throughput numbers (wkB/s) combined with the requests per second
(w/s) gives the average size of I/O requests to the device.

The service time indicates the amount of time it takes the device to respond to an I/O
request. This sets the maximum number of requests that can be handled in turn when
requests are not issued concurrently. Comparing this with the requests per second gives a
measure of the amount of storage device concurrency.

Refer to the iostat man page for details regarding the meaning of the various columns in
the output.

5.2.5 Llstat

llstat is a command which allows the examination of some of the Lustre statistics files. It
‘decodes’ the content by calculating statistics (min, max, mean, standard deviation) based
on the contents of the file (sum and sum of squares).

See The Lustre Operations Manual available on http://manual.lustre.org Chapter 32.5.11 for
more information.

5.2.6 Vmstat

The CPU use columns in the vmstat output file can be used to identify a node whose CPUs
are completely occupied. On Metadata servers (MDS) and Object Storage Server (OSS)
nodes, the I/O columns tell you how many blocks are flowing through the node's I/O
subsystem. Coupled with the details of the attached storage for the node, it is then possible
to determine if a subsystem in the node is the bottleneck.

Vmstat does not provide I/O block flow details for clients.

The columns that report swap activity can identify nodes that are having trouble keeping
their working applications in memory.

5.2.7 Top

This tool is used to identify tasks which are using a lot of system resources. It can also be
used to identify tasks which are not generating file system load, because they are using
CPU or server threads which are struggling to obtain system resources on an overloaded
node.

See Chapter 1 for more details.

http://manual.lustre.org/

 Lustre File System Optimization 5-5

5.2.8 Strace

The strace command intercepts and records the system calls called and received by a
running process and is used to measure I/O activity at the system level.

Two options which are useful are:

-e trace=file traces activity related to system calls for file activity

-tttT gives a microsecond resolution.

These two options combined allow the measurement and evaluation of the performance of
file system calls. However whilst strace is being used the performance of the application
may be impacted. It is possible to use strace command for each system call. For example,
use –e trace=write option to analyze the write performance.

5.2.9 Application Code Monitoring

It is possible to add system calls in the code during the development of the application
which can then be used to measure the I/O file performance of the application itself.

Another option is that any I/O operation debugging traffic is included within the NFS
system and not the Lustre system in order to minimize any additional overhead in the use of
system resources.

Note Increasing the debug level can lead to a major performance impact. Full debugging can
slow the system by as much as 90%, compared to the default settings.

Benchmarking tools are easier to work with to study performance. Once the tuning changes
have been made, a general purpose benchmarking tool can then be used to check for any
adverse effects.

5-6 BAS5 for Xeon - Application Tuning Guide

5.3 Lustre Optimization - Administrator

The Lustre system administrator will need to monitor the file system to check the overall
performance, and to identify any areas where there may be possible degradation in the
service. See the Bull HPC Administrator’s Guide for more details. Lustre includes tools to
monitor I/O performance. These can be used to evaluate any changes that are made to the
application, and also to see if, and where, performance could be improved.

The application developer and large cluster administrator will need to be clear in their
definition of the needs for the application at the outset, as some of the system configuration
settings made when installing and configuring the system will impact the performance of
the application. Some flexibility is possible, as there are parameters which can be modified
after the cluster has been configured to meet the particular requirements of the application.

The developer needs to be aware that the Input/Output algorithms, specified for the
application will have a big impact on performance and some performance compromises
may have to be made for different parts of the application with respect to the overall
performance for the complete program.

The main bottleneck within the whole system normally is the I/O speed of the data storage
devices, as this is usually the slowest part of a cluster.

Note It may be possible to observe superlinear speedups for the I/O throughput using Lustre
client cache.

Raw benchmarking data, including control data should be available for the systems. The
objective is to get as close to these performance figures as is possible with the application
in place.

Lustre is ideal for large sequential write I/O operations as used, for example, by
checkpoint/restart. Using Lustre it should be possible to obtain 80 to 90% of the raw I/O
performance figures (Write operations generally perform better than read operations).

Attention is particularly needed when small random I/O Metadata operations are being
performed. This is because the data may be unevenly distributed throughout the system.

Several points have to be kept in mind when attempting to tune the file system:

• Lustre is a part of a shared file system which means that it will be difficult to obtain
exclusive use of Interconnects and data storage devices. For clients who need to have
exclusive use of the file system, it is possible to do this by mounting it directly on the
clients. This is in contrast to CPUs and memory where an application can be given
exclusive use easily. Overall there are a lot of variables which can impact an
application’s performance.

• System caches can have a positive effect on performance if all the I/O traffic takes
place in the client cache – in fact it is possible that the application bandwidth may
appear greater than the disk bandwidth. System caches can also have a negative
effect as Lustre’s readahead option may impact performance.

 Lustre File System Optimization 5-7

• There are a lot of data pipelines within the Lustre architecture. Two in particular have a
direct impact on performance. Firstly, the network pipe between clients and OSSs, and
secondly the disk pipe between the OSS software and its backend storage. Balancing
these two pipes maximizes performances.

The Lustre file system stores the file striping information in extended attributes (EAs) on the
MDT. If the file system has large-inode support enabled (> 128bytes), then EA information
will be stored inline (fast EAs) in the extra available space.

The table below shows how much stripe data can be stored inline for various inode sizes:

Inode size (Bytes) # of stripes stored inline

128 0 (all EA would be stored in external block)

256 3

512 13

1024 35

2048 77

4096 163

Note It is recommended that MDT file systems be formatted with the inode large enough for the
default number of stripes per file to improve performance and storage efficiency.

One needs to keep enough free space in the MDS file system for directories and external
blocks. This represents ~512 Bytes per inode.

Lustre stripes the file data across the OSTs in a round-robin fashion.

Note It is recommended to stripe over as few objects as possible to limit network overhead and
reduce the risk of data loss when there is an OSS failure.

The stripe size must be a multiple of the page size. The smallest recommended stripe size is
1 MB because Lustre tries to batch I/O into 1 MB blocks on the network.

5.3.1 Stripe Tuning

Check that enough stripes are being used

It is important to remember that the peak aggregate bandwidth for I/O to a single file is
restricted by the number of stripes multiplied by peak bandwidth per server. No matter how
many clients try to write to that file, if it only has one stripe, all of the I/O will go to only
one server.

Check that files are striped evenly over the Object Storage Targets

Lustre will create stripes on consecutive OSTs by default, so files created at one time will be
optimally distributed among OSTs, assuming there are enough stripes and/or files created

5-8 BAS5 for Xeon - Application Tuning Guide

at that time. However, files created at different times may not have an optimal distribution
among OSTs. To ascertain the file distribution, use the following command:

lfs getstripe

For more information refer to lfs man page.

If some servers appear to be receiving a disproportionate share of the I/O load check that
the files are striped evenly over the OSTs.

If the I/O load is unbalanced for servers then use the lfs command to create a balanced set
of files before the application starts, or if applicable, restructure the application so that
Lustre striping is more efficient.

See Chapter 25 - Striping and I/O Options in the Lustre Operations Manual available on
http://manual.lustre.org, for more information on File Striping.

 Lustre File System Optimization 5-9

5.4 Lustre Optimization – Application Developer

The main determinant on performance for the Lustre file system is the file size and how this
is handled by the I/O devices. POSIX will handle the parallel distribution of the file,
however, if the file is large performance may be impacted. The application developer has
to decide if it is possible to chunk the program and thus gain performance.

The optimal level of performance is when the HPC platform I/O device read/write
operations is as near as possible to that of the raw Lustre file system performance without
the application running. Depending on the application program it should be possible to
achieve 80% to 90% of the performance of a ‘clean’ HPC system.

One of the key questions to look at is to ascertain if the application performs I/O from
enough client nodes to take full advantage of the aggregate bandwidth provided by the
Object Storage Servers.

5.4.1 Striping Optimization for the Developer

Default striping settings are usually in the hands of the Lustre administrator who will
normally use the default values. However, the application developer can also change these
settings by using the lfs command on a per directory or on a per file basis. This controls the
way parallel I/O operations are carried out for the files. Refer to the man page displayed
under lfs(1) for more information.

Optimal striping settings depend primarily on the file size. It does not make sense to stripe
a small file over several OSTs, on the other hand it does make sense to stripe a big file
over several OSTs.

It is recommended to use the default striping settings configured by the Lustre administrator.

If the striping is to be changed, it is best to perform I/O tests with different striping
configurations in order to find the best possible striping configuration.

5.4.2 POSIX File Writes

Being a high-performance distributed file system makes Lustre especially complex. By being
POSIX compliant this complexity is simplified and no code modification is required whether
a code is run on a local file system (ext3, xfs) or on Lustre. Only performance is enhanced.

There are several points to be kept in mind for file writes. Writes flow from the application
that generates them to OSTs where they are placed within the storage system. The network
between the client and storage target needs to have capacity for the write traffic. It is also
advisable to look for possible choke points along this path.

It should be said that these problems will only occur in extreme cases on the large cluster
platform.

5-10 BAS5 for Xeon - Application Tuning Guide

There must be enough write capacity for the application

If an application is to exploit a large network and disk pipes, it must generate a lot of write
traffic, which can be cached on the client node and packaged into RPCs for the network.

There must be enough free memory on the node for use as a write cache. If the kernel
cannot keep at least 4 MB in use for Lustre write caching, it cannot keep an optimal
number of network transactions in progress at once.

There must be enough CPU capacity for the application to do the work which generates
data for writing.

There must be enough storage space available

To prevent a situation in which Lustre puts application data into its cache, but then cannot
write it to disk because the disk is full, Lustre clients must reserve disk space in advance.
However, if it is unable to reserve this space as the OSTs are almost full, less than 2%
space available, it must execute its writes synchronously with the server, instead of caching
them for efficient bundling.

The degree to which this affects performance depends on how much your application
would benefit from write caching. The cur_dirty_bytes file in the subdirectory of each OSC
of /proc/fs/lustre/osc/ on a client records the amount of cached writes which are
destined for a particular storage target.

The maximum amount of cached data per OSC is determined by the max_dirty_mb value
in the same directory. This is usually 4 MBs by default. Increasing this value will allow more
dirty data to be cached on a client before it needs to flush to the OST, but also increases
the time needed for other clients to read or overwrite the cached data once it has been
written to the OST.

Server thread availability

Write RPCs arrive at the server and are processed synchronously by kernel threads (named
ll_ost_*). ps will help to identify the number of threads that are in the D state indicating that
they're busy servicing a request.

Vmstat –see section 5.2.6 - can give a rough approximation of the number of threads that
are blocked processing I/O requests when a node is busy servicing only I/O RPCs. The
number of threads sets an upper bound on the number of I/O RPCs that can be processed
concurrently, which in turn sets an upper limit for the number of I/O requests that will be
serviced concurrently by the attached storage.

 Lustre File System Optimization 5-11

5.4.3 Fortran

Particular attention may be necessary for the I/O operations of Fortran as opposed to C as
the Fortran run time library may modify the way the I/O operations are programmed.
Please refer to the Chapter 2 for more information on Fortran compiler optimizations, or to
the compiler documentation from Intel, or to the manual page for the ifort command with
particular reference to the section on environmental variables. In particular, the
environmental variables FORT_BUFFERED, FORT_CONVERT* and F_UFMTENDIAN should
be looked at.

5-12 BAS5 for Xeon - Application Tuning Guide

5.5 Lustre File System Tunable Parameters

 WARNING
Changing tunable parameters of the lustre file system can render the file system non
functional. It should be done with great care on production filesystems. The use of default
values is recommended.

One scenario where tuning the file system is beneficial is a cluster with several file systems,
some of which have clearly defined workloads. For these filesystems, the file system can
then be tuned and optimized for this clearly defined workload. For example, if a file system
is used only for checkpoint/restart purposes; the workload for this file system will probably
consist of large sequential write and read I/O operations. It is then beneficial to tune the
file system for this particular workload, particularly if the cluster has a large amount of
memory.

Another example is when performing benchmarking: (temporary) changes may be applied
in order to optimize benchmark through put.

This section describes the tuneable parameters of the Lustre file system. For the syntax refer
to Bull HPC Administrator’s Guide or the lustre_util man page.

See Chapter 20.2 - Lustre I/O Tunables in the Lustre Operation Manual on
http://manual.lustre.org for more details.

5.5.1 Tuning Parameter Values and their Effects

max_read_ahead_mb

/proc/fs/lustre/llite/fs0/max_read_ahead_mb

This parameter defines the per-file read-ahead value for a client. Defaulting to 40MB
Read_ahead is a two-edged sword: this can increase the read throughtput, but can be
inefficient (if a file is read randomly rather than sequentially), and in turn detrimental as the
memory which is wasted is not available elsewhere. The default value of 40MB is a
general purpose value. It may be beneficial to increase this for sequential read workloads,
whilst in other situations it may be better to disable it completely.

max_cache_mb

/proc/fs/lustre/llite/fs0/max_cache_mb

This parameter defines the maximum amount of inactive data cached by the client (the
default value is ¾ of the RAM which is available).

max_dirty_mb

/proc/fs/lustre/osc/<...>/max_dirty_mb

http://manual.lustre.org/

 Lustre File System Optimization 5-13

This parameter has a value between 0 and 512MB.

This value controls the write back cache on the client per OSC. While it is beneficial to use
larger values, the quantity of dirty data can become so high that, depending on the
number of clients, it results in a significant amount time being needed to copy the data to
disk.

max_page_per_rpc

/proc/fs/lustre/osc/<...>/max_page_per_rpc

This value should not be changed from the default value as the optimal value depends on
the kernel page size.

max_rpc_in_flight

This value should not be changed from the default value as the optimal value depends on
characteristics of the machine.

lru_size

/proc/fs/lustre/ldlm/ldlm/namespaces/<OSC name|MDC name>/lru_size

Increasing the default value is recommended for login nodes using lustre and for improving
metadata performance.

debug

/proc/sys/lnet/debug

The debug level can impact the performance. This is the reason why it is disabled by
default. When analyzing problems, different values may be used. The exact optimal value
depends on the problem being analyzed: full debugging (-1 value) can slow the filesystem
noticeably and even mask the problem under diagnosis.

Note Increasing the debug level can lead to a major performance impact. Full debugging can
slow the system by as much as 90%, compared to the default settings.

5.6 More Information

For more information on tuning Lustre file systems see the latest version of the Lustre
Operations Manual available from http://manual.lustre.org

http://manual.lustre.org/

5-14 BAS5 for Xeon - Application Tuning Guide

 Amdahl's Law A-1

Appendix A. Amdahl's Law
Amdahl’s Law states that the proportion of the program which can run in parallel – the
variable p – can never reach 100%:

)1()/(
1)(

pnp
nSpeedup

−+
=

p = parallel fraction of the program

n = number of CPUs

In addition, the benefits resulting from augmenting the processing power available for an
application will diminish proportionally as a result of hardware constraints and extra
message passing latency. The examples below are simple illustrations of this point.

Example 1

p = 0.5 n = 10 Speedup = 1.82

p = 0.5 n = 15 Speedup = 1.88%

% Increase in Speedup for an extra 5 CPUs = 3.3%

Example 2

p = 0.95 n = 10 Speedup= 6.9

p = 0.95 n = 15 Speedup = 8.8

% Increase in Speedup for an extra 5 CPUs = 27.5%

Therefore, the higher the value of p, the greater the return for any addition to processing
power. This applies equally to small increases in p, and where the numbers of CPUs
involved may be considerably higher.

A key part of any program development is to identify and remove as many dependence
constraints as is possible. Generally speaking, there is more to be gained from increasing
p, than there is to be gained from simply adding additional processing power as Amadhl’s
law demonstrates.

The benefits to be gained from optimizing and improving the program itself will generally
outweigh benefits gained from adding to the hardware’s performance.

A-2 BAS5 for Xeon - Application Tuning Guide

 Glossary and Acronyms G-1

Glossary and Acronyms

A

ACL

Access Control List

API

Application Programmer Interface

B

BAS

Bull Advanced Server

BIOS

Basic Input Output System

BMC

Baseboard Management Controller

C
CGI

Common Gateway Interface.

ConMan

A management tool, based on telnet, enabling
access to all the consoles of the cluster.

CMOS

Complementary Metal Oxide Semiconductor

Cron

A UNIX command for scheduling jobs to be
executed sometime in the future. A cron is normally
used to schedule a job that is executed periodically
- for example, to send out a notice every morning. It
is also a daemon process, meaning that it runs
continuously, waiting for specific events to occur.

Cygwin

A Linux-like environment for Windows. The Bull
cluster management tools use Cygwin to provide ssh
support on a Windows system, enabling access in

command mode from the Cluster management
system.

D

DDN S2A

DataDirect Networks S2A

DNS

Domain Name Server. A server that retains the
addresses and routing information for TCP/IP LAN
users.

EIP

Encapsulated IP

EPIC

Explicit Parallel Instruction set Computing

EULA

End User License Agreement (Microsoft)

C

FDA

Fibre Disk Array

FSS

Fame Scalability Switch.

FWH

Firm Ware Hub

G

Ganglia

A distributed monitoring tool used to view
information associated with a node, such as CPU
load, memory consumption, network load.

G-2 BAS5 for Xeon - Application Tuning Guide

GCC

GNU C Compiler

GNU

GNU’s Not Unix

GPL

General Public Licence

GUI

Graphical User Interface

GUID

Globally Unique Identifier

H

HBA

Host Bus Adapter.

Hyper-Threading

Hyper-Threading technology is an innovative design
from Intel that enables multi-threaded software
applications to process threads in parallel within
each processor resulting in increased utilization of
processor execution resources. To make it short, it is
to place two logical processors into a single CPU
die.

HPC

High Performance Computing.

HSC

Hot Swap Controller

I

IDE

Integrated Device Electronics

IPMI

Intelligent Platform Management Interface

IPO

Interprocedural Optimization

K

KDC

Key Distribution Centre.

KDE

Kool Desktop Environment.

KSIS

Utility for image building and development.

KVM

Keyboard Video Mouse (allows the connection of
the keyboard, video and mouse to the node)

L

LDAP

Lightweight Directory Access Protocol.

LKCD

Linux Kernel Crash Dump. A tool capturing and
analyzing crash dumps.

LOV

Logical Object Volume.

LUN

Logical Unit Number

Lustre

Parallel file system managing the data shared by
several nodes.

LVM

Logical Volume Manager.

M

MIB

Management Information Base.

MDS

MetaData Server.

 Glossary and Acronyms G-3

MDT

MetaData Target.

MkCDrec

Make CD-ROM Recovery. A tool making bootable
system images.

MPI

Message Passing interface.

N

Nagios

A powerful monitoring tool, used to monitor the
services and resources of Bull HPC clusters.

NFS

Network File System.

NIC

Network Interface Card.

NPTL

Native POSIX Thread Library

NTFS

New Technology File System (Microsoft)

NTP

Network Time Protocol.

NVRAM

Non Volatile Random Access Memory

O

OpenSSH

Open Source implementation of the SSH protocol.

OSC

Object Storage Client.

OSS

Object Storage Server.

OST

Object Storage Targets.

P

PAPI

Performance Application Programming Interface.

PCI

Peripheral Component Interconnect (Intel)

PDSH

A parallel distributed shell.

PDU

Power Distribution Unit

PMU

Performance Monitoring Unit

PVFS

Parallel Virtual File System

PVM

Parallel Virtual Machine

R

ROM

Read Only Me

RPC

Remote Procedure Call

RPM

RedHat Package Manager

S

SAN

Storage Area Network.

SCSI

Small Computer System Interface

G-4 BAS5 for Xeon - Application Tuning Guide

SIS

System Installation Suite.

SM

System Management

SMP
Symmetric Multi Processing. The processing of
programs by multiple processors that share a
common operating system and memory.

SSH

Secure Shell. A protocol for creating a secure
connection between two systems.

Syslog-ng

Syslog New Generation, a powerful system log
manager.

T

TORQUE

Tera-scale Open-source Resource and QUEue
manager. A batch manager controlling and
distributing the batch jobs on compute nodes.

U

Unit

Generally it is the set of nodes linked to the same
Quadrics switch. One unit contains 4 cells. (See
also Cell).

UID

User ID

V

VNC

Virtual Network Computing. It is used to enable
access to Windows systems and Windows
applications from the Bull NovaScale cluster
management system.

W

WWPN

World Wide Port Name- a unique identifier in a
Fibre Channel SAN.

X

XFS

eXtended File System

 Index I-1

Index

A
Aliasing, 2-1

Amdahl’s Law, A-1

Application code, 5-5

Application code optimization, 2-1

Application loop structures, 2-1

Application profiling
profilecomm, 1-8
Profilecomm message size partitions, 1-11
readpfc, 1-8

C
ch_shmem, 4-2

Commands
_lfetch, 3-8
dstat, 1-7
iostat, 1-6
papi_avail, 1-26
time, 1-2

Compilation
Advanced options, 2-6
Directives, 2-8
-O2 option, 2-9
-O3 option, 2-9
Optimization options, 2-6, 2-7
Optimization report options, 2-9
Pragmas, 2-8
Starting options, 2-6

counters
display, 1-26
papi_avail –d command, 1-26
PAPI_FP_OPS, 1-26
PAPI_TOT_CYC, 1-26

cpufreq governor, 3-5

CPUSET, 3-1, 3-2
Usage, 3-1

D
DDN disk arrays, 5-9

Derived metrics, 1-39

dstat command, 1-7

E
Environmental variables, 2-8

Epilog parameter, 3-5

F
File system

parallel, 5-1

Floating point assist faults, 2-10

G
Ganglia, 5-2

Ganglia Performance monitoring, 1-3

gnuplot, 1-21

H
Hash tables, 3-7

histplot, 1-21

HPC Toolkit, 1-25

hpcprof-flat, 1-26

hpcprof-flat tool, 1-30

hpcproftt, 1-26, 1-33

hpcrun-flat, 1-26, 1-29

hpcstruct, 1-25, 1-28

HPCVIEW
configuration file, 1-38

hpcviewer, 1-26, 1-36

I
Intel Vtune

Performance Analyzer, 1-41

Interprocedural Optimization (IPO), 2-5

iostat command, 1-6

I-2 BAS5 for Xeon - Application Tuning Guide

L
Libnuma, 4-4

Loops
Fusion, 2-3
Partitioning, 2-2
Peeling, 2-3
Switching, 2-2
Unrolling, 2-10

Loops
Unrolling, 2-7

loops programming devices
optimizing, 2-1

Lustre
Administrator, 5-6
Application Developer, 5-9
Data pipeline, 5-7
File striping, 5-7
File striping, 5-1
Fortran, 5-11
Inode size, 5-7
Iostat, 5-3
Monitoring, 5-2
Statistics system, 5-3
Strace command, 5-5
Time command, 5-3
Vmstat command, 5-4, 5-10

Lustre file system, 5-1

M
MDM, 4-2

Memory Access Stalls, 3-7

Message Passing Interface, 4-1

Metrics
derived, 1-39
native, 1-39

MPI
Collective operations, 4-3

MPI functions, 4-3

MPI libraries
KDB module, 4-1

MPI Optimization, 4-1

MPI_Bsend, 4-2

MPI_Bull, 4-2

MPI_Finalize, 1-9

MPI_Init, 1-9

MPI-2 One-Sided, 4-4

MPICH, 4-2

N
Native metrics, 1-39

O
ondemand governor, 3-5

OPENMP, 3-2, 3-3

Optimization
MPI, 4-1

Optimization Tips
Application code, 2-4
Interprocedural funcions, 2-5
Memory, 2-4

Optimizing array loops, 2-2

P
PAPI, 1-22

papi_avail command, 1-26

Parallel File Systems, 5-1

Performance
detailed cluster view, 1-5
global cluster view, 1-4
tools overview, 1-1

Performance Analyzer
Intel Vtune, 1-41

Performance monitoring
Ganglia, 1-3

pfcplot, 1-21

PMI_TIME variable, 3-5

POSIX, 5-9

pplace, 3-2

profilecomm, 1-8

Profilecomm
call table, 1-9
call table, 1-14
collective communication matrices, 1-13

 Index I-3

data Analysis, 1-11
data collection, 1-9
Display options, 1-16
exporting matrices and histograms, 1-17
histograms, 1-14
Histograms, 1-9
Object values, 1-19
Options, 1-20
point to point communications, 1-12
readpfc statistics, 1-15
topology, 1-16

Profiling tools
HPC Toolkit, 1-25

Programming
C++, 2-3

R
readpfc, 1-8, 1-21

S
Sched_setaffinity, 3-3

SLURM, 3-3
CPUs asConsumable Resources, 3-3
Default Node Allocation, 3-3
FastSchedule parameter, 3-4
Hard Limits, 3-5
Job Accounting, 3-4
JobAcctGatherType parameter, 3-4
MPICH2, 3-5
Power saving, 3-5
ResumeProgram parameter, 3-6
ResumeRate parameter, 3-6
SelectType configuration parameter, 3-4

slurmctld, 3-7
Slurmstepd, 3-4
srun, 3-5

no allocate option, 3-7
uid option, 3-7

SuspendExecParts parameter, 3-6
SuspendExecTime parameter, 3-6
SuspendProgram parameter, 3-6
SuspendRate parameter, 3-6
SuspendTime parameter, 3-6
Timers for Slurmd and Slurmctld daemons, 3-4
TreeWidth paramter, 3-5

SLURM and large clusters, 3-4

Stack size, 4-2

System caches, 5-6

System monitoring
dstat, 1-7
IOstat command, 1-6
PAPI, 1-22
time command, 1-2

System monitoring tools
Top, 5-4

T
time command, 1-2

V
Variable

ANY_SOURCE, 4-3

Vtune
Intel Performance Analyzer, 1-41

I-4 BAS5 for Xeon - Application Tuning Guide

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

REFERENCE
86 A2 23FA 00

	BAS5 for Xeon Application Tuning Guide - 86A223FA
	Preface
	Table of Contents
	List of Figures
	Chapter 1. Performance Monitoring and Application Tools
	Tools for Optimizing HPC Performance
	System Monitoring Tools
	Time

	Ganglia Cluster Performance Monitoring
	Group Performance Global View
	Detailed Cluster Performance View

	IOstat
	dstat
	dstat Plugins
	dstat performance impact

	mpianalyser and profilecomm
	Communication Matrices
	Profilecomm Data Collection
	Profilecomm Options
	Messages Size Partitions
	Profilecomm Data Analysis
	Point to Point Communications
	Collective Section
	Call table section
	Histograms Section
	Statistics Section
	Topology Section
	Display Options
	Exporting a Matrix or an Histogram
	pfcplot, histplot and gnuplot

	PAPI
	High-level PAPI Interface
	Low-level PAPI Interface

	Profiling Programs – HPC Toolkit
	HPC Toolkit Tools
	Display Counters
	Using HPC Toolkit
	Configuration File Syntax
	More Information

	Intel
	VTune™ Performance Analyzer for Linux

	Chapter 2. Coding and Compiling Optimization
	Application Code Optimization
	Alias Usage
	Improving Loops
	C++ Programming Hints
	Memory Tips
	Application code performance impedances
	Interprocedural Optimization (IPO)

	Compiler Optimization Options
	Starting Options
	Intel C/C++ and Intel Fortran Optimization Options
	Compiler Options which may Impact Performance
	Flags and Environment Variables
	Compiler Directives for Loops
	Options for Compiler Optimization Reports
	Compiling Tips

	Chapter 3. Program Execution Optimization
	CPUSET
	Typical Usage of CPUSETS
	BULL CPUSETS
	pplace

	Tuning Performance for SLURM clusters
	Configuring and Sharing Consumable Resources in SLURM
	SLURM and Large Clusters
	SLURM Power Saving Mechanism

	Avoiding Memory Access Stalls

	Chapter 4. Message Passing Interface Optimization
	Introduction
	MDM Optimization Tools

	General Tips for MPI_Bull Usage
	MPI-2 One-Sided Operations
	mpibull2-params
	The mpibull2-params command
	Family names

	Chapter 5. Lustre File System Optimization
	Parallel File Systems - Introduction
	Monitoring Lustre Performance
	Ganglia
	Lustre Statistics System
	Time
	Iostat
	Llstat
	Vmstat
	Top
	Strace
	Application Code Monitoring

	Lustre Optimization - Administrator
	Stripe Tuning

	Lustre Optimization – Application Developer
	Striping Optimization for the Developer
	POSIX File Writes
	Fortran

	Lustre File System Tunable Parameters
	Tuning Parameter Values and their Effects

	More Information

	Appendix A. Amdahl's Law
	Glossary and Acronyms
	Index

