
Bull
HACMP 4.4
Programming Locking Applications

AIX

86 A2 59KX 02
ORDER REFERENCE

Bull
HACMP 4.4
Programming Locking Applications

AIX

Software

August 2000

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

86 A2 59KX 02
ORDER REFERENCE

The following copyright notice protects this book under the Copyright laws of the United States of America
and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and
making derivative works.

Copyright Bull S.A. 1992, 2000

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of
this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX� is a registered trademark of International Business Machines Corporation, and is being used under
licence.

UNIX is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Year 2000

The product documented in this manual is Year 2000 Ready.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

Contents
About This Guide xi

Chapter 1 Cluster Lock Manager 1-1

An Overview of the HACMP Cluster Lock Manager 1-1
Locking Models . 1-1
Application Programming Interfaces . 1-2
Cluster Lock Manager Architecture . 1-2
Support for HC Daemon . 1-3

Chapter 2 CLM Locking Model 2-1

Overview . 2-1
Lock Resources . 2-1

Lock Value Block . 2-2
Lock Resource Queues . 2-2

Locks . 2-2
Lock Modes . 2-3
Lock States . 2-5

Deadlock . 2-14
Normal Deadlock . 2-14
Conversion Deadlock . 2-15
Self-Client Deadlock . 2-15
Deadlock Detection . 2-15
Transaction IDs . 2-16
Lock Groups . 2-17

Chapter 3 Using CLM Locking Model API Routines 3-1

Overview . 3-1
Prerequisites . 3-1

Header Files . 3-1
Library Files . 3-2
Data Structure . 3-2

Acquiring or Converting a Lock on a Lock Resource 3-3
Requesting Locks Asynchronously . 3-3
Requesting Locks Synchronously . 3-5
Triggering AST Routines . 3-6
Keeping Track of Lock Requests . 3-6
Programming Locking Applications Preface v

Contents

vi
Sample Locking Application . 3-6
Avoiding the Wait Queue . 3-7
Specifying a Timeout Value for a Lock Request 3-8
Excluding a Lock Request from Deadlock Detection
Processing . 3-8
Requesting Persistent Locks . 3-8
Requesting Local Locks . 3-8

Releasing a Lock on a Lock Resource . 3-10
Purging Locks . 3-11
Manipulating the Lock Value Block . 3-11

Setting an LVB When Releasing an EX or PW Lock 3-11
Invalidating a Lock Value Block . 3-12
Using Lock Value Blocks . 3-13

Handling Returned Status Codes . 3-14

Chapter 4 UNIX Locking Model 4-1

Lock Regions . 4-1
Lock Modes . 4-1

Shared . 4-2
Exclusive . 4-2

Lock States . 4-2
Granted . 4-2
Blocked . 4-2

Chapter 5 Using UNIX Locking Model API Routines 5-1

Overview . 5-1
Prerequisites . 5-1

Header Files . 5-1
Library Files . 5-1
Data Structure . 5-2

Registering a Lock Resource . 5-2
clmregister Routine . 5-2

Locking a Lock Resource . 5-3
Unlocking a Resource . 5-3
Handling Returned Status Codes . 5-4
Purging Locks . 5-4

Chapter 6 Tuning the Cluster Lock Manager 6-1

Overview . 6-1
Migration Evaluation Frequency . 6-1
Historical Access Patterns . 6-1
Stickiness Attribute . 6-2

Specifying the Frequency of Migration Evaluations 6-2
Programming Locking Applications

Contents
Specifying the Decay Rate . 6-5
Specifying the Stickiness Value of a Lock Resource 6-9
Obtaining Lock Resource Statistics . 6-10
Lock and Lock Resource Limits . 6-11

Lock Manager Kernel Memory Usage 6-11
Maximum Acquired Locks Per Node 6-12
When Locks are Denied . 6-13
Lock Value Block Changes . 6-14

Chapter 7 Lock Manager API Routines 7-1

Lock Manager Routines . 7-1
clmlock Routine. 7-3
clmlockx Routine . 7-9
clmlock_sync Routine . 7-16
clmlockx_sync Routine . 7-21
clmregister Routine . 7-26
clmregionlock Routine . 7-27
clmunlock Routine . 7-29
clmunlock_async Routine . 7-31
clm_errmsg Routine . 7-34
clm_getglobparams Routine . 7-35
clm_getresparams Routine . 7-36
clm_getstats Routine . 7-37
clm_grp_attach Routine . 7-39
clm_grp_create Routine . 7-40
clm_grp_detach Routine . 7-41
clm_perror Routine . 7-42
clm_purge Routine . 7-43
clm_scnop Routine . 7-44
clm_setglobparams Routine . 7-47
clm_setnotify Routine . 7-48
clm_setresparams Routine . 7-49

Index X-1
Programming Locking Applications Preface vii

Contents

vii
i Programming Locking Applications

ion
About This Guide

This book describes the Cluster Lock Manager (CLM) application programming interface
(API) supplied with the High Availability Cluster Multi-Processing for AIX, Version 4.4
(HACMP for AIX) software. The lock manager supports two APIs: the CLM Locking API and
the UNIX Locking API.

Who Should Use This Book

This guide is intended for application developers who want to write highly available
applications for an HACMP for AIX environment. Readers of this guide should understand the
C programming language and database concepts.

How to Use This Book

Overview of Contents

This book provides both conceptual and reference information. The book has the following
chapters.

• Chapter 1, Cluster Lock Manager, introduces the Cluster Lock Manager.

• Chapter 2, CLM Locking Model, describes the CLM locking model.

• Chapter 3, Using CLM Locking Model API Routines, describes how to use the CLM
locking model API routines in an HACMP for AIX application.

• Chapter 4, UNIX Locking Model, describes the Cluster Lock Manager’s implementat
of UNIX System V locks.

• Chapter 5, Using UNIX Locking Model API Routines, describes how to use the UNIX
locking model API routines in an HACMP for AIX application.

• Chapter 6, Tuning the Cluster Lock Manager, describes tuning lock manager behavior to
optimize lock throughput and obtain statistics about lock resource usage.

• Chapter 7, Lock Manager API Routines, provides reference information on the C language
routines used to implement locking in an HACMP for AIX application.

Highlighting

The following highlighting conventions are used in this book:

Italics Identifies new terms or concepts.

Bold Identifies routines, commands, keywords, files, directories, menu items,
and other items whose actual names are predefined by the system.

Monospace Identifies examples of specific data values, examples of text similar to what
you might see displayed, examples of program code similar to what you
might write as a programmer, messages from the system, or information
that you should actually type.
Programming Locking Applications Preface ix

x

Related Publications

The following books provide additional information about HACMP for AIX:

• Release Notes in /usr/lpp/cluster/doc/release_notes describe hardware and software
requirements

• HACMP for AIX, Version 4.4: Concepts and Facilities, order number 86 A2 54KX 02

• HACMP for AIX, Version 4.4: Planning Guide, order number 86 A2 55KX 02

• HACMP for AIX, Version 4.4: Installation Guide, order number 86 A2 56KX 02

• HACMP for AIX, Version 4.4: Administration Guide, order number 86 A2 57KX 02

• HACMP for AIX, Version 4.4: Troubleshooting Guide, order number 86 A2 58KX 02

• HACMP for AIX, Version 4.4: Programming Client Applications, order number
86 A2 60KX 02

• HACMP for AIX, Version 4.4: Master Index and Glossary, order number 86 A2 65KX 02

• HACMP for AIX, Version 4.4: Enhanced Scalability Installation and Administration
Guide, Volumes I and II, order numbers 86 A2 62KX 02 and 86 A2 89KX 01

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this
product.

Ordering Publications

To order additional copies of this guide, use order number 86 A2 59KX 02.
Programming Locking Applications

Cluster Lock Manager
An Overview of the HACMP Cluster Lock Manager
1

Chapter 1 Cluster Lock Manager

This chapter introduces the HACMP for AIX Cluster Lock Manager.

An Overview of the HACMP Cluster Lock Manager
The Cluster Lock Manager provides advisory locking services that allow concurrent
applications running on multiple nodes in an HACMP cluster to coordinate their use of shared
resources.

Cooperating applications running on different nodes in an HACMP cluster can share common
resources without corrupting those resources. The shared resources are not corrupted because
the lock manager synchronizes (and, if necessary, serializes) access to them.

Note: All locks are advisory, that is, voluntary. The system does not enforce
locking. Instead, applications running on the cluster must cooperate
for locking to work. An application that wants to use a shared resource
is responsible for first obtaining a lock on that resource before
attempting to access it.

Applications that can benefit from using the Cluster Lock Manager are transaction-oriented,
such as a database or a resource controller or manager.

Locking Models
The Cluster Lock Manager provides two distinct locking models: the CLM locking model and
the UNIX System V locking model.

The two locking models exist in separate name spaces and do not interact. Therefore, the
Cluster Lock Manager can manage simultaneous lock traffic of both types. A single application
can use both types of locks.

CLM Locking Model

The CLM locking model provides a rich set of locking modes and both synchronous and
asynchronous execution. The CLM locking model supports:

• Six locking modes that increasingly restrict access to a resource

• The promotion and demotion of locks through conversion

• Synchronous completion of lock requests

• Asynchronous completion through asynchronous system trap (AST) emulation

• Global data through lock value blocks

For more information about the CLM locking model, see Chapter 2, CLM Locking Model.
Programming Locking Applications 1-1

Cluster Lock Manager
Application Programming Interfaces

1-2
UNIX Locking Model

The UNIX locking model supports UNIX System V region locking. Using the UNIX locking
model, you can define regions of fine granularity within a resource. Locks in the UNIX locking
model are either shared or exclusive.

For a more information about the UNIX locking model, see Chapter 4, UNIX Locking Model.

Application Programming Interfaces
The Cluster Lock Manager supports an application programming interface (API), a collection
of C language routines, that allow you to acquire, manipulate, and release locks. This API
presents a high-level interface that you can use to implement locking in an application. The API
routines that implement the CLM locking model are described in Chapter 3, Using CLM
Locking Model API Routines, of this manual. The API routines that implement the UNIX
locking model are described in Chapter 5, Using UNIX Locking Model API Routines.

HACMP for AIX includes two versions of the lock manager API libraries: one for
single-threaded (non-threaded) applications (libclm.a) and one for multi-threaded applications
(libclm_r.a).

Cluster Lock Manager Architecture
The lock manager defines a lock resource as the lockable entity. The lock manager creates a
lock resource the first time an application requests a lock against it. A single lock resource can
have one or many locks associated with it. A lock is always associated with one lock resource.

The lock manager provides a single, unified lock image shared among all nodes in the cluster.
Each node runs a copy of the lock manager daemon. These lock manager daemons
communicate with each other to maintain a cluster-wide database of lock resources and the
locks held on these lock resources.

Within this cluster-wide database, the lock manager maintains one master copy of each lock
resource. This master copy can reside on any cluster node. Initially, the master copy resides on
the node on which the lock request originated. The lock manager maintains a cluster-wide
directory of the locations of the master copy of all the lock resources within the cluster. The
lock manager attempts to evenly divide the contents of this directory across all cluster nodes.
When an application requests a lock on a lock resource, the lock manager first determines which
node holds the directory entry and then, reads the directory entry to find out which node holds
the master copy of the lock resource.

By allowing all nodes to maintain the master copy of lock resources, instead of having one
primary lock manager in a cluster, the lock manager can reduce network traffic in cases when
the lock request can be handled on the local node. This also avoids the potential bottleneck
resulting from having one primary lock manager and reduces the time required to reconstruct
the lock database when a fallover occurs.
Programming Locking Applications

Cluster Lock Manager
Support for HC Daemon

k
 loss of
rship
ult
tances

ormed
t to all

th its

cluster.

ell
e HC
ons in
To increase the likelihood of local processing, the lock manager can also move a lock resource
master to the node that is accessing the lock resource most frequently. This is called lock
resource master migration. Using these techniques, the lock manager attempts to increase lock
throughput and reduce the network traffic overhead. Applications can also explicitly instruct
the lock manager to process a lock locally.

When a node fails, the lock managers running on the surviving cluster nodes release the locks
held by the failed node. The lock manager then processes lock requests from surviving nodes
that were previously blocked by locks owned by the failed node. In addition, the other nodes
re-master locks that were mastered on the failed node.

Support for HC Daemon
The HC daemon provides support needed to run Oracle’s Distributed Fault Tolerant Loc
Manager as part of Oracle Parallel Server. HACMP reports and reacts to the presence or
a processor in the cluster. The HC daemon extends this functionality to process membe
information. It allows peer processes in a cluster, such as the instances of the Oracle Fa
Tolerant Lock Manager on each node, to be informed of the presence or loss of other ins
across the cluster.

The HC daemon accepts a socket connection from a client process. It keeps all clients inf
of process membership, broadcasting messages regarding the addition or loss of a clien
clients across the cluster. The HC daemon regularly exchanges heartbeat messages wi
client. This allows it to detect the loss of a client for reasons other than loss of a node.

Installing the HC daemon puts the following entry in the /etc/inittab file:

hc:2:respawn:/usr/lpp/csd/bin/hacmp_hc_start # start hc daemon

This entry directs init to run the shell script /usr/lpp/csd/bin/hacmp_hc_start at system
initialization time, and re-run it should the HC daemon ever exit.

This shell script constructs the file /usr/lpp/csd/bin/machines.1st, which the HC daemon uses
to determine the TCP/IP addresses needed to communicate with other instances in the

In the event that a node joins or leaves the cluster, the HACMP cluster manager runs sh
scripts that react to these events. These shell scripts call other scripts associated with th
daemon and which pass updated cluster membership to the HC daemon. The HC daem
turn inform their clients and any instances of the Oracle Distributed Fault Tolerant Lock
Manager.

Event Shell Script

Node Up /usr/lpp/csd/bin/hacmp_vsd_up1
Node up complete /usr/lpp/csd/bin/hacmp_vsd_up2
Node down /usr/lpp/csd/bin/hacmp_vsd_down1
node down complete /usr/lpp/csd/bin/hacmp_vsd_down2
Programming Locking Applications 1-3

Cluster Lock Manager
Support for HC Daemon

1-4
Restrictions

Important restrictions on the use of the HC daemon:

• The HC daemon is supported only on nodes that are part of a concurrent resource group.

• Each node on which the HC daemon is installed must have a service interface defined.

• The HC daemon should not be loaded on nodes which are part of an SP system on which
the Recoverable Virtual System Disk (RVSD) is installed. The RVSD facility provides its
own version of the HC daemon.

See the applicable Oracle documentation for information on which levels of Oracle Parallel
Server provide Oracle’s Distributed Fault Tolerant Lock Manager.
Programming Locking Applications

CLM Locking Model
Overview
2

Chapter 2 CLM Locking Model

This chapter presents the concepts you need to understand to use CLM locks effectively in an
application. Chapter 3, Using CLM Locking Model API Routines, describes how to use the
CLM locking model API routines to implement locking in an application.

Overview
In the CLM locking model, a lock resource is the lockable entity. An application acquires a lock
on a lock resource. A one-to-many relationship exists between lock resources and locks: a
single lock resource can have multiple locks associated with it.

A lock resource can correspond to an actual object, such as a file, a data structure, a database,
or an executable routine; however, it does not have to. The object you associate with a lock
resource determines the granularity of the lock. For example, locking an entire database is
considered locking at coarse granularity. Locking each item in a database is considered locking
at fine granularity.

The following sections provide more information about:

• Lock resources, including lock value blocks and lock queues

• Locks, including lock modes and lock states

• Deadlock, including transaction IDs and lock groups.

Lock Resources
A lock resource has the following components:

• A name, which is a string of no more than 31 characters

• A lock value block

• A set of lock queues

The following figure illustrates a lock resource.

Lock Resource

Grant

Queue

Convert

Queue

Wait

Queue

Lock

Value

Block

Resource

Name
Programming Locking Applications 2-1

CLM Locking Model
Locks

2-2

e is
d
The lock manager creates a lock resource in response to the first request for a lock on that lock
resource. The lock manager destroys the internal data structures for that lock resource when the
last lock held on the lock resource is released.

Lock Value Block

The lock value block (LVB) is a 16-byte character array associated with a lock resource that
applications can use to store data. This data is application-specific; the lock manager does not
make any direct use of this data. The lock manager allocates space for the LVB when it creates
the lock resource. When the lock manager destroys the lock resource, any information stored in
the lock value block is also destroyed.

See Chapter 3, Using CLM Locking Model API Routines, for information about using the lock
value block.

Lock Resource Queues

Each lock resource has three queues associated with it, one for each possible lock state.

For more information about the relationship of these lock queues, see Lock States on page 2-5.

Locks
In the CLM locking model, you can request a lock from the lock manager on any lock resource.
Locks have the following properties:

• A mode that defines the degree of protection provided by the lock

• A state that indicates whether the lock is currently granted, converting, or waiting

Grant Queue Contains all locks granted by the lock manager on the lock resource,
except those locks converting to a mode incompatible with the mode
of a granted lock. The lock manager maintains the grant queue as a
queue; however, the order of the locks on the queue does not affect
processing.

Convert Queue Contains all granted locks that have subsequently attempted to
convert to a mode incompatible with the mode of the most restrictive
currently granted lock. The locks on the convert queue are still
granted at the same mode as before the conversion request. The lock
manager processes the locks on the convert queue in “first-in,
first-out” (FIFO) order. The lock at the head of the queue must be
granted before any other locks on the queue can be granted.

Wait Queue Contains all new lock requests not yet granted because their mod
incompatible with the mode of the most restrictive currently grante
lock. The lock manager processes the locks on the wait queue in
FIFO order.
Programming Locking Applications

CLM Locking Model
Locks
Lock Modes

A lock mode indicates whether a process shares access to a lock resource with other processes
or whether it prevents other processes from accessing that lock resource while it holds the lock.
A lock request specifies a lock mode.

Note: The Cluster Lock Manager does not force a process to respect a lock.
Processes must agree to cooperate. They must voluntarily check for
locks before accessing a resource and, if a lock incompatible with a
request exists, wait for that lock to be released or converted to a
compatible mode.

Lock Mode Severity

The lock manager supports six lock modes that range in the severity of their restrictiveness. The
following table lists the modes, in order from least severe to most severe, with the types of
access associated with each mode.

Within an application, you can determine which mode is more severe by making a simple
arithmetic comparison. Modes that are more severe are arithmetically greater than modes that
are less severe.

Lock Mode Compatibility

Lock mode compatibility determines whether two locks can be granted simultaneously on a
particular lock resource. Because of their restrictiveness, certain lock combinations are
compatible and certain other lock combinations are incompatible.

For example, because an EX lock does not allow any other user to access the lock resource, it
is incompatible with locks at any other mode (except NL locks, which do not grant the holder
any privileges). Because a CR lock is less restrictive, however, it is compatible with any other
lock mode, except EX.

Mode Requesting Process Other Processes

Null (NL) No access Read or write access

Concurrent Read (CR) Read access only Read or write access

Concurrent Write (CW) Read or write access Read or write access

Protected Read (PR) Read access only Read access only

Protected Write (PW) Read or write access Read or write access

Exclusive (EX) Read or write access No access
Programming Locking Applications 2-3

CLM Locking Model
Locks

2-4
This table presents a mode compatibility matrix.

Lock Mode Compatibility

NL mode locks grant no privileges to the lock holder. NL mode locks are compatible with locks
of any other mode. Applications typically use NL mode locks as placeholders for later
conversion requests.

CR mode locks allow unprotected read operations. The read operations are unprotected because
other processes can read or write the lock resource while the holder of a CR lock is reading the
lock resource. CR mode locks are compatible with every other mode lock except EX mode.

CW mode locks allow unprotected read and write operations. CW mode locks are compatible
with NL mode locks, CR read mode locks, and other CW mode locks.

PR mode locks allow a lock client to read from a lock resource knowing that no other process
can write to the lock resource while it holds the lock. PR mode locks are compatible with NL
mode locks, CR mode locks, and other PR mode locks. PR mode locks are an example of a
traditional shared lock.

PW mode locks allow a lock client to read or write to a lock resource, knowing that no other
process can write to the lock resource. PW mode locks are compatible with NL mode locks and
CR mode locks. Other processes that hold CR mode locks on the lock resource can read it while
a lock client holds a PW lock on a lock resource. A PW lock is an example of a traditional
update lock.

EX mode locks allow a lock client to read or write a lock resource without allowing access to
any other mode lock (except NL). An EX lock is an example of a traditional exclusive lock.

The following figure shows the modes in descending order from most to least severe. Note that,
because CW and PR modes are both compatible with three modes, they provide the same level
of severity.
Programming Locking Applications

CLM Locking Model
Locks
Lock Mode Severity

Lock States

A lock state indicates the current status of a lock request. A lock is always in one of three states:

Granted The lock request succeeded and attained the requested mode.

Converting A client attempted to change the lock mode and the new mode is
incompatible with an existing lock.

Blocked The request for a new lock could not be granted because conflicting
locks exist.

PW

CR

NL

EX

CW PR

Most Severe

Least Severe
Programming Locking Applications 2-5

CLM Locking Model
Locks

2-6

e same

eues

e
tible
The

re are
urce’s
A lock’s state is determined by its requested mode and the modes of the other locks on th
resource. The following figure shows all the possible lock state transitions.

Lock Queues

The following sections provide more information about each state. See Interaction of Qu
on page 2-12 for a detailed example of the lock state transitions.

Granted

A lock request that attains its requested mode is granted. The lock manager grants a lock if ther
are currently no locks on the specified lock resource, or if the requested mode is compa
with the mode of the most restrictive currently granted lock and the cut queue is empty.
lock manager adds locks in the granted state to the lock resource’s grant queue.

For example, if you request a CR mode lock on a lock resource, named RES-A, and the
no other locks, the lock manager grants your request and adds your lock to the lock reso
grant queue. The following figure illustrates the lock resource’s queues after this lock
operation.

RES-A

Grant

Queue

Convert

Queue

Wait

Queue

Lock 1

CR
Programming Locking Applications

CLM Locking Model
Locks

e’s

rocess
that
want
cks are
ere.
eue at

ait
tion

n

ly
s of
If the lock manager receives another request for a lock on RES-A at mode CR, it grants the
request because the mode is compatible with the currently granted lock. The lock manager adds
this lock to the lock resource’s grant queue. The figure below illustrates the lock resourc
queues after these operations.

Leaving the Grant Queue

A lock can leave the grant queue only if the owner makes a request to release it or if the p
holding the lock terminates. The lock manager releases all locks owned by the process
terminates. By using flags to the lock open routines, however, you can specify that you
the locks you create on a lock resource to remain after your process terminates. These lo
called orphan locks. If the orphan lock is on the grant queue, the lock manager leaves it th
If the orphan lock is on the convert queue, the lock manager puts it back on the grant qu
its old grant mode (its conversion request is cancelled). If the orphaned lock is on the w
queue, the lock manager ignores its orphanable state and removes it. For more informa
about creating orphan locks, see Requesting Persistent Locks on page 3-8.

Converting

A lock conversion request changes the mode at which a lock is held. The conversion ca
promote a lock from a less restrictive to a more restrictive mode, called an up-conversion, or
demote a lock from a more restrictive to a less restrictive mode, called a down-conversion. For
example, a request to convert the mode of a lock from NL to EX is an up-conversion. On
granted locks can be converted. It is not possible to convert a lock already in the proces
converting or a request blocked on the wait queue.

RES-A

Grant

Queue

Convert

Queue

Wait

Queue

Lock 1

CR

Lock 2

CR
Programming Locking Applications 2-7

CLM Locking Model
Locks

2-8
The lock manager grants up-conversion requests if the requested mode is compatible with the
mode of the most restrictive currently granted lock and there are no blocked lock conversion
requests waiting on the convert queue. To illustrate, consider the following lock resource with
three granted locks, all at CR mode.

If you request a conversion of Lock 3 from CR mode to CW mode, the lock manager can grant
the request because CW mode is compatible with CR mode and there are no lock conversion
requests on the convert queue. The following illustrates the state of the lock queues after this
request.

A lock conversion request that cannot be granted transitions into converting state. The lock
manager moves locks in converting state from the grant queue to the end of the convert queue.
Locks in the converting state retain the lock mode that they held on the grant queue.

For example, using the previous lock scenario, if you try to convert Lock 1 from CR mode to
the more restrictive EX mode, the lock manager cannot grant the request because EX mode is
not compatible with the mode of the most restrictive granted lock (CW). The lock manager
moves Lock1 from the grant queue to the convert queue.

RES-A

Grant

Queue

Convert

Queue

Wait

Queue

Lock 1

CR

Lock 2

CR

Lock 3

CR

RES-A

Grant

Queue

Convert

Queue

Wait

Queue

Lock 1

CR

Lock 2

CR

Lock 3

CW
Programming Locking Applications

CLM Locking Model
Locks

oved to
anted
R to

ueue,
ted
The following figure illustrates the lock resource’s queues after the conversion request.

Once there is a lock on the convert queue, all subsequent up-conversion requests get m
the convert queue, even if the requested mode is compatible with the most restrictive gr
lock. For example, using the preceding lock scenario, a request to convert Lock 2 from C
CW could not be performed because the conversion of Lock 1 is waiting on the convert q
even though CW mode is compatible with the mode of the most restrictive currently gran
lock. The lock manager moves the lock to the end of the convert queue. The following
illustrates the state of the lock resource queues after this conversion request.

Leaving the Converting State
A lock can leave the converting state if any of the following conditions are met:

• The process that requested the lock terminates.

• The process that holds the lock cancels the conversion request. When a conversion request
is canceled, the lock manager moves the lock back to the grant queue at its previously
granted mode.

• The requested mode becomes compatible with the most restrictive granted lock and all
previously requested conversions have been granted or canceled.

In-Place Conversions
The lock manager grants all down-conversion requests in-place; that is, the lock is converted to
the new mode without being moved to the convert queue, even if there are other lock requests
on the convert queue. The lock manager grants all down-conversions because they are
compatible with the most restrictive locks on the grant queue (the lock was already granted at
a more restrictive mode).

RES-A

Grant

Queue

Convert

Queue

Wait

Queue

Lock 2

CR

Lock 1

CR->EX

Lock 3

CW

RES-A

Grant

Queue

Convert

Queue

Wait

Queue

Lock 3

CW

Lock 1

CR->EX

Lock 2

CR->CW
Programming Locking Applications 2-9

CLM Locking Model
Locks

2-1

’s wait
diately
ait

ce
 the
dds
For example, given the preceding lock scenario, if you requested a down-conversion of Lock 3
from CW to NL, the lock manager would grant the conversion in-place. The following
illustrates the state of the locks after this conversion.

Conversion Deadlock
Because the lock manager processes the convert queue in FIFO order, the conversion of the lock
at the head of the convert queue must occur before any other conversions on the convert queue
can be granted. Occasionally, the lock at the head of the convert queue can be blocked by one
of the other lock conversion requests on the convert queue. The lock conversion requests on the
convert queue are all blocked by the lock at the head of convert queue. Thus, a deadlock cycle
is created.

The previous example illustrates conversion deadlock. Even after the down-conversion of Lock
3 to NL mode, Lock 1 cannot be granted because it is blocked by Lock 2, also on the convert
queue. Lock 1 cannot convert to EX mode because Lock 2 is still granted at CR mode, which
is incompatible with EX mode. Thus, Lock 1 is blocked by Lock 2 and Lock 2 is blocked by
Lock 1. For more information about conversion deadlock, see Conversion Deadlock on page
2-15.

Blocked

If you request a lock and the mode is incompatible with the most restrictive granted lock, your
request is blocked. The lock manager adds the blocked lock request to the lock resource
queue. (You can choose to have the lock manager abort a request that cannot be imme
granted instead of putting it on the wait queue. For more information, see Avoiding the W
Queue on page 3-7.)

Continuing the previous example, if you request a new EX lock on the same lock resour
(Lock 3), the lock manager cannot grant your request because EX is not compatible with
most restrictive mode of a currently grant lock (Lock 1 at EX mode). The lock manager a
this lock request to the end of the lock resource’s wait queue.
0 Programming Locking Applications

CLM Locking Model
Locks
This figure illustrates the lock resource’s queues after this request.

A lock can leave the wait queue if any of the following conditions are met:

• The process that requested the lock terminates.

• The requester cancels the blocked lock. When a blocked lock is canceled, the lock manager
removes it from the wait queue.

• The lock request becomes compatible with the mode of the most restrictive lock currently
granted on the lock resource and there are no converting locks or blocked locks queued
ahead of the lock request. The lock manager processes the wait queue in FIFO order, after
processing the convert queue. No blocked request can be unblocked by the release of a
granted lock, regardless of the compatibility of its mode, until all blocked requests on the
convert queue and all blocked requests ahead of it on the wait queue have been granted.

Thus, a lock request can become blocked only as the result of a lock request, but it can unblock
as a result of the release or conversion of some other lock. (An exception is made in the case of
deadlock. See Deadlock on page 2-14.)

Continuing the previous example, if you convert Lock 1 from EX to NL, the lock manager can
grant the blocked request because EX is compatible with NL mode locks. The lock manager
moves Lock 3 from the wait queue to the grant queue. The following figure illustrates the lock
resource’s queues after the conversion of Lock 1.

RES-A

Grant

Queue

Convert

Queue

Wait

Queue

Lock 2

NL

Lock 1

EX

Lock 3

EX

RES-A

Grant

Queue

Convert

Queue

Wait

Queue

Lock 2

NL

Lock 1

NL

Lock 3

EX
Programming Locking Applications 2-11

CLM Locking Model
Locks

2-1

ueues,
n the
ck

 the
e
nnot
out

d
X are

convert
 their
n the

lowing
leted.
Interaction of Queues

To illustrate how the lock manager processes a lock resource’s grant, convert, and wait q
consider the lock scenario illustrated in the following figure. This example has one lock o
grant queue, three lock conversion requests blocked on the convert queue, and three lo
requests blocked on the wait queue.

If you request a down-conversion of Lock 1 from PW to CR, the lock manager can grant
conversion request because a CR lock is compatible with the mode of the most restrictiv
currently granted lock. (Lock 1 itself is the most restrictive currently granted lock; a lock ca
block itself.) Note that the lock manager performs an in-place conversion of Lock 1, with
adding it to the end of the convert queue.

After granting the conversion, the lock manager checks if the change allows any blocke
conversions to be granted, starting at the head of the convert queue. Because CR and E
not compatible, Lock 2 cannot be unblocked. Because the lock manager processes the
queue in FIFO order, no other locks on the convert queue can be granted, even though
requested modes are compatible with CR. Because there are conversions still blocked o
convert queue, the blocked locks on the wait queue can not be processed either. The fol
figure illustrates the lock resource’s queues after the Lock 1 conversion request is comp

RES-A

Grant

Queue

Convert

Queue

Wait

Queue

Lock 1

PW

Lock 2

NL->EX

Lock 3

NL->PW

Lock 4

NL->CR

Lock 5

CR

Lock 6

PR

Lock 7

CR

RES-A

Grant

Queue

Convert

Queue

Wait

Queue

Lock 1

CR

Lock 2

NL->EX

Lock 3

NL->PW

Lock 4

NL->CR

Lock 5

CR

Lock 6

PR

Lock 7

CR
2 Programming Locking Applications

CLM Locking Model
Locks

e
ange
 3 and

rocess
he wait
 lock.

he lock
gh it is

 of

queue
nted
If you release Lock 1, the lock manager can grant Lock 2, the EX lock waiting at the head of
the conversion queue. Because the mode requested by Lock 3 is not compatible with an EX
mode lock, no other request on the convert queue can be granted. The following figure
illustrates the lock resource’s queues after the lock conversion operation.

If you request a down-conversion of Lock 2 from EX to NL, the lock manager grants the
conversion in-place because a NL lock is compatible with the mode of the most restrictiv
currently granted lock (EX). The lock manager checks the convert queue to see if the ch
allows any blocked conversion requests to be granted. The lock manager can grant Lock
Lock 4 on the convert queue because PW and CR are compatible.

In addition, because there are no locks left on the convert queue, the lock manager can p
the locks blocked on the wait queue. The lock manager can grant the lock at the head of t
queue, Lock 5, because a CR lock is compatible with the most restrictive currently granted
The lock manager cannot grant Lock 6, however, because PR is incompatible. Because t
manager processes the wait queue in FIFO order, Lock 7 cannot be granted, even thou
compatible with the most restrictive currently granted lock.

The following figure illustrates the lock resource’s queues after the conversion operation
Lock 2.

If you release Lock 4 and Lock 5, the lock manager cannot unblock the locks on the wait
because the mode of Lock 6 is still not compatible with the most restrictive currently gra
lock.

RES-A

Grant

Queue

Convert

Queue

Wait

Queue

Lock 2

EX

Lock 3

NL->PW

Lock 4

NL->CR

Lock 5

CR

Lock 6

PR

Lock 7

CR

RES-A

Grant

Queue

Convert

Queue

Wait

Queue

Lock 2

NL

Lock 3

PW

Lock 4

CR

Lock 5

CR

Lock 6

PR

Lock 7

CR
Programming Locking Applications 2-13

CLM Locking Model
Deadlock

2-1
If you release Lock 3, the lock manager can grant Lock 6 at the head of the wait queue and lock
7 because their modes are compatible.

Deadlock
The lock manager faces deadlock when two or more lock requests are blocking each other with
incompatible modes for lock requests. Three types of deadlock can occur: normal deadlock,
conversion deadlock, and self-client deadlock.

Normal Deadlock

Normal deadlock occurs when two or more processes are blocking each other in a cycle of
granted and blocked lock requests. For example, say Process P1 has a lock on Resource R1 and
is blocked waiting for a lock on Resource R2 held by Process P2. Process P2 has a lock on
Resource R2 and is blocked waiting for a lock on Resource R3 held by Process P3, and Process
P3 has a lock on resource R3 and is blocked waiting for a lock on Resource R1 held by Process
P1. This is illustrated in the following figure.

RES-A

Grant

Queue

Convert

Queue

Wait

Queue

Lock 2

NL

Lock 3

PW

Lock 6

PR

Lock 7

CR

RES-A

Grant

Queue

Convert

Queue

Wait

Queue

Lock 2

NL

Lock 6

PR

Lock 7

CR
4 Programming Locking Applications

CLM Locking Model
Deadlock
Deadlock

Conversion Deadlock

Conversion deadlock occurs when the requested mode of the lock at the head of the convert
queue is incompatible with the granted mode of some other lock also on the convert queue. The
first lock cannot convert because its requested mode is incompatible with a currently granted
lock. The other lock cannot convert because the convert queue is strictly FIFO.

Self-Client Deadlock

Self-client deadlock occurs when a single client requests a lock on a lock resource on which it
already holds a lock and its first lock blocks the second request. For example, if Process P1
requests a lock on a lock resource on which it already holds a lock, the second lock may be
blocked.

Deadlock Detection

The lock manager periodically checks for all types of deadlock by following chains of blocked
locks and the locks blocking them. If the lock manager detects a cycle of locks that indicate
deadlock (that is, if the same process occurs more than once in a chain), it denies the request
that has been blocked the longest. The lock manager sets the status field in the lock status block
associated with this lock request to CLM_DEADLOCK and queues for execution the AST
routine associated with the request. (For more information about how the lock manager returns
the status of lock requests, see Obtaining the Status of a Lock Request Synchronously on page
3-4.)

Note: The lock manager does not arbitrate among lock client applications to
resolve a deadlock condition. The lock manager simply cancels one of
the requests causing deadlock and notifies the client. The lock client
applications, when they receive a return value indicating deadlock,
must decide how to handle the deadlock. In most cases, releasing
existing locks and then reacquiring them should eliminate the
deadlock condition.

Waiting For
Resource Locked

By P2

P P

Waiting For
Resource Locked

By P3

P3

Waiting For
Resource

Locked By P1
Programming Locking Applications 2-15

CLM Locking Model
Deadlock

2-1

re, a

ion. A
on IDs
des to

n

d
ource

ds an
 R2 will
1. This

either is
ed

 they
Transaction IDs

By canceling one of the requests causing a deadlock, the lock manager prevents clients
contending for the same lock resources from blocking each other indefinitely. Additionally, the
lock manager supports transaction IDs, a mechanism clients can use to improve application
throughput by diminishing the impact of deadlock when it does occur.

When determining whether a deadlock cycle exists, the lock manager normally assumes the
process that created the lock owns the lock. By specifying a transaction ID (also called an XID
or deadlock ID) as part of a lock request, a lock client can attribute ownership of a lock related
to a particular task to a “transaction” rather than to itself. For deadlock detection, therefo
transaction replaces a process or group as the owner of a lock.

Furthermore, transaction IDs allow different clients to request locks on the same transact
unique transaction ID should be associated with each transaction (task). Since transacti
do not span nodes, the lock manager considers equivalent transaction IDs on different no
be different transaction IDs.

Transaction IDs are beneficial when multiple client processes request locks on a commo
transaction and each process works on multiple tasks.

Consider the following example: Process P1 holds an exclusive lock on Resource R1 an
requests an exclusive lock on Resource R2. Process P1 will not release the lock on Res
R1 until the lock manager grants the lock on Resource R2. Process P2, meanwhile, hol
exclusive lock on Resource R2 and requests an exclusive lock on Resource R1. Process
not release the lock on Resource R2 until the lock manager grants the lock on Resource R
is illustrated in the following figure. The dotted lines indicate blocked requests.

The processes in this example are deadlocked. Each process is blocking the other and n
able to do any work. To break this deadlock, the lock manager cancels one of the block
requests and notifies the requesting client by returning a deadlock status.

Using transaction IDs would allow the processes to work on different tasks even though
are blocked on a particular transaction. To expand on the example above:
6 Programming Locking Applications

CLM Locking Model
Deadlock
Process P1 holds an exclusive lock on Resource R1 that it asked for using transaction ID T1.
Process P2, which is also working on task T1, requests an exclusive lock on Resource R2.
Process P3, however, holds an exclusive lock on R2 that it asked for using transaction ID T2.
Process P4, also working on task T2, requests an exclusive lock on Resource R1. This is
illustrated in the following figure.

Once again, deadlock occurs. Task T1 is blocked by task T2 and task T2 is blocked by task T1.
No work will be done on these transactions until the lock manager breaks the deadlock by
cancelling one of the requests. The transactions are blocked, but not necessarily the lock client
processes. If the lock clients are concurrently working on other tasks, they can continue to work
on these tasks. When the lock manager detects the deadlock and cancels one of the requests
causing the deadlock, the lock client applications can once again resume work on these
transactions.

Lock Groups

A lock group joins related lock client processes into a single entity. A lock client may create a
new lock group or join an existing group. A lock client may belong to at most one lock group.
Once a client belongs to a group, the group owns all subsequent locks created by that process.
Therefore, any process in the group may manipulate group-owned locks.

Alternatively, a process belonging to a lock group can pass the LKM_PROC_OWNED flag to
a lock open routine to indicate that this lock is owned by the process, not by the group. Other
processes belonging to the group may not manipulate this lock.

The lock manager does not purge a lock owned by a group until all processes belonging to the
group have exited or all processes have detached from the group.

A lock group may not span cluster nodes. The lock manager only acknowledges a group ID on
the node on which it was created. Therefore, a lock client on one node cannot join a group that
was created on a different node.
Programming Locking Applications 2-17

CLM Locking Model
Deadlock

2-1
A process that has left a group can no longer manipulate locks owned by that group, including
locks it created while it belonged to the group. If a process is the last group member to leave a
group, the locks owned by the group are purged and the group no longer exists. A process is
implicitly removed from a group when it terminates.

Lock groups affect deadlock detection in the same way as transaction IDs. Locks requested by
a group member without specifying a transaction ID are owned by the group. In this type of
situation, the group is the owning entity when determining if deadlock exists.

Note: Since group deadlock can occur more frequently than transaction ID
deadlock, you should use transaction IDs when using lock groups.
Transaction IDs override group or process ownership.
8 Programming Locking Applications

Using CLM Locking Model API Routines
Overview
3

Chapter 3 Using CLM Locking Model API
Routines

This chapter describes how to use the CLM locking model API routines in an HACMP for AIX
application. Chapter 7, Lock Manager API Routines, provides reference information on the
routines discussed in this chapter.

Overview
The three primary programming tasks you must perform to implement locking in an application
are:

• Acquiring locks on a lock resources

• Converting existing locks to different modes

• Releasing locks

To perform these tasks, applications use the routines in the CLM locking model API to make
requests to the lock manager. For example, to make an asynchronous request for a lock on a
lock resource, an application would use either the clmlock or clmlockx routine.

The CLM locking model API also includes routines that help applications perform ancillary
tasks related to manipulating locks. For example, the CLM locking model API includes the
ASTpoll routine that applications must use to receive the asynchronous notification of the
status of their request.

The following sections describe how to perform these primary locking tasks, including any
ancillary tasks that may be required.

Prerequisites
This section describes the header files you must include in your application to use the CLM
locking model API routines, the libraries with which you must link your application, and the
primary data structure applications must use to implement locking.

Header Files

To use the CLM locking model API routines, you must specify the following include directive:

#include <cluster/clm.h>

The /usr/include/cluster/clm.h file defines the constants, data structures, status codes, and
flags used by the CLM locking model API.

If your application uses the clm_scnop routine, you must also include the following include
directive:

#include <cluster/scn.h>
Programming Locking Applications 3-1

Using CLM Locking Model API Routines
Prerequisites

3-2
The /usr/include/cluster/scn.h file defines the constants, data structures, and status codes used
by the clm_scnop routine.

Library Files

The HACMP for AIX software includes separate libraries for multi-threaded and for
single-threaded applications. Be sure to link with the appropriate library for your application.

Single-threaded Applications

Specify the following libraries when you invoke the linkage editor for a single-threaded
application:

-lclm -lclstr

The libclm.a library contains the routines that support the Cluster Lock Manager. The libclstr.a
library contains the routines that support the Cluster Manager.

If your application uses the services of the Cluster Information Program (Clinfo), you must also
include the libcl.a library.

Multi-threaded Applications

Specify the following libraries when you invoke the linkage editor for a multi-threaded
application:

-lclm_r -lclstr_r

The libclm_r.a library contains the routines that support the Cluster Lock Manager. The
libclstr_r.a library contains the routines that support the Cluster Manager.

If your application uses the services of Clinfo, you must also include the libcl_r.a library.

Data Structure

The CLM locking model API includes a data structure, called the lock status block, that your
application can use to specify the following:

• The length of time you want to wait for a blocked request to be granted (timeout value)

• The value of the lock value block associated with a lock resource

In addition, the lock manager uses the lock status block to return the following information to
your application:

• The status of the request

• The lock ID the lock manager has assigned to the lock request

• The value stored in the lock value block

The lock status block, defined in the /usr/include/cluster/clm.h include file, has the following
structure:

struct lockstatus {
clm_stats_t status;
int lockid;
char value[MAXLOCKVAL];
unsigned int timeout;

};
Programming Locking Applications

Using CLM Locking Model API Routines
Acquiring or Converting a Lock on a Lock Resource
The following list describes each field:

Acquiring or Converting a Lock on a Lock Resource
To acquire a lock on a lock resource, or convert an existing lock to a different mode, you make
a request to the lock manager using one of the lock open routines described in the following
sections. If the lock resource does not exist, the lock manager creates it.

The Cluster Lock Manager supports both asynchronous and synchronous lock routines.

Requesting Locks Asynchronously

An asynchronous lock routine queues the request and then immediately returns control to the
lock client making the call. The status code indicates whether the request was queued
successfully. The lock client can perform other operations while it waits for the lock manager
to resolve the request. When the lock manager resolves the request, it queues the AST routine
specified by the request for execution. The lock process must then trigger the execution of this
AST routine.

The routines that request a lock asynchronously are:

When requesting an asynchronous lock, you supply the following information:

• The name of the lock resource, along with the length of the name

• The requested mode of the lock

• A pointer to a lock status block. For a conversion request, the lock status block must contain
a valid lock ID

• Flags that determine characteristics of the lock operation. For a conversion request, you
must specify the LKM_CONVERT flag

status Contains the status code returned by the lock manager. The status
codes are defined in the /usr/include/cluster/clm.h include file.

lockid Contains the lock ID the lock manager assigned to this lock request.

value The lock value block. An array that applications can use to store
application-specific data. The size of the array is specified by the
value of the constant MAXLOCKVAL which is defined in the
/usr/include/cluster/clm.h header file as 16 bytes.

timeout Specifies the amount of time the application allows for a lock request
to be granted. This value is only used if the LKM_TIMEOUT flag is
also set in the request.

clmlock Makes an asynchronous (non-blocking) request for a lock on a lock
resource or converts an existing lock to a different mode.

clmlockx Makes an asynchronous (non-blocking) request for a lock on a lock
resource or converts an existing lock to a different mode, and
specifies a transaction ID for that lock.
Programming Locking Applications 3-3

Using CLM Locking Model API Routines
Acquiring or Converting a Lock on a Lock Resource

3-4
• A pointer to an AST routine that the lock manager queues for execution when it grants (or
denies, aborts, or cancels) your lock request. Your application triggers the execution of this
routine by calling the ASTpoll routine.

• Optionally, a pointer to a blocking AST routine that the lock manager queues for execution
when the lock is blocking another lock request. Your application triggers the execution of
this routine by calling the ASTpoll routine.

• A pointer to arguments you want passed to either the AST routine or the blocking AST
routine.

• For calls to the clmlockx routine, a pointer to an eight-byte transaction ID that indicates the
lock is owned by a transaction or group.

The following example uses the clmlock routine to request a CR mode lock on a lock resource
named RES-A.

#include <cluster/clm.h>

clm_stats_t status;
struct lockstatus lksb; /* lock status block */
extern void ast_func();
.
.
.
status = clmlock(LKM_CRMODE, /* mode */
 &lksb, /* addr of lock status block */
 LKM_VALBLK, /* flags */
 "RES-A", /* name */
 5, /* namelen */
 ast_func, /* ast routine triggered */
 0, /* astargs */
 0); /* bast */
if (status != CLM_NORMAL)
{
 clm_perror("clmlock");
}

When the lock manager accepts your lock request, it passes a token back to your application,
called a lock ID, that uniquely identifies your lock. The lock manager writes the lock ID in the
lockid field of the lock status block. (You specify the address of the lock status block as an
argument to the clmlock and clmlockx routines.) All subsequent requests concerning that lock,
such as conversion requests, must use the lock ID to identify the lock.

When your application triggers the execution of the AST routine, the lock manager writes the
status of your request in the status field of the lock status block. See Chapter 3, Using CLM
Locking Model API Routines, for a complete list of all possible status codes returned by the
clmlock and clmlockx routines.

Obtaining the Status of a Lock Request Synchronously
Using the asynchronous lock routines, you can request a synchronous return of your lock
request by specifying the LKM_SYNCSTS flag. When this flag is specified, the lock manager
returns status synchronously if the following conditions are satisfied:

• The request can be granted immediately; that is, it is not blocked by the mode of an existing
lock.

• The master copy of the lock resource resides on the same node as the requesting process.
Programming Locking Applications

Using CLM Locking Model API Routines
Acquiring or Converting a Lock on a Lock Resource
When the lock manager returns synchronously, the clmlock or clmlockx routines return the
status code CLM_SYNC, indicating success, instead of the CLM_NORMAL status code and
the lock manager does not queue an AST routine for execution.

If the lock manager cannot grant the request immediately or if the lock resource is not mastered
on the same node as the requesting process, the lock manager returns the CLM_NORMAL
status code and returns the status of the lock request asynchronously.

Note: To guarantee that you obtain a synchronous return from your lock
request, use the clmlock_sync or clmlockx_sync routines, described
in the next section, Requesting Locks Synchronously.

Requesting Locks Synchronously

A synchronous lock routine performs the same function as an asynchronous lock routine, but
does not return control to the calling process until the request is resolved. A synchronous lock
routine queues the request and then places the calling process into a wait state until the lock
manager resolves the request. A process making a synchronous lock request does not have to
poll for an AST; it simply waits until the request returns.

The routines that request a lock synchronously are:

When requesting a synchronous lock, you supply the following information:

• The name of the lock resource, along with the length of the name

• The requested mode of the lock

• A pointer to a lock status block. For a conversion request, the lock status block must contain
a valid lock ID

• Flags that determine characteristics of the lock operation. For a conversion request, you
must specify the LKM_CONVERT flag

• Optionally, a pointer to a blocking AST routine that the lock manager queues for execution
when the lock is blocking another lock request. Your application triggers the execution of
this routine by calling the ASTpoll routine

• A pointer to arguments you want passed to the blocking AST routine

• For calls to the clmlockx_sync routine, a pointer to an eight-byte transaction ID that
indicates the lock is owned by a transaction or group

clmlock_sync Requests a lock and waits for a return or converts an existing lock to a
different mode.

clmlockx_sync Requests a lock and waits for a return or converts an existing lock to a
different mode, and specifies a transaction ID for that lock.
Programming Locking Applications 3-5

Using CLM Locking Model API Routines
Acquiring or Converting a Lock on a Lock Resource

3-6
Triggering AST Routines

To trigger the execution of AST routines (both regular and blocking), your application must call
the ASTpoll routine. The lock manager can send a signal to your application when it has AST
routines queued for execution. To use this signal mechanism, your application must:

1. Use the clm_setnotify routine to specify the signal you want the lock manager to use to
notify your application. Use SIGUSR1 and SIGUSR2. Other signals can be used, but this
can interfere with their normal use by AIX.

2. Create a routine in your application that will handle the signal when your application
receives it. Typically, applications call the ASTpoll routine from within this signal
handling routine. Use the signal routine or the sigaction routine to associate the execution
of this routine with the reception of the signal. For more information about using the signal
or sigaction routines, see their man page. Note that you must set up the signal handling
routine before each call to the clmlock routine.

For each lock or conversion request granted by the lock manager, only one blocking AST will
be sent to the process that owns the lock in situations where the lock is blocking another request.
It is expected that if a client specifies a blocking AST function for a lock, the client will take
some action in response to the blocking AST. An expected response would be to either convert
or unlock the lock. The lock manager will not send another blocking AST for this lock until
after the client that owns the lock has taken one of these actions.

For an example of how to use these routines in an application, see Sample Locking Application
on page 3-6 (below).

Keeping Track of Lock Requests

To keep track of the lock requests your application makes, which may be granted in a different
sequence than they were requested, assign each request a unique identifier using the astarg
parameter to the clmlock and clmlockx routines or the bastarg parameter to the clmlock_sync
and clmlockx_sync routines. When you trigger an AST routine, this argument identifies which
request is associated with this return.

For example, the value passed in the astarg parameter to the clmlock routine could be an index
into an array of lock status blocks. Each time your application makes a lock or conversion
request, it would use another lock status block from the array by incrementing this index. The
index value would then be passed as the value of the astarg parameter to the clmlock routine.
When the request returns, the argument passed to the AST routine identifies which lock status
block in the array is associated with the returned value.

Sample Locking Application

The following example illustrates how to make a lock request and use the signal handling
mechanism to obtain the status of the request. The example also illustrates how to use the astarg
parameter to track lock requests.

#include <cluster/clm.h>
#include <stdio.h>
#include <signal.h>
pid_t getpid(); /* needed for ASTpoll routine */
struct lockstatus lksb[12]; /* array of lock status blocks */
int which_lock; /* index into array of lock status blocks */
void ast_func(); /* AST routine */
void sig_func(); /* signal handling routine */
Programming Locking Applications

Using CLM Locking Model API Routines
Acquiring or Converting a Lock on a Lock Resource
clm_stats_t status;
int stat;
char *msg; /* for printable status code */
main(argc, argv)
 int argc;
 char *argv[];
{
 int astarg = 0; /* astarg parameter */
 status = clm_setnotify(SIGUSR1, NULL);
 if(status != CLM_NORMAL)
 {
 clm_perror("clm_setnotify");
 }

 stat = signal(SIGUSR1, sig_func);
 if(stat != 0)
 {
 perror("signal");
 }
 which_lock = 0;
 astarg = which_lock;

 status = clmlock(LKM_CRMODE, /* mode */
 &lksb[which_lock], /* lock status block */
 LKM_VALBLK,
 "RES-A", /* name */
 5, /* namelen */
 ast_func, /* ast routine */
 &astarg, /* astargs */
 0); /* bast */
 if (status != CLM_NORMAL)
 {
 clm_perror("clmlock");
 }
}

/* Signal handling routine; calls ASTpoll to trigger AST routine */

void sig_func()
{
 ASTpoll(getpid(), 0);
}

/* Routine that is triggered by ASTpoll. */

void ast_func(astarg)
int *astarg;
{
 msg = clm_errmsg(lksb[*astarg].status);
 printf("status= %s; astarg passed = %d",msg,*astarg);
}

Avoiding the Wait Queue

If the lock manager cannot grant your lock request, it adds your request to the end of the wait
queue, along with all other blocked lock requests on the lock resource. You can specify that the
lock manager not queue your request if it cannot be granted immediately by specifying the
LKM_NOQUEUE flag as an argument to the lock routine.

If your lock request cannot be granted immediately, the lock open routine returns the status
CLM_NORMAL and the AST is queued with the status CLM_NOTQUEUED in the status
field of the lock status block.
Programming Locking Applications 3-7

Using CLM Locking Model API Routines
Acquiring or Converting a Lock on a Lock Resource

3-8

ify the

 locks

o
ary by
e

of that

s
ck
p it
on the
ory to
ry is
Specifying a Timeout Value for a Lock Request

Blocked locks remain on the wait queue until they are granted (or canceled, denied, or aborted).
You can specify to the lock manager that you only want your request to remain on the wait
queue for a certain time period. You specify this value in the timeout field of the lock status
block that is passed as an argument to the lock open routine.

In the following example, the lock request specifies a timeout value of five seconds. (The value
is specified in hundredths of seconds.)

#include <cluster/clm.h>

clm_stats_t status;
struct lockstatus lksb; /* lock status block */
extern void ast_func();

lksb.timeout = 500; /* 5 seconds */

status = clmlock(LKM_CRMODE, /* mode */
 &lksb, /* lock status block */
 LKM_TIMEOUT, /* flags */
 "RES-A", /* name */
 5, /* namelen */
 ast_func, /* routine to trigger ast */
 0, /* astargs */
 0); /* bast */
if (status != CLM_NORMAL)
{
 clm_perror("clmlock");
}

Excluding a Lock Request from Deadlock Detection Processing

To exclude a lock request from the lock manager’s deadlock detection processing, spec
LKM_NODLCKWT flag with the lock open routine.

Requesting Persistent Locks

When a client terminates while holding one or more locks, the lock manager purges any
that do not have the LKM_ORPHAN flag set. Locks originally requested with the
LKM_ORPHAN flag set remain after a client terminates. Applications use orphan locks t
prevent other lock clients from accessing a lock resource until any clean up made necess
the termination has been performed. Once the LKM_ORPHAN flag is set (whether by th
initial lock request or by a subsequent conversion), that flag remains set for the duration
lock.

Requesting Local Locks

Lock clients can achieve enhanced locking performance when obtaining short-lived lock
against equally short-lived lock resources by specifying the LKM_LOCAL flag with the lo
open routine. This flag directs the lock manager to skip the lock resource directory looku
would normally perform as part of lock request processing and master the lock resource
local node. For standard lock requests, the lock manager checks its lock resource direct
find out on which node the lock resource is mastered. Because the lock resource directo
Programming Locking Applications

Using CLM Locking Model API Routines
Acquiring or Converting a Lock on a Lock Resource

rces.
d can

 are
 want
e lock

 to

is
ck
se local

 to one
es not
 lock.

ed by
CAL

tain
he
l; local
t of the
spread among all cluster nodes, the directory lookup step may require communication with a
remote node. By bypassing the directory lookup, the lock manager reduces the network
overhead associated with the lock request, improving performance.

Guidelines for Use

Use caution when creating local lock resources. While eliminating the lock resource directory
lookup can improve performance, it allows applications to create multiple masters of a lock
resource. Lock resources created using the LKM_LOCAL flag are not included in the lock
manager’s lock resource directory but exist in the same namespace as global lock resou
Duplicate lock resource masters can compromise the integrity of the locking scheme an
cause data corruption.

To use local lock resources effectively and safely, make sure that the lock resource you
creating does not already exist in the cluster. If you are certain that the lock resource you
to master locally is unique, then acquire the local lock, accomplish the task, and release th
as quickly as possible. If the lock is held briefly, it is unlikely that another client will need
lock the same resource. If contention is likely, do not use local locks.

Acquiring Additional Locks on a Local Lock Resource

If your application must acquire additional locks on a local lock resource, specify the
LKM_FINDLOCAL flag with the lock open routine when requesting these locks. When th
flag is specified, the lock manager queries each node to determine on which node the lo
resource is mastered. The lock manager does not check its lock resource directory becau
lock resources will not have an entry.

If the lock manager finds the lock resource, it processes the lock request, adding the lock
of the lock resource’s queues, depending on mode compatibility. If the lock manager do
find the lock resource, it creates a local lock resource on the initiating node, granting the

Because lock requests that use the LKM_FINDLOCAL flag require a query to be process
all active nodes in the cluster, they take longer to process than requests using the LKM_LO
flag or even normal lock requests. You should only use the LKM_FINDLOCAL flag to ob
a lock against a lock resource that you know was created using the LKM_LOCAL flag. T
lock manager processes the request against the lock resource whether it’s global or loca
lock resources and global lock resources share the same namespace. However, the cos
extra overhead incurred by using the LKM_FINDLOCAL flag is wasted when the lock
resource is global.

Note: Use the LKM_FINDLOCAL flag with caution. Even though the lock
manager checks all cluster nodes for the local lock before creating a
new lock resource, the potential still exists for creating duplicate lock
resource masters. For example, if two lock clients running on different
nodes initiate LKM_FINDLOCAL lock requests simultaneously, their
searches for the local lock resource may both complete without finding
the lock resource because of timing considerations. Then each node
may proceed to create local masters of the same lock resource.
Programming Locking Applications 3-9

Using CLM Locking Model API Routines
Releasing a Lock on a Lock Resource

3-1
Releasing a Lock on a Lock Resource
To release an existing lock or cancel a lock request blocked on the convert queue or wait queue,
you must use the clmunlock routine. When releasing a lock, you supply the following
information:

• A valid lock ID

• Optionally, a pointer to a lock value block

• Flags

The flag you specify depends on the type of operation you are requesting. The following
summarizes the options available:

• If you want to cancel a lock request or a conversion request that is blocked, specify the
LKM_CANCEL flag.

• If you want to modify the lock value block, specify the LKM_VALBLK flag.

When you release or cancel a lock on a lock resource, the lock manager performs the following
processing, depending on which queue the lock was located:

The following example releases a lock, identified by its lock ID. The example illustrates a
typical way applications use an array of lock status blocks to keep track of the locks they
acquire. The application uses the astarg parameter to assign a number that identifies each lock.
The astarg parameter is an index into the array.

#include <cluster/clm.h>

clm_stats_t status;

struct lockstatus lksb[MAXLOCKS]; /* lock status block */
int index=0;
.
.
.
status = clmunlock(lksb[index].lockid, 0, 0);
if (status != CLM_NORMAL)
{

clm_perror("Unlock failed");
}

Grant queue If you release a granted lock, the lock manager removes the lock from
the grant queue.

Convert queue If you cancel a conversion request, the lock manager puts the lock
back on the grant queue at its old grant mode. In addition, the lock
manager sets the status in the lock status block from the original
conversion request to CLM_CANCEL and queues for execution the
AST routine associated with the request.

Wait queue The lock manager removes the lock from the wait queue. In addition,
the lock manager sets the status in the lock status block from the
original request to CLM_ABORT and queues the AST routine
associated with the lock for execution.
0 Programming Locking Applications

Using CLM Locking Model API Routines
Purging Locks
Purging Locks
The CLM API includes the clm_purge routine to facilitate releasing locks. The clm_purge
routine releases all locks owned by a particular client, identified by its process ID. When you
specify a process ID of 0, all orphaned locks for the specified node ID are released.

Note: Locks owned by LIVE clients can only be purged by the owner of the
lock. Otherwise, clm_purge only affects orphaned locks.

Manipulating the Lock Value Block
Every lock resource includes 16 bytes of storage, called a lock value block, that applications
can use to store data. You cannot assign a value to an LVB when you acquire a lock on a lock
resource; you can only read its current value. To modify the contents of the LVB, you must hold
an EX lock or a PW lock on a lock resource. You can assign a value to an LVB when:

• Releasing the EX or PW mode lock

• Down-converting the EX or PW mode lock to a less restrictive mode

The following sections describe how to modify an LVB using these methods.

Setting an LVB When Releasing an EX or PW Lock

You can modify a lock value block when you release an EX or PW lock by using the clmunlock
routine. You specify a pointer to the value you want assigned to the lock value block as an
argument to the routine. You must also set the LKM_VALBLK flag.

Note: There must be another lock on the lock resource. If you release the last
lock on a lock resource, the lock manager destroys the lock resource
and the LVB associated with it.

The following example illustrates how to set an LVB. The example assumes that the process
holds an EX lock on the lock resource.

#include <cluster/clm.h>

struct lockstatus lksb;

char valblk[16];

strcpy(valblk,"my lvb");

status = clmunlock(lksb.lockid, /* mode */
 &valblk, /* lock value block */
 LKM_VALBLK); /* flags */

if (status != CLM_NORMAL)
{
 clm_perror("clmlock");
}

Setting an LVB When Converting an EX or PW Lock
Programming Locking Applications 3-11

Using CLM Locking Model API Routines
Manipulating the Lock Value Block

3-1
You can modify a lock value block when down-converting an EX or PW mode lock to a less
restrictive mode using one of the lock open routines. You specify a pointer to the value you
want assigned to the lock value block in the lock status block passed in as a part of the request.
(This pointer must be valid when the LKM_VALBLK flag is set.)

The following example illustrates how to set an LVB when down-converting an EX mode lock
on a lock resource.

#include <cluster/clm.h>

struct lockstatus lksb;

char valblk[16];

strcpy(valblk, "my lvb");

lksb.valblk = &valblk;

status = clmlock(LKM_CRMODE, /* mode */
 &lksb, /* lock status block */
 LKM_CONVERT | LKM_VALBLK, /* flags */
 "RES-A", /* name */
 5, /* namelen */
 ast_func, /* routine to trigger ast */
 0, /* astargs */
 0);
if (status != CLM_NORMAL)
{
 clm_perror("clmlock");
}

Invalidating a Lock Value Block

If a client holding an EX or PW mode lock on a lock resource terminates abruptly, the lock
manager sets a flag to notify other clients holding locks on the lock resource that the contents
of the LVB are no longer reliable. This LVB is considered invalid. An LVB is valid when the
lock manager first creates the lock resource, in response to the first lock request, before any
client can assign a value to the LVB.

An application may want to deliberately invalidate an LVB. For example, you can invalidate an
LVB to ensure that other lock holders on a lock resource reset the value of the LVB.

To invalidate an LVB, specify the LKM_INVVALBLK flag when releasing a lock using the
clmunlock routine or when down-converting a lock to a less restrictive mode using one of the
lock open routines. Your application must hold an EX mode or PW mode lock on the lock
resource to invalidate the LVB. If you hold a less restrictive lock (lower than PW mode), your
request is ignored.

The following example illustrates how to invalidate an LVB when down converting an EX
mode lock on a lock resource.
2 Programming Locking Applications

Using CLM Locking Model API Routines
Manipulating the Lock Value Block
#include <cluster/clm.h>

struct lockstatus lksb;

status = clmlock(LKM_CRMODE, /* mode */
 &lksb, /* lock status block */
 LKM_CONVERT | LKM_INVVALBLK, /* flags */
 "RES-A", /* name */
 5, /* namelen */
 ast_func, /* routine to trigger ast */
 0, /* astargs */
 0);
if (status != CLM_NORMAL)
{
 clm_perror("clmlock");
}

Using Lock Value Blocks

The purpose of the lock value block is to provide a client application with a small amount of
state information that is guaranteed to be consistent throughout the cluster. Applications can use
the storage provided by the LVB for any purpose.

Implementing a Local Disk Cache

For example, an application can use a lock value block to implement local disk caches across a
number of different nodes that share access to a common disk. In a local cache scheme, each
node maintains a copy of the disk blocks in local memory to speed access to the data on the
common disk. To make sure that each system always accesses the most up-to-date copy of the
disk block in its cache, an application acquires a lock on each disk block in the cache.

When the application references a disk block from the cache, it acquires the lock associated
with that block and it keeps a record of the current value of the lock value block. When an
application modifies the disk block, it changes the value in the lock value block. The next time
the application accesses the disk block, it reads the value of the lock value block and compares
it to the value that it stored previously. If the values differ, the application knows the disk block
has been modified, that the copy of the disk block it has in its cache is invalid, and that it must
read the up-to-date contents of the disk block from disk.

Implementing Cluster-Global Counters

One specialized use of lock value blocks is to implement a cluster-global counter, called a
System Commit Number (SCN). Databases can use the SCN to provide unique identifying
numbers to database transactions; these numbers help track database transactions. To facilitate
the implementation of such a counter, the lock manager includes a routine, called the
clm_scnop routine, that allows you to manipulate the LVB associated with a lock resource
directly.

Using the standard CLM locking model interface, you would need two separate lock operations
to manipulate an SCN: one operation to acquire an exclusive lock on the lock resource and
another lock request to modify the LVB (by down-converting the lock to a less restrictive
mode). Using the clm_scnop routine, you can modify the value of the SCN without making any
calls to the lock routines, avoiding the overhead incurred by a lock request. (You must make
one call to the one of the lock open routines to acquire a NL lock on the lock resource that stores
the SCN. You can use any lock resource to store the SCN.)
Programming Locking Applications 3-13

Using CLM Locking Model API Routines
Handling Returned Status Codes

3-1

ails.
alid,

:

ith
.

tines:

to
e

e.

r
 of
Note: Do not use the clm_scnop routine to modify the LVB associated with
lock resources other than the lock resource used to store the SCN.
Bypassing the standard lock interface could compromise the integrity
of your application’s locking scheme.

As with the LVB associated with any lock resource, the SCN is marked invalid if a node f
If the clm_scnop routine retrieves or attempts to change the value of an SCN marked inv
it returns the status CLM_VALNOTVALID. To reset an invalidated SCN, call the clm_scnop
routine specifying the SCN_SET operation.

Handling Returned Status Codes
The global variable clm_errno is declared as the enumerated type clm_stats_t, which is
defined in the /usr/include/cluster/clm.h include file. Specify it in your application as follows

clm_stats_t clm_errno;

The enumerated type clm_stats_t is made up of all the status codes returned by the lock
manager API routines, both the CLM locking model and UNIX locking model routines. As w
the standard AIX global variable errno, the value of clm_errno is set by the last lock operation

To facilitate the printing of error status messages, the CLM API includes the following rou

clm_perror Writes a message you specify to standard error. Appended to the
message is the status code returned by the last CLM API routine
execute. The clm_perror routine obtains the value of the status cod
from the global variable clm_errno.

clm_errmsg Returns a pointer to a printable version of the CLM API status cod
The status codes that make up the clm_stats_t enumerated type are
constants, not printable character strings. This routine is useful fo
applications that format their own status return messages (instead
using the clm_perror routine).
4 Programming Locking Applications

UNIX Locking Model
Lock Regions

 which
tead, it
n a
o not

 that

nd the
lease

cesses
e lock.
4

Chapter 4 UNIX Locking Model

This chapter presents the concepts you need to understand to use UNIX locks effectively in an
application. Chapter 5, Using UNIX Locking Model API Routines, describes how to use the
UNIX locking model API routines to implement locking in an application.

Lock Regions
UNIX System V locks support the concept of lock regions. An application first registers, or
creates, a lock resource with the lock manager by giving the lock resource a name. Then, when
it wants to lock this lock resource, the application specifies a range of locations that should be
locked and links this region to the lock resource name. For example, an application could create
a resource called “Record-A” and then lock locations 100 through 200 in Record-A.

UNIX Lock Region

The lock manager does not maintain distinct lock objects. Rather, it keeps a database of
regions of the resource are locked. The lock manager does not keep locks separate. Ins
coalesces overlapping locks of the same mode. If an application has an exclusive lock o
region from 0 to 10 and then obtains another exclusive lock on the region from 11 to 20, d
assume that two locks exist. Rather, consider the region from 0 to 20 locked.

Likewise, a request to unlock range 0 to 100 unlocks all the regions within those bounds
are currently locked by the client requesting the unlock.

For example, assume that a client has two locks. The first is a shared lock from 0 to 25 a
second is a shared lock from 50 to 75. A request to unlock the region from 0 to 75 would re
both locks.

Lock Modes
A lock mode indicates whether a process wants to share access to a region with other pro
or whether it wants to prevent other processes from accessing that region while it holds th
A lock request always specifies a lock mode as part of that request.

A UNIX lock can either be shared or exclusive.
Programming Locking Applications 4-1

UNIX Locking Model
Lock States

4-2

ill not
uests a
y the

 same
s the
ested
k on
Shared

A shared lock is the traditional read lock. Multiple applications can simultaneously request
shared locks on the same region.

Exclusive

An exclusive lock is the traditional write lock. If an application wants to prevent any other
application from accessing a lock resource, it can request an exclusive lock. Only one
application at a time can possess an exclusive lock on a region.

A request for an exclusive lock blocks if another application has a current lock on the specified
region.

Once the lock manager grants an exclusive lock, all successive lock requests on that region fail
or block until the exclusive lock is released.

Lock States
A lock state indicates the current status of a lock request. A UNIX lock request is either
GRANTED or BLOCKED.

Granted

An application has acquired a lock on the desired region at the desired lock mode.

Blocked

An application is unable to acquire a lock on the requested region at the requested mode,
because a conflicting lock is currently granted on that region. A blocked lock cannot be granted
until the conflicting lock is released or downgraded to a compatible mode. For example, an
exclusive lock blocks all other lock requests. A shared lock does not block a request for a shared
lock but does block a request for an exclusive lock.

A client’s own locks are transparent in that the locks the client has previously requested w
block the client’s current request. Instead, the old locks are discarded. When a client req
lock, the lock manager releases any existing locks held by that client that are overlaid b
new request, regardless of the mode of those locks.

For example, assume that a client has an exclusive lock on a region from 50 to 75. That
client requests an exclusive lock on the region from 0 to 100. The lock manager release
lock on region 50 to 75, and grants the lock on region 0 to 100. Had a different client requ
the lock on 0 to 100, that request would have been blocked, waiting for the exclusive loc
50 to 75 to be released.
Programming Locking Applications

Using UNIX Locking Model API Routines
Overview
5

Chapter 5 Using UNIX Locking Model API
Routines

This chapter describes how to use UNIX locking model API routines in an HACMP for AIX
application. Chapter 7, Lock Manager API Routines, provides reference information on the
routines discussed in this chapter.

Overview
Use the UNIX locking services by making requests from an application. You can:

• Register (create) lock resources

• Acquire locks on the lock resources you create

• Release locks held on a lock resource

• Handle returned status codes

• Purge all the locks held by a particular client, if necessary

To perform these tasks, applications use the routines in the UNIX locking model API to make
requests to the lock manager. For example, to request a lock on a lock resource, an application
would use the clmregionlock routine.

The following sections describe how to perform these primary locking tasks, including any
ancillary tasks that may be required.

Prerequisites
This section describes the header files you must include in your application to use the UNIX
locking model API routines, the libraries with which you must link your application and the
primary data structure used by the routines.

Header Files

To use the UNIX locking model API routines, you must specify the following include directive:

#include <cluster/clm.h>

The /usr/include/cluster/clm.h file defines the constants, data structures, status codes, and
flags used by the CLM locking model API.

To use the clmregionlock routine, you must also include the following system include file:

#include <sys/file.h>

Library Files

The HACMP for AIX software includes separate libraries for multi-threaded and for
single-threaded applications. Be sure to link with the appropriate library for your application.
Programming Locking Applications 5-1

Using UNIX Locking Model API Routines
Registering a Lock Resource

5-2
Single-threaded Applications

Specify the following libraries when you invoke the linkage editor for a single-threaded
application:

-lclm -lclstr

The libclm.a library contains the routines that support the Cluster Lock Manager. The libclstr.a
library contains the routines that support the Cluster Manager.

If your application uses the services of the Cluster Information Program (Clinfo), you must also
include the libcl.a library.

Multi-threaded Applications

Specify the following libraries when you invoke the linkage editor for a multi-threaded
application:

-lclm_r -lclstr_r

The libclm_r.a library contains the routines that support the Cluster Lock Manager. The
libclstr_r.a library contains the routines that support the Cluster Manager.

If your application uses the Clinfo services, you must also include the libcl_r.a library.

Data Structure

The UNIX locking model API uses a data structure, called the lock resource handle, defined
in the /usr/include/cluster/clm.h include file.

The clmregister routine returns a resource handle to the application. A resource handle is a
union data type that has the following format:

union clm_rh {
unsigned long rh;
struct {
unsigned char site;
unsigned char type;
unsigned short cookie;
} handle;

};

Registering a Lock Resource
A lock resource is a range of locations you can lock. A lock resource can represent any entity,
such as a file, a data structure, a database, or an executable routine. In fact, a lock resource is
nothing more than a name. The name does not have to correspond to an actual object.

clmregister Routine

Before locking a lock resource, you must first register, or create, that lock resource. You
register a lock resource by calling the clmregister routine with the name of the lock resource
you want to lock. The lock resource name is a null-terminated string of no more than 255 ASCII
characters.
Programming Locking Applications

Using UNIX Locking Model API Routines
Locking a Lock Resource
Resource Handles

The clmregister routine returns a lock resource handle to the calling routine. A lock resource
handle is a 32-bit integer that describes a lock resource. The lock manager uses lock resource
handles to efficiently look up lock resources.

You must use this resource handle in any subsequent lock and unlock requests that refer to that
lock resource.

Locking a Lock Resource
Use the clmregionlock routine to lock a lock resource region. Supply the following information
with the clmregionlock routine:

• The resource handle returned from an earlier call to clmregister that registered the resource

• The lower bound of the region you want to lock

• A length that indicates the extent of that region

• A flag that indicates the type of lock: either shared or exclusive.

If there are currently no locks on the lock resource or if the requested mode is compatible with
the modes of the current locks, the lock manager grants the lock and returns immediately with
a status of CLM_NORMAL.

If the requested mode is incompatible with the mode of a current lock, the lock manager marks
the request as blocked and does not return until the lock is granted. Using a flag to the
clmregionlock routine, you can mark a lock request, either shared or exclusive, as
non-blocking. This indicates that the request should return with an error status if it cannot be
granted immediately.

Unlocking a Resource
Use the clmregionlock routine to unlock a region. Any regions currently locked by the
application making the request that overlap the region specified in the unlock request are
released.

Supply the following information with the clmregionlock routine:

• The resource handle

• The lower bound of the region you want to unlock

• A length that indicates the extent of that region

• A flag that indicates that this is an unlock request

The lock manager releases the lock and returns with a status of CLM_NORMAL.
Programming Locking Applications 5-3

Using UNIX Locking Model API Routines
Handling Returned Status Codes

5-4
Handling Returned Status Codes
The global variable clm_errno is declared as the enumerated type clm_stats_t, which is
defined in the /usr/include/cluster/clm.h include file. Specify it in your application as follows:

clm_stats_t clm_errno;

The enumerated type clm_stats_t is made up of all the status codes returned by the lock
manager API routines, both the CLM locking model and UNIX locking model routines. As with
the standard AIX global variable errno, the value of clm_errno is set by the last lock operation.

To facilitate the printing of error status messages, the UNIX locks API includes the following
routines:

Purging Locks
The Cluster Lock Manager clm_purge routine can be used to facilitate releasing UNIX locks.
The clm_purge routine releases all locks owned by a particular process, identified by its
process ID.

When a client process terminates while holding one or more locks, the lock manager purges any
locks held by that client process.

clm_perror Writes a message you specify to standard error. Appended to the
message is the status code returned by the last UNIX API routine to
execute. The clm_perror routine obtains the value of the status code
from the global variable clm_errno.

clm_errmsg Returns a pointer to a printable version of the UNIX API status code.
The status codes that make up the clm_stats_t enumerated type are
constants, not printable character strings. This routine is useful for
applications that format their own status return messages (instead of
using the clm_perror routine).
Programming Locking Applications

Tuning the Cluster Lock Manager
Overview
6

Chapter 6 Tuning the Cluster Lock Manager

This chapter describes tuning lock manager behavior to optimize lock throughput. The chapter
also describes how to obtain statistics about lock resources.

Overview
To make optimal use of system resources and maximize performance, the Cluster Lock
Manager can dynamically change the node on which a lock resource is mastered. By moving a
lock resource master, the lock manager can avoid the overhead of continually accessing a
remote lock master across the network. However, moving the master copy of a lock resource
from one node to another incurs its own overhead. To avoid unnecessary migrations, the lock
manager considers several factors before moving a lock resource master which you can tune to
obtain optimal performance.

The parameters that you can use to tune lock migration throughout the cluster are the following:

• Specifying the frequency of migration evaluations, that is, how often the lock manager
checks if migration is needed

• Specifying how much the lock manager should consider historical access patterns in its
calculations

In addition to these two cluster-wide tuning parameters, the lock manager also allows
applications to request that certain lock resources stay on a particular node by specifying the
stickiness value of the lock resource.

Migration Evaluation Frequency

To determine when to move a lock resource master, the lock manager monitors lock resource
access patterns. These migration evaluations are triggered when the total number of accesses to
a lock resource reaches a threshold.

You can control how often the lock manager performs these migration evaluations by
specifying this evaluation threshold. If you specify a high value for the migration evaluation
threshold, the lock manager performs fewer lock migrations. While this can reduce the
overhead incurred by the evaluations, it makes the lock manager less responsive to changing
access patterns. For more information, see Specifying the Frequency of Migration Evaluations
on page 6-2.

Historical Access Patterns

The lock manager moves a lock resource master when access patterns indicate that a remote
node is using the lock resource more than the local node. However, this access pattern may be
atypical. The lock manager may move a lock resource master only to have to move it back again
at the next evaluation. To avoid moving lock resource masters to and from the same node, the
lock manager includes previous access patterns in its migration calculations. In this way, the
lock manager can balance the impact of atypical patterns and avoid spurious migrations.
Programming Locking Applications 6-1

Tuning the Cluster Lock Manager
Specifying the Frequency of Migration Evaluations

6-2
You can specify how much these historical access patterns influence the migration calculation
by setting the rate at which the lock manager discounts these values. This value, called the
decay rate, specifies the percentage of the past access rates the lock manager includes in its
migration calculations. If you specify a high decay rate, the lock manager puts more emphasis
on past access patterns when making a migration evaluation. Emphasizing past access patterns
lessens the impact of current access patterns and can make lock resource master migrations less
likely. For more information, see Specifying the Decay Rate on page 6-5.

Stickiness Attribute

To avoid performing unnecessary lock resource master migrations, the lock manager gives the
local node the advantage in migration calculations by adding 50% of the sum of the remote
access rates to the local access rate. This addition tends to make the local access rate higher than
any remote access rate, preventing migrations.

For individual lock resources, you can control how much of an advantage the lock manager
gives the local node by specifying a value for the stickiness attribute of a lock resource. The
stickiness attribute specifies what percentage of the sum of the remote access rates the lock
manager adds to the local access rate when it performs migration evaluations. You can specify
any value between 0 and 100. A stickiness value of 100 specifies that the lock manager add the
sum of all remote access rates to the local access rate, guaranteeing that the local access rate
will always at least match the highest remote access rate, preventing lock resource master
migrations.

Note that the stickiness attribute is not a global parameter; it affects only a single lock resource.
For more information, see Specifying the Stickiness Value of a Lock Resource on page 6-9.

Specifying the Frequency of Migration Evaluations
To control when the lock manager performs migration evaluations, specify the total number of
accesses that trigger an evaluation in the evaluation threshold parameter. You can specify any
positive integer as the value of this parameter.

For example, consider a cluster made up of two nodes (A and B) that share access to a common
lock resource. The table summarizes the lock access patterns that result if you specify an
evaluation threshold of 10.
Programming Locking Applications

Tuning the Cluster Lock Manager
Specifying the Frequency of Migration Evaluations
Sample Access Patterns

The following figure graphically presents the access data in the above table. The figure also
includes a graph that indicates when these access patterns would cause lock resource master
migrations. In the example, the lock resource master starts out on Node A and migrates to Node
B at the first evaluation point (Eval1) because the access rate from Node B is greater than the
access rate from Node A. The lock resource master stays on Node B until the third evaluation
point (Eval3) when accesses from Node A exceed those from Node B.

Note: This example is provided to illustrate the concept of lock resource
master migration. The example does not include the other factors, such
as historical access patterns, that the lock manager also considers when
making a migration decision.
Programming Locking Applications 6-3

Tuning the Cluster Lock Manager
Specifying the Frequency of Migration Evaluations

6-4
Lock Resource Master Migrations Caused by Sample Access Patterns

Using SMIT to Specify the Evaluation Threshold

You can specify the evaluation threshold using the HACMP for AIX SMIT menu. From the
main menu, select Cluster Configuration > Cluster Resources > Change/Show Cluster
Lock Manager Resource Allocation. SMIT displays a screen with the following two options:

You can also specify this value by using the -r flag with the cllockd command. For more
information, see the man page for the cllockd command.

You can also specify this value using the startsrc command by using the -a flag to pass the -r
flag as a subsystem argument string. The startsrc command passes the -r argument to the lock
manager when it starts the subsystem. The first node to complete its node_up processing sets
the value of the global tuning parameter. Once this node is up, you must use the
clm_setglobparams routine to change the value of this global tuning parameter.

Lock Tuning Statistic
Recalculation Rate

Enter the value of the evaluation threshold.

Lock Tuning Statistic
Decay Rate

Specify a decay rate value (see page 6-8). If you have no
value to enter, leave the default value, 0.875.
Programming Locking Applications

Tuning the Cluster Lock Manager
Specifying the Decay Rate
Note: Even if you are updating only a single field on the Change Resource
Allocation screen, you must enter a value for each field on the screen.
You can enter the default values shown on the screen above for the
fields you are not updating.

Specifying the Evaluation Threshold from within an Application

Use the following routines to read or set the value of the evaluation threshold from within an
application:

Both routines accept a single argument: the address of a clm_globparams_t structure. When
used with the clm_getglobparams routine, the lock manager writes the current values of the
parameters in this structure. When used with the clm_setglobparams routine, applications use
this structure to specify the desired values of the global parameters. This data structure has the
following format:

typedef struct clm_globparams {
unsigned cg_valid;
unsigned cg_recalc_time;
float cg_decay_rate;

} clm_globparams_t;

The content of the fields varies depending on which routine they are used with.

Specifying the Decay Rate
To determine how much emphasis the lock manager puts on historical access patterns, specify
the rate at which the lock manager discounts these values in the decay rate parameter. This
value indicates the percentage of the past access patterns the lock manager includes in its lock
resource master migration calculations. You can specify any value between 0.0 and 1.0 for this
parameter.

clm_getglobparams Retrieves the current settings of the lock manager global parameters.

clm_setglobparams Assigns a value to the lock manager global parameters.

cg_valid Indicates which fields in the clm_globparams_t structure contain
valid data. This field is only used when specifying the value of the
global parameters with the clm_setglobparams routine to specify the
values of global parameters. When the clm_getglobparams routine
returns successfully, both fields can be assumed to be valid.

cg_recalc_time Used to specify the desired evaluation threshold value, when used
with the clm_setglobparams routine. Contains the current value of
the evaluation threshold, after the clm_getglobparams routine
returns successfully.
Programming Locking Applications 6-5

Tuning the Cluster Lock Manager
Specifying the Decay Rate

6-6
To illustrate decay rates, the following table presents the same access patterns as the table on
page 6-3. This time, however, historical access patterns are factored in at various decay rates
(.25, .50, .75, and 1.0). As in the earlier table, the evaluation threshold is set at 10 accesses.

Sample Access Patterns Decayed at Various Rates

For example, consider evaluation point 3 (Eval3). The lock resource master is on Node B. The
access rate on Node A is 1.2; the access rate on Node B is .8. To these current access rates, the
lock manager adds various portions of the past access rates, determined by the various decay
rates. At evaluation point 3 on Node A, at a decay rate of .50, the lock manager adds the past
access rate, reduced by 50%, to the current access rate, resulting in the decayed access rate of
1.83.

To show how these decay rates affect lock resource master migration, the following figure
graphically presents these access patterns and the migrations they trigger at each decay rate.
Note how high decay rates tend to make lock resource master migrations happen less
frequently.
Programming Locking Applications

Tuning the Cluster Lock Manager
Specifying the Decay Rate
Lock Resource Master Migrations Caused by Decayed Sample Access Patterns
Programming Locking Applications 6-7

Tuning the Cluster Lock Manager
Specifying the Decay Rate

6-8
Using SMIT to Specify the Decay Rate

You can specify the decay rate using the HACMP for AIX SMIT menu. From the main menu,
select Cluster Configuration > Cluster Resources > Change/Show Cluster Lock Manager
Resource Allocation. SMIT displays a screen with the following two options:

Assign the value of the decay rate to the Lock Tuning Statistic Decay Rate field. Specify a
value between 0.0 and 1.0.

You can also specify the lock resource migration decay rate using the -D flag to the cllockd
command. For more information, see the manpage for the cllockd command.

You can also specify this value using the startsrc command by using the -a flag to pass the -D
flag as a subsystem argument string. The startsrc command passes the -D argument to the lock
manager when it starts the subsystem. The first node to complete its node_up processing sets
the value of the global tuning parameter. Once this node is up, you must use the
clm_setglobparams routine to change the value of this global tuning parameter.

Note: Even if you are updating only a single field on the Change Resource
Allocation screen, you must enter a value for each field on the screen.
You can enter the default values shown on the screen above for the
fields you are not updating.

Specifying the Decay Rate from within an Application

Use the following routines to read or set the value of the decay rate from within an application:

Both routines accept a single argument: the address of a clm_globparams_t structure. When
used with the clm_getglobparams routine, the lock manager writes the current values of the
parameters in this structure. When used with the clm_setglobparams routine, applications use
this structure to specify the desired values of the global parameters. This data structure has the
following format:

typedef struct clm_globparams {
unsigned cg_valid;
unsigned cg_recalc_time;
float cg_decay_rate;

} clm_globparams_t;

Lock Tuning Statistic
Recalculation Rate

Enter the rate or leave the default value of 9999999 in the
field. (See page 6-4.)

Lock Tuning Statistic
Decay Rate

Specify a decay rate value between 0.0 and 1.0. If you
have no value to enter, leave the default value, 0.875.

clm_getglobparams Retrieves the current settings of the lock manager global parameters.

clm_setglobparams Assigns a value to the lock manager global parameters.
Programming Locking Applications

Tuning the Cluster Lock Manager
Specifying the Stickiness Value of a Lock Resource
The contents of the fields varies depending on which routine they are used with.

Specifying the Stickiness Value of a Lock Resource
To control the migration behavior of an individual lock resource, assign a value to the stickiness
attribute of the lock resource. You can assign any value between 0 and 100. This value
determines the percentage of the sum of the remote access rates the lock manager adds to the
local access rate to give the local node the advantage in migration calculations. A stickiness
value of 100 guarantees that the lock resource remains on the local node. By default, the lock
manager adds 50% of the sum of the remote access rates to the local access rate.

To illustrate how the stickiness attribute can affect lock resource master migration, consider a
cluster configuration in which three nodes (A, B, and C) access the same lock resource. The
lock resource is mastered on Node A and the stickiness attribute of the lock resource is set at
100. The following table describes the access patterns from each node at an evaluation point.

Given these access rates, the lock manager would move the lock resource to Node B which has
the highest access rate. However, because the stickiness attribute of the lock resource is set to
100, the lock manager adds the sum of all the remote access rates to the local access rate before
making the migration determination. In this case, the lock manager would add 20, the sum of
the access rates from Node B and Node C, to the local access rate. This addition increases the
local access rate to 23, making it greater than the highest access rate of any of the remote nodes.
This ensures that the lock resource remains on the local node.

You specify the value of the stickiness attribute using the following routines:

Both routines accept a single argument: the address of a clm_resparams_t structure. When
used with the clm_getresparams routine, the lock manager writes the current values of the
attribute in this structure. When used with the clm_setresparams routine, applications use this
structure to specify the desired value of the attribute. The data structure has the following
format:

cg_valid Indicates which fields in the clm_globparams_t structure contain
valid data. This field is only used when specifying the value of the
global parameters with the clm_setglobparams routine to specify the
values of global parameters. When the clm_getglobparams routine
returns successfully, both fields can be assumed to be valid.

cg_decay_rate Used to specify the desired decay rate value, when used with the
clm_setglobparams routine. Contains the current value of the decay
rate, after the clm_getglobparams routine returns successfully.

Node: Node A Node B Node C

Accesses: 3 20 0

clm_getresparams Retrieves the current setting of the lock resource stickiness parameter.

clm_setresparams Assigns a value to the lock resource stickiness parameter.
Programming Locking Applications 6-9

Tuning the Cluster Lock Manager
Obtaining Lock Resource Statistics

6-1
typedef struct {
unsigned cr_valid;
unsigned cr_stickiness;

} clm_resparams_t;

The contents of the fields varies depending on which routine they are used with.

Obtaining Lock Resource Statistics
Lock resource statistics provide information about the usage of a particular lock resource. How
the resource statistics are used is completely up to the client application. You use the
clm_getstats routine in your application to obtain these statistics.

The lock resource statistics indicate the number of times specific events have occurred. The
clm_statistics_t structure, which represents the resource statistics information, has the
following format:

typedef struct clm_statistics {
unsigned long cs_requests;
unsigned long cs_local;
unsigned long cs_remote;
unsigned long cs_same;
unsigned long cs_migrations;
unsigned long cs_compat;
unsigned long cs_incompat;
unsigned long cs_downgrade;
float cs_total_aps;
float cs_aps[CLM_MAXNODES];

 } clm_statistics_t;

The locking statistics track four types of information.

• Number and origin of lock requests

• Migrations

• Compatibility

• Accesses-per-second

All the locking statistics that increase incrementally (all the statistics except cs_total_aps and
cs_aps) are defined using the unsigned long datatype which can accommodate values over four
billion before overflowing. The cs_total_aps and cs_aps statistics, which can increase
geometrically depending on the decay rate specified, are defined using the float datatype which
can accommodate values over 3.438 before overflowing.

cr_valid Indicates which of the other fields in the clm_resparams_t structure
contain valid data. This field is only used when setting the value of the
stickiness attribute with the clm_setresparams routine. When the
clm_getresparams routine returns successfully, the stickiness field
can be assumed to be valid.

cr_stickiness Specifies the desired value of the stickiness parameter, when used
with the clm_setresparams routine. Contains the current value of the
stickiness attribute, after the clm_getresparams routine returns
successfully.
0 Programming Locking Applications

Tuning the Cluster Lock Manager
Lock and Lock Resource Limits
Number and Origin of Lock Requests

The following statistics track the number and origin of lock requests on a resource.

Migration of Lock Resources

The cs_migrations statistic indicates the number of times the lock has migrated.

Compatibility of Lock Resources

The following statistics track compatibility issues concerning a lock resource.

Accesses-Per-Second (APS)

These statistics represent the accesses-per-second (aps) figures for a lock resource. The lock
manager calculates these values when it periodically evaluates if the lock resource should be
moved to another cluster node (lock resource master migration).

Note that requests for statistics do not update the accesses per second figures.

Lock and Lock Resource Limits

Lock Manager Kernel Memory Usage

The lock manager kernel extension (cllockd.x) maintains its database of locks and lock
resources in a private kernel segment. As applications request locks, the lock manager
dynamically allocates memory for the lock database from its segment.

cs_requests Number of lock requests on the specified resource

cs_local Number of local lock requests (same node as current lock resource
master node)

cs_remote Number of remote lock requests

cs_same Number of successive lock requests by same node.

cs_compat Number of compatible lock requests (new locks and up-conversions
compatible with existing locks)

cs_incompat Number of incompatible lock requests (incompatible new locks and
up-conversions)

cs_downgrade Number of down-conversions and unlocks.

cs_aps An array that contains the access rates to the lock resource from each
cluster node. These values represent the raw access rate plus the
decayed historical access rate. The ordering of the access rates in the
array corresponds to the alphabetic ordering of the names of cluster
nodes.

cs_total_aps Sum of all the access rates in the cs_aps array.
Programming Locking Applications 6-11

Tuning the Cluster Lock Manager
Lock and Lock Resource Limits

6-1

imits

 300
ximum

178K,

ctical
ple, in
 an

The
:1 or
e

kly the
 started

00 lock

on each
 grants
nst it.

ck
 the
quire
age in
 copies

g the
ost
In AIX, segments are exactly 256 MB. However, only half of the lock manager segment
(128MB) can be used to hold locks and lock resources. The remaining portion of the lock
manager segment must be held in reserve to satisfy transient demands, such as those associated
with remastering locks after a node failure. (Kernel memory is pageable so the amount of
physical memory does not affect lock limits; it does affect performance, however.)

Maximum Acquired Locks Per Node

Given the lock manager’s memory allocation algorithm, you can calculate approximate l
on the number of locks and lock resources an application can acquire.

Each lock resource requires approximately 450 bytes of storage and each lock requires
bytes. Each lock resource must have at least one lock against it. You can calculate the ma
number of locks and lock resources as follows:

Let x = Max no.locks = Max no.resources
450 bytes * x resources + 300 bytes * x locks = 128MB
750x = 128MB
x = 128MB/750
x = 178K locks and 178K lock resources (approximate)

Thus, the maximum number of locks you can acquire on a single node is approximately
where the ratio of locks to lock resources is 1:1.

Realistically, however, there are multiple locks against each lock resource. Thus, the pra
limit on the number of lock resources you can acquire is much less than 178K. For exam
multi-node clusters, the node that maintains the master copy of a lock resource acquires
additional lock against the lock resource for each lock taken on any other cluster node.
lock-to-lock resource ratio on the node maintaining the master copy can quickly reach 3
4:1. To calculate the practical maximum, you must consider the size of the cluster and b
familiar with the locking characteristics of the applications you run.

Example of Kernel Memory Usage

A database program that pre-allocates 150,000 locks when it is started, shows how quic
lock manager’s 128MB limit can be reached when instances of the database program are
on multiple cluster nodes.

On Node A, in a two-node cluster, the database program is started and it requests 150,0
resources, each with a single lock. The lock manager grants these locks.

When another instance of the database program is started on Node B, it requests a lock
of the 150,000 lock resources already created on Node A. On Node B. the lock manager
the locks, allocating kernel memory for 150,000 lock resources, each with one lock agai

On Node A, the lock manager must acquire an additional lock on each of the existing lo
resources. These additional locks represent copies of Node B’s locks. Node A maintains
master copies of these lock resources. However, when the lock manager attempts to ac
these new locks on the 150,000 lock resources, it reaches its 128MB limit for memory us
its segment before it can acquire all the requested locks. The node maintaining the master
of lock resources is the first node to start denying lock requests.

This example illustrates how you must be aware of the locking characteristics of the
applications you intend to run on your cluster. This problem can be remedied by lowerin
number of locks the application pre-allocates. (This is typically a tunable parameter in m
2 Programming Locking Applications

Tuning the Cluster Lock Manager
Lock and Lock Resource Limits

es, the
th each
aster

quests
rmula:

ross
ne node,
d

 to

s the
onf):

database applications.) For example, lowering the number of locks pre-allocated by the
database to 120,000 would allow it to start in a two-node cluster without exceeding the lock
manager’s kernel memory usage limit. However, as the number of cluster nodes increas
number of locks pre-allocated by the database program must be reduced even further. Wi
new node, the ratio of locks to lock resources gets larger on the node maintaining the m
copy of each lock resource.

The number of locks that can be supported in a cluster with N nodes, where each node re
a lock against a specified number of lock resources can be determined by the following fo

128*1024*1024

(450 + N*300)

In round numbers, this gives:

Number of Nodes Number of locks (thousands)

2 127
3 99
4 81
5 68
6 59
7 52
8 46

Migration of lock resources can, over time, even out lock manager memory allocation ac
cluster nodes. As lock resource access patterns cause lock resource masters to move, o
such as Node A in the example, does not need to acquire copies of all the locks acquire
cluster-wide.

When Locks are Denied

When the lock manager reaches its kernel memory usage limit, it returns an error
(CLM_DENIED_NOLOCKS) to the calling application and leaves it up to the application
decide how to handle the failure (wait and retry or exit immediately).

When the lock manager denies a request for a lock on an existing lock resource, it issue
following error to the syslog (if kern.crit or lower priority messages are enabled in syslog.c

Jun 11 17:12:00 nodeA_svc unix: denying request to grow HR>lock tab 1

When the lock manager denies a request for a lock on a new lock resource, it issues the
following error to the syslog:

Jun 11 17:12:00 nodeA_svc unix: kernel memory limit reached

After the above messages, several of the following errors appear:

Jun 11 17:12:00 nodeA_svc unix: get_le: NO MORE LOCKS<HR>
Jun 11 17:12:00 nodeA_svc unix: get_le: NO MORE LOCKS
Programming Locking Applications 6-13

Tuning the Cluster Lock Manager
Lock and Lock Resource Limits

6-1
Lock Value Block Changes

Lock clients now have greater flexibility in updating and invalidating the lock value block
during lock conversion operations.

Previously, lock clients were only allowed to update or invalidate the lock value block during
a down convert from EX mode or PW mode to a less restrictive mode. To get this previous
behavior, lock clients must set the CLM_LVB_OLD environment variable. The value of the
CLM_LVB_OLD environment variable is insignificant.

If LCM_LVB_OLD is not set, lock clients will observe the new behavior of also allowing LVB
updates or invalidating when converting from EX or PW modes to the same mode.
4 Programming Locking Applications

Lock Manager API Routines
Lock Manager Routines
7

Chapter 7 Lock Manager API Routines

This chapter provides reference information on the C language routines used to implement
locking in an HACMP for AIX application.

Lock Manager Routines
The following list summarizes the lock manager API routines, grouped by locking model. The
routines appear in one alphabetical list in this chapter.

CLM Locking Model-Specific Routines

UNIX Locking Model-Specific Routines

ASTpoll Triggers the execution of pending AST routines.

clmlock Makes an asynchronous (non-blocking) request to acquire or convert
a lock on a lock resource.

clmlockx Makes an asynchronous (non-blocking) request to acquire or convert
a lock on a lock resource, and specifies a transaction ID for that lock.

clmlock_sync Acquires or converts a lock on a lock resource and obtains a
synchronous return.

clmlockx_sync Acquires or converts a lock on a lock resource, specifies a transaction
ID for that lock, and obtains a synchronous return.

clmunlock Releases a lock on a lock resource or cancels a lock request that is in
blocked or converting state.

clm_scnop Manipulates the SCN, a specialized use of the lock value block
associated with a lock resource.

clm_setnotify Specifies which signal the lock manager should use to notify your
application of a pending AST.

clmregister Registers a lock resource.

clmregionlock Acquires a lock on a lock resource or releases a lock on a lock
resource.
Programming Locking Applications 7-1

Lock Manager API Routines
ASTpoll Routine

7-2

ith

he
Routines Common to Both Locking Models

The following sections provide reference information about the routines.

ASTpoll Routine

Syntax
int ASTpoll(pid, tid)
int pid;
int tid;

Description

Use the ASTpoll routine to trigger any pending ASTs resulting from the completion of previous
clmlock or clmlockx routine requests or the delivery of blocking ASTs.

Parameters

pid

This argument indicates the process ID of the application having outstanding ASTs or blocking
ASTs. This should be the same process that queued the initial lock requests.

tid

This argument indicates the thread ID of the thread that queued the ASTs.

clm_errmsg Returns a pointer to a printable version of the CLM API status code
for single-threaded applications.

clm_getglobparams Obtains the value of the global lock manager parameters.

clm_getresparams Returns the value of a lock resource’s stickiness attribute.

clm_getstats Obtains statistics on resource usage.

clm_grp_attach Attaches a lock client to an existing lock group.

clm_grp_create Creates a new lock group and associates the lock client process w
the group.

clm_grp_detach Removes a lock client process from an existing lock group.

clm_perror Writes a message you specify to standard error.

clm_purge Releases all locks owned by a particular client, identified by its
process ID.

clm_setglobparams Sets the value of the global lock manager parameters, including t
evaluation threshold and the decay rate.

clm_setresparams Sets the value of the lock resource’s stickiness attribute.
Programming Locking Applications

Lock Manager API Routines
clmlock Routine
Note: Thread support is not fully implemented in this version of the lock
manager. Therefore, you must always specify zero for the thread ID.

Status Codes

The ASTpoll routine returns the number of ASTs successfully invoked. ASTpoll returns 0 if
there is a shared memory error or if there is no client record.

Example

For an example of the ASTPoll routine, see the Sample Locking Application on page 3-6.

clmlock Routine

Syntax
clm_stats_t clmlock(mode, lksb, flags, name, namelen, ast,

astargs, bast)
int mode;
struct lockstatus *lksb;
int flags;
void *name;
unsigned int namelen;
void (*ast)();
void *astargs;
void (*bast)();

Description

Use the clmlock routine to make an asynchronous (non-blocking) request to acquire or convert
a lock on a lock resource. If the lock resource does not exist, the lock manager creates it.

The various lock modes specify different degrees of access to a lock resource. You specify this
mode as a part of the request. These lock modes are described in the Parameters section.

To convert an existing lock to a different mode, you must specify the LKM_CONVERT flag.
You can also control other aspects of lock manager behavior by specifying flags as part of your
request. For more information about the flags supported, see the listing of flags in Parameters
on page 7-2.

The lock manager returns status in two locations: the status value returned by the clmlock
routine and the status field of the lock status block. The status value returned by the clmlock
routine indicates whether the request was accepted by the lock manager. The CLM_NORMAL
status value indicates your request was successfully queued. If your request cannot be queued
because of syntax problems or invalid arguments, your request is aborted and the clmlock
routine returns an error status code. See Status Codes on page 7-3 for a list of these status
values.

A success status from the clmlock routine does not indicate that your request has been granted.
The lock manager reports whether your request was granted (or denied, canceled, or aborted)
asynchronously by queuing for execution the AST routine you specified as an argument. When
the AST routine executes, the lock manager returns the status of the request (whether it was
granted, denied, canceled or aborted) in the status field of the lock status block. The
Programming Locking Applications 7-3

Lock Manager API Routines
clmlock Routine

7-4
CLM_NORMAL status value indicates your request was granted. See Status Codes Returned
in the Lock Status Block on page 7-8 for a list of other possible status values. (For information
about the composition of the lock status block, see Data Structure on page 3-2.)

If your request is queued, the lock manager returns a lock ID, a token that identifies the lock, in
the lock status block. Note that this field in the lock status block is valid before the
asynchronous return reporting on lock status. All subsequent requests concerning the lock, such
as a cancellation request, must identify the lock by its lock ID.

You can also specify an additional AST routine, called a blocking AST routine, that the lock
manager queues for execution when a lock your application holds on a lock resource is blocking
another lock request.

Parameters

mode
The requested lock mode, required for both lock requests and conversion requests. The modes
supported are listed below in order of severity, from least restrictive to most restrictive:

lksb
A pointer to the lock status block (struct lockstatus). Use this data structure to specify the
contents of the lock value block and the timeout value for the request. For a lock conversion
request, you must also use this structure to specify the lock ID of the lock. The lock manager
writes the status of the lock request and the lock ID assigned to the request in the lock status
block. For more information about this structure, see Data Structure on page 3-2.

LKM_NLMODE Does not grant the requesting process any access to the resource, but
indicates future interest in the resource. This acts as a placeholder for
later conversion requests.

LKM_CRMODE Allows the requesting process to read from a resource, and allows
other processes simultaneous read or write access to the same
resource. This allows an unprotected read operation.

LKM_CWMODE Allows the requesting process to read or write to a resource while
other processes simultaneously read or write to the same resource.
This allows an unprotected write operation.

LKM_PRMODE Allows the requesting process to read from a resource while other
processes simultaneously read from the same resource. No processes
can write to the resource while the requesting process holds the lock.
This is an example of a shared lock.

LKM_PWMODE Allows the requesting process to read or write to a resource, and
allows other processes that have concurrent read access to read from
the resource. This is an example of an update lock.

LKM_EXMODE Allows the requesting process to read or write to a resource while it
prevents any other process from accessing that resource.
Programming Locking Applications

Lock Manager API Routines
clmlock Routine
flags
The lock request takes various flags that modify its behavior. The flags supported are listed
alphabetically as follows:

Note: A lock request that specifies the LKM_FINDLOCAL flag
takes longer to complete than a lock request that specifies the
LKM_LOCAL flag, or even a standard lock request. Use this
flag only when you are certain the lock resource specified was
created with the LKM_LOCAL flag.

Note: When you specify the LKM_LOCAL flag, the lock manager
does not check the lock resource directory to determine if the
lock resource is already mastered on a cluster node, as it does
for standard lock requests. Consequently, using this flag, you
can create duplicate masters of lock resources, which can
compromise lock integrity and result in data corruption.

LKM_CONVERT Indicates a lock conversion request.

LKM_FINDLOCAL Used to acquire a lock on an existing local lock resource; that is, a
lock resource created by a previous lock request that specified the
LKM_LOCAL flag. The lock manager queries each cluster node,
looking for the location of the local lock resource. If the lock manager
cannot find the lock resource master on any cluster node, it creates a
new local lock resource. For more information, see Requesting Local
Locks on page 3-8.

Subsequent requests to manipulate the lock require only the lock ID
(not the LKM_FINDLOCAL flag). If the lock request includes the
LKM_CONVERT flag (that is, the request is a conversion), the lock
manager ignores the LKM_FINDLOCAL flag.

LKM_INVVALBLK Allows clients to invalidate the lock value block associated with the
lock resource. If the lock on the lock resource is not a PW or EX
mode lock, the flag is ignored. (You must have a PW or EX mode
lock on a lock resource to modify a lock value block.)

LKM_LOCAL Specifies that the lock manager bypass the lock resource directory
lookup that it normally performs and create the lock resource master
on the local node. The lock resource should not already exist
anywhere in the cluster. Subsequent requests to manipulate this lock
require only the lock ID (and not the LKM_LOCAL flag). If the lock
request includes the LKM_CONVERT flag (that is, the request is a
conversion), the lock manager ignores the LKM_LOCAL flag.
Programming Locking Applications 7-5

Lock Manager API Routines
clmlock Routine

7-6
The LKM_LOCAL flag should only be used to acquire short-lived locks on short-lived
lock resources. If your application must acquire additional locks on a local lock
resource, you must specify the LKM_FINDLOCAL flag when requesting the lock. For
more information about local lock resource, see Requesting Local Locks on page 3-8.

Note: The LKM_SNGLDLCK flag is obsolete but is retained for
backwards compatibility. The lock manager now checks for
self-client deadlock by default.

LKM_NODLCKWT Directs the lock manager to exclude this lock request from
consideration when it periodically performs deadlock detection
processing.

LKM_NOQUEUE Requests that the lock manager not put the lock request on the wait
queue if it cannot be immediately granted. The lock manager returns
the status CLM_NOTQUEUED in the lock status block.

LKM_ORPHAN Requests that the lock manager not purge this lock if the application
fails. Use this flag with great care and only if you have a transaction
recovery process that will eventually remove the orphaned locks.

LKM_PROC_OWNE
D

Directs the lock manager to exclude this lock from the lock group.
This lock is owned by the process and not by the group. Other clients
belonging to the group may not manipulate this lock.

LKM_SNGLDLCK Requests that the lock manager check this lock request for self-client
deadlock.

LKM_SYNCSTS Requests that the lock request return synchronously, if possible. If
the lock manager can grant the request, the clmlock routine returns
the status CLM_SYNC, instead of CLM_NORMAL, and there is no
asynchronous return. If the lock manager cannot grant the request
synchronously, the clmlock routine returns CLM_NORMAL and the
lock manager queues the request as it would any other request.

LKM_TIMEOUT Requests that the lock manager cancel the lock request or lock
conversion request if the request cannot be granted within the time
limit specified in the timeout field of the lock status block. If the time
limit expires, the lock manager cancels the operation and queues the
AST routine which returns the status value CLM_TIMEOUT. You
specify the timeout value in units of hundredths of a second (0.01).
For example, a timeout value of 500 specifies five seconds.
Programming Locking Applications

Lock Manager API Routines
clmlock Routine
name

The name of the requested lock resource. A resource name can contain binary data.

namelen
The length of the lock resource name provided in the name parameter. A resource name cannot
exceed 31 characters.

ast
The address of a function the lock manager queues for execution when it finishes processing
the lock request. Your application triggers the execution of this routine by calling the ASTpoll
routine.

astargs
An argument that is passed to the routine specified by the ast or bast argument when that
function is invoked. Typically used to pass a value that uniquely identifies the lock request
when the status is returned. For example:

void ast_func(void *astargs);

bast (blocking AST)
The address of a function invoked if the requested lock is granted and later blocks another lock
request. The blocking AST routine is called with two arguments: the astargs argument
previously specified, and the requested mode that caused the queuing of the blocking AST
routine. For example:

void bast_func(void *astargs, int mode);

LKM_VALBLK Requests that the lock manager return the current contents of the
lock value block in the lock status block. When this flag is specified
in a lock conversion request that is down-converting a lock from EX
or PW mode to a less restrictive mode, the lock manager assigns the
value specified in the lock status block to the lock value block of the
lock resource. The lock value block is a 16-byte array containing
application-specific information. This information is user-defined
and interpreted by the application. For more information about the
lock value block, see Manipulating the Lock Value Block on page
3-11.
Programming Locking Applications 7-7

Lock Manager API Routines
clmlock Routine

7-8
Status Codes

The status codes returned are listed alphabetically as follows:

)

Status Codes Returned in the Lock Status Block

The status codes returned in the lock status block are listed alphabetically as follows:

CLM_BADARGS One of the following:

The request included the LKM_VALBLK flag but passed a
NULL pointer to the lock status block.

The request passed a NULL pointer to the lock status block.

The request included an invalid flag.

The request passed a NULL lock resource name pointer, but
did not include the LKM_CONVERT flag. (A conversion
request requires a valid lock ID, but does not require a valid
lock resource name.

CLM_BADPARAM The lock mode specified is not a valid lock mode.

CLM_DENIED_NOASTS No more ASTs are available.

CLM_IVBUFLEN The namelen (name length) was less than 1 or greater than 31
characters.

CLM_IVLOCKID The lock ID is invalid.

CLM_NOLOCKMGR A request timed out waiting for a response from the lock
manager. If the lock manager is restarted while it is being used
by a client, the next lock request returns this status.

CLM_NORMAL The lock request completed successfully.

CLM_REJECTED The lock manager does not recognize the client. This occurs if
a lock manager is restarted during a lock session.

CLM_SYNC The lock request included the LKM_SYNCSTS flag and the
lock manager was able to grant it synchronously.

CLM_SYSERR A data format error occurred, indicating a problem with the
network facilities or an internal error with the lock manager.

CLM_ABORT A waiting lock was canceled by a clmunlock call with the
LKM_CANCEL flag set.

CLM_CANCEL A blocked conversion was canceled by a clmunlock call with
the LKM_CANCEL flag set. The lock retains its original
granted mode.
Programming Locking Applications

Lock Manager API Routines
clmlockx Routine
Example

For an example, see the Sample Locking Application on page 3-6.

clmlockx Routine

Syntax
clm_stats_t clmlockx(mode, lksb, flags, name, namelen, ast,

astargs, bast, xid)
int mode;
struct lockstatus *lksb;
int flags;
void *name;
unsigned int namelen;
void (*ast)();
void *astargs;
void (*bast)();
clm_xid_t *xid;

CLM_CVTUNGRANT The request attempted to convert a lock that was blocked in
the WAIT state.

CLM_DEADLOCK The lock manager canceled this request to prevent deadlock
from occurring.

CLM_DENIED The request attempted to convert a lock that was already
blocked on a conversion request.

CLM_DENIED_NOLOCKS Either no more locks or no more resources are available. For
information about the lock manager allocates locks and lock
resources, see Lock and Lock Resource Limits on page 6-11.

CLM_NORMAL The lock request completed successfully.

CLM_NOTQUEUED The request included the LKM_NOQUEUE flag and could
not be satisfied immediately.

CLM_TIMEOUT The timeout expired before this request was able to complete.

CLM_VALNOTVALID The lock request, which included a request for the lock value
block, completed successfully; however, the lock value block
is not valid. This indicates that a client terminated while
holding a lock on the lock resource at the LKM_EXMODE or
LKM_PWMODE mode or that a client invalidated the lock
value block by specifying the LKM_INVVALBLK flag with
the lock routines.
Programming Locking Applications 7-9

Lock Manager API Routines
clmlockx Routine

7-1
Description

Use the clmlockx routine to make an asynchronous (non-blocking) request to acquire or
convert a lock on a lock resource, and specify a transaction ID for that lock. The clmlockx
routine performs the same function as the clmlock routine. See the documentation for the
clmlock routine on page 7-3 for a description of the base functionality.

Additionally, the clmlockx routine accepts a transaction ID (also called an XID or deadlock ID)
as a parameter. Normally, the lock manager assumes the process that created the lock owns the
lock when determining whether a deadlock cycle exists. By specifying a transaction ID, a lock
client can attribute the ownership of a lock to a transaction rather than to a process. For deadlock
detection, therefore, a transaction replaces a process or group as the owner of a lock.

You must specify a transaction ID when calling the clmlockx routine. The transaction ID
should either point to an eight-byte XID value or be NULL. Also, you must also set the
LKM_XID_CONFLICT flag when calling the clmlockx routine. This flag will eventually
control functionality not included in this release.

The lock manager uses the transaction ID parameter only when creating a lock; it ignores this
flag when converting a lock.

A transaction ID does not span nodes. Therefore, the lock manager considers equivalent
transaction IDs on different nodes to be different transaction IDs.

Parameters

mode
The requested lock mode, required for both lock requests and conversion requests. The modes
supported are listed below in order of severity, from least restrictive to most restrictive:

LKM_NLMODE Does not grant the requesting process any access to the resource, but
indicates future interest in the resource. This acts as a placeholder
for later conversion requests.

LKM_CRMODE Allows the requesting process to read from a resource, and allows
other processes simultaneous read or write access to the same
resource. This allows an unprotected read operation.

LKM_CWMODE Allows the requesting process to read or write to a resource while
other processes simultaneously read or write to the same resource.
This allows an unprotected write operation.

LKM_PRMODE Allows the requesting process to read from a resource while other
processes simultaneously read from the same resource. No
processes can write to the resource while the requesting process
holds the lock. This is an example of a shared lock.

LKM_PWMODE Allows the requesting process to read or write to a resource, and
allows other processes that have concurrent read access to read from
the resource. This is an example of an update lock.

LKM_EXMODE Allows the requesting process to read or write to a resource while it
prevents any other process from accessing that resource.
0 Programming Locking Applications

Lock Manager API Routines
clmlockx Routine
lksb
A pointer to the lock status block (struct lockstatus). Use this data structure to specify the
contents of the lock value block and the timeout value for the request. For a lock conversion
request, you must also use this structure to specify the lock ID of the lock. The lock manager
writes the status of the lock request and the lock ID assigned to the request in the lock status
block. For more information about this structure, see page 3-2.

flags
The lock request takes various flags that modify its behavior. The flags supported are listed
alphabetically as follows:

Note: A lock request that specifies the LKM_FINDLOCAL flag
takes longer to complete than a lock request that specifies the
LKM_LOCAL flag, or even a standard lock request. Use this
flag only when you are certain the lock resource specified was
created with the LKM_LOCAL flag.

LKM_CONVERT Indicates a lock conversion request. The lock manager ignores
the xid parameter.

LKM_FINDLOCAL Used to acquire a lock on an existing local lock resource; that
is, a lock resource created by a previous lock request that
specified the LKM_LOCAL flag. The lock manager queries
each cluster node, looking for the location of the local lock
resource. If the lock manager cannot find the lock resource
master on any cluster node, it creates a new local lock
resource. For more information, see Requesting Local Locks
on page 3-8.

Subsequent requests to manipulate the lock require only the
lock ID (not the LKM_FINDLOCAL flag). If the lock request
includes the LKM_CONVERT flag (that is, the request is a
conversion), the lock manager ignores the
LKM_FINDLOCAL flag.

LKM_INVVALBLK Allows clients to invalidate the lock value block associated
with the lock resource. If the lock on the lock resource is not a
PW or EX mode lock, the flag is ignored. (You must have a
PW or EX mode lock on a lock resource to modify a lock
value block.)

LKM_LOCAL Specifies that the lock manager bypass the lock resource
directory lookup that it normally performs and create the lock
resource master on the local node. The lock resource should
not already exist anywhere in the cluster. Subsequent requests
to manipulate this lock require only the lock ID (and not the
LKM_LOCAL flag). If the lock request includes the
LKM_CONVERT flag (that is, the request is a conversion),
the lock manager ignores the LKM_LOCAL flag.
Programming Locking Applications 7-11

Lock Manager API Routines
clmlockx Routine

7-1
Note: When you specify the LKM_LOCAL flag, the lock manager
does not check the lock resource directory to determine if the
lock resource is already mastered on a cluster node, as it does
for standard lock requests. Consequently, using this flag, you
can create duplicate masters of lock resources, which can
compromise lock integrity and result in data corruption.

The LKM_LOCAL flag should only be used to acquire short-lived locks on short-lived
lock resources. If your application must acquire additional locks on a local lock
resource, you must specify the LKM_FINDLOCAL flag when requesting the lock. For
more information about local lock resource, see Requesting Local Locks on page 3-8.

Note: This flag is obsolete but is retained for backwards
compatibility. The lock manager now checks for self-client
deadlock by default.

LKM_NODLCKWT Directs the lock manager to exclude this lock request from
consideration when it periodically performs deadlock detection
processing.

LKM_NOQUEUE Requests that the lock manager not put the lock request on the wait
queue if it cannot be immediately granted. The lock manager
returns the status CLM_NOTQUEUED in the lock status block.

LKM_ORPHAN Requests that the lock manager not purge this lock if the
application fails. Use this flag with great care and only if you have
a transaction recovery process that will eventually remove the
orphaned locks.

LKM_PROC_OWNED Directs the lock manager to exclude this lock from the lock group.
This lock is owned by the process and not by the group. Other
clients belonging to the group may not manipulate this lock.

LKM_SNGLDLCK Requests that the lock manager check this lock request for
self-client deadlock.

LKM_SYNCSTS Requests that the lock request return synchronously, if possible. If
the lock manager can grant the request, the clmlockx routine
returns the status CLM_SYNC, instead of CLM_NORMAL, and
there is no asynchronous return. If the lock manager cannot grant
the request synchronously, the clmlockx routine returns
CLM_NORMAL and the lock manager queues the request as it
would any other request.
2 Programming Locking Applications

Lock Manager API Routines
clmlockx Routine
name
The name of the requested lock resource. A resource name can contain binary data.

namelen
The length of the lock resource name provided in the name parameter. A resource name cannot
exceed 31 characters.

ast
The address of a function the lock manager queues for execution when it finishes processing
the lock request. Your application triggers the execution of this routine by calling the ASTpoll
routine.

astargs
An argument that is passed to the routine specified by the ast or bast argument when that
function is invoked. Typically used to pass a value that uniquely identifies the lock request
when the status is returned. For example:

void ast_func(void *astargs);

bast (blocking AST)
The address of a function invoked if the requested lock is granted and later blocks another lock
request. The blocking AST routine is called with two arguments: the astargs argument
previously specified, and the requested mode that caused the queuing of the blocking AST
routine. For example:

void bast_func(void *astargs, int mode);

LKM_TIMEOUT Requests that the lock manager cancel the lock request or lock
conversion request if the request cannot be granted within the time
limit specified in the timeout field of the lock status block. If the
time limit expires, the lock manager cancels the operation and
queues the AST routine which returns the status value
CLM_TIMEOUT. You specify the timeout value in units of
hundredths of a second (0.01). For example, a timeout value of
500 specifies five seconds.

LKM_VALBLK Requests that the lock manager return the current contents of the
lock value block in the lock status block. When this flag is
specified in a lock conversion request that is down-converting a
lock from EX or PW mode to a less restrictive mode, the lock
manager assigns the value specified in the lock status block to the
lock value block of the lock resource. The lock value block is a
16-byte array containing application-specific information. This
information is user-defined and interpreted by the application. For
more information about the lock value block, see page 3-2.

LKM_XID_CONFLICT Requests that transaction IDs are used only for deadlock
detection. Currently, you must set this flag. The lock manager
returns an error if this flag is not set.
Programming Locking Applications 7-13

Lock Manager API Routines
clmlockx Routine

7-1
xid
A pointer to an eight-byte transaction ID or NULL. A NULL value indicates the lock will be
owned by the process or group.

Status Codes

The status codes returned are listed alphabetically as follows

Status Codes Returned in the Lock Status Block

The status codes returned in the lock status block are listed alphabetically as follows:

CLM_BADARGS One of the following:

The request included the LKM_VALBLK flag but passed a
NULL pointer to the lock status block.

The request passed a NULL pointer to the lock status block.

The request included an invalid flag.

The request passed a NULL lock resource name pointer, but
did not include the LKM_CONVERT flag. (A conversion
request requires a valid lock ID, but does not require a valid
lock resource name.)

CLM_BADPARAM The lock mode specified is not a valid lock mode.

CLM_DENIED_NOASTS No more ASTs are available.

CLM_IVBUFLEN The namelen (name length) was less than 1 or greater than 31
characters.

CLM_IVLOCKID The lock ID is invalid.

CLM_NOLOCKMGR A request timed out waiting for a response from the lock
manager. If the lock manager is restarted while it is being used
by a client, the next lock request returns this status.

CLM_NORMAL The lock request completed successfully.

CLM_REJECTED The lock manager does not recognize the client. This occurs if
a lock manager is restarted during a lock session.

CLM_SYNC The lock request included the LKM_SYNCSTS flag and the
lock manager was able to grant it synchronously.

CLM_SYSERR A data format error occurred, indicating a problem with the
network facilities or an internal error with the lock manager.

CLM_ABORT A waiting lock was canceled by a clmunlock call with the
LKM_CANCEL flag set.
4 Programming Locking Applications

Lock Manager API Routines
clmlockx Routine
Example
clm_stats = status;

status = clmlockx(LKM_CRMODE, /* mode */
 &lksb[which_lock], /* lock status block */
 LKM_VALBLK,
 "RES-A", /* name */
 5, /* namelen */
 ast_func, /* ast routine */
 &astarg, /* astargs */
 0, /* bast */
 &xid); /* transaction id */

CLM_CANCEL A blocked conversion was canceled by a clmunlock call with
the LKM_CANCEL flag set. The lock retains its original
granted mode.

CLM_CVTUNGRANT The request attempted to convert a lock that was blocked in the
WAIT state.

CLM_DEADLOCK The lock manager killed this request to prevent deadlock from
occurring.

CLM_DENIED The request attempted to convert a lock that was already
blocked on a conversion request.

CLM_DENIED_NOLOCKS Either no more locks or no more resources are available. For
information about the lock manager allocates locks and lock
resources, see Lock and Lock Resource Limits on page 6-11.

CLM_NORMAL The lock request completed successfully.

CLM_NOTQUEUED The request included the LKM_NOQUEUE flag and could not
be satisfied immediately.

CLM_TIMEOUT The timeout expired before this request was able to complete.

CLM_VALNOTVALID The lock request, which included a request for the lock value
block, completed successfully; however, the lock value block
is not valid. This indicates that a client terminated while
holding a lock on the lock resource at the LKM_EXMODE or
LKM_PWMODE mode or that a client invalidated the lock
value block by specifying the LKM_INVVALBLK flag with
the lock routines.
Programming Locking Applications 7-15

Lock Manager API Routines
clmlock_sync Routine

7-1

tion.

lag.
f your
eters

The
uest

ted and
 a list

eled or
ates
or a list
block,

 modes
clmlock_sync Routine

Syntax
clm_stats_t clmlock_sync(mode, lksb, flags, name, namelen,
bastargs, bast)
int mode;
struct lockstatus lksb;
int flags;
void *name;
unsigned int namelen;
void *bastargs;
void (*bast)(void *);

Description

Use the clmlock_sync routine to acquire or convert a lock on a lock resource and obtain a
synchronous return. If the lock resource does not exist, the lock manager creates it.

A synchronous request performs the same function as an asynchronous request, but does not
return control to the calling process until the request is resolved. The calling process does not
have to poll for an AST; it simply waits until the request returns.

Since the clmlock_sync routine does not use an AST to signal completion, it does not require
a pointer to an ast function as an argument.

The various lock modes specify different degrees of access to a lock resource. You specify this
mode as a part of the request. These lock modes are described in the “Parameters” sec

To convert an existing lock to a different mode, you must specify the LKM_CONVERT f
You can also control other aspects of lock manager behavior by specifying flags as part o
request. For more information about the flags supported, see the listing of flags in Param
on page 7-2.

The lock manager returns status in two locations: the status value returned by the clmlock_sync
routine and the status field of the lock status block. The status value returned by the
clmlock_sync routine indicates whether the request was accepted by the lock manager.
CLM_NORMAL status value indicates your request was successfully queued. If your req
cannot be queued because of syntax problems or invalid arguments, your request is abor
the clmlock_sync routine returns an error status code. See Status Codes on page 7-3 for
of these status values.

The lock manager returns the status of the request (whether it was granted, denied, canc
aborted) in the status field of the lock status block. The CLM_NORMAL status value indic
your request was granted. Status Codes Returned in the Lock Status Block on page 7-8 f
of other possible status values. (For information about the composition of the lock status
see Data Structure on page 3-2.)

Parameters

mode
The requested lock mode, required for both lock requests and conversion requests. The
supported are listed below in order of severity, from least restrictive to most restrictive:
6 Programming Locking Applications

Lock Manager API Routines
clmlock_sync Routine
LKM_NLMODE
Does not grant the requesting process any access to the resource, but indicates future
interest in the resource. This acts as a placeholder for later conversion requests.

LKM_CRMODE
Allows the requesting process to read from a resource, and allows other processes
simultaneous read or write access to the same resource. This allows an unprotected read
operation.

LKM_CWMODE
Allows the requesting process to read or write to a resource while other processes
simultaneously read or write to the same resource. This allows an unprotected write
operation.

LKM_PRMODE
Allows the requesting process to read from a resource while other processes simultaneously
read from the same resource. No processes can write to the resource while the requesting
process holds the lock. This is an example of a shared lock.

LKM_PWMODE
Allows the requesting process to read or write to a resource, and allows other processes that
have concurrent read access to read from the resource. This is an example of an update lock.

LKM_EXMODE
Allows the requesting process to read or write to a resource while it prevents any other
process from accessing that resource.

lksb
A pointer to the lock status block (struct lockstatus). Use this data structure to specify the
contents of the lock value block and the timeout value for the request. For a lock conversion
request, you must also use this structure to specify the lock ID of the lock. The lock manager
writes the status of the lock request and the lock ID assigned to the request in the lock status
block. For more information about this structure, see Data Structure on page 3-2.

flags
The lock request takes various flags that modify its behavior. The flags supported are listed
alphabetically as follows:

LKM_CONVERT
Indicates a lock conversion request.

LKM_FINDLOCAL
Used to acquire a lock on an existing local lock resource; that is, a lock resource created by
a previous lock request that specified the LKM_LOCAL flag. The lock manager queries
each cluster node, looking for the location of the local lock resource. If the lock manager
cannot find the lock resource master on any cluster node, it creates a new local lock
resource. For more information, see Requesting Local Locks on page 3-8.

Subsequent requests to manipulate the lock require only the lock ID (not the
LKM_FINDLOCAL flag). If the lock request includes the LKM_CONVERT flag (that is,
the request is a conversion), the lock manager ignores the LKM_FINDLOCAL flag.
Programming Locking Applications 7-17

Lock Manager API Routines
clmlock_sync Routine

7-1
Note: A lock request that specifies the LKM_FINDLOCAL flag takes
longer to complete than a lock request that specifies the
LKM_LOCAL flag, or even a standard lock request. Use this flag
only when you are certain the lock resource specified was created
with the LKM_LOCAL flag.

LKM_INVVALBLK
Allows clients to invalidate the lock value block associated with the lock resource. If the
lock on the lock resource is not a PW or EX mode lock, the flag is ignored. (You must have
a PW or EX mode lock on a lock resource to modify a lock value block.)

LKM_LOCAL
Specifies that the lock manager bypass the lock resource directory lookup that it normally
performs and create the lock resource master on the local node. The lock resource should
not already exist anywhere in the cluster. Subsequent requests to manipulate this lock
require only the lock ID (and not the LKM_LOCAL flag). If the lock request includes the
LKM_CONVERT flag (that is, the request is a conversion), the lock manager ignores the
LKM_LOCAL flag.

Note: When you specify the LKM_LOCAL flag, the lock manager does
not check the lock resource directory to determine if the lock
resource is already mastered on a cluster node, as it does for
standard lock requests. Consequently, using this flag, you can
create duplicate masters of lock resources, which can
compromises lock integrity and result in data corruption.

The LKM_LOCAL flag should only be used to acquire short-lived locks on short-lived
lock resources. If your application must acquire additional locks on a local lock resource,
you must specify the LKM_FINDLOCAL flag when requesting the lock. For more
information about local lock resource, see Requesting Local Locks on page 3-8.

LKM_NODLCKWT
Directs the lock manager to exclude this lock request from consideration when it
periodically performs deadlock detection processing.

LKM_NOQUEUE
Requests that the lock manager not put the lock request on the wait queue if it cannot be
immediately granted. The lock manager returns the status CLM_NOTQUEUED in the lock
status block.

LKM_ORPHAN
Requests that the lock manager not purge this lock if the application fails. Use this flag with
great care and only if you have a transaction recovery process that will eventually remove
the orphaned locks.

LKM_PROC_OWNED
Directs the lock manager to exclude this lock from the lock group. This lock is owned by
the process and not by the group. Other clients belonging to the group may not manipulate
this lock.
8 Programming Locking Applications

Lock Manager API Routines
clmlock_sync Routine
LKM_SNGLDLCK
Requests that the lock manager check this lock request for self-client deadlock.

Note: This flag is obsolete but is retained for backwards compatibility.
The lock manager now checks for self-client deadlock by default.

LKM_TIMEOUT
Requests that the lock manager cancel the lock request or lock conversion request if the
request cannot be granted within the time limit specified in the timeout field of the lock
status block. If the time limit expires, the lock manager cancels the operation and queues
the AST routine which returns the status value CLM_TIMEOUT. You specify the timeout
value in units of hundredths of a second (0.01). For example, a timeout value of 500
specifies five seconds.

LKM_VALBLK
Requests that the lock manager return the current contents of the lock value block in the
lock status block. When this flag is specified in a lock conversion request that is
down-converting a lock from EX or PW mode to a less restrictive mode, the lock manager
assigns the value specified in the lock status block to the lock value block of the lock
resource.

The lock value block is a 16-byte array containing application-specific information. This
information is user-defined and interpreted by the application. For more information about
the lock value block, see Data Structure on page 3-2.

name
The name of the requested lock resource. A resource name can contain binary data.

namelen
The length of the lock resource name provided in the name parameter. A resource name cannot
exceed 31 characters.

bastargs
An argument that is passed to the routine specified by the bast argument when that function is
invoked. Typically used to pass a value that uniquely identifies the lock request when the lock
is blocking another lock request. For example:

void bast_func(void *bastargs, int mode);

bast (blocking AST)
The address of a function invoked if the requested lock is granted and later blocks another lock
request. The blocking AST routine is called with two arguments: the bastargs argument
previously specified, and the requested mode that caused the queuing of the blocking AST
routine. For example:

void bast_func(void *bastargs, int mode);
Programming Locking Applications 7-19

Lock Manager API Routines
clmlock_sync Routine

7-2
Status Codes

The status codes returned are listed alphabetically as follows:

CLM_BADARGS
One of the following:

• The request included the LKM_VALBLK flag but passed a NULL pointer to the lock status
block.

• The request passed a NULL pointer to the lock status block.

• The request included an invalid flag.

• The request passed a NULL lock resource name pointer, but did not include the
LKM_CONVERT flag. (A conversion request requires a valid lock ID, but does not require
a valid lock resource name.)

CLM_BADPARAM
The lock mode specified is not a valid lock mode.

CLM_IVBUFLEN
The namelen (name length) was less than 1 or greater than 31 characters.

CLM_IVLOCKID
The lock ID is invalid.

CLM_NOLOCKMGR
A request timed out waiting for a response from the lock manager. If the lock manager is
restarted while it is being used by a client, the next lock request returns this status.

CLM_NORMAL
The lock request completed successfully.

Status Codes Returned in the Lock Status Block

The status codes returned in the lock status block are listed alphabetically as follows:

CLM_CVTUNGRANT
The request attempted to convert a lock that was blocked in the WAIT state.

CLM_DEADLOCK
The lock manager killed this request to prevent deadlock from occurring.

CLM_DENIED
The request attempted to convert a lock that was already blocked on a conversion request.

CLM_DENIED_NOLOCKS
Either no more locks or no more resources are available. For information about how the lock
manager allocates locks and lock resources, see Lock and Lock Resource Limits on page 6-11.

CLM_NORMAL
The lock request completed successfully.
0 Programming Locking Applications

Lock Manager API Routines
clmlockx_sync Routine
CLM_NOTQUEUED
The request included the LKM_NOQUEUE flag and could not be satisfied immediately.

CLM_TIMEOUT
The timeout expired before this request was able to complete.

CLM_VALNOTVALID
The lock request, which included a request for the lock value block, completed successfully;
however, the lock value block is not valid. This indicates that a client terminated while holding
a lock on the lock resource at the LKM_EXMODE or LKM_PWMODE mode or that a client
invalidated the lock value block by specifying the LKM_INVVALBLK flag with the lock
routines.

Example
clm_stats = status;

status = clmlock_sync(LKM_CRMODE, /* mode */
 &lksb[which_lock], /* lock status block */
 LKM_VALBLK,
 "RES-A", /* name */
 5, /* namelen */
 &bastargs, /* bastargs */
 bast_func); /* bast routine */

clmlockx_sync Routine

Syntax
clm_stats_t clmlockx_sync(mode, lksb, flags, name, namelen,

bastargs, bast)
int mode;
struct lockstatus lksb;
int flags;
void *name;
unsigned int namelen;
void *bastargs;
void (*bast)(void *);
clm_xid_t *xid;

Description

Use the clmlockx_sync routine to acquire or convert a lock on a lock resource, specify a
transaction ID for that lock, and obtain a synchronous return. The clmlockx_sync routine
performs the same function as the clmlock_sync routine. See the documentation for the
clmlock_sync routine starting on page 7-16 for a description of the base functionality.

Additionally, the clmlockx_sync routine accepts a transaction ID (also called an XID or
deadlock ID) as a parameter. Normally, the lock manager assumes the process that created the
lock owns the lock when determining whether a deadlock cycle exists. By specifying a
transaction ID, a lock client can attribute the ownership of a lock to a transaction rather than to
a process. For deadlock detection, therefore, a transaction replaces a process or group as the
owner of a lock.
Programming Locking Applications 7-21

Lock Manager API Routines
clmlockx_sync Routine

7-2
You must specify a transaction ID when calling the clmlockx_sync routine. The transaction ID
should either point to an eight-byte XID value or be NULL. Also, you must also set the
LKM_XID_CONFLICT flag when calling the clmlockx_sync routine. This flag will
eventually control functionality not included in this release.

The lock manager uses the transaction ID parameter only when creating a lock; it ignores this
flag when converting a lock.

A transaction ID does not span nodes. Therefore, the lock manager considers equivalent
transaction IDs on different nodes to be different transaction IDs.

Parameters

mode
The requested lock mode, required for both lock requests and conversion requests. The modes
supported are listed below in order of severity, from least restrictive to most restrictive:

LKM_NLMODE
Does not grant the requesting process any access to the resource, but indicates future interest in
the resource. This acts as a placeholder for later conversion requests.

LKM_CRMODE
Allows the requesting process to read from a resource, and allows other processes simultaneous
read or write access to the same resource. This allows an unprotected read operation.

LKM_CWMODE
Allows the requesting process to read or write to a resource while other processes
simultaneously read or write to the same resource. This allows an unprotected write operation.

LKM_PRMODE
Allows the requesting process to read from a resource while other processes simultaneously
read from the same resource. No processes can write to the resource while the requesting
process holds the lock. This is an example of a shared lock.

LKM_PWMODE
Allows the requesting process to read or write to a resource, and allows other processes that
have concurrent read access to read from the resource. This is an example of an update lock.

LKM_EXMODE
Allows the requesting process to read or write to a resource while it prevents any other process
from accessing that resource.

lksb
A pointer to the lock status block (struct lockstatus). Use this data structure to specify the
contents of the lock value block and the timeout value for the request. For a lock conversion
request, you must also use this structure to specify the lock ID of the lock. The lock manager
writes the status of the lock request and the lock ID assigned to the request in the lock status
block. For more information about this structure, see Data Structure on page 3-2.

flags
The lock request takes various flags that modify its behavior. The flags supported are listed
alphabetically as follows:
2 Programming Locking Applications

Lock Manager API Routines
clmlockx_sync Routine
LKM_CONVERT
Indicates a lock conversion request. The lock manager ignores the xid parameter.

LKM_FINDLOCAL
Used to acquire a lock on an existing local lock resource; that is, a lock resource created by
a previous lock request that specified the LKM_LOCAL flag. The lock manager queries
each cluster node, looking for the location of the local lock resource. If the lock manager
cannot find the lock resource master on any cluster node, it creates a new local lock
resource. For more information, see Requesting Local Locks on page 3-8.

Subsequent requests to manipulate the lock require only the lock ID (not the
LKM_FINDLOCAL flag). If the lock request includes the LKM_CONVERT flag (that is,
the request is a conversion), the lock manager ignores the LKM_FINDLOCAL flag.

Note: A lock request that specifies the LKM_FINDLOCAL flag takes
longer to complete than a lock request that specifies the
LKM_LOCAL flag, or even a standard lock request. Use this flag
only when you are certain the lock resource specified was created
with the LKM_LOCAL flag.

LKM_INVVALBLK
Allows clients to invalidate the lock value block associated with the lock resource. If the
lock on the lock resource is not a PW or EX mode lock, the flag is ignored. (You must have
a PW or EX mode lock on a lock resource to modify a lock value block.)

LKM_LOCAL
Specifies that the lock manager bypass the lock resource directory lookup that it normally
performs and create the lock resource master on the local node. The lock resource should
not already exist anywhere in the cluster. Subsequent requests to manipulate this lock
require only the lock ID (and not the LKM_LOCAL flag). If the lock request includes the
LKM_CONVERT flag (that is, the request is a conversion), the lock manager ignores the
LKM_LOCAL flag.

Note: When you specify the LKM_LOCAL flag, the lock manager does
not check the lock resource directory to determine if the lock
resource is already mastered on a cluster node, as it does for
standard lock requests. Consequently, using this flag, you can
create duplicate masters of lock resources, which can compromise
lock integrity and result in data corruption.

The LKM_LOCAL flag should only be used to acquire short-lived locks on short-lived
lock resources. If the application must acquire additional locks on a local lock resource,
specify the LKM_FINDLOCAL flag when requesting the lock. See Requesting Local
Locks on page 3-8.

LKM_NODLCKWT
Directs the lock manager to exclude this lock request from consideration when it
periodically performs deadlock detection processing.
Programming Locking Applications 7-23

Lock Manager API Routines
clmlockx_sync Routine

7-2
LKM_NOQUEUE
Requests that the lock manager not put the lock request on the wait queue if it cannot be
immediately granted. The lock manager returns the status CLM_NOTQUEUED in the lock
status block.

LKM_ORPHAN
Requests that the lock manager not purge this lock if the application fails. Use this flag with
great care and only if you have a transaction recovery process that will eventually remove
the orphaned locks.

LKM_PROC_OWNED
Directs the lock manager to exclude this lock from the lock group. This lock is owned by
the process and not by the group. Other clients belonging to the group may not manipulate
this lock.

LKM_SNGLDLCK
Requests that the lock manager check this lock request for self-client deadlock.

Note: This flag is obsolete but is retained for backwards compatibility.
The lock manager now checks for self-client deadlock by default.

LKM_TIMEOUT
Requests that the lock manager cancel the lock request or lock conversion request if the
request cannot be granted within the time limit specified in the timeout field of the lock
status block. If the time limit expires, the lock manager cancels the operation and queues
the AST routine which returns the status value CLM_TIMEOUT. You specify the timeout
value in units of hundredths of a second (0.01). For example, a timeout value of 500
specifies five seconds.

LKM_VALBLK
Requests that the lock manager return the current contents of the lock value block in the
lock status block. When this flag is specified in a lock conversion request that is
down-converting a lock from EX or PW mode to a less restrictive mode, the lock manager
assigns the value specified in the lock status block to the lock value block of the lock
resource. The lock value block is a 16-byte array containing application-specific
information. This information is user-defined and interpreted by the application. For more
information about the lock value block, see Data Structure on page 3-2.

name
The name of the requested lock resource. A resource name can contain binary data.

namelen
The length of the lock resource name provided in the name parameter. A resource name cannot
exceed 31 characters.

bastargs
An argument that is passed to the routine specified by the bast argument when that function is
invoked. Typically used to pass a value that uniquely identifies the lock request when the lock
is blocking another lock request. For example:

void bast_func(void *bastargs, int mode);
4 Programming Locking Applications

Lock Manager API Routines
clmlockx_sync Routine
bast (blocking AST)
The address of a function invoked if the requested lock is granted and later blocks another lock
request. The blocking AST routine is called with two arguments: the bastargs argument
previously specified, and the requested mode that caused the queuing of the blocking AST
routine. For example:

void bast_func(void *bastargs, int mode);

xid
A pointer to an eight-byte transaction ID or NULL. A NULL value indicates the lock will be
owned by the process or group.

Status Codes

The status codes returned are listed alphabetically as follows:

CLM_BADARGS
One of the following:

• The request included the LKM_VALBLK flag but passed a NULL pointer to the lock status
block.

• The request passed a NULL pointer to the lock status block.

• The request included an invalid flag.

• The request passed a NULL lock resource name pointer, but did not include the
LKM_CONVERT flag. (A conversion request requires a valid lock ID, but does not require
a valid lock resource name.)

CLM_BADPARAM
The lock mode specified is not a valid lock mode.

CLM_IVBUFLEN
The namelen (name length) was less than 1 or greater than 31 characters.

CLM_IVLOCKID
The lock ID is invalid.

CLM_NOLOCKMGR
A request timed out waiting for a response from the lock manager. If the lock manager is
restarted while it is being used by a client, the next lock request returns this status.

CLM_NORMAL
The lock request completed successfully.

Status Codes Returned in the Lock Status Block

The status codes returned in the lock status block are listed alphabetically as follows:

CLM_CVTUNGRANT
The request attempted to convert a lock that was blocked in the WAIT state.

CLM_DEADLOCK
The lock manager killed this request to prevent deadlock from occurring.
Programming Locking Applications 7-25

Lock Manager API Routines
clmregister Routine

7-2

the

 exits.
CLM_DENIED
The request attempted to convert a lock that was already blocked on a conversion request.

CLM_DENIED_NOLOCKS
Either no more locks or no more resources are available. For information about how the lock
manager allocates locks and lock resources, see Lock and Lock Resource Limits on page 6-11.

CLM_NORMAL
The lock request completed successfully.

CLM_NOTQUEUED
The request included the LKM_NOQUEUE flag and could not be satisfied immediately.

CLM_TIMEOUT
The timeout expired before this request was able to complete.

CLM_VALNOTVALID
The lock request, which included a request for the lock value block, completed successfully;
however, the lock value block is not valid. This indicates that a client terminated while holding
a lock on the lock resource at the LKM_EXMODE or LKM_PWMODE mode or that a client
invalidated the lock value block by specifying the LKM_INVVALBLK flag with the lock
routines.

Example
clm_stats = status;

status = clmlockx_sync(LKM_CRMODE, /* mode */
 &lksb[which_lock], /* lock status block */
 LKM_VALBLK,
 "RES-A", /* name */
 5, /* namelen */
 &bastargs, /* bastargs */
 bast_func, /* bast routine */
 &xid); /* transaction id */

clmregister Routine

Syntax
union clm_rh clmregister(name)
char *name;

Description

Before requesting a lock on a UNIX lock resource, you must register the lock resource–
object against which all locking occurs. Use the clmregister routine to register (create) a lock
resource. A lock resource remains in existence until the last process to have it registered
6 Programming Locking Applications

Lock Manager API Routines
clmregionlock Routine
Parameters

name
The name of the lock resource being registered. A lock resource name is a NULL-terminated
string. A lock resource name can contain up to 255 bytes. This limit is defined by the value of
the MAXRESOURCELEN constant in the /usr/include/cluster/clm.h header file.

Return Values

After a lock resource has been registered successfully, the lock manager returns a lock resource
handle to the calling program. A lock resource handle is defined by the union clm_rh data
structure. The lock resource handle is a token which must be passed to all subsequent lock
requests.

If an error occurs, NULL is returned instead of a valid lock resource handle. In this case, the
clm_errno global variable contains the status code associated with the error.

Status Codes

CLM_IVBUFLEN
The request specified a lock resource name that was either less than one or greater
than MAXRESOURCELEN.

CLM_MAXHANDLES
The system limit for resource handles for an application has been reached.

CLM_NOLOCKMGR
The lock manager daemon is not running. If the lock manager is restarted while it is being used
by a client, the next lock request returns this status.

CLM_NORMAL
The register request completed successfully.

Example
union clm_rh reshandle;

/* create a resource handle against which to lock */
reshandle = clmregister("A Lock");
if (reshandle.rh == 0) {

clm_perror("Can’t register lock");
exit(1);

}

clmregionlock Routine

Syntax
clm_stats_t clmregionlock(rh, offset, length, flags)
union clm_rh rh;
unsigned long offset;
unsigned long length;
unsigned long flags;
Programming Locking Applications 7-27

Lock Manager API Routines
clmregionlock Routine

7-2
Description

Use the clmregionlock routine to acquire and release locks. You indicate you want to release
a lock by setting the LOCK_UN flag.

Parameters

rh
A valid lock resource handle returned by an earlier call to the clmregister routine.

offset
The lower bound of the region that the request should affect.

length
The length of the region starting at offset.

flags
A bitmask of various options, described in the following list. If you specify both the LOCK_EX
and LOCK_SH flags, the LOCK_EX flag is honored.

Status Codes

CLM_BADARGS
The request specified an unsupported flag. The supported flags are LOCK_EX, LOCK_UN,
LOCK_SH, and LOCK_NB.

LOCK_SH A shared lock (read) is being requested. Multiple applications can
simultaneously request shared locks, but no exclusive locks are
granted while any shared locks are held on a specified region of the
resource by any application other than the requesting application.

LOCK_EX An exclusive lock (write) is being requested. Only one application
can possess a write lock on a resource at any given time. A request for
an exclusive lock fails if any locks are currently held on the specified
region of the resource by any applications other than the requesting
application.

LOCK_NB Normally, if a lock request cannot be immediately granted because it
is incompatible with existing locks, the requesting application will
suspend (block) until the request can be completed. An application
specifies the LOCK_NB option to indicate that this request is
non-blocking. If the request would suspend, an error is returned
instead. An application never blocks against locks that it holds. An
application never blocks on an unlock request.

LOCK_UN This flag specifies that the indicated resource region should be
unlocked. Any regions currently locked by the requesting application
that overlap the region specified in the unlock request are released.
8 Programming Locking Applications

Lock Manager API Routines
clmunlock Routine
CLM_DENIED
The request would block and had set the LOCK_NB flag, or it attempted to unlock a region that
was not previously locked.

CLM_IVRESHANDLE
The resource handle is invalid.

CLM_NOLOCKMGR
The lock manager daemon is not running. If the lock manager is restarted while it is being used
by a client, the next lock request returns this status.

CLM_NORMAL
The lock request completed successfully.

Example
union clm_rh reshandle;
unsigned long offset;
unsigned long len;
clm_stats_t status;

/* acquire an exclusive lock on region from byte 0 to 9 */
status = clmregionlock(reshandle, offset, length, LOCK_EX);
if (status != CLM_NORMAL) {

clm_perror("Can’t acquire lock");
exit(1);

}

/* processing occurs here */

/* release lock */
status = clmregionlock(reshandle, offset, length, LOCK_UN);
if (status != CLM_NORMAL) {

clm_perror("Unlock failed");
exit(1);

}

clmunlock Routine

Syntax
clm_stats_t clmunlock(lockid, valueblock, flags)
int lockid;
char *valueblock;
int flags;

Description

Use the clmunlock routine to make a synchronous (blocking) request to:

• Release a lock.

• Cancel a blocked lock request on the wait queue.

• Cancel a blocked conversion request on the convert queue.

• Invalidate a lock value block when releasing a lock held in PW or EX mode.
Programming Locking Applications 7-29

Lock Manager API Routines
clmunlock Routine

7-3
Note that the clmunlock routine always operates synchronously. There is no AST mechanism
available. However, the release or cancellation of a lock can cause the queuing of AST routines
associated with locks when they change state.

Parameters

lockid
A valid lock ID returned from a previous call to the clmlock routine.

valueblock
The lock value block is a 16-byte structure containing information about the lock resource. This
information is user-defined and interpreted by the application. It is not used by the lock
manager.

If the request (1) is an unlock request (the LKM_CANCEL flag is not included), and (2) the
current granted mode of the lock is either EX or PW, and (3) the LKM_VALBLK flag was
included, the lock manager updates the contents of the lock value block associated with the lock
name using the value contained in valueblock.

flags
A bitmask of various options. The flags are as follows:

LKM_CANCEL
When you set the LKM_CANCEL flag, the clmunlock request:

• Cancels a request that is blocked and on the wait queue.

• Cancels a conversion request. The lock retains its original mode. If a conversion
request was already granted, the lock manager returns a status of
CLM_CANCELGRANT.

LKM_FORCE
Directs the lock manager to release a lock regardless of its current state. If the specified lock
has been granted, the lock manager releases the lock. If the specified lock is waiting to
convert from one state to another, the lock manager cancels the pending conversion and
then releases the lock. If the specified lock has not been granted, the lock manager cancels
the open request. If the force operation involves the canceling of a pending request, the
appropriate AST will be queued indicating that the request was canceled.

If an unlock request includes both the LKM_CANCEL and LKM_FORCE flags, the lock
manager ignores the LKM_FORCE flag.

If the LKM_FORCE flag is included in a lock request other than clmunlock or
clmunlock_async, it is ignored.

LKM_INVVALBLK
Allows clients to invalidate the lock value block associated with the lock resource. If the
lock on the lock resource is not a PW or EX mode lock, the flag is ignored.

LKM_VALBLK
Sets the lock value block from valueblock if the modes are appropriate. See the description
of the valueblock argument. This flag is ignored if LKM_CANCEL is set.
0 Programming Locking Applications

Lock Manager API Routines
clmunlock_async Routine
Status Codes

The status codes returned are listed alphabetically as follows:

CLM_BADARGS
The request included the LKM_VALBLK flag, but passed a NULL pointer.

CLM_CANCELGRANT
The request attempted to cancel a conversion (by including the LKM_CANCEL flag), but the
request was already granted.

CLM_DENIED
The request attempted to cancel a conversion, but the specified lock is not in a granted state and
neither the LKM_CANCEL nor the LKM_FORCE flag was included in the unlock request.

CLM_IVLOCKID
The lock ID is invalid.

CLM_NOLOCKMGR
The lock manager daemon is not running. If the lock manager is restarted while it is being used
by a client, the next lock request returns this status.

CLM_NORMAL
The unlock request completed successfully.

Example

For an example, see Releasing a Lock on a Lock Resource on page 3-10.

clmunlock_async Routine

Syntax
clm_stats_t clmunlock_async(lockid, valueblock, flags, unlockast,
unblockastargs, extrap)
int lockid;
char *valueblock;
int flags;
void (unlockast) ();
void *unlockastargs;
void *extrap;

Description

Use the clmunlock_async routine to make an asynchronous (non-blocking) request to:

• Release a lock.

• Cancel a blocked lock request on the wait queue.

• Cancel a blocked conversion request on the convert queue.

• Invalidate a lock value block when releasing a lock held in PW or EX mode.
Programming Locking Applications 7-31

Lock Manager API Routines
clmunlock_async Routine

7-3
The lock manager returns status in two locations: the status value returned by the
clmunlock_async routine and the lstat argument passed to the unlock AST function. The status
value returned by the clmunlock_async routine indicates whether the unlock request was
accepted by the lock manager. If the unlock request cannot be accepted because of syntax
problems or invalid arguments, it is rejected and the clmunlock_async routine returns an error
status code. See Status Codes on page 7-3 for a list of the status values.

A success status from the clmunlock_async routine does not indicate that the unlock has been
completed. The lock manager reports asynchronously whether the unlock was completed,
denied, canceled, or aborted by queuing for execution the unlock AST function specified as an
argument to the clmunlock_async routine.

The unlock AST function has the following declaration:

void (*unlockast) (void *unlockastargs, clm_stats_t lstat,
 void *extrap)

The unlockastargs and extrap values passed to the unlock AST routine are the same values
passed to the call to the clmunlock_async routine. The lstat value will be the status value of the
unlock completion request.

Note: The lstat value is the same as the value returned from the synchronous
clmunlock routine.

An application triggers the unlock AST routine by calling the ASTpoll routine. SeeStatus
Codes Returned in the Lock Status Block on page 7-8 for a list of other possible status values.

Parameters

lockid
A valid lock ID returned from a previous call to the clmlock routine.

valueblock
The lock value block is a 16-byte structure containing information about the lock resource. This
information is user-defined and interpreted by the application. It is not used by the lock
manager.

If the request (1) is an unlock request (the LKM_CANCEL flag is not included), and (2) the
current granted mode of the lock is either EX or PW, and (3) the LKM_VALBLK flag is
included, the lock manager updates the contents of the lock value block associated with the lock
name using the value contained in valueblock.

flags
A bitmask of various options. The flags are as follows:

LKM_CANCEL
When you set the LKM_CANCEL flag, the clmunlock request:

• Cancels a request that is blocked and on the wait queue.

• Cancels a conversion request. The lock retains its original mode. If a conversion
request was already granted, the lock manager returns a status of
CLM_CANCELGRANT.
2 Programming Locking Applications

Lock Manager API Routines
clmunlock_async Routine
LKM_FORCE
Directs the lock manager to release a lock regardless of its current state. If the specified lock
has been granted, the lock manager releases the lock. If the specified lock is waiting to
convert from one state to another, the lock manager cancels the pending conversion and
then releases the lock. If the specified lock has not been granted, the lock manager cancels
the open request. If the force operation involves the canceling of a pending request, the
appropriate AST will be queued indicating that the request was canceled.

If an unlock request includes both the LKM_CANCEL and LKM_FORCE flags, the lock
manager ignores the LKM_FORCE flag.

If the LKM_FORCE flag is included in a lock request other than clmunlock or
clmunlock_async, it is ignored.

LKM_INVVALBLK
Allows clients to invalidate the lock value block associated with the lock resource. If the
lock on the lock resource is not a PW or EX mode lock, the flag is ignored.

LKM_VALBLK
Sets the lock value block from valueblock if the modes are appropriate. See the description
of the valueblock argument. This flag is ignored if LKM_CANCEL is set.

unlockast
The address of a function that is queued for execution by the lock manager when it finishes
processing the unlock request.

unlockastargs
An argument passed to the routine specified by unlockast.

extrap
An extra context pointer passed to the routine specified by unlockast.

Status Codes

The status codes returned are listed alphabetically as follows:

CLM_BADARGS
The request included the LKM_VALBLK flag, but passed a NULL pointer.

CLM_DENIED
The request attempted to cancel a conversion, but the specified lock is not in a granted state and
neither the LKM_CANCEL nor the LKM_FORCE flag was included in the unlock request.

CLM_IVLOCKID
The lock ID is invalid.

CLM_NOLOCKMGR
The lock manager daemon is not running. If the lock manager is restarted while it is being used
by a client, the next lock request returns this status.

CLM_NORMAL
The unlock request completed successfully.
Programming Locking Applications 7-33

Lock Manager API Routines
clm_errmsg Routine

7-3

de, the

d
nt to
Status Codes Returned in the Unlock AST

CLM_CANCELGRANT
The request attempted to cancel a conversion (by including the LKM_CANCEL flag), but the
request was already granted.

CLM_DENIED
The request attempted to cancel a conversion, but the specified lock is not in a granted state and
neither the LKM_CANCEL nor the LKM_FORCE flag was included in the unlock request.

CLM_NORMAL
The unlock request completed successfully.

clm_errmsg Routine

Syntax
char *clm_errmsg(status)
clm_stats_t status;

Description

The clm_errmsg routine takes a status code returned by the lock manager and returns a pointer
to a printable version of the status code. The status codes that make up the clm_stats_t
enumerated type are constants, not printable character strings.

Parameters

status
A CLM API status code.

Returns

A NULL-terminated character string. For example, if the status code returned is
CLM_NORMAL, the string returned is “CLM_NORMAL.”

If the status parameter you specify as an argument is not a valid lock manager status co
clm_errmsg routine returns the string “Invalid status.”

Example

The following code fragment uses the clm_errmsg routine to convert the status code returne
by the clm_setnotify routine to a printable string. The string is then passed as an argume
the printf routine.

#include <cluster/clm.h>

char *msg;

clm_stats_t status;
.
.

4 Programming Locking Applications

Lock Manager API Routines
clm_getglobparams Routine
.
status = clm_setnotify(SIGUSR1, NULL);
if (status != CLM_NORMAL)
{
 msg = clm_errmsg(status);
 printf("clm_setnotify returns %s",msg);
}

If the routine failed because the arguments passed were invalid, the following message would
be printed to stderr:

clm_setnotify returns CLM_BADARGS

clm_getglobparams Routine

Syntax
clm_stats_t clm_getglobparams(params)
clm_globparams_t *params;

Description

The clm_getglobparams routine obtains the value of the global lock manager parameters.

Parameters

params
Address of the clm_globparams_t structure into which the lock manager writes the values of
the global parameters. For information about interpreting the values returned, see Chapter 6,
Tuning the Cluster Lock Manager.

Status Codes

The following is an alphabetical list of status values returned by the clm_getglobparams
routine.

CLM_BADARGS
The pointer to the clm_globparams_t structure is invalid.

CLM_NORMAL
The operation completed successfully.

Example

The following code fragment illustrates how to obtain the current value of the decay rate
parameter. When the clm_getglobparams routine returns successfully, both the
cg_recalc_rate field and the cg_decay_rate field in the global parameters structure are valid.

#include <cluster/clm.h>

clm_globparams_t glob_params;
clm_stats_t status;
float decay_rate;
.
.

Programming Locking Applications 7-35

Lock Manager API Routines
clm_getresparams Routine

7-3
.
status = clm_getglobparams(&globparams);
if (status != CLM_NORMAL)
{
 clm_perror("Could not get global resource parameters")
}
else
{
 decay_rate = globparams.cg_decay_rate;
}

clm_getresparams Routine

Syntax
clm_stats_t clm_getresparams(res_name,namelen,res_type,params)
char *res_name;
short namelen;
short res_type;
clm_resparams_t *params;

Description

The clm_getresparams routine returns the value of a lock resource’s stickiness attribute.

Parameters

res_name
A NULL-terminated character string specifying the name of the lock resource.

namelen
The number of characters in the name.

res_type
Specifies the type of lock resource. For CLM lock resources, specify the constant
CLM_RES_VMS. For UNIX lock resources, specify the constant CLM_RES_UNIX.

params
Address of the clm_resparams_t structure that contains the value of the lock resource
stickiness attribute.

Status Codes

The following is an alphabetical list of status values returned by the clm_getresparams routine.

CLM_BADARGS
One of the following:

• The request specified an invalid resource type.

• The length of the lock resource name exceeds the limit.

• The pointer to the clm_resparams_t structure is invalid.
6 Programming Locking Applications

Lock Manager API Routines
clm_getstats Routine
CLM_BADRESOURCE
The lock resource specified is invalid.

CLM_NORMAL
The operation completed successfully.

Example

In the following code fragment, the application retrieves the value of the stickiness attribute.

#include <cluster/clm.h>
clm_resparams_t resparams;

clm_status_t status;

#define NAMELEN 7
.
.
.
status = clm_getresparams("my_lock", /* name of lock resource */
 NAMELEN, /* length of name */
 CLM_RES_VMS, /* resource type */
 &resparams); /* address of resparms */
 /* structure */
if(status != CLM_NORMAL)
{

clm_perror("Can’t read stickiness value");
exit(1);

}

clm_getstats Routine

Syntax
clm_stats_t clm_getstats(resname, namelen, type, statistics)
char *resname;
short namelen;
short type;
clm_statistics_t *statistics;

Description

Use the clm_getstats routine to obtain statistics on resource usage, including the number and
origin of lock requests on a resource, the number of times the lock has migrated, the
compatibility of lock requests, and accesses-per-second per node on a lock resource. How the
resource statistics are used is completely up to the client application.

Calling this function on a non-existent resource returns an error.

Parameters

resname
The name of the requested lock resource. A resource name can contain binary data.
Programming Locking Applications 7-37

Lock Manager API Routines
clm_getstats Routine

7-3
namelen
The length of the lock resource name provided in the resname parameter. A resource name
cannot exceed 31 characters.

type

Specifies the type of lock resource. For CLM lock resources, specify the constant
CLM_RES_VMS. For UNIX lock resources, specify the constant CLM_RES_UNIX.

statistics
Address of the clm_statistics_t structure into which the lock manager writes the current values
of the lock statistics.

Status Codes

The status codes returned are below:

CLM_BADARGS
The request passed a NULL pointer to the statistics structure.

CLM_BADRESOURCE
Unable to find the specified resource. A copy must be on the local node.

CLM_IVBUFLEN
The namelen (name length) was less than 1 or greater than 31 characters.

CLM_NOLOCKMGR
A request timed out waiting for a response from the lock manager. If the lock manager is
restarted while it is being used by a client, the next lock request returns this status.

CLM_NORMAL
The lock request completed successfully.

CLM_VERSION_CONFLICT
The request cannot be processed because a back-level version of Cluster Lock Manager is
running in the cluster.

Example
int i;
clm_stats_t status;
clm_statistics_t statistics;

status = clm_getstats ("RESOURCE1", 9, CLM_RES_VMS, &statistics);

if (status != CLM_NORMAL)
{
 printf ("error: clm_getstats returned %s",clm_errmsg(status));
}
else
{
 printf ("Resource Statistics on RESOURCE1");
 printf ("cs_requests = %d", statistics.cs_requests);
 printf ("cs_local = %d", statistics.cs_local);
 printf ("cs_remote = %d", statistics.cs_remote);
 printf ("cs_same = %d", statistics.cs_same);
8 Programming Locking Applications

Lock Manager API Routines
clm_grp_attach Routine
 printf ("cs_migrations = %d", statistics.cs_migrations);
 printf ("cs_compat = %d", statistics.cs_compat);
 printf ("cs_incompat = %d", statistics.cs_incompat);
 printf ("cs_downgrade = %d", statistics.cs_downgrade);
 printf ("cs_total_aps = %f", statistics.cs_total_aps);
 for (i = 0 ; i < CLM_MAXNODES ; i++)
 {
 printf ("cs_aps[%d] = %f", i, statistics.cs_aps[i]);
 }
}

clm_grp_attach Routine

Syntax
clm_stats_t clm_grp_attach(gid, flags)
int gid;
int flags;

Description

Use the clm_grp_attach routine to attach a lock client to an existing lock group. Use the group
ID returned by the clm_grp_create routine to specify the group. A client may belong to only
one group.

Parameters

gid
The group ID returned by the clm_grp_create routine.

flags
None.

Status Codes

The status codes are listed below:

CLM_DENIED
The process was already attached to a lock group.

CLM_IVGROUPID
The request specified an invalid lock group.

CLM_NORMAL
The request completed successfully.
Programming Locking Applications 7-39

Lock Manager API Routines
clm_grp_create Routine

7-4
Example
int groupid = 0x1010000;
int ret;

/* Attach the current process to an existing group with id 0x1010000 */
ret = clm_grp_attach(groupid, 0);
if (ret == CLM_NORMAL) {

printf("Successfully attached to group %d", groupid);
}

clm_grp_create Routine

Syntax
clm_stats_t clm_grp_create(gid, flags)
int *gid;
int flags;

Description

Use the clm_grp_create routine to create a new lock group and associate the client with this
group. The clm_grp_create routine returns a group ID.

A lock group joins related lock client processes into a single entity. A lock client may create a
new lock group or join an existing group. A lock client may belong to at most one lock group.
Once a client belongs to a group, the group owns all subsequent locks created by that process.
Any process in a group may manipulate locks owned by that group.

Alternatively, a process belonging to a lock group can pass the LKM_PROC_OWNED flag to
either the clmlock or clmlock_sync routine to indicate that this lock is owned by the process,
not by the group. Other processes belonging to the group may not manipulate this lock.

The lock manager does not purge a lock owned by a group until all processes belonging to the
group have exited. The lock manager also purges if all group processes detach.

A lock group may not span cluster nodes. The lock manager only acknowledges a group ID on
the node on which it was created. Therefore, a lock client on one node cannot join a group was
created on a different node.

Parameters

gid
Pointer to location to store the group ID.

flags
None.
0 Programming Locking Applications

Lock Manager API Routines
clm_grp_detach Routine
Status Codes

CLM_DENIED
The process was already attached to a group.

CLM_NORMAL
The request completed successfully.

Example
int groupid;
int ret;

/* Create lock group and associate process with group */
ret = clm_grp_create(&groupid, 0);
if (ret == CLM_NORMAL) {
 printf("Group created. Group id is %d", groupid);
}

clm_grp_detach Routine

Syntax
clm_stats_t clm_grp_detach(flags)
int flags;

Description

Use the clm_grp_detach routine to remove a process from a lock group. A process that has left
a group can no longer manipulate locks owned by that group, including locks it created while
belonging to the group. If a process is the last group member to leave a group, the locks owned
by the group are purged and the group no longer exists. A client is implicitly removed from a
group when its terminates.

Parameters

flags
None.

Status Codes

The status codes are listed below:

CLM_DENIED
The process was not attached to a group.

CLM_NORMAL
The request completed successfully.
Programming Locking Applications 7-41

Lock Manager API Routines
clm_perror Routine

7-4

ils”

would
Example
int ret;

/* Detach the current process from lock group */

ret = clm_grp_detach(0);

if (ret == CLM_NORMAL) {
 printf("Successfully detach from lock group.");
}

clm_perror Routine

Syntax
void clm_perror(message)
char *message;

Description

The clm_perror routine allows an application to write a message to standard error that
indicates why a lock request failed. The clm_perror routine consults the clm_errno global
variable to determine the status of the last lock request. The clm_perror routine appends the
supplied message with a colon and a printable version of the status code.

Parameters

message
A NULL-terminated character string.

Example

The following code fragment uses the clm_perror return to print an error message if the
clm_setnotify routine fails. The application includes the message string “clm_setnotify fa
for the clm_perror routine to print along with the status code return by the routine.

#include <cluster/clm.h>

clm_stats_t status;
.
.
.
status = clm_setnotify(SIGUSR1, NULL);
if (status != CLM_NORMAL)
{
 clm_perror("clm_setnotify fails");
}

If the routine failed because the arguments passed were invalid, the following message
be printed to stderr:

clm_setnotify fails: CLM_BADARGS
2 Programming Locking Applications

Lock Manager API Routines
clm_purge Routine
clm_purge Routine

Syntax
clm_stats_t clm_purge(node_id, pid, flags)
int node_id;
int pid;
int flags;

Description

The clm_purge routine allows a client application to purge locks in two different situations:

• Purging all the locks owned by that client. To purge its own locks, a client must call the
clm_purge routine with its own node ID and process ID (pid) value specified.

• Removing orphaned locks that have been left behind by clients that have terminated.

Note: The clm_purge function cannot be used to purge the locks of an active
client other than the one calling the function.

Parameters

node_id
The ID of the node on which the locks were originated.

pid
This argument indicates the process ID (PID) of the application owning the locks. If you specify
a PID of 0, the lock manager purges all orphaned locks for the specified node.

flags
There are no flags for this routine.

Status Codes

The following is an alphabetical list of all the status codes returned by the clm_purge routine:

CLM_BADARGS
The request specified an invalid node ID.

CLM_NOLOCKMGR
The lock manager daemon is not running. If the lock manager is restarted while it is being used
by a client, the next lock request returns this status.

CLM_NORMAL
The purge request completed successfully.
Programming Locking Applications 7-43

Lock Manager API Routines
clm_scnop Routine

7-4
Example

In the following example, all the locks associated with the process are released. The example
assumes that the node ID, whether local or remote, has already been obtained. You use the
routines provided by the HACMP Clinfo API to obtain the node ID. Clinfo provides routines
you can use to obtain the cluster ID, node name and other information about the cluster
environment. For more information about Clinfo, see HACMP for AIX Programming Client
Applications.

Note: If your application uses Clinfo to obtain the node ID, you must link
your application with the Clinfo library (-lcl).

#include <cluster/clm.h>
int nodeid;
.
.
.
status = clm_purge(nodeid, get_pid(), 0);
if(status != CLM_NORMAL)
 clm_perror("clm_purge");

clm_scnop Routine

Syntax
clm_stats_t clm_scnop(lockid, op_type, bit_len, in_lvb, out_lvb)
int lockid;
scn_op_t op_type;
short bit_len;
char *in_lvb;
char *out_lvb;

Description

The clm_scnop routine manipulates a cluster-global counter called the System Commit
Number (SCN). Using this routine, you can perform any of the following operations on the
SCN:

• Obtain the current value of the SCN.

• Increment the current value of the SCN.

• Assign a value to the SCN.

• Assign a value to the SCN if the current value of the SCN is less than a specified value.

If the clm_scnop routine returns successfully, the SCN operation is complete.

The SCN operations performed by the clm_scnop routine are atomic. Accessing the SCN
concurrently from different nodes or processes will not corrupt the SCN.
4 Programming Locking Applications

Lock Manager API Routines
clm_scnop Routine
Parameters

lockid
The lock ID of the lock granted against the lock resource in which the SCN is stored, returned
from a previous call to a lock open routine. You can use any lock resource to store an SCN. The
counter is stored in the lock value block (LVB) of this lock resource. If there are locks on this
lock resource at modes other than NL, the clm_scnop routine returns the status
CLM_BLOCKED.

op_type
The requested SCN operation. The operations are defined as follows:

bit_len
The number of bits used to represent the range of values of the SCN. You may specify any value
between 1 and 128. The maximum value of an SCN is 2 bit_len - 1. Any SCN value you specify
that exceeds this maximum is ignored or zeroed. If you specify a value for this parameter, you
must always specify the same value to ensure predictable results.

in_lvb
Pointer to the input value of the SCN.

out_lvb
The address into which the lock manager writes the SCN that results from the operation.

Status Codes

The following is an alphabetized list of status values returned by the clm_scnop routine.

CLM_BADARGS
An argument to the clm_scnop is incorrect. For example, an invalid operation type was
specified.

SCN_CUR Obtain the current value of the SCN. The SCN value is returned in the
out_lvb parameter.

SCN_INC Increment the SCN and return the new value of the SCN. The SCN
value is returned in the out_lvb parameter.

SCN_ADD Add a specified value to the SCN. You specify the value to be added
to the SCN in the in_lvb parameter. The new value of the SCN is
returned in the out_lvb parameter.

SCN_ADJ Set the value of the SCN to the value specified in the in_lvb
parameter, if the current value of the SCN is less than the value
specified. The current value of the SCN is returned in the out_lvb
parameter.

SCN_SET Set the value of the SCN to the value specified in the in_lvb
parameter. The current value of the SCN is returned in the out_lvb
parameter.
Programming Locking Applications 7-45

Lock Manager API Routines
clm_scnop Routine

7-4
CLM_BLOCKED
There are non-NULL locks held against the lock resource containing the SCN.

CLM_IVLOCKID
The value specified in the lockid parameter is not a valid lock ID.

CLM_NORMAL
The SCN operation completed successfully.

CLM_NOLOCKMGR
The Lock Manager is not running.

CLM_VALNOTVALID
The Lock Value Block (LVB) in which the SCN is stored is marked invalid.

System Commit Number

The SCN is stored in the LVB associated with a lock resource. An LVB is an array of 16 bytes.
The lock manager represents an SCN value of up to 128 bits by using four unsigned integers.
These integers are the four fields contained in the scn_t structure, defined in the
/usr/include/cluster/scn.h include file as follows:

typedef struct scn {
unsigned int base;
unsigned int wrap1;
unsigned int wrap2;
unsigned int wrap3;

} scn_t;

The following figure illustrates how the scn_t structure overlays the bytes in the LVB:

You define the range of the SCN counter by specifying, in the bit_len parameter passed to the
clm_scnop routine, how many bits are used to represent its value. The value of the bit_len
parameter controls which bits in the four fields are used.

If you specify a bit_len value of 32 or less, the lock manager uses only the base field of the
structure. If you increment the SCN value past the maximum value (defined as 2bit_len-1), the
base field in the structure wraps back to zero.

If you specify a bit_len value of 64 or less, the lock manager uses the base and the wrap1 fields
in the structure. The integer value in the base field overflows into the wrap1 field. The value
of the SCN should be interpreted by concatenating the integer fields, and not by adding them.
The entire value will wrap back to zero when it is incremented past the maximum value,
determined by the bit_len parameter.
6 Programming Locking Applications

Lock Manager API Routines
clm_setglobparams Routine
For example, if the wrap1 field is equal to 1 and the base is 0, then the value of the SCN is 232
or 4294967296 because the first bit of the wrap1 field is the 33rd bit of the SCN. The following
figure illustrates this SCN value. The bit_len is set to 48. The unused bits are covered with gray.

For bit_len values greater than 64, the lock manager uses the wrap2 and wrap3 fields in the
structure, as necessary.

Example

The following example sets the SCN to 100,000, if the current value of the SCN is less than
100,000.

#include <cluster/clm.h>
#include <cluster/scn.h> /* SCN definitions */

struct lockstatus lksb;
clm_stats_t status;
scn_t in_scn;
scn_t out_scn;

in_scn.base = 100000;

/* Set SCN value if less than in_scn */

status = clm_scnop(lksb.lockid, /* Lock on SCN lock resource */
 SCN_ADJ, /* SCN operation */
 32, /* bit length */
 &in_scn, /* incoming SCN */

 &out_scn); /* returned SCN */

if (scn_status != CLM_NORMAL)
{

clm_perror("Can’t get SCN.");
}

clm_setglobparams Routine

Syntax
clm_stats_t clm_setglobparams(params)
clm_globparams_t *params;

Description

The clm_setglobparams routine sets the value of the global lock manager parameters,
including the evaluation threshold and the decay rate.
Programming Locking Applications 7-47

Lock Manager API Routines
clm_setnotify Routine

7-4
Parameters

params
Address of the clm_globparams_t structure into which you write the values you want assigned
to the lock manager global parameters.

Status Codes

The following is an alphabetical list of status values returned by the clm_setglobparams
routine.

CLM_BADARGS
The pointer to the clm_globparams_t structure is invalid.

CLM_NORMAL
The operation completed successfully.

Example

The following code fragment specifies values for both the decay rate and evaluation threshold.

#include <cluster/clm.h>

clm_globparams_t globparams;
clm_stats_t status;
.
.
.
globparams.cg_valid = CLMTUNE_GLOB_RECALC | CLMTUNE_GLOB_DECAY;
globparams.cg_decay_rate = .50;
globparams.cg_recalc_time = 100;

status = clm_setglobparams(&globparams);

if (status != CLM_NORMAL)
{

clm_perror("Cannot set global parameters.")
}

clm_setnotify Routine

Syntax
clm_stats_t clm_setnotify(signo, oldsigp)
int signo;
int *oldsigp;

Description

The clm_setnotify routine allows a lock client to specify a signal to be delivered whenever an
AST is pending.
8 Programming Locking Applications

Lock Manager API Routines
clm_setresparams Routine
Parameters

signo
This argument indicates the signal to be delivered. Specifying SIG_DFL indicates that no signal
is desired and cancels any previously specified signal.

oldsigp
If non-NULL, this argument specifies a location that should receive the number of the existing
notify signal.

Status Codes

CLM_BADARGS
The specified signal is out of range. That is, the signal has a value less than zero, or greater than
or equal to SIGMAX as defined in <sys/signal.h>.

CLM_NORMAL
The request completed successfully.

Example

For an example, see the Sample Locking Application on page 3-6.

clm_setresparams Routine

Syntax
clm_stats_t clm_setresparams(res_name,namelen,res_type,params)
char *res_name;
short namelen;
short res_type;
clm_resparams_t *params;

Description

The clm_setresparams routine sets the value of a lock resource’s stickiness attribute.

Parameters

res_name
The name of the lock resource.

namelen
The number of characters in the resource name.

res_type
Specifies the type of lock resource. For CLM lock resources, specify the constant
CLM_RES_VMS. For UNIX lock resources, specify the constant CLM_RES_UNIX.
Programming Locking Applications 7-49

Lock Manager API Routines
clm_setresparams Routine

7-5
params
Address of the clm_resparams_t structure in which you specify the value of the stickiness
attribute.

Status Codes

The following is an alphabetical list of status values returned by the clm_setresparams routine.

CLM_BADARGS
One of the following:

• The request specified an invalid resource type.

• The length of the resource name exceeds the limit.

• The pointer to the clm_resparams_t structure is invalid.

CLM_BADRESOURCE
The lock resource specified is invalid.

CLM_NORMAL
The operation completed successfully.

Example

In the following code fragment, the application sets the value of the stickiness attribute.

#include <cluster/clm.h>

clm_stats_t status;

#define NAMELEN 7

clm_resparams_t resparams;
.
.
.
resparams.cr_valid = CLM_RES_STICKINESS;
resparams.cr_stickiness = 50;

status = clm_setresparams("my_lock",/* name of lock resource */
 NAMELEN, /* length of name */
 CLM_RES_VMS, /* resource type */
 &resparams); /* address of lock */

 /* resource structure */
if (status != CLM_NORMAL)
{

clm_perror("Lock resource name invalid.");
}

0 Programming Locking Applications

Index
+-*/
/usr/include/cluster/clm.h file 3-1, 3-2, 5-1
/usr/include/cluster/scn.h file 3-1

A
acquiring

locks
asynchronously

CLM locking model 3-3
synchronously

CLM locking model 3-5
UNIX locking model 5-3, 7-27

API
CLM locking model 3-1, 7-1
UNIX locking model 5-1

AST routines
notification of pending 7-48
triggering execution of 3-6, 7-2

astarg parameter
using 3-6

ASTpoll routine
CLM locking model API 7-2
using 3-6

asynchronous lock requests
CLM locking model 3-3

asynchronous system trap (AST) 1-1

B
blocked (lock state)

CLM locking model 2-10
UNIX locking model 4-2

C
cllockd daemon

setting evaluation threshold 6-4
specifying the decay rate 6-8

CLM locking model
deadlock 2-14
intro 1-1
lock groups 2-17
lock mode compatibility 2-4
lock modes 2-3
lock resource queues 2-2
lock resources 2-1
locks 2-2
overview 2-1
transaction IDs 2-16

CLM locking model API
ASTpoll routine 7-2
clm_scnop routine 7-44
clm_setnotify routine 7-48
clmlock routine 3-3, 7-3
clmlock_sync routine 3-5, 7-16
clmlockx routine 3-3, 7-9
clmlockx_sync routine 3-5, 7-21
clmunlock routine 7-29, 7-31
example 3-6
handling returned status codes 3-14, 5-4
how to use 3-1, 7-1

clm_errmsg routine 7-34
clm_getglobparams routine 7-35
clm_getresparams routine 7-36
clm_getstats routine 6-10, 7-37
clm_globparams_t data structure

CLM global tuning parameters 6-5, 6-8
clm_grp_attach routine 7-39
clm_grp_create routine 7-40
clm_grp_detach routine 7-41
clm_perror routine 7-42
clm_purge routine 7-43
clm_resparams_t data structure 6-9
clm_scnop routine

CLM locking model API routine 7-44
clm_setglobparams routine 7-47
clm_setnotify routine

CLM locking model API 7-48
using 3-6

clm_setresparams routine 7-49
clm_stats_t data type

CLM API status codes 3-14, 5-4
clmlock routine

CLM locking model API 3-3, 7-3
clmlock_sync routine

CLM locking model API 3-5, 7-16
Programming Locking Applications X-1

Index
D – L

X-
clmlockx routine
CLM locking model API 3-3, 7-9

clmlockx_sync routine
CLM locking model API 3-5, 7-21

clmregionlock routine
UNIX locking model 5-3

releasing a lock 5-3
UNIX locking model API 7-27

clmregister routine
UNIX locking model 5-2
UNIX locking model API 7-26

clmunlock routine
CLM locking model API 7-29, 7-31

Cluster Lock Manager
application programming interface 1-2
architecture 1-2
HC daemon 1-3
overview 1-1
setting the evaluation threshold

from command line 6-4
with SMIT 6-4

specifying migration evaluation frequency 6-2
stickiness attribute 6-9
tuning lock resource master migration 6-1
tuning parameters 6-1

conversion deadlock 2-15
convert queue

CLM locking model 2-2
converting (lock state)

CLM locking model 2-7

D
data structures

CLM locking model API 3-2
clm_globparams_t data structure 6-5, 6-8
clm_resparams_t data structure 6-9
clm_stats_t data type

CLM API status codes 3-14, 5-4
lock value block 2-2
UNIX locking model API 5-1, 5-2

deadlock
types of 2-14

decay rate
controlling lock resource master migration 6-1,

6-5
specifying 6-8

from applications 6-8
from SMIT 6-8

down-conversion
definition 2-7

E
evaluation frequency

specifying 6-4

evaluation threshold
controlling lock resource master migration 6-1
specifying 6-2

from SMIT 6-4
from within application 6-5

exclusive locks
UNIX locking model 4-2

G
grant queue

CLM locking model 2-2
granted (lock state)

CLM locking model 2-6
UNIX locking model 4-2

H
HC daemon

overview 1-3
header files

CLM locking model API 3-1
UNIX locking model API 5-1

I
include files

header files 1-1

L
libclm.a 5-1

single-threaded 3-2
libclm_r.a

multi-threaded 3-2
libraries

CLM locking model API 3-2, 5-1
linking

locking applications
CLM locking model 3-2, 5-1

local locks
CLM locking model 3-8

lock groups 2-17
lock modes

CLM locking model 2-3
mode compatibility 2-3

UNIX locking model 4-1
lock regions

UNIX locking model 4-1
lock requests

UNIX locking model 5-2
lock resource handles

format 5-2
UNIX locking model 5-3

lock resource limits 6-11
lock resources

acquiring locks on
2 Programming Locking Applications

Index
O – R
UNIX locking model 5-3
components of (CLM lock model) 2-1
definition 2-1
limits 6-11
master copy

migration tuning 6-1
master migration

effect of evaluation threshold 6-3
single cluster-wide lock image 1-2
specifying migration evaluation frequency 6-2
statistics 6-10
stickiness attribute 6-2

specifying 6-9
UNIX locking model

registering a resource 5-2
releasing a lock 5-3

unlocking 3-10
when holding process fails

CLM locking model 3-8
UNIX locking model 5-4

lock states
blocked 2-10
CLM locking model 2-5
converting 2-7
granted 2-6
UNIX locking model 4-2

lock status blocks
format 3-2

lock value blocks
definition 2-2
invalidating 3-12
setting the value of 3-11
using 3-13

locking models
comparison 1-1

locks
acquiring

asynchronously
CLM locking model 3-3

synchronously
CLM locking model 3-5

UNIX locking model 5-3
canceling

CLM locking model 3-10
CLM locking model 2-2

lock states 2-5
mode compatibility 2-3

keeping track of 3-6
local 3-8
lock IDs 3-4
obtaining status

synchronous 3-4
obtaining status of 3-3
purging 3-11, 5-4
releasing

CLM locking model 3-10

UNIX locking model 5-3
UNIX locking model 4-1

O
Oracle Parallel Server

HC daemon support 1-3
orphan locks 2-7

CLM locking model 3-8
purging 3-11, 5-4

P
persistent locks

CLM locking model 3-8
purging 3-11

purging
locks 3-11, 5-4

Q
queues

avoiding the wait queue 3-7
effects of releasing locks

CLM locking model 3-10
lock resources 2-2

R
registering

lock region 5-2
lock resources 7-26

releasing
locks

CLM locking model 3-10
resource handles

UNIX locking model
lock resource handles 5-3

resources
lock resources 1-1
Programming Locking Applications X-3

Index
S – W

X-
routines
ASTpoll routine 7-2
clm_errmsg routine 7-34
clm_getresparams routine 7-36
clm_getstats 7-37
clm_getstats routine 6-10
clm_globparams routine 7-35
clm_grp_attach 7-39
clm_grp_create 7-40
clm_grp_detach 7-41
clm_perror routine 7-42
clm_purge routine 7-43
clm_scnop routine 7-44
clm_setglobparams routine 7-47
clm_setnotify routine 7-48
clm_setresparams routine 7-49
clmlock routine 3-3, 7-3
clmlock_sync routine 3-5, 7-16
clmlockx routine 3-3, 7-9
clmlockx_sync routine 3-5
clmlockx_sync routines 7-21
clmregionlock routine 7-27
clmunlock routine 7-29, 7-31

S
SCN (System Commit Number) 1-1
scn.h file

/usr/include/cluster/scn.h 3-1
self-client deadlock 2-15
shared

locks
UNIX locking model 4-2

signal handling
setting up to receive lock status 3-3

statistics
lock resource 6-10

status codes
CLM APIs

printing 7-34
stickiness attribute 6-2

specifying 6-9
synchronous lock requests

CLM locking model 3-5
System Commit Number (SCN) 1-1

format 7-46
using 3-13

T
timeout

specifying
CLM locking model 3-8

transactions IDs 2-16
tuning

Cluster Lock Manager
API 6-1

stickiness attribute 6-9
lock resource master migration 6-1

U
UNIX locking model 4-1

acquiring locks 5-3
lock modes 4-1
lock regions 4-1
lock requests 5-2
lock resource handles 5-3
lock states 4-2
overview 1-2
registering a lock resource 5-2
releasing a lock 5-3

UNIX locking model API 5-1
clmregionlock routine 7-27
clmregister routine 7-26
data structures 5-1
handling returned status codes 5-4

unlocking a lock resource
UNIX locking model 5-3

unlocking lock resources
CLM locking model 3-10

up-conversion
definition 2-7

W
wait queue

avoiding 3-7
CLM locking model 2-2
4 Programming Locking Applications

Vos remarques sur ce document / Technical publication remark form

Titre / Title : Bull HACMP 4.4 Programming Locking Applications

Nº Reférence / Reference Nº : 86 A2 59KX 02 Daté / Dated : August 2000

ERREURS DETECTEES / ERRORS IN PUBLICATION

AMELIORATIONS SUGGEREES / SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Vos remarques et suggestions seront examinées attentivement.
Si vous désirez une réponse écrite, veuillez indiquer ci-après votre adresse postale complète.

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please furnish your complete mailing address below.

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

Remettez cet imprimé à un responsable BULL ou envoyez-le directement à :

Please give this technical publication remark form to your BULL representative or mail to:

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Technical Publications Ordering Form
Bon de Commande de Documents Techniques

To order additional publications, please fill up a copy of this form and send it via mail to:
Pour commander des documents techniques, remplissez une copie de ce formulaire et envoyez-la à :

BULL CEDOC
ATTN / MME DUMOULIN
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Managers / Gestionnaires :
Mrs. / Mme : C. DUMOULIN +33 (0) 2 41 73 76 65
Mr. / M : L. CHERUBIN +33 (0) 2 41 73 63 96

FAX : +33 (0) 2 41 73 60 19
E–Mail / Courrier Electronique : srv.Cedoc@franp.bull.fr

Or visit our web site at: / Ou visitez notre site web à:
http://www–frec.bull.com (PUBLICATIONS, Technical Literature, Ordering Form)

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

[_ _] : no revision number means latest revision / pas de numéro de révision signifie révision la plus récente

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

PHONE / TELEPHONE : FAX :

E–MAIL :

For Bull Subsidiaries / Pour les Filiales Bull :

Identification:

For Bull Affiliated Customers / Pour les Clients Affiliés Bull :

Customer Code / Code Client :

For Bull Internal Customers / Pour les Clients Internes Bull :

Budgetary Section / Section Budgétaire :

For Others / Pour les Autres :

Please ask your Bull representative. / Merci de demander à votre contact Bull.

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

86 A2 59KX 02
ORDER REFERENCE

P
LA

C
E

 B
A

R
 C

O
D

E
 IN

 L
O

W
E

R
LE

F
T

 C
O

R
N

E
R

Utiliser les marques de découpe pour obtenir les étiquettes.
Use the cut marks to get the labels.

AIX

86 A2 59KX 02

HACMP 4.4
Programming

Locking
Applications

AIX

86 A2 59KX 02

HACMP 4.4
Programming

Locking
Applications

AIX

86 A2 59KX 02

HACMP 4.4
Programming

Locking
Applications

	Contents
	About This Guide
	Chapter 1 Cluster Lock Manager
	An Overview of the HACMP Cluster Lock Manager
	Locking Models
	Application Programming Interfaces
	Cluster Lock Manager Architecture
	Support for HC Daemon

	Chapter 2 CLM Locking Model
	Overview
	Lock Resources
	Lock Value Block
	Lock Resource Queues

	Locks
	Lock Modes
	Lock States

	Deadlock
	Normal Deadlock
	Conversion Deadlock
	Self-Client Deadlock
	Deadlock Detection
	Transaction IDs
	Lock Groups

	Chapter 3 Using CLM Locking Model API Routines
	Overview
	Prerequisites
	Header Files
	Library Files
	Data Structure

	Acquiring or Converting a Lock on a Lock Resource
	Requesting Locks Asynchronously
	Requesting Locks Synchronously
	Triggering AST Routines
	Keeping Track of Lock Requests
	Sample Locking Application
	Avoiding the Wait Queue
	Specifying a Timeout Value for a Lock Request
	Excluding a Lock Request from Deadlock Detection Processing
	Requesting Persistent Locks
	Requesting Local Locks

	Releasing a Lock on a Lock Resource
	Purging Locks
	Manipulating the Lock Value Block
	Setting an LVB When Releasing an EX or PW Lock
	Invalidating a Lock Value Block
	Using Lock Value Blocks

	Handling Returned Status Codes

	Chapter 4 UNIX Locking Model
	Lock Regions
	Lock Modes
	Shared
	Exclusive

	Lock States
	Granted
	Blocked

	Chapter 5 Using UNIX Locking Model API Routines
	Overview
	Prerequisites
	Header Files
	Library Files
	Data Structure

	Registering a Lock Resource
	clmregister Routine

	Locking a Lock Resource
	Unlocking a Resource
	Handling Returned Status Codes
	Purging Locks

	Chapter 6 Tuning the Cluster Lock Manager
	Overview
	Migration Evaluation Frequency
	Historical Access Patterns
	Stickiness Attribute

	Specifying the Frequency of Migration Evaluations
	Specifying the Decay Rate
	Specifying the Stickiness Value of a Lock Resource
	Obtaining Lock Resource Statistics
	Lock and Lock Resource Limits
	Lock Manager Kernel Memory Usage
	Maximum Acquired Locks Per Node
	When Locks are Denied
	Lock Value Block Changes

	Chapter 7 Lock Manager API Routines
	Lock Manager Routines
	ASTpoll Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clmlock Routine
	Syntax
	Description
	Parameters
	Status Codes
	Status Codes Returned in the Lock Status Block
	Example

	clmlockx Routine
	Syntax
	Description
	Parameters
	Status Codes
	Status Codes Returned in the Lock Status Block
	Example

	clmlock_sync Routine
	Syntax
	Description
	Parameters
	Status Codes
	Status Codes Returned in the Lock Status Block
	Example

	clmlockx_sync Routine
	Syntax
	Description
	Parameters
	Status Codes
	Status Codes Returned in the Lock Status Block
	Example

	clmregister Routine
	Syntax
	Description
	Parameters
	Return Values
	Status Codes
	Example

	clmregionlock Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clmunlock Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clmunlock_async Routine
	Syntax
	Description
	Parameters
	Status Codes
	Status Codes Returned in the Unlock AST

	clm_errmsg Routine
	Syntax
	Description
	Parameters
	Returns
	Example

	clm_getglobparams Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_getresparams Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_getstats Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_grp_attach Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_grp_create Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_grp_detach Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_perror Routine
	Syntax
	Description
	Parameters
	Example

	clm_purge Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_scnop Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_setglobparams Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_setnotify Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_setresparams Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	Index

