Bull

HACMP 4.4
Programming Locking Applications

AlX

ORDER REFERENCE
86 A2 59KX 02

Bull

HACMP 4.4
Programming Locking Applications

AlX

Software

August 2000

BULL CEDOC

357 AVENUE PATTON
B.P.20845

49008 ANGERS CEDEX 01
FRANCE

ORDER REFERENCE
86 A2 59KX 02

The following copyright notice protects this book under the Copyright laws of the United States of America
and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and
making derivative works.

Copyright © Bull S.A. 1992, 2000

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of
this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX® is a registered trademark of International Business Machines Corporation, and is being used under
licence.

UNIX is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Year 2000

The product documented in this manual is Year 2000 Ready.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

Contents

About ThisGuide Xi
Chapter 1 Cluster Lock Manager 1-1
An Overview of the HACMP Cluster Lock Manager 1-1
LockingModels i 1-1
Application Programming Interfaces 1-2
Cluster Lock Manager Architecture....................... 1-2
SupportforHCDaemon 1-3
Chapter 2 CLM Locking Model 2-1
OVEIVIBW o 2-1
LOCKRESOUICESo 2-1
Lock ValueBlock il 2-2
Lock Resource QUEUES ... 2-2
LOCKS 2-2
Lock Modes 2-3
LOCK SEtateSo 2-5
Deadlock 2-14
Normal Deadlock, 2-14
ConversionDeadlock 2-15
Self-Client Deadlock ..., 2-15
Deadlock Detectionccvviiiiiiiinnnann. 2-15
TransactionIDS 2-16
LOCK Groups 2-17
Chapter 3 Using CLM Locking Model APl Routines 31
OVEIVIBW o 31
PrereqUISIteS ... 3-1
Header Files e 3-1
Library Files 3-2
DataStructure 3-2
Acquiring or Converting aLock onalLock Resource........ 3-3
Requesting Locks Asynchronoudly 3-3
Requesting Locks Synchronously 3-5
Triggering AST Routines 3-6
Keeping Track of Lock Requests. 3-6

Programming Locking Applications Preface v

Vi

Contents

Chapter 4

Chapter 5

Chapter 6

Sample Locking Applicationcoo.un. 3-6
AvoidingtheWaitQueue 3-7
Specifying a Timeout Valuefor aLock Request 3-8
Excluding a Lock Request from Deadlock Detection
ProCESSING . ..o 3-8
Requesting Persistent Locks 3-8
RequestingLocal LockS, 3-8
Releasingalock onalLock Resource..................... 3-10
PurgingLocks 3-11
Manipulating the Lock ValueBlock 311
Setting an LVB When Releasing an EX or PW Lock 311
InvalidatingalLock VaueBlock 3-12
UsingLock ValueBlocks 3-13
Handling Returned StatusCodes 3-14
UNIX Locking M odel 4-1
LOCK REQIONS 4-1
LoCKMOES 4-1
Shared 4-2
EXclusive 4-2
LOCK SEAES ...ttt 4-2
Granted 4-2
Blocked 4-2
Using UNIX Locking Model APl Routines 5-1
OVEIVIBW o 5-1
PrerequIiSItes ... 5-1
Header Files e 5-1
Library Files 5-1
DataStructure 5-2
RegisteringalLock Resource 5-2
clmregister Routine i 5-2
LockingaLock Resourcecooviiiiiiininnnnn. 5-3
UnlockingaResource ..., 5-3
Handling Returned StatusCodes 5-4
PurgingLocksc 5-4
Tuning the Cluster Lock Manager 6-1
OVEIVIBW ... 6-1
Migration Evaluation Frequency 6-1
Historical AccessPatternsccovvi... 6-1
Stickiness Attribute ... 6-2
Specifying the Frequency of Migration Evaluations 6-2

Programming Locking Applications

SpecifyingtheDecay Rate
Specifying the Stickiness Value of aLock Resource

Obtaining Lock Resource Statistics

Lock and Lock ResourceLimits..............
Lock Manager Kernel Memory Usage
Maximum Acquired Locks Per Node
When LocksareDenied
Lock ValueBlock Changes

Chapter 7 Lock Manager APl Routines

Lock Manager Routines.
cimlock Routine.
cimlockx Routine
clmlock_syncRoutine
clmlockx_syncRoutine
clmregister Routine
clmregionlock Routine
clmunlock Routine
clmunlock_asyncRoutine
clm errmsg Routine
clm_getglobparamsRoutine
clm_getresparamsRoutine
clm_getstatsRoutine
clm grp attachRoutine.....................
clm grp createRoutine.....................
clm_grp detachRoutine
clm perror Routine
clm purgeRoutine
clm scnopRoutine L
clm_setglobparamsRoutine
clm_setnotify Routine
clm_setresparamsRoutine

| ndex

Programming Locking Applications

Contents

Preface vii

Contents

viii Programming Locking Applications

About This Guide

This book describes the Cluster Lock Manager (CLM) application programming interface
(API) supplied with the High Availability Cluster Multi-Processing for AlX, Version 4.4
(HACMPfor AlX) software. Thelock manager supportstwo APIs: the CLM Locking APl and
the UNIX Locking API.

Who Should Use This Book

This guide is intended for application developers who want to write highly available
applicationsfor an HACMP for AIX environment. Readers of this guide should understand the
C programming language and database concepts.

How to Use This Book

Overview of Contents
This book provides both conceptual and reference information. The book has the following
chapters.
Chapter 1, Cluster Lock Manager, introduces the Cluster Lock Manager.
Chapter 2, CLM Locking Model, describes the CLM locking model.

Chapter 3, Using CLM Locking Model APl Routines, describes how to use the CLM
locking model API routinesin an HACMP for AIX application.

Chapter 4, UNIX Locking Model, describes the Cluster Lock Manager’s implementation
of UNIX System V locks.

Chapter 5, Using UNIX Locking Model API Routines, describes how to use the UNIX
locking model API routinesin an HACMP for AIX application.

Chapter 6, Tuning the Cluster Lock Manager, describes tuning lock manager behavior to
optimize lock throughput and obtain statistics about lock resource usage.

Chapter 7, Lock Manager APl Routines, provides reference information on the C language
routines used to implement locking in an HACMP for AlX application.

Highlighting
The following highlighting conventions are used in this book:
Italics Identifies new terms or concepts.
Bold Identifies routines, commands, keywords, files, directories, menu items,

and other items whose actua names are predefined by the system.

Monospace Identifies exampl es of specific data val ues, examples of text similar to what
you might see displayed, examples of program code similar to what you
might write as a programmer, messages from the system, or information
that you should actually type.

Programming Locking Applications Preface ix

Related Publications

The following books provide additional information about HACMP for Al X:

Release Notes in /usr/Ipp/cluster/doc/release_notes describe hardware and software
reguirements

HACMP for AlX, Version 4.4. Concepts and Facilities, order number 86 A2 54K X 02
HACMP for AlX, Version 4.4: Planning Guide, order number 86 A2 55K X 02
HACMP for Al X, Version 4.4: Installation Guide, order number 86 A2 56K X 02
HACMP for AlX, Version 4.4: Administration Guide, order number 86 A2 57K X 02
HACMP for AlX, Version 4.4: Troubleshoaoting Guide, order number 86 A2 58K X 02

HACMP for AlX, Version 4.4: Programming Client Applications, order number
86 A2 60K X 02

HACMP for AlX, Version 4.4: Master Index and Glossary, order number 86 A2 65K X 02

HACMP for AlX, Version 4.4: Enhanced Scalability Installation and Administration
Guide, Volumes | and Il, order numbers 86 A2 62K X 02 and 86 A2 89K X 01

ISO 9000

SO 9000 registered quality systems were used in the devel opment and manufacturing of this
product.

Ordering Publications
To order additional copies of this guide, use order number 86 A2 59K X 02.

Programming Locking Applications

Cluster Lock M anager
An Overview of the HACMP Cluster Lock Manager

Chapter 1 Cluster Lock Manager

This chapter introduces the HACMP for Al X Cluster Lock Manager.

An Overview of the HACMP Cluster Lock Manager

The Cluster Lock Manager provides advisory locking services that allow concurrent
applications running on multiple nodesin an HACMP cluster to coordinate their use of shared
resources.

Cooperating applications running on different nodesin an HACMP cluster can share common
resources without corrupting those resources. The shared resources are not corrupted because
the lock manager synchronizes (and, if necessary, serializes) access to them.

Note: All locksare advisory, that is, voluntary. The system does not enforce
locking. Instead, applications running on the cluster must cooperate
for locking to work. An application that wantsto use ashared resource
isresponsible for first obtaining alock on that resource before
attempting to access it.

Applications that can benefit from using the Cluster Lock Manager are transaction-oriented,
such as a database or a resource controller or manager.

Locking Models

The Cluster Lock Manager provides two distinct locking models: the CLM locking model and
the UNIX System V locking model.

The two locking models exist in separate name spaces and do not interact. Therefore, the
Cluster Lock Manager can manage simultaneous lock traffic of both types. A singleapplication
can use both types of locks.

CLM Locking Model
The CLM locking modd provides arich set of locking modes and both synchronous and
asynchronous execution. The CLM locking model supports:
Six locking modes that increasingly restrict access to aresource
The promotion and demotion of locks through conversion
Synchronous compl etion of lock requests
Asynchronous completion through asynchronous system trap (AST) emulation
Global datathrough lock value blocks

For more information about the CLM locking model, see Chapter 2, CLM Locking Model.

Programming Locking Applications 1-1

1-2

Cluster Lock Manager
Application Programming Interfaces

UNIX Locking Model

The UNIX locking model supports UNIX System V region locking. Using the UNIX locking
model, you can define regions of fine granularity within aresource. Locksinthe UNIX locking
model are either shared or exclusive.

For amore information about the UNIX locking model, see Chapter 4, UNIX Locking Model.

Application Programming Interfaces

The Cluster Lock Manager supports an application programming interface (API), a collection
of C language routines, that allow you to acquire, manipulate, and release locks. This API
presents ahigh-level interface that you can useto implement locking in an application. The AP
routines that implement the CLM locking model are described in Chapter 3, Using CLM
Locking Model API Routines, of this manual. The API routines that implement the UNIX
locking model are described in Chapter 5, Using UNIX Locking Model API Routines.

HACMP for AlX includes two versions of the lock manager API libraries: one for
single-threaded (non-threaded) applications (libclm.a) and one for multi-threaded applications
(libclm_r.a).

Cluster Lock Manager Architecture

The lock manager defines alock resource as the lockable entity. The lock manager creates a
lock resource the first time an application requests alock against it. A single lock resource can
have one or many locks associated with it. A lock is always associated with one lock resource.

The lock manager provides asingle, unified lock image shared among all nodesin the cluster.
Each node runs a copy of the lock manager daemon. These lock manager daemons
communicate with each other to maintain a cluster-wide database of lock resources and the
locks held on these lock resources.

Within this cluster-wide database, the lock manager maintains one master copy of each lock
resource. This master copy can reside on any cluster node. Initially, the master copy resides on
the node on which the lock request originated. The lock manager maintains a cluster-wide
directory of the locations of the master copy of all the lock resources within the cluster. The
lock manager attempts to evenly divide the contents of this directory across al cluster nodes.
When an application requestsalock on alock resource, thelock manager first determineswhich
node holds the directory entry and then, reads the directory entry to find out which node holds
the master copy of the lock resource.

By alowing al nodes to maintain the master copy of lock resources, instead of having one
primary lock manager in a cluster, the lock manager can reduce network traffic in cases when
the lock request can be handled on the local node. This also avoids the potential bottleneck
resulting from having one primary lock manager and reduces the time required to reconstruct
the lock database when afallover occurs.

Programming Locking Applications

Cluster Lock M anager
Support for HC Daemon

Toincreasethelikelihood of local processing, the lock manager can also move alock resource
master to the node that is accessing the lock resource most frequently. Thisis called lock
resource master migration. Using these techniques, the lock manager attemptsto increase lock
throughput and reduce the network traffic overhead. Applications can also explicitly instruct
the lock manager to process alock locally.

When a node fails, the lock managers running on the surviving cluster nodes release the locks
held by the failed node. The lock manager then processes lock requests from surviving nodes
that were previously blocked by locks owned by the failed node. In addition, the other nodes

re-master locks that were mastered on the failed node.

Support for HC Daemon

The HC daemon provides support needed to run Oracle’s Distributed Fault Tolerant Lock
Manager as part of Oracle Parallel Server. HACMP reports and reacts to the presence or loss of
a processor in the cluster. The HC daemon extends this functionality to process membership
information. It allows peer processes in a cluster, such as the instances of the Oracle Fault
Tolerant Lock Manager on each node, to be informed of the presence or loss of other instances
across the cluster.

The HC daemon accepts a socket connection from a client process. It keeps all clients informed
of process membership, broadcasting messages regarding the addition or loss of a client to all
clients across the cluster. The HC daemon regularly exchanges heartbeat messages with its
client. This allows it to detect the loss of a client for reasons other than loss of a node.

Installing the HC daemon puts the following entry inAtte/inittab file:

hc: 2: respawn: /usr /| pp/ csd/ bi n/ hacnp_hc_start # start hc daenon

This entry directs init to run the shell scripsr/Ipp/csd/bin/hacmp_hc_start at system
initialization time, and re-run it should the HC daemon ever exit.

This shell script constructs the filgsr/Ipp/csd/bin/machines.1st, which the HC daemon uses
to determine the TCP/IP addresses needed to communicate with other instances in the cluster.

In the event that a node joins or leaves the cluster, the HACMP cluster manager runs shell
scripts that react to these events. These shell scripts call other scripts associated with the HC
daemon and which pass updated cluster membership to the HC daemon. The HC daemons in
turn inform their clients and any instances of the Oracle Distributed Fault Tolerant Lock

Manager.

Event Shel | Scri pt

Node Up [usr/ 1 pp/csd/ bin/hacnmp_vsd_upl
Node up conpl ete [usr/ | pp/ csd/ bi n/ hacnp_vsd_up2
Node down /usr/ 1 pp/csd/ bi n/ hacnp_vsd_downl
node down conpl ete /usr/ 1 pp/ csd/ bi n/ hacnp_vsd_down2

Programming Locking Applications 1-3

Cluster Lock Manager
Support for HC Daemon

Restrictions

Important restrictions on the use of the HC daemon:
The HC daemon is supported only on nodes that are part of a concurrent resource group.
Each node on which the HC daemon is installed must have a service interface defined.

The HC daemon should not be loaded on nodes which are part of an SP system on which
the Recoverable Virtual System Disk (RVSD) isinstalled. The RV SD facility providesits
own version of the HC daemon.

See the applicable Oracle documentation for information on which levels of Oracle Parallel
Server provide Oracle’s Distributed Fault Tolerant Lock Manager.

Programming Locking Applications

CLM Locking Model
Overview

Chapter 2 CLM Locking Model

This chapter presents the concepts you need to understand to use CLM locks effectively in an
application. Chapter 3, Using CLM Locking Model API Routines, describes how to use the
CLM locking model API routines to implement locking in an application.

Overview

Inthe CLM locking model, alock resourceisthelockable entity. An application acquiresalock
on alock resource. A one-to-many relationship exists between lock resources and locks: a
single lock resource can have multiple locks associated with it.

A lock resource can correspond to an actual object, such as afile, a data structure, a database,
or an executable routine; however, it does not have to. The object you associate with alock
resource determines the granularity of the lock. For example, locking an entire database is
considered locking at coarse granularity. Locking each item in adatabaseis considered locking
at fine granularity.
The following sections provide more information about:

Lock resources, including lock value blocks and lock queues

Locks, including lock modes and lock states

Deadlock, including transaction IDs and lock groups.

Lock Resources

A lock resource has the following components.
A name, which is a string of no more than 31 characters
A lock value block
A set of lock queues

Thefollowing figure illustrates alock resource.

Grant
Queue
Resource Lock Convert
Name Value Queue
Block
Wait
Queue

Lock Resource

Programming Locking Applications 2-1

CLM Locking Model
Locks

Thelock manager creates alock resource in response to the first request for alock on that lock
resource. Thelock manager destroystheinternal datastructuresfor that lock resource when the
last lock held on the lock resource is released.

Lock Value Block

Thelock value block (LVB) is a 16-byte character array associated with alock resource that
applications can use to store data. This data is application-specific; the lock manager does not
make any direct use of thisdata. The lock manager allocates space for the LVB when it creates
thelock resource. When the lock manager destroysthe lock resource, any information storedin
the lock value block is also destroyed.

See Chapter 3, Using CLM Locking Model API Routines, for information about using the lock
value block.

Lock Resource Queues

Each lock resource has three queues associated with it, one for each possible lock state.

Grant Queue Contains all locks granted by the lock manager on the lock resource,
except those locks converting to a mode incompatible with the mode
of agranted lock. The lock manager maintains the grant queue as a
queue; however, the order of the locks on the queue does not affect
processing.

Convert Queue Contains all granted locks that have subsequently attempted to
convert to a mode incompatible with the mode of the most restrictive
currently granted lock. The locks on the convert queue are still
granted at the same mode as before the conversion request. The lock
manager processes the locks on the convert queue in “first-in,
first-out” (FIFO) order. The lock at the head of the queue must be
granted before any other locks on the queue can be granted.

Wait Queue Contains all new lock requests not yet granted because their mode is
incompatible with the mode of the most restrictive currently granted
lock. The lock manager processes the locks on the wait queue in
FIFO order.

For more information about the relationship of these lock queues, see Lock States on page 2-5.

Locks

In the CLM locking model, you can request alock from the lock manager on any lock resource.
L ocks have the following properties:

A mode that defines the degree of protection provided by the lock
A state that indicates whether the lock is currently granted, converting, or waiting

2-2 Programming Locking Applications

CLM Locking Model
Locks

Lock Modes

A lock mode indicates whether a process shares access to alock resource with other processes
or whether it prevents other processes from accessing that lock resource whileit holdsthe lock.
A lock request specifies alock mode.

Note: The Cluster Lock Manager does not force a process to respect alock.
Processes must agree to cooperate. They must voluntarily check for
locks before accessing a resource and, if alock incompatible with a
reguest exists, wait for that lock to be released or converted to a
compatible mode.

Lock Mode Severity

Thelock manager supports six lock modesthat range in the severity of their restrictiveness. The
following table lists the modes, in order from least severe to most severe, with the types of
access associated with each mode.

Mode Requesting Process Other Processes
Null (NL) No access Read or write access
Concurrent Read (CR) Read access only Read or write access
Concurrent Write (CW) Read or write access Read or write access
Protected Read (PR) Read access only Read access only
Protected Write (PW) Read or write access Read or write access
Exclusive (EX) Read or write access No access

Within an application, you can determine which mode is more severe by making asimple
arithmetic comparison. Modes that are more severe are arithmetically greater than modes that
areless severe.

Lock Mode Compatibility

Lock mode compatibility determines whether two locks can be granted simultaneously on a
particular lock resource. Because of their restrictiveness, certain lock combinations are
compatible and certain other lock combinations are incompatible.

For example, because an EX lock does not allow any other user to access the lock resource, it
isincompatible with locks at any other mode (except NL locks, which do not grant the holder
any privileges). Because a CR lock isless restrictive, however, it is compatible with any other
lock mode, except EX.

Programming Locking Applications 2-3

CLM Locking Model

Locks

This table presents a mode compatibility matrix.

Mode of Currently Granted Lock

NL CR CwW PR PW EX

NL Yes Yes Yes Yes Yes Yes
CR Yes Yes Yes Yes Yes No
Cw Yes Yes Yes No No No
PR Yes Yes No Yes No No

PW Yes Yes No No No No

Mode of Requested Lock

EX Yes No No No No No

Lock Mode Compatibility

NL modelocksgrant no privilegesto thelock holder. NL modelocks are compatible with locks
of any other mode. Applications typically use NL mode locks as placeholders for later
conversion requests.

CR modelocksallow unprotected read operations. The read operations are unprotected because
other processes can read or write the lock resource while the holder of a CR lock isreading the
lock resource. CR mode locks are compatible with every other mode lock except EX mode.

CW mode locks allow unprotected read and write operations. CW mode locks are compatible
with NL mode locks, CR read mode locks, and other CW mode locks.

PR mode locks alow alock client to read from alock resource knowing that no other process
can write to the lock resource while it holds the lock. PR mode locks are compatible with NL
mode locks, CR mode locks, and other PR mode locks. PR mode locks are an example of a
traditional shared lock.

PW mode locks alow alock client to read or write to alock resource, knowing that no other
process can write to the lock resource. PW mode locks are compatible with NL mode locks and
CR modelocks. Other processesthat hold CR modelocks on thelock resource can read it while
alock client holdsa PW lock on alock resource. A PW lock is an example of atraditional
update lock.

EX mode locks allow alock client to read or write alock resource without allowing access to
any other mode lock (except NL). An EX lock is an example of atraditional exclusive lock.

Thefollowing figure showsthe modesin descending order from most to | east severe. Note that,
because CW and PR modes are both compatible with three modes, they provide the same level
of severity.

Programming Locking Applications

CLM Locking Model
Locks

Most Severe EX
PW
Ccw PR
CR
Least Severe NL

Lock Mode Severity

Lock States

A lock stateindicates the current status of alock request. A lock isalwaysin one of three states:
Granted The lock request succeeded and attained the requested mode.

Converting A client attempted to change the lock mode and the new maodeis
incompatible with an existing lock.

Blocked The reguest for anew lock could not be granted because conflicting
locks exist.

Programming Locking Applications 2-5

CLM Locking Model

Locks
A lock’s state is determined by its requested mode and the modes of the other locks on the same
resource. The following figure shows all the possible lock state transitions.
Granted Compat?ble In-place
Conversions
New Lock >
Requested Grant
— | Queue :’
>
Conversions
Granted
Convert
ueue
Q Incompatible
Conversions
- Remain on the
Waiting Locks Convert Queue
Granted
Blocked < Wait
p Queue
Lock Queues
The following sections provide more information about each state. See Interaction of Queues
on page 2-12 for a detailed example of the lock state transitions.
Granted

A lock request that attains its requested modegsaisted. The lock manager grants a lock if there
are currently no locks on the specified lock resource, or if the requested mode is compatible
with the mode of the most restrictive currently granted lock and the cut queue is empty. The
lock manager adds locks in the granted state to the lock resource’s grant queue.

For example, if you request a CR mode lock on a lock resource, named RES-A, and there are
no other locks, the lock manager grants your request and adds your lock to the lock resource’s
grant queue. The following figure illustrates the lock resource’s queues after this lock
operation.

Grant Lock 1
Queue CR

Convert

RES-A Queue

Wait
Queue

Programming Locking Applications

CLM Locking Model
Locks

If the lock manager receives another request for alock on RES-A at mode CR, it grants the

reguest because the mode is compatible with the currently granted lock. Thelock manager adds

this lock to the lock resource’s grant queue. The figure below illustrates the lock resource’s
queues after these operations.

Grant Lock 1 Lock 2
Queue CR CR

Convert

RES-A Queue

Wait
Queue

Leaving the Grant Queue

A lock can leave the grant queue only if the owner makes a request to release it or if the process
holding the lock terminates. The lock manager releases all locks owned by the process that
terminates. By using flags to the lock open routines, however, you can specify that you want
the locks you create on a lock resource to remain after your process terminates. These locks are
calledorphan locks. If the orphan lock is on the grant queue, the lock manager leaves it there.

If the orphan lock is on the convert queue, the lock manager puts it back on the grant queue at
its old grant mode (its conversion request is cancelled). If the orphaned lock is on the wait
queue, the lock manager ignores its orphanable state and removes it. For more information
about creating orphan locks, see Requesting Persistent Locks on page 3-8.

Converting

A lock conversion request changes the mode at which a lock is held. The conversion can
promote a lock from a less restrictive to a more restrictive mode, callgg@mversion, or
demote a lock from a more restrictive to a less restrictive mode, caltweheconversion. For
example, a request to convert the mode of a lock from NL to EX is an up-conversion. Only
granted locks can be converted. It is not possible to convert a lock already in the process of
converting or a request blocked on the wait queue.

Programming Locking Applications 2-7

CLM Locking Model

Locks

The lock manager grants up-conversion requests if the requested mode is compatible with the
mode of the most restrictive currently granted lock and there are no blocked lock conversion
requests waiting on the convert queue. To illustrate, consider the following lock resource with
three granted locks, all at CR mode.

Grant Lock 1 Lock 2 Lock 3
Queue CR CR CR

Convert

RES-A Queue

Wait
Queue

If you request a conversion of Lock 3 from CR modeto CW mode, the lock manager can grant
the request because CW mode is compatible with CR mode and there are no lock conversion
requests on the convert queue. The following illustrates the state of the lock queues after this
request.

Grant Lock 1 Lock 2 Lock 3
Queue CR CR CW

Convert

RES-A Queue

Wait
Queue

A lock conversion request that cannot be granted transitions into converting state. The lock
manager moves locks in converting state from the grant queue to the end of the convert queue.
Locks in the converting state retain the lock mode that they held on the grant queue.

For example, using the previous lock scenario, if you try to convert Lock 1 from CR modeto
the more restrictive EX maode, the lock manager cannot grant the request because EX modeis
not compatible with the mode of the most restrictive granted lock (CW). The lock manager
moves Lock1 from the grant queue to the convert queue.

Programming Locking Applications

CLM Locking Model
Locks

The following figure illustrates the lock resource’s queues after the conversion request.

Grant Lock 2 Lock 3
Queue CR CW
Convert Lock 1
RES-A | Queue CR->EX
Wait
Queue

Once there is a lock on the convert queue, all subsequent up-conversion requests get moved to
the convert queue, even if the requested mode is compatible with the most restrictive granted
lock. For example, using the preceding lock scenario, a request to convert Lock 2 from CR to
CW could not be performed because the conversion of Lock 1 is waiting on the convert queue,
even though CW mode is compatible with the mode of the most restrictive currently granted
lock. The lock manager moves the lock to the end of the convert queue. The following
illustrates the state of the lock resource queues after this conversion request.

Grant Lock 3
Queue CW
Convert Lock 1 Lock 2
RES-A | Queue CR->EX CR->CW
Wait
Queue

Leaving the Converting State
A lock can leave the converting state if any of the following conditions are met:

The process that requested the lock terminates.

The process that holdsthe lock cancel sthe conversion request. When a conversion request
is canceled, the lock manager moves the lock back to the grant queue at its previously
granted mode.

The requested mode becomes compatible with the most restrictive granted lock and all
previously requested conversions have been granted or canceled.

In-Place Conversions

Thelock manager grantsall down-conversion requestsin-place; that is, thelock is converted to
the new mode without being moved to the convert queue, even if there are other lock requests
on the convert queue. The lock manager grants all down-conversions because they are
compatible with the most restrictive locks on the grant queue (the lock was already granted at
amore restrictive mode).

Programming Locking Applications 2-9

CLM Locking Model
Locks

For example, given the preceding lock scenario, if you requested adown-conversion of Lock 3
from CW to NL, the lock manager would grant the conversion in-place. The following
illustrates the state of the locks after this conversion.

Grant Lock 3
Queue NL

Convert Lock 1 Lock 2
Queue CR->EX CR->CW

RES-A

Wait
Queue

Conversion Deadlock

Becausethelock manager processesthe convert queuein FIFO order, the conversion of thelock
at the head of the convert queue must occur before any other conversions on the convert queue
can be granted. Occasionally, the lock at the head of the convert queue can be blocked by one
of the other lock conversion requests on the convert queue. Thelock conversion requests on the
convert queue are all blocked by the lock at the head of convert queue. Thus, a deadlock cycle
is created.

The previous exampleillustrates conversion deadlock. Even after the down-conversion of Lock
3to NL mode, Lock 1 cannot be granted because it is blocked by Lock 2, also on the convert
gueue. Lock 1 cannot convert to EX mode because Lock 2 is still granted at CR mode, which
isincompatible with EX mode. Thus, Lock 1 isblocked by Lock 2 and Lock 2 is blocked by

Lock 1. For more information about conversion deadlock, see Conversion Deadlock on page

2-15.

Blocked

If you request alock and the maode isincompatible with the most restrictive granted lock, your

request is blocked. The lock manager adds the blocked lock request to the lock resource’s wait
gueue. (You can choose to have the lock manager abort a request that cannot be immediately
granted instead of putting it on the wait queue. For more information, see Avoiding the Wait
Queue on page 3-7.)

Continuing the previous example, if you request a new EX lock on the same lock resource
(Lock 3), the lock manager cannot grant your request because EX is not compatible with the
most restrictive mode of a currently grant lock (Lock 1 at EX mode). The lock manager adds
this lock request to the end of the lock resource’s wait queue.

2-10 Programming Locking Applications

CLM Locking Model

This figure illustrates the lock resource’s queues after this request.

Grant
Queue

RES-A

Convert
Queue

Wait
Queue

Lock 2 Lock 1
NL EX
Lock 3
EX

A lock can leave the wait queue if any of the following conditions are met:

The process that requested the lock terminates.

Therequester cancelsthe blocked lock. When ablocked lock is cancel ed, the lock manager
removes it from the wait queue.

Locks

The lock request becomes compatible with the mode of the most restrictive lock currently
granted on the lock resource and there are no converting locks or blocked locks queued
ahead of the lock request. The lock manager processes the wait queue in FIFO order, after
processing the convert queue. No blocked request can be unblocked by the release of a
granted lock, regardless of the compatibility of its mode, until al blocked requests on the
convert queue and all blocked requests ahead of it on the wait queue have been granted.

Thus, alock reguest can become blocked only asthe result of alock request, but it can unblock
asaresult of the release or conversion of some other lock. (An exception ismade in the case of
deadlock. See Deadlock on page 2-14.)

Continuing the previous example, if you convert Lock 1 from EX to NL, the lock manager can
grant the blocked request because EX is compatible with NL mode locks. The lock manager

moves Lock 3 from the wait queue to the grant queue. The following figureillustrates the lock
resource’s queues after the conversion of Lock 1.

RES-A

Grant
Queue

Lock 2
NL

Lock 1
NL

Lock 3
EX

Convert
Queue

Wait
Queue

Programming Locking Applications

2-11

CLM Locking Model

Locks

Interaction of Queues

2-12

Toillustrate how the lock manager processes a lock resource’s grant, convert, and wait queues,
consider the lock scenario illustrated in the following figure. This example has one lock on the
grant queue, three lock conversion requests blocked on the convert queue, and three lock

requests blocked on the wait queue.

Grant Lock 1
Queue PW
RES-A Convert Lock 2 Lock 3 Lock 4
Queue NL->EX NL->PW NL->CR
Wait Lock 5 Lock 6 Lock 7
Queue CR PR CR

If you request a down-conversion of Lock 1 from PW to CR, the lock manager can grant the
conversion request because a CR lock is compatible with the mode of the most restrictive
currently granted lock. (Lock 1 itself is the most restrictive currently granted lock; a lock cannot
block itself.) Note that the lock manager performs an in-place conversion of Lock 1, without
adding it to the end of the convert queue.

After granting the conversion, the lock manager checks if the change allows any blocked
conversions to be granted, starting at the head of the convert queue. Because CR and EX are
not compatible, Lock 2 cannot be unblocked. Because the lock manager processes the convert
gueue in FIFO order, no other locks on the convert queue can be granted, even though their
requested modes are compatible with CR. Because there are conversions still blocked on the
convert queue, the blocked locks on the wait queue can not be processed either. The following
figure illustrates the lock resource’s queues after the Lock 1 conversion request is completed.

Grant Lock 1
Queue CR
RES-A Convert Lock 2 Lock 3 Lock 4
Queue NL->EX NL->PW NL->CR
Wait Lock 5 Lock 6 Lock 7
Queue CR PR CR

Programming Locking Applications

CLM Locking Model

Locks

If you release Lock 1, the lock manager can grant Lock 2, the EX lock waiting at the head of
the conversion queue. Because the mode requested by Lock 3 is not compatible with an EX
mode lock, no other request on the convert queue can be granted. The following figure
illustrates the lock resource’s queues after the lock conversion operation.

RES-A

Grant
Queue

Convert
Queue

Wait
Queue

Lock 2
EX

Lock 3 Lock 4

NL->PW NL->CR

Lock 5 Lock 6 Lock 7
CR PR CR

If you request a down-conversion of Lock 2 from EX to NL, the lock manager grants the
conversion in-place because a NL lock is compatible with the mode of the most restrictive
currently granted lock (EX). The lock manager checks the convert queue to see if the change
allows any blocked conversion requests to be granted. The lock manager can grant Lock 3 and
Lock 4 on the convert queue because PW and CR are compatible.

In addition, because there are no locks left on the convert queue, the lock manager can process
the locks blocked on the wait queue. The lock manager can grant the lock at the head of the wait
gqueue, Lock 5, because a CR lock is compatible with the most restrictive currently granted lock.
The lock manager cannot grant Lock 6, however, because PR is incompatible. Because the lock
manager processes the wait queue in FIFO order, Lock 7 cannot be granted, even though it is
compatible with the most restrictive currently granted lock.

The following figure illustrates the lock resource’s queues after the conversion operation of

Lock 2.
Grant Lock 2 Lock 3 Lock 4 Lock 5
Queue NL PW CR CR
Convert
RES-A Queue
Wait Lock 6 Lock 7
Queue PR CR

If you release Lock 4 and Lock 5, the lock manager cannot unblock the locks on the wait queue
because the mode of Lock 6 is still not compatible with the most restrictive currently granted
lock.

Programming Locking Applications 2-13

CLM Locking Model

Deadlock
Grant Lock 2 Lock 3
Queue NL PW
Convert
RES-A | Queue
Wait Lock 6 Lock 7
Queue PR CR
If you release Lock 3, the lock manager can grant Lock 6 at the head of the wait queue and lock
7 because their modes are compatible.
Grant Lock 2 Lock 6 Lock 7
Queue NL PR CR
Convert
RES-A | Queue
Wait
Queue
Deadlock

Thelock manager faces deadl ock when two or more lock requests are blocking each other with
incompatible modes for lock requests. Three types of deadlock can occur: normal deadlock,
conversion deadlock, and self-client deadlock.

Normal Deadlock

Normal deadlock occurs when two or more processes are blocking each other in acycle of
granted and blocked lock requests. For example, say Process P1 hasalock on Resource R1 and
is blocked waiting for alock on Resource R2 held by Process P2. Process P2 has alock on
Resource R2 and is blocked waiting for alock on Resource R3 held by Process P3, and Process
P3 hasalock on resource R3 and is blocked waiting for alock on Resource R1 held by Process
P1. Thisisillustrated in the following figure.

2-14 Programming Locking Applications

CLM Locking Model
Deadlock

P P
Waiting For Waiting For
Resource Locked P Resource Locked
By P2 By P3
P3
Waiting For -

Resource
Locked By P1

Deadlock

Conversion Deadlock

Conversion deadlock occurs when the requested mode of the lock at the head of the convert
gueue isincompatible with the granted mode of some other lock also on the convert queue. The
first lock cannot convert because its requested mode is incompatible with a currently granted
lock. The other lock cannot convert because the convert queue is strictly FIFO.

Self-Client Deadlock

Salf-client deadlock occurs when asingle client requests alock on alock resource on which it
aready holdsalock and itsfirst lock blocks the second request. For example, if Process P1
reguests alock on alock resource on which it already holds alock, the second lock may be
blocked.

Deadlock Detection

Thelock manager periodically checksfor all types of deadlock by following chains of blocked
locks and the locks blocking them. If the lock manager detects a cycle of locks that indicate
deadlock (that is, if the same process occurs more than once in a chain), it denies the request
that has been blocked the longest. Thelock manager setsthe statusfield in the lock status block
associated with this lock request to CLM_DEADLOCK and queues for execution the AST
routine associated with the request. (For more information about how the lock manager returns
the status of lock requests, see Obtaining the Status of a Lock Request Synchronously on page
3-4)

Note: Thelock manager does not arbitrate among lock client applicationsto
resolve adeadlock condition. The lock manager simply cancels one of
the requests causing deadlock and notifies the client. The lock client
applications, when they receive areturn value indicating deadlock,
must decide how to handle the deadlock. In most cases, releasing
existing locks and then reacquiring them should eliminate the
deadlock condition.

Programming Locking Applications 2-15

CLM Locking Model

Deadlock

Transaction IDs

2-16

By canceling one of the requests causing a deadlock, the lock manager prevents clients
contending for the samelock resources from blocking each other indefinitely. Additionally, the
lock manager supports transaction I1Ds, a mechanism clients can use to improve application
throughput by diminishing the impact of deadlock when it does occur.

When determining whether a deadlock cycle exists, the lock manager normally assumes the
processthat created the lock owns the lock. By specifying atransaction ID (also called an XID

or deadlock 1D) as part of alock request, alock client can attribute ownership of alock related

to a particular task to a “transaction” rather than to itself. For deadlock detection, therefore, a
transaction replaces a process or group as the owner of a lock.

Furthermore, transaction IDs allow different clients to request locks on the same transaction. A
unique transaction ID should be associated with each transaction (task). Since transaction IDs
do not span nodes, the lock manager considers equivalent transaction IDs on different nodes to
be different transaction IDs.

Transaction IDs are beneficial when multiple client processes request locks on a common
transaction and each process works on multiple tasks.

Consider the following example: Process P1 holds an exclusive lock on Resource R1 and
requests an exclusive lock on Resource R2. Process P1 will not release the lock on Resource
R1 until the lock manager grants the lock on Resource R2. Process P2, meanwhile, holds an
exclusive lock on Resource R2 and requests an exclusive lock on Resource R1. Process R2 will
not release the lock on Resource R2 until the lock manager grants the lock on Resource R1. This
is illustrated in the following figure. The dotted lines indicate blocked requests.

P1

Waiting For
Resource R2
Locked By P2/ Blocked

P2

Waiting For
Resource R1
Locked By P1

~_ requests -~
~ e
N—
=<
7 N
// N
R1 &~ R2
Process P1 holds Process P2 holds
EX lock EX lock

The processes in this example are deadlocked. Each process is blocking the other and neither is
able to do any work. To break this deadlock, the lock manager cancels one of the blocked
requests and notifies the requesting client by returning a deadlock status.

Using transaction IDs would allow the processes to work on different tasks even though they
are blocked on a particular transaction. To expand on the example above:

Programming Locking Applications

CLM Locking Model
Deadlock

Process P1 holds an exclusive lock on Resource R1 that it asked for using transaction ID T1.
Process P2, which is also working on task T1, requests an exclusive lock on Resource R2.
Process P3, however, holds an exclusive lock on R2 that it asked for using transaction ID T2.
Process P4, also working on task T2, requests an exclusive lock on Resource R1. Thisis

illustrated in the following figure.

T1 T2

Waiting For Waiting For
Resource R2 Resource R1
Locked By T2 Blocked Locked By T1

\\requests//
~— ~
//,R
- N
/ \
R1 Vs R2
Transaction T1 Transaction T2
holds EX lock holds EX lock

Once again, deadlock occurs. Task T1isblocked by task T2 and task T2 isblocked by task T1.
No work will be done on these transactions until the lock manager breaks the deadlock by
cancelling one of the requests. The transactions are blocked, but not necessarily thelock client
processes. If thelock clientsare concurrently working on other tasks, they can continueto work
on these tasks. When the lock manager detects the deadlock and cancels one of the requests
causing the deadlock, the lock client applications can once again resume work on these
transactions.

Lock Groups

A lock group joinsrelated lock client processesinto asingle entity. A lock client may create a
new lock group or join an existing group. A lock client may belong to at most one lock group.
Once aclient belongs to a group, the group owns all subsequent locks created by that process.
Therefore, any processin the group may manipulate group-owned locks.

Alternatively, a process belonging to alock group can passthe LKM_PROC_OWNED flag to
alock open routine to indicate that thislock is owned by the process, not by the group. Other
processes belonging to the group may not manipulate this lock.

The lock manager does not purge alock owned by a group until all processes belonging to the
group have exited or al processes have detached from the group.

A lock group may not span cluster nodes. The lock manager only acknowledgesagroup ID on
the node on which it was created. Therefore, alock client on one node cannot join a group that
was created on a different node.

Programming Locking Applications 2-17

CLM Locking Model
Deadlock

A processthat has left a group can no longer manipulate locks owned by that group, including
locks it created while it belonged to the group. If aprocessisthe last group member to leave a
group, the locks owned by the group are purged and the group no longer exists. A processis
implicitly removed from a group when it terminates.

Lock groups affect deadlock detection in the same way as transaction IDs. L ocks requested by
agroup member without specifying atransaction ID are owned by the group. In this type of
situation, the group is the owning entity when determining if deadlock exists.

Note: Since group deadlock can occur more frequently than transaction 1D

deadlock, you should use transaction |Ds when using lock groups.
Transaction IDs override group or process ownership.

2-18 Programming Locking Applications

Using CLM Locking Model API Routines
Overview

Chapter 3 Using CLM Locking Model API
Routines

This chapter describes how to usethe CLM locking model API routinesinan HACMPfor AlX
application. Chapter 7, Lock Manager APl Routines, provides reference information on the
routines discussed in this chapter.

Overview

Thethree primary programming tasks you must perform to implement locking in an application
are:

Acquiring locks on alock resources
Converting existing locks to different modes
Releasing locks
To perform these tasks, applications use the routines in the CLM locking model APl to make

requests to the lock manager. For example, to make an asynchronous request for alock on a
lock resource, an application would use either the cimlock or clmlockx routine.

The CLM locking model API also includes routines that help applications perform ancillary
tasks related to manipulating locks. For example, the CLM locking model API includes the
ASTpoll routine that applications must use to receive the asynchronous notification of the
status of their request.

The following sections describe how to perform these primary locking tasks, including any
ancillary tasks that may be required.

Prerequisites

This section describes the header files you must include in your application to use the CLM
locking model API routines, the libraries with which you must link your application, and the
primary data structure applications must use to implement locking.

Header Files

To usethe CLM locking model API routines, you must specify the following include directive:
#i nclude <cluster/clm h>

The /usr /include/cluster/clm.h file defines the constants, data structures, status codes, and
flags used by the CLM locking model API.

If your application uses the clm_scnop routine, you must a so include the following include
directive:

#i ncl ude <cluster/scn. h>

Programming Locking Applications 31

3-2

Using CLM Locking Model API Routines

Prerequisites
The/usr/include/cluster/scn.h file defines the constants, data structures, and status codes used
by the clm_scnop routine.

Library Files

The HACMP for Al X software includes separate libraries for multi-threaded and for
single-threaded applications. Be sure to link with the appropriate library for your application.

Single-threaded Applications
Specify the following libraries when you invoke the linkage editor for a single-threaded
application:

-lclm-lclstr

Thelibclm.alibrary containsthe routinesthat support the Cluster Lock Manager. Thelibclstr.a
library contains the routines that support the Cluster Manager.

If your application usesthe services of the Cluster Information Program (Clinfo), you must also
include the libcl.a library.

Multi-threaded Applications
Specify the following libraries when you invoke the linkage editor for a multi-threaded
application:
-lclmr -lclstr_r
Thelibclm_r.alibrary contains the routines that support the Cluster Lock Manager. The
libclstr_r.alibrary contains the routines that support the Cluster Manager.

If your application uses the services of Clinfo, you must also include the libcl_r.alibrary.

Data Structure
The CLM locking model API includes adata structure, called thelock status block, that your
application can use to specify the following:
The length of time you want to wait for a blocked request to be granted (timeout value)
The value of the lock value block associated with alock resource
In addition, the lock manager uses the lock status block to return the following information to
your application:
The status of the request
Thelock ID the lock manager has assigned to the lock request
The value stored in the lock value block

Thelock status block, defined in the /usr/include/cluster/clm.h includefile, hasthe following

structure:
struct |ockstatus {
clmstats_t st at us;
i nt | ocki d;
char val ue[MAXLOCKVAL] ;
unsi gned i nt ti meout ;

Programming Locking Applications

Using CLM Locking Model API Routines
Acquiring or Converting a Lock on a Lock Resource

The following list describes each field:

status Contains the status code returned by the lock manager. The status
codes are defined in the /usr/include/cluster /clm.h include file.

lockid Contains the lock 1D the lock manager assigned to this lock request.

value Thelock value block. An array that applications can use to store

application-specific data. The size of the array is specified by the
value of the constant MAXLOCKVAL which isdefined in the
/usr/include/cluster/clm.h header file as 16 bytes.

timeout Specifies the amount of time the application allows for alock request
to be granted. Thisvalueisonly used if the LKM_TIMEOUT flagis
aso set in the request.

Acquiring or Converting a Lock on a Lock Resource

To acquirealock on alock resource, or convert an existing lock to adifferent mode, you make
arequest to the lock manager using one of the lock open routines described in the following
sections. If the lock resource does not exist, the lock manager createsit.

The Cluster Lock Manager supports both asynchronous and synchronous lock routines.

Requesting Locks Asynchronously

An asynchronous lock routine queues the request and then immediately returns control to the
lock client making the call. The status code indicates whether the request was queued
successfully. The lock client can perform other operations while it waits for the lock manager
to resolve the request. When the lock manager resolves the request, it queues the AST routine
specified by the request for execution. The lock process must then trigger the execution of this
AST routine.

The routines that request alock asynchronously are:

clmlock Makes an asynchronous (non-blocking) request for alock on alock
resource or converts an existing lock to adifferent mode.

clmlockx Makes an asynchronous (non-blocking) request for alock on alock
resource or converts an existing lock to a different mode, and
specifies atransaction I1D for that lock.

When requesting an asynchronous lock, you supply the following information:
The name of the lock resource, along with the length of the name
The requested mode of the lock

A pointer to alock status block. For aconversion request, thelock status block must contain
avalidlock ID

Flags that determine characteristics of the lock operation. For a conversion request, you
must specify the LKM_CONVERT flag

Programming Locking Applications 3-3

Using CLM Locking Model API Routines
Acquiring or Converting a Lock on aLock Resource

A pointer to an AST routine that the lock manager queues for execution when it grants (or
denies, aborts, or cancels) your lock reguest. Y our application triggers the execution of this
routine by calling the AST pall routine.

Optionally, apointer to ablocking AST routinethat thelock manager queues for execution
when the lock is blocking another lock request. Y our application triggers the execution of
this routine by calling the AST poll routine.

A pointer to arguments you want passed to either the AST routine or the blocking AST
routine.

For callsto the clmlockx routine, apointer to an eight-bytetransaction ID that indicatesthe
lock is owned by atransaction or group.
The following example uses the clmlock routine to request a CR mode lock on alock resource
named RES-A.
#i ncl ude <cluster/clmh>
clmstats_t status;

struct | ockstatus | ksb; /* |l ock status bl ock */
extern void ast_func();

status = cl m ock(LKM CRMODE, /* node */
&l ksb, /* addr of |ock status bl ock */
LKM VALBLK, /* flags */
"RES- A", /* nane */
5, /* nanelen */
ast _func, /* ast routine triggered */
0, /* astargs */
0); [/* bast */
if (status != CLM NORNAL)

{

clmperror("clmock");

When the lock manager accepts your lock request, it passes a token back to your application,
called alock ID, that uniquely identifies your lock. The lock manager writesthelock ID in the
lockid field of the lock status block. (Y ou specify the address of the lock status block as an
argument to the clmlock and clmlockx routines.) All subsequent requests concerning that lock,
such as conversion requests, must use the lock 1D to identify the lock.

When your application triggers the execution of the AST routine, the lock manager writes the
status of your request in the status field of the lock status block. See Chapter 3, Using CLM
Locking Madel API Routines, for acompletelist of all possible status codes returned by the
clmlock and clmlockx routines.

Obtaining the Status of a Lock Request Synchronously

Using the asynchronous lock routines, you can request a synchronous return of your lock
reguest by specifying the LKM_SYNCSTSflag. When thisflag is specified, the lock manager
returns status synchronoudly if the following conditions are satisfied:

Therequest can be granted immediately; that is, it isnot blocked by the mode of an existing
lock.

The master copy of the lock resource resides on the same node as the requesting process.

Programming Locking Applications

Using CLM Locking Model API Routines
Acquiring or Converting a Lock on a Lock Resource

When the lock manager returns synchronously, the clmlock or clmlockx routines return the
status code CLM_SY NC, indicating success, instead of the CLM_NORMAL status code and
the lock manager does not queue an AST routine for execution.

If thelock manager cannot grant the request immediately or if the lock resourceis not mastered
on the same node as the requesting process, the lock manager returnsthe CLM_NORMAL
status code and returns the status of the lock request asynchronously.

Note: To guarantee that you obtain a synchronous return from your lock
request, use the clmlock_sync or cimlockx_sync routines, described
in the next section, Requesting L ocks Synchronously.

Requesting Locks Synchronously

A synchronous lock routine performs the same function as an asynchronous lock routine, but
does not return control to the calling process until the request isresolved. A synchronous lock
routine queues the request and then places the calling process into await state until the lock
manager resolves the request. A process making a synchronous lock request does not have to
poll for an AST; it simply waits until the request returns.

The routines that request alock synchronoudy are:

clmlock_sync Requests alock and waitsfor areturn or converts an existing lock to a
different mode.

cIlmlockx_sync Requests alock and waitsfor areturn or converts an existing lock to a
different mode, and specifies atransaction ID for that lock.

When requesting a synchronous lock, you supply the following information:
The name of the lock resource, along with the length of the name
The regquested mode of the lock

A pointer to alock status block. For aconversion request, thelock status block must contain
avalidlock ID

Flags that determine characteristics of the lock operation. For a conversion request, you
must specify the LKM_CONVERT flag

Optionally, apointer to ablocking AST routinethat thelock manager queues for execution
when the lock is blocking another lock request. Y our application triggers the execution of
this routine by calling the AST poll routine

A pointer to arguments you want passed to the blocking AST routine

For callsto the clmlockx_sync routine, a pointer to an eight-byte transaction ID that
indicates the lock is owned by atransaction or group

Programming Locking Applications 35

Using CLM Locking Model API Routines
Acquiring or Converting a Lock on aLock Resource

Triggering AST Routines

Totrigger the execution of AST routines (both regular and blocking), your application must call
the AST poll routine. The lock manager can send asignal to your application when it has AST
routines queued for execution. To use this signal mechanism, your application must:

1. Usetheclm_setnotify routine to specify the signal you want the lock manager to useto
notify your application. Use SIGUSR1 and SIGUSR2. Other signals can be used, but this
can interfere with their normal use by AlX.

2. Create aroutine in your application that will handle the signal when your application
receivesit. Typically, applications call the AST poll routine from within this signal
handling routine. Use the signal routine or the sigaction routine to associate the execution
of thisroutine with the reception of the signal. For more information about using the signal
or sigaction routines, see their man page. Note that you must set up the signal handling
routine before each call to the clmlock routine.

For each lock or conversion request granted by the lock manager, only one blocking AST will
be sent to the processthat ownsthelock in situationswhere thelock is blocking another request.
It is expected that if aclient specifies ablocking AST function for alock, the client will take
some action in response to the blocking AST. An expected response would be to either convert
or unlock the lock. The lock manager will not send anather blocking AST for this lock until
after the client that owns the lock has taken one of these actions.

For an example of how to use these routinesin an application, see Sample Locking Application
on page 3-6 (below).

Keeping Track of Lock Requests

To keep track of the lock requests your application makes, which may be granted in adifferent
seguence than they were requested, assign each request a unique identifier using the astarg
parameter to the clmlock and clmlockx routines or the bastarg parameter to the cilmlock_sync
and cimlockx_sync routines. When you trigger an AST routine, this argument identifieswhich
request is associated with thisreturn.

For example, the value passed in the astarg parameter to the clmlock routine could be an index
into an array of lock status blocks. Each time your application makes alock or conversion
request, it would use another lock status block from the array by incrementing thisindex. The
index value would then be passed as the value of the astarg parameter to the clmlock routine.
When the request returns, the argument passed to the AST routine identifies which lock status
block in the array is associated with the returned value.

Sample Locking Application

The following exampleillustrates how to make alock request and use the signal handling
mechanism to obtain the status of the request. The example aso illustrates how to usethe astarg
parameter to track lock requests.

#i nclude <cluster/clm h>

#i ncl ude <stdio. h>

#i ncl ude <signal . h>

pid_t getpid(); /* needed for ASTpoll routine */

struct |ockstatus |Iksb[12]; /* array of |ock status blocks */
int which_lock; /* index into array of |ock status bl ocks */
void ast_func(); /* AST routine */

void sig_func(); /* signal handling routine */

Programming Locking Applications

Using CLM Locking Model API Routines
Acquiring or Converting a Lock on a Lock Resource

clmstats_t status;
int stat;
char *msg; /* for printable status code */
mai n(argc, argv)
int argc;
char *argv[];

{
int astarg = 0; /* astarg paraneter */
status = clmsetnotify(SIGUSRL, NULL);
if(status !'= CLM _NORMAL)
{
clmperror("clmsetnotify");
stat = signal (SIGUSRL, sig func);
if(stat '=0)
{
perror("signal");
}
whi ch_|l ock = 0;
astarg = which_| ock;
status = cl m ock(LKM_ CRMODE, /* node */
& ksb[whi ch_I ock], /* lock status bl ock */
LKM VALBLK,
"RES- A", /* name */
5, /* nanelen */
ast _func, /* ast routine */
&ast ar g, /* astargs */
0); /* bast */
if (status != CLM NORNAL)
{
clmperror("clmock");
}
}

/* Signal handling routine; calls ASTpoll to trigger AST routine */
voi d sig_func()

ASTpol | (getpid(), 0);

/* Routine that is triggered by ASTpoll. */

voi d ast _func(astarg)

int *astarg;

{
msg = clmerrnmsg(| ksb[*astarg].status);
printf("status= %%s; astarg passed = %", nsg, *astarg);

}

Avoiding the Wait Queue

If the lock manager cannot grant your lock request, it adds your request to the end of the wait
queue, along with all other blocked lock requests on the lock resource. Y ou can specify that the

lock manager not queue your request if it cannot be granted immediately by specifying the
LKM_NOQUEUE flag as an argument to the lock routine.

If your lock request cannot be granted immediately, the lock open routine returns the status
CLM_NORMAL and the AST is queued with the status CLM_NOTQUEUED in the status

field of the lock status block.

Programming Locking Applications

3-7

Using CLM Locking Model API Routines
Acquiring or Converting a Lock on aLock Resource

Specifying a Timeout Value for a Lock Request

Blocked locks remain on the wait queue until they are granted (or canceled, denied, or aborted).
Y ou can specify to the lock manager that you only want your request to remain on the wait
gueue for a certain time period. Y ou specify this valuein the timeout field of the lock status
block that is passed as an argument to the lock open routine.

In the following example, the lock request specifies atimeout value of five seconds. (Thevaue

is specified in hundredths of seconds.)

#i ncl ude <cluster/clmh>

clmstats_t status;

struct | ockstatus |ksb; /* |lock status bl ock */

extern void ast_func();

| ksb.tineout = 500; /* 5 seconds */

status = cl m ock(LKM CRMODE, /* node */
&l ksb, /* lock status block */

LKM TI MEQUT, /* flags */
"RES- A", /* nane */

5, /* nanmelen */

ast _func, /* routine to trigger ast */

0, /* astargs */

0); [/* bast */

if (status != CLM NORNAL)

clmperror("clmock");

Excluding a Lock Request from Deadlock Detection Processing

To exclude a lock request from the lock manager’s deadlock detection processing, specify the
LKM_NODLCKWT flag with the lock open routine.

Requesting Persistent Locks

When a client terminates while holding one or more locks, the lock manager purges any locks
that do not have the LKM_ORPHAN flag set. Locks originally requested with the
LKM_ORPHAN flag set remain after a client terminates. Applications use orphan locks to
prevent other lock clients from accessing a lock resource until any clean up made necessary by
the termination has been performed. Once the LKM_ORPHAN flag is set (whether by the
initial lock request or by a subsequent conversion), that flag remains set for the duration of that
lock.

Requesting Local Locks

Lock clients can achieve enhanced locking performance when obtaining short-lived locks
against equally short-lived lock resources by specifying the LKM_LOCAL flag with the lock
open routine. This flag directs the lock manager to skip the lock resource directory lookup it
would normally perform as part of lock request processing and master the lock resource on the
local node. For standard lock requests, the lock manager checks its lock resource directory to
find out on which node the lock resource is mastered. Because the lock resource directory is

Programming Locking Applications

Using CLM Locking Model API Routines
Acquiring or Converting a Lock on a Lock Resource

spread among all cluster nodes, the directory lookup step may require communication with a
remote node. By bypassing the directory lookup, the lock manager reduces the network
overhead associated with the lock request, improving performance.

Guidelines for Use

Use caution when creating local lock resources. While eliminating the lock resource directory

lookup can improve performance, it allows applications to create multiple masters of alock

resource. Lock resources created using the LKM_LOCAL flag are not included in the lock
manager’s lock resource directory but exist in the same namespace as global lock resources.
Duplicate lock resource masters can compromise the integrity of the locking scheme and can
cause data corruption.

To use local lock resources effectively and safely, make sure that the lock resource you are
creating does not already exist in the cluster. If you are certain that the lock resource you want
to master locally is unique, then acquire the local lock, accomplish the task, and release the lock
as quickly as possible. If the lock is held briefly, it is unlikely that another client will need to
lock the same resource. If contention is likely, do not use local locks.

Acquiring Additional Locks on a Local Lock Resource

If your application must acquire additional locks on a local lock resource, specify the
LKM_FINDLOCAL flag with the lock open routine when requesting these locks. When this

flag is specified, the lock manager queries each node to determine on which node the lock
resource is mastered. The lock manager does not check its lock resource directory because local
lock resources will not have an entry.

If the lock manager finds the lock resource, it processes the lock request, adding the lock to one
of the lock resource’s queues, depending on mode compatibility. If the lock manager does not
find the lock resource, it creates a local lock resource on the initiating node, granting the lock.

Because lock requests that use the LKM_FINDLOCAL flag require a query to be processed by
all active nodes in the cluster, they take longer to process than requests using the LKM_LOCAL
flag or even normal lock requests. You should only use the LKM_FINDLOCAL flag to obtain

a lock against a lock resource that you know was created using the LKM_LOCAL flag. The
lock manager processes the request against the lock resource whether it's global or local; local
lock resources and global lock resources share the same namespace. However, the cost of the
extra overhead incurred by using the LKM_FINDLOCAL flag is wasted when the lock

resource is global.

Note: Use the LKM_FINDLOCAL flag with caution. Even though the lock
manager checks all cluster nodes for the local lock before creating a
new lock resource, the potential still exists for creating duplicate lock
resource masters. For example, if two lock clients running on different
nodes initiate LKM_FINDLOCAL lock requests simultaneously, their
searches for the local lock resource may both complete without finding
the lock resource because of timing considerations. Then each node
may proceed to create local masters of the same lock resource.

Programming Locking Applications 39

Using CLM Locking Model API Routines
Releasing a Lock on aLock Resource

Releasing a Lock on a Lock Resource

Torelease an existing lock or cancel alock request blocked on the convert queue or wait queue,
you must use the clmunlock routine. When releasing alock, you supply the following
information:

A vdidlock ID
Optionally, a pointer to alock value block

Flags

The flag you specify depends on the type of operation you are requesting. The following
summarizes the options available;

If you want to cancel alock request or aconversion request that is blocked, specify the
LKM_CANCEL flag.

If you want to modify the lock value block, specify the LKM_VALBLK flag.

When you release or cancel alock on alock resource, the lock manager performsthe following
processing, depending on which gueue the lock was located:

Grant queue If you release a granted lock, the lock manager removes the lock from
the grant queue.

Convert queue If you cancel aconversion request, the lock manager puts the lock
back on the grant queue at its old grant mode. In addition, the lock
manager setsthe statusin the lock status block from the original
conversion request to CLM_CANCEL and queues for execution the
AST routine associated with the request.

Wait queue The lock manager removes the lock from the wait queue. In addition,
the lock manager sets the status in the lock status block from the
origina request to CLM_ABORT and queues the AST routine
associated with the lock for execution.

The following example releases alock, identified by itslock 1D. The exampleillustrates a
typical way applications use an array of lock status blocks to keep track of the locks they
acquire. The application uses the astarg parameter to assign a number that identifies each lock.
The astarg parameter is an index into the array.

#i ncl ude <cluster/clmh>
clmstats_t status;

struct |ockstatus | ksb[MAXLOCKS]; /* |lock status block */
i nt i ndex=0;

status = cl munl ock(l ksb[index].lockid, 0, 0);
if (status !'= CLM _NORMAL)
{

}

cl mperror("Unlock failed");

3-10 Programming Locking Applications

Using CLM Locking Model API Routines
Purging Locks

Purging

Locks

The CLM API includes the clm_purge routine to facilitate releasing locks. The clm_purge
routine releases all locks owned by a particular client, identified by its process ID. When you
specify aprocess ID of 0, all orphaned locks for the specified node ID are rel eased.

Note: Locksowned by LIVE clients can only be purged by the owner of the
lock. Otherwise, clm_purge only affects orphaned locks.

Manipulating the Lock Value Block

Setting an

Every lock resource includes 16 bytes of storage, called alock value block, that applications
can use to store data. Y ou cannot assign avalue to an LV B when you acquire alock on alock
resource; you can only read its current value. To modify the contents of the LV B, you must hold
an EX lock or a PW lock on alock resource. You can assign avalue to an LVB when:

Releasing the EX or PW mode lock
Down-converting the EX or PW mode lock to aless restrictive mode

The following sections describe how to modify an LVB using these methods.

LVB When Releasing an EX or PW Lock

Y ou can modify alock value block when you release an EX or PW lock by using the clmunlock
routine. Y ou specify a pointer to the value you want assigned to the lock value block as an
argument to the routine. You must also set the LKM_VALBLK flag.

Note: Theremust be ancther lock on thelock resource. If you releasethe last
lock on alock resource, the lock manager destroys the lock resource
and the LV B associated with it.

The following exampleillustrates how to set an LV B. The example assumes that the process
holds an EX lock on the lock resource.

#i ncl ude <cluster/clmh>
struct | ockstatus |ksb;
char val bl k[16];

strcpy(val bl k,"my 1vb");

status = cl nunl ock(| ksb. | ockid, /* node */
&val bl k, /* | ock val ue block */
LKM VALBLK); [/* flags */

if (status != CLM NORNAL)

cl mperror("clmock");

}
Setting an LVB Wien Converting an EX or PW Lock

Programming Locking Applications 311

Using CLM Locking Model API Routines
Manipulating the Lock Value Block

Y ou can modify alock value block when down-converting an EX or PW mode lock to aless
restrictive mode using one of the lock open routines. Y ou specify a pointer to the value you
want assigned to thelock value block in the lock status block passed in as apart of the request.
(This pointer must be valid whenthe LKM_VALBLK flag is set.)

Thefollowing exampleillustrates how to set an LV B when down-converting an EX mode lock
on alock resource.

#i ncl ude <cluster/clm h>
struct | ockstatus |ksb;
char val bl k[16];
strcpy(val bl k, "my |Ivb");
| ksb. val bl k = &val bl k;

status = cl m ock(LKM CRMODE, /* node */
&l kshb, /* lock status block */
LKM CONVERT | LKM VALBLK, /* flags */
"RES- A", /[* name */
5, /* nanelen */
ast _func, /* routine to trigger ast */
0, /* astargs */
0);
if (status != CLM NORNAL)
{

clmperror("clmock");

Invalidating a Lock Value Block

If aclient holding an EX or PW mode lock on alock resource terminates abruptly, the lock
manager sets a flag to notify other clients holding locks on the lock resource that the contents
of the LVB are no longer reliable. This LVB is consideredinvalid. An LVB isvalid when the
lock manager first creates the lock resource, in response to the first lock request, before any
client can assign avalueto the LVB.

An application may want to deliberately invalidate an LV B. For example, you can invalidate an
LVB to ensure that other lock holders on alock resource reset the value of the LVB.

Toinvalidate an LVB, specify the LKM _INVVALBLK flag when releasing alock using the
clmunlock routine or when down-converting alock to alessrestrictive mode using one of the
lock open routines. Y our application must hold an EX mode or PW maode lock on the lock
resource to invalidate the LVB. If you hold alessrestrictive lock (lower than PW mode), your
request isignored.

The following exampleillustrates how to invalidate an LV B when down converting an EX
mode lock on alock resource.

312 Programming Locking Applications

Using CLM Locking Model API Routines
Manipulating the Lock Value Block

#i ncl ude <cluster/clmh>

struct | ockstatus | ksb;

status = cl m ock(LKM CRMODE, /* node */
&l ksb, /* lock status block */
LKM CONVERT | LKM_ I NVWALBLK, /* flags */
"RES- A", /* nane */
5, /* nanelen */
ast _func, /* routine to trigger ast */
0, /* astargs */
0)
if (status != CLM NORNAL)
{
clmperror("clmock");
}

Using Lock Value Blocks

The purpose of the lock value block is to provide a client application with a small amount of
stateinformation that is guaranteed to be consistent throughout the cluster. A pplications can use
the storage provided by the LVB for any purpose.

Implementing a Local Disk Cache

For example, an application can use alock value block to implement local disk cachesacrossa
number of different nodes that share access to acommon disk. In alocal cache scheme, each
node maintains a copy of the disk blocksin local memory to speed access to the data on the
common disk. To make sure that each system always accesses the most up-to-date copy of the
disk block in its cache, an application acquires alock on each disk block in the cache.

When the application references a disk block from the cache, it acquires the lock associated
with that block and it keeps arecord of the current value of the lock value block. When an
application modifiesthe disk block, it changes the valuein the lock value block. The next time
the application accesses the disk block, it reads the value of the lock value block and compares
ittothevauethat it stored previously. If the values differ, the application knows the disk block
has been modified, that the copy of the disk block it hasin its cacheisinvalid, and that it must
read the up-to-date contents of the disk block from disk.

Implementing Cluster-Global Counters

One specialized use of lock value blocks is to implement a cluster-global counter, called a
System Commit Number (SCN). Databases can use the SCN to provide unique identifying
numbers to database transactions; these numbers help track database transactions. To facilitate
the implementation of such a counter, the lock manager includes a routine, called the
clm_scnop routine, that allows you to manipulate the LV B associated with alock resource
directly.

Using the standard CLM locking model interface, you would need two separate lock operations
to manipulate an SCN: one operation to acquire an exclusive lock on the lock resource and
another lock request to modify the LVB (by down-converting the lock to a less restrictive
mode). Using theclm_scnop routine, you can modify the value of the SCN without making any
callsto the lock routines, avoiding the overhead incurred by alock regquest. (Y ou must make
one call tothe one of thelock open routinesto acquireaNL lock onthelock resourcethat stores
the SCN. Y ou can use any lock resource to store the SCN.)

Programming Locking Applications 313

Using CLM Locking Model API Routines
Handling Returned Status Codes

Note: Do not usethe clm_scnop routine to modify the LV B associated with
lock resources other than the lock resource used to store the SCN.
Bypassing the standard lock interface could compromise the integrity
of your application’s locking scheme.

As with the LVB associated with any lock resource, the SCN is marked invalid if a node fails.
If the clm_scnop routine retrieves or attempts to change the value of an SCN marked invalid,
it returns the statuBLM_VALNOTVALID. To reset an invalidated SCN, call tthen_scnop
routine specifying th&CN_SET operation.

Handling Returned Status Codes

The global variablelm_errnois declared as the enumerated tgfpe_stats t, which is
defined in theusr/include/cluster/cim.h include file. Specify it in your application as follows:

clmstats_t clmerrno;

The enumerated typem_stats t is made up of all the status codes returned by the lock
manager API routines, both the CLM locking model and UNIX locking model routines. As with
the standard AIX global variabéer no, the value oflm_errnois set by the last lock operation.

To facilitate the printing of error status messages, the CLM APl includes the following routines:

clm_perror Writes a message you specify to standard error. Appended to the
message is the status code returned by the last CLM API routine to
execute. Thelm_perror routine obtains the value of the status code
from the global variablelm_errno.

clm_errmsg Returns a pointer to a printable version of the CLM API status code.
The status codes that make upd¢he_stats t enumerated type are
constants, not printable character strings. This routine is useful for
applications that format their own status return messages (instead of
using theclm_perror routine).

314 Programming Locking Applications

UNI X Locking Model
Lock Regions

Chapter 4 UNIX Locking Model

This chapter presents the concepts you need to understand to use UNIX locks effectively inan
application. Chapter 5, Using UNIX Locking Model API Routines, describes how to use the
UNIX locking model API routines to implement locking in an application.

Lock Regions

UNIX System V locks support the concept of lock regions. An application first registers, or
creates, alock resource with the lock manager by giving the lock resource aname. Then, when
it wants to lock this lock resource, the application specifies arange of locations that should be
locked and linksthisregion to thelock resource name. For example, an application could create
a resource called “Record-A” and then lock locations 100 through 200 in Record-A.

Record-A

0 100 200 300

UNIX Lock Region

The lock manager does not maintain distinct lock objects. Rather, it keeps a database of which
regions of the resource are locked. The lock manager does not keep locks separate. Instead, it
coalesces overlapping locks of the same mode. If an application has an exclusive lock on a
region from 0 to 10 and then obtains another exclusive lock on the region from 11 to 20, do not
assume that two locks exist. Rather, consider the region from 0 to 20 locked.

Likewise, a request to unlock range 0 to 100 unlocks all the regions within those bounds that
are currently locked by the client requesting the unlock.

For example, assume that a client has two locks. The first is a shared lock from 0 to 25 and the
second is a shared lock from 50 to 75. A request to unlock the region from 0 to 75 would release
both locks.

Lock Modes

A lock mode indicates whether a process wants to share access to a region with other processes
or whether it wants to prevent other processes from accessing that region while it holds the lock.
A lock request always specifies a lock mode as part of that request.

A UNIX lock can either be shared or exclusive.

Programming Locking Applications 4-1

UNI X Locking Model

Lock States

Shared
A shared lock isthe traditional read lock. Multiple applications can simultaneoudy regquest
shared locks on the same region.

Exclusive

An exclusive lock is the traditional write lock. If an application wants to prevent any other
application from accessing alock resource, it can reguest an exclusive lock. Only one
application at atime can possess an exclusive lock on aregion.

A request for an exclusive lock blocksif another application has a current lock on the specified
region.

Once thelock manager grants an exclusive lock, all successivelock requests on that region fall
or block until the exclusive lock is released.

Lock States

A lock state indicates the current status of alock request. A UNIX lock request is either
GRANTED or BLOCKED.

Granted

An application has acquired a lock on the desired region at the desired lock mode.

Blocked

An application is unable to acquire alock on the requested region at the requested mode,
because aconflicting lock is currently granted on that region. A blocked lock cannot be granted
until the conflicting lock is released or downgraded to a compatible mode. For example, an
exclusivelock blocksall other lock requests. A shared lock does not block arequest for ashared
lock but does block a request for an exclusive lock.

A client’s own locks are transparent in that the locks the client has previously requested will not
block the client’s current request. Instead, the old locks are discarded. When a client requests a
lock, the lock manager releases any existing locks held by that client that are overlaid by the
new request, regardless of the mode of those locks.

For example, assume that a client has an exclusive lock on a region from 50 to 75. That same
client requests an exclusive lock on the region from 0 to 100. The lock manager releases the
lock on region 50 to 75, and grants the lock on region 0 to 100. Had a different client requested
the lock on 0 to 100, that request would have been blocked, waiting for the exclusive lock on
50 to 75 to be released.

Programming Locking Applications

Using UNIX Locking Model API Routines
Overview

Chapter 5 Using UNIX Locking Model API
Routines

This chapter describes how to use UNIX locking model API routinesin an HACMP for AIX
application. Chapter 7, Lock Manager APl Routines, provides reference information on the
routines discussed in this chapter.

Overview

Use the UNIX locking services by making requests from an application. Y ou can:
Register (create) lock resources
Acquire locks on the lock resources you create
Release locks held on alock resource
Handle returned status codes
Purge all the locks held by a particular client, if necessary
To perform these tasks, applications use the routines in the UNIX locking model API to make

reguests to the lock manager. For example, to request alock on alock resource, an application
would use the clmregionlock routine.

The following sections describe how to perform these primary locking tasks, including any
ancillary tasks that may be required.

Prerequisites

This section describes the header files you must include in your application to use the UNIX
locking model API routines, the libraries with which you must link your application and the
primary data structure used by the routines.

Header Files

Tousethe UNIX locking model API routines, you must specify thefollowing include directive:
#i ncl ude <cluster/clmh>

The /usr/include/cluster /cim.h file defines the constants, data structures, status codes, and
flags used by the CLM locking model API.

To use the clmregionlock routine, you must aso include the following system include file:
#i nclude <sys/file.h>

Library Files

The HACMP for Al X software includes separate libraries for multi-threaded and for
single-threaded applications. Be sure to link with the appropriate library for your application.

Programming Locking Applications 51

Using UNIX Locking Model API Routines
Registering a Lock Resource

Single-threaded Applications

Specify the following libraries when you invoke the linkage editor for a single-threaded
application:

-lclm-lclstr

Thelibclm.alibrary containsthe routinesthat support the Cluster Lock Manager. Thelibclstr.a
library contains the routines that support the Cluster Manager.

If your application usesthe services of the Cluster Information Program (Clinfo), you must also
include the libcl.a library.

Multi-threaded Applications

Specify the following libraries when you invoke the linkage editor for a multi-threaded
application:

-lclmr -lclstr_r

Thelibclm_r.alibrary contains the routines that support the Cluster Lock Manager. The
libclstr_r.alibrary contains the routines that support the Cluster Manager.

If your application uses the Clinfo services, you must also include the libcl_r.a library.

Data Structure

The UNIX locking model API uses adata structure, called the lock resour ce handle, defined
in the /usr/include/cluster /clm.h includefile.

The clmregister routine returns aresource handle to the application. A resource handleis a
union data type that has the following format:

union clmrh {
unsi gned | ong rh;
struct {
unsi gned char site;
unsi gned char type;
unsi gned short cooki e;
} handl e;

Registering a Lock Resource

A lock resource isarange of locations you can lock. A lock resource can represent any entity,
such as afile, adata structure, a database, or an executable routine. In fact, alock resourceis
nothing more than a name. The name does not have to correspond to an actual object.

clmregister Routine

Before locking alock resource, you must first register, or create, that lock resource. Y ou
register alock resource by calling the clmregister routine with the name of the lock resource
you want to lock. Thelock resource nameisanull-terminated string of no more than 255 ASCI|
characters.

Programming Locking Applications

Using UNIX Locking Model API Routines
Locking aLock Resource

Resource Handles

The clmregister routine returns alock resource handle to the calling routine. A lock resource
handle is a 32-hit integer that describes alock resource. The lock manager uses lock resource
handles to efficiently look up lock resources.

Y ou must use thisresource handle in any subsequent lock and unlock requeststhat refer to that
lock resource.

Locking a Lock Resource

Usetheclmregionlock routineto lock alock resource region. Supply thefollowing information
with the clmregionlock routine:

Theresource handlereturned from an earlier call to cimregister that registered the resource
The lower bound of the region you want to lock
A length that indicates the extent of that region
A flag that indicates the type of lock: either shared or exclusive.
If there are currently no locks on the lock resource or if the requested mode is compatible with

the modes of the current locks, the lock manager grants the lock and returnsimmediately with
astatus of CLM_NORMAL.

If the requested mode isincompatible with the mode of a current lock, the lock manager marks
the request as blocked and does not return until the lock is granted. Using a flag to the
clmregionlock routine, you can mark alock request, either shared or exclusive, as
non-blocking. This indicates that the request should return with an error statusif it cannot be
granted immediately.

Unlocking a Resource

Use the clmregionlock routine to unlock aregion. Any regions currently locked by the
application making the request that overlap the region specified in the unlock request are
released.
Supply the following information with the clmregionlock routine:

The resource handle

The lower bound of the region you want to unlock

A length that indicates the extent of that region

A flag that indicates that thisis an unlock request

The lock manager releases the lock and returns with a status of CLM_NORMAL.

Programming Locking Applications 5-3

Using UNIX Locking Model API Routines
Handling Returned Status Codes

Handling Returned Status Codes

The global variable clm_errno is declared as the enumerated type clm_stats t, which is
defined inthe/usr/include/cluster /clm.h include file. Specify it in your application asfollows:

clmstats_t clmerrno;

The enumerated type clm_stats t is made up of all the status codes returned by the lock
manager API routines, both the CLM locking model and UNIX locking model routines. Aswith
the standard A1X global variableerrno, thevaueof clm_errnoisset by thelast lock operation.

To facilitate the printing of error status messages, the UNIX locks APl includes the following

routines:

clm_perror Writes amessage you specify to standard error. Appended to the
message is the status code returned by the last UNIX API routineto
execute. The clm_perror routine obtains the value of the status code
from the global variable clm_errno.

clm_errmsg Returns a pointer to a printable version of the UNIX API status code.

The status codes that make up the clm_stats t enumerated type are
constants, not printable character strings. This routine is useful for
applications that format their own status return messages (instead of
using the clm_perror routine).

Purging Locks

The Cluster Lock Manager clm_pur ge routine can be used to facilitate releasing UNIX locks.
The clm_purge routine releases all locks owned by a particular process, identified by its
process ID.

When aclient process terminates while hol ding one or morelocks, the lock manager purgesany
locks held by that client process.

Programming Locking Applications

Tuning the Cluster Lock M anager
Overview

Chapter 6 Tuning the Cluster Lock Manager

This chapter describes tuning lock manager behavior to optimize lock throughput. The chapter
also describes how to obtain statistics about lock resources.

Overview

To make optimal use of system resources and maximize performance, the Cluster Lock
Manager can dynamically change the node on which alock resource is mastered. By moving a
lock resource master, the lock manager can avoid the overhead of continually accessing a
remote lock master across the network. However, moving the master copy of alock resource
from one node to another incurs its own overhead. To avoid unnecessary migrations, the lock
manager considers several factors before moving alock resource master which you can tune to
obtain optimal performance.

The parametersthat you can use to tunelock migration throughout the cluster are the following:

Specifying the frequency of migration evaluations, that is, how often the lock manager
checks if migration is needed

Specifying how much the lock manager should consider historical access patternsin its
calculations

In addition to these two cluster-wide tuning parameters, the lock manager also allows
applicationsto request that certain lock resources stay on a particular node by specifying the
stickiness value of the lock resource.

Migration Evaluation Frequency

To determine when to move alock resource master, the lock manager monitors lock resource
access patterns. These migration eval uations are triggered when the total number of accessesto
alock resource reaches a threshold.

Y ou can control how often the lock manager performs these migration evaluations by
specifying this evaluation threshold. If you specify a high value for the migration evaluation
threshold, the lock manager performs fewer lock migrations. While this can reduce the
overhead incurred by the evaluations, it makes the lock manager less responsive to changing
access patterns. For more information, see Specifying the Frequency of Migration Evaluations
on page 6-2.

Historical Access Patterns

The lock manager moves alock resource master when access patterns indicate that a remote
node is using the lock resource more than the local node. However, this access pattern may be
atypical. Thelock manager may move alock resource master only to haveto moveit back again
a the next evaluation. To avoid moving lock resource masters to and from the same node, the
lock manager includes previous access patternsin its migration calculations. In thisway, the
lock manager can balance the impact of atypical patterns and avoid spurious migrations.

Programming Locking Applications 6-1

Tuning the Cluster L ock Manager
Specifying the Frequency of Migration Evaluations

Y ou can specify how much these historical access patterns influence the migration cal culation
by setting the rate at which the lock manager discounts these values. Thisvalue, called the
decay rate, specifies the percentage of the past access rates the lock manager includesin its
migration calculations. If you specify a high decay rate, the lock manager puts more emphasis
on past access patterns when making a migration evaluation. Emphasi zing past access patterns
lessenstheimpact of current access patterns and can make lock resource master migrations|less
likely. For more information, see Specifying the Decay Rate on page 6-5.

Stickiness Attribute

To avoid performing unnecessary lock resource master migrations, the lock manager givesthe
local node the advantage in migration calculations by adding 50% of the sum of the remote
accessratesto thelocal accessrate. Thisaddition tendsto makethelocal accessrate higher than
any remote access rate, preventing migrations.

For individual lock resources, you can control how much of an advantage the lock manager
givesthe local node by specifying a value for the stickiness attribute of alock resource. The
stickiness attribute specifies what percentage of the sum of the remote access rates the lock
manager addsto the local access rate when it performs migration evaluations. Y ou can specify
any value between 0 and 100. A stickiness value of 100 specifiesthat the lock manager add the
sum of all remote access rates to the local access rate, guaranteeing that the loca access rate
will always at least match the highest remote access rate, preventing lock resource master
migrations.

Note that the stickiness attribute is not aglobal parameter; it affects only asinglelock resource.
For more information, see Specifying the Stickiness Value of aLock Resource on page 6-9.

Specifying the Frequency of Migration Evaluations

To control when the lock manager performs migration eval uations, specify the total number of
accesses that trigger an evaluation in the evaluation threshold parameter. Y ou can specify any
positive integer as the value of this parameter.

For example, consider a cluster made up of two nodes (A and B) that share access to acommon
lock resource. The table summarizes the lock access patterns that result if you specify an
evaluation threshold of 10.

Programming Locking Applications

Tuning the Cluster Lock M anager
Specifying the Frequency of Migration Evaluations

Time Accesses APS Accesses APS
Evall 4 4 4/4=1.0 6 6/4=15
Eval2 4 3 3/4 =75 7 7/4=1.75
Eval3 5 6 6/5=12 4 4/5= .8
Evald 4 7 7/4 =1.75 3 3/4 =.75
Eval5 6 8 8/6 =1.33 2 2/6 =.33

APS=accesses per second
Evaluation threshold=10

Sample Access Patterns

The following figure graphically presents the access data in the above table. The figure also
includes a graph that indicates when these access patterns would cause lock resource master
migrations. Inthe example, thelock resource master starts out on Node A and migratesto Node
B at the first evaluation point (Evall) because the access rate from Node B is greater than the
access rate from Node A. The lock resource master stays on Node B until the third evaluation
point (Eval3) when accesses from Node A exceed those from Node B.

Note: Thisexampleis provided to illustrate the concept of lock resource
master migration. The exampledoesnot includethe other factors, such
ashistorical access patterns, that thelock manager also considerswhen
making a migration decision.

Programming Locking Applications 6-3

Tuning the Cluster L ock Manager
Specifying the Frequency of Migration Evaluations

Accesses Access Patterns

Node B |

5—‘
NodeA —

. T

Frrrp ettt bl |seconds
5 * 10 * 15 * 20 * 25

Evall Eval2 Eval3 Evald Evalb
Location of
lock resource
master
Node B migration % migration
NodeA % %

Evall Eval? Eval3 Evald Evalb

Lock Resource Master Migrations Caused by Sample Access Patterns

Using SMIT to Specify the Evaluation Threshold

Y ou can specify the evaluation threshold using the HACMP for AIX SMIT menu. From the
main menu, select Cluster Configuration > Cluster Resour ces > Change/Show Cluster
Lock Manager Resour ce Allocation. SMIT displays a screen with the following two options:

Lock Tuning Statistic Enter the value of the evaluation threshold.
Recalculation Rate

Lock Tuning Statistic Specify a decay rate value (see page 6-8). If you have no
Decay Rate value to enter, leave the default value, 0.875.

Y ou can also specify this value by using the -r flag with the cllockd command. For more
information, see the man page for the cllockd command.

Y ou can also specify this value using the startsrc command by using the -a flag to pass the -r
flag as a subsystem argument string. The startsrc command passes the -r argument to the lock
manager when it starts the subsystem. The first node to complete its node_up processing sets
the value of the global tuning parameter. Once this nodeis up, you must use the
clm_setglobpar ams routine to change the value of this global tuning parameter.

Programming Locking Applications

Tuning the Cluster Lock M anager
Specifying the Decay Rate

Note: Evenif you are updating only asingle field on the Change Resource
Allocation screen, you must enter avalue for each field on the screen.
Y ou can enter the default values shown on the screen above for the
fields you are not updating.

Specifying the Evaluation Threshold from within an Application

Use the following routines to read or set the value of the evaluation threshold from within an
application:

clm_getglobparams Retrieves the current settings of the lock manager global parameters.

cIm_setglobparams Assigns avalue to the lock manager global parameters.

Both routines accept a single argument: the address of aclm_globparams t structure. When
used with the clm_getglobpar ams routine, the lock manager writes the current values of the
parametersin this structure. When used with the clm_setglobpar ams routine, applications use
this structure to specify the desired values of the global parameters. This data structure has the
following format:
typedef struct cl mgl obparanms {

unsi gned cg_valid;

unsi gned cg_recal c_tine;

fl oat cg_decay_rate;
} cl mgl obparans_t;

The content of the fields varies depending on which routine they are used with.

cg_valid Indicates which fieldsin the clm_globparams t structure contain
valid data. Thisfield is only used when specifying the value of the
global parameterswith the clm_setglobparams routine to specify the
values of globa parameters. When the clm_getglobparams routine
returns successfully, both fields can be assumed to be valid.

cg_recalc _time Used to specify the desired eval uation threshold value, when used
with the clm_setglobparams routine. Contains the current value of
the evaluation threshold, after the clm_getglobparams routine
returns successfully.

Specifying the Decay Rate

To determine how much emphasis the lock manager puts on historical access patterns, specify
the rate at which the lock manager discounts these values in the decay rate parameter. This
value indicates the percentage of the past access patterns the lock manager includesin itslock
resource master migration calculations. Y ou can specify any value between 0.0 and 1.0 for this
parameter.

Programming Locking Applications 6-5

Tuning the Cluster L ock Manager
Specifying the Decay Rate

Evall

Eval2

Eval3

Evald

Eval5

Toillustrate decay rates, the following table presents the same access patterns as the table on
page 6-3. Thistime, however, historical access patterns are factored in at various decay rates
(.25, .50, .75, and 1.0). Asin the earlier table, the evaluation threshold is set at 10 accesses.

Node A Node B
Decayed APSs Decayed APSs
Time accesses APS 1.0 .75 50 .25 [|accesses APS 1.0 75 .50 .25
4 4 1.0 0 0 0 0 6 1.5 0 0 0 0
4 3 751 1.75 | 1.5]11.25] 1.0 7 1.75 1325 | 288 25 |2.13
5 6 1.2 | 295|233 1.83| 1.45 4 80 | 405|296 |2.05(1.33
4 7 1.75| 4.7 3.49|2.66]| 2.11 3 .75 [480 | 297 |1.78|1.08
6 8 1.33| 6.03 | 3.95(2.66| 1.89 2 .33 [5.13 | 256(1.22] .60

For example, consider evaluation point 3 (Eval3). The lock resource master ison Node B. The
access rate on Node A is 1.2; the accessrate on Node B is .8. To these current access rates, the
lock manager adds various portions of the past access rates, determined by the various decay
rates. At evaluation point 3 on Node A, at a decay rate of .50, the lock manager adds the past
access rate, reduced by 50%, to the current access rate, resulting in the decayed access rate of
1.83.

To show how these decay rates affect lock resource master migration, the following figure
graphically presents these access patterns and the migrations they trigger at each decay rate.

Sample Access Patterns Decayed at Various Rates

Note how high decay rates tend to make lock resource master migrations happen less
frequently.

Programming Locking Applications

Tuning the Cluster Lock M anager

Specifying the Decay Rate
Accesses _| Access Patterns
Node B
[So—
NodeA —
crrrprrrrp eyl |Seconds
4 4 1 4 5 4 20 4
Evall Eval2 Eval3 Evald Evalb
Location of lock
resource master
Node B migration | | | migration
I | | |
Decay rate= 1.0
NodeA
Node B migration | A migration
| |
Decay rate= .75 |
NodeA v :
Node B migration i i migration
Decay rate= .50 ‘
NodeA i
migration, migration
Node B f
Decay rate= .25
NodeA I I
Evall Eval2 Eval3 Eval4 Evalb

Lock Resource Master Migrations Caused by Decayed Sample Access Patterns

Programming Locking Applications

6-7

Tuning the Cluster L ock Manager
Specifying the Decay Rate

Using SMIT to Specify the Decay Rate

Y ou can specify the decay rate using the HACMP for AIX SMIT menu. From the main menu,
select Cluster Configuration > Cluster Resour ces > Change/Show Cluster Lock M anager
Resour ce Allocation. SMIT displays a screen with the following two options:

Lock Tuning Statistic Enter the rate or leave the default value of 9999999 in the
Recalculation Rate field. (See page 6-4.)

Lock Tuning Statistic Specify adecay rate value between 0.0 and 1.0. If you
Decay Rate have no value to enter, leave the default value, 0.875.

Assign the value of the decay rate to the Lock Tuning Statistic Decay Ratefield. Specify a
value between 0.0 and 1.0.

Y ou can also specify the lock resource migration decay rate using the -D flag to the cllockd
command. For more information, see the manpage for the cllockd command.

Y ou can also specify this value using the startsrc command by using the -a flag to passthe -D
flag as a subsystem argument string. The startsr c command passesthe -D argument to the lock
manager when it starts the subsystem. The first node to complete its node_up processing sets
the value of the global tuning parameter. Once this node is up, you must use the
clm_setglobpar ams routine to change the value of this global tuning parameter.

Note: Evenif you are updating only asingle field on the Change Resource
Allocation screen, you must enter avalue for each field on the screen.
Y ou can enter the default values shown on the screen above for the
fields you are not updating.

Specifying the Decay Rate from within an Application

Use the following routinesto read or set the value of the decay rate from within an application:
clm_getglobparams Retrieves the current settings of the lock manager global parameters.

clm_setglobparams Assigns avalue to the lock manager global parameters.

Both routines accept a single argument: the address of aclm_globparams t structure. When
used with the clm_getglobpar ams routine, the lock manager writes the current values of the
parametersin this structure. When used with the clm_setglobpar ams routine, applications use
this structure to specify the desired values of the global parameters. This data structure has the
following format:
typedef struct cl mgl obparanms {

unsi gned cg_valid;

unsi gned cg_recal c_tine;

fl oat cg_decay_rate;
} cl mgl obparans_t;

Programming Locking Applications

Tuning the Cluster Lock M anager
Specifying the Stickiness VValue of aLock Resource

The contents of the fields varies depending on which routine they are used with.

cg_valid Indicates which fieldsin the clm_globparams t structure contain
valid data. Thisfield is only used when specifying the value of the
global parameterswith the clm_setglobpar ams routine to specify the
values of globa parameters. When the clm_getglobpar ams routine
returns successfully, both fields can be assumed to be valid.

cg_decay rate Used to specify the desired decay rate value, when used with the
clm_setglobpar ams routine. Contains the current value of the decay
rate, after the clm_getglobpar ams routine returns successfully.

Specifying the Stickiness Value of a Lock Resource

To control themigration behavior of anindividual lock resource, assign avalueto the stickiness
attribute of the lock resource. Y ou can assign any value between 0 and 100. Thisvalue
determines the percentage of the sum of the remote access rates the lock manager adds to the
local access rate to give the local node the advantage in migration calculations. A stickiness
value of 100 guarantees that the lock resource remains on the local node. By default, the lock
manager adds 50% of the sum of the remote access rates to the local access rate.

To illustrate how the stickiness attribute can affect lock resource master migration, consider a
cluster configuration in which three nodes (A, B, and C) access the same lock resource. The
lock resource is mastered on Node A and the stickiness attribute of the lock resource is set at
100. The following table describes the access patterns from each node at an evaluation point.

Node: Node A Node B Node C

Accesses: 3 20 0

Given these access rates, the lock manager would move the lock resource to Node B which has
the highest access rate. However, because the stickiness attribute of the lock resourceis set to
100, thelock manager adds the sum of all the remote access ratesto the local accessrate before
making the migration determination. In this case, the lock manager would add 20, the sum of
the access rates from Node B and Node C, to the local access rate. This addition increases the
local accessrateto 23, making it greater than the highest access rate of any of the remote nodes.
This ensures that the lock resource remains on the local node.

Y ou specify the value of the stickiness attribute using the following routines:
clm_getresparams Retrieves the current setting of the lock resource stickiness parameter.

clm_setresparams Assigns avalue to the lock resource stickiness parameter.

Both routines accept a single argument: the address of aclm_resparams t structure. When
used with the clm_getr espar ams routine, the lock manager writes the current values of the
attribute in this structure. When used with the clm_setr espar amsroutine, applications use this
structure to specify the desired value of the attribute. The data structure has the following
format:

Programming Locking Applications 6-9

Tuning the Cluster L ock Manager
Obtaining Lock Resource Statistics

typedef struct {

unsi gned cr_vali d;

unsi gned cr_sti cki ness;
} clmresparans_t;

The contents of the fields varies depending on which routine they are used with.

cr_valid Indicates which of the other fieldsin the clm_resparams t structure
contain valid data. Thisfield isonly used when setting the value of the
stickiness attribute with the clm_setr espar ams routine. When the
clm_getrespar ams routine returns successfully, the stickiness field
can be assumed to be valid.

cr_stickiness Specifies the desired value of the stickiness parameter, when used
with the clm_setrespar ams routine. Contains the current value of the
stickiness attribute, after the clm_getr esparams routine returns
successfully.

Obtaining Lock Resource Statistics

6-10

L ock resource statistics provide information about the usage of a particular lock resource. How
the resource statistics are used is completely up to the client application. Y ou use the
clm_getstats routine in your application to obtain these statistics.

The lock resource statistics indicate the number of times specific events have occurred. The
clm_statistics t structure, which represents the resource statistics information, has the
following format:
typedef struct clmstatistics {

unsi gned | ong cs_requests;

unsi gned | ong cs_| ocal

unsi gned long cs_renote;

unsi gned | ong cs_sane;

unsi gned long cs_migrations;

unsi gned | ong cs_conpat;

unsi gned | ong cs_i nconpat ;

unsi gned | ong cs_downgr ade;

float cs_total _aps;

float cs_aps[CLM MAXNODES] ;

} clmstatistics_t;

The locking statistics track four types of information.

Number and origin of lock requests

Migrations

Compatibility

A ccesses-per-second
All the locking statistics that increase incrementally (all the statistics except cs total_apsand
cs_aps) aredefined using the unsigned |ong dataty pe which can accommodate val ues over four
billion before overflowing. The cs total_apsand cs_aps statistics, which can increase

geometrically depending on the decay rate specified, are defined using the float datatype which
can accommodate values over 3.4%8 before overflowing.

Programming Locking Applications

Tuning the Cluster Lock M anager
Lock and Lock Resource Limits

Number and Origin of Lock Requests

The following statistics track the number and origin of lock requests on a resource.

Ccs requests

cs local

cs remote

cs same

Migration of Lock Resources

Number of lock requests on the specified resource

Number of local lock requests (same node as current lock resource
master node)

Number of remote lock requests

Number of successive lock requests by same node.

The cs_migrations statistic indicates the number of times the lock has migrated.

Compatibility of Lock Resources

The following statistics track compatibility issues concerning alock resource.

cs_compat

cs_incompat

cs downgrade

Accesses-Per-Second (APS)

Number of compatible lock requests (new locks and up-conversions
compatible with existing locks)

Number of incompatible lock requests (incompatible new locks and
up-conversions)

Number of down-conversions and unlocks.

These statistics represent the accesses-per-second (aps) figures for alock resource. The lock
manager calculates these values when it periodically evaluatesif the lock resource should be
moved to another cluster node (lock resource master migration).

cs aps

cs total_aps

An array that contains the access rates to the lock resource from each
cluster node. These values represent the raw access rate plus the
decayed historical access rate. The ordering of the accessratesin the
array corresponds to the alphabetic ordering of the names of cluster
nodes.

Sum of all the accessratesin the cs_aps array.

Note that requests for statistics do not update the accesses per second figures.

Lock and Lock Resource Limits

Lock Manager Kernel Memory Usage

The lock manager kernel extension (cllockd.x) maintains its database of locks and lock
resourcesin aprivate kernel segment. As applications request locks, the lock manager
dynamically allocates memory for the lock database from its segment.

Programming Locking Applications

6-11

Tuning the Cluster L ock Manager
Lock and Lock Resource Limits

In AlX, segments are exactly 256 MB. However, only half of the lock manager segment
(128MB) can be used to hold locks and lock resources. The remaining portion of the lock
manager segment must be held in reserve to satisfy transient demands, such as those associated
with remastering locks after a node failure. (Kernel memory is pageable so the amount of
physical memory does not affect lock limits; it does affect performance, however.)

Maximum Acquired Locks Per Node

Given the lock manager’'s memory allocation algorithm, you can calculate approximate limits
on the number of locks and lock resources an application can acquire.

Each lock resource requires approximately 450 bytes of storage and each lock requires 300
bytes. Each lock resource must have at least one lock against it. You can calculate the maximum
number of locks and lock resources as follows:

Let x = Max no.l ocks = Max no.resources

450 bytes * x resources + 300 bytes * x |ocks = 128MB
750x = 128MB

X 128MB/ 750

X 178K | ocks and 178K | ock resources (approxi mate)

Thus, the maximum number of locks you can acquire on a single node is approximately 178K,
where the ratio of locks to lock resources is 1:1.

Realistically, however, there are multiple locks against each lock resource. Thus, the practical
limit on the number of lock resources you can acquire is much less than 178K. For example, in
multi-node clusters, the node that maintains the master copy of a lock resource acquires an
additional lock against the lock resource for each lock taken on any other cluster node. The
lock-to-lock resource ratio on the node maintaining the master copy can quickly reach 3:1 or
4:1. To calculate the practical maximum, you must consider the size of the cluster and be
familiar with the locking characteristics of the applications you run.

Example of Kernel Memory Usage

6-12

A database program that pre-allocates 150,000 locks when it is started, shows how quickly the
lock manager’s 128MB limit can be reached when instances of the database program are started
on multiple cluster nodes.

On Node A, in a two-node cluster, the database program is started and it requests 150,000 lock
resources, each with a single lock. The lock manager grants these locks.

When another instance of the database program is started on Node B, it requests a lock on each
of the 150,000 lock resources already created on Node A. On Node B. the lock manager grants
the locks, allocating kernel memory for 150,000 lock resources, each with one lock against it.

On Node A, the lock manager must acquire an additional lock on each of the existing lock
resources. These additional locks represent copies of Node B’s locks. Node A maintains the
master copies of these lock resources. However, when the lock manager attempts to acquire
these new locks on the 150,000 lock resources, it reaches its 128MB limit for memory usage in
its segment before it can acquire all the requested locks. The node maintaining the master copies
of lock resources is the first node to start denying lock requests.

This example illustrates how you must be aware of the locking characteristics of the
applications you intend to run on your cluster. This problem can be remedied by lowering the
number of locks the application pre-allocates. (This is typically a tunable parameter in most

Programming Locking Applications

Tuning the Cluster Lock M anager
Lock and Lock Resource Limits

database applications.) For example, lowering the number of locks pre-allocated by the

database to 120,000 would allow it to start in a two-node cluster without exceeding the lock

manager’'s kernel memory usage limit. However, as the number of cluster nodes increases, the
number of locks pre-allocated by the database program must be reduced even further. With each
new node, the ratio of locks to lock resources gets larger on the node maintaining the master
copy of each lock resource.

The number of locks that can be supported in a cluster with N nodes, where each node requests
a lock against a specified number of lock resources can be determined by the following formula:

128*1024* 1024

(450 + Nr300)

In round numbers, this gives:
Nurber of Nodes Nurber of | ocks (thousands)

Migration of lock resources can, over time, even out lock manager memory allocation across
cluster nodes. As lock resource access patterns cause lock resource masters to move, one node,
such as Node A in the example, does not need to acquire copies of all the locks acquired
cluster-wide.

When Locks are Denied

When the lock manager reaches its kernel memory usage limit, it returns an error
(CLM_DENIED_NOLOCKS) to the calling application and leaves it up to the application to
decide how to handle the failure (wait and retry or exit immediately).

When the lock manager denies a request for a lock on an existing lock resource, it issues the
following error to the syslog (if kern.crit or lower priority messages are enabled in syslog.conf):
Jun 11 17:12: 00 nodeA svc uni x: denying request to grow HR>l ock tab 1

When the lock manager denies a request for a lock on a new lock resource, it issues the
following error to the syslog:

Jun 11 17:12: 00 nodeA svc unix: kernel nmenory limt reached

After the above messages, several of the following errors appear:

Jun 11 17:12: 00 nodeA svc unix: get_le: NO MORE LOCKS<HR>
Jun 11 17:12: 00 nodeA svc unix: get_le: NO MORE LOCKS

Programming Locking Applications 6-13

Tuning the Cluster L ock Manager
Lock and Lock Resource Limits

Lock Value Block Changes

6-14

Lock clients now have greater flexibility in updating and invalidating the lock value block
during lock conversion operations.

Previoudly, lock clients were only allowed to update or invalidate the lock value block during
adown convert from EX mode or PW mode to aless restrictive mode. To get this previous
behavior, lock clients must set the CLM_LVB_OLD environment variable. The value of the
CLM_LVB_OLD environment variable isinsignificant.

If LCM_LVB_OLD isnot set, lock clientswill observethe new behavior of aso allowing LVB
updates or invalidating when converting from EX or PW modes to the same mode.

Programming Locking Applications

Lock Manager API Routines
Lock Manager Routines

Chapter 7 Lock Manager APl Routines

This chapter provides reference information on the C language routines used to implement
locking inan HACMP for AIX application.

Lock Manager Routines

Thefollowing list summarizes the lock manager API routines, grouped by locking model. The
routines appear in one alphabetical list in this chapter.

CLM Locking Model-Specific Routines
ASTpoll Triggers the execution of pending AST routines.

clmlock Makes an asynchronous (non-blocking) request to acquire or convert
alock on alock resource.

clmlockx Makes an asynchronous (non-blocking) request to acquire or convert
alock on alock resource, and specifies atransaction ID for that lock.

clmlock_sync Acquires or converts alock on alock resource and obtains a
synchronous return.
clmlockx_sync Acquires or converts alock on alock resource, specifies atransaction

ID for that lock, and obtains a synchronous return.

clmunlock Releases alock on alock resource or cancels alock request that isin
blocked or converting state.

clm_scnop Manipulates the SCN, a specialized use of the lock value block
associated with alock resource.

clm_setnotify Specifies which signal the lock manager should use to notify your
application of apending AST.

UNIX Locking Model-Specific Routines

clmregister Registers alock resource.
clmregionlock Acquiresalock on alock resource or releases alock on alock
resource.

Programming Locking Applications 7-1

Lock Manager APl Routines
ASTpoll Routine

Routines Common to Both Locking Models

clm_errmsg Returns a pointer to a printable version of the CLM API status code
for single-threaded applications.

clm_getglobparams Obtains the value of the global lock manager parameters.

clm_getresparams Returns the value of a lock resource’s stickiness attribute.

clm_getstats Obtains statistics on resource usage.

clm_grp_attach Attaches a lock client to an existing lock group.

clm_grp_create Creates a new lock group and associates the lock client process with
the group.

clm_grp_detach Removes a lock client process from an existing lock group.

clm_perror Writes a message you specify to standard error.

clm_purge Releases all locks owned by a particular client, identified by its
process ID.

clm_setglobparams Sets the value of the global lock manager parameters, including the
evaluation threshold and the decay rate.

clm_setresparams Sets the value of the lock resource’s stickiness attribute.

The following sections provide reference information about the routines.

ASTpoll Routine

Syntax
int ASTpoll (pid, tid)
int pid;
int tid;
Description
Usethe AST poall routineto trigger any pending A STsresulting from the compl etion of previous
clmlock or cimlockx routine requests or the delivery of blocking ASTSs.
Parameters
pid
Thisargument indicates the process ID of the application having outstanding ASTs or blocking
ASTs. This should be the same process that queued the initial lock requests.
tid

This argument indicates the thread 1D of the thread that queued the ASTs.

Programming Locking Applications

Lock Manager API Routines
clmlock Routine

Note: Thread support is not fully implemented in this version of the lock
manager. Therefore, you must always specify zero for the thread ID.

Status Codes

Example

The AST poll routine returns the number of ASTs successfully invoked. ASTpall returns O if
there is a shared memory error or if there is no client record.

For an example of the ASTPoll routine, see the Sample Locking Application on page 3-6.

clmlock Routine

Syntax

clmstats_t clnm ock(node, |ksb, flags, nane, nanelen, ast,
astargs, bast)

int node

struct | ockstatus *| ksb;

int flags;

voi d *nane;

unsi gned int nanel en;

void (*ast)();

voi d *astargs;

void (*bast)();

Description

Usethe clmlock routine to make an asynchronous (non-blocking) request to acquire or convert
alock on alock resource. If the lock resource does not exist, the lock manager createsit.

Thevariouslock modes specify different degrees of accessto alock resource. Y ou specify this
mode as a part of the request. These lock modes are described in the Parameters section.

To convert an existing lock to a different mode, you must specify the LKM_CONVERT flag.
Y ou can also control other aspects of lock manager behavior by specifying flags as part of your
reguest. For more information about the flags supported, see the listing of flags in Parameters
on page 7-2.

The lock manager returns status in two locations: the status value returned by the clmlock
routine and the status field of the lock status block. The status value returned by the clmlock
routine indicates whether the request was accepted by thelock manager. The CLM_NORMAL
status value indicates your request was successfully queued. If your request cannot be queued
because of syntax problems or invalid arguments, your request is aborted and the clmlock
routine returns an error status code. See Status Codes on page 7-3 for alist of these status
values.

A success status from the clmlock routine does not indicate that your request has been granted.
The lock manager reports whether your request was granted (or denied, canceled, or aborted)
asynchronously by queuing for execution the AST routine you specified as an argument. When
the AST routine executes, the lock manager returns the status of the request (whether it was
granted, denied, canceled or aborted) in the status field of the lock status block. The

Programming Locking Applications 7-3

Lock Manager APl Routines

clmlock Routine

CLM_NORMAL status value indicates your request was granted. See Status Codes Returned
in the Lock Status Block on page 7-8 for alist of other possible status values. (For information
about the composition of the lock status block, see Data Structure on page 3-2.)

If your request is queued, the lock manager returnsalock 1D, atoken that identifiesthelock, in
the lock status block. Note that thisfield in the lock status block isvalid before the
asynchronousreturn reporting on lock status. All subsequent requests concerning thelock, such
as a cancellation request, must identify the lock by itslock ID.

Y ou can also specify an additional AST routine, called ablocking AST routine, that the lock
manager queues for execution when alock your application holdson alock resourceisblocking
another lock request.

Parameters

mode

lksb

The requested lock mode, required for both lock requests and conversion requests. The modes
supported are listed below in order of severity, from least restrictive to most restrictive:

LKM_NLMODE Does not grant the requesting process any access to the resource, but
indicates future interest in the resource. This acts as a placeholder for
later conversion requests.

LKM_CRMODE Allows the requesting process to read from aresource, and allows
other processes simultaneous read or write access to the same
resource. This alows an unprotected read operation.

LKM_CWMODE Allows the requesting process to read or write to a resource while
other processes simultaneously read or write to the same resource.
This allows an unprotected write operation.

LKM_PRMODE Allows the requesting process to read from a resource while other
processes simultaneously read from the same resource. No processes
can write to the resource while the requesting process holds the lock.
Thisisan example of a shared lock.

LKM_PWMODE Allows the requesting process to read or write to aresource, and
alows other processes that have concurrent read access to read from
the resource. Thisis an example of an update lock.

LKM_EXMODE Allows the requesting process to read or write to aresource while it
prevents any other process from accessing that resource.

A pointer to the lock status block (struct lockstatus). Use this data structure to specify the
contents of the lock value block and the timeout value for the request. For alock conversion
request, you must also use this structure to specify the lock 1D of the lock. The lock manager
writes the status of the lock request and the lock 1D assigned to the request in the lock status
block. For more information about this structure, see Data Structure on page 3-2.

Programming Locking Applications

flags

Lock Manager API Routines
clmlock Routine

The lock request takes various flags that modify its behavior. The flags supported are listed
aphabetically asfollows:

LKM_CONVERT

Indicates alock conversion request.

LKM_FINDLOCAL Usedto acquirealock on an existing local lock resource; that is, a

lock resource created by a previous lock request that specified the
LKM_LOCAL flag. The lock manager gqueries each cluster node,
looking for the location of the local lock resource. If the lock manager
cannot find the lock resource master on any cluster node, it creates a
new local lock resource. For more information, see Requesting Local
Locks on page 3-8.

Subsequent requests to manipulate the lock require only the lock 1D
(not the LKM_FINDLOCAL flag). If the lock request includes the
LKM_CONVERT flag (that is, the request is a conversion), the lock
manager ignoresthe LKM_FINDLOCAL flag.

Note: A lock request that specifiesthe LKM_FINDLOCAL flag
takes longer to complete than alock request that specifiesthe

LKM_LOCAL flag, or even astandard lock request. Usethis

flag only when you are certain the lock resource specified was
created with the LKM_LOCAL flag.

LKM_INVVALBLK Allowsclientsto invalidate the lock value block associated with the

LKM_LOCAL

lock resource. If the lock on the lock resource is not a PW or EX
mode lock, the flag isignored. (Y ou must have a PW or EX mode
lock on alock resource to modify alock value block.)

Specifies that the lock manager bypass the lock resource directory
lookup that it normally performs and create the lock resource master
on the local node. The lock resource should not already exist
anywhere in the cluster. Subsequent requests to manipulate this lock
require only the lock 1D (and not the LKM_LOCAL flag). If the lock
request includesthe LKM_CONVERT flag (that is, the request isa
conversion), the lock manager ignoresthe LKM_LOCAL flag.

Note: When you specify the LKM_LOCAL flag, the lock manager
does not check the lock resource directory to determine if the

lock resourceis already mastered on acluster node, asit does

for standard lock requests. Consequently, using thisflag, you
can create duplicate masters of lock resources, which can
compromise lock integrity and result in data corruption.

Programming Locking Applications

7-6

Lock Manager APl Routines
clmlock Routine

TheLKM_LOCAL flag should only be used to acquire short-lived locks on short-lived
lock resources. If your application must acquire additional locks on alocal lock

resource, you must specify the LKM_FINDLOCAL flag when requesting thelock. For
more information about local lock resource, see Requesting Local Locks on page 3-8.

LKM_NODLCKWT

LKM_NOQUEUE

LKM_ORPHAN

LKM_PROC_OWNE

D

LKM_SNGLDLCK

Directs the lock manager to exclude this lock request from
consideration when it periodically performs deadlock detection
processing.

Reguests that the lock manager not put the lock request on the wait
queue if it cannot be immediately granted. The lock manager returns
the status CLM_NOTQUEUED in the lock status block.

Requests that the lock manager not purge thislock if the application
fails. Usethis flag with great care and only if you have a transaction
recovery process that will eventually remove the orphaned locks.

Directs the lock manager to exclude this lock from the lock group.
Thislock isowned by the process and not by the group. Other clients
belonging to the group may not manipulate this lock.

Requests that the lock manager check this lock request for self-client
deadlock.

Notee TheLKM_SNGLDLCK flagisobsolete but isretained for
backwards compatibility. The lock manager now checks for
self-client deadlock by default.

LKM_SYNCSTS

LKM_TIMEOUT

Requests that the lock request return synchronoudly, if possible. If
the lock manager can grant the request, the clmlock routine returns
the status CLM_SYNC, instead of CLM_NORMAL, and thereisno
asynchronous return. If the lock manager cannot grant the request
synchronously, the cimlock routine returns CLM_NORMAL and the
lock manager gueues the request as it would any other request.

Requests that the lock manager cancel the lock request or lock
conversion request if the request cannot be granted within the time
limit specified in the timeout field of thelock status block. If thetime
limit expires, the lock manager cancels the operation and queues the
AST routine which returns the status value CLM_TIMEOUT. You
specify the timeout value in units of hundredths of a second (0.01).
For example, atimeout value of 500 specifies five seconds.

Programming Locking Applications

name

namelen

ast

astargs

Lock Manager API Routines
clmlock Routine

LKM_VALBLK Reguests that the lock manager return the current contents of the
lock value block in the lock status block. When this flag is specified
in alock conversion request that is down-converting alock from EX
or PW mode to alessrestrictive mode, the lock manager assigns the
value specified in the lock status block to the lock value block of the
lock resource. The lock value block is a 16-byte array containing
application-specific information. This information is user-defined
and interpreted by the application. For more information about the
lock value block, see Manipulating the Lock Vaue Block on page
3-11.

The name of the requested lock resource. A resource name can contain binary data.

Thelength of the lock resource name provided in the name parameter. A resource name cannot
exceed 31 characters.

The address of afunction the lock manager queues for execution when it finishes processing
the lock request. Y our application triggers the execution of thisroutine by calling the AST poll
routine.

An argument that is passed to the routine specified by the ast or bast argument when that
function isinvoked. Typically used to pass avalue that uniquely identifies the lock request
when the status is returned. For example:

voi d ast_func(void *astargs);

bast (blocking AST)

The address of afunction invoked if the requested lock is granted and | ater blocks another lock
request. The blocking AST routine is called with two arguments: the astar gs argument
previously specified, and the requested mode that caused the queuing of the blocking AST
routine. For example:

voi d bast_func(void *astargs, int node);

Programming Locking Applications 7-7

Lock Manager APl Routines
clmlock Routine

Status Codes

The status codes returned are listed al phabetically as follows:

CLM_BADARGS

)
CLM_BADPARAM

CLM_DENIED_NOASTS

CLM_IVBUFLEN

CLM_IVLOCKID

CLM_NOLOCKMGR

CLM_NORMAL

CLM_REJECTED

CLM_SYNC

CLM_SYSERR

One of the following:

The request included the LKM_VALBLK flag but passed a
NULL pointer to the lock status block.

The request passed a NULL pointer to the lock status block.
The request included an invalid flag.

The request passed a NULL lock resource name pointer, but
did not include the LKM_CONVERT flag. (A conversion
request requires avalid lock ID, but does not require avalid
lock resource name.

The lock mode specified is hot avalid lock mode.
No more ASTs are available.

The namelen (name length) was less than 1 or greater than 31
characters.

Thelock ID isinvalid.

A reguest timed out waiting for a response from the lock
manager. If the lock manager isrestarted whileit is being used
by aclient, the next lock request returns this status.

Thelock request completed successfully.

The lock manager does not recognize the client. This occurs if
alock manager is restarted during alock session.

The lock request included the LKM_SYNCSTS flag and the
lock manager was able to grant it synchronously.

A dataformat error occurred, indicating a problem with the
network facilities or an internal error with the lock manager.

Status Codes Returned in the Lock Status Block
The status codes returned in the lock status block are listed alphabetically as follows:

CLM_ABORT

CLM_CANCEL

A waiting lock was canceled by aclmunlock call with the
LKM_CANCEL flag set.

A blocked conversion was canceled by aclmunlock call with
the LKM_CANCEL flag set. The lock retains its original
granted mode.

Programming Locking Applications

CLM_CVTUNGRANT
CLM_DEADLOCK
CLM_DENIED
CLM_DENIED_NOLOCKS
CLM_NORMAL
CLM_NOTQUEUED

CLM_TIMEOUT

CLM_VALNOTVALID

Example

Lock Manager API Routines
clmlockx Routine

The request attempted to convert alock that was blocked in
the WAIT state.

The lock manager canceled this request to prevent deadlock
from occurring.

The request attempted to convert alock that was already
blocked on a conversion request.

Either no more locks or no more resources are available. For
information about the lock manager allocates locks and lock
resources, see Lock and Lock Resource Limits on page 6-11.

The lock request completed successfully.

The request included the LKM_NOQUEUE flag and could
not be satisfied immediately.

The timeout expired before this request was able to complete.

The lock request, which included arequest for the lock value
block, completed successfully; however, the lock value block
isnot valid. Thisindicates that a client terminated while
holding alock on the lock resource at the LKM_EXMODE or
LKM_PWMODE mode or that a client invalidated the lock
value block by specifying the LKM_INVVALBLK flag with
the lock routines.

For an example, see the Sample Locking Application on page 3-6.

clmlockx Routine

Syntax

clmstats_t clnm ockx(nmode, |ksb, flags, name, namnelen, ast,
astargs, bast, xid)

int node

struct | ockstatus *|ksb;
int flags;

voi d *nane;

unsi gned int nanel en;
void (*ast)();

voi d *astargs;

void (*bast)();
clmxid_t *xid;

Programming Locking Applications

7-10

Lock Manager A
clmlockx Routine

Pl Routines

Description

Use the clmlockx routine to make an asynchronous (non-blocking) request to acquire or
convert alock on alock resource, and specify atransaction ID for that lock. The clmlockx
routine performs the same function as the cimlock routine. See the documentation for the
clmlock routine on page 7-3 for a description of the base functionality.

Additionally, theclmlockx routine acceptsatransaction | D (also called an XD or deadlock ID)
asaparameter. Normally, the lock manager assumes the processthat created the lock ownsthe
lock when determining whether a deadlock cycle exists. By specifying atransaction ID, alock
client can attribute the ownership of alock to atransaction rather than to aprocess. For deadl ock
detection, therefore, a transaction replaces a process or group as the owner of alock.

Y ou must specify atransaction ID when calling the clmlockx routine. The transaction ID
should either point to an eight-byte X1D value or be NULL. Also, you must also set the
LKM_XID_CONFLICT flag when calling the cimlockx routine. This flag will eventually
control functionality not included in this release.

The lock manager uses the transaction ID parameter only when creating alock; it ignores this
flag when converting alock.

A transaction ID does not span nodes. Therefore, the lock manager considers equivalent
transaction |Ds on different nodes to be different transaction IDs.

Parameters

mode

The requested lock mode, required for both lock requests and conversion requests. The modes
supported are listed below in order of severity, from least restrictive to most restrictive:

LKM_NLMODE Does not grant the requesting process any access to the resource, but
indicates future interest in the resource. This acts as a placeholder
for later conversion requests.

LKM_CRMODE Allows the requesting process to read from aresource, and alows
other processes simultaneous read or write access to the same
resource. This allows an unprotected read operation.

LKM_CWMODE Allows the requesting process to read or write to aresource while
other processes simultaneously read or write to the same resource.
This allows an unprotected write operation.

LKM_PRMODE Allows the requesting process to read from aresource while other
processes simultaneously read from the same resource. No
processes can write to the resource while the requesting process
holds the lock. Thisis an example of a shared lock.

LKM_PWMODE Allows the requesting process to read or write to aresource, and
alows other processes that have concurrent read accessto read from
the resource. Thisis an example of an update lock.

LKM_EXMODE Allowsthe requesting process to read or write to aresource while it
prevents any other process from accessing that resource.

Programming Locking Applications

lksb

Lock Manager API Routines
clmlockx Routine

A pointer to the lock status block (struct lockstatus). Use this data structure to specify the
contents of the lock value block and the timeout value for the request. For alock conversion
request, you must also use this structure to specify the lock 1D of the lock. The lock manager
writes the status of the lock request and the lock ID assigned to the request in the lock status
block. For more information about this structure, see page 3-2.

flags

The lock request takes various flags that modify its behavior. The flags supported are listed

aphabetically asfollows:

LKM_CONVERT

LKM_FINDLOCAL

Indicates alock conversion request. The lock manager ignores
the xid parameter.

Used to acquire alock on an existing local lock resource; that
is, alock resource created by a previous lock request that
specified the LKM_LOCAL flag. The lock manager queries
each cluster node, looking for the location of the local lock
resource. If the lock manager cannot find the lock resource
master on any cluster node, it creates anew local lock
resource. For more information, see Requesting Local Locks
on page 3-8.

Subsequent requests to manipulate the lock require only the
lock ID (not the LKM_FINDLOCAL flag). If the lock request
includesthe LKM_CONVERT flag (that is, the request isa
conversion), the lock manager ignores the
LKM_FINDLOCAL flag.

Note: A lock request that specifiesthe LKM_FINDLOCAL flag
takes longer to complete than alock request that specifiesthe
LKM_LOCAL flag, or even astandard lock request. Usethis
flag only when you are certain thelock resource specified was
created with the LKM_LOCAL flag.

LKM_INVVALBLK

LKM_LOCAL

Programming Locking Applications

Allows clients to invalidate the lock value block associated
with the lock resource. If the lock on the lock resourceisnot a
PW or EX mode lock, the flag isignored. (Y ou must have a
PW or EX maode lock on alock resource to modify alock
value block.)

Specifies that the lock manager bypass the lock resource
directory lookup that it normally performs and create the lock
resource master on the local node. The lock resource should
not already exist anywhere in the cluster. Subsequent requests
to manipulate this lock require only the lock 1D (and not the
LKM_LOCAL flag). If thelock request includes the
LKM_CONVERT flag (that is, the request is a conversion),
the lock manager ignoresthe LKM_LOCAL flag.

7-11

Lock Manager APl Routines
clmlockx Routine

Note: When you specify the LKM_LOCAL flag, the lock manager
does not check the lock resource directory to determineif the
lock resource is already mastered on a cluster node, asit does
for standard lock requests. Consequently, using thisflag, you
can create duplicate masters of lock resources, which can
compromise lock integrity and result in data corruption.

TheLKM_LOCAL flag should only be used to acquire short-lived locks on short-lived
lock resources. If your application must acquire additional locks on alocal lock

resource, you must specify the LKM_FINDLOCAL flag when requesting thelock. For
more information about local lock resource, see Requesting Local Locks on page 3-8.

LKM_NODLCKWT Directs the lock manager to exclude this lock request from
consideration when it periodically performs deadlock detection
processing.

LKM_NOQUEUE Requests that the lock manager not put the lock request on the wait
queue if it cannot be immediately granted. The lock manager
returns the status CLM_NOTQUEUED in the lock status block.

LKM_ORPHAN Requests that the lock manager not purge thislock if the
application fails. Use this flag with great care and only if you have
atransaction recovery process that will eventually remove the
orphaned locks.

LKM_PROC_OWNED Directsthe lock manager to exclude this lock from the lock group.
Thislock is owned by the process and not by the group. Other
clients belonging to the group may not manipulate this lock.

LKM_SNGLDLCK Requests that the lock manager check this lock request for
self-client deadlock.

Note: Thisflagisobsolete but is retained for backwards
compatibility. The lock manager now checks for self-client
deadlock by default.

LKM_SYNCSTS Requests that the lock request return synchronoudly, if possible. If
the lock manager can grant the request, the clmlockx routine
returns the status CLM_SYNC, instead of CLM_NORMAL, and
there is no asynchronous return. If the lock manager cannot grant
the request synchronously, the clmlockx routine returns
CLM_NORMAL and thelock manager queues the request as it
would any other request.

7-12 Programming Locking Applications

name

namelen

ast

astargs

Lock Manager API Routines
clmlockx Routine

LKM_TIMEOUT Requests that the lock manager cancel the lock request or lock
conversion request if the request cannot be granted within thetime
limit specified in the timeout field of the lock status block. If the
time limit expires, the lock manager cancels the operation and
gueues the AST routine which returns the status value
CLM_TIMEOUT. Y ou specify the timeout value in units of
hundredths of a second (0.01). For example, atimeout value of
500 specifies five seconds.

LKM_VALBLK Reguests that the lock manager return the current contents of the
lock value block in the lock status block. When this flag is
specified in alock conversion request that is down-converting a
lock from EX or PW mode to aless restrictive mode, the lock
manager assigns the value specified in the lock status block to the
lock value block of the lock resource. The lock value block isa
16-byte array containing application-specific information. This
information is user-defined and interpreted by the application. For
more information about the lock value block, see page 3-2.

LKM_XID_CONFLICT Requeststhat transaction IDs are used only for deadlock
detection. Currently, you must set this flag. The lock manager
returns an error if thisflag is not set.

The name of the requested lock resource. A resource name can contain binary data.

Thelength of thelock resource name provided in the name parameter. A resource name cannot
exceed 31 characters.

The address of afunction the lock manager queues for execution when it finishes processing
the lock request. Y our application triggers the execution of thisroutine by calling the AST poll
routine.

An argument that is passed to the routine specified by the ast or bast argument when that
function isinvoked. Typically used to pass avalue that uniquely identifies the lock request
when the status is returned. For example:

voi d ast_func(void *astargs);

bast (blocking AST)

The address of afunction invoked if the requested lock is granted and | ater blocks another lock
regquest. The blocking AST routine is called with two arguments: the astar gs argument
previously specified, and the requested mode that caused the queuing of the blocking AST
routine. For example:

voi d bast_func(void *astargs, int node);

Programming Locking Applications 7-13

Lock Manager APl Routines
clmlockx Routine

xid

A pointer to an eight-byte transaction ID or NULL. A NULL value indicates the lock will be

owned by the process or group.

Status Codes

The status codes returned are listed al phabetically as follows

CLM_BADARGS

CLM_BADPARAM
CLM_DENIED_NOASTS
CLM_IVBUFLEN

CLM_IVLOCKID

CLM_NOLOCKMGR

CLM_NORMAL

CLM_REJECTED

CLM_SYNC

CLM_SYSERR

One of the following:

The request included the LKM_VALBLK flag but passed a
NULL pointer to the lock status block.

The request passed a NULL pointer to the lock status block.
The request included an invalid flag.

The request passed a NULL lock resource name pointer, but
did not include the LKM_CONVERT flag. (A conversion
request requires avalid lock ID, but does not require avalid
lock resource name.)

The lock mode specified is hot avalid lock mode.
No more ASTs are available.

The namelen (name length) was less than 1 or greater than 31
characters.

Thelock ID isinvalid.

A reguest timed out waiting for a response from the lock
manager. |f the lock manager isrestarted whileit is being used
by aclient, the next lock request returns this status.

The lock request completed successfully.

The lock manager does not recognize the client. This occursiif
alock manager is restarted during alock session.

The lock request included the LKM_SYNCSTS flag and the
lock manager was able to grant it synchronously.

A dataformat error occurred, indicating a problem with the
network facilities or an internal error with the lock manager.

Status Codes Returned in the Lock Status Block
The status codes returned in the lock status block are listed alphabetically as follows:

CLM_ABORT

7-14

A waiting lock was canceled by aclmunlock call with the
LKM_CANCEL flag set.

Programming Locking Applications

CLM_CANCEL

CLM_CVTUNGRANT

CLM_DEADLOCK

CLM_DENIED

Lock Manager API Routines
clmlockx Routine

A blocked conversion was canceled by aclmunlock call with
the LKM_CANCEL flag set. The lock retainsits origina
granted mode.

Therequest attempted to convert alock that was blocked in the
WAIT dtate.

The lock manager killed this request to prevent deadlock from
occurring.

The request attempted to convert alock that was already
blocked on a conversion request.

CLM_DENIED_NOL OCKS Either no more locks or no more resources are available. For

CLM_NORMAL

CLM_NOTQUEUED

CLM_TIMEOUT

CLM_VALNOTVALID

Example
clmstats = status;

information about the lock manager allocates locks and lock
resources, see Lock and Lock Resource Limits on page 6-11.

The lock request completed successfully.

Therequest included the LKM_NOQUEUE flag and could not
be satisfied immediately.

The timeout expired before this request was able to complete.

Thelock request, which included a request for the lock value
block, completed successfully; however, the lock value block
isnot valid. Thisindicates that a client terminated while
holding alock on the lock resource at the LKM_EXMODE or
LKM_PWMODE mode or that a client invalidated the lock
value block by specifying the LKM_INVVALBLK flag with
the lock routines.

status = cl m ockx(LKM CRMODE, /* node */
/*

&l ksb[whi ch_I ock],

| ock status block */

LKM VALBLK,
"RES- A", /[* name */

5, /* nanmelen */
ast_func, /* ast routine */
&astarg, /* astargs */

o0, /* bast */

&xi d) ; /* transaction id */

Programming Locking Applications

7-15

Lock Manager APl Routines
clmlock_sync Routine

clmlock_sync Routine

Syntax

clmstats_t clnmock_sync(nmode, |ksb, flags, nanme, nanel en
bast args, bast)

int node

struct | ockstatus | ksb

int flags;

voi d *nane;

unsi gned int nanel en;

voi d *bast ar gs;

void (*bast)(void *);

Description

Use the clmlock_sync routine to acquire or convert alock on alock resource and obtain a
synchronous return. If the lock resource does not exist, the lock manager createsit.

A synchronous request performs the same function as an asynchronous request, but does not
return control to the calling process until the request is resolved. The calling process does not
have to poll for an AST; it simply waits until the request returns.

Since the clmlock_sync routine does not use an AST to sighal completion, it does not require
apointer to an ast function as an argument.

The variouslock modes specify different degrees of accessto alock resource. Y ou specify this
mode as a part of the request. These lock modes are described in the “Parameters” section.

To convert an existing lock to a different mode, you must specify the LKM_CONVERT flag.
You can also control other aspects of lock manager behavior by specifying flags as part of your
request. For more information about the flags supported, see the listing of flags in Parameters
on page 7-2.

The lock manager returns status in two locations: the status value returnedlby¢ble_sync

routine and the status field of the lock status block. The status value returned by the
clmlock_sync routine indicates whether the request was accepted by the lock manager. The
CLM_NORMAL status value indicates your request was successfully queued. If your request
cannot be queued because of syntax problems or invalid arguments, your request is aborted and
theclmlock_sync routine returns an error status code. See Status Codes on page 7-3 for a list
of these status values.

The lock manager returns the status of the request (whether it was granted, denied, canceled or
aborted) in the status field of the lock status block. The CLM_NORMAL status value indicates
your request was granted. Status Codes Returned in the Lock Status Block on page 7-8 for a list
of other possible status values. (For information about the composition of the lock status block,
see Data Structure on page 3-2.)

Parameters
mode

The requested lock mode, required for both lock requests and conversion requests. The modes
supported are listed below in order of severity, from least restrictive to most restrictive:

7-16 Programming Locking Applications

lksb

flags

Lock Manager API Routines
clmlock_sync Routine

LKM_NLMODE
Does not grant the requesting process any access to the resource, but indicates future
interest in the resource. This acts as a placeholder for later conversion requests.

LKM_CRMODE
Allows the requesting process to read from a resource, and alows other processes
simultaneous read or write access to the same resource. This alows an unprotected read
operation.

LKM_CWMODE
Allows the requesting process to read or write to a resource while other processes
simultaneously read or write to the same resource. This allows an unprotected write
operation.

LKM_PRMODE
Allowstherequesting processto read from aresource while other processes simultaneoudy
read from the same resource. No processes can write to the resource while the requesting
process holds the lock. Thisis an example of a shared lock.

LKM_PWMODE
Allowsthe requesting processto read or writeto aresource, and allows other processesthat
have concurrent read accessto read from the resource. Thisis an example of an updatelock.

LKM_EXMODE
Allows the requesting process to read or write to aresource whileit prevents any other
process from accessing that resource.

A pointer to the lock status block (struct lockstatus). Use this data structure to specify the
contents of the lock value block and the timeout value for the request. For alock conversion
request, you must also use this structure to specify the lock 1D of the lock. The lock manager
writes the status of the lock request and the lock 1D assigned to the request in the lock status
block. For more information about this structure, see Data Structure on page 3-2.

The lock request takes various flags that modify its behavior. The flags supported are listed
aphabetically asfollows:

LKM_CONVERT
Indicates alock conversion request.

LKM_FINDLOCAL
Used to acquire alock on an existing local lock resource; that is, alock resource created by
aprevious lock request that specified the LKM_LOCAL flag. The lock manager queries
each cluster node, looking for the location of the local lock resource. If the lock manager
cannot find the lock resource master on any cluster node, it creates a new local lock
resource. For more information, see Requesting Local Locks on page 3-8.

Subsequent requests to manipulate the lock require only the lock 1D (not the
LKM_FINDLOCAL flag). If thelock request includesthe LKM_CONVERT flag (that is,
the request is a conversion), the lock manager ignoresthe LKM_FINDLOCAL flag.

Programming Locking Applications 7-17

Lock Manager APl Routines
clmlock_sync Routine

Note: A lock request that specifiesthe LKM_FINDLOCAL flag takes
longer to complete than alock request that specifies the
LKM_LOCAL flag, or even astandard lock request. Usethisflag
only when you are certain the lock resource specified was created
withthe LKM_LOCAL flag.

LKM_INVVALBLK
Allows clientsto invalidate the lock value block associated with the lock resource. If the
lock on thelock resourceisnot aPW or EX made lock, the flag isignored. (Y ou must have
aPW or EX mode lock on alock resource to modify alock value block.)

LKM_LOCAL
Specifies that the lock manager bypass the lock resource directory lookup that it normally
performs and create the lock resource master on the local node. The lock resource should
not already exist anywhere in the cluster. Subsequent requests to manipulate this lock
regquire only thelock 1D (and not the LKM_LOCAL flag). If the lock request includes the
LKM_CONVERT flag (that is, the request is a conversion), the lock manager ignores the
LKM_LOCAL flag.

Note: Whenyou specify the LKM_LOCAL flag, thelock manager does
not check the lock resource directory to determine if the lock
resource is already mastered on a cluster node, asit does for
standard lock requests. Conseguently, using this flag, you can
create duplicate masters of lock resources, which can
compromises lock integrity and result in data corruption.

The LKM_LOCAL flag should only be used to acquire short-lived locks on short-lived
lock resources. If your application must acquire additional locks on alocal lock resource,
you must specify the LKM_FINDLOCAL flag when requesting the lock. For more
information about local lock resource, see Requesting Local Locks on page 3-8.

LKM_NODLCKWT
Directs the lock manager to exclude this lock request from consideration when it
periodically performs deadlock detection processing.

LKM_NOQUEUE
Requests that the lock manager not put the lock request on the wait queue if it cannot be
immediately granted. Thelock manager returnsthe statusCLM_NOTQUEUED inthelock
status block.

LKM_ORPHAN
Requeststhat thelock manager not purgethislock if the application fails. Usethisflag with
great care and only if you have atransaction recovery process that will eventually remove
the orphaned locks.

LKM_PROC_OWNED
Directs the lock manager to exclude thislock from the lock group. Thislock is owned by
the process and not by the group. Other clients belonging to the group may not manipulate
this lock.

7-18 Programming Locking Applications

Lock Manager API Routines
clmlock_sync Routine

LKM_SNGLDLCK
Requests that the lock manager check this lock request for self-client deadlock.

Note: Thisflag isobsolete but is retained for backwards compatibility.
The lock manager now checks for self-client deadlock by default.

LKM_TIMEOUT
Requests that the lock manager cancel the lock request or lock conversion request if the
reguest cannot be granted within the time limit specified in the timeout field of the lock
status block. If the time limit expires, the lock manager cancels the operation and queues
the AST routine which returnsthe status value CLM_TIMEOUT. Y ou specify the timeout
value in units of hundredths of a second (0.01). For example, atimeout value of 500
specifies five seconds.

LKM_VALBLK
Requests that the lock manager return the current contents of the lock value block in the
lock status block. When this flag is specified in alock conversion request that is
down-converting alock from EX or PW mode to aless restrictive mode, the lock manager
assigns the value specified in the lock status block to the lock value block of the lock
resource.

Thelock value block is a 16-byte array containing application-specific information. This
information is user-defined and interpreted by the application. For more information about
the lock value block, see Data Structure on page 3-2.

name
The name of the requested lock resource. A resource name can contain binary data.
namelen
Thelength of the lock resource name provided in the name parameter. A resource name cannot
exceed 31 characters.
bastargs

An argument that is passed to the routine specified by the bast argument when that functionis
invoked. Typically used to pass avalue that uniquely identifies the lock request when the lock
is blocking another lock request. For example:

voi d bast_func(void *bastargs, int node);

bast (blocking AST)
The address of afunction invoked if the requested lock is granted and later blocks another lock
request. The blocking AST routine is called with two arguments: the bastar gs argument
previously specified, and the requested mode that caused the queuing of the blocking AST
routine. For example:

voi d bast_func(void *bastargs, int node);

Programming Locking Applications 7-19

7-20

Lock Manager APl Routines
clmlock_sync Routine

Status Codes

The status codes returned are listed al phabetically as follows:

CLM_BADARGS
One of the following:

Therequestincluded theLKM_VALBLK flag but passed aNULL pointer tothelock status
block.

The request passed a NULL pointer to the lock status block.
The request included an invalid flag.

The request passed a NULL lock resource name pointer, but did not include the
LKM_CONVERT flag. (A conversion request requiresavalidlock I D, but doesnot require
avalid lock resource name.)

CLM_BADPARAM
The lock mode specified is not avalid lock mode.

CLM_IVBUFLEN
The namelen (name length) was less than 1 or greater than 31 characters.

CLM_IVLOCKID
Thelock ID isinvalid.

CLM_NOLOCKMGR
A request timed out waiting for aresponse from the lock manager. If the lock manager is
restarted whileit is being used by a client, the next lock request returns this status.

CLM_NORMAL
The lock request completed successfully.

Status Codes Returned in the Lock Status Block

The status codes returned in the lock status block are listed alphabetically as follows:

CLM_CVTUNGRANT
The request attempted to convert alock that was blocked in the WAIT state.

CLM_DEADLOCK
The lock manager killed this request to prevent deadlock from occurring.

CLM_DENIED
The request attempted to convert alock that was already blocked on a conversion regquest.

CLM_DENIED_NOLOCKS
Either no more locks or no more resources are available. For information about how the lock
manager alocates locks and lock resources, see Lock and Lock Resource Limits on page 6-11.

CLM_NORMAL
The lock request completed successfully.

Programming Locking Applications

Example

Lock Manager API Routines
clmlockx_sync Routine

CLM_NOTQUEUED
The request included the LKM_NOQUEUE flag and could not be satisfied immediately.

CLM_TIMEOUT
The timeout expired before this request was able to complete.

CLM_VALNOTVALID

The lock request, which included a request for the lock value block, completed successfully;
however, the lock value block isnot valid. Thisindicates that a client terminated while holding
alock on the lock resource at the LKM_EXMODE or LKM_PWMODE mode or that aclient
invalidated the lock value block by specifying the LKM_INVVALBLK flag with the lock
routines.

cl mstats = status;

node */
| ock status block */

status = cl m ock_sync(LKM CRMODE,
&l ksb[whi ch_I ock],

* ok

~ ~

LKM VALBLK,
"RES- A", /[* name */
5, /* nanelen */
&bast ar gs, /* bastargs */
/*

bast _func); bast routine */

clmlockx_sync Routine

Syntax
clmstats_t clm ockx_sync(node, |ksb, flags, nane, nanelen
bast args, bast)
int node
struct | ockstatus | ksb
int flags;
voi d *nane;
unsi gned int nanel en;
voi d *bast ar gs;
void (*bast)(void *);
clmxid t *xid
Description

Use the clmlockx_sync routine to acquire or convert alock on alock resource, specify a
transaction ID for that lock, and obtain a synchronous return. The clmlockx_sync routine
performs the same function as the clmlock_sync routine. See the documentation for the
clmlock_sync routine starting on page 7-16 for a description of the base functionality.

Additionally, the clmlockx_sync routine accepts atransaction ID (also caled an XID or
deadlock ID) as a parameter. Normally, the lock manager assumes the process that created the
lock owns the lock when determining whether a deadlock cycle exists. By specifying a
transaction ID, alock client can attribute the ownership of alock to atransaction rather than to
aprocess. For deadlock detection, therefore, atransaction replaces a process or group as the
owner of alock.

Programming Locking Applications 7-21

Lock Manager APl Routines
clmlockx_sync Routine

Y ou must specify atransaction ID when calling the clmlockx_sync routine. The transaction ID
should either point to an eight-byte XID value or be NULL. Also, you must also set the
LKM_XID_CONFLICT flag when calling the cimlockx_sync routine. This flag will
eventually control functionality not included in this release.

The lock manager uses the transaction ID parameter only when creating alock; it ignores this
flag when converting alock.

A transaction ID does not span nodes. Therefore, the lock manager considers equivalent
transaction |Ds on different nodes to be different transaction IDs.

Parameters

mode

lksb

flags

7-22

The requested lock mode, required for both lock requests and conversion requests. The modes
supported are listed below in order of severity, from least restrictive to most restrictive:

LKM_NLMODE
Does not grant the requesting process any accessto the resource, but indicates futureinterest in
the resource. This acts as a placeholder for later conversion requests.

LKM_CRMODE
Allowsthe requesting processto read from aresource, and allows other processes simultaneous
read or write access to the same resource. This allows an unprotected read operation.

LKM_CWMODE
Allows the requesting process to read or write to aresource while other processes
simultaneously read or write to the same resource. This allows an unprotected write operation.

LKM_PRMODE

Allows the requesting process to read from a resource while other processes simultaneously
read from the same resource. No processes can write to the resource while the requesting
process holds the lock. Thisis an example of a shared lock.

LKM_PWMODE
Allows the requesting process to read or write to aresource, and allows other processes that
have concurrent read access to read from the resource. Thisis an example of an update lock.

LKM_EXMODE
Allowsthe requesting process to read or write to a resource while it prevents any other process
from accessing that resource.

A pointer to the lock status block (struct lockstatus). Use this data structure to specify the
contents of the lock value block and the timeout value for the request. For alock conversion
request, you must also use this structure to specify the lock 1D of the lock. The lock manager
writes the status of the lock request and the lock 1D assigned to the request in the lock status
block. For more information about this structure, see Data Structure on page 3-2.

The lock request takes various flags that modify its behavior. The flags supported are listed
aphabetically asfollows:

Programming Locking Applications

Lock Manager API Routines
clmlockx_sync Routine

LKM_CONVERT
Indicates alock conversion request. The lock manager ignores the xid parameter.

LKM_FINDLOCAL
Used to acquire alock on an existing local lock resource; that is, alock resource created by
aprevious lock request that specified the LKM_LOCAL flag. The lock manager queries
each cluster node, looking for the location of the local lock resource. If the lock manager
cannot find the lock resource master on any cluster node, it creates a new local lock
resource. For more information, see Requesting Local L ocks on page 3-8.

Subsequent requests to manipulate the lock require only the lock 1D (not the
LKM_FINDLOCAL flag). If thelock request includesthe LKM_CONVERT flag (that is,
the request is a conversion), the lock manager ignoresthe LKM_FINDLOCAL flag.

Note: A lock request that specifiesthe LKM_FINDLOCAL flag takes
longer to compl ete than alock request that specifies the
LKM_LOCAL flag, or even astandard lock request. Usethisflag
only when you are certain the lock resource specified was created
with the LKM_LOCAL flag.

LKM_INVVALBLK
Allows clients to invalidate the lock value block associated with the lock resource. If the
lock onthelock resourceisnot aPW or EX modelock, the flag isignored. (Y ou must have
aPW or EX mode lock on alock resource to modify alock value block.)

LKM_LOCAL
Specifies that the lock manager bypass the lock resource directory lookup that it normally
performs and create the lock resource master on the local node. The lock resource should
not already exist anywhere in the cluster. Subsequent requests to manipulate this lock
require only the lock ID (and not the LKM_LOCAL flag). If the lock request includes the
LKM_CONVERT flag (that is, the request is a conversion), the lock manager ignores the
LKM_LOCAL flag.

Note: When you specify the LKM_LOCAL flag, thelock manager does
not check the lock resource directory to determine if the lock
resource is already mastered on a cluster node, asit does for
standard lock requests. Consequently, using this flag, you can
create duplicate masters of lock resources, which can compromise
lock integrity and result in data corruption.

The LKM_LOCAL flag should only be used to acquire short-lived locks on short-lived
lock resources. If the application must acquire additional locks on alocal lock resource,
specify the LKM_FINDLOCAL flag when requesting the lock. See Requesting L ocal

L ocks on page 3-8.

LKM_NODLCKWT
Directs the lock manager to exclude thislock request from consideration when it
periodically performs deadlock detection processing.

Programming Locking Applications 7-23

7-24

Lock Manager APl Routines
clmlockx_sync Routine

name

namelen

bastargs

LKM_NOQUEUE
Requests that the lock manager not put the lock request on the wait queue if it cannot be
immediately granted. Thelock manager returnsthe statusCLM_NOTQUEUED inthelock
status block.

LKM_ORPHAN
Requeststhat the lock manager not purgethislock if the application fails. Usethisflag with
great care and only if you have atransaction recovery process that will eventually remove
the orphaned locks.

LKM_PROC_OWNED
Directs the lock manager to exclude this lock from the lock group. Thislock is owned by
the process and not by the group. Other clients belonging to the group may not manipulate
thislock.

LKM_SNGLDLCK
Requests that the lock manager check this lock request for self-client deadlock.

Note: Thisflagis obsolete but is retained for backwards compatibility.
The lock manager now checks for self-client deadlock by default.

LKM_TIMEOUT
Reguests that the lock manager cancel the lock request or lock conversion request if the
request cannot be granted within the time limit specified in the timeout field of the lock
status block. If the time limit expires, the lock manager cancels the operation and queues
the AST routine which returns the status value CLM_TIMEOUT. Y ou specify the timeout
value in units of hundredths of a second (0.01). For example, atimeout value of 500
specifies five seconds.

LKM_VALBLK
Requests that the lock manager return the current contents of the lock value block in the
lock status block. When this flag is specified in alock conversion request that is
down-converting alock from EX or PW mode to aless restrictive mode, the lock manager
assigns the value specified in the lock status block to the lock value block of the lock
resource. The lock value block is a 16-byte array containing application-specific
information. Thisinformation is user-defined and interpreted by the application. For more
information about the lock value block, see Data Structure on page 3-2.

The name of the requested lock resource. A resource name can contain binary data.

Thelength of the lock resource name provided in the name parameter. A resource name cannot
exceed 31 characters.

An argument that is passed to the routine specified by the bast argument when that functionis
invoked. Typically used to pass avalue that uniquely identifies the lock request when the lock
is blocking another lock request. For example:

voi d bast_func(void *bastargs, int node);

Programming Locking Applications

Lock Manager API Routines
clmlockx_sync Routine

bast (blocking AST)

xid

The address of afunction invoked if the requested lock is granted and later blocks another lock
request. The blocking AST routine is called with two arguments: the bastar gs argument
previously specified, and the requested mode that caused the queuing of the blocking AST
routine. For example:

voi d bast_func(void *bastargs, int node);

A pointer to an eight-byte transaction ID or NULL. A NULL value indicates the lock will be
owned by the process or group.

Status Codes

The status codes returned are listed al phabetically as follows:

CLM_BADARGS
One of the following:

Therequestincluded the LKM_VALBLK flag but passed aNULL pointer tothelock status
block.

The request passed a NULL pointer to the lock status block.
The request included an invalid flag.

The request passed a NULL lock resource name pointer, but did not include the
LKM_CONVERT flag. (A conversion request requiresavalidlock ID, but doesnot require
avalid lock resource name.)

CLM_BADPARAM
The lock mode specified is hot avalid lock mode.

CLM_IVBUFLEN
The namelen (name length) was less than 1 or greater than 31 characters.

CLM_IVLOCKID
Thelock ID isinvalid.

CLM_NOLOCKMGR
A reguest timed out waiting for aresponse from the lock manager. If the lock manager is
restarted while it is being used by a client, the next lock request returns this status.

CLM_NORMAL
The lock request completed successfully.

Status Codes Returned in the Lock Status Block

The status codes returned in the lock status block are listed alphabetically as follows:

CLM_CVTUNGRANT
The request attempted to convert alock that was blocked in the WAIT state.

CLM_DEADLOCK
The lock manager killed this request to prevent deadlock from occurring.

Programming Locking Applications 7-25

Lock Manager APl Routines
clmregister Routine

CLM_DENIED
The request attempted to convert alock that was already blocked on a conversion regquest.

CLM_DENIED_NOLOCKS
Either no more locks or no more resources are available. For information about how the lock
manager allocates locks and lock resources, see Lock and Lock Resource Limits on page 6-11.

CLM_NORMAL
The lock request completed successfully.

CLM_NOTQUEUED
The request included the LKM_NOQUEUE flag and could not be satisfied immediately.

CLM_TIMEOUT
The timeout expired before this request was able to complete.

CLM_VALNOTVALID

The lock request, which included areguest for the lock value block, completed successfully;
however, the lock value block isnot valid. Thisindicatesthat a client terminated while holding
alock on thelock resource at the LKM_EXMODE or LKM_PWMODE mode or that a client
invalidated the lock value block by specifying the LKM_INVVALBLK flag with the lock
routines.

Example
clmstats = status;

status = cl m ockx_sync(LKM CRMODE,
&l ksb[whi ch_l ock],

~

* npde */
* | ock status block */

~

LKM VALBLK,
"RES- A", /[* name */
5, /* nanelen */
&bast ar gs, /* bastargs */
bast func, /* bast routine */
&xi d) ; /* transaction id */

clmregister Routine

Syntax
union clmrh cl nregister(nane)
char *nane;

Description

Before requesting a lock on a UNIX lock resource, you must register the lock resource—the
object against which all locking occurs. Use ¢hraregister routine to register (create) a lock
resource. A lock resource remains in existence until the last process to have it registered exits.

7-26 Programming Locking Applications

Lock Manager API Routines
clmregionlock Routine

Parameters

name
The name of the lock resource being registered. A lock resource name is a NUL L-terminated
string. A lock resource name can contain up to 255 bytes. Thislimit is defined by the value of
the MAXRESOURCELEN constant in the /usr/include/cluster /clm.h header file.

Return Values

After alock resource has been registered successfully, thelock manager returnsalock resource
handle to the calling program. A lock resource handle is defined by the union cim_rh data
structure. The lock resource handle is atoken which must be passed to al subsequent lock
requests.

If an error occurs, NULL isreturned instead of avalid lock resource handle. In this case, the
clm_errno global variable contains the status code associated with the error.

Status Codes

CLM_IVBUFLEN
The request specified alock resource name that was either less than one or greater
than MAXRESOURCELEN.

CLM_MAXHANDLES
The system limit for resource handles for an application has been reached.

CLM_NOLOCKMGR
Thelock manager daemon is not running. If the lock manager isrestarted whileit isbeing used
by aclient, the next lock request returns this status.

CLM_NORMAL
Theregister request completed successfully.

Example
union clmrh reshandl e;

/* create a resource handl e against which to | ock */
reshandl e = clnregister("A Lock");
if (reshandle.rh == 0) {

clmperror("Can’t register |ock");

exit(l);

clmregionlock Routine

Syntax

clmstats_t clnregionlock(rh, offset, length, flags)
union clmrh rh;

unsi gned | ong of fset;

unsi gned |l ong | ength;

unsi gned |l ong fl ags;

Programming Locking Applications 7-27

Lock Manager APl Routines
clmregionlock Routine

Description

Use the clmregionlock routine to acquire and release locks. Y ou indicate you want to release
alock by setting the LOCK_UN flag.

Parameters

rh

A valid lock resource handle returned by an earlier call to the clmregister routine.

offset

The lower bound of the region that the request should affect.

length

The length of the region starting at offset.

flags

A bitmask of various options, described inthefollowing list. If you specify boththe LOCK_EX
and LOCK_SH flags, the LOCK_EX flag is honored.

LOCK_SH

LOCK_EX

LOCK_NB

LOCK_UN

Status Codes

CLM_BADARGS

A shared lock (read) is being requested. Multiple applications can
simultaneously request shared locks, but no exclusive locks are
granted while any shared locks are held on a specified region of the
resource by any application other than the requesting application.

An exclusive lock (write) is being requested. Only one application
can possess awritelock on aresource at any giventime. A request for
an exclusive lock failsif any locks are currently held on the specified
region of the resource by any applications other than the requesting
application.

Normally, if alock request cannot be immediately granted because it
is incompatible with existing locks, the requesting application will
suspend (block) until the request can be completed. An application
specifiesthe LOCK_NB option to indicate that this request is
non-blocking. If the request would suspend, an error is returned
instead. An application never blocks against locks that it holds. An
application never blocks on an unlock request.

This flag specifies that the indicated resource region should be
unlocked. Any regions currently locked by the requesting application
that overlap the region specified in the unlock request are released.

The request specified an unsupported flag. The supported flags are LOCK_EX, LOCK_UN,
LOCK_SH, and LOCK_NB.

7-28

Programming Locking Applications

Example

Lock Manager API Routines
clmunlock Routine

CLM_DENIED

Therequest would block and had set the LOCK _NB flag, or it attempted to unlock aregion that

was hot previously locked.

CLM_IVRESHANDLE
Theresource handleisinvalid.

CLM_NOLOCKMGR

Thelock manager daemon is not running. If the lock manager isrestarted whileit isbeing used

by aclient, the next lock request returns this status.

CLM_NORMAL
The lock request completed successfully.

uni on clmrh reshandl e;
unsi gned | ong of fset;
unsi gned long | en;
clmstats_t status;

/* acquire an exclusive lock on region frombyte 0 to 9 */
status = cl nregionl ock(reshandl e, offset, |ength, LOCK EX);
if (status !'= CLM _NORMAL) {

clmperror("Can't acquire |ock");

exit(l);

/* processing occurs here */

/* rel ease | ock */
status = cl nregionl ock(reshandl e, offset, |ength, LOCK UN);
if (status !'= CLM _NORMAL) {

cl mperror("Unlock failed");

exit(l);

clmunlock Routine

Syntax
clmstats_t clnunlock(l ockid, val uebl ock, flags)
int |ockid,
char *val uebl ock;
int flags;
Description

Use the clmunlock routine to make a synchronous (blocking) request to:
Release alock.
Cancel ablocked lock request on the wait queue.
Cancel ablocked conversion request on the convert queue.
Invalidate alock value block when releasing alock held in PW or EX mode.

Programming Locking Applications

7-29

Lock Manager APl Routines
clmunlock Routine

Note that the clmunlock routine always operates synchronously. There is no AST mechanism
available. However, therelease or cancellation of alock can cause the queuing of AST routines
associated with locks when they change state.

Parameters

lockid
A valid lock ID returned from a previous call to the clmlock routine.

valueblock
Thelock valueblock isa16-byte structure containing information about thelock resource. This
information is user-defined and interpreted by the application. It is not used by the lock
manager.

If the request (1) is an unlock request (the LKM_CANCEL flag is not included), and (2) the
current granted mode of the lock is either EX or PW, and (3) the LKM_VALBLK flag was
included, thelock manager updates the contents of the lock value block associated with thelock
name using the value contained in valueblock.

flags
A bitmask of various options. The flags are as follows:

LKM_CANCEL
When you set the LKM_CANCEL flag, the clmunlock request:

Cancels arequest that is blocked and on the wait queue.

Cancels a conversion request. The lock retainsits original mode. If a conversion
regquest was already granted, the lock manager returns a status of
CLM_CANCELGRANT.

LKM_FORCE
Directsthelock manager to release alock regardless of itscurrent state. | f the specified lock
has been granted, the lock manager rel eases the lock. If the specified lock iswaiting to
convert from one state to another, the lock manager cancel s the pending conversion and
then releases the lock. If the specified lock has not been granted, the lock manager cancels
the open reguest. If the force operation involves the canceling of a pending request, the
appropriate AST will be queued indicating that the request was canceled.

If an unlock request includes both the LKM_CANCEL and LKM_FORCE flags, the lock
manager ignoresthe LKM_FORCE flag.

If the LKM_FORCE flag isincluded in alock request other than clmunlock or
clmunlock_async, it isignored.

LKM_INVVALBLK
Allows clients to invalidate the lock value block associated with the lock resource. If the
lock on the lock resource is not a PW or EX mode lock, the flag is ignored.

LKM_VALBLK
Setsthelock value block from valueblock if the modes are appropriate. See the description
of the valueblock argument. Thisflagisignored if LKM_CANCEL is set.

7-30 Programming Locking Applications

Lock Manager API Routines
clmunlock_async Routine

Status Codes

Example

The status codes returned are listed al phabetically as follows:

CLM_BADARGS
The request included the LKM_VALBLK flag, but passed aNULL pointer.

CLM_CANCELGRANT
The request attempted to cancel a conversion (by including the LKM_CANCEL flag), but the
request was already granted.

CLM_DENIED
Therequest attempted to cancel aconversion, but the specified lock isnot in agranted state and
neither the LKM_CANCEL nor the LKM_FORCE flag was included in the unlock request.

CLM_IVLOCKID
Thelock ID isinvalid.

CLM_NOLOCKMGR
Thelock manager daemon isnot running. If the lock manager isrestarted whileit is being used
by aclient, the next lock request returns this status.

CLM_NORMAL
The unlock request completed successfully.

For an example, see Releasing aLock on aLock Resource on page 3-10.

clmunlock_async Routine

Syntax
clmstats_t clnunlock_async(l ockid, valueblock, flags, unlockast,
unbl ockast args, extrap)
int |ockid;
char *val uebl ock;
int flags;
voi d (unl ockast) ();
voi d *unl ockast ar gs;
voi d *extrap;
Description

Use the clmunlock_async routine to make an asynchronous (non-blocking) request to:
Release alock.
Cancel ablocked lack request on the wait queue.
Cancel ablocked conversion request on the convert queue.
Invalidate alock value block when releasing alock held in PW or EX mode.

Programming Locking Applications 7-31

Lock Manager APl Routines
clmunlock_async Routine

The lock manager returns status in two locations: the status value returned by the
clmunlock_async routine and the I stat argument passed to the unlock AST function. The status
value returned by the cimunlock _async routine indicates whether the unlock request was
accepted by the lock manager. If the unlock request cannot be accepted because of syntax
problems or invalid arguments, it is rejected and the clmunlock _async routine returns an error
status code. See Status Codes on page 7-3 for alist of the status values.

A success status from the clmunlock _async routine does not indicate that the unlock has been
completed. The lock manager reports asynchronously whether the unlock was completed,
denied, canceled, or aborted by queuing for execution the unlock AST function specified asan
argument to the clmunlock_async routine.

The unlock AST function has the following declaration:

void (*unl ockast) (void *unl ockastargs, clmstats_t |stat,
voi d *extrap)

The unlockastargs and extrap values passed to the unlock AST routine are the same values
passed to the call to the clmunlock _async routine. Thelstat value will be the status value of the
unlock completion request.

Note: Thelstat valueisthe same asthe value returned from the synchronous
clmunlock routine.

An application triggers the unlock AST routine by calling the ASTpoll routine. SeeStatus
Codes Returned in the Lock Status Block on page 7-8 for alist of other possible status values.

Parameters

lockid

valueblock

flags

7-32

A vadid lock ID returned from a previous call to the clmlock routine.

Thelock value block isa16-byte structure containing information about the lock resource. This
information is user-defined and interpreted by the application. It is not used by the lock
manager.

If the request (1) isan unlock request (the LKM_CANCEL flag is not included), and (2) the
current granted mode of the lock is either EX or PW, and (3) the LKM_VALBLK flagis
included, the lock manager updates the contents of the lock val ue block associated with thelock
name using the value contained in valueblock.

A bitmask of various options. The flags are as follows:

LKM_CANCEL
When you set the LKM_CANCEL flag, the clmunlock request:

Cancels arequest that is blocked and on the wait queue.

Cancels aconversion request. The lock retainsits original mode. If a conversion
request was already granted, the lock manager returns a status of
CLM_CANCELGRANT.

Programming Locking Applications

Lock Manager API Routines
clmunlock_async Routine

LKM_FORCE
Directsthelock manager torelease alock regardlessof itscurrent state. If the specified lock
has been granted, the lock manager rel eases the lock. If the specified lock iswaiting to
convert from one state to another, the lock manager cancel s the pending conversion and
then releases the lock. If the specified lock has not been granted, the lock manager cancels
the open reguest. If the force operation involves the canceling of a pending request, the
appropriate AST will be queued indicating that the request was canceled.

If an unlock request includes both the LKM_CANCEL and LKM_FORCE flags, the lock
manager ignoresthe LKM_FORCE flag.

If the LKM_FORCE flag isincluded in alock request other than clmunlock or
clmunlock_async, it isignored.

LKM_INVVALBLK
Allows clients to invalidate the lock value block associated with the lock resource. If the
lock on the lock resource is not a PW or EX mode lock, the flag is ignored.

LKM_VALBLK
Setsthelock value block from valueblock if the modes are appropriate. See the description
of the valueblock argument. Thisflagisignored if LKM_CANCEL is set.

unlockast
The address of afunction that is queued for execution by the lock manager when it finishes
processing the unlock request.

unlockastargs
An argument passed to the routine specified by unlockast.

extrap
An extra context pointer passed to the routine specified by unlockast.

Status Codes
The status codes returned are listed a phabetically as follows:

CLM_BADARGS
The request included the LKM_VALBLK flag, but passed aNULL pointer.

CLM_DENIED
Therequest attempted to cancel aconversion, but the specified lock isnot in agranted state and
neither the LKM_CANCEL nor the LKM_FORCE flag was included in the unlock request.

CLM_IVLOCKID
Thelock ID isinvalid.

CLM_NOLOCKMGR
Thelock manager daemon is not running. If the lock manager isrestarted whileit isbeing used
by aclient, the next lock request returns this status.

CLM_NORMAL
The unlock regquest completed successfully.

Programming Locking Applications 7-33

Lock Manager APl Routines
clm_errmsg Routine

Status Codes Returned in the Unlock AST

CLM_CANCELGRANT
The request attempted to cancel a conversion (by including the LKM_CANCEL flag), but the
request was already granted.

CLM_DENIED
Therequest attempted to cancel aconversion, but the specified lock isnot in agranted state and
neither the LKM_CANCEL nor the LKM_FORCE flag was included in the unlock request.

CLM_NORMAL
The unlock request completed successfully.

clm_errmsg Routine

Syntax
char *cl m errmsg(status)
clmstats_ t status;

Description
Theclm_errmsg routine takes a status code returned by the lock manager and returns a pointer
to aprintable version of the status code. The status codes that make up the clm_stats t
enumerated type are constants, not printable character strings.

Parameters

status
A CLM API status code.

Returns
A NULL-terminated character string. For example, if the status code returned is
CLM_NORMAL, the string returned is “CLM_NORMAL.”
If the status parameter you specify as an argument is not a valid lock manager status code, the
clm_errmsg routine returns the string “Invalid status.”

Example

The following code fragment uses ttlen_errmsg routine to convert the status code returned
by theclm_setnotify routine to a printable string. The string is then passed as an argument to
theprintf routine.

#i ncl ude <cluster/clmh>

char *nmsg;

clmstats_t status;

7-34 Programming Locking Applications

Lock Manager API Routines
clm_getglobparams Routine

status = cl m setnoti fy(SIGUSRL, NULL);
if (status !'= CLM NORNAL)

nmsg = clmerrnsg(status);
printf("clmsetnotify returns %", nmsg);

If the routine failed because the arguments passed were invalid, the following message would
be printed to stderr:

cl msetnotify returns CLM BADARGS

clm_getglobparams Routine

Syntax

clmstats_t cl mgetgl obparans(parans)
cl m gl obparans_t *par arns;

Description

The clm_getglobpar ams routine obtains the value of the global lock manager parameters.

Parameters

params
Address of the clm_globparams t structure into which the lock manager writes the values of
the global parameters. For information about interpreting the values returned, see Chapter 6,
Tuning the Cluster Lock Manager.

Status Codes

The following is an alphabetical list of status values returned by the clm_getglobparams
routine.

CLM_BADARGS
The pointer to the clm_globparams t structureisinvalid.

CLM_NORMAL
The operation completed successfully.

Example

The following code fragment illustrates how to obtain the current value of the decay rate
parameter. When the clm_getglobpar ams routine returns successfully, both the
cg_recalc_ratefield and the cg_decay_rate field in the global parameters structure are valid.

#i ncl ude <cluster/clmh>
cl m gl obparans_t gl ob_par ans;

clmstats_t st at us;
fl oat decay_rate;

Programming Locking Applications 7-35

Lock Manager APl Routines
clm_getresparams Routine

status = cl m_get gl obpar ans(&gl obparans);
if (status !'= CLM NORMAL)

cl mperror("Could not get gl obal resource paraneters")

}
el se
{
decay_rate = gl obparans. cg_decay_rate;
}

clm_getresparams Routine

Syntax

clmstats_t cl mgetresparans(res_nane, narmel en, res_t ype, par ans)

char *res_nane;

short nanel en;

short res_type;

cl mresparans_t *pararns;
Description

The clm_getresparams routine returns the value of a lock resource’s stickiness attribute.
Parameters
res_name

A NULL-terminated character string specifying the name of the lock resource.
namelen

The number of characters in the name.
res_type

Specifies the type of lock resource. For CLM lock resources, specify the constant

CLM_RES_VMS. For UNIX lock resources, specify the constant CLM_RES_UNIX.
params

Address of the&lm_resparams _t structure that contains the value of the lock resource
stickiness attribute.

Status Codes

The following is an alphabetical list of status values returned lofrthagetr esparams routine.

CLM_BADARGS
One of the following:

The request specified an invalid resource type.
The length of the lock resource name exceeds the limit.
The pointer to the clm_resparams t structure isinvalid.

7-36 Programming Locking Applications

Example

Lock Manager API Routines
clm_getstats Routine

CLM_BADRESOURCE
The lock resource specified isinvalid.

CLM_NORMAL
The operation completed successfully.

In the following code fragment, the application retrieves the value of the stickiness attribute.

#i ncl ude <cluster/clmh>
clmresparans_t resparans;

cl mstatus_t status;

#def i ne NAMELEN 7

status = cl m getresparans("my_| ock /* name of |ock resource */
NAMELEN, /* length of name */

CLM RES VMS, [* resource type */

& esparans); [/* address of resparns */

/* structure */

i f(status != CLM _NORMAL)

clmperror("Can’t read stickiness value");
exit(l);

clm_getstats Routine

Syntax
clmstats_t clmgetstats(resnane, nanelen, type, statistics)
char *resnane;
short nanel en;
short type;
clmstatistics_t *statistics;
Description
Use the clm_getstats routine to obtain statistics on resource usage, including the number and
origin of lock requests on aresource, the number of times the lock has migrated, the
compatibility of lock requests, and accesses-per-second per node on alock resource. How the
resource statistics are used is completely up to the client application.
Calling this function on a non-existent resource returns an error.
Parameters
resname

The name of the requested lock resource. A resource name can contain binary data.

Programming Locking Applications 7-37

Lock Manager APl Routines
clm_getstats Routine

namelen
The length of the lock resource name provided in the resname parameter. A resource name
cannot exceed 31 characters.
type
Specifies the type of lock resource. For CLM lock resources, specify the constant
CLM_RES VMS. For UNIX lock resources, specify the constant CLM_RES UNIX.
statistics

Address of theclm_statistics t structure into which the lock manager writes the current values
of the lock statistics.

Status Codes

The status codes returned are below:

CLM_BADARGS
The request passed a NULL pointer to the statistics structure.

CLM_BADRESOURCE
Unable to find the specified resource. A copy must be on the local node.

CLM_IVBUFLEN
The namelen (name length) was less than 1 or greater than 31 characters.

CLM_NOLOCKMGR
A reguest timed out waiting for aresponse from the lock manager. If the lock manager is
restarted whileit is being used by a client, the next lock request returns this status.

CLM_NORMAL
The lock request completed successfully.

CLM_VERSION_CONFLICT
The request cannot be processed because a back-level version of Cluster Lock Manager is
running in the cluster.

Example
int i;
clmstats_t status;
clmstatistics_t statistics;
status = clmgetstats ("RESOURCEL", 9, CLM RES VMS, &statistics);
if (status !'= CLM NORMAL)
{

printf ("error: clmgetstats returned %", cl merrnmsg(status));

el se

{ _ o
printf ("Resource Statistics on RESOURCEL");
printf ("cs_requests = 9@d", statistics.cs_requests);
printf ("cs_local = 9¢d", statistics.cs_local);
printf ("cs_renote = 9@d", statistics.cs_renote);
printf ("cs_sane = 9", statistics.cs_sane);

7-38 Programming Locking Applications

Lock Manager API Routines
clm_grp_attach Routine

printf ("cs_mgrations = %", statistics.cs_mgrations);
printf ("cs_conpat = 9d", statistics.cs_conpat);
printf ("cs_inconpat = 9@", statistics.cs_inconpat);
printf ("cs_downgrade = %", statistics.cs_downgrade);
printf ("cs_total _aps = %", statistics.cs_total _aps);
for (i =0 ; i < CLM.MAXNCDES ; i++)

printf ("cs_aps[%] = %", i, statistics.cs_aps[i]);

clm_grp_attach Routine

Syntax
clmstats_t clmgrp_attach(gid, flags)
int gid;
int flags;
Description
Usetheclm_grp_attach routineto attach alock client to an existing lock group. Use the group
ID returned by the clm_grp_create routine to specify the group. A client may belong to only
one group.
Parameters
gid
The group ID returned by the clm_grp_create routine.
flags

None.

Status Codes
The status codes are listed below:

CLM_DENIED
The process was aready attached to alock group.

CLM_IVGROUPID
The request specified an invalid lock group.

CLM_NORMAL
The request completed successfully.

Programming Locking Applications 7-39

Lock Manager APl Routines
clm_grp_create Routine

Example

i nt groupi d = 0x1010000;
i nt ret;

/* Attach the current process to an existing group with id 0x1010000 */
ret = clmgrp_attach(groupid, 0);
if (ret == CLM_NORMAL) {

printf("Successfully attached to group %", groupid);

clm_grp_create Routine

Syntax

clmstats_t clmgrp_create(gid, flags)
int *gid;
int flags;

Description

Usethe clm_grp_createroutine to create a new lock group and associate the client with this
group. Theclm_grp_createroutine returns agroup ID.

A lock group joins related lock client processesinto asingle entity. A lock client may create a
new lock group or join an existing group. A lock client may belong to at most one lock group.
Once aclient belongs to a group, the group owns all subsequent locks created by that process.
Any process in agroup may manipulate locks owned by that group.

Alternatively, a process belonging to alock group can passthe LKM_PROC_OWNED flag to
either the clmlock or cimlock_sync routine to indicate that thislock is owned by the process,
not by the group. Other processes belonging to the group may not manipulate this lock.

Thelock manager does not purge alock owned by a group until all processes belonging to the
group have exited. The lock manager also purges if al group processes detach.

A lock group may not span cluster nodes. The lock manager only acknowledgesagroup ID on
the node on which it was created. Therefore, alock client on one node cannot join agroup was
created on a different node.

Parameters

gid

flags

7-40

Pointer to location to store the group ID.

None.

Programming Locking Applications

Lock Manager API Routines
clm_grp_detach Routine

Status Codes

CLM_DENIED
The process was already attached to a group.

CLM_NORMAL
The request completed successfully.

Example
i nt groupid;
int ret;

/* Create |ock group and associ ate process with group */
ret = clmgrp_create(&groupid, 0);
if (ret == CLM_NORMAL) {

printf("Goup created. Goup id is %", groupid);
}

clm_grp_detach Routine

Syntax
clmstats_t clmgrp_detach(fl ags)
int flags;

Description
Usetheclm_grp_detach routineto remove aprocessfrom alock group. A processthat hasleft
agroup can no longer manipulate locks owned by that group, including locks it created while
belonging to the group. If aprocessisthe last group member to leave agroup, the locks owned
by the group are purged and the group no longer exists. A client isimplicitly removed from a
group when its terminates.

Parameters

flags

None.

Status Codes
The status codes are listed bel ow:

CLM_DENIED
The process was not attached to a group.

CLM_NORMAL
The request completed successfully.

Programming Locking Applications 7-41

7-42

Lock Manager APl Routines
clm_perror Routine

Example
int ret;

/* Detach the current process fromlock group */
ret = clmgrp_detach(0);

if (ret == CLM_NORMAL) {
printf("Successfully detach fromlock group.");

clm_perror Routine

Syntax
voi d cl m perror(nessage)
char *message;

Description
Theclm_perror routine allows an application to write a message to standard error that
indicates why alock request failed. The clm_perror routine consults the clm_errno global
variable to determine the status of the last lock request. The clm_perror routine appends the
supplied message with a colon and a printable version of the status code.

Parameters

message
A NULL-terminated character string.

Example

The following code fragment uses the clm_perror return to print an error message if the
cIlm_setnotify routine fails. The application includes the message string “clm_setnotify fails”
for theclm_perror routine to print along with the status code return by the routine.

#i ncl ude <cluster/clmh>

clmstats_t status;

status = cl m setnoti fy(SIGUSRL, NULL);
if (status != CLM NORNAL)

clmperror("clmsetnotify fails");

If the routine failed because the arguments passed were invalid, the following message would
be printed to stderr:

clmsetnotify fails: CLM BADARGS

Programming Locking Applications

Lock Manager API Routines
clm_purge Routine

clm_purge Routine

Syntax
clmstats_t clmpurge(node_id, pid, flags)
i nt node_id;
i nt pid;
int flags;
Description
The clm_purge routine allows a client application to purge locks in two different situations:
Purging all the locks owned by that client. To purge its own locks, a client must call the
clm_purge routine with its own node ID and process ID (pid) value specified.
Removing orphaned locks that have been left behind by clients that have terminated.
Note: Theclm_purgefunction cannot be used to purgethelocks of an active
client other than the one calling the function.
Parameters
node_id
The ID of the node on which the locks were originated.
pid
Thisargument indicatesthe process D (PID) of the application owning thelocks. If you specify
aPID of 0, thelock manager purges all orphaned locks for the specified node.
flags

There are no flags for this routine.

Status Codes
Thefollowing is an alphabetical list of all the status codes returned by the clm_pur ge routine:

CLM_BADARGS
The request specified an invalid node ID.

CLM_NOLOCKMGR
Thelock manager daemon isnot running. If the lock manager isrestarted whileit is being used
by aclient, the next lock request returns this status.

CLM_NORMAL
The purge request completed successfully.

Programming Locking Applications 7-43

Lock Manager APl Routines
clm_scnop Routine

Example

In the following example, dl the locks associated with the process are released. The example
assumes that the node 1D, whether local or remote, has already been obtained. Y ou use the
routines provided by the HACMP Clinfo API to obtain the node ID. Clinfo provides routines
you can use to obtain the cluster ID, node hame and other information about the cluster
environment. For more information about Clinfo, see HACMP for AlX Programming Client
Applications.

Note: If your application uses Clinfo to obtain the node ID, you must link
your application with the Clinfo library (-Icl).

#i ncl ude <cluster/clmh>
i nt nodei d;

status = cl m _pur ge(nodei d, get_pid(), 0);
if(status != CLM _NORVMAL
cl mperror("clmpurge");

clm_scnop Routine

Syntax
clmstats_t clmscnop(lockid, op_type, bit_len, in_lvb, out_Ivb)
int |ockid;
scn_op_t op_type;
short bit_Ien;
char *in_lvb;
char *out | vb;
Description
The clm_scnop routine manipulates a cluster-global counter called the System Commit
Number (SCN). Using this routine, you can perform any of the following operations on the
SCN:
Obtain the current value of the SCN.
Increment the current value of the SCN.
Assign avalue to the SCN.
Assign avalue to the SCN if the current value of the SCN isless than a specified value.
If the clm_scnop routine returns successfully, the SCN operation is complete.
The SCN operations performed by the clm_scnop routine are atomic. Accessing the SCN
concurrently from different nodes or processes will not corrupt the SCN.
7-44 Programming Locking Applications

Lock Manager API Routines
clm_scnop Routine

Parameters

lockid

op_type

bit_len

in_Ivb

out_lvb

Thelock ID of the lock granted against the lock resource in which the SCN is stored, returned
from apreviouscall to alock open routine. Y ou can use any lock resourceto storean SCN. The
counter is stored in the lock value block (LVB) of thislock resource. If there are locks on this
lock resource at modes other than NL, the clm_scnop routine returns the status
CLM_BLOCKED.

The requested SCN operation. The operations are defined as follows:

SCN_CUR Obtain the current value of the SCN. The SCN valueisreturned inthe
out_lvb parameter.

SCN_INC Increment the SCN and return the new value of the SCN. The SCN
valueis returned in the out_Ivb parameter.

SCN_ADD Add a specified value to the SCN. Y ou specify the value to be added
tothe SCN in thein_lvb parameter. The new value of the SCN is
returned in the out_Ivb parameter.

SCN_ADJ Set the value of the SCN to the value specified inthein_Ivb
parameter, if the current value of the SCN isless than the value
specified. The current value of the SCN isreturned in the out_Ivb
parameter.

SCN_SET Set the value of the SCN to the value specified inthein_Ivb
parameter. The current value of the SCN isreturned in the out_lvb
parameter.

Thenumber of bits used to represent the range of values of the SCN. Y ou may specify any value
between 1 and 128. The maximum value of an SCN js 2 Pitlen-1 Any SCN value you specify
that exceeds this maximum isignored or zeroed. If you specify avalue for this parameter, you
must always specify the same value to ensure predictable results.

Pointer to the input value of the SCN.

The address into which the lock manager writes the SCN that results from the operation.

Status Codes

Thefollowing is an alphabetized list of status values returned by the clm_scnop routine.

CLM_BADARGS
An argument to the clm_scnop isincorrect. For example, an invalid operation type was
specified.

Programming Locking Applications 7-45

7-46

Lock Manager APl Routines
clm_scnop Routine

CLM_BLOCKED
There are non-NULL locks held against the lock resource containing the SCN.

CLM_IVLOCKID
The value specified in the lockid parameter isnot avalid lock ID.

CLM_NORMAL
The SCN operation completed successfully.

CLM_NOLOCKMGR
The Lock Manager is not running.

CLM_VALNOTVALID
The Lock Value Block (LVB) in which the SCN is stored is marked invalid.

System Commit Number

The SCN isstored inthe LV B associated with alock resource. An LVB isan array of 16 bytes.
The lock manager represents an SCN value of up to 128 bits by using four unsigned integers.
These integers are the four fields contained in the scn_t structure, defined in the
lusr/include/cluster/scn.h include file as follows:

typedef struct scn {

unsi gned i nt base;

unsi gned i nt wrapl;

unsi gned i nt wrap2;

unsi gned i nt wr ap3;
} scn_t;

The following figure illustrates how the scn_t structure overlays the bytesin the LVB:

LVB|b(y)t|esl| 2| 3| 4| 5| 6| 7| 8| 9| 1o| 11| 12| 13| 14| 15|

unsigned integers

SCN| | | | |

base wrapl wrap2 wrap3

Y ou define the range of the SCN counter by specifying, in the bit_len parameter passed to the
clm_scnop routine, how many bits are used to represent its value. The value of the bit_len
parameter controls which bitsin the four fields are used.

If you specify abit_len value of 32 or less, the lock manager uses only the base field of the
structure. If you increment the SCN value past the maximum value (defined as 2°1€"1) the
base field in the structure wraps back to zero.

If you specify abit_len value of 64 or |ess, thelock manager usesthe base and thewr ap1 fields
in the structure. The integer value in the base field overflows into the wrapl field. The value
of the SCN should beinterpreted by concatenating the integer fields, and not by adding them.
The entire value will wrap back to zero when it isincremented past the maximum value,
determined by the bit_len parameter.

Programming Locking Applications

Example

Lock Manager API Routines
clm_setglobparams Routine

For example, if thewrapl field isequal to 1 and the base is 0, then the value of the SCN is 232
or 4294967296 becausethefirst bit of thewrapl field isthe 33rd bit of the SCN. Thefollowing
figureillustratesthis SCN value. Thebit_len isset to 48. The unused bits are covered with gray.

31 0 15 0
SCN [0000000...0000000) 0000...01 | | |
base wrapl wrap2 wrap3

For bit_len values greater than 64, the lock manager uses the wrap2 and wrap3 fields in the
structure, as necessary.

The following example sets the SCN to 100,000, if the current value of the SCN isless than
100,000.

#i ncl ude <cluster/clmh>
#i ncl ude <cl uster/scn. h> /* SCN definitions */

struct | ockst atus | ksb;

clmstats_t st at us;

scn_t i n_scn;

scn_t out _scn;

i n_scn. base = 100000;

/* Set SCN value if less than in_scn */

status = cl mscnop(|ksb.lockid, /* Lock on SCN | ock resource */

SCN_ADJ, /* SCN operation */
32, [/* bit length */
& n_scn, /* incomi ng SCN */
&out _scn); /* returned SCN */
if (scn_status != CLM NORMAL)
{
clmperror("Can't get SCN.");
}

clm_setglobparams Routine

Syntax
clmstats_t cl msetgl obparans(parans)
cl m gl obparans_t *par arns;
Description

The clm_setglobpar ams routine sets the value of the global lock manager parameters,
including the evaluation threshold and the decay rate.

Programming Locking Applications 7-47

Lock Manager APl Routines
clm_setnotify Routine

Parameters

params
Addressof theclm_globparams_t structureinto which you write the val ues you want assigned
to the lock manager global parameters.

Status Codes

Thefollowing is an alphabetical list of status values returned by the clm_setglobparams
routine.

CLM_BADARGS
The pointer to the clm_globparams t structureisinvalid.

CLM_NORMAL
The operation completed successfully.

Example

The following code fragment specifies values for both the decay rate and evaluation threshold.
#i ncl ude <cluster/clmh>

cl m gl obparans_t gl obpar ans;
clmstats_t status;

gl obparams. cg_valid = CLMIUNE_GLOB RECALC | CLMIUNE GLOB DECAY:
gl obparans. cg_decay_rate = .50;

gl obparans. cg_recal c_tine = 100;

status = cl m setgl obparans(&gl obparans);

if (status != CLM _NORMAL)

cl m perror("Cannot set global paraneters.")

clm_setnotify Routine

Syntax
clmstats_t clmsetnotify(signo, ol dsigp)
i nt signo;
int *ol dsi gp;

Description

The clm_setnotify routine allows alock client to specify asignal to be delivered whenever an
AST ispending.

7-48 Programming Locking Applications

Lock Manager API Routines
clm_setresparams Routine

Parameters

signo
Thisargument indicatesthe signal to be delivered. Specifying SIG_DFL indicatesthat no signal
isdesired and cancels any previously specified signal.

oldsigp
If non-NULL, this argument specifies alocation that should receive the number of the existing
notify signal.

Status Codes

CLM_BADARGS
The specified signal isout of range. That is, the signal hasavalue lessthan zero, or greater than
or equal to SIGMAX as defined in <sys/signal .h>.

CLM_NORMAL
The request completed successfully.

Example
For an example, see the Sample Locking Application on page 3-6.

clm_setresparams Routine

Syntax
clmstats_t cl msetresparans(res_nane, narmel en, res_t ype, par ans)
char *res_nane;
short narel en;
short res_type;
cl mresparans_t *pararns,;
Description
The clm_setresparams routine sets the value of a lock resource’s stickiness attribute.
Parameters
res_name
The name of the lock resource.
namelen
The number of characters in the resource name.
res_type

Specifies the type of lock resource. For CLM lock resources, specify the constant
CLM_RES_VMS. For UNIX lock resources, specify the constant CLM_RES_UNIX.

Programming Locking Applications 7-49

Lock Manager APl Routines
clm_setresparams Routine

params
Address of the clm_resparams t structure in which you specify the value of the stickiness
attribute.

Status Codes
Thefollowing isan alphabetical list of statusvaluesreturned by the clm_setrespar amsroutine.

CLM_BADARGS
One of the following:

The request specified an invalid resource type.
The length of the resource name exceeds the limit.
The pointer to the clm_resparams t structure isinvalid.

CLM_BADRESOURCE
The lock resource specified isinvalid.

CLM_NORMAL
The operation completed successfully.
Example

In the following code fragment, the application sets the value of the stickiness attribute.
#i ncl ude <cluster/clmh>

clmstats_t status;
#define NAMELEN 7

cl mresparams_t resparans;

'respar ams. cr_valid = CLM RES_STI CKI NESS;
resparans. cr_stickiness = 50;

status = cl msetresparans("ny_l ock",/* name of |ock resource */

NAMELEN, /* length of name */
CLM RES VMS, [/* resource type */
& esparans); /* address of |ock */

/* resource structure */

if (status != CLM _NORMAL)

cl mperror("Lock resource nane invalid.");

7-50 Programming Locking Applications

Index

+-*/
/usr/include/cluster/cim.h file 3-1, 3-2, 5-1
/usr/include/cluster/scn.h file 3-1

A
acquiring
locks
asynchronously
CLM locking model 3-3
synchronously
CLM locking model 3-5
UNIX locking model 5-3, 7-27
AP
CLM locking model 3-1, 7-1
UNIX locking model 5-1
AST routines
notification of pending 7-48
triggering execution of ~ 3-6, 7-2
astarg parameter
using 3-6
ASTpoll routine
CLM locking model APl 7-2
using 3-6
asynchronous lock requests
CLM locking model 3-3
asynchronous system trap (AST) 1-1

B
blocked (lock state)
CLM locking model 2-10
UNIX locking model 4-2
C

cllockd daemon
setting evaluation threshold 6-4
specifying the decay rate 6-8

Programming Locking Applications

CLM locking model

deadlock 2-14

intro 1-1

lock groups 2-17

lock mode compatibility 2-4

lock modes 2-3

lock resource queues 2-2

lock resources 2-1

locks 2-2

overview 2-1

transaction IDs 2-16
CLM locking model API

ASTpoll routine 7-2

clm_scnop routine 7-44

clm_setnotify routine 7-48

clmlock routine 3-3, 7-3

clmlock_syncroutine 3-5, 7-16

clmlockx routine 3-3, 7-9

clmlockx_syncroutine 3-5, 7-21

clmunlock routine 7-29, 7-31

example 3-6

handling returned status codes 3-14, 5-4

howtouse 3-1,7-1
clm_errmsg routine 7-34
clm_getglobparamsroutine 7-35
clm_getresparamsroutine 7-36
clm_getstatsroutine 6-10, 7-37
clm_globparams _t data structure

CLM global tuning parameters 6-5, 6-8
clm_grp_attach routine 7-39
clm_grp_createroutine 7-40
clm_grp_detachroutine 7-41
clm_perror routine 7-42
clm_purgeroutine 7-43
clm_resparams t data structure 6-9
clm_scnop routine

CLM locking model API routine 7-44
clm_setglobparamsroutine 7-47
clm_setnotify routine

CLM locking model APl 7-48

using 3-6
clm_setresparamsroutine 7-49
clm_stats t datatype

CLM API statuscodes 3-14, 5-4
clmlock routine

CLM locking model APl 3-3, 7-3
clmlock_sync routine

CLM locking model APl 3-5, 7-16

X-1

X-2

Index
D-L

clmlockx routine

CLM locking model APl 3-3, 7-9
clmlockx_sync routine
CLM locking model APl 3-5, 7-21

clmregionlock routine
UNIX locking model 5-3
releasingalock 5-3
UNIX locking model APl 7-27
clmregister routine
UNIX locking model 5-2
UNIX locking model APl 7-26
clmunlock routine
CLM locking model API
Cluster Lock Manager
application programming interface 1-2
architecture 1-2
HC daemon 1-3
overview 1-1
setting the evaluation threshold
from command line 6-4
withSMIT 6-4
specifying migration evaluation frequency 6-2
stickiness attribute 6-9
tuning lock resource master migration 6-1
tuning parameters 6-1
conversion deadlock 2-15
convert queue
CLM locking model 2-2
converting (lock state)
CLM locking model 2-7

7-29, 7-31

D
data structures
CLM locking model APl 3-2
cIlm_globparams t data structure 6-5, 6-8
clm_resparams t data structure 6-9
clm_stats t datatype
CLM API statuscodes 3-14, 5-4
lock value block 2-2
UNIX locking model API
deadlock
typesof 2-14
decay rate
controlling lock resource master migration 6-1,
6-5
specifying 6-8
from applications 6-8
fromSMIT 6-8
down-conversion
definition 2-7

51,52

E

evaluation frequency
specifying 6-4

evaluation threshold
controlling lock resource master migration 6-1
specifying 6-2
fromSMIT 6-4
from within application 6-5
exclusive locks
UNIX locking model 4-2

grant queue
CLM locking model 2-2
granted (lock state)
CLM locking model 2-6
UNIX locking model 4-2

HC daemon
overview 1-3

header files
CLM locking model APl 3-1
UNIX locking model APl 5-1

includefiles
header files 1-1

libclma 5-1

single-threaded 3-2
libclm_r.a

multi-threaded ~ 3-2
libraries

CLM locking model API
linking

locking applications

CLM locking model 3-2, 5-1

local locks

CLM locking model 3-8
lock groups 2-17
lock modes

CLM locking model 2-3

mode compatibility 2-3

UNIX locking model 4-1
lock regions

UNIX locking model 4-1
lock requests

UNIX locking model 5-2
lock resource handles

format 5-2

UNIX locking model 5-3
lock resource limits 6-11
lock resources

acquiring locks on

3-2, 51

Programming Locking Applications

O-R
UNIX locking model 5-3 UNIX locking model 5-3
components of (CLM lock model) 2-1 UNIX locking model 4-1
definition 2-1
limits 6-11
master copy O
migrationtuning 6-1 Oracle Parallel Server
master migration HC daemon support 1-3
effect of evaluation threshold 6-3 orphan locks 2-7
single cluster-wide lock image 1-2 CLM lockingmodel 3-8
specifying migration evaluation frequency 6-2 purging 3-11, 54
statistics 6-10
stickiness attribute 6-2 P
specifying 6-9 persistent locks
UNIX locking model CLM locking model 3-8
registering aresource 5-2 purging 3-11
releasingalock 5-3 purging
unlocking 3-10 locks 3-11, 5-4
when holding processfails
CLM locking model 3-8
UNIX locking model 5-4 Q
lock states queues
blocked 2-10 avoiding the wait queue 3-7
CLM locking model 2-5 effects of releasing locks
Converting 2-7 CLM locki ng model 3-10
granted 2-6 lock resources 2-2
UNIX locking model 4-2
lock status blocks R
format 3-2 o
lock value blocks reglls(t)irllr;ggi on 5.2
definition ~ 2-2 lock resources 7-26
invalidating 3-12 releasing
setting thevalue of 3-11 locks
usng 3-13 CLM locking model 3-10
locking moplels resource handles
IOCkcsompanson -1 UNIX locking model
. lock resource handles 5-3
acqumngh q resources
asynchronously i
CLM locking model 3-3 lock resources1-1
synchronously
CLM locking model 3-5
UNIX locking model 5-3
canceling
CLM locking model 3-10
CLM locking model 2-2
lock states 2-5
mode compatibility 2-3
keeping track of 3-6
local 3-8
lock IDs 3-4
obtaining status
synchronous 3-4
obtaining statusof 3-3
purging 3-11, 54
releasing
CLM locking model 3-10
Programming Locking Applications X-3

X-4

Index
S—-WwW

routines
ASTpoll routine 7-2
clm_errmsg routine 7-34
clm_getresparamsroutine 7-36
clm_getstats 7-37
clm_getstatsroutine 6-10
clm_globparamsroutine 7-35
clm_grp_attach 7-39
clm_grp _create 7-40
clm_grp detach 7-41
clm_perror routine 7-42
clm_purgeroutine 7-43
clm_scnop routine 7-44
clm_setglobparamsroutine 7-47
clm_setnotify routine 7-48
clm_setresparamsroutine 7-49
clmlock routine 3-3, 7-3
cIlmlock_syncroutine 3-5, 7-16
clmlockx routine 3-3, 7-9
cIlmlockx_syncroutine 3-5
clmlockx_syncroutines 7-21
clmregionlock routine 7-27
clmunlock routine 7-29, 7-31

SCN (System Commit Number) 1-1
scn.hfile

/usr/include/cluster/scn.h - 3-1
self-client deadlock 2-15

shared
locks
UNIX locking model ~ 4-2
signal handling
setting up to receive lock status 3-3
statistics
lock resource 6-10
status codes
CLM APIs
printing 7-34
stickiness attribute 6-2
specifying 6-9

synchronous lock requests
CLM locking model 3-5
System Commit Number (SCN) 1-1
format 7-46
using 3-13

timeout
specifying
CLM locking model 3-8
transactionsIDs 2-16
tuning
Cluster Lock Manager
APl 61

stickiness attribute 6-9
lock resource master migration 6-1

UNIX locking model 4-1
acquiringlocks 5-3
lock modes 4-1
lock regions 4-1
lock requests 5-2
lock resource handles 5-3
lock states 4-2
overview 1-2
registering alock resource 5-2
releasingalock 5-3
UNIX locking model APl 5-1
clmregionlock routine 7-27
clmregister routine 7-26
datastructures 5-1
handling returned status codes 5-4
unlocking alock resource
UNIX locking model 5-3
unlocking lock resources
CLM locking model 3-10
up-conversion

definition 2-7
wait queue
avoiding 3-7

CLM locking model 2-2

Programming Locking Applications

Vos remarques sur ce document / Technical publication remark form

Titre / Title : Bull HACMP 4.4 Programming Locking Applications

N° Reférence / Reference N°: 86 A2 59KX 02 Daté / Dated : August 2000

ERREURS DETECTEES / ERRORS IN PUBLICATION

AMELIORATIONS SUGGEREES / SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Vos remarques et suggestions seront examinées attentivement.
Si vous désirez une réponse écrite, veuillez indiquer ci-aprés votre adresse postale compléte.

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please furnish your complete mailing address below.

NOM / NAME : Date :
SOCIETE / COMPANY :

ADRESSE / ADDRESS :

Remettez cet imprimé & un responsable BULL ou envoyez-le directement & :

Please give this technical publication remark form to your BULL representative or mail to:

BULL CEDOC

357 AVENUE PATTON
B.P.20845

49008 ANGERS CEDEX 01
FRANCE

Technical Publications Ordering Form
Bon de Commande de Documents Techniques

To order additional publications, please fill up a copy of this form and send it via mail to:
Pour commander des documents techniques, remplissez une copie de ce formulaire et envoyez-la a :

BULL CEDOC Managers / Gestionnaires :

ATTN / MME DUMOULIN Mrs. / Mme : C. DUMOULIN +33(0) 241737665
357 AVENUE PATTON Mr. /M : L. CHERUBIN +33(0) 241 73 63 96
B.P.20845

49008 ANGERS CEDEX 01 FAX: +33(0) 241736019
FRANCE E—Mail / Courrier Electronique : srv.Cedoc@franp.bull.fr

Or visit our web site at: / Ou visitez notre site web a:

http://mwww—frec.bull.com

(PUBLICATIONS, Technical Literature, Ordering Form)

CEDOC Reference #
N° Référence CEDOC

Qty
Qté

CEDOC Reference #
N° Référence CEDOC

Qty
Qté

CEDOC Reference #
N° Référence CEDOC

Qty
Qté

R g

R g

R g

S g

S g

S g

S g

S g

S g

S g

S g

S g

S g

S g

S g

S g

S g

S g

R g

R g

R g

[__1: norevision number means latest revision / pas de numéro de révision signifie révision la plus récente

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

PHONE / TELEPHONE : FAX :

E-MAIL :

For Bull Subsidiaries / Pour les Filiales Bull :

Identification:

For Bull Affiliated Customers / Pour les Clients Affiliés Bull :

Customer Code / Code Client :

For Bull Internal Customers / Pour les Clients Internes Bull :

Budgetary Section / Section Budgétaire :

For Others / Pour les Autres :

Please ask your Bull representative. / Merci de demander a votre contact Bull.

BULL CEDOC

357 AVENUE PATTON
B.P.20845

49008 ANGERS CEDEX 01
FRANCE

o
w
2
(o]
-
=z
w
S}
off
xz
<
Qo
UUJO
b4
Il
aa

ORDER REFERENCE
86 A2 59KX 02

Utiliser les marques de découpe pour obtenir les étiquettes.
Use the cut marks to get the labels.

AIX

HACMP 4.4
Programming
Locking
Applications

86 A2 59KX 02

AIX

HACMP 4.4
Programming
Locking
Applications

86 A2 59KX 02

AIX

HACMP 4.4
Programming
Locking
Applications

86 A2 59KX 02

	Contents
	About This Guide
	Chapter 1 Cluster Lock Manager
	An Overview of the HACMP Cluster Lock Manager
	Locking Models
	Application Programming Interfaces
	Cluster Lock Manager Architecture
	Support for HC Daemon

	Chapter 2 CLM Locking Model
	Overview
	Lock Resources
	Lock Value Block
	Lock Resource Queues

	Locks
	Lock Modes
	Lock States

	Deadlock
	Normal Deadlock
	Conversion Deadlock
	Self-Client Deadlock
	Deadlock Detection
	Transaction IDs
	Lock Groups

	Chapter 3 Using CLM Locking Model API Routines
	Overview
	Prerequisites
	Header Files
	Library Files
	Data Structure

	Acquiring or Converting a Lock on a Lock Resource
	Requesting Locks Asynchronously
	Requesting Locks Synchronously
	Triggering AST Routines
	Keeping Track of Lock Requests
	Sample Locking Application
	Avoiding the Wait Queue
	Specifying a Timeout Value for a Lock Request
	Excluding a Lock Request from Deadlock Detection Processing
	Requesting Persistent Locks
	Requesting Local Locks

	Releasing a Lock on a Lock Resource
	Purging Locks
	Manipulating the Lock Value Block
	Setting an LVB When Releasing an EX or PW Lock
	Invalidating a Lock Value Block
	Using Lock Value Blocks

	Handling Returned Status Codes

	Chapter 4 UNIX Locking Model
	Lock Regions
	Lock Modes
	Shared
	Exclusive

	Lock States
	Granted
	Blocked

	Chapter 5 Using UNIX Locking Model API Routines
	Overview
	Prerequisites
	Header Files
	Library Files
	Data Structure

	Registering a Lock Resource
	clmregister Routine

	Locking a Lock Resource
	Unlocking a Resource
	Handling Returned Status Codes
	Purging Locks

	Chapter 6 Tuning the Cluster Lock Manager
	Overview
	Migration Evaluation Frequency
	Historical Access Patterns
	Stickiness Attribute

	Specifying the Frequency of Migration Evaluations
	Specifying the Decay Rate
	Specifying the Stickiness Value of a Lock Resource
	Obtaining Lock Resource Statistics
	Lock and Lock Resource Limits
	Lock Manager Kernel Memory Usage
	Maximum Acquired Locks Per Node
	When Locks are Denied
	Lock Value Block Changes

	Chapter 7 Lock Manager API Routines
	Lock Manager Routines
	ASTpoll Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clmlock Routine
	Syntax
	Description
	Parameters
	Status Codes
	Status Codes Returned in the Lock Status Block
	Example

	clmlockx Routine
	Syntax
	Description
	Parameters
	Status Codes
	Status Codes Returned in the Lock Status Block
	Example

	clmlock_sync Routine
	Syntax
	Description
	Parameters
	Status Codes
	Status Codes Returned in the Lock Status Block
	Example

	clmlockx_sync Routine
	Syntax
	Description
	Parameters
	Status Codes
	Status Codes Returned in the Lock Status Block
	Example

	clmregister Routine
	Syntax
	Description
	Parameters
	Return Values
	Status Codes
	Example

	clmregionlock Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clmunlock Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clmunlock_async Routine
	Syntax
	Description
	Parameters
	Status Codes
	Status Codes Returned in the Unlock AST

	clm_errmsg Routine
	Syntax
	Description
	Parameters
	Returns
	Example

	clm_getglobparams Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_getresparams Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_getstats Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_grp_attach Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_grp_create Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_grp_detach Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_perror Routine
	Syntax
	Description
	Parameters
	Example

	clm_purge Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_scnop Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_setglobparams Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_setnotify Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	clm_setresparams Routine
	Syntax
	Description
	Parameters
	Status Codes
	Example

	Index

