Bull

AIX Commands Reference Vol.2
dadmin to hyphen

AlIX

ORDER REFERENCE
86 A2 39JX 02

Bull

AIX Commands Reference Vol.2
dadmin to hyphen

AIX

Software

April 2000

BULL ELECTRONICS ANGERS
CEDOC

34 Rue du Nid de Pie — BP 428
49004 ANGERS CEDEX 01
FRANCE

ORDER REFERENCE
86 A2 39JX 02

The following copyright notice protects this book under the Copyright laws of the United States of America
and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and
making derivative works.

Copyright © Bull S.A. 1992, 2000

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of
this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX® is a registered trademark of International Business Machines Corporation, and is being used under
licence.

UNIX is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Year 2000

The product documented in this manual is Year 2000 Ready.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

Commands Reference, Volume 2

Table of Contents

CommaNdS REFEIENCE, VOIUIME 2....ieeiiiiiiiiie ettt et e et e et s e et e e et s e st s e st ssses mmnnmmaann s ensss 1
First Eition (OCIODEI 1997).....ueiiiiiiiiiiiiiiiit ettt e e e e e e e e e be e e e e e e e e e nneees 1
Trademarks and ACKNOWIEAGEMENTS...........uuiiiiiiiiiiiiie e e e eeeeas 5.
ADOUL THIS BOOK...cctiiiiitiiiiii ittt e et e e et e e et s e et s e et s ettt sesta st mmmmmmmm————tneees 7
Alphabetical Listing Of COMMEANTS..........couuiiiiiiieei e eeeena 14.
(o F=To [0 g 11T @Lo] 011 4 T=1 1 [15
Lo =Y (ST 0] a1 1 F= T o 18
[0 | 0) QL0 101010 F= 1 0 [0 N 22
(o [@0T 01018 1= 1 o [66
(o [0 I @1 0011 =1 T 69
defaultbrowser COMMANDL.......cccveiiiii it e e et e e et e ettt e e et s e eaasssetasesss s sanemmnnnnnnnn 74
Lo LY 181711 1 T Yo T 76
Lo LY 1 L1011, (=] 1 (o T T 78
defragfsS COMIMENT........eiiiieiiiie et e st e e e e e s s r e e e e s e s snnnnneeeeeeas 79
(o [T I @0] 01 0 1= 1 (o /P 81
deleteXL1LiNPUE COMMEANT.......coiiiiiiiiiie et e e e e s e e e e e e e e s e e e e e e sennnrreeeas 83
Lo [1=K @] 0 1] 1 =1 Lo 84
Lo (<1011 OT0] 1 a1 =1 o Lo 87
AEVINSTAIl COMIMEANT. .. cctuiiiiiii et e e e e e e e e st s e et e e st s e st s e s bas s ses mmmm—————— 89
(o [NV a1 4 I OT0] 101 F= 1 o 91
(o 1 OT0] 0 010 471 o [0 R 93
(0 1501 LQ 1] 0 1] 1 =1 1 [96
dhCpaction COMIMAN...........uuiiiiiie e e e e e s r e e e e e e s b e eeeemmmmnnes 99
(o[gTetoTolo [D= T=T o 1 o] o TR PP P TS URPPPPR 101
(o[aTet o] o D Z-T=] 1 oo] o H TP PP PPPPPPPPPPPPP 104
AhCPSCONT COMMAN.......uuuiuiiiiiiieiiiiiiii bbb eeeesseeseeessesseeeeeeeeseeeeeeeeessss smmmmmmmmm——n 106
Lo pTod 01T I I = 1T 4T o S S 108
(o [F=To l @0] 4] 0 =T o o NPT P PP ROPRPPPRRR 110
IagrPt COMMEBNT ... e e e e e s et e e e e e e e s e nb bt e e e e s mmmneeeeeennn s 114
(o [To1T0] AT @01 1.2 1= 1 o I 115
(o 1113 OT0] 1 010 1= 1 Lo 116
Lo [1 EC T O00 T 0 111 4 T= (o TN 120
Lo [0 1 OTo] 0 1 4T o /P 122
IgEST COMIMANT.......eiitiiiieee et e e e e et e e e e e e s a b r e e e e e e s annnnneeeees 124
AIrcmMpP COMMANG........ooiiiiiiii e e 125
(o [TE =T g TSI OLo] 1212 1F= 1 o I 127
Lo [ESY=1 0] (ST @0 1 a1 1= 1 (o 1R 129
ISKUSG COMMANT.........eiiiiiiiiie e e e e e e e e e s r e e e e e e s s st be s e e e e esnnnneees 131
(o 1153 RO] 0111 =1 1 [133
(o [oTo3Y=T=T {od I @] 0 1] 12 =1 T 137
Lo [0 Y0 117 Q@01 11211 7= 1 o 139
(o [o]aF=TTaTa =10 a TSI @01 a1 a =1 o o R 141
(o [0 10 [T I @4 0 1] 12 =1 1o R 142
(o [0 10 [T @011 418 1= 1 (o 143
(o [0 FS (0] 44 T= 1 SO0 21411 1= 1 2T [145
(o [0 1 (=T=To I OT0] 01014 F=1 2 o 147
(o (oYY (1 (=T OTo) 1 111 4T o 149
(o] o @d0] 1010 F=1 o[KPP P PP PRRPPPP 151
drm_admin COMMANG.........c.uuiiiiiiiee e e e e e e e e e s s bbb e e e e e e e s s nnbbeeeeaaeenan 153
AS_1eg COMMEBNT.. ...t e et e e e e e e s s bbb e et e e e e e e ans s s e e ¢ eom— 157
(o (Yot (=TT T O] 1 1] 4 T=1 1 [159
(o [Y 0 V1A @0 01 210F= T (o 161

Commands Reference, Volume 2

Table of Contents

dsmit—addKey COMMEANT..........uuiiiiiiiee et e e e e e e e e e s s s aeb e e e e e e e e s smmmmeenna 163
ASMIt—AEC COMMIANG. ...ttt e e e e e e e e e e e bbb e e e e e e s s annb b s sneeeemmmnnes 165
dSMIt—rMKEY COMIMANT.......eiiiiiiiiiiiiiiii et e e e e e e e s s s r e e e e s eeeneeann 166
dsmit=unlock COMMANG..........cooi i e 167
ASPCAL COMIMANG....ciiiiiiiiiii e e e e e e e s e e e e e e e e e s nes e s s er— 168
(o £ 0] 14 1STo I @] o] 4= o T 170
dtappintegrate COMMANG...........coivviiiiiiiiiiiiie ettt a e e e e e e e e e e e e e aaa e e e e e e e e e e e e e s mmmmmmmmmnn 172
Lo 1o 0] A @0 o1 s 4= T Vo 174
AHErM COMIMANG. ..ottt e e e e s r e e e e e e s st e e e e e e e e e e e ssbe s ammnneeeneeaanss 176
(o [@d0] 0010 F=1 o[KA PP P PP SRRPPPP 186
AUMP COMMIBNG ...t e e e e e e et e e e e e s s bbb e et e e e e e s s bbb e et e e e e e e annnnnneeeeens 188
AUMPTS COMMEANT....eiiiiiiiiiitii et e s r e e e e e e e r e e e e e s s s nnrnreaeeeeeaans 191
€ COIMIMANT.....coi ittt e e e e e et e e e e e e e e bbbt e e e e e e e e s s st bbb e e et e e e e eeeannnnnnneeeeeens 192
€CN0 COMIMANT........uiiiiiiiee et e e e e s s sttt e e e e s s s bbb b e e e e e e s smmmmnneeeneanees 195
L= To [o T g ¢=To JX 0] 21011 2 o FE P 198
=T 1@ o1 0] . 7=V Lo T

[<To [0 [8To]r= @0] 101 4 F=1 0 o AR OO PP P PSP OUPP PP

L2 T0 =] o JN @ 4] 4= 1o
€NAbIE COMMANG.... ..o bbbttt e e e e e e e et e e s s e e s s e e s sem—
€N COMMEANG. ...ttt e e e e e e e et e e e e e e s bbb e e e et e e e e s sasbbbbe e e e e e e s sammnneeeeeanansees
ENFOIl COMMANT......cc e ——
ENSCIIPT COMIMANT......eeiiiiiie it e e e e e s e e e e e e e e e st e e e e e e e e e e s snnnneeeeens

2T)51 2= U @0 .01 7= T
€NV COMIMANG......iiiiiiitiie ittt e e e et e e e e e sttt et e e e s s e s bbb e e e e e e e e e s e snbbr e e eeeaaeeesnnnnsees
L=To [T ©Xo]00] 01T T oo IR PP RPPRTPTN
errClear COMMANT..........uuiiiiiiie i e et e e e e e e s e e e e e e e s s nab b e e e e e e e s ennnnneees
errdead COMMENTL........ooiiiiiiii e e e e e e e e e e s e e e e e e e e ——
EITAEMON DAEIMON.....uuiiiiiie ittt ettt e e et e e e e e e e e e e e e s e e nenbeeeeeeeean

errinStall COMMANT............uuiiiiiiie e e e e e s

errlogger Command

EITMSY COMMANTG....eiiiiiiiiiieii e e e e e e e e e e s e r et e e e e s s s bbb e e e e e e e e e s e s nneeeeeenmmnnes
EITPE COMIMEANT......etiiieeie ettt e e e e e s et e e e e e s sk bbb e et e e e e e e s ss bbb e et e e e e e s manemeeemmmmmmnes
EITSTOP COMMANTG.....iiiiiiiiiiiie ettt e e e e e e s e e e e e e e s s bbb e e e e e e e e e s s nbb e e eeeeeeennneees
ErruUPAATE COMIMENTuuiiiiiiee ittt e e e e et e e e e e e st e e e e e e e e s snbs e e e e s s 305
EX COMIMANG.....eeiiiieei ittt e ettt e e e e et e et e e e e e s e s b b e e et e e e e e e eansbbee s mmneeeeeneeaensanns 313
2 (ot =] 1 (o] g @] 1 4] 1.4 F= 1 o H USSR 315
EXPANA COMMEANT......utiiiiieeiiiiie et e e e e e e e e s s e e et e e e e s aanstbb s e e e e e e e sm— 316
EXPIIE COMMEANT. ...t e e e et e e e e e s e e e e e e e e e snnnnnneeeeeas 318
EXPIAIN COMMEBNG.......eiiiiiiiiie et e e e e e s st e e e e e e e e nbbb e e e s mmmneeeneeen s 319
EXPIOrE COMMEANT....eiiiiiiiiiiiiite et e e e e e e e e s e e e e e e e e s s bbb e et e e e e e e e s s s nnnnnnneeaeeas 320
EXPOITS COMMEANT ...ttt e e e e e e e e e e e s s et e e e e e e e e asbb b s mnneeeeeeenan s 322
EXPOIVG COMMEANTuuiiiiiieiiiiitt et e ettt e e e e e s e et e e e e s s s bbb e e et e e e e e s s nbbeeeeeeeseeeeeeasennnnes 325
EXPI COMMEANT.... ittt e e e e e e e s s bbb e e et e e e e e s s s bbb et e ee e e e s e nsbbee e e e e eeeneeneaeannnnnes 327
EXPLUN COMIMEANT.......eieiiieiee ettt e e e e s r e e e e e e s b r e e e e e e s s s bbb e e e e e e e e e snnnnnneeeens 332
EXIENAIV COMMENT ... e e e e e s e e e e e e s st b e e e e e e s eeeeeeeeennnes 333
EXIENAVY COMIMANT......eiiiiiiiiiiiiiiie ettt e et e e e e e s bbb r e e e e e s s s bbe s e e e e e e e e s smmneeeeeaennn 336
FCOMMANG. ... m————— 338
fACIOr COMMANG.....cciiiiiiiiicec e s 341
FC COMMEANG......ceiiieeeeeeeeee et et e s m——— 342
fddistat COMMANG..........cooiii i ——— 346
fdformat Command —1o10]
FAPI COMMENG ...ttt e e e e e e s bt et e e e e e e aab e e e e+ s—— 352

Commands Reference, Volume 2

Table of Contents

feprom_update COMMENT.........oiiiiiiiiiiii e e e e e e e e e e s s s see e s mmmmmmnnes 359
1O 4] 4 F= 1o (o AP T PP PPPPPPP PP 361
FTOrMAt COMIMANDueiiiiiie i e et e e e e s s bbb e e e s smmmmmeeeemmnne e« 363
{0 T O] 141> 1o [0 F PP PRI 365
{0 (=] I OLe] 1411 4= o o [P P PR 367
fIle COMMEANG.... o it e e e e e e e e e e s st e e e e e e s s annnneeeeeeas 370
fIleMON COMMEANTooiiiiiiie e e e e e e s e e e e e e smmemeemnnmnns s 372
fileplace COMMANTooiiiiiie e e e st e e e e e —— 380
fill OF Tl COMMEANTL......oeeee e e e e s nr e e e e eae e e anes 383
[110(6 IO 0] 1911 4 F= o o Fu PP PP PP PR 386
FINGEI COMMEANT.....eeiiiieeiiie et e e e e e et e e e e e e bbb e e e e e e e e s — 391
FINGEIA DAEBIMON. ...ttt e ettt e e e e s et e et e e e e e bbb e e e e e+« s—— 394
fish Command

FICOPY COMMANT.........uiiiiiiiii i e e et e e e e e s s s bbb e e e e s smmmmmnnneeees e e 398
FMNT COMIMANT.......eeiiiii et e e e et e e e e e s st e e et e e e e s smmmmemmemmnns s 400
[0 (o @] 1911 4 F= 1o o FAu PP PP PP RS 402
TOIAET COMMEANT.....eeiiiiieeit e e e e e s e e e e e e e bbb et e e e e e e — 404
fOIAEIS COMMANT.....eiiiiiiiiiie et e e e e s e e st e e e e e e s s menammmmmmnne e 408
FOrMAL COMIMAND.......eeiiiiiiee it e e s e e e e e e s e bbb e e e e e e e e e« 411
fOrtUNE COMIMAN.......iiiiieie e e e e e s s e e e e e e e s bbb e e mmmneeeeeeen s 414
(0] 4V A 0] 1 0] 1 4 F=1 2 [0 FE PO O PP PT 415
FrCaCHT COMMANT.........eiiiiiiiie e e e e e e st e e e e e e s s bbb e s eeemmmmmnnenases 420
FTOM COMMENTL.....eeiieeie et e e e e et r et e e e e e e et n et e e e e s— 423
FSCK COMIMANT......eeiiiiiii it e e et e e e e s ettt e e e e e e e s mmmmmmmmmmmmn e 425
fsck_cachefs COMMEANG...........uuiiiiiiiiiiiiiiiieeeeeeeeeeeereeeeeee e e e eeaaeaeaeaeaaaeaaaaaaeeaee e e s mmmmmmmmmnen D30
FSAD COMIMAND......ci it e e e e e e e e e e e s e bbb e e e e e eeeeeeeeeeennnnnes 431
FSPIIt COMIMAN.......oiiiieeie et e e e e e e e e e e e e s et e e e e e e e s nnnnneeeeeas 438
118 < O 01101 1.1V o PP 440
L1100l D= T=T 1 1 o T o WO P PP PPPPPPPPRRRRRRY - oY
FUSEI COMMEANGeiiiieiiiite ettt e e e e e et e e e e e e e s s bbbt e et e e e e s s s nbbbnreeeeeeeennannne 459
FWEMP COMMEANG. ...eutiiiiiiiiie ettt ettt ettt e et e et taataaaaaaaaaaaaaaaaaaeeeeeees mmmmmmmmmmmnns s 461
EXEEr COMMEANT.....o et e e e e e e e e e e e e s sab b e e e e eeesmmnneeeeeane 463
(o E=1 (=T D F-T=] 43T o O PP PR 477
0ENCAL COMIMANT........iiiiiiiiiie ettt e e e e e e e e e e s e bbb e e e e e e e e s e ansss s e e ¢ erm— 481
(o [0 [l @] 1] 1 =T o o NPT PP P PP PRPPPPSRPP 483
QENTFIIE COMIMEANT. ..ottt e e s e e e e e s et e e e e e e e eennnne s 486
0ENKEX COMIMANG ...ttt e e e ettt e e e s s s bbb b e e et e e e e e s nnnb e e e s emmmmmmmmnennens 488
GENKIA COMIMANG ...ttt e et e e e e e e bbb e e e e e e e s s s smmneeeneeaan s 489
NI COMMANT ...t e e e st r e e e e e e s st n e e e e e e e e e s snnnrereeeeens 490
GENTUN COMMBINTL. ...eiiiiiiiiiiiiie e e e et e e e e s b e e e e e e e e e s bbb e et e e e e e s s s nneeeeeenmmnnes 491
[0 =T 0L @ 4] 14 F= U T 495
(o 1=1 A @011 1011 o[A PO PP PPPPPRPPPPT 497
QEICONT COMMEANT....eiiiiieiiiiiitie ettt e e e e e e e e s e e e e e e e e s s st e e e e e e e e e s e nnrnneeeeeeas 507
(o [=] (o] o] @] 401 14 F= 1o o [P PP RPPPPR TP 515
o= 0] o1 £3 @01 0] 117> o PP 517
gettable COMMEANG........ooiiiiiii et e e s e e e e e s st e e e e e e e e s s e e e e eeeenmmnnes 520
(o 1=1 13V @0] 1 4]0 0 F=T o Lo N TP PP PPPRPERRR 521
ONOST COMMANT......oiiiiiiiiitiie et e et e e e e e s st r e e e e e e s e nb b e e e e e e eeennnee s 524
OID0 DAEIMOM ...ttt e ettt e e e e e e bbb e et e e e e s bbbt e et e+ e+ ¢ — 526
OPFOT COMIMAN......eeiiieie ettt e e e e e e e e e e e e e s a bbbt et e e e e e e —— 529
OrAP COMIMABNG ...ttt e e e e e et e e e e e s s bbb et e e e e e s s abb b e et e e e e e s s snrnnneeaeesennes 534
OrEEK COMMEBNTL. ...eiiiieeiiiiite ettt e e e e s et e e e e e s s e et e e e e e s e nbb e e eeeeeeennnnees 538

Commands Reference, Volume 2

Table of Contents

(0[] I @] 1411 1 F=1 o (o H PO P PP PPPPPPRPPP 539
OrOUPS COMMEBINTL. ..ceiiiiiiiiiiiiie et ettt e e e e st e e e e e e s st b e e et e e e e e e s bbb e e et e e e e e s s s nneeeeeenmmmnnes 543
OIPCK COMIMANT ...ttt e e e e st e e e e e e s s bbb e e e e e e e e e e nsbb b e e s ammmmnnnnnneen s 544
halt or fasthalt CoOMMEANT...........ooiiiiii e mnneeeeeeas 547
hangman COMMANT..........cooiiiiiiiiii e e e e e s s e e e e e s s e meeeemmmnnne 549
hash Command

head Command

NEIP COMMEANG ... e e e e e st e e e e e e s eaeeeeenmmnneneees
RISTONY COMMANT....cciiiiiiiiiiie e e e e e s s e e e e e e — 557
NOST COMMEANT......oiiiiiiie et e e e e s et e e e e e s e e e e e e s e snnnneees 558
L0 1Y (= 0 8K 00 2 112 > o o PP 561
NOSTIA COMMANT.......ciiiiiiiiiie et e e e e e s e e e e e e s s nsb s emmnneeeeeeaeees 564
NOSINAME COMIMAND.uuiiiiiiiiii e e e e e r e e e e e e s bbb r e e e eeeeeeaanannn 566
NP COMMEANTL....eiiiiie e e e e e e e s st r e e e e e e s s s bbb e e s mnneeeeeeeaensaan 567
0] o] [T 0] 121 1 4 F= o o [P SPPEP PR 568
hps_dump COMMANG...........ooii i mmmmmmnnnnes 570
htable COMMEANG.........eiiiiiii e e e e e e s s r e e e s e s nnnnneeeee s 572
Nty _10ad COMMEANT.....coiiiiiiii e e e e s e e e e s e e eemmnneeeeeas 574
RYPhEN COMMENGoeie e e e e smmmneeeeeeeeans 576

Commands Reference, Volume 2

First Edition (October 1997)

This edition of theAlX Version 4.3 Commands Reference, Volurapies to the AlIX Version 4.3, 3270
Host Connection Program 2.1 and 1.3.3 for AlX, and Distributed SMIT 2.2 for AIX licensed programs, and
to all subsequent releases of these products until otherwise indicated in new releases or technical newslette

The following paragraph does not apply to the United Kingdom or any country where such provisions

are inconsistent with local law:THIS MANUAL IS PROVIDED "AS IS" WITHOUT WARRANTY OF

ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain transactions; therefore, this
statement may not apply to you.

It is not warranted that the contents of this publication or the accompanying source code examples, whether
individually or as one or more groups, will meet your requirements or that the publication or the
accompanying source code examples are error—free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication.

It is possible that this publication may contain references to, or information about, products (machines and
programs), programming, or services that are not announced in your country. Such references or informatio
must not be construed to mean that such products, programming, or services will be offered in your country.
Any reference to a licensed program in this publication is not intended to state or imply that you can use onl
that licensed program. You can use any functionally equivalent program instead.

The information provided regarding publications by other vendors does not constitute an expressed or
implied recommendation or endorsement of any particular product, service, company or technology, but is
intended simply as an information guide that will give a better understanding of the options available to you.
The fact that a publication or company does not appear in this book does not imply that it is inferior to those
listed. The providers of this book take no responsibility whatsoever with regard to the selection, performance
or use of the publications listed herein.

NO WARRANTIES OF ANY KIND ARE MADE WITH RESPECT TO THE CONTENTS,
COMPLETENESS, OR ACCURACY OF THE PUBLICATIONS LISTED HEREIN. ALL WARRANTIES,
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE SPECIFICALLY
DISCLAIMED. This disclaimer does not apply to the United Kingdom or elsewhere if inconsistent with local
law.

A reader's comment form is provided at the back of this publication. If the form has been removed, address
comments to Publications Department, Internal Zip 9561, 11400 Burnet Road, Austin, Texas 78758-3493.
To send comments electronically, use this commercial internet adaisegoub@austin.ibm.com

Any information that you supply may be used without incurring any obligation to you.

(c) Copyright AT&T, 1984, 1985, 1986, 1987, 1988, 1989. All rights reserved.
(c) Copyright KnowledgeSet Corporation, Mountainview, California, 1990.

Copyright (c) 1993, 1994 Hewlett—Packard Company
Copyright (c) 1993, 1994 International Business Machines Corp.

Commands Reference, Volume 2 1

Commands Reference, Volume 2

Copyright (c) 1993, 1994 Sun Microsystems, Inc.
Copyright (c) 1993, 1994 Novell, Inc.

All rights reserved. This product and related documentation are protected by copyright and distributed undel
licenses restricting its use, copying, distribution, and decompilation. No part of this product or related
documentation may be reproduced in any form by any means without prior written authorization.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is
subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION.
HEWLETT-PACKARD COMPANY, INTERNATIONAL BUSINESS MACHINES CORP., SUN
MICROSYSTEMS, INC., AND UNIX SYSTEMS LABORATORIES, INC., MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS PUBLICATION AT ANY TIME.

(c) Copyright Graphic Software Systems Incorporated, 1984, 1990. All rights reserved.
(c) Cornell University, 1989, 1990.

(c) Copyright Carnegie Mellon, 1988. All rights reserved.

(c) Copyright Stanford University, 1988. All rights reserved.

Permission to use, copy, modify, and distribute this program for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear on all copies and supporting
documentation, the name of Carnegie Mellon and Stanford University not be used in advertising or publicity
pertaining to distribution of the program without specific prior permission, and notice be given in supporting
documentation that copying and distribution is by permission of Carnegie Mellon and Stanford University.
Carnegie Mellon and Stanford University make no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied warranty.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under licens:
from The Regents of the University of California. We acknowledge the following institutions for their role in
its development: the Electrical Engineering and Computer Sciences Department at the Berkeley Campus.

The Rand MH Message Handling System was developed by the Rand Corporation and the University of
California.

Portions of the code and documentation described in this book were derived from code and documentation
developed under the auspices of the Regents of the University of California and have been acquired and
modified under the provisions that the following copyright notice and permission notice appear:

Copyright Regents of the University of California, 1986, 1987, 1988, 1989. All rights reserved.
Redistribution and use in source and binary forms are permitted provided that this notice is preserved and t
due credit is given to the University of California at Berkeley. The name of the University may not be used tc

endorse or promote products derived from this software without specific prior written permission. This
software is provided "as is" without express or implied warranty.

Commands Reference, Volume 2 2

Commands Reference, Volume 2

Portions of the code and documentation described in this book were derived from code and documentation
developed by Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital Equipment
Corporation, Maynard, Massachusetts, and have been acquired and modified under the provision that the
following copyright notice and permission notice appeatr:

(c) Copyright Digital Equipment Corporation, 1985, 1988, 1990, 1991. All rights reserved.

(c) Copyright 1985, 1986, 1987, 1988, 1989 Massachusetts Institute of Technology. All rights reserved.
Permission to use, copy, modify, and distribute this program and its documentation for any purpose and
without fee is hereby granted, provided that this copyright, permission, and disclaimer notice appear on all
copies and supporting documentation; the name of M.I.T. or Digital not be used in advertising or publicity
pertaining to distribution of the program without specific prior permission. M.I.T. and Digital make no
representations about the suitability of this software for any purpose. It is provided "as is" without express of
implied warranty.

(c) Copyright Apollo Computer, Inc., 1987. All rights reserved.

(c) Copyright TITN, Inc., 1984, 1989. All rights reserved.

(c) Copyright International Business Machines Corporation 1997. All rights reserved.

Notice to U.S. Government Users — Documentation Related to Restricted Rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract.

Commands Reference, Volume 2 3

Commands Reference, Volume 2

Commands Reference, Volume 2

Commands Reference, Volume 2

Trademarks and Acknowledgements

The following trademarks and acknowledgements apply to this book:

ADM is a trademark of Lear Siegler, Inc.

AlX is a registered trademark of International Business Machines Corporation.

Connect is a trademark of INTERACTIVE Systems Corporation.

DEC is a trademark of Digital Equipment Corporation.

DEC VT100, VT220, VT320, and VT330 are trademarks of Digital Equipment Corporation.
GL is a trademark of Silicon Graphics, Inc.

HP is a trademark of Hewlett—-Packard Company.

IBM is a registered trademark of International Business Machines Corporation.

INed is a trademark of INTERACTIVE Systems Corporation.

InfoExplorer is a trademark of International Business Machines Corporation.

Intel is a trademark of Intel Corporation.

Interleaf is a trademark of Interleaf, Inc.

LaserJet Series Il is a trademark of Hewlett—Packard Company.

Micro Channel is a registered trademark of International Business Machines Corporation.
NetView is a trademark of International Business Machines Corporation.

Network Computing System is a trademark of Apollo Computer, Inc.

OSF and OSF/Motif are trademarks of Open Software Foundation, Inc.

Personal Computer AT and AT is a registered trademark of International Business Machines Corporation.
Personal System/2 is a registered trademark of International Business Machines Corporation.
PS/2 is a registered trademark of International Business Machines Corporation.

POSIX is a trademark of the Institute of Electrical and Electronic Engineers (IEEE).
PostScript is a trademark of Adobe Systems Incorporated.

Proprinter is a registered trademark of International Business Machines Corporation.

Quickwriter is a registered trademark of International Business Machines Corporation.

Trademarks and Acknowledgements 5

Commands Reference, Volume 2

Quiet is a trademark of International Business Machines Corporation.

RS/6000 is a trademark of International Business Machines Corporation.

RT is a registered trademark of International Business Machines Corporation.

Sun is a trademark of Sun Microsystems, Inc.

Tektronix is a trademark of Tektronix, Inc.

Televideo is a trademark of Televideo, Inc.

The Source is a service mark of Source Telecomputing Corp., a subsidiary of The Reader's Digest Assn., In

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Ope
Company Limited.

WY-50 is a trademark of the WYSE Corporation.

WYSE is a trademark of WYSE Corporation.

Trademarks and Acknowledgements 6

Commands Reference, Volume 2

About This Book

This book is Volume 2 of the six—volumdgX Version 4.3 Commands Referer8@BOF-1877, which

contains reference information on Advanced Interactive Executive (AIX) Operating System commands. It
describes the tasks each command performs, how commands can be modified, how they handle input and
output, who can run them and provides a master index for all six volumes.

For a quick reference list of commands arranged in functional groups, see Volume 6.
Who Should Use This Book

This book is intended for users of AIX commands.

How to Use This Book

A command is a request to perform an operation or run a program. You use commands to tell the AIX
Operating System what task you want it to perform. When commands are entered, they are deciphered by &
command interpreter (also known as a shell) and that task is processed.

Some commands can be entered simply by typing one word. It is also possible to combine commands so th
the output from one command becomes the input for another command. This is known as pipelining.

Flags further define the actions of commands. A flag is a modifier used with the command name on the
command line, usually preceded by a dash.

Commands can also be grouped together and stored in a file. These are known as shell procedures or shell
scripts. Instead of executing the commands individually, you execute the file that contains the commands.

Some commands can be constructed using Web-based System Manager applications or the System
Management Interface Tool (SMIT).

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items
whose names are predefined by the system. Also identifies graphical objects such as buttons,
labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.
Monospace Identifies examples of specific data values, examples of text similar to what you might see

displayed, examples of portions of program code similar to what you might write as a
programmer, messages from the system, or information you should actually type.
Format

Each command may include any of the following sections:

Purpose A description of the major function of each command.
Syntax A syntax diagram showing command line options.
Description A discussion of the command describing in detail its function and use.

About This Book 7

Commands Reference, Volume 2

Flags A list of command line flags and associated variables with an explanation of how the
flags modify the action of the command.

Parameters A list of command line parameters and their descriptions.

Subcommands A list of subcommands (for interactive commands) that explains their use.

Exit Status A description of the exit values the command returns.

Security Specifies any permissions needed to run the command.

Examples Specific examples of how you can use the command.

Files A list of files used by the command.

Related Information A list of related commands in this book and related discussions in other books.

Implementation Specifics

To list the installable software package (fileset) of an individual command uksépfheommand with the
-w flag. For example, to list the fileset that ownsitigtallp command, enter:

Islpp —w /usr/sbin/installp

Output similar to the following displays:

File Fileset Type
/usr/sbin/installp bos.rte.install File
To list the fileset that owns all file names that contagtallp , enter:

Islpp —w "*installp*"

Output similar to the following displays:

File Fileset Type
Jusr/sbin/installp bos.rte.install File
/usr/clvm/sbin/linstallpv prpg.clvm File

lusr/lpp/bos.sysmgt/nim/methods/c_installp
bos.sysmgt.nim.client File

Syntax Diagrams
AIX command syntax is represented by syntax diagrams and usage statements.

Syntax diagrams are designed to provide information about how to enter the command on the command line
A syntax diagram can tell you:

» Which flags can be entered on the command line

» Which flags must take a parameter

« Which flags have optional parameters

« Default values of flags and parameters, if any

» Which flags can and cannot be entered together

« Which flags and parameters are optional

« When you can repeat flag and parameter sequences.

AIX commands use the following conventions in their syntax diagrams:
» Diagram items that must be entered literally on the command line boddinThese items include

About This Book 8

Commands Reference, Volume 2

the command name, flags, and literal characters.

» Diagram items representing variables that must be replaced by a naméadiesiThese items
include parameters that follow flags and parameters that the command reads Flestaad
Directories

* Default values that do not have to be entered are in the normal forodoh @ath.

The Sample Syntax Diagram illustrates the conventions used in syntax diagrams. Each part of the diagram |
labeled. An explanation of the labels follows the diagram.

You interpret the example diagram as follows.

0 PATH LINE The path line begins the syntax diagram.

1 COMMAND NAME This item in the diagram is the name of the command you want to invoke. It
is in bold, which indicates that it must be entered exactly as it appears in the
diagram.

In the example diagram, the path branches into two paths after the
command name. You can follow either the lower path (discussed in item 2)
or the upper path (discussed in item 3).

2 SINGLE CHOICE BOX If you follow the lower path, you encounter a box with the wantks
of over it. You can choose only one item from this box.

3 DEFAULT LINE If you follow the upper path, you bypass the single choice box, and enter
nothing. The bold line around the box is a default line, which means that
you do not have to enter anything from that part of the diagram. Exceptions
are usually explained under "Description.” One important exception, the
blank default line around input and output files, is explained in item 10.

4 REPEAT ARROW When you follow a path that takes you to a box with an arrow around it, you
must choose at least one item from the box. Then you can either follow the
arrow back around and continue to choose items from the box, or you can
continue along the path. When following an arrow that goes around a box
(rather than an arrow that includes several branches in the diagram), do not
choose the same item more than once.

5 REQUIRED ITEM Following the branch with the repeat arrow is a branch with three choices
and no default line around them. This means that you must choose one of A,
B, or C.

6 GO TO NEXT LINE If a diagram is too long to fit on one line, this character tells you to go to the

next line of the diagram to continue entering your command. Remember,
the diagram does not end until you reach the vertical mark.

7 CONTINUE DIAGRAM This character shows you where to continue with the diagram after it breaks
on the previous line.

8 OPTIONAL PARAMETER If a flag can (but does not have to) take a parameter, the path branches after
the flag. If you cannot enter a space between the flag and parameter, you are
told in a footnote.

9 DEFAULT VALUE Often, a command has default values or actions that it will follow if you do
not enter a specific item. These default values are indicated in normal font
in the default line if they are equivalent to something you could enter on the
command line (for example, a flag with a value). If the default is not
something you can enter on the command line, it is not indicated in the
diagram.

Note: Default values are included in the diagram for your
information. It is not necessary to enter them on the
command line.

10 INPUT OR OUTPUT A command that can read either input files or standard input has an empty

About This Book 9

Commands Reference, Volume 2

default line above the file parameter. If the command can write its output to
either an output file or to standard output, it is also shown with an empty
default line above the output file parameter.

If a command can read only from standard input, an input file is not shown
in the diagram, and standard input is assumed. If a command writes only to
standard output, an output file is not shown in the diagram, and standard
output is assumed.

When you must supply a file name for input or output, the file parameter is
included in the diagram without an empty default line above it.

11 FOOTNOTE If a command has special requirements or restrictions, a footnote calls
attention to these differences.
12 VERTICAL MARK This ends the syntax diagram.

Running Commands in the Background

If you are going to run a command that takes a long time to process, you can specify that the command run
the background. Background processing is a useful way to run programs that process slowly. To run a
command in the background, you use&é¢ampersand) operator at the end of the command:

Command&

Once the process is running in the background, you can continue to work and enter other commands on yol
system.

At times, you might want to run a command at a specified time or on a specific date. Usiog ti@emon,
you can schedule commands to run automatically. Or, usirag trelbatch commands, you can run
commands at a later time or when the system load level permits.

Entering Commands

When you work with AIX, you typically enter commands following the shell prompt on the command line.
The shell prompt can vary. In the following exampfess the prompt.

To display a list of the contents of your current directory, you wouldls/ged press the Enter key:

$ls

When you enter a command and it is running, the operating system does not display the shell prompt. Wher
the command completes its action, the system displays the prompt again. This indicates that you can enter
another command.

The general format for entering AIX commands is:

Command Flag(s) Parameter

The flag alters the way a command works. Many commands have several flags. For example, if you type the
-l (long) flag following thds command, the system provides additional information about the contents of the
current directory. The following example shows how to use-tlilag with thels command:

$ Is -l

A parameter consists of a string of characters that follows a command or a flag. It specifies data, such as th

About This Book 10

Commands Reference, Volume 2
name of a file or directory, or values. In the following example, the directory naisréoin is a parameter:

$ Is I /usr/bin

When entering commands in AlX, it is important to remember the following:

« Commands are usually entered in lowercase.

* Flags are usually prefixed with a — (minus sign).

» More than one command can be typed on the command line if the commands are separated by a
; (semicolon).

 Long sequences of commands can be continued on the next line by using the \ (backslash). The
backslash is placed at the end of the first line. The following example shows the placement of the
backslash:

$ cat /usr/ust/mydir/mydata >\
Jusr/usts/yourdir/yourdata

When certain commands are entered, the shell prompt changes. Because some commands are actually
programs (such as thelnet command), the prompt changes when you are operating within the command.
Any command that you issue within a program is known as a subcommand. When you exit the program, the
prompt returns to your shell prompt.

AlX can operate with different shells (for example, Bourne, C, or Korn) and the commands that you enter art
interpreted by the shell. Therefore, you must know what shell you are using so that you can enter the
commands in the correct format.

Stopping Commands

If you enter a command and then decide to stop that command from running, you can halt the command frol
processing any further. To stop a command from processing, press the Interrupt key sequence (usually Ctrl-
or Alt—-Pause). When the process is stopped, your shell prompt returns and you can then enter another
command.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

AIX 32-Bit Support for the X/Open UNIX95 Specification

Beginning with AIX Version 4.2, the operating system is designed to support the X/Open UNIX95
Specification for portability of UNIX-based operating systems. Many new interfaces, and some current ones
have been added or enhanced to meet this specification. Beginning with SWsym.AIX42;, AlX is even more
open and portable for applications.

At the same time, compatibility with previous AlX releases is preserved. This is accomplished by the creatio
of a new environment variable, which can be used to set the system environment on a per—system, per—use
or per—process basis.

To determine the proper way to develop a UNIX95—portable application, you may need to refer to the
X/Open UNIX95 Specification, which can be obtained on a CD—ROM by ordering the printed obipy of
Version 4.3 Commands Referenoeder number SBOF-1877, or by orderidg Solo: How to Implement
and Go Solo with the Single Unix Specificatiorder number SR28-5705, a book which includes the
X/Open UNIX95 Specification on a CD-ROM.

About This Book 11

Commands Reference, Volume 2

AIX 32-Bit and 64-Bit Support for the UNIX98 Specification

Beginning with AIX Version 4.3, the operating system is designed to support the X/Open UNIX98
Specification for portability of UNIX—based operating systems. Many new interfaces, and some current ones
have been added or enhanced to meet this specification. Making AlX Version 4.3 even more open and
portable for applications.

At the same time, compatibility with previous AlX releases is preserved. This is accomplished by the creatio
of a new environment variable, which can be used to set the system environment on a per—-system, per—use
or per—process basis.

To determine the proper way to develop a UNIX98-portable application, you may need to refer to the
X/Open UNIX98 Specification, which can be obtained on a CD-ROM by ordering the printed cdip§ of
Version 4.3 Commands Referenesler number SBOF-1877, or by order{dg Solo: How to Implement
and Go Solo with the Single Unix Specificatiorder number SR28-5705, a book which includes the
X/Open UNIX98 Specification on a CD-ROM.

Related Information
The following books contain information about or related to commands:

« AIX and Related Products Documentation Overyi@vwder Number SC23-2456.

« AIX Version 4.3 Files Referend@rder Number SC23-4168.

« AIX Version 4.3 General Programming Concepts: Writing and Debugging Prog@mer Number
SC23-4128.

» AIX Version 4.3 Problem Solving Guide and Refere@cder Number SC23-4123.

» AIX Version 4.3 System Management Guide: Communications and Net@uai&s Number
SC23-4127.

« AIX Version 4.3 System Management Guide: Operating System and DévitersNumber
SC23-4126.

« AIX Version 4.3 System User's Guide: Operating System and DeYickes Number SC23-4121.

» AIX Version 4.3 System User's Guide: Communications and Nefv@nder Number SC23-4122.

» AIX Versions 3.2 and 4 Performance Tuning Gu@eler Number SC23-2365.

» AIX Version 4.3 Guide to Printers and Printif@rder Number SC23-4130.

« AIX Version 4.3 Kernel Extensions and Device Support Programming ConOegés Number
SC23-4125.

« 5080 Graphics System Installation, Operation, and Problem Determin&iaier Number
GA23-2063.

« AIX Version 4.3 Technical Reference: Base Operating System and Extensions VOldee 1
Number SC23-4159

« AIX Version 4.3 Technical Reference: Base Operating System and Extensions V@udez 2
Number SC23-4160.

« AIX Version 4.3 Technical Reference: Communications Volyi@eder Number SC23-4161.

« AIX Version 4.3 Technical Reference: Communications Volyi@ed2zr Number SC23-4162

« AIX Version 4.3 Technical Reference: Kernel and Subsystems Val@rmet Number SC23-4163.

« AIX Version 4.3 Technical Reference: Kernel and Subsystems Val@re?2 Number SC23-4164.

» AIX Version 4 Keyboard Technical Referenmoeder Number SC23-2631.

« Distributed SMIT 2.2 for AIX: Guide and Referen@eder Number SC23-2667.

» 3270 Host Connection Program 2.1 and 1.3.3 for AIX: Guide and Refei@rmber Number
SC23-2563.

The following books also may be helpful:

e Lamb, Linda.Learning the vi EditarSebastopol, CA: O'Reilly & Associates, 1990. Order Number
SR28-4966.

About This Book 12

Commands Reference, Volume 2

* Dougherty, Dalesed & awk Sebastopol, CA: O'Reilly & Associates, 1990. Order Number
SR28-4968.

* Hunt, Craig.TCP/IP Network AdministratiarSebastopol, CA: O'Reilly & Associates, 1992. Order
Number SR23-7422.

Ordering Publications
You can order publications from your sales representative or from your point of sale.
To order additional copies of this book, use order number SC23-4116.

To order additional copies of all six volumesfdK Version 4.3 Commands Referenege Order Number
SBOF-1877.

UseAlX and Related Products Documentation Ovenvi@wnformation on related publications and how to
obtain them.

About This Book 13

Commands Reference, Volume 2

Alphabetical Listing of Commands

Alphabetical Listing of Commands

14

Commands Reference, Volume 2

dadmin Command

Purpose

Used to query and modify the status of the DHCP server.

Syntax

dadmin Command

one cf
s -T
oy 1 d IpAdcress [
- -1
“h hostna -5
-X 4
X 5
1 on
-t oft
< Vale
-q IpAddress
-+ IpAddress
-¢ Chentid

dadmin [-7] [-v] [-hHostham&[—f] —dIpAddresq [-X] =i | [-X] —s | —ton|off|Value| —glpAddresq
—plpAddresq —cClientld

Description

Thedadmin command lets the DHCP administrator query and modify the state of his DHCP servers'
databases. It gives the administrator the ability to locally or remotely query the DHCP server for the status o
an IP address, query for a pool of IP addresses, query for a client, delete an IP address mapping, refresh th
server, and change the server's tracing level.

Thedadmin command is backwards compatible with previous AlX release DHCP servers to list their IP
address status and refresh.

When querying for an IP address information,dadmin command returns the IP address's status. And
depending on the IP address's statusg#unin command may return the lease duration, start lease time,
last leased time, whether the server supports DNS A record updates for this IP address, and the client
identifier which is mapped to this IP address.

When querying for a client information, tdadmin command returns the client's IP address and IP address
status, the last time the client was given any IP address, the hosthame and domain name used by the client
and whether the server supports DNS A record updates for this IP address.

When modifying the server tracing level, thedmin command sets and returns the server tracing level in the
form of a tracing mask. This mask represents a bitstring where each bit represents whether a specific log ite
is being traced by the server (see DHCP Server Configuration File in the online documentation). From least
significant to most significant order, these log items are LOG_NONE, LOG_SYSERR, LOG_OBJERR,
LOG_PROTOCOL and LOG_PROTERR (same value), LOG_WARN, AND LOG_CONFIG (same value),
LOG_EVENT, and LOG_PARSEERR (same value), LOG_ACTION, LOG_INFM, LOG_ACNTING,
LOG_STAT, LOG_TRACE, LOG_START, and LOG_RTRACE.

dadmin Command 15

Commands Reference, Volume 2

Note: LOG_START cannot be disabled. This implies a mask range from 0x0800 through
Ox1FFF.

Flags

—cClientld Returns the status for a specific client that may be known to the DHCP server.
Clientld represents the client identifier that a DHCP client used to identify itself, or the field
can either be specified as hexidecimal characters only, or in the TYPE-STRING representatior
used by the DHCP server.
—dIpAddressDeletes the lease information associated with IP adtjyésiElress As a result, the address
will be moved to the FREE state and be available for binding once again.
—f To be used with thed flag. The—f flag forces the deletion of the address without any
prompting. Deletes the lease information associated with IP.

—hHostnameUsed to specify the destination DHCP sertHastnamecan either be a name or IP address.

=i Reinitializes the DHCP server. This flag signals the server to sync its databases and restarts by
rereading the configuration file.

—plpAddressReturns the status of each address in a sulpiatdresds used to identify the subnet to a list.
—glpAddressReturns the status of a specific IP address.
-s Returns the status of each address in the DHCP server's configured pools.

-t Changes the tracing level of the DHCP server. Trace values are reported in a hexidecimal

on|off[Value format representing the tracing mask in use on the sé&fakrecan be specified as either a
decimal or hexidecimal format. The keyworsandoff enable or disable a single bit at a time
in the tracing mask.

-V Executes the command in verbose mode.

-X Use Version 1 of thdadmin protocol. The-x flag is used to connect to previous AlX release
DHCP servers and is only valid for theand-s flags.

-? Displays the usage syntax.

Exit Status

0 Successful completion.
>0 An error occurred.

Security
To secure connections from the dadmin clients, the DHCP server only allows connections from the server
itself or from remote machines that are included in the superusesssfile. To prevent ordinary users

from modifying the DHCP server's address mappings, the administrator should ensure that the execution of
thedadmin command is limited to the proper users on those machines that are allowed access.

Files

/usr/sbin/dadmin Contains the dadmin command.

Related Information

The.rhostsfile format, DHCP Server Configuration File in theAlX Version 4.3 Files Reference

Thedhcpsddaemon.

TCP/IP Address and Parameter Assignment — Dynamic Host Configuration Protocol (DHCRIX the

dadmin Command 16

Commands Reference, Volume 2

Version 4.3 System Management Guide: Communications and Networks

The SMIT Interface for TCP/IP in th&IX Version 4.3 System Management Guide: Communications and
Networks

TCP/IP Daemons in th&lX Version 4.3 System Management Guide: Communications and Networks

dadmin Command 17

Commands Reference, Volume 2

date Command

Purpose
Displays or sets the date or time.
Syntax

To Set the Date and Time as Root User

date LOMMEnd

Sets e Date and Time as Aoot User

- date
Date

/usr/bin/date [-n] [—u] [Date] [+FieldDescriptor ..]

+ FuidDezcripdor

To Display the Date and Time

Displays the Dale and Time

= duie —L
v + FwidDazcripior

{usr/bin/date [—u] [+FieldDescriptor...]

Description
Attention: Do not change the date when the system is running with more than one user.

Thedate command writes the current date and time to standard output if called with no flags or with a flag
list that begins with & (plus sign). Otherwise, it sets the current date. Only a root user can change the date
and time. Thelate command prints out the usage message on any unrecognized flags or input.

The following formats can be used when setting the date withdtesparameter:

« mmddHHMMccyy]
e mmddHHMMyy]

The variables to thBate parameter are defined as follows:

mm Specifies the month number.

dd Specifies the number of the day in the month.

HH Specifies the hour in the day (using a 24-hour clock).
MM Specifies the minute number.

cc Specifies the century and is the first two digits of the year.

Note:If you do not specify a century, values in the range 69 to 99 refer to the twentieth century, 1969 to

1999 inclusive, and values in the range 00 to 68 refer to years in the twenty—first century, 2000 to 2068
inclusive.

date Command 18

Commands Reference, Volume 2

yy Specifies the last two numbers of the year.

The current number of seconds and the current year are used as default values 88enytheariables are
not specified. The system operates in Coordinated Universal Time (CUT).

If you follow thedate command with & (plus sign) and a field descriptor, you can control the output of the
command. You must precede each field descriptor with(gercent sign). The system replaces the field
descriptor with the specified value. Enter a literal % as %% (two percent signglafBloemmand copies

any other characters to the output without change dakeecommand always ends the string with a new-line
character.

Flags

—n Does not set the time globally on all machines in a local area network that have their clocks
synchronized.

—u Displays or sets the time in Coordinated Universal Time (CUT).
Field Descriptors

%a Displays the locale's abbreviated weekday name.

%A Displays the locale's full weekday name.

%b Displays the locale's abbreviated month name.

%B Displays the locale's full month name.

%c Displays the locale's appropriate date and time representation. This is the default.

%C Displays the century as a decimal number (00-99). A year is divided by 100 and truncated to an intege

%d Displays the day of the month as a decimal number (01-31). In a two—digit field, a 0 is used as leading
space fill.

%D Displays the date in the format equivalen¥m/%d/%y .

%e Displays the day of the month as a decimal number (1-31). In a two—digit field, a blank space is used
as leading space fill.

%h Displays the locale's abbreviated month name (a synony®alir
%H Displays the hour (24—hour clock) as a decimal number (00-23).
%I Displays the hour (12-hour clock) as a decimal number (01-12).
%j Displays the day of year as a decimal number (001-366).

%m Displays the month of year as a decimal number (01-12).

%M Displays the minutes as a decimal number (00-59).

%n Inserts a <new-line> character.

%p Displays the locale's equivalent of either AM or PM.

%r Displays 12—hour clock time (01-12) using the AM—PM notation; in the POSIX locale, this is
equivalent td%1:%M:%S %p .

%S Displays the seconds as a decimal number (00— 59).

%t Inserts a <tab> character.

%T Displays the 24—hour clock (00-23) in the format equivaletHOMM:SS .

%u Displays the weekday as a decimal number from 1-7 (Sunday = 7). RefePtuvtfield descriptor.

%U Displays week of the year(Sunday as the first day of the week) as a decimal number[00 — 53] . All day:
in a new year preceding the first Sunday are considered to be in week 0.

%V Displays the week of the year as a decimal number from 01-53 (Monday is used as the first day of the
week). If the week containing January 1 has four or more days in the new year, then it is considered
week 01; otherwise, it is week 53 of the previous year.

date Command 19

Commands Reference, Volume 2

%w Displays the weekday as a decimal number from 0-6 (Sunday = 0). Refefta tied descriptor.

%W Displays the week number of the year as a decimal number (00-53) counting Monday as the first day
of the week.

%x Displays the locale's appropriate date representation.

%X Displays the locale's appropriate time representation.

%y Displays the last two numbers of the year (00-99).

%Y Displays the year with century as a decimal number.

%Z Displays the time—zone name, or no characters if no time zone is determinable.
%% Displays a % (percent sign) character.

Modified Field Descriptors

The%E and%O field descriptors can be modified to indicate a different format or specification, as
described in.C_TIME Category for the Locale Definition Source File FormaAiK Version 4.3 Files
Referencelf the corresponding keyword (see #ra, era_year, era_d_fmt, andalt_digits keywords) is not
specified or not supported for the current locale, the unmodified field descriptor value is used.

%Ec Displays the locale's alternative appropriate date and time representation.

%EC Displays the name of the base year (or other time period) in the locale's alternative representation.
%Ex Displays the locale's alternative date representation.

%EX Displays the locale's alternative time representation.

%Ey Displays the offset from tHiEC field descriptor (year only) in the locale's alternative representation.
%EY Displays the full alternative year representation.

%0d Displays the day of the month using the locale's alternative numeric symbols.

%0e Displays the day of the month using the locale's alternative numeric symbols.

%OH Displays the hour (24-hour clock) using the locale's alternative numeric symbols.

%Ol Displays the hour (12—-hour clock) using the locale's alternative numeric symbols.

%0Om Displays the month using the locale's alternative numeric symbols.

%OM Displays minutes using the locale's alternative numeric symbols.

%0S Displays seconds using the locale's alternative numeric symbols.

%0u Displays the weekday as a number in the locale's alternative representation (Monday=1).

%0U Displays the week number of the year using the locale's alternative numeric symbols. Sunday is
considered the first day of the week.

%0V Displays the week number of the year using the locale's alternative numeric symbols. Monday is
considered the first day of the week.

%Ow Displays the weekday as a number in the locale's alternative representation (Sunday =0).

%O0OW Displays the week number of the year using the locale's alternative numeric symbols. Monday is
considered the first day of the week.

%0y Displays the year (offset from %C) in alternative representation.

Exit Status
This command returns the following exit values:

0 The date was written successfully.
>0 An error occurred.

date Command 20

Examples

Commands Reference, Volume 2

1. To display current date and time, enter:

date

2. To set the date and time, enter:

date 0217142590

This sets the date and time to Sat Feb 17 14:25:00 CST 1990.

Note: You must have root authority to change the date and time.

3. To display the date and time in a specified format, enter:

date +"%r %a %d %h %y (Julian Date: %;j)"

This displays the date shown in Example 2 as:

02:25:03 PM Fri 17 Feb 90 (Julian Date: 048)

Environment Variables

The following environment variables affect the execution ofidte command.

LANG
LC_ALL

LC_CTYPE

Determines the locale to use when hioth ALL and the corresponding environment

variable (beginning with.C) do not specify a locale.

Determines the locale to be used to override any values for locale categories specified by
the setting oL ANG or any environment variable beginning wit@@_ .

Determines the locale for the interpretation of sequences of bytes of text data as charactelr
(for example, single versus multibyte character in an argument).

LC_MESSAGES Determines the language in which messages should be written.

LC_TIME
NLSPATH
TZ

Determines the contents of date and time strings writtatatsy
Determines the location of message catalogues for the proces&iBgMESSAGES.

Specifies the time zone in which the time and date are written, unless tiption is
specified. If theTZ variable is not set and thel flag is not specified, an unspecified
system default time zone is used.

Related Information

Theenvironment file.

Thelocaltime subroutinestrftime subroutinetime subroutine.

LC_TIME Category for the Locale Definition Source File FormaAiX Version 4.3 Files Reference

Understanding Locale iAlX Version 4.3 System Management Concepts: Operating System and
Devicesdiscusses locale values.

date Command

21

Commands Reference, Volume 2

dbx Command

Purpose

Provides an environment to debug and run programs under the operating system.

Syntax

dbx Command

- em—L LL] |
-8 ProcessiD ObjectFile
¢ CommandFile
- Directory Corefile
=E DabwpEnvinomess
—d NestingDepth
-F
-k
-u
e
=X

dbx [—aProcessID] [—-c CommandFild [—d NestingDepth [—I Directory] [—E DebugEnvironmenit][
k][-u][-F][-r][—-x][ObjectFile[CoreFile]]

Description

Thedbx command provides a symbolic debug program for C, C++, Pascal, and FORTRAN programs,
allowing you to carry out operations such as the following:

« Examine object and core files.

 Provide a controlled environment for running a program.

« Set breakpoints at selected statements or run the program one line at a time.
« Debug using symbolic variables and display them in their correct format.

TheObjectFileparameter is an object (executable) file produced by a compiler. Usg thenerate symbol
table) flag when compiling your program to produce the informatiodlikecommand needs.

Note: The—g flag of thecc command should be used when the object file is compiled. If the
—g flag is not used or if symbol references are removed fromcibié file with the
strip command, the symbolic capabilities of thiex command are limited.

If the —c flag is not specified, thebx command checks for.dbxinit file in the user'$HOME directory. It

then checks for albxinit file in the user's current directory. lf@bxinit file exists in the current directory,

that file overrides thedbxinit file in the user$HOME directory. If a.dbxinit file exists in the user's

$HOME directory or current directory, that file's subcommands run at the beginning of the debug session.
Use an editor to create@bxinit file.

If ObjectFileis not specified, thedbx asks for the name of the object file to be examined. The default is
a.out. If the core file exists in the current directory oiGoreFile parameter is specified, thdbx reports the
location where the program faulted. Variables, registers, and memory held in the core image may be
examined until execution @bjectFilebegins. At that point thebx debug program prompts for commands.

dbx Command 22

Commands Reference, Volume 2

Expression Handling

Thedbx program can display a wide range of expressions. You can specify expressiorbindbbug
program with a common subset of C and Pascal syntax, with some FORTRAN extensions.

The following operators are valid in the debug program:

* (asterisk) or* (caret) Denotes indirection or pointer dereferencing.

[] (brackets) of) (parentheses) Denotes subscript array expressions.

. (period) Use this field reference operator with pointers and structures. This makes
the C operator —> (arrow) unnecessary, although it is allowed.

& (ampersand) Gets the address of a variable.

.. (two periods) Separates the upper and lower bounds when specifying a subsection of an

array. For examplen[1..4].
The following types of operations are valid in expressions in the debug program:

Algebraic =, -, *,/ (floating division),div (integral division)mod, exp (exponentiation)
Bitwise -, |, bitand, xor, ~. <<, >>

Logical or, and, not, Il , &&

Comparisork, >, <=, >=, < >orl=, = or==

Other (typename),sizeof

Logical and comparison expressions are allowed as conditistsgandtrace.
Expression types are checked. You override an expression type by using a renaming or casting operator. Tl

three forms of type renaming argpename(ExpressigrgxpressiofTypenamgeand(Typename) Expression
The following is an example where th@ariable is an integer with value 97:

(dbx) print x

97

(dbx) print char (x), x \ char, (char) x, x
‘a''a''a' 97

Command Line Editing

Thedbx commands provides a command line editing feature similar to those provide by KorniShetle
providesvi-like editing features, whilemacsmode gives you controls similar émnacs

These features can be turned on by udimgsubcommandet —oor set edit To turn on vi-style
command-line editing, you would type the subcommeeatdedit vior set —o vi

You can also use tHeEDITOR environment variable to set the editing mode.

Thedbx command saves commands entered to a historglbbenistory. If the
DBXHISTFILE environment variable is not set, the history file useSHOME/.dbxhistory .

By default,dbx saves the text of the last 128 commands enteredDBX&ISTSIZE environment variable
can be used to increase this limit.

Flags

—aProcessID Attaches the debug program to a process that is running. To attach the debug

dbx Command 23

Commands Reference, Volume 2

program, you need authority to use Kile command on this process. Use the

ps command to determine the process ID. If you have permissiodbxherogram
interrupts the process, determines the full name of the object file, reads in the
symbolic information, and prompts for commands.

—c CommandFile Runs thalbx subcommands in the file before reading from standard input. The
specified file in thefHOME directory is processed first; then the file in the current
directory is processed. The command file in the current directory overrides the
command file in th&HOME directory. If the specified file does not exist in either
the$HOME directory or the current directory, a warning message is displayed. The
sourcesubcommand can be used oncedbe program is started.

—d NestingDepth Sets the limit for the nesting of program blocks. The default nesting depth limit is 25.
—E DebugEnvironmen$pecifies the environment variable for the debug program.

-F Can be used to turn off the lazy read mode and malkabtheommand read all
symbols at startup time. By default, lazy reading mode is on: it reads only required
symbol table information on initiation abx session. In this moddpx will not
read local variables and types whose symbolic information has not been read.
Therefore, commands suchwlsereis i may not list all instances of the local
variablei in every function.

—I| Directory (Uppercase i) Includes directory specified by Eheectory variable in the list of
directories searched for source files. The default is to look for source files in the
following directories:

» The directory the source file was located in when it was compiled. This
directory is searched only if the compiler placed the source path in the object.

* The current directory.

» The directory where the program is currently located.

-k Maps memory addresses; this is useful for kernel debugging.

-r Runs the object file immediately. If it terminates successfullydkbxedebug
program is exited. Otherwise, the debug program is entered and the reason for
termination is reported.

Note: Unless-r is specified, thelbx command prompts the user
and waits for a command.

-u Causes thdbx command to prefix file name symbols with an @ (at sign). This flag
reduces the possibility of ambiguous symbol names.
-X Prevents thelbx command from stripping _ (trailing underscore) characters from

symbols originating in FORTRAN source code. This flag allds to distinguish
between symbols which are identical except for an underscore character, such as
XXX andxxx_ .

Examples

1. The following example explains how to start dfsx debug program simultaneously with a process.
The example uses a program caladhp.c This C program is first compiled with the flag to
produce an object file that includes symbolic table references. In this case, the program is named
samp

$ cc —g samp.c —0 samp

When the prograrsampis run, the operating system reports a bus error and writes a core image to
your current working directory as follows:

$ samp
Bus Error — core dumped

To determine the location where the error occurred, enter:

dbx Command 24

Commands Reference, Volume 2

$ dbx samp

The system returns the following message:

dbx version 3.1
Type 'help’ for help.
reading symbolic information . . . [
using memory image in core]
25 X[i]=0;
(dbx) quit

2. This example explains how to attadihx to a process. This example uses the following program,
looper.c
main()
{
int i,x[10];

for (i=0;i<10;);
}

The program will never terminate becausenever incremented. Compltsoper.c with the—g flag
to get symbolic debugging capability:

$ cc —g looper.c —o looper

Runlooper from the command line and perform the following steps to atthxtio the program
while it is running:

a. To attacldbx to looper, you must determine the process ID. If you did notlooper as a
background process, you must have another Xwindow open. From this Xwindow , enter:

ps —u UserlD

whereUserlID is your login ID. All active processes that belong to you are displayed as
follows:

PID TTY TIME COMMAND
68 console 0:04 sh
467 Ift3 10:48 looper

In this example the process ID associated \oitiper is 467 .

b. To attachdbx to looper, enter:

$ dbx —a 467
The system returns the following message:

Waiting to attach to process 467 . ..
Successfully attached to /tmp/looper.
dbx is initializing

Type 'help’ for help.

reading symbolic information . . .

attached in main at line 5

5 for(i=0;i<10;);

(dbx)

You can now query and debug the process as if it had been originally startetbxvith

dbx Command 25

Commands Reference, Volume 2

3. To add directories to the list of directories to be searched for the source file of an executable file
objefile, you can enter:

$dbx —I /home/user/src =1 /home/group/src
objfile

Theusesubcommand may be used for this function aitpeis started. Thesecommand resets the
list of directories, whereas th¢ flag adds a directory to the list.

4. To use ther flag, enter:

$ dbx -r samp

The system returns the following message:

Entering debug program . . .
dbx version 3.1
Type 'help' for help.
reading symbolic information . . .
bus error in main at line 25

25 X[i]=0;
(dbx) quit

The-r flag allows you to examine the state of your process in memory even though a core image is
not taken.

5. To specify the environment variables for the debug program, enter:
dbx —E LIBPATH=/home/user/lib -E LANG=Ja_JP objfile

dbx Subcommands

Note: The subcommands can only be used while runninghikedebug program.

/ Searches forward in the current source file for a pattern.

? Searches backward in the current source file for a pattern.

alias Creates aliases for dbx subcommands.

assign Assigns a value to a variable.

attribute Displays information about all or selected attributes objects.

call Runs the object code associated with the named procedure or function.

case Changes how the dbx debug program interprets symbols.

catch Starts trapping a signal before that signal is sent to the application
program.

clear Removes all stops at a given source line.

cleari Removes all breakpoints at an address.

condition Displays information about all or selected condition variables.

cont Continues application program execution from the current stopping point
until the program finishes or another breakpoint is encountered.

delete Removes the traces and stops corresponding to the specified event
numbers.

detach Continues execution of application and exits the debug program.

display memory
down

dump

edit

dbx Command

Displays the contents of memory.

Moves the current function down the stack.

Displays the names and values of variables in the specified procedure.
Starts an editor on the specified file.

26

file
func
goto
gotoi
help
ignore

list

listi

map
move
multproc
mutex
next
nexti
print

prompt
quit
registers

rerun
return

rwlock
run
screen
set

sh
skip

source
status
step
stepi
stop
stopi
thread
trace
tracei
unalias
unset
up

use
whatis
where

dbx Command

Commands Reference, Volume 2

Changes the current source file to the specified file.

Changes the current function to the specified procedure or function.
Causes the specified source line to be the next line run.

Changes the program counter address.

Displays help information for dbx subcommands or topics.

Stops trapping a signal before that signal is sent to the application
program.

Displays lines of the current source file.

Lists instructions from the application program.

Displays information about load characteristics of the application.
Changes the next line to be displayed.

Enables or disables multiprocess debugging.

Displays information about all or selected mutexes.

Runs the application program up to the next source line.

Runs the application program up to the next machine instruction.

Prints the value of an expression or runs a procedure and prints the return

code of that procedure.
Changes the dbx command prompt.
Stops the dbx debug program.

Displays the values of all general-purpose registers, system-control
registers, floating—point registers, and the current instruction register.

Begins execution of an application with the previous arguments.

Continues running the application program until a return to the specified
procedure is reached.

Displays information about the rwlocks.

Begins running an application.

Opens an Xwindow for dbx command interaction.
Defines a value for a dbx debug program variable.
Passes a command to the shell to be run.

Continues running the application program from the current stopping
point.

Reads dbx subcommands from a file.

Displays the active trace and stop subcommands.

Runs one source line.

Runs one machine instruction.

Stops running of the application program.

Sets a stop at a specified location.

Displays and controls threads.

Prints tracing information.

Turns on tracing.

Removes an alias.

Deletes a variable.

Moves the current function up the stack.

Sets the list of directories to be searched when looking for source files.
Displays the declaration of application program components.
Displays a list of active procedures and functions.

27

Commands Reference, Volume 2

whereis Displays the full qualifications of all the symbols whose names match the
specified identifier.
which Displays the full qualification of the given identifier.

/ Subcommand
/[RegularExpressiop/]]

The/ subcommand searches forward in the current source file for the pattern specified by the
RegularExpressioparameter. Entering tiesubcommand with no arguments caudi®sto search forward
for the previous regular expression. The search wraps around the end of the file.

Examples

1. To search forward in the current source file for the number 12, enter:

/12

2. To repeat the previous search, enter:

/

See the? (search) subcommand and tegcmp subroutine.

? Subcommand

? [RegularExpressioh?]]

The? subcommand searches backward in the current source file for the pattern specified by the
RegularExpressioparameter. Entering tiiesubcommand with no arguments causeslthxecommand to
search backwards for the previous regular expression. The search wraps around the end of the file.

Examples

1. To search backward in the current source file for the lettenter:

?z

2. To repeat the previous search, enter:

?
See thd (search) subcommand and tegcmp subroutine.
alias Subcommand
alias [Name[[(Arglist)] String| Subcommandl]
Thealias subcommand creates aliasesdbx subcommands. Thdameparameter is the alias being created.
The Stringparameter is a series dbx subcommands that, after the execution of this subcommand, can be
referred to byName If the alias subcommand is used without parameters, it displays all current aliases.

Examples

1. To substituter for rerun , enter:

alias rr rerun

2. To run the two subcommanpisnt n ~ andstep wheneveprintandstep is typed at the

dbx Command 28

Commands Reference, Volume 2

command line, enter:

alias printandstep "print n; step"

3. Thealias subcommand can also be used as a limited macro facility. For example:

(dbx) alias px(n) "set $hexints; print n; unset $hexints"

(dbx) alias a(x,y) "print symname[x]->symvalue._n_n.name.ld[y]"
(dbx) px(126)

Ox7e

In this example, the aligsx prints a value in hexadecimal without permanently affecting the
debugging environment.

assign Subcommand
assigrVariable=Expression

Theassignsubcommand assigns the value specified b¥Ekpessiorparameter to the variable specified by
theVariable parameter.

Examples

1. To assign a value &fto thex variable, enter:
assignx=5

2. To assign the value of tlyevariable to thex variable, enter:
assignx =y

3. To assign the character valge to thez variable, enter:
assign z = '7'

4. To assign the boolean valisdse to the logical type variablB, enter:
assign B = false

5. To assign theHello World" string to a character point¥r enter:

assign Y = "Hello World"

6. To disable type checking, set ttlex debug program variabfunsafeassign by entering:

set $unsafeassign
See Displaying and Modifying Variables.
attribute Subcommand
attribute [AttributeNumber..]

Theattribute subcommand displays information about the user thread, mutex, or condition attributes objects
defined by theAttributeNumbelparameters. If no parameters are specified, all attributes objects are listed.

For each attributes object listed, the following information is displayed:

attr Indicates the symbolic name of the attributes object, in the $amitributeNumber
obj_addr Indicates the address of the attributes object.
type Indicates the type of the attributes object; this cathbe mutex , orcond for user threads,

dbx Command 29

Commands Reference, Volume 2

mutexes, and condition variables respectively.

state Indicates the state of the attributes object. This caralig orinval
stack Indicates the stacksize attribute of a thread attributes object.
scope Indicates the scope attribute of a thread attributes object. This determines the contention scope
of the thread, and defines the set of threads with which it must contend for processing resources
The value can bgys orpro for system or process contention scope.
prio Indicates the priority attribute of a thread attributes object.
sched Indicates the schedpolicy attribute of a thread attributes object. This attribute controls
scheduling policy, and can fieo ,rr (round robin), oother .
p-shar Indicates the process—shared attribute of a mutex or condition attribute object. A mutex or
condition is process—shared if it can be accessed by threads belonging to different processes.
The value can bges orno.
protocol Indicates the protocol attribute of a mutex. This attribute determines the effect of holding the
mutex on a thread's priority. The value cambeprio , prio , orprotect
Notes:
1. Theprint subcommand of thebx debug program recognizes symbolic attribute
names, and can be used to display the status of the corresponding object.
2. The available attributes depend on the implementation of POSIX options.
Examples

1. To list information about all attributes, enter:

attribute

The output is similar to:

attr

obj_addr type state stack scope prio

sched p-shar

$al
$a2
$a3
$a4

0x200035¢8 mutex valid no
0x20003628 cond valid no
0x200037c8 thr valid 57344 sys 126 other
0x200050f8 thr valid 57344 pro 126 other

2. To list information about attributes 1 and 3, enter:

attribute 1 3

The output is similar to:

attr

obj_addr type state stack scope prio

sched p-shar

$al
$a3

0x200035¢8 mutex valid no
0x200037c8 thr valid 57344 sys 126 other

See theondition subcommandnutex subcommandyrint subcommand, antiread subcommand for the
dbx command.

Also, see Creating Threads, Using Mutexes, and Using Condition Varial#{€s Wersion 4.3 General
Programming Concepts: Writing and Debugging Programs

dbx Command 30

Commands Reference, Volume 2

call Subcommand
call Procedure([Parameterq)

Thecall subcommand runs the procedure specified bytbeedureparameter. The return code is not
printed. If any parameters are specified, they are passed to the procedure being run.

Example

To call a command while runnirdbx , enter:

(dbx) call printf("hello™)
hello

printf returns successfully.
case Subcommand
case[default | mixed | lower | upper]

Thecasesubcommand changes how th#x debug program interprets symbols. The default handling of
symbols is based on the current language. If the current language is C, C++, or undefined, the symbols are
not folded,; if the current language is FORTRAN or Pascal, the symbols are folded to lowercase. Use this
subcommand if a symbol needs to be interpreted in a way not consistent with the current language.

Entering thecasesubcommand with no parameters displays the current case mode.

Flags

default Varies with the current language.

mixed Causes symbols to be interpreted as they actually appear.
lower Causes symbols to be interpreted as lowercase.

upper Causes symbols to be interpreted as uppercase.

Examples

1. To display the current case mode, enter:

case

2. To instrucdbx to interpret symbols as they actually appear, enter:

case mixed

3. To instrucdbx to interpret symbols as uppercase, enter:

case upper
See Folding Variables to Lowercase and Uppercase.

catch Subcommand

catch[SignalNumbef SignalNamg

Thecatch subcommand starts the trapping of a specified signal before that signal is sent to the application

program. This subcommand is useful when the application program being debugged handles signals such a
interrupts. The signal to be trapped can be specified by number or by name using eSlgraiNumbenr

dbx Command 31

Commands Reference, Volume 2

the SignalNameparameter, respectively. Signal names are case insensitive, &1 theefix is optional. If
neither theSignalNumbenor theSignalNameparameter is specified, all signals are trapped by default except
the SIGHUP, SIGCLD, SIGALARM , andSIGKILL signals. If no arguments are specified, the current list
of signals to be caught is displayed.

Examples

1. To display a current list of signals to be caughtiitny, enter:

catch

2. To trap signabIGALARM enter:

catch SIGALARM
See thagnore subcommand and Handling Signals.
clear Subcommand
clear SourcelLine

Theclear subcommand removes all stops at a given source linesdireeLingparameter can be specified
in two formats:

« As an integer
« As a file name string followed by a : (colon) and an integer

Examples

To remove breakpoints set at lih@, enter:

clear 19

Thecleari subcommand andeletesubcommand. Also, see Setting and Deleting BreakpointsAiXin
General Programming Concepts: Writing and Debugging Programs

cleari Subcommand

cleariAddress

Thecleari subcommand clears all the breakpoints at the address specifiedAzjdtiesgparameter.
Examples

1. To remove a breakpoint set at addfes)0001b4 , enter:

cleari 0x100001b4

2. To remove a breakpoint set at thain() procedure address, enter:

cleari &main

See thelear subcommand, theéeletesubcommand, and Setting and Deleting Breakpoints AdXnGeneral
Programming Concepts: Writing and Debugging Programs

dbx Command 32

Commands Reference, Volume 2

condition Subcommand
condition [wait | nowait | ConditionNumber..]

Thecondition subcommand displays information about one or more condition variables. If one or more
ConditionNumbeparameters are given, thendition subcommand displays information about the specified
condition variables. If no flags or parameters are specifiedoiéition subcommand lists all condition
variables.

The information listed for each condition is as follows:

cv Indicates the symbolic name of the condition variable, in the $or@onditionNumber
obj_addr Indicates the memory address of the condition variable.

num_wait Indicates the number of threads waiting on the condition variable.

waiters Lists the user threads which are waiting on the condition variable.

Note: Theprint subcommand of thebx debug program recognizes symbolic condition
variable names, and can be used to display the status of the corresponding object.

Flags

wait Displays condition variables which have waiting threads.
nowait Displays condition variables which have no waiting threads.

Examples

1. To display information about all condition variables, enter:

condition

2. To display information about all condition variables which have waiting threads, enter:

condition wait

3. To display information about the condition variable 3, enter:

condition 3
The output is similar to:

cv obj_addr num_wait waiters
$c3 0x20003290 0

See thattribute subcommandnutex subcommandyrint subcommand, anttiread subcommand.

Also, see Using Condition VariablesAiX Version 4.3 General Programming Concepts: Writing and
Debugging Programs

cont Subcommand

cont [SignalNumbet SignalNamg

Thecont subcommand continues the execution of the application program from the current stopping point
until either the program finishes or another breakpoint is reached. If a signal is specified, either by the
number specified in thBignalNumbeparameter or by the name specified in$ignalNameyarameter, the

program continues as if that signal had been received. Signal names are not case sensiti&@ipdetive
is optional. If no signal is specified, the program continues as if it had not been stopped.

dbx Command 33

Commands Reference, Volume 2

Examples

1. To continue program execution from current stopping point, enter:
cont

2. To continue program execution as though it received the signal SIGQUIT, enter:
cont SIGQUIT

See thaletach subcommand for theébx command, thgoto subcommand for thébx command, the

next subcommand for thabx command, thekip subcommand for theébx command, thetep subcommand

for thedbx command.

delete Subcommand

delete{ Number... |all }

Thedeletesubcommand removes traces and stops from the application program. The traces and stops to be
removed can be specified through Bemberparameters, or all traces and stops can be removed by using the
all flag. Use thestatus subcommand to display the numbers associated by the dbx debug program with a
trace or stop.

Flag

all Removes all traces and stops.

Examples

1. To remove all traces and stops from the application program, enter:
delete all

2. To remove traces and stops for event number 4, enter:
delete 4

See thelear subcommand, theleari subcommand, thetatus subcommand and Setting and Deleting
Breakpoints in BkSym.Concepts: Writing and Debugging Programs.

detach Subcommand
detach[SignalNumbet SignalNamg

Thedetach subcommand continues the execution of the application program and exits the debug program. £
signal can be specified either by:

* Name, using th&ignalNameparameter
* Number, using th&ignalNumbeparameter

Signal names are not case sensitive an&tBeprefix is optional.

If a signal is specified, the program continues as if it had received that signal. If no signal is
specified, the program continues as if no stop had occurred.

Examples

1. To continue execution of the application and @ik, enter:
detach

2. To exitdbx and continue execution of the application as though it received SUBREQUEST

dbx Command 34

Commands Reference, Volume 2

enter:
detach SIGREQUEST

See Using the dbx Debug Program.
display memory Subcommand
{ Address,Addres$ Address[Count] } [Mode] [>File]

Thedisplay memory subcommand, which does not have a keyword to initiate the command, displays a
portion of memory controlled by the following factors:

The range of memory displayed is controlled by specifying either:
« Two Addressparameters, where all lines between those two addresses are displayed,
OR

* OneAddresgparameter where the display starts a@bantthat determines the number of lines
displayed fromAddress.

Specify symbolic addresses by preceding the name with an & (ampersand). Addresses can be expressions
made up of other addresses and the operators + (plus sign), — (minus sign), and * (indirection). Any
expression enclosed in parentheses is interpreted as an address.

» The format in which the memory is displayed is controlled byMbde parameter. The default for
theModeparameter is the current mode. The initial valumotieis X. The possible modes include:
Prints a byte in octal.

Prints a byte as a character.

Prints a short word in decimal.

Prints a long word in decimal.

Prints a single—precision real number.

Prints a double—precision real number.

Prints a byte in hexadecimal.

i Prints the machine instruction.

lId Prints an 8-byte signed decimal number.

llu Prints an 8—-byte unsigned decimal number.

lIx Prints an 8-byte unsigned hexadecimal number.

llo Prints an 8-byte unsigned octal number.

Prints a short word in octal

Prints a long word in octal.

Prints an extended-precision floating—point number.
Prints a string of characters terminated by a null byte.
Prints a short word in hexadecimal.

Prints a long word in hexadecimal.

S *gao o

X X wa o

Flag

>File Redirects output to the specified file.

dbx Command 35

Commands Reference, Volume 2

Examples

1. To display one long word of memory content in hexadecimal starting at the du@#&160
enter:

0x3fffe460 / X

2. To display two bytes of memory content as characters starting at the varéatuleess, enter:

&yl 2c

3. To display the sixth through the eighth elements of the FORTRAN character string a_string, enter:

&a_string + 5, &a_string + 7/c

See Examining Memory AddressesAiX General Programming Concepts: Writing and Debugging
Programs

down Subcommand
down [Count]

The down subcommand moves the current function down the Sacktnumber of levels. The current
function is used for resolving names. The default foiGbantparameter is one.

Examples

1. To move one level down the stack, enter:

down

2. To move three levels down the stack, enter:

down 3

See thaup subcommand, thehere subcommand, and Displaying a Stack Trac&lX General
Programming Concepts: Writing and Debugging Programs

dump Subcommand

dump [Procedurg] [>File]

Thedump subcommand displays the names and values of all variables in the specified procedure. If
the Procedureparameter is(period), then all active variables are displayed. [fRtecedureparameter is

not specified, the current procedure is used. IBffite flag is used, the output is redirected to the specified
file.

Flags

>File Redirects output to the specified file.

Examples

1. To display names and values of variables in the current procedure, enter:

dump

2. To display names and values of variables irattte_countprocedure, enter:

dump add_count

dbx Command 36

Commands Reference, Volume 2

3. To redirect names and values of variables in the current procedurevéo.lise file, enter:

dump > var.list

See Displaying and Modifying Variables X General Programming Concepts: Writing and Debugging
Programs

edit Subcommand
edit [Procedure] File]

Theedit subcommand invokes an editor on the specified file. The file may be specified through the

File parameter or by specifying tiReocedureparameter, where the editor is invoked on the file containing
that procedure. If no file is specified, the editor is invoked on the current source file. The default is the
vi editor. Override the default by resetting 2ITOR environment variable to the name of the desired
editor.

Examples
1. To start an editor on the current source file, enter:
edit
2. To start an editor on theain.c file, enter:
edit main.c
3. To start an editor on the file containing tlee count() procedure, enter:
edit do_count

See thdist subcommand, the or vedit command. Also, see Changing the Current File or Procedure and
Displaying the Current File iAIX General Programming Concepts: Writing and Debugging Programs

file Subcommand
file [File]

Thefile subcommand changes the current source file to the file specified Bifelparameter; it does not
write to that file. Thd=ile parameter can specify a full path name to the file. IFileeparameter does not
specify a path, thdbx program tries to find the file by searching the use path. Fileeparameter is not
specified, thdile subcommand displays the name of the current source fildil@lsebcommand also
displays the full or relative path name of the file if the path is known.

Examples

1. To change the current source file tortain.c file, enter:
file main.c

2. To display the name of the current source file, enter:
file

See thdunc subcommand. Also, see Changing the Current File or Procedure and Displaying the Current
File in AIX General Programming Concepts: Writing and Debugging Programs

dbx Command 37

Commands Reference, Volume 2

func Subcommand

func [Procedure]

Thefunc subcommand changes the current function to the procedure or function specified by the
Procedureparameter. If th®rocedureparameter is not specified, the default current function is displayed.
Changing the current function implicitly changes the current source file to the file containing the new
function; the current scope used for name resolution is also changed.

Examples

1. To change the current function to thee count procedure, enter:

func do_count

2. To display the name of the current function, enter:

func

See thdile subcommand. Also, see Changing the Current File or Proced@i® @eneral Programming
Concepts: Writing and Debugging Programs

goto Subcommand
gotoSourcelLine
Thegotosubcommand causes the specified source line to be run next. Normally, the source line must be in

the same function as the current source line. To override this restriction, ssesitiecommand with the
$unsafegotaflag.

Example

To change the next line to be executed to line 6, enter:
goto 6

See theont subcommand, thgotoi subcommand, and tlsetsubcommand.
gotoi Subcommand
gotoi Address

Thegotoi subcommand changes the program counter address to the address specified by the
Addresgparameter.

Example

To change the program counter address to ad@rd€9002b4 , enter:

gotoi 0x100002b4

See thggoto subcommand.
help Subcommand
help [Subcomman{iTopic]

Thehelp subcommand displays help information diimx subcommands or topics, depending upon the

dbx Command 38

Commands Reference, Volume 2

parameter you specify. Entering thelp subcommand with thBubcommangarameter displays the syntax
statement and description of the specified subcommand. Enterihglgh®ubcommand with the
Topicparameter displays a detailed description of the specified topic. The following topics are available:

startup Lists dbx startup options.

execution Lists dbx subcommands related to program execution.

breakpoints Lists dbx subcommands related to breakpoints and traces.

files Listsdbx subcommands for accessing source files.

data Lists dbx subcommands for accessing program variables and data.
machine Lists descriptions oflbx subcommands for machine-level debugging.
environment Lists dbx subcommands for settirtipx configuration and environment.

threads Listsdbx subcommands for accessing thread-related objects.
expressions Describesibx expression syntax and operators.

scope Describes hovdbx resolves names from different scopes.
set_variablesLists dbx debug variables with a usage description.

usage Lists commordbx subcommands with brief descriptions.
Examples

1. To list all availablelbx subcommands and topics, enter:

help

2. To display the description of thdéx subcommandist, enter:

help list

3. To display the description of tkéx topicset_variables enter:
help set_variables
ignore Subcommand
ignore [SignalNumbet SignalNamg
Theignore subcommand stops the trapping of a specified signal before that signal is sent to the application
program. This subcommand is useful when the application program being debugged handles signals such a
interrupts.

The signal to be trapped can be specified by:

* Number, with theSignalNumbeparameter
* Name, with theSignalNameparameter

Signhal names are not case sensitive. Sl prefix is optional.

If neither theSignalNumbenor theSignalNameparameter is specified, all signals exceptS3HeHUP,

SIGCLD, SIGALRM , andSIGKILL signals are trapped by default. Tdiex debug program cannot ignore

the SIGTRAP signal if it comes from a process outside of the debugee. If no arguments are specified, the lis
of currently ignored signals will be displayed.

Example

To causealbx to ignore alarm clock time—out signals sent to the application program, enter:

dbx Command 39

Commands Reference, Volume 2

ignore alrm

See thecatch subcommand. Also, see Handling Signal&iX General Programming Concepts: Writing and
Debugging Programs

list Subcommand
list [Procedureg SourceLine—Expression,SourceLine—Expressioh)|

Thelist subcommand displays a specified number of lines of the source file. The number of lines displayed
are specified in one of two ways:

* By specifying a procedure using tReocedureparameter.

In this case, thést subcommand displays lines starting a few lines before the beginning of the specified
procedure and until the list window is filled.

* By specifying a starting and ending source line number usin§dbeceLine—Expressioparameter.

The SourceLine—-Expressioparameter should consist of a valid line number followed by an optional + (plus
sign), or — (minus sign), and an integer. In additioBparceLineof $ (dollar sign) may be used to denote the
current line number; SourceLineof @ (at sign) may be used to denote the next line number to be listed.

All lines from the first line number specified to the second line number specified, inclusive, are then
displayed.

If the second source line is omitted, the first line is printed only.

If the list subcommand is used without parameters, the number of lines specified by $listwindow are printed,
beginning with the current source line.

To change the number of lines to list by default, set the special debug program @lisiedow to the
number of lines you want. Initiallglistwindowis set to 10.

Examples

1. To list the lined throughl10 in the current file, enter:
list 1,10

2. To list10, or$listwindow , lines around theain procedure, enter:
list main

3. To list 11 lines around the current line, enter:
list $-5,%+5

4. You can use simple integer expressions involving addition and subtraction
in SourcelLineExpressioexpressions. For example:
(dbx) list $
4{

(dbx) list 5
5chari="4"

(dbx) list sub

23 char *sub(s,a,k)

24 int a;

25 enum status k; . . .

dbx Command 40

Commands Reference, Volume 2

(dbx) move

25

(dbx) list @ -2

23 char *sub(s,a,k)

See theadit subcommand, thiesti subcommand, and timove subcommand. Also, see Displaying the
Current File inAIX General Programming Concepts: Writing and Debugging Programs

listi Subcommand
listi [Procedure| at SourceLing Addresq , Addresq]

Thelisti subcommand displays a specified set of instructions from the source file. The instructions displayed
are specified by:

 Providing theProcedureparameter, where thisti subcommand lists instructions from the beginning
of the specified procedure until the list window is filled.

» Using theatSourceLindlag, where théisti subcommand displays instructions beginning at the
specified source line and continuing until the list window is filled. $bercelLinevariable can be
specified as an integer or as a file—name string followed by a : (colon) and an integer.

» Specifying a beginning and ending address usind\tlizesgparameters, where all instructions
between the two addresses, inclusive, are displayed.

If the listi subcommand is used without flags or parameters, theblisixtindow instructions are displayed.
To change the current size of the list window, uses¢hélistwindow=Valuesubcommand.

Disassembly Modes

Thedbx program can disassemble instructions for either the POWER or PowerPC architecture. In the defau
mode, thalbx program displays the instructions for the architecture on which it is running.

The$instructionset and$mnemonicsvariables of theetsubcommand for thebx command allow you to
override the default disassembly mode. For more information, seetthidocommand for thébx command.

Flag
at SourceLineSpecifies a starting source line for the listing.
Examples
1. To list the next 10, dlistwindow , instructions, enter:
listi
2. To list the machine instructions beginning at sourcelliheenter:
listi at 10

3. To list the machine instructions beginning at sourcellimefile sample.c , enter:
listi at "sample.c":5
4. To list the instructions between addresbeiD000400 and0x10000420 , enter:

listi 0x10000400, 0x10000420

See thdist subcommand and tlsetsubcommand. Also, see Debugging at the Machine Level with
dbx in AIX General Programming Concepts: Writing and Debugging Programs

dbx Command 41

Commands Reference, Volume 2

map Subcommand
map [> File]

Themap subcommand displays characteristics for each loaded portion of the application. This information
includes the name, text origin, text length, data origin, and data length for each loaded module.

Flag

>File Redirects output to the specified file.

See Debugging at the Machine Level with dblX General Programming Concepts: Writing and
Debugging Programs

move Subcommand
moveSourceline

Themove subcommand changes the next line to be displayed to the line specified by the
SourcelLingparameter. This subcommand changes the value of the @ (at sign) variable.

The SourceLinevariable can be specified as an integer or as a file name string followed by a : (colon) and an
integer.

Examples

1. To change the next line to be listed to li2e enter:

move 12

2. To change the next line to be listed to Bnen file sample.c , enter:

move "sample.c":5

See thdist subcommand. Also, see Displaying the Current Filklk General Programming Concepts:
Writing and Debugging Programs

multproc Subcommand
multproc [on |parent|child]| off]

Themultproc subcommand specifies the behavior ofdbg debug program when forked and execed
processes are created. Tdreflag is used to specify that a nellyx session will be created to debug the child
path of a fork. The originalbx will continue to debug the parent path. THaeent andchild flags are used

to specify a single path of a fork to follow. All flags excefftenabledbx to follow an execed process. The
off flag disables multiprocess debugging. If no flags are specifiedydltproc subcommand returns the
current status of multiprocess debugging.

Thedbx program uses Xwindows for multiprocess debugging.diheprogram opens as many windows as
needed for multiprocessing. The title for each child window is the process ID (pid) of the child process. To
switch between processes, use Xwindows handling techniques to activate the window where the dbx sessio
is displayed. If the system does not have Xwindows support, a warning message is issued when the debugc
forks, and the dbx program continues debugging only the parent process. Multiprocess debugging can also
unsuccessful for the following reasons:

» Thedbx program is not running in an Xwindows environment.
» Xwindows is running but thdbx global$xdisplay variable is not set to a valid display name. The

dbx Command 42

Commands Reference, Volume 2

$xdisplay variable is initialized to the shdlllISPLAY environment variable. Theet
NameExpressiodbx subcommand can be used to change the value of the display name.
» The/tmp directory does not allow read or write access to the debugging prograuibx heogram
requires a small amount of space in this directory when controlling an Xwindow environment.
» The system does not have enough resources to accommodate a new Xwindow.

If $xdisplayis set to a remote display, the user may not be able to see the newly created Xwindow. If the

$xdisplay setting is not correct, Xwindows or other system resources report the cause of the failure.

Thedbx program does not distinguish between different types of failures, but the following message is sent

when the subcommand is not successful:

Warning: dbx subcommand multiproc fails. dbx
continued with multproc disabled.

The user—defined configuration of the newly created window can be defined undbxk therm application
name in theXdefaults file.

Flags

on Enables multiprocess debugging.
off Disables multiprocess debugging.

Examples

1. To check the current status of multiprocess debugging, enter:

multproc

2. To enable multiprocess debugging, enter:

multproc on

3. To disable multiprocess debugging, enter:

multproc off

See thescreensubcommand and thierk subroutine. Also, see Debugging Programs Involving Multiple
Processes iAIX General Programming Concepts: Writing and Debugging Programs

mutex Subcommand

mutex [lock | unlock | thnum |utid | MutexNumber..]

Themutex subcommand displays information about mutexes. IMbexNumbeparameter is given, the
mutex subcommand displays information about the specified mutexes. If no flags or parameters are

specified, thenutex subcommand displays information about all mutexes.

The information listed for each mutex is as follows:

mutex Indicates the symbolic name of the mutex, in the f§miviutexNumber

type Indicates the type of the mutexon—-rec (non recursive)ecursi (recursive) ofast

obj_addr Indicates the memory address of the mutex.

lock Indicates the lock state of the mutgrs if the mutex is lockedho if not.

owner If the mutex is locked, indicates the symbolic name of the user thread which holds the mutex.

blockers List the user threads which are blocked on this mutex variable.

dbx Command 43

Commands Reference, Volume 2

Note: Theprint subcommand of thabx debug program recognizes symbolic mutex hames,
and can be used to display the status of the corresponding object.

Flags

lock Displays information about locked mutexes.
unlock Displays information about unlocked mutexes.
thnum Displays information about all the mutexes held by a particular thread.

utid Displays information about all the mutexes held by a user thread whose user thread id matches the
given user thread id.

Examples

1. To display information about all mutexes, enter:

mutex

2. To display information about all locked mutexes, enter:

mutex lock

3. To display information about mutexes number four, five and six enter:

mutex 4 5 6

The output is similar to:

mutex obj_addr type lock owner blockers
$m4 0x20003274 non-rec no

$m5 0x20003280 recursi no

$m6 0x2000328a fast no

4. To display information about all the mutexes held by thread 1, enter:
mutex thnum 1

5. To display information about all the mutexes held by a thread whose user thread id is 0x0001, enter:
mutex utid 0x0001

See thattribute subcommand, theondition subcommand, therint subcommand, and the
thread subcommand.

Also, see. Using Mutex@sX Version 4.3 General Programming Concepts: Writing and Debugging
Programs

next Subcommand
next [Number]

Thenext subcommand runs the application program up to the next source linduifierparameter
specifies the number of times thext subcommand runs. If tidumberparameter is not specifiedext runs
once only.

If you use thenext subcommand in a multi-threaded application program, all the user threads run during the
operation, but the program continues execution until the running thread reaches the specified source line. If
you wish to step the running thread only, usestitsubcommand to set the variaBleold_next Setting this
variable may result in deadlock since the running thread may wait for a lock held by one of the blocked
threads.

dbx Command 44

Commands Reference, Volume 2

Examples
1. To continue execution up to the next source line, enter:
next

2. To continue execution up to the third source line following the current source line, enter:

next 3

See theont subcommandyoto subcommandjexti subcommandsetsubcommand, and the
step subcommand.

nexti Subcommand
nexti [Number]

Thenexti subcommand runs the application program up to the next instructiouFhleerparameter
specifies the number of times thexti subcommand will run. If thBlumberparameter is not specified,
nexti runs once only.

If you use thenexti subcommand in a multi-threaded application program, all the user threads run during the
operation, but the program continues execution until the running thread reaches the specified machine
instruction. If you wish to step the running thread only, use¢hsubcommand to set the variable

$hold_next Setting this variable may result in deadlock since the running thread may wait for a lock held by
one of the blocked threads.

Examples

1. To continue execution up to the next machine instruction, enter:

nexti

2. To continue execution up to the third machine instruction following the current machine instruction,
enter:

nexti 3

See thgyotoi subcommandext subcommandsetsubcommand, arstepi subcommand. Also, see Running
a Program at the Machine LevelAhX General Programming Concepts: Writing and Debugging Programs

print Subcommand
print Expression..
print Procedure([Parameterq)
Theprint subcommand does either of the following:
« Prints the value of a list of expressions, specified byE{pressiorparameters.

» Executes a procedure, specified byPnecedureparameter and prints the return value of that
procedure. Parameters that are included are passed to the procedure.

Examples

1. To display the value of and the value of shifted left two bits, enter:

print x,y << 2

dbx Command 45

Commands Reference, Volume 2

2. To display the value returned by calling ffeek routine with an argument of 0, enter:

print sbrk(0)
See thassignsubcommand, theall subcommand, and tlsetsubcommand.
prompt Subcommand
prompt [" String']
Theprompt subcommand changes ttiex command prompt to the string specified by $itieng parameter.
Example

To change the prompt tthx>, enter:

prompt "dbx>"

See Defining a New dbx PromptAiX General Programming Concepts: Writing and Debugging Programs
quit Subcommand

quit

Thequit subcommand terminates all processes running idike&ebugging session.

See thaletach subcommand.

registers Subcommand

registers[>File]

Theregisterssubcommand displays the values of general purpose registers, system control registers,
floating—point registers, and the current instruction register.

» General purpose registers are denoted bgtNembervariable, where thBlumberparameter
indicates the number of the register.

Note: The register value may be set to xeleadbeethexadecimal value. The
Oxdeadbeethexadecimal value is an initialization value assigned to general-purpose
registers at process initialization.

» Floating point registers are denoted by $frtNumbervariable. By default, the floating—point
registers are not displayed. To display the floating—point registers, usestie$noflregsdbx
subcommand.

Note: Theregisters subcommand cannot display registers if the current thread is in kernel
mode.

Flag

>File Redirects output to the specified file.

See thesetsubcommand and thasetsubcommand. Also, see Using Machine RegistefdXnGeneral
Programming Concepts: Writing and Debugging Programs

dbx Command 46

Commands Reference, Volume 2

rerun Subcommand
rerun [Argumentq [<File] [>File] [> >File] [2>File] [2> >File] [>&File] [> >&File]

Thererun subcommand begins execution of the object file. Atggimentsare passed as command line
arguments. If thérgumentgparameter is not specified, the arguments from theuasor
rerun subcommand are reused.

Flags

<File Redirects input so that input is received frbite.
>File Redirects output t&ile.

> >File Appends redirected output Eale.

2>File Redirects standard error Fde.

2> >File Appends redirected standard erroFite.

>&File Redirects output and standard erroFie.

> >&File Appends output and standard erroFiie.

See theun subcommand.
return Subcommand
return [Procedure]

Thereturn subcommand causes the application program to execute until a return to the procedure specified
by theProcedureparameter is reached. If tReocedureparameter is not specified, execution ceases when
the current procedure returns.

Examples

1. To continue execution to the calling routine, enter:

return

2. To continue execution to tineain procedure, enter:

return main

rwlock Subcommand
rwlock [read | write RwlockNumber..]
Therwlock subcommand displays information about rwlocks. IfRedockNumbeparameter is given, the

rwlock subcommand displays information about the specified rwlocks. If no flags or parameters are
specified, thewlock subcommand displays information about all rwlocks.

The information for eachwlock is as follows:

rwi Indicates the symbolic name of the rwlock, in the form BmtockNumber

flag_value Indicates the flag value.

owner Indicates the owner of the rwlock

status Indicates who is holding the rwlock. The values are read (if held by reader), write (if held by
writer), free (if free).

wsleep[#] Indicates threads blocking in write. # indicates the total number of threads blocking in write.

dbx Command 47

rsleep[#]

Flags

Commands Reference, Volume 2

Note: Theprint subcommand of the dbx debug program recognizes symbolic rwlock names,
and can be used to display the status of the corresponding object

read Displays information about all rwlocks whose status is in read mode.
write Displays information about all rwlocks whose status is in write mode.

Examples

1.

To display information about all rwlocks, enter:
rwlock

The output is similar to:

rwl flag_value owner status
$rwl 1 $t1 write
rsleeps[O]
wsleeps[0]:

. To display information about all rwlocks in write mode:

rwlock write
The output is similar to:

rwl flag_value owner status
$rwl 1 $t1 write
rsleeps[O]:
wsleeps[O]

See thattribute subcommand, theondition subcommandnutex subcommand, thegrint subcommand,
and théhread subcommand

run Subcommand

run [Argumentd [<File] [>File] [> >File] [2>File] [2> >File] [>&File] [> >&File]

Therun subcommand starts the object file. Thrgumentsare passed as command line arguments.

Flags

<File
>File
2>File
> >File

Redirects input so that input is received frbite.
Redirects output t&ile.

Redirects standard error Edle.

Appends redirected output Fdle.

2> >File Appends redirected standard erroFite.

>& File

Redirects output and standard erroFie.

> >&File Appends output and standard erroFiie.

dbx Command

48

Indicates threads blocking in read. # indicates the total number of threads blocking in read.

Commands Reference, Volume 2

Example

To run the application with the argumebtse and12, enter:

run blue 12

See theerun subcommand.
screen Subcommand
screen

Thescreensubcommand opens an Xwindow for thex command interaction. You continue to operate in
the window in which the process originated.

Thescreensubcommand must be run while tillex debug program is running in an Xwindows environment.
If the screensubcommand is issued in a non—-Xwindow environmenibxeprogram displays a warning
message and resumes debugging as g¢heensubcommand had not been given. Sheeensubcommand
can also be unsuccessful in the following situations:

» Thedbx program is not running in an Xwindows environment.

» Xwindows is running but thdbx global$xdisplay variable is not set to a valid display name. The
$xdisplay variable is initialized to thBISPLAY environment variable. Thabx subcommandet
NameExpressiorchanges the value of the display name.

» Xwindows is running, but th€ERM environment variable is not set to a valid command name to
invoke a new window.

« The/tmp directory does not allow read or write access to the prograndi®hprogram requires a
small amount of space in this directory when the screen command is executed.

» System does not have enough resources to accommodate a new Xwindow.

Thedbx program does not distinguish between different types of failures, but the program does send the
following message:

Warning: dbx subcommand screen fails. dbx
continues.

If $xdisplay is set to a remote display, the user may not be able to see the newly created Xwindow. If the
$xdisplay setting is not correct, Xwindows or other system resources report the problem.

The user—defined configuration of the newly created window can be defined undbk therm application
name in theXdefaults file.

Example

To open an Xwindow fodbx command interaction, enter:

screen

See Separating dbx Output From Program OutpAtihGeneral Programming Concepts: Writing and
Debugging Programand AlXwindows Overview, i\IX Version 4 AlXwindows Programming Guide

set Subcommand

set[Variable=Expression

dbx Command 49

Commands Reference, Volume 2

Thesetsubcommand defines a value for thex debug program variable. The value is specified by the
Expressiorparameter; the program variable is specified byvidmgable parameter. The name of the variable
should not conflict with names in the program being debugged. A variable is expanded to the corresponding
expression within other commands. If #etsubcommand is used without arguments, the variables currently
set are displayed.

The following variables are set with thetsubcommand:

$catchbp Catches breakpoints during the execution of the next command.

$expandunionsDisplays values for each part of variant records or unions.

$frame Uses the stack frame pointed to by the address designated by the \&ihaeneffor doing
stack traces and accessing local variables.

$hexchars Prints characters as hexadecimal values.

$hexin Interprets addresses in hexadecimal.

$hexints Prints integers as hexadecimal values.

$hexstrings Prints character pointers in hexadecimal.
$hold_next Holds all threads except the running thread duringdimt, next, nexti, andstep
subcommands. Setting this variable may result in deadlock since the running thread may
wait for a lock held by one of the blocked threads.
$ignoreload Does not stop when your program performsldael, unload, orloadbind subroutine.
$instructionset Overrides the default disassembly mode. The following list contains possible values for the
Expressiorparameter:
"default” Specifies the architecture on which th®x program is running.

n n

com Specifies the instruction set for the common intersection mode of the PowerPC
and POWER architectures. Ttbx program defaults to PowerPC mnemonics.
"pwr" Specifies the instruction set and mnemonics for the POWER architecture.

"pwrx" Specifies the instruction set and mnemonics for the POWER?Z2 implementation of
the POWER architecture.

"601" Specifies the instruction set and mnemonics for the PowerPC 601 RISC
Microprocessor.

"603" Specifies the instruction set and mnemonics for the PowerPC 603 RISC
Microprocessor.

"604" Specifies the instruction set and mnemonics for the PowerPC 604 RISC

Microprocessor.

n 1]

ppc Specifies the instruction set and mnemonics defined in the PowerPC
architecture, excluding the optional instructions. These instructions are available
in all PowerPC implementations except the PowerPC 601 RISC Microprocessor.

"any" Specifies any valid PowerPC or POWER instruction. For instruction sets that

overlap, the default is the PowerPC mnemonics.

If no value is set for thExpressiorparameter, thdbx program uses the default
disassembly mode.

$listwindow Specifies the number of lines to list around a function and the number to list when
thelist subcommand is used without parameters. The default is 10 lines.

$mapaddrs Starts mapping addresses. Unset@intapaddrs stops address mapping.

$mnemonics Changes the set of mnemonics to be used bgilikgorogram when disassembling.
"default” Specifies the mnemonics that most closely match the specified instruction set.

"pwr Specifies the mnemonics for the POWER architecture.

ppc Specifies the mnemonics defined in the PowerPC architecture book, excluding
the optional instructions.

n "

dbx Command 50

$noargs
$noflregs
$octin
$octints
$repeat
$sigblock
$stepignore

$thcomp

Commands Reference, Volume 2

If no value is set for thExpressiorparameter, thdbx program will use the mnemonics
that most closely match the specified instruction set.

Omits arguments from subcommands, sucilasre up, down anddump

Omits the display of floating—point registers from tkgisters subcommand.

Interprets addresses in octal.

Prints integers in octal.

Repeats the previous command if no command was entered.

Blocks signals to your program.

Controls how thelbx command behaves when step subcommand runs on a source line
that calls another routine for which no debugging information is available. This variable
enables thetep subcommand to step over large routines for which no debugging
information is available. The following list contains possible values for the
Expressiorparameter:
"function" Performs the function of theext subcommand for thébx command. This is
the default value.
"module” Performs the function of theext subcommand if the function is in a load
module for which no debug information is available (such as a system library).

"none" Performs the function of tretepi subcommand for theébx command in the
background until it reaches an instruction for which source information is
available. At that poindbx will display where execution has stopped.

When$thcompiis set, the information displayed by the thread comntiands shown in a
compressed format.

$unsafeassign Turns off strict type checking between the two sides afsmignstatement. Even if the

$unsafeassigrvariable is set, the two sides of assignstatement may not contain storage
types of different sizes.

$unsafeboundsTurns off subscript checking on arrays.

$unsafecall
$unsafegoto
$vardim

$xdisplay

Turns off strict type checking for arguments to subroutines or function calls.

Turns off thegoto subcommand destination checking.

Specifies the dimension length to use when printing arrays with unknown bounds. The
default value is 10.

Specifies the display name for Xwindows, for use with the multproc subcommand or the
screen subcommand. The default is the value of theBI®HLAY variable.

The$unsafevariables limit the usefulness of thbx debug program in detecting errors.

Examples

1. To change the default number of lines to be list&Dtcenter:

set $listwindow=20

2. To disable type checking on thssign subcommand, enter:

set $unsafeassign

3. To disassemble machine instructions for the PowerPC 601 RISC Microprocessor, enter:

set $instructionset="601"

See thainsetsubcommand. Also, see Changing Print Output with Special Debug Program Varigkikés in
General Programming Concepts: Writing and Debugging Programs

dbx Command

51

Commands Reference, Volume 2

set edit [vi, emacs] or set —o [vi, emacs] Subcommand

Thesetsubcommand with theo or edit option may be used to turn on one of the line edit modes. If the
set—o0 vior set edit vicommand is given, you are placed in the input mode ofitliee editor. If theset —o
emacsor set edit emaccommand is given, you are placed in the input mode dntecdine editor.

Example

1. To turn on the vi line editor, enter:
set-o vi

or
set edit vi

sh Subcommand
sh[Command

Thesh subcommand passes the command specified Bgdhemandoarameter to the shell for execution.
TheSHELL environment variable determines which shell is used. The defaultsk #iell. If no argument
is specified, control is transferred to the shell.

Examples

1. Torun thds command, enter:

shls

2. To escape to a shell, enter:

sh

3. To use th&HELL environment variable, enter:

sh echo $SHELL

See Running Shell Commands from dbAiX General Programming Concepts: Writing and Debugging
Programs

skip Subcommand

skip [Number]

The skip subcommand continues execution of the application program from the current stopping point. A
number of breakpoints equal to the value ofNluenberparameter are skipped and execution then ceases
when the next breakpoint is reached or when the program finishesNiithkerparameter is not specified,

it defaults to a value of one.

Example

To continue execution until the second breakpoint is encountered, enter:

skip 1

Also see theont subcommand.

dbx Command 52

Commands Reference, Volume 2

source Subcommand

sourceFile

Thesourcesubcommand readibx subcommands from the file specified by Fike parameter.
Example

To read thalbx subcommands in themdfile file, enter:

source cmdfile

See Reading dbx Subcommands from a Filkl General Programming Concepts: Writing and Debugging
Programs

status Subcommand
status[>File]

Thestatus subcommand displays tltrace andstop subcommands currently active. Thdélag sends the
output of thestatus subcommand to a file specified in thide parameter.

Flag

>File Redirects output tEile.

See thelear subcommand, theéeletesubcommand, thetop subcommand, and thce subcommand for
thedbx command.

Also, see Setting and Deleting Breakpointé&\IX General Programming Concepts: Writing and Debugging
Programs

step Subcommand
step[Number]

Thestepsubcommand runs source lines of the application program. Specify the number of lines to be
executed with th&élumberparameter. If th&lumberparameter is omitted, it defaults to a value of 1.

If you use thestep subcommand on a multi-threaded application program, all the user threads run during the
operation, but the program continues execution until the running thread reaches the specified source line. If
you wish to step the running thread only, usestttsubcommand to set the variaBleold _next Setting this
variable may result in deadlock since the running thread may wait for a lock held by one of the blocked
threads.

Note: Use thebstepignorevariable of thesetsubcommand to control the behavior of the
stepsubcommand. Thestepignorevariable enables thetep subcommand to step over large
routines for which no debugging information is available.

Examples

1. To continue execution for one source line, enter:

step

2. To continue execution for five source lines, enter:

dbx Command 53

Commands Reference, Volume 2

step 5

3. To prevent thebx program from single—stepping tpentf function, as illustrated in the following
example code:

60 printf ("hello world \n");
enter:
set $stepignore="function"; step

See thecont subcommand, thgoto subcommand, theext subcommand, theetsubcommand, and the
stepi subcommand.

stepi Subcommand
stepi [Number]

Thestepi subcommand runs instructions of the application program. Specify the number of instructions to be
executed in th&lumberparameter. If th&lumberparameter is omitted, it defaults to one.

If used on a multi-threaded application program stiepi subcommand steps the running thread only. All
other user threads remain stopped.

Examples

1. To continue execution for one machine instruction, enter:
stepi
2. To continue execution for 5 machine instructions, enter:
stepi 5
See thagyotoi subcommand, theexti subcommand, and tistep subcommand.
stop Subcommand

stop { [Variablg [at SourceLing in Procedure] [if Condition]}

Thestop subcommand halts the application program when certain conditions are fulfilled. The program is
stopped when:

» TheConditionis true when thdConditionflag is used.

» TheProcedureis called if thanProcedureflag is used.

» TheVariableis changed if th&ariable parameter is specified.

» TheSourceLindine number is reached if tl@SourceLindlag is used.

TheSourceLinevariable can be specified as an integer or as a file name string followed by a : (colon)
and an integer.

After any of these commands, tiilex debug program responds with a message reporting the event it has
built as a result of your command. The message includes the event ID associated with your breakpoint alon

with an interpretation of your command. The syntax of the interpretation might not be exactly the same as
your command. For example:

stop in main

dbx Command 54

Commands Reference, Volume 2

[1] stop in main
stop at 19 if x ==
[2] stop at "hello.c" :19ifx=3

The numbers in brackets are the event identifiers associated with the breakpoidtsx @abug program
associates event numbers with esidp subcommand. When the program is halted as the result of one of the
events, the event identifier is displayed along with the current line to show what event caused the program t
stop. The events you create coexist with internal events creatdikpgo event numbers may not always be
sequential.

Use thestatus subcommand to view these numbers. You can redirect outpustedusto a file. Use the
deleteor clear subcommand to turn tretop subcommand off.

In a multi-threaded application program, all user threads are halted when any user thread hits a breakpoint.
breakpoint set on a source line or function will be hit by any user thread which executes the line or function,
unless you specify conditions as shown in example 9 below. The following aliases specify the conditions
automatically:

* bfth (Function ThreadNumbeér
* blth (SourceLineThreadNumbeér

ThreadNumbeis the number part of the symbolic thread hame as reported thyéhe subcommand (for
example, 5 is th@hreadNumbefor the thread name $t5). These aliases are actually macros which produce
the expanded subcommands shown below:

stopi at &Function if ($running_thread ==
ThreadNumber)
stop at SourceLine if ($running_thread == ThreadNumber)

Flags

atSourcelLineSpecifies the line number.
if Condition Specifies the condition, such as true.
inProcedure Specifies the procedure to be called.

Examples
1. To stop execution at the first statement inntfaén procedure, enter:
stop in main
2. To stop execution when the value of theariable is changed on lidi2 of the execution, enter:
stop x at 12

3. To stop execution at line 5 in fémmple.c , enter:

stop at "sample.c":5

4. To check the value af each time thadbx runs a subroutine withifuncl , enter:

stop in funcl if x = 22

5. To check the value af each time thatbx begins to rurfuncl , enter:

stopi at &funcl if x = 22

6. To stop the program when the valué/afiable changes, enter:

dbx Command 55

Commands Reference, Volume 2

stop Variable

7. To stop the program wheneeonditionevaluates to true, enter:

stop if (x > y) and (x < 2000)

8. The following example shows how to display active events and remove them:
status
[1] stop in main
[2] stop at "hello.c" :19ifx=3
delete 1
status
[2] stop at "hello.c" :19ifx=3
clear 19
status
(dbx)

Thedeletecommand eliminates events by event identifier. dlear command deletes breakpoints
by line number.

9. To place a breakpoint at the starfiofcl only when executed by thre&tb , enter one of the
following equivalent commands:

stopi at &funcl if ($running_thread == 5)

or

bfth(funcl, 5)

See thelear subcommand, theéelete subcommand, thetopi subcommand, and thce subcommand.
Also, see Setting and Deleting Breakpointé&\IX General Programming Concepts: Writing and Debugging
Programs

stopi Subcommand
stopi { [Addres}[atAddresq in Procedurg] [if Condition]}
Thestopi subcommand sets a stop at the specified location:

» With theif Conditionflag, the program stops when the condition true is specified.
» With the Addressparameter, the program stops when the contetiddifesschange.
» With theat Addresdlag, a stop is set at the specified address.

» With theinProcedureflag, the program stops when tRAecedureis called.

Flags

if Condition Specifies the condition, such as true.
inProcedureSpecifies the procedure to be called.
atAddress Specifies the machine instruction address.

Examples
1. To stop execution at addréssl00020f0 , enter:
stopi at 0x100020f0

2. To stop execution when the contents of addie$80020f0 change, enter:

stopi 0x100020f0

dbx Command 56

Commands Reference, Volume 2

3. To stop execution when the contents of address 0x100020f0 are changed Itthreader:

stopi 0x200020f0 if ($running_thread == 1)

See thestop subcommand . Also, see Debugging at the Machine Level with dbbXiGeneral
Programming Concepts: Writing and Debugging Programs

thread Subcommand

Display Selected Threads

thread {[info] [=] [ThreadNumber..] } | current | run | susp| term | wait

Select an Individual Thread

thread current [—] ThreadNumber

Hold or Release Threads

thread { hold |unhold } [-] [ThreadNumber..]

Help for the options displayed

thread { help}

Thethread subcommand displays and controls user threads.

The first form of theéhread subcommand can display information in two formats. Ifttinead subcommand

is th, then the information displayed is in the first format. Ifttiiead subcommand i —, then the

information displayed is in the second format. If no parameters are given, information about all user threads
is displayed. If one or morEhreadNumbeparameters are given, information about the corresponding user
threads is displayed. When ttiwead subcommand displays threads, the current thread line is preceded by a
>, If the running thread is not the same as the current thread, its line is preceded hg anformation

displayed by théhread subcommand in both the formats is described below.

The information displayed by thhread subcommand in the first format is as follows:

thread Indicates the symbolic name of the user thread, in the $orimreadNumber

state—k Indicates the state of the kernel thread (if the user thread is attached to a kernel thread). This ca
berun ,wait , susp, orterm , for running, waiting, suspended, or terminated.

wchan Indicates the event on which the kernel thread is waiting or sleeping (if the user thread is
attached to a kernel thread).

state-u Indicates the state of the user thread. Possible stateshaieg , blocked , or

terminated
k-tid Indicates the kernel thread identifier (if the user thread is attached to a kernel thread).
mode Indicates the mode (kernel or user) in which the user thread is stopped (if the user thread is
attached to a kernel thread).
held Indicates whether the user thread has been held.
scope Indicates the contention scope of the user thread; this ceysber pro for system or process

contention scope.
function Indicates the name of the user thread function.

The information displayed by thkread subcommand in the second format is given below. By default, for
thethread subcommanth -, the information is displayed in the long form.

dbx Command 57

thread

Commands Reference, Volume 2

Indicates the symbolic name of the user thread, in the $orfilnreadNumber

Kernel thread related information

tid Indicates the user thread identifier (if the user thread is attached to a kernel thread).

pri Indicates the priority of the kernel thread.

sched Indicates the scheduling policy of the kernel thread. This can be fif, oth, rr, for fifo, other, or round
robin scheduling policies.

state Indicates the state of the kernel thread (if the user thread is attached to a kernel thread). This can be
run, wait, susp, or zomb, for running, waiting, suspended, or zombie.

User thread related information

tid
pri
sched

State

state
flags
wchan

mode

held
scope

cancellation

joinable
boosted
function
cursig

Indicates the user thread identifier.
Indicates the priority of the userl thread.

Indicates the scheduling policy of the user thread. This can be fif, oth, rr, for fifo, other, or
round robin scheduling policies.

Indicates the state of the user thread. This can be running, creating, suspended, blocked,
runnable, or terminated.

Indicates the user state in hex.
Indicates the values for pthread flags in hex.

Indicates the event on which the kernel thread is waiting or sleeping (if the user thread is
attached to a kernel thread).

Indicates the mode (kernel or user) in which the user thread is stopped (if the user thread i
attached to a kernel thread).

Indicates whether the user thread has been held.

Indicates the contention scope of the user thread; this can be sys or pro for system or
process contention scope.

pending Indicates if cancellation is pending or not.

state Indicates the mode and state of cancellation.

If the cancellation is not pending and the state and mode are enabled and
deferred respectively, then it is representeedyyif cancellation state and
mode is enabled and asynchronous, then it is represengsidnyd if mode is
not enabled, then it is representeddby

If the cancellation is pending and the cancellation state and mode is enabled
and deferred respectively, then it is representeilbyif cancellation state

and mode is enabled and asynchronous, then it is represeriiéd bgd if

mode is not enabled, then it is represented by

Indicates whether the thread is joinable or not.
Indicates the boosted value of the thread.
Indicates the name of the user thread function.
Indicates the current signal value.

If the option sethcomp is set, then the information is displayed in the compressed form as shown below.

m mode
k k-state
u u-state

dbx Command

(k)ernel (u)ser
(r)unning (w)aiting (s)uspended (z)ombie
(nunning (R)unnable (s)uspended (t)erminated

58

Commands Reference, Volume 2

(b)locked (c)reating

h held (yes) (n)o
s scope (s)ystem (p)rocess
c cancellation not pending: (e)nabled (d)eferred,
(e)nabled (a)sync, (d)isabled
pending : (E)nabled (D)eferred,
(E)nabled (A)sync, (D)isabled

i joinable (yes) (n)o
b boosted value of boosted field in pthread structure
plk kernel thread (oth)er (fif)o (rr)—> round-robin

policy
plu user thread (oth)er (fif)o (rr)—> round-robin

policy
prk kernel thread hex number

policy
pru user thread hex number

policy
k-tid kernel thread id in hex
u-tid pthread id in hex
fl value of flags field in pthread structure in hex
sta value of state field in pthread structure in hex
cs value of the current signal
wchan event for which thread is waiting
function function name

The second form of thiiread subcommand is used to select the current threadpriite registers, and
where subcommands of thadbx debug program all work in the context of the current thread. The
registerssubcommand cannot display registers if the current thread is in kernel mode.

The third form of thehread subcommand is used to control thread execution. Threads can be held using the
hold flag, or released using tlahold flag. A held thread will not be resumed until it is released.

Flags

Note: Theprint subcommand of thebx debug program recognizes symbolic thread names,
and can be used to display the status of the corresponding object.

current If the ThreadNumbeparameter is not given, displays the current thread. If the

help
hold

unhold

info

run
susp
term
wait

ThreadNumbeparameter is given, selects the specified user thread as the current thread.
Displays all the information about the thread options that are shownttwvhrecommand is used.

If the ThreadNumbeparameter is not given, holds and displays all user threads. If one or more
ThreadNumbeparameters are given, holds and displays the specified user threads.

If the ThreadNumbeparameter is not given, releases and displays all previously held user threads.
If one or moreThreadNumbeparameters are given, releases and displays the specified user threads.

If the ThreadNumbeparameter is not given, displays a long format listing of all user threads. If one
or moreThreadNumbeparameters are given, displays a long format listing the specified user
threads.

All the above flags take [-] option. If this option is given, then the thread information displayed is in
the second format and in the long form unlesstie $thcomp option is set.

Displays threads which are in then state.

Displays threads which are in thesp state.
Displays threads which are in theem state.
Displays threads which are in thait state.

dbx Command 59

Commands Reference, Volume 2

Examples

1. To display information about threads that are in the wait state, enter:
thread wait

The output is similar to:

thread state—k wchan state—u k-tid mode held scope function
$t1 wait running 17381 u no pro main
$t3 wait running 8169 u no pro iothread

2. To display information about several given threads, enter:
thread 134

The output is similar to:

thread state—k wchan state-u k-tid mode held scope function

$t1 wait running 17381 u no pro main
$t3 wait running 8169 u no pro iothread
>$t4 run running 9669 u no pro save_thr

3. To make thread 4 the current thread, enter:
thread current 4

4. To hold thread number 2, enter:

thread hold 2

5. To display information about threads that are in the wait state, in the second format, enter:
thread wait -

The output is similar to:

thread mkuhsc jb kpl upl kpruprk_tid u_tid fl stawchan function
*$t1 urwnpedyO oth oth 61 1 0043e5 000001 51 004 main
$t3 urwnpedyO oth oth 61 1 001fe9 000102 51 004 iothread
>$t4 urrnpedyO oth oth 61 1 0025c5 000203 50 064 save_thr

6. To display information about several given threads in the second format, enter:
thread-123

The output is similar to:

threead mkuhsc jb kpl upl kpruprk_tid u_tid fl stawchan function
*$t1 urwnpedyO oth oth 61 1 0043e5 000001 51 004 main
$t3 urwnpedyO oth oth 61 1 00fe9 000102 51 004 iothread
>$t4 urrnpedyO oth oth 61 1 0025c5 000203 50 064 save_thr

See thattribute subcommand, theondition subcommand, theutex subcommand, the
print subcommand, theegisters subcommand, and thehere subcommand.

Also, see Creating ThreatliX Version 4.3 General Programming Concepts: Writing and Debugging
Programs

trace Subcommand

trace [SourceLing Expressiorat SourceLind Procedure [Variable] [at SourceLing in Procedure]] [
if Condition]

Thetrace subcommand prints tracing information for the specified procedure, function, source line,
expression, or variable when the program runs.Sdwecelinevariable can be specified as an integer or as a

dbx Command 60

Commands Reference, Volume 2

file name string followed by a : (colon) and an integer. A condition can be specifiedbXdebug program
associates a number with edddice subcommand. Use tlstatus subcommand to view these numbers. Use
thedeletesubcommand to turn tracing off.

By default, tracing is process based. In order to make a thread based trace, specify the thread in a conditior
shown in example 8 below.

Flags

atSourceLineSpecifies the source line where the expression being traced is found.
if Condition Specifies a condition for the beginning of the trace. The trace beging ©ahditionis true.
in Procedure Specifies the procedure to use to find the procedure or variable being traced.

Examples

1. To trace each call to tipeintf ~ procedure, enter:

trace printf

2. To trace each execution of line 22 in kiedlo.c file, enter:

trace "hello.c":22

3. To trace changes to tkevariable within thenain procedure, enter:

trace x in main

4, To trace the data address 0x2004000, enter:

set $A=0x2004000
trace $A

Note: Thetracei subcommand is designed to trace addresses.

5. You can restrict the printing of source lines to when the speéificedureis active. You can also
specify an optionaConditionto control when trace information should be produced. For example:

(dbx) trace in sub2

[1] trace in sub2

(dbx) run

trace in hellosub.c: 8 printf("%s",s);
trace in hellosub.c: 9 i='5";

trace in hellosub.c: 10 }

6. You can display a message each time a procedure is called or returned. When a procedure is called
the information includes passed parameters and the name of the calling routine. On a return, the
information includes the return value fraPnocedure For example:

(dbx) trace sub

[1] trace sub

(dbx) run

calling sub(s = "hello", a = -1, k = delete) from function main
returning "hello" from sub

7. You can print the value &xpressiorwhen the program reaches the specified source line. The lines
number and file are printed, but the source line is not. For example:

(dbx) trace x*17 at "hellosub.c":8 if (x > 0)
[1] trace x*17 at "hellosub.c™:8 if x > 0
(dbx) run

at line 8 in file "hellosub.c": x*17 = 51

dbx Command 61

Commands Reference, Volume 2

(dbx) trace x

[1] trace x

initially (at line 4 in "hello.c"): x=0
after line 17 in "hello.c™; x=3

8. To trace changes to tRevariable made by thre&il , enter:

(dbx) trace x if ($running_thread == 1)

Also, see théracei subcommand.
tracei Subcommand

tracei [[Addresq [at Addresq in Procedure] | Expressiorat Addresq [if Condition]

Thetracei subcommand turns on tracing when:

» The contents of the address specified byAtidresgparameter change if theddresdlag is included.
» The instructiorat Address is run if that Addresgparameter is specified.

» The procedure specified IBrocedureis active if thanProcedureflag is included.

» The condition specified by tHéonditionparameter is true if thié Conditionflag is included.

Flags

atAddress Specifies an address. Tracing is enabled when the instruction at this address is run.
if Condition Specifies a condition. Tracing is enabled when this condition is met.
inProcedureSpecifies a procedure. Tracing is enabled when this procedure is active.

Examples

1. To trace each instruction executed, enter:

tracei

2. To trace each time the instruction at addded90020f0 is executed, enter:

tracei at 0x100020f0

3. To trace each time the contents of memory loc&@i@®004020 change while the
main procedure is active, enter:

tracei 0x20004020 in main

4. To trace each time the instruction at address 0x100020f0 is executed by thread $t4, enter:

tracei at 0x100020f0 if ($running_thread == 4)

See thdrace subcommand. Also, see Debugging at the Machine Level with dbiGeneral
Programming Concepts: Writing and Debugging Programs

unalias Subcommand
unaliasName

Theunaliassubcommand removes the alias specified byNdm@meparameter.

dbx Command 62

Commands Reference, Volume 2

Example

To remove an alias namedntx , enter:

unalias printx

See thalias subcommand. Also, see Creating Subcommand Aliasék<iGeneral Programming
Concepts: Writing and Debugging Programs

unset Subcommand
unsetName

Theunsetsubcommand deletes tibx debug program variable associated with the name specified by the
Nameparameter.

Example

To delete the variable inhibiting the display of floating—point registers, enter:

unset $noflregs

See thesetsubcommand. Also, see Changing Print Output With Special Debugging VariaBles in
General Programming Concepts: Writing and Debugging Programs

up Subcommand
up [Count]

The up subcommand moves the current function up the Sacitnumber of levels. The current function is
used for resolving names. The default for @muntparameter is one.

Examples
1. To move the current function up the stack 2 levels, enter:
up 2
2. To display the current function on the stack, enter:
up 0

See thelown subcommand. Also, see Changing the Current File or Procedure, Displaying a Stack
Trace inAlX General Programming Concepts: Writing and Debugging Programs

use Subcommand

use|[Directory ...]

Theusesubcommand sets the list of directories to be searched wheébxlgebug program looks for source
files. If theusesubcommand is specified without arguments, the current list of directories to be searched is
displayed.

The @ (at—sign) is a special symbol that directsdb& program to look at the full-path name information in

the object file, if it exists. If you have a relative directory called @ to search, you shoul@usethe
search path.

dbx Command 63

Commands Reference, Volume 2
Theusesubcommand uses thegplus—sign) to add more directories to the list of directories to be searched. If
you have a directory named specify the full-path name for the directory (for examgeor /tmp/+).

Examples

1. To change the list of directories to be searched to the current directory (.), the parent directory (..),
and the'tmp directory, enter:

use . .. /tmp

2. To change the list of directories to be searched to the current directory (.), the directory the source
file was located in at compilation time (@), and thsourcedirectory, enter:

use . @ ../source

3. To add thétmp2 directory to the list of directories to be searched, enter:

use + /tmp2

Also, see thedit subcommand and thist subcommand.
whatis Subcommand
whatisName

Thewhatis subcommand displays the declaratiotName where theNameparameter designates a variable,
procedure, or function name, optionally qualified with a block name.

Note: Use thewhatis subcommand only while running tbdex debug program.
Examples
1. To display the declaration of tkevariable, enter:
whatis x

2. To display the declaration of theain procedure, enter:

whatis main

3. To display the declaration of tkevariable within thenain function, enter:

whatis main.x

4. To print the declaration of an enumeration, structure, or union tag (or the equivalent in Pascal), use
$$TagName:

(dbx) whatis $$status
enum $$status { run, create, delete, suspend };

where Subcommand
where [>File]

Thewhere subcommand displays a list of active procedures and functions. By usirigilthéiag, the
output of this subcommand can be redirected to the specified file.

dbx Command 64

Commands Reference, Volume 2

Flag

>File Redirects output to the specified file.

See thaup subcommand and tlwn subcommand. Also, see Displaying a Stack TraddXhGeneral
Programming Concepts: Writing and Debugging Programs

whereis Subcommand
whereiddentifier

Thewhereissubcommand displays the full qualifications of all the symbols whose names match the
specified identifier. The order in which the symbols print is not significant.

Examples

To display the qualified names of all symbols nameenter:

whereis x

Also, see thevhich subcommand.
which Subcommand
which ldentifier

Thewhich subcommand displays the full qualification of the given identifier. The full qualification consists
of a list of the outer blocks with which the identifier is associated.

Examples

To display the full qualification of the symbol, enter:

which x

See thavhereissubcommand. Also. seeScoping of Names il General Programming Concepts:
Writing and Debugging Programs

Files

a.out Object file; contains object code.
core Contains core dump.
.dbxinit Contains initial commands.

Related Information
Theadb commandgc command.
Thea.out file, corefile.

The dbx Symbolic Debug Program Overview and Using the dbx Debug Progrei @eneral
Programming Concepts: Writing and Debugging Programs

dbx Command 65

Commands Reference, Volume 2

dc Command

Purpose

Provides an interactive desk calculator for doing arbitrary—precision integer arithmetic.

Syntax

de Command
dc [File]
Description

Thedc command is an arbitrary—precision arithmetic calculator.dtheommand takes its input from the

File parameter or standard input until it reads an end-of-file character. Ordredbmand receives the

input, it evaluates the value and writes the evaluation to standard output. It operates on decimal integers, bt
you can specify an input base, an output base, and a number of fractional digits to be maintained. The

dc command is structured as a stacking, reverse Polish notation calculation.

Thebc command is a preprocessor for tiecommand. It provides infix notation and a syntax similar to the
C language, which implements functions and control structures for programs.

Subcommands

c Cleans the stack: thde command pops all values on the stack.
d Duplicates the top value on the stack.

f Displays all values on the stack.

Pops the top value on the stack and uses that value as the number radix
for further input.

I Pushes the input base on the top of the stack.

k Pops the top of the stack and uses that value as a nonnegative scale
factor. The appropriate number of places is displayed on output and is
maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base is reasonable if
all are changed together.

Ix Pushes the value in the register represented byuthgable on the
stack. The register represented byxivariable is not changed. All
registers start with a value of 0.

Lx Treats thex variable as a stack and pops its top value onto the main
stack.
o] Pops the top value on the stack and uses that value as the number radix

for further output.

Pushes the output base on the top of the stack.

Displays the top value on the stack. The top value remains unchanged.
P Interprets the top of the stack as a string, removes it, and displays it.

©

dc Command 66

N N

Commands Reference, Volume 2

Exits the program. If thdc command is running a string, it pops the
recursion level by two.

Pops the top value on the stack and on the string execution level by
that value.

Pops the top of the stack and stores it in a register namétere the
X variable can be any character.

Treats thex variable as a stack. It pops the top of the main stack and
pushes that value onto the stack represented by\dugable.

Replaces the top element on the stack by its square root. Any existing
fractional part of the option is taken into account, but otherwise, the
scale factor is ignored.

Treats the top element of the stack as a character string and runs it as a
string ofdc commands.

Replaces the number on the top of the stack with its scale factor.
Pushes the number of elements in the stack onto the stack.

Replaces the top nhumber in the stack with the number of digits in that
number.

Number Pushes the specified value onto the stackufberis an unbroken

string of the digits 0 through 9. To specify a negative number, precede
it with _ (underscore). A number may contain a decimal point.

+-/*%" Adds (+), subtracts (=), multiplies (*), divides (/), remainders (%), or

exponentiates (*) the top two values on the stackd€lmmmand
pops the top two entries off the stack and pushes the result on the stack
in their place. Thelc command ignores fractional parts of an exponent.

Puts the brackete8tringparameter onto the top of the stack.

[=1>1<]x

Pops the top two elements of the stack and compares them. Evaluates
the register represented by theariable as if it obeys the stated
relation.

Interprets the rest of the line as an operating system command.
Gets and runs a line of input.
Thebc command uses these characters for array operations.

Examples

1. To use thelc command as a calculator, enter:

You: 14/p

System: O

You: 1k [Keep1decimal place]s.
14/p

System: 0.2

You: 3k [Keep 3decimal places]s.
14/p

System: 0.250

You: 16635/+p

System: 28.600

You: 16635+/p

System: 0.235

Comments may be used in thecommand as in the example. Comments are enclosed in brackets
and may be followed by. ([Comments.) is ignored by thelc command. Comments enclosed in
brackets only are stored on the top of the stack.

When you enter thec command expressions directly from the keyboard, press Ctrl-D to end the

dc Command 67

Commands Reference, Volume 2

bc command session and return to the shell command line.

2. To load and run dc program file, enter:
You: dc prog.dc
5If x p [5 factorial]s.
System: 120
You: 10Ifxp[10 factorial]s.
System: 3628800

This entry interprets thdc program saved in therog.dc program file, then reads from the
workstation keyboard. TH& evaluates the function stored in registewhich could be defined in
theprog.c program file as:

[f: compute the factorial of n]s.
[(n = the top of the stack)]s.
[If1>ndob;If 1<ndor]s.
[d1>bd1<r]sf

[Returnf(n) =1]s.

[d-1+]sb

[Return f(n) = n * f(n-1)]s.
[d1-1fx*]sr

You can creatdc program files with any text editor or with the (compile) flag of thdoc command. When
you enter thelc command expressions directly from the keyboard, press Ctrl-D to ebd toenmand
session and return to the shell command line.

Files
/usr/bin/dc Contains the&lc command.

Related Information

Thebc command.

dc Command 68

Commands Reference, Volume 2

dd Command
Purpose
Converts and copies a file.

Syntax

dd Comme

tbs= BboASire
sounts MpurBlocks
fllesa MpwrF Ves
fshipz SAEOQOF2

He nFie

ol Owk e

ssoks ReooraNambey
skipeShipinpr8ocks

»4:[,., s« MpwlEckS e OB s O paTROCAS (20] !

bo=B0ASre

>_Lm..—{_ goa of _'—L[.a...

osell
block utase
ebodic
ibme
unbleak

OUptonz Vate

iblock
noerror
nowunae
oblock
swab
ayne

dd [cbs=BlockSizq [count=InputBlockg] [files=InputFiles] [fskip=SkipEOF{ [if=InFile] [of=OutFile
] [seek=RecordNumbe} [skip=SkiplnputBlock$ [ibs=InputBlockSizé [obs=OutputBlockSizé|
bs=BlockSizq [conv=[ascii| block | ebcdic|ibm |unblock] [Icase| ucase] [iblock] [noerror] [swab
][sync] [oblock] [notrunc]]

dd [Optiorn=Value]

Description

Thedd command reads tHaFile parameter or standard input, does the specified conversions, then copies
the converted data to ti@utFile parameter or standard output. The input and output block size can be
specified to take advantage of raw physical 1/O.

Note: The termBlockrefers to the quantity of data read or written byddie&eommand in one
operation and is not necessarily the same size as a disk block.

Where sizes are specified, a number of bytes is expected. A number ending lwitrk specifies
multiplication by 2, 512, or 1024 respectively; a pair of numbers separatedxlyr am* (asterisk) indicates
a product.
Note: The count parameter expects the number of blocks, not the number of bytes, to be
copied.

dd Command 69

Commands Reference, Volume 2

The character—set mappings associated witlcdhg=asciiandconv=ebcdicflags are complementary
operations. These flags map between ASCII characters and the subset of EBCDIC characters found on mo:t
workstations and keypunches.

Use thecbs parameter value if specifying any of thieck, unblock, ascii, ebcdic oribm conversions. If
unblock or ascii parameters are specified, then ddecommand performs a fixed-length to variable-length
conversion. Otherwise it performs a conversion from variable—length to fixed—lengtbb3parameter
determines the fixed-length.

Attention: If the cbsparameter value is specified smaller than the smallest input block, the
converted block is truncated.

After it finishes, thedd command reports the number of whole and partial input and output blocks.
Notes:

1. Normally, you need only write access to the output file. However, when the output
file is not on a direct—access device and you usedhbkflag, you also need read
access to the file.

2. Thedd command inserts new—-line characters only when converting with the
conv=asciior conv=unblock flags set; it pads only when converting with the
conv=ebcdig conv=ibm, or conv=block flags set.

3. Use thébackup, tar, orcpio command instead of tltel command whenever
possible to copy files to tape. These commands are designed for use with tape
devices. For more information on using tape devices, seethgpecial file.

4. The block size values specified with tigibs andobsflags must always be a
multiple of the physical block size for the media being used.

5. When theconv=syncflag is specified, thdd command pads any partial input blocks
with nulls. Thus, theld command inserts nulls into the middle of the data stream if
any of the reads do not receive a full block of data (as specified bystfiag). This
is a common occurence when reading from pipes.

6. If thebs flag is specified by itself and no conversions other 8yaug, noerror or
notrunc are specified, then the data from each input block will be written as a
separate output block; if the read returns less than a full blocgyaweds not
specified, then the resulting output block will be the same size as the input block. If
thebsflag is not specified, or a conversion other thgnc noerror or notrunc is
specified, then the input will be processed and collected into fullsized output blocks
until the end of input is reached.

Flags

bs=BlockSize Specifies both the input and output block size, supersediniggla@dobsflags. The
block size values specified with the flag must always be a multiple of the physical
block size for the media being used.

cbs=BlockSize Specifies the conversion block size for variable—length to fixed-length and
fixed-length to variable—length conversions, suchas/=block

count=InputBlocks Copies only the number of input blocks specified byltipeitBlocksvariable.

files=InputFiles Copies the number of files specified by thputFilesvariable value of input files
before ending (makes sense only where input is a magnetic tape or similar device).

fskip=SkipEOFs Skips past the number of end—of-file characters specified ykip&OFsvariable
before starting to copy; thBkipEOFsvariable is useful for positioning on multifile
magnetic tapes.

ibs=InputBlockSize Specifies the input-block size; the default is 512 bytes or one block. The block-size
values specified with thibs flag must always be a multiple of the physical block size

dd Command 70

Commands Reference, Volume 2

for the media being used.
if=InFile Specifies the input file name; standard input is the default.

obs=OutputBlockSizeSpecifies the output—block size; the default is 512 bytes or one block. The block size
values specified with thebs flag must always be a multiple of the physical block size
for the media being used.

of=OutFile Specifies the output file name; standard output is the default.

seek-RecordNumberSeeks the record specified by tRecordNumbevariable from the beginning of
output file before copying.

skip=SkiplnputBlocksSkips the specifie@kipinputBlockyalue of input blocks before starting to copy.

conv=_Conversion... Specifies one or more conversion options. Multiple conversions should be separated
by commas. The following list describes the possible options:

ascii Converts EBCDIC to ASCII. This option is incompatible with the
ebcdic ibm, block, andunblock options.
block Converts variable-length records to fixed—length. The length is

determined by the conversion block size (cbs). This option is
incompatible with thescii, ebcdic ibm, andunblock options.

ebcdic Converts ASCII to standard EBCDIC. This option is incompatible
with theascii, ibm, block, andunblock options.
ibm Converts ASCII to an IBM version of EBCDIC. This option is

incompatible with thescii, ebcdic block, andunblock options.

iblock, oblock Minimize data loss resulting from a read or write error on direct
access devices. If you specify théock variable and an error occurs
during a block read (where the block size is 512 or the size specified
by theibs=InputBlockSizerariable), thedd command attempts to
reread the data block in smaller size units. Ifddeeommand can
determine the sector size of the input device, it reads the damaged
block one sector at a time. Otherwise, it reads it 512 bytes at a time.
The input block sizeil§s) must be a multiple of this retry size. This
option contains data loss associated with a read error to a single
sector. Theblock conversion works similarly on output.

Icase Makes all alphabetic characters lowercase.

noerror Does not stop processing on an error.

notrunc Does not truncate the output file. Instead, blocks not explicitly
written to output are preserved.

ucase Makes all alphabetic characters uppercase.

swab Swaps every pair of bytes.

sync Pads every input block to tlites value.

unblock Converts fixed-length blocks to variable-length. The length is

determined by the conversion block size (cbs). This option is
incompatible with thescii, ebcdic ibm, andblock options.

Exit Status
This command returns the following exit values:

0 The input file was copied successfully.
>0 An error occurred.

dd Command 71

Commands Reference, Volume 2

Examples

1. To convert an ASCII text file to EBCDIC, enter:
dd if=text.ascii of=text.ebcdic conv=ebcdic

This command converts thext.ascii file to EBCDIC representation, storing the EBCDIC
version in theext.ebcdic file.

Note: When you specify theonv=ebcdicparameter, thdd command converts the
ASCII » (circumflex) character to an unused EBCDIC character (9A hexadecimal),
and the ASCII ~ (tilde) to the EBCDIC * (NOT symbol).

2. To convert the variable-length record ASCII fidc/passwdto a file of 132—-byte fixed-length

EBCDIC records, enter:
dd if=/etc/passwd cbs=132 conv=ebcdic of=/tmp/passwd.ebcdic

3. To convert the 132-byte—per-record EBCDIC file to variable-length ASCII lines in lowercase,

enter:
dd if=tmp/passwd.ebcdic cbs=132 conv=ascii of=/tmp/passwd.ascii

4. To convert the variable-length record ASCII fidéc/passwadto a file of 132-byte fixed—-length
records in the IBM version of EBCDIC, enter:
dd if=/etc/passwd cbs=132 conv=ibm of=/tmp/passwd.ibm

5. To copy blocks from a tape with 1KB blocks to another tape using 2KB blocks, enter:
dd if=/dev/rmt0 ibs=1024 obs=2048 of=/dev/rmtl

6. To use theld command as a filter, enter:
li =I'| dd conv=ucase

This command displays a long listing of the current directory in uppercase.
Note: The performance of thed command andpio command to the 9348
Magnetic Tape Unit Model 12 can be improved by changing the default block size.
To change the block size, use tielevcommand in the following way:

chdev I Device_name —a block_size=32k

7. To perform efficient transfers to 3.5-inch 1.4MB diskette using 36 blocks of 512 bytes, enter:
dd if=Filename of=/dev/rfd0 bs=36b conv=sync

This command writes the value of thkenameparameter to the diskette device a cylinder at a time.
Theconv=sync is required when reading from disk and when the file size is not a multiple of the
diskette block size. Do not try this if the input to ttecommand is a pipe instead of a file, it will

pad most of the input with nulls instead of just the last block.

Files

{usr/bin/dd Contains theld command.
Related Information

Thebackup, cp, cpio, tar, tr command.

Thermt special file.

The Backup Overview for System ManagemeralX Version 4.3 System Management Concepts: Operating

dd Command 72

Commands Reference, Volume 2

System and Devicgsovides information on using backups and using memory devices.

The Files Overview iAlIX Version 4.3 System User's Guide: Operating System and Dpwuisédes
information on working with files.

dd Command

73

Commands Reference, Volume 2

defaultbrowser Command
Purpose
Launches the default web browser and optionally loads a specified URL.

Syntax

defaultbrowser Command

- defaultbrower
URL
— Ne{SCapewindIAname

defaultbrowser [URL [Netscapewindownarije

Description

Thedefaultbrowser command runs the browser launch command that is specified in the
DEFAULT_BROWSER environment variable.

If a URL s given as an argument, it loads that URL into the browser. For this to work properly, the browser
command must accept a URL as an argument.

Netscapewindowname an optional argument that can be used if the browser that is being launched is a
Netscape browser. A URL must always be specified with a window name. That URL will then be opened int
the named Netscape browser window. If a Netscape window with the specified name is already open, the
URL will be opened into that window. If the window is not already open, a new Netscape browser window
with the specified name will be opened. If the browser is not a Netscape browser, the Netscape window nan
argument will be ignored.

The main purpose of tteefaultbrowser command is to have applications use this command when they need
to open a browser to display HTML documents or web—based applications. This way, a system administrato
only needs to change the DEFAULT_BROWSER environment variable when a new browser is installed and
all applications will automatically begin using the new browser.

The DEFAULT_BROWSER environment variable should be set to the command that would launch the
desired browser. Include any arguments that must be included after the command to launch a specific URL
address. For example, if the command to launch a browser and open a specifiondRtlegbrowser

-r URL , then the DEFAULT_BROWSER environment variable would be set to aqualerbrowser

=r.

If the DEFAULT_BROWSER environment variable is not defined, theméfi@ultbrowser command runs
Netscape if it is installed.

If specified,URL indicates the page for the browser to load on startug\Nétscapewindownanis also

specified, and the browser is Netscape, Netscape opens a window of that name, or if a window of that name
already open, it will load the specified URL in that window. Window name cannot be used unless a URL is
also specified. If a window name is specified and the browser is not Netscape, then the window name is
ignored.

defaultbrowser Command 74

Commands Reference, Volume 2

Examples

1. To launch the designated default browser and have it open to it's default home page, enter:
defaultbrowser

2. To launch the designated default browser and have it open to the URL http://machine/path/file.html,

enter:
defaultbrowser http://machine/path/file.html

3. To launch the designated default browser and have it open the URL http://machine/path/file.html
where if the default browser is Netscape, then the page is displayed in a windoweblede
enter:
defaultbrowser http://machine/path/file.htm| webpage
Files

/usr/bin/defaultbrowser Thedefaultbrowser command

defaultbrowser Command 75

Commands Reference, Volume 2

defif Method

Purpose

Defines a network interface in the configuration database.

Syntax

defif Meihod

--dom-L

_}- -1 Type _{

-2 Class -8 Subcleas

defif [—c Class-s Subclasg -t Type

Description

Thedefif method defines the specified instance of a network interface. It only defines interfaces for currently
configured adapters. To define the specified instanceldfiemethod does the following:

1. Creates a customized interface instance in the configuration database.

2. Derives the logical name of the interface instance.

3. Retrieves the predefined attributes.

4. Updates the Customized Dependency object class to reflect dependencies of the defined interface
instance.

5. Sets the status flag of the interface instancietimed.

Flags

—cClass Specifies the interface class to be defined. The valid valtie is

—sSubclassSpecifies the subclass of interface to be defined. Valid values are:
TR Token-ring

EN Ethernet
SL Slip
XT X.25
LO Loopback
—-tType Specifies the type of interface to be defined. Valid values are:
tr Token-ring
en Ethernet
sl Slip
ie3 IEEE 802.3 Ethernet
lo Loopback
xt X.25

Examples

To define a token-ring network interface instance, enter the method in the following format:

defif Method 76

Commands Reference, Volume 2

defif -t tr

Related Information

Themkdev command.

Theodm_run_method subroutine.

TCP/IP Network Interfaces ialX Version 4.3 System Management Guide: Communications and Networks
Object Data Manager (ODM) Overview for Programmer&émeral Programming Concepts

Writing a Device Method iternel Extensions and Device Support Programming Concepts

defif Method 77

Commands Reference, Volume 2

definet Method

Purpose

Defines an inet instance in the system configuration database.

Syntax

definet Nathod

* definet =~ l l {
0 Class 4

definet[—cClass]

Description

Thedefinet method creates an object in the ODM configuration database specifying the customized attribute
of the inet instance. It performs the following operations:

1. Creates a customized inet instance.
2. Sets the status flag of the inet instance to defined.

This method is called by threkdev high—level command and is not meant to be issued on the command line.

Note: Thedefinet method is a programming tool and should not be executed from the
command line.

Flags

—c Class Specifies the inet instance to be defined. The only valid value f@l#ssvariable istcpip.

Examples

To define the inet0 instance, issue the following method:

definet

Related Information

Themkdev command.

Theodm_run_methodsubroutine.

Object Data Manager (ODM) Overview for Programmer&émeral Programming Concepts

Writing a Device Method iiernel Extensions and Device Support Programming Concepts

definet Method 78

Commands Reference, Volume 2

defragfs Command

Purpose

Increases a file system's contiguous free space.

Syntax

defragls Uommang

- Davice »
— delragis —{ e o H J—{
- - FleSystom

q

defragfs[—q | -r] { Device| FileSysten}
Description

Thedefragfs command increases a file system's contiguous free space by reorganizing allocations to be
contiguous rather than scattered across the disk. You can specify the file system to be defragmented with tt
Devicevariable, the path name of the logical volume (for exanigéa,/hd4). You can also specify it with
theFileSystenvariable, which is the mount point in thetc/filesystemdile.

Thedefragfs command is intended for fragmented and compressed file systems. However, you can use the
defragfs command to increase contiguous free space in nonfragmented file systems.

You must mount the file system read-write for this command to run successfully. Usitgftag or the
—r flag generates a fragmentation report. These flags do not alter the file system.

Flags

—(q Reports the current state of the file system.

—-r Reports the current state of the file system and the state that would resultefrtgfs command is run
without either—q or —r flag.

Examples
1. To defragment thielatal file system located on thdev/lvOOlogical volume, enter:
defragfs /datal

2. To defragment thielatal file system by specifying its mount point, enter:

defragfs /datal

3. To generate a report on tikatal file system that indicates its current status as well as its status after
being defragmented, enter:

defragfs —r /datal

Files

letc/filesystemd.ists the known file systems and defines their characteristics.

defragfs Command 79

Commands Reference, Volume 2

Related Information
Thecrfs command, thésfs command, thenkfs command.

Understanding Data Compression, in #1¥ Version 4.3 System Management Concepts: Operating System
and Devicedook.

Understanding Fragments and a Variable Number of i-nodes, AlXheéersion 4.3 System Management
Concepts: Operating System and Devigcesk.

defragfs Command 80

Commands Reference, Volume 2

del Command

Purpose

Deletes files if the request is confirmed.

Syntax

~ del - { !1- Fie -Ii
del[-] File ...
Description

Attention: Thedel command ignores file protection, allowing the owner of a file to delete a
write—protected file. However, to delete a file, you must have write permission in the
directory containing the file. Since pressing the Enter key by itself is the same as answering
yes, be careful not to delete files accidentally.

Thedel command displays the list of specified files and asks you to confirm your request to delete the group
of files. To answer yes (delete the files), press the Enter key or enter a line beginningowithe locale's
equivalent of). Any other response specifies no (do not delete the files).

Thedel command does not delete directories. Seentfitr command for information about deleting
directories.

Environment Variables
TheLANG andLC_MESSAGES environment variables determine the locale's equivalentforf
yes/no queries. If thet. ANG andLC_MESSAGES variables are not set or are set to an invalid locale, the

yesstrvalue is from the default C locale. To find valid affirmative responses, lentde —k
LC_MESSAGESt the command line and note the values displayed aftgedis&r heading.

Flags
— Requests confirmation for each specified file name rather than for the entire group.

Examples

1. To delete a file, enter:

del chapl.bak

This displays the message:

del : Remove chapl.bak? Enter yes or press the Enter key for yes.
Press any other key for no.

You can press the Enter keyyto answer yes. Pressing any other key cancels the deletion. Note the

del Command 81

Commands Reference, Volume 2

warning under description.

2. To use thelel command with pattern—-matching characters, enter:

del *.bak

Before passing the command line to tletcommand, the shell replaces the patteoak with the
names of all the files in the current directory that end etk . (This is known as file—-name
expansion.) Theel command prompts you for confirmation before deleting them all at one time.
Note the warning under description.

3. To interactively select files to be deleted, enter:

del = *

This displays the name of each file in the current directory one at a time, allowing you to select which ones t
delete. Note the warning under description.

Files

/usr/bin/del Contains thelel command.

Related Information
Therm commandymdir command.

National Language Support Overview for System Managemexiiiiversion 4.3 System Management
Concepts: Operating System and Devierglains locale.

File and Directory Access ModesAtX Version 4.3 System Management Guide: Operating System and
Devicesintroduces file ownership and permissions to access files and directories.

Directory Overview inAlX Version 4.3 System User's Guide: Operating System and Ddemaibes the
structure and characteristics of directories in the file system.

Files Overview inAIX Version 4.3 System User's Guide: Operating System and Ddem&ibes files, file
types, and how to name files.

File Systems and Directories OverviewAiX Version 4.3 System User's Guide: Operating System and
Devices

del Command 82

Commands Reference, Volume 2

deleteX1linput Command
Purpose
Deletes an X11 input extension record from the ODM (Object Data Manager) database.

Syntax

deleteX1tinput Commang

= deletaX!1iaput & Owrceliame :I-

del