
Bull
AIX 5L System User’s Guide

Operating System and Devices

AIX

86 A2 24EF 02

ORDER REFERENCE

Bull
AIX 5L System User’s Guide

Operating System and Devices

AIX

Software

October 2002

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

86 A2 24EF 02

ORDER REFERENCE

The following copyright notice protects this book under the Copyright laws of the United States of America

and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and

making derivative works.

Copyright Bull S.A. 1992, 2002

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of

this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you

are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX� is a registered trademark of International Business Machines Corporation, and is being used under

licence.

UNIX is a registered trademark in the United States of America and other countries licensed exclusively through

the Open Group.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors

contained herein, or for incidental or consequential damages in connection with the use of this material.

Preface iii

About This Book

This book contains information for novice system users who want to acquire greater
expertise with the operating system. It covers information such as running commands,
handling processes, handling files and directories, and printing. In addition, it introduces
tasks such as securing files, using storage media, customizing environment files
(.profile,.Xdefaults,.mwmrc), and writing shell scripts. For DOS users, this guide presents
procedures on using DOS files in this environment.

Users in a networked environment who are interested in learning more about operating
system communications commands should read the AIX 5L Version 5.2 System User’s
Guide: Communications and Networks.

Who Should Use This Book
This book is intended for all system users.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, keywords, files,
directories, and other items whose names
are predefined by the system.

Italics Identifies parameters whose actual names
or values are to be supplied by the user.

Monospace Identifies examples of specific data values,
examples of text similar to what you might
see displayed, examples of portions of
program code similar to what you might
write as a programmer, messages from the
system, or information you should actually
type.

Case–Sensitivity in AIX
Everything in the AIX operating system is case–sensitive, which means that it distinguishes
between uppercase and lowercase letters. For example, you can use the ls command to list
files. If you type LS, the system responds that the command is ”not found.” Likewise, FILEA,
FiLea, and filea are three distinct file names, even if they reside in the same directory. To
avoid causing undesirable actions to be performed, always ensure that you use the correct
case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing

of this product.

AIX System User’s Guide – OS & Devicesiv

Related Publications
The following books contain pertinent information:

• AIX 5L Version 5.2 System User’s Guide: Communications and Networks

• AIX 5L Version 5.2 System Management Guide: Operating System and Devices

• AIX 5L Version 5.2 System Management Concepts: Operating System and Devices

• AIX 5L Version 5.2 Guide to Printers and Printing

• AIX 5L Version 5.2 Commands Reference

• AIX 5L Version 5.2 Files Reference

Contents v

Table of Contents

About This Book iii.

Who Should Use This Book iii.

Highlighting iii.

Case–Sensitivity in AIX iii.

ISO 9000 iii.

Related Publications iv.

Chapter 1. Login Names, System IDs, and Passwords 1-1.

Login and Logout Overview 1-2.

Logging In to the Operating System 1-2.

Logging in More Than One Time (login Command) 1-3.

Becoming Another User on a System (su Command) 1-3.

Suppressing Login Messages 1-3.

Logging Out of the Operating System (exit and logout Commands) 1-4.

Stopping the Operating System (shutdown Command) 1-4.

User and System Identification 1-5.

Displaying Your Login Name (whoami and logname Commands) 1-5.

Using the whoami Command 1-5.

Using the who am i Command 1-5.

Using the logname Command 1-5.

Displaying the Operating System’s Name (uname Command) 1-6.

Displaying Your System’s Name (uname Command) 1-6.

Displaying Who Is Logged In (who Command) 1-6.

Displaying User IDs (id Command) 1-7.

Passwords 1-8.

Password Guidelines 1-8.

Changing Passwords (passwd Command) 1-9.

Setting Passwords to Null (passwd Command) 1-9.

Command Summary for Login Names, System IDs, and Passwords 1-10.

Login and Logout Commands 1-10.

User and System Identification Commands 1-10.

Password Command 1-10.

Related Information 1-10.

Related Information 1-10.

Chapter 2. User Environment and System Information 2-1.

Listing System Devices (lscfg Command) 2-2.

Displaying the Console Name (lscons Command) 2-3.

Displaying the Terminal Name (tty Command) 2-3.

Listing Available Displays (lsdisp Command) 2-4.

Listing Available Fonts (lsfont Command) 2-4.

Listing the Current Software Keyboard Map (lskbd Command) 2-4.

Listing Available Software Products (lslpp Command) 2-5.

Listing Control Key Assignments for Your Terminal (stty Command) 2-5.

Listing Environment Variables (env Command) 2-6.

Displaying the Value of an Environment Variable (printenv Command) 2-7.

Working with Bidirectional Languages (aixterm Command) 2-7.

Command Summary for User Environment and System Information 2-7.

Related Information 2-8.

vi AIX System User’s Guide – OS & Devices

Chapter 3. The Common Desktop Environment 3-1.

Starting and Stopping the CDE Desktop 3-2.

Enabling and Disabling Desktop Autostart 3-2.

Prerequisite 3-2.

Starting CDE Desktop Manually 3-2.

Start the Desktop Login Manager Manually 3-2.

Stopping CDE Desktop Manually 3-2.

Stop the Login Manager Manually 3-2.

Modifying Desktop Profiles 3-3.

Adding and Removing Displays and Terminals for Common Desktop Environment 3-3

Using a Workstation as an Xterminal 3-4.

Removing a Local Display 3-5.

Adding an ASCII or Character–Display Terminal 3-5.

Adding an ASCII or Character–Display Console if No Bitmap Display Is Present
3-5

Adding a Character–Display Console if a Bitmap Display Exists 3-5.

Customizing Display Devices for Common Desktop Environment 3-6.

Starting the Server on Each Display Device 3-6.

Syntax 3-6.

Default configuration 3-6.

Specifying a Different Display as ITE 3-6.

Examples 3-6.

Specifying the Display Name in Xconfig 3-7.

Example 3-7.

Using Different Login Manager Resources for Each Display 3-7.

Example 3-7.

Running Different Scripts for Each Display 3-7.

Example 3-7.

Setting Different Systemwide Environment Variables for Each Display 3-8.

Example 3-8.

Chapter 4. Commands and Processes 4-1.

Commands Overview 4-3.

Command Syntax 4-3.

Command Name 4-4.

Command Flags 4-4.

Command Parameters 4-4.

Reading Usage Statements 4-5.

Using Web-based System Manager 4-5.

Using the smit Command 4-6.

Locating a Command or Program (whereis Command) 4-6.

Displaying Information about a Command (man Command) 4-6.

Displaying the Function of a Command (whatis Command) 4-7.

Listing Previously Entered Commands (history Shell Command) 4-7.

Repeating Commands Using the history Shell Command 4-8.

Substituting Strings Using the history Shell Command 4-9.

Editing the Command History 4-9.

Creating a Command Alias (alias Shell Command) 4-10.

Working with Text–Formatting Commands 4-10.

International Character Support in Text Formatting 4-10.

Entering Extended Single–Byte Characters 4-11.

Multibyte Character Support in Text Formatting 4-11.

Contents vii

Entering Multibyte Characters 4-11.

Processes Overview 4-13.

Foreground and Background Processes 4-13.

Daemons 4-13.

Zombie Process 4-14.

Starting a Process 4-14.

To Start a Process in the Foreground 4-14.

To Start a Process in the Background 4-14.

Checking Processes (ps Command) 4-14.

ps Command 4-14.

Setting the Initial Priority of a Process (nice Command) 4-16.

nice Command 4-16.

Changing the Priority of a Running Process (renice Command) 4-16.

From the Command Line 4-16.

Canceling a Foreground Process 4-17.

Stopping a Foreground Process 4-17.

Restarting a Stopped Process 4-17.

Scheduling a Process for Later Operation (at Command) 4-18.

at Command 4-18.

Listing All Scheduled Processes (at or atq Command) 4-19.

at Command 4-19.

atq Command 4-19.

Removing a Process from the Schedule (at Command) 4-19.

From the Command Line 4-19.

Removing a Background Process (kill Command) 4-19.

kill Command 4-20.

Command Summary for Commands and Processes 4-21.

Commands 4-21.

Processes 4-21.

Related Information 4-21.

Chapter 5. Input and Output Redirection 5-1.

Standard Input, Standard Output, and Standard Error 5-2.

Redirecting Standard Output 5-2.

Redirecting Output to a File 5-2.

Redirecting Output and Appending to a File 5-3.

Creating a Text File with Redirection from the Keyboard 5-3.

Concatenating Text Files 5-3.

Redirecting Standard Input 5-4.

Discarding Output with the /dev/null File 5-4.

Redirecting Standard Error and Other Output 5-4.

Using Inline Input (Here) Documents 5-5.

Using Pipes and Filters 5-5.

Displaying Program Output and Copying to a File (tee command) 5-6.

Clearing Your Screen (clear Command) 5-7.

Sending a Message to Standard Output (echo Command) 5-7.

Appending a Single Line of Text to a File (echo Command) 5-7.

Copying Your Screen to a File (capture and script Commands) 5-7.

Displaying Text in Large Letters on Your Screen (banner Command) 5-8.

Command Summary for Input and Output Redirection 5-9.

Related Information 5-9.

viii AIX System User’s Guide – OS & Devices

Chapter 6. File Systems and Directories 6-1.

File Systems 6-2.

File System Types 6-2.

File System Structure 6-2.

Displaying Available Space on a File System (df Command) 6-4.

Directory Overview 6-5.

Types of Directories 6-5.

Directory Organization 6-6.

Directory Naming Conventions 6-6.

Directory Path Names 6-6.

Directory Abbreviations 6-7.

Directory–Handling Procedures 6-8.

Creating a Directory (mkdir Command) 6-8.

Moving or Renaming a Directory (mvdir Command) 6-8.

Displaying the Current Directory (pwd Command) 6-9.

Changing to Another Directory (cd Command) 6-9.

Copying a Directory (cp Command) 6-10.

Displaying Contents of a Directory (ls Command) 6-10.

ls command 6-10.

Deleting or Removing a Directory (rmdir Command) 6-12.

Comparing the Contents of Directories (dircmp Command) 6-12.

Command Summary for File Systems and Directories 6-14.

File Systems 6-14.

Directory Abbreviations 6-14.

Directory Handling Procedures 6-14.

Related Information 6-14.

Chapter 7. Files 7-1.

Types of Files 7-3.

Regular Files 7-3.

Text Files 7-3.

Binary Files 7-3.

Directory Files 7-3.

Special Files 7-3.

File–Naming Conventions 7-4.

File Path Names 7-4.

Pattern Matching with Wildcards and Metacharacters 7-4.

Using the * Wildcard Charactor 7-4.

Using the ? Wildcard Charactor 7-5.

Using [] Shell Metacharacters 7-5.

Pattern Matching versus Regular Expressions 7-6.

File Handling Procedures 7-7.

Deleting Files (rm Command) 7-7.

Moving and Renaming Files (mv Command) 7-8.

Moving Files with mv Command 7-8.

Renaming Files with mv Command 7-8.

Copying Files (cp Command) 7-8.

Finding Files (find Command) 7-9.

Displaying the File Type (file Command) 7-10.

Displaying File Contents (pg, more, page, and cat Commands) 7-11.

pg Command 7-11.

more or page Command 7-11.

cat Command 7-12.

Finding Text Strings Within Files (grep Command) 7-12.

Sorting Text Files (sort Command) 7-13.

Contents ix

Comparing Files (diff Command) 7-14.

Counting Words, Lines, and Bytes in Files (wc Command) 7-14.

Displaying the First Lines of Files (head Command) 7-14.

Displaying the Last Lines of Files (tail Command) 7-15.

Cutting Sections of Text Files (cut Command) 7-15.

Pasting Sections of Text Files (paste Command) 7-16.

Numbering Lines in Text Files (nl Command) 7-17.

Removing Columns in Text Files (colrm Command) 7-17.

Linking Files and Directories 7-18.

Types of Links 7-18.

Linking Files (ln Command) 7-19.

Removing Linked Files 7-20.

DOS Files 7-21.

Copying DOS Files to Base Operating System Files 7-21.

Copying Base Operating System Files to DOS Files 7-21.

Deleting DOS Files 7-22.

Listing Contents of a DOS Directory 7-22.

Command Summary for Files 7-23.

File–Handling Procedures 7-23.

Linking Files and Directories 7-23.

DOS Files 7-23.

Related Information 7-24.

Chapter 8. Printers, Print Jobs, and Queues 8-1.

Printer Terminology 8-2.

Starting a Print Job (qprt Command) 8-4.

Prerequisites 8-4.

Using the qprt Command 8-4.

Using the smit Command 8-7.

Canceling a Print Job (qcan Command) 8-8.

Prerequisites 8-8.

Using the qcan Command 8-8.

Using the smit Command 8-8.

Checking Print Job Status (qchk Command) 8-9.

Prerequisites 8-9.

Web-based System Manager Fast Path 8-9.

Using the qchk Command 8-9.

Using the smit Command 8-10.

Printer Status Conditions 8-10.

Prioritizing a Print Job (qpri Command) 8-11.

Prerequisites 8-11.

Using the qpri Command(qpri Command) 8-11.

Using the smit Command 8-11.

Holding and Releasing a Print Job (qhld Command) 8-12.

Prerequisites 8-12.

Web-based System Manager Fast Path 8-12.

Using the qhld Command 8-12.

Using the smit Command 8-12.

Moving a Print Job to Another Print Queue (qmov Command) 8-13.

Prerequisites 8-13.

Using the qmov Command 8-13.

Using the smit Command 8-13.

Formatting Files for Printing (pr Command) 8-14.

Printing ASCII Files on a PostScript Printer 8-16.

Prerequisites 8-16.

x AIX System User’s Guide – OS & Devices

Automating the Conversion of ASCII to PostScript 8-17.

Overriding Automatic Determination of Print File Types 8-18.

Command Summary for Printers, Print Jobs, and Queues 8-18.

Related Information 8-18.

Chapter 9. Backup Files and Storage Media 9-1.

Establishing a Backup Policy 9-2.

Backup Media 9-3.

Diskettes 9-3.

Tapes 9-3.

Formatting Diskettes (format or fdformat Command) 9-4.

Checking the Integrity of the File System (fsck Command) 9-5.

Copying to or from Diskettes (flcopy Command) 9-6.

Copying Files to Tape or Disk (cpio –o Command) 9-6.

Copying Files from Tape or Disk (cpio –i Command) 9-7.

Copying to or from Tapes (tcopy Command) 9-8.

Checking the Integrity of a Tape (tapechk Command) 9-8.

Compressing Files (compress and pack Commands) 9-9.

Using the compress Command 9-9.

Using the pack Command 9-10.

Expanding Compressed Files (uncompress and unpack Commands) 9-11.

Using the uncompress Command 9-11.

Using the unpack Command 9-11.

Backing Up Files (backup Command) 9-12.

Using the backup Command 9-12.

Using the smit Command 9-13.

Restoring Backed–Up Files (restore Command) 9-14.

Using the restore Command 9-14.

Using the smit Command 9-15.

Archiving Files (tar Command) 9-16.

Command Summary for Backup Files and Storage Media 9-17.

Related Information 9-17.

Chapter 10. File and System Security 10-1.

Security Threats 10-2.

Basic Security 10-2.

Backups 10-2.

Identification and Authentication 10-2.

Login User IDs 10-3.

Unattended Terminals 10-3.

File Ownership and User Groups 10-4.

Changing File or Directory Ownership (chown Command) 10-4.

File and Directory Access Modes 10-4.

Symbolic Representation of Access Modes 10-5.

Numeric Representation of Access Modes 10-5.

Displaying Group Information (lsgroup Command) 10-6.

Listing All of the Groups on the System 10-6.

Displaying Specific Attributes for All Groups 10-6.

Displaying All Attributes for a Specific Group 10-7.

Contents xi

Listing Specific Attributes for a Specific Group 10-7.

Changing File or Directory Permissions (chmod Command) 10-8.

Access Control Lists 10-9.

Base Permissions 10-9.

Attributes 10-9.

Extended Permissions 10-10.

Access Control List Example 10-10.

Access Authorization 10-11.

Displaying Access Control Information (aclget Command) 10-12.

Setting Access Control Information (aclput Command) 10-12.

Editing Access Control Information (acledit Command) 10-12.

Locking Your Terminal (lock or xlock Command) To lock your terminal, use the 10-13. . .

Command Summary for File and System Security 10-13.

Related Information 10-13.

Chapter 11. Customizing the User Environment 11-1.

System Startup Files Overview 11-2.

/etc/profile File 11-2.

/etc/environment File 11-3.

.profile File 11-3.

.env File 11-4.

AIXwindows Startup Files Overview 11-5.

.xinitrc File 11-5.

.Xdefaults File 11-6.

.mwmrc File 11-7.

Customization Procedures 11-9.

Exporting Shell Variables (export Shell Command) 11-9.

Changing the Display’s Font (chfont Command) 11-10.

chfont Command 11-10.

smit Command 11-10.

Changing Control Keys (stty Command) 11-10.

Changing Your System Prompt 11-11.

Summary for User Environment Customization 11-12.

System Startup Files 11-12.

AIXwindows Startup Files 11-12.

Customization Procedures 11-12.

Chapter 12. Shells 12-1.

Shell Features 12-3.

Available Shells 12-4.

Shells Terminology 12-5.

Creating and Running a Shell Script 12-7.

Specifying a Shell for a Script File 12-8.

Korn Shell or POSIX Shell Commands 12-9.

Korn Shell Compound Commands 12-10.

List of Korn Shell or POSIX Shell Compound Commands 12-11.

Shell Startup 12-13.

Korn Shell Environment 12-13.

Korn Shell Functions 12-13.

Korn Shell or POSIX Shell Command History 12-15.

Command History Substitution 12-15.

Quoting in the Korn Shell or POSIX Shell 12-16.

Reserved Words in the Korn Shell or POSIX Shell 12-19.

Command Aliasing in the Korn Shell or POSIX Shell 12-20.

Tracked Aliases 12-20.

xii AIX System User’s Guide – OS & Devices

Tilde Substitution 12-21.

Parameter Substitution in the Korn Shell or POSIX Shell 12-22.

Parameters in the Korn Shell 12-22.

Parameter Substitution 12-23.

Predefined Special Parameters 12-24.

Variables Set by the Korn Shell or POSIX Shell 12-25.

Variables Used by the Korn Shell or POSIX Shell 12-26.

Command Substitution in the Korn Shell or POSIX Shell 12-28.

Arithmetic Evaluation in the Korn Shell or POSIX Shell 12-29.

Field Splitting in the Korn Shell or POSIX Shell 12-31.

File–Name Substitution in the Korn Shell or POSIX Shell 12-32.

Quote Removal 12-33.

Input and Output Redirection in the Korn Shell or POSIX Shell Before the Korn shell
executes a command, 12-34.

Coprocess Facility 12-35.

Redirecting Coprocess Input and Output 12-36.

Exit Status in the Korn Shell or POSIX Shell 12-37.

Korn Shell or POSIX Shell Built–In Commands 12-38.

Special Built–in Command Descriptions 12-38.

Regular Built–in Command Descriptions 12-45.

List of Korn Shell or POSIX Shell Built–in Commands 12-52.

Special Built–in Commands 12-52.

Regular Built–in Commands 12-52.

Conditional Expressions for the Korn Shell or POSIX Shell 12-54.

Job Control in the Korn Shell or POSIX Shell 12-56.

Signal Handling 12-56.

Inline Editing in the Korn Shell or POSIX Shell 12-58.

emacs Editing Mode 12-58.

vi Editing Mode 12-61.

Input Edit Commands 12-62.

Motion Edit Commands 12-62.

Search Edit Commands 12-63.

Text–Modification Edit Commands 12-63.

Miscellaneous Edit Commands 12-65.

Enhanced Korn Shell (ksh93) 12-67.

Bourne Shell 12-73.

Bourne Shell Environment 12-73.

Restricted Shell 12-75.

Bourne Shell Commands 12-76.

Quoting Characters 12-77.

Signal Handling 12-77.

Bourne Shell Compound Commands 12-77.

Reserved Words 12-78.

Bourne Shell Built–In Commands 12-79.

Special Command Descriptions 12-79.

Command Substitution in the Bourne Shell 12-86.

Variable and File–Name Substitution in the Bourne Shell 12-87.

Variable Substitution in the Bourne Shell 12-87.

User–Defined Variables 12-87.

Variables Used by the Shell 12-88.

Predefined Special Variables 12-90.

Contents xiii

Blank Interpretation 12-91.

Conditional Substitution 12-91.

Positional Parameters 12-92.

File–Name Substitution in the Bourne Shell 12-92.

Character Classes 12-93.

Input and Output Redirection in the Bourne Shell 12-94.

List of Bourne Shell Built–in Commands 12-95.

C Shell 12-96.

C Shell Limitations 12-97.

Signal Handling 12-97.

C Shell Commands 12-98.

C Shell Built–In Commands 12-98.

C Shell Command Descriptions 12-99.

C Shell Expressions and Operators 12-108.

Command Substitution in the C Shell 12-109.

Nonbuilt–in C Shell Command Execution 12-109.

History Substitution in the C Shell 12-111.

History Lists 12-111.

Event Specification 12-112.

Quoting with Single and Double Quotes 12-113.

Alias Substitution in the C Shell 12-114.

Variable and File–Name Substitution in the C Shell 12-115.

Variable Substitution in the C Shell 12-115.

File–Name Substitution in the C Shell 12-117.

File–Name Expansion 12-117.

File–Name Abbreviation 12-118.

Character Classes 12-118.

Environment Variables in the C Shell 12-120.

Input and Output Redirection in the C Shell 12-122.

Control Flow 12-123.

Job Control in the C Shell 12-124.

List of C Shell Built–in Commands 12-125.

Related Information 12-127.

Korn Shell 12-127.

Bourne Shell 12-127.

C Shell 12-128.

Index X-1.

xiv AIX System User’s Guide – OS & Devices

1-1 Login Names, System IDs, and Passwords

Chapter 1. Login Names, System IDs, and Passwords

The operating system must know who you are in order to provide you with the correct
environment. To identify yourself to the operating system, log in by entering your login name
(also known as your user ID or user name) and a password. Passwords are a form of
security. People who know your login name cannot log in to your system unless they know
your password.

If your system is set up as a multiuser system, each authorized user will have an account,
password, and login name on the system. The operating system keeps track of the
resources used by each user. This is known as system accounting. Each user will be given
a private area in the storage space of the system, called the file system. When you log in,
the file system appears to contain only your files, although there are thousands of other files
on the system.

It is possible to have more than one valid login name on a system. If you want to change
from one login name to another, you do not have to log out of the system. Rather, you can
use the different login names simultaneously in different shells or consecutively in the same
shell without logging out. In addition, if your system is part of a network with connections to
other systems, you can log in to any of the other systems where you have a login name.
This is referred to as a remote login.

When you have finished working on the operating system, you log out to ensure that your
files and data are secure.

This chapter contains the following sections:

• Login and Logout Overview on page 1-2

– Logging In to the Operating System on page 1-2

– Logging in More Than One Time (login Command) on page 1-3

– Becoming Another User on a System (su Command) on page 1-3

– Suppressing Login Messages on page 1-3

– Logging Out of the Operating System (exit and logout Commands) on page 1-4

– Stopping the Operating System (shutdown Command) on page 1-4

• User and System Identification on page 1-5

– Displaying Your Login Name (whoami and logname Commands) on page 1-5

– Displaying the Operating System’s Name (uname Command) on page 1-6

– Displaying Your System’s Name (uname Command) on page 1-6

– Displaying Who Is Logged In (who Command) on page 1-6

– Displaying User IDs (id Command) on page 1-7

• Passwords on page 1-8

– Password Guidelines on page 1-8

– Changing Passwords (passwd Command) on page 1-9

– Setting Passwords to Null (passwd Command) on page 1-9

• Command Summary for Login Names, System IDs, and Passwords on page 1-10

1-2 AIX System User’s Guide – OS & Devices

Login and Logout Overview
To use the operating system, your system must be running and you must be logged in.
When you log in to the operating system, you identify yourself to the system and allow the
system to set up your environment.

This section describes the following procedures:

• Logging In to the Operating System on page 1-2

• Logging in More Than One Time (login Command) on page 1-3

• Becoming Another User on a System (su Command) on page 1-3

• Suppressing Login Messages on page 1-3

• Logging Out of the Operating System (exit and logout Commands) on page 1-4

• Stopping the Operating System (shutdown Command) on page 1-4

Logging In to the Operating System
Your system might be set up so that you can only log in during certain hours of the day and
on certain days of the week. If you attempt to log in at a time other than the time allowed,
your access will be denied. Your system administrator can verify your login times.

You log in at the login prompt. When you log in to the operating system, you are
automatically placed into your home directory (also called your login directory).

After your system is turned on, log in to the system to start a session.

1. Type your login name following the login: prompt and press Enter:

login: LoginName

For example, if your login name is denise:

login: denise

2. If the password: prompt appears, type your password and press Enter. (The screen
does not display your password as you type it in.)

password: [your password]

If the password prompt does not appear, you have no password defined; you can begin
working in the operating system.

If your machine is not turned on, do the following before you log in:

1. Set the power switches of each attached device to On.

2. Start the system unit by setting the power switch to On (I).

3. Look at the three–digit display. When the self–tests complete without error, the
three–digit display is blank.

If an error requiring attention occurs, a three–digit code remains, and the system unit stops.
See your system administrator for information about error codes and recovery.

When the self–tests complete successfully, a login prompt similar to the following displays
on your screen:

login:

After you have logged in, depending on how your operating system is set up, your system
will start up in either a command line interface (shell) or a graphical interface (for example,
AIXwindows or CDE Desktop (CDE)).

If you have questions concerning the configuration of your password or user name, please
consult your system administrator.

1-3 Login Names, System IDs, and Passwords

Logging in More Than One Time (login Command)
If you are working on more than one project and want to maintain separate accounts, you
can have more than one concurrent login.You do this by using the same login name or by
using different login names to log in to your system.

Note: Each system has a maximum number of login names that can be active at any
given time. This number is determined by your license agreement and varies among
installations.

For example, if you are already logged on as denise1 and your other login name is denise2,
at the prompt, type:

login denise2

If the password: prompt displays, type your password and press Enter. (The screen does
not display your password as you type it.) You now have two logins running on your system.

See the login command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Becoming Another User on a System (su Command)
You can change the user ID associated with a session (if you know that user’s login
name)by using the su (switch user) command.

For example, if you want to switch and become user joyce, at the prompt, type:

su joyce

If the password: prompt displays, type joyce’s password and press Enter. Your user ID is
now joyce. If you do not know the password, the request is denied.

To verify that your user ID is joyce, use the id command. For more information on the id
command, see Displaying User IDs (id Command) on page 1-7.

See the su command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Suppressing Login Messages
After a successful login, the login command displays the message of the day, the date and
time of the last successful and unsuccessful login attempts for this user, and the total
number of unsuccessful login attempts for this user since the last change of authentication
information (usually a password). You can suppress these messages by including
a.hushlogin file in your home directory.

At the prompt in your home directory, type:

touch .hushlogin

The touch command creates the empty file named.hushlogin if it does not already exist.
The next time you log in, all login messages will be suppressed. You can instruct the system
to retain only the message of the day, while suppressing other login messages.

See the touch command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

1-4 AIX System User’s Guide – OS & Devices

Logging Out of the Operating System (exit and logout Commands)
To log out of the operating system, do one of the following at the system prompt:

Press the end–of–file control–key sequence (Ctrl–D keys).

OR

Type exit and press Enter.

OR

Type logout and press Enter.

After you log out, the system displays the login: prompt.

Stopping the Operating System (shutdown Command)
Attention: Do not turn off the system without first shutting down. Turning off the system
ends all processes running on the system. If other users are working on the system, or if
jobs are running in the background, data might be lost. Perform proper shutdown
procedures before you stop the system.

If you have root user authority, you can use the shutdown command to stop the system. If
you are not authorized to use the shutdown command, simply log out of the operating
system and leave it running.

At the prompt, type:

shutdown

When the shutdown command completes and the operating system stops running, you
receive the following message:

....Shutdown completed....

See the shutdown command in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

1-5 Login Names, System IDs, and Passwords

User and System Identification
This section describes following procedures available for displaying information that
identifies users on your system and the system you are using.

• Displaying Your Login Name (whoami and logname Commands) on page 1-5

• Displaying the Operating System’s Name (uname Command) on page 1-6

• Displaying Your System’s Name (uname Command) on page 1-6

• Displaying Who Is Logged In (who Command) on page 1-6

• Displaying User IDs (id Command) on page 1-7

Displaying Your Login Name (whoami and logname Commands)
When you have more than one concurrent login, it is often easy to lose track of the login
names or, in particular, the login name that you are using at the time.

Using the whoami Command
To determine which login name is being used, at the prompt, type:

whoami

The system displays information similar to the following:

denise

In this example, the login name being used is denise.

See the whoami command in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

Using the who am i Command
A variation of the who command, the who am i command, allows you to display the login
name, terminal name, and time of the login.At the prompt, type:

who am i

The system displays information similar to the following:

denise pts/0 Jun 21 07:53

In this example, the login name is denise, the name of the terminal is pts/0, and this user
logged in at 7:53 a.m. on June 21.

See the who command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Using the logname Command

Another variation of the who command, the logname command displays the same
information as the who command.

At the prompt, type:

logname

1-6 AIX System User’s Guide – OS & Devices

The system displays information similar to the following:

denise

In this example, the login name is denise.

Displaying the Operating System’s Name (uname Command)
To display the name of the operating system, use the uname command .

For example, at the prompt, type:

uname

The system displays information similar to the following:

AIX

In this example, the operating system name is AIX.

See the uname command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Displaying Your System’s Name (uname Command)
To display the name of your system if you are on a network, use the uname command with
the –n flag. Your system name identifies your system to the network; it is not the same as
your login ID.

For example, at the prompt, type:

uname –n

The system displays information similar to the following:

barnard

In this example, the system name is barnard.

See the uname command in the AIX 5L Version 5.2 Commands Reference Book for the
complete syntax.

Displaying Who Is Logged In (who Command)
To display information about all users currently on the local system, use the who command .
The following information is displayed: login name, system name, and date and time of
login.

Note: This command only identifies users on the local node.

To display information about who is using the local system node, type:

who

The system displays information similar to the following:

joe lft/0 Jun 8 08:34

 denise pts/1 Jun 8 07:07

In this example, the user joe, on terminal lft/0, logged in at 8:34 a.m. on June 8.

1-7 Login Names, System IDs, and Passwords

See the who command in the AIX 5L Version 5.2 Commands Reference for the exact
syntax.

Displaying User IDs (id Command)
To displays the system identifications (IDs) for a specified user, use the id command . The
system IDs are numbers that identify users and user groups to the system. The id
command displays the following information, when applicable:

• User name and real user ID

• Name of the user’s group and real group ID

• Name of the user’s supplementary groups and supplementary group IDs, if any

For example, at the prompt, type:

id

The system displays information similar to the following:

uid=1544(sah) gid=300(build) euid=0(root) egid=9(printq)

groups=0(system),10(audit)

In this example, the user has user name sah with an ID number of 1544; a primary group
name of build with an ID number of 300; an effective user name of root with an ID
number of 0; an effective group name of printq with an ID number of 9; and two
supplementary group names of system and audit, with ID numbers 0 and 10,
respectively.

For example, at the prompt, type:

id denise

The system displays information similar to the following:

uid=2988(denise) gid=1(staff)

In this example, the user denise has an ID number of 2988 and only has a primary group
name of staff with an ID number of 1.

See the id command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

1-8 AIX System User’s Guide – OS & Devices

Passwords
Your system associates a password with each account. A unique password provides some
system security for your files. Security is an important part of computer systems because it
keeps unauthorized people from gaining access to the system and from tampering with
other users’ files. Security can also allow some users exclusive privileges to which
commands they can use and which files they can access. For protection, some system
administrators permit the users access only to certain commands or files.

This section describes the following procedures:

• Password Guidelines on page 1-8

• Changing Passwords (passwd Command) on page 1-9

• Setting Passwords to Null (passwd Command) on page 1-9

Password Guidelines
You should have a unique password. Passwords should not be shared. Protect passwords
as you would any other company asset. When creating passwords, make sure they are
difficult to guess, but not so difficult that you have to write them down to remember them.

Using obscure passwords keeps your user ID secure. Passwords based on personal
information, such as your name or birthday, are poor passwords. Even common words can
be easily guessed.

Good passwords have at least six characters and include nonalphabetic characters.
Strange word combinations and words purposely misspelled are also good choices.

Note: If your password is so hard to remember that you have to write it down, it is not a
good password.

Use the following guidelines when selecting a password:

• Do not use your user ID as a password. Do not use it reversed, doubled, or otherwise
modified.

• Do not reuse passwords. The system might be set up to deny the reuse of passwords.

• Do not use any person’s name as your password.

• Do not use words that can be found in the online spelling–check dictionary as your
password.

• Do not use passwords shorter than six characters.

• Do not use obscene words; they are some of the first ones checked when guessing
passwords.

• Do use passwords that are easy to remember, so you won’t have to write them down.

• Do use passwords that use both letters and numbers and that have both lowercase and
uppercase letters.

• Do use two words, separated by a number, as a password.

• Do use pronounceable passwords. They are easier to remember.

• Do not write passwords down. However, if you must write them down, place them in a
physically secure place, such as a locked cabinet.

1-9 Login Names, System IDs, and Passwords

Changing Passwords (passwd Command)
To change your password, use the passwd command.

1. At the prompt, type:

passwd

If you do not already have a password, skip step 2.

2. The following prompt displays:

Changing password for UserID

 UserID ’s Old password:

This request keeps an unauthorized user from changing your password while you are
away from your system. Type your current password and press Enter.

3. The following prompt displays:

 UserID ’s New password:

Type the new password you want and press Enter.

4. The following prompt displays, asking you to reenter your new password.

Enter the new password again:

This request protects you from setting your password to a mistyped string that you
cannot re–create.

See the passwd command in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

Setting Passwords to Null (passwd Command)
If you do not want to enter a password each time you log in, set your password to null
(blank).

To set your password to null, type:

passwd

When you are prompted for the new password, press Enter or Ctrl–D.

The passwd command does not prompt again for a password entry. A message verifying
the null password displays.

See the passwd command in the AIX 5L Version 5.2 Commands Reference Book for more
information and the exact syntax.

1-10 AIX System User’s Guide – OS & Devices

Command Summary for Login Names, System IDs, and
Passwords

Login and Logout Commands

 login Initiates your session

 logout Stops all your processes

 shutdown Ends system operation

 su Changes the user ID associated with a session

 touch Updates the access and modification times of a file, or creates an
empty file

User and System Identification Commands

 id Displays the system identifications of a specified user

 logname Displays login name.

 uname Displays the name of the current operating system

 who Identifies the users currently logged in

 whoami Displays your login name

Password Command

 passwd Changes a user’s password

Related Information
For further information on this topic, see the following

• Commands and Processes on page 4-1

• File and System Security on page 10-1

• User Environment and System Information on page 2-1

• Customizing the User Environment on page 11-1

Related Information
 Commands and Processes on page 4-1

 File and System Security on page 10-1

 User Environment and System Information on page 2-1

 Customizing the User Environment on page 11-1

 Shells on page 12-1

 Korn Shell or POSIX Shell Commands on page 12-9

 Bourne Shell on page 12-72

 C Shell on page 12-95

2-1 User Environment and System Information

Chapter 2. User Environment and System Information

Each login name has its own system environment. The system environment is an area
where information that is common to all processes running in a session is stored. You can
use several commands to display information about your system.

This chapterdiscusses the following procedures for displaying information about your
environment.

• Listing System Devices (lscfg Command) on page 2-2

• Displaying the Console Name (lscons Command) on page 2-3

• Displaying the Terminal Name (tty Command) on page 2-3

• Listing Available Displays (lsdisp Command) on page 2-4

• Listing Available Fonts (lsfont Command) on page 2-4

• Listing the Current Software Keyboard Map (lskbd Command) on page 2-4

• Listing Available Software Products (lslpp Command) on page 2-5

• Listing Control Key Assignments for Your Terminal (stty Command) on page 2-5

• Listing Environment Variables (env Command) on page 2-6

• Displaying the Value of an Environment Variable (printenv Command) on page 2-7

• Working with Bidirectional Languages (aixterm Command) on page 2-7

• Command Summary for User Environment and System Information on page 2-7

2-2 AIX System User’s Guide – OS & Devices

Listing System Devices (lscfg Command)
To display the name, location, and description of each device found in the current
configuration, use the lscfg command. The list is sorted by device location.

For example, to list the devices configured in your system, at the prompt, type:

lscfg

Press Enter.

The system displays output similar to the following:

INSTALLED RESOURCE LIST

 The following resources are installed on your machine.

 +/– = Added/Deleted from Diagnostic Test List.

 * = NOT Supported by Diagnostics.

 Model Architecture: chrp

 Model Implementation: Multiple Processor, PCI bus

 + sysplanar0 00–00 CPU Planar

 + fpa0 00–00 Floating Point Processor

 + mem0 00–0A Memory Card

 + mem1 00–0B Memory Card

 + ioplanar0 00–00 I/O Planar

 + rs2320 00–01 RS232 Card

 + tty0 00–01–0–01 RS232 Card Port

 – tty1 00–01–0–02 RS232 Card Port

 ..

 ..

 ..

The device list is not sorted by device location alone. It is sorted by the parent/child
hierarchy. If the parent has multiple children, the children are sorted by device location. If
the children have the same device location, they are displayed in the order in which they
were obtained by the software. To display information about a specific device, you can use
the –l flag. For example, to list the information on device sysplanar0, at the prompt, type:

lscfg –l sysplanar0

Press Enter.

The system displays output similar to the following:

DEVICE LOCATION DESCRIPTION

 sysplanar0 00–00 CPU Planar

You can also use the lscfg command to display vital product data (VPD), such as part
numbers, serial numbers, and engineering change levels. For some devices, the VPD is
collected automatically and added to the system configuration. For other devices, the VPD
is entered manually. An ME preceding the data indicates that the data was entered
manually.

For example, to list VPD for devices configured in your system, at the prompt, type:

lscfg –v

Press Enter.

2-3 User Environment and System Information

The system displays output similar to the following:

INSTALLED RESOURCE LIST WITH VPD

The following resources are installed in your machine.

 Model Architecture: chrp

 Model Implementation: Multiple Processor, PCI bus

sysplanar0 00–00 CPU Planar

 Part Number.........342522

 EC Level............254921

 Serial Number.......353535

fpa0 00–00 Floating Point Processor

 mem0 00–0A Memory Card

 EC Level............990221

.

.

.

See the lscfg command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Displaying the Console Name (lscons Command)
To write the name of the current console device to standard output (usually your screen),
use the lscons command.

For example, at the prompt, type:

lscons

Press Enter.

The system displays output similar to the following:

/dev/lft0

See the lscons command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Displaying the Terminal Name (tty Command)
To display the name of your terminal, use the tty command.

For example, at the prompt, type:

tty

Press Enter.

The system displays information similar to the following:

/dev/tty06

In this example, tty06 is the name of the terminal, and /dev/tty06 is the device file that
contains the interface to this terminal.

See the tty command in the AIX 5L Version 5.2 Commands Reference for the exact syntax.

2-4 AIX System User’s Guide – OS & Devices

Listing Available Displays (lsdisp Command)
To list the displays currently available on your system, providing a display identification
name, slot number, display name, and description of each of the displays, use the lsdisp
command.

For example, to list all available displays, type:

lsdisp

Press Enter.

Following is an example of the output. The list displays in ascending order according to slot
number.

Name Slot Name Description

 ppr0 00–01 POWER_G4 Midrange Graphics Adapter

 gda0 00–03 colorgda Color Graphics Display Adapter

 ppr1 00–04 POWER_Gt3 Midrange Entry Graphics Adapter

See the lsdisp command in the AIX 5L Version 5.2 Commands Reference for the complet
syntax.

Listing Available Fonts (lsfont Command)
To display a list of the fonts available to your display, use the lsfont command.

For example, to list all fonts available to the display in list format, type:

lsfont

Press Enter.

Following is an example of the output, showing the font identifier, file name, glyph size and
font encoding:

FONT FILE GLYPH FONT

 ID NAME SIZE ENCODING

 ==== ============== ===== =========

 0 Erg22.iso1.snf 12x30 ISO8859–1

 1 Erg11.iso1.snf 8x15 ISO8859–1

See the lsfont command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Listing the Current Software Keyboard Map (lskbd Command)
To display the absolute path name of the current software keyboard map loaded into the
system, use the lskbd command.

For example, to list your current keyboard map, type:

lskbd

Press Enter.

The following is an example of the listing displayed by the lskbd command:

The current software keyboard map = /usr/lib/nls/loc/C.lftkeymap

2-5 User Environment and System Information

Listing Available Software Products (lslpp Command)
To display information about software products available for your system, use the lslpp
command.

For example, to list all the software products in your system, at the system prompt, type:

lslpp –l –a

Press Enter.

Following is an example of the output:

Fileset Level State Description

 –––––––––––––––––––– ––––––– –––––––– –––––––––––––––––

 Path: /usr/lib/objrepos

 X11_3d.gl.dev.obj APPLIED AIXwindows/3D GL

 Development Utilities

 Fonts

 X11fnt.oldX.fnt APPLIED AIXwindows Miscellaneous

 X Fonts

 X11mEn_US.msg APPLIED AIXwindows NL Message

 files

.

.

.

If the listing is very long, the top portion may scroll off the screen. To display the listing one
page (screen) at a time, use the lslpp command piped to the pg command. At the prompt,
type:

lslpp | pg

Press Enter.

See the lslpp command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Listing Control Key Assignments for Your Terminal (stty
Command)

To display your terminal settings, use the stty command. Note especially which keys your
terminal uses for control keys.

For example, at the prompt, type:

stty –a

Press Enter.

The system displays information similar to the following:

.

.

.

intr = ^C; quit = ^\; erase = ^H; kill = ^U; eof = ^D;

 eol = ^@ start = ^Q; stop = ^S; susp = ^Z; dsusp = ^Y;

 reprint = ^R discard = ^O; werase = ^W; lnext = ^V

.

.

.

2-6 AIX System User’s Guide – OS & Devices

In this example, lines such as intr = ^C; quit = ^\; erase = ^H; are your control
key settings. The ^H key is the Backspace key, and it is set to perform the erase function.

If the listing is very long, the top portion may scroll off the screen. To display the listing one
page (screen) at a time, use the stty command piped to the pg command. At the prompt,
type:

stty –a | pg

Press Enter.

See the stty command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Listing Environment Variables (env Command)
All variables (with their associated values) known to a command at the beginning of its
execution constitute its environment. This environment includes variables that a command
inherits from its parent process and variables specified as keyword parameters on the
command line that calls the command. The shell interacts with the environment in several
ways. When started, the shell scans the environment and creates a parameter for each
name found, giving the parameter the corresponding value and marking it for export.
Executed commands inherit the environment.

To display your current environment variables, use the env command. An environment
variable that is accessible to all your processes is called a global variable.

For example, to list all environment variables, type:

env

Press Enter.

Following is an example of the output:

TMPDIR=/usr/tmp

 myid=denise

 LANG=En_US

 UNAME=barnard

 PAGER=/bin/pg

 VISUAL=vi

PATH=/usr/ucb:/usr/lpp/X11/bin:/bin:/usr/bin:/etc:/u/denise:/u/denise/bin:/

u/bin1

 MAILPATH=/usr/mail/denise?denise has mail !!!

 MAILRECORD=/u/denise/.Outmail

 EXINIT=set beautify noflash nomesg report=1 showmode showmatch

 EDITOR=vi

 PSCH=>

 HISTFILE=/u/denise/.history

 LOGNAME=denise

 MAIL=/usr/mail/denise

 PS1=denise@barnard:${PWD}>

 PS3=#

 PS2=>

 epath=/usr/bin

 USER=denise

 SHELL=/bin/ksh

 HISTSIZE=500

 HOME=/u/denise

 FCEDIT=vi

 TERM=lft

 MAILMSG=**YOU HAVE NEW MAIL. USE THE mail COMMAND TO SEE YOUR

PWD=/u/denise

 ENV=/u/denise/.env

If the listing is very long, the top portion scrolls off the screen. To display the listing one page
(screen) at a time, use the env command piped to the pg command. At the prompt, type:

2-7 User Environment and System Information

env | pg

Press Enter.

See the env command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Displaying the Value of an Environment Variable (printenv
Command)

To display the values of environment variables, use the printenv command. If you specify
the Name parameter, the system only prints the value associated with the parameter you
requested. If you do not specify the Name parameter, the printenv command displays all
current environment variables, showing one Name = Value sequence per line.

For example, to find the current setting of the MAILMSG environment variable, type:

printenv MAILMSG

Press Enter.

The command returns the value of the MAILMSG environment variable. For example:

YOU HAVE NEW MAIL

See the printenv command in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

Working with Bidirectional Languages (aixterm Command)

The aixterm command supports Arabic and Hebrew, which are bidirectional languages.
Bidirectional languages have the ability to be read and written in two directions, such as
from left to right, and from right to left. You can work with Arabic and Hebrew applications by
opening a window specifying an Arabic or Hebrew locale.

See the aixterm command in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

Command Summary for User Environment and System
Information

 aixterm Enables you work with bidirectional languages

 env Displays the current environment or sets the environment for the
execution of a command

 lscfg Displays diagnostic information about a device

 lscons Displays the name of the current console

 lsdisp Lists the displays currently available on the system

 lsfont Lists the fonts available for use by the display

 lskbd Lists the keyboard maps currently loaded in the system

 lslpp Lists software products

 printenv Displays the values of environment variables

 stty Displays system settings

 tty Displays the full path name of your terminal

2-8 AIX System User’s Guide – OS & Devices

Related Information
• Commands and Processes on page 4-1

• Input and Output Redirection on page 5-1

• User and System Identification on page 1-5

• Customizing the User Environment on page 11-1

3-1 The Common Desktop Environment

Chapter 3. The Common Desktop Environment

With the Common Desktop Environment, you can access networked devices and tools
without having to be aware of their location. You can exchange data across applications by
simply dragging and dropping objects.

System administrators find many tasks that previously required complex command line
syntax can now be done more easily and similarly from platform to platform. They can also
maximize their investment in existing hardware and software by configuring centrally and
distributing applications to users. They can centrally manage the security, availability, and
interoperability of applications for the users they support.

Note: The CDE Desktop (CDE) 1.0. Help volumes, web–based documentation,
and hardcopy manuals might refer to the desktop as Common Desktop
Environment, the AIXwindows desktop, the Common Desktop Environment,
CDE 1.0, or simply, the desktop.

Topics covered in this chapter are:

• Starting and Stopping the CDE Desktop on page 3-2

• Modifying Desktop Profiles on page 3-3

• Adding and Removing Displays and Terminals for CDE Desktop on page 3-3

• Customizing Display Devices for CDE Desktop on page 3-6

3-2 AIX System User’s Guide – OS & Devices

Starting and Stopping the CDE Desktop
You can set up the system so that CDE Desktop comes up automatically when you start the
system, or you can start CDE Desktop manually. You must log in as root to perform each of
these tasks.

• Enabling and Disabling Desktop Autostart on page 3-2

• Starting CDE Desktop Manually on page 3-2

• Stopping CDE Desktop Manually on page 3-2

Enabling and Disabling Desktop Autostart
You may find it more convenient to set up your system to start CDE Desktop automatically
when the system is turned on. You can do this through the Web-based System Manager
(type wsm, then select System), through the System Management Interface Tool (SMIT),
or from a command line.

Prerequisite
You must have root user authority to enable or disable desktop auto–start.

Task SMIT Fast Path Command or File

Enabling the Desktop
Auto–Start 1

smit dtconfig /usr/dt/bin/dtconfig –e

Disabling the Desktop
Auto–Start 1

smit dtconfig /usr/dt/bin/dtconfig –d

1 Note: Restart the machine after completing this task.

Starting CDE Desktop Manually

You can start CDE Desktop manually.

Start the Desktop Login Manager Manually
1. Log in to your system as root.

2. At the command line, type:

/usr/dt/bin/dtlogin –daemon

A Desktop Login screen is displayed. When you log in, you will start a desktop session.

Stopping CDE Desktop Manually
You can stop CDE Desktop manually.

Stop the Login Manager Manually
When you manually stop the login manager, all X–servers and desktop sessions that the
login manager started are stopped.

1. Open a terminal emulator window and log in as root.

2. Obtain the process ID of the Login Manager by typing the following:

cat /var/dt/Xpid

3. Stop the Login Manager by typing:

kill –term process_id

3-3 The Common Desktop Environment

Modifying Desktop Profiles
When a user logs in to the desktop, the shell environment file (.profile or.login) is not
automatically read. The desktop runs the X–server before the user logs in, so the function
provided by the.profile file or the.login file must be provided by the desktop’s login
manager.

User–specific environment variables are set in /Home Directory/.dtprofile. A template for
this file is located in /usr/dt/config/sys.dtprofile. Place variables and shell commands
in.dtprofile that apply only to the desktop. Add lines to the end of the.dtprofile to
incorporate the shell environment file.

System–wide environment variables can be set in Login Manager configuration files. For
details on configuring environment variables, see the Common Desktop Environment 1.0:
Advanced User’s and System Administrator’s Guide.

Adding and Removing Displays and Terminals for Common
Desktop Environment

The login manager can be started from a system with a single local bitmap or graphics
console. Many other situations are also possible, however (see the following figure). You
can start Common Desktop Environment from:

• Local consoles

• Remote consoles

• Bitmap and character–display

• Xterminal systems running on a host system on the network

Figure 1. CDE Interface Points This illistration shows the connection points between a
console, a network, a bitmap display, a charactor display, and a workstation.

3-4 AIX System User’s Guide – OS & Devices

An Xterminal system consists of a display device, keyboard, and mouse that runs only the
Xserver. Clients, including Common Desktop Environment, are run on one or more host
systems on the networks. Output from the clients is directed to the Xterminal display.

The following Login Manager configuration tasks support many possible configurations.

• Removing a Local Display on page 3-5

• Adding an ASCII or Character–Display Terminal on page 3-5

Using a Workstation as an Xterminal
From a command line, type:

/usr/bin/X11/X –query hostname

The X server of the workstation acting as an Xterminal must:

• Support XDMCP and the –query command–line option.

• Provide xhost permission (in /etc/X*.hosts) to the terminal host.

3-5 The Common Desktop Environment

Removing a Local Display
To remove a local display, remove its entry in the Xservers file in the /usr/dt/config
directory.

Adding an ASCII or Character–Display Terminal
A character–display console is a configuration in which the console is not a bitmap device.

Adding an ASCII or Character–Display Console if No Bitmap Display Is Present
1. If the /etc/dt/config/Xservers file does not exist, copy the /usr/dt/config/Xservers file to

the /etc/dt/config directory.

2. If you have to copy Xservers to /etc/dt/config, you must change or add the
Dtlogin.servers: line in /etc/dt/config/Xconfig to be:

Dtlogin*servers: /etc/dt/config/Xservers

3. Comment out the line in /etc/dt/config/Xservers that starts the Xserver. This will disable
the Login Option Menu.

* Local local@console /path/X :0

4. Reread the Login Manager configuration files.

Adding a Character–Display Console if a Bitmap Display Exists
1. If the /etc/dt/config/Xservers file does not exist, copy the /usr/dt/config/Xservers file to

the /etc/dt/config directory.

2. If you have to copy Xservers to /etc/dt/config, you must change or add the
Dtlogin.servers: line in /etc/dt/config/Xconfig to be:

Dtlogin*servers: /etc/dt/config/Xservers

3. Edit the line in /etc/dt/config/Xservers that starts the Xserver to read:

* Local local@none /path/X :0

4. Reread the Login Manager configuration files.

3-6 AIX System User’s Guide – OS & Devices

Customizing Display Devices for Common Desktop
Environment

You can configure Common Desktop Environment Login Manager to run on systems with
two or more display devices.

When a system includes multiple displays, the following configuration requirements must be
met:

• A server must be started on each display.

• No Windows mode must be configured for each display.

It might be necessary or desirable to use different dtlogin resources for each display.

It may also be necessary or desirable to use different systemwide environment variables for
each display device.

Starting the Server on Each Display Device
1. If the /etc/dt/config/Xservers file does not exist, copy the /usr/dt/config/Xservers file to

the /etc/dt/config directory.

2. If you have to copy Xservers to /etc/dt/config, you must change the Dtlogin.servers:
line in /etc/dt/config/Xconfig to:

Dtlogin*servers: /etc/dt/config/Xservers

3. Edit /etc/dt/config/Xservers to start an X server on each display device.

Syntax
The general syntax for starting the server is:

DisplayName DisplayClass DisplayType [@ite] Command

Only displays with an associated Internal Terminal Emulator (ITE) can operate in No
Windows mode. No Windows mode temporarily disables the desktop for the display and
runs a getty process if one is not already started. This allows you to log in and perform tasks
not possible under Common Desktop Environment. When you log out, the desktop is
restarted for the display device. If a getty is not already running on a display device, Login
Manager starts one when No Windows mode is initiated.

Default configuration
When ite is omitted, display:0 is associated with the ITE (/dev/console).

Specifying a Different Display as ITE
• On the ITE display, set ITE to the character device.

• On all other displays, set ITE to none.

Examples
The following entries in the Xserver file start a server on three local displays on sysaaa:0.
Display:0 will be the console (ITE).

sysaaa:0 Local local /usr/bin/X11/X :0

 sysaaa:1 Local local /usr/bin/X11/X :1

 sysaaa:2 Local local /usr/bin/X11/X :2

On host sysbbb, the bitmap display:0 is not the ITE; the ITE is associated with device
/dev/ttyi1. The following entries in the Xserver file start servers on the two bitmap displays
with No Windows Mode enabled on:1.

3-7 The Common Desktop Environment

sysaaa:0 Local local@none /usr/bin/X11/X :0

 sysaaa:1 Local local@ttyi1 /usr/bin/X11/X :1

Specifying the Display Name in Xconfig
You cannot use regular hostname:0 syntax for the display name in /etc/dt/config/Xconfig.

• Use underscore in place of the colon.

• In a fully qualified host name, use underscores in place of the periods.

Example
Dtlogin.claaa_0.resource: value

 Dtlogin.sysaaa_prsm_ld_edu_0.resource: value

Using Different Login Manager Resources for Each Display
1. If the /etc/dt/config/Xconfig file does not exist, copy the /usr/dt/config/Xconfig file to

the /etc/dt/config directory.

2. Use the resources resource in /etc/dt/config/Xconfig to specify a different resource file
for each display:

Dtlogin.DisplayName.resources: path / file

whereas path is the pathname of the Xresource files to be used and file is the file name
of the Xresource files to be used.

3. Create each of the resource files specified in the Xconfig file. A language specific
Xresources file is installed in /usr/dt/config/<LANG>.

4. In each file, place the dtlogin resources for that display.

Example
The following lines in the Xconfig file specify different resource files for three displays:

Dtlogin.sysaaa_0.resources: /etc/dt/config/Xresources0

 Dtlogin.sysaaa_1.resources: /etc/dt/config/Xresources1

 Dtlogin.sysaaa_2.resources: /etc/dt/config/Xresources2

Running Different Scripts for Each Display
1. If the /etc/dt/config/Xconfig file does not exist, copy the /usr/dt/config/Xconfig file to

the /etc/dt/config directory.

2. Use the startup, reset, and setup resources in /etc/dt/config/Xconfig to specify different
scripts for each display (these files are run instead of Xstartup, Xreset, and Xsetup.
file):

Dtlogin*DisplayName*startup: / path / file

 Dtlogin*DisplayName*reset: / path / file

 Dtlogin*DisplayName*setup: / path / file

whereas path is the pathname of the file to be used and file is the file name of the file to be
used. The startup script is run as root after the user has logged in, before the Common
Desktop Environment session is started.

The script /usr/dt/config/Xreset can be used to reverse the setting made in the Xstartup
file. The Xreset file runs when the user logs out.

Example
The following lines in the Xconfig file specify different scripts for two displays.

3-8 AIX System User’s Guide – OS & Devices

Dtlogin.sysaaa_0*startup: /etc/dt/config/Xstartup0

 Dtlogin.sysaaa_1*startup: /etc/dt/config/Xstartup1

 Dtlogin.sysaaa_0*setup: /etc/dt/config/Xsetup0

 Dtlogin.sysaaa_1*setup: /etc/dt/config/Xsetup1

 Dtlogin.sysaaa_0*reset: /etc/dt/config/Xreset0

 Dtlogin.sysaaa_1*reset: /etc/dt/config/Xreset1

Setting Different Systemwide Environment Variables for Each Display
1. If the /etc/dt/config/Xconfig file does not exist, copy the /usr/dt/config/Xconfig file to

the /etc/dt/config directory.

2. Set the environment resource in /etc/dt/config/Xconfig separately for each display:

Dtlogin*DisplayName*environment: value

The following points apply to environment variables for each display:

• Separate variable assignments with a space or tab.

• Do not use the environment resource to set TZ and LANG.

• There is no shell processing within the Xconfig file.

Example
The following lines in the Xconfig file set variables for two displays.

Dtlogin*syshere_0*environment:EDITOR=vi SB_DISPLAY_ADDR=0xB00000

 Dtlogin*syshere_1*environment: EDITOR=emacs \

 SB_DISPLAY_ADDR=0xB00000

4-1 Commands and Processes

Chapter 4. Commands and Processes

A command is a request to perform an operation or run a program. You use commands to
tell the operating system what task you want it to perform. When commands are entered,
they are deciphered by a command interpreter (also known as a shell) and that task is
processed.

A program or command that is actually running on the computer is referred to as a process.
The operating system can run many different processes at the same time.

The operating system allows you to manipulate the input and output (I/O) of data to and
from your system by using specific I/O commands and symbols. You can control input by
specifying the location from which to gather data. For example, you can specify to read
input while data is entered on the keyboard (standard input) or to read input from a file. You
can control output by specifying where to display or store data. For example, you can
specify to write output data to the screen (standard output) or to write it to a file.

This chapter discusses the following:

• Commands Overview on page 4-3

– Command Syntax on page 4-3

– Reading Usage Statements on page 4-5

– Using Web-based System Manager on page 4-5

– Using the smit Command on page 4-6

– Locating a Command or Program (whereis Command) on page 4-6

– Displaying Information about a Command (man Command) on page 4-6

– Displaying the Function of a Command (whatis Command) on page 4-7

– Listing Previously Entered Commands (history Shell Command) on page 4-7

– Repeating Commands Using the history Shell Command on page 4-8

– Substituting Strings Using the history Shell Command on page 4-9

– Editing the Command History on page 4-9

– Creating a Command Alias (alias Shell Command) on page 4-10

– Working with Text–Formatting Commands on page 4-10

• Processes Overview on page 4-13

– Foreground and Background Processes on page 4-13

– Daemons on page 4-13

– Zombie Process on page 4-14

– Starting a Process on page 4-14

– Checking Processes (ps Command) on page 4-14

– Setting the Initial Priority of a Process (nice Command) on page 4-16

– Changing the Priority of a Running Process (renice Command) on page 4-16

– Canceling a Foreground Process on page 4-17

– Stopping a Foreground Process on page 4-17

– Restarting a Stopped Process on page 4-17

4-2 AIX System User’s Guide – OS & Devices

– Scheduling a Process for Later Operation (at Command) on page 4-18

– Listing All Scheduled Processes (at or atq Command) on page 4-19

– Removing a Process from the Schedule (at Command) on page 4-19

– Removing a Background Process (kill Command) on page 4-19

• Command Summary for Commands and Processes on page 4-21

4-3 Commands and Processes

Commands Overview
Some commands can be entered simply by typing one word. It is also possible to combine
commands so that the output from one command becomes the input for another command.
This is known as piping. For more information on piping, see Shell Features on page 12-3.

Flags further define the actions of commands. A flag is a modifier used with the command
name on the command line, usually preceded by a dash.

Commands can also be grouped together and stored in a file. These are known as shell
procedures or shell scripts. Instead of executing the commands individually, you execute the
file that contains the commands. For more information on scripts and procedures, see
Creating and Running a Shell Script on page 12-7.

To enter a command, type the command name at the prompt, and press Enter.

$ CommandName

This section describes the following procedures:

• Command Syntax on page 4-3

• Reading Usage Statements on page 4-5

• Using Web-based System Manager on page 4-5

• Using the smit Command on page 4-6

• Locating a Command or Program (whereis Command) on page 4-6

• Displaying Information about a Command (man Command) on page 4-6

• Displaying the Function of a Command (whatis Command) on page 4-7

• Listing Previously Entered Commands (history Shell Command) on page 4-7

• Repeating Commands Using the history Shell Command on page 4-8

• Substituting Strings Using the history Shell Command on page 4-9

• Editing the Command History on page 4-9

• Creating a Command Alias (alias Shell Command) on page 4-10

• Working with Text–Formatting Commands on page 4-10

Command Syntax
Although some commands can be entered by simply typing one word, other commands use
flags and parameters. Each command has a syntax that designates both the required and
optional flags and parameters. The general format for a command is as follows:

 CommandName flag(s) parameter(s)

The following are some general rules about commands:

• Spaces between commands, flags, and parameters are significant.

• Two commands can be entered on the same line by separating the commands with a
semicolon (;). For example:

$ CommandOne ; CommandTwo

The shell runs the commands sequentially.

• Commands are case–sensitive. The shell distinguishes between uppercase and
lowercase letters. To the shell, print is not the same as PRINT or Print.

• A very long command can be entered on more than one line by using the backslash (\)
character. A backslash signifies line continuation to the shell. The following example is
one command that spans two lines:

4-4 AIX System User’s Guide – OS & Devices

$ ls Mail info temp \

 (press Enter)

 > diary

 (the > prompt appears)

The > character is your secondary prompt ($ is the non–root user’s default primary
prompt), indicating that the current line is the continuation of the previous line. Note that
csh (the C shell) gives no secondary prompt, and the break must be at a word boundary,
and its primary prompt is %.

Command Name
The first word of every command is the command name. Some commands have only a
command name.

Command Flags
A number of flags might follow the command name. Flags modify the operation of a
command and are sometimes called options. A flag is set off by spaces or tabs and usually
starts with a dash (–). Exceptions are ps, tar, and ar, which do not require a dash in front of
some of the flags. For example, in the following command:

ls –a –F

ls is the command name and –a –F are the flags.

When a command uses flags, they come directly after the command name.
Single–character flags in a command can be combined with one dash. For example, the
previous command can also be written as follows:

ls –aF

There are some circumstances when a parameter actually begins with a dash (–). In this
case, use the delimiter dash dash (––) before the parameter. The –– tells the command
that whatever follows is not a flag but a parameter.

For example, if you wanted to create a directory named –tmp and you typed the following
command:

mkdir –tmp

The system displays an error message similar to the following:

mkdir: Not a recognized flag: t

 Usage: mkdir [–p] [–m mode] Directory ...

The correct way of entering the command is as follows:

mkdir –– –tmp

Your new directory, –tmp, is now created.

Command Parameters
After the command name, there might be a number of flags, followed by parameters.
Parameters are sometimes called arguments or operands. Parameters specify information
that the command needs in order to run. If you do not specify a parameter, the command
might assume a default value. For example, in the following command:

ls –a temp

ls is the command name, –a is the flag, and temp is the parameter. This command
displays all (–a) the files in the directory temp. In the following example:

ls –a

the default value is the current directory because no parameter is given. In the following
example:

ls temp mail

4-5 Commands and Processes

no flags are given, and temp and mail are parameters. In this case, temp and mail are
two different directory names. The ls command displays all but the hidden files in each of
these directories.

Whenever a parameter or option–argument is, or contains, a numeric value, the number is
interpreted as a decimal integer, unless otherwise specified. Numerals in the range 0 to
INT_MAX, as defined in the /usr/include/sys/limits.h file, are syntactically recognized as
numeric values.

If a command you want to use accepts negative numbers as parameters or
option–arguments, you can use numerals in the range INT_MIN to INT_MAX, both as
defined in the /usr/include/sys/limits.h file. This does not necessarily mean that all
numbers within that range are semantically correct. Some commands have a built–in
specification permitting a smaller range of numbers, for example, some of the print
commands. If an error is generated, the error message lets you know the value is out of the
supported range, not that the command is syntactically incorrect.

Reading Usage Statements
Usage statements are a way to represent command syntax and consist of symbols such as
brackets ([]), braces ({ }), and vertical bars (|). The following is a sample of a usage
statement for the unget command:

unget [–r SID] [–s] [–n] File ...

The following conventions are used in the command usage statements:

• Items that must be entered literally on the command line are in bold. These items
include the command name, flags, and literal charactors.

• Items representing variables that must be replaced by a name are in italics. These items
include parameters that follow flags and parameters that the command reads, such as
Files and Directories.

• Parameters enclosed in brackets are optional.

• Parameters enclosed in braces are required.

• Parameters not enclosed in either brackets or braces are required.

• A vertical bar signifies that you choose only one parameter. For example, [a | b]
indicates that you can choose a, b, or nothing. Similarly, { a | b } indicates that you
must choose either a or b.

• Ellipses (...) signify the parameter can be repeated on the command line.

• The dash (–) represents standard input.

Using Web-based System Manager

Web-based System Manager is a graphical user interface for managing the system, either
from a locally attached display or remotely from another system or personal computer
equipped with a Web browser. You can start Web-based System Manager in a variety of
ways:

• From a command line terminal in the Common Desktop Environment (CDE) by entering
the wsm command.

• From a command line terminal in the AIXwindows by entering the wsm command.

• From the CDE Application Manager by going to the System_Admin folder and clicking
the Management Console icon.

• From an HTML 3.2–compatible Web browser on a personal computer that is configured
as described in the AIX 5L Version 5.2 Web-based System Manager Administration
Guide.

4-6 AIX System User’s Guide – OS & Devices

Using the smit Command
The smit command is a tool you can use to run other commands. Command names
entered as a parameter to the smit command might take you to a submenu or panel for that
command. For example, smit lsuser command takes you directly to List All Users, which
lists the attributes of users on your system.

See the smit command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Locating a Command or Program (whereis Command)
The whereis command locates the source, binary, and manuals sections for specified files.
The command attempts to find the desired program from a list of standard locations.

To find files in the current directory that have no documentation, type:

whereis –m –u *

Press Enter.

To find all of the files that contain the name Mail, type:

whereis Mail

Press Enter.

The system displays information similar to the following:

Mail: /usr/bin/Mail /usr/lib/Mail.rc

See the whereis command in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

Displaying Information about a Command (man Command)
The man command displays information on commands, subroutines, and files. The general
format for the man command is as follows:

man CommandName

To obtain information about the pg command, type:

man pg

Press Enter.

The system displays information similar to the following:

 pg Command

 Purpose

 Formats files to the display.

 Syntax

 pg [– Number] [–c] [–e] [–f] [–n] [–p String]

 [–s] [+LineNumber | +/Pattern/] [File ...]

 Description

 The pg command reads a file name from the File parameter and

 writes the file to standard output one screen at a time. If you

 specify a – (dash) as the File parameter, or run the pg command

 without options, the pg command reads standard input. Each

 screen is followed by a prompt. If you press the Enter key,

 another page is displayed. Subcommands used with the pg command

 let you review or search in the file.

4-7 Commands and Processes

See the man command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Displaying the Function of a Command (whatis Command)
The whatis command looks up a given command, system call, library function, or special
file name, as specified by the Command parameter, from a database you create using the
catman –w command. The whatis command displays the header line from the manual
section. You can then issue the man command to obtain additional information.

The whatis command is equivalent to using the man –f command.

To find out what the ls command does, type:

whatis ls

Press Enter.

The system displays information similar to the following:

ls(1) –Displays the contents of a directory.

See the whatis command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Listing Previously Entered Commands (history Shell Command)
The history command is a Korn shell built–in that lists the last 16 commands entered. The
Korn shell saves commands that you entered to a command history file, usually named
$HOME/.sh_history. This action saves time when you need to repeat a previous command.

By default, the Korn shell saves the text of the last 128 commands. The history file size
(specified by the HISTSIZE environment variable) is not limited, although a very large
history file size can cause the Korn shell to start slowly.

Note: The Bourne shell does not support command history.

For detailed information about shells, see Shells on page 12-1.

To list the previous commands you entered, at the prompt, type:

history

Press Enter.

The history command entered by itself lists the previous 16 commands entered. The
system displays information similar to the following:

928 ls

 929 mail

 930 printenv MAILMSG

 931 whereis Mail

 932 whatis ls

 933 cd /usr/include/sys

 934 ls

 935 man pg

 936 cd

 937 ls | pg

 938 lscons

 939 tty

 940 ls *.txt

 941 printenv MAILMSG

 942 pwd

 943 history

The listing first displays the position of the command in the $HOME/.sh_history file
followed by the command.

4-8 AIX System User’s Guide – OS & Devices

To list the previous five commands, at the prompt, type:

history –5

Press Enter.

A listing similar to the following displays:

939 tty

 940 ls *.txt

 941 printenv MAILMSG

 942 pwd

 943 history

 944 history –5

The history command followed by a number lists all the previous commands entered,
starting at that number.

To list the commands since 938, at the prompt, type:

history 938

Press Enter.

A listing similar to the following displays:

938 lscons

 939 tty

 940 ls *.txt

 941 printenv MAILMSG

 942 pwd

 943 history

 944 history –5

 945 history 938

Repeating Commands Using the history Shell Command
Use the r Korn shell alias to repeat previous commands. Type r and press Enter, and you
can specify the number or the first character or characters of the command.

If you want to list the displays currently available on the system, type lsdisp and press
Enter at the prompt. The system returns the information on the screen. If you want the same
information returned to you again, at the prompt, type:

r

Press Enter.

The system runs the most recently entered command again. In this example, the lsdisp
command runs.

To repeat the ls *.txt command, at the prompt, type:

r ls

Press Enter.

The r Korn shell alias locates the most recent command that begins with the character or
characters specified.

4-9 Commands and Processes

Substituting Strings Using the history Shell Command
You can also use the r Korn shell alias to modify a command before it is run. In this case, a
substitution parameter of the form Old = New can be used to modify the command before it
is run.

For example, if command line 940 is ls *.txt, and you want to run ls *.exe, at the prompt,
type:

r txt=exe 940

Press Enter.

This runs command 940, substituting exe for txt.

For example, if the command on line 940 is the most recent command that starts with a
lowercase letter l, you can also type:

r txt=exe l

Press Enter.

Note: Only the first occurrence of the Old string is replaced by the New string. Entering
the r Korn shell alias without a specific command number or character does the
substitution to the previous command entered.

Editing the Command History
Use the fc Korn shell built–in command to list or edit portions of the command history file.
To select a portion of the file to edit or list, specify the number or the first character or
characters of the command. You can specify a single command or range of commands.

If you do not specify an editor program as an argument to the fc Korn shell built–in
command, the editor specified by the FCEDIT variable is used. If the FCEDIT variable is not
defined, the /usr/bin/ed editor is used. The edited command or commands are printed and
run when you exit the editor. Use the printenv command to display the value of the FCEDIT
variable.

For example, if you want to run the command:

cd /usr/tmp

which is very similar to command line 933, at the prompt type:

fc 933

Press Enter.

At this point, your default editor appears with the command line 933. You would change
include/sys to tmp, and when you exit your editor, the edited command is run.

You can also specify the editor you want to use in the fc command.

For example, if you want to edit a command using the /usr/bin/vi editor, at the prompt,
type:

fc –e vi 933

Press Enter.

At this point, the vi editor appears with the command line 933.

You can also specify a range of commands to edit.

For example, if you want to edit the commands 930 through 940, at the prompt, type:

fc 930 940

Press Enter.

At this point, your default editor appears with the command lines 930 through 940. When
you exit the editor, all the commands that appear in your editor are run sequentially.

4-10 AIX System User’s Guide – OS & Devices

Creating a Command Alias (alias Shell Command)
An alias lets you create a shortcut name for a command, a file name, or any shell text. By
using aliases, you save a lot of time when doing tasks you do frequently. The alias Korn
shell built–in command defines a word as an alias for some command. You can use aliases
to redefine built–in commands but not to redefine reserved words.

The first character of an alias name can be any printable character except the
metacharacters. Any remaining characters must be the same as for a valid file name.

The format for creating an alias is as follows:

alias Name = String

in which the Name parameter specifies the name of the alias and the String parameter
specifies a string of characters. If String contains blank spaces, enclose it in quotation
marks.

To create an alias for the command rm –i (prompts you before deleting files), at the prompt,
type:

alias rm=”/usr/bin/rm –i”

Press Enter.

In this example, whenever you type the command rm and press Enter, the actual command
performed is /usr/bin/rm –i.

To create an alias for the command ls –alF | pg (displays detailed information of all the files
in the current directory, including the invisible files; marks executable files with an * and
directories with a /; and scrolls per screen), at the prompt, type:

alias dir=”/usr/bin/ls –alF | pg”

Press Enter.

In this example, whenever you type the command dir and press Enter, the actual command
performed is /usr/bin/ls –alF | pg.

To display all the aliases you have, at the prompt, type:

alias

Press Enter.

The system displays information similar to the following:

rm=”/usr/bin/rm –i”

 dir=”/usr/bin/ls –alF | pg”

Working with Text–Formatting Commands
You can use text–formatting commands to work with text composed of the international
extended character set used for European languages.

International Character Support in Text Formatting
The international extended character set provides the characters and symbols used in many
European languages, as well as an ASCII subset composed of English–language
characters, digits, and punctuation.

All characters in the European extended character set have ASCII forms. These forms can
be used to represent the extended characters in input, or the characters can be entered
directly with a device such as a keyboard that supports the European extended characters.

The following text–formatting commands support all international languages that use
single–byte characters. These commands are located in /usr/bin. (The commands identified
with an asterisk (*) support text processing for multibyte languages. For more information on
multibyte languages, see Multibyte Character Support in Text Formatting on page 4-11.)

4-11 Commands and Processes

addbib* hyphen pic* pstext

 checkmm ibm3812 ps4014 refer*

 checknr* ibm3816 ps630 roffbib*

 col* ibm5587G* psbanne soelim*

 colcrt ibm5585H–T* psdit sortbib*

 deroff* indxbib* psplot tbl*

 enscript lookbib* psrev troff*

 eqn* makedev* psroff vgrind

 grap* neqn* psrv xpreview*

 hplj nroff*

Text–formatting commands and macro packages not in the preceding list have not been
enabled to process international characters.

Entering Extended Single–Byte Characters
If your input device supports characters from the European–language extended character
set, you can enter them directly. Otherwise, use the following ASCII escape sequence form
to represent these characters:

The form \[N], where N is the 2– or 4–digit hexadecimal code for the character.

Note: The NCesc form \<xx> is no longer supported.

Text containing extended characters is output according to the formatting conventions of the
language in use. Characters that are not defined for the interface to a specific output device
produce no output or error indication.

Although the names of the requests, macro packages, and commands are based on
English, most of them can accept input (such as file names and parameters) containing
characters in the European extended character set.

For the nroff and troff commands and their preprocessors, the command input must be
ASCII, or an unrecoverable syntax error will result. International characters, either
single–byte or multibyte, can be entered when enclosed within quotation marks and within
other text to be formatted. For example, using macros from the pic command:

define foobar % SomeText %

After the define directive, the first name, foobar, must be ASCII. However, the
replacement text, SomeText, can contain non–ASCII characters.

Multibyte Character Support in Text Formatting
Certain text–formatting commands can be used to process text for multibyte languages.
These commands are identified with an asterisk (*) in the list under International Character
Support in Text Formatting on page 4-10. Text–formatting commands not in the list have not
been enabled to process international characters.

Entering Multibyte Characters
If supported by your input device, multibyte characters can be entered directly. Otherwise,
you can enter any multibyte character in the ASCII form \[N], where N is the 2–, 4–, 6–, 7–,
or 8–digit hexadecimal encoding for the character.

Although the names of the requests, macros, and commands are based on English, most of
them can accept input (such as file names and parameters) containing any type of multibyte
character.

If you are already familiar with using text–formatting commands with single–byte text, the
following list summarizes characteristics that are noteworthy or unique to the multibyte
locales:

• Text is not hyphenated.

• Special format types are required for multibyte numerical output. Japanese format types
are available.

• Text is output in horizontal lines, filled from left to right.

4-12 AIX System User’s Guide – OS & Devices

• Character spacing is constant, so characters automatically align in columns.

• Characters that are not defined for the interface to a specific output device produce no
output or error indication.

4-13 Commands and Processes

Processes Overview
A program or command that is actually running on the computer is referred to as a process.
Processes exist in parent–child hierarchies. A process started by a program or command is
a parent process; a child process is the product of the parent process. A parent process can
have several child processes, but a child process can have only one parent.

The system assigns a process identification number (PID number) to each process when it
starts. If you start the same program several times, it will have a different PID number each
time.

When a process is started on a system, the process uses a part of the available system
resources. When more than one process is running, a scheduler that is built into the
operating system gives each process its share of the computer’s time, based on established
priorities. These priorities can be changed by using the nice or renice commands.

Note: To change a process priority to a higher one, you must have root user authority. All
users can lower priorities on a process they start by using the nice command, or on a
process they have already started, by using the renice command.

This section describes the following procedures:

• Foreground and Background Processes on page 4-13

• Daemons on page 4-13

• Zombie Process on page 4-14

• Starting a Process on page 4-14

• Checking Processes (ps Command) on page 4-14

• Setting the Initial Priority of a Process (nice Command) on page 4-16

• Changing the Priority of a Running Process (renice Command) on page 4-16

• Canceling a Foreground Process on page 4-17

• Stopping a Foreground Process on page 4-17

• Restarting a Stopped Process on page 4-17

• Scheduling a Process for Later Operation (at Command) on page 4-18

• Listing All Scheduled Processes (at or atq Command) on page 4-19

• Removing a Process from the Schedule (at Command) on page 4-19

• Removing a Background Process (kill Command) on page 4-19

Foreground and Background Processes
Processes that require a user to start them or to interact with them are called foreground
processes. Processes that are run independently of a user are referred to as background
processes. Programs and commands run as foreground processes by default. To run a
process in the background, place an ampersand (&) at the end of the command name that
you use to start the process.

Daemons
Daemons are processes that run unattended. They are constantly in the background and
are available at all times. Daemons are usually started when the system starts, and they run
until the system stops. A daemon process performs system services and is available at all
times to more than one task or user. Daemon processes are started by the root user or root
shell and can be stopped only by the root user. For example, the qdaemon process
provides access to system resources such as printers. Another common daemon is the
sendmail daemon.

4-14 AIX System User’s Guide – OS & Devices

Zombie Process
A zombie process is a dead process that is no longer executing but is still recognized in the
process table (in other words, it has a PID number). It has no other system space allocated
to it. Zombie processes have been killed or have exited and continue to exist in the process
table until the parent process dies or the system is shut down and restarted. Zombie
processes display as <defunct> when listed by the ps command.

Starting a Process
You start a foreground process from a display station by either entering a program name or
command name at the system prompt. After a foreground process has started, the process
interacts with you at your display station until it is complete. This means no other interaction
(for example, entering another command) can take place at the display station until the
process is finished or you halt it.

A single user can run more than one process at a time, up to a default maximum of 40
processes per user.

To Start a Process in the Foreground
To run a process in the foreground, type the name of the command with all the appropriate
parameters and flags:

$ CommandName

Press Enter.

To Start a Process in the Background
To run a process in the background, type the name of the command with all the appropriate
parameters and flags, followed by an ampersand (&):

$ CommandName &

Press Enter.

When the process is running in the background, you can perform additional tasks by
entering other commands at your display station.

Generally, background processes are most useful for commands that take a long time to
run. However, because they increase the total amount of work the processor is doing,
background processes also slow down the rest of the system.

Most processes direct their output to standard output, even when they run in the
background. Unless redirected, standard output goes to the display device. Because the
output from a background process can interfere with your other work on the system, it is
usually good practice to redirect the output of a background process to a file or a printer.
You can then look at the output whenever you are ready.

Note: Under certain circumstances, a process might generate its output in a different
sequence when run in the background than when run in the foreground. Programmers
might want to use the fflush subroutine to ensure that output occurs in the correct order
regardless of whether the process runs in foreground or background.

As long as a background process is running, you can check its status with the ps command.

Checking Processes (ps Command)
Any time the system is running, several processes are also running. You can use the ps
command to find out which processes are running and to display information about those
processes.

ps Command
The ps command has several flags that enable you to specify which processes to list and
what information to display about each process.

4-15 Commands and Processes

To show all processes running on your system, at the prompt, type:

ps –ef

Press Enter.

The system displays information similar to the following:

 USER PID PPID C STIME TTY TIME CMD

 root 1 0 0 Jun 28 – 3:23 /etc/init

 root 1588 6963 0 Jun 28 – 0:02 /usr/etc/biod 6

 root 2280 1 0 Jun 28 – 1:39 /etc/syncd 60

 mary 2413 16998 2 07:57:30 – 0:05 aixterm

 mary 11632 16998 0 07:57:31 lft/1 0:01 xbiff

 mary 16260 2413 1 07:57:35 pts/1 0:00 /bin/ksh

 mary 16469 1 0 07:57:12 lft/1 0:00 ksh /usr/lpp/X11/bin/xinit

 mary 19402 16260 20 09:37:21 pts/1 0:00 ps –ef

The columns in the previous output are defined as follows:

USER User login name

PID Process ID

PPID Parent process ID

C CPU utilization of process

STIME Start time of process

TTY Controlling workstation for the process

TIME Total execution time for the process

CMD Command

In the previous example, the process ID for the ps –ef command is 19402. Its parent
process ID is 16260, the /bin/ksh command.

If the listing is very long, the top portion scrolls off the screen. To display the listing one page
(screen) at a time, use the ps command piped to the pg command. At the prompt, type:

ps –ef | pg

Press Enter.

To show status information of all processes running on your system, at the prompt, type:

ps gv

Press Enter.

This form of the command lists a number of statistics for each active process. Output from
this command looks similar to the following:

4-16 AIX System User’s Guide – OS & Devices

 PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND

 0 – A 0:44 7 8 8 xx 0 0 0.0 0.0 swapper

 1 – A 1:29 518 244 140 xx 21 24 0.1 1.0 /etc/init

 771 – A 1:22 0 16 16 xx 0 0 0.0 0.0 kproc

 1028 – A 0:00 10 16 8 xx 0 0 0.0 0.0 kproc

 1503 – A 0:33 127 16 8 xx 0 0 0.0 0.0 kproc

 1679 – A 1:03 282 192 12 32768 130 0 0.7 0.0 pcidossvr

 2089 – A 0:22 918 72 28 xx 1 4 0.0 0.0 /etc/sync

 2784 – A 0:00 9 16 8 xx 0 0 0.0 0.0 kproc

 2816 – A 5:59 6436 2664 616 8 852 156 0.4 4.0 /usr/lpp/

 3115 – A 0:27 955 264 128 xx 39 36 0.0 1.0 /usr/lib/

 3451 – A 0:00 0 16 8 xx 0 0 0.0 0.0 kproc

 3812 – A 0:00 21 128 12 32768 34 0 0.0 0.0

usr/lib/lpd/

 3970 – A 0:00 0 16 8 xx 0 0 0.0 0.0 kproc

 4267 – A 0:01 169 132 72 32768 16 16 0.0 0.0 /etc/sysl

 4514 lft/0 A 0:00 60 200 72 xx 39 60 0.0 0.0 /etc/gett

 4776 pts/3 A 0:02 250 108 280 8 303 268 0.0 2.0 –ksh

 5050 – A 0:09 1200 424 132 32768 243 56 0.0 1.0 /usr/sbin

 5322 – A 0:27 1299 156 192 xx 24 24 0.0 1.0 /etc/cron

 5590 – A 0:00 2 100 12 32768 11 0 0.0 0.0 /etc/writ

 5749 – A 0:00 0 208 12 xx 13 0 0.0 0.0 /usr/lpp/

 6111 – T 0:00 66 108 12 32768 47 0 0.0 0.0 /usr/lpp/

See the ps command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Setting the Initial Priority of a Process (nice Command)
You can set the initial priority of a process to a value lower than the base scheduling priority
by using the nice command to start the process.

Note: To run a process at a higher priority, you must have root user authority.

nice Command
To set the initial priority of a process, type:

nice –n Number CommandString

where Number is in the range of 0 to 39, with 39 being the lowest priority. The nice value is
the decimal value of the system–scheduling priority of a process. The higher the number,
the lower the priority. If you use zero, the process will run at its base scheduling priority.
CommandString is the command and flags and parameters you want to run.

See the nice command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

You can also use the smit nice command to perform this task.

Changing the Priority of a Running Process (renice Command)
You can change the scheduling priority of a running process to a value lower or higher than
the base scheduling priority by using the renice command from the command line. This
command changes the nice value of a process.

Note: To run a process at a higher priority or to change the priority for a process that you
did not start, you must have root user authority.

From the Command Line
To change the initial priority of a running process, type:

renice Priority –p ProcessID

where Priority is in the range of –20 to 20. The higher the number, the lower the priority. If
you use zero, the process will run at its base scheduling priority. ProcessID is the PID for
which you want to change the priority.

You can also use the smit renice command to perform this task.

4-17 Commands and Processes

Canceling a Foreground Process
If you start a foreground process and then decide that you do not want it to finish, you can
cancel it by pressing INTERRUPT. This is usually Ctrl–C or Ctrl–Backspace. To find out
what your INTERRUPT key is set to, see Listing Control Key Assignments for Your Terminal
(stty Command) on page 2-5.

Note: INTERRUPT (Ctrl–C) does not cancel background processes. To cancel a
background process, you must use the kill command.

Most simple commands are not good examples for demonstrating how to cancel a process.
They run so quickly that they finish before you have time to cancel them. The examples in
this section, therefore, use a command that takes more than a few seconds to run:
find / –type f. This command displays the path names for all files on your system. You do
not need to study the find command in order to complete this section; it is used here simply
to demonstrate how to work with processes.

In the following example, the find command starts a process. After the process runs for a
few seconds, you can cancel it by pressing the INTERRUPT key:

$ find / –type f

 /usr/sbin/acct/lastlogin

 /usr/sbin/acct/prctmp

 /usr/sbin/acct/prdaily

 /usr/sbin/acct/runacct

 /usr/sbin/acct/sdisk

 /usr/sbin/acct/shutacct INTERRUPT (Ctrl–C)

 $ _

The system returns the prompt to the screen. Now you can enter another command.

Stopping a Foreground Process
It is possible for a process to be stopped but not have its process ID (PID) removed from the
process table. You can stop a foreground process by pressing Ctrl–Z from the keyboard.

Note: Ctrl–Z works successfully in the Korn shell (ksh) and C shell (csh), but not in the
Bourne shell (bsh).

Restarting a Stopped Process
This procedure describes how to restart a process that has been stopped with a Ctrl–Z.

Note: Ctrl–Z works successfully in the Korn shell (ksh) and C shell (csh), but not in the
Bourne shell (bsh). To restart a stopped process, you must either be the user who
started the process or have root user authority.

1. To show all the processes running or stopped but not those killed on your system, type:

ps –ef

You might want to pipe this command through a grep command to restrict the list to
those processes most likely to be the one you want to restart. For example, if you want
to restart a vi session, you could type:

ps –ef | grep vi

Press Enter. This command would display only those lines from the ps command output
that contained the word vi. The output would look something like this:

UID PID PPID C STIME TTY TIME COMMAND

 root 1234 13682 0 00:59:53 – 0:01 vi test

 root 14277 13682 1 01:00:34 – 0:00 grep vi

2. In the ps command output, find the process you want to restart and note its PID number.
In the example, the PID is 1234.

3. To send the CONTINUE signal to the stopped process, type:

4-18 AIX System User’s Guide – OS & Devices

kill –19 1234

Substitute the PID of your process for the 1234. The –19 indicates the CONTINUE
signal. This command restarts the process in the background. If the process can run in
the background, you are finished with the procedure. If the process must run in the
foreground (as a vi session would), you must proceed with the next step.

4. To bring the process in to the foreground, type:

fg 1234

Once again, substitute the PID of your process for the 1234. Your process should now
be running in the foreground. (You are now in your vi edit session).

Scheduling a Process for Later Operation (at Command)
You can set up a process as a batch process to run in the background at a scheduled time.
The at and smit commands let you enter the names of commands to be run at a later time
and allow you to specify when the commands should be run.

Note: The /var/adm/cron/at.allow and /var/adm/cron/at.deny files control whether you
can use the at command. A person with root user authority can create, edit, or delete
these files. Entries in these files are user login names with one name to a line. The
following is an example of an at.allow file:

root

 nick

 dee

 sarah

If the at.allow file exists, only users whose login names are listed in it can use the at
command. A system administrator can explicitly stop a user from using the at command by
listing the user’s login name, in the at.deny file. If only the at.deny file exists, any user
whose name does not appear in the file can use the at command.

You cannot use the at command if any one of the following is true:

• The at.allow file and the at.deny file do not exist (allows root user only).

• The at.allow file exists but the user’s login name is not listed in it.

• The at.deny file exists and the user’s login name is listed in it.

If the at.allow file does not exist and the at.deny file does not exist or is empty, only
someone with root user authority can submit a job with the at command.

The at command syntax allows you to specify a date string, a time and day string, or an
increment string for when you want the process to run. It also allows you to specify which
shell or queue to use. The following examples show some typical uses of the command.

at Command
For example, if your login name is joyce and you have a script named WorkReport that you
want to run at midnight, do the following:

1. Type the time you want the program to start running.

at midnight

2. Type the names of the programs to run, pressing Enter after each name. After typing the
last name, press the end–of–file character (Ctrl–D) to signal the end of the list.

WorkReport^D

After you press Ctrl–D, the system displays information similar to the following:

job joyce.741502800.a at Fri Jul 6 00:00:00 CDT 2002.

The program WorkReport is given the job number joyce.741502800.a and will run at
midnight July 6.

To list the programs you have sent to be run later, type:

4-19 Commands and Processes

at –l

The system displays information similar to the following:

joyce.741502800.a Fri Jul 6 00:00:00 CDT 2002

See the at command in the AIX 5L Version 5.2 Commands Reference for the exact syntax.

Listing All Scheduled Processes (at or atq Command)
You can list all scheduled processes by using the –l flag with the at command or with the
atq command. Both commands give the same output, but the atq command can order the
processes by the time the at command was issued and can display just the number of
processes in the queue.

You can list all scheduled processes in the following ways:

• With the at command from the command line

• With the atq command

For user restrictions on using the at command, see the Note in Scheduling a Process for
Later Operation (at Command) on page 4-18.

at Command
To list the scheduled processes, type:

at –l

This command lists all the scheduled processes in your queue. If you are a root user, this
command lists all the scheduled processes for all users. For complete details of the syntax,
see the at command.

atq Command
To list all scheduled processes in the queue, type:

atq

If you are a root user, you can list the scheduled processes in a particular user’s queue by
typing:

atq UserName

To list the number of scheduled processes in the queue, type:

atq –n

Removing a Process from the Schedule (at Command)
You can remove a scheduled process with the at command using the –r flag. For user
restrictions on using the at command, see the Note in Scheduling a Process for Later
Operation (at Command) on page 4-18.

From the Command Line
1. To remove a scheduled process, you must know the process number. You can obtain the

process number using the at –l command or the atq command. See Listing All
Scheduled Processes (at or atq Command) on page 4-19 for details.

2. When you know the number of the process you want to remove, type:

at –r ProcessNumber

You can also use the smit rmat command to perform this task.

Removing a Background Process (kill Command)
If INTERRUPT does not halt your foreground process or if you decide, after starting a
background process, that you do not want the process to finish, you can cancel the process

4-20 AIX System User’s Guide – OS & Devices

with the kill command. Before you can cancel a process using the kill command, you must
know its PID number. The general format for the kill command is as follows:

kill ProcessID

Note: To remove a process, you must have root user authority or be the user who
started the process. The default signal to a process from the kill command is –15
(SIGTERM).

kill Command
Note: To remove a zombie process, you must remove its parent process.

1. Use the ps command to determine the process ID of the process you want to remove.
You might want to pipe this command through a grep command to list only the process
you want. For example, if you want the process ID of a vi session, you could type:

ps –l | grep vi

2. In the following example, you issue the find command to run in the background. You
then decide to cancel the process. Issue the ps command to list the PID numbers.

$ find / –type f > dir.paths &

 [1] 21593

 $ ps

 PID TTY TIME COMMAND

 1627 pts3 0:00 ps

 5461 pts3 0:00 ksh

 17565 pts3 0:00 –ksh

 21593 pts3 0:00 find / –type f

 $ kill 21593

 $ ps

 PID TTY TIME COMMAND

 1627 pts3 0:00 ps

 5461 pts3 0:00 ksh

 17565 pts3 0:00 –ksh

 [1] + Terminated 21593 find / –type f > dir.paths &

The command kill 21593 ends the background find process, and the second ps
command returns no status information about PID 21593. The system does not display
the termination message until you enter your next command, unless that command is
cd.

The kill command lets you cancel background processes. You might want to do this if
you realize that you have mistakenly put a process in the background or a process is
taking too long to run.

See the kill command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

The kill command can also used in smit by typing:

smit kill

4-21 Commands and Processes

Command Summary for Commands and Processes

Commands

 alias Shell command that prints a list of aliases to standard output

 history
on page 12-100

Shell command that displays the history event list

 man Displays information about commands, subroutines, and files online

 wsm Performs system management from a web browser

 whatis Describes the function a command performs

 whereis Locates the source, binary, or manual for installed programs

Processes

 at Runs commands at a later time, lists all scheduled processes, or
removes a process from the schedule

 atq Displays the queue of jobs waiting to be run

 kill Sends a signal to running processes

 nice Runs a command at a lower or higher priority.

 ps Shows current status of processes.

 renice Alters priority of running processes

Related Information
 Commands Overview on page 4-3

 Processes Overview on page 4-13

 Shells on page 12-1

 Korn Shell or POSIX Shell Commands on page 12-9

 Bourne Shell on page 12-72

 C Shell on page 12-95

4-22 AIX System User’s Guide – OS & Devices

5-1 Input and Output Redirection

Chapter 5. Input and Output Redirection

The operating system allows you to manipulate the input and output (I/O) of data to and
from your system by using specific I/O commands and symbols. You can control input by
specifying the location from which to gather data. For example, you can specify to read
input while data is entered on the keyboard (standard input) or to read input from a file. You
can control output by specifying where to display or store data. You can specify to write
output data to the screen (standard output) or to write it to a file.

The operating system, because it is multitasking, is designed to handle processes in
combination with each other. This chapter discusses the advantages of redirecting input and
output and of tying processes together.

This chapter discusses the following:

• Standard Input, Standard Output, and Standard Error on page 5-2

• Redirecting Standard Output on page 5-2

• Redirecting Output to a File on page 5-2

• Redirecting Output and Appending to a File on page 5-3

• Creating a Text File with Redirection from the Keyboard on page 5-3

• Concatenating Text Files on page 5-3

• Redirecting Standard Input on page 5-4

• Discarding Output with the /dev/null File on page 5-4

• Redirecting Standard Error and Other Output on page 5-4

• Using Inline Input (Here) Documents on page 5-5

• Using Pipes and Filters on page 5-5

• Displaying Program Output and Copying to a File (tee command) on page 5-6

• Clearing Your Screen (clear Command) on page 5-7

• Sending a Message to Standard Output (echo Command) on page 5-7

• Appending a Single Line of Text to a File (echo Command) on page 5-7

• Copying Your Screen to a File (capture and script Commands) on page 5-7

• Displaying Text in Large Letters on Your Screen (banner Command) on page 5-8

• Command Summary for Input and Output Redirection on page 5-9

5-2 AIX System User’s Guide – OS & Devices

Standard Input, Standard Output, and Standard Error
When a command begins running, it usually expects that the following files are already
open: standard input, standard output, and standard error (sometimes called error output or
diagnostic output). A number, called a file descriptor, is associated with each of these files,
as follows:

File descriptor 0 Standard input

File descriptor 1 Standard output

File descriptor 2 Standard error (diagnostic) output

A child process normally inherits these files from its parent. All three files are initially
assigned to the workstation (0 to the keyboard, 1 and 2 to the display). The shell permits
them to be redirected elsewhere before control is passed to a command.

When you enter a command, if no file name is given, your keyboard is the standard input,
sometimes denoted as stdin. When a command finishes, the results are displayed on your
screen.

Your screen is the standard output, sometimes denoted as stdout. By default, commands
take input from the standard input and send the results to standard output.

Error messages are directed to standard error, sometimes denoted as stderr. By default, this
is your screen.

These default actions of input and output can be varied. You can use a file as input and
write results of a command to a file. This is called input/output redirection.

The output from a command, which normally goes to the display device, can easily be
redirected to a file instead. This is known as output redirection. This is useful when you
have a lot of output that is difficult to read on the screen or when you want to put files
together to create a larger file.

Though not used as much as output redirection, the input for a command, which normally
comes from the keyboard, can also be redirected from a file. This is known as input
redirection. Redirection of input lets you prepare a file in advance and then have the
command read the file.

Redirecting Standard Output
When the notation > filename is added to the end of a command, the output of the
command is written to the specified file name. The > symbol is known as the output
redirection operator.

Any command that outputs its results to the screen can have its output sent to a file.

Redirecting Output to a File
The output of a process can be redirected to a file by typing the command followed by the
file name. For example, to send the results of the who command to a file called users, type:

who > users

Press Enter.

Note: If the users file already exists, it is deleted and replaced, unless the noclobber
option of the set built–in ksh (Korn shell) or csh (C shell) command is specified.

To see the contents of the users file , type:

cat users

5-3 Input and Output Redirection

Press Enter.

A list similar to the following displays:

denise lft/0 May 13 08:05

 marta pts/1 May 13 08:10

 endrica pts/2 May 13 09:33

Redirecting Output and Appending to a File
When the notation > > filename is added to the end of a command, the output of the
command is appended to the specified file name, rather than writing over any existing data.
The >> symbol is known as the append redirection operator.

For example, to append file2 to file1, type:

cat file2 >> file1

Press Enter.

Note: If the file1 file does not exist, it is created, unless the noclobber option of the set
built–in ksh (Korn shell) or csh (C shell) command is specified.

Creating a Text File with Redirection from the Keyboard
Used alone, the cat command uses whatever you type at the keyboard as input. You can
redirect this input to a file. Enter Ctrl–D on a new line to signal the end of the text.

At the system prompt, type:

cat > filename

 This is a test.

 ^D

Concatenating Text Files
Combining various files into one file is known as concatenation.

For example, at the system prompt, type:

cat file1 file2 file3 > file4

Press Enter.

The previous example creates file4, which consists of file1, file2, and file3,
appended in the order given.

The following example shows a common error when concatenating files:

cat file1 file2 file3 > file1

Attention: In this example, you might expect the cat command to append the contents
of file1, file2, and file3 into file1. The cat command creates the output file
first, so it actually erases the contents of file1 and then appends file2 and file3
to it.

5-4 AIX System User’s Guide – OS & Devices

Redirecting Standard Input
When the notation < filename is added to the end of a command, the input of the command
is read from the specified file name. The < symbol is known as the input redirection
operator.

Note: Only commands that normally take their input from the keyboard can have their
input redirected.

For example, to send the file letter1 as a message to user denise with the mail
command, type:

mail denise < letter1

Press Enter.

Discarding Output with the /dev/null File
The /dev/null file is a special file. This file has a unique property; it is always empty. Any
data you send to /dev/null is discarded. This is a useful feature when you run a program or
command that generates output you want to ignore.

For example, you have a program named myprog that accepts input from the screen and
generates messages while it is running that you would rather ignore. To read input from the
file myscript and discard the standard output messages, type:

myprog < myscript >/dev/null

Press Enter.

In this example, myprog uses the file myscript as input, and all standard output is
discarded.

Redirecting Standard Error and Other Output
In addition to the standard input and standard output, commands often produce other types
of output, such as error or status messages known as diagnostic output. Like standard
output, standard error output is written to the screen unless redirected.

If you want to redirect standard error or other output, you must use a file descriptor. A file
descriptor is a number associated with each of the I/O files that a command ordinarily uses.
File descriptors can also be specified to redirect standard input and standard output, but are
already the default values. The following numbers are associated with standard input,
output, and error:

0 Standard input (keyboard)

1 Standard output (display)

2 Standard error (display)

To redirect standard error output, type the file descriptor number 2 in front of the output or
append redirection symbols (> or > >) and a file name after the symbol. For example, the
following command takes the standard error output from the cc command where it is used
to compile the testfile.c file and appends it to the end of the ERRORS file:

cc testfile.c 2 >> ERRORS

Other types of output can also be redirected using the file descriptors from 0 through 9. For
example, if the cmd command writes output to file descriptor 9, you can redirect that output
to the savedata file with the following command:

cmd 9> savedata

5-5 Input and Output Redirection

If a command writes to more than one output, you can independently redirect each one.
Suppose that a command directs its standard output to file descriptor 1, directs its standard
error output to file descriptor 2, and builds a data file on file descriptor 9. The following
command line redirects each of these outputs to a different file:

command > standard 2> error 9> data

Using Inline Input (Here) Documents
If a command is in the following form:

command << eofstring

and eofstring is any string that does not contain pattern–matching characters, then the shell
takes the subsequent lines as the standard input of command until the shell reads a line
consisting of only eofstring (possibly preceded by one or more tab characters). The lines
between the first eofstring and the second are frequently referred to as an inline input, or
here, document. If a hyphen (–) immediately follows the << redirection characters, the shell
strips leading tab characters from each line of the here document before it passes the line to
the command.

The shell creates a temporary file containing the here document and performs variable and
command substitution on the contents before passing the file to the command. It performs
pattern matching on file names that are part of command lines in command substitutions. To
prohibit all substitutions, quote any character of the eofstring:

command << \eofstring

The here document is especially useful for a small amount of input data that is more
conveniently placed in the shell procedure rather than kept in a separate file (such as editor
scripts). For instance, you could type:

cat <<– xyz

 This message will be shown on the

 display with leading tabs removed.

 xyz

Press Enter.

Using Pipes and Filters
You can connect two or more commands so that the standard output of one command is
used as the standard input of another command. A set of commands connected this way is
known as a pipeline. The connection that joins the commands is known as a pipe. Pipes are
useful because they let you tie many single–purpose commands into one powerful
command.

You can direct the output from one command to become the input for another command
using a pipeline. The commands are connected by a pipe (|) symbol.

When a command takes its input from another command, modifies it, and sends its results
to standard output, it is known as a filter. Filters can be used alone but they are especially
useful in pipelines. The most common filters are as follows:

• sort

• more

• pg

For example, the ls command writes the contents of the current directory to the screen in
one scrolling data stream. When more than one screen of information is presented, some

5-6 AIX System User’s Guide – OS & Devices

data is lost from view. To control the output so the contents display screen by screen, you
can use a pipeline to direct the output of the ls command to the pg command, which
controls the format of output to the screen as shown in the following example:

ls | pg

In the example, the output of the ls command is the input for the pg command. Press Enter
to continue to the next screen.

Pipelines operate in one direction only (left to right). Each command in a pipeline runs as a
separate process and all processes can run at the same time. A process pauses when it
has no input to read or when the pipe to the next process is full.

Another example of using pipes is with the grep command. The grep command searches a
file for lines that contain strings of a certain pattern. To display all your files created or
modified in July, type:

ls –l | grep Jul

Press Enter.

In the example, the output of the ls command is the input for the grep command.

Displaying Program Output and Copying to a File (tee
command)

The tee command, used with a pipe, reads standard input, then writes the output of a
program to standard output and simultaneously copies it into the specified file or files. Use
the tee command to view your output immediately and at the same time, store it for future
use.

For example, type:

ps –ef | tee program.ps

Press Enter.

This displays the standard output of the ps –ef command at the display device, and at the
same time saves a copy of it in the program.ps file. If the program.ps file already exists, it
is deleted and replaced, unless the noclobber option of the set built–in command is
specified.

For example, to view and save the output from a command to an existing file:

ls –l | tee –a program.ls

This displays the standard output of ls –l at the display device and at the same time
appends a copy of it to the end of the program.ls file.

The system displays information similar to the following, and the program.ls file contains
the same information:

–rw–rw–rw– 1 jones staff 2301 Sep 19 08:53 161414

 –rw–rw–rw– 1 jones staff 6317 Aug 31 13:17 def.rpt

 –rw–rw–rw– 1 jones staff 5550 Sep 10 14:13 try.doc

See the tee command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

5-7 Input and Output Redirection

Clearing Your Screen (clear Command)
You can empty the screen of messages and keyboard input with the clear command.

At the prompt, type:

clear

Press Enter.

The system clears the screen and displays the prompt.

Sending a Message to Standard Output (echo Command)
You can display messages on the screen with the echo command.

For example, to write a message to standard output, at the prompt, type:

echo Please insert diskette . . .

Press Enter.

The system displays the following:

Please insert diskette . . .

For example, to use the echo command with pattern–matching characters, at the prompt,
type:

echo The back–up files are: *.bak

Press Enter.

The system displays the message The back–up files are: followed by the file names
in the current directory ending with.bak.

Appending a Single Line of Text to a File (echo Command)
You can add a single line of text to a file with the echo command, used with the append
redirection operator.

For example, at the prompt, type:

echo Remember to backup mail files by end of week.>

 >notes

Press Enter.

This adds the message Remember to backup mail files by end of week. to the
end of the file notes.

Copying Your Screen to a File (capture and script Commands)
You can copy everything printed on your terminal to a file that you specify with the capture
command, which emulates a VT100 terminal.

You can use the script command to copy everything printed on your terminal to a file that
you specify, without emulating a VT100 terminal.

Both commands are useful for printing records of terminal dialogs.

For example, to capture the screen of a terminal while emulating a VT100, at the prompt,
type:

5-8 AIX System User’s Guide – OS & Devices

capture screen.01

Press Enter.

The system displays information similar to the following:

Capture command is started. The file is screen.01.

 Use ^P to dump screen to file screen.01.

 You are now emulating a vt100 terminal.

 Press Any Key to continue.

After entering data and dumping the screen contents, stop the capture command by
pressing Ctrl–D or typing exit and pressing Enter. The system displays information similar
to the following:

Capture command is complete. The file is screen.01.

 You are NO LONGER emulating a vt100 terminal.

Use the cat command to display the contents of your file.

For example, to capture the screen of a terminal, at the prompt, type:

script

Press Enter.

The system displays information similar to the following:

Script command is started. The file is typescript.

Everything displayed on the screen is now copied to the typescript file.

To stop the script command, press Ctrl–D or type exit and press Enter. The system
displays information similar to the following:

Script command is complete. The file is typescript.

Use the cat command to display the contents of your file.

See the capture and script commands in the AIX 5L Version 5.2 Commands Reference for
the complete syntax.

Displaying Text in Large Letters on Your Screen (banner
Command)

The banner command displays ASCII characters to your screen in large letters. Each line in
the output can be up to 10 digits (or uppercase or lowercase characters) in length.

For example, at the prompt, type:

banner GOODBYE!

Press Enter.

The system displays GOODBYE! in large letters on your screen.

5-9 Input and Output Redirection

Command Summary for Input and Output Redirection

> Redirecting Standard Output on page 5-2

< Redirecting Standard Input on page 5-4

> > Redirecting Output and Appending to a File on page 5-3

| Using Pipes and Filters on page 5-5

 banner Writes ASCII character strings in large letters to standard output

 capture Allows terminal screens to be dumped to a file

 clear Clears the terminal screen

 echo Writes character strings to standard output

 script Allows terminal input and output to be copied to a file

 tee Displays the standard output of a program and copies it into a file

Related Information
 Commands Overview on page 4-3

 Processes Overview on page 4-13

 Shells on page 12-1

 Korn Shell or POSIX Shell Commands on page 12-9

 Bourne Shell on page 12-72

 C Shell on page 12-95

 Files on page 7-1

5-10 AIX System User’s Guide – OS & Devices

6-1 File Systems and Directories

Chapter 6. File Systems and Directories

File systems consist of groups of directories and the files within the directories. File systems
are commonly represented as an inverted tree. The root directory, symbolized by the slash
(/) symbol, defines a file system and appears at the top of a file system tree diagram.
Directories branch downward from the root directory in the tree diagram and can contain
bothfiles and subdirectories. Branching creates unique paths through the directory structure
to every object in the file system.

Collections of files are stored in directories. These collections of files are often related to
each other; storing them in a structure of directories keeps them organized.

A file is a collection of data that can be read from or written to. A file can be a program you
create, text you write, data you acquire, or a device you use. Commands, printers,
terminals, correspondence, and application programs are all stored in files. This allows
users to access diverse elements of the system in a uniform way and gives great flexibility
to the file system.

This chapter discusses the following:

• File Systems on page 6-2

– File System Types on page 6-2

– File System Structure on page 6-2

– Displaying Available Space on a File System (df Command) on page 6-4

• Directory Overview on page 6-5

– Types of Directories on page 6-5

– Directory Organization on page 6-6

– Directory Naming Conventions on page 6-6

– Directory Path Names on page 6-6

– Directory Abbreviations on page 6-7

• Directory–Handling Procedures on page 6-8

– Creating a Directory (mkdir Command) on page 6-8

– Moving or Renaming a Directory (mvdir Command) on page 6-8

– Displaying the Current Directory (pwd Command) on page 6-9

– Changing to Another Directory (cd Command) on page 6-9

– Copying a Directory (cp Command) on page 6-10

– Displaying Contents of a Directory (ls Command) on page 6-10

– Deleting or Removing a Directory (rmdir Command) on page 6-12

– Comparing the Contents of Directories (dircmp Command) on page 6-12

• Command Summary for File Systems and Directories on page 6-14

6-2 AIX System User’s Guide – OS & Devices

File Systems
A file system is a hierarchical structure (file tree) of files and directories. This type of
structure resembles an inverted tree with the roots at the top and the branches at the
bottom. This file tree uses directories to organize data and programs into groups, allowing
the management of many directories and files at one time.

Some tasks are performed more efficiently on a file system than on each directory within the
file system. For example, you can back up, move, or secure an entire file system.

The basic type of file system is called the Journaled File System (JFS). This file system
uses database journaling techniques to maintain its structural consistency. This prevents
damage to the file system when the system is halted abnormally.

Some of the most important system management tasks have to do with file systems,
specifically:

• Allocating space for file systems on logical volumes

• Creating file systems

• Making file system space available to system users

• Monitoring file system space usage

• Backing up file systems to guard against data loss if the system fails

• Maintaining file systems in a consistent state

These tasks should be performed by your system administrator.

File System Types
The operating system supports multiple file system types. These include:

Journaled File System (JFS) The basic file system type, it supports the
entire set of file system commands.

Enhanced Journaled File System (JFS2) The basic file system type, it supports the
entire set of file system commands.

Network File System (NFS) A file system type that permits files residing
on remote machines to be accessed as
though they reside on the local machine.

CD–ROM File System (CDRFS) A file system type that allows the contents
of a CD–ROM to be accessed through the
normal file system interfaces (open, read,
and close).

File System Structure
On standalone machines, the following file systems reside on the associated devices by
default:

/ File System / Device

/ dev / hd1 / home

/ dev / hd2 /usr

/ dev / hd3 / tmp

/ dev / hd4 / (root)

/ dev / hd9var / var

6-3 File Systems and Directories

/ proc / proc

/ dev / hd10opt / opt

The file tree has the following characteristics:

• Files that can be shared by machines of the same hardware architecture are located in
the /usr file system.

• Variable per–client files, for example, spool and mail files, are located in the /var file
system.

• The /(root) file system contains files and directories critical for system operation. For
example, it contains

– A device directory (/dev)

– Mount points where file systems can be mounted onto the root file system, for
example, /mnt

• The /home file system is the mount point for users’ home directories.

• For servers, the /export directory contains paging–space files, per–client (unshared) root
file systems, dump, home, and /usr/share directories for diskless clients, as well as
exported /usr directories.

• The /proc file system contains information about the state of processes and threads in
the system.

• The /opt file system contains optional software, such as applications.

The following list provides information about the contents of some of the subdirectories of
the /(root) file system.

/bin Symbolic link to the /usr/bin directory.

/dev Contains device nodes for special files for local devices. The /dev
directory contains special files for tape drives, printers, disk
partitions, and terminals.

/etc Contains configuration files that vary for each machine. Examples
include:

• /etc/hosts

• /etc/passwd

/export Contains the directories and files on a server that are for remote
clients.

/home Serves as a mount point for a file system containing user home
directories. The /home file system contains per–user files and
directories.

In a standalone machine, a separate local file system is mounted
over the /home directory. In a network, a server might contain user
files that should be accessible from several machines. In this case,
the server’s copy of the /home directory is remotely mounted onto a
local /home file system.

/lib Symbolic link to the /usr/lib directory, which contains
architecture–independent libraries with names in the form lib*.a.

/sbin Contains files needed to boot the machine and mount the /usr file
system. Most of the commands used during booting come from the
boot image’s RAM disk file system; therefore, very few commands
reside in the /sbin directory.

6-4 AIX System User’s Guide – OS & Devices

/tmp Serves as a mount point for a file system that contains
system–generated temporary files.

/u Symbolic link to the /home directory.

/usr Serves as a mount point for a file system containing files that do not
change and can be shared by machines (such as executable
programs and ASCII documentation).

Standalone machines mount a separate local file system over the
/usr directory. Diskless and disk–poor machines mount a directory
from a remote server over the /usr file system.

/var Serves as a mount point for files that vary on each machine. The
/var file system is configured as a file system because the files that it
contains tend to grow. For example, it is a symbolic link to the
/usr/tmp directory, which contains temporary work files.

Displaying Available Space on a File System (df Command)
You can use the df command to display information about total space and available space
on a file system. The FileSystem parameter specifies the name of the device on which the
file system resides, the directory on which the file system is mounted, or the relative path
name of a file system. If you do not specify the FileSystem parameter, the df command
displays information for all currently mounted file systems. If a file or directory is specified,
then the df command displays information for the file system on which it resides.

Normally, the df command uses free counts contained in the superblock. Under certain
exceptional conditions, these counts might be in error. For example, if a file system is being
actively modified when the df command is running, the free count might not be accurate.

See the df command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Note: On some remote file systems, such as Network File Systems (NFS), the
columns representing the available space on the display are left blank if the
server does not provide the information.

The following are examples of how to use the df command:

1. To display information about all mounted file systems, type:

df

Press Enter.

If your system is configured so the /, /usr, /site, and /usr/venus directories reside in
separate file systems, the output from the df command is similar to the following:

Filesystem 512–blocks free %used Iused %Iused Mounted on

 /dev/hd4 20480 13780 32% 805 13% /

 /dev/hd2 385024 15772 95% 27715 28% /usr

 /dev/hd9var 40960 38988 4% 115 1% /var

 /dev/hd3 20480 18972 7% 81 1% /tmp

 /dev/hd1 4096 3724 9% 44 4% /home

2. To display available space on the file system in which your current directory resides,
type:

df .

Press Enter.

6-5 File Systems and Directories

Directory Overview
A directory is a unique type of file that contains only the information needed to access files
or other directories. As a result, a directory occupies less space than other types of files.
Directories enable you to group files and other directories, allowing you to organize the file
system into a modular hierarchy and giving the file–system structure flexablilty and depth.
Unlike other types of files, a special set of commands control directories.

Directories contain directory entries. Each entry contains a file or subdirectory name and an
index node reference number (i–node number). To increase speed and enhance use of disk
space, the data in a file is stored at various locations in the memory of the computer. The
i–node number contains the addresses used to locate all the scattered blocks of data
associated with a file. The i–node number also records other information about the file,
including time of modification and access, access modes, number of links, file owner, and
file type. It is possible to link several names for a file to the same i–node number by creating
directory entries with the ln command.

Because directories often contain information that should not be available to all users of the
system, directory access can be protected. By setting a directory’s permissions, you can
control who has access to the directory, also determining which users (if any) can alter
information within the directory. See File and Directory Access Modes on page 10-4 for
more information.

This section discusses:

• Types of Directories on page 6-5

• Directory Organization on page 6-6

• Directory Naming Conventions on page 6-6

• Directory Path Names on page 6-6

• Directory Abbreviations on page 6-7

• Directory–Handling Procedures on page 6-8

Types of Directories

Directories can be defined by the operating system, the system administrator, or users. The
system–defined directories contain specific kinds of system files, such as commands. At the
top of the file system hierarchy is the system–defined /(root) directory. The /(root) directory
usually contains the following standard system–related directories:

/dev Contains special files for I/O devices.

/etc Contains files for system initialization and system management.

/home Contains login directories for the system users.

/tmp Contains files that are temporary and can be deleted in a specified
number of days.

/usr Contains the lpp, include, and other system directories.

/usr/bin Contains user–executable programs.

Some directories, such as your login or home directory ($HOME), are defined and
customized by the system administrator. When you log in to the operating system, the login
directory is the current directory.

Directories that you create are called user–defined directories. These directories help you
organize and maintain your files.

6-6 AIX System User’s Guide – OS & Devices

Directory Organization

Directories contain files, subdirectories, or a combination of both. A subdirectory is a
directory within a directory. The directory containing the subdirectory is called the parent
directory.

For the operating system to track and find directories, each directory has an entry for the
parent directory in which it was created, .. (dot dot), and an entry for the directory
itself,. (dot). In most directory listings, these files are hidden.

Directory Tree The file system structure of directories can easily become complex.
Attempt to keep the file and directory structure as simple as possible. Also,
create files and directories with easily recognizable names. This makes
working with files easier.

Parent Directory
Each directory, except for /(root), has one parent directory and can have
zero or more child directories.

Home Directory When you log in, the system puts you in a directory called your home
directory or login directory. This directory is set up by the system
administrator for each user. Your home directory is the repository for your
personal files. Normally, directories that you create for your own use will be
subdirectories of your home directory. To return to your home directory at
any time, type the cd command and press Enter at the prompt.

Working Directory
You are always working within a directory. Whichever directory you are
currently working in is called your current or working directory. The pwd
(present working directory) command reports the name of your working
directory. Use the cd command to change working directories.

Directory Naming Conventions

The name of each directory must be unique within the directory where it is stored. This
ensures that the directory also has a unique path name in the file system. Directories follow
the same naming conventions that files do, as explained in File–Naming Conventions on
page 7-4.

Directory Path Names

Each file and directory can be reached by a unique path, known as the path name, through
the file system tree structure. The path name specifies the location of a directory or file
within the file system.

Note: Path names cannot exceed 1023 characters in length.

The file system uses the following kinds of path names:

absolute path name Traces the path from the /(root) directory.
Absolute path names always begin with the
slash (/) symbol.

relative path name Traces the path from the current directory
through its parent or its subdirectories and
files.

An absolute path name represents the complete name of a directory or file from the /(root)
directory downward. Regardless of where you are working in the file system, you can
always find a directory or file by specifying its absolute path name. Absolute path names

6-7 File Systems and Directories

start with a slash (/), the symbol representing the root directory. The path name /A/D/9 is the
absolute path name for 9. The first slash (/) represents the /(root) directory, which is the
starting place for the search. The remainder of the path name directs the search to A, then
to D, and finally to 9.

Two files named 9 can exist because the absolute path names to the files give each file a
unique name within the file system. The path names /A/D/9 and /C/E/G/9 specify two unique
files named 9.

Unlike full path names, relative path names specify a directory or file based on the current
working directory. For relative path names, you can use the notation dot dot (..) to move
upward in the file system hierarchy. The dot dot (..) represents the parent directory. Because
relative path names specify a path starting in the current directory, they do not begin with a
slash (/). Relative path names are used to specify the name of a file in the current directory
or the path name of a file or directory above or below the level of the current directory in the
file system. If D is the current directory, the relative path name for accessing 10 is F/10, but
the absolute path name is always /A/D/F/10. Also, the relative path name for accessing 3
is../../B/3.

You can also represent the name of the current directory by using the notation dot (.). The
dot (.) notation is commonly used when running programs that read the current directory
name.

Directory Abbreviations

Abbreviations provide a convenient way to specifycertain directories. The following is a list
of abbreviations.

Abbreviation Meaning

. The current working directory.

.. The directory above the current working
directory (the parent directory).

~ Your home directory (this is not true for the
Bourne shell. For more information, see
Bourne Shell on page 12-72).

$HOME Your home directory (this is true for all
shells).

6-8 AIX System User’s Guide – OS & Devices

Directory–Handling Procedures
You can work with directories and their contents in a variety of ways.

The command and an example are presented for each of the following directory tasks:

• Creating a Directory (mkdir Command) on page 6-8

• Moving or Renaming a Directory (mvdir Command) on page 6-8

• Displaying the Current Directory (pwd Command) on page 6-9

• Changing to Another Directory (cd Command) on page 6-9

• Copying a Directory (cp Command) on page 6-10

• Displaying Contents of a Directory (ls Command) on page 6-10

• Deleting or Removing a Directory (rmdir Command) on page 6-12

• Comparing the Contents of Directories (dircmp Command) on page 6-12

Creating a Directory (mkdir Command)
You can use the mkdir command to create one or more directories specified by the
Directory parameter. Each new directory contains the standard entries dot (.) and dot dot
(..). You can specify the permissions for the new directories with the –m Mode flag.

When you create a directory, it is created within the current, or working, directory unless you
specify an absolute path name to another location in the file system.

The following are examples of how to us the mkdir command:

1. To create a new directory called Test in the current working directory with default
permissions, type:

mkdir Test

Press Enter.

2. To create a directory called Test with rwxr–xr–x permissions in a previously created
/home/demo/sub1 directory, type:

mkdir –m 755 /home/demo/sub1/Test

Press Enter.

3. To create a directory called Test with default permissions in the /home/demo/sub2
directory, type:

mkdir –p /home/demo/sub2/Test

Press Enter.

The –p flag creates the /home, /home/demo, and /home/demo/sub2 directories if they
do not already exist.

See the mkdir command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Moving or Renaming a Directory (mvdir Command)
To move or rename a directory, use the mvdir command.

For example, to move a directory, type:

mvdir book manual

Press Enter.

This moves the book directory under the directory named manual, if the manual directory
exists. Otherwise, the book directory is renamed to manual.

6-9 File Systems and Directories

For example, to move and rename a directory, type:

mvdir book3 proj4/manual

Press Enter.

This moves the book3 directory to the directory named proj4 and renames proj4 to
manual (if the manual directory did not previously exist).

See the mvdir command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Displaying the Current Directory (pwd Command)
You can use the pwd command to write to standard output the full path name of your
current directory (from the /(root) directory). All directories are separated by a slash (/). The
/(root) directory is represented by the first slash (/), and the last directory named is your
current directory.

For example, to display your current directory, type:

pwd

Press Enter.

The full path name of your current directory displays similar to the following:

/home/thomas

Changing to Another Directory (cd Command)
The cd command moves you from your present directory to another directory. You must
have execute (search) permission in the specified directory.

If you do not specify a Directory parameter, the cd command moves you to your login
directory ($HOME in the ksh and bsh environments, or $home in the csh environment). If
the specified directory name is a full path name, it becomes the current directory. A full path
name begins with a slash (/) indicating the /(root) directory, a dot (.) indicating current
directory, or a dot dot (..) indicating parent directory. If the directory name is not a full path
name, the cd command searches for it relative to one of the paths specified by the
$CDPATH shell variable (or $cdpath csh variable). This variable has the same syntax as,
and similar semantics to, the $PATH shell variable (or $path csh variable).

The following are examples of how to use the cd command:

1. To change to your home directory, type:

cd

Press Enter.

2. To change to the /usr/include directory, type:

cd /usr/include

Press Enter.

3. To go down one level of the directory tree to the sys directory, type:

cd sys

Press Enter.

If the current directory is /usr/include and it contains a subdirectory named sys, then
/usr/include/sys becomes the current directory.

4. To go up one level of the directory tree, type:

cd ..

Press Enter.

6-10 AIX System User’s Guide – OS & Devices

The special file name, dot dot (..), refers to the directory immediately above the current
directory, its parent directory.

See the cd command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Copying a Directory (cp Command)
You can use the cp command to create a copy of the contents of the file or directory
specified by the SourceFile or SourceDirectory parameters into the file or directory specified
by the TargetFile or TargetDirectory parameters. If the file specified as the TargetFile exists,
the copy writes over the original contents of the file. If you are copying more than one
SourceFile, the target must be a directory.

To place a copy of the SourceFile into a directory, specify a path to an existing directory for
the TargetDirectory parameter. Files maintain their respective names when copied to a
directory unless you specify a new file name at the end of the path. The cp command also
copies entire directories into other directories if you specify the –r or –R flags.

The following are examples of how to use the cp command.

1. To copy all the files in the /home/accounts/customers/orders directory to the
/home/accounts/customers/shipments directory, type:

cp /home/accounts/customers/orders/* /home/accounts/customers/shipments

Press Enter.

This copies only the files in orders directory into the shipments directory.

2. To copy a directory, including all its files and subdirectories, to another directory, type:

cp –R /home/accounts/customers /home/accounts/vendors

Press Enter.

This copies the customers directory, including all its files, subdirectories, and the files in
those subdirectories, into the vendors directory.

See the cp command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Displaying Contents of a Directory (ls Command)
You can display the contents of a directory by using the ls command.

ls command
The ls command writes to standard output the contents of each specified Directory or the
name of each specified File, along with any other information you ask for with the flags. If
you do not specify a File or Directory, the ls command displays the contents of the current
directory.

By default, the ls command displays all information in alphabetic order by file name. If the
command is executed by a user with root authority, it uses the –A flag by default, listing all
entries except dot (.) and dot dot (..). To show all entries for files, including those that begin
with a . (dot), use the ls –a command.

You can format the output in the following ways:

• List one entry per line, using the –l flag.

• List entries in multiple columns, by specifying either the –C or –x flag. The –C flag is the
default format when output is to a tty.

• List entries in a comma–separated series, by specifying the –m flag.

To determine the number of character positions in the output line, the ls command uses the
$COLUMNS environment variable. If this variable is not set, the command reads the

6-11 File Systems and Directories

terminfo file. If the ls command cannot determine the number of character positions by
either of these methods, it uses a default value of 80.

The information displayed with the –e and –l flags is interpreted as follows:

The first charactor may be one of the following:

d Entry is a directory.

b Entry is a block special file.

c Entry is a character special file.

l Entry is a symbolic link.

p Entry is a first–in, first–out (FIFO) pipe special file.

s Entry is a local socket.

– Entry is an ordinary file.

The next nine characters are divided into three sets of three characters each. The first three
characters show the owner’s permission. The next set of three characters shows the
permission of the other users in the group. The last set of three characters shows the
permission of anyone else with access to the file. The three characters in each set show
read, write, and execute permission of the file. Execute permission of a directory lets you
search a directory for a specified file.

Permissions are indicated as follows:

r Read permission granted

t Only the directory owner or the file owner can delete or rename a file
within that directory, even if others have write permission to the
directory.

w Write (edit) permission granted

x Execute (search) permission granted

– Corresponding permission not granted.

The information displayed with the –e flag is the same as with the –l flag, except for the
addition of an 11th character, interpreted as follows:

+ Indicates a file has extended security information. For example, the
file might have extended ACL, TCB, or TP attributes in the mode.

– Indicates a file does not have extended security information.

When the size of the files in a directory are listed, the ls command displays a total count of
blocks, including indirect blocks.

For example, to list all files in the current directory, type:

ls –a

Press Enter.

This lists all files, including

• dot (.)

• dot dot (..)

• Other files whose names might or might not begin with a dot (.)

For example, to display detailed information, type:

ls –l chap1 .profile

Press Enter.

6-12 AIX System User’s Guide – OS & Devices

This displays a long listing with detailed information about chap1 and.profile.

For example, to display detailed information about a directory, type:

ls –d –l . manual manual/chap1

Press Enter.

This displays a long listing for the directories. and manual, and for the file manual/chap1.
Without the –d flag, this would list the files in the. and manual directories instead of the
detailed information about the directories themselves.

See the ls command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Deleting or Removing a Directory (rmdir Command)
You can use the rmdir command to remove the directory, specified by the Directory
parameter, from the system. The directory must be empty (it can only contain . and ..)
before you can remove it, and you must have write permission in its parent directory. Use
the ls –a Directory command to check whether the directory is empty.

The following are examples of how to use the rmdir command:

1. To empty and remove a directory, type:

rm mydir/* mydir/.*

 rmdir mydir

Press Enter.

This removes the contents of mydir, then removes the empty directory. The rm
command displays an error message about trying to remove the directories dot (.) and
dot dot (..), and then the rmdir command removes them and the directory itself.

Note: rm mydir/* mydir/.* first removes files with names that do not begin
with a dot, and then removes those with names that do begin with a dot.
You might not realize that the directory contains file names that begin
with a dot because the ls command does not normally list them unless
you use the –a flag.

2. To remove the /tmp/jones/demo/mydir directory and all the directories beneath it, type:

cd /tmp

 rmdir –p jones/demo/mydir

Press Enter.

This removes the jones/demo/mydir directory from the /tmp directory. If a directory is
not empty or you do not have write permission to it when it is to be removed, the
command terminates with appropriate error messages.

See the rmdir command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Comparing the Contents of Directories (dircmp Command)
You can use the dircmp command to compare two directories specified by the Directory1
and Directory2 parameters and write information about their contents to standard output.
First, the dircmp command compares the file names in each directory. If the same file name
is contained in both, the dircmp command compares the contents of both files.

In the output, the dircmp command lists the files unique to each directory. It then lists the
files with identical names in both directories, but with different contents. If no flag is
specified, it also lists files that have identical contents as well as identical names in both
directories.

The following are examples of how to use the dircmp command:

6-13 File Systems and Directories

1. To summarize the differences between the files in the proj.ver1 and proj.ver2
directories, type:

dircmp proj.ver1 proj.ver2

Press Enter.

This displays a summary of the differences between the proj.ver1 and proj.ver2
directories. The summary lists separately the files found only in one directory or the
other, and those found in both. If a file is found in both directories, the dircmp command
notes whether the two copies are identical.

2. To show the details of the differences between the files in the proj.ver1 and proj.ver2
directories, type:

dircmp –d –s proj.ver1 proj.ver2

Press Enter.

The –s flag suppresses information about identical files. The –d flag displays a diff
listing for each of the differing files found in both directories.

See the dircmp command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

6-14 AIX System User’s Guide – OS & Devices

Command Summary for File Systems and Directories

File Systems

 df Reports information about space on file systems.

Directory Abbreviations

. The current working directory.

.. The directory above the current working directory (the parent
directory).

~ Your home directory (this is not true for the Bourne shell. For more
information, see Bourne Shell on page 12-72).

$HOME Your home directory (this is true for all shells).

Directory Handling Procedures

 cd Changes the current directory.

 cp Copies files or directories.

 dircmp Compares two directories and the contents of their common files.

 ls Displays the contents of a directory.

 mkdir Creates one or more new directories.

 mvdir Moves (renames) a directory.

 pwd Displays the path name of the working directory.

 rmdir Removes a directory.

Related Information
 Commands Overview on page 4-3

 Processes Overview on page 4-13

 Input and Output Redirection on page 5-1

 File Systems on page 6-2

 Directory Overview on page 6-5

 Files on page 7-1

 Linking Files and Directories on page 7-18

 Backup Files and Storage Media on page 9-1

 File and System Security on page 10-1

7-1 Files

Chapter 7. Files

Files are used for all input and output (I/O) of information in the operating system. To
standardize access to both software and hardware. Input occurs when the contents of a file
is modified or written to. Output occurs when the contents of one file is read or transferred to
another file. For example, to create a printed copy of a file, the system reads the information
from the text file and writes that information to the file representing the printer.

This chapter discusses the following:

• Types of Files on page 7-3

– File–Naming Conventions on page 7-4

– File Path Names on page 7-4

– Pattern Matching with Wildcards and Metacharacters on page 7-4

– Pattern Matching versus Regular Expressions on page 7-6

• File Handling Procedures on page 7-7

– Deleting Files (rm Command) on page 7-7

– Moving and Renaming Files (mv Command) on page 7-8

– Copying Files (cp Command) on page 7-8

– Finding Files (find Command) on page 7-9

– Displaying the File Type (file Command) on page 7-10

– Displaying File Contents (pg, more, page, and cat Commands) on page 7-11

– Finding Text Strings Within Files (grep Command) on page 7-12

– Sorting Text Files (sort Command) on page 7-13

– Comparing Files (diff Command) on page 7-14

– Counting Words, Lines, and Bytes in Files (wc Command) on page 7-14

– Displaying the First Lines of Files (head Command) on page 7-14

– Displaying the Last Lines of Files (tail Command) on page 7-15

– Cutting Sections of Text Files (cut Command) on page 7-15

– Pasting Sections of Text Files (paste Command) on page 7-16

– Numbering Lines in Text Files (nl Command) on page 7-17

– Removing Columns in Text Files (colrm Command) on page 7-17

• Linking Files and Directories on page 7-18

– Types of Links on page 7-18

– Linking Files (ln Command) on page 7-19

– Removing Linked Files on page 7-20

• DOS Files on page 7-21

– Copying DOS Files to Base Operating System Files on page 7-21

– Copying Base Operating System Files to DOS Files on page 7-21

– Deleting DOS Files on page 7-22

7-2 AIX System User’s Guide – OS & Devices

– Listing Contents of a DOS Directory on page 7-22

• Command Summary for Files on page 7-23

7-3 Files

Types of Files
The following basic types of files exist:

regular Stores data (text, binary, and executable)

directory Contains information used to access other
files

special Defines a FIFO (first–in, first–out) pipe file
or a physical device

All file types recognized by the system fall into one of these categories. However, the
operating system uses many variations of these basic types.

Regular Files
Regular files are the most common files and are used to contain data. Regular files are in
the form of text files or binary files:

Text Files
Text files are regular files that contain information stored in ASCII and readable by the user.
You can display and print these files. The lines of a text file must not contain NUL
characters, and none can exceed {LINE_MAX} bytes in length, including the new–line
character.

The term text file does not prevent the inclusion of control or other nonprintable characters
(other than NUL). Therefore, standard utilities that list text files as inputs or outputs are
either able to process the special characters or they explicitly describe their limitations within
their individual sections.

Binary Files
Binary files are regular files that contain information readable by the computer. Binary files
might be executable files that instruct the system to accomplish a job. Commands and
programs are stored in executable, binary files. Special compiling programs translate ASCII
text into binary code.

Text and binary files differ only in that text files have lines of less than {LINE_MAX} bytes,
with no NUL characters, each terminated by a newline character.

Directory Files
Directory files contain information that the system needs to access all types of files, but
directory files do not contain the actual file data. As a result, directories occupy less space
than a regular file and give the file system structure flexibility and depth. Each directory
entry represents either a file or a subdirectory. Each entry contains the name of the file and
the file’s index node reference number (i–node number). The i–node number points to the
unique index node assigned to the file. The i–node number describes the location of the
data associated with the file. Directories are created and controlled by a separate set of
commands.

Special Files
Special files define devices for the system or temporary files created by processes. The
basic types of special files are FIFO (first–in, first–out), block, and character. FIFO files are
also called pipes. Pipes are created by one process to temporarily allow communication with
another process. These files cease to exist when the first process finishes. Block and
character files define devices.

Every file has a set of permissions (called access modes) that determine who can read,
modify, or execute the file.

7-4 AIX System User’s Guide – OS & Devices

To learn more about file access modes, see File and Directory Access Modes on page 10-4.

File–Naming Conventions
The name of each file must be unique within the directory where it is stored. This ensures
that the file also has a unique path name in the file system. File–naming guidelines are:

• A file name can be up to 255 characters long and can contain letters, numbers, and
underscores.

• The operating system is case–sensitive, which means it distinguishes between
uppercase and lowercase letters in file names. Therefore, FILEA, FiLea, and filea
are three distinct file names, even if they reside in the same directory.

• File names should be as descriptive and meaningful as possible.

• Directories follow the same naming conventions as files.

• Certain characters have special meaning to the operating system. Avoid using these
charactors when you are naming files. These characters include the following:

 / \ ” ’ * ; – ? [] () ~ ! $ { } < > # @ & |

• A file name is hidden from a normal directory listing if it begins with a dot (.). When the ls
command is entered with the –a flag, the hidden files are listed along with regular files
and directories.

File Path Names
The path name for each file and directory in the file system consists of the names of every
directory that precedes it in the tree structure.

Because all paths in a file system originate from the /(root) directory, each file in the file
system has a unique relationship to the root directory, known as the absolute path name.
Absolute path names begin with the slash (/) symbol. For example, the absolute path name
of file h could be /B/C/h. Notice that two files named h can exist in the system. Because the
absolute paths to the two files are different, /B/h and /B/C/h, each file named h has a
unique name within the system. Every component of a path name is a directory except the
final component. The final component of a path name can be a file name.

Note: Path names cannot exceed 1023 characters in length.

Pattern Matching with Wildcards and Metacharacters
Wildcard characters provide a convenient way for specifying multiple file or directory names
with one character. The wildcard characters are asterisk (*) and question mark (?). The
metacharacters are open and close square brackets ([]), hyphen (–), and exclamation mark
(!).

Using the * Wildcard Charactor
Use the asterisk (*) to match any sequence or string of characters. The (*) indicates any
characters, including no characters. For example, if you have the following files in your
directory:

1test 2test afile1 afile2 bfile1 file file1 file10 file2 file3

and you want to refer to only the files that begin with file, you would use:

file*

The files selected would be: file file1 file10 file2 file3

7-5 Files

To refer to only the files that contain the word file, you would use:

file

The files selected would be: afile1 afile2 bfile1 file file1 file10 file2
file3

Using the ? Wildcard Charactor
Use the ? to match any one character. The ? indicates any single character.

To refer to only the files that start with file and end with a single character, use:

file?

The files selected would be: file1 file2 file3

To refer to only the files that start with file and end with any two characters, use:

file??

The file selected would be: file10

Using [] Shell Metacharacters
Metacharacters offer another type of wildcard notation by enclosing the desired characters
within []. It is like using the ?, but it allows you to choose specific characters to be matched.
The [] also allow you to specify a range of values using the hyphen (–). To specify all the
letters in the alphabet, use [[:alpha:]]. To specify all the lowercase letters in the alphabet,
use [[:lower:]].

To refer to only the files that end in 1 or 2, use:

*file[12]

The files selected would be: afile1 afile2 file1 file2

To refer to only the files that start with any number, use:

[0123456789]* or [0–9]*

The files selected would be: 1test 2test

To refer to only the files that do not begin with an a, use:

[!a]*

The files selected would be: 1test 2test bfile1 file file1 file10 file2
file3

7-6 AIX System User’s Guide – OS & Devices

Pattern Matching versus Regular Expressions
Regular expressions allow you to select specific strings from a set of character strings. The
use of regular expressions is generally associated with text processing.

Regular expressions can represent a wide variety of possible strings. While many regular
expressions can be interpreted differently depending on the current locale,
internationalization features provide for contextual invariance across locales.

See the examples in the following comparison between File Matching Patterns and Regular
Expressions:

 Pattern Matching Regular Expression

* .*

? .

[!a] [^a]

[abc] [abc]

[[:alpha:]] [[:alpha:]]

See the awk command in the AIX 5L Version 5.2 Commands Reference for the exact
syntax.

7-7 Files

File Handling Procedures
There are many ways to work with the files on your system. Usually you create a text file
with a text editor. The common editors in the UNIX environment are vi and ed. Because
several text editors are available, you can choose to edit with the editor you feel comfortable
with.

You can also create files by using input and output redirection, as described in ” Input and
Output Redirection on page 5-1 ” . You can send the output of a command to a new file or
append it to an existing file.

After creating and modifying files, you might have to copy or move files from one directory to
another, rename files to distinguish different versions of a file, or give different names to the
same file. You might also need to create directories when working on different projects.

Also, you might need to delete certain files. Your directory can quickly get cluttered with files
that contain old or useless information. To release storage space on your system, ensure
that you delete files that are no longer needed.

This section discusses the following:

• Deleting Files (rm Command) on page 7-7

• Moving and Renaming Files (mv Command) on page 7-8

• Copying Files (cp Command) on page 7-8

• Finding Files (find Command) on page 7-9

• Displaying the File Type (file Command) on page 7-10

• Displaying File Contents (pg, more, page, and cat Commands) on page 7-11

• Finding Text Strings Within Files (grep Command) on page 7-12

• Sorting Text Files (sort Command) on page 7-13

• Comparing Files (diff Command) on page 7-14

• Counting Words, Lines, and Bytes in Files (wc Command) on page 7-14

• Displaying the First Lines of Files (head Command) on page 7-14

• Displaying the Last Lines of Files (tail Command) on page 7-15

• Cutting Sections of Text Files (cut Command) on page 7-15

• Pasting Sections of Text Files (paste Command) on page 7-16

• Numbering Lines in Text Files (nl Command) on page 7-17

• Removing Columns in Text Files (colrm Command) on page 7-17

Deleting Files (rm Command)
When you no longer need a file, you can remove it with the rm command. The rm command
removes the entries for a specified file, group of files, or certain select files from a list within
a directory. User confirmation, read permission, and write permission are not required
before a file is removed when you use the rm command. However, you must have write
permission for the directory containing that file.

The following are examples of how to use the rm command:

1. To delete the file named myfile, type:

rm myfile

Press Enter.

2. To delete all the files in the mydir directory, one by one, type:

7-8 AIX System User’s Guide – OS & Devices

rm –i mydir/*

Press Enter.

After each file name displays, type y and press Enter to delete the file. Or to keep the
file, just press Enter.

See the rm command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Moving and Renaming Files (mv Command)
To move files and directories from one directory to another or rename a file or directory, use
the mv command. If you move a file or directory to a new directory without specifying a new
name, it retains its original name. Attention: The mv command can overwrite many existing
files unless you specify the –i flag. The –i flag prompts you to confirm before it overwrites a
file. The –f flag does not prompt you. If both the –f and –i flags are specified in combination,
the last flag specified takes precedence.

Moving Files with mv Command
The following are examples of how to use the mv command:

1. To move a file to another directory and give it a new name, type:

mv intro manual/chap1

Press Enter.

This moves the intro file to the manual/chap1 directory. The name intro is removed
from the current directory, and the same file appears as chap1 in the manual directory.

2. To move a file to another directory, keeping the same name, type:

mv chap3 manual

Press Enter.

This moves chap3 to manual/chap3.

Renaming Files with mv Command
You can use the mv command to change the name of a file without moving it to another
directory.

To rename a file, type:

mv appendix apndx.a

Press Enter.

This renames the appendix file to apndx.a. If a file named apndx.a already exists, its old
contents are replaced with those of the appendix file.

See the mv command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Copying Files (cp Command)
You can use the cp command to create a copy of the contents of the file or directory
specified by the SourceFile or SourceDirectory parameters into the file or directory specified
by the TargetFile or TargetDirectory parameters. If the file specified as the TargetFile exists,
the copy writes over the original contents of the file without warning. If you are copying more
than one SourceFile, the target must be a directory.

If a file with the same name exists at the new destination, the copied file overwrites the file
at the new destination. Therefore, it is a good practice to assign a new name for the copy of
the file to ensure that a file of the same name does not exist in the destination directory.

To place a copy of the SourceFile into a directory, specify a path to an existing directory for
the TargetDirectory parameter. Files maintain their respective names when copied to a

7-9 Files

directory unless you specify a new file name at the end of the path. The cp command also
copies entire directories into other directories if you specify the –r or –R flags.

You can also copy special–device files using the –R flag. Specifying –R causes the special
files to be re–created under the new path name. Specifying the –r flag causes the cp
command to attempt to copy the special files to regular files.

The following are examples of how to use the cp command:

1. To make a copy of a file in the current directory, type:

cp prog.c prog.bak

Press Enter.

This copies prog.c to prog.bak. If the prog.bak file does not already exist, then the cp
command creates it. If it does exist, then the cp command replaces it with a copy of the
prog.c file.

2. To copy a file in your current directory into another directory, type:

cp jones /home/nick/clients

Press Enter.

This copies the jones file to /home/nick/clients/jones.

3. To copy all the files in a directory to a new directory, type:

cp /home/janet/clients/* /home/nick/customers

Press Enter.

This copies only the files in the clients directory to the customers directory.

4. To copy a specific set of files to another directory, type:

cp jones lewis smith /home/nick/clients

Press Enter.

This copies the jones, lewis, and smith files in your current working directory to the
/home/nick/clients directory.

5. To use pattern–matching characters to copy files, type:

cp programs/*.c .

Press Enter.

This copies the files in the programs directory that end with.c to the current directory,
indicated by the single dot (.). You must type a space between the c and the final dot.

See the cp command in the AIX 5L Version 5.2 Commands Reference for the exact syntax.

Finding Files (find Command)
You can use the find command to recursively searche the directory tree for each specified
Path, seeking files that match a Boolean expression written using the terms given in the
following text. The output from the find command depends on the terms specified by the
Expression parameter.

The following are examples of how to use the find command:

1. To list all files in the file system with the name.profile, type:

find / –name .profile

Press Enter.

This searches the entire file system and writes the complete path names of all files
named.profile. The slash (/) tells the find command to search the /(root) directory
and all of its subdirectories.

7-10 AIX System User’s Guide – OS & Devices

To save time, limit the search by specifying the directories where you think the files might
be.

2. To list files having a specific permission code of 0600 in the current directory tree, type:

find . –perm 0600

Press Enter.

This lists the names of the files that have only owner–read and owner–write permission.
The dot (.) tells the find command to search the current directory and its subdirectories.
For an explanation of permission codes, see the chmod command.

3. To search several directories for files with certain permission codes, type:

find manual clients proposals –perm –0600

Press Enter.

This lists the names of the files that have owner–read and owner–write permission and
possibly other permissions. The manual, clients, and proposals directories and their
subdirectories are searched. In the previous example, –perm 0600 selects only files with
permission codes that match 0600 exactly. In this example, –perm –0600 selects files
with permission codes that allow the accesses indicated by 0600 and other accesses
above the 0600 level. This also matches the permission codes 0622 and 2744.

4. To list all files in the current directory that have been changed during the current 24–hour
period, type:

find . –ctime 1

Press Enter.

5. To search for regular files with multiple links, type:

find . –type f –links +1

Press Enter.

This lists the names of the ordinary files (–type f) that have more than one link (
–links +1).

Note: Every directory has at least two links: the entry in its parent directory
and its own. (dot) entry. For more information on multiple file links, see
the ln command.

6. To search for all files that are exactly 414 bytes in length, type:

find . –size 414c

Press Enter.

See the find command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Displaying the File Type (file Command)
You can use the file command to read the files specified by the File or –f FileList parameter,
perform a series of tests on each one. The command attempt to classify the files by type.
The command then writes the file types to standard output.

If a file appears to be ASCII, the file command examines the first 512 bytes and determines
its language. If a file does not appear to be ASCII, the file command further attempts to
determine whether it is a binary data file or a text file that contains extended characters.

If the File parameter specifies an executable or object module file and the version number is
greater than 0, the file command displays the version stamp.

The file command uses the /etc/magic file to identify files that have a magic number, that
is, any file containing a numeric or string constant that indicates the type.

The following are examples of how to use the file command:

7-11 Files

1. To display the type of information the file named myfile contains, type:

file myfile

Press Enter.

This displays the file type of myfile (such as directory, data, ASCII text, C–program
source, and archive).

2. To display the type of each file named in the filenames.lst file, which contains a list of
file names, type:

file –f filenames.lst

Press Enter.

This displays the type of each file named in the filenames.lst file. Each file name must
display on a separate line.

3. To create the filenames.lst file, so that it contains all the file names in the current
directory, type:

ls > filenames.lst

Press Enter.

Edit the filenames file as desired.

See the file command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Displaying File Contents (pg, more, page, and cat Commands)
The pg, more, and page commands allow you to view the contents of a file and control the
speed at which your files are displayed. You can also use the cat command to display the
contents of one or more files on your screen. Combining the cat command with the pg
command allows you to read the contents of a file one full screen at a time.

You can also display the contents of files by using input and output redirection. See Input
and Output Redirection on page 5-1 for more details on input and output redirection.

pg Command
The pg command reads the file names from the File parameter and writes them to standard
output one screen at a time. If you specify hyphen (–) as the File parameter, or run the pg
command without options, the pg command reads standard input. Each screen is followed
by a prompt. If you press the Enter key, another screen displays. Subcommands used with
the pg command let you review something that has already passed.

For example, to look at the contents of the file myfile one page at a time, type:

pg myfile

Press Enter.

See the pg command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

more or page Command
The more or page command displays continuous text one screen at a time. It pauses after
each screen and prints the filename and percent completed (for example, myfile (7%))
at the bottom of the screen. If you then press the Enter key, the more command displays an
additional line. If you press the spacebar, the more command displays another screen of
text.

Note: On some terminal models, the more command clears the screen, instead of
scrolling, before displaying the next screen of text.

For example, to view a file named myfile, type:

more myfile

7-12 AIX System User’s Guide – OS & Devices

Press Enter.

Press the spacebar to view the next screen.

See the more command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

cat Command
The cat command reads each File parameter in sequence and writes it to standard output.

For example, to display the contents of the file notes, type:

cat notes

Press Enter. If the file is more than 24 lines long, some of it scrolls off the screen. To list a
file one page at a time, use the pg command.

For example, to display the contents of the files notes, notes2, and notes3, type:

cat notes notes2 notes3

Press Enter.

See the cat command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Finding Text Strings Within Files (grep Command)
The grep command searches for the pattern specified by the Pattern parameter and writes
each matching line to standard output.

The following are examples of how to use the grep command:

1. To search in a file named pgm.s for a pattern that contains some of the
pattern–matching characters *, ^, ?, [,], \(, \), \{, and \}, in this case, lines starting with
any lowercase or uppercase letter, type:

grep ”^[a–zA–Z]” pgm.s

Press Enter.

This displays all lines in the pgm.s file that begin with a letter.

2. To display all lines in a file named sort.c that do not match a pattern, type:

grep –v bubble sort.c

Press Enter.

This displays all lines that do not contain the word bubble in the sort.c file.

3. To display lines in the output of the ls command that match the string staff, type:

ls –l | grep staff

Press Enter.

See the grep command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

7-13 Files

Sorting Text Files (sort Command)
You can use the sort command to alphabetize or sequence lines in the files specified by the
File parameters and writes the result to standard output. If the File parameter specifies more
than one file, the sort command concatenates the files and alphabetizes them as one file.

Note: The sort command is case–sensitive and orders uppercase letters before
lowercase (this is dependent on the locale).

In the following examples, the contents of the file named names are:

marta

 denise

 joyce

 endrica

 melanie

and the contents of the file named states are:

texas

 colorado

 ohio

1. To display the sorted contents of the file named names, type:

sort names

Press Enter.

The system displays information similar to the following:

denise

 endrica

 joyce

 marta

 melanie

2. To display the sorted contents of the names and states files, type:

sort names states

Press Enter.

The system displays information similar to the following:

colorado

 denise

 endrica

 joyce

 marta

 melanie

 ohio

 texas

3. To replace the original contents of the file named names with its sorted contents, type:

sort –o names names

Press Enter.

This replaces the contents of the names file with the same data but in sorted order.

See the sort command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

7-14 AIX System User’s Guide – OS & Devices

Comparing Files (diff Command)
You can use the diff command to compare text files. It can compare single files or the
contents of directories.

When the diff command is run on regular files, and when it compares text files in different
directories, the diff command tells which lines must be changed in the files so that they
match.

The following are examples of how to use the diff command:

1. To compare two files, type:

diff chap1.bak chap1

Press Enter.

This displays the differences between the chap1.bak and chap1 files.

2. To compare two files while ignoring differences in the amount of white space, type:

diff –w prog.c.bak prog.c

Press Enter. If the two files differ only in the number of spaces and tabs between words,
the diff –w command considers the files to be the same.

See the diff command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Counting Words, Lines, and Bytes in Files (wc Command)
By default, the wc command counts the number of lines, words, and bytes in the files
specified by the File parameter. If a file is not specified for the File parameter, standard input
is used. The command writes the results to standard output and keeps a total count for all
named files. If flags are specified, the ordering of the flags determines the ordering of the
output. A word is defined as a string of characters delimited by spaces, tabs, or newline
characters.

When files are specified on the command line, their names are printed along with the
counts.

For example, to display the line, word, and byte counts of the file named chap1, type:

wc chap1

Press Enter. This displays the number of lines, words, and bytes in the chap1 file.

For example, to display only byte and word counts, type:

wc –cw chap*

Press Enter. This displays the number of bytes and words in each file where the name starts
with chap, and displays the totals.

See the wc command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Displaying the First Lines of Files (head Command)
The head command writes to standard output the first few lines of each of the specified files
or of the standard input. If no flag is specified with the head command, the first 10 lines are
displayed by default.

For example, to display the first five lines of the Test file, type:

head –5 Test

Press Enter.

See the head command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

7-15 Files

Displaying the Last Lines of Files (tail Command)
The tail command writes the file specified by the File parameter to standard output
beginning at a specified point.

For example, to display the last 10 lines of the notes file, type:

tail notes

Press Enter.

For example, to specify the number of lines to start reading from the end of the notes file,
type:

tail –20 notes

Press Enter.

For example, to display the notes file one page at a time, beginning with the 200th byte,
type:

tail –c +200 notes | pg

Press Enter.

For example, to follow the growth of the file named accounts, type:

tail –f accounts

Press Enter. This displays the last 10 lines of the accounts file. The tail command
continues to display lines as they are added to the accounts file. The display continues
until you press the (Ctrl–C) key sequence to stop the display.

See the tail command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Cutting Sections of Text Files (cut Command)
To write selected bytes, characters, or fields from each line of a file to standard output, use
the cut command.

For example, to display several fields of each line of a file, type:

cut –f1,5 –d: /etc/passwd

Press Enter. This displays the login name and full user name fields of the system password
file. These are the first and fifth fields (–f1,5) separated by colons (–d:).

For example, if the /etc/passwd file looks like this:

su:*:0:0:User with special privileges:/:/usr/bin/sh

 daemon:*:1:1::/etc:

 bin:*:2:2::/usr/bin:

 sys:*:3:3::/usr/src:

 adm:*:4:4:System Administrator:/var/adm:/usr/bin/sh

 pierre:*:200:200:Pierre Harper:/home/pierre:/usr/bin/sh

 joan:*:202:200:Joan Brown:/home/joan:/usr/bin/sh

the cut command produces:

su:User with special privileges

 daemon:

 bin:

 sys:

 adm:System Administrator

 pierre:Pierre Harper

 joan:Joan Brown

See the cut command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

7-16 AIX System User’s Guide – OS & Devices

Pasting Sections of Text Files (paste Command)
The paste command merges the lines of up to 12 files into one file.

For example, if you have a file named names that contains the following text:

rachel

 jerry

 mark

 linda

 scott

another file named places that contains the following text:

New York

 Austin

 Chicago

 Boca Raton

 Seattle

and another file named dates that contains the following text:

February 5

 March 13

 June 21

 July 16

 November 4

To paste the text of the files names, places, and dates together, type:

paste names places dates > npd

Press Enter. This creates a file named npd that contains the data from the names file in
one column, the places file in another, and the dates file in a third. The npd file now
contains the following:

rachel New York February 5

 jerry Austin March 13

 mark Chicago June 21

 linda Boca Raton July 16

 scott Seattle November 4

A tab character separates the name, place, and date on each line. These columns do not
align, because the tab stops are set at every eighth column.

For example, to separate the columns with a character other than a tab, type:

paste –d”!@” names places dates > npd

Press Enter. This alternates ! and @ as the column separators. If the names, places, and
dates files are the same as in example 1, then the npd file contains the following:

rachel!New York@February 5

 jerry!Austin@March 13

 mark!Chicago@June 21

 linda!Boca Raton@July 16

 scott!Seattle@November 4

For example, to list the current directory in four columns, type:

ls | paste – – – –

Press Enter. Each hyphen (–) tells the paste command to create a column containing data
read from the standard input. The first line is put in the first column, the second line in the
second column, and so on.

See the paste command in the AIX 5L Version 5.2 Commands Reference for the exact
syntax.

7-17 Files

Numbering Lines in Text Files (nl Command)
The nl command reads the specified file (standard input by default), numbers the lines in
the input, and writes the numbered lines to standard output.

For example, to number only the nonblank lines, type:

nl chap1

Press Enter. This displays a numbered listing of chap1, numbering only the nonblank lines
in the body sections.

For example, to number all lines, type:

nl –ba chap1

Press Enter. This numbers all the lines in the file named chap1, including blank lines.

See the nl command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Removing Columns in Text Files (colrm Command)
The colrm command removes specified columns from a file. Input is taken from standard
input. Output is sent to standard output.

If the command is called with one parameter, the columns of each line from the specified
column to the last column are removed. If the command is called with two parameters, the
columns from the first specified column to the second specified column are removed.

Note: Column numbering starts with column 1.

For example, to remove columns from the text.fil file, type:

colrm 6 < text.fil

Press Enter.

If text.fil contains:

123456789

then the colrm command displays:

12345

See the colrm command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

7-18 AIX System User’s Guide – OS & Devices

Linking Files and Directories
Links are connections between a file name and an index node reference number (i–node
number), the internal representation of a file. Because directory entries contain file names
paired with i–node numbers, every directory entry is a link. The i–node number actually
identifies the file, not the file name. By using links, any i–node number or file can be known
by many different names.

For example, i–node number 798 contains a memo regarding June sales in the Omaha
office. Presently, the directory entry for this memo is as follows:

i–node Number File Name

798 memo

Because this information relates to information stored in the sales and omaha directories,
linking is used to share the information where it is needed. Using the ln command, links are
created to these directories. Now the file has three file names as follows:

i–node Number File Name

798 memo

798 sales/june

798 omaha/junesales

When you use the pg or cat command to view the contents of any of the three file names,
the same information is displayed. If you edit the contents of the i–node number from any of
the three file names, the contents of the data displayed by all of the file names will reflect
any changes.

Types of Links
Links are created with the ln command and are of the following types:

hard link Allows access to the data of a file from a
new file name. Hard links ensure the
existence of a file. When the last hard link is
removed, the i–node number and its data
are deleted. Hard links can be created only
between files that are in the same file
system.

symbolic link Allows access to data in other file systems
from a new file name. The symbolic link is a
special type of file that contains a path
name. When a process encounters a
symbolic link, the process may search that
path. Symbolic links do not protect a file
from deletion from the file system.

Note: The user who creates a file retains ownership of that file no matter how many links
are created. Only the owner of the file or the root user can set the access mode for that
file. However, changes can be made to the file from a linked file name with the proper
access mode.

A file or directory exists as long as there is one hard link to the i–node number for that file.
In the long listing displayed by the ls –l command, the number of hard links to each file and
subdirectory is given. All hard links are treated equally by the operating system regardless
of which link was created first.

7-19 Files

Linking Files (ln Command)
Linking files with the ln command is a convenient way to work with the same data in more
than one place. Links are created by giving alternate names to the original file. The use of
links allows a large file, such as a database or mailing list, to be shared by several users
without making copies of that file. Not only do links save disk space, but changes made to
one file are automatically reflected in all the linked files.

The ln command links the file designated in the SourceFile parameter to the file designated
by the TargetFile parameter or to the same file name in another director y specified by the
TargetDirectory parameter. By default, the ln command creates hard links. To use the ln
command to create symbolic links, designate the –s flag.

If you are linking a file to a new name, you can list only one file. If you are linking to a
directory, you can list more than one file.

The TargetFile parameter is optional. If you do not designate a target file, the ln command
creates a file in your current directory. The new file inherits the name of the file designated
in the SourceFile parameter.

Note: You cannot link files across file systems without using the –s flag.

For example, to create another link to a file named chap1, type:

ln –f chap1 intro

Press Enter. This links chap1 to the new name, intro. When the –f flag is used, the file
name intro is created if it does not already exist. If intro does exist, the file is replaced
by a link to chap1. Then both the chap1 and intro file names will refer to the same file.
Any changes made to one file also appear in the other.

For example, to link a file named index to the same name in another directory named
manual, type:

ln index manual

Press Enter. This links index to the new name, manual/index.

For example, to link several files to names in another directory, type:

ln chap2 jim/chap3 /home/manual

Press Enter. This links chap2 to the new name /home/manual/chap2 and jim/chap3
to /home/manual/chap3.

For example, to use the ln command with pattern–matching characters, type:

ln manual/* .

Note: You must type a space between the asterisk and the period.

Press Enter. This links all files in the manual directory into the current directory, dot (.),
giving them the same names they have in the manua l directory.

For example, to create a symbolic link, type:

ln –s /tmp/toc toc

Press Enter. This creates the symbolic link, toc, in the current directory. The toc file points
to the /tmp/toc file. If the /tmp/toc file exists, the cat toc command lists its contents.

To achieve identical results without designating the TargetFile parameter, type:

ln –s /tmp/toc

Press Enter.

7-20 AIX System User’s Guide – OS & Devices

See the ln command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Removing Linked Files
The rm command removes the link from the file name that you indicate. When one of
several hard–linked file names is deleted, the file is not completely deleted because it
remains under the other name. When the last link to an i–node number is removed, the data
is removed as well. The i–node number is then available for reuse by the system.

See the rm command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

7-21 Files

DOS Files
The AIX operating system allows you to work with DOS files on your system. Copy to a
diskette the DOS files you want to work with. Your system can read these files into a base
operating system directory in the correct format and back onto the diskette in DOS format.

Note: The wildcard characters * and ? (asterisk and question mark) do not work correctly
with the commands discussed in this section (although they do with the base operating
system shell). If you do not specify a file name extension, the file name is matched as if
you had specified a blank extension.

Copying DOS Files to Base Operating System Files
The dosread command copies the specified DOS file to the specified base operating
system file.

Note: DOS file–naming conventions are used with one exception. Because the
backslash (\) character can have special meaning to the base operating system, use a
slash (/) character as the delimiter to specify subdirectory names in a DOS path name.

For example, to copy a text file named chap1.doc from a DOS diskette to the base
operating file system, type:

dosread –a chap1.doc chap1

Press Enter. This copies the DOS text file \CHAP1.DOC on the /dev/fd0 default device to
the base operating system file chap1 in the current directory.

For example, to copy a binary file from a DOS diskette to the base operating file system,
type:

dosread –D/dev/fd0 /survey/test.dta /home/fran/testdata

Press Enter. This copies the \SURVEY\TEST.DTA DOS data file on /dev/fd1 to the base
operating system file /home/fran/testdata.

See the dosread command in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

Copying Base Operating System Files to DOS Files
The doswrite command copies the specified base operating system file to the specified
DOS file.

Note: DOS file–naming conventions are used with one exception. Because the
backslash (\) character can have special meaning to the base operating system, use a
slash (/) character as the delimiter to specify subdirectory names in a DOS path name.

For example, to copy a text file named chap1 from the base operating file system to a
DOS diskette, type:

doswrite –a chap1 chap1.doc

Press Enter. This copies the base operating system file chap1 in the current directory to
the DOS text file \CHAP1.DOC on /dev/fd0.

For example, to copy a binary file named /survey/test.dta from the base operating file
system to a DOS diskette, type:

doswrite –D/dev/fd0 /home/fran/testdata /survey/test.dta

7-22 AIX System User’s Guide – OS & Devices

Press Enter. This copies the base operating system data file /home/fran/testdata to
the DOS file \SURVEY\TEST.DTA on /dev/fd1.

See the doswrite command in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

Deleting DOS Files
The dosdel command deletes the specified DOS file.

Note: DOS file–naming conventions are used with one exception. Because the
backslash (\) character can have special meaning to the base operating system, use a
slash (/) character as the delimiter to specify subdirectory names in a DOS path name.

The dosdel command converts lowercase characters in the file or directory name to
uppercase before it checks the disk. Because all file names are assumed to be full (not
relative) path names, you need not add the initial slash (/).

For example, to delete a DOS file named file.ext on the default device (/dev/fd0),
type:

dosdel file.ext

Press Enter.

See the dosdel command in the AIX 5L Version 5.2 Commands Reference for the
completet syntax.

Listing Contents of a DOS Directory
The dosdir command displays information about the specified DOS files or directories.

Note: DOS file–naming conventions are used with one exception. Because the
backslash (\) character can have special meaning to the base operating system, use a
slash (/) character as the delimiter to specify subdirectory names in a DOS path name.

The dosdir command converts lowercase characters in the file or directory name to
uppercase before it checks the disk. Because all file names are assumed to be full (not
relative) path names, you need not add the initial / (slash).

For example, to read a directory of the DOS files on /dev/fd0, type:

dosdir

Press Enter. The command returns the names of the files and disk–space information,
similar to the following.

PG3–25.TXT

 PG4–25.TXT

 PG5–25.TXT

 PG6–25.TXT

 Free space: 312320 bytes

See the dosdir command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

7-23 Files

Command Summary for Files

* Wildcard, matches any characters.

? Wildcard, matches any single character.

[] Metacharacters, matches enclosed characters.

File–Handling Procedures

 cat Concatenates or displays files

 cmp Compares two files

 colrm Extracts columns from a file

 cp Copies files

 cut Writes out selected bytes, characters, or fields from each line of a file

 diff Compares text files

 file Determines the file type

 find Finds files with a matching expression

 grep Searches a file for a pattern

 head Displays the first few lines or bytes of a file or files

 more Displays continuous text one screen at a time on a display screen

 mv Moves files

 nl Numbers lines in a file

 pg Formats files to the display

 rm Removes (unlinks) files or directories

 paste Merges the lines of several files or subsequent lines in one file

 page Displays continuous text one screen at a time on a display screen

 sort Sorts files, merges files that are already sorted, and checks files to
determine if they have been sorted

 tail Writes a file to standard output, beginning at a specified point

 wc Counts the number of lines, words, and bytes in a file

Linking Files and Directories

 ln Links files and directories

DOS Files

 dosdel Deletes DOS files

 dosdir Lists the directory for DOS files

 dosread Copies DOS files to Base Operating System files

 doswrite Copies Base Operating System files to DOS files

7-24 AIX System User’s Guide – OS & Devices

Related Information
 Commands Overview on page 4-3

 Processes Overview on page 4-13

 Input and Output Redirection on page 5-1

 Shells on page 12-1

 File Systems on page 6-2

 Directory Overview on page 6-5

 Files on page 7-1

 Linking Files and Directories on page 7-18

 Printers, Print Jobs, and Queues on page 8-1

 Backup Files and Storage Media on page 9-1

 File and System Security on page 10-1

8-1 Printers, Print Jobs, and Queues

Chapter 8. Printers, Print Jobs, and Queues

Depending on the printer, you can control the appearance and characteristics of the final
output. The printers need not be located in the same area as the system unit and the
system console. A printer can be attached directly to a local system, or a print job can be
sent over a network to a remote system.

To handle print jobs with maximum efficiency, the system places each job into a queue to
await printer availability. The system can save output from one or more files in the queue.
As the printer produces the output from one file, the system processes the next job in the
queue. This process continues until each job in the queue has been printed.

For detailed information about printers, print jobs, and queues, see the AIX 5L Version 5.2
Guide to Printers and Printing.

This chapter discusses the following chapters:

• Printer Terminology on page 8-2

• Starting a Print Job (qprt Command) on page 8-4

• Canceling a Print Job (qcan Command) on page 8-8

• Checking Print Job Status (qchk Command) on page 8-9

• Printer Status Conditions on page 8-10

• Prioritizing a Print Job (qpri Command) on page 8-11

• Holding and Releasing a Print Job (qhld Command) on page 8-12

• Moving a Print Job to Another Print Queue (qmov Command) on page 8-13

• Formatting Files for Printing (pr Command) on page 8-14

• Printing ASCII Files on a PostScript Printer on page 8-16

• Automating the Conversion of ASCII to PostScript on page 8-17

• Overriding Automatic Determination of Print File Types on page 8-18

• Command Summary for Printers, Print Jobs, and Queues on page 8-18

• Related Information on page 8-18

8-2 AIX System User’s Guide – OS & Devices

Printer Terminology
The following describes terms commonly used with printing.

Local Printers

When a printer is attached to a node or host, the printer is referred to as a local
printer.

Print Job

A print job is a unit of work to be run on a printer. A print job can consist of printing
one or more files, depending on how the print job is requested. The system assigns a
unique job number to each job it runs.

Print Spooler

The spooler used for printing is not specifically a print job spooler. Instead, it provides
a generic spooling function that can be used for queuing various types of jobs,
including print jobs queued to a printer.

The spooler does not normally know what type of job it is queuing. When the system
administrator defines a spooler queue, the purpose of the queue is defined by the
spooler backend program that is specified for the queue. For example, if the spooler
backend program is the piobe command (the printer I/O backend), the queue is a
print queue. Likewise, if the spooler backend program is a compiler, the queue is for
compile jobs. When the spooler’s qdaemon command selects a job from a spooler
queue, it runs the job by invoking the backend program specified by the system
administrator when the queue was defined.

The main spooler command is the enq command. Although you can invoke this
command directly to queue a print job, the following front–end commands are defined
for submitting a print job: the lp, lpr, and qprt commands. A print request issued by
one of these commands is first passed to the enq program, which then places the
information about the file in the queue for the qdaemon to process.

Printer Backend

The printer backend is a collection of programs called by the spooler’s qdaemon
command to manage a print job that is queued for printing. The printer backend
performs the following functions:

. Receives from the qdaemon command a list of one or more files to be printed

. Uses printer and formatting attribute values from the database, overridden by flags
entered on the command line

. Initializes the printer before printing a file

. Runs filters as necessary to convert the print–data stream to a format supported by
the printer

. Provides filters for simple formatting of ASCII documents

. Provides support for printing national language characters

. Passes the filtered print–data stream to the printer device driver

. Generates header and trailer pages

. Generates multiple copies

. Reports paper out, intervention required, and printer error conditions

. Reports problems detected by the filters

. Cleans up after a print job is canceled

8-3 Printers, Print Jobs, and Queues

. Provides a print environment that a system administrator can customize to address
specific printing needs

qdaemon

The qdaemon is a process that runs in the background and controls the queues. It is
generally started when the system is turned on.

Queue

The queue is where you direct a print job. It is a stanza in the /etc/qconfig file whose
name is the name of the queue and points to the associated queue device. The
following is a sample listing:

Msa1:

 device = lp0

In the previous example, Msa1 is the queue name, and lp0 is the device name.

Queue Device

The queue device is the stanza in the /etc/qconfig file that normally follows the local
queue stanza. It specifies the /dev file (printer device) that should be printed to and
the backend that should be used. Following is a sample listing:

lp0:

 file = /dev/lp0

 header = never

 trailer = never

 access = both

 backend = /usr/lpd/piobe

In the previous output, lp0 is the device name and the rest of the lines define how
the device is used.

Note: There can be more than one queue device associated with a single queue.

Real Printer

A real printer is the printer hardware attached to a serial or parallel port at a unique
hardware device address. The printer device driver in the kernel communicates with
the printer hardware and provides an interface between the printer hardware and a
virtual printer, but it is not aware of the concept of virtual printers.

Remote Printers

A remote print system allows nodes that are not directly linked to a printer to have
printer access. To use remote printing facilities, the individual nodes must be
connected to a network using the Transmission Control Protocol/Internet Protocol
(TCP/IP) and must support the required TCP/IP applications.

Virtual Printer

A virtual printer is a set of attributes that define a specific software view of a real
printer. This view of the virtual printer refers only to the high–level data stream (such
as ASCII or PostScript) that the printer understands. It does not include any
information about how the printer hardware is attached to the host computer or about
the protocol used for transferring bytes of data to and from the printer. Virtual printers
are defined by the system manager.

8-4 AIX System User’s Guide – OS & Devices

Starting a Print Job (qprt Command)
To request a print job, use the qprt Command or the smit Command. For more information,
see Using the qprt Command on page 8-4 and Using the smit Command on page 8-7.
When using these commands, specify the following:

• Name of the file to print

• Print queue name

• Name of the output bin

• Number of copies to print

• Whether to make a copy of the file on the remote host

• Whether to erase the file after printing

• Whether to send notification of the job status

• Whether to send notification of the job status by the system mail

• Burst status

• User name for ”Delivery To” label

• Console acknowledgment message for remote print

• File acknowledgment message for remote print

• Priority level

Prerequisites
Before yu start a print job, ensure the following:

• For local print jobs, the printer must be physically attached to your system.

• For remote print jobs, your system must be configured to communicate with the remote
print server.

Using the qprt Command
The qprt command creates and queues a print job to print the file you specify. If you specify
more than one file, all the files together make up one print job. These files are printed in the
order specified on the command line.

Before you can print a file, you must have read access to it. To remove a file after it has
printed, you must have write access to the directory that contains the file.

The most commonly used flags of the qprt command is as follows:

8-5 Printers, Print Jobs, and Queues

–b Number Specifies the bottom margin. The bottom margin is the number of
blank lines to be left at the bottom of each page.

–B Value Specifies whether burst pages (continuous–form pages separated at
perforations) should be printed. The Value variable consists of a
two–character string. The first character applies to header pages.
The second character applies to trailer pages. Each of the two
characters can be one of the following:

a Always prints the (header or trailer) page for each file in each print
job.

n Never prints the (header or trailer) page.

g Prints the (header or trailer) page once for each print job (group of
files).

For example, the –B ga flag specifies that a header page be printed
at the beginning of each print job and that a trailer page be printed
after each file in each print job.

Note: In a remote print environment, the default is determined by
the remote queue on the server.

–e Option Specifies whether emphasized print is wanted.

+ Indicates emphasized print is wanted.

! Indicates emphasized print is not wanted.

–E Option Specifies whether double–high print is wanted.

+ Indicates double–high print is wanted.

! Indicates double–high print is not wanted.

–f FilterType A one–character identifier that specifies a filter through which your
print file or files are to be passed before being sent to the printer.
The available filter identifiers are p, which invokes the pr filter, and n,
which processes output from the troff command.

–i Number Causes each line to be indented the specified number of spaces.
The Number variable must be included in the page width specified
by the –w flag.

–K Option Specifies whether condensed print is wanted.

+ Indicates condensed print is wanted.

! Indicates condensed print is not wanted.

–l Number Sets the page length to the specified number of lines. If the Number
variable is 0, page length is ignored, and the output is considered to
be one continuous page. The page length includes the top and
bottom margins and indicates the printable length of the paper.

–L Option Specifies whether lines wider than the page width should be
wrapped to the next line or truncated at the right margin.

+ Indicates that long lines should wrap to the next line.

! Indicates that long lines should not wrap but instead should be
truncated at the right margin.

–N Number Specifies the number of copies to be printed. If this flag is not
specified, one copy is printed.

–p Number Sets the pitch to Number characters per inch. Typical values for
Number are 10 and 12. The actual pitch of the characters printed is
also affected by the values for the –K (condensed) flag and the –W
(double–wide) flag.

–P Queue [:
QueueDevice]

Specifies the print queue name and the optional queue device name.
If this flag is not specified, the default printer is assumed.

8-6 AIX System User’s Guide – OS & Devices

–Q Value Specifies paper size for the print job. The Value for paper size is
printer–dependent. Typical values are: 1 for letter–size paper, 2 for
legal, and so on. Consult your printer manual for the values assigned
to specific paper sizes.

–t Number Specifies the top margin. The top margin is the number of blank lines
to be left at the top of each page.

–w Number Sets the page width to the number of characters specified by the
Number variable. The page width must include the number of
indention spaces specified with the –i flag.

–W Option Specifies whether double–wide print is wanted.

+ Indicates double–wide print is wanted.

! Indicates double–wide print is not wanted.

–z Value Rotates page printer output the number of quarter–turns clockwise
as specified by the Value variable. The length (–l) and width (–w)
values are automatically adjusted accordingly.

0 Portrait

1 Landscape right

2 Portrait upside–down

3 Landscape left

–= OutputBin Specifies the output bin destination for a print job. The possible
values are listed below. However, the valid output bins are
printer–dependent.

0 Top printer bin

1–49 High Capacity Output (HCO) bins 1 – 49

49 Printer–specific output bins

–# Value Specifies a special function.

j Displays the job number for the specified print job.

h Queues the print job, but puts it in the HELD state until it is
released again.

v Validates the specified printer backend flag values. This validation
is useful in checking for illegal flag values at the time of submitting
a print job. If the validation is not specified, an incorrect flag value
will stop the print job later when the job is actually being
processed.

For example, to request the myfile file to be printed on the first available printer configured
for the default print queue using default values, type:

qprt myfile

For example, to request the file somefile to be printed on a specific queue using specific
flag values and to validate the flag values at the time of print job submission, type:

qprt –f p –e + –Pfastest –# v somefile

This passes the somefile file through the pr filter command (the –f p flag) and prints it using
emphasized mode (the –e + flag) on the first available printer configured for the queue
named fastest (the –Pfastest flag).

For example, to print myfile on legal–size paper, type:

qprt –Q2 myfile

For example, to print three copies of each of the new.index.c, print.index.c, and more.c
files at the print queue Msp1, type:

qprt –PMsp1 –N 3 new.index.c print.index.c more.c

8-7 Printers, Print Jobs, and Queues

For example, to print three copies of the concatenation of the files new.index.c,
print.index.c, and more.c, type:

cat new.index.c print.index.c more.c | qprt –PMsp1 –N 3

Note: The AIX operating system also supports the BSD UNIX print command (lpr) and
the System V UNIX print command (lp). See the lpr and lp commands in the AIX 5L
Version 5.2 Commands Reference for the complete syntax.

See the qprt command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Using the smit Command
You can also issue the qprt command with smit. At the prompt, type:

smit qprt

Press Enter.

8-8 AIX System User’s Guide – OS & Devices

Canceling a Print Job (qcan Command)
You can cancel any job in the print queue by using the qcan Command or the smit
Command. When you cancel a print job, you are prompted to provide the name of the print
queue where the job resides and the job number to be canceled.

This procedure applies to both local and remote print jobs.

Prerequisites
• For local print jobs, the printer must be physically attached to your system.

• For remote print jobs, your system must be configured to communicate with the remote
print server.

Using the qcan Command
The qcan command cancels either a particular job number in a local or remote print queue,
or all jobs in a local print queue. To determine the job number, type the qchk command.

The common format of the qcan command is as follows:

qcan –PQueueName –x JobNumber

For example, to cancel job number 123 on whichever printer the job is on, type:

qcan –x 123

For example, to cancel all jobs queued on printer lp0, type:

qcan –X –Plp0

Note: The AIX operating system also supports the BSD UNIX cancel print command
(lprm) and the System V UNIX cancel print command (cancel). See the lprm and
cancel commands in the AIX 5L Version 5.2 Commands Reference for more information
and the exact syntax.

Using the smit Command
To cancel a print job using SMIT, type:

smit qcan

See the qcan command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

8-9 Printers, Print Jobs, and Queues

Checking Print Job Status (qchk Command)
To display the current status information for specified job numbers, queues, printers, or
users, you can use the Web–based System Manager Fast Path, qchk Command, or the
smit Command.

Prerequisites
• For local print jobs, the printer must be physically attached to your system.

• For remote print jobs, your system must be configured to communicate with the remote
print server.

Web-based System Manager Fast Path
To check the status of a print job using the Web-based System Manager fast path, type:

wsm printers

In the Printer Queues container, select the print job, then use the menus to check its status.

Using the qchk Command
You can use the qchk command to display the current status information regarding
specified print jobs, print queues, or users.

The common format of the qchk command is:

qchk –P QueueName –# JobNumber –u OwnerName

See the qchk command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

The following are examples of howto use the qchk command:

1. To display the default print queue, type:

qchk –q

Press Enter.

2. To display the long status of all queues until all queued jobs are complete, while updating
the screen every 5 seconds, type:

qchk –A –L –w 5

To return to the command prompt, type ^C.

3. To display the status for print queue lp0, type:

qchk –P lp0

Press Enter.

4. To display the status for job number 123, type:

qchk –# 123

Press Enter.

5. To check the status of all jobs in all queues, type:

qchk –A

Note: The AIX operating system also supports the BSD UNIX check print queue
command (lpq) and the System V UNIX check print queue command
(lpstat).

See the lpq and lpstat commands in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

8-10 AIX System User’s Guide – OS & Devices

Using the smit Command
To check a print job’s status using SMIT, type:

smit qchk

Printer Status Conditions

Some of the status conditions that a print queue can have are as follows:

DEV_BUSY Indicates that:

•

• More than one queue is defined to a printer device (lp0), and
another queue is currently using the printer device.

•

• qdaemon attempted to use the printer port device (lp0), but
another application is currently using that printer device.

To recover from a DEV_BUSY, wait until the queue or application
has released the printer device or cancel the job or process that is
using the printer port.

DEV_WAIT Indicates that the queue is waiting on the printer because the printer
is offline, out of paper, jammed, or the cable is loose, bad, or wired
incorrectly.

To recover from a DEV_WAIT, correct the problem that caused it to
wait. Sometimes, the jobs have to be removed from the queue
before the problem can be corrected.

DOWN A queue will usually go into a DOWN state after it has been in the
DEV_WAIT state. This situation occurs when the printer device
driver cannot tell if the printer is there due to absence of correct
signallng. However, some printers might not have the capability to
signal the queuing system that it is offline, and instead signals that it
is off. If the printer device signals or appears to be off, the queue will
go into the DOWN state.

To recover from a DOWN state, correct the problem that has brought
the queue down and have the system administrator bring the queue
back up. The queue must be manually brought up before it can be
used again.

HELD Specifies that a print job is held. The print job will not be processed
by the spooler until it is released.

QUEUED Specifies that a print file is queued and is waiting in line to be
printed.

READY Specifies that everything involved with the queue is ready to queue
and print a job.

RUNNING Specifies that a print file is printing.

8-11 Printers, Print Jobs, and Queues

Prioritizing a Print Job (qpri Command)
To change the priority of a print job, use the qpri Command or smit Command. You can
only assign job priority on local queues. Higher values indicate a higher priority for the print
job. The default priority is 15. The maximum priority for most user print jobs is 20. However,
print jobs from users with root user authority or members of the printq group (group 0) can
recieve a priority of 30.

Note: You cannot assign priority to a remote print job.

Prerequisites
• For local print jobs, the printer must be physically attached to your system.

• For remote print jobs, your system must be configured to communicate with the remote
print server.

Using the qpri Command(qpri Command)
The qpri command reassigns the priority of a print job that you submitted. If you have root
user authority or belong to the printq group, you can assign priority to any job while it is in
the print queue.

The basic format of the qpri command is:

qpri –# JobNumber –a PriorityLevel

For example, to change job number 123 to priority number 18, type:

qpri –# 123 –a 18

For example, to prioritize a local print job as it is submitted, type:

qprt –PQueueName –R PriorityLevel FileName

See the qpri command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Using the smit Command
To change the priority of a print job using SMIT, type:

smit qpri

8-12 AIX System User’s Guide – OS & Devices

Holding and Releasing a Print Job (qhld Command)

After you have sent a print job to a print queue, you can put the print job on hold by using
the Web–Based System Manager Fast Path, the qhld Command, or the smit Command.
Web-based System Manager Fast Path on page 8-12, the Using the qhld Command on
page 8-12 , or the Using the smit Command on page 8-12 . You can use the same
commands to later release the print job for printing.

Prerequisites
• For local print jobs, the printer must be physically attached to your system.

• For remote print jobs, your system must be configured to communicate with the remote
print server.

Web-based System Manager Fast Path
To hold or release a print job using the Web-based System Manager fast path, type:

wsm printers

In the Printer Queues container, select the print job, then use the menus to put it on hold or
to release it for printing.

Using the qhld Command
The qhld command puts a print job on hold after you have sent it. You can either put a
particular print job on hold, or you can hold all the print jobs on a specified print queue. To
determine the print job number, type the qchk command.

The common format of the qhld command is:

qhld [–r] {[–# JobNumber] [– PQueue] [– uUser]}

See the qhld command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

The following are examples of how to use the qhld command:

1. To hold job number 452 on whichever print queue the job is on, type:

qhld –#452

Press Enter.

2. To hold all jobs queued on print queue hp2, type:

qhld –Php2

Press Enter.

3. To release job number 452 on whichever print queue the job is on, type:

qhld –#452 –r

Press Enter.

4. To release all jobs queued on print queue hp2, type:

qhld –Php2 –r

Press Enter.

Using the smit Command
To hold or release a print job using SMIT, type:

smit qhld

8-13 Printers, Print Jobs, and Queues

Moving a Print Job to Another Print Queue (qmov Command)
After you have sent a print job to a print queue, you might want to move the print job to
another print queue. You can move it with the qmov command or the smit command.

Prerequisites
• For local print jobs, the printer must be physically attached to your system.

• For remote print jobs, your system must be configured to communicate with the remote
print server.

Using the qmov Command
You can either move a particular print job, or you can move all the print jobs on a specified
print queue or all the print jobs sent by a specified user. To determine the print job number,
type the qchk command.

The common format of the qmov command is:

qmov –m NewQueue {[–#JobNumber] [–PQueue] [–uUser]}

See the qmov command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

The following are examples of how to use the qmov command:

1. To move job number 280 to print queue hp2, type:

qmov –mhp2 –#280

Press Enter.

2. To move all print jobs on print queue hp4D to print queue hp2, type:

qmov –mhp2 –Php4D

Using the smit Command
To move a print job using SMIT, type:

smit qmov

8-14 AIX System User’s Guide – OS & Devices

Formatting Files for Printing (pr Command)

The pr command performs simple formatting of the files you sent to be printed. Pipe the
output of the pr command to the qprt command to format your text.

Some useful pr command flags are as follows:

–d Double–spaces the output.

–h ”String ” Displays the specified string, enclosed in quotation marks (
” ”), instead of the file name as the page header. The
flag and string should be separated by a space.

–l Lines Overrides the 66–line default and resets the page length to
the number of lines specified by the Lines variable. If the
Lines value is smaller than the sum of both the header and
trailer depths (in lines), the header and trailer are
suppressed (as if the –t flag were in effect).

–m Merges files. Standard output is formatted so that the pr
command writes one line from each file specified by a File
variable, side by side into text columns of equal fixed
widths, based on the number of column positions. Do not
use this flag with the – Column flag.

–n [Width][Character] Provides line numbering based on the number of digits
specified by the Width variable. The default is 5 digits. If
the Character (any non–digit character) variable is
specified, it is appended to the line number to separate it
from what follows on the line. The default character
separator is the ASCII TAB character.

–o Offset Indents each line by the number of character positions
specified by the Offset variable. The total number of
character positions per line is the sum of the width and
offset. The default value of Offset is 0.

–s Character Separates columns by the single character specified by the
Character variable instead of by the appropriate number of
spaces. The default value for Character is an ASCII TAB
character.

–t Does not display the five–line identifying header and the
five–line footer. Stops after the last line of each file without
spacing to the end of the page.

–w Width Sets the number of column positions per line to the value
specified by the Width variable. The default value is 72 for
equal–width multicolumn output. There is no limit
otherwise. If the –w flag is not specified and the –s flag is
specified, the default width is 512 column positions.

– Column Sets the number of columns to the value specified by the
Column variable. The default value is 1. Do not use his
option with the –m flag. The –e and –i flags are assumed
for multicolumn output. A text column should never exceed
the length of the page (see the –l flag). When this flag is
used with the –t flag, use the minimum number of lines to
write the output.

+ Page Begins the display with the page number specified by the
Page variable. The default value is 1.

8-15 Printers, Print Jobs, and Queues

For example, to print a file named prog.c with headings and page numbers, type:

pr prog.c | qprt

Press Enter.

The pr Command , by default, adds page headings and page numbers to prog.c and sends
it to the qprt command. The heading consists of the date the file was last modified, the file
name, and the page number.

For example, to specify a title for a file named prog.c, type:

pr –h ”MAIN PROGRAM” prog.c | qprt

Press Enter.

This prints prog.c with the title MAIN PROGRAM in place of the file name. The modification
date and page number are still printed.

For example, to print a file named word.lst in multiple columns, type:

pr –3 word.lst | qprt

Press Enter.

This prints the word.lst file in three vertical columns.

For example, to print several files side by side on the paper:

pr –m –h ”Members and Visitors” member.lst visitor.lst | qprt

This prints member.lst and visitor.lst side by side with the title Members and Visitors.

For example, to modify a file named prog.c for later use, type:

pr –t –e prog.c > prog.notab.c

Press Enter.

This replaces tab characters in prog.c with spaces and puts the result in prog.notab.c.
Tab positions are at columns 9, 17, 25, 33, and so on. The –e flag tells the pr command to
replace the tab characters; the –t flag suppresses the page headings.

For example, to print a file named myfile in two columns, in landscape, and in 7–point
text, type:

pr –l66 –w172 –2 myfile | qprt –z1 –p7

Press Enter.

See the pr command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

8-16 AIX System User’s Guide – OS & Devices

Printing ASCII Files on a PostScript Printer

The Text Formatting System includes the enscript filter for converting ASCII print files to
PostScript for printing on a PostScript printer. The qprt –da command calls this filter when a
print job is submitted to a PostScript print queue.

Prerequisites
• The printer must be physically attached to your system.

• The printer must be configured and defined.

• The transcript portion of Text Formatting Services must be installed.

You might specify the following flags with the qprt command to customize the output when
submitting ASCII files to a PostScript print queue.

–1+ Adds page headings.

–2+ Formats the output in two columns.

–3+ Prints the page headings, dates, and page numbers in a fancy style.
This is sometimes referred to as gaudy mode.

–4+ Prints the file, even if it contains unprintable characters.

–5+ Lists characters that are not included in a font.

–h string Specifies a string to be used for page headings. If this flag is not
specified, the heading consists of the file name, modification date,
and page number.

–l value Specifies the maximum number of lines printed per page. Depending
on the point size, fewer lines per page might actually appear.

–L! Truncates lines longer than the page width.

–p Specifies the point size. If this flag is not specified, a point size of 10
is assumed, unless two–column rotated mode (–2+ –z1) is specified,
in which case a value of 7 is used.

–s Specifies the font style. If this flag is not specified, the Courier font is
used. Acceptable values are as follows:

Courier–Oblique

Helvetica

Helvetica–Oblique

Helvetica–Narrow

Helvetica–Narrow–Oblique

NewCenturySchlbk–Italic

Optima

Optima–Oblique

Palatino–Roman

Palatino–Italic

Times–Roman

Times–Italic

Note: The PostScript printer must have access to the specified
font.

–z1 Rotates the output 90 degrees (landscape mode).

For example, to send the ACSII file myfile.ascii to the PostScript printer named
Msps1, type:

8-17 Printers, Print Jobs, and Queues

qprt –da –PMsps1 myfile.ascii

Press Enter.

For example, to send the ACSII file myfile.ascii to the PostScript printer named Msps1
and print in the Helvetica font, type:

qprt –da –PMsps1 –sHelvetica myfile.ascii

Press Enter.

For example, to send the ASCII file myfile.ascii to the PostScript printer named Msps1
and print in the point size 9, type:

qprt –da –PMsps1 –p9 myfile.ascii

Press Enter.

Automating the Conversion of ASCII to PostScript
Many applications that generate PostScript print files follow the convention of making the
first two characters of the PostScript file %! which identifies the print file as a PostScript
print file. To configure the system to detect ASCII print files submitted to a PostScript print
queue and automatically convert them to PostScript files before sending them to the
PostScript printer, perform these steps:

1. At the prompt, type:

smit chpq

Press Enter.

2. Type the PostScript queue name, or use the List feature to select from a list of queues.

3. Select Printer Setup menu option.

4. Change value of AUTOMATIC detection of print file TYPE to be done? field to yes.

Any of the following commands now convert an ASCII file to a PostScript file and print it on
a PostScript printer. To convert myfile.ascii, type any of the following at the command
line:

qprt –Pps myfile.ps myfile.ascii

lpr –Pps myfile.ps myfile.ascii

lp –dps myfile.ps myfile.acsii

where ps is a PostScript print queue.

8-18 AIX System User’s Guide – OS & Devices

Overriding Automatic Determination of Print File Types
You might need to override the automatic determination of print file type for PostScript
printing in the following situations.

• To print a PostScript file named myfile.ps that does not begin with %!, type the
following at the command line, for example:

qprt –ds –Pps myfile.ps

• To print the source listing of a PostScript file named myfile.ps that begins with %!,
type the following at the command line, for example:

qprt –da –Pps myfile.ps

Command Summary for Printers, Print Jobs, and Queues

 cancel Cancels requests to a line printer

 lp Sends requests to a line printer

 lpq Examines the spool queue

 lpr Enqueues print jobs

 lprm Removes jobs from the line printer spooling queue

 lpstat Displays line printer status information

 pr Writes a file to standard output

 qcan Cancels a print job

 qchk Displays the status of a print queue

 qhld

Holds or releases a print job

 qmov Moves a print job to another print queue

 qpri Prioritizes a job in the print queue

 qprt Starts a print job

Related Information
 Commands Overview on page 4-3

 Processes Overview on page 4-13

 Input and Output Redirection on page 5-1

 File Systems on page 6-2

 Directory Overview on page 6-5

 Files on page 7-1

 User Environment and System Information on page 2-1

9-1 Back-up Files and Storage Media

Chapter 9. Backup Files and Storage Media

Once your system is in use, your next consideration should be to back up the file systems,
directories, and files. All computer files are potentially easy to change or erase, either
intentionally or by accident. If you use a careful and methodical approach to backing up your
file systems, you should always be able to restore recent versions of files or file systems
with little difficulty.

Note: When a hard disk crashes, the information contained on that disk is destroyed.
The only way to recover the destroyed data is to retrieve the information from your
backup copy.

There are several different methods of backing up. The most frequently used method is a
regular backup, which is a copy of a file system, directory, or file that is kept for file transfer
or in case the original data is unintentionally changed or destroyed. Another form of backing
up is the archive backup; this method is used for future reference, historical purposes, or for
recovery if the original data is damaged or lost.

This chapter discusses the following:

• Establishing a Backup Policy on page 9-2

• Formatting Diskettes (format or fdformat Command) on page 9-4

• Checking the Integrity of the File System (fsck Command) on page 9-5

• Copying to or from Diskettes (flcopy Command) on page 9-6

• Copying Files to Tape or Disk (cpio –o Command) on page 9-6

• Copying Files from Tape or Disk (cpio –i Command) on page 9-7

• Copying to or from Tapes (tcopy Command) on page 9-8

• Checking the Integrity of a Tape (tapechk Command) on page 9-8

• Compressing Files (compress and pack Commands) on page 9-9

• Expanding Compressed Files (uncompress and unpack Commands) on page 9-11

• Backing Up Files (backup Command) on page 9-12

• Restoring Backed–Up Files (restore Command) on page 9-14

• Archiving Files (tar Command) on page 9-16

• Command Summary for Backup Files and Storage Media on page 9-17

9-2 AIX System User’s Guide – OS & Devices

Establishing a Backup Policy
No single backup policy can meet the needs of all users. A policy that works well for a
system with one user, for example, could be inadequate for a system that serves 5 or 10
different users. Likewise, a policy developed for a system on which many files are changed
daily would be inefficient for a system on which data changes infrequently. Only you can
determine the best backup policy for your system, but the following general guidelines
should help:

Make sure you can recover from major losses.

Can your system continue to run after any single fixed disk fails? Can you recover your
system if all the fixed disks should fail? Could you recover your system if you lost your
backup diskettes or tape to fire or theft? Although these things are not likely, any of them are
possible. Think through each of these possible losses and design a backup policy that
would enable you to recover your system after any of them.

Check your backups periodically.

Backup media and its hardware can be unreliable. A large library of backup tapes or
diskettes is useless if their data cannot be read back onto a fixed disk. To make certain that
your backups are usable, try to display the table of contents from the backup tape
periodically (using restore –T, or tar –t for archive tapes). If you use diskettes for your
backups and have more than one diskette drive, try to read diskettes from a different drive
than the one on which they were created. You also might want the security of repeating
each level 0 backup with a second set of diskettes. If you use a streaming tape device for
backups, you can use the tapechk command to perform rudimentary consistency checks on
the tape.

Keep old backup media.

Develop a regular cycle for reusing your backup media; however, do not reuse all of your
backup media. Sometimes it might be months before you or another system user notices
that an important file is damaged or missing. Do save old backup media for such
possibilities. For example, you could have the following three cycles of backup tapes or
diskettes:

• Once per week, recycle all daily diskettes except the one for Friday.

• Once per month, recycle all Friday diskettes except for the one from the last Friday of
the month. This makes the last four Friday backups always available.

• Once per quarter, recycle all monthly diskettes except for the last one. Keep the last
monthly diskette from each quarter indefinitely, perhaps in a different building.

Check file systems before backing them up.

A backup that was made from a damaged file system might be useless. Before making your
backups, it is good policy to check the integrity of the file system with the fsck command.

Ensure files are not in use during a backup.

Ensure your system is not in use when you make your backups. If the system is in use, files
can change while they are being backed up, and the backup copy will not be accurate.

Back up your system before major changes are made to the system.

Back up your entire system before any hardware testing or repair work is performed or
before you install any new devices, programs, or other system features.

Other Factors

When planning and implementing a backup strategy, concider the following factors:

9-3 Back-up Files and Storage Media

• How often does the data change? The operating system data does not change very
often so you do not need to back it up frequently. User data, on the other hand, usually
changes frequently and you should back it up frequently.

• How many users are on the system? The number of users affects the amount of storage
media and frequency required for backups.

• How difficult would it be to re–create the data? It is important to consider that some data
cannot be re–created if there is no backup available.

Having a backup strategy in place to preserve your data is very important. Evaluating the
needs of your site will help you to determine the backup policy that is best for you. Perform
user information backups frequently and regularly. Recovering from data loss is very difficult
if a good backup strategy has not been implemented.

Backup Media
Several different types of backup media are available. The different types of backup media
available to your specific system configuration depend upon both your software and
hardware. The types most frequently used are the 5.25–inch diskette, 8–mm tape, 9–track
tape, and the 3.5–inch diskette.

Attention: Running the backup command results in the loss of all material previously
stored on the selected backup medium.

Diskettes
Diskettes are the standard backup medium. Unless you specify a different device using the
backup –f command, the backup command automatically writes its output to the /dev/rfd0
device, which is the diskette drive. To back up to the default tape device, type /dev/rmt0 and
press Enter.

Be careful when you handle diskettes. Because each piece of information occupies such a
small area on the diskette, small scratches, dust, food, or tobacco particles can make the
information unusable. Be sure to remember the following:

• Do not touch the recording surfaces.

• Keep diskettes away from magnets and magnetic field sources such as telephones,
dictation equipment, and electronic calculators.

• Keep diskettes away from extreme heat and cold. The recommended temperature range
is 10 degrees Celsius to 60 degrees Celsius (50 degrees Fahrenheit to 140 degrees
Fahrenheit).

• Proper care helps prevent loss of information.

• Make back–up copies of your diskettes regularly.

Attention: Diskette drives and diskettes must be the correct type to store data
successfully. If you use the wrong diskette in your 3.5–inch diskette drive, the data on the
diskette could be destroyed.

The diskette drive uses the following 3.5–inch diskettes:

• 1 MB capacity (stores approximately 720 KB of data)

• 2 MB capacity (stores approximately 1.44 MB of data).

Tapes
Because of its high capacity and durability, tape is is often chosen for storing large files or
many files, such as archive copies of file systems. It is also used for transferring many files
from one system to another. Tape is not widely used for storing frequently accessed files
because other media provide much faster access times.

Tape files are created using commands such as backup, cpio, and tar, which open a tape
drive, write to it, and close it.

9-4 AIX System User’s Guide – OS & Devices

Formatting Diskettes (format or fdformat Command)
Attention: Formatting a diskette destroys any existing data on that diskette.

You can format diskettes in the diskette drive specified by the Device parameter (the
/dev/rfd0 device by default) with the format and fdformat commands. The format
command determines the device type, which is one of the following:

• 5.25–inch low–density diskette (360 KB) containing 40x2 tracks, each with 9 sectors

• 5.25–inch high–capacity diskette (1.2 MB) containing 80x2 tracks, each with 15 sectors

• 3.5–inch low–density diskette (720 KB) containing 80x2 tracks, each with 9 sectors

• 3.5–inch high–capacity diskette (2.88 MB) containing 80x2 tracks, each with 36 sectors

The sector size is 512 bytes for all diskette types.

The format command formats a diskette for high density unless the Device parameter
specifies a different density.

The fdformat command formats a diskette for low density unless the –h flag is specified.
The Device parameter specifies the device containing the diskette to be formatted (such as
the /dev/rfd0 device for drive 0).

Before formatting a diskette, the format and fdformat commands prompt for verification.
This allows you to end the operation cleanly if necessary.

For example, to format a diskette in the /dev/rfd0 device, type:

format –d /dev/rfd0

Press Enter.

For example, to format a diskette without checking for bad tracks, type:

format –f

Press Enter.

For example, to format a 360 KB diskette in a 5.25–inch, 1.2 MB diskette drive in the
/dev/rfd1 device, type:

format –l –d /dev/rfd1

Press Enter.

For example, to force high–density formatting of a diskette when using the fdformat
command, type:

fdformat –h

Press Enter.

See the format command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

9-5 Back-up Files and Storage Media

Checking the Integrity of the File System (fsck Command)

You can check and interactively repair inconsistent file systems with the fsck command. It is
important run this command on every file system as part of system initialization. You must
be able to read the device file on which the file system resides (for example, the /dev/hd0
device). Normally, the file system is consistent, and the fsck command merely reports on
the number of files, used blocks, and free blocks in the file system. If the file system is
inconsistent, the fsck command displays information about the inconsistencies found and
prompts you for permission to repair them. The fsck command is conservative in its repair
efforts and tries to avoid actions that might result in the loss of valid data. In certain cases,
however, the fsck command recommends the destruction of a damaged file.

Attention: Always run the fsck command on file systems after a system malfunction.
Corrective actions can result in some loss of data. The default action for each
consistency correction is to wait for the operator to enter yes or no. If you do not have
write permission for an affected file, the fsck command will default to a no response.

For example, to check all the default file systems, type:

fsck

Press Enter.

This form of the fsck command asks you for permission before making any changes to a file
system.

For example, to fix minor problems automatically with the default file systems , type:

fsck –p

Press Enter.

For example, to check the /dev/hd1 file system , type:

fsck /dev/hd1

Press Enter.

This checks the unmounted file system located on the /dev/hd1 device.

Note: The fsck command does not make corrections to a mounted file system.

See the fsck command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

9-6 AIX System User’s Guide – OS & Devices

Copying to or from Diskettes (flcopy Command)
You can copy a diskette (opened as /dev/rfd0) to a file named floppy created in the
current directory with the flcopy command. The message: Change floppy, hit

return when done displays as needed. The flcopy command then copies the floppy
file to the diskette.

For example, to copy /dev/rfd1 to the floppy file in the current directory, type:

flcopy –f /dev/rfd1 –r

Press Enter.

For example, to copy the first 100 tracks of the diskette, type:

flcopy –f /dev/rfd1 –t 100

Press Enter.

See the flcopy command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Copying Files to Tape or Disk (cpio –o Command)
You can use the cpio –o Command to read file path names from standard input and copy
these files to standard output, along with path names and status information.Path names
cannot exceed 128 characters. Avoid giving the cpio command path names made up of
many uniquely linked files, as it might not have enough memory to keep track of the path
names and would lose linking information.

For example, to copy files in the current directory whose names end with.c onto diskette,
type:

ls *.c | cpio –ov >/dev/rfd0

Press Enter. The –v flag displays the names of each file.

For example, to copy the current directory and all subdirectories onto diskette, type:

find . –print | cpio –ov >/dev/rfd0

Press Enter.

This saves the directory tree that starts with the current directory (.) and includes all of its
subdirectories and files. To use a shorter command string, type:

find . –cpio /dev/rfd0 –print

Press Enter.

The –print entry displays the name of each file as it is copied.

See the cpio command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

9-7 Back-up Files and Storage Media

Copying Files from Tape or Disk (cpio –i Command)

The cpio –i command reads from standard input an archive file created by the cpio –o
command and copies from it the files with names that match the Pattern parameter. These
files are copied into the current directory tree. You can list more than one Pattern parameter,
using the file name notation described in the ksh command. The default for the Pattern
parameter is an asterisk (*), selecting all files in the current directory. In an expression such
as [a–z], the hyphen (–) means through according to the current collating sequence.

Note: The patterns ”*.c” and ”*.o” must be enclosed in quotation marks to prevent
the shell from treating the asterisk (*) as a pattern–matching character. This is a special
case in which the cpio command itself decodes the pattern–matching characters.

For example, to list the files that have been saved onto a diskette with the cpio command,
type:

cpio –itv </dev/rfd0

Press Enter.

This displays the table of contents of the data previously saved onto the /dev/rfd0 file in
the cpio command format. The listing is similar to the long directory listing produced by the
ls –l command. To list only the file path names, use only the –it flags.

For example, to copy the files previously saved with the cpio command from a diskette,
type:

cpio –idmv </dev/rfd0

Press Enter.

This copies the files previously saved onto the /dev/rfd0 file by the cpio command back
into the file system (specify the –i flag). The –d flag allows the cpio command to create the
appropriate directories if a directory tree is saved. The –m flag maintains the last
modification time in effect when the files are saved. The –v flag causes the cpio command
to display the name of each file as it is copied.

For example, to copy selected files from diskette, type:

cpio –i ”*.c” ”*.o” </dev/rfd0

Press Enter.

This copies the files that end with.c or.o from diskette.

See the cpio command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

9-8 AIX System User’s Guide – OS & Devices

Copying to or from Tapes (tcopy Command)

You can use the tcopy command to copy magnetic tapes.

For example, to copy from one streaming tape to a 9–track tape, type:

tcopy /dev/rmt0 /dev/rmt8

Press Enter.

See the tcopy command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Checking the Integrity of a Tape (tapechk Command)

You can perform rudimentary consistency checking on an attached streaming tape device
with the tapechk command. Some hardware malfunctions of a streaming tape drive can be
detected by simply reading a tape. The tapechk command provides a way to perform tape
reads at the file level.

For example, to check the first three files on a streaming tape device, type:

tapechk 3

Press Enter.

See the tapechk command in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

9-9 Back-up Files and Storage Media

Compressing Files (compress and pack Commands)
You can compress files for storage with the

compress Command and pack Command, and use the uncompress and unpack to
expand the restored files. The process of compressing and expanding files takes time but,
after the files are packed, the data uses less space on the backup medium.

To compress a file system, use one of the following methods:

• Use the –p option with the backup command

• Use the compress or pack commands

The reasons for compressing files generally fall into the following categories:

• Saving storage and archiving system resources:

– Compress file systems before doing backups to preserve tape space.

– Compress log files created by shell scripts that run at night; it is easy to have the
script compress the file before it exits.

– Compress files that are not currently being accessed. For example, the files
belonging to a user who is away for extended leave can be compressed and placed
into a tar archive on disk or to a tape and later be restored.

• Saving money and time by compressing files before sending them over a network.

Notes:

1. The compress command might run out of working space in the file system while
compressing. The command creates the compressed files before it deletes any of
the uncompressed files so it needs a space about 50% larger than the total size of
the files.

2. A file might fail to compress because it is already compressed. If the compress
command cannot reduce file sizes, the command fails.

Using the compress Command
The compress command reduces the size of files using adaptive Lempel–Zev coding. Each
original file specified by the File parameter is replaced by a compressed file with a.Z
appended to its name. The compressed file retains the same ownership, modes, and
access and modification times of the original file. If no files are specified, the standard input
is compressed to the standard output. If compression does not reduce the size of a file, a
message is written to standard error and the original file is not replaced.

To restore compressed files to their original form, use the uncompress command.

The amount of compression depends on the size of the input, the number of bits per code
specified by the Bits variable, and the distribution of common substrings. Typically, source
code or English text is reduced by 50 to 60 percent. The compression of the compress
command is generally more compact and takes less time to compute than the compression
achieved by the pack command, which uses adaptive Huffman coding.

For example, to compress the foo file and write the percentage compression to standard
error, type:

compress –v foo

Press Enter.

See the compress command in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

9-10 AIX System User’s Guide – OS & Devices

Using the pack Command
The pack command stores the file or files specified by the File parameter in a compressed
form using Huffman coding. The input file is replaced by a packed file with a name derived
from the original file name (File.z), with the same access modes, access and modification
dates, and owner as the original file. The input file name can contain no more than 253
bytes to allow space for the added.z suffix. If the pack command is successful, the original
file is removed. To restore packed files to their original form, use the unpack command.

If the pack command cannot create a smaller file, it stops processing and reports that it is
unable to save space. (A failure to save space generally happens with small files or files
with uniform character distribution.) The amount of space saved depends on the size of the
input file and the character frequency distribution. Because a decoding tree forms the first
part of each. z file, you do not save space with files smaller than three blocks. Typically, text
files are reduced 25 to 40 percent.

The exit value of the pack command is the number of files that it could not pack. Packing is
not done under any of the following conditions:

• The file is already packed.

• The input file name has more than 253 bytes.

• The file has links.

• The file is a directory.

• The file cannot be opened.

• No storage blocks are saved by packing.

• A file called File.z already exists.

• The.z file cannot be created.

• An I/O error occurred during processing.

For example, to compress the files chap1 and chap2, type:

pack chap1 chap2

Press Enter.

This compresses chap1 and chap2, replacing them with files named chap1.z and
chap2.z. The pack command displays the percent decrease in size for each file.

See the pack command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

9-11 Back-up Files and Storage Media

Expanding Compressed Files (uncompress and unpack
Commands)

You can expand compressed files with the uncompress and unpack commands.

Using the uncompress Command
The uncompress command restores original files that were compressed by the compress
command. Each compressed file specified by the File variable is removed and replaced by
an expanded copy. The expanded file has the same name as the compressed version, but
without the.Z extension. The expanded file retains the same ownership, modes, and access
and modification times as the original file. If no files are specified, standard input is
expanded to standard output.

Although similar to the uncompress command, the zcat command always writes the
expanded output to standard output.

For example, to uncompress the foo file, type:

uncompress foo

Press Enter.

See the uncompress command in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

Using the unpack Command
The unpack command expands files created by the pack command. For each file specified,
the unpack command searches for a file called File.z. If this file is a packed file, the unpack
command replaces it by its expanded version. The unpack command renames the new file
by removing the.z suffix from File. The new file has the same access modes, access and
modification dates, and owner as the original packed file.

The unpack command operates only on files ending in.z. As a result, when you specify a
file name that does not end in.z, the unpack command adds the suffix and searches the
directory for a file name with that suffix.

The exit value is the number of files that the unpack command was unable to unpack. A file
cannot be unpacked if any of the following situations exits:

• The file name (exclusive of.z) has more than 253 bytes.

• The file cannot be opened.

• The file is not a packed file.

• A file with the unpacked file name already exists.

• The unpacked file cannot be created.

Note: The unpack command writes a warning to standard error if the file it is
unpacking has links. The new unpacked file has a different i–node (index node)
number than the packed file from which it was created. However, any other files
linked to the original i–node number of the packed file still exist and are still packed.

For example, to unpack the packed files chap1.z and chap2, type:

unpack chap1.z chap2

Press Enter.

This expands the packed files chap1.z and chap2.z, and replaces them with files named
chap1 and chap2. Note that you can provide the unpack command with file names with or
without the.z suffix.

See the unpack command in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

9-12 AIX System User’s Guide – OS & Devices

Backing Up Files (backup Command)
Attention: If you attempt to back up a mounted file system, a message displays. The
backup command continues, but inconsistencies in the file system can occur. This
situation does not apply to the root (/) file system.

You can create copies of your files on backup media, such as a magnetic tape or diskette,
with the backup Command or smit Command. The copies are in one of the following
backup formats:

• Specific files backed up by name, using the –i flag.

• Entire file system backed up by i–node number, using the –Level and FileSystem
parameters.

Notes:

1. The possibility of data corruption always exists when a file is modified during
system backup. Therefore, make sure that system activity is at a minimum during
the system backup procedure.

2. If a backup is made to 8–mm tape with the device block size set to 0 (zero), it is
not possible to directly restore from the tape. If you have done backups with the 0
setting, you can restore from them by using special procedures described under
the restore command.

Attention: Be sure the flags you specify match the backup media.

Using the backup Command
For example, to back up selected files in your $HOME directory by name, type:

find $HOME –print | backup –i –v

Press Enter.

The –i flag prompts the system to read from standard input the names of files to be backed
up. The find command generates a list of files in the user’s directory. This list is piped to the
backup command as standard input. The –v flag displays a progress report as each file is
copied. The files are backed up on the default backup device for the local system.

For example, to back up the root file system, type:

backup –0 –u /

Press Enter.

The 0 level and the / tell the system to back up the / (root) file system. The file system is
backed up to the /dev/rfd0 file. The –u flag tells the system to update the current backup
level record in the /etc/dumpdates file.

For example, to back up all files in the / (root) file system that were modified since the last 0
level backup, type:

backup –1 –u /

Press Enter.

See the backup command in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

9-13 Back-up Files and Storage Media

Using the smit Command
You can also use smit to run the backup command.

1. At the prompt, type:

smit backup

Press Enter.

2. Type the path name of the directory on which the file system is normally mounted in the
DIRECTORY full pathname field:

/home/bill

Press Enter.

3. In the BACKUP device or FILE fields, type the output device name, as in the following
example for a raw magnetic tape device:

/dev/rmt0

Press Enter.

4. Use the Tab key to toggle the optional REPORT each phase of the backup field if you
want error messages printed to the screen.

5. In a system management environment, use the default for the MAX number of blocks
to write on backup medium field, because this field does not apply to tape backups.

6. Press Enter to back up the named directory or file system.

7. Run the restore –t command. If this command generates an error message, you must
repeat the entire backup.

9-14 AIX System User’s Guide – OS & Devices

Restoring Backed–Up Files (restore Command)
You can read files written by the backup command from backup media and restore them on
your local system with the restore command or smit command.

Notes:

1. Files must be restored using the same method by which they were backed up. For
example, if a file system was backed up by name, it must be restored by name.

2. When more than one diskette is required, the restore command reads the diskette
that is mounted, prompts you for a new one, and waits for your response. After
inserting the new diskette, press the Enter key to continue restoring files.

Using the restore Command
For example, to list the names of files previously backed up, type:

restore –T

Press Enter.

Information is read from the /dev/rfd0 default backup device. If individual files are backed
up, only the file names are displayed. If an entire file system is backed up, the i–node
number is also shown.

For example, to restore files to the main file system, type:

restore –x –v

Press Enter.

The –x flag extracts all the files from the backup media and restores them to their proper
places in the file system. The –v flag displays a progress report as each file is restored. If a
file system backup is being restored, the files are named with their i–node numbers.
Otherwise, only the names are displayed.

For example, to copy the /home/mike/manual/chap1 file , type:

restore –xv /home/mike/manual/chap1

Press Enter.

This command extracts the /home/mike/manual/chap1 file from the backup medium and
restores it. The /home/mike/manual/chap1 file must be a name that the restore –T
command can display.

For example, to copy all the files in a directory named manual, type:

restore –xdv manual

Press Enter.

This command restores the manual directory and the files in it. If the directory does not
exist, a directory named manual is created in the current directory to hold the files being
restored.

See the restore command in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

9-15 Back-up Files and Storage Media

Using the smit Command
You can also use smit to run the restore command.

1. At the prompt, type:

smit restore

Press Enter.

2. Make your entry in the Target DIRECTORY field. This is the directory where you want
the restored files to reside.

3. Proceed to the BACKUP device or FILE field and type the output device name, and
press Enter, as in the following example for a raw magnetic tape device:

/dev/rmt0

If the device is not available, a message similar to the following is displayed:

Cannot open /dev/rmtX, no such file or directory.

This message indicates that the system cannot reach the device driver because there is
no file for rmtX in the /dev directory. Only items in the available state are in the
/dev directory.

4. For the NUMBER of blocks to read in a single input field, the default is recommended.

5. Press Enter to restore the specified file system or directory.

9-16 AIX System User’s Guide – OS & Devices

Archiving Files (tar Command)
The archive backup is another form of backing you can use; this method is used for a copy
of one or more files, or an entire database that is saved for future reference, historical
purposes, or for recovery if the original data is damaged or lost. Usually an archive is used
when that specific data is removed from the system.

You can write files to or retrieve files from an archive storage with the tar command. The tar
command looks for archives on the default device (usually tape), unless you specify another
device.

When writing to an archive, the tar command uses a temporary file (the /tmp/tar* file) and
maintains in memory a table of files with several links. You receive an error message if the
tar command cannot create the temporary file or if there is not enough memory available to
hold the link tables.

For example, to write the file1 and file2 files to a new archive on the default tape
drive, type:

tar –c file1 file2

Press Enter.

For example, to extract all files in the /tmp directory from the archive file on the
/dev/rmt2 tape device and use the time of extraction as the modification time, type:

tar –xm –f/dev/rmt2 /tmp

Press Enter.

For example, to display the names of the files in the out.tar disk archive file from the
current directory, type:

tar –vtf out.tar

Press Enter.

See the tar command in the AIX 5L Version 5.2 Commands Reference for more information
and the exact syntax.

9-17 Back-up Files and Storage Media

Command Summary for Backup Files and Storage Media

 backup Backs up files and file systems

 compress Compresses and expands data

 cpio Copies files into and out of archive storage and directories

 fdformat Formats diskettes

 flcopy Copies to and from diskettes

 format Formats diskettes

 fsck Checks file system consistency and interactively repairs the file
system

 pack Compresses files

 restore Copies previously backed–up file systems or files, created by the
backup command, from a local device

 tapechk Checks consistency of the streaming tape device

 tar Manipulates archives

 tcopy Copies a magnetic tape

 uncompress Compresses and expands data

 unpack Expands files

Related Information
 Commands Overview on page 4-3

 Processes Overview on page 4-13

 Input and Output Redirection on page 5-1

 File Systems on page 6-2

 Directory Overview on page 6-5

 Files on page 7-1

 File and System Security on page 10-1

9-18 AIX System User’s Guide – OS & Devices

10-1 File and System Security

Chapter 10. File and System Security

The goal of computer security is the protection of information stored on the computer
system, a valuable resource. Information security is aimed at the following:

Integrity The value of all information depends upon its accuracy. If
unauthorized changes are made to data, this data loses some or all
of its value.

Privacy The value of much information depends upon its secrecy.

Availability Information must be readily available.

It is helpful to plan and implement your security policies before you begin using the system.
Security policies are very time–consuming to change later, so upfront planning can save a
lot of time later.

This chapter discusses the following:

• Security Threats on page 10-2

• File Ownership and User Groups on page 10-4

– Changing File or Directory Ownership (chown Command) on page 10-4

– File and Directory Access Modes on page 10-4

– Displaying Group Information (lsgroup Command) on page 10-6

– Changing File or Directory Permissions (chmod Command) on page 10-8

• Access Control Lists on page 10-9

– Base Permissions on page 10-9

– Extended Permissions on page 10-10

– Access Control List Example on page 10-10

– Access Authorization on page 10-11

– Displaying Access Control Information (aclget Command) on page 10-12

– Setting Access Control Information (aclput Command) on page 10-12

– Editing Access Control Information (acledit Command) on page 10-12

• Locking Your Terminal (lock or xlock Command) on page 10-13

• Command Summary for File and System Security on page 10-13

10-2 AIX System User’s Guide – OS & Devices

Security Threats
Threats to information security can arise from the following types of behavior:

Carelessness Information security is often violated due to the carelessness of the
authorized users of the system. If you are careless with your
password, for instance, no other security mechanisms can prevent
unauthorized access to your account and data.

Browsing Many security problems are caused by browsers, authorized users of
the system exploring the system looking for carelessly protected
data.

Penetration Penetration represents deliberate attacks upon the system. An
individual trying to penetrate the system will study it for security
vulnerabilities and deliberately plan attacks designed to exploit those
weaknesses.

Although system penetration usually represents the greatest threat to information security,
do not underestimate problems caused by carelessness or browsing.

Basic Security
Every system should maintain the level of security represented by the following basic
security policies:

Backups
Physically secure, reliable, and up–to–date system backups are the single most important
security policy. With a good system backup, you can recover from any system problems with
minimal loss. Document your backup policy and include information regarding the following:

• How often backups will be made

• What types of backups (system, data, or incremental) will be made

• How backup tapes will be verified

• How backup tapes will be stored

For more information, see ” Backup Files and Storage Media on page 9-1 ”.

Identification and Authentication
Identification and authentication establish your identity. You are required to log in to the
system. You supply your user name and a password, if the account has one (in a secure
system, all accounts should either have passwords or be invalidated). If the password is
correct, you are logged in to that account; you acquire the access rights and privileges of
the account.

Because the password is the only protection for your account, select and guard your
password carefully. Many attempts to break into a system start with attempts to guess
passwords. The operating system provides significant password protection by storing user
passwords separately from other user information. The encrypted passwords and other
security–relevant data for users are stored in the /etc/security/passwd file. This file should
be accessible only by the root user. With this restricted access to the encrypted passwords,
an attacker cannot decipher the password with a program that simply cycles through all
possible or likely passwords.

It is still possible to guess passwords by repeatedly attempting to log in to an account. If the
password is trivial or is infrequently changed, such attempts might easily succeed.

10-3 File and System Security

Login User IDs
The operating system also identifies users by their login user ID. The login user ID allows
the system to trace all user actions to their source. After a user logs in to the system but
before the initial user program is run, the system sets the login ID of the process to the user
ID found in the user database. All subsequent processes during the login session are
tagged with this ID. These tags provide a trail of all activities performed by the login user ID.

The user can reset the effective user ID, real user ID, effective group ID, real group ID, and
supplementary group ID during the session, but cannot change the login user ID.

Unattended Terminals
All systems are vulnerable if terminals are left logged in and unattended. The most serious
problem occurs when a system manager leaves a terminal unattended that has been
enabled with root authority. In general, users should log out anytime they leave their
terminals.

You can force a terminal to log out after a period of inactivity by setting the TMOUT and
TIMEOUT parameters in the /etc/ profile file. The TMOUT parameter works in the ksh
(Korn) shell, and the TIMEOUT parameter works in the bsh (Bourne) shell. For more
information about the TMOUT parameter, see Parameter Substitution in the Korn Shell or
POSIX Shell on page 12-22. For more information about the TIMEOUT parameter, see
Variable Substitution in the Bourne Shell on page 12-86.

The following example, taken from a.profile file, forces the terminal to log out after an hour
of inactivity:

TO=3600

 echo ”Setting Autologout to $TO”

 TIMEOUT=$TO

 TMOUT=$TO

 export TIMEOUT TMOUT

Note: Users can override the TMOUT and TIMEOUT values in the /etc/profile file by
specifying different values in the.profile file in your home directory.

10-4 AIX System User’s Guide – OS & Devices

File Ownership and User Groups
Initially, a file’s owner is identified by the user ID of the person who created the file. The
owner of a file determines who may read, write (modify), or execute the file. Ownership can
be changed with the chown command.

Every user ID is assigned to a group with a unique group ID. The system manager creates
the groups of users when setting up the system. When a new file is created, the operating
system assigns permissions to the user ID that created it, to the group ID containing the file
owner, and to a group called others, consisting of all other users. The id command shows
your user ID (UID), group ID (GID), and the names of all groups you belong to.

In file listings (such as the listings shown by the ls command), the groups of users are
always represented in the following order: user, group, and others. If you need to find out
your group name, the groups command shows all the groups for a user ID.

Changing File or Directory Ownership (chown Command)
To change the owner of your files, use the chown command.

When the –R option is specified, the chown command recursively descends through the
directory structure from the specified directory. When symbolic links are encountered, the
ownership of the file or directory pointed to by the link is changed; the ownership of the
symbolic link is not changed.

Note: Only the root user can change the owner of another file. Errors are not displayed
when the –f option is specified.

For example, to change the owner of the program.c file, type:

chown jim program.c

Press Enter.

The user–access permissions for the program.c file now apply to jim. As the owner, jim
can use the chmod command to permit or deny other users access to the program.c file.

See the chown command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

File and Directory Access Modes
Every file has an owner. For new files, the user who creates the file is the owner of that file.
The owner assigns an access mode to the file. Access modes grant other system users
permission to read, modify, or execute the file. Only the file’s owner or users with root
authority can change the access mode of a file.

There are the three classes of users: user/owner, group, and all others. Access is granted to
these user classes in some combination of three modes: read, write, or execute. When a
new file is created, the default permissions are read, write, and execute permission for the
user who created the file. The other two groups have read and execute permission. The
following table illustrates the default file–access modes for the three classes of user groups:

Classes Read Write Execute

Owner Yes Yes Yes

Group Yes No Yes

Others Yes No Yes

The system determines who has permission and the level of permission they have for each
of these activities. Access modes are represented both symbolically and numerically in the
operating system.

10-5 File and System Security

Symbolic Representation of Access Modes

Access modes are represented symbolically, as follows:

r Indicates read permission, which allows users to view the contents of
a file.

w Indicates write permission, which allows users to modify the contents
of a file.

x Indicates execute permission. For executable files (ordinary files that
contain programs), execute permission means that the program can
be run. For directories, execute permission means the contents of
the directory can be searched.

The access modes for files or directories are represented by nine charactors. The first three
charactors represent the current Owner permissions, the second sent of three charactors
represents the current Group permissions, and the third set of three charactors represents
the current settings for the Other permissions. A Hyphen (–) in the nine charactor set
indicates that no permission is given. For example, a file with the access modes set to
rwxr–xr–x gives read and execute permission to all three groups, but write permission
only to the owner of the file. This is the symbolic representation of the default setting.

The ls command, when used with the –l (lower case L) flag, gives a detailed listing of the
current directory. The first 10 characters in the ls –l listing show the file type and
permissions for each of the three groups. The ls –l command also tells you the owner and
group associated with each file and directory.

The first character indicates the type of file. The remaining nine characters contain the file
permission information for each of the three classes of users. The following symbols are
used to represent the type of file:

– Regular files

d Directory

b Block special files

c Character special files

p Pipe special files

l Symbolic links

s Sockets.

For example, this is a sample ls –l listing:

–rwxrwxr–x 2 janet acct 512 Mar 01 13:33 january

Here, the first hyphen (–) indicates a regular file. The next nine charactors (rwxrwxr–x
represent the User, Group, and Other access modes, as discussed above. janet is the file
owner and acct is the name of Janet’s group. 512 is the file size in bytes, Mar 01
13:33 is the last date and time of modification, and january is the file name. The 2
indicates how many links exist to the file.

Numeric Representation of Access Modes

Numerically, read access is represented by a value of 4, write permission is represented by
a value of 2, and execute permission is represented by a value of 1. The total value
between 1 and 7 represents the access mode for each group (user, group, and other). The
following table illustrates the numeric values for each level of access:

10-6 AIX System User’s Guide – OS & Devices

Total Value Read Write Execute

0 – – –

1 – – 1

2 – 2 –

3 – 2 1

4 4 – –

5 4 – 1

6 4 2 –

7 4 2 1

When a file is created, the default file access mode is 755. This means the user has read,
write, and execute permissions (4+2+1=7), the group has read and execute permission
(4+1=5), and all others have read and execute permission (4+1=5). To change access
permission modes for files you own, run the chmod (change mode) command.

Displaying Group Information (lsgroup Command)
To display the attributes of all the groups on the system (or of specified groups), use the
lsgroup command. If one or more attributes cannot be read, the lsgroup command lists as
much information as possible. The attribute information displays as Attribute = Value
definitions, each separated by a blank space.

Listing All of the Groups on the System
To list all of the groups on the system, type:

lsgroup ALL

Press Enter.

The system displays each group, group ID, and all of the users in the group in a list similar
to the following:

system 0 arne,pubs,ctw,geo,root,chucka,noer,su,dea,

 backup,build,janice,denise

 staff 1 john,ryan,flynn,daveb,jzitt,glover,maple,ken

 gordon,mbrady

 bin 2 root,bin

 sys 3 root,su,bin,sys

Displaying Specific Attributes for All Groups
To display specific attributes for all groups, do either of the following:

• You can list attributes in the form Attribute=Value separated by a blank space. This
is the default style. For example, to list the ID and users for all of the groups on the
system, type:

lsgroup –a id users ALL | pg

Press Enter. The addition of the lists the attributes.

A list similar to the following displays:

system id=0 users=arne,pubs,ctw,geo,root,chucka,noer,su,dea,backup,build

 staff id=1 users=john,ryan,flynn,daveb,jzitt,glover,maple,ken

10-7 File and System Security

• You can also list the information in stanza format. For example, to list the ID and users
for all of the groups on the system in stanza format, type:

lsgroup –a –f id users ALL | pg

Press Enter.

A list similar to the following displays:

system:

 id=0

 users=pubs,ctw,geo,root,chucka,noer,su,dea,backup,build

 staff:

 id=1

 users=john,ryan,flynn,daveb,jzitt,glover,maple,ken

 bin:

 id=2

 users=root,bin

 sys:

 id=3

 users=root,su,bin,sys

Displaying All Attributes for a Specific Group
To display all attributes for a specific group, you can use one of two styles for listing specific
attributes for all groups:

• You can list each attribute in the form Attribute=Value separated by a blank space.
This is the default style. For example, to list all attributes for the group system, type:

lsgroup system

Press Enter.

A list similar to the following displays:

system id=0

users=arne,pubs,ctw,geo,root,chucka,noer,su,dea,backup,build,janice,denise

• You can also list the information in stanza format. For example, to list all attributes for the
group bin in stanza format, type:

lsgroup –f system

Press Enter.

A list similar to the following displays:

system:

 id=0 users=arne,pubs,ctw,geo,root,chucka,noer,su,dea,

 backup,build,janice,denise

Listing Specific Attributes for a Specific Group
To list specific attributes for a specific group, type:

lsgroup –a Attributes Group

Press Enter.

For example, to list the ID and users for group bin, type:

lsgroup –a id users bin

Press Enter.

A list similar to the following displays:

bin id=2 users=root,bin

10-8 AIX System User’s Guide – OS & Devices

See the lsgroup command in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

Changing File or Directory Permissions (chmod Command)

To modify the read, write, and execute permissions of specified files and modify the search
permission modes of specified directories, use the chmod command.

• For example, to add a type of permission to the chap1 and chap2 files, type:

chmod g+w chap1 chap2

Press Enter.

This adds write permission for group members to the files chap1 and chap2.

• For example, to make several permission changes at once to the mydir directory, type:

chmod go–w+x mydir

Press Enter.

This denies (–) group members (g) and others (o) the permission to create or delete files
(w) in the mydir directory and allows (+) group members and others to search the mydir
directory or use (x) it in a path name. This is equivalent to the following command
sequence:

chmod g–w mydir

 chmod o–w mydir

 chmod g+x mydir

 chmod o+x mydir

• For example, to permit only the owner to use a shell procedure named cmd as a
command, type:

chmod u=rwx,go= cmd

Press Enter.

This gives read, write, and execute permission to the user who owns the file (u=rwx). It
also denies the group and others the permission to access cmd in any way (go=).

• For example, to use the numeric mode form of the chmod command to change the
permissions of the text, file type:

chmod 644 text

Press Enter.

This sets read and write permission for the owner, and it sets read–only mode for the
group and others.

See the chmod command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

10-9 File and System Security

Access Control Lists
Access control consists of protected information resources that specify who can be granted
access to such resources. The operating system allows for need–to–know or discretionary
security. The owner of an information resource can grant other users read or write access
rights for that resource. A user who is granted access rights to a resource can transfer those
rights to other users. This security allows for user–controlled information flow in the system;
the owner of an information resource defines the access permissions to the object.

Users have user–based access only to the objects that they own. Typically, users receive
either the group permissions or the default permissions for a resource. The major task in
administering access control is to define the group memberships of users, because these
memberships determine the users’ access rights to the files that they do not own.

Access control lists (ACLs) increase the quality of file access controls by adding extended
permissions that modify the base permissions assigned to individuals and groups. With
extended permissions, you can permit or deny file access to specific individuals or groups
without changing the base permissions.

Note: The access control list for a file cannot exceed one memory page (approximately
4096 bytes) in size.

To maintain access control lists, use the aclget, acledit, and the aclput commands.

The chmod command in numeric mode (with octal notations) can set base permissions and
attributes. The chmod subroutine, which the command calls, disables extended
permissions. If you use the numeric mode of the chmod command on a file that has an
ACL, extended permissions are disabled. The symbolic mode of the chmod command does
not disable extended permissions. For information on numeric and symbolic mode, refer to
the chmod command.

Base Permissions
Base permissions are the traditional file–access modes assigned to the file owner, file
group, and other users. The access modes are: read (r), write (w), and execute/search (x).

In an access control list, base permissions are in the following format, with the Mode
parameter expressed as rwx (with a hyphen (–) replacing each unspecified permission):

base permissions:

 owner(name): Mode

 group(group): Mode

 others: Mode

Attributes
Three attributes can be added to an access control list:

setuid (SUID) Set–user–ID mode bit. This attribute sets the effective and saved user IDs
 of the process to the owner ID of the file on execution.

setgid (SGID) Set–group–ID mode bit. This attribute sets the effective and saved group
 IDs of the process to the group ID of the file on execution.

savetext (SVTX) Saves the text in a text file format.

These attributes are added in the following format:

attributes: SUID, SGID, SVTX

10-10 AIX System User’s Guide – OS & Devices

Extended Permissions
Extended permissions allow the owner of a file to define access to that file more precisely.
Extended permissions modify the base file permissions (owner, group, others) by permitting,
denying, or specifying access modes for specific individuals, groups, or user and group
combinations. Permissions are modified through the use of keywords.

The permit, deny, and specify keywords are defined as follows:

permit Grants the user or group the specified access to the file

deny Restricts the user or group from using the specified access to the file

specify Precisely defines the file access for the user or group

If a user is denied a particular access by either a deny or a specify keyword, no other entry
can override that access denial.

The enabled keyword must be specified in the ACL for the extended permissions to take
effect. The default value is the disabled keyword.

In an ACL, extended permissions are in the following format:

extended permissions:

 enabled | disabled

 permit Mode UserInfo...:

 deny Mode UserInfo...:

 specify Mode UserInfo...:

Use a separate line for each permit, deny, or specify entry. The Mode parameter is
expressed as rwx (with a hyphen (–) replacing each unspecified permission). The UserInfo
parameter is expressed as u:UserName, or g:GroupName, or a comma–separated
combination of u:UserName and g:GroupName.

Note: If more than one user name is specified in an entry, that entry cannot be used in
an access control decision, because a process has only one user ID.

Access Control List Example
The following is an example of an ACL:

attributes: SUID

 base permissions:

 owner(frank): rw–

 group(system): r–x

 others: –––

 extended permissions:

 enabled

 permit rw– u:dhs

 deny r–– u:chas, g:system

 specify r–– u:john, g:gateway, g:mail

 permit rw– g:account, g:finance

The parts of the ACL and their meanings are the following:

• The first line indicates that the setuid bit is turned on.

• The next line, which introduces the base permissions, is optional.

• The next three lines specify the base permissions. The owner and group names in
parentheses are for information only. Changing these names does not alter the file owner
or file group. Only the chown command and the chgrp command can change these file
attributes.

• The next line, which introduces the extended permissions, is optional.

• The next line indicates that the extended permissions that follow are enabled.

• The last four lines are the extended entries. The first extended entry grants user dhs
read (r) and write (w) permission on the file.

10-11 File and System Security

• The second extended entry denies read (r) access to user chas only when he is a
member of the system group.

• The third extended entry specifies that as long as user john is a member of both the
gateway group and the mail group, has read (r) access. If user john is not a
member of both groups, this extended permission does not apply.

• The last extended entry grants any user in both the account group and the finance
group read (r) and write (w) permission.

Note: More than one extended entry can be applied to a process, with restrictive
modes taking precedence over permissive modes.

See the acledit command in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

Access Authorization
The owner of the information resource is responsible for managing access rights.
Resources are protected by permission bits, which are included in the mode of the object.
The permission bits define the access permissions granted to the owner of the object, the
group of the object, and for the others default class. The operating system supports three
different modes of access (read, write, and execute) that can be granted separately.

When a user logs in to an account (using the login or su commands), the user IDs and
group IDs assigned to that account are associated with the user’s processes. These IDs
determine the access rights of the process.

For files, directories, named pipes, and devices (special files), access is authorized as
follows:

• For each access control entry (ACE) in the access control list (ACL), the identifier list is
compared to the identifiers of the process. If there is a match, the process receives the
permissions and restrictions defined for that entry. The logical unions for both
permissions and restrictions are computed for each matching entry in the ACL. If the
requesting process does not match any of the entries in the ACL, it receives the
permissions and restrictions of the default entry.

• If the requested access mode is permitted (included in the union of the permissions) and
is not restricted (included in the union of the restrictions), access is granted. Otherwise,
access is denied.

A process with a user ID of 0 is known as a root user process. These processes are
generally allowed all access permissions. But if a root user process requests execute
permission for a program, access is granted only if execute permission is granted to at least
one user.

The identifier list of an ACL matches a process if all identifiers in the list match the
corresponding type of effective identifier for the requesting process. A USER–type identifier
matched is equal to the effective user ID of the process, and a GROUP–type identifier
matches if it is equal to the effective group ID of the process or to one of the supplementary
group IDs. For instance, an ACE with an identifier list such as the following:

USER:fred, GROUP:philosophers, GROUP:software_programmer

would match a process with an effective user ID of fred and a group set of:

philosophers, philanthropists, software_programmer, doc_design

but would not match for a process with an effective user ID of fred and a group set of:

philosophers, iconoclasts, hardware_developer, graphic_design

Note that an ACE with an identifier list of the following would match for both processes:

USER:fred, GROUP:philosophers

In other words, the identifier list in the ACE functions is a set of conditions that must hold for
the specified access to be granted.

10-12 AIX System User’s Guide – OS & Devices

All access permission checks for these objects are made at the system call level when the
object is first accessed. Because System V Interprocess Communication (SVIPC) objects
are accessed statelessly, checks are made for every access. For objects with file system
names, it is necessary to be able to resolve the name of the actual object. Names are
resolved either relatively (to the process’ working directory) or absolutely (to the process’
root directory). All name resolution begins by searching one of these.

The discretionary access control mechanism allows for effective access control of
information resources and provides for separate protection of the confidentiality and integrity
of the information. Owner–controlled access control mechanisms are only as effective as
users make them. All users must understand how access permissions are granted and
denied, and how these are set.

Displaying Access Control Information (aclget Command)
To display the access control information of a file, use the aclget command. The information
that you view includes attributes, base permissions, and extended permissions.

For example, to display the access control information for the status file, type:

aclget status

Press Enter. The access control information that displays includes a list of attributes, base
permissions, and extended permissions. For an example, see Access Control List Example
on page 10-10.

See the aclget command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Setting Access Control Information (aclput Command)
To set the access control information for a file, use the aclput command.

Note: The access control list for a file cannot exceed one memory page (approximately
4096 bytes) in size.

For example, to set the access control information for the status file with the access control
information stored in the acldefs file, type:

aclput –i acldefs status

Press Enter.

For example, to set the access control information for the status file with the same
information used for the plans file, type:

aclget plans | aclput status

Press Enter.

See the aclput command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Editing Access Control Information (acledit Command)
To change the access control information of a file, use the acledit command. The command
displays the current access control information and lets the file owner change it. Before
making any changes permanent, the command asks if you want to proceed.

Note: The EDITOR environment variable must be specified with a complete path name;
otherwise, the acledit command will fail.

The access control information that displays includes a list of attributes, base permissions,
and extended permissions. For an example, see Access Control List Example on page
10-10.

For example, to edit the access control information of the plans file, type:

acledit plans

10-13 File and System Security

Press Enter.

See the acledit command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

Locking Your Terminal (lock or xlock Command) To lock your
terminal, use the

lock command. The lock command requests your password, reads it, and requests the
password a second time to verify it. In the interim, the command locks the terminal and does
not relinquish it until the password is received the second time. The timeout default value is
15 minutes, but this can be changed with the – Number flag.

Note: If your interface is AIXwindows, use the xlock command in the same manner.

For example, to lock your terminal under password control, type:

lock

Press Enter. You are prompted for the password twice so the system can verify it. If the
password is not repeated within 15 minutes, the command times out.

To reserve a terminal under password control with a timeout interval of 10 minutes, type:

lock –10

Press Enter.

See the lock or the xlock command in the AIX 5L Version 5.2 Commands Reference for the
complete syntax.

Command Summary for File and System Security

 acledit Edits the access control information of a file

 aclget Displays the access control information of a file

 aclput Sets the access control information of a file

 chmod Changes permission modes

 chown Changes the user associated with a file

 lock Reserves a terminal

 lsgroup Displays the attributes of groups

 xlock Locks the local X display until a password is entered

Related Information
 Commands Overview on page 4-3

 Processes Overview on page 4-13

 File Systems on page 6-2

 Directory Overview on page 6-5

 Files on page 7-1

 Backup Files and Storage Media on page 9-1

10-14 AIX System User’s Guide – OS & Devices

11-1 User Environment Customization

Chapter 11. Customizing the User Environment

The operating system provides various commands and initialization files that enable you to
customize the behavior and the appearance of your user environment.

You can also customize some of the default resources of the applications you use on your
system. Defaults are initiated by the program at startup. When you change the defaults, you
must exit and then restart the program for the new defaults take effect.

For information about customizing the behavior and appearance of the Common Desktop
Environment, see the Common Desktop Environment 1.0: Advanced User’s and System
Administrator’s Guide.

This chapter discusses the following:

• System Startup Files Overview on page 11-2

– /etc/profile File on page 11-2

– /etc/environment File on page 11-3

– .profile File on page 11-3

– .env File on page 11-4

• AIXwindows Startup Files Overview on page 11-5

– .xinitrc File on page 11-5

– .Xdefaults File on page 11-6

– .mwmrc File on page 11-7

• Customization Procedures on page 11-9

– Exporting Shell Variables (export Shell Command) on page 11-9

– Changing the Display’s Font (chfont Command) on page 11-10

– Changing Control Keys (stty Command) on page 11-10

– Changing Your System Prompt on page 11-11

• Summary for User Environment Customization on page 11-12

11-2 AIX System User’s Guide – OS & Devices

System Startup Files Overview
When you log in, the shell defines your user environment after reading the initialization files
that you have set up. The characteristics of your user environment are defined by the values
given to your environment variables. You maintain this environment until you log out of the
system.

The shell uses two types of profile files when you log in to the operating system. It evaluates
the commands contained in the files and then executes the commands to set up your
system environment. The files have similar functions except that the /etc/profile file controls
profile variables for all users on a system whereas the.profile file allows you to customize
your own environment.

The shell first evaluates the commands contained in the /etc/profile file and then runs the
commands to set up your system environment in the /etc/environment file. After these files
are run, the system then checks to see if you have a.profile file in your home directory. If
the.profile file exists, it runs this file. The.profile file will specify if there also exists an
environment file. If an environment file exists, (usually called.env), the system then runs this
file and sets up your environment variables.

The /etc/profile, /etc/environment, and the.profile files are run once at login time. The.env
file, on the other hand, is run every time you open a new shell or a window.

This section discusses the following initialization files:

• /etc/profile File on page 11-2

• /etc/environment File on page 11-3

• .profile File on page 11-3

• .env File on page 11-4

/etc/profile File
The first file that the operating system uses at login time is the /etc/profile file. This file
controls systemwide default variables, such as:

• Export variables

• File creation mask (umask)

• Terminal types

• Mail messages to indicate when new mail has arrived

The system administrator configures the profile file for all users on the system. Only the
system administrator can change this file.

The following example is a typical /etc/profile file:

#Set file creation mask

 unmask 022

 #Tell me when new mail arrives

 MAIL=/usr/mail/$LOGNAME

 #Add my /bin directory to the shell search sequence

 PATH=/usr/bin:/usr/sbin:/etc::

 #Set terminal type

 TERM=lft

 #Make some environment variables global

 export MAIL PATH TERM

See the AIX 5L Version 5.2 Files Reference for detailed information about the /etc/profile
file.

11-3 User Environment Customization

/etc/environment File
The second file that the operating system uses at login time is the /etc/environment file.
The /etc/environment file contains variables specifying the basic environment for all
processes. When a new process begins, the exec subroutine makes an array of strings
available that have the form Name = Value. This array of strings is called the environment.
Each name defined by one of the strings is called an environment variable or shell variable.
The exec subroutine allows the entire environment to be set at one time.

When you log in, the system sets environment variables from the environment file before
reading your login profile, named.profile. The following variables make up the basic
environment:

HOME The full path name of the user’s login or HOME directory. The login
program sets this to the name specified in the /etc/passwd file.

LANG The locale name currently in effect. The LANG variable is initially set
in the /etc/profile file at installation time.

NLSPATH The full path name for message catalogs.

LOCPATH The full path name of the location of National Language Support
tables.

PATH The sequence of directories that commands, such as sh, time, nice
and nohup, search when looking for a command whose path name
is incomplete.

TZ The time zone information. The TZ environment variable is initially
set by the /etc/profile file, the system login profile.

See the AIX 5L Version 5.2 Files Reference for detailed information about the
/etc/environment file.

.profile File
The third file that the operating system uses at login time is the.profile file. The.profile file
is present in your home ($HOME) directory and enables you to customize your individual
working environment. Because the.profile file is hidden, use the ls –a command to list it.

After the login program adds the LOGNAME (login name) and HOME (login directory)
variables to the environment, the commands in the $HOME/.profile file are executed if the
file is present. The.profile file contains your individual profile that overrides the variables set
in the /etc/profile file. The.profile file is often used to set exported environment variables
and terminal modes. You can tailor your environment by modifying the.profile file. Use
the.profile file to control the following defaults:

• Shells to open

• Prompt appearance

• Keyboard sound

The following example is a typical.profile file:

PATH=/usr/bin:/etc:/home/bin1:/usr/lpp/tps4.0/user::

 epath=/home/gsc/e3:

 export PATH epath

 csh

This example has defined two path variables (PATH and epath), exported them, and
opened a C shell (csh).

You can also use the.profile file (or if it is not present, the /etc/profile file) to determine
login shell variables. You can also customize other shell environments. For example, use
the.cshrc file and.kshrc file to tailor a C shell and a Korn shell, respectively, when each
type of shell is started.

11-4 AIX System User’s Guide – OS & Devices

.env File
A fourth file that the operating system uses at login time is the.env file, if your.profile
contains the following line: export ENV=$HOME/.env

The.env file enables you to customize your individual working environment variables.
Because the.env file is hidden, use the ls –a command to list it. The.env file contains the
individual user environment variables that override the variables set in the
/etc/environment file. You can tailor your environment variables as desired by modifying
your.env file.

The following example is a typical.env file:

export myid=‘id | sed –n –e ’s/).*$//’ –e ’s/^.*(//p’‘

 #set prompt: login & system name & path

 if [$myid = root]

 then typeset –x PSCH=’#:\${PWD}> ’

 PS1=”#:\${PWD}> ”

 else typeset –x PSCH=’>’

 PS1=”$LOGNAME@$UNAME:\${PWD}> ”

 PS2=”>”

 PS3=”#?”

 fi

 export PS1 PS2 PS3

 #setup my command aliases

 alias ls=”/bin/ls –CF” \

 d=”/bin/ls –Fal | pg” \

 rm=”/bin/rm –i” \

 up=”cd ..”

Note: When modifying the.env file, ensure that newly created environment variables do
not conflict with standard variables such as MAIL, PS1, PS2, and IFS.

11-5 User Environment Customization

AIXwindows Startup Files Overview
Because different computer systems have different ways of starting the X server and
AIXwindows, consult with your system administrator to learn how to get started. Usually, the
X server and AIXwindows are started from a shell script that runs automatically when you
log in. You might, however, find that you need to start the X server or AIXwindows, or both.

If you log in and find that your display is functioning as a single terminal, with no windows
displayed, you can start the X server by typing the following:

xinit

Press Enter.

If this command does not start the X server, check with your system administrator to ensure
that your search path contains the X11 directory containing executable programs. The
appropriate path might differ from one system to another.

Note: Before entering this command, make sure that the pointer rests within a window
that has a system prompt.

If you log in and find one or more windows without frames, you can start AIXwindows
Window Manager by typing the following:

mwm &

Press Enter.

Because AIXwindows permits customization both by programmers writing AIXwindows
applications and by users, you might find that mouse buttons or other functions do not
operate as you might expect from reading this documentation. You can reset your
AIXwindows to the default behavior by pressing and holding the following four keys:

Alt–Ctrl–Shift–!

You can return to the customized behavior by pressing this key sequence again. If your
system does not permit this combination of keystrokes, you can also restore default
behavior from the default root menu.

.xinitrc File
The xinit command uses a customizable shell script file that lists the X client programs to
start. The.xinitrc file in your home directory controls the windows and applications that start
when you start AIXwindows.

The xinit command first looks for the $XINITRC environment variable to start AIXwindows.
If the $XINITRC environment variable is not found, it looks for the $HOME/.xinitrc shell
script. If the $HOME/.xinitrc shell script is not found, the xinit command starts the
/usr/lib/X11/$LANG/xinitrc shell script. If /usr/lib/X11/$LANG/xinitrc is not found, it looks
for the /usr/lpp/X11/defaults /$LANG/xinitrc shell script. If that script is not found, it
searches for the /usr/lpp/X11/defaults/xinitrc shell script.

The xinitrc shell script starts commands, such as the mwm (AIXwindows Window
Manager), aixterm, and xclock commands.

The xinit command performs the following operations:

• Starts an X server on the current display

• Sets up the $DISPLAY environment variable

• Runs the xinitrc file to start the X client programs

The following example shows the part of the xinitrc file you can customize:

11-6 AIX System User’s Guide – OS & Devices

This script is invoked by /usr/lpp/X11/bin/xinit

.

.

.

 #***

 # Start the X clients. Change the following lines to *

 # whatever command(s) you desire! *

 # The default clients are an analog clock (xclock), an lft *

 # terminal emulator (aixterm), and the Motif Window Manager *

 # (mwm). *

 #***

 exec mwm

.Xdefaults File
If you work in an AIXwindows interface, you can customize this interface with the.Xdefaults
file. AIXwindows allows you to specify your preferences for visual characteristics, such as
colors and fonts.

Many aspects of a windows–based application’s appearance and behavior are controlled by
sets of variables called resources. The visual or behavioral aspect of a resource is
determined by its assigned value. There are several different types of values for resources.
For example, resources that control color can be assigned predefined values such as
DarkSlateBlue or Black. Resources that specify dimensions are assigned numeric values.
Some resources take Boolean values (True or False).

If you do not have a.Xdefaults file in your home directory, you can create one with any text
editor. After you have this file in your home directory, you can set resource values in it as
you wish. A sample default file called Xdefaults.tmpl is in the /usr/lpp/X11/defaults
directory.

The following example shows part of a typical.Xdefaults file:

*AutoRaise: on

 *DeIconifyWarp: on

 *warp:on

 *TitleFont:andysans12

 *scrollBar: true

 *font: Rom10.500

 Mwm*menu*foreground: black

 Mwm*menu*background: CornflowerBlue

 Mwm*menu*RootMenu*foreground: black

 Mwm*menu*RootMenu*background: CornflowerBlue

 Mwm*icon*foreground: grey25

 Mwm*icon*background: LightGray

 Mwm*foreground: black

 Mwm*background: LightSkyBlue

 Mwm*bottomShadowColor: Blue1

 Mwm*topShadowColor: CornflowerBlue

 Mwm*activeForeground: white

 Mwm*activeBackground: Blue1

 Mwm*activeBottomShadowColor: black

 Mwm*activeTopShadowColor: LightSkyBlue

 Mwm*border: black

 Mwm*highlight:white

11-7 User Environment Customization

aixterm.foreground: green

 aixterm.background: black

 aixterm.fullcursor: true

 aixterm.ScrollKey: on

 aixterm.autoRaise: true

 aixterm.autoRaiseDelay: 2

 aixterm.boldFont:Rom10.500

 aixterm.geometry: 80x25

 aixterm.iconFont: Rom8.500

 aixterm.iconStartup: false

 aixterm.jumpScroll: true

 aixterm.reverseWrap: true

 aixterm.saveLines: 500

 aixterm.scrollInput: true

 aixterm.scrollKey: false

 aixterm.title: AIX

.mwmrc File
Most of the features that you want to customize can be set with resources in your.Xdefaults
file. However, key bindings, mouse button bindings, and menu definitions for your window
manager are specified in the supplementary.mwmrc file, which is referenced by resources
in the.Xdefaults file.

If you do not have a.mwmrc file in your home directory, you can copy it as follows:

cp /usr/lib/X11/system.mwmrc .mwmrc

Because the.mwmrc file overrides the systemwide effects of the system.mwmrc file, your
specifications do not interfere with the specifications of other users.

The following example shows part of a typical system.mwmrc file:

DEFAULT mwm RESOURCE DESCRIPTION FILE (system.mwmrc)

 #

 # menu pane descriptions

 #

 # Root Menu Description

Menu RootMenu

 { ”Root Menu” f.title

 no–label f.separator

 ”New Window” f.exec ”aixterm &”

 ”Shuffle Up” f.circle_up

 ”Shuffle Down” f.circle_down

 ”Refresh” f.refresh

 no–label f.separator

 ”Restart” f.restart

 ”Quit” f.quit_mwm

 }

Default Window Menu Description

 Menu DefaultWindowMenu MwmWindowMenu

 { ”Restore” _R Alt<Key>F5 f.normalize

 ”Move” _M Alt<Key>F7 f.move

 ”Size” _S Alt<Key>F8 f.resize

 ”Minimize” _n Alt<Key>F9 f.minimize

 ”Maximize” _x Alt<Key>F10 f.maximize

 ”Lower” _L Alt<Key>F3 f.lower

 no–label f.separator

 ”Close” _C Alt<Key>F4 f.kill

 }

11-8 AIX System User’s Guide – OS & Devices

no acclerator window menu

 Menu NoAccWindowMenu

 {

 ”Restore” _R f.normalize

 ”Move” _M f.move

 ”Size” _S f.resize

 ”Minimize” _n f.minimize

 ”Maximize” _x f.maximize

 ”Lower” _L f.lower

 no–label f.separator

 ”Close” _C f.kill

 }

Keys DefaultKeyBindings

 {

 Shift<Key>Escape icon|window f.post_wmenu

 Meta<Key>space icon|window f.post_wmenu

 Meta<Key>Tab root|icon|window f.next_key

 Meta Shift<Key>Tab root|icon|window f.prev_key

 Meta<Key>Escape root|icon|window f.next_key

 Meta Shift<Key>Escape root|icon|window f.prev_key

 Meta Ctrl Shift<Key>exclam root|icon|window f.set_behavior

 }

#

 # button binding descriptions

 #

Buttons DefaultButtonBindings

 {

 <Btn1Down> frame|icon f.raise

 <Btn3Down> frame|icon f.post_wmenu

 <Btn1Down> root f.menu RootMenu

 <Btn3Down> root f.menu RootMenu

 Meta<Btn1Down> icon|window f.lower

 Meta<Btn2Down> window|icon f.resize

 Meta<Btn3Down> window f.move

 }

Buttons PointerButtonBindings

 {

 <Btn1Down> frame|icon f.raise

 <Btn2Down> frame|icon f.post_wmenu

 <Btn3Down> frame|icon f.lower

 <Btn1Down> root f.menu RootMenu

 Meta<Btn2Down> window|icon f.resize

 Meta<Btn3Down> window|icon f.move

 }

#

 # END OF mwm RESOURCE DESCRIPTION FILE

 #

11-9 User Environment Customization

Customization Procedures
This section discusses the following procedures to customize your system environment:

• Exporting Shell Variables (export Shell Command) on page 11-9

• Changing the Display’s Font (chfont Command) on page 11-10

• Changing Control Keys (stty Command) on page 11-10

• Changing Your System Prompt on page 11-11

Exporting Shell Variables (export Shell Command)
A local shell variable is a variable known only to the shell that created it. If you start a new
shell, the old shell’s variables are unknown to it. If you want the new shells that you open to
use the variables from an old shell, export the variables to make them global.

You can use the export command to make local variables global. To make your local shell
variables global automatically, export them in your.profile file.

Note: Variables can be exported down to child shells, but not exported up to parent
shells.

For example, to make the local shell variable PATH global, type:

export path

Press Enter.

For example, to list all your exported variables, type:

export

Press Enter.

The system displays information similar to the following:

DISPLAY=unix:0

 EDITOR=vi

 ENV=$HOME/.env

 HISTFILE=/u/denise/.history

 HISTSIZE=500

 HOME=/u/denise

 LANG=En_US

 LOGNAME=denise

 MAIL=/usr/mail/denise

 MAILCHECK=0

 MAILMSG=**YOU HAVE NEW MAIL.

 USE THE mail COMMAND TO SEE YOUR MAILPATH=/usr/mail/denise?denise has mail

!!!

 MAILRECORD=/u/denise/.Outmail

PATH=/usr/ucb:/usr/lpp/X11/bin:/bin:/usr/bin:/etc:/u/denise:/u/denise/bin:/

u/bin1

 PWD=/u/denise

 SHELL=/bin/ksh

11-10 AIX System User’s Guide – OS & Devices

Changing the Display’s Font (chfont Command)
To change the default font at system startup, use the chfont or smit command. A font
palette is a file that the system uses to define and identify the fonts it has available.

Note: To run the chfont command, you must have root authority.

chfont Command
For example, to change the active font to the fifth font in the font palette, type:

chfont –a5

Press Enter. Font ID 5 becomes the primary font.

For example, to change the font to an italic, roman, and bold face of the same size, type:

chfont –n /usr/lpp/fonts/It114.snf /usr/lpp/fonts/Bld14.snf

/usr/lpp/fonts/Rom14.snf

Press Enter.

See the chfont command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

smit Command
The chfont command can also be run using smit.

To select the active font, type:

smit chfont

Press Enter.

To select the font palette, type:

smit chfontpl

Press Enter.

Changing Control Keys (stty Command)
To change the keys that your terminal uses for control keys, use the stty command. Your
changes to control keys last until you log out. To make your changes permanent, place them
in your.profile file.

For example, to assign Ctrl–Z as the interrupt key, type:

stty intr ^Z

Be sure to place a space charactor between intr and ^Z. Press Enter.

For example, to reset all control keys to their default values, type:

stty sane

Press Enter.

For example, to display your current settings, type:

stty –a

Press Enter.

See the stty command in the AIX 5L Version 5.2 Commands Reference for the complete
syntax.

11-11 User Environment Customization

Changing Your System Prompt
Your shell uses the following prompt variables:

PS1 Prompt used as the normal system prompt

PS2 Prompt used when the shell expects more input

PS3 Prompt used when you have root authority

You can change any of your prompt characters by changing the value of its shell variable.
Your prompt changes remain in effect until you log out. To make your changes permanent,
place them in your.env file.

For example, to display the current value of the PS1 variable, type:

echo ”prompt is $PS1”

Press Enter. The system displays information similar to the following:

prompt is $

For example, to change your prompt to Ready>, type:

PS1=”Ready> ”

Press Enter.

For example, to change your continuation prompt to Enter more–>, type:

PS2=”Enter more–>”

Press Enter.

For example, to change your root prompt to Root–>, type:

PS3=”Root–> ”

Press Enter.

11-12 AIX System User’s Guide – OS & Devices

Summary for User Environment Customization

System Startup Files

 /etc/profile System file that contains commands that the system
executes when you log in

 /etc/environment System file that contains variables specifying the basic
environment for all processes

$HOME/.profile File in your home directory that contains commands that
override the system /etc/profile when you log in. For more
information, see .profile File on page 11-3

$HOME/.env File in your home directory that overrides the system
/etc/environment and contains variables specifying the
basic environment for all processes. For more information,
see .env File on page 11-4

AIXwindows Startup Files

$HOME/.xinitrc File in your home directory that controls the windows and
applications that start up when you start AIXwindows. For
more information, see .xinitrc File on page 11-5.

$HOME/.Xdefaults File in your home directory that controls the visual or
behavioral aspect of AIXwindows resources. For more
information, see .Xdefaults File on page 11-6.

$HOME/.mwmrc File in your home directory that defines key bindings,
mouse button bindings, and menu definitions for your
window manager. For more information, see .mwmrc File
on page 11-7.

Customization Procedures

PS1 Normal system prompt

PS2 More input system prompt

PS3 Root system prompt

 chfont Changes the font used by a display at system restart

 stty Sets, resets, and reports workstation operating parameters

12-1 Shells

Chapter 12. Shells

Your interface to the operating system is called a shell. The shell is the outermost layer of
the operating system. Shells incorporate a programming language to control processes and
files, as well as to start and control other programs. The shell manages the interaction
between you and the operating system by prompting you for input, interpreting that input for
the operating system, and then handling any resulting output from the operating system.

Shells provide a way for you to communicate with the operating system. This
communication is carried out either interactively (input from the keyboard is acted upon
immediately) or as a shell script. A shell script is a sequence of shell and operating system
commands that is stored in a file.

When you log in to the system, the system locates the name of a shell program to execute.
After it is executed, the shell displays a command prompt. This prompt is usually a $ (dollar
sign). When you type a command at the prompt and press the Enter key, the shell evaluates
the command and attempts to carry it out. Depending on your command instructions, the
shell writes the command output to the screen or redirects the output. It then returns the
command prompt and waits for you to type another command.

A command line is the line on which you type. It contains the shell prompt. The basic format
for each line is as follows:

$ Command Argument(s)

The shell considers the first word of a command line (up to the first blank space) as the
command, and all subsequent words as arguments.

This chapter discusses the following:

• Shell Features on page 12-3

• Korn Shell or POSIX Shell Commands on page 12-9

• Quoting in the Korn Shell or POSIX Shell on page 12-16

• Reserved Words in the Korn Shell or POSIX Shell on page 12-19

• Command Aliasing in the Korn Shell or POSIX Shell on page 12-20

• Parameter Substitution in the Korn Shell or POSIX Shell on page 12-22

• Command Substitution in the Korn Shell or POSIX Shell on page 12-28

• Arithmetic Evaluation in the Korn Shell or POSIX Shell on page 12-29

• Field Splitting in the Korn Shell or POSIX Shell on page 12-31

• File–Name Substitution in the Korn Shell or POSIX Shell on page 12-32

• Input and Output Redirection in the Korn Shell or POSIX Shell on page 12-34

• Exit Status in the Korn Shell or POSIX Shell on page 12-37

• Korn Shell or POSIX Shell Commands on page 12-9

• Korn Shell or POSIX Shell Built–In Commands on page 12-38

• Conditional Expressions for the Korn Shell or POSIX Shell on page 12-53

• Job Control in the Korn Shell or POSIX Shell on page 12-55

• Inline Editing in the Korn Shell or POSIX Shell on page 12-57

• List of Korn Shell or POSIX Shell Built–in Commands on page 12-51

• List of Bourne Shell Built–in Commands on page 12-94

12-2 AIX System User’s Guide – OS & Devices

• List of C Shell Built–in Commands on page 12-124

• Bourne Shell on page 12-126

• C Shell on page 12-127

• Bourne Shell on page 12-72

• Restricted Shell on page 12-74

• Bourne Shell Commands on page 12-75

• Variable and File–Name Substitution in the Bourne Shell on page 12-86

• Input and Output Redirection in the Bourne Shell on page 12-93

• C Shell on page 12-95

• C Shell Commands on page 12-97

• History Substitution in the C Shell on page 12-110

• Alias Substitution in the C Shell on page 12-113

• Variable and File–Name Substitution in the C Shell on page 12-114

• Environment Variables in the C Shell on page 12-119

• Input and Output Redirection in the C Shell on page 12-121

• Job Control in the C Shell on page 12-123

12-3 Shells

Shell Features
The primary advantages of interfacing to the system through a shell are as follows:

• Wildcard substitution in file names (pattern–matching)

Carries out commands on a group of files by specifying a pattern to match, rather than
an actual file name.

For more information, see the following:

– File–Name Substitution in the Korn Shell or POSIX Shell on page 12-32

– File–Name Substitution in the Bourne Shell on page 12-87

– File–Name Substitution in the C Shell on page 12-116

• Background processing

Sets up lengthy tasks to run in the background, freeing the terminal for concurrent
interactive processing.

For more information, see the bg command in the following:

– Job Control in the Korn Shell or POSIX Shell on page 12-55

– C Shell Built–In Commands on page 12-97

Note: The Bourne shell does not support job control.

• Command aliasing

Gives an alias name to a command or phrase. When the shell encounters an alias on the
command line or in a shell script, it substitutes the text to which the alias refers.

For more information, see the following:

– Command Aliasing in the Korn Shell or POSIX Shell on page 12-20

– Alias Substitution in the C Shell on page 12-113

Note: The Bourne shell does not support command aliasing.

• Command history

Records the commands you enter in a history file. You can use this file to easily access,
modify, and reissue any listed command.

For more information, see the history command in the following:

– Korn Shell or POSIX Shell Command History on page 12-15

– C Shell Built–In Commands on page 12-97

– History Substitution in the C Shell on page 12-110

Note: The Bourne shell does not support command history.

• File–name substitution

Automatically produces a list of file names on a command line using pattern–matching
characters.

For more information, see the following:

– File–Name Substitution in the Korn Shell or POSIX Shell on page 12-32

– File–Name Substitution in the Bourne Shell on page 12-87

– File–Name Substitution in the C Shell on page 12-116

12-4 AIX System User’s Guide – OS & Devices

• Input and output redirection

Redirects input away from the keyboard and redirects output to a file or device other
than the terminal. For example, input to a program can be provided from a file and
redirected to the printer or to another file.

For more information, see the following:

– Input and Output Redirection in the Korn Shell or POSIX Shell on page 12-34

– Input and Output Redirection in the Bourne Shell on page 12-93

– Input and Output Redirection in the C Shell on page 12-121

• Piping

Links any number of commands together to form a complex program. The standard
output of one program becomes the standard input of the next.

For more information, see the pipeline on page 12-5 definition in Shells Terminology on
page 12-5.

• Shell variable substitution

Stores data in user–defined variables and predefined shell variables.

For more information, see the following:

– Parameter Substitution in the Korn Shell or POSIX Shell on page 12-22

– Variable Substitution in the Bourne Shell on page 12-86

– Variable Substitution in the C Shell on page 12-114

Available Shells
The following shells are provided with the operating system:

• Korn shell (started with the ksh command)

• Bourne shell (started with the bsh command)

• Restricted shell (a limited version of the Bourne shell started with the Rsh command)

• POSIX shell (also known as the Korn Shell, and started with the psh command)

• Default shell (started with the sh command)

• C shell (started with the csh command)

• Trusted shell (a limited version of the Korn shell started with the tsh command)

• Remote shell (started with the rsh command)

The login shell refers to the shell that is loaded when you log in to the computer system.
Your login shell is set in the /etc/passwd file. The Korn shell on page 12-9 is the standard
operating system login shell and is backwardly compatible with the Bourne Shell (see
Bourne Shell on page 12-72).

The default or standard shell refers to the shell linked to and started with the /usr/bin/sh
command. The Bourne shell is set up as the default shell and is a subset of the Korn shell.

The /usr/bin/sh resides as a copy of the Korn shell, which is /usr/bin/ksh. Hence, the Korn
shell can be substituted as the default shell. The POSIX shell, which is invoked by the
/usr/bin/psh command, resides as a link to the /usr/bin/sh command.

12-5 Shells

Shells Terminology
The following definitions are helpful in understanding shells:

blank A blank is one of the characters in the blank character
class defined in the LC_CTYPE category. In the POSIX
shell, a blank is either a tab or space.

built–in command A command that the shell executes without searching for it
and creating a separate process.

command A sequence of characters in the syntax of the shell
language. The shell reads each command and carries out
the desired action either directly or by invoking separate
utilities.

comment Any word that begins with pound sign (#). The word and all
characters that follow it, until the next newline character,
are ignored.

identifier A sequence of letters, digits, or underscores from the
portable character set, starting with a letter or underscore.
The first character of an identifier must not be a digit.
Identifiers are used as names for aliases, functions, and
named parameters.

list A sequence of one or more pipelines separated by one of
the following symbols: semicolon (;), ampersand (&),
double ampersand (&&), or double bar (||). The list is
optionally ended by one of the following symbols:
semicolon (;), ampersand (&), or bar ampersand (| &).

; Sequentially processes the preceding pipeline. The shell
carries out each command in turn and waits for the most
recent command to complete.

& Asynchronously processes the preceding pipeline. The
shell carries out each command in turn, processing the
pipeline in the background without waiting for it to
complete.

|& Asynchronously processes the preceding pipeline and
establishes a two–way pipe to the parent shell. The shell
carries out each command in turn, processing the
pipeline in the background without waiting for it to
complete. The parent shell can read from and write to the
standard input and output of the spawned command by
using the read –p and print –p commands. Only one
such command can be active at any given time.

&& Processes the list that follows this symbol only if the
preceding pipeline returns an exit value of zero (0).

|| Processes the list that follows this symbol only if the
preceding pipeline returns a nonzero exit value.

The semicolon (;), ampersand (&), and bar ampersand (|&)
have a lower priority than the double ampersand (&&) and
double bar (||). The ;, &, and |& symbols have equal priority
among themselves. The && and || symbols are equal in
priority. One or more newline characters can be used
instead of a semicolon to delimit two commands in a list.

Note: The |& symbol is valid only in the Korn shell.

12-6 AIX System User’s Guide – OS & Devices

metacharacter Each metacharacter has a special meaning to the shell and
causes termination of a word unless it is quoted.
Metacharacters are: pipe (|), ampersand (&), semicolon (;),
less–than sign (<), greater–than sign (>), left parenthesis
((), right parenthesis ()), dollar sign ($), backquote (‘),
backslash (\), right quote (’), double quotation marks (”),
newline character, space character, and tab character. All
characters enclosed between single quotation marks are
considered quoted and are interpreted literally by the shell.
The special meaning of metacharacters is retained if not
quoted. (Metacharacters are also known as parser
metacharacters in the C shell.)

parameter assignment list Includes one or more words of the form Identifier = Value in
which spaces surrounding the equal sign (=) must be
balanced. That is, leading and trailing blanks, or no blanks,
must be used.

Note: In the C shell, the parameter assignment list is of
the form set Identifier = Value. The spaces surrounding
the equal sign (=) are required.

pipeline A sequence of one or more commands separated by pipe
(|). Each command in the pipeline, except possibly the last
command, is run as a separate process. However, the
standard output of each command that is connected by a
pipe becomes the standard input of the next command in
the sequence. If a list is enclosed with parentheses, it is
carried out as a simple command that operates in a
separate subshell.

If the reserved word ! does not precede the pipeline, the
exit status will be the exit status of the last command
specified in the pipeline. Otherwise, the exit status is the
logical NOT of the exit status of the last command. In other
words, if the last command returns zero, the exit status will
be 1. If the last command returns greater than zero, the exit
status will be zero.

The format for a pipeline is as follows:

[!] command1 [| command2 ...]

Note: Early versions of the Bourne shell used the caret
(^) to indicate a pipe.

shell variable A name or parameter to which a value is assigned. Assign
a variable by typing the variable name, an equal sign (=),
and then the value. The variable name can be substituted
for the assigned value by preceding the variable name with
a dollar sign ($). Variables are particularly useful for
creating a short notation for a long path name, such as
$HOME for the home directory. A predefined variable is
one whose value is assigned by the shell. A user–defined
variable is one whose value is assigned by a user.

12-7 Shells

simple command A sequence of optional parameter assignment lists and
redirections, in any sequence. They are optionally followed
by commands, words, and redirections. They are
terminated by ; , |, &, | |, &&, |&, or a newline character. The
command name is passed as parameter 0 (as defined by
the exec subroutine). The value of a simple command is its
exit status of zero if it terminates normally or nonzero if it
terminates abnormally. The sigaction, sigvec, or signal
Subroutine in the AIX 5L Version 5.2 Technical Reference:
Base Operating System and Extensions Volume 2 includes
a list of signal–exit status values.

subshell A shell that is running as a child of the login shell or the
current shell.

wildcard character Also known as a pattern–matching character. The shell
associates them with assigned values. The basic wildcards
are ?, *, [set], and [!set]. Wildcard characters are
particularly useful when performing file–name substitution.

word A sequence of characters that does not contain any blanks.
Words are separated by one or more metacharacters.

Creating and Running a Shell Script
Shell scripts provide an easy way to carry out tedious commands, large or complicated
sequences of commands, and routine tasks. A shell script is a file that contains one or more
commands. When you type the name of a shell script file, the system executes the
command sequence contained by the file.

You can create a shell script using a text editor. Your script can contain both operating
system commands and shell built–in commands.

The following steps are general guidelines for writing shell scripts:

1. Using a text editor, create and save a file. You can include any combination of shell and
operating system commands in the shell script file. By convention, shell scripts that are
not set up for use by many users are stored in the $HOME/bin directory.

Note: The operating system does not support the setuid or setgid subroutines within
a shell script.

2. Use the chmod command to allow only the owner to run (or execute) the file. For
example, if your file is named script1, type:

chmod u=rwx script1

Press Enter.

3. Enter the script name on the command line to run the shell script. To run the script1
shell script, type:

script1

Press Enter.

Note: You can run a shell script without making it executable if a shell command
(ksh, bsh, or csh) precedes the shell script file name on the command line. For
example, to run a nonexecutable file named script1 under the control of the Korn
shell, type:

ksh script1

12-8 AIX System User’s Guide – OS & Devices

Specifying a Shell for a Script File
When you run an executable shell script in either the Korn (the POSIX Shell) or Bourne
shell, the commands in the script are carried out under the control of the current shell (the
shell from which the script is started) unless you specify a different shell. When you run an
executable shell script in the C shell, the commands in the script are carried out under the
control of the Bourne shell (/usr/bin/bsh) unless you specify a different shell.

You can run a shell script in a specific shell by including the shell within the shell script.

To run an executable shell script under a specific shell, type #! Path on the first line of the
shell script, and press Enter. The #! characters identify the file type. The Path variable
specifies the path name of the shell from which to run the shell script.

For example, to run the bsh script in the Bourne shell, type:

#!/usr/bin/bsh

Press Enter.

When you precede a shell script file name with a shell command, the shell specified on the
command line overrides any shell specified within the script file itself. Therefore, typing
ksh myfile and pressing Enter runs the file named myfile under the control of the Korn
shell, even if the first line of myfile is #!/usr/bin/csh.

12-9 Shells

Korn Shell or POSIX Shell Commands

The Korn shell is an interactive command interpreter and command programming language.
It conforms to the Portable Operating System Interface for Computer Environments
(POSIX), an international standard for operating systems. POSIX is not an operating
system, but is a standard aimed at portability of applications, at the source level, across
many systems. POSIX features are built on top of the Korn shell. The Korn shell (also
known as the POSIX shell) offers many of the same features as the Bourne and C shells,
such as I/O redirection capabilities, variable substitution, and file name substitution. It also
includes several additional command and programming language features:

Arithmetic evaluation The Korn shell, or POSIX shell, can perform integer
arithmetic using the built–in let command, using any base
from 2 to 36. Arithmetic Evaluation in the Korn Shell or
POSIX Shell on page 12-29 further describes this feature.

Command history The Korn shell, or POSIX shell, stores a file that records all
of the commands you enter. You can use a text editor to
alter a command in this history file and then reissue the
command. For more information about the command
history feature, see Korn Shell or POSIX Shell Command
History on page 12-15.

Coprocess facility Enables you to run programs in the background and send
and receive information to these background processes.
For more information, see Coprocess Facility on page
12-35.

Editing The Korn shell, or POSIX shell, offers inline editing options
that enable you to edit the command line. Editors similar to
emacs, gmacs, and vi are available. Inline Editing in the
Korn Shell or POSIX Shell on page 12-57 further describes
this feature.

A Korn shell command is one of the following:

• Simple command on page 12-7

• Pipeline on page 12-5

• List on page 12-5

• Compound command on page 12-10

• Function on page 12-13

When you issue a command in the Korn shell or POSIX shell, the shell evaluates the
command and does the following:

• Makes all indicated substitutions.

• Determines whether the command contains a /. If it does, the shell runs the program
named by the specified path name.

If the command does not contain a /, the Korn shell or POSIX shell continues with the
following actions:

• Determines whether the command is a special built–in command. If it is, the shell runs
the command within the current shell process.

For information about special built–in commands, see ” Korn Shell or POSIX Shell
Built–In Commands on page 12-38 ”.

12-10 AIX System User’s Guide – OS & Devices

• Compares the command to user–defined functions. If the command matches a
user–defined function, the positional parameters are saved and then reset to the
arguments of the function call. When the function completes or issues a return, the
positional parameter list is restored, and any trap set on EXIT within the function is
carried out. The value of a function is the value of the last command executed. A function
is carried out in the current shell process.

• If the command name matches the name of a regular built–in command, that regular
built–in command will be invoked.

For information about regular built–in commands, see ” Korn Shell or POSIX Shell
Built–In Commands on page 12-38 ”.

• Creates a process and attempts to carry out the command by using the exec command
(if the command is neither a built–in command nor a user–defined function).

The Korn shell, or POSIX shell, searches each directory in a specified path for an
executable file. The PATH shell variable defines the search path for the directory containing
the command. Alternative directory names are separated with a :. The default path is
/usr/bin: (specifying the /usr/bin directory, and the current directory, in that order). The
current directory is specified by two or more adjacent colons, or by a colon at the beginning
or end of the path list.

If the file has execute permission but is not a directory or an a.out file, the shell assumes
that it contains shell commands. The current shell process spawns a subshell to read the
file. All nonexported aliases, functions, and named parameters are removed from the file. If
the shell command file has read permission, or if the setuid or setgid bits are set on the
file, then the shell runs an agent that sets up the permissions and carries out the shell with
the shell command file passed down as an open file. A parenthesized command is run in a
subshell without removing nonexported quantities.

This section discusses the following:

• Korn Shell Compound Commands on page 12-10

• Korn Shell Functions on page 12-13

• Korn Shell or POSIX Shell Built–In Commands on page 12-38

• Conditional Expressions for the Korn Shell or POSIX Shell on page 12-53

Korn Shell Compound Commands

A compound command can be a list of simple commands, a pipeline, or it can begin with a
reserved word. Most of the time, you will use compound commands such as if, while, and
for when you are writing shell scripts.

12-11 Shells

List of Korn Shell or POSIX Shell Compound Commands

for Identifier [in Word ...];do List ;done Each time a for command is executed, the
Identifier parameter is set to the next word
taken from the in Word... list. If the in
Word... command is omitted, then the for
command executes the do List command
once for each positional parameter that is
set. Execution ends when there are no
more words in the list. For more information
on positional parameters, refer to ”
Parameter Substitution in the Korn Shell or
POSIX Shell on page 12-22 ”.

select Identifier [in Word ...];do List
;done

A select command prints on standard error
(file descriptor 2) the set of words specified,
each preceded by a number. If the in
Word... command is omitted, then the
positional parameters are used instead. The
PS3 prompt is printed and a line is read
from the standard input. If this line consists
of the number of one of the listed words,
then the value of the Identifier parameter is
set to the word corresponding to this
number.

If the line read from standard input is empty,
the selection list is printed again. Otherwise,
the value of the Identifier parameter is set to
null. The contents of the line read from
standard input is saved in the REPLY
parameter. The List parameter is executed
for each selection until a break or an end –
of – file character is encountered. For more
information on positional parameters, refer
to ” Parameter Substitution in the Korn Shell
or POSIX Shell on page 12-22 ”.

case Word in [[(] Pattern [| Pattern] ...)
List ;;]... esac

A case command executes the List
parameter associated with the first Pattern
parameter that matches the Word
parameter. The form of the patterns is the
same as that used for file–name
substitution.

if List ;then List [elif List;then List]...
[;else List];fi

The List parameter specifies a list of
commands to be run. The shell executes
the if List command first. If a zero exit
status is returned, it executes the then List
command. Otherwise, the commands
specified by the List parameter following the
elif command are executed.

12-12 AIX System User’s Guide – OS & Devices

If the value returned by the last command in
the elif List command is zero, the then List
command is executed. If the value returned
by the last command in the then List
command is zero, the else List command is
executed. If no commands specified by the
List parameters are executed for the else or
then command, the if command returns a
zero exit status.

while List ;do List;done

until List ;do List;done The List parameter specifies a list of
commands to be run. The while command
repeatedly executes the commands
specified by the List parameter. If the exit
status of the last command in the while List
command is zero, the do List command is
executed. If the exit status of the last
command in the while List command is not
zero, the loop terminates. If no commands
in the do List command are executed, then
the while command returns a zero exit
status. The until command might be used
in place of the while command to negate
the loop termination test.

(List) The List parameter specifies a list of
commands to run. The shell executes the
List parameter in a separate environment.

Note: If two adjacent open parentheses
are needed for nesting, you must insert a
space between them in order to
differentiate between the command and
arithmetic evaluation.

{ List ;} The List parameter specifies a list of
commands to run. The List parameter is
simply executed.

Note: Unlike the metacharacters (), { }
denote reserved words (used for special
purposes, not as user–declared
identifiers). To be recognized, these
reserved words must appear at the
beginning of a line or after a ;.

[[Expression]] Evaluates the Expression parameter. If the
expression is true, the command returns a
zero exit status.

function Identifie r { List ;} or function
Identifier () { List; }

Defines a function that is referred to by the
Identifier parameter. The body of the
function is the specified list of commands
enclosed by { }. The () consists of two
operators, so mixing blank characters with
the identifier, (and) is permitted, but is not
necessary.

time Pipeline Executes the Pipeline parameter. The
elapsed time, user time, and system time
are printed to standard error.

12-13 Shells

Shell Startup
You can start the Korn shell with the ksh command, psh command (POSIX shell), or the
exec command.

If the shell is started by the exec command, and the first character of zero argument ($0) is
the hyphen (–), then the shell is assumed to be a login shell. The shell first reads
commands from the /etc/profile file, and then from either the.profile file in the current
directory or from the $HOME/.profile file, if either file exists. Next, the shell reads
commands from the file named by performing parameter substitution on the value of the
ENV environment variable, if the file exists.

If you specify the File [Parameter] parameter when invoking the Korn shell or POSIX shell,
the shell runs the script file identified by the File parameter, including any parameters
specified. The script file specified must have read permission; any setuid and setgid
settings are ignored. The shell then reads the commands.

Note: Do not specify a script file with the –c or –s flags when invoking the Korn shell or
POSIX shell.

For more information on positional parameters, see Parameter Substitution in the Korn Shell
or POSIX Shell on page 12-22.

Korn Shell Environment
All variables (with their associated values) known to a command at the beginning of its
execution constitute its environment. This environment includes variables that a command
inherits from its parent process and variables specified as keyword parameters on the
command line that calls the command. The shell interacts with the environment in several
ways. When it is started, the shell scans the environment and creates a parameter for each
name found, giving the parameter the corresponding value and marking it for export.
Executed commands inherit the environment.

If you modify the values of the shell parameters or create new ones using the export or
typeset –x commands, the parameters become part of the environment. The environment
seen by any executed command is therefore composed of any name–value pairs originally
inherited by the shell, whose values might be modified by the current shell, plus any
additions that resulted from using the export or typeset –x commands. The executed
command (subshell) will see any modifications it makes to the environment variables it has
inherited, but for its child shells or processes to see the modified values, the subshell must
export these variables.

The environment for any simple command or function is changed by prefixing with one or
more parameter assignments. A parameter assignment argument is a word of the form
Identifier = Value. Thus, the two following expressions are equivalent (as far as the
execution of the command is concerned):

TERM=450 Command arguments

(export TERM; TERM=450; Command arguments)

Korn Shell Functions
The function reserved word defines shell functions. The shell reads and stores functions
internally. Alias names are resolved when the function is read. The shell executes functions
in the same manner as commands, with the arguments passed as positional parameters.
For more information on positional parameters, refer to Parameter Substitution in the Korn
Shell or POSIX Shell on page 12-22.

The Korn shell or POSIX shell executes functions in the environment from which functions
are invoked. All of the following are shared by the function and the invoking script, and side
effects can be produced:

• Variable values and attributes (unless you use typeset command within the function to
declare a local variable)

12-14 AIX System User’s Guide – OS & Devices

• Working directory

• Aliases, function definitions, and attributes

• Special parameter $

• Open files

The following are not shared between the function and the invoking script, and there are no
side effects:

• Positional parameters.

• Special parameter #.

• Variables in a variable assignment list when the function is invoked.

• Variables declared using typeset command within the function.

• Options.

• Traps. However, signals ignored by the invoking script will also be ignored by the
function.

Note: In earlier versions of the Korn shell, traps other than EXIT and ERR were shared
by the function as well as the invoking script.

If trap on 0 or EXIT is executed inside the body of a function, the action is executed after the
function completes, in the environment that called the function. If the trap is executed
outside the body of a function, the action is executed upon exit from the Korn shell. In earlier
versions of the Korn shell, no trap on 0 or EXIT outside the body of a function was executed
upon exit from the function.

When a function is executed, it has the same syntax–error and variable–assignment
properties described in ” Korn Shell or POSIX Shell Built–In Commands on page 12-38.

The compound command is executed whenever the function name is specified as the name
of a simple command. The operands to the command temporarily will become the positional
parameters during the execution of the compound command. The special parameter # will
also change to reflect the number of operands. The special parameter 0 will not change.

The return special command is used to return from function calls. Errors within functions
return control to the caller.

Function identifiers are listed with the –f or +f option of the typeset special command. The
–f option also lists the text of functions. Functions are undefined with the –f option of the
unset special command.

Ordinarily, functions are unset when the shell executes a shell script. The –xf option of the
typeset special command allows a function to be exported to scripts that are executed
without a separate invocation of the shell. Functions that must be defined across separate
invocations of the shell should be specified in the ENV file with the –xf option of the typeset
special command.

The exit status of a function definition is zero if the function was not successfully declared.
Otherwise, it will be greater than zero. The exit status of a function invocation is the exit
status of the most recent command executed by the function.

12-15 Shells

Korn Shell or POSIX Shell Command History

The Korn shell or POSIX shell saves commands entered from your terminal device to a
history file. If set, the HISTFILE variable value is the name of the history file. If the
HISTFILE variable is not set or cannot be written, the history file used is
$HOME/.sh_history. If the history file does not exist and the Korn shell cannot create it, or if
it does exist and the Korn shell does not have permission to append to it, then the Korn
shell uses a temporary file as the history file. The shell accesses the commands of all
interactive shells using the same named history file with appropriate permissions.

By default, the Korn shell or POSIX shell saves the text of the last 128 commands entered
from a terminal device. The history file size (specified by the HISTSIZE variable) is not
limited, although a very large history file can cause the Korn shell to start slowly.

Command History Substitution
Use the fc built–in command to list or edit portions of the history file. To select a portion of
the file to edit or list, specify the number or the first character or characters of the command.
You can specify a single command or range of commands.

If you do not specify an editor program as an argument to the fc regular built–in command,
the editor specified by the FCEDIT variable is used. If the FCEDIT variable is not defined,
then the /usr/bin/ed file is used. The edited command or commands are printed and run
when you exit the editor.

The editor name hyphen (–) is used to skip the editing phase and run the command again.
In this case, a substitution parameter of the form Old = New can be used to modify the
command before it is run. For example, if r is aliased to fc –e –, then typing r
bad=good c runs the most recent command that starts with the letter c, and replaces the
first occurrence of the bad string with the good string.

For more information about using the history shell command, see Listing Previously Entered
Commands (history Shell Command) on page 4-7 and the fc command in the AIX 5L
Version 5.2 Commands Reference.

12-16 AIX System User’s Guide – OS & Devices

Quoting in the Korn Shell or POSIX Shell

When you want the Korn shell or POSIX shell to read a character as a regular character,
rather than with any normally associated meaning, you must quote it. To negate the special
meaning of a metacharacter, use one of the quoting mechanisms in the following list.

Each metacharacter has a special meaning to the shell and, unless quoted, causes
termination of a word. The following characters are considered metacharacters by the Korn
shell or POSIX shell and must be quoted if they are to represent themselves:

• pipe (|)

• ampersand (&)

• semicolon (;)

• less–than sign ($lt;) and greater–than sign (>)

• left parenthesis (() and right parenthesis ())

• dollar sign ($)

• backquote (‘) and single quotation mark (’)

• backslash (\)

• double–quotation marks (”)

• newline character

• space character

• tab character

The quoting mechanisms are the backslash (\), single quotation mark (’), and double
quotation marks (”).

12-17 Shells

Backslash) A backslash (\) that is not quoted preserves
the literal value of the following character,
with the exception of a newline character. If
a new–line character follows the backslash,
the shell interprets this as line continuation.

Single Quotation Marks Enclosing characters in single quotation
marks (’ ’) preserves the literal value of
each character within the single quotation
marks. A single quotation mark cannot
occur within single quotation marks.

A backslash cannot be used to escape a
single quotation mark in a string that is set
in single–quotation marks. An embedded
quotation mark can be created by writing,
for example: ’a’\’’b’, which yields a’b.

Double Quotation Marks Enclosing characters in double quotation
marks (” ”) preserves the literal value of all
characters within the double quotation
marks, with the exception of the dollar sign,
backquote, and backslash characters, as
follows:

$ The dollar sign retains its special
meaning introducing parameter
expansion, a form of command
substitution, and arithmetic expansion.

The input characters within the quoted
string that are also enclosed between $(
and the matching) will not be affected
by the double quotation marks, but
define that command whose output
replaces the $(...) when the word is
expanded.

Within the string of characters from an
enclosed ${ to the matching }, there
must be an even number of unescaped
double quotation marks or single
quotation marks, if any. A preceding
backslash character must be used to
escape a literal { or }.

‘ The backquote retains its special
meaning introducing the other form of
command substitution. The portion of the
quoted string, from the initial backquote
and the characters up to the next
backquote that is not preceded by a
backslash, defines that command whose
output replaces ‘... ‘ when the word is
expanded.

\ The backslash retains its special
meaning as an escape character only
when followed by one of the following
characters: $, ‘, ”, \, or a newline
character.

A double quotation mark must be preceded by a backslash to be included within double
quotation marks. When you use double quotation marks, if a backslash is immediately

12-18 AIX System User’s Guide – OS & Devices

followed by a character that would be interpreted as having a special meaning, the
backslash is deleted, and the subsequent character is taken literally. If a backslash does not
precede a character that would have a special meaning, it is left in place unchanged, and
the character immediately following it is also left unchanged. For example:

”\$” –> $

 ”\a” –> \a

The following conditions apply to metacharacters and quoting characters in the Korn or
POSIX shell:

• The meanings of dollar sign, asterisk ($*) and dollar sign, at sign ($@) are identical when
not quoted, when used as a parameter assignment value, or when used as a file name.

• When used as a command argument, double quotation marks, dollar sign, asterisk,
double quotation marks (”$*”) is equivalent to ”$1 d $2 d...”, where d is the first character
of the IFS parameter.

• Double quotation marks, at sign, asterisk, double quotation marks (”$@”) are equivalent
to ”$1” ”$2”

• Inside backquotes (‘‘), the backslash quotes the characters backslash (\), single
quotation mark (’), and dollar sign ($). If the backquotes occur within double quotation
marks (” ”), the backslash also quotes the double quotation marks character.

• Parameter and command substitution occurs inside double quotation marks (” ”).

• The special meaning of reserved words or aliases is removed by quoting any character
of the reserved word. You cannot quote function names or built–in command names.

12-19 Shells

Reserved Words in the Korn Shell or POSIX Shell

The following reserved words have special meaning to the shell:

 ! case do
 done elif else
 esac fi for
 function if in
 select then time
 until while {
 } [[]]

The reserved words are recognized only when they appear without quotation marks and
when the word is used as the following:

• First word of a command

• First word following one of the reserved words other than case, for, or in

• Third word in a case or for command (only in is valid in this case)

12-20 AIX System User’s Guide – OS & Devices

Command Aliasing in the Korn Shell or POSIX Shell
The Korn shell, or POSIX shell, allows you to create aliases to customize commands. The
alias command defines a word of the form Name=String as an alias. When you use an
alias as the first word of a command line, the Korn shell checks to see if it is already
processing an alias with the same name. If it is, the Korn shell does not replace the alias
name. If an alias with the same name is not already being processed, the Korn shell
replaces the alias name by the value of the alias.

The first character of an alias name can be any printable character, except the
metacharacters. The remaining characters must be the same as for a valid identifier. The
replacement string can contain any valid shell text, including the metacharacters.

If the last character of the alias value is a blank, the shell also checks the word following the
alias for alias substitution. You can use aliases to redefine special built–in commands, but
not to redefine reserved words. Alias definitions are not inherited across invocations of ksh.
However, if you specify alias –x, the alias stays in effect for scripts invoked by name, that
do not invoke a separate shell. To export an alias definition and to cause child processes to
have access to them, you must specify the alias –x, as well as the alias definition in your
environment file.

To create, list, and export aliases, use the alias command. To remove aliases, use the
unalias command.

The format for creating an alias is as follows:

alias Name=String

in which the Name parameter specifies the name of the alias and the String parameter
specifies the value of the alias.

The following exported aliases are predefined by the Korn shell, but can be unset or
redefined. It is not recommended that you change them, because this might later confuse
anyone who expects the alias to work as predefined by the Korn shell.

autoload=’typeset –fu’

 false=’let 0’

 functions=’typeset –f’

 hash=’alias –t’

 history=’fc –l’

 integer=’typeset –i’

 nohup=’nohup ’

 r=’fc –e –’

 true=’:’

 type=’whence –v’

Aliases are not supported on noninteractive invocations of the Korn shell (ksh); for example,
in a shell script, or with the –c option in ksh, as in the following:

ksh –c alias

For more information about aliasing, see Creating a Command Alias (alias Shell Command)
on page 4-10 and the alias command in the AIX 5L Version 5.2 Commands Reference.

Tracked Aliases
Frequently, aliases are used as shorthand for full path names. One aliasing facility option
allows you to automatically set the value of an alias to the full path name of a corresponding
command. This special type of alias is a tracked alias. Tracked aliases speed execution by
eliminating the need for the shell to search the PATH variable for a full path name.

The set –h command turns on command tracking so that each time a command is
referenced, the shell defines the value of a tracked alias. This value is undefined each time
you reset the PATH variable.

These aliases remain tracked so that the next subsequent reference will redefine the value.
Several tracked aliases are compiled into the shell.

12-21 Shells

Tilde Substitution
After the shell performs alias substitution, it checks each word to see if it begins with an
unquoted tilde (~). If it does, the shell checks the word, up to the first slash (/), to see if it
matches a user name in the /etc/passwd file. If the shell finds a match, it replaces the ~
character and the name with the login directory of the matched user. This process is called
tilde substitution.

The shell does not change the original text if it does not find a match. The Korn shell also
makes special replacements if the ~ character is the only character in the word or followed
by plus sign (+) or hyphen (–):

~ Replaced by the value of the HOME variable.

~+ Replaced by the $PWD variable (the full path name of the current
directory).

~– Replaced by the $OLDPWD variable (the full path name of the
previous directory).

In addition, the shell attempts tilde substitution when the value of a variable assignment
parameter begins with a tilde ~ character.

12-22 AIX System User’s Guide – OS & Devices

Parameter Substitution in the Korn Shell or POSIX Shell
The Korn Shell, or POSIX shell, enables you to do parameter substitutions.

This section discusses the following:

• Parameters in the Korn Shell on page 12-22

• Parameter Substitution on page 12-23

• Predefined Special Parameters on page 12-24

• Variables Set by the Korn Shell or POSIX Shell on page 12-25

• Variables Used by the Korn Shell or POSIX Shell on page 12-26

Parameters in the Korn Shell

A parameter is defined as the following:

• Identifier of any of the characters asterisk (*), at sign (@), pound sign (#), question mark
(?), hyphen (–), dollar sign ($), and exclamation point (!). These are called special
parameters.

• Argument denoted by a number (positional parameter)

• Parameter denoted by an identifier, with a value and zero or more attributes (named
parameter/variables).

The typeset special built–in command assigns values and attributes to named parameters.
The attributes supported by the Korn shell are described with the typeset special built–in
command. Exported parameters pass values and attributes to the environment.

The value of a named parameter is assigned by:

Name=Value [Name=Value] ...

If the –i integer attribute is set for the Name parameter, the Value parameter is subject to
arithmetic evaluation. Refer to Arithmetic Evaluation in the Korn Shell or POSIX Shell on
page 12-29 for more information about arithmetic expression evaluation.

The shell supports a one–dimensional array facility. An element of an array parameter is
referenced by a subscript. A subscript is denoted by an arithmetic expression enclosed by
brackets ([]). To assign values to an array, use set –A Name Value... . The value of all
subscripts must be in the range of 0 through 511. Arrays need not be declared. Any
reference to a named parameter with a valid subscript is legal and an array will be created,
if necessary. Referencing an array without a subscript is equivalent to referencing the
element 0.

Positional parameters are assigned values with the set special command. The $0
parameter is set from argument 0 when the shell is invoked. The $ character is used to
introduce parameters that can be substituted.

12-23 Shells

Parameter Substitution
The following are substitutable parameters:

${ Parameter } The shell reads all the characters from the
${ to the matching } as part of the same
word, even if that word contains braces or
metacharacters. The value, if any, of the
specified parameter is substituted. The
braces are required when the Parameter
parameter is followed by a letter, digit, or
underscore that is not to be interpreted as
part of its name, or when a named
parameter is subscripted.

If the specified parameter contains one or
more digits, it is a positional parameter. A
positional parameter of more than one digit
must be enclosed in braces. If the value of
the variable is an * or an @), each positional
parameter, starting with $1, is substituted
(separated by a field separator character). If
an array identifier with a subscript * or an @
is used, then the value for each of the
elements (separated by a field separator
character) is substituted.

${# Parameter } If the value of the Parameter parameter is
an * or an @, the number of positional
parameters is substituted. Otherwise, the
length specified by the Parameter
parameter is substituted.

${# Identifier [*] } The number of elements in the array
specified by the Identifier parameter is
substituted.

${ Parameter:– Word } If the Parameter parameter is set and is not
null, then its value is substituted; otherwise,
the value of the Word parameter is
substituted.

${ Parameter:= Word } If the Parameter parameter is not set or is
null, then it is set to the value of the Word
parameter. Positional parameters cannot be
assigned in this way.

${ Parameter:? Word } If the Parameter parameter is set and is not
null, then substitute its value. Otherwise,
print the value of the Word variable and exit
from the shell. If the Word variable is
omitted, then a standard message is
printed.

${ Parameter:+ Word } If the Parameter parameter is set and is not
null, then substitute the value of the Word
variable.

12-24 AIX System User’s Guide – OS & Devices

${ Parameter # Pattern } | ${ Parameter ##
Pattern }

If the specified shell Pattern parameter
matches the beginning of the value of the
Parameter parameter, then the value of this
substitution is the value of the Parameter
parameter with the matched portion deleted.
Otherwise, the value of the Parameter
parameter is substituted. In the first form,
the smallest matching pattern is deleted. In
the second form, the largest matching
pattern is deleted.

${ Parameter % Pattern } | ${ Parameter
%% Pattern }

If the specified shell Pattern matches the
end of the value of the Parameter variable,
then the value of this substitution is the
value of the Parameter variable with the
matched part deleted. Otherwise, substitute
the value of the Parameter variable. In the
first form, the smallest matching pattern is
deleted; in the second form, the largest
matching pattern is deleted.

In the previous expressions, the Word
variable is not evaluated unless it is to be
used as the substituted string. Thus, in the
following example, the pwd command is
executed only if the –d flag is not set or is
null:

echo ${d:–$(pwd)}

Note: If the: is omitted from the previous expressions, the shell checks only whether the
Parameter parameter is set.

Predefined Special Parameters
The following parameters are automatically set by the shell:

@ Expands the positional parameters, beginning with $1. Each
parameter is separated by a space.

If you place ” around $@, the shell considers each positional
parameter a separate string. If no positional parameters exist, the
shell expands the statement to an unquoted null string.

* Expands the positional parameters, beginning with $1. The shell
separates each parameter with the first character of the IFS
parameter on page 12-25 value.

If you place ” around $*, the shell includes the positional parameter
values in double quotation marks. Each value is separated by the
first character of the IFS parameter.

Specifies the number (in decimals) of positional parameters passed
to the shell, not counting the name of the shell procedure itself. The
$# parameter thus yields the number of the highest–numbered
positional parameter that is set. One of the primary uses of this
parameter is to check for the presence of the required number of
arguments.

– Supplies flags to the shell on invocation or with the set command.

12-25 Shells

? Specifies the exit value of the last command executed. Its value is a
decimal string. Most commands return 0 to indicate successful
completion. The shell itself returns the current value of the $?
parameter as its exit value.

$ Identifies the process number of this shell. Because process
numbers are unique among all existing processes, this string of up to
5 digits is often used to generate unique names for temporary files.

The following example illustrates the recommended practice of
creating temporary files in a directory used only for that purpose:

temp=$HOME/temp/$$

 ls >$temp

.

.

.

 rm $temp

! Specifies the process number of the most recent background
command invoked.

zero (0) Expands to the name of the shell or shell script.

Variables Set by the Korn Shell or POSIX Shell

The following variables are set by the shell:

underscore (_) Indicates initially the absolute path name of the shell or script being
executed as passed in the environment. Subsequently, it is assigned
the last argument of the previous command. This parameter is not
set for commands that are asynchronous. This parameter is also
used to hold the name of the matching MAIL file when checking for
mail.

ERRNO Specifies a value that is set by the most recently failed subroutine.
This value is system–dependent and is intended for debugging
purposes.

LINENO Specifies the line number of the current line within the script or
function being executed.

OLDPWD Indicates the previous working directory set by the cd command.

OPTARG Specifies the value of the last option argument processed by the
getopts regular built–in command.

OPTIND Specifies index of the last option argument processed by the
getopts regular built–in command.

PPID Identifies the process number of the parent of the shell.

PWD Indicates the present working directory set by the cd command.

RANDOM Generates a random integer, uniformly distributed between 0 and
32767. The sequence of random numbers can be initialized by
assigning a numeric value to the RANDOM variable.

REPLY Set by the select statement and by the read regular built–in
command when no arguments are supplied.

SECONDS Specifies the number of seconds since shell invocation is returned. If
this variable is assigned a value, then the value returned upon
reference will be the value that was assigned plus the number of
seconds since the assignment.

12-26 AIX System User’s Guide – OS & Devices

Variables Used by the Korn Shell or POSIX Shell

The following variables are used by the shell:

CDPATH Indicates the search path for the cd (change directory) command.

COLUMNS Defines the width of the edit window for the shell edit modes and for
printing select lists.

EDITOR If the value of this parameter ends in emacs, gmacs, or vi, and the
VISUAL variable is not set with the set special built–in command,
then the corresponding option is turned on.

ENV If this variable is set, then parameter substitution is performed on the
value to generate the path name of the script that will be executed
when the shell is invoked. This file is typically used for alias and
function definitions.

FCEDIT Specifies the default editor name for the fc regular built–in
command.

FPATH Specifies the search path for function definitions. This path is
searched when a function with the –u flag is referenced and when a
command is not found. If an executable file is found, then it is read
and executed in the current environment.

HISTFILE If this variable is set when the shell is invoked, then the value is the
path name of the file that will be used to store the command history.

HISTSIZE If this variable is set when the shell is invoked, then the number of
previously entered commands that are accessible by this shell will be
greater than or equal to this number. The default is 128.

HOME Indicates the name of your login directory, which becomes the
current directory upon completion of a login. The login program
initializes this variable. The cd command uses the value of the
$HOME parameter as its default value. Using this variable rather
than an explicit path name in a shell procedure allows the procedure
to be run from a different directory without alterations.

IFS Specifies IFS (internal field separators), normally space, tab, and
newline, used to separate command words that result from
command or parameter substitution and for separating words with
the regular built–in command read. The first character of the IFS
parameter is used to separate arguments for the $* substitution.

LANG Provides a default value for the LC_* variables.

LC_ALL Overrides the value of the LANG and LC_* variables.

LC_COLLATE Determines the behavior of range expression within pattern
matching.

LC_CTYPE Defines character classification, case conversion, and other
character attributes.

LC_MESSAGES Determines the language in which messages are written.

LINES Determines the column length for printing select lists. Select lists
print vertically until about two–thirds of lines specified by the LINES
variable are filled.

MAIL Specifies the file path name used by the mail system to detect the
arrival of new mail. If this variable is set to the name of a mail file and
the MAILPATH variable is not set, then the shell informs the user of
new mail in the specified file.

12-27 Shells

MAILCHECK Specifies how often (in seconds) the shell checks for changes in the
modification time of any of the files specified by the MAILPATH or
MAIL variables. The default value is 600 seconds. When the time
has elapsed, the shell checks before issuing the next prompt.

MAILPATH Specifies a list of file names separated by colons. If this variable is
set, then the shell informs the user of any modifications to the
specified files that have occurred during the period, in seconds,
specified by the MAILCHECK variable. Each file name can be
followed by a ? and a message that will be printed. The message will
undergo variable substitution with the $ _ variable defined as the
name of the file that has changed. The default message is you
have mail in $ _.

NLSPATH Determines the location of message catalogs for the processing of
LC_MESSAGES.

PATH Indicates the search path for commands, which is an ordered list of
directory path names separated by colons. The shell searches these
directories in the specified order when it looks for commands. A null
string anywhere in the list represents the current directory.

PS1 Specifies the string to be used as the primary system prompt. The
value of this parameter is expanded for parameter substitution to
define the primary prompt string, which is a $ by default. The !
character in the primary prompt string is replaced by the command
number.

PS2 Specifies the value of the secondary prompt string, which is a > by
default.

PS3 Specifies the value of the selection prompt string used within a
select loop, which is #? by default.

PS4 The value of this variable is expanded for parameter substitution and
precedes each line of an execution trace. If omitted, the execution
trace prompt is a +.

SHELL Specifies the path name of the shell, which is kept in the
environment.

SHELL PROMPT When used interactively, the shell prompts with the value of the PS1
parameter before reading a command. If at any time a new line is
entered and the shell requires further input to complete a command,
the shell issues the secondary prompt (the value of the PS2
parameter).

TMOUT Specifies the number of seconds a shell waits inactive before exiting.
If the TMOUT variable is set to a value greater than zero (0), the
shell exits if a command is not entered within the prescribed number
of seconds after issuing the PS1 prompt. (Note that the shell can be
compiled with a maximum boundary that cannot be exceeded for this
value.)

Note: After the timeout period has expired, there is a 60–second
pause before the shell exits.

VISUAL If the value of this variable ends in emacs, gmacs, or vi, then the
corresponding option is turned on.

The shell gives default values to the PATH, PS1, PS2, MAILCHECK, TMOUT, and IFS
parameters, but the HOME, SHELL, ENV, and MAIL parameters are not set by the shell
(although the HOME parameter is set by the login command).

12-28 AIX System User’s Guide – OS & Devices

Command Substitution in the Korn Shell or POSIX Shell
The Korn Shell, or POSIX Shell, enables you to do command substitution.

In command substitution, the shell executes a specified command in a subshell environment
and replaces that command with its output. To execute command substitution in the Korn
shell or POSIX shell, perform the following:

$(command)

or, for the backquoted version, use:

‘command‘

Note: Although the backquote syntax is accepted by ksh, it is considered obsolete by
the X/Open Portability Guide Issue 4 and POSIX standards. These standards
recommend that portable applications use the $(command) syntax.

The shell expands the command substitution by executing command in a subshell
environment and replacing the command substitution (the text of command plus the
enclosing $() or backquotes) with the standard output of the command, removing
sequences of one or more newline characters at the end of the substitution.

In the following example, the $() surrounding the command indicates that the output of the
whoami command is substituted:

echo My name is: $(whoami)

You can perform the same command substitution with:

echo My name is: ‘whoami‘

The output from both examples for user dee is:

My name is: dee

You can also substitute arithmetic expressions by enclosing them in (). For example, the
command:

echo Each hour contains $((60 * 60)) seconds

produces the following result:

Each hour contains 3600 seconds

The Korn shell or POSIX shell removes all trailing newline characters when performing
command substitution. For example, if your current directory contains the file1, file2,
and file3 files, the command:

echo $(ls)

removes the newline characters and produces the following output:

file1 file2 file3

To preserve newline characters, insert the substituted command in ” ”:

echo ”$(ls)”

12-29 Shells

Arithmetic Evaluation in the Korn Shell or POSIX Shell
The Korn shell or

POSIX shell regular built–in let command enables you to perform integer arithmetic.
Constants are of the form [Base] Number. The Base parameter is a decimal number
between 2 and 36 inclusive, representing the arithmetic base. The Number parameter is a
number in that base. If you omit the Base parameter, the shell uses a base of 10.

Arithmetic expressions use the same syntax, precedence, and associativity of expression as
the C language. All of the integral operators, other than double plus (++), double hyphen
(––), question mark, colon (?:), and comma (,), are supported. The following table lists valid
Korn shell or POSIX shell operators in decreasing order of precedence:

Operator Definition

– Unary minus

! Logical negation

~ Bitwise negation

* Multiplication

/ Division

% Remainder

+ Addition

– Subtraction

<<, >> Left shift, right shift

<=,>=, , ==, != Comparison

& Bitwise AND

^ Bitwise exclusive OR

| Bitwise OR

&& Logical AND

|| Logical OR

= *=, /=, &= +=, –=, <<=, > >=, &=, ^=, |= Assignment

Many arithmetic operators, such as *, &, <, and >, have special meaning to the Korn shell or
POSIX shell. These characters must be quoted. For example, to multiply the current value
of y by 5 and reassign the new value to y, use the expression:

let ”y = y * 5”

Enclosing the expression in quotation marks removes the special meaning of the *
character.

You can group operations inside let command expressions to force grouping. For example,
in the expression:

let ”z = q * (z – 10)”

the command multiplies q by the reduced value of z.

12-30 AIX System User’s Guide – OS & Devices

The Korn shell or POSIX shell includes an alternative form of the let command if only a
single expression is to be evaluated. The shell treats commands enclosed in (()) as quoted
expressions. Therefore, the expression:

((x = x / 3))

is equivalent to:

let ”x = x / 3”

Named parameters are referenced by name within an arithmetic expression without using
the parameter substitution syntax. When a named parameter is referenced, its value is
evaluated as an arithmetic expression.

Specify an internal integer representation of a named parameter with the –i flag of the
typeset special built–in command. Using the –i flag, arithmetic evaluation is performed on
the value of each assignment to a named parameter. If you do not specify an arithmetic
base, the first assignment to the parameter determines the arithmetic base. This base is
used when parameter substitution occurs.

12-31 Shells

Field Splitting in the Korn Shell or POSIX Shell

After performing command substitution, the Korn shell scans the results of substitutions for
those field separator characters found in the IFS (Internal Field Separator) variable. Where
such characters are found, the shell splits the substitutions into distinct arguments. The
shell retains explicit null arguments (”” or ’’) and removes implicit null arguments (those
resulting from parameters that have no values).

• If the value of IFS is a space, tab and newline character, or if it is not set, any sequence
of space, tab and newline characters at the beginning or end of the input will be ignored
and any sequence of those characters within the input will delimit a field. For example,
the following input yields two fields, school and days:

<newline><space><tab>school<tab><tab>days<space>

• Otherwise, and if the value of IFS is not null, the following rules apply in sequence. IFS
white space is used to mean any sequence (zero or more instances) of white–space
characters that are in the IFS value (for example, if IFS contains space/comma/tab, any
sequence of space and tab characters is considered IFS white space).

1. IFS white space is ignored at the beginning and end of the input.

2. Each occurrence in the input of an IFS character that is not IFS white space, along
with any adjacent IFS white space, delimits a field.

3. Non–zero length IFS white space delimits a field.

12-32 AIX System User’s Guide – OS & Devices

File–Name Substitution in the Korn Shell or POSIX Shell
The Korn shell, or POSIX shell, performs file–name substitution by scanning each command
word specified by the Word variable for certain characters. If a command word includes the
*), ? or [characters, and the –f flag has not been set, the shell regards the word as a
pattern. The shell replaces the word with file names, sorted according to the collating
sequence in effect in the current locale, that match that pattern. If the shell does not find a
file name to match the pattern, it does not change the word.

When the shell uses a pattern for file–name substitution, the. and / characters must be
matched explicitly.

Note: The Korn shell does not treat these characters specially in other instances of
pattern matching.

These pattern–matching characters indicate the following substitutions:

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters
separated by a – matches any character lexically within the inclusive
range of that pair, according to the collating sequence in effect in the
current locale. If the first character following the opening [is an !,
then any character not enclosed is matched. A – can be included in
the character set by putting it as the first or last character.

You can also use the [: charclass:] notation to match file names within a range
indication. This format instructs the system to match any single character belonging to
class. The definition of which characters constitute a specific character class is present
through the LC_CTYPE category of the setlocale subroutine. All character classes
specified in the current locale are recognized.

The names of some of the character classes are as follows:

• alnum

• alpha

• cntrl

• digit

• graph

• lower

• print

• punct

• space

• upper

• xdigit

For example, [[:upper:]] matches any uppercase letter.

The Korn shell supports file–name expansion based on collating elements, symbols, or
equivalence classes.

A PatternList is a list of one or more patterns separated from each other with a |. Composite
patterns are formed with one or more of the following:

12-33 Shells

?(PatternList) Optionally matches any one of the given
patterns

*(PatternList) Matches zero or more occurrences of the
given patterns

+(PatternList) Matches one or more occurrences of the
given patterns

@(PatternList) Matches exactly one of the given patterns

!(PatternList) Matches anything, except one of the given
patterns

Pattern matching has some restrictions. If the first character of a file name is a dot (.), it can
be matched only by a pattern that also begins with a dot. For example, * matches the file
names myfile and yourfile but not the file names.myfile and.yourfile. To
match these files, use a pattern such as the following:

.*file

If a pattern does not match any file names, then the pattern itself is returned as the result of
the attempted match.

File and directory names should not contain the characters *, ?, [, or] because they can
cause infinite recursion (that is, infinite loops) during pattern–matching attempts.

Quote Removal

The quote characters, backslash (\), single quote (’), and double quote (”) that were present
in the original word will be removed unless they have themselves been quoted.

12-34 AIX System User’s Guide – OS & Devices

Input and Output Redirection in the Korn Shell or POSIX Shell
Before the Korn shell executes a command,

it scans the command line for redirection characters. These special notations direct the shell
to redirect input and output. Redirection characters can appear anywhere in a simple
command or can precede or follow a command. They are not passed on to the invoked
command.

The shell performs command and parameter substitution before using the Word or Digit
parameter except as noted. File–name substitution occurs only if the pattern matches a
single file and blank interpretation is not performed.

< Word Uses the file specified by the Word parameter as standard input (file
descriptor 0).

> Word Uses the file specified by the Word parameter as standard output
(file descriptor 1). If the file does not exist, the shell creates it. If the
file exists and the noclobber option is on, an error results;
otherwise, the file is truncated to zero length.

>| Word Same as the > Word command, except that this redirection
statement overrides the noclobber option.

> > Word Uses the file specified by the Word parameter as standard output. If
the file currently exists, the shell appends the output to it (by first
seeking the end–of–file character). If the file does not exist, the shell
creates it.

 Word Opens the file specified by the Word parameter for reading and
writing as standard input.

<< [–] Word Reads each line of shell input until it locates a line containing only
the value of the Word parameter or an end–of–file character. The
shell does not perform parameter substitution, command
substitution, or file name substitution on the file specified. The
resulting document, called a here document on page 5-5, becomes
the standard input. For more information on here documents, see ”
Using Inline Input (Here) Documents on page 5-5 ”. If any character
of the Word parameter is quoted, no interpretation is placed upon the
characters of the document.

The here document is treated as a single word that begins after the next newline character
and continues until there is a line containing only the delimiter, with no trailing blank
characters. Then the next here document, if any, starts. The format is as follows:

[n]<<word

 here document

 delimiter

If any character in word is quoted, the delimiter is formed by removing the quote on word.
The here document lines will not be expanded. Otherwise, the delimiter is the word itself. If
no characters in word are quoted, all lines of the here document will be expanded for
parameter expansion, command substitution, and arithmetic expansion.

The shell performs parameter substitution for the redirected data. To prevent the shell from
interpreting the \, $, and single quotation mark (’) characters and the first character of the
Word parameter, precede the characters with a \ character.

If a – is appended to <<, the shell strips all leading tabs from the Word parameter and the
document.

12-35 Shells

<& Digit Duplicates standard input from the file descriptor specified by the
Digit parameter

>& Digit Duplicates standard output in the file descriptor specified by the Digit
parameter

<&– Closes standard input

>&– Closes standard output

<&p Moves input from the coprocess to standard input

>&p Moves output to the coprocess to standard output

If one of these redirection options is preceded by a digit, then the file descriptor number
referred to is specified by the digit (instead of the default 0 or 1). In the following example,
the shell opens file descriptor 2 for writing as a duplicate of file descriptor 1:

... 2>&1

The order in which redirections are specified is significant. The shell evaluates each
redirection in terms of the (FileDescriptor, File) association at the time of evaluation. For
example, in the statement:

... 1>File 2>&1

the file descriptor 1 is associated with the file specified by the File parameter. The shell
associates file descriptor 2 with the file associated with file descriptor 1 (File). If the order of
redirections were reversed, file descriptor 2 would be associated with the terminal
(assuming file descriptor 1 had previously been) and file descriptor 1 would be associated
with the file specified by the File parameter.

If a command is followed by an ampersand (&) and job control is not active, the default
standard input for the command is the empty file, /dev/null. Otherwise, the environment for
the execution of a command contains the file descriptors of the invoking shell as modified by
input and output specifications.

For more information about redirection, see Input and Output Redirection on page 5-1.

Coprocess Facility
The Korn shell, or POSIX shell, allows you to run one or more commands as background
processes. These commands, run from within a shell script, are called coprocesses.

Designate a coprocess by placing the |& operator after a command. Both standard input
and output of the command are piped to your script.

A coprocess must meet the following restrictions:

• Include a newline character at the end of each message

• Send each output message to standard output

• Clear its standard output after each message

The following example demonstrates how input is passed to and returned from a coprocess:

echo ”Initial process”

./FileB.sh |&

 read –p a b c d

 echo ”Read from coprocess: $a $b $c $d”

 print –p ”Passed to the coprocess”

 read –p a b c d

 echo ”Passed back from coprocess: $a $b $c $d”

FileB.sh

 echo ”The coprocess is running”

 read a b c d

 echo $a $b $c $d

The resulting standard output is as follows:

12-36 AIX System User’s Guide – OS & Devices

Initial process

 Read from coprocess: The coprocess is running

 Passed back from coprocess: Passed to the coprocess

To write to the coprocess, use the print –p command. To read from the coprocess, use the
read –p command.

Redirecting Coprocess Input and Output
The standard input and output of a coprocess is reassigned to a numbered file descriptor by
using I/O redirection. For example, the command:

exec 5>&p

moves the input of the coprocess to file descriptor 5.

After this has completed, you can use standard redirection syntax to redirect command
output to the coprocess. You can also start another coprocess. Output from both
coprocesses is connected to the same pipe and is read with the read –p command. To stop
the coprocess, type:

read –u5

12-37 Shells

Exit Status in the Korn Shell or POSIX Shell

Errors detected by the shell, such as syntax errors, cause the shell to return a nonzero exit
status. Otherwise, the shell returns the exit status of the last command carried out. The shell
reports detected run–time errors by printing the command or function name and the error
condition. If the number of the line on which an error occurred is greater than 1, then the line
number is also printed in [] (brackets) after the command or function name.

For a noninteractive shell, an error encountered by a special built–in or other type of
command will cause the shell to write a diagnostic message as shown in the following table:

Error Special Built–In Other Utilities

Shell language syntax error will exit will exit

Utility syntax error (option or
operand error)

will exit will not exit

Redirection error will exit will not exit

Variable assignment error will exit will not exit

Expansion error will exit will exit

Command not found not applicable may exit

Dot script not found will exit not applicable

If any of the errors shown as ”will (may) exit” occur in a subshell, the subshell will (may) exit
with a nonzero status, but the script containing the subshell will not exit because of the
error.

In all cases shown in the table, an interactive shell will write a diagnostic message to
standard error, without exiting.

12-38 AIX System User’s Guide – OS & Devices

Korn Shell or POSIX Shell Built–In Commands
Special commands are built in to the Korn shell and POSIX shell and executed in the shell
process. Unless otherwise indicated, the output is written to file descriptor 1 and the exit
status is zero (0) if the command does not contain any syntax errors. Input and output
redirection is permitted. There are two types of built–in commands, special built–in
commands on page 12-38 and regular built–in commands on page 12-45.

Special built–in commands differ from regular built–in commands in the following ways:

• A syntax error in a special built–in command might cause the shell executing the
command to end. This does not happen if you have a syntax error in a regular built–in
command. If a syntax error in a special built–in command does not end the shell
program, the exit value is nonzero.

• Variable assignments specified with special built–in commands remain in effect after the
command completes.

• I/O redirections are processed after parameter assignments.

In addition, words that are in the form of a parameter assignment following the export,
readonly, and typeset special commands are expanded with the same rules as a
parameter assignment. Tilde substitution is performed after the =, and word–splitting and
file–name substitution are not performed.

For an alphabetical listing of these commands, refer to the List of Korn Shell or POSIX Shell
Built–in Commands on page 12-51

Special Built–in Command Descriptions
The Korn Shell provides the following special built–in commands:
 : on page 12-38 eval on page 12-39 newgrp shift on page 12-42 . on page 12-38
exec on page 12-39 readonly times on page 12-42 break on page 12-38 exit on
page 12-39 return trap on page 12-43 continue on page 12-39 export on page
12-39 set typeset on page 12-44 unset on page 12-45

: [Argument...] Expands only arguments. It is used when a command is
necessary, as in the then condition of an if command, but
nothing is to be done by the command.

. File [Argument...] Reads the complete specified file and then executes the
commands. The commands are executed in the current
shell environment. The search path specified by the PATH
on page 12-25 variable is used to find the directory
containing the specified file. If any arguments are specified,
they become the positional parameters. Otherwise, the
positional parameters are unchanged. The exit status is the
exit status of the most recent command executed. Refer to
Parameter Substitution in the Korn Shell or POSIX Shell on
page 12-22 for more information on positional parameters.

Note: The.File [Argument...] command reads the entire
file before any commands are carried out. Therefore, the
alias and unalias commands in the file do not apply to
any functions defined in the file.

break [n] Exits from the enclosing for, while, until, or select loop, if
one exists. If you specify the n parameter, the command
breaks the number of levels specified by the n parameter.
The value of n is any integer equal to or greater than 1.

12-39 Shells

continue [n] Resumes the next iteration of the enclosing for, while,
until, or select loop. If you specify the n variable, the
command resumes at the n th enclosing loop. The value of
n is any integer equal to or greater than 1.

eval [Argument...] Reads the specified arguments as input to the shell and
executes the resulting command or commands.

exec [Argument...] Executes the command specified by the argument in place
of this shell (without creating a new process). Input and
output arguments can appear and affect the current
process. If you do not specify an argument, the exec
command modifies file descriptors as prescribed by the
input and output redirection list. In this case, any file
descriptor numbers greater than 2 that are opened with this
mechanism are closed when invoking another program.

exit [n] Exits the shell with the exit status specified by the n
parameter. The n parameter must be an unsigned decimal
integer with range 0–255. If you omit the n parameter, the
exit status is that of the most recent command executed.
An end–of–file character also exits the shell, unless the
ignoreeof option of the set on page 12-40 special
command is turned on.

export –p [Name [= Value
]] ...

Marks the specified names for automatic export to the
environment of subsequently executed commands.

–p writes to standard output the names and values of all
exported variables, in the following format:

”export %s= %s\n”, <name> <value>

newgrp [Group] Equivalent to the exec/usr/bin/newgrp [Group]
command.

Note: This command does not return.

readonly –p [Name [=
Value]] ...

Marks the names specified by the Name parameter as
read–only. These names cannot be changed by
subsequent assignment.

–p writes to standard output the names and values of all
exported variables, in the following format:

”export %s= %s\n”, <name> <value>

return [n] Causes a shell function to return to the invoking script. The
return status is specified by the n variable. If you omit the n
variable, the return status is that of the most recent
command executed. If you invoke the return command
outside of a function or a script, then it is the same as an
exit command.

12-40 AIX System User’s Guide – OS & Devices

set [+ |
–abCefhkmnostuvx] [+ |
–o Option]... [+ | –A Name
] [Argument...]

If no options or arguments are specified, the set command
writes the names and values of all shell variables in the
collation sequence of the current locale. When options are
specified, they will set or unset attributes of the shell,
described as follows:

–A Array assignment. Unsets the Name parameter and
assigns values sequentially from the specified Argument
parameter list. If the +A flag is used, the Name
parameter is not unset first.

–a Exports automatically all subsequent parameters that
are defined.

–b Notifies the user asynchronously of background job
completions.

–C Equivalent to set –o noclobber.

–e Executes the ERR trap, if set, and exits if a command
has a nonzero exit status. This mode is disabled while
reading profiles.

–f Disables file name substitution.

–h Designates each command as a tracked alias when first
encountered.

–k Places all parameter–assignment arguments in the
environment for a command, not only those arguments
that precede the command name.

–m Runs background jobs in a separate process and prints
a line upon completion. The exit status of background
jobs is reported in a completion message. On systems
with job control, this flag is turned on automatically for
interactive shells. For more information, see Job Control
in the Korn Shell or POSIX Shell on page 12-55.

–n Reads commands and checks them for syntax errors,
but does not execute them. This flag is ignored for
interactive shells.

12-41 Shells

–o Option Prints current option settings and an error
message if you do not specify an argument. You can set
more than one option on a single ksh command line. If
the +o flag is used, the specified option is unset. When
arguments are specified, they will cause positional
parameters to be set or unset. Arguments, as specified
by the Option variable, can be one of the following:

allexport Same as the –a flag.

bgnice Runs all background jobs at a lower priority. This
is the default mode.

emacs Enters an emacs – style inline editor for command
entry.

errexit Same as the –e flag.

gmacs Enters a gmacs–style inline editor for command
entry.

ignoreeof Does not exit the shell when it encounters an
end–of–file character. To exit the shell, you must use
the exit command, or press the Ctrl–D key sequence
more than 11 times.

keyword Same as the –k flag.

Note: This flag is for backward compatibility with
the Bourne shell only. Its use is strongly
discouraged.

markdirs Appends a / to all directory names that are a
result of file–name substitution.

monitor Same as the –m flag.

noclobber Prevents redirection from truncating existing
files. When you specify this option, a vertical bar
must follow the redirection symbol (>|) to truncate a
file.

noexec Same as the –n flag.

noglob Same as the –f flag.

nolog Prevents function definitions in .profile and $ENV
files from being saved in the history file.

nounset Same as the –u flag.

privileged Same as the –p flag.

12-42 AIX System User’s Guide – OS & Devices

trackall Same as the –h flag.

verbose Same as the –v flag.

vi Enters the insert mode of a vi – style inline editor for
command entry. Entering escape character 033 puts
the editor into the move mode. A return sends the
line.

viraw Processes each character as it is typed in vi mode.

xtrace Same as the –x flag.

–p Disables processing of the $HOME/.profile file and uses
the /etc/suid _ profile file instead of the ENV file. This
mode is enabled whenever the effective user ID (UID) or
group ID (GID) is not equal to the real UID or GID.
Turning off this option sets the effective UID or GID to the
real UID and GID.

Note: The system does not support the –p option
since the operating system does not support setuid
shell scripts.

–s Sorts the positional parameters lexicographically.

–t Exits after reading and executing one command.

Note: This flag is for backward compatibility with the
Bourne shell only. Its use is strongly discouraged.

–u Treats unset parameters as errors when substituting.

–v Prints shell input lines as they are read.

–x Prints commands and their arguments as they are
executed.

– Turns off the –x and –v flags and stops examining
arguments for flags.

–– Prevents any flags from being changed. This option is
useful in setting the $1 parameter to a value beginning
with a –. If no arguments follow this flag, the positional
parameters are not set.

Preceding any of the set command flags with a + rather
than a – turns off the flag. You can use these flags when
you invoke the shell. The current set of flags is found in the
$– parameter. Unless you specify the –A flag, the
remaining arguments are positional parameters and are
assigned, in order, to $1, $2, ..., and so forth. If no
arguments are given, the names and values of all named
parameters are printed to standard output.

shift [n] Renames the positional parameters, beginning with $ n
+1... through $1.... The default value of the n parameter is
1. The n parameter is any arithmetic expression that
evaluates to a nonnegative number less than or equal to
the $# parameter.

times Prints the accumulated user and system times for the shell
and for processes run from the shell.

12-43 Shells

trap [Command] [Signal]
...

Runs the specified command when the shell receives the
specified signal or signals. The Command parameter is
read once when the trap is set and once when the trap is
taken. The Signal parameter can be given as a number or
as the name of the signal. Trap commands are executed in
order of signal number. Any attempt to set a trap on a
signal that was ignored on entry to the current shell is
ineffective.

If the command is a –, all traps are reset to their original
values. If you omit the command and the first signal is a
numeric signal number, then the ksh command resets the
value of the Signal parameter or parameters to the original
values.

Note: If you omit the command and the first signal is a
symbolic name, the signal is interpreted as a command.

If the value of the Signal parameter is the ERR signal, the
specified command is carried out whenever a command
has a nonzero exit status. If the signal is DEBUG, then the
specified command is carried out after each command. If
the value of the Signal parameter is the 0 or EXIT signal
and the trap command is executed inside the body of a
function, the specified command is carried out after the
function completes. If the Signal parameter is 0 or EXIT for
a trap command set outside any function, the specified
command is carried out on exit from the shell. The trap
command with no arguments prints a list of commands
associated with each signal number.

For a complete list of Signal parameter values, used in the
trap command without the SIG prefix, refer to the
sigaction, sigvec, or signal subroutine in the AIX 5L
Version 5.2 Technical Reference: Base Operating System
and Extensions Volume 2.

12-44 AIX System User’s Guide – OS & Devices

typeset [+HLRZfilrtux [n]]
[Name [= Value]] ...

Sets attributes and values for shell parameters. When
invoked inside a function, a new instance of the Name
parameter is created. The parameter value and type are
restored when the function completes. You can specify the
following flags with the typeset command:

–H Provides AIX–to–host–file mapping on non–AIX
machines.

–L Left–justifies and removes leading blanks from the Value
parameter. If the n parameter has a nonzero value, it
defines the width of the field; otherwise, it is determined
by the width of the value of its first assignment. When the
parameter is assigned, it is filled on the right with blanks
or truncated, if necessary, to fit into the field. Leading
zeros are removed if the –Z flag is also set. The –R flag
is turned off.

–R Right–justifies and fills with leading blanks. If the n
parameter has a nonzero value, it defines the width of
the field; otherwise, it is determined by the width of the
value of its first assignment. The field remains filled with
blanks or is truncated from the end if the parameter is
reassigned. The L flag is turned off.

–Z Right–justifies and fills with leading zeros if the first
nonblank character is a digit and the –L flag has not
been set. If the n parameter has a nonzero value, it
defines the width of the field; otherwise, it is determined
by the width of the value of its first assignment.

–f Indicates that the names refer to function, rather than
parameter, names. No assignments can be made and
the only other valid flags are –t, –u, and –x. The –t flag
turns on execution tracing for this function. The –u flag
causes this function to be marked undefined. The FPATH
variable is searched to find the function definition when
the function is referenced. The –x flag allows the function
definition to remain in effect across shell scripts that are
not a separate invocation of the ksh command.

–i Identifies the parameter as an integer, making arithmetic
faster. If the n parameter has a nonzero value, it defines
the output arithmetic base; otherwise, the first
assignment determines the output base.

–l Converts all uppercase characters to lowercase. The –u
uppercase conversion flag is turned off.

–r Marks the names specified by the Name parameter as
read–only. These names cannot be changed by
subsequent assignment.

12-45 Shells

–t Tags the named parameters. Tags can be defined by the
user and have no special meaning to the shell.

–u Converts all lowercase characters to uppercase
characters. The –l lowercase flag is turned off.

–x Marks the name specified by the Name parameter for
automatic export to the environment of subsequently
executed commands.

Using a + rather than a – turns off the typeset
command flags. If you do not specify Name parameters
but do specify flags, a list of names (and optionally the
values) of the parameters that have these flags set is
printed. (Using a + rather than a – keeps the values
from being printed.) If you do not specify any names or
flags, the names and attributes of all parameters are
printed.

unset [–fv] Name... Unsets the values and attributes of the parameters given
by the list of names. If –v is specified, Name refers to a
variable name, and the shell will unset it and remove it from
the environment. Read–only variables cannot be unset.
Unsetting the ERRNO, LINENO, MAILCHECK, OPTARG,
OPTIND, RANDOM, SECONDS, TMOUT, and underscore
(_) variables removes their special meanings even if they
are subsequently assigned.

If the –f flag is set, then Name refers to a function name,
and the shell will unset the function definition.

Regular Built–in Command Descriptions
The Korn Shell provides the following regular built–in commands:
 alias on page 12-45 fg on page 12-46 print ulimit on page 12-49 bg on page
12-45 getopts on page 12-46 pwd umask on page 12-50 cd on page 12-46 jobs on
page 12-47 read unalias on page 12-50 command on page 12-46 kill on page 12-47
setgroups wait on page 12-50 echo on page 12-46 let on page 12-39 test whence
on page 12-50 fc on page 12-46

alias [–t] [–x] [AliasName
[= String]] ...

Creates or redefines alias definitions or writes existing alias
definitions to standard output.

For more information, refer to the alias command in the
AIX 5L Version 5.2 Commands Reference.

bg [JobID...] Puts each specified job into the background. The current
job is put in the background if a JobID parameter is not
specified. Refer to Job Control in the Korn Shell or POSIX
Shell on page 12-55 for more information about job control.

For more information about running jobs in the background,
refer to the bg command in the AIX 5L Version 5.2
Commands Reference.

cd [Argument]

12-46 AIX System User’s Guide – OS & Devices

cd Old New This command can be in either of two forms. In the first
form, it changes the current directory to the one specified
by the Argument parameter. If the value of the Argument
parameter is –, the directory is changed to the previous
directory. The HOME shell variable is the default value of
the Argument parameter. The PWD variable is set to the
current directory.

The CDPATH shell variable defines the search path for the
directory containing the value of the Argument parameter.
Alternative directory names are separated by a :. The
default path is null, specifying the current directory. The
current directory is specified by a null path name, which
appears immediately after the equal sign or between the
colon delimiters anywhere in the path list. If the specified
argument begins with a /, the search path is not used.
Otherwise, each directory in the path is searched for the
argument.

The second form of the cd command substitutes the string
specified by the New variable for the string specified by the
Old variable in the current directory name, PWD, and tries
to change to this new directory.

command [–p]
CommandName [
Argument...]

command [–v | –V]
CommandName

Causes the shell to treat the specified command and
arguments as a simple command, suppressing
shell–function lookup.

For more information, refer to the command command in
the AIX 5L Version 5.2 Commands Reference.

echo [String...] Writes character strings to standard output. Refer to the
echo command for usage and description. The –n flag is
not supported.

fc [–r] [–e Editor] [First [
Last]]

fc –l [–n] [–r] [First [Last
]]

fc –s [Old = New] [First] Displays the contents of your command history file or
invokes an editor to modify and re–executes commands
previously entered in the shell.

For more information, refer to the fc command in the AIX
5L Version 5.2 Commands Reference.

fg [JobID] Brings each job specified into the foreground. If you do not
specify any jobs, the command brings the current job into
the foreground.

For more information about running jobs in the foreground,
refer to the fg command in the AIX 5L Version 5.2
Commands Reference.

getopts OptionString Name
[Argument...]

Checks the Argument parameter for legal options.

For more information, refer to the getopts command in the
AIX 5L Version 5.2 Commands Reference.

12-47 Shells

jobs [–l | –n | –p] [
JobID...]

Displays the status of jobs started in the current shell
environment. If no specific job is specified with the JobID
parameter, status information for all active jobs is
displayed. If a job termination is reported, the shell
removes that job’s process ID from the list of those known
by the current shell environment.

For more information, refer to the jobs command in the AIX
5L Version 5.2 Commands Reference.

kill [–s { SignalName |
SignalNumber }]
ProcessID...

Sends a signal (by default, the SIGTERM signal) to a
running process. This default action normally stops
processes. If you want to stop a process, specify the
process ID (PID) in the ProcessID variable. The shell
reports the PID of each process that is running in the

kill [–SignalName |
–SignalNumber]
ProcessID...

reports the PID of each process that is running in the
background (unless you start more than one process in a
pipeline, in which case the shell reports the number of the
last process). You can also use the ps command to find the
process ID number of commands.

kill –l [ExitStatus] Lists signal names.

For more information, refer to the kill command in the AIX
5L Version 5.2 Commands Reference.

let Expression... Evaluates specified arithmetic expressions. The exit status
is 0 if the value of the last expression is nonzero, and 1
otherwise. Refer to Arithmetic Evaluation in the Korn Shell
or POSIX Shell on page 12-29 for more information.

print [–Rnprsu [n]] [
Argument...]

Prints shell output. If you do not specify any flags, or if the
hyphen (–) or double hyphen (––) flags are specified, the
arguments are printed to standard output as described by
the echo command. The flags do the following:

–R Prints in raw mode (the escape conventions of the echo
command are ignored). The –R Flag prints all
subsequent arguments and flags other than –n.

–n Prevents a new–line character from being added to the
output.

–p Writes the arguments to the pipe of the process run with
|& instead of to standard output.

–r Prints in raw mode. The escape conventions of the echo
command are ignored.

–s Writes the arguments to the history file instead of to
standard output.

–u Specifies a one–digit file descriptor unit number, n, on
which the output is placed. The default is 1.

pwd

Equivalent to print –r – $PWD.

Note: The internal Korn shell pwd command does not
support symbolic links.

read [–prsu [n]] [
Name?Prompt] [Name...]

Takes shell input. One line is read and broken up into
fields, using the characters in the IFS variable as
separators.

For more information, refer to the read command in the
AIX 5L Version 5.2 Commands Reference.

12-48 AIX System User’s Guide – OS & Devices

setgroups Executes the /usr/bin/setgroups command, which runs as
a separate shell. See the setgroups command for
information on this command. There is one difference,
however. The setgroups built–in command invokes a
subshell, but the setgroups command replaces the
currently executing shell. Because the built–in command is
supported only for compatibility, it is recommended that
scripts use the absolute path name /usr/bin/setgroups
rather than the shell built–in command.

test Same as [expression]. See Conditional Expressions for
the Korn Shell or POSIX Shell on page 12-53 for usage
and description.

12-49 Shells

ulimit [–HSacdfmst] [Limit
]

Sets or displays user–process resource limits as defined in
the /etc/security/limits file. This file contains the following
default limits:

fsize = 2097151

 core = 2048

 cpu = 3600

 data = 131072

 rss = 65536

 stack = 8192

These values are used as default settings when a user is
added to the system. The values are set with the mkuser
command when the user is added to the system, or
changed with the chuser command.

Limits are categorized as either soft or hard. Users might
change their soft limits, up to the maximum set by the hard
limits, with the ulimit command. You must have root user
authority to change resource hard limits.

Many systems do not contain one or more of these limits.
The limit for a specified resource is set when the Limit
parameter is specified. The value of the Limit parameter
can be a number in the unit specified with each resource,
or the value unlimited. You can specify the following
ulimit command flags:

–H Specifies that the hard limit for the given resource is set.
If you have root user authority, you can increase the hard
limit. Any user can decrease it.

–S Specifies that the soft limit for the given resource is set.
A soft limit can be increased up to the value of the hard
limit. If neither the –H or –S options are specified, the
limit applies to both.

–a Lists all of the current resource limits.

–c Specifies the number of 512–byte blocks on the size of
core dumps.

–d Specifies the size, in KB, of the data area.

–f Specifies the number of 512–byte blocks for files written
by child processes (files of any size can be read).

–m Specifies the number of KB for the size of physical
memory.

–n Specifies the limit on the number of file descriptors a
process might have open.

–s Specifies the number of KB for the size of the stack
area.

–t Specifies the number of seconds to be used by each
process.

12-50 AIX System User’s Guide – OS & Devices

The current resource limit is printed when you omit the
Limit variable. The soft limit is printed unless you specify
the –H flag. When you specify more than one resource, the
limit name and unit is printed before the value. If no option
is given, the –f flag is assumed. When you change the
value, set both hard and soft limits to Limit unless you
specify –H or –S.

For more information about user and system resource
limits, refer to the getrlimit, setrlimit, or vlimit subroutine
in the AIX 5L Version 5.2 Technical Reference: Base
Operating System and Extensions Volume 1.

umask [–S] [Mask] Determines file permissions. This value, along with the
permissions of the creating process, determines a file’s
permissions when the file is created. The default is 022. If
the Mask parameter is not specified, the umask command
displays to standard output the file–mode creation mask of
the current shell environment.

For more information about file permissions, refer to the
umask command in the AIX 5L Version 5.2 Commands
Reference.

unalias { –a |
AliasName... }

Removes the definition for each alias name specified, or
removes all alias definitions if the –a flag is used. Alias
definitions are removed from the current shell environment.

For more information, refer to the unalias command in the
AIX 5L Version 5.2 Commands Reference.

wait [ProcessID...] Waits for the specified job and terminates. If you do not
specify a job, the command waits for all currently active
child processes. The exit status from this command is that
of the process for which it waits.

For more information, refer to the wait command in the AIX
5L Version 5.2 Commands Reference.

whence [–pv] Name... Indicates, for each name specified, how it would be
interpreted if used as a command name. When used
without either flag, whence will display the absolute path
name, if any, that corresponds to each name.

–p Does a path search for the specified name or names
even if these are aliases, functions, or reserved words.

–v Produces a more verbose report that specifies which
type each name is.

12-51 Shells

List of Korn Shell or POSIX Shell Built–in Commands

Special Built–in Commands

: (colon) Expands only arguments.

. (dot) Reads a specified file and then executes
the commands.

 break on page 12-38 Exits from the enclosing for, while, until, or
select loop, if one exists.

 continue on page 12-39 Resumes the next iteration of the enclosing
for, while, until, or select loop.

 eval on page 12-39 Reads the arguments as input to the shell
and executes the resulting command or
commands.

 exec on page 12-39 Executes the command specified by the
Argument parameter, instead of this shell,
without creating a new process.

 exit on page 12-39 Exits the shell whose exit status is specified
by the n parameter.

 export on page 12-39 Marks names for automatic export to the
environment of subsequently executed
commands.

 newgrp on page 12-39 Equivalent to the exec /usr/bin/newgrp [
Group...] command.

 readonly on page 12-39 Marks the specified names read–only.

 return on page 12-39 Causes a shell to return to the invoking
script.

 set on page 12-40 Unless options or arguments are specified,
writes the names and values of all shell
variables in the collation sequence of the
current locale.

 shift on page 12-42 Renames positional parameters.

 times on page 12-42 Prints the accumulated user and system
times for both the shell and the processes
run from the shell.

 trap on page 12-43 Runs a specified command when the shell
receives a specified signal or signals.

 typeset on page 12-44 Sets attributes and values for shell
parameters.

 unset on page 12-45 Unsets the values and attributes of the
specified parameters.

Regular Built–in Commands

 alias Prints a list of aliases to standard output.

 bg on page 12-45 Puts specified jobs in the background.

12-52 AIX System User’s Guide – OS & Devices

 cd on page 12-46 Changes the current directory to the
specified directory or substitutes the current
string with the specified string.

 echo on page 12-46 Writes character strings to standard output.

 fc on page 12-46 Selects a range of commands from the last
HISTSIZE variable command typed at the
terminal. Re–executes the specified
command after old–to–new substitution is
performed.

 fg on page 12-46 Brings the specified job to the foreground.

 getopts on page 12-46 Checks the Argument parameter for legal
options.

 jobs on page 12-47 Lists information for the specified jobs.

 kill Sends the TERM (terminate) signal to
specified jobs or processes.

 let on page 12-39 Evaluates specified arithmetic expressions.

 print on page 12-46 Prints shell output.

 pwd on page 12-47 Equivalent to the print –r –$PWD
command.

 read on page 12-47 Takes shell input.

 ulimit on page 12-49 Sets or displays user process resource
limits as defined in the /etc/security/limits
file.

 umask on page 12-50 Determines file permissions.

 unalias Removes the parameters in the list of
names from the alias list.

 wait on page 12-50 Waits for the specified job and terminates.

 whence on page 12-50 Indicates how each specified name would
be interpreted if used as a command name.

For more information, see Korn Shell or POSIX Shell Built–In Commands on page 12-38.

12-53 Shells

Conditional Expressions for the Korn Shell or POSIX Shell
A conditional expression is used with the [[compound command to test attributes of files
and to compare strings. Word splitting and file name substitution are not performed on
words appearing between [[and]]. Each expression is constructed from one or more of the
following unary or binary expressions:

–a File True, if the specified file is a symbolic link
that points to another file that does exist.

–b File True, if the specified file exists and is a
block special file.

–c File True, if the specified file exists and is a
character special file.

–d File True, if the specified file exists and is a
directory.

–e File True, if the specified file exists.

–f File True, if the specified file exists and is an
ordinary file.

–g File True, if the specified file exists and its
setgid bit is set.

–h File True, if the specified file exists and is a
symbolic link.

–k File True, if the specified file exists and its sticky
bit is set.

–n String True, if the length of the specified string is
nonzero.

–o Option True, if the specified option is on.

–p File True, if the specified file exists and is a
FIFO special file or a pipe.

–r File True, if the specified file exists and is
readable by the current process.

–s File True, if the specified file exists and has a
size greater than 0.

–t FileDescriptor True, if specified file descriptor number is
open and associated with a terminal device.

–u File True, if the specified file exists and its
setuid bit is set.

–w File True, if the specified file exists and the write
bit is on. However, the file will not be
writable on a read–only file system even if
this test indicates true.

–x File True, if the specified file exists and the
execute flag is on. If the specified file exists
and is a directory, then the current process
has permission to search in the directory.

–z String True, if length of the specified string is 0.

–L File True, if the specified file exists and is a
symbolic link.

–O File True, if the specified file exists and is owned
by the effective user ID of this process.

12-54 AIX System User’s Guide – OS & Devices

–G File True, if the specified file exists and its group
matches the effective group ID of this
process.

–S File True, if the specified file exists and is a
socket.

File1 –nt File2 True, if File1 exists and is newer than File2.

File1 –ot File2 True, if File1 exists and is older than File2.

File1 –ef File2 True, if File1 and File2 exist and refer to the
same file.

String1 = String2 True, if String1 is equal to String2.

String1 != String2 True, if String1 is not equal to String2.

String = Pattern True, if the specified string matches the
specified pattern.

String != Pattern True, if the specified string does not match
the specified pattern.

String1 < String2 True, if String1 comes before String2 based
on the ASCII value of their characters.

String1 > String2 True, if String1 comes after String2 based
on the ASCII value of their characters.

Expression1 –eq Expression2 True, if Expression1 is equal to
Expression2.

Expression1 –ne Expression2 True, if Expression1 is not equal to
Expression2.

Expression1 –lt Expression2 True, if Expression1 is less than
Expression2.

Expression1 –gt Expression2 True, if Expression1 is greater than
Expression2.

Expression1 –le Expression2 True, if Expression1 is less than or equal to
Expression2.

Expression1 –ge Expression2 True, if Expression1 is greater than or equal
to Expression2.

Note: In each of the previous expressions, if the File variable is similar to /dev/fd/ n,
where n is an integer, then the test is applied to the open file whose descriptor number
is n.

You can construct a compound expression from these primitives, or smaller parts, by using
any of the following expressions, listed in decreasing order of precedence:

(Expression) True, if the specified expression is true.
Used to group expressions.

! Expression True, if the specified expression is false.

Expression1 && Expression2 True, if Expression1 and Expression2 are
both true.

Expression1 || Expression2 True, if either Expression1 or Expression2 is
true.

12-55 Shells

Job Control in the Korn Shell or POSIX Shell

The Korn shell, or POSIX shell, provides a facility to control command sequences, or jobs.
When you execute the set on page 12-40 –m special command, the Korn shell associates a
job with each pipeline. It keeps a table of current jobs, printed by the jobs command, and
assigns them small integer numbers.

When a job is started in the background with an &, the shell prints a line that looks like the
following:

[1] 1234

This output indicates that the job, which was started in the background, was job number 1. It
also shows that the job had one (top–level) process with a process ID of 1234.

If you are running a job and want to do something else, use the Ctrl–Z key sequence. This
key sequence sends a STOP signal to the current job. The shell normally indicates that the
job has been stopped and then displays a shell prompt. You can then manipulate the state
of this job (putting it in the background with the bg command), run other commands, and
then eventually return the job to the foreground with the fg command. The Ctrl–Z key
sequence takes effect immediately, and is like an interrupt in that the shell discards pending
output and unread input when you type the sequence.

A job being run in the background stops if it tries to read from the terminal. Background jobs
are normally allowed to produce output. You can disable this option by issuing the stty
tostop command. If you set this terminal option, then background jobs stop when they try to
produce output or read input.

You can refer to jobs in the Korn shell in several ways. A job is referenced by the process ID
of any of its processes, or in one of the following ways:

% Number Specifies the job with the given number

% String Specifies any job whose command line
begins with the String variable

%? String Specifies any job whose command line
contains the String variable

%% Specifies the current job

%+ Equivalent to %%

%– Specifies the previous job

This shell immediately recognizes changes in the process state. It normally informs you
whenever a job becomes blocked so that no further progress is possible. The shell does this
just before it prints a prompt so that it does not otherwise disturb your work.

When the monitor mode is on, each completed background job triggers traps set for the
CHLD signal.

If you try to leave the shell (either by typing exit or using the Ctrl–D key sequence) while
jobs are stopped or running, the system warns you with the message There are
stopped (running) jobs. Use the jobs command to see which jobs are affected. If
you immediately try to exit again, the shell terminates the stopped and running jobs without
warning.

Signal Handling

12-56 AIX System User’s Guide – OS & Devices

The SIGINT and SIGQUIT signals for an invoked command are ignored if the command is
followed by & and the job monitor option is not active. Otherwise, signals have the values
that the shell inherits from its parent.

When a signal for which a trap has been set is received while the shell is waiting for the
completion of a foreground command, the trap associated with that signal will not be
executed until after the foreground command has completed. Therefore, a trap on a CHILD
signal is not performed until the foreground job terminates.

12-57 Shells

Inline Editing in the Korn Shell or POSIX Shell
Normally, you type each command line from a terminal device and follow it by a new–line
character (RETURN or LINE FEED). When you activate the emacs, gmacs, or vi inline
editing option, you can edit the command line.

The following commands enter edit modes:

set –o emacs Enters emacs editing mode and initiates an
emacs–style inline editor. For more
information, see emacs Editing Mode on
page 12-57.

set –o gmacs Enters emacs editing mode and initiates a
gmacs–style inline editor. For more
information, see emacs Editing Mode on
page 12-57.

set –o vi Enters vi editing mode and initiates a
vi–style inline editor. For more information,
see vi Editing Mode on page 12-60.

An editing option is automatically selected each time the VISUAL or EDITOR variable is
assigned a value that ends in any of these option names.

Note: To use the editing features, your terminal must accept RETURN as a carriage
return without line feed. A space must overwrite the current character on the screen.

Each editing mode opens a window at the current line. The window width is the value of the
COLUMNS variable if it is defined; otherwise, the width is 80 character spaces. If the line is
longer than the window width minus two, the system notifies you by displaying a mark at the
end of the window. As the cursor moves and reaches the window boundaries, the window is
centered about the cursor. The marks displayed are as follows:

> Indicates that the line extends on the right
side of the window.

< Indicates that the line extends on the left
side of the window.

* Indicates that the line extends on both sides
of the window.

The search commands in each edit mode provide access to the Korn shell history file. Only
strings are matched. If the leading character in the string is a ^, the match must begin at the
first character in the line.

emacs Editing Mode
The emacs editing mode is entered when you enable either the emacs or gmacs option.
The only difference between these two modes is the way each handles the Ctrl–T edit
command. To edit, move the cursor to the point needing correction and insert or delete
characters or words, as needed. All of the editing commands are control characters or
escape sequences.

Edit commands operate from any place on a line (not only at the beginning). Do not press
the Enter key or line–feed (Down Arrow) key after edit commands, except as noted.

12-58 AIX System User’s Guide – OS & Devices

Ctrl–F Moves the cursor forward (right) one
character.

Esc–F Moves the cursor forward one word (a string
of characters consisting of only letters,
digits, and underscores).

Ctrl–B Moves the cursor backward (left) one
character.

Esc–B Moves the cursor backward one word.

Ctrl–A Moves the cursor to the beginning of the
line.

Ctrl–E Moves the cursor to the end of the line.

Ctrl–] c Moves the cursor forward on the current line
to the indicated character.

Esc–Ctrl–] c Moves the cursor backward on the current
line to the indicated character.

Ctrl–X Ctrl–X Interchanges the cursor and the mark.

ERASE Deletes the previous character.
(User–defined erase character as defined
by the stty command, usually the Ctrl–H
key sequence.)

Ctrl–D Deletes the current character.

Esc–D Deletes the current word.

Esc–Backspace Deletes the previous word.

Esc–H Deletes the previous word.

Esc–Delete Deletes the previous word. If your interrupt
character is the Delete key, this command
does not work.

Ctrl–T Transposes the current character with the
next character in emacs mode. Transposes
the two previous characters in gmacs mode.

Ctrl–C Capitalizes the current character.

Esc–C Capitalizes the current word.

Esc–L Changes the current word to lowercase.

Ctrl–K Deletes from the cursor to the end of the
line. If preceded by a numeric parameter
whose value is less than the current cursor
position, this editing command deletes from
the given position up to the cursor. If
preceded by a numeric parameter whose
value is greater than the current cursor
position, this editing command deletes from
the cursor up to the given cursor position.

Ctrl–W Deletes from the cursor to the mark.

Esc–P Pushes the region from the cursor to the
mark on the stack.

12-59 Shells

KILL User–defined kill character as defined by
the stty command, usually the Ctrl–G key
sequence or an @. Kills the entire current
line. If two kill characters are entered in
succession, all subsequent kill characters
cause a line feed (useful when using paper
terminals).

Ctrl–Y Restores the last item removed from the
line. (Yanks the item back to the line.)

Ctrl–L Line feeds and prints the current line.

Ctrl–@ (Null character) Sets a mark.

Esc–space Sets a mark.

Ctrl–J (New line) Executes the current line.

Ctrl–M (Return) Executes the current line.

EOF Processes the end–of–file character,
normally the Ctrl–D key sequence, as an
end–of–file only if the current line is null.

Ctrl–P Fetches the previous command. Each time
the Ctrl–P key sequence is entered, the
previous command back in time is
accessed. Moves back one line when not
on the first line of a multiple–line command.

Esc–< Fetches the least recent (oldest) history
line.

Esc–> Fetches the most recent (youngest) history
line.

Ctrl–N Fetches the next command line. Each time
the Ctrl–N key sequence is entered, the
next command line forward in time is
accessed.

Ctrl–R String Reverses search history for a previous
command line containing the string
specified by the String parameter. If a value
of 0 is given, the search is forward. The
specified string is terminated by an Enter or
new–line character. If the string is preceded
by a ^, the matched line must begin with the
String parameter. If the String parameter is
omitted, then the next command line
containing the most recent String parameter
is accessed. In this case, a value of 0
reverses the direction of the search.

Ctrl–O (Operate) Executes the current line and
fetches the next line relative to the current
line from the history file.

Esc Digits (Escape) Defines the numeric parameter.
The digits are taken as a parameter to the
next command. The commands that accept
a parameter are Ctrl–F, Ctrl–B, ERASE,
Ctrl–C, Ctrl–D, Ctrl–K, Ctrl–R, Ctrl–P,
Ctrl–N, Ctrl–], Esc–., Esc–Ctrl–], Esc–_,
Esc–B, Esc–C, Esc–D, Esc–F, Esc–H,
Esc–L, and Esc–Ctrl–H.

12-60 AIX System User’s Guide – OS & Devices

Esc Letter (Soft–key) Searches the alias list for an
alias named _Letter. If an alias of this name
is defined, its value is placed into the input
queue. The Letter parameter must not
specify one of the escape functions.

Esc–[Letter (Soft–key) Searches the alias list for an
alias named double underscore Letter
(__Letter). If an alias of this name is
defined, its value is placed into the input
queue. This command can be used to
program function keys on many terminals.

Esc–. Inserts on the line the last word of the
previous command. If preceded by a
numeric parameter, the value of this
parameter determines which word to insert
rather than the last word.

Esc–_ Same as the Esc–. key sequence.

Esc–* Attempts file–name substitution on the
current word. An asterisk is appended if the
word does not match any file or contain any
special pattern characters.

Esc–Esc File–name completion. Replaces the current
word with the longest common prefix of all
file names that match the current word with
an asterisk appended. If the match is
unique, a / is appended if the file is a
directory and a space is appended if the file
is not a directory.

Esc–= Lists the files that match the current word
pattern as if an asterisk were appended.

Ctrl–U Multiplies the parameter of the next
command by 4.

\ Escapes the next character. Editing
characters and the ERASE, KILL and
INTERRUPT (normally the Delete key)
characters can be entered in a command
line or in a search string if preceded by a \.
The backslash removes the next character’s
editing features, if any.

Ctrl–V Displays the version of the shell.

Esc–# Inserts a # at the beginning of the line and
then executes the line. This causes a
comment to be inserted in the history file.

vi Editing Mode
The vi editing mode has two typing modes. When you enter a command, you are in Input
mode. To edit, you must enter the Control mode by pressing the Esc key.

Most control commands accept an optional repeat Count parameter prior to the command.
When in vi mode on most systems, canonical processing is initially enabled. The command
is echoed again if one or more of the following are true:

• The speed is 1200 baud or greater.

• The command contains any control characters.

12-61 Shells

• Less than one second has elapsed since the prompt was printed.

The Esc character terminates canonical processing for the remainder of the command, and
you can then modify the command line. This scheme has the advantages of canonical
processing with the type–ahead echoing of raw mode. If the viraw option is also set,
canonical processing is always disabled. This mode is implicit for systems that do not
support two alternate end–of–line delimiters and might be helpful for certain terminals.

Available vi edit commands are grouped into catagories. The categories are as follows:

• Input Edit Commands on page 12-61

• Motion Edit Commands on page 12-61

• Search Edit Commands on page 12-62

• Text–Modification Edit Commands on page 12-62

• Miscellaneous Edit Commands on page 12-64

Input Edit Commands
Note: By default, the editor is in input mode.

ERASE (User–defined erase character as defined
by the stty command, usually Ctrl–H or #.)
Deletes the previous character.

Ctrl–W Deletes the previous blank separated word.

Ctrl–D Terminates the shell.

Ctrl–V Escapes the next character. Editing
characters, such as the ERASE or KILL
characters, can be entered in a command
line or in a search string if preceded by a
Ctrl–V key sequence. The Ctrl–V key
sequence removes the next character’s
editing features (if any).

\ Escapes the next ERASE or KILL character.

Motion Edit Commands
Motion edit commands move the cursor as follows:

[Count] l Moves the cursor forward (right) one
character.

[Count] w Moves the cursor forward one alphanumeric
word.

[Count] W Moves the cursor to the beginning of the
next word that follows a blank.

[Count] e Moves the cursor to the end of the current
word.

[Count] E Moves the cursor to the end of the current
blank–separated word.

[Count] h Moves the cursor backward (left) one
character.

[Count] b Moves the cursor backward one word.

[Count] B Moves the cursor to the previous
blank–separated word.

[Count] | Moves the cursor to the column specified by
the Count parameter.

12-62 AIX System User’s Guide – OS & Devices

[Count] f c Finds the next character c in the current
line.

[Count] F c Finds the previous character c in the current
line.

[Count] t c Equivalent to f followed by h.

[Count] T c Equivalent to F followed by l.

[Count]; Repeats for the number of times specified
by the Count parameter the last
single–character find command: f, F, t, or T.

[Count], Reverses the last single–character find
command the number of times specified by
the Count parameter.

0 Moves the cursor to the start of a line.

^ Moves the cursor to the first nonblank
character in a line.

$ Moves the cursor to the end of a line.

Search Edit Commands
Search edit commands access your command history, as follows:

[Count] k Fetches the previous command.

[Count] – Equivalent to the k command.

[Count] j Fetches the next command. Each time the j
command is entered, the next command is
accessed.

[Count] + Equivalent to the j command.

[Count] G Fetches the command whose number is
specified by the Count parameter. The
default is the least recent history command.

/ String Searches backward through history for a
previous command containing the specified
string. The string is terminated by a
RETURN or newline character. If the
specified string is preceded by a ^, the
matched line must begin with the String
parameter. If the value of the String
parameter is null, the previous string is
used.

? String Same as / String except that the search is in
the forward direction.

n Searches for the next match of the last
pattern to / String or ? commands.

N Searches for the next match of the last
pattern to / String or ? commands, but in the
opposite direction. Searches history for the
string entered by the previous / String
command.

Text–Modification Edit Commands
Text–modification edit commands modify the line as follows:

12-63 Shells

a Enters the input mode and enters text after
the current character.

A Appends text to the end of the line.
Equivalent to the $a command.

[Count] c Motion

c [Count] Motion Deletes the current character through the
character to which the Motion parameter
specifies to move the cursor, and enters
input mode. If the value of the Motion
parameter is c, the entire line is deleted and
the input mode is entered.

C Deletes the current character through the
end of the line and enters input mode.
Equivalent to the c$ command.

S Equivalent to the cc command.

D Deletes the current character through the
end of line. Equivalent to the d$ command.

[Count] d Motion

d [Count] Motion Deletes the current character up to and
including the character specified by the
Motion parameter. If Motion is d, the entire
line is deleted.

i Enters the input mode and inserts text
before the current character.

I Inserts text before the beginning of the line.
Equivalent to the 0i command.

[Count] P Places the previous text modification before
the cursor.

[Count] p Places the previous text modification after
the cursor.

R Enters the input mode and types over the
characters on the screen.

[Count] r c Replaces the number of characters
specified by the Count parameter, starting
at the current cursor position, with the
characters specified by the c parameter.
This command also advances the cursor
after the characters are replaced.

[Count] x Deletes the current character.

[Count] X Deletes the preceding character.

[Count]. Repeats the previous text–modification
command.

[Count]~ Inverts the case of the number of characters
specified by the Count parameter, starting
at the current cursor position, and advances
the cursor.

[Count] _ Appends the word specified by the Count
parameter of the previous command and
enters input mode. The last word is used if
the Count parameter is omitted.

12-64 AIX System User’s Guide – OS & Devices

* Appends an * to the current word and
attempts file–name substitution. If no match
is found, it rings the bell. Otherwise, the
word is replaced by the matching pattern
and input mode is entered.

\ File name completion. Replaces the current
word with the longest common prefix of all
file names matching the current word with
an asterisk appended. If the match is
unique, a / is appended if the file is a
directory. A space is appended if the file is
not a directory.

Miscellaneous Edit Commands
The most commonly used edit commands include the following:

[Count] y Motion

y [Count] Motion Yanks the current character up to and
including the character marked by the
cursor position specified by the Motion
parameter and puts all of these characters
into the delete buffer. The text and cursor
are unchanged.

Y Yanks from the current position to the end
of the line. Equivalent to the y$ command.

u Undoes the last text–modifying command.

U Undoes all the text–modifying commands
performed on the line.

[Count] v Returns the command fc –e
${VISUAL:–${EDITOR:–vi}} Count in
the input buffer. If the Count parameter is
omitted, then the current line is used.

Ctrl–L Line feeds and prints the current line. This
command is effective only in control mode.

Ctrl–J (New line) Executes the current line,
regardless of the mode.

Ctrl–M (Return) Executes the current line,
regardless of the mode.

Sends the line after inserting a # in front of
the line. Useful if you want to insert the
current line in the history without executing
it.

If the command line contains a pipe or
semicolon or newline character, then
additional # s will be inserted in front of
each of these symbols. To delete all pound
signs, retrieve the command line from
history and enter another #.

12-65 Shells

= Lists the file names that match the current
word as if an asterisk were appended to it.

@ Letter Searches the alias list for an alias named
_Letter. If an alias of this name is defined,
its value is placed into the input queue for
processing.

12-66 AIX System User’s Guide – OS & Devices

Enhanced Korn Shell (ksh93)
In addition to the default system Korn shell (/usr/bin/ksh), AIX provides an enhanced
version available as /usr/bin/ksh93. This enhanced version is upwardly compatible with the
current default version, and includes a few additional features that are not available in
/usr/bin/ksh.

The following features are available in /usr/bin/ksh93:

Arithmetic Enhancements

You can use libm functions (math functions
typically found in the C programming
language), within arithmetic expressions,
such as $ value=$((sqrt(9))). More
arithmetic operators are available, including
the unary +, ++, ––, and the ?: construct
(for example, ” x ? y : z ”), as well as
the, (comma) operator. Arithmetic bases
are supported up to base 64. Floating point
arithmetic is also supported. ” typeset –E
” (exponential) can be used to specify the
number of significant digits and ” typeset
–F ” (float) can be used to specify the
number of decimal places for an arithmetic
variable. The SECONDS variable now
displays to the nearest hundredth of a
second, rather than to the nearest second.

Compound Variables

Compound variables are supported. A
compound variable allows a user to specify
multiple values within a single variable
name. The values are each assigned with a
subscript variable, separated from the
parent variable with a. (period). For
example:

$ myvar=(x=1 y=2)

 $ print ”${myvar.x}”

 1

Compound Assignments

Compound assignments are supported
when initializing arrays, both for indexed
arrays and associative arrays. The
assignment values are placed in
parentheses, as shown in the following
example:

$ numbers=(zero one two three)

 $ print ${numbers[0]} ${numbers[3]}

 zero three

12-67 Shells

Associative Arrays An associative array is an array with a string
as an index.

The typeset command used with the –A
flag allows you to specify associative arrays
within ksh93. For example:

$ typeset –A teammates

 $ teammates=([john]=smith

[mary]=jones)

 $ print ${teammates[mary]}

 jones

Variable Name References

The typeset command used with the –n
flag allows you to assign one variable name
as a reference to another. In this way,
modifying the value of a variable will in turn
modify the value of the variable that is
referenced. For example:

$ greeting=”hello”

 $ typeset –n welcome=greeting #

establishes the reference

 $ welcome=”hi there” #

overrides previous value

 $ print $greeting

 hi there

Parameter Expansions

The following parameter–expansion
constructs are available:

• ${!varname} is the name of the
variable itself.

• ${! varname [@]} names the indexes
for the varname array.

• ${ param: offset } is a substring of
param, starting at offset.

• ${param:offset:num} is a substring
of param, starting at offset, for num
number of characters.

• ${@: offset } indicates all positional
parameters starting at offset.

• ${@: offset: num } indicates num
positional parameters starting at offset.

• ${ param / pattern / repl }

evaluates to param, with the first
occurrence of pattern replaced by repl.

• ${ param // pattern / repl }

evaluates to param, with every
occurrence of pattern replaced by repl.

• ${ param / #pattern / repl } if
param begins with pattern, then param is
replaced by repl.

• ${ param /% pattern / repl } if
param ends with pattern, then param is
replaced by repl.

12-68 AIX System User’s Guide – OS & Devices

Discipline Functions

A discipline function is a function that is
associated with a specific variable. This
allows you to define and call a function
every time that variable is referenced, set,
or unset. These functions take the form of
varname.function, where varname is the
name of the variable and function is the
discipline function. The predefined discipline
functions are get, set, and unset.

• The varname.get function is invoked
every time varname is referenced. If the
special variable.sh.value is set within this
function, then the value of varname is
changed to this value. A simple example
is the time of day:

$ function time.get

 > {

 > .sh.value=$(date +%r)

 > }

 $ print $time

 09:15:58 AM

 $ print $time # it will change

in a few seconds

 09:16:04 AM

• The varname.set function is invoked
every time varname is set. The.sh.value
variable is given the value that was
assigned. The value assigned to varname
is the value of.sh.value when the function
completes. For example:

$ function adder.set

 > {

 > let .sh.value=”

 $ {.sh.value} + 1”

 > }

 $ adder=0

 $ echo $adder

 1

 $ adder=$adder

 $ echo $adder

 2

• The varname.unset function is executed
every time varname is unset. The variable
is not actually unset unless it is unset
within the function itself; otherwise it
retains its value.

Within all discipline functions, the special
variable.sh.name is set to the name of the
variable, while.sh.subscript is set to the
value of the variables subscript, if
applicable.

Function Environments

Functions declared with the function
myfunc format are executed in a separate
function environment. Functions declared
as myfunc () execute with the same
environment as the parent shell.

12-69 Shells

Variables

Variables beginning with.sh. are reserved
by the shell and have special meaning. See
the description of Discipline Functions on
page 12-68 in this table for an explanation
of.sh.name,.sh.value, and.sh.subscript.
Also available is.sh.version, which
represents the version of the shell.

Command Return Values

Return values of commands are as follows:

• If the command to be executed is not
found, the return value is set to 127.

• If the command to be executed is found,
but not executable, the return value is
126.

• If the command is executed, but is
terminated by a signal, the return value is
256 plus the signal number.

PATH Search Rules

Special built–in commands are searched for
first, followed by all functions (including
those in FPATH directories), followed by
other built–ins.

Shell History

The hist command allows you to display
and edit the shells command history. In the
ksh shell, the fc command was used. The
fc command is an alias to hist. Variables
are HISTCMD, which increments once for
each command executed in the shells
current history, and HISTEDIT, which
specifies which editor to use when using the
hist command.

12-70 AIX System User’s Guide – OS & Devices

Built–In Commands

The enhanced Korn shell contains the
following built–in commands:

• The builtin command lists all available
built–in commands.

• The printf command works in a similar
manner as the printf() C library routine.
Refer to the printf command.

• The disown blocks the shell from sending
a SIGHUP to the specified command.

• The getconf command works in the same
way as the stand–alone command
/usr/bin/getconf. Refer to the getconf
command.

• The read built–in command has the
following flags:

– read –d { char } allows you to specify a
character delimiter instead of the default
newline.

– read –t { seconds } allows you to
specify a time limit in seconds after
which the read command will time out.
If read times out, it will return FALSE.

• The exec built–in command has the
following flags:

– exec –a { name } { cmd } specifies that
argument 0 of cmd be replaced with
name.

– exec –c { cmd } tells exec to clear the
environment before executing cmd.

• The kill built–in command has the
following flags:

– kill –n { signum } is used for specifying
a signal number to send to a process,
while kill –s { signame } is used to
specify a signal name.

– kill –l, with no arguments, lists all signal
names but not their numbers.

• The whence built–in command has the
following flags:

– The –a flag displays all matches, not
only the first one found.

– The –f flag tells whence not to search
for any functions.

• An escape character sequence is used for
use by the print and echo commands.
The Esc (Escape) key can be represented
by the sequence \E.

• All regular built–in commands recognize
the –? flag, which shows the syntax for
the specified command.

12-71 Shells

12-72 AIX System User’s Guide – OS & Devices

Bourne Shell
The Bourne shell is an interactive command interpreter and command programming
language. The bsh command runs the Bourne shell.

The Bourne shell can be run either as a login shell or as a subshell under the login shell.
Only the login command can call the Bourne shell as a login shell. It does this by using a
special form of the bsh command name: –bsh. When called with an initial hyphen (–), the
shell first reads and runs commands found in the system /etc/profile file and your
$HOME/.profile, if one exists. The /etc/profile file sets variables needed by all users.
Finally, the shell is ready to read commands from your standard input.

If the File [Parameter] parameter is specified when the Bourne shell is started, the shell
runs the script file identified by the File parameter, including any parameters specified. The
script file specified must have read permission; any setuid and setgid settings are ignored.
The shell then reads the commands. If either the –c or –s flag is used, do not specify a
script.

Bourne Shell Environment
All variables (with their associated values) known to a command at the beginning of its
execution constitute its environment. This environment includes variables that a command
inherits from its parent process and variables specified as keyword parameters on the
command line that calls the command.

The shell passes to its child processes the variables named as arguments to the built–in
export command. This command places the named variables in the environments of both
the shell and all its future child processes.

Keyword parameters are variable–value pairs that appear in the form of assignments,
normally before the procedure name on a command line (but see also the flag for the set
command). These variables are placed in the environment of the procedure being called.

For example, consider the following procedure, which displays the values of two variables
(saved in a command file named key_command):

key_command

 echo $a $b

The following command lines produce the output shown:

Input Output

 a=key1 b=key2 key_command key1 key2

 a=tom b=john key_command tom john

A procedure’s keyword parameters are not included in the parameter count stored in $#.

A procedure can access the values of any variables in its environment. If it changes any of
these values, however, the changes are not reflected in the shell environment. The changes
are local to the procedure in question. To place the changes in the environment that the
procedure passes to its child processes, you must export the new values within that
procedure.

To obtain a list of variables that are exportable from the current shell, type:

export

Press Enter.

To obtain a list of read–only variables from the current shell, type:

readonly

Press Enter.

To obtain a list of variable–value pairs in the current environment, type:

env

12-73 Shells

Press Enter.

For more information about user environments, see /etc/environment File on page 11-3

12-74 AIX System User’s Guide – OS & Devices

Restricted Shell

The restricted shell is used to set up login names and execution environments whose
capabilities are more controlled than those of the regular Bourne shell. The Rsh or bsh –r
command opens the restricted shell. The behavior of these commands is identical to those
of the bsh command, except that the following actions are not allowed:

• Changing the directory (with the cd command)

• Setting the value of PATH or SHELL variables

• Specifying path or command names containing a slash (/)

• Redirecting output

If the restricted shell determines that a command to be run is a shell procedure, it uses the
Bourne shell to run the command. In this way, it is possible to provide an end user with shell
procedures that access the full power of the Bourne shell while imposing a limited menu of
commands. This situation assumes that the end user does not have write and execute
permissions in the same directory.

If the File [Parameter] parameter is specified when the Bourne shell is started, the shell
runs the script file identified by the File parameter, including any parameters specified. The
script file specified must have read permission. Any setuid and setgid settings for script
files are ignored. The shell then reads the commands. If using either the –c or –s flag is
used, do not specify a script file.

When started with the Rsh command, the shell enforces restrictions after interpreting
the.profile and /etc/environment files. Therefore, the writer of the.profile file has complete
control over user actions by performing setup actions and leaving the user in an appropriate
directory (probably not the login directory). An administrator can create a directory of
commands in the /usr/rbin directory that the Rsh command can use by changing the PATH
variable to contain the directory. If it is started with the bsh –r command, the shell applies
restrictions when interpreting the.profile files.

When called with the name Rsh, the restricted shell reads the user’s.profile file
($HOME/.profile). It acts as the regular Bourne shell while doing this, except that an
interrupt causes an immediate exit instead of a return to command level.

12-75 Shells

Bourne Shell Commands
When you issue a command in the Bourne shell, it first evaluates the command and makes
all indicated substitutions. It then runs the command provided that:

• The command name is a Bourne shell special built–in command.

OR

• The command name matches the name of a defined function. If this is the case, the shell
sets the positional parameters to the parameters of the function.

If the command name matches neither a built–in command nor the name of a defined
function and the command names an executable file that is a compiled (binary) program,
the shell (as parent) spawns a new (child) process that immediately runs the program. If the
file is marked executable but is not a compiled program, the shell assumes that it is a shell
procedure. In this case, the shell spawns another instance of itself (a subshell), to read the
file and execute the commands included in it. The shell also runs a parenthesized command
in a subshell. To the end user, a compiled program is run in exactly the same way as a shell
procedure. The shell normally searches for commands in file system directories, in this
order:

1. /usr/bin

2. /etc

3. /usr/sbin

4. /usr/ucb

5. $HOME/bin

6. /usr/bin/X11

7. /sbin

8. Current directory

The shell searches each directory, in turn, continuing with the next directory if it fails to find
the command.

Note: The PATH variable determines the order in which the shell searches directories.
You can change the particular sequence of directories searched by resetting the PATH
variable.

If you give a specific path name when you run a command (for example, /usr/bin/sort), the
shell does not search any directories other than the one you specify. If the command name
contains a slash (/), the shell does not use the search path.

You can give a full path name that begins with the root directory (such as /usr/bin/sort). You
can also specify a path name relative to the current directory. If you specify, for example:

bin/myfile

the shell looks in the current directory for a directory named bin and in that directory for
the file myfile.

Note: The restricted shell does not run commands containing a / (slash).

The shell remembers the location in the search path of each executed command (to avoid
unnecessary exec commands later). If it finds the command in a relative directory (one
whose name does not begin with /), the shell must redetermine the command’s location
whenever the current directory changes. The shell forgets all remembered locations each
time you change the PATH variable or run the hash –r command.

This section discusses the following:

• Quoting Characters on page 12-76

12-76 AIX System User’s Guide – OS & Devices

• Signal Handling on page 12-76

• Bourne Shell Built–In Commands on page 12-78

• Command Substitution in the Bourne Shell on page 12-85

Quoting Characters
Many characters have a special meaning to the shell. Sometimes you want to conceal that
meaning. Single (’) and double (”) quotation marks surrounding a string, or a backslash (\)
before a single character allow you to conceal the character’s meaning.

All characters (except the enclosing single quotation marks) are taken literally, with any
special meaning removed. Thus, the command:

stuff=’echo $? $*; ls * | wc’

assigns the literal string echo $? $*; ls * | wc to the variable stuff. The shell does
not execute the echo, ls, and wc commands or expand the $? and $* variables and the *
(asterisk) special character.

Within double quotation marks, the special meaning of the $ (dollar sign), ‘ (backquote),
and ” (double quotation) characters remains in effect, while all other characters are taken
literally. Thus, within double quotation marks, command and variable substitution takes
place. In addition, the quotation marks do not affect the commands within a command
substitution that is part of the quoted string, so characters there retain their special
meanings.

Consider the following sequence:

ls *

file1 file2 file3

message=”This directory contains ‘ls * ‘ ”

echo $message

This directory contains file1 file2 file3

This shows that the * (asterisk) special character inside the command substitution was
expanded.

To hide the special meaning of the $ (dollar sign), ‘ (backquote), and ” (double quotation)
characters within double quotation marks, precede these characters with a \ (backslash).
When you do not use double quotation marks, preceding a character with a backslash is
equivalent to placing it within single quotation marks. Hence, a backslash immediately
preceding a newline character (that is, a backslash at the end of the line) hides the newline
character and allows you to continue the command line on the next physical line.

Signal Handling
The shell ignores INTERRUPT and QUIT signals for an invoked command if the command
is terminated with an & (ampersand); that is, if it is running in the background. Otherwise,
signals have the values inherited by the shell from its parent, with the exception of the
SEGMENTATION VIOLATION signal. For more information, refer to the Bourne shell built–in
trap on page 12-83 command.

Bourne Shell Compound Commands
A compound command is one of the following:

• Pipeline (one or more simple commands separated by the | (pipe) symbol)

12-77 Shells

• List of simple commands

• Command beginning with a reserved word

• Command beginning with the control operator ((left parenthesis).

Unless otherwise stated, the value returned by a compound command is that of the last
simple command executed.

Reserved Words
The following reserved words are recognized only when they appear without quotation
marks as the first word of a command:

 for do done
 case esac
 if then fi
 elif else
 while until
 { }
 ()

for Identifier [in Word . . .] do List done Sets the Identifier parameter to the word or
words specified by the Word parameter
(one at a time) and runs the commands
specified in the List parameter. If you omit
in Word . . ., then the for command runs
the List parameter for each positional
parameter that is set, and processing ends
when all positional parameters have been
used.

case Word in Pattern [| Pattern] . . .)
List;; [Pattern [| Pattern] . . .) List;;].. .
esac

Runs the commands specified in the List
parameter that are associated with the first
Pattern parameter that matches the value of
the Word parameter. Uses the same
character–matching notation in patterns that
are used for file name substitution, except
that a / (slash), leading . (dot), or a dot
immediately following a slash do not need
to match explicitly.

if List then List [elif List then List] . . . [
else List] fi

Runs the commands specified in the List
parameter following the if command. If the
command returns a zero exit value, the
shell runs the List parameter following the
first then command. Otherwise, it runs the
List parameter following the elif command
(if it exists). If this exit value is zero, the
shell runs the List parameter following the
next then command. If the command
returns a non–zero exit value, the shell runs
the List parameter following the else
command (if it exists). If no else List or then
List is performed, the if command returns a
zero exit value.

12-78 AIX System User’s Guide – OS & Devices

while List do List done Runs the commands specified in the List
parameter following the while command. If
the exit value of the last command in the
while List is zero, the shell runs the List
parameter following the do command. It
continues looping through the lists until the
exit value of the last command in the while
List is non–zero. If no commands in the do
List are performed, the while command
returns a zero exit value.

until List do List done Runs the commands specified in the List
parameter following the until command. If
the exit value of the last command in the
until List is non–zero, runs the List following
the do command. Continues looping
through the lists until the exit value of the
last command in the until List is zero. If no
commands in the do List are performed, the
until command returns a zero exit value.

(List) Runs the commands in the List parameter
in a subshell.

{ List; } Runs the commands in the List parameter
in the current shell process and does not
start a subshell.

Name () { List } Defines a function that is referenced by the
Name parameter. The body of the function
is the list of commands between the braces
specified by the List parameter.

Bourne Shell Built–In Commands
Special commands are built in to the Bourne shell and run in the shell process. Unless
otherwise indicated, output is written to file descriptor 1 (standard output) and the exit status
is 0 (zero) if the command does not contain any syntax errors. Input and output redirection
is permitted.

Refer to the List of Bourne Shell Built–in Commands on page 12-94 for an alphabetical
listing of these commands.

The following special commands are treated somewhat differently from other special built–in
commands:

 : (colon) exec shift
 . (dot) exit times
 break export trap
 continue readonly wait
 eval return

The Bourne shell processes these commands as follows:

• Keyword parameter assignment lists preceding the command remain in effect when the
command completes.

• I/O redirections are processed after parameter assignments.

• Errors in a shell script cause the script to stop processing.

Special Command Descriptions
The Bourne shell provides the following special built–in commands:

12-79 Shells

Built–In Commands

: Returns a zero exit value.

. File Reads and runs commands from the File
parameter, and returns. Does not start a
subshell. The shell uses the search path
specified by the PATH variable to find the
directory containing the specified file.

break [n] Exits from the enclosing for, while, or until
command loops, if any. If you specify the n
variable, the break command breaks the
number of levels specified by the n variable.

continue [n] Resumes the next iteration of the enclosing
for, while, or until command loops. If you
specify the n variable, the command
resumes at the n th enclosing loop.

cd Directory] Changes the current directory to Directory.
If you do not specify Directory, the value of
the HOME shell variable is used. The
CDPATH shell variable defines the search
path for Directory. CDPATH is a
colon–separated list of alternative directory
names. A null path name specifies the
current directory (which is the default path).
This null path name appears immediately
after the equal sign in the assignment or
between the colon delimiters anywhere else
in the path list. If Directory begins with a /
(slash), the shell does not use the search
path. Otherwise, the shell searches each
directory in the CDPATH shell variable.

Note: The restricted shell cannot run the
cd shell command.

echo String . . .] Writes character strings to standard output.
Refer to the echo command for usage and
parameter information. The –n on page
12-81 flag is not supported.

eval [Argument . . .] Reads arguments as input to the shell and
runs the resulting command or commands.

exec [Argument . . .] Runs the command specified by the
Argument parameter in place of this shell
without creating a new process. Input and
output arguments can appear and if no
other arguments appear, cause the shell
input or output to be modified. This is not
recommended for your login shell.

exit [n] Causes a shell to exit with the exit value
specified by the n parameter. If you omit this
parameter, the exit value is that of the last
command executed (the Ctrl–D key
sequence also causes a shell to exit). The
value of the n parameter can be from 0 to
255, inclusive.

12-80 AIX System User’s Guide – OS & Devices

export [Name . . .] Marks the specified names for automatic
export to the environments of subsequently
executed commands. If you do not specify
the Name parameter, the export command
displays a list of all names that are exported
in this shell. You cannot export function
names.

hash [–r][Command . . .] Finds and remembers the location in the
search path of each Command specified.
The –r flag causes the shell to forget all
locations. If you do not specify the flag or
any commands, the shell displays
information about the remembered
commands in the following format:

Hits Cost Command

Hits indicates the number of times a
command has been run by the shell
process. Cost is a measure of the work
required to locate a command in the search
path. Command shows the path names of
each specified command. Certain situations
require that the stored location of a
command be recalculated; for example, the
location of a relative path name when the
current directory changes. Commands for
which that might be done are indicated by
an * (asterisk) next to the Hits
information. Cost is incremented when the
recalculation is done.

pwd Displays the current directory. Refer to the
pwd command for a discussion of
command options.

read [Name . . .] Reads one line from standard input.
Assigns the first word in the line to the first
Name parameter, the second word to the
second Name parameter, and so on, with
leftover words assigned to the last Name
parameter. This command returns a value
of 0 unless it encounters an end–of–file
character.

readonly [Name . . .] Marks the name specified by the Name
parameter as read–only. The value of the
name cannot be reset. If you do not specify
any Name, the readonly command displays
a list of all read–only names.

return [n] Causes a function to exit with a return value
of n. If you do not specify the n variable, the
function returns the status of the last
command performed in that function. This
command is valid only when run within a
shell function.

12-81 Shells

set [Flag [Argument] . . .] Sets one or more of the following flags:

–a Marks for export all variables to which an
assignment is performed. If the
assignment precedes a command name,
the export attribute is effective only for
that command execution environment,
except when the assignment precedes
one of the special built–in commands. In
this case, the export attribute persists
after the built–in command has
completed. If the assignment does not
precede a command name, or if the
assignment is a result of the operation of
the getopts or read commands, the
export attribute persists until the variable
is unset.

–e Exits immediately if all of the following
conditions exist for a command:

. It exits with a return value greater
than 0 (zero).

. It is not part of the compound list of a
while, until, or if command.

. It is not being tested using AND or
OR lists.

. It is not a pipeline preceded by the !
(exclamation point) reserved word.

–f Disables file–name substitution.

–h Locates and remembers the commands
called within functions as the functions
are defined. (Normally these commands
are located when the function is
performed; see the hash on page 12-80
command.)

–k Places all keyword parameters in the
environment for a command, not just
those preceding the command name.

–n Reads commands but does not run them.
To check for shell script syntax errors, use
the –n flag.

–t Exits after reading and executing one
command.

–u Treats an unset variable as an error and
immediately exits when performing
variable substitution. An interactive shell
does not exit.

–v Displays shell input lines as they are
read.

–x Displays commands and their arguments
before they are run.

–– Does not change any of the flags. This is
useful in setting the $1 positional
parameter to a string beginning with a
hyphen (–).

12-82 AIX System User’s Guide – OS & Devices

Using a plus sign (+) rather than a hyphen
(–) unsets flags. You can also specify these
flags on the shell command line. The $–
special variable contains the current set of
flags.

Any Argument to the set command
becomes a positional parameter and is
assigned, in order, to $1, $2, and so on. If
you do not specify a flag or Argument, the
set command displays all the names and
values of the current shell variables.

shift [n] Shifts command line arguments to the left;
that is, reassigns the value of the positional
parameters by discarding the current value
of $1 and assigning the value of $2 to $1, of
$3 to $2, and so on. If there are more than 9
command line arguments, the 10th is
assigned to $9 and any that remain are still
unassigned (until after another shift). If
there are 9 or fewer arguments, the shift
command unsets the highest–numbered
positional parameter that has a value.

The $0 positional parameter is never
shifted. The shift n command is a
shorthand notation specifying n number of
consecutive shifts. The default value of the
n parameter is 1.

test Expression | [Expression] Evaluates conditional expressions. Refer to
the test command for a discussion of
command flags and parameters. The –h
flag is not supported by the built–in test
command in bsh.

times Displays the accumulated user and system
times for processes run from the shell.

12-83 Shells

trap [Command] [n] . . . Runs the command specified by the
Command parameter when the shell
receives the signal or signals specified by
the n parameter. The trap commands are
run in order of signal number. Any attempt
to set a trap on a signal that was ignored on
entry to the current shell is ineffective.

Note: The shell scans the Command
parameter once when the trap is set and
again when the trap is taken.

If you do not specify a command, then all
traps specified by the n parameter are reset
to their current values. If you specify a null
string, this signal is ignored by the shell and
by the commands it invokes. If the n
parameter is zero (0), the specified
command is run when you exit from the
shell. If you do not specify either a
command or a signal, the trap command
displays a list of commands associated with
each signal number.

type [Name . . .] For each Name specified, indicates how the
shell would interpret it as a command name.

12-84 AIX System User’s Guide – OS & Devices

ulimit [–HS] [– c | –d | –f | –m | –s | –t] [
limit]

Displays or adjusts allocated shell
resources. The shell resource settings can
be displayed either individually or as a
group. The default mode is to display
resources set to the soft setting, or the
lower bound, as a group.

The setting of shell resources depends on
the effective user ID of the current shell.
The hard level of a resource can be set only
if the effective user ID of the current shell is
root. You will get an error if you are not root
user and you are attempting to set the hard
level of a resource. By default, the root user
sets both the hard and soft limits of a
particular resource. The root user should
therefore be careful in using the –S, –H, or
default flag usage of limit settings. Unless
you are a root user, you can set only the
soft limit of a resource. After a limit has
been decreased by a non–root user, it
cannot be increased, even back to the
original system limit.

To set a resource limit, select the
appropriate flag and the limit value of the
new resource, which should be an integer.
You can set only one resource limit at a
time. If more than one resource flag is
specified, you receive undefined results. By
default, ulimit with only a new value on the
command line sets the file size of the shell.
Use of the –f flag is optional.

You can specify the following ulimit
command flags:

–c Sets or displays core segment for shell.

–d Sets or displays data segment for shell.

–f Sets or displays file size for shell.

–H Sets or displays hard resource limit (root
user only)

–m Sets or displays memory for shell.

–s Sets or displays stack segment for shell.

–S Sets or displays soft resource limit.

–t Sets or displays CPU time maximum for
shell.

umask [nnn] Determines file permissions. This value,
along with the permissions of the creating
process, determines a file’s permissions
when the file is created. The default is 022.
When no value is entered, umask displays
the current value.

12-85 Shells

unset [Name . . .] Removes the corresponding variable or
function for each name specified by the
Name parameter. The PATH, PS1, PS2,
MAILCHECK, and IFS shell variables
cannot be unset.

wait [n] Waits for the child process whose process
number is specified by the n parameter to
exit and then returns the exit status of that
process. If you do not specify the n
parameter, the shell waits for all currently
active child processes and the return value
is 0.

Command Substitution in the Bourne Shell
Command substitution allows you to capture the output of any command as an argument to
another command. When you place a command line within backquotes (‘‘), the shell first
runs the command or commands, and then replaces the entire expression, including the
backquotes, with the output. This feature is often used to give values to shell variables. For
example, the statement:

today=‘date‘

assigns the string representing the current date to the today variable. The following
assignment saves, in the files variable, the number of files in the current directory:

files=‘ls | wc –l‘

You can perform command substitution on any command that writes to standard output.

To nest command substitutions, precede each of the nested backquotes with a backslash
(\), as in:

logmsg=‘echo Your login directory is \‘pwd\‘‘

You can also give values to shell variables indirectly by using the read on page 12-80
special command. This command takes a line from standard input (usually your keyboard)
and assigns consecutive words on that line to any variables named. For example:

read first init last

takes an input line of the form:

J. Q. Public

and has the same effect as if you had typed:

first=J. init=Q. last=Public

The read special command assigns any excess words to the last variable.

12-86 AIX System User’s Guide – OS & Devices

Variable and File–Name Substitution in the Bourne Shell
The Bourne shell permits you to do variable and file–name substitutions.

The following sections discuss creating and substituting variables in the Bourne shell:

• Variable Substitution in the Bourne Shell on page 12-86

• User–Defined Variables on page 12-86

• Conditional Substitution on page 12-90

• Positional Parameters on page 12-91

• File–Name Substitution in the Bourne Shell on page 12-87

• Character Classes on page 12-92

Variable Substitution in the Bourne Shell
The Bourne shell has several mechanisms for creating variables (assigning a string value to
a name). Certain variables, positional parameters and keyword parameters are normally set
only on a command line. Other variables are simply names to which you or the shell can
assign string values.

User–Defined Variables
The shell recognizes alphanumeric variables to which string values can be assigned. To
assign a string value to a name, type:

Name=String

Press Enter.

A name is a sequence of letters, digits, and underscores that begins with an underscore or
a letter. To use the value that you have assigned to a variable, add a dollar sign ($) to the
beginning of its name. Thus, the $Name variable yields the value specified by the String
variable. Note that no spaces are on either side of the equal sign (=) in an assignment
statement. (Positional parameters cannot appear in an assignment statement. They can be
set only as described in Positional Parameters on page 12-91.) You can put more than one
assignment on a command line, but remember that the shell performs the assignments from
right to left.

If you enclose the String variable with double or single quotation marks (” or ’), the shell
does not treat blanks, tabs, semicolons, and newline characters within the string as word
delimiters, but imbeds them literally in the string.

If you enclose the String variable with double quotation marks (”), the shell still recognizes
variable names in the string and performs variable substitution; that is, it replaces
references to positional parameters and other variable names that are prefaced by dollar
sign ($) with their corresponding values, if any. The shell also performs command
substitution within strings that are enclosed in double quotation marks.

If you enclose the String variable with single quotation marks (’), the shell does not
substitute variables or commands within the string. The following sequence illustrates this
difference:

You: num=875

 number1=”Add $num”

 number2=’Add $num’

 echo $number1

 System: Add 875

 You: echo $number2

 System: Add $num

The shell does not reinterpret blanks in assignments after variable substitution. Thus, the
following assignments result in $first and $second having the same value:

12-87 Shells

first=’a string with embedded blanks’

 second=$first

When you reference a variable, you can enclose the variable name (or the digit designating
a positional parameter) in { } to delimit the variable name from any string following. In
particular, if the character immediately following the name is a letter, digit, or underscore,
and the variable is not a positional parameter, then the braces are required:

You: a=’This is a’

 echo ”${a}n example”

 System: This is an example

 You: echo ”$a test”

 System: This is a test

Refer to Conditional Substitution on page 12-90 for a different use of braces in variable
substitutions.

Variables Used by the Shell
The shell uses the following variables. Although the shell sets some of them, you can set or
reset all of them:

CDPATH Specifies the search path for the cd (change directory)
command.

HOME Indicates the name of your login directory, the directory that
becomes the current directory upon completion of a login.
The login program initializes this variable. The cd
command uses the value of the $HOME variable as its
default value. Using this variable rather than an explicit
path name in a shell procedure allows the procedure to be
run from a different directory without alterations.

IFS The characters that are IFS (internal field separators), the
characters that the shell uses during blank interpretation;
see Blank Interpretation on page 12-90. The shell initially
sets the IFS variable to include the blank, tab, and newline
characters.

LANG Determines the locale to use for the locale categories when
both the LC_ALL variable and the corresponding
environment variable (beginning with LC_) do not specify a
locale. For more information about locales, see ” Locale
Overview ” in AIX 5L Version 5.2 National Language
Support Guide and Reference.

LC_ALL Determines the locale to be used to override any values for
locale categories specified by the settings of the LANG
environment variable or any environment variables
beginning with LC_.

LC_COLLATE Defines the collating sequence to use when sorting names
and when character ranges occur in patterns.

LC_CTYPE Determines the locale for the interpretation of sequences of
bytes of text data as characters (that is, single– versus
multibyte characters in arguments and input files), which
characters are defined as letters (alpha character class),
and the behavior of character classes within pattern
matching.

LC_MESSAGES Determines the language in which messages should be
written.

LIBPATH Specifies the search path for shared libraries.

LOGNAME Specifies your login name, marked readonly in the
/etc/profile file.

12-88 AIX System User’s Guide – OS & Devices

MAIL Indicates the path name of the file used by the mail system
to detect the arrival of new mail. If this variable is set, the
shell periodically checks the modification time of this file
and displays the value of $MAILMSG if the time changes
and the length of the file is greater than 0. Set the MAIL
variable in the.profile file. The value normally assigned to it
by users of the mail command is
/usr/spool/mail/$LOGNAME.

MAILCHECK The number of seconds that the shell lets elapse before
checking again for the arrival of mail in the files specified
by the MAILPATH or MAIL variables. The default value is
600 seconds (10 minutes). If you set the MAILCHECK
variable to 0, the shell checks before each prompt.

MAILMSG The mail notification message. If you explicitly set the
MAILMSG variable to a null string (MAILMSG=””), no
message is displayed.

MAILPATH A list of file names separated by colons. If this variable is
set, the shell informs you of the arrival of mail in any of the
files specified in the list. You can follow each file name by a
% and a message to be displayed when mail arrives.
Otherwise, the shell uses the value of the MAILMSG
variable or, by default, the message [YOU HAVE NEW
MAIL].

Note: When the MAILPATH variable is set, these files
are checked instead of the file set by the MAIL variable.
To check the files set by the MAILPATH variable and the
file set by the MAIL variable, specify the MAIL file in your
list of MAILPATH files.

PATH The search path for commands, which is an ordered list of
directory path names separated by colons. The shell
searches these directories in the specified order when it
looks for commands. A null string anywhere in the list
represents the current directory.

The PATH variable is normally initialized in the
/etc/environment file, usually to
/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin. You
can reset this variable to suit your own needs. The PATH
variable provided in your.profile file also includes
$HOME/bin and your current directory.

If you have a project–specific directory of commands, for
example, /project/bin, that you want searched before the
standard system directories, set your PATH variable as
follows:

PATH=/project/bin:$PATH

The best place to set your PATH variable to a value other
than the default value is in your $HOME/.profile file. You
cannot reset the PATH variable if you are executing
commands under the restricted shell.

PS1 The string to be used as the primary system prompt. An
interactive shell displays this prompt string when it expects
input. The default value of the PS1 variable is $ followed by
a blank space, for nonroot users.

12-89 Shells

PS2 The value of the secondary prompt string. If the shell
expects more input when it encounters a new–line
character in its input, it prompts with the value of the PS2
variable. The default value of the PS2 variable is > ,
followed by a blank space.

SHACCT The name of a file that you own. If this variable is set, the
shell writes an accounting record in the file for each shell
script executed. You can use accounting programs such as
acctcom and acctcms to analyze the data collected.

SHELL The path name of the shell, which is kept in the
environment. This variable should be set and exported by
the $HOME/.profile file of each restricted login.

TIMEOUT The number of minutes a shell remains inactive before it
exits. If this variable is set to a value greater than zero (0),
the shell exits if a command is not entered within the
prescribed number of seconds after issuing the PS1
prompt. (Note that the shell can be compiled with a
maximum boundary that cannot be exceeded for this
value.) A value of zero indicates no time limit.

Predefined Special Variables
Several variables have special meanings. The following variables are set only by the shell.

$@ Expands the positional parameters, beginning with $1.
Each parameter is separated by a space.

If you place ” ” around $@, the shell considers each
positional parameter a separate string. If no positional
parameters exist, the Bourne shell expands the statement
to an unquoted null string.

$* Expands the positional parameters, beginning with $1. The
shell separates each parameter with the first character of
the IFS variable value.

If you place ” ” around $*, the shell includes the positional
parameter values, in double quotation marks. Each value is
separated by the first character of the IFS variable.

$# Specifies the number of positional parameters passed to
the shell, not counting the name of the shell procedure
itself. The $# variable thus yields the number of the
highest–numbered positional parameter that is set. One of
the primary uses of this variable is to check for the
presence of the required number of arguments. Only
positional parameters $0 through $9 are accessible
through the shell. See ” Positional Parameters on page
12-91 for more information.

$? Specifies the exit value of the last command executed. Its
value is a decimal string. Most commands return a value of
0 to indicate successful completion. The shell itself returns
the current value of the $? variable as its exit value.

12-90 AIX System User’s Guide – OS & Devices

$$ Identifies the process number of the current process.
Because process numbers are unique among all existing
processes, this string is often used to generate unique
names for temporary files.

The following example illustrates the recommended
practice of creating temporary files in a directory used only
for that purpose:

temp=/tmp/$$

 ls >$temp

.

.

.

 rm $temp

$! Specifies the process number of the last process run in the
background using the & terminator.

$– A string consisting of the names of the execution flags
currently set in the shell.

Blank Interpretation
After the shell performs variable and command substitution, it scans the results for internal
field separators (those defined in the IFS shell variable). The shell splits the line into distinct
words at each place it finds one or more of these characters separating each distinct word
with a single space. It then retains explicit null arguments (”” or ’’) and discards implicit null
arguments (those resulting from parameters that have no values).

Conditional Substitution
Normally, the shell replaces the expression $ Variable with the string value assigned to the
Variable variable, if there is one. However, there is a special notation that allows conditional
substitution, depending on whether the variable is set or not null, or both. By definition, a
variable is set if it has ever been assigned a value. The value of a variable can be the null
string, which you can assign to a variable in any one of the following ways:

A=

bcd=””

Efg=’’ Assigns the null string to the A, bcd, and Efg.

set ’’ ”” Sets the first and second positional parameters to the null
string and unsets all other positional parameters.

The following is a list of the available expressions you can use to perform conditional
substitution:

${ Variable – String } If the variable is set, substitute the Variable value in place
of this expression. Otherwise, replace this expression with
the String value.

${ Variable:– String } If the variable is set and not null, substitute the Variable
value in place of this expression. Otherwise, replace this
expression with the String value.

${ Variable = String } If the variable is set, substitute the Variable value in place
of this expression. Otherwise, set the Variable value to the
String value and then substitute the Variable value in place
of this expression. You cannot assign values to positional
parameters in this fashion.

12-91 Shells

${ Variable:= String } If the variable is set and not null, substitute the Variable
value in place of this expression. Otherwise, set the
Variable value to the String value and then substitute the
Variable value in place of this expression. You cannot
assign values to positional parameters in this fashion.

${ Variable ? String } If the variable is set, substitute the Variable value in place
of this expression. Otherwise, display a message of the
following form:

Variable: String

and exit from the current shell (unless the shell is the login
shell). If you do not specify a value for the String variable,
the shell displays the following message:

Variable: parameter null or not set

${ Variable:? String } If the variable is set and not null, substitute the Variable
value in place of this expression. Otherwise, display a
message of the following form:

Variable : String

and exit from the current shell (unless the shell is the login
shell). If you do not specify the String value, the shell
displays the following message:

Variable: parameter null or not set

${ Variable + String } If the variable is set, substitute the String value in place of
this expression. Otherwise, substitute the null string.

${ Variable:+ String } If the variable is set and not null, substitute the String value
in place of this expression. Otherwise, substitute the null
string.

In conditional substitution, the shell does not evaluate the String variable until the shell uses
this variable as a substituted string. Thus, in the following example, the shell executes the
pwd command only if d is not set or is null:

echo ${d:–‘pwd‘}

Positional Parameters
When you run a shell procedure, the shell implicitly creates positional parameters that
reference each word on the command line by its position on the command line. The word in
position 0 (the procedure name) is called $0, the next word (the first parameter) is called $1,
and so on, up to $9. To refer to command line parameters numbered higher than 9, use the
built–in shift on page 12-82 command.

You can reset the values of the positional parameters explicitly by using the built–in set on
page 12-81 command.

Note: When an argument for a position is not specified, its positional parameter is set to
null. Positional parameters are global and can be passed to nested shell procedures.

File–Name Substitution in the Bourne Shell
Command parameters are often file names. You can automatically produce a list of file
names as parameters on a command line. To do this, specify a character that the shell
recognizes as a pattern–matching character. When a command includes such a character,
the shell replaces it with the file names in a directory.

12-92 AIX System User’s Guide – OS & Devices

Note: The Bourne shell does not support file–name expansion based on equivalence
classification of characters.

Most characters in such a pattern match themselves, but you can also use some special
pattern–matching characters in your pattern. These special characters are as follows:

* Matches any string, including the null string

? Matches any one character

[. ..] Matches any one of the characters enclosed in square
brackets

[! . . .] Matches any character within square brackets other than
one of the characters that follow the exclamation mark

Within square brackets, a pair of characters separated by a – specifies the set of all
characters lexicographically within the inclusive range of that pair, according to the binary
ordering of character values.

Pattern matching has some restrictions. If the first character of a file name is a dot (.), it can
be matched only by a pattern that also begins with a dot. For example, * matches the file
names myfile and yourfile but not the file names.myfile and.yourfile. To match these files,
use a pattern such as the following:

.*file

If a pattern does not match any file names, then the pattern itself is returned as the result of
the attempted match.

File and directory names should not contain the characters *, ?, [, or] because they can
cause infinite recursion (that is, infinite loops) during pattern–matching attempts.

Character Classes
You can also use character classes to match file names, as follows:

[[: charclass :]]

This format instructs the system to match any single character belonging to the specified
class. The defined classes correspond to ctype subroutines, as follows:

Character Class Definition

alnum Alphanumeric characters

alpha Uppercase and lowercase letters

blank Space or horizontal tab

cntrl Control characters

digit Digits

graph Graphic characters

lower Lowercase letters

print Printable characters

punct Punctuation characters

space Space, horizontal tab, carriage return, newline, vertical tab
or form–feed character

upper Uppercase characters

xdigit Hexadecimal digits

12-93 Shells

Input and Output Redirection in the Bourne Shell

In general, most commands do not know whether their input or output is associated with the
keyboard, the display screen, or a file. Thus, a command can be used conveniently either at
the keyboard or in a pipeline.

The following redirection options can appear anywhere in a simple command. They can also
precede or follow a command, but are not passed to the command.

< File Uses the specified file as standard input.

> File Uses the specified file as standard output. Creates the file
if it does not exist; otherwise, truncates it to zero length.

> > File Uses the specified file as standard output. Creates the file
if it does not exist; otherwise, adds the output to the end of
the file.

<< [–] eofstr Reads as standard input all lines from the eofstr variable
up to a line containing only eofstr or up to an end–of–file
character. If any character in the eofstr variable is quoted,
the shell does not expand or interpret any characters in the
input lines. Otherwise, it performs variable and command
substitution and ignores a quoted newline character
(\newline). Use a \ to quote characters within the eofstr
variable or within the input lines.

If you add a – to the << redirection option, then all leading
tabs are stripped from the eofstr variable and from the input
lines.

<& Digit Associates standard input with the file descriptor specified
by the Digit variable.

>& Digit Associates standard output with the file descriptor specified
by the Digit variable.

<&– Closes standard input.

>&– Closes standard output.

Note: The restricted shell does not allow output redirection.

For more information about redirection, see Input and Output Redirection on page 5-1.

12-94 AIX System User’s Guide – OS & Devices

List of Bourne Shell Built–in Commands

 : on page 12-79 Returns a zero exit value

 . on page 12-79 Reads and executes commands from a file parameter and
then returns.

 break on page 12-79 Exists from the enclosing for, while, or until command
loops, if any.

 cd on page 12-79 Changes the current directory to the specified directory.

 continue on page 12-79 Resumes the next iteration of the enclosing for, while, or
until command loops.

 echo on page 12-79 Writes character strings to standard output.

 eval on page 12-79 Reads the arguments as input to the shell and executes
the resulting command or commands.

 exec on page 12-79 Executes the command specified by the Argument
parameter, instead of this shell, without creating a new
process.

 exit on page 12-79 Exits the shell whose exit status is specified by the n
parameter.

 export on page 12-80 Marks names for automatic export to the environment of
subsequently executed commands.

 hash on page 12-80 Finds and remembers the location in the search path of
specified commands.

 pwd on page 12-80 Displays the current directory.

 read on page 12-80 Reads one line from standard input.

 readonly on page 12-80 Marks name specified by Name parameter as read–only.

 return on page 12-80 Causes a function to exit with a specified return value.

 set on page 12-81 Controls the display of various parameters to standard
output.

 shift on page 12-82 Shifts command–line arguments to the left.

 test on page 12-82 Evaluates conditional expressions.

 times on page 12-82 Displays the accumulated user and system times for
processes run from the shell.

 trap on page 12-83 Runs a specified command when the shell receives a
specified signal or signals.

 type on page 12-83 Interprets how the shell would interpret a specified name
as a command name.

 ulimit on page 12-84 Displays or adjusts allocated shell resources.

 umask on page 12-84 Determines file permissions.

 unset on page 12-85 Removes the variable or function corresponding to a
specified name.

 wait on page 12-85 Waits for the specified child process to end and reports its
termination status.

12-95 Shells

C Shell
The C shell is an interactive command interpreter and a command programming language.
It uses syntax that is similar to the C programming language. The csh command starts the
C shell.

When you log in, the csh command first searches the systemwide setup file /etc/csh.cshrc.
If the setup file is there, the C shell executes the commands stored in that file. Next, the C
shell executes the systemwide setup file /etc/csh.login if it is available. Then, it searches
your home directory for the.cshrc and.login files. If they exist, they contain any customized
user information pertinent to running the C shell. All variables set in the /etc/csh.cshrc and
/etc/csh.login files might be overridden by your.cshrc and.login files in your $HOME
directory. Only the root user can modify the /etc/csh.cshrc and /etc/csh.login files.

The /etc/csh.login and $HOME/.login files are executed only once at login time. These
files are generally used to hold environment variable definitions, commands that you want
executed once at login, or commands that set up terminal characteristics.

The /etc/csh.cshrc and $HOME/.cshrc files are executed at login time, and every time the
csh command or a C shell script is invoked. They are generally used to define C shell
characteristics like aliases and C shell variables (for example, history, noclobber, or
ignoreeof). It is recommended that you only use the C Shell built–in commands (see C Shell
Built–In Commands on page 12-97) in the /etc/csh.cshrc and $HOME/.cshrc files because
using other commands increases the startup time for shell scripts.

This section discusses the following:

• C Shell Limitations on page 12-96

• Signal Handling on page 12-96

• C Shell Commands on page 12-97

– C Shell Built–In Commands on page 12-97

– C Shell Expressions and Operators on page 12-107

– Command Substitution in the C Shell on page 12-108

– Nonbuilt–in C Shell Command Execution on page 12-108

• History Substitution in the C Shell on page 12-110

– History Lists on page 12-110

– Event Specification on page 12-111

– Quoting with Single and Double Quotes on page 12-112

• Alias Substitution in the C Shell on page 12-113

• Variable and File–Name Substitution in the C Shell on page 12-114

– Variable Substitution in the C Shell on page 12-114

– File–Name Substitution in the C Shell on page 12-116

– File–Name Expansion on page 12-116

– File–Name Abbreviation on page 12-117

– Character Classes on page 12-117

• Environment Variables in the C Shell on page 12-119

• Input and Output Redirection in the C Shell on page 12-121

• Job Control in the C Shell on page 12-123

• C Shell on page 12-127

12-96 AIX System User’s Guide – OS & Devices

C Shell Limitations
The following are limitations of the C shell:

• Words can be no longer than 1024 bytes.

• Argument lists are limited to ARG_MAX bytes. Values for the ARG_MAX variable are
found in the /usr/include/sys/limits.h file.

• The number of arguments to a command that involves file–name expansion is limited to
1/6th the number of bytes allowed in an argument list.

• Command substitutions can substitute no more bytes than are allowed in an argument
list.

• To detect looping, the shell restricts the number of alias substitutions on a single line to
20.

• The csh command does not support file–name expansion based on equivalence
classification of characters.

• File descriptors (other than standard in, standard out, and standard error) opened before
csh executes any application are not available to that application.

Signal Handling
The C shell normally ignores quit signals. Jobs running detached are not affected by signals
generated from the keyboard (INTERRUPT, QUIT, and HANGUP). Other signals have the
values the shell inherits from its parent. You can control the shell’s handling of INTERRUPT
and TERMINATE signals in shell procedures with onintr. Login shells catch or ignore
TERMINATE signals depending on how they are set up. Shells other than login shells pass
TERMINATE signals on to the child processes. In no cases are INTERRUPT signals
allowed when a login shell is reading the.logout file.

12-97 Shells

C Shell Commands
A simple command is a sequence of words separated by blanks or tabs.

A word is a sequence of characters or numerals, or both, that does not contain blanks
without quotation marks. In addition, the following characters and doubled characters also
form single words when used as command separators or terminators:

 & | ;
 && || << > >
 < > ()

These special characters can be parts of other words. Preceding them with a \, however,
prevents the shell from interpreting them as special characters. Strings enclosed in ’ ’ or ” ”
(matched pairs of quotation characters) or backquotes can also form parts of words. Blanks,
tab characters, and special characters do not form separate words when they are enclosed
in these marks. In addition, you can enclose a newline character within these marks by
preceding it with a \.

The first word in the simple command sequence (numbered 0) usually specifies the name of
a command. Any remaining words, with a few exceptions, are passed to that command. If
the command specifies an executable file that is a compiled program, the shell immediately
runs that program. If the file is marked executable but is not a compiled program, the shell
assumes that it is a shell script. In this case, the shell starts another instance of itself (a
subshell) to read the file and execute the commands included in it.

This section discusses the following:

• C Shell Built–In Commands on page 12-97

• C Shell Expressions and Operators on page 12-107

• Command Substitution in the C Shell on page 12-108

• Nonbuilt–in C Shell Command Execution on page 12-108

C Shell Built–In Commands
Built–in commands are run within the shell. If a built–in command occurs as any component
of a pipeline, except the last, the command runs in a subshell.

Note: If you enter a command from the C shell prompt, the system searches for a
built–in command first. If a built–in command does not exist, the system searches the
directories specified by the path shell variable for a system–level command. Some C
shell built–in commands and operating system commands have the same name.
However, these commands do not necessarily work the same way. For more information
on how the command works, check the appropriate command description.

If you run a shell script from the shell and the first line of the shell script begins with #!/
ShellPathname, the C shell runs the shell specified in the comment to process the script.
Otherwise, it runs the default shell (the shell linked to /usr/bin/sh). If run by the default
shell, C shell built–in commands might not be recognized. To run C shell commands, make
the first line of the script #!/usr/bin/csh.

Refer to the List of C Shell Built–in Commands on page 12-124 for an alphabetic listing of
the built–in commands.

12-98 AIX System User’s Guide – OS & Devices

C Shell Command Descriptions
The C shell provides the following built–in commands:

alias [Name [WordList]] Displays all aliases if you do not specify any
parameters. Otherwise, the command
displays the alias for the specified Name. If
WordList is specified, this command
assigns the value of WordList to the alias
Name. The specified alias Name cannot be
alias or unalias.

bg [% Job...] Puts the current job or job specified by Job
into the background, continuing the job if it
was stopped.

break Resumes running after the end of the
nearest enclosing foreach or while
command.

breaksw Breaks from a switch command; resumes
after the endsw command.

case Label: Defines a Label in a switch command.

cd [Name] Equivalent to the chdir command (see
following description).

chdir [Name] Changes the current directory to that
specified by the Name variable. If you do
not specify Name, the command changes to
your home directory. If the value of the
Name variable is not a subdirectory of the
current directory and does not begin with /,
./, or ../, the shell checks each component of
the cdpath shell variable to see if it has a
subdirectory matching the Name variable. If
the Name variable is a shell variable with a
value that begins with /, the shell tries this to
see if it is a directory. The chdir command
is equivalent to the cd command.

continue Continues execution at the end of the
nearest enclosing while or foreach
command.

default: Labels the default case in a switch
statement. The default should come after
all other case labels.

dirs Displays the directory stack.

echo Writes character strings to the standard
output of the shell.

else Runs the commands that follow the second
else in an if (Expression) then... else if (
Expression2) then... else... endif
command sequence.

12-99 Shells

end Successively sets the Name variable to
each member specified by the List variable
and runs the sequence of Commands
between the foreach and the matching end
statements. The foreach and end
statements must appear alone on separate
lines.

Uses the continue statement to continue
the loop and the break statement to end the
loop prematurely. When the foreach
command is read from the terminal, the C
shell prompts with a ? to allow Commands
to be entered. Commands within loops,
prompted for by ?, are not placed in the
history list.

endif If the Expression variable is true, runs the
Commands that follow the first then
statement. If the else if Expression2 is true,
runs the Commands that follow the second
then statement. If the else if Expression2 is
false, runs the Commands that follow the
else. Any number of else if pairs are
possible. Only one endif statement is
needed. The else segment is optional. The
words else and endif can be used only at
the beginning of input lines. The if segment
must appear alone on its input line or after
an else command.

endsw Successively matches each case label
against the value of the string variable. The
string is command and file name expanded
first. Use the pattern–matching characters *,
?, and [. . .] in the case labels, which are
variable–expanded. If none of the labels
match before a default label is found, the
execution begins after the default label.
The case label and the default label must
appear at the beginning of the line. The
breaksw command causes execution to
continue after the endsw command.
Otherwise, control might fall through the
case and default labels, as in the C
programming language. If no label matches
and there is no default, execution continues
after the endsw command.

eval Parameter . . . Reads the value of the Parameter variable
as input to the shell and runs the resulting
command or commands in the context of
the current shell. Use this command to run
commands generated as the result of
command or variable substitution, since
parsing occurs before these substitutions.

exec Command Runs the specified Command in place of
the current shell.

12-100 AIX System User’s Guide – OS & Devices

exit [(Expression) Exits the shell with either the value of the
status shell variable (if no Expression is
specified) or with the value of the specified
Expression.

fg [% Job...] Brings the current job or job specified by
Job into the foreground, continuing the job if
it was stopped.

foreach Name (List) Command. . . Successively sets a Name variable for each
member specified by the List variable and a
sequence of commands, until reaching an
end command.

glob List Displays List using history, variable, and file
name expansion. Puts a null character
between words and does not include a
carriage return at the end.

goto Word Continues to run after the line specified by
the Word variable. The specified Word is file
name and command expanded to yield a
string of the form specified by the Label:
variable. The shell rewinds its input as
much as possible and searches for a line of
the form Label:, possibly preceded by
blanks or tabs.

hashstat Displays statistics indicating how successful
the hash table has been at locating
commands.

history [–r | –h] [n] Displays the history event list. The oldest
events are displayed first. If you specify a
number n, only the specified number of the
most recent events are displayed. The –r
flag reverses the order in which the events
are displayed so the most recent is
displayed first. The –h flag displays the
history list without leading numbers. Use
this flag to produce files suitable for use
with the –h flag of the source command.

if (Expression) Command Runs the specified Command (including its
arguments) if the specified Expression is
true. Variable substitution on the Command
variable happens early, at the same time as
the rest of the if statement. The specified
Command must be a simple command
(rather than a pipeline, command list, or
parenthesized command list).

Note: Input and output redirection occurs
even if the Expression variable is false
and the Command is not executed.

jobs [–l] Lists the active jobs. With the –l (lowercase
L) flag, the jobs command lists process IDs
in addition to the job number and name.

12-101 Shells

kill –l | [[– Signal] % Job...| PID...] Sends either the TERM (terminate) signal or
the signal specified by Signal to the
specified Job or PID (process). Specify
signals either by number or by name (as
given in the /usr/include/sys/signal.h file,
stripped of the SIG prefix). The –l
(lowercase L) flag lists the signal names.

limit [–h] [Resource [Max–Use]] Limits the usage of the specified resource
by the current process and each process it
creates. Process resource limits are defined
in the /etc/security/limits file. Controllable
resources are the central processing unit
(CPU) time, file size, data size, core dump
size, and memory use. Maximum allowable
values for these resources are set with the
mkuser command when the user is added
to the system. They are changed with the
chuser command.

Limits are categorized as either soft or hard.
Users may increase their soft limits up to
the ceiling imposed by the hard limits. You
must have root user authority to increase a
soft limit above the hard limit, or to change
hard limits. The –h flag displays hard limits
instead of the soft limits.

If a Max–Use parameter is not specified, the
limit command displays the current limit of
the specified resource. If the Resource
parameter is not specified, the limit
command displays the current limits of all
resources. For more information about the
resources controlled by the limit
subcommand, see the getrlimit, setrlimit,
or vlimit subroutine in the AIX 5L Version
5.2 Technical Reference: Base Operating
System and Extensions Volume 1.

The Max–Use parameter for CPU time is
specified in the hh:mm:ss format. The
Max–Use parameter for other resources is
specified as a floating–point number or an
integer optionally followed by a scale factor.
The scale factor is: k or kilobytes (1024
bytes), m or megabytes, or b or blocks (the
units used by the ulimit subroutine as
explained in the AIX 5L Version 5.2
Technical Reference: Base Operating
System and Extensions Volume 2). If you
do not specify a scale factor, k is assumed
for all resources. For both resource names
and scale factors, unambiguous prefixes of
the names suffice.

Note: This command limits the physical
memory (memory use) available for a
process only if there is contention for
system memory by other active
processes.

12-102 AIX System User’s Guide – OS & Devices

login Ends a login shell and replaces it with an
instance of the /usr/bin/login command.
This is one way to log out (included for
compatibility with the ksh and bsh
commands).

logout Ends a login shell. This command must be
used if the ignoreeof option is set.

nice [+ n] [Command] If no values are specified, sets the priority of
commands run in this shell to 24. If the + n
flag is specified, sets the priority plus the
specified number. If the +n flag and
Command are specified, runs Command at
priority 24 plus the specified number. If you
have root user authority, you can run the
nice statement with a negative number. The
Command always runs in a subshell, and
the restrictions placed on commands in
simple if statements apply.

nohup [Command] Causes hangups to be ignored for the
remainder of the script when no Command
is specified. If Command is specified,
causes the specified Command to be run
with hangups ignored. To run a pipeline or
list of commands, put the pipeline or list in a
shell script, give the script execute
permission, and use the shell script as the
value of the Command variable. All
processes run in the background with & are
effectively protected from being sent a
hangup signal when you log out. However,
these processes are still subject to explicitly
sent hangups unless the nohup statement
is used.

notify [% Job...] Causes the shell to notify you
asynchronously when the status of the
current job or specified Job changes.
Normally, the shell provides notification just
before it presents the shell prompt. This
feature is automatic if the notify shell
variable is set.

onintr [– | Label] Controls the action of the shell on interrupts.
If no arguments are specified, restores the
default action of the shell on interrupts,
which ends shell scripts or returns to the
command input level. If a – flag is specified,
causes all interrupts to be ignored. If Label
is specified, causes the shell to run a goto
Label statement when the shell receives an
interrupt or when a child process ends due
to an interruption. In any case, if the shell is
running detached and interrupts are being
ignored, all forms of the onintr statement
have no meaning. Interrupts continue to be
ignored by the shell and all invoked
commands.

12-103 Shells

popd [+ n] Pops the directory stack and changes to the
new top directory. If you specify a + n
variable, the command discards the n th
entry in the stack. The elements of the
directory stack are numbered from the top,
starting at 0.

pushd [+ n | Name] With no arguments, exchanges the top two
elements of the directory stack. With the
Name variable, the command changes to
the new directory and pushes the old
current directory (as given in the cwd shell
variable) onto the directory stack. If you
specify a + n variable, the command rotates
the n th component of the directory stack
around to be the top element and changes
to it. The members of the directory stack are
numbered from the top, starting at 0.

rehash Causes recomputation of the internal hash
table of the contents of the directories in the
path shell variable. This action is needed if
new commands are added to directories in
the path shell variable while you are logged
in. The rehash command is necessary only
if commands are added to one of the user’s
own directories or if someone changes the
contents of one of the system directories.

repeat Count Command Runs the specified Command, subject to
the same restrictions as commands in
simple if statements, the number of times
specified by Count.

Note: I/O redirections occur exactly once,
even if the Count variable equals 0.

set [[Name [n]] [= Word]] | [Name = (List)] Shows the value of all shell variables when
used with no arguments. Variables that
have more than a single word as their value
are displayed as a parenthesized word list.
If only Name is specified, the C shell sets
the Name variable to the null string.
Otherwise, sets Name to the value of the
Word variable, or sets the Name variable to
the list of words specified by the List
variable. When n is specified, the n th
component of the Name variable is set to
the value of the Word variable; the n th
component must already exist. In all cases,
the value is command and file name
expanded. These arguments may be
repeated to set multiple values in a single
set command. However, variable expansion
happens for all arguments before any
setting occurs.

12-104 AIX System User’s Guide – OS & Devices

setenv Name Value Sets the value of the environment variable
specified by the Name variable to Value, a
single string. The most commonly used
environment variables, USER, TERM,
HOME, and PATH, are automatically
imported to and exported from the C shell
variables user, term, home, and path.
There is no need to use the setenv
statement for these.

shift [Variable] Shifts the members of the argv shell
variable or the specified Variable to the left.
An error occurs if the argv shell variable or
specified Variable is not set or has less than
one word as its value.

source [–h] Name Reads commands specified by the Name
variable. You can nest the source
commands. However, if they are nested too
deeply, the shell might run out of file
descriptors. An error in a source command
at any level ends all nested source
commands. Normally, input during source
commands is not placed on the history list.
The –h flag causes the commands to be
placed in the history list without executing
them.

stop [% Job...] Stops the current job or specified Job
running in the background.

suspend Stops the shell as if a STOP signal had
been received.

switch (string) Starts a switch (String) case String:...
breaksw default:... breaksw endsw
command sequence. This command
sequence successively matches each case
label against the value of the String
variable. If none of the labels match before
a default label is found, the execution
begins after the default label.

12-105 Shells

time [Command] The time command controls automatic
timing of commands. If you do not specify
the Command variable, the time command
displays a summary of time used by this
shell and its children. If you specify a
command with the Command variable, it is
timed. The shell then displays a time
summary, as described under the time on
page 12-120 shell variable. If necessary, an
extra shell is created to display the time
statistic when the command completes.

The following example uses time with the
sleep command:

time sleep

The output from this command looks similar
to the following:

0.0u 0.0s 0:00 100% 44+4k 0+0io

0pf+0w

The output fields are as follows:

Field Description

First Number of seconds of CPU time
devoted to the user process

Second Number of seconds of CPU time
consumed by the kernel on behalf of the
user process

Third Elapsed (wall clock) time for the
command

Fourth Total user CPU Time plus system
time, as a percentage of elapsed time

Fifth Average amount of shared
memory used, plus average amount of
unshared data space used, in kilobytes

Sixth Number of block input and output
operations

Seventh Page faults plus number of swaps

umask [Value] Determines file permissions. This Value,
along with the permissions of the creating
process, determines a file’s permissions
when the file is created. The default is 022.
The current setting will be displayed if no
Value is specified.

unalias *| Pattern Discards all aliases with names that match
the Pattern variable. All aliases are
removed by the unalias * command. The
absence of aliases does not cause an error.

unhash Disables the use of the internal hash table
to locate running programs.

12-106 AIX System User’s Guide – OS & Devices

unlimit [–h][Resource] Removes the limitation on the Resource
variable. If no Resource variable is
specified, all resource limitations are
removed. See the description of the limit
command for the list of Resource names.

The –h flag removes corresponding hard
limits. Only a user with root user authority
can change hard limits.

unset *| Pattern Removes all variables with names that
match the Pattern variable. Use unset * to
remove all variables. If no variables are set,
it does not cause an error.

unsetenv Pattern Removes all variables from the environment
whose name matches the specified Pattern.
(See the setenv built–in command.)

wait Waits for all background jobs. If the shell is
interactive, an INTERRUPT (usually the
Ctrl–C key sequence) disrupts the wait. The
shell then displays the names and job
numbers of all jobs known to be
outstanding.

while (Expression) Command. . . end Evaluates the Commands between the
while and the matching end statements
while the expression specified by the
Expression variable evaluates nonzero. You
can use the break statement to end and the
continue statement to continue the loop
prematurely. The while and end statements
must appear alone on their input lines. If the
input is from a terminal, prompts occur after
the while (Expression) similar to the
foreach statement.

@ [Name [n] = Expression] Displays the values of all the shell variables
when used with no arguments. Otherwise,
sets the name specified by the Name
variable to the value of the Expression
variable. If the expression contains <, >, &,
or | characters, this part of the expression
must be placed within parentheses. When n
is specified, the n th component of the
Name variable is set to the Expression
variable. Both the Name variable and its n
th component must already exist.

C language operators, such as *= and +=,
are available. The space separating the
Name variable from the assignment
operator is optional. Spaces are, however,
required in separating components of the
Expression variable, which would otherwise
be read as a single word. Special suffix
operators, double plus sign (++) and double
hyphen (– –) increase and decrease,
respectively, the value of the Name variable.

12-107 Shells

C Shell Expressions and Operators
The @ built–in command and the exit, if, and while statements accept expressions that
include operators similar to those of C language, with the same precedence. The following
operators are available:

Operator What it Means

() change precedence

~ complement

! negation

*/ % multiply, divide, modulo

+ – add, subtract

<< > > left shift, right shift

<= >= < > relational operators

== != =~ !~ string comparison/pattern matching

& bitwise AND

^ bitwise exclusive OR

| bitwise inclusive OR

&& logical AND

|| logical OR

In the previous list, precedence of the operators decreases down the list (left to right, top to
bottom).

Note: The operators + and – are right–associative. For example, evaluation of a + b – c
is performed as follows:

a + (b – c)

and not as follows:

(a + b) – c

The ==, !=, =~, and !~ operators compare their arguments as strings; all others operate on
numbers. The =~ and !~ operators are similar to == and != , except that the rightmost side is
a pattern against which the leftmost operand is matched. This reduces the need for use of
the switch statement in shell procedures.

The logical operators or (||) and and (&&) are also available. They can be used to check for
a range of numbers, as in the following example:

if ($#argv > 2 && $#argv < 7) then

In the preceding example, the number of arguments must be greater than 2 and less than 7.

Strings beginning with zero (0) are considered octal numbers. Null or missing arguments
are considered 0. All expressions result in strings representing decimal numbers. Note that
two components of an expression can appear in the same word. Except when next to
components of expressions that are syntactically significant to the parser (& | < > ()),
expression components should be surrounded by spaces.

Also available in expressions as primitive operands are command executions enclosed in ()
and file inquiries of the form (–operator Filename), where operator is one of the following:

r Read access

w Write access

x Execute access

12-108 AIX System User’s Guide – OS & Devices

e Existence

o Ownership

z Zero size

f Plain file

d Directory

The specified Filename is command and file–name expanded and then tested to see if it
has the specified relationship to the real user. If Filename does not exist or is inaccessible,
all inquiries return false(0). If the command runs successfully, the inquiry returns a value of
true(1). Otherwise, if the command fails, the inquiry returns a value of false(0). If more
detailed status information is required, run the command outside an expression and then
examine the status shell variable.

Command Substitution in the C Shell
In command substitution, the shell executes a specified command and replaces that
command with its output. To perform command substitution in the C shell, enclose the
command or command string in backquotes (‘ ‘). The shell normally breaks the output
from the command into separate words at blanks, tabs, and newline characters. It then
replaces the original command with this output.

In the following example, the backquotes (‘ ‘) around the date command indicate that
the output of the command will be substituted:

echo The current date and time is: ‘date‘

The output from this command might look like:

The current date and time is: Wed Apr 8 13:52:14 CDT 1992

The C shell performs command substitution selectively on the arguments of built–in shell
commands. This means that it does not expand those parts of expressions that are not
evaluated. For commands that are not built–in, the shell substitutes the command name
separately from the argument list. The substitution occurs in a child of the main shell, only
after the shell performs input or output redirection.

If a command string is surrounded by ” ”, the shell treats only newline characters as word
separators, thus preserving blanks and tabs within the word. In all cases, the single final
newline character does not force a new word.

Nonbuilt–in C Shell Command Execution
When the C shell determines that a command is not a built–in shell command, it attempts to
run the command with the execv subroutine. Each word in the path shell variable names a
directory from which the shell attempts to run the command. If given neither the –c nor –t
flag, the shell hashes the names in these directories into an internal table. The shell tries to
call the exec subroutine on a directory only if there is a possibility that the command resides
there. If you turn off this mechanism with the unhash command or give the shell the –c or
–t flag, the shell concatenates with the given command name to form a path name of a file.
The shell also does this in any case for each directory component of the path variable that
does not begin with a /. The shell then attempts to run the command.

Parenthesized commands always run in a subshell. For example:

(cd ; pwd) ; pwd

displays the home directory without changing the current directory location. However, the
command:

cd ; pwd

changes the current directory location to the home directory. Parenthesized commands are
most often used to prevent the chdir command from affecting the current shell.

12-109 Shells

If the file has execute permission, but is not an executable binary to the system, then the
shell assumes it is a file containing shell commands and runs a new shell to read it.

If there is an alias for the shell, then the words of the alias are prefixed to the argument list
to form the shell command. The first word of the alias should be the full path name of the
shell.

12-110 AIX System User’s Guide – OS & Devices

History Substitution in the C Shell

History substitution lets you modify individual words from previous commands to create new
commands. History substitution makes it easy to repeat commands, repeat the arguments
of a previous command in the current command, or fix spelling mistakes in the previous
command with little typing.

History substitutions begin with the ! character and can appear anywhere on the command
line, provided they do not nest (in other words, a history substitution cannot contain another
history substitution). You can precede the ! with a \ to cancel the exclamation point’s special
meaning. In addition, if you place the ! before a blank, tab, newline character, =, or (, history
substitution does not occur.

History substitutions also occur when you begin an input line with a ^. The shell echoes any
input line containing history substitutions at the workstation before it executes that line.

This section discusses the following:

• History Lists on page 12-110

• Event Specification on page 12-111

• Quoting with Single and Double Quotes on page 12-112

History Lists
The history list saves commands that the shell reads from the command line that consist of
one or more words. History substitution reintroduces sequences of words from these saved
commands into the input stream.

The history shell variable controls the size of the history list. You must set the history shell
variable either in the.cshrc file or on the command line with the built–in set command. The
previous command is always retained regardless of the value of the history variable.
Commands in the history list are numbered sequentially, beginning with 1. The built–in
history command produces output similar to the following:

9 write michael

 10 ed write.c

 11 cat oldwrite.c

 12 diff *write.c

The shell displays the command strings with their event numbers. The event number
appears to the left of the command and represent when the command was entered in
relation to the other commands in the history. It is not usually necessary to use event
numbers to refer to events, but you can have the current event number displayed as part of
your system prompt by placing an ! in the prompt string assigned to the PROMPT
environment variable.

A full history reference contains an event specification, a word designator, and one or more
modifiers in the following general format:

Event[.]Word:Modifier[:Modifier] . . .

Note: Only one word can be modified. A string that contains blanks is not allowed.

In the previous sample of history command output, the current event number is 13. Using
this example, the following refer to previous events:

12-111 Shells

!10 Event number 10.

!–2 Event number 11 (the current event minus 2).

!d Command word beginning with d (event number 12).

!?mic? Command word containing the string mic (event number
9).

These forms, without further modification, simply reintroduce the words of the specified
events, each separated by a single blank. As a special case, !! refers to the previous
command; the command !! alone on an input line reruns the previous command.

Event Specification
To select words from an event, follow the event specification with a : and one of the
following word designators (the words of an input line are numbered sequentially starting
from 0):

0 First word (the command name)

n n th argument

^ First argument

$ Last argument

% Word matched by an immediately preceding ? string ?
search

x–y Range of words from the x th word to the y th word

–y Range of words from the first word (0) to the y th word

* First through the last argument, or nothing if there is only
one word (the command name) in the event

x * x th argument through the last argument

x – Same as x * but omitting the last argument

If the word designator begins with a ^, $, *, –, or %, you can omit the colon that separates
the event specification from the word designator. You can also place a sequence of the
following modifiers after the optional word designator, each preceded by a colon:

h Removes a trailing path name extension, leaving the head.

r Removes a trailing. xxx component, leaving the root
name.

e Removes all but the. xxx trailing extension.

s/ OldWord / NewWord / Substitutes the value of the NewWord variable for the value
of the OldWord variable.

The left side of a substitution is not a pattern in the sense of a string recognized by an
editor; rather, it is a word, a single unit without blanks. Normally, a / delimits the original
word (OldWord) and its replacement (NewWord). However, you can use any character as
the delimiter. In the following example, using the % as a delimiter allows a / to be included
in the words:

s%/home/myfile%/home/yourfile%

The shell replaces an & with the OldWord text in the NewWord variable. In the following
example, /home/myfile becomes /temp/home/myfile.

s%/home/myfile%/temp&%

The shell replaces a null word in a substitution with either the last substitution or with the
last string used in the contextual scan !? String ?. You can omit the trailing delimiter (/
) if a newline character follows immediately. Use the following modifiers to delimit the history
list:

12-112 AIX System User’s Guide – OS & Devices

t Removes all leading path name components, leaving the
tail

& Repeats the previous substitution

g Applies the change globally; that is, all occurrences for
each line

p Displays the new command, but does not run it

q Quotes the substituted words, thus preventing further
substitutions

x Acts like the q modifier, but breaks into words at blanks,
tabs, and new–line characters

When using the preceeding modifiers, the change applies only to the first modifiable word
unless the g modifier precedes the selected modifier.

If you give a history reference without an event specification (for example, !$), the shell
uses the previous command as the event. If a previous history reference occurs on the
same line, the shell repeats the previous reference. Thus, the following sequence gives the
first and last arguments of the command that matches ?foo?.

!?foo?^ !$

A special abbreviation of a history reference occurs when the first nonblank character of an
input line is a ^. This is equivalent to !:s^, thus providing a convenient shorthand for
substitutions on the text of the previous line. The command ^ lb^ lib corrects the
spelling of lib in the command.

If necessary, you can enclose a history substitution in { } to insulate it from the characters
that follow. For example, if you want to use a reference to the command:

ls –ld ~paul

to perform the command:

ls –ld ~paula

use the following construction:

!{l}a

In this example, !{l}a looks for a command starting with l and appends a to the end.

Quoting with Single and Double Quotes
To prevent further interpretation of all or some of the substitutions, enclose strings in single
and double quotation marks. Enclosing strings in ’ ’ prevents further interpretation, while
enclosing strings in ” ” allows further expansion. In both cases, the text that results
becomes all or part of a single word.

12-113 Shells

Alias Substitution in the C Shell

An alias is a name assigned to a command or command string. The C shell allows you to
assign aliases and use them as you would commands. The shell maintains a list of the
aliases that you define.

After the shell scans the command line, it divides the commands into distinct words and
checks the first word of each command, left to right, to see if there is an alias. If an alias is
found, the shell uses the history mechanism to replace the text of the alias with the text of
the command referenced by the alias. The resulting words replace the command and
argument list. If no reference is made to the history list, the argument list is left unchanged.

For information about the C shell history mechanism, see History Substitution in the C Shell
on page 12-110.

The alias and unalias built–in commands establish, display, and modify the alias list. Use
the alias command in the following format:

alias [Name [WordList]]

The optional Name variable specifies the alias for the specified name. If you specify a word
list with the WordList variable, the command assigns it as the alias of the Name variable. If
you run the alias command without either optional variable, it displays all C shell aliases.

If the alias for the ls command is ls –l, the following command:

ls /usr

is replaced by the command:

ls –l /usr

The argument list is undisturbed because there is no reference to the history list in the
command with an alias. Similarly, if the alias for the lookup command is as follows:

grep \!^ /etc/passwd

then the shell replaces lookup bill with the following:

grep bill /etc/passwd

In this example, !^ refers to the history list, and the shell replaces it with the first argument
in the input line, in this case bill.

You can use special pattern–matching characters in an alias. The following command:

alias lprint ’pr &bslash2.!* >

 > print’

creates a command that formats its arguments to the line printer. The ! character is
protected from the shell in the alias by use of single quotation marks so that the alias is not
expanded until the pr command runs.

If the shell locates an alias, it performs the word transformation of the input text and begins
the alias process again on the reformed input line. If the first word of the next text is the
same as the old, looping is prevented by flagging the alias to terminate the alias process.
Other subsequent loops are detected and result in an error.

12-114 AIX System User’s Guide – OS & Devices

Variable and File–Name Substitution in the C Shell
The C Shell permits you to do variable and file–name substitutions.

This section discusses the following:

• Variable Substitution in the C Shell on page 12-114

• File–Name Substitution in the C Shell on page 12-116

• File–Name Expansion on page 12-116

• File–Name Abbreviation on page 12-117

• Character Classes on page 12-117

• C Shell on page 12-127

Variable Substitution in the C Shell

The C shell maintains a set of variables, each of which has as its value a list of zero or more
words. Some of these variables are set by the shell or referred to by it. For instance, the
argv variable is an image of the shell variable list, and words that comprise the value of this
variable are referred to in special ways.

To change and display the values of variables, use the set and unset commands. Of the
variables referred to by the shell, a number are toggles (variables that turn something on
and off). The shell does not examine toggles for a value, only for whether they are set or
unset. For instance, the verbose shell variable is a toggle that causes command input to be
echoed. The setting of this variable results from issuing the –v flag on the command line.

Other operations treat variables numerically. The @ command performs numeric
calculations and the result is assigned to a variable. Variable values are, however, always
represented as (zero or more) strings. For numeric operations, the null string is considered
to be zero, and the second and subsequent words of multiword values are ignored.

When you issue a command, the shell parses the input line and performs alias substitution.
Next, before running the command, it performs variable substitution. The $ character keys
the substitution. It is, however, passed unchanged if followed by a blank, tab, or newline
character. Preceding the $ character with a \ prevents this expansion, except in two cases:

• The command is enclosed in ” ”. In this case, the shell always performs the substitution.

• The command is enclosed in ’ ’. In this case, the shell never performs the substitution.
Strings enclosed in ’ ’ are interpreted for command substitution. (See Command
Substitution in the C Shell on page 12-108.)

The shell recognizes input and output redirection before variable expansion, and expands
each separately. Otherwise, the command name and complete argument list expands
together. It is therefore possible for the first (command) word to generate more than one
word, the first of which becomes the command name and the rest of which become
parameters.

Unless enclosed in ” ” or given the:q modifier, the results of variable substitution might
eventually be subject to command and file–name substitution. When enclosed by double
quotation marks, a variable with a value that consists of multiple words expands to a single
word or a portion of a single word, with the words of the variable’s value separated by
blanks. When you apply the:q modifier to a substitution, the variable expands to multiple
words. Each word is separated by a blank and enclosed in double quotation marks to
prevent later command or file–name substitution.

The following notations allow you to introduce variable values into the shell input. Except as
noted, it is an error to reference a variable that is not set with the set command.

12-115 Shells

You can apply the modifiers:gh,:gt,:gr,:h,:r,:q, and:x to the following substitutions. If { }
appear in the command form, then the modifiers must be placed within the braces. Only
one: modifier is permitted on each variable expansion.

$ Name

${ Name } Replaced by the words assigned to the
Name variable, each separated by a blank.
Braces insulate the Name variable from any
following characters that would otherwise
be part of it. Shell variable names start with
a letter and consist of up to 20 letters and
digits, including the underline (_) character.
If the Name variable does not specify a
shell variable but is set in the environment,
then its value is returned. The modifiers
preceded by colons, as well as the other
forms described here, are not available in
this case.

$ Name [number]

${ Name [number]} Selects only some of the words from the
value of the Name variable. The number is
subjected to variable substitution and might
consist of a single number, or two numbers
separated by a –. The first word of a
variable’s string value is numbered 1. If the
first number of a range is omitted, it defaults
to 1. If the last number of a range is omitted,
it defaults to $# Name. The * symbol selects
all words. It is not an error for a range to be
empty if the second argument is omitted or
is in a range.

$# Name

${# Name } Gives the number of words in the Name
variable. This can be used in a [number]
as shown above. For example,
$Name[$#Name].

$0 Substitutes the name of the file from which
command input is being read. An error
occurs if the name is not known.

$ number

${ number } Equivalent to $argv[number].

$* Equivalent to $argv[*].

The following substitutions may not be changed with: modifiers:

$? name

${? name } Substitutes the string 1 if the name variable
is set, zero (0) if this variable is not set.

$?0 Substitutes 1 if the current input file name is
known, zero (0) if the file name is not
known.

12-116 AIX System User’s Guide – OS & Devices

$$ Substitutes the (decimal) process number of
the parent shell.

$< Substitutes a line from standard input,
without further interpretation. Use this
substitution to read from the keyboard in a
shell procedure.

File–Name Substitution in the C Shell

The C shell provides several shortcuts to save time and keystrokes. If a word contains any
of the characters *, ?, [], or { }, or begins with a tilde (~), that word is a candidate for
file–name substitution. The C shell regards the word as a pattern and replaces the word
with an alphabetized list of file names matching the pattern.

The current collating sequence is used, as specified by the LC_COLLATE or LANG
environment variables. In a list of words specifying file–name substitution, an error results if
no patterns match an existing file name. However, it is not required that every pattern
match. Only the character–matching symbols *, ?, and [] indicate pattern–matching or
file–name expansion. The tilde (~) and { } characters indicate file–name abbreviation.

File–Name Expansion
The * character matches any string of characters, including the null string. For example, in a
directory containing the files:

a aa aax alice b bb c cc

the command echo a* prints all files names beginning with the character a:

a aa aax alice

Note: When file names are matched, the characters dot (.) and / must be matched
explicitly.

The ? character matches any single character. The following command:

ls a?x

lists every file name beginning with the letter a, followed by a single character, and ending
with the letter x:

aax

To match a single character or a range of characters, enclose the character or characters
inside of []. The following command:

ls [abc]

lists all file names exactly matching one of the enclosed characters:

12-117 Shells

a b c

Within brackets, a lexical range of characters is indicated by [a–z]. The characters
matching this pattern are defined by the current collating sequence.

File–Name Abbreviation
The tilde (~) and { characters indicate file–name abbreviation. A ~ at the beginning of a file
name is used to represent home directories. Standing alone, the ~ character expands to
your home directory as reflected in the value of the home shell variable. For example, the
following command:

ls ~

lists all files and directories located in your $HOME directory.

When the command is followed by a name consisting of letters, digits, and – characters, the
shell searches for a user with that name and substitutes that user’s $HOME directory.

Note: If the ~ character is followed by a character other than a letter or /, or appears
anywhere except at the beginning of a word, it does not expand.

To match characters in file names without typing the entire file name, use { } around the file
names. The pattern a{b,c,d}e is another way of writing abe ace ade. The shell
preserves the left–to–right order and separately stores the results of matches at a low level
to preserve this order. This construct might be nested. Thus, the following:

~source/s1/{oldls,ls}.c

expands to:

/usr/source/s1/oldls.c /usr/source/s1/ls.c

if the home directory for source is /usr/source. Similarly, the following:

../{memo,*box}

might expand to:

../memo ../box ../mbox

Note: memo is not sorted with the results of matching *box. As a special case, the {, },
and { } characters are passed undisturbed.

Character Classes
You can also use character classes to match file names within a range indication. The
following format instructs the system to match any single character belonging to the
specified class:

[: charclass :]

12-118 AIX System User’s Guide – OS & Devices

The following classes correspond to ctype subroutines:

Character Class Definition

alnum Alphanumeric characters

alpha Uppercase and lowercase letters

cntrl Control characters

digit Digits

graph Graphic characters

lower Lowercase letters

print Printable characters

punct Punctuation character

space Space, horizontal tab, carriage return,
newline, vertical tab, or form–feed character

upper Uppercase characters

xdigit Hexadecimal digits

Suppose that you are in a directory containing the following files:

a aa aax Alice b bb c cc

Type the following command at a C shell prompt:

 ls [:lower:]

Press Enter.

The C shell lists all file names that begin with lowercase characters:

a aa aax b bb c cc

For more information about character class expressions, refer to the ed command.

12-119 Shells

Environment Variables in the C Shell

Certain variables have special meaning to the C shell. Of these, argv, cwd, home, path,
prompt, shell, and status are always set by the shell. Except for the cwd and status
variables, this action occurs only at initialization. These variables maintain their settings
unless you explicitly reset them.

The csh command copies the USER, TERM, HOME, and PATH environment variables into
the csh variables, user, term, home, and path, respectively. The values are copied back
into the environment whenever the normal shell variables are reset. The path variable
cannot be set in other than in the.cshrc file, because csh subprocesses import the path
definition from the environment and reexport it if changed.

The following variables have special meanings:

argv Contains the arguments passed to shell scripts. Positional
parameters are substituted from this variable.

cdpath Specifies a list of alternate directories to be searched by the chdir or
cd command to find subdirectories.

cwd Specifies the full path name of the current directory.

echo Set when the –x command line flag is used; when set, causes each
command and its arguments to echo just before being run. For
commands that are not built–in, all expansions occur before echoing.
Built–in commands are echoed before command and file–name
substitution because these substitutions are then done selectively.

histchars Specifies a string value to change the characters used in history
substitution. Use the first character of its value as the history
substitution character, this replaces the default character, !. The
second character of its value replaces the ^ character in quick
substitutions.

Note: Setting the histchars value to a character used in command
or file names might cause unintentional history substitution.

history Contains a numeric value to control the size of the history list. Any
command that is referenced within the number of events permitted is
not discarded. Very large values of the history variable might cause
the shell to run out of memory. Regardless of whether this variable is
set, the C shell always saves the last command that ran on the
history list.

home Indicates your home directory, initialized from the environment. The
file–name expansion of the tilde (~) character refers to this variable.

ignoreeof Specifies that the shell ignore an end–of–file character from input
devices that are workstations. This prevents shells from accidentally
being killed when the shell reads an end–of–file character (Ctrl–D).

mail Specifies the files where the shell checks for mail. This is done after
each command completion which results in a prompt if a specified
time interval has elapsed. The shell displays the message Mail in
file. if the file exists with an access time less than its change
time.

If the first word of the value of the mail variable is numeric, it
specifies a different mail–checking time interval (in seconds); the
default is 600 (10 minutes). If you specify multiple mail files, the shell
displays the message New mail in file, when there is mail in
the specified file.

12-120 AIX System User’s Guide – OS & Devices

noclobber Places restrictions on output redirection to ensure that files are not
accidentally destroyed and that redirections append to existing files.

noglob Inhibits file–name expansion. This is most useful in shell scripts that
do not deal with file names, or when a list of file names has been
obtained and further expansions are not desirable.

nonomatch Specifies that no error results if a file name expansion does not
match any existing files; rather, the primitive pattern returns. It is still
an error for the primitive pattern to be malformed.

notify Specifies that the shell send asynchronous notification of changes in
job status. The default presents status changes just before
displaying the shell prompt.

path Specifies directories in which commands are sought for execution. A
null word specifies the current directory. If there is no path variable
set, then only full path names can run. The default search path (from
the /etc/environment file used during login) is as follows:

/usr/bin /etc /usr/sbin /usr/ucb /usr/bin/X11 /sbin

A shell given neither the –c nor the –t flag normally hashes the
contents of the directories in the path variable after reading
the.cshrc and also each time the path variable is reset. If new
commands are added to these directories while the shell is active,
you must give the rehash command. Otherwise, the commands
might not be found.

prompt Specifies the string displayed before each command is read from an
interactive workstation input. If an ! appears in the string, it is
replaced by the current event number. If the ! character is in a
quoted string enclosed by single or double quotation marks, the !
character must be preceded by a \. The default prompt for users
without root authority is % . The default prompt for the user with root
authority is #.

savehist Specifies a numeric value to control the number of entries of the
history list that are saved in the ~/.history file when you log out. Any
command referenced in this number of events is saved. During
startup, the shell reads ~/.history into the history list, enabling
history to be saved across logins. Very large values of the savehist
variable slow down the shell startup.

shell Specifies the file in which the C shell resides. This is used in forking
shells to interpret files that have execute bits set, but which are not
executable by the system. This is initialized to the home of the C
shell.

status Specifies the status returned by the last command. If the command
ends abnormally, 0200 is added to the status. Built–in commands
that are unsuccessful return an exit status of 1. Successful built–in
commands set status to a value of 0.

time Controls automatic timing of commands. If this variable is set, any
command that takes more than the specified number of CPU
seconds will display a line of resources used, at the end of
execution. For more information about the default outputs, see the
built–in time on page 12-105 command.

verbose Set by the –v command line flag, this variable causes the words of
each command to display after history substitution.

12-121 Shells

Input and Output Redirection in the C Shell

Before the C shell executes a command, it scans the command line for redirection
characters. These special notations direct the shell to redirect input and output.

You can redirect the standard input and output of a command with the following syntax
statements:

< File Opens the specified File (which is first variable, command, and file
name expanded) as the standard input.

<< Word Reads the shell input up to the line that matches the value of the
Word variable. The Word variable is not subjected to variable, file
name, or command substitution. Each input line is compared to the
Word variable before any substitutions are done on the line. Unless
a quoting character (\, ”, ’ or ‘) appears in the Word variable, the
shell performs variable and command substitution on the intervening
lines, allowing the \ character to quote the $, \, and ‘ characters.
Commands that are substituted have all blanks, tabs, and newline
characters preserved, except for the final newline character, which is
dropped. The resultant text is placed in an anonymous temporary
file, which is given to the command as standard input.

> File

 >! File

 >& File

>&! File Uses the specified File as standard output. If File does not exist, it is
created. If File exists, it is truncated, and its previous contents are
lost. If the noclobber shell variable is set, File must not exist or be a
character special file, or an error results. This helps prevent
accidental destruction of files. In this case, use the forms including
an ! to suppress this check. File is expanded in the same way as <
input file names. The form >& redirects both standard output and
standard error to the specified File. The following example shows
how to separately redirect standard output to /dev/tty and standard
error to /dev/null. The parentheses are required to allow standard
output and standard error to be separate.

% (find / –name vi –print > /dev/tty) >& /dev/null

> > File

> >! File

> >& File

> >&! File Uses the specified File as standard output like >, but appends output
to the end of File. If the noclobber shell variable is set, an error
results if File does not exist, unless one of the forms including an ! is
given. Otherwise, it is similar to >.

A command receives the environment in which the shell was invoked, as changed by the
input/output parameters and the presence of the command as a pipeline. Thus, unlike some
previous shells, commands that run from a shell script do not have access to the text of the
commands by default. Rather, they receive the original standard input of the shell. Use the
<< mechanism to present inline data, which allows shell command files to function as

12-122 AIX System User’s Guide – OS & Devices

components of pipelines and also lets the shell block read its input. Note that the default
standard input for a command run detached is not changed to the empty /dev/null file.
Rather, the standard input remains the original standard input of the shell.

To redirect the standard error through a pipe with the standard output, use the form |& rather
than only the |.

Control Flow
The shell contains commands that can be used to regulate the flow of control in command
files (shell scripts) and (in limited but useful ways) from shell command–line input. These
commands all operate by forcing the shell to repeat, or skip, in its input.

The foreach, switch, and while statements, and the if–then–else form of the if statement,
require that the major keywords appear in a single simple command on an input line.

If the shell input is not searchable, the shell buffers input whenever a loop is being read and
searches the internal buffer to do the rereading implied by the loop. To the extent that this is
allowed, backward goto s succeed on inputs that you cannot search.

12-123 Shells

Job Control in the C Shell

The shell associates a job number with each process. The shell keeps a table of current
jobs and assigns them small integer numbers. When you start a job in the background with
an &, the shell prints a line that looks like the following:

[1] 1234

This line indicates that the job number is 1 and that the job is composed of a single process
with a process ID of 1234. Use the built–in jobs on page 12-100 command to see the table
of current jobs.

A job running in the background competes for input if it tries to read from the workstation.
Background jobs can also produce output for the workstation that gets interleaved with the
output of other jobs.

You can refer to jobs in the shell in several ways. Use the % character to introduce a job
name. This name can be either the job number or the command name that started the job, if
this name is unique. For example, if a make process is running as job 1, you can refer to it
as %1. You can also refer to it as %make, if there is only one suspended job with a name that
begins with the string make. You can also use the following:

%?String

to specify a job whose name contains the String variable, if there is only one such job.

The shell detects immediately whenever a process changes its state. If a job becomes
blocked so that further progress is impossible, the shell sends a message to the
workstation. This message displays only after you press the Enter key. If, however, the
notify shell variable is set, the shell immediately issues a message that indicates changes
in the status of background jobs. Use the built–in notify on page 12-102 command to mark
a single process so that its status changes are promptly reported. By default, the notify
command marks the current process.

12-124 AIX System User’s Guide – OS & Devices

List of C Shell Built–in Commands

 @ on page 12-106 Displays the value of specified shell variables.

 alias on page 12-98 Displays specified aliases or all aliases.

 bg on page 12-98 Puts the current or specified jobs into the background.

 break on page 12-98 Resumes running after the end of the nearest enclosing
foreach or while command.

 breaksw on page 12-98 Breaks from a switch command.

 case on page 12-98 Defines a label in a switch command.

 cd on page 12-98 Changes the current directory to the specified directory.

 chdir on page 12-98 Changes the current directory to the specified directory.

 continue on page 12-98 Continues execution of the nearest enclosing foreach or
while command.

 default on page 12-98 Labels the default case in a switch statement.

 dirs on page 12-98 Displays the directory stack.

 echo on page 12-98 Writes character strings to the standard output of the shell.

 else on page 12-98 Runs the commands that follow the second else in an if (
Expression) then... else if (Expression2) then... else...
endif command sequence.

 end on page 12-99 Signifies the end of a sequence of commands preceded by
the foreach command.

 endif on page 12-99 Runs the commands that follow the second then statement
in an if (Expression) then... else if (Expression2) then...
else... endif command sequence.

 endsw on page 12-99 Marks the end of a switch (String) case String:...
breaksw default:... breaksw endsw command sequence.
This command sequence successively matches each case
label against the value of the String variable. Execution
continues after the endsw command if a breaksw
command is executed or if no label matches and there is
no default.

 eval on page 12-99 Reads variable values as input to the shell and executes
the resulting command or commands in the context of the
current shell.

 exec on page 12-99 Runs the specified command in place of the current shell.

 exit on page 12-100 Exits the shell with either the value of the status shell
variable or the value of the specified expression.

 fg on page 12-100 Brings the current or specified jobs into the foreground,
continuing them if they are stopped.

 foreach on page 12-100 Successively sets a Name variable for each member
specified by the List variable and a sequence of
commands, until reaching an end command.

 glob on page 12-100 Displays list using history, variable, and file–name
expansion.

 goto on page 12-100 Continues to run after a specified line.

 hashstat on page 12-100 Displays statistics indicating how successful the hash table
has been at locating commands.

12-125 Shells

 history on page 12-100 Displays the history event list.

 if on page 12-100 Runs a specified command if a specified expression is true.

 jobs on page 12-100 Lists the active jobs.

 kill on page 12-101 Sends either the TERM (terminate) signal or the signal
specified by the Signal variable to the specified job or
process.

 limit on page 12-101 Limits usage of a specified resource by the current process
and each process it creates.

 login on page 12-102 Ends a login shell and replaces it with an instance of the
/usr/sbin/login command.

 logout on page 12-102 Ends a login shell.

 nice on page 12-102 Sets the priority of commands run in the shell.

 nohup on page 12-102 Causes hangups to be ignored for the remainder of a
procedure.

 notify on page 12-102 Causes the shell to notify you asynchronously when the
status of the current or a specified job changes.

 onintr on page 12-102 Controls the action of the shell on interrupts.

 popd on page 12-103 Pops the directory stack and returns to the new top
directory.

 pushd on page 12-103 Exchanges elements of the directory stack.

 rehash on page 12-103 Causes recomputation of the internal hash table containing
the contents of the directories in the path shell variable.

 repeat on page 12-103 Runs the specified command, subject to the same
restrictions as the if command, the number of times
specified.

 set on page 12-103 Shows the value of all shell variables.

 setenv on page 12-104 Modifies the value of the specified environment variable.

 shift on page 12-104 Shifts the specified variable to the left.

 source on page 12-104 Reads command specified by the Name variable.

 stop on page 12-104 Stops the current or specified jobs running in the
background.

 suspend on page 12-104 Stops the shell as if a STOP signal has been received.

 switch on page 12-104 Starts a switch (String) case String:... breaksw
default:... breaksw endsw command sequence. This
command sequence successively matches each case label
against the value of the String variable. If none of the labels
match before a default label is found, the execution begins
after the default label.

 time on page 12-105 Displays a summary of the time used by the shell and its
child processes.

 umask on page 12-105 Determines file permissions.

 unalias on page 12-105 Discards all aliases with names that match the Pattern
variable.

 unhash on page 12-105 Disables the use of the internal hash table to locate running
programs.

 unlimit on page 12-106 Removes resource limitations.

 unset on page 12-106 Removes all variables having names that match the
Pattern variable.

12-126 AIX System User’s Guide – OS & Devices

 unsetenv on page 12-106 Removes all variables from the environment whose names
match the specified Pattern variable.

 wait on page 12-106 Waits for all background jobs.

 while on page 12-106 Evaluates the commands between the while and the
matching end command sequence while an expression
specified by the Expression variable evaluates nonzero.

Related Information

Korn Shell
The ksh and stty commands.

The alias, cd on page 12-46,

 export on page 12-39,

 fc on page 12-46,

 getopts on page 12-46,

 read on page 12-47,

 set on page 12-40, and typeset on page 12-44 Korn shell commands.

The /etc/passwd file.

Bourne Shell
The bsh or Rsh command, login command.

The Bourne shell read special command.

The setuid subroutine, setgid subroutine.

The null special file.

The environment file, profile file format.

12-127 Shells

C Shell
The csh command, ed command.

The alias on page 12-98,

 unalias on page 12-105,

 jobs on page 12-100,

 notify on page 12-102 and set on page 12-103 C Shell built–in commands.

12-128 AIX System User’s Guide – OS & Devices

Index X-1

Index

Symbols
. (dot) directories, 6-7

.. (dot,dot) directories, 6-7

.env file, 11-4

.mwmrc file, 11-7

.profile file, 11-3, 11-4

.Xdefaults file, 11-6

.xinitrc file, 11-5

$HOME directory, 6-7

/dev/rfd0 device, 9-3

/dev/rmt0 device, using, 9-3

/etc/environment file, 11-3

/etc/profile file, 11-2

~ (home) directory, 6-7

A
access control

displaying information, 10-12
editing information, 10-12
extended permissions, 10-10
lists, 10-9, 10-10
setting information, 10-12

access modes
base permissions, 10-9
controlling, 10-4
default

numeric representation for, 10-6
symbolic representation for, 10-5

directories, 10-4
files, 10-4
group information, displaying, 10-6
representation of

numeric, 10-5
symbolic, 10-5

user classes, 10-4

acledit command, 10-12

aclget command, 10-12

aclput command, 10-12

aixterm command, 2-7

AIXwindows Desktop
adding displays and terminals

ASCII terminal, 3-5
character–display terminal, 3-5

customizing display devices, 3-6
modiying profiles, 3-3

removing, local display, 3-5
starting

desktop autostart, 3-2
manually, 3-2

stopping, manually, 3-2

alias command, 4-10

alias substitution, C shell, 12-114

aliasing, command, Korn or POSIX shell, 12-20

append redirection operator (>>), 5-3

arguments, 4-4

arithmetic evaluation, Korn or POSIX shell, 12-29

ASCII files, printing on PostScript printer, 8-16

ASCII to PostScript
automating conversion, 8-17
converting files, 8-17

at command, 4-18, 4-19

atq command, 4-19
command, 9-12
compressing files before, 9-9
definition, 4-13
guidelines, 9-2
how to, 9-12
printer, 8-2
purpose of, 9-1

advantages of, 9-3
using smit command, 9-13

B
banner command, 5-8

base permissions, 10-9

bidirectional languages, 2-7

Bourne shell
command substitution, 12-86
commands

built–in, 12-79
list, 12-77
using, 12-76

conditional substitution, 12-91
environment, 12-73
file name substitution, 12-92
pattern matching, 12-92
positional parameters, 12-92
quoting characters, 12-77
redirecting input and output, 12-94
reserved words, 12-78
signal handling, 12-77
special commands, 12-79
starting, 12-73

X-2 AIX System User’s Guide – OS & Devices

variables, 12-88
predefined special, 12-90
substitution, 12-87
user–defined, 12-87

bsh command, 12-4, 12-73

built–in commands, 12-38
Bourne shell, 12-79
C shell, 12-98

bytes, counting number of, 7-14

C
C shell

alias substitution, 12-114
command substitution, 12-109
commands

built–in, 12-98
using, 12-98

expressions, 12-108
file name substitution, 12-117
history substitution, 12-111
job control, 12-124
limitations, 12-97
operators, 12-108
predefined and environmental variables, 12-120
redirecting input and output, 12-122
signal handling, 12-97
starting, 12-96
variable substitution, 12-115

capture command, 5-3, 5-7, 7-12

cd command, 6-6, 6-9

CD–ROM file system (CDRFS), 6-2

CDRFS, 6-2

chfont command, 11-10

chmod command, 10-8

chown command, 10-4

chpq command, 8-17

classes, user, 10-4

clear command, 5-7

clearing your screen, 5-7

colrm command, 7-17

command aliasing, Korn or POSIX shell, 12-20
tilde substitution, 12-21

command history, Korn or POSIX shell, 12-15

command list, nice, 4-16

command substitution
Bourne shell, 12-86
C shell, 12-109
Korn or POSIX shell, 12-28

commands
alias, creating, 4-10

Bourne shell, 12-76
built–in, 12-38

Bourne shell, 12-79
C shell, 12-98

C shell, 12-98
case–sensitive, 4-3
command name, definition, 4-4
entering, 4-3
flags, using, 4-4
function, description, 4-7
history, editing, 4-9
information about, displaying, 4-6
Korn or POSIX shell, 12-9
long commands on multiple lines, entering, 4-3
multiple commands on one line, entering, 4-3
overview, 4-3
parameters, 4-4
repeating, 4-8
saving entered, 4-7
shortcut names, creating, 4-10
spaces between, 4-3
substituting strings, 4-9
syntax, 4-3
text–formatting, 4-10
usage statements, 4-5

commands list, 8-8, 8-9
|, 5-5
<<, 5-4
>, 5-2
>>, 5-3
acledit, 10-12
aclget, 10-12
aclput, 10-12
aixterm, 2-7
alias, 4-10
at, 4-18, 4-19
atq, 4-19
backup, 9-12
banner, 5-8
bsh, 12-4, 12-73
capture, 5-3, 5-7, 7-12
cd, 6-6, 6-9
chfont, 11-10
chmod, 10-8
chown, 10-4
chpq, 8-17
clear, 5-7
colrm, 7-17
compress, 9-9
cp, 6-10, 7-8
cpio –i, 9-7
cpio –o command, 9-6
csh, 12-4, 12-96
cut, 7-15
del, 7-20
df, 6-4
diff, 7-14
dircmp, 6-12
dosdel, 7-22

Index X-3

dosdir, 7-22
dosread, 7-21
doswrite, 7-21
echo, 5-7
env, 2-6
exit, 1-4
export, 11-9
fc, 12-15
fdformat, 9-4
file, 7-10
find, 7-9
flcopy, 9-6
format, 9-4
fsck, 9-5
grep, 5-6, 7-12
groups, 10-4
head, 7-14
history, 4-7
id, 1-7
kill, 4-19
ksh, 12-4, 12-13

regular built–in commands, 12-46, 12-47,
12-48, 12-49, 12-50, 12-51

special built–in commands, 12-38, 12-39,
12-40, 12-43, 12-44, 12-45

ln, 7-19
lock, 10-13
login, 1-3
logname, 1-5
logout, 1-4
ls, 6-10
lscfg, 2-2
lscons, 2-3
lsdisp, 2-4
lsfont, 2-4
lsgroup, 10-6
lskbd, 2-4
lslpp, 2-5
man, 4-6
mkdir, 6-8
more, 7-11
mv, 7-8
mvdir, 6-8
mwm, 11-5
nice, 4-16
nl, 7-17
pack, 9-9
page, 7-11
passwd, 1-9
paste, 7-16
pg, 7-11
pr, 8-14
printenv, 2-7
ps, 4-14
psh, 12-4, 12-13
pwd, 6-9
qcan, 8-8
qchk, 8-9
qhld, 8-12
qmov, 8-13

qpri, 8-11
qprt, 8-4
r, 4-8
renice, 4-16
restore, 9-14
rm, 7-7, 7-20
rmdir, 6-12
Rsh, 12-4, 12-75
rsh, 12-4
script, 5-8
sh, 12-4
shutdown, 1-4
smit, 4-6, 8-7, 9-13
sort, 7-13
stty, 2-5, 11-10
su, 1-3
tail, 7-15
tapechk, 9-8
tar, 9-16
tcopy, 9-8
tee, 5-6
touch, 1-3
tsh, 12-4
tty, 2-3
uname, 1-6
uncompress, 9-11
unpack, 9-11
wc, 7-14
whatis, 4-7
whereis, 4-6
who, 1-6
who am i, 1-5
whoami, 1-5
xlock, 10-13
zcat, 9-11

comparing files, 7-14

compress command, 9-9

compressing files, 9-9

concatenating text files, 5-3

conditional substitution, Bourne shell, 12-91

console, displaying name, 2-3

control keys
changing, 11-10
displaying settings, 2-5

coprocess facility, Korn or POSIX shell, 12-35

copying
files from tape or disk, 9-7
files to tape or disk, 9-6
to or from diskettes, 9-6
to or from tape, 9-8

copying screen to file, 5-7

cp command, 6-10, 7-8

cpio –i command, 9-7

cpio –o command, 9-6

X-4 AIX System User’s Guide – OS & Devices

csh command, 12-4, 12-96

customizing, system environment, 11-9

cut command, 7-15

cutting sections, 7-15
description, 4-13

D
del command, 7-20

deleting
directories, 6-12
files, 7-7

devices, displaying information about, 2-2

df command, 6-4

diff command, 7-14

dircmp command, 6-12

directories, 6-6
abbreviations, 6-7
access modes, 10-4
changing, 6-9
changing ownership, 10-4
changing permissions, 10-8
comparing contents, 6-12
copying, 6-10
creating, 6-8
definition, 6-1
deleting, 6-12
displaying

contents, 6-10
current, 6-9

home, 6-6
linking, 7-18
listing DOS files, 7-22
listing files, 6-10
moving, 6-8
naming conventions, 6-6
organization, 6-6
overview, 6-5
parent, 6-6
path names, 6-6
removing, 6-12
renaming, 6-8
root, definition, 6-1
specifying with abbreviations, 6-7
structure, 6-6
subdirectories, 6-6
types, 6-5
working, 6-6

discarding output, 5-4

diskettes
copying to or from, 9-6
formatting, 9-4
handling, 9-3

displaying
access control information, 10-12
console name, 2-3
displays available, 2-4
file contents, 7-11
file directory

contents, 6-10
current, 6-9

files
first lines, 7-14
last lines, 7-15

fonts available, 2-4
login name, 1-5
software products, 2-5
system name, 1-6
terminal name, 2-3
text in large letters on screen, 5-8
user group information, 10-6
user ID, 1-7

displays, listing currently available on system, 2-4

DOS files
converting, 7-21
copying, 7-21
deleting, 7-22
listing contents, 7-22

dosdel command, 7-22

dosdir command, 7-22

dosread command, 7-21

doswrite command, 7-21

E
echo command, 5-7

ed editor, 7-7

editing, inline, Korn or POSIX shell, 12-58

editors, 7-7, 12-58

emacs editor, 12-58

env command, 2-6

environment
displaying current, 2-6
setting, user, 11-3
system, 2-1

environment file, 11-3

environment variables, displaying values, 2-7

exit command, 1-4

exit status, Korn or POSIX shell, 12-37

export command, 11-9

expressions, finding files with matching, 7-9

extended permissions, 10-10

Index X-5

F
fc command, 12-15

fdformat command, 9-4

file
command, 7-10
descriptors, 5-4
permissions, 10-4
trees, 6-2

file name substitution
Bourne shell, 12-92
C shell, 12-117
Korn or POSIX shell, 12-32

file systems
checking for consistency, 9-5
conducting interactive repairs, 9-5
definition, 6-1
example, illustration, 7-4
overview, 6-2
root, 6-3
space available, showing, 6-4
structure, 6-2
types

journaled file system (JFS), 6-2
network file system (NFS), 6-2

files
access mode, setting, 7-18
access modes, 10-4
appending single line of text, 5-7
archiving, 9-16
ASCII, 7-3
backing up, 9-12
binary, 7-3
changing

from a linked file, 7-18
ownership, 10-4
permissions, 10-8

columns, removing, 7-17
comparing, 6-12, 7-14
compressing, 9-9
concatenating, 5-3
copying, 7-8

from DOS, 7-21
from screen, 5-7
from tape or disk, 9-7
to DOS, 7-21

counting
bytes, 7-14
lines, 7-14
words, 7-14

creating with redirection from keyboard, 5-3
cutting selected fields from, 7-15
definition, 6-1
deleting, 7-7
deleting DOS, 7-22
displaying

contents, 7-11

first lines, 7-14
last lines, 7-15

environment, 11-3
executable, 7-3
expanding, 9-11
formatting

for display, 7-11
for printing, 8-14

handling, 7-7
identifying type, 7-10
joining, 5-3
linked, removing, 7-20
linking, 7-18, 7-19
locating sections, 4-6

finding, 7-9
merging the lines of several, 7-16
metacharacters, 7-5
moving, 7-8
naming conventions, 7-4
numbering lines, 7-17
overview, 7-1
ownership, 7-18, 10-4
packing, 9-9
pasting text, 6-6, 7-4, 7-16
permissions, 7-4
regular expressions, 7-6
removing, 7-7
renaming, 7-8
restoring, using smit command, 9-15
restoring backed–up, 9-14
retrieving from storage, 9-16
searching for a string, 7-12
sorting text, 7-13
types

directory, 7-3
regular, 7-3
showing, 7-10
special, 7-3

uncompressing, 9-11
unpacking, 9-11
wildcards, 7-4
writing to output, from specified point, 7-15

filters, definition, 5-5

find command, 7-9

flags, in commands, 4-4

flcopy command, 9-6

font, changing, 11-10

fonts, listing available for use, 2-4

foreground processes, definition, 4-13

format command, 9-4

formatting diskettes, 9-4

fsck command, 9-5

X-6 AIX System User’s Guide – OS & Devices

G
grep command, 5-6, 7-12

groups command, 10-4

H
head command, 7-14

here document, 5-5, 12-34

history
command, 4-7
editing, 4-9
shell, 4-8, 4-9
substitution, C shell, 12-111

I
i–node number, 6-5, 7-3, 7-18

I/O redirection
Bourne shell, 12-94
C shell, 12-122
Korn or POSIX shell, 12-34

id command, 1-7

IDs, user, 10-4

index node reference number, 6-5

inline editing, Korn or POSIX shell, 12-58
emacs mode, 12-58
vi editing mode, 12-61

inline input documents, 5-5

input and output redirection, 12-94

input redirection, 5-2

input redirection operator (<<), 5-4

integer arithmetic, 12-29

international character support, text formatting,
4-10

J
JFS, 6-2

job control
C shell, 12-124
Korn or POSIX shell, 12-56

jobs
listing scheduled, 4-19
removing from schedule, 4-19
scheduling, 4-18

journaled file system (JFS), 6-2

K
keyboard maps, listing currently available, 2-4

kill command, 4-19

Korn shell, 12-67

Korn shell inline editing
emacs mode, 12-58
vi editing mode, 12-61

Korn shell or POSIX shell, 12-32
arithmetic evaluation, 12-29
built–in commands, 12-38
command aliasing, 12-20

tilde substitution, 12-21
command history, 12-15
command substitution, 12-28
commands

built–in, 12-38
compound, 12-10
functions, 12-13
using, 12-9

conditional expressions, 12-54
coprocess facility, 12-35
coprocesses, redirecting input and output from,

12-36
editing, 12-58
environment, 12-13
exit status, 12-37
field splitting, 12-31
job control, 12-56
parameter substitution, 12-22
pattern matching, 12-32
quote removal, 12-33
quoting, 12-16
redirecting input and output, 12-34
reserved words, 12-19
signal handling, 12-56
starting, 12-13

predefined, 12-25
user–defined, 12-26

ksh command, 12-4, 12-13

ksh93 shell, bidirectional, 2-7

L
line of text, appending to file, 5-7

lines, counting number of, 7-14

linked files, removing, 7-20

links
creating, 7-19
hard, 7-18
overview, 7-18
removing, 7-20

Index X-7

symbolic, 7-18
types, 7-18

ln command, 7-19

local printers, 8-2

lock command, 10-13

locking your terminal, 10-13

login
command, 1-3
how to, 1-2
messages, suppressing, 1-3
multiple on same system, 1-3

displaying, 1-5
remote, 1-1
user ID, as another, 1-3

login files
.env file, 11-4
.profile file, 11-3, 11-4
/etc/environment file, 11-3
/etc/profile file, 11-2

login messages, suppressing, 1-3

login user ID, 10-3

logname command, 1-5

logout
command, 1-4
how to, 1-4

ls command, 6-10

lscfg command, 2-2

lscons command, 2-3

lsdisp command, 2-4

lsfont command, 2-4

lsgroup command, 10-6

lskbd command, 2-4

lslpp command, 2-5

M
man command, 4-6

keyboard, 2-4

messages
displaying on screen, 5-7
sending to standard output, 5-7

metacharacters, 7-5

mkdir command, 6-8

more command, 7-11

multibyte character support, text formatting, 4-11

mv command, 7-8

mvdir command, 6-8

mwm command, 11-5
directories, 6-6
files, 7-4
login, 1-5
operating system, 1-6

N
network, displaying name, with uname command,

1-6

network file system (NFS), 6-2

NFS, 6-2

nice command, 4-16

nl command, 7-17

O
operating system

displaying name, with uname command, 1-6
logging in, 1-2
logging out, 1-4

options, in commands, 4-4

output
discarding with /dev/null file, 5-4
redirecting to a file, 5-2

output redirection operator (>), 5-2

P
pack command, 9-9

page command, 7-11
in commands, 4-4
Korn or POSIX shell, 12-22

passwd command, 1-9
changing or setting, 1-9
guidelines, 1-8
setting to null, 1-9

paste command, 7-16
absolute, 6-7, 7-4
Bourne shell, 12-92
definition, 7-4
directory, 6-6
Korn or POSIX shell, 12-32

permissions
base, 10-9
directory, 10-8
extended, 10-10
file, 10-8

pg command, 7-11

X-8 AIX System User’s Guide – OS & Devices

PID number, description, 4-13

pipelining, definition, 4-3, 5-5

pipes, definition, 5-5

positional parameters, Bourne shell, 12-92

PostScript files, converting from ASCII, 8-17

PostScript printer, printing ASCII files, 8-16

pr command, 8-14

print file types, overriding automatic determination,
8-18

print jobs
canceling, 8-8
definition, 8-2
displaying status, 8-9
formatting files for, 8-14
holding, 8-12
moving, 8-13
prioritizing, 8-11
starting, 8-4

print spooler, 8-2

printenv command, 2-7

printers, 8-1
backend, 8-2
canceling a job, 8-8
local, 8-2
qdaemon, 8-3
queue, 8-3
queue device, 8-3
real, 8-3
remote, 8-3
showing status of job, 8-11
spooler, 8-2
starting a job, 8-4
status conditions, 8-10
virtual, 8-3

printing, 8-1, 8-13
ASCII files on PostScript printer, 8-16
formatting files for, 8-14
moving print jobs, 8-13

process indentification number, 4-13

processes
background, 4-13
canceling, 4-17

foreground process, 4-17
changing priority, 4-16
daemon, 4-13
description, 4-13
displaying all active, 4-14
displaying status, 4-15
foreground, 4-13
listing scheduled, 4-19
removing from schedule, 4-19
restarting stopped, 4-17
scheduling for later operation, 4-18
setting initial priority, 4-16

starting, 4-14
stopping, 4-17

background process, 4-19
zombie, 4-14

profile files, using, 11-2

program, copying output into a file, 5-6

prompt, changing system, 11-11

ps command, 4-14

psh command, 12-4, 12-13

pwd command, 6-9

Q
qcan command, 8-8

qchk command, 8-9

qdaemon, 8-3

qhld command, 8-12

qmov command, 8-13

qpri command, 8-11

qprt command, 8-4

queue
device, 8-3
print, 8-3

quote removal, Korn or POSIX shell, 12-33

quoting characters
Bourne shell, 12-77
Korn or POSIX shell, 12-16

R
r (repeat) command, 4-8

reading the three–digit display, 1-2

real printers, 8-3

redirecting
output to a file, 5-2
standard error output, 5-4
standard input, 5-4
standard output, 5-2

redirecting input and output, from coprocesses,
12-36

regular expressions, 7-6

remote
login, 1-1
printers, 8-3

renaming
directories, 6-8
files, 7-8

renice command, 4-16

Index X-9

reserved words, Korn or POSIX shell, 12-19

resource files, modifying, 11-6, 11-7

resources, description, 11-6

restore command, 9-14

restricted shell, starting, 12-75

rm command, 7-7, 7-20

rmdir command, 6-12

root file, 6-3

Rsh command, 12-4, 12-75

rsh command, 12-4

S
screens

clearing, 5-7
copying display to a file, 5-6
copying to file, 5-7
displaying text in large letters, 5-8
displaying text one screen at a time, 7-11

script command, 5-8

security
file, 10-1
system, 10-1
threats, 10-2

sh command, 12-4

shell
programs, 12-7
scripts

creating, 12-7
exporting, 11-9
specifying a shell, 12-8

shells
available, 12-4
Bourne

alias substitution, 12-114
built–in commands, 12-79, 12-98
command substitution, 12-86, 12-109
conditional substitution, 12-91
environment, 12-73
file name substitution, 12-92, 12-117
history substitution, 12-111
job control, 12-124
positional parameters, 12-92
predefined and environmental variables,

12-120
predefined special variables, 12-90
redirecting input and output, 12-94, 12-122
signal handling, 12-97
starting, 12-73, 12-96
user–defined variables, 12-87
variable substitution, 12-87, 12-115
variables, 12-88

features, 12-3

Korn or POSIX
arithmetic evaluation, 12-29
built–in commands, 12-38
command, 12-15, 12-20, 12-28
compound commands, 12-10
conditional expressions, 12-54
coprocess facility, 12-35
environment, 12-13
exit status, 12-37
file name substitution, 12-32
inline editing, 12-58, 12-61
job control, 12-56
parameters, 12-22
quoting, 12-16
redirecting input and output, 12-34
reserved words, 12-19
signal handling, 12-56
starting, 12-13
using commands, 12-9

restricted, starting, 12-75
scripts, specifying a shell, 12-8
shell scripts, creating, 12-7
terms, definitions, 12-5
trusted, starting, 12-4
types, 12-4
understanding, 12-1

shortcut name for commands, creating, 4-10

shutdown command, 1-4

signal handling
Bourne shell, 12-77
C shell, 12-97
Korn or POSIX shell, 12-56

SMIT, printing, control of, 8-4

smit command, 4-6, 8-7, 9-13

software products, displaying information about,
2-5

sort command, 7-13

space, showing available, 6-4

special commands, Bourne shell, 12-79

standard error output, redirecting, 5-4

standard input
copying to a file, 5-6
definition, 5-2
redirecting, 5-4

standard output
appending to a file, 5-3
definition, 5-2
redirecting, 5-2

standard shell, conditional expressions, 12-54

starting
Bourne shell, 12-73
C shell, 12-96
Korn or POSIX shell, 12-13
windows Window Manager, 11-5

X-10 AIX System User’s Guide – OS & Devices

X, 11-5

startup, controlling windows and applications at,
11-5

startup files
C shell, 12-96
system, 11-2

strings, finding in text files, 7-12

stty command, 2-5, 11-10

su command, 1-3

switches, in commands, 4-4

system
customizing environment, 11-9
default variables, 11-2
displaying name, 1-6
environment, 2-1

file systems tasks, 6-2
powering on, 1-2
prompt, changing, 11-11
security, 10-1
shutdown, 1-4
startup files, 11-2

T
tail command, 7-15

tapechk command, 9-8
checking consistency, 9-8
copying to or from, 9-8

tar command, 9-16

tcopy command, 9-8

tee command, 5-6

terminal
displaying name, 2-3
displaying settings, 2-7
locking, 10-13
reserving, using lock command, 10-13

text
appending to a file, 5-7
displaying in large letters, 5-8

text files
columns, removing, 7-17
concatenating, 5-3
creating from keyboard input, 5-3
finding strings, 7-12
lines, numbering, 7-17
sections

cutting, 7-15
pasting, 7-16

sorting, 7-13

text formatting
extended single–byte characters, 4-11
international character support, 4-10
multibyte character support, 4-11

text–formatting commands, 4-10

three–digit display, 1-2

tilde substitution, aliasing commands, Korn or
POSIX shell, 12-21

touch command, 1-3

tsh command, 12-4

tty command, 2-3

types, CD–ROM file system (CDRFS), 6-2

U
uname command, 1-6

uncompress command, 9-11

unpack command, 9-11
purpose of, 9-9

usage statements, for commands, 4-5

user
classes, 10-4
groups

definition, 10-4
displaying information, 10-6

ID, changing to another, 1-3

users
Bourne shell, 12-87, 12-88

predefined special, 12-90
user–defined, 12-87

C shell, 12-115
predefined and environmental, 12-120

displaying current system, 1-6
displaying system ID, 1-7
exporting shell, 11-9
Korn or POSIX shell, 12-25

predefined, 12-25
user–defined, 12-26

V
vi editor, 12-61

virtual printers, 8-3

W
wc command, 7-14

Web–based System Manager command, 8-12

whatis command, 4-7

whereis command, 4-6

who am i command, 1-5

who command, 1-6

whoami command, 1-5

Index X-11

wildcards, 7-4

windows Window Manager, starting, 11-5

words, counting number of, 7-14

X
X Window System, starting, 11-5

xlock command, 10-13

Z
zcat command, 9-11

zombie process, 4-14

X-12 AIX System User’s Guide – OS & Devices

Vos remarques sur ce document / Technical publication remark form

Titre / Title : Bull AIX 5L System User’s Guide Operating System and Devices

Nº Reférence / Reference Nº : 86 A2 24EF 02 Daté / Dated : October 2002

ERREURS DETECTEES / ERRORS IN PUBLICATION

AMELIORATIONS SUGGEREES / SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Vos remarques et suggestions seront examinées attentivement.

Si vous désirez une réponse écrite, veuillez indiquer ci-après votre adresse postale complète.

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.

If you require a written reply, please furnish your complete mailing address below.

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

Remettez cet imprimé à un responsable BULL ou envoyez-le directement à :

Please give this technical publication remark form to your BULL representative or mail to:

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

Technical Publications Ordering Form

Bon de Commande de Documents Techniques

To order additional publications, please fill up a copy of this form and send it via mail to:

Pour commander des documents techniques, remplissez une copie de ce formulaire et envoyez-la à :

BULL CEDOC
ATTN / Mr. L. CHERUBIN
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Phone / Téléphone : +33 (0) 2 41 73 63 96
FAX / Télécopie +33 (0) 2 41 73 60 19
E–Mail / Courrier Electronique : srv.Cedoc@franp.bull.fr

Or visit our web sites at: / Ou visitez nos sites web à:

http://www.logistics.bull.net/cedoc

http://www–frec.bull.com http://www.bull.com

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

[_ _] : no revision number means latest revision / pas de numéro de révision signifie révision la plus récente

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

PHONE / TELEPHONE : FAX :

E–MAIL :

For Bull Subsidiaries / Pour les Filiales Bull :

Identification:

For Bull Affiliated Customers / Pour les Clients Affiliés Bull :

Customer Code / Code Client :

For Bull Internal Customers / Pour les Clients Internes Bull :

Budgetary Section / Section Budgétaire :

For Others / Pour les Autres :

Please ask your Bull representative. / Merci de demander à votre contact Bull.

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

86 A2 24EF 02

ORDER REFERENCE

P
L
A

C
E

 B
A

R
 C

O
D

E
 I

N
 L

O
W

E
R

L
E

F
T

 C
O

R
N

E
R

Utiliser les marques de découpe pour obtenir les étiquettes.

Use the cut marks to get the labels.

AIX

86 A2 24EF 02

AIX 5L System
User’s Guide

Operating System
and Devices

AIX

86 A2 24EF 02

AIX 5L System
User’s Guide

Operating System
and Devices

AIX

86 A2 24EF 02

AIX 5L System
User’s Guide

Operating System
and Devices

